Science.gov

Sample records for arsenite-oxidizing bacteria isolated

  1. Arsenite oxidizing multiple metal resistant bacteria isolated from industrial effluent: their potential use in wastewater treatment.

    PubMed

    Naureen, Ayesha; Rehman, Abdul

    2016-08-01

    Arsenite oxidizing bacteria, isolated from industrial wastewater, showed high resistance against arsenite (40 mM) and other heavy metals (10 mM Pb; 8 mM Cd; 6 mM Cr; 10 mM Cu and 26.6 mM As(5+)). Bacterial isolates were characterized, on the basis of morphological, biochemical and 16S rRNA ribotyping, as Bacillus cereus (1.1S) and Acinetobacter junii (1.3S). The optimum temperature and pH for the growth of both strains were found to be 37 °C and 7. Both the strains showed maximum growth after 24 h of incubation. The predominant form of arsenite oxidase was extracellular in B. cereus while in A. junii both types of activities, intracellular and extracellular, were found. The extracellular aresenite oxidase activity was found to be 730 and 750 µM/m for B. cereus and A. junii, respectively. The arsenite oxidase from both bacterial strains showed maximum activity at 37 °C, pH 7 and enhanced in the presence of Zn(2+). The presence of two protein bands with molecular weight of approximately 70 and 14 kDa in the presence of arsenic points out a possible role in arsenite oxidation. Arsenite oxidation potential of B. cereus and A. junii was determined up to 92 and 88 % in industrial wastewater after 6 days of incubation. The bacterial treated wastewater improved the growth of Vigna radiata as compared to the untreated wastewater. It indicates that these bacterial strains may find some potential applications in wastewater treatment systems to transform toxic arsenite into less toxic form, arsenate.

  2. Isolation and Characterization of Arsenite-Oxidation Bacteria From Arsenic-contaminated Groundwater in Blackfoot Disease Region in Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, H.; Hsiao, S.; Liu, C.; Liao, C.; Chang, F.; Liao, V. H.

    2006-12-01

    Arsenic is an environmental carcinogen of toxicological concern. Although arsenic is generally toxic to life, it has been demonstrated that some microorganisms can use arsenic compounds as electron donors, electron acceptors, or possess arsenic detoxification mechanisms. Increasing evidences suggest that the biogeochemical cycle of arsenic is significant dependent on microbial transformations which affect the distribution and the mobility of arsenic species in the environment. However, the roles of the bacteria in the arsenic cycles are yet to be fully elucidated. In this study, we isolate As(V)-As(III) redox bacteria using arsenic-contaminated groundwater in Blackfoot disease region in Taiwan under oxic condition. Two hundred and nineteen arsenic-resistant heterotrophic bacterial strains were isolated. Analysis of the 16S rRNA gene sequence of some bacteria revealed that some of bacteria have been indicated involving in arsenic transformation, while others have not been reported to be associated with arsenic transformation. Of these isolated bacteria, one designated as L7506 was selected for further investigation. Strain L7506 is a Gram- negative, straight to curved rod, and motile bacteria. It belongs to genus Bosea based on 16S rRNA sequence analysis. The optimal growth condition was at pH 6-7, 37'C in LB medium. Moreover, it was able to grow in the presence of 100mM arsenate. L7506 began to significantly oxidize arsenite (2mM) to arsenate after 3-day incubation and complete the oxidation process after 10-day incubation. To further explore the genetic basis for the regulation of arsenite oxidation, transposon Tn5 mutagenesis was used to identify genetic determinants required for arsenite oxidation in L7506 and it is in progress. Results from this study show that diverse bacteria were isolated from arsenic-contaminated groundwater in Blackfoot disease region in Taiwan. The identified As(III)-oxidizing bacteria may be potentially used for bioremediation of arsenic

  3. Novel autotrophic arsenite-oxidizing bacteria isolated from soil and sediments.

    PubMed

    Garcia-Dominguez, Elizabeth; Mumford, Adam; Rhine, Elizabeth Danielle; Paschal, Amber; Young, Lily Y

    2008-11-01

    Arsenic oxidation is recognized as being mediated by both heterotrophic and chemoautotrophic microorganisms. Enrichment cultures were established to determine whether chemoautotrophic microorganisms capable of oxidizing arsenite As(III) to arsenate As(V) are present in selected contaminated but nonextreme environments. Three new organisms, designated as strains OL-1, S-1 and CL-3, were isolated and found to oxidize 10 mM arsenite to arsenate under aerobic conditions using CO2-bicarbonate (CO2/HCO3-) as a carbon source. Based on 16S rRNA gene sequence analyses, strain OL-1 was 99% most closely related to the genus Ancylobacter, strain S-1 was 99% related to Thiobacillus and strain CL-3 was 98% related to the genus Hydrogenophaga. The isolates are facultative autotrophs and growth of isolated strains on different inorganic electron donors other than arsenite showed that all three had a strong preference for several sulfur species, while CL-3 was also able to grow on ammonium and nitrite. The RuBisCO Type I (cbbL) gene was positively amplified and sequenced in strain CL-3, and the Type II (cbbM) gene was detected in strains OL-1 and S-1, supporting the autotrophic nature of the organisms.

  4. Characterization of arsenite-oxidizing bacteria isolated from arsenic-contaminated groundwater of West Bengal.

    PubMed

    Paul, Dhiraj; Poddar, Soumya; Sar, Pinaki

    2014-01-01

    Nine arsenic (As)-resistant bacterial strains isolated from As-rich groundwater samples of West Bengal were characterized to elucidate their potential in geomicrobial transformation and bioremediation aspects. The 16S rRNA gene-based phylogenetic analysis revealed that the strains were affiliated with genera Actinobacteria, Microbacterium, Pseudomonas and Rhizobium. The strains exhibited high resistance to As [Minimum inhibitory concentration (MIC) ≥ 10 mM As(3+) and MIC ≥ 450 mM As(5+)] and other heavy metals, e.g., Cu(2+), Cr(2+), Ni(2+), etc. (MIC ≥ 2 mM) as well as As transformation (As(3+) oxidation and As(5+) reduction) capabilities. Their ability to utilize diverse carbon source(s) including hydrocarbons and different alternative electron acceptor(s) (As(5+), SO4(2-), S2O3(2-), etc.) during anaerobic growth was noted. Growth at wide range of pH, temperature and salinity, production of siderophore and biofilm were observed. Together with these, growth pattern and transformation kinetics indicated a high As(3+) oxidation activity of the isolates Rhizobium sp. CAS934i, Microbacterium sp. CAS905i and Pseudomonas sp. CAS912i. A positive relation between high As(3+) resistance and As(3+) oxidation and the supportive role of As(3+) in bacterial growth was noted. The results highlighted As(3+) oxidation process and metabolic repertory of strains indigenous to contaminated groundwater and indicates their potential in As(3+) detoxification. Thus, such metabolically well equipped bacterial strains with highest As(3+) oxidation activities may be used for bioremediation of As contaminated water and effluents in the near future.

  5. Isolation of arsenite-oxidizing bacteria from a natural biofilm associated to volcanic rocks of Atacama Desert, Chile.

    PubMed

    Campos, V L; Escalante, G; Yañez, J; Zaror, C A; Mondaca, M A

    2009-09-01

    Arsenic is naturally present in rocks, soil, water, and air. It is released to the environment by natural processes such as volcanic eruptions, and rock erosion. In this study, two arsenite-oxidizing strains were isolated from volcanic rocks obtained from the Camarones Valley, Atacama Desert, Chile. Strains were isolated from biofilms and identified by 16s ARNr sequences analysis. aox genes were detected by RT-PCR. The arsenic oxidation ability was assayed with silver nitrate and HPLC-HG-AAS. Four arsenite-resistant strains were isolated (8 mM). RT-PCR analysis showed the presence of aox genes in UC-2 and UC-6 strains. In addition, UC-2 and UC-6 strains were able to oxidize 90 and 95% arsenite present in the medium to arsenate, at a rate of 9.3 and 9.8 microg ml(-1) h(-1 )respectively. Bicarbonate (HCO(3) (-)) was used as unique carbon source. Finally, the significative oxidation capacity shown by both strains opens the way to further studies aimed at implementing biological systems to treat arsenic rich wastewater. Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza sativa L.: Implications for mitigation of arsenic contamination in paddies.

    PubMed

    Das, Suvendu; Jean, Jiin-Shuh; Chou, Mon-Lin; Rathod, Jagat; Liu, Chia-Chuan

    2016-01-25

    Arsenite-oxidizing bacteria exhibiting plant growth promoting (PGP) traits can have the advantages of reducing As-uptake by rice and promoting plant growth in As-stressed soil. A gram-positive bacterium Bacillus flexus ASO-6 resistant to high levels of As (32 and 280 mM for arsenite and arsenate, respectively) and exhibiting elevated rates of As(III) oxidation (Vmax=1.34 μM min(-1) 10(-7) cell) was isolated from rhizosphere of rice. The presence of aoxB gene and exhibition of As(III)-oxidase enzyme activity of this strain was observed. The ability of the strain to produce siderophore, IAA, ACC-deaminase and to solubilize phosphate was verified. The rice seed treated with the strain exhibited significantly improved seed germination and seedling vigor compared with the un-inoculated seeds. The bacterial inoculation significantly increased root biomass, straw yield, grain yield, chlorophyll and carotenoid in the rice plant. Moreover, As uptake from root to shoot and As accumulation in straw and grain decreased significantly as a result of the bacterial inoculation. Noteworthy, the inoculation effect is more prominent in non-flooded soil than it is in flooded soil. Owing to its wide action spectrum, this As(III)-oxidizing PGPB could serve as a potential bio-inoculant for mitigation of As in paddies and sustainable rice production in As-contaminated areas. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea.

    PubMed

    Chang, Jin-Soo; Yoon, In-Ho; Lee, Ji-Hoon; Kim, Ki-Rak; An, Jeongyi; Kim, Kyoung-Woong

    2010-04-01

    Arsenic is subject to microbial interactions, which support a wide range of biogeochemical transformations of elements in natural environments such as wetlands. The arsenic detoxification potential of the bacterial strains was investigated with the arsenite oxidation gene, aox genotype, which were isolated from the natural and constructed wetlands. The isolates were able to grow in the presence of 10 mM of sodium arsenite (As(III) as NaAsO(2)) and 1 mM of D: +glucose. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that these isolated strains resembled members of the genus that have arsenic-resistant systems (Acinetobacter sp., Aeromonas sp., Agrobacterium sp., Comamonas sp., Enterobacter sp., Pantoea sp., and Pseudomonas sp.) with sequence similarities of 81-98%. One bacterial isolate identified as Pseudomonas stutzeri strain GIST-BDan2 (EF429003) showed the activity of arsenite oxidation and existence of aoxB and aoxR gene, which could play an important role in arsenite oxidation to arsenate. This reaction may be considered as arsenic detoxification process. The results of a batch test showed that P. stutzeri GIST-BDan2 (EF429003) completely oxidized in 1 mM of As(III) to As(V) within 25-30 h. In this study, microbial activity was evaluated to provide a better understanding of arsenic biogeochemical cycle in both natural and constructed wetlands, where ecological niches for microorganisms could be different, with a specific focus on arsenic oxidation/reduction and detoxification.

  8. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia.

    PubMed

    Hamamura, Natsuko; Itai, Takaaki; Liu, Yitai; Reysenbach, Anna-Louise; Damdinsuren, Narantuya; Inskeep, William P

    2014-10-01

    Microbial arsenic transformation pathways associated with a saline lake located in northern Mongolia were examined using molecular biological and culturing approaches. Bacterial 16S rRNA gene sequences recovered from saline lake sediments and soils were affiliated with haloalkaliphiles, including Bacillus and Halomonas spp. Diverse sequences of arsenate respiratory reductase (arrA) and a new group of arsenite oxidase (arxA) genes were also identified. Pure cultures of arsenate-reducing Nitrincola strain and anaerobic arsenite-oxidizing Halomonas strain were isolated. The chemoorganotrophic Halomonas strain contains arxA gene similar to that of a chemoautotrophic arsenite-oxidizing Alkalilimnicola ehrlichii strain MLHE-1. These results revealed the diversity of arsenic transformation pathways associated with a geographically distinct saline system and the potential contribution of arx-dependent arsenite oxidation by heterotrophic bacteria.

  9. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    NASA Astrophysics Data System (ADS)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  10. Arsenite-oxidizing Hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park.

    PubMed

    Donahoe-Christiansen, Jessica; D'Imperio, Seth; Jackson, Colin R; Inskeep, William P; McDermott, Timothy R

    2004-03-01

    An arsenite-oxidizing Hydrogenobaculum strain was isolated from a geothermal spring in Yellowstone National Park, Wyo., that was previously shown to contain microbial populations engaged in arsenite oxidation. The isolate was sensitive to both arsenite and arsenate and behaved as an obligate chemolithoautotroph that used H(2) as its sole energy source and had an optimum temperature of 55 to 60 degrees C and an optimum pH of 3.0. The arsenite oxidation in this organism displayed saturation kinetics and was strongly inhibited by H(2)S.

  11. Arsenite-Oxidizing Hydrogenobaculum Strain Isolated from an Acid-Sulfate-Chloride Geothermal Spring in Yellowstone National Park

    PubMed Central

    Donahoe-Christiansen, Jessica; D'Imperio, Seth; Jackson, Colin R.; Inskeep, William P.; McDermott, Timothy R.

    2004-01-01

    An arsenite-oxidizing Hydrogenobaculum strain was isolated from a geothermal spring in Yellowstone National Park, Wyo., that was previously shown to contain microbial populations engaged in arsenite oxidation. The isolate was sensitive to both arsenite and arsenate and behaved as an obligate chemolithoautotroph that used H2 as its sole energy source and had an optimum temperature of 55 to 60°C and an optimum pH of 3.0. The arsenite oxidation in this organism displayed saturation kinetics and was strongly inhibited by H2S. PMID:15006819

  12. Kinetics of arsenite oxidation by Variovorax sp. MM-1 isolated from a soil and identification of arsenite oxidase gene.

    PubMed

    Bahar, Md Mezbaul; Megharaj, Mallavarapu; Naidu, Ravi

    2013-11-15

    A Gram-negative, arsenite-oxidizing bacterial strain, MM-1 tolerant to 20mM arsenite and 200 mM arsenate was isolated from a heavy metal contaminated soil which contained only 8.8 mg kg(-1) of arsenic. Based on 16S rRNA analysis, the strain was closely related to the genus Variovorax. This strain completely oxidized 500 μM of arsenite to arsenate within 3h of incubation in minimal salts medium. Kinetic studies of arsenite oxidation by the cells showed one of the lowest Km (17 μM) and highest Vmax (1.23 × 10(-7) μM min(-1) cell(-1)) values reported to date for whole cell suspension. PCR analysis using degenerate primers confirmed the presence of arsenite oxidase gene and its amino acid sequence was 70-91% identical to the large subunit of most reported arsenite oxidases. The significant arsenite oxidation capacity shown by the strain opens the way to its potential application in arsenic remediation process. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria.

    PubMed

    Zhang, Zhennan; Yin, Naiyi; Du, Huili; Cai, Xiaolin; Cui, Yanshan

    2016-05-01

    Arsenic (As) is a redox-active metalloid whose toxicity and mobility in soil depend on its oxidation state. Arsenite [As(III)] can be oxidized by microbes and adsorbed by minerals in the soil. However, the combined effects of these abiotic and biotic processes are not well understood. In this study, the fate of arsenic in the presence of an isolated As(III)-oxidizing bacterium (Pseudomonas sp. HN-1, 10(9) colony-forming units (CFUs)·ml(-1)) and three iron oxides (goethite, hematite, and magnetite at 1.6 g L(-1)) was determined using batch experiments. The total As adsorption by iron oxides was lower with bacteria present and was higher with iron oxides alone. The total As adsorption decreased by 78.6%, 36.0% and 79.7% for goethite, hematite and magnetite, respectively, due to the presence of bacteria. As(III) adsorbed on iron oxides could also be oxidized by Pseudomonas sp. HN-1, but the oxidation rate (1.3 μmol h(-1)) was much slower than the rate in the aqueous phase (96.2 μmol h(-1)). Therefore, the results of other studies with minerals only might overestimate the adsorptive capacity of solids in natural systems; the presence of minerals might hinder As(III) oxidation by microbes. Under aerobic conditions, in the presence of iron oxides and As(III)-oxidizing bacteria, arsenic is adsorbed onto iron oxides within the adsorption capacity, and As(V) is the primary form in the solid and aqueous phases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring

    PubMed Central

    Wu, Geng; Huang, Liuqin; Jiang, Hongchen; Peng, Yue’e; Guo, Wei; Chen, Ziyu; She, Weiyu; Guo, Qinghai; Dong, Hailiang

    2017-01-01

    Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO4-xSx2- with x = 1–4) formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments. PMID:28769902

  15. Functions and Unique Diversity of Genes and Microorganisms Involved in Arsenite Oxidation from the Tailings of a Realgar Mine.

    PubMed

    Zeng, Xian-Chun; E, Guoji; Wang, Jianing; Wang, Nian; Chen, Xiaoming; Mu, Yao; Li, Hao; Yang, Ye; Liu, Yichen; Wang, Yanxin

    2016-12-15

    The tailings of the Shimen realgar mine have unique geochemical features. Arsenite oxidation is one of the major biogeochemical processes that occurs in the tailings. However, little is known about the functional and molecular aspects of the microbial community involved in arsenite oxidation. Here, we fully explored the functional and molecular features of the microbial communities from the tailings of the Shimen realgar mine. We collected six samples of tailings from sites A, B, C, D, E, and F. Microcosm assays indicated that all of the six sites contain both chemoautotrophic and heterotrophic arsenite-oxidizing microorganisms; their activities differed considerably from each other. The microbial arsenite-oxidizing activities show a positive correlation with soluble arsenic concentrations. The microbial communities of the six sites contain 40 phyla of bacteria and 2 phyla of archaea that show extremely high diversity. Soluble arsenic, sulfate, pH, and total organic carbon (TOC) are the key environmental factors that shape the microbial communities. We further identified 114 unique arsenite oxidase genes from the samples; all of them code for new or new-type arsenite oxidases. We also isolated 10 novel arsenite oxidizers from the samples, of which 4 are chemoautotrophic and 6 are heterotrophic. These data highlight the unique diversities of the arsenite-oxidizing microorganisms and their oxidase genes from the tailings of the Shimen realgar mine. To the best of our knowledge, this is the first report describing the functional and molecular features of microbial communities from the tailings of a realgar mine. This study focused on the functional and molecular characterizations of microbial communities from the tailings of the Shimen realgar mine. We fully explored, for the first time, the arsenite-oxidizing activities and the functional gene diversities of microorganisms from the tailings, as well as the correlation of the microbial activities/diversities with

  16. Functions and Unique Diversity of Genes and Microorganisms Involved in Arsenite Oxidation from the Tailings of a Realgar Mine

    PubMed Central

    E, Guoji; Wang, Jianing; Wang, Nian; Chen, Xiaoming; Mu, Yao; Li, Hao; Yang, Ye; Liu, Yichen; Wang, Yanxin

    2016-01-01

    ABSTRACT The tailings of the Shimen realgar mine have unique geochemical features. Arsenite oxidation is one of the major biogeochemical processes that occurs in the tailings. However, little is known about the functional and molecular aspects of the microbial community involved in arsenite oxidation. Here, we fully explored the functional and molecular features of the microbial communities from the tailings of the Shimen realgar mine. We collected six samples of tailings from sites A, B, C, D, E, and F. Microcosm assays indicated that all of the six sites contain both chemoautotrophic and heterotrophic arsenite-oxidizing microorganisms; their activities differed considerably from each other. The microbial arsenite-oxidizing activities show a positive correlation with soluble arsenic concentrations. The microbial communities of the six sites contain 40 phyla of bacteria and 2 phyla of archaea that show extremely high diversity. Soluble arsenic, sulfate, pH, and total organic carbon (TOC) are the key environmental factors that shape the microbial communities. We further identified 114 unique arsenite oxidase genes from the samples; all of them code for new or new-type arsenite oxidases. We also isolated 10 novel arsenite oxidizers from the samples, of which 4 are chemoautotrophic and 6 are heterotrophic. These data highlight the unique diversities of the arsenite-oxidizing microorganisms and their oxidase genes from the tailings of the Shimen realgar mine. To the best of our knowledge, this is the first report describing the functional and molecular features of microbial communities from the tailings of a realgar mine. IMPORTANCE This study focused on the functional and molecular characterizations of microbial communities from the tailings of the Shimen realgar mine. We fully explored, for the first time, the arsenite-oxidizing activities and the functional gene diversities of microorganisms from the tailings, as well as the correlation of the microbial activities

  17. Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium

    NASA Astrophysics Data System (ADS)

    Kao, An-Chieh; Chu, Yu-Ju; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2013-12-01

    Arsenic (As) contamination of groundwater is a significant public health concern. In this study, the removal of arsenic from groundwater using biological processes was investigated. The efficiency of arsenite (As(III)) bacterial oxidation and subsequent arsenate (As(V)) removal from contaminated groundwater using bacterial biomass was examined. A novel As(III)-oxidizing bacterium (As7325) was isolated from the aquifer in the blackfoot disease (BFD) endemic area in Taiwan. As7325 oxidized 2300 μg/l As(III) using in situ As(III)-contaminated groundwater under aerobic conditions within 1 d. After the oxidation of As(III) to As(V), As(V) removal was further examined using As7325 cell pellets. The results showed that As(V) could be adsorbed efficiently by lyophilized As7325 cell pellets, the efficiency of which was related to lyophilized cell pellet concentration. Our study conducted the examination of an alternative technology for the removal of As(III) and As(V) from groundwater, indicating that the oxidation of As(III)-contaminated groundwater by native isolated bacterium, followed by As(V) removal using bacterial biomass is a potentially effective technology for the treatment of As(III)-contaminated groundwater.

  18. Arsenite oxidation by Alcaligenes sp. strain RS-19 isolated from arsenic-contaminated mines in the Republic of Korea.

    PubMed

    Yoon, In-Ho; Chang, Jin-Soo; Lee, Ji-Hoon; Kim, Kyoung-Woong

    2009-02-01

    Arsenite [As(III)]-oxidizing bacteria play important roles in reducing arsenic [As] toxicity and mobility in As-contaminated areas. As-resistant bacteria were isolated from the soils of two abandoned mines in the Republic of Korea. The isolated bacteria showed relatively high resistances to As(III) up to 26 mM. The PCR-based 16S rRNA analysis revealed that the isolated As-resistant bacteria were close relatives to Serratia marcescensa, Pseudomonas putida, Pantoea agglomerans, and Alcaligenes sp. Among the five As-resistant bacterial isolates, Alcaligenes sp. strain RS-19 showed the highest As(III)-oxidizing activity in batch tests, completely oxidizing 1 mM of As(III) to As(V) within 40 h during heterotrophic growth. This study suggests that the indigenous bacteria have evolved to retain the ability to resist toxic As in the As-contaminated environments and moreover to convert the species to a less toxic form [e.g., from As(III) to As(V)] and also contribute the biogeochemical cycling of As by being involved in speciation of As.

  19. Selenate-dependent anaerobic arsenite oxidation by a bacterium from Mono Lake, California.

    PubMed

    Fisher, Jenny C; Hollibaugh, James T

    2008-05-01

    Arsenate was produced when anoxic Mono Lake water samples were amended with arsenite and either selenate or nitrate. Arsenite oxidation did not occur in killed control samples or live samples with no added terminal electron acceptor. Potential rates of anaerobic arsenite oxidation with selenate were comparable to those with nitrate ( approximately 12 to 15 mumol.liter(-1) h(-1)). A pure culture capable of selenate-dependent anaerobic arsenite oxidation (strain ML-SRAO) was isolated from Mono Lake water into a defined salts medium with selenate, arsenite, and yeast extract. This strain does not grow chemoautotrophically, but it catalyzes the oxidation of arsenite during growth on an organic carbon source with selenate. No arsenate was produced in pure cultures amended with arsenite and nitrate or oxygen, indicating that the process is selenate dependent. Experiments with washed cells in mineral medium demonstrated that the oxidation of arsenite is tightly coupled to the reduction of selenate. Strain ML-SRAO grows optimally on lactate with selenate or arsenate as the electron acceptor. The amino acid sequences deduced from the respiratory arsenate reductase gene (arrA) from strain ML-SRAO are highly similar (89 to 94%) to those from two previously isolated Mono Lake arsenate reducers. The 16S rRNA gene sequence of strain ML-SRAO places it within the Bacillus RNA group 6 of gram-positive bacteria having low G+C content.

  20. Unsuspected Diversity of Arsenite-Oxidizing Bacteria as Revealed by Widespread Distribution of the aoxB Gene in Prokaryotes ▿ †

    PubMed Central

    Heinrich-Salmeron, Audrey; Cordi, Audrey; Brochier-Armanet, Céline; Halter, David; Pagnout, Christophe; Abbaszadeh-fard, Elham; Montaut, Didier; Seby, Fabienne; Bertin, Philippe N.; Bauda, Pascale; Arsène-Ploetze, Florence

    2011-01-01

    In this study, new strains were isolated from an environment with elevated arsenic levels, Sainte-Marie-aux-Mines (France), and the diversity of aoxB genes encoding the arsenite oxidase large subunit was investigated. The distribution of bacterial aoxB genes is wider than what was previously thought. AoxB subfamilies characterized by specific signatures were identified. An exhaustive analysis of AoxB sequences from this study and from public databases shows that horizontal gene transfer has likely played a role in the spreading of aoxB in prokaryotic communities. PMID:21571879

  1. Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: Field and laboratory investigations

    USGS Publications Warehouse

    Gihring, T.M.; Druschel, G.K.; McCleskey, R.B.; Hamers, R.J.; Banfield, J.F.

    2001-01-01

    Thermus aquaticus and Thermus thermophilus, common inhabitants of terrestrial hot springs and thermally polluted domestic and industrial waters, have been found to rapidly oxidize arsenite to arsenate. Field investigations at a hot spring in Yellowstone National Park revealed conserved total arsenic transport and rapid arsenite oxidation occurring within the drainage channel. This environment was heavily colonized by Thermus aquaticus. In laboratory experiments, arsenite oxidation by cultures of Thermus aquaticus YT1 (previously isolated from Yellowstone National Park) and Thermus thermophilus HB8 was accelerated by a factor of over 100 relative to abiotic controls. Thermus aquaticus and Thermus thermophilus may therefore play a large and previously unrecognized role in determining arsenic speciation and bioavailability in thermal environments.

  2. Diversity of arsenite oxidizing bacterial communities in arsenic-rich deltaic aquifers in West Bengal, India

    PubMed Central

    Ghosh, Devanita; Bhadury, Punyasloke; Routh, Joyanto

    2014-01-01

    High arsenic (As) concentration in groundwater has affected human health, particularly in South-East Asia putting millions of people at risk. Biogeochemical cycling of As carried out by different bacterial groups are suggested to control the As fluxes in aquifers. A functional diversity approach in link with As precipitation was adopted to study bacterial community structures and their variation within the As contaminated Bengal Delta Plain (BDP) aquifers of India. Groundwater samples collected from two shallow aquifers in Karimpur II (West Bengal, India), during years 2010 and 2011, were investigated to trace the effects immediately after monsoon period (precipitation) on community structure and diversity of bacterial assemblages with a focus on arsenite oxidizing bacterial phyla for two successive years. The study focused on amplification, clone library generation and sequencing of the arsenite oxidase large sub-unit gene aioA and 16S rRNA marker, with respect to changes in elemental concentrations. New set of primers were designed to amplify the aioA gene as a phylogenetic marker to study taxonomically diverse arsenite oxidizing bacterial groups in these aquifers. The overall narrow distribution of bacterial communities based on aioA and 16S rRNA sequences observed was due to poor nutrient status and anoxic conditions in these As contaminated aquifers. Proteobacteria was the dominant phylum detected, within which Acidovorax, Hydrogenophaga, Albidiferax, Bosea, and Polymorphum were the major arsenite oxidizing bacterial genera based on the number of clones sequenced. The structure of bacterial assemblages including those of arsenite oxidizing bacteria seems to have been affected by increase in major elemental concentrations (e.g., As, Fe, S, and Si) within two sampling sessions, which was supported by statistical analyses. One of the significant findings of this study is detection of novel lineages of 16S rRNA-like bacterial sequences indicating presence of

  3. Genome Sequence of the Facultative Anaerobic Arsenite-Oxidizing and Nitrate-Reducing Bacterium Acidovorax sp. Strain NO1

    PubMed Central

    Huang, Yinyan; Li, Hang; Rensing, Christopher; Zhao, Kai; Johnstone, Laurel

    2012-01-01

    Acidovorax sp. strain NO1, isolated from gold mine soil, was shown to be a facultative anaerobic arsenite-oxidizing and nitrate-reducing bacterium. The reported draft genome predicts the presence of genes involved in arsenic metabolism, nitrate reduction, phosphate transport, and multiple metal resistances and indicates putative horizontal gene transfer events. PMID:22374962

  4. Functional genes and thermophilic microorganisms responsible for arsenite oxidation from the shallow sediment of an untraversed hot spring outlet.

    PubMed

    Yang, Ye; Mu, Yao; Zeng, Xian-Chun; Wu, Weiwei; Yuan, Jie; Liu, Yichen; Guoji, E; Luo, Feng; Chen, Xiaoming; Li, Hao; Wang, Jianing

    2017-03-01

    Hot Springs have unique geochemical features. Microorganisms-mediated arsenite oxidation is one of the major biogeochemical processes occurred in some hot springs. This study aimed to understand the diversities of genes and microorganisms involved in arsenite oxidation from the outlet of an untraversed hot spring located at an altitude of 4226 m. Microcosm assay indicated that the microbial community from the hot spring was able to efficiently oxidize As(III) using glucose, lactic acid, yeast extract or sodium bicarbonate as the sole carbon source. The microbial community contained 7 phyla of microorganisms, of which Proteobacteria and Firmicutes are largely dominant; this composition is unique and differs significantly from those of other described hot springs. Twenty one novel arsenite oxidase genes were identified from the samples, which are affiliated with the arsenite oxidase families of α-Proteobacteria, β-Proteobacteria or Archaea; this highlights the high diversity of the arsenite-oxidizing microorganisms from the hot spring. A cultivable arsenite-oxidizer Chelatococcu sp. GHS311 was also isolated from the sample using enrichment technique. It can completely convert 75.0 mg/L As(III) into As(V) in 18 days at 45 °C. The arsenite oxidase of GHS311 shares the maximal sequence identity (84.7%) to that of Hydrogenophaga sp. CL3, a non-thermotolerant bacterium. At the temperature lower than 30 °C or higher than 65 °C, the growth of this strain was completely inhibited. These data help us to better understand the diversity and functional features of the thermophilic arsenite-oxidizing microorganisms from hot springs.

  5. Isolation and characterization of arsenic resistant bacteria from wastewater

    PubMed Central

    Abbas, Syed Zaghum; Riaz, Mehwish; Ramzan, Naseem; Zahid, M. Tariq; Shakoori, Farah R.; Rafatullah, Mohd.

    2014-01-01

    The present study proposed the isolation of arsenic resistant bacteria from wastewater. Only three bacterial isolates (MNZ1, MNZ4 and MNZ6) were able to grow in high concentrations of arsenic. The minimum inhibitory concentrations of arsenic against MNZ1, MNZ4 and MNZ6 were 300 mg/L, 300 mg/L and 370 mg/L respectively. The isolated strains showed maximum growth at 37 °C and at 7.0 pH in control but in arsenite stress Luria Bertani broth the bacterial growth is lower than control. All strains were arsenite oxidizing. All strains were biochemically characterized and ribotyping (16S rRNA) was done for the purpose of identification which confirmed that MNZ1 was homologous to Enterobacter sp. while MNZ4 and MNZ6 showed their maximum homology with Klebsiella pneumoniae. The protein profiling of these strains showed in arsenic stressed and non stressed conditions, so no bands of induced proteins appeared in stressed conditions. The bacterial isolates can be exploited for bioremediation of arsenic containing wastes, since they seem to have the potential to oxidize the arsenite (more toxic) into arsenate (less toxic) form. PMID:25763035

  6. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  7. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  8. Metabolic energy from arsenite oxidation in Alcaligenes faecalis

    NASA Astrophysics Data System (ADS)

    Anderson, G. L.; Love, M.; Zeider, B. K.

    2003-05-01

    The aerobic soil bacterium, Alcaligenes faecalis, survives in cultures containing greater than 10 g/L of aqueous arsenic. Toleration of arsenite occurs by the enzymatic oxidation of arsenite (As^III), to the less toxic arsenate (As^V). In defined media, the bacterium grows faster in the presence of arsenite than in its absence. This suggests that the bacterium uses the redox potential of arsenite oxidation as metabolic energy. The oxidation occurs via periplasmic arsenite oxidase, azurin, and cytochrome c [11] which presumably pass electron equivalents through an electron transport chain involving cytochrome c oxidase aud oxygen as the terminal electron acceptor. The associated proton translocation would allow synthesis of ATP and provide a useful means of harnessing the redox potential of arsenite oxidation. Arsenite and arsenate assays of the media during bacterial growth indicate that arsenite is depleted during the exponential growth phase and occurs concomitantly with the expression of arsenite oxidase. These results suggest that arsenite is detoxified to arsenate during bacterial growth and are inconsistent with previous reported interpretations of growth data. Alcaligenes faecalis is dependent on organic carbon sources and is therefore not chemolithoautotrophic. The relationship between succinate and arsenite utilisation provides evidence for the use of arsenite as a supplemental energy source. Because Alcaligenes faecalis not only tolerates, but thrives, in very high concentrations of arsenic has important implications in bioremediation of environments contaminated by aqueous arsenic.

  9. The genetic basis of anoxygenic photosynthetic arsenite oxidation.

    PubMed

    Hernandez-Maldonado, Jaime; Sanchez-Sedillo, Benjamin; Stoneburner, Brendon; Boren, Alison; Miller, Laurence; McCann, Shelley; Rosen, Michael; Oremland, Ronald S; Saltikov, Chad W

    2017-01-01

    'Photoarsenotrophy', the use of arsenite as an electron donor for anoxygenic photosynthesis, is thought to be an ancient form of phototrophy along with the photosynthetic oxidation of Fe(II), H2 S, H2 and NO2-. Photoarsenotrophy was recently identified from Paoha Island's (Mono Lake, CA) arsenic-rich hot springs. The genomes of several photoarsenotrophs revealed a gene cluster, arxB2AB1CD, where arxA is predicted to encode for the sole arsenite oxidase. The role of arxA in photosynthetic arsenite oxidation was confirmed by disrupting the gene in a representative photoarsenotrophic bacterium, resulting in the loss of light-dependent arsenite oxidation. In situ evidence of active photoarsenotrophic microbes was supported by arxA mRNA detection for the first time, in red-pigmented microbial mats within the hot springs of Paoha Island. This work expands on the genetics for photosynthesis coupled to new electron donors and elaborates on known mechanisms for arsenic metabolism, thereby highlighting the complexities of arsenic biogeochemical cycling. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. The genetic basis of anoxygenic photosynthetic arsenite oxidation

    USGS Publications Warehouse

    Hernandez-Maldonado, Jamie; Sanchez-Sedillo, Benjamin; Stoneburner, Brendon; Boren, Alison; Miller, Laurence G.; McCann, Shelley; Rosen, Michael R.; Oremland, Ronald S.; Saltikov, Chad W.

    2017-01-01

    “Photoarsenotrophy”, the use of arsenite as an electron donor for anoxygenic photosynthesis, is thought to be an ancient form of phototrophy along with the photosynthetic oxidation of Fe(II), H2S, H2, and NO2-. Photoarsenotrophy was recently identified from Paoha Island's (Mono Lake, CA) arsenic-rich hot springs. The genomes of several photoarsenotrophs revealed a gene cluster, arxB2AB1CD, where arxA is predicted to encode for the sole arsenite oxidase. The role of arxA in photosynthetic arsenite oxidation was confirmed by disrupting the gene in a representative photoarsenotrophic bacterium, resulting in the loss of light-dependent arsenite oxidation. In situ evidence of active photoarsenotrophic microbes was supported by arxA mRNA detection for the first time, in red-pigmented microbial mats within the hot springs of Paoha Island. This work expands on the genetics for photosynthesis coupled to new electron donors and elaborates on known mechanisms for arsenic metabolism, thereby highlighting the complexities of arsenic biogeochemical cycling.

  11. Life in an Arsenic-Containing Gold Mine: Genome and Physiology of the Autotrophic Arsenite-Oxidizing Bacterium Rhizobium sp. NT-26

    PubMed Central

    Andres, Jérémy; Arsène-Ploetze, Florence; Barbe, Valérie; Brochier-Armanet, Céline; Cleiss-Arnold, Jessica; Coppée, Jean-Yves; Dillies, Marie-Agnès; Geist, Lucie; Joublin, Aurélie; Koechler, Sandrine; Lassalle, Florent; Marchal, Marie; Médigue, Claudine; Muller, Daniel; Nesme, Xavier; Plewniak, Frédéric; Proux, Caroline; Ramírez-Bahena, Martha Helena; Schenowitz, Chantal; Sismeiro, Odile; Vallenet, David; Santini, Joanne M.; Bertin, Philippe N.

    2013-01-01

    Arsenic is widespread in the environment and its presence is a result of natural or anthropogenic activities. Microbes have developed different mechanisms to deal with toxic compounds such as arsenic and this is to resist or metabolize the compound. Here, we present the first reference set of genomic, transcriptomic and proteomic data of an Alphaproteobacterium isolated from an arsenic-containing goldmine: Rhizobium sp. NT-26. Although phylogenetically related to the plant-associated bacteria, this organism has lost the major colonizing capabilities needed for symbiosis with legumes. In contrast, the genome of Rhizobium sp. NT-26 comprises a megaplasmid containing the various genes, which enable it to metabolize arsenite. Remarkably, although the genes required for arsenite oxidation and flagellar motility/biofilm formation are carried by the megaplasmid and the chromosome, respectively, a coordinate regulation of these two mechanisms was observed. Taken together, these processes illustrate the impact environmental pressure can have on the evolution of bacterial genomes, improving the fitness of bacterial strains by the acquisition of novel functions. PMID:23589360

  12. Life in an arsenic-containing gold mine: genome and physiology of the autotrophic arsenite-oxidizing bacterium rhizobium sp. NT-26.

    PubMed

    Andres, Jérémy; Arsène-Ploetze, Florence; Barbe, Valérie; Brochier-Armanet, Céline; Cleiss-Arnold, Jessica; Coppée, Jean-Yves; Dillies, Marie-Agnès; Geist, Lucie; Joublin, Aurélie; Koechler, Sandrine; Lassalle, Florent; Marchal, Marie; Médigue, Claudine; Muller, Daniel; Nesme, Xavier; Plewniak, Frédéric; Proux, Caroline; Ramírez-Bahena, Martha Helena; Schenowitz, Chantal; Sismeiro, Odile; Vallenet, David; Santini, Joanne M; Bertin, Philippe N

    2013-01-01

    Arsenic is widespread in the environment and its presence is a result of natural or anthropogenic activities. Microbes have developed different mechanisms to deal with toxic compounds such as arsenic and this is to resist or metabolize the compound. Here, we present the first reference set of genomic, transcriptomic and proteomic data of an Alphaproteobacterium isolated from an arsenic-containing goldmine: Rhizobium sp. NT-26. Although phylogenetically related to the plant-associated bacteria, this organism has lost the major colonizing capabilities needed for symbiosis with legumes. In contrast, the genome of Rhizobium sp. NT-26 comprises a megaplasmid containing the various genes, which enable it to metabolize arsenite. Remarkably, although the genes required for arsenite oxidation and flagellar motility/biofilm formation are carried by the megaplasmid and the chromosome, respectively, a coordinate regulation of these two mechanisms was observed. Taken together, these processes illustrate the impact environmental pressure can have on the evolution of bacterial genomes, improving the fitness of bacterial strains by the acquisition of novel functions.

  13. Genome sequence of the highly efficient arsenite-oxidizing bacterium Achromobacter arsenitoxydans SY8.

    PubMed

    Li, Xiangyang; Hu, Yao; Gong, Jing; Lin, Yanbing; Johnstone, Laurel; Rensing, Christopher; Wang, Gejiao

    2012-03-01

    We report the draft genome sequence of Achromobacter arsenitoxydans SY8, the first reported arsenite-oxidizing bacterium belonging to the genus Achromobacter and containing a genomic arsenic island, an intact type III secretion system, and multiple metal(loid) transporters. The genome may be helpful to explore the mechanisms intertwining metal(loid) resistance and pathogenicity.

  14. Genome Sequence of the Highly Efficient Arsenite-Oxidizing Bacterium Achromobacter arsenitoxydans SY8

    PubMed Central

    Li, Xiangyang; Hu, Yao; Gong, Jing; Lin, Yanbing; Johnstone, Laurel; Rensing, Christopher

    2012-01-01

    We report the draft genome sequence of Achromobacter arsenitoxydans SY8, the first reported arsenite-oxidizing bacterium belonging to the genus Achromobacter and containing a genomic arsenic island, an intact type III secretion system, and multiple metal(loid) transporters. The genome may be helpful to explore the mechanisms intertwining metal(loid) resistance and pathogenicity. PMID:22328747

  15. Flavobacterium arsenitoxidans sp. nov., an arsenite-oxidizing bacterium from Thai soil.

    PubMed

    Khianngam, Saowapar; Akaracharanya, Ancharida; Lee, Jung-Sook; Lee, Keun Chul; Kim, Kyoung-Woong; Tanasupawat, Somboon

    2014-12-01

    An arsenite-oxidizing bacterium, strain S2-3H(T), was isolated from arsenic-contaminated soil sample collected from Dantchaeng district, Suphanburi province, Thailand and was characterized based on polyphasic taxonomic study. The strain was observed to be a Gram-stain negative, aerobic, yellow pigmented, non-spore forming and rod-shaped bacterium. Major menaquinone was MK-6. Iso-C15:0, iso-C15:0 3OH, C16:1 ω7c/C16:1 ω6c, C16:0, iso-C17:0 3OH, and C16:0 3OH were the predominant cellular fatty acids. The polar lipid profile consisted of phosphatidylethanolamine, unidentified phospholipids and unidentified aminophospholipids. The DNA G+C content was 37.0 mol%. Phylogenetic analysis using 16S rRNA sequence showed that strain S2-3H(T) is affiliated to the genus Flavobacterium, and is closely related to F. defluvii KCTC 12612(T) (97.0 %) and F. johnsoniae NBRC 14942(T) (97.0 %). The strain S2-3H(T) could be clearly distinguished from the related Flavobacterium species by its physiological and biochemical characteristics as well as its phylogenetic position and DNA-DNA relatedness. Therefore, the strain represents a novel species of the genus Flavobacterium, for which the name Flavobacterium arsenitoxidans sp. nov. (type strain S2-3H(T) = KCTC 22507(T) = NBRC 109607(T) = PCU 331(T) = TISTR 2238(T)) is proposed.

  16. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil.

    PubMed

    Zhang, Jun; Zhou, Wuxian; Liu, Bingbing; He, Jian; Shen, Qirong; Zhao, Fang-Jie

    2015-05-19

    Microbe-mediated arsenic (As) redox reactions play an important role in the biogeochemical cycling of As. Reduction of arsenate [As(V)] generally leads to As mobilization in paddy soils and increased As availability to rice plants, whereas oxidation of arsenite [As(III)] results in As immobilization. A novel chemoautotrophic As(III)-oxidizing bacterium, designated strain SY, was isolated from an As-contaminated paddy soil. The isolate was able to derive energy from the oxidation of As(III) to As(V) under both aerobic and anaerobic conditions using O2 or NO3(-) as the respective electron acceptor. Inoculation of the washed SY cells into a flooded soil greatly enhanced As(III) oxidation to As(V) both in the solution and adsorbed phases of the soil. Strain SY is phylogenetically closely related to Paracoccus niistensis with a 16S rRNA gene similarity of 96.79%. The isolate contains both the denitrification and ribulose 1,5-bisphosphate carboxylase/oxygenase gene clusters, underscoring its ability to denitrify and to fix CO2 while coupled to As(III) oxidation. Deletion of the aioA gene encoding the As(III) oxidase subunit A abolished the As(III) oxidation ability of strain SY and led to increased sensitivity to As(III), suggesting that As(III) oxidation is a detoxification mechanism in this bacterium under aerobic and heterotrophic growth conditions. Analysis of the aioA gene clone library revealed that the majority of the As(III)-oxidizing bacteria in the soil were closely related to the genera Paracoccus of α-Proteobacteria. Our results provide direct evidence for As(III) oxidation by Paracoccus species and suggest that these species may play an important role in As(III) oxidation in paddy soils under both aerobic and denitrifying conditions.

  17. Identification of a Novel Arsenite Oxidase Gene, arxA, in the Haloalkaliphilic, Arsenite-Oxidizing Bacterium Alkalilimnicola ehrlichii Strain MLHE-1 ▿

    PubMed Central

    Zargar, Kamrun; Hoeft, Shelley; Oremland, Ronald; Saltikov, Chad W.

    2010-01-01

    Although arsenic is highly toxic to most organisms, certain prokaryotes are known to grow on and respire toxic metalloids of arsenic (i.e., arsenate and arsenite). Two enzymes are known to be required for this arsenic-based metabolism: (i) the arsenate respiratory reductase (ArrA) and (ii) arsenite oxidase (AoxB). Both catalytic enzymes contain molybdopterin cofactors and form distinct phylogenetic clades (ArrA and AoxB) within the dimethyl sulfoxide (DMSO) reductase family of enzymes. Here we report on the genetic identification of a “new” type of arsenite oxidase that fills a phylogenetic gap between the ArrA and AoxB clades of arsenic metabolic enzymes. This “new” arsenite oxidase is referred to as ArxA and was identified in the genome sequence of the Mono Lake isolate Alkalilimnicola ehrlichii MLHE-1, a chemolithoautotroph that can couple arsenite oxidation to nitrate reduction. A genetic system was developed for MLHE-1 and used to show that arxA (gene locus ID mlg_0216) was required for chemoautotrophic arsenite oxidation. Transcription analysis also showed that mlg_0216 was only expressed under anaerobic conditions in the presence of arsenite. The mlg_0216 gene is referred to as arxA because of its greater homology to arrA relative to aoxB and previous reports that implicated Mlg_0216 (ArxA) of MLHE-1 in reversible arsenite oxidation and arsenate reduction in vitro. Our results and past observations support the position that ArxA is a distinct clade within the DMSO reductase family of proteins. These results raise further questions about the evolutionary relationships between arsenite oxidases (AoxB) and arsenate respiratory reductases (ArrA). PMID:20453090

  18. Isolation and Identification of Concrete Environment Bacteria

    NASA Astrophysics Data System (ADS)

    Irwan, J. M.; Anneza, L. H.; Othman, N.; Husnul, T.; Alshalif, A. F.

    2016-07-01

    This paper presents the isolation and molecular method for bacteria identification through PCR and DNA sequencing. Identification of the bacteria species is required in order to fully utilize the bacterium capability for precipitation of calcium carbonate in concrete. This process is to enable the addition of suitable catalyst according to the bacterium enzymatic pathway that is known through the bacteria species used. The objective of this study is to isolate, enriched and identify the bacteria species. The bacteria in this study was isolated from fresh urine and acid mine drainage water, Kota Tinggi, Johor. Enrichment of the isolated bacteria was conducted to ensure the bacteria survivability in concrete. The identification of bacteria species was done through polymerase chain reaction (PCR) and rRDNA sequencing. The isolation and enrichment of the bacteria was done successfully. Whereas, the results for bacteria identification showed that the isolated bacteria strains are Bacillus sp and Enterococus faecalis.

  19. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1.

    PubMed

    Oremland, Ronald S; Hoeft, Shelley E; Santini, Joanne M; Bano, Nasreen; Hollibaugh, Ryan A; Hollibaugh, James T

    2002-10-01

    Arsenite [As(III)]-enriched anoxic bottom water from Mono Lake, California, produced arsenate [As(V)] during incubation with either nitrate or nitrite. No such oxidation occurred in killed controls or in live samples incubated without added nitrate or nitrite. A small amount of biological As(III) oxidation was observed in samples amended with Fe(III) chelated with nitrolotriacetic acid, although some chemical oxidation was also evident in killed controls. A pure culture, strain MLHE-1, that was capable of growth with As(III) as its electron donor and nitrate as its electron acceptor was isolated in a defined mineral salts medium. Cells were also able to grow in nitrate-mineral salts medium by using H(2) or sulfide as their electron donor in lieu of As(III). Arsenite-grown cells demonstrated dark (14)CO(2) fixation, and PCR was used to indicate the presence of a gene encoding ribulose-1,5-biphosphate carboxylase/oxygenase. Strain MLHE-1 is a facultative chemoautotroph, able to grow with these inorganic electron donors and nitrate as its electron acceptor, but heterotrophic growth on acetate was also observed under both aerobic and anaerobic (nitrate) conditions. Phylogenetic analysis of its 16S ribosomal DNA sequence placed strain MLHE-1 within the haloalkaliphilic Ectothiorhodospira of the gamma-PROTEOBACTERIA: Arsenite oxidation has never been reported for any members of this subgroup of the PROTEOBACTERIA:

  20. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1

    USGS Publications Warehouse

    Oremland, R.S.; Hoeft, S.E.; Santini, J.M.; Bano, N.; Hollibaugh, R.A.; Hollibaugh, J.T.

    2002-01-01

    Arsenite [As(III)]-enriched anoxic bottom water from Mono Lake, California, produced arsenate [As(V)] during incubation with either nitrate or nitrite. No such oxidation occurred in killed controls or in live samples incubated without added nitrate or nitrite. A small amount of biological As(III) oxidation was observed in samples amended with Fe(III) chelated with nitrolotriacetic acid, although some chemical oxidation was also evident in killed controls. A pure culture, strain MLHE-1, that was capable of growth with As(III) as its electron donor and nitrate as its electron acceptor was isolated in a defined mineral salts medium. Cells were also able to grow in nitrate-mineral salts medium by using H2 or sulfide as their electron donor in lieu of As(III). Arsenite-grown cells demonstrated dark 14CO2 fixation, and PCR was used to indicate the presence of a gene encoding ribulose-1,5-biphosphate carboxylase/oxygenase. Strain MLHE-1 is a facultative chemoautotroph, able to grow with these inorganic electron donors and nitrate as its electron acceptor, but heterotrophic growth on acetate was also observed under both aerobic and anaerobic (nitrate) conditions. Phylogenetic analysis of its 16S ribosomal DNA sequence placed strain MLHE-1 within the haloalkaliphilic Ectothiorhodospira of the ??-Proteobacteria. Arsenite oxidation has never been reported for any members of this subgroup of the Proteobacteria.

  1. Isolation of bacteria envelope proteins.

    PubMed

    Quan, Shu; Hiniker, Annie; Collet, Jean-François; Bardwell, James C A

    2013-01-01

    Proteomic analysis on cell envelope proteins from Gram-negative bacteria requires specific isolation techniques. We found that conventional extraction methods such as osmotic shock cause extracts to be heavily contaminated with soluble cytoplasmic proteins. These cytoplasmic protein contaminants constitute the major signal in proteomic analysis and can overwhelm the signals coming from genuine envelope components. After extensive testing of various protocols for the preparation of envelope contents, we found that a modified version of the method of Oliver and Beckwith consistently produces the cleanest extract of periplasmic and outer membrane proteins.We have designated this very simple method TSE extraction because it uses a Tris-sucrose solution supplemented with EDTA.Cytoplasmic and inner membrane protein contaminants are not evident on 1D SDS polyacrylamide gels and contribute to less than 6% of total signal in very sensitive mass spectrometry analysis. This straightforward method is therefore ideal for -analyzing specific proteomic changes in the cell envelope.

  2. Isolation and characterization of fenamiphos degrading bacteria.

    PubMed

    Cabrera, J Alfonso; Kurtz, Andreas; Sikora, Richard A; Schouten, Alexander

    2010-11-01

    The biological factors responsible for the microbial breakdown of the organophosphorus nematicide fenamiphos were investigated. Microorganisms responsible for the enhanced degradation of fenamiphos were isolated from soil that had a long application history of this nematicide. Bacteria proved to be the most important group of microbes responsible for the fenamiphos biodegradation process. Seventeen bacterial isolates utilized the pure active ingredient fenamiphos as a carbon source. Sixteen isolates rapidly degraded the active ingredient in Nemacur 5GR. Most of the fenamiphos degrading bacteria were Microbacterium species, although Sinorhizobium, Brevundimonas, Ralstonia and Cupriavidus were also identified. This array of gram positive and gram negative fenamiphos degrading bacteria appeared to be pesticide-specific, since cross-degradation toward fosthiazate, another organophosphorus pesticide used for nematode control, did not occur. It was established that the phylogenetical relationship among nematicide degrading bacteria is closer than that to non-degrading isolates.

  3. Construction of a genetically engineered microorganism with high tolerance to arsenite and strong arsenite oxidative ability.

    PubMed

    Yang, Chunyan; Xu, Lin; Yan, Limin; Xu, Yanhua

    2010-01-01

    Genetically engineered microorganisms (GEMs) have shown great potential for use in environmental bioremediation. In this study, the TTHB128 and TTHB127 genes, which encode the small and large subunits of arsentie oxidase in Thermus thermophilus HB8, respectively, were cloned into the broad-host-range vector pBBR1MCS-5 to produce the recombinant plasmid, TTHB127-pBBR1MCS-5-TTHB128. This resulted in successful construction of a GEM with high tolerance to arsenite and strong arsenite oxidative ability. Culture of the GEM in media containing arsenite for 28 h resulted in 87.6% of the arsenite being oxidized. Overall, the oxidative ability of the GEM was much stronger than that of the wild type host strain. Gentamicin was necessary to maintain the stability of the recombinant plasmid, TTHB127-pBBR1MCS-5-TTHB128, in the GEM. The oxidative ability of the GEM remained unchanged when it was grown in medium containing gentamicin (60 mg/L) for 30 growth cycles, after which its activity gradually decreased.

  4. Isolating DNA from Gram-Negative Bacteria.

    PubMed

    Green, Michael R; Sambrook, Joseph

    2017-01-03

    The isolation of DNA from bacteria, described in this protocol, relies upon the use of sodium dodecyl sulfate and proteinase K to lyse the cells. High-molecular-weight DNA is then sheared (to reduce its viscosity and make it more manageable), extracted with phenol:chloroform, and precipitated with isopropanol. DNA isolated according to this procedure ranges from 30 to 80 kb in length.

  5. Isolation of lightning-competent soil bacteria.

    PubMed

    Cérémonie, Hélène; Buret, François; Simonet, Pascal; Vogel, Timothy M

    2004-10-01

    Artificial transformation is typically performed in the laboratory by using either a chemical (CaCl(2)) or an electrical (electroporation) method. However, laboratory-scale lightning has been shown recently to electrotransform Escherichia coli strain DH10B in soil. In this paper, we report on the isolation of two "lightning-competent" soil bacteria after direct electroporation of the Nycodenz bacterial ring extracted from prairie soil in the presence of the pBHCRec plasmid (Tc(r), Sp(r), Sm(r)). The electrotransformability of the isolated bacteria was measured both in vitro (by electroporation cuvette) and in situ (by lightning in soil microcosm) and then compared to those of E. coli DH10B and Pseudomonas fluorescens C7R12. The electrotransformation frequencies measured reached 10(-3) to 10(-4) by electroporation and 10(-4) to 10(-5) by simulated lightning, while no transformation was observed in the absence of electrical current. Two of the isolated lightning-competent soil bacteria were identified as Pseudomonas sp. strains.

  6. The predominant bacteria isolated from radicular cysts

    PubMed Central

    2013-01-01

    Purpose To detect predominant bacteria associated with radicular cysts and discuss in light of the literature. Material and methods Clinical materials were obtained from 35 radicular cysts by aspiration. Cultures were made from clinical materials by modern laboratory techniques, they underwent microbiologic analysis. Results The following are microorganisms isolated from cultures: Streptococcus milleri Group (SMG) (23.8%) [Streptococcus constellatus (19.1%) and Streptococcus anginosus (4.7%)], Streptococcus sanguis (14.3%), Streptococcus mitis (4.7%), Streptococcus cremoris (4.7%), Peptostreptococcus pevotii (4.7%), Prevotella buccae (4.7%), Prevotella intermedia (4.7%), Actinomyces meyeri (4.7%), Actinomyces viscosus (4.7%), Propionibacterium propionicum (4.7%), Bacteroides capillosus (4.7%), Staphylococcus hominis (4.7%), Rothia denticariosa (4.7%), Gemella haemolysans (4.7%), and Fusobacterium nucleatum (4.7%). Conclusions Results of this study demonstrated that radicular cysts show a great variety of anaerobic and facultative anaerobic bacterial flora. It was observed that all isolated microorganisms were the types commonly found in oral flora. Although no specific microorganism was found, Streptococcus spp. bacteria (47.5%) – especially SMG (23.8%) – were predominantly found in the microorganisms isolated. Furthermore, radicular cysts might be polymicrobial originated. Although radicular cyst is an inflammatory cyst, some radicular cyst fluids might be sterile. PMID:24011184

  7. Isolation and characterization of novel chitinolytic bacteria

    NASA Astrophysics Data System (ADS)

    Gürkök, Sümeyra; Görmez, Arzu

    2016-04-01

    Chitin, a linear polymer of β-1,4-N-acetylglucosamine units, is one of the most abundant biopolymers widely distributed in the marine and terrestrial environments. It is found as a structural component of insects, crustaceans and the cell walls of fungi. Chitinases, the enzymes degrading chitin by cleaving the β-(1-4) bond, have gained increased attention due to their wide range of biotechnological applications, especially for biocontrol of harmful insects and phytopathogenic fungi in agriculture. In the present study, 200 bacterial isolates from Western Anatolia Region of Turkey were screened for chitinolytic activity on agar media amended with colloidal chitin. Based on the chitin hydrolysis zone, 13 isolates were selected for further study. Bacterial isolates with the highest chitinase activity were identified as Acinetobacter calcoaceticus, Arthrobacter oxydans, Bacillus cereus, Bacillus megaterium, Brevibacillus reuszeri, Kocuria erythromyxa, Kocuria rosea, Novosphingobium capsulatum, Rhodococcus bratislaviensis, Rhodococcus fascians and Staphylococcus cohnii by MIS and BIOLOG systems. The next aims of the study are to compare the productivity of these bacteria quantitatively, to purify the enzyme from the most potent producer and to apply the pure enzyme for the fight against the phytopathogenic fungi and harmful insects.

  8. Microbial arsenite oxidation with oxygen, nitrate, or an electrode as the sole electron acceptor.

    PubMed

    Nguyen, Van Khanh; Tran, Huong T; Park, Younghyun; Yu, Jaecheul; Lee, Taeho

    2017-02-09

    The purpose of this study was to identify bacteria that can perform As(III) oxidation for environmental bioremediation. Two bacterial strains, named JHS3 and JHW3, which can autotrophically oxidize As(III)-As(V) with oxygen as an electron acceptor, were isolated from soil and water samples collected in the vicinity of an arsenic-contaminated site. According to 16S ribosomal RNA sequence analysis, both strains belong to the ɤ-Proteobacteria class and share 99% sequence identity with previously described strains. JHS3 appears to be a new strain of the Acinetobacter genus, whereas JHW3 is likely to be a novel strain of the Klebsiella genus. Both strains possess the aioA gene encoding an arsenite oxidase and are capable of chemolithoautotrophic growth in the presence of As(III) up to 10 mM as a primary electron donor. Cell growth and As(III) oxidation rate of both strains were significantly enhanced during cultivation under heterotrophic conditions. Under anaerobic conditions, only strain JHW3 oxidized As(III) using nitrate or a solid-state electrode of a bioelectrochemical system as a terminal electron acceptor. Kinetic studies of As(III) oxidation under aerobic condition demonstrated a higher V max and K m from strain JHW3 than strain JHS3. This study indicated the potential application of strain JHW3 for remediation of subsurface environments contaminated with arsenic.

  9. Mutations and Misconceptions: The Isolation and Study of Mutant Bacteria.

    ERIC Educational Resources Information Center

    Corner, Thomas R.

    1992-01-01

    Describes simple, inexpensive activities for teaching students about mutants and mutations in bacteria. Explains how to isolate bacteria from soil and leaves and how to grow bacteria on agar or in broth. Describes how to construct a gradient plate for finding the minimum inhibitory concentration of a substance and how to use this set up to find…

  10. Mutations and Misconceptions: The Isolation and Study of Mutant Bacteria.

    ERIC Educational Resources Information Center

    Corner, Thomas R.

    1992-01-01

    Describes simple, inexpensive activities for teaching students about mutants and mutations in bacteria. Explains how to isolate bacteria from soil and leaves and how to grow bacteria on agar or in broth. Describes how to construct a gradient plate for finding the minimum inhibitory concentration of a substance and how to use this set up to find…

  11. Isolation of pathogenic bacteria from hospital staff apparel in Nigeria.

    PubMed

    Orji, M U; Mbata, T I; Kalu, O U

    2005-12-01

    A survey of bacteria contamination of hospital staff apparel in use in Anambra State, Nigeria, was carried out to determine the extent of contamination by clinically important bacteria. Of a total of 125 swab samples of hospital staff apparel, 72 (58%) showed bacterial contamination including 32 (70%) of 46 samples from hand gloves, 28 of 45 (62%) samples from protective gowns, and 12 of 34 (35%) samples from face-shields. The potentially pathogenic bacteria isolated were Salmonella spp, Proteus vulgaris, Shigella dysenteriae, Pseudomonas aeruginosa and Staphylococcus aureus. The isolation of clinically important bacteria from the apparel suggests the need for improved infection control measures.

  12. Effect of arsenite-oxidizing bacterium B. laterosporus on arsenite toxicity and arsenic translocation in rice seedlings.

    PubMed

    Yang, Gui-Di; Xie, Wan-Ying; Zhu, Xi; Huang, Yi; Yang, Xiao-Jun; Qiu, Zong-Qing; Lv, Zhen-Mao; Wang, Wen-Na; Lin, Wen-Xiong

    2015-10-01

    Arsenite [As (III)] oxidation can be accelerated by bacterial catalysis, but the effects of the accelerated oxidation on arsenic toxicity and translocation in rice plants are poorly understood. Herein we investigated how an arsenite-oxidizing bacterium, namely Brevibacillus laterosporus, influences As (III) toxicity and translocation in rice plants. Rice seedlings of four cultivars, namely Guangyou Ming 118 (GM), Teyou Hang II (TH), Shanyou 63 (SY) and Minghui 63 (MH), inoculated with or without the bacterium were grown hydroponically with As (III) to investigate its effects on arsenic toxicity and translocation in the plants. Percentages of As (III) oxidation in the solutions with the bacterium (100%) were all significantly higher than those without (30-72%). The addition of the bacterium significantly decreased As (III) concentrations in SY root, GM root and shoot, while increased the As (III) concentrations in the shoot of SY, MH and TH and in the root of MH. Furthermore, the As (III) concentrations in the root and shoot of SY were both the lowest among the treatments with the bacterium. On the other hand, its addition significantly alleviated the As (III) toxicity on four rice cultivars. Among the treatments amended with B. laterosporus, the bacterium showed the best remediation on SY seedlings, with respect to the subdued As (III) toxicity and decreased As (III) concentration in its roots. These results indicated that As (III) oxidation accelerated by B. laterosporus could be an effective method to alleviate As (III) toxicity on rice seedlings.

  13. Isolation of fucosyltransferase-producing bacteria from marine environments.

    PubMed

    Kajiwara, Hitomi; Toda, Munetoyo; Mine, Toshiki; Nakada, Hiroshi; Yamamoto, Takeshi

    2012-01-01

    Fucose-containing oligosaccharides on the cell surface of some pathogenic bacteria are thought to be important for host-microbe interactions and to play a major role in the pathogenicity of bacterial pathogens. Here, we screened marine bacteria for glycosyltransferases using two methods: a one-pot glycosyltransferase assay method and a lectin-staining method. Using this approach, we isolated marine bacteria with fucosyltransferase activity. There have been no previous reports of marine bacteria producing fucosyltransferase. This paper thus represents the first report of fucosyltransferase-producing marine bacteria.

  14. Screening and characterization of phosphate solubilizing bacteria from isolate of thermophilic bacteria

    NASA Astrophysics Data System (ADS)

    Yulianti, Evy; Rakhmawati, Anna

    2017-08-01

    The aims of this study were to select bacteria that has the ability to dissolve phosphate from thermophilic bacteria isolates after the Merapi eruption. Five isolates of selected bacteria was characterized and continued with identification. Selection was done by using a pikovskaya selective medium. Bacterial isolates were grown in selective medium and incubated for 48 hours at temperature of 55 ° C. Characterization was done by looking at the cell and colony morphology, physiological and biochemical properties. Identification was done with the Profile Matching method based on the reference genus Oscillospira traced through Bergey's Manual of Determinative Bacteriology. Dendogram was created based on similarity index SSM. The results showed there were 14 isolates of bacteria that were able to dissolve phosphate indicated by a clear zone surrounding the bacterial colony on selective media. Five isolates were selected with the largest clear zone. Isolates D79, D92, D110a, D135 and D75 have different characters. The result of phenotypic characters identification with Genus Oscillospira profile has a percentage of 100% similarity to isolate D92 and D110a; 92.31% for isolates D79, and 84.6% for isolates D75 and D135. Dendogram generated from average linkage algorithm / UPGMA using the Simple Matching Coefficient (SSM) algorithms showed, isolate thermophilic bacteria D75 and D135 are combined together to form cluster 1. D110a and D92 form a sub cluster A. Sub cluster A and D79 form cluster 2

  15. VIRULENCE CHARACTERISTICS OF HETEROTROPHIC BACTERIA COMMONLY ISOLATED FROM POTABLE WATER

    EPA Science Inventory

    Heterotrophic bacteria isolated from drinking water distribution systems were examined to determine if they possessed putative virulence factors such as hemolysins, proteases, or cytotoxins. Representative samples of colonies from several different distribution systems indicated ...

  16. Isolation of Sulfate-Reducing Bacteria from Human Thoracoabdominal Pus

    PubMed Central

    Loubinoux, Julien; Jaulhac, Benoit; Piemont, Yves; Monteil, Henri; Le Faou, Alain E.

    2003-01-01

    To evaluate the prevalence of sulfate-reducing bacteria in septic processes, we searched for these bacteria by culture in 100 consecutive abdominal and pleural pus specimens. Twelve isolates were obtained from abdominal samples and were identified by a multiplex PCR as Desulfovibrio piger (formerly Desulfomonas pigra) (seven strains), Desulfovibrio fairfieldensis (four strains), and Desulfovibrio desulfuricans (one strain). PMID:12624073

  17. Isolation of carbohydrate-metabolizing, extremely halophilic bacteria.

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Hochstein, L. I.

    1972-01-01

    Four previously unrecognized strains of extremely halophilic bacteria that utilize carbohydrates have been isolated. Gas production proved an unreliable index of carbohydrate metabolism; therefore, carbohydrate utilization was measured by determining acid formation and sugar disappearance during growth. By these procedures, carbohydrate utilization was readily detected. The results suggest that carbohydrate dissimilation by extremely halophilic bacteria may be more common than previously thought and that the apparent rarity of carbohydrate-metabolizing halophiles may be an artifact of the isolation procedures used.

  18. Agar-degrading bacteria isolated from Antarctic macroalgae.

    PubMed

    Alvarado, Roxana; Leiva, Sergio

    2017-03-10

    This study describes the taxonomic diversity of pigmented, agar-degrading bacteria isolated from the surface of macroalgae collected in King George Island, Antarctica. A total of 30 pigmented, agarolytic bacteria were isolated from the surface of the Antarctic macroalgae Adenocystis utricularis, Monostroma hariotii, Iridaea cordata, and Pantoneura plocamioides. Based on the 16S rRNA data, the agarolytic isolates were affiliated to the genera Algibacter, Arthrobacter, Brachybacterium, Cellulophaga, Citricoccus, Labedella, Microbacterium, Micrococcus, Salinibacterium, Sanguibacter, and Zobellia. Isolates phylogenetically related to Cellulophaga algicola showed the highest agarase activity in culture supernatants when tested at 4 and 37 °C. This is the first investigation of pigmented agar-degrading bacteria, members of microbial communities associated with Antarctic macroalgae, and the results suggest that they represent a potential source of cold-adapted agarases of possible biotechnological interest.

  19. Differentiation among bacteria isolated from turkeys with coryza (rhinotracheitis).

    PubMed

    Rimler, R B; Simmons, D G

    1983-01-01

    Gram-negative bacteria isolated from turkeys with coryza in the United States, the Federal Republic of Germany, and the Republic of South Africa were compared with known Alcaligenes species and Bordetella bronchiseptica. The turkey isolates were separated into three distinct groups based on biochemical and physiologic tests. Forty of the 68 isolates studied (group I) were different from Alcaligenes sp. and B. bronchiseptica. Isolates in group I produced a heat-labile hemagglutinin and did not grow on Simmons' citrate agar. Isolates in group II (25 isolates) were similar to A. faecalis and A. odorans, grew on Simmons' citrate agar, and did not produce a hemagglutinin. Isolates in group III were B. bronchiseptica. Isolates from groups I and II caused coryza in poults. Group III isolates were not pathogenic.

  20. Simultaneous arsenite oxidation and nitrate reduction at the electrodes of bioelectrochemical systems.

    PubMed

    Nguyen, Van Khanh; Park, Younghyun; Yu, Jaecheul; Lee, Taeho

    2016-10-01

    Arsenic and nitrate contaminations in the soil and groundwater have urged the scientific community to explore suitable technologies for treatment of both contaminants. This study reports, for the first time, a novel application of bioelectrochemical systems for coupling As detoxification at the anode and denitrification at the cathode. A similar As(III) oxidation efficiency was achieved when anode potential was controlled by a potentiostat or a direct current (DC) power supply. However, a slightly lower nitrate reduction rate was obtained in reactors using DC power supply during simultaneous operation of nitrate reduction and As(III) oxidation. Microbial community analysis by denaturing gradient gel electrophoresis indicated the presence of some autotrophic As(III)-oxidizing bacteria, including Achromobacter spp., Ensifer spp., and Sinorhizobium spp., that can flexibly switch their original metabolism of using oxygen as sole electron acceptor to a new metabolism mode of using solid-state anode as sole electron acceptor driving for As(III) oxidation under anaerobic conditions. Although further research is required for validating their applicability, bioelectrochemical systems represent a brilliant technology for remediation of groundwater contaminated with nitrate and/or arsenite.

  1. Isolation of Biosurfactant Producing Bacteria From Poultry Breast Skin

    PubMed Central

    Ebrahimi, Azizollah; Tashi, Najmeh

    2012-01-01

    Background Biosurfactants are surface-active compounds produced by some microorganisms. Objectives In this study, we collected surface skin samples from breast of poultry (chicken, turkey, and, quail) and screened for biosurfactant-producing bacteria. We also determined the genera of cultured strains. Materials and Methods 33 hemolytic bacterial strains (15, 11, and 7 isolates from chicken, turkey, and quail, respectively) were isolated; oil spreading (OS) and bioemulsifying activities were measured for all isolates. Results Two isolates of chicken (6.06%), three of turkey (9.1%), and three of quail (9.1%) were positive in all examinations (hemolysis, emulsification index (E24) and oil spreading). In total, eight isolates (24.24%) were positive in all examinations, out of them, seven isolates (87.5%) were gram positives, mainly belonged to Bacillus spp., Staphylococcus spp. and Lactobacillus spp. 31 isolates (93.9%) (out of 33 hemolytic isolates) were positive in oil spreading test while only eight isolates (24.24%) were positive in E24 test. Conclusions The results showed that biosurfactant-producing bacteria are distributed in breast skin surface of examined birds. Further investigation about the composition of biosurfactants and phylogenetic determination of biosurfactant producing bacteria is suggested. PMID:24624162

  2. Arsenite oxidation regulator AioR regulates bacterial chemotaxis towards arsenite in Agrobacterium tumefaciens GW4

    PubMed Central

    Shi, Kaixiang; Fan, Xia; Qiao, Zixu; Han, Yushan; McDermott, Timothy R.; Wang, Qian; Wang, Gejiao

    2017-01-01

    Some arsenite [As(III)]-oxidizing bacteria exhibit positive chemotaxis towards As(III), however, the related As(III) chemoreceptor and regulatory mechanism remain unknown. The As(III)-oxidizing bacterium Agrobacterium tumefaciens GW4 displays positive chemotaxis towards 0.5–2 mM As(III). Genomic analyses revealed a putative chemoreceptor-encoding gene, mcp, located in the arsenic gene island and having a predicted promoter binding site for the As(III) oxidation regulator AioR. Expression of mcp and other chemotaxis related genes (cheA, cheY2 and fliG) was inducible by As(III), but not in the aioR mutant. Using capillary assays and intrinsic tryptophan fluorescence spectra analysis, Mcp was confirmed to be responsible for chemotaxis towards As(III) and to bind As(III) (but not As(V) nor phosphate) as part of the sensing mechanism. A bacterial one-hybrid system technique and electrophoretic mobility shift assays showed that AioR interacts with the mcp regulatory region in vivo and in vitro, and the precise AioR binding site was confirmed using DNase I foot-printing. Taken together, these results indicate that this Mcp is responsible for the chemotactic response towards As(III) and is regulated by AioR. Additionally, disrupting the mcp gene affected bacterial As(III) oxidation and growth, inferring that Mcp may exert some sort of functional connection between As(III) oxidation and As(III) chemotaxis. PMID:28256605

  3. Mycoplasma and associated bacteria isolated from ovine pink-eye.

    PubMed

    Langford, E V

    1971-01-01

    A mycoplasma was recovered from the untreated conjunctival membranes of nine sheep affected by Pink-eye. It was neither isolated from the conjunctiva of treated animals which were affected nor from the conjunctiva of normal animals either in contact or not in contact with affected animals. Bacteria found on normal conjunctival membranes were Neisseria ovis, Escherichia coli, Staphylococcus epidermididis, Streptococcus and Bacillus spp. Bacteria found in clinical cases of Pink-eye were N. ovis, E. coli, a Streptococcus and Pseudomonas spp.

  4. Multiple antibiotic resistance among gram negative bacteria isolated from poultry.

    PubMed

    Ansari, F A; Khatoon, H

    1994-03-01

    Gram negative bacteria, including species of Salmonella, Escherichia, Pseudomonas and Klebsiella, isolated from poultry, were screened for their resistance to the commonly used antibiotics: ampicillin, chloramphenicol, gentamycin, kanamycin, neomycin, polymyxin B, streptomycin and tetracycline. Of the 500 bacteria screened, 351 were found to be resistant to one or more antibiotics at the level of 50 micrograms/ml. Various patterns of antibiotic resistance observed during these studies have been reported.

  5. Arsenic transformation and mobilization from minerals by the arsenite oxidizing strain WAO

    USGS Publications Warehouse

    Rhine, E.D.; Onesios, K.M.; Serfes, M.E.; Reinfelder, J.R.; Young, L.Y.

    2008-01-01

    Analysis of arsenic concentrations in New Jersey well water from the Newark Basin showed up to 15% of the wells exceed 10 ??g L-1, with a maximum of 215 ??g L-1. In some geologic settings in the basin, this mobile arsenic could be from the weathering of pyrite (FeS2) found in black shale that contains up to 4% arsenic by weight. We hypothesized that under oxic conditions at circumneutral pH, the microbially mediated oxidation of sulfide in the pyrite lattice would lead to the release of pyrite-bound arsenic. Moreover, the oxidation of aqueous As(III) to As(V) by aerobic microorganisms could further enhance arsenic mobilization from the solid phase. Enrichment cultures under aerobic, As(III)-oxidizing conditions were established under circumneutral pH with weathered black shale from the Newark Basin as the inoculum source. Strain WAO, an autotrophic inorganic-sulfur and As(III)-oxidizer, was isolated and phylogenetically and physiologically characterized. Arsenic mobilization studies from arsenopyrite (FeAsS) mineral, conducted with strain WAO at circumneutral pH, showed microbially enhanced mobilization of arsenic and complete oxidation of released arsenic and sulfur to stoichiometric amounts of arsenate and sulfate. In addition, WAO preferentially colonized pyrite on the surface of arsenic-bearing, black shale thick sections. These findings support the hypothesis that microorganisms can directly mobilize and transform arsenic bound in mineral form at circumneutral pH and suggest that the microbial mobilization of arsenic into groundwater may be important in other arsenic-impacted aquifers. ?? 2008 American Chemical Society.

  6. Arsenic transformation and mobilization from minerals by the arsenite oxidizing strain WAO.

    PubMed

    Rhine, E Danielle; Onesios, Katheryn M; Serfes, Michael E; Reinfelder, John R; Young, L Y

    2008-03-01

    Analysis of arsenic concentrations in New Jersey well water from the Newark Basin showed up to 15% of the wells exceed 10 microg L(-1), with a maximum of 215 microg L(-1). In some geologic settings in the basin, this mobile arsenic could be from the weathering of pyrite (FeS2) found in black shale that contains up to 4% arsenic by weight. We hypothesized that under oxic conditions at circumneutral pH, the microbially mediated oxidation of sulfide in the pyrite lattice would lead to the release of pyrite-bound arsenic. Moreover, the oxidation of aqueous As(III) to As(V) by aerobic microorganisms could further enhance arsenic mobilization from the solid phase. Enrichment cultures under aerobic, As(III)-oxidizing conditions were established under circumneutral pH with weathered black shale from the Newark Basin as the inoculum source. Strain WAO, an autotrophic inorganic-sulfur and As(III)-oxidizer, was isolated and phylogenetically and physiologically characterized. Arsenic mobilization studies from arsenopyrite (FeAsS) mineral, conducted with strain WAO at circumneutral pH, showed microbially enhanced mobilization of arsenic and complete oxidation of released arsenic and sulfur to stoichiometric amounts of arsenate and sulfate. In addition, WAO preferentially colonized pyrite on the surface of arsenic-bearing, black shale thick sections. These findings support the hypothesis that microorganisms can directly mobilize and transform arsenic bound in mineral form at circumneutral pH and suggest that the microbial mobilization of arsenic into groundwater may be important in other arsenic-impacted aquifers.

  7. Isolation and characterization of pigmented algicidal bacteria from seawater

    NASA Astrophysics Data System (ADS)

    Shaima, A.; Gires, U.; Asmat, A.

    2014-09-01

    Some dinoflagellate species are toxic and widely distributed in Malaysian marines ecosystems. They can cause many problems to aquatic life due to the production of various potential and natural toxins that accumulate in filter feeding shellfish and cause food poisoning to human. In recent decades, bacteria have been widely used as a biological control against these harmful algae. In the present study, pigmented bacteria isolated from marine water of Port Dickson beach was studied for their anti-algal activity towards toxic dinoflagellate Alexandrium minutum. Four isolates were studied and only one was capable of inhibiting algal growth when treated with bacterial culture. The algilytic effect on dinoflagellate was evaluated based on direct cell count under the microscope. Results showed that only isolate Sdpd-310 with orange colour has an inhibitory effect on A. minutum growth. This study demonstrated the rapid algicidal activity of a marine pigmented bacteria against the toxic dinoflagellate A. minutum.

  8. Isolation and identification of Profenofos degrading bacteria

    PubMed Central

    Malghani, Saadatullah; Chatterjee, Nivedita; Yu, Hu Xue; Luo, Zejiao

    2009-01-01

    An enrichment culture technique was used to isolate bacterial strains responsible for the biodegradation of profenofos in a soil from Hubei province of central China. Two pure bacterial cultures, named W and Y, were isolated and subsequently characterized by sequencing of 16S rRNA genes and biochemical tests. Isolate W showed 96% similarity to the 16S rRNA gene of a Pseudomonas putida unlike Y which showed 99% similarity to the 16S rRNA gene of Burkholderia gladioli. Both strains grew well at pH 5.5-7.2 with a broad temperature profile ranging from 28° to 36 °C. Bioremediation of profenofos-contaminated soil was examined using soil treated with 200 ug g-1; profenofos resulted in a higher degradation rate than control soils without inoculation. In a mineral salt medium (FTW) reduction in profenofos concentration was 90% within 96 hours of incubation. A literature survey revealed that no data is available regarding the role of Burkholderia gladioli on pesticide biodegradation as well as on profenofos. PMID:24031438

  9. Competition between Two Isolates of Denitrifying Bacteria Added to Soil

    PubMed Central

    Murray, Robert E.; Parsons, Laura L.; Smith, M. Scott

    1992-01-01

    We examined the competitive relationship between two isolates of denitrifying bacteria, both of which grow well under aerobic conditions but differ in their ability to grow under denitrifying conditions. The growth and persistence of the two isolates, added to sterile soil or added to soil previously colonized by the other isolate, were monitored under aerobic and denitrifying (anaerobic) conditions. When isolates were added together to sterile soil, the isolate added at the higher density reduced the growth of the isolate added at the lower density. The magnitude of the growth reduction varied depending on the competitive abilities of the individual isolates and the aeration state of the soil. Prior colonization of soil with one of the isolates conferred a competitive advantage on the colonized isolate but did not lead to the disappearance of the challenging isolate. Fluctuations in aeration state caused large changes in the population density of one isolate and altered the competitive relationship between the two isolates. The competitive effectiveness of each isolate varied with cell density, the degree of prior colonization of the soil by the other isolate, and the aeration state of the soil. PMID:16348820

  10. Isolation and presumptive identification of adherent epithelial bacteria ("epimural" bacteria) from the ovine rumen wall.

    PubMed

    Mead, L J; Jones, G A

    1981-04-01

    One hundred sixty-one strains of adherent bacteria were isolated under anaerobic conditions from four sites on the rumen epithelial surface of sheep fed hay or a hay-grain ration. Before isolation of bacteria, rumen tissue was washed six times in an anaerobic dilution solution, and viable bacteria suspended in the washings were counted. Calculation indicated that unattached bacteria would have been removed from the tissue by this procedure, but a slow and progressive release of attached bacteria also occurred. Nevertheless, a wide range of characteristic morphological types remained associated with the epithelium as demonstrated by scanning electron microscopy. Most of these types were represented among the isolates. Characterization and presumptive identification of the isolates showed that 95.0% belonged to previously described genera of functionally significant rumen bacteria, including Butyrivibrio sp. (31.1%), Bacteroides sp. (22.4%), Selenomonas ruminantium (9.9%), Succinivibrio dextrinosolvens (8.7%), Streptococcus bovis (8.1%), Propionibacterium sp. (4.3%), Treponema sp. (3.1%), and Eubacterium sp., Lachnospira multiparus, and Ruminococcus flavefaciens (2.5% each). Eight isolates (5.0%) were not identified. L. multiparus was recovered only from hay-fed animals; all other genera were obtained from animals fed either ration. All S. bovis strains and two strains each of Bacteroides sp. and Butyrivibrio sp. were aerotolerant; all other strains were strictly anaerobic. Bacteria representing the gram-positive, facultatively anaerobic flora associated with rumen wall tissue (R. J. Wallace, K.-J. Cheng, D. Dinsdale, and E. R. Ørskov, Nature (London) 279:424-426, 1979) were therefore not recovered by the techniques used; instead a different fraction of the adherent population was isolated. The term "epimural" is proposed to describe the flora associated with the rumen epithelium.

  11. Isolation and characterization of chromate resistant bacteria from tannery effluent.

    PubMed

    Shukla, O P; Rai, U N; Singh, N K; Dubey, Smita; Baghel, V S

    2007-04-01

    The tannery effluent emanating from Common Effluent Treatment Plant (CETP), Unnao (U.P, India) was found toxic in nature, having high BOD, COD, TDS and Cr content (5.88 mg l(-1)), which supported growth of chromate tolerant bacteria. Several chromate tolerant bacteria have been isolated from these effluent and maximum tolerant four strains (NBRIP-1, NBRIP-2, NBRIP-3 and NBRIP-4) were characterized in this study. These strains showed multiple metal and antibiotic resistances. Growth of these strains was reduced at higher Cr concentration with extention of lag phase. Chromium accumlulation by these isolates may have a great potential in recovery and detoxification of Cr from tannery effluent.

  12. Isolation of Vermamoeba vermiformis and associated bacteria in hospital water.

    PubMed

    Pagnier, Isabelle; Valles, Camille; Raoult, Didier; La Scola, Bernard

    2015-03-01

    To detect new potential pathogens in hospital water, we isolated free-living amoebae in water samples taken from three different hospitals in Marseille (France). The samples were inoculated in media containing saline buffer and various bacteria as nutrient sources. The isolated amoebae were identified by gene sequencing. Among the 105 water samples, taken from 19 sites, we isolated 14 amoebae, of which 9 Vermamoeba vermiformis and 5 Acanthamoeba sp. None of the amoebae showed the presence of obligate bacterial endosymbionts. Because V. vermiformis was most commonly isolated, we used an axenic collection strain to isolate amoeba-resistant bacteria from the same sites. The isolated bacterial species included Stenotrophomonas maltophilia and Legionella sp. Legionella taurinensis was isolated for the first time in association with amoebae. A strict intracellular bacterium was isolated, that may represent a new genus among the Chlamydiales. We propose that it be named "Candidatus Rubidus massiliensis". Our study shows that the isolation and identification of new pathogens associated with amoebae, which were previously performed using Acanthamoeba sp., should instead use V. vermiformis because this organism is more commonly associated with humans and is an essential complement of Acanthamoeba sp. co-culture to study the ecology of hospital water supplies.

  13. Isolation and Characterisation of Endophytic Nitrogen Fixing Bacteria in Sugarcane.

    PubMed

    Muangthong, Ampiga; Youpensuk, Somchit; Rerkasem, Benjavan

    2015-04-01

    Endophytic nitrogen fixing bacteria were isolated from the leaves, stems and roots of industrial variety (cv. U-Thong 3; UT3), wild and chewing sugarcane plants grown for 6 weeks in nitrogen (N)-free sand. Eighty nine isolates of endophytic bacteria were obtained on N-free agar. An acetylene reduction assay (ARA) detected nitrogenase activity in all 89 isolates. Three isolates from the chewing (C2HL2, C7HL1 and C34MR1) sugarcane and one isolate from the industrial sugarcane (UT3R1) varieties were characterised, and their responses to different yeast extract concentrations were investigated. Three different responses in nitrogenase activity were observed. Isolates C2HL2 and C7HL1 exhibited major increases with the addition of 0.005% yeast extract, C34MR1 exhibited no response, and UT3R1 exhibited a significant decrease in nitrogenase activity with 0.005% yeast extract. In all the isolates, nitrogenase activity decreased with further increase of the yeast extract to 0.05%. The highest nitrogenase activity was observed in isolates C2HL2 and C7HL1, which had 16S rRNA gene sequences that were closely related to Novosphingobium sediminicola and Ochrobactrum intermedium, respectively.

  14. Plasmid mediated antibiotic resistance in isolated bacteria from burned patients.

    PubMed

    Beige, Fahimeh; Baseri Salehi, Majid; Bahador, Nima; Mobasherzadeh, Sina

    2015-01-01

    Nowadays, the treatment of burned patients is difficult because of the high frequency of infection with antibiotic resistance bacteria. This study was conducted to evaluate the level of antibiotic resistance in Gram-negative bacteria and its relation with the existence of plasmid. The samples were collected from two hundred twenty hospitalized burned patients in Isfahan burn hospital during a three-month period (March 2012 to June 2012). The samples were isolated and the Gram-negative bacteria were identified using phenotypic method and API 20E System. Antibiotic susceptibility and plasmid profile were determined by standard Agar disc diffusion and plasmid spin column extraction methods. Totally 117 Gram-negative bacteria were isolated, the most common were Pseudomonas aerugionsa (37.6%), P. fluorescens (25.6%), Acinetobacter baumanii (20/5%) and Klebsiella pneumoniae (7.6%), respectively. The isolates showed high frequency of antibiotic resistance against ceftazidime and co-amoxiclave (100%) and low frequency of antibiotic resistance against amikacin with (70%).The results indicated that 60% of the isolates harboured plasmid. On the other hand, the patients infected with A. baumanii and P. aeruginosa were cured (with 60% frequency) whereas, those infected with P. fluorescens were not cured. Hence, probably antibiotic resistance markers of A. baumanii and P. aeruginosa are plasmid mediated; however, P. fluorescens is chromosomally mediated. Based on our findings, P. aerugionsa is a major causative agent of wound infections and amikacin could be considered as a more effective antibiotic for treatment of the burned patients.

  15. Isolation of antifungal bacteria from Japanese fermented soybeans, natto.

    PubMed

    Murata, Daichi; Sawano, Sayaka; Ohike, Tatsuya; Okanami, Masahiro; Ano, Takashi

    2013-12-01

    An inhibitory effect of a traditional Japanese fermented food, natto, was found against plant pathogens such as Rhizoctonia solani and Fusarium oxysporum, and the bacteria which showed inhibition were isolated from the natto. Among isolated bacteria, BC-1 and GAc exhibited a strong antagonistic effect in vitro against plant pathogens on an agar medium. The supernatant of bacterial culture also showed strong activity against R. solani, which meant the antimicrobial substances were produced and secreted into the medium. Both of the bacteria were estimated as Bacillus amyloliquefaciens from a partial sequence of the 16s rRNA gene. High performance liquid chromatography analysis clearly showed the production of the lipopeptide antibiotic iturin A by BC-1 and GAc.

  16. Triclosan- resistant bacteria isolated from feedlot and residential soils

    PubMed Central

    WELSCH, TANNER T.; GILLOCK, ERIC T.

    2014-01-01

    Triclosan is an antimicrobial agent that is currently incorporated into hundreds of consumer and medical products. It can be either a bacteriostatic or bactericidal agent, depending on its formulation. It has activity against Gram-positive and Gram-negative bacteria, as well as some viruses and protists. The purpose of this study was to determine whether triclosan-resistant bacteria could be isolated from the soil. Soils from cattle feedlots and residential lawns were collected and assayed for the presence of these organisms by plating samples on growth media containing triclosan. Organisms were subsequently identified by partial 16S rRNA sequencing analysis. All the organisms isolated in this study were Gram-negative rods, with members of genus Pseudomonas being particularly well represented. This result may not be surprising because Gram-negative organisms are generally more resistant to triclosan, and since Pseudomonas bacteria are known to have numerous efflux mechanisms for dealing with harmful substances. PMID:21391038

  17. Triclosan-resistant bacteria isolated from feedlot and residential soils.

    PubMed

    Welsch, Tanner T; Gillock, Eric T

    2011-01-01

    Triclosan is an antimicrobial agent that is currently incorporated into hundreds of consumer and medical products. It can be either a bacteriostatic or bactericidal agent, depending on its formulation. It has activity against Gram-positive and Gram-negative bacteria, as well as some viruses and protists. The purpose of this study was to determine whether triclosan-resistant bacteria could be isolated from the soil. Soils from cattle feedlots and residential lawns were collected and assayed for the presence of these organisms by plating samples on growth media containing triclosan. Organisms were subsequently identified by partial 16S rRNA sequencing analysis. All the organisms isolated in this study were Gram-negative rods, with members of genus Pseudomonas being particularly well represented. This result may not be surprising because Gram-negative organisms are generally more resistant to triclosan, and since Pseudomonas bacteria are known to have numerous efflux mechanisms for dealing with harmful substances.

  18. Isolation of lactic acid-forming bacteria from biogas plants.

    PubMed

    Bohn, Jelena; Yüksel-Dadak, Aytül; Dröge, Stefan; König, Helmut

    2017-02-20

    Direct molecular approaches provide hints that lactic acid bacteria play an important role in the degradation process of organic material to methanogenetic substrates in biogas plants. However, their diversity in biogas fermenter samples has not been analyzed in detail yet. For that reason, five different biogas fermenters, which were fed mainly with maize silage and manure from cattle or pigs, were examined for the occurrence of lactic acid-forming bacteria. A total of 197 lactic acid-forming bacterial strains were isolated, which we assigned to 21 species, belonging to the genera Bacillus, Clostridium, Lactobacillus, Pediococcus, Streptococcus and Pseudoramibacter-related. A qualitative multiplex system and a real-time quantitative PCR could be developed for most isolates, realized by the selection of specific primers. Their role in biogas plants was discussed on the basis of the quantitative results and on physiological data of the isolates.

  19. Polysaccharide-producing bacteria isolated from paper machine slime deposits.

    PubMed

    Rättö, M; Suihko, M-L; Siika-aho, M

    2005-03-01

    Development of novel enzymatic methods for slime deposit control in paper mills requires knowledge of polysaccharide-producing organisms and the polysaccharide structures present in deposits. In this work, 27 polysaccharide-producing bacteria were isolated from slime samples collected from different parts of a paper machine. Most of the isolates produced polysaccharides in liquid culture and nine of them were selected for production of polysaccharides for characterisation. The selected isolates belonged to seven different genera: Bacillus, Brevundimonas, Cytophaga, Enterobacter, Klebsiella, Paenibacillus and Starkeya. Using ribotyping, partial 16S rDNA sequencing, physiological tests and fatty acid analysis, four of the nine isolates: Bacillus cereus, Brevundimonas vesicularis, K. pneumoniae and P. stellifer were identified to the species level. Production of polysaccharides by the selected isolates varied between 0.07 and 1.20 g L(-1), the highest amount being produced by B. vesicularis. The polysaccharides were heteropolysaccharides with varying proportions of galactose, glucose mannose, rhamnose fucose and uronic acids.

  20. Isolation of oxalotrophic bacteria associated with Varroa destructor mites.

    PubMed

    Maddaloni, M; Pascual, D W

    2015-11-01

    Bacteria associated with varroa mites were cultivated and genotyped by 16S RNA. Under our experimental conditions, the cultivable bacteria were few in number, and most of them proved to be fastidious to grow. Cultivation with seven different media under O2 /CO2 conditions and selection for colony morphology yielded a panel of species belonging to 13 different genera grouped in two different phyla, proteobacteria and actinobacteria. This study identified one species of actinobacteria that is a known commensal of the honey bee. Some isolates are oxalotrophic, a finding that may carry ramifications into the use of oxalic acid to control the number of phoretic mites in the managed colonies of honey bees. Oxalic acid, legally or brevi manu, is widely used to control phoretic Varroa destructor mites, a major drive of current honey bees' colony losses. Unsubstantiated by sanctioned research are rumours that in certain instances oxalic acid is losing efficacy, forcing beekeepers to increase the frequency of treatments. This investigation fathoms the hypothesis that V. destructor associates with bacteria capable of degrading oxalic acid. The data show that indeed oxalotrophy, a rare trait among bacteria, is common in bacteria that we isolated from V. destructor mites. This finding may have ramifications in the use of oxalic acid as a control agent. © 2015 The Society for Applied Microbiology.

  1. Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts.

    PubMed

    Zhou, N; Zhang, J X; Fan, M T; Wang, J; Guo, G; Wei, X Y

    2012-09-01

    The aim of this study was to evaluate the susceptibility of 43 strains of lactic acid bacteria, isolated from Chinese yogurts made in different geographical areas, to 11 antibiotics (ampicillin, penicillin G, roxithromycin, chloramphenicol, tetracycline, chlortetracycline, lincomycin, kanamycin, streptomycin, neomycin, and gentamycin). The 43 isolates (18 Lactobacillus bulgaricus and 25 Streptococcus thermophilus) were identified at species level and were typed by random amplified polymorphic DNA analysis. Thirty-five genotypically different strains were detected and their antimicrobial resistance to 11 antibiotics was determined using the agar dilution method. Widespread resistance to ampicillin, chloramphenicol, chlortetracycline, tetracyclines, lincomycin, streptomycin, neomycin, and gentamycin was found among the 35 strains tested. All of the Strep. thermophilus strains tested were susceptible to penicillin G and roxithromycin, whereas 23.5 and 64.7% of Lb. bulgaricus strains, respectively, were resistant. All of the Strep. thermophilus and Lb. bulgaricus strains were found to be resistant to kanamycin. The presence of the corresponding resistance genes in the resistant isolates was investigated through PCR, with the following genes detected: tet(M) in 1 Lb. bulgaricus and 2 Strep. thermophilus isolates, ant(6) in 2 Lb. bulgaricus and 2 Strep. thermophilus isolates, and aph(3')-IIIa in 5 Lb. bulgaricus and 2 Strep. thermophilus isolates. The main threat associated with these bacteria is that they may transfer resistance genes to pathogenic bacteria, which has been a major cause of concern to human and animal health. To our knowledge, the aph(3')-IIIa and ant(6) genes were found in Lb. bulgaricus and Strep. thermophilus for the first time. Further investigations are required to analyze whether the genes identified in Lb. bulgaricus and Strep. thermophilus isolates might be horizontally transferred to other species. Copyright © 2012 American Dairy Science

  2. Screening and isolation of halophilic bacteria producing industrially important enzymes.

    PubMed

    Kumar, Sumit; Karan, Ram; Kapoor, Sanjay; S P, Singh; S K, Khare

    2012-10-01

    Halophiles are excellent sources of enzymes that are not only salt stable but also can withstand and carry out reactions efficiently under extreme conditions. The aim of the study was to isolate and study the diversity among halophilic bacteria producing enzymes of industrial value. Screening of halophiles from various saline habitats of India led to isolation of 108 halophilic bacteria producing industrially important hydrolases (amylases, lipases and proteases). Characterization of 21 potential isolates by morphological, biochemical and 16S rRNA gene analysis found them related to Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, Oceanobacillus, Bacillus, Halomonas and Staphylococcus genera. They belonged to moderately halophilic group of bacteria exhibiting salt requirement in the range of 3-20%. There is significant diversity among halophiles from saline habitats of India. Preliminary characterization of crude hydrolases established them to be active and stable under more than one extreme condition of high salt, pH, temperature and presence of organic solvents. It is concluded that these halophilic isolates are not only diverse in phylogeny but also in their enzyme characteristics. Their enzymes may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes. The solvent stability among halophilic enzymes seems a generic novel feature making them potentially useful in non-aqueous enzymology.

  3. Screening and isolation of halophilic bacteria producing industrially important enzymes

    PubMed Central

    Kumar, Sumit; Karan, Ram; Kapoor, Sanjay; S.P., Singh; S.K., Khare

    2012-01-01

    Halophiles are excellent sources of enzymes that are not only salt stable but also can withstand and carry out reactions efficiently under extreme conditions. The aim of the study was to isolate and study the diversity among halophilic bacteria producing enzymes of industrial value. Screening of halophiles from various saline habitats of India led to isolation of 108 halophilic bacteria producing industrially important hydrolases (amylases, lipases and proteases). Characterization of 21 potential isolates by morphological, biochemical and 16S rRNA gene analysis found them related to Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, Oceanobacillus, Bacillus, Halomonas and Staphylococcus genera. They belonged to moderately halophilic group of bacteria exhibiting salt requirement in the range of 3–20%. There is significant diversity among halophiles from saline habitats of India. Preliminary characterization of crude hydrolases established them to be active and stable under more than one extreme condition of high salt, pH, temperature and presence of organic solvents. It is concluded that these halophilic isolates are not only diverse in phylogeny but also in their enzyme characteristics. Their enzymes may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes. The solvent stability among halophilic enzymes seems a generic novel feature making them potentially useful in non-aqueous enzymology. PMID:24031991

  4. Zearalenone adsorption capacity of lactic acid bacteria isolated from pigs.

    PubMed

    Vega, María F; Dieguez, Susana N; Riccio, Belén; Aranguren, Sandra; Giordano, Antonio; Denzoin, Laura; Soraci, Alejandro L; Tapia, María O; Ross, Romina; Apás, Ana; González, Silvia N

    The ability to adsorb zearalenone by five strain of lactic acid bacteria was evaluated: four strains of Lactobacillus spp. isolated from pig rectal swabs and one commercial strain (Lactobacillus rhamnosus). Several factors affecting the adsorption capacity were evaluated in order to improve the adsorption of the mycotoxin by bacteria. The stability of the zearalenone-bacteria complex was analyzed. In every case, bacterial adsorption capacity was higher than 40.0%. The strain showing the highest adsorption (68.2%) was selected for the following steps of this research. The adsorption percentages obtained after processing 6.5 and 7.5mL MRS broth were 57.40%+3.53 and 64.46%+0.76, respectively. The stability of zearalenone-bacteria complex was evaluated by successively rinsing. In the first rinsing step 42.26%+0.414 was still bound. In the second rinsing step 25.12%+0.664 was still bound, whereas 15.82%+0.675 remained in the pellet after the third rinse. Results obtained demonstrated that Lactic Acid Bacteria has capacity to adsorb zearalenone. Finally adsorption was increased using a higher volume of initial broth. These results could be used to design a new lyophilized powder for detoxification, using lactic acid bacteria as potential zearalenone adsorbents. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Hypermutable bacteria isolated from humans--a critical analysis.

    PubMed

    Hall, Lucinda M C; Henderson-Begg, Stephanie K

    2006-09-01

    Hypermutable bacteria of several species have been described among isolates recovered from humans over the last decade. Interpretation of the literature in this area is complicated by diversity in the determination and definition of hypermutability, and this review outlines the different methods used. Inactivation of the mismatch repair gene mutS is often implicated in the mutator phenotype; the reported effect of mutS inactivation on mutation frequency varies widely between species, from under 10-fold to nearly 1,000-fold, but also varies among different reports on the same species. Particularly high proportions of mutators have been reported among Pseudomonas aeruginosa and other species in the cystic fibrosis lung, epidemic serogroup A Neisseria meningitidis, and Helicobacter pylori. Aspects of the biology of these infections that could be relevant to hypermutability are discussed, and some future directions that may increase our understanding of mutators among bacteria isolated from humans are considered.

  6. Isolation and Characterization of Bacteria from Ancient Siberian Permafrost Sediment

    PubMed Central

    Zhang, De-Chao; Brouchkov, Anatoli; Griva, Gennady; Schinner, Franz; Margesin, Rosa

    2013-01-01

    In this study, we isolated and characterized bacterial strains from ancient (Neogene) permafrost sediment that was permanently frozen for 3.5 million years. The sampling site was located at Mammoth Mountain in the Aldan river valley in Central Yakutia in Eastern Siberia. Analysis of phospolipid fatty acids (PLFA) demonstrated the dominance of bacteria over fungi; the analysis of fatty acids specific for Gram-positive and Gram-negative bacteria revealed an approximately twofold higher amount of Gram-negative bacteria compared to Gram-positive bacteria. Direct microbial counts after natural permafrost enrichment showed the presence of (4.7 ± 1.5) × 108 cells g−1 sediment dry mass. Viable heterotrophic bacteria were found at 0 °C, 10 °C and 25 °C, but not at 37 °C. Spore-forming bacteria were not detected. Numbers of viable fungi were low and were only detected at 0 °C and 10 °C. Selected culturable bacterial isolates were identified as representatives of Arthrobacter phenanthrenivorans, Subtercola frigoramans and Glaciimonas immobilis. Representatives of each of these species were characterized with regard to their growth temperature range, their ability to grow on different media, to produce enzymes, to grow in the presence of NaCl, antibiotics, and heavy metals, and to degrade hydrocarbons. All strains could grow at −5 °C; the upper temperature limit for growth in liquid culture was 25 °C or 30 °C. Sensitivity to rich media, antibiotics, heavy metals, and salt increased when temperature decreased (20 °C > 10 °C > 1 °C). In spite of the ligninolytic activity of some strains, no biodegradation activity was detected. PMID:24832653

  7. Isolation and characterization of bacteria from ancient siberian permafrost sediment.

    PubMed

    Zhang, De-Chao; Brouchkov, Anatoli; Griva, Gennady; Schinner, Franz; Margesin, Rosa

    2013-01-10

    In this study, we isolated and characterized bacterial strains from ancient (Neogene) permafrost sediment that was permanently frozen for 3.5 million years. The sampling site was located at Mammoth Mountain in the Aldan river valley in Central Yakutia in Eastern Siberia. Analysis of phospolipid fatty acids (PLFA) demonstrated the dominance of bacteria over fungi; the analysis of fatty acids specific for Gram-positive and Gram-negative bacteria revealed an approximately twofold higher amount of Gram-negative bacteria compared to Gram-positive bacteria. Direct microbial counts after natural permafrost enrichment showed the presence of (4.7 ± 1.5) × 108 cells g-1 sediment dry mass. Viable heterotrophic bacteria were found at 0 °C, 10 °C and 25 °C, but not at 37 °C. Spore-forming bacteria were not detected. Numbers of viable fungi were low and were only detected at 0 °C and 10 °C. Selected culturable bacterial isolates were identified as representatives of Arthrobacter phenanthrenivorans, Subtercola frigoramans and Glaciimonas immobilis. Representatives of each of these species were characterized with regard to their growth temperature range, their ability to grow on different media, to produce enzymes, to grow in the presence of NaCl, antibiotics, and heavy metals, and to degrade hydrocarbons. All strains could grow at -5 °C; the upper temperature limit for growth in liquid culture was 25 °C or 30 °C. Sensitivity to rich media, antibiotics, heavy metals, and salt increased when temperature decreased (20 °C > 10 °C > 1 °C). In spite of the ligninolytic activity of some strains, no biodegradation activity was detected.

  8. [Colonization properties of opportunistic bacteria isolated from children with pneumonia].

    PubMed

    Kholodok, G N; Alekseeva, I N; Strel'nikova, N V; Kozlov, V K

    2014-01-01

    Evaluation of phenotypes and pathogenicity factors of 476 opportunistic bacteria isolated from respiratory samples of 973 children with community-acquired pneumonia and 36 children without respiratory infection symptoms. Quantitative method of tracheal aspirate and nasopharyngeal swab seeding into certified nutrient media was used, identification was carried out according to standard techniques. Adhesive, "anti-interferon", anti-lysozyme and inherent bactericidal activity of Escherichia coli and Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter spp. were established to ensure in combination with known aggression factors their colonization advantage compared with other pneumopathogens. Adhesion indexes of Gram-negative bacteria lower than 2.5 are shown as markers of invasive strains. Anti-lysozyme activity level lower than 2.14 microg/ml and lack of "anti-interferon" activity characterize non-invasive opportunistic bacteria strains. The detected phenotypic features of opportunistic bacteria may be used in clinical practice for evaluatio of etiologic importance of microorganisms isolated from tracheal aspirate in pneumonia patients.

  9. Isolation and characterization of alkaliphilic, chemolithoautotrophic, sulphur-oxidizing bacteria.

    PubMed

    Sorokin, D Y; Robertson, L A; Kuenen, J G

    2000-04-01

    Alkaliphilic sulphur-oxidizing bacteria were isolated from samples from alkaline environments including soda soil and soda lakes. Two isolates, currently known as strains AL 2 and AL 3, were characterized. They grew over a pH range 8.0-10.4 with an optimum at 9.5-9.8. Both strains could oxidize thiosulphate, sulphide, polysulphide, elemental sulphur and tetrathionate. Strain AL 3 more actively oxidized thiosulphate and sulphide, while isolate AL 2 had higher activity with elemental sulphur and tetrathionate. Isolate AL 2 was also able to oxidize trithionate. The pH optimum for thiosulphate and sulphide oxidation was between 9-10. Some activity remained at pH 11, but was negligible at pH 7. Metabolism of tetrathionate by isolate AL 2 involved initial anaerobic hydrolysis to form sulphur, thiosulphate and sulphate in a sequence similar to that in other colourless sulphur-oxidizing bacteria. Sulphate was produced by both strains. During batch growth on thiosulphate, elemental sulphur and sulphite transiently accumulated in cultures of isolates AL 2 and AL 3, respectively. At lower pH values, both strains accumulated sulphur during sulphide and thiosulphate oxidation. Both strains contained ribulose bisphosphate carboxylase. Thiosulphate oxidation in isolate AL 3 appeared to be sodium ion-dependent. Isolate AL 2 differed from AL 3 by its high GC mol % value (65.5 and 49.5, respectively), sulphur deposition in its periplasm, the absence of carboxysomes, lower sulphur-oxidizing capacity, growth kinetics (lower growth rate and higher growth yield) and cytochrome composition.

  10. Identification of vancomycin-resistant lactic bacteria isolated from humans.

    PubMed Central

    Mackey, T; Lejeune, V; Janssens, M; Wauters, G

    1993-01-01

    By using cell morphology, arginine dihydrolase, and gas production in de Man, Sharp, Rogosa broth, 122 isolates of vancomycin-resistant lactic bacteria from humans were assigned to five profiles, allowing us to distinguish Pediococcus, homofermentative and heterofermentative Lactobacillus, and Leuconostoc species. The absence of L-(+)-lactic acid, as detected spectrophotometrically, was confirmatory for Leuconostoc species. API 50 CHL panels were useful for the identification of Lactobacillus species. PMID:8408575

  11. Isolation and characterisation of crude oil sludge degrading bacteria.

    PubMed

    Obi, Linda U; Atagana, Harrison I; Adeleke, Rasheed A

    2016-01-01

    The use of microorganisms in remediating environmental contaminants such as crude oil sludge has become a promising technique owing to its economy and the fact it is environmentally friendly. Polycyclic aromatic hydrocarbons (PAHs), as the major components of oil sludge, are hydrophobic and recalcitrant. An important way of enhancing the rate of PAH desorption is to compost crude oil sludge by incorporating commercial surfactants, thereby making them available for microbial degradation. In this study, crude oil sludge was composted for 16 weeks during which surfactants were added in the form of a solution. Molecular characterisation of the 16S rRNA genes indicated that the isolates obtained on a mineral salts medium belonged to different genera, including Stenotrophmonas, Pseudomonas, Bordetella, Brucella, Bacillus, Achromobacter, Ochrobactrum, Advenella, Mycobacterium, Mesorhizobium, Klebsiella, Pusillimonas and Raoultella. The percentage degradation rates of these isolates were estimated by measuring the absorbance of the 2,6-dichlorophenol indophenol medium. Pseudomonas emerged as the top degrader with an estimated percentage degradation rate of 73.7% after 7 days of incubation at 28 °C. In addition, the presence of the catabolic gene, catechol-2,3-dioxygenase was detected in the bacteria isolates as well as in evolutionary classifications based on phylogeny. The bacteria isolated in this study are potential agents for the bioremediation of crude oil sludge.

  12. Novel co-enrichment method for isolation of magnetotactic bacteria.

    PubMed

    Sorty, Ajay M; Shaikh, Nasir R

    2015-04-01

    A novel co-enrichment technique was designed for enrichment of magnetotactic bacteria from soil, water, and sediments. Delayed addition of iron uptake inducer and the iron source proved amenable to induce magnetosome synthesis by MTB followed by their separation from consortium using magnetic flux. We successfully enriched and isolated both North seeking as well as South seeking magnetotactic bacteria from Lonar Lake (Buldhana), Moti Lake (Jalna), Ghanewadi Lake (Jalna), Ganesh Lake (Miraj), Rankala Lake (Kolhapur), and industrial metal-contaminated glaying soils (Jalna) and a soil (Karad), (MS, India) exposed to high-voltage electric current. The hanging drop preparations and growth under magnetic stress on low-agar media allowed conformation of magnetotactic behavior of the isolates. Both Gram positive and Gram negative MTB were isolated with diverse morphologies. South seeking population was more predominant. The soil inhabitants showed little dwelling property which was more prominent in case of aquatic inhabitants. The use of in situ pH and salt concentrations during enrichment and isolation found suited. The simultaneous growth of whole consortium in the system ensured the in situ simulation of microenvironment needful for proper growth of fastidious MTB.

  13. Identification and antibiotic sensitivity of bacteria isolated from periapical lesions.

    PubMed

    Vigil, G V; Wayman, B E; Dazey, S E; Fowler, C B; Bradley, D V

    1997-02-01

    Periradicular tissues from 28 refractory endodontic cases requiring surgical intervention were submitted for histological diagnosis and microbiological culture. Bacteria isolated from these lesions were identified and then tested for their antibiotic sensitivity to a panel of common antibiotics. The periapical tissue specimens of 22 out of 28 lesions (79%) contained microorganisms. Of the 22 cases showing positive growth cultures, 15 were polymicrobial and 7 were single species isolates. Fifty-three different species were recovered: 29 anaerobes, 19 facultative anaerobes, and 5 aerobes. Microbes were observed under light microscopy in only one case. The most common organisms isolated were Propionibacterium acnes, Staphylococcus epidermidis, Streptococcus intermedius, Wolinella recta, Fusobacterium species, and Clostridium species. Antibiotic susceptibility results showed no clear cut evidence of significant antibiotic resistance among the species tested. The results of this study seem to corroborate earlier studies regarding the microbial population of periapical lesions refractory to nonsurgical endodontics.

  14. Diverse bacteria isolated from microtherm oil-production water.

    PubMed

    Sun, Ji-Quan; Xu, Lian; Zhang, Zhao; Li, Yan; Tang, Yue-Qin; Wu, Xiao-Lei

    2014-02-01

    In total, 435 pure bacterial strains were isolated from microtherm oil-production water from the Karamay Oilfield, Xinjiang, China, by using four media: oil-production water medium (Cai medium), oil-production water supplemented with mineral salt medium (CW medium), oil-production water supplemented with yeast extract medium (CY medium), and blood agar medium (X medium). The bacterial isolates were affiliated with 61 phylogenetic groups that belong to 32 genera in the phyla Actinobacteria, Firmicutes, and Proteobacteria. Except for the Rhizobium, Dietzia, and Pseudomonas strains that were isolated using all the four media, using different media led to the isolation of bacteria with different functions. Similarly, nonheme diiron alkane monooxygenase genes (alkB/alkM) also clustered according to the isolation medium. Among the bacterial strains, more than 24 % of the isolates could use n-hexadecane as the sole carbon source for growth. For the first time, the alkane-degrading ability and alkB/alkM were detected in Rhizobium, Rhodobacter, Trichococcus, Micrococcus, Enterococcus, and Bavariicoccus strains, and the alkM gene was detected in Firmicutes strains.

  15. Macrolides resistance of common bacteria isolated from Taiwan.

    PubMed

    Chang, S C; Chen, Y C; Luh, K T; Hsieh, W C

    1995-12-01

    To determine the susceptibility to macrolides of common pathogenic bacteria isolated from Taiwan, the in vitro activities of erythromycin, roxithromycin, azithromycin, clarithromycin, and dirithromycin were tested against 492 clinical isolates of eight different bacteria, collected from the National Taiwan University Hospital. The results showed high minimum inhibitory concentrations (MICs) against most of the tested bacteria. The MIC90s for Staphylococcus aureus (both methicillin-resistant and -sensitive strains), coagulase-negative staphylococci (both methicillin-resistant and -sensitive strains), Streptococcus pyogenes, Streptococcus pneumoniae, enterococci, peptostreptococci, and Bacteroides fragilis were all > or = 256 micrograms/ml. The MIC50s for methicillin-resistant strains of S. aureus and coagulase-negative staphylococci, and enterococci were > or = 256 micrograms/ml. For S. pneumoniae, peptostreptococci, and B. fragilis, the MIC50s were > 8 micrograms/ml. The resistance rates to macrolides were 80% or more in methicillin-resistant staphylococci and about 30% in methicillin-sensitive staphylococci. Around 55% of S. pneumoniae strains and 37 approximately 42% of S. pyogenes strains were resistant to macrolides. Cross-resistance to different macrolides was clearly demonstrated in most of the resistant strains.

  16. Isolation and characterization of bacteria resistant to metallic copper surfaces.

    PubMed

    Santo, Christophe Espírito; Morais, Paula Vasconcelos; Grass, Gregor

    2010-03-01

    Metallic copper alloys have recently attracted attention as a new antimicrobial weapon for areas where surface hygiene is paramount. Currently it is not understood on a molecular level how metallic copper kills microbes, but previous studies have demonstrated that a wide variety of bacteria, including Escherichia coli, Staphylococcus aureus, and Clostridium difficile, are inactivated within minutes or a few hours of exposure. In this study, we show that bacteria isolated from copper alloy coins comprise strains that are especially resistant against the toxic properties exerted by dry metallic copper surfaces. The most resistant of 294 isolates were Gram-positive staphylococci and micrococci, Kocuria palustris, and Brachybacterium conglomeratum but also included the proteobacterial species Sphingomonas panni and Pseudomonas oleovorans. Cells of some of these bacterial strains survived on copper surfaces for 48 h or more. Remarkably, when these dry-surface-resistant strains were exposed to moist copper surfaces, resistance levels were close to those of control strains and MICs for copper ions were at or below control strain levels. This suggests that mechanisms conferring resistance against dry metallic copper surfaces in these newly isolated bacterial strains are different from well-characterized copper ion detoxification systems. Furthermore, staphylococci on coins did not exhibit increased levels of resistance to antibiotics, arguing against coselection with copper surface resistance traits.

  17. Naturally Occurring Lactic Acid Bacteria Isolated from Tomato Pomace Silage

    PubMed Central

    Wu, Jing-jing; Du, Rui-ping; Gao, Min; Sui, Yao-qiang; Xiu, Lei; Wang, Xiao

    2014-01-01

    Silage making has become a significant method of forage conservation worldwide. To determine how tomato pomace (TP) may be used effectively as animal feed, it was ensilaged for 90 days and microbiology counts, fermentation characteristics and chemical composition of tomato pomace silage (TPS) were evaluated at the 30th, 60th, and 90th days, respectively. In addition, 103 lactic acid bacteria were isolated from TPS. Based on the phenotypic and chemotaxonomic characteristics, 16S rDNA sequence and carbohydrate fermentation tests, the isolates were identified as 17 species namely: Lactobacillus coryniformis subsp. torquens (0.97%), Lactobacillus pontis (0.97%), Lactobacillus hilgardii (0.97%), Lactobacillus pantheris (0.97%), Lactobacillus amylovorus (1.9%), Lactobacillus panis (1.9%), Lactobacillus vaginalis (1.9%), Lactobacillus rapi (1.9%), Lactobacillus buchneri (2.9%), Lactobacillus parafarraginis (2.9%), Lactobacillus helveticus (3.9%), Lactobacillus camelliae (3.9%), Lactobacillus fermentum (5.8%), Lactobacillus manihotivorans (6.8%), Lactobacillus plantarum (10.7%), Lactobacillus harbinensis (16.5%) and Lactobacillus paracasei subsp. paracasei (35.0%). This study has shown that TP can be well preserved for 90 days by ensilaging and that TPS is not only rich in essential nutrients, but that physiological and biochemical properties of the isolates could provide a platform for future design of lactic acid bacteria (LAB) inoculants aimed at improving the fermentation quality of silage. PMID:25049999

  18. Diversity of halophilic bacteria isolated from Rambla Salada, Murcia (Spain).

    PubMed

    Luque, Rocío; Béjar, Victoria; Quesada, Emilia; Llamas, Inmaculada

    2014-12-01

    In this study we analyzed the diversity of the halophilic bacteria community from Rambla Salada during the years 2006 and 2007. We collected a total of 364 strains, which were then identified by means of phenotypic tests and by the hypervariable V1-V3 region of the 16S rRNA sequences (around 500 bp). The ribosomal data showed that the isolates belonged to Proteobacteria (72.5%), Firmicutes (25.8%), Actinobacteria (1.4%), and Bacteroidetes (0.3%) phyla, with Gammaproteobacteria the predominant class. Halomonas was the most abundant genus (41.2% isolates) followed by Marinobacter (12.9% isolates) and Bacillus (12.6% isolates). In addition, 9 strains showed <97% sequence identity with validly described species and may well represent new taxa. The diversity of the bacterial community analyzed with the DOTUR package determined 139 operational taxonomic units at 3% genetic distance level. Rarefaction curves and diversity indexes demonstrated that our collection of isolates adequately represented all the bacterial community at Rambla Salada that can be grown under the conditions used in this work. We found that the sampling season influenced the composition of the bacterial community, and bacterial diversity was higher in 2007; this fact could be related to lower salinity at this sampling time.

  19. Isolation and identification of novel geosmin-degrading bacteria.

    PubMed

    Xue, Qiang; Chen, Gang; Shimizu, Kazuya; Sakharkar, Meena Kishore; Utsumi, Motoo; Chen, Honghan; Li, Miao; Zhang, Zhenya; Sugiura, Norio

    2011-06-01

    Three novel geosmin-degrading bacteria were isolated from the sediments of Lake Kasumigaura, Japan. All strains were identified as Acinetobacter spp. by 16S rRNA gene sequence analysis and can biodegrade geosmin at an initial geosmin concentration of 2 mg/L after 2 days. Furthermore, at an initial geosmin concentration of 40 microg/L, geosmin removal was more than 68per cent by GSM-2 strain, and the degradation mechanism followed a pseudo-first-order mode. A rate constant of 0.026 reveals rapid geosmin degradation. This is the first report on geosmin degradation by by Acinetobacter spp.

  20. Bacteria isolated from lung modulate asthma susceptibility in mice.

    PubMed

    Remot, Aude; Descamps, Delphyne; Noordine, Marie-Louise; Boukadiri, Abdelhak; Mathieu, Elliot; Robert, Véronique; Riffault, Sabine; Lambrecht, Bart; Langella, Philippe; Hammad, Hamida; Thomas, Muriel

    2017-01-03

    Asthma is a chronic, non-curable, multifactorial disease with increasing incidence in industrial countries. This study evaluates the direct contribution of lung microbial components in allergic asthma in mice. Germ-Free and Specific-Pathogen-Free mice display similar susceptibilities to House Dust Mice-induced allergic asthma, indicating that the absence of bacteria confers no protection or increased risk to aeroallergens. In early life, allergic asthma changes the pattern of lung microbiota, and lung bacteria reciprocally modulate aeroallergen responsiveness. Primo-colonizing cultivable strains were screened for their immunoregulatory properties following their isolation from neonatal lungs. Intranasal inoculation of lung bacteria influenced the outcome of allergic asthma development: the strain CNCM I 4970 exacerbated some asthma features whereas the pro-Th1 strain CNCM I 4969 had protective effects. Thus, we confirm that appropriate bacterial lung stimuli during early life are critical for susceptibility to allergic asthma in young adults.The ISME Journal advance online publication, 3 January 2017; doi:10.1038/ismej.2016.181.

  1. Identification of lactic acid bacteria isolated from corn stovers.

    PubMed

    Pang, Huili; Zhang, Meng; Qin, Guangyong; Tan, Zhongfang; Li, Zongwei; Wang, Yanping; Cai, Yimin

    2011-10-01

    One hundred and twenty-six strains were isolated from corn stover in Henan Province, China, of which 105 isolates were considered to be lactic acid bacteria (LAB) according to Gram-positive, catalase-negative and mainly metabolic lactic acid product. Analysis of the 16S ribosomal DNA sequence of 21 representative strains was used to confirm the presence of the predominant groups and to determine the phylogenetic affiliation of isolates. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank type strains between 99.4% and 100%. The prevalent LAB, predominantly Lactobacillus (85.6%), consisted of L. plantarum (33.3%), L. pentosus (28.6%) and L. brevis (23.7%). Other LAB species as Leuconostoc lactis (4.8%), Weissella cibaria (4.8%) and Enterococcus mundtii (4.8%) also presented in corn stover. The present study is the first to fully document corn stover-associated LAB involved in the silage fermentation. The identification results revealed LAB composition inhabiting corn stover and enabling the future design of appropriate inoculants aimed at improving the fermentation quality of silage.

  2. Isolation and Identification of hydrocarbon degrading bacteria from Ennore creek

    PubMed Central

    Subathra, Mamitha Kumar; Immanuel, Grasian; Suresh, Albert Haridoss

    2013-01-01

    The widespread problem caused due to petroleum products, is their discharge and accidental spillage in marine environment proving to be hazardous to the surroundings as well as life forms. Thus remediation of these hydrocarbons by natural decontamination process is of utmost importance. Bioremediation is a non-invasive and cost effective technique for the clean-up of these petroleum hydrocarbons. In this study we have investigated the ability of microorganisms present in the sediment sample to degrade these hydrocarbons, crude oil in particular, so that contaminated soils and water can be treated using microbes. Sediments samples were collected once in a month for a period of twelve months from area surrounding Ennore creek and screened for hydrocarbon degrading bacteria. Of the 113 crude oil degrading isolates 15 isolates were selected and cultivated in BH media with 1% crude oil as a sole carbon and energy source. 3 efficient crude oil bacterial isolates Bacillus subtilis I1, Pseudomonas aeruginosa I5 and Pseudomonas putida I8 were identified both biochemically and phylogenetically. The quantitative analysis of biodegradation is carried out gravimetrically and highest degradation rate, 55% was recorded by Pseudomonas aeruginosa I5 isolate. PMID:23424279

  3. Isolation of iron bacteria from terrestrial and aquatic environments

    NASA Astrophysics Data System (ADS)

    Schmidt, Bertram; Szewzyk, Ulrich

    2010-05-01

    Bacteria, which are capable of iron oxidation or at least iron deposition are widely distributed in environments where zones of dissolved ferrous iron and oxygen gradients are overlapping [1]. They take part in the biological cycling of iron and influence other cycles of elements for example carbon [2]. Manganese can be used for similar metabolic purposes as iron, because it can be biologically oxidized by chemolithotrophs or can be reduced by respirating bacteria as well [3, 4]. Bacterial activity is responsible for the accumulation of ferric iron compounds in their surroundings. The formation of bog ore is a well known example for a soil horizon, with an extreme enrichment of biogenic ferric iron [5]. We focused on the isolation of neutrophilic iron bacteria and bacteria capable of manganese oxidation. We used samples from Tierra del Fuego (Argentina) the National Park "Unteres Odertal" (Germany) and Berlin ground water wells. Microscopic examination of the samples revealed a considerable diversity of iron encrusted structures of bacterial origin. Most of these morphologic types are already well known. The taxonomic classification of many of these organisms is based on morphologic features and is not reliable compared to recent methods of molecular biology. That is mainly due to the fact, that most of these bacteria are hardly culturable or do not show their characteristic morphologic features under culture conditions. We established a collection of more than 300 iron depositing strains. Phylogenetic analyses showed that we have many yet uncultured strains in pure culture. We obtained many isolates which form distinct branches within long known iron bacteria groups like the Sphaerotilus-Leptothrix cluster. But some of the strains belong to groups, which have not yet been associated with iron oxidation activity. The strains deposit high amounts of oxidized iron and manganese compounds under laboratory conditions. However it is unclear if these precipitations are

  4. Characterization of sulfate reducing bacteria isolated from urban soil

    NASA Astrophysics Data System (ADS)

    Zhang, Mingliang; Wang, Haixia

    2017-05-01

    Sulfate reducing bacteria (SRB) was isolated from urban soil and applied for the remediation of heavy metals pollution from acid mine drainage. The morphology and physiological characteristics (e.g. pH and heavy metals tolerance) of SRB was investigated. The SRB was gram-negative bacteria, long rod with slight curve, cell size 0.5× (1.5-2.0) μm. The pH of medium had significant effect on SRB growth and the efficiency of sulfate reduction, and it showed that the suitable pH range was 5-9 and SRB could not survive at pH less than 4. The maximum tolerance of Fe (II), Zn (II), Cd (II), and Cu (II) under acidic condition (pH 5.0) was about 600 mg/L, 150 mg/L, 25 mg/L and 25 mg/L, respectively. The result indicated that SRB isolated in this study could be used for the bioremediation of acid mine drainage (pH>4) within the heavy metals concentrations tolerance.

  5. Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris)

    PubMed Central

    de Oliveira Costa, Leonardo Emanuel; de Queiroz, Marisa Vieira; Borges, Arnaldo Chaer; de Moraes, Celia Alencar; de Araújo, Elza Fernandes

    2012-01-01

    The common bean is one of the most important legumes in the human diet, but little is known about the endophytic bacteria associated with the leaves of this plant. The objective of this study was to characterize the culturable endophytic bacteria of common bean (Phaseolus vulgaris) leaves from three different cultivars (Vermelhinho, Talismã, and Ouro Negro) grown under the same field conditions. The density of endophytic populations varied from 4.5 x 102 to 2.8 x 103 CFU g-1 of fresh weight. Of the 158 total isolates, 36.7% belonged to the Proteobacteria, 32.9% to Firmicutes, 29.7% to Actinobacteria, and 0.6% to Bacteroidetes. The three P. vulgaris cultivars showed class distribution differences among Actinobacteria, Alphaproteobacteria and Bacilli. Based on 16S rDNA sequences, 23 different genera were isolated comprising bacteria commonly associated with soil and plants. The genera Bacillus, Delftia, Methylobacterium, Microbacterium, Paenibacillus, Staphylococcus and Stenotrophomonas were isolated from all three cultivars. To access and compare the community structure, diversity indices were calculated. The isolates from the Talismã cultivar were less diverse than the isolates derived from the other two cultivars. The results of this work indicate that the cultivar of the plant may contribute to the structure of the endophytic community associated with the common bean. This is the first report of endophytic bacteria from the leaves of P. vulgaris cultivars. Future studies will determine the potential application of these isolates in biological control, growth promotion and enzyme production for biotechnology. PMID:24031988

  6. Isolation and identification of thermophilic and mesophylic proteolytic bacteria from shrimp paste "Terasi"

    NASA Astrophysics Data System (ADS)

    Murwani, R.; Supriyadi, Subagio, Trianto, A.; Ambariyanto

    2015-12-01

    Terasi is a traditional product generally made of fermented shrimp. There were many studies regarding lactic acid bacteria of terasi but none regarding proteolitic bacteria. This study was conducted to isolate and identify the thermophilic and mesophylic proteolytic bacteria from terasi. In addition, the effect of different salt concentrations on the growth of the isolated proteolytic bacteria with the greatest proteolytic activity was also studied. Terasi samples were obtained from the Northern coast region of Java island i.e. Jepara, Demak and Batang. The study obtained 34 proteolytic isolates. Four isolates were identified as Sulfidobacillus, three isolates as Vibrio / Alkaligenes / Aeromonas, two isolates as Pseudomonas, 21 isolates as Bacillus, three isolates as Kurthia/ Caryophanon and one isolates as Amphibacillus. The growth of proteolytic bacteria was affected by salt concentration. The largest growth was found at 0 ppm salt concentrations and growth was declined as salt concentration increased. Maximum growth at each salt concentration tested was found at 8 hours incubation.

  7. Isolation of lactic acid bacteria from Malaysian foods and assessment of the isolates for industrial potential.

    PubMed

    Mohd Adnan, Ahmad Faris; Tan, Irene K P

    2007-05-01

    Two traditional fermented food 'tapai' (fermented tapioca) and 'tempoyak' (fermented durian flesh), chilli puree and fresh goat's milk were used as sources for the isolation of lactic acid bacteria (LAB). A total of 126 isolates were obtained and by sequential screening for catalase activity and Gram-staining, 55 were determined to be LAB out of which 16 were established to be homofermentative by the gel plug test. Seven isolates were identified by use of the API 50CHL kit and two lactobacilli strains and one lactococci strain were selected to study their growth and lactic acid production profiles in a time course experiment. The lactobacilli strains, both isolated from 'tapai', produced higher amounts of cells and lactic acid from glucose as compared to the lactococci strain isolated from fresh goat's milk.

  8. [Bacteria isolated from surgical infections and their susceptibilities to antimicrobial agents --special references to bacteria isolated between April 2008 and March 2009].

    PubMed

    Shinagawa, Nagao; Hasegawa, Masamitsu; Hirata, Koichi; Furuhata, Tomohisa; Mizukuchi, Tohru; Osanai, Hiroyuki; Yanai, Yoshiyuki; Hata, Fumitaka; Sasaki, Kazuaki; Someya, Tetsufumi; Harada, Keisuke; Oono, Keisuke; Tokita, Shoji; Nakamura, Masashi; Shibuya, Hitoshi; Hasegawa, Itaru; Kimura, Masami; Oshima, Hideki; Maeda, Hideki; Mukaiya, Mitsuhiro; Kihara, Chikasi; Kosho, Watabe; Hoshikawa, Tsuyoshi; Kimura, Hitoshi; Ushijima, Yasuhide; Yae-Hoon, Yoo; Aikawa, Naoki; Abe, Shinya; Yura, Jiro; Takeyama, Hiromitsu; Wakasugi, Takehiro; Taniguchi, Masaaki; Mizuno, Isamu; Fukui, Takuji; Mashita, Keiji; Ishikawa, Svu; Mizuno, Akira; Moori, Noriaki; Sumita, Naoki; Kubo, Shoji; Lee, Shigeruj; Oomura, Toru; Kobayashi, Yasuhito; Tsuji, Takeshi; Yamaue, Hiroki; Kawai, Manabu; Takesue, Yoshio; Tanaka, Noriaki; Kimura, Hideyuki; Iwagaki, Hiromi; Sueda, Taijiro; Hiyama, Eiso; Murakami, Yoshiaki; Ooge, Hiroki; Uemura, Kenichiro; Tsumura, Hiroaki; Yokoyama, Takashi; Takeuchi, Hitoshi; Tanakaya, Kouji; Yasunami, Yoichi; Ryu, Shinichiro

    2010-04-01

    Bacteria isolated from infections in abdominal surgery during the period from April 2008 to March 2009 were investigated in a multicenter study in Japan, and the following results were obtained. In this series, 712 strains including 18 strains of Candida spp. were isolated from 173 (80.5%) of 215 patients with surgical infections. Three hundred and sixty-six strains were isolated from primary infections, and 346 strains were isolated from postoperative infections. From primary infections, anaerobic Gram-negative bacteria were predominant, followed by aerobic Gram-negative bacteria, while from postoperative infections aerobic Gram-positive bacteria were predominant, followed by anaerobic Gram-negative bacteria. Among aerobic Gram-positive bacteria, the isolation rate of Enterococcus spp. was highest, followed by Streptococcus spp., and Staphylococcus spp. in this order, from primary infections, while Enterococcus spp. was highest, followed by Staphylococcus spp. from postoperative infections. Among aerobic Gram-negative bacteria, Escherichia coli was the most predominantly isolated from primary infections, followed by Klebsiella pneumoniae and Pseudomonas aeruginosa, in this order, and from postoperative infections, P aeruginosa was most predominantly isolated, followed by E. coli, Enterobacter cloacae, and K. pneumoniae. Among anaerobic Gram-positive bacteria, the isolation rate of Eggerthella lenta was the highest from primary infections, followed by Parvimonas micra, Streptococcus constellatus and Gemella morbillorum, and from postoperative infections, E. lenta was most predominantly isolated. Among anaerobic Gram-negative bacteria, the isolation rate of Bacteroides fragilis was the highest from primary infections, followed by Bacteroides thetaiotaomicron, Bacteroides ovatus and Bilophila wadsworthia, and from postoperative infections, B. fragilis was most predominantly isolated, followed by B. thetaiotaomicron, B. wadsworthia and B. ovatus, in this order. In

  9. [Bacteria isolated from surgical infections and its susceptibilities to antimicrobial agents--special references to bacteria isolated between April 2009 and March 2010].

    PubMed

    Shinagawa, Nagao; Osanai, Hiroyuki; Hirata, Koichi; Furuhata, Tomohisa; Mizukuchi, Tohru; Yanai, Yoshiyuki; Hata, Fumitake; Taniguchi, Masaaki; Sasaki, Kazuaki; Someya, Tetsufumi; Sasaki, Kazunori; Oono, Keisuke; Mizuno, Isamu; Shamoto, Tomoya; Fukui, Takuji; Tokita, Shoji; Nakamura, Masashi; Mashita, Keiji; Shibuya, Hitoshi; Tanaka, Moritsugu; Hasegawa, Itaru; Kimura, Masami; Oshima, Hideki; Maeda, Hideki; Ishikawa, Syu; Mukaiya, Mitsuhiro; Kihara, Chikasi; Mizuno, Akira; Watabe, Kosho; Iwai, Akihiko; Saito, Takaaki; Hoshikawa, Tsuyoshi; Kimura, Hitoshi; Moori, Noriaki; Sumita, Naoki; Jae-Hoon, Yoo; Kubo, Shoji; Lee, Shigeru; Aikawa, Naoki; Sekine, Kazuhiko; Abe, Shinya; Oomura, Toru; Takeyama, Hiromitsu; Wakasugi, Takehiro; Kobayashi, Yasuhito; Tsuji, Takeshi; Yamaue, Hiroki; Ozawa, Satoru; Takesue, Yoshio; Fujiwara, Toshiyoshi; Tsumura, Hiroaki; Kimura, Hideyuki; Yokoyama, Takashi; Iwagaki, Hiromi; Takeuchi, Hitoshi; Tanakaya, Kouji; Sueda, Taijiro; Hiyama, Eiso; Murakami, Yoshiaki; Ohge, Hiroki; Uemura, Kenichiro; Yasunami, Yoichi; Sasaki, Takamitsu

    2011-06-01

    Bacteria isolated from surgical infections during the period from April 2009 to March 2010 were investigated in a multicenter study in Japan, and the following results were obtained. In this series, 671 strains including 16 strains of Candida spp. were isolated from 174 (79.1%) of 220 patients with surgical infections. Four hundred and eleven strains were isolated from primary infections, and 244 strains were isolated from surgical site infection. From primary infections, anaerobic Gram-negative bacteria were predominant, followed by aerobic Gram-negative bacteria, while from surgical site infection aerobic Gram-positive bacteria were predominant, followed by anaerobic Gram-negative bacteria. Among aerobic Gram-positive bacteria, the isolation rate of Enterococcus spp. was highest, followed by Streptococcus spp., and Staphylococcus spp. in this order, from primary infections, while Enterococcus spp. was highest, followed by Staphylococcus spp. from surgical site infection. Among aerobic Gram-negative bacteria, Escherichia coli was the most predominantly isolated from primary infections, followed by Klebsiella pneumoniae, Enterobacter cloacae and Pseudomonas aeruginosa, in this order, and from surgical site infection, E. coli was most predominantly isolated, followed by P. aeruginosa and E. cloacae. Among anaerobic Gram-positive bacteria, the isolation rate of Eggerthella lenta was the highest from primary infections, followed by Parvimonas micra, Streptococcus constellatus and Finegoldia magna, and from surgical site infection, E. lenta was most predominantly isolated. Among anaerobic Gram-negative bacteria, the isolation rate of Bilophila wadsworthia was the highest from primary infections, followed by Bacteroides fragilis, Bacteroides ovatus and Bacteroides thetaiotaomicron, and from surgical site infection, B. fragilis was most predominantly isolated, followed by B. ovatus, B. wadsworthia and B. thetaiotaomicron, in this order. In this series, we noticed no

  10. [Bacteria isolated from surgical infections and its susceptibilities to antimicrobial agents--special references to bacteria isolated between April 2010 and March 2011].

    PubMed

    Shinagawa, Nagao; Taniguchi, Masaaki; Hirata, Koichi; Furuhata, Tomohisa; Fukuhara, Kenichiro; Mizugucwi, Tohru; Osanai, Hiroyuki; Yanai, Yoshiyuki; Hata, Fumitake; Kihara, Chikasi; Sasaki, Kazuaki; Oono, Keisuke; Nakamura, Masashi; Shibuya, Hitoshi; Hasegawa, Itaru; Kimura, Masami; Watabe, Kosho; Kobayashi, Yasuhito; Yamaue, Hiroki; Hirono, Seiko; Takesue, Yoshio; Fujiwara, Toshiyoshi; Shinoura, Susumu; Kimura, Hideyuki; Hoshikawa, Tsuyoshi; Oshima, Hideki; Aikawa, Naoki; Sasaki, Junichi; Suzuki, Masaru; Sekine, Kazuhiko; Abe, Shinya; Takeyama, Hiromitsu; Wakasugi, Takehiro; Mashita, Keiji; Tanaka, Moritsugu; Mizuno, Akira; Ishikawa, Masakazu; Iwai, Akihiko; Saito, Takaaki; Muramoto, Masayuki; Kubo, Shoji; Lee, Shigeru; Fukuhara, Kenichiro; Iwagaki, Hiromi; Tokunaga, Naoyuki; Sueda, Taijliro; Hiyama, Elso; Murakami, Yoshiaki; Ohge, Hiroki; Uemura, Kenichiro; Tsumura, Hiroaki; Kanehiro, Tetsuya; Takeuchi, Hitoshi; Tanakaya, Koujn; Iwasaki, Mitsuhiro

    2014-10-01

    Bacteria isolated from surgical infections during the period from April 2010 to March 2011 were investigated in a multicenter study in Japan, and the following results were obtained. In this series, 631 strains including 25 strains of Candida spp. were isolated from 170 (81.7%) of 208 patients with surgical infections. Four hundred and twenty two strains were isolated from primary infections, and 184 strains were isolated from surgical site infection. From primary infections, anaerobic Gram-negative bacteria were predominant, followed by aerobic Gram-negative bacteria, while from surgical site infection aerobic Gram-positive bacteria were predominant, followed by anaerobic Gram-negative bacteria. Among aerobic Gram-positive bacteria, the isolation rate of Enterococcus spp. such as Enterococcus faecalis, Enterococcus faecium, and Enterococcus avium was highest, followed by Streptococcus spp. such as Streptococcus anginosus and Staphylococcus spp. such as Staphylococcus aureus, in this order, from primary infections, while Enterococcus spp. such as E. faecalis and E. faecium was highest, followed by Staphylococcus spp. such as S. aureus from surgical site infection. Among aerobic Gram-negative bacteria, Escherichia coli was the most predominantly isolated from primary infections, followed by Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and Pseudomonas aeruginosa in this order, and from surgical site infection, E. coli and R aeruginosa were most predominantly isolated, followed by E. cloacae and K. pneumoniae. Among anaerobic Gram-positive bacteria, the isolation rates of Parvimonas micra, Eggerthella lenta, Streptococcus constellatus, Gemella morbillorum, and Collinsella aerofaciens were the highest from primary infections, and the isolation rate from surgical site infection was generally low. Among anaerobic Gram-negative bacteria, the isolation rate of Bilophila wadsworthia was the highest from primary infections, followed by, Bacteroides

  11. Synergistic Effect of Photosynthetic Bacteria and Isolated Bacteria in Their Antifungal Activities against Root Rot Fungi.

    PubMed

    Wei, Hongyi; Okunishi, Suguru; Yoshikawa, Takeshi; Kamei, Yuto; Dawwoda, Mahmoud A O; Santander-DE Leon, Sheila Mae S; Nuñal, Sharon Nonato; Maeda, Hiroto

    2016-01-01

    Antifungal bacteria (AB) in root rot fungus (RRF)-contaminated sweet potato farms were isolated, and seven strains were initially chosen as antagonistic candidates. An antagonistic test by using the mycelial disk placement method revealed that one AB strain by itself could inhibit the RRF growth. This AB strain was identified as Bacillus polyfermenticus based on phylogeny of 16S ribosomal RNA genes. Two AB strains (Bacillus aerophilus) displayed high levels of antifungal activity when paired with photosynthetic bacterial strain A (a purple nonsulfur photosynthetic bacterium Rhodopseudomonas faecalis). The results suggest the possible use of the isolates as agents for the biological control of the RRF infection of agricultural products in fields of cultivation.

  12. A MEMBRANE FILTER PROCEDURE FOR ASSAYING CYTOTOXIC ACTIVITY IN HETEROTROPHIC BACTERIA ISOLATED FROM DRINKING WATER

    EPA Science Inventory

    Cytotoxic activity assays of Gram-negative, heterotrophic bacteria are often laborious and time consuming. The objective of this study was to develop in situ procedures for testing potential cytotoxic activities of heterotrophic bacteria isolated from drinking water systems. Wate...

  13. A MEMBRANE FILTER PROCEDURE FOR ASSAYING CYTOTOXIC ACTIVITY IN HETEROTROPHIC BACTERIA ISOLATED FROM DRINKING WATER

    EPA Science Inventory

    Cytotoxic activity assays of Gram-negative, heterotrophic bacteria are often laborious and time consuming. The objective of this study was to develop in situ procedures for testing potential cytotoxic activities of heterotrophic bacteria isolated from drinking water systems. Wate...

  14. Acetic acid bacteria isolated from grapes of South Australian vineyards.

    PubMed

    Mateo, E; Torija, M J; Mas, A; Bartowsky, E J

    2014-05-16

    Acetic acid bacteria (AAB) diversity from healthy, mould-infected and rot-affected grapes collected from three vineyards of Adelaide Hills (South Australia) was analyzed by molecular typing and identification methods. Nine different AAB species were identified from the 624 isolates recovered: Four species from Gluconobacter genus, two from Asaia and one from Acetobacter were identified by the analysis of 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer. However, the identification of other isolates that were assigned as Asaia sp. and Ameyamaea chiangmaiensis required more analysis for a correct species classification. The species of Gluconobacter cerinus was the main one identified; while one genotype of Asaia siamensis presented the highest number of isolates. The number of colonies recovered and genotypes identified was strongly affected by the infection status of the grapes; the rot-affected with the highest number. However, the species diversity was similar in all the cases. High AAB diversity was detected with a specific genotype distribution for each vineyard. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Symbiotic root nodule bacteria isolated from yam bean (Pachyrhizus erosus).

    PubMed

    Fuentes, Jenet B; Abe, Mikiko; Uchiumi, Toshiki; Suzuki, Akihiro; Higashi, Shiro

    2002-08-01

    A total of 25 isolates from root nodules of yam bean (Pachyrhizus erosus L. Urban), a tuber-producing leguminous plant, were characterized. All isolates formed effective nodules mainly on lateral roots while edible tubers were developed on the taproot. The root nodules formed were identified as the typical determinate type. By an analysis of the partial sequences of the 16S rRNA gene (approximately 300 bp) of 10 strains which were selected randomly, the isolated root nodule bacteria of yam bean were classified into two different genera, Rhizobium and Bradyrhizobium. Two strains, YB2 (Bradyrhizobium group) and YB4 (Rhizobium group) were selected and used for further analyses. The generation time of each strain was shown to be 22.5 h for strain YB2 and 0.8 h for strain YB4, respectively. Differences between strains YB2 and YB4 were also reflected in the bacteroid state in the symbiosome. Symbiosome in nodule cells for the strain YB4 contained one bacteroid cell in a peribacteroid membrane, whereas a symbiosome for strain YB2 contained several bacteroid cells.

  16. Piezophilic Bacteria Isolated from Sediment of the Shimokita Coalbed, Japan

    NASA Astrophysics Data System (ADS)

    Fang, J.; Kato, C.; Hori, T.; Morono, Y.; Inagaki, F.

    2013-12-01

    The Earth is a cold planet as well as pressured planet, hosting both the surface biosphere and the deep biosphere. Pressure ranges over four-orders of magnitude in the surface biosphere and probably more in the deep biosphere. Pressure is an important thermodynamic property of the deep biosphere that affects microbial physiology and biochemistry. Bacteria that require high-pressure conditions for optimal growth are called piezophilic bacteria. Subseafloor marine sediments are one of the most extensive microbial habitats on Earth. Marine sediments cover more than two-thirds of the Earth's surface, and represent a major part of the deep biosphere. Owing to its vast size and intimate connection with the surface biosphere, particularly the oceans, the deep biosphere has enormous potential for influencing global-scale biogeochemical processes, including energy, climate, carbon and nutrient cycles. Therefore, studying piezophilic bacteria of the deep biosphere has important implications in increasing our understanding of global biogeochemical cycles, the interactions between the biosphere and the geosphere, and the evolution of life. Sediment samples were obtained during IODP Expedition 337, from 1498 meters below sea floor (mbsf) (Sample 6R-3), 1951~1999 mbsf (19R-1~25R-3; coalbed mix), and 2406 mbsf (29R-7). The samples were mixed with MB2216 growth medium and cultivated under anaerobic conditions at 35 MPa (megapascal) pressure. Growth temperatures were adjusted to in situ environmental conditions, 35°C for 6R-3, 45°C for 19R-1~25R-3, and 55°C for 29R-7. The cultivation was performed three times, for 30 days each time. Microbial cells were obtained and the total DNA was extracted. At the same time, isolation of microbes was also performed under anaerobic conditions. Microbial communities in the coalbed sediment were analyzed by cloning, sequencing, and terminal restriction fragment length polymorphism (t-RFLP) of 16S ribosomal RNA genes. From the partial 16S r

  17. Immunochemical Detection and Isolation of DNA from Metabolically Active Bacteria

    PubMed Central

    Urbach, Ena; Vergin, Kevin L.; Giovannoni, Stephen J.

    1999-01-01

    Most techniques used to assay the growth of microbes in natural communities provide no information on the relationship between microbial productivity and community structure. To identify actively growing bacteria, we adapted a technique from immunocytochemistry to detect and selectively isolate DNA from bacteria incorporating bromodeoxyuridine (BrdU), a thymidine analog. In addition, we developed an immunocytochemical protocol to visualize BrdU-labeled microbial cells. Cultured bacteria and natural populations of aquatic bacterioplankton were pulse-labeled with exogenously supplied BrdU. Incorporation of BrdU into microbial DNA was demonstrated in DNA dot blots probed with anti-BrdU monoclonal antibodies and either peroxidase- or Texas red-conjugated secondary antibodies. BrdU-containing DNA was physically separated from unlabeled DNA by using antibody-coated paramagnetic beads, and the identities of bacteria contributing to both purified, BrdU-containing fractions and unfractionated, starting-material DNAs were determined by length heterogeneity PCR (LH-PCR) analysis. BrdU-containing DNA purified from a mixture of DNAs from labeled and unlabeled cultures showed >90-fold enrichment for the labeled bacterial taxon. The LH-PCR profile for BrdU-containing DNA from a labeled, natural microbial community differed from the profile for the community as a whole, demonstrating that BrdU was incorporated by a taxonomic subset of the community. Immunocytochemical detection of cells with BrdU-labeled DNA was accomplished by in situ probing with anti-BrdU monoclonal antibodies and Texas red-labeled secondary antibodies. Using this suite of techniques, microbial cells incorporating BrdU into their newly synthesized DNA can be quantified and the identities of these actively growing cells can be compared to the composition of the microbial community as a whole. Since not all strains tested could incorporate BrdU, these methods may be most useful when used to gain an understanding

  18. [Bacteria isolated from surgical infections and its susceptibilities to antimicrobial agents--special references to bacteria isolated between April 2006 and March 2007].

    PubMed

    Shinagawa, Nagao; Hirata, Koichi; Katsuramaki, Tadashi; Mizukuchi, Tohru; Ushijima, Yasuhide; Ushida, Tomohiro; Aikawa, Naoki; Yo, Kikuo; Mashita, Keiji; Ishikawa, Syu; Mizuno, Akira; Kubo, Shoji; Lee, Shigeru; Fujimoto, Mikio; Higaki, Kazuyuki; Taniguchi, Katsutoshi; Tsuji, Takeshi; Ohnishi, Hironobu; Yamaue, Hiroki; Kawai, Manabu; Takesue, Yoshio; Tanaka, Noriaki; Iwagaki, Hiromi; Takayama, Tadatoshi; Sato, Takeshi; Kato, Koumei; Yura, Jiro; Takeyama, Hiromitsu; Wakasugi, Takehiro; Taniguchi, Masaaki; Mizuno, Isamu; Kimura, Hideyuki; Fuchimoto, Sadayoshi; Sueda, Taijiro; Hiyama, Eiso; Murakami, Yoshiaki; Ooge, Hiroki; Uemura, Kenichiro; Tsumura, Hiroaki; Yokoyama, Takashi; Takeuchi, Hitoshi; Yasui, Yoshimasa; Ikeda, Seiyo; Yasunami, Yoichi; Ryu, Shinichiro

    2008-06-01

    Tendency of isolated bacteria from infections in abdominal surgery during the period from April 2006 to March 2007 were investigated in a multicenter study in Japan, and the following results were obtained. In this series, 474 strains including 23 strains of Candida spp. were isolated from 170 (75.2%) of 226 patients with surgical infections. Two hundred and twenty-six strains were isolated from primary infections, and 224 strains were isolated from postoperative infections. From primary infections, anaerobic Gram-negative bacteria were predominant, followed by aerobic Gram-negative bacteria, while from postoperative infections aerobic Gram-positive bacteria were predominant, followed by anaerobic Gram-negative bacteria. Among aerobic Gram-positive bacteria, the isolation rate of Staphylococcus spp. was higher from postoperative infections, while Enterococcus spp. was higher from primary infections. Among aerobic Gram-negative bacteria, Escherichia coli was the most predominantly isolated from primary infections, followed by Klebsiella pneumoniae, Enterobacter cloacae and Pseudomonas aeruginosa, in this order, and from postoperative infections, P. aeruginosa was the most predominantly isolated, followed by E. coli and E. cloacae. Among anaerobic Gram-negative bacteria, the isolation rate of Bilophila wadsworthia was the highest from primary infections, followed by Bacteroides fragilis and from postoperative infections, B. fragilis was most predominately isolated, followed by Bacteroides caccae, Bacteroides thetaiotaomicron and B. wadsworthia in this order. In this series, we noticed no methicillin-resistant Staphylococcus aureus, nor multidrug-resistant P. aeruginosa. There were three strains of methicillin-resistant coagulase-negative Staphylococcus aureus, but all of them had good susceptibilities against various anti-MRSA antibiotics. We should carefully follow up B. wadsworthia.

  19. Antimycobacterial activity in vitro of pigments isolated from Antarctic bacteria.

    PubMed

    Mojib, Nazia; Philpott, Rachel; Huang, Jonathan P; Niederweis, Michael; Bej, Asim K

    2010-11-01

    In this study, we describe the antimycobacterial activity of two pigments, violacein, a purple violet pigment from Janthinobacterium sp. Ant5-2 (J-PVP), and flexirubin, a yellow-orange pigment from Flavobacterium sp. Ant342 (F-YOP). These pigments were isolated from bacterial strains found in the land-locked freshwater lakes of Schirmacher Oasis, East Antarctica. The minimum inhibitory concentrations (MICs) of these pigments for avirulent and virulent mycobacteria were determined by the microplate Alamar Blue Assay (MABA) and Nitrate Reductase Assay (NRA). Results indicated that the MICs of J-PVP and F-YOP were 8.6 and 3.6 μg/ml for avirulent Mycobacterium smegmatis mc²155; 5 and 2.6 μg/ml for avirulent Mycobacterium tuberculosis mc²6230; and 34.4 and 10.8 μg/ml for virulent M. tuberculosis H₃₇Rv, respectively. J-PVP exhibited a ~15 times lower MIC for Mycobacterium sp. than previously reported for violacein pigment from Chromobacterium violaceum, while the antimycobacterial effect of F-YOP remains undocumented. Our results indicate these pigments isolated from Antarctic bacteria might be valuable lead compounds for new antimycobacterial drugs used for chemotherapy of tuberculosis.

  20. Hexavalent chromium-resistant bacteria isolated from river sediments.

    PubMed Central

    Luli, G W; Talnagi, J W; Strohl, W R; Pfister, R M

    1983-01-01

    Hexavalent chromium [Cr(VI)] is a known carcinogen and mutagen; however, the actual mechanisms of Cr toxicity are unknown. Two approaches were used to isolate Cr(VI)-resistant bacteria from metal-contaminated river sediments. Diluted sediments were plated directly onto a peptone-yeast extract (PYE) medium containing 0 to 100 micrograms of Cr(VI) ml-1. Approximately 8.4 x 10(5) CFU g-1 were recovered on 0 microgram of Cr(VI) ml-1, whereas 4.0 x 10(2) CFU g-1 were recovered on PYE plus 100 micrograms of Cr(VI) ml-1. Alternatively, continuous culture enrichment techniques were employed using PYE and 100 micrograms Cr(VI) ml-1 input at dilution rates of 0.02 and 0.10 h-1. After six residence periods, 10(9) CFU were recovered on PYE agar containing 0 microgram of Cr(VI) ml-1 and 10(7) CFU on PYE agar plus 100 micrograms of Cr(VI) ml-1. Of 89 isolates obtained by direct plating onto PYE, 47% were resistant to 100 micrograms of Cr(VI) ml-1, and 29% were resistant to 250 micrograms of Cr(VI) ml-1. When the same isolates were plated onto PYE containing Cr(III), 88% were resistant to 100 micrograms ml-1 but only 2% were resistant to 250 micrograms ml-1. Cr, Co, Sb, and Zn were found in significantly higher concentrations at an industry-related contaminated site than at a site 11 km downstream. Total Cr in the sediments at the contaminated site averaged 586 micrograms (dry weight) g-1, and the downstream site averaged 71 micrograms (dry weight) g-1. The Cr recovered from acid-digested Ottawa River sediment samples was predominantly hexavalent. Five acid digestion procedures followed by atomic absorption spectroscopy were compared and found to be 30 to 70% efficient for recovery of Cr relative to neutron activation analysis. A population of aerobic, heterotrophic bacteria was recovered from sediments containing elevated levels of Cr.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6639032

  1. [Isolation identification and characterization of halotolerant petroleum-degrading bacteria].

    PubMed

    Wu, Tao; Xie, Wen-Jun; Yi, Yan-Li; Li, Xiao-Bin; Wang, Jun; Hu, Xiang-Ming

    2012-11-01

    To obtain efficient halotolerant petroleum-degrading bacteria, 39 bacteria strains were isolated from 30 petroleum contaminated saline soil samples in Yellow River Delta, an important base of petroleum production in China. One bacterium (strain BM38) was found to efficiently degrade crude oil in highly saline environments based on a series of liquid and soil incubation experiments. According to its morphology, physiochemical characteristics and 16S rDNA sequence analysis, this strain was identified as Pseudomonas putida. Moreover, a series of liquid incubation experiments were conducted to investigate its characteristics such as halotolerance, biosurfactants production and degrading efficiency for various hydrocarbons. The salt resistance test demonstrated that strain BM38 grew well at NaCl concentrations ranging from 0.5% to 6.0%. Petroleum degradation experiments showed that strain BM38 could degrade 73.5% crude oil after 7 days in a liquid culture medium containing 1.0% NaCl and remove more than 40% of total petroleum hydrocarbons after 40 days in the soil with 0.22% and 0.61% of salinity, these results proved that the strain was effective in removing petroleum hydrocarbons. Strain BM38 could produce a bioemulsifier in a liquid culture medium. The NaCl concentration had the significant effect on the EI24 of fermentation broth, which decreased sharply if the NaCl concentration was greater than 1.0%. However, the EI24 of BM38 was still quite high in the presence of 2.0% of NaCl, and the value was 61.0%. Furthermore, this strain was also able to grow in mineral liquid media amended with hexadecane, toluene, phenanthrene, isooctane and cyclohexane as the sole carbon sources. Among these hydracarbons, strain BM38 showed relatively high ability in degrading n-alkanes and aromatic hydracarbons. The results indicated that strain BM38 had potential for application in bioremediation of petroleum-contaminated saline soil.

  2. Isolation and characterisation of lactic acid bacteria from donkey milk.

    PubMed

    Soto Del Rio, Maria de Los Dolores; Andrighetto, Christian; Dalmasso, Alessandra; Lombardi, Angiolella; Civera, Tiziana; Bottero, Maria Teresa

    2016-08-01

    During the last years the interest in donkey milk has increased significantly mainly because of its compelling functional elements. Even if the composition and nutritional properties of donkey milk are known, its microbiota is less studied. This Research Communication aimed to provide a comprehensive characterisation of the lactic acid bacteria in raw donkey milk. RAPD-PCR assay combined with 16S rDNA sequencing analysis were used to describe the microbial diversity of several donkey farms in the North West part of Italy. The more frequently detected species were: Lactobacillus paracasei, Lactococcus lactis and Carnobacterium maltaromaticum. Less abundant genera were Leuconostoc, Enterococcus and Streptococcus. The yeast Kluyveromyces marxianus was also isolated. The bacterial and biotype distribution notably diverged among the farms. Several of the found species, not previously detected in donkey milk, could have an important probiotic activity and biotechnological potential. This study represents an important insight to the ample diversity of the microorganisms present in the highly selective ecosystem of raw donkey milk.

  3. Biogenic amine production by lactic acid bacteria isolated from cider.

    PubMed

    Garai, G; Dueñas, M T; Irastorza, A; Moreno-Arribas, M V

    2007-11-01

    To study the occurrence of histidine, tyrosine and ornithine decarboxylase activity in lactic acid bacteria (LAB) isolated from natural ciders and to examine their potential to produce detrimental levels of biogenic amines. The presence of biogenic amines in a decarboxylase synthetic broth and in cider was determined by reversed-phase high-performance liquid chromatography (RP-HPLC). Among the 54 LAB strains tested, six (five lactobacilli and one oenococci) were biogenic amine producers in both media. Histamine and tyramine were the amines formed by the LAB strains investigated. Lactobacillus diolivorans were the most intensive histamine producers. This species together with Lactobacillus collinoides and Oenococcus oeni also seemed to produce tyramine. No ability to form histamine, tyramine or putrescine by Pediococus parvulus was observed, although it is a known biogenic amine producer in wines and beers. This study demonstrated that LAB microbiota growing in ciders had the ability to produce biogenic amines, particularly histamine and tyramine, and suggests that this capability might be strain-dependent rather than being related to a particular bacterial species. Production of biogenic amines by food micro-organisms has continued to be the focus of intensive study because of their potential toxicity. The main goal was to identify the microbial species capable of producing these compounds in order to control their presence and metabolic activity in foods.

  4. Isolation and characterization of novel thermophilic lipase-secreting bacteria

    PubMed Central

    Rabbani, Mohammed; Bagherinejad, Mohammad Reza; Sadeghi, Hamid MirMohammad; Shariat, Ziaedin Samsam; Etemadifar, Zahra; Moazen, Fatemeh; Rahbari, Manizheh; Mafakher, Ladan; Zaghian, Saeideh

    2013-01-01

    The purpose of the present study was to screen and identify the lipase-producing microorganisms from various regions of Iran. Samples collected from hot spring, Persian Gulf, desert area and oil-contaminated soil, were analyzed for thermophilic extracellular-lipase producing organisms. Six strains with high activity on rhodamine B plates were selected for chemical identification and further study. Among these isolated bacteria, four strains show higher activity in pH-Stat method at 55 °C. These strains were identified by PCR amplification of 16s rRNA genes using universal primers. Fermentation increased the activity up to 50%. The growth medium, designed for lipase production, increased the activity up to 4.55 folds. The crude supernatant of ZR-5 after fermentation and separation the cells, was lyophilized and the activity was measured. Total activity of this strain was 12 kU/g that shows its potential for industrial uses. Further study is required for purification of enzyme and calculation its specific activity. Immobilization is another approach should be considered. PMID:24688500

  5. Isolation and characterization of cesium-accumulating bacteria.

    PubMed Central

    Tomioka, N; Uchiyama, H; Yagi, O

    1992-01-01

    Cesium-accumulating bacteria, strains CS98 and CS402, were isolated from soil by a radioactive autoradiographic method using 137Cs. These strains displayed the rod-coccus growth cycle and contained mesodiaminopimelic acid, mycolic acids, and tuberculostearic acids. The major menaquinone of CS98 was MK-8(H2). On the basis of these characteristics, strain CS98 was identified as Rhodococcus erythropolis and strain CS402 was classified in the genus Rhodococcus. The maximum values of cesium removal efficiencies in the liquid culture containing 10 mumol of cesium per liter for strains CS98 and CS402 were 90 and 47%, respectively. The maximum cesium contents in strains CS98 and CS402 were 52.0 and 18.8 mumol/g (dry weight) of cells, respectively. Maximum values of cesium concentration factors for strains CS98 and CS402 were 3.5 x 10(4) and 3.6 x 10(3), respectively. Images PMID:1575473

  6. Isolation and characterization of novel thermophilic lipase-secreting bacteria.

    PubMed

    Rabbani, Mohammed; Bagherinejad, Mohammad Reza; Sadeghi, Hamid MirMohammad; Shariat, Ziaedin Samsam; Etemadifar, Zahra; Moazen, Fatemeh; Rahbari, Manizheh; Mafakher, Ladan; Zaghian, Saeideh

    2013-12-01

    The purpose of the present study was to screen and identify the lipase-producing microorganisms from various regions of Iran. Samples collected from hot spring, Persian Gulf, desert area and oil-contaminated soil, were analyzed for thermophilic extracellular-lipase producing organisms. Six strains with high activity on rhodamine B plates were selected for chemical identification and further study. Among these isolated bacteria, four strains show higher activity in pH-Stat method at 55 °C. These strains were identified by PCR amplification of 16s rRNA genes using universal primers. Fermentation increased the activity up to 50%. The growth medium, designed for lipase production, increased the activity up to 4.55 folds. The crude supernatant of ZR-5 after fermentation and separation the cells, was lyophilized and the activity was measured. Total activity of this strain was 12 kU/g that shows its potential for industrial uses. Further study is required for purification of enzyme and calculation its specific activity. Immobilization is another approach should be considered.

  7. [Bacteria isolated from surgical infections and their susceptibility to antimicrobial agents--special reference to bacteria isolated between April 2007 and March 2008].

    PubMed

    Shinagawa, Nagao; Hasegawa, Masamitsu; Hirata, Koichi; Katsuramaki, Tadashi; Mizukuchi, Tohru; Ushijima, Yasuhide; Ushida, Tomohiro; Aikawa, Naoki; Yo, Kikuo; Yura, Jiro; Takeyama, Hiromitsu; Wakasugi, Takehiro; Taniguchi, Masaaki; Mizuno, Isamu; Mashita, Keiji; Ishikawa, Sw; Mizuno, Akira; Tsumura, Hiroaki; Yokoyama, Takashi; Moori, Noriaki; Sumita, Naoki; Kubo, Shoji; Lee, Shigeru; Oomura, Toru; Kobayashi, Yasuhito; Tsuji, Takeshi; Yamaue, Hiroki; Kawai, Manabu; Takesue, Yoshio; Tanaka, Noriaki; Kimura, Hideyuki; Iwagaki, Hiromi; Sueda, Taijiro; Hiyama, Eiso; Murakami, Yoshiaki; Ooge, Hiroki; Uemura, Kenichiro; Takeuchi, Hitoshi; Yasui, Yoshimasa; Yasunami, Yoichi; Ryu, Shinichiro

    2009-08-01

    Bacteria isolated from infections in abdominal surgery during the period from April 2007 to March 2008 were investigated in a multicenter study in Japan, and the following results were obtained. In this series, 707 strains including 24 strains of Candida spp. were isolated from 181 (79.0%) of 229 patients with surgical infections. Three hundred and ninety-five strains were isolated from primary infections, and 288 strains were isolated from postoperative infections. From primary infections, anaerobic Gram-negative bacteria were predominant, followed by aerobic Gram-negative bacteria, while from postoperative infections aerobic Gram-positive bacteria were predominant, followed by anaerobic Gram-negative bacteria. Among aerobic Gram-positive bacteria, the isolation rate of Enterococcus spp. was highest, followed by Streptococcus spp., and Staphylococcus spp. in this order, from primary infections, while Enterococcus spp. was highest, followed by Staphylococcus spp. from postoperative infections. Among aerobic Gram-negative bacteria, Escherichia coli was the most predominantly isolated from primary infections, followed by Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterobacter cloacae, in this order, and from postoperative infections, P. aeruginosa was most predominantly isolated, followed by E. cloacae, E. coli and K. pneumoniae. Among anaerobic Gram-positive bacteria, the isolation rate of Parvimonas micra was the highest from primary infections, followed by Streptococcus constellatus and Gemella morbillorum, and from postoperative infections, Anaerococcus prevotii was most predominantly isolated. Among anaerobic Gram-negative bacteria, the isolation rate of both Bacteroides fragilis and Bilophila wadsworthia were the highest from primary infections, followed by Bacteroides thetaiotaomicron and Campylobacter gracilis, and from postoperative infections, B. thetaiotaomicron was most predominately isolated, followed by B. fragilis, Bacteroides caccae and B

  8. [Bacteria isolated from surgical infections and its susceptibilities to antimicrobial agents - Special references to bacteria isolated between April 2011 and March 2012].

    PubMed

    Shinagawa, Nagao; Taniguchi, Masaaki; Hirata, Koichi; Furuhata, Tomohisa; Mizuguchi, Tohru; Osanai, Hiroyuki; Yanai, Yoshiyuki; Hata, Fumitake; Kihara, Chikasi; Sasaki, Kazuaki; Oono, Keisuke; Nakamura, Masashi; Shibuya, Hitoshi; Hasegawa, Itaru; Kimura, Masami; Watabe, Kosho; Hoshikawa, Tsuyoshi; Oshima, Hideki; Aikawa, Naoki; Sasaki, Junichi; Suzuki, Masaru; Sekine, Kazuhiko; Abe, Shinya; Takeyama, Hiromitsu; Wakasugi, Takehiro; Mashita, Keiji; Tanaka, Moritsugu; Mizuno, Akira; Ishikawa, Masakazu; Iwai, Akihiko; Saito, Takaaki; Muramoto, Masayuki; Kubo, Shoji; Lee, Shigeru; Fukuhara, Kenichiro; Kobayashi, Yasuhito; Yamaue, Hiroki; Hirono, Seiko; Takesue, Yoshio; Fujiwara, Toshiyoshi; Shinoura, Susumu; Kimura, Hideyuki; Iwagaki, Hiromi; Tokunaga, Naoyuki; Sueda, Taijiro; Hiyama, Eiso; Murakami, Yoshiaki; Ohge, Hiroki; Uemura, Kenichiro; Tsumura, Hiroaki; Kanehiro, Tetsuya; Takeuchi, Hitoshi; Tanakaya, Kouji; Iwasaki, Mitsuhiro

    2014-12-01

    Bacteria isolated from surgical infections during the period from April 2011 to March 2012 were investigated in a multicenter study in Japan, and the following results were obtained. In this series, 785 strains including 31 strains of Candida spp. were isolated from 204 (78.8%) of 259 patients with surgical infections. Five hundred and twenty three strains were isolated from primary infections, and 231 strains were isolated from surgical site infection. From primary infections, anaerobic Gram-negative bacteria were predominant, followed by aerobic Gram-negative bacteria, while from surgical site infection aerobic Gram-positive bacteria were predominant, followed by anaerobic Gram-negative bacteria. Among aerobic Gram-positive bacteria, the isolation rate of Enterococcus spp. was highest, followed by Streptococcus spp. and Staphylococcus spp., in this order, from primary infections, while Enterococcus spp. was highest, followed by Staphylococcus spp. from surgical site infection. Among aerobic Gram-negative bacteria, Escherichia coli was the most predominantly isolated from primary infections, followed by Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterobacter cloacae, in this order, and from surgical site infection, E. coli was most predominantly isolated, followed by P. aeruginosa, K. pneumoniae, and E. cloacae. Among anaerobic Gram-positive bacteria, the isolation rate of Eggerthella lenta was the highest from primary infections, followed by Parvimonas micra, Collinsella aerofaciens, Lactobacillus acidophilus and Finegoldia magna, and from surgical site infection, E. lenta was most predominantly isolated, followed by P micra and L. acidophilus, in this order. Among anaerobic Gram-negative bacteria, the isolation rate of Bacteroidesfragilis was the highest from primary infections, followed by Bilophila wadsworthia, Bacteroides thetaiotaomicron, Bacteroides uniformis and Bacteroides vulgatus, and from surgical site infection, B. fragilis was most

  9. [Nonfermentative gram-negative bacteria: isolation rates and antibiotic sensitivity].

    PubMed

    Bogomolova, N S; Bol'shakov, L V; Kuznetsova, S M; Oreshkina, T D

    2010-01-01

    The isolation rates of nonfermentative gram-negative bacteria (NFGNB) are analyzed in the inpatients treated at the B. V. Petrovsky Russian Surgery Research Center in 2005-2009 and antibiotic resistance trends in nosocomial strains of NFGNB are traced in the above period. The study of the etiological structure of nosocomial infections has shown that the past 2 years (2008 and 2009) were marked by a clear tendency for the preponderance of gram-positive coccal pathogens (46.8 and 53.9%) with a considerable (1.5-2-fold) reduction in the proportion of representatives of enterobacteria (31.5 and 24.5%) and NFGB (13.4 and 11.3%), but with an increase in the proportion of fungi up to 7.1 and 8.6%, respectively. Among the NFGNBs, P. aeruginosa remains ohe of the most common pathogens for nosocomial infections although its portion in the number of all etiologically significant microorganisms was substantially reduced (from 13% in 2005 to 4.6% in 2009). It continues to remain one of the most common causative agents for infections of the urinary tract (e.g., after renal transplantation) and upper and lower respiratory tract (e.g. nosocomial pneumonia) and for those developing after surgical interventions (postoperative wound suppuration discharged along the drainages, from a T-sized tube, etc.). Among the NFGNBs, Acinetobacter spp. was the second frequently isolated pathogen, the isolation rate for which also decreased from 7.9% in 2005 to 2.6% in 2009. Polymyxin B and carbapenems (imipenem, meropenem, and doripenem) showed the highest activity against the vast majority of the test strains; however, there was an absolutely clear declining trend in the proportion of carbapenem-sensitive strains among virtually all the NFGNBs under study. According to the proportion of imipenem-, meropenem-, and doripenem-sensitive nosocomial P. aeroginosa strains (66.7, 46.6, and 44.7%, respectively), doripenem had the least activity. Acinetobacter spp. strains sensitive to these drugs showed

  10. Isolation of lactic acid bacteria with potential protective culture characteristics from fruits

    NASA Astrophysics Data System (ADS)

    Hashim, Nurul Huda; Sani, Norrakiah Abdullah

    2015-09-01

    Lactic acid bacteria are also known as beneficial microorganisms abundantly found in fermented food products. In this study, lactic acid bacteria were isolated from fresh cut fruits obtained from local markets. Throughout the isolation process from 11 samples of fruits, 225 presumptive lactic acid bacteria were isolated on MRS agar medium. After catalase and oxidase tests, 149 resulted to fit the characteristics of lactic acid bacteria. Further identification using Gram staining was conducted to identify the Gram positive bacteria. After this confirmation, the fermentation characteristics of these isolates were identified. It was found that 87 (58.4%) isolates were heterofermentative, while the rest of 62 (41.6%) are homofermentative lactic acid bacteria. Later, all these isolates were investigated for the ability to inhibit growth of Staphylococcus aureus using agar spot assay method. Seven (4.7%) isolates showed strong antagonistic capacity, while 127 (85.2%) and 8 (5.4%) isolates have medium and weak antagonistic capacity, respectively. The other 7 (4.7%) isolates indicated to have no antagonistic effect on S. aureus. Results support the potential of LAB isolated in this study which showed strong antagonistic activity against S. aureus may be manipulated to become protective cultures in food products. While the homofermentative or heterofermentative LAB can be utilized in fermentation of food and non-food products depending on the by-products required during the fermentation.

  11. Isolation and characteristics of lactic acid bacteria isolated from ripe mulberries in Taiwan

    PubMed Central

    Chen, Yi-sheng; Wu, Hui-chung; Yanagida, Fujitoshi

    2010-01-01

    The objective of this study was to isolate, characterize, and identify lactic acid bacteria (LAB) from ripe mulberries collected in Taiwan. Ripe mulberry samples were collected at five mulberry farms, located in different counties of Taiwan. Eighty-eight acid-producing cultures were isolated from these samples, and isolates were divided into classes first by phenotype, then into groups by restriction fragment length polymorphism (RFLP) analysis and sequencing of 16S ribosomal DNA (rDNA). Phenotypic and biochemical characteristics led to identification of four bacterial groups (A to D). Weissella cibaria was the most abundant type of LAB distributed in four mulberry farms, and Lactobacillus plantarum was the most abundant LAB found in the remaining farm. Ten W. cibaria and one Lactococcus lactis subsp. lactis isolate produced bacteriocins against the indicator strain Lactobacillus sakei JCM 1157T. These results suggest that various LAB are distributed in ripe mulberries and W. cibaria was the most abundant LAB found in this study. PMID:24031571

  12. Characterization of Bacteria Isolation of Bacteria from Pinyon Rhizosphere, Producing Biosurfactants from Agro-Industrial Waste.

    PubMed

    2016-01-01

    Two hundred and fifty bacterial strains were isolated from pinyon rhizosphere and screened for biosurfactants production. Among them, six bacterial strains were selected for their potential to produce biosurfactants using two low cost wastes, crude glycerol and lactoserum, as raw material. Both wastes were useful for producing biosurfactants because of their high content in fat and carbohydrates. The six strains were identified by 16S rDNA with an identity percentage higher than 95%, three strains belonged to Enterobacter sp., Pseudomonas aeruginosa, Bacillus pumilus and Rhizobium sp. All strains assayed were able to grow and showed halos around the colonies as evidence of biosurfactants production on Cetyl Trimethyl Ammonium Bromide agar with crude glycerol and lactoserum as substrate. In a mineral salt liquid medium enriched with both wastes, the biosurfactants were produced and collected from free cell medium after 72 h incubation. The biosurfactants produced reduced the surface tension from 69 to 30 mN/m with an emulsification index of diesel at approximately 60%. The results suggest that biosurfactants produced by rhizosphere bacteria from pinyon have promising environmental applications.

  13. Antifouling potential of bacteria isolated from a marine biofilm

    NASA Astrophysics Data System (ADS)

    Gao, Min; Wang, Ke; Su, Rongguo; Li, Xuzhao; Lu, Wei

    2014-10-01

    Marine microorganisms are a new source of natural antifouling compounds. In this study, two bacterial strains, Kytococcus sedentarius QDG-B506 and Bacillus cereus QDG-B509, were isolated from a marine biofilm and identified. The bacteria fermentation broth could exert inhibitory effects on the growth of Skeletonema costatum and barnacle larvae. A procedure was employed to extract and identify the antifouling compounds. Firstly, a toxicity test was conducted by graduated pH and liquid-liquid extraction to determine the optimal extraction conditions. The best extraction conditions were found to be pH 2 and 100% petroleum ether. The EC 50 value of the crude extract of K. sedentarius against the test microalgae was 236.7 ± 14.08 μg mL-1, and that of B. cereus was 290.6 ± 27.11 μg mL-1. Secondly, HLB SPE columns were used to purify the two crude extracts. After purification, the antifouling activities of the two extracts significantly increased: the EC 50 of the K. sedentarius extract against the test microalgae was 86.4 ± 3.71 μg mL-1, and that of B. cereus was 92.6 ± 1.47 μg mL-1. These results suggest that the metabolites produced by the two bacterial strains are with high antifouling activities and they should be fatty acid compounds. Lastly, GC-MS was used for the structural elucidation of the compounds. The results show that the antifouling compounds produced by the two bacterial strains are myristic, palmitic and octadecanoic acids.

  14. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance).

    PubMed

    Hassanshahian, Mehdi

    2014-09-15

    Biosurfactants are surface active materials that are produced by some microorganisms. These molecules increase biodegradation of insoluble pollutants. In this study sediments and seawater samples were collected from the coastline of Bushehr provenance in the Persian Gulf and their biosurfactant producing bacteria were isolated. Biosurfactant producing bacteria were isolated by using an enrichment method in Bushnell-Hass medium with diesel oil as the sole carbon source. Five screening tests were used for selection of Biosurfactant producing bacteria: hemolysis in blood agar, oil spreading, drop collapse, emulsification activity and Bacterial Adhesion to Hydrocarbon test (BATH). These bacteria were identified using biochemical and molecular methods. Eighty different colonies were isolated from the collected samples. The most biosurfactant producing isolates related to petrochemical plants of Khark Island. Fourteen biosurfactant producing bacteria were selected between these isolates and 7 isolates were screened as these were predominant producers that belong to Shewanella alga, Shewanella upenei, Vibrio furnissii, Gallaecimonas pentaromativorans, Brevibacterium epidermidis, Psychrobacter namhaensis and Pseudomonas fluorescens. The largest clear zone diameters in oil spreading were observed for G. pentaromativorans strain O15. Also, this strain has the best emulsification activity and reduction of surface tension, suggesting it is the best of thee isolated strains. The results of this study confirmed that there is high diversity of biosurfactant producing bacteria in marine ecosystem of Iran and by application of these bacteria in petrochemical waste water environmental problems can be assisted.

  15. Isolation and characterization of cellulolytic bacteria from the Stain house Lake, Antarctica.

    PubMed

    Melo, Itamar S; Zucchi, Tiago D; Silva, Rafael E; Vilela, Elke S D; Sáber, Mirian Lobo; Rosa, Luiz H; Pellizari, Vivian H

    2014-07-01

    The main aim was to evaluate the occurrence of cellulolytic bacteria from the Stain house Lake, located at Admiralty Bay, Antarctica. Thick cotton string served as a cellulose bait for the isolation of bacteria. A total of 52 bacterial isolates were recovered and tested for their cellulase activity, and two of them, isolates CMAA 1184 and CMAA 1185, showed significant cellulolytic activity on carboxymethylcellulose agar plates. Phylogenetic analysis placed the isolates into the Bacillus 16S ribosomal RNA gene subclade. Both isolates produced a cold-active cellulase which may play a crucial role in this extreme environment.

  16. [Marine bacteria producing antibacterial compounds isolated from inter-tidal invertebrates].

    PubMed

    León, Jorge; Liza, Libia; Soto, Isela; Torres, Magali; Orosco, Andrés

    2010-06-01

    Prospective sampling activities of intertidal invertebrates in the Ancon Bay (Lima, Peru) were done in order to select marine bacteria producing antimicrobial substances. The study included the isolation of bacteria in marine agar, in vitro antimicrobial susceptibility testing and electronic microscopic observations. We report the isolation, phenotypical characterization and antimicrobial properties of 10 strains of marine bacteria including the genus Vibrio, Pseudomonas, and Flavobacterium, and the order Actinomycetae that inhibit human pathogens. The results indicate that the marine invertebrates would be sources of bacteria producing antibiotic substances.

  17. The role of denitrification on arsenite oxidation and arsenic mobility in an anoxic sediment column model with activated alumina.

    PubMed

    Sun, Wenjie; Sierra-Alvarez, Reyes; Field, Jim A

    2010-12-01

    Arsenite (As(III)) is the predominant arsenic (As) species in reducing environments. As(III) is less strongly adsorbed than As(V) at circumneutral pH conditions by common non-iron metal oxides in sediments such as those of aluminum. Therefore, oxidation of As(III) to As(V) could contribute to an improved immobilization of As and thus help mitigate As contamination in groundwater. Microbial oxidation of As(III) is known to readily under aerobic conditions, however, the dissolved oxygen (O₂) concentration in groundwater may be limited due to the poor solubility of O₂ and its high chemical reactivity with reduced compounds. Nitrate (NO₃⁻), can be considered as an alternative electron acceptor, which can support oxidation of As(III) to As(V) by denitrifying bacteria. In this study, two up-flow sediment columns packed with activated alumina (AA) were utilized to demonstrate the role of denitrification on the oxidation of As(III) to As(V) and its contribution to improved As adsorption onto AA. One column was supplied with NO₃⁻(C1) and its performance was compared with a control column lacking NO₃⁻(C2). During most of the operation when the pH was in the circumneutral range (days 50-250), the release of arsenic was greater from C2 compared to C1. The effluent As concentrations started increasing on days 60 and 100 in C2 and C1, respectively. Complete breakthrough started on day 200 in C2; whereas in C1, complete breakthrough was never achieved. The effluent and solid phase As speciation was dominated by As(V) in C1, indicating the occurrence of As(III) oxidation due to NO₃⁻; whereas in C2, only As(III) was dominant. This study illustrates a bioremediation or natural attenuation process based on anoxic microbial NO₃⁻-dependent oxidation of As(III) to more readily adsorbed As(V) as a means to enhance the immobilization of As on alumina oxide particles in subsurface environments.

  18. Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates.

    PubMed

    Mendes, Rodrigo; Pizzirani-Kleiner, Aline A; Araujo, Welington L; Raaijmakers, Jos M

    2007-11-01

    Bacteria were isolated from the rhizosphere and from inside the roots and stems of sugarcane plants grown in the field in Brazil. Endophytic bacteria were found in both the roots and the stems of sugarcane plants, with a significantly higher density in the roots. Many of the cultivated endophytic bacteria were shown to produce the plant growth hormone indoleacetic acid, and this trait was more frequently found among bacteria from the stem. 16S rRNA gene sequence analysis revealed that the selected isolates of the endophytic bacterial community of sugarcane belong to the genera of Burkholderia, Pantoea, Pseudomonas, and Microbacterium. Bacterial isolates belonging to the genus Burkholderia were the most predominant among the endophytic bacteria. Many of the Burkholderia isolates produced the antifungal metabolite pyrrolnitrin, and all were able to grow at 37 degrees C. Phylogenetic analyses of the 16S rRNA gene and recA gene sequences indicated that the endophytic Burkholderia isolates from sugarcane are closely related to clinical isolates of the Burkholderia cepacia complex and clustered with B. cenocepacia (gv. III) isolates from cystic fibrosis patients. These results suggest that isolates of the B. cepacia complex are an integral part of the endophytic bacterial community of sugarcane in Brazil and reinforce the hypothesis that plant-associated environments may act as a niche for putative opportunistic human pathogenic bacteria.

  19. Isolation, morphological identification and in vitro antibacterial activity of endophytic bacteria isolated from Azadirachta indica (neem) leaves.

    PubMed

    Singh, Ankit Kumar; Sharma, Rajesh Kumar; Sharma, Varsha; Singh, Tanmay; Kumar, Rajesh; Kumari, Dimple

    2017-05-01

    The objective of this study was to isolate endophytic bacteria from Azadirachta indica (neem) leaves, their identification and investigate their antibacterial activity against three Gram-positive bacteria, Staphylococcus aureus, Streptococcus pyogenes and Bacillus cereus and Gram-negative bacteria Escherichia coli, Salmonella Typhimurium and Klebsiella pneumoniae. Fresh leaves of A. indica (neem) was procured from the Department of Botany, JNKVV, Jabalpur. Five samples were taken, and each sample was divided into five subsamples and separated for further isolation of endophytic bacteria. For sterilization leaves were treated with double distilled water, 0.1% sodium hypochlorite, 0.01% bavistin, 0.05% and 70% ethanol. Sterilized leaves of the plants were embedded in Kings B (KB) petri plates and incubated at 37°C for 24 h. Characterization of the bacteria was done according to its morphology and by Gram-staining. After that, a single colony was transferred into brain heart infusion (BHI) broth and incubated at 37°C for 24 h. The antibacterial effect was studied by the disk diffusion method with known antibiotic ciprofloxacin (Ci) as standard. A total of 25 bacterial isolates from A. indica (neem) were obtained and identified morphologically. Most of the samples on KB media depicted irregular shape, flat elevation, undulated, rough, opaque, and white in color. Most of the samples on blood agar showed irregular, raise elevation, undulated, smooth, opaque and all the isolates were nonhemolytic and nonchromogenic. The growth of endophytic bacteria in BHI broth were all isolates showed turbidity. The microscopic examination revealed that maximum isolates were Gram-positive and rod shaped. Good antibacterial activity was observed against S. aureus, Streptococcus pyogenes, E. coli, Salmonella Typhimurium, and K. pneumoniae. Endophytic bacteria are present in leaves of A. indica (neem) and it possesses antibacterial activity against few Gram-positive and Gram

  20. Isolation, morphological identification and in vitro antibacterial activity of endophytic bacteria isolated from Azadirachta indica (neem) leaves

    PubMed Central

    Singh, Ankit Kumar; Sharma, Rajesh Kumar; Sharma, Varsha; Singh, Tanmay; Kumar, Rajesh; Kumari, Dimple

    2017-01-01

    Aim: The objective of this study was to isolate endophytic bacteria from Azadirachta indica (neem) leaves, their identification and investigate their antibacterial activity against three Gram-positive bacteria, Staphylococcus aureus, Streptococcus pyogenes and Bacillus cereus and Gram-negative bacteria Escherichia coli, Salmonella Typhimurium and Klebsiella pneumoniae. Materials and Methods: Fresh leaves of A. indica (neem) was procured from the Department of Botany, JNKVV, Jabalpur. Five samples were taken, and each sample was divided into five subsamples and separated for further isolation of endophytic bacteria. For sterilization leaves were treated with double distilled water, 0.1% sodium hypochlorite, 0.01% bavistin, 0.05% and 70% ethanol. Sterilized leaves of the plants were embedded in Kings B (KB) petri plates and incubated at 37°C for 24 h. Characterization of the bacteria was done according to its morphology and by Gram-staining. After that, a single colony was transferred into brain heart infusion (BHI) broth and incubated at 37°C for 24 h. The antibacterial effect was studied by the disk diffusion method with known antibiotic ciprofloxacin (Ci) as standard. Results: A total of 25 bacterial isolates from A. indica (neem) were obtained and identified morphologically. Most of the samples on KB media depicted irregular shape, flat elevation, undulated, rough, opaque, and white in color. Most of the samples on blood agar showed irregular, raise elevation, undulated, smooth, opaque and all the isolates were nonhemolytic and nonchromogenic. The growth of endophytic bacteria in BHI broth were all isolates showed turbidity. The microscopic examination revealed that maximum isolates were Gram-positive and rod shaped. Good antibacterial activity was observed against S. aureus, Streptococcus pyogenes, E. coli, Salmonella Typhimurium, and K. pneumoniae. Conclusions: Endophytic bacteria are present in leaves of A. indica (neem) and it possesses antibacterial

  1. Isolation and preliminary characterization of aerobic heterotrophic bacteria isolated from sub-glacial Antarctic water samples

    NASA Astrophysics Data System (ADS)

    Palma-Alvarez, R.; Lanoil, B. D.

    2002-05-01

    Recently, evidence has been accumulating supporting the presence of biogeochemically active microbial communities in cold, dark, and isolated subglacial environments. These environments are important sites of rock weathering, provide insight into global biogeochemistry during glacial periods, and are potential analogues for ancient Snowball Earth events and the ice-covered oceans of the Jovian moon, Europa. However, the extent of microbial influence on subglacial geochemistry is unclear. As part of an ongoing project to address the extent of that influence, we isolated aerobic heterotrophic bacteria from sediment-laden water from beneath Ice Stream C, a fast moving region of the Western Antarctic Ice Sheet (WAIS). Plates of a standard environmental media (R2A) were prepared at three dilutions (1x, 0.1x, 0.01x) and inoculated in duplicate in a HEPA-filtered environment. One replicate was incubated at 4oC, the other at room temperature in the dark. All plates showed abundant growth, although colony size was positively correlated with media concentration. One-hundred eighty-one colonies total were picked, grown in liquid R2A (1x concentration) at the same initial temperature, and characterized for Gram character, cell shape, cell size, and production of a diffusible yellow pigment with similar chemical characteristics to the siderophore, pyoverdine. Based on these characters, a moderate level of diversity was observed in these isolates. A few types dominated the samples, with several others found only rarely. Further characterization of these isolates is ongoing, and results of these studies and their possible implications for sub-glacial biogeochemistry are discussed.

  2. Lipase Activity among Bacteria Isolated from Amazonian Soils

    PubMed Central

    Willerding, André Luis; de Oliveira, Luiz Antonio; Moreira, Francisco Wesen; Germano, Mariana Gomes; Chagas, Aloísio Freitas

    2011-01-01

    The objective of this study was to select lipase-producing bacteria collected from different counties of the Amazon region. Of the 440 bacteria strains, 181 were selected for the lipase assay in qualitative tests at Petri dishes, being 75 (41%) lipase positive. The enzymatic index was determined during fifteen days at different temperatures (30°, 35°, 40°, and 45°C). The highest lipase activity was observed within 72 hours at 30°C. Twelve bacteria strains presented an index equal to or greater than the standard used like reference, demonstrating the potential of microbial resource. After the bioassay in Petri dishes, the selected bacteria strains were analyzed in quantitative tests on p-nitrophenyl palmitate (p-NPP). A group of the strains was selected for other phases of study with the use in oleaginous substrates of the Amazonian flora, aiming for the application in processes like oil biotransformation. PMID:22007294

  3. Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Bacteria Isolated from Light Oil Polluted Soils

    NASA Astrophysics Data System (ADS)

    Ohnuma, T.; Suto, K.; Inoue, C.

    2007-03-01

    Polycyclic aromatic hydrocarbons (PAHs) have polluted soil and groundwater widely and for long term because of their low solubility at normal temperature. Several microorganisms, such as Pseudomonas sp., Sphigomonas sp., a white-rot fungus and so on, being able to decompose PAHs, have been isolated and researched. This study reported to investigate biodegradation of low molecule PAH by isolated bacteria from light oil polluted soil. 12 isolates were obtained from a light oil polluted soil using naphthalene, fluorene and anthracene as sole carbon source, of which 4 isolates grew with naphthalene, 4 isolates did with fluorene and 4 isolates did with anthracene. Among them 3 isolates showed the ability to degrade phenanthrene additionally. These phenanthrene degradation and growth rates were almost same as that of S. yanoikuyae (DSM6900), which is the typical bacteria of PAHs degrader. Therefore, the isolate seemed to have an expectation for PAHs degradation.

  4. Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated From Surgical Site Infection of Hospitalized Patients

    PubMed Central

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Beheshtirouy, Samad; Asgharzadeh, Mohammad; Pirzadeh, Tahereh; Asghari, Babak; Alizadeh, Naser; Toloue Ostadgavahi, Ali; Sorayaei Somesaraei, Vida; Memar, Mohammad Yousef

    2015-01-01

    Background: Surgical Site Infections (SSIs) are infections of incision or deep tissue at operation sites. These infections prolong hospitalization, delay wound healing, and increase the overall cost and morbidity. Objectives: This study aimed to investigate anaerobic and aerobic bacteria prevalence in surgical site infections and determinate antibiotic susceptibility pattern in these isolates. Materials and Methods: One hundred SSIs specimens were obtained by needle aspiration from purulent material in depth of infected site. These specimens were cultured and incubated in both aerobic and anaerobic condition. For detection of antibiotic susceptibility pattern in aerobic and anaerobic bacteria, we used disk diffusion, agar dilution, and E-test methods. Results: A total of 194 bacterial strains were isolated from 100 samples of surgical sites. Predominant aerobic and facultative anaerobic bacteria isolated from these specimens were the members of Enterobacteriaceae family (66, 34.03%) followed by Pseudomonas aeruginosa (26, 13.4%), Staphylococcus aureus (24, 12.37%), Acinetobacter spp. (18, 9.28%), Enterococcus spp. (16, 8.24%), coagulase negative Staphylococcus spp. (14, 7.22%) and nonhemolytic streptococci (2, 1.03%). Bacteroides fragilis (26, 13.4%), and Clostridium perfringens (2, 1.03%) were isolated as anaerobic bacteria. The most resistant bacteria among anaerobic isolates were B. fragilis. All Gram-positive isolates were susceptible to vancomycin and linezolid while most of Enterobacteriaceae showed sensitivity to imipenem. Conclusions: Most SSIs specimens were polymicrobial and predominant anaerobic isolate was B. fragilis. Isolated aerobic and anaerobic strains showed high level of resistance to antibiotics. PMID:26421133

  5. Enrichment and isolation of crude oil degrading bacteria from some mussels collected from the Persian Gulf.

    PubMed

    Bayat, Zeynab; Hassanshahian, Mehdi; Hesni, Majid Askari

    2015-12-15

    To date, little is known about existing relationships between mussels and bacteria in hydrocarbon-contaminated marine environments. The aim of this study is to find crude oil degrading bacteria in some mussels at the Persian Gulf. Twenty eight crude oil degrading bacteria were isolated from three mussels species collected from oil contaminated area at Persian Gulf. According to high growth and degradation of crude oil four strains were selected between 28 isolated strains for more study. Determination the nucleotide sequence of the gene encoding for 16S rRNA show that these isolated strains belong to: Shewanella algae isolate BHA1, Micrococcus luteus isolate BHA7, Pseudoalteromonas sp. isolate BHA8 and Shewanella haliotis isolate BHA35. The residual crude oil in culture medium was analysis by Gas Chromatography (GC). The results confirmed that these strains can degrade: 47.24%, 66.08%, 27.13% and 69.17% of crude oil respectively. These strains had high emulsification activity and biosurfactant production. Also, the effects of some factors on crude oil degradation by isolated strains were studied. The results show that the optimum concentration of crude oil was 2.5% and the best degradation take place at 12% of salinity. This research is the first reports on characterization of crude oil degrading bacteria from mussels at Persian Gulf and by using of these bacteria in the field the effect of oil pollution can be reduce on this marine environment.

  6. [Purple sulfur bacteria isolated from reservoirs of the Yavoriv sulfur deposit].

    PubMed

    Kim, L Ia; Hudz', S P

    2007-01-01

    Three pure cultures of purple sulfur bacteria were isolated from reservoirs of the Yavoriv sulfur deposit. The studying of their morphology, cytology and physiology has confirmed the belonging of these bacteria to Chromatiaceae family and has allowed identifying them as Thiocapsa sp., Lamprocystis sp. and Chromatium sp.

  7. Genome Sequences of Three Spore-Forming Bacteria Isolated from the Feces of Organically Raised Chickens

    PubMed Central

    Kennedy, Victoria; Van Laar, Tricia A.; Aleru, Omoshola; Thomas, Michael; Ganci, Michelle

    2016-01-01

    Antibiotic feed supplements have been implicated in the rise of multidrug-resistant bacteria. An alternative to antibiotics is probiotics. Here, we report the genome sequences of two Bacillus and one Solibacillus species, all spore-forming, Gram-positive bacteria, isolated from the feces organically raised chicken feces, with potential to serve as probiotics. PMID:27587809

  8. Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood

    Treesearch

    Carol A. Clausen

    2000-01-01

    Bioremediation of chromated copper arsenate-treated waste wood with one or more metal-tolerant bacteria is a potential method of naturally releasing metals from treated wood fibre. Sampling eight environments with elevated levels of copper, chromium, and arsenic resulted in the isolation of 28 bacteria with the capability of releasing one or more of the components from...

  9. Clinical investigation of isolated bacteria from urinary tracts of hospitalized patients and their susceptibilities to antibiotics.

    PubMed

    Shigemura, Katsumi; Arakawa, Soichi; Tanaka, Kazushi; Fujisawa, Masato

    2009-02-01

    Complicated urinary tract infections (UTIs) are often difficult to treat, partly because of the existence of isolated antibiotic-resistant strains. Even though the definition of UTI is determined by the quantity of cultured bacteria, it has been unclear if the quantity of cultured UTI bacteria affects their susceptibility to antimicrobial agents. Also, the gram stain is generally performed to assume the causative bacteria and their quantity before culture results can be obtained; therefore, we could start to use effective antibiotics if the relationship between bacterial quantity and resistance to antimicrobial agents were clear. We studied patients diagnosed as having complicated UTIs at the Urological Department in Kobe University Hospital between June 2002 and March 2003 and analyzed the relationships between the quantity of cultured bacteria and their antimicrobial MICs for antibiotics. The most commonly isolated bacteria were Serratia marcescens, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Staphylococcus epidermidis, Stenotrophomonas maltophilia, and methicillin-resistant Staphylococcus aureus. There was no significant correlation between the quantity of cultured bacteria and antimicrobial MICs in all the bacteria and antibiotics that we tested, suggesting that resistant phenotype, but not inoculum of the organism, did determine resistance to antibiotics. In conclusion, our investigation suggested the total number of isolated bacteria in urine culture did not determine the MICs and that inoculum of the bacteria might be important for this determination.

  10. Molecular analysis of endophytic bacteria from the genus Bacillus isolated from tropical maize (Zea mays L.).

    PubMed

    Figueiredo, José Edson Fontes; Gomes, Eliane Aparecida; Guimarães, Claudia Teixeira; de Paula Lana, Ubiraci Gomes; Teixeira, Marta Aparecida; Lima, Guilherme Vitor Corrêa; Bressan, Wellington

    2009-07-01

    Endophytic bacteria play an important role in agriculture by improving plant performance and adaptation against biotic and abiotic stresses. In the present study molecular methods were used for identifying Bacillus endophytic bacteria isolated from Brazilian sweet corn. SDS-PAGE of whole-cell protein extract of forty-two isolates revealed a high number of scrutinable bands. Twenty-four isolates were identified in nine different groups of duplicated bacteria and eighteen were identified as unique. Some high-accumulated polipeptides with variable length were observed in almost isolates. Partial sequencing of 16S ribosomal gene revealed that all isolates are Bacillus sp. and among thirteen isolates with similar protein profiles, two were different strains. Among the forty-two isolates identified by rDNA sequencing, Bacillus subitilis and B. pumilus were the most frequenty species (15 and 12 isolates, respectively) followed by B. licheniformes (7 isolates), B. cereus (5 isolates) and B. amiloliquefascens (3 isolates). According to present results, SDS-PAGE technique could be used as a fast and cheap first tool for identifying inter-specific variation in maize endophytic bacterial collections while rDNA sequencing could be applied for analyzing intra-specific variation among isolates with similar protein profile as well as for taxonomic studies.

  11. Molecular analysis of endophytic bacteria from the genus Bacillus isolated from tropical maize (Zea mays L.)

    PubMed Central

    Figueiredo, José Edson Fontes; Gomes, Eliane Aparecida; Guimarães, Claudia Teixeira; de Paula Lana, Ubiraci Gomes; Teixeira, Marta Aparecida; Lima, Guilherme Vitor Corrêa; Bressan, Wellington

    2009-01-01

    Endophytic bacteria play an important role in agriculture by improving plant performance and adaptation against biotic and abiotic stresses. In the present study molecular methods were used for identifying Bacillus endophytic bacteria isolated from Brazilian sweet corn. SDS-PAGE of whole-cell protein extract of forty-two isolates revealed a high number of scrutinable bands. Twenty-four isolates were identified in nine different groups of duplicated bacteria and eighteen were identified as unique. Some high-accumulated polipeptides with variable length were observed in almost isolates. Partial sequencing of 16S ribosomal gene revealed that all isolates are Bacillus sp. and among thirteen isolates with similar protein profiles, two were different strains. Among the forty-two isolates identified by rDNA sequencing, Bacillus subitilis and B. pumilus were the most frequenty species (15 and 12 isolates, respectively) followed by B. licheniformes (7 isolates), B. cereus (5 isolates) and B. amiloliquefascens (3 isolates). According to present results, SDS-PAGE technique could be used as a fast and cheap first tool for identifying inter-specific variation in maize endophytic bacterial collections while rDNA sequencing could be applied for analyzing intra-specific variation among isolates with similar protein profile as well as for taxonomic studies. PMID:24031395

  12. More Easily Cultivated Than Identified: Classical Isolation With Molecular Identification of Vaginal Bacteria

    PubMed Central

    Srinivasan, Sujatha; Munch, Matthew M.; Sizova, Maria V.; Fiedler, Tina L.; Kohler, Christina M.; Hoffman, Noah G.; Liu, Congzhou; Agnew, Kathy J.; Marrazzo, Jeanne M.; Epstein, Slava S.; Fredricks, David N.

    2016-01-01

    Background. Women with bacterial vaginosis (BV) have complex communities of anaerobic bacteria. There are no cultivated isolates of several bacteria identified using molecular methods and associated with BV. It is unclear whether this is due to the inability to adequately propagate these bacteria or to correctly identify them in culture. Methods. Vaginal fluid from 15 women was plated on 6 different media using classical cultivation approaches. Individual isolates were identified by 16S ribosomal RNA (rRNA) gene sequencing and compared with validly described species. Bacterial community profiles in vaginal samples were determined using broad-range 16S rRNA gene polymerase chain reaction and pyrosequencing. Results. We isolated and identified 101 distinct bacterial strains spanning 6 phyla including (1) novel strains with <98% 16S rRNA sequence identity to validly described species, (2) closely related species within a genus, (3) bacteria previously isolated from body sites other than the vagina, and (4) known bacteria formerly isolated from the vagina. Pyrosequencing showed that novel strains Peptoniphilaceae DNF01163 and Prevotellaceae DNF00733 were prevalent in women with BV. Conclusions. We isolated a diverse set of novel and clinically significant anaerobes from the human vagina using conventional approaches with systematic molecular identification. Several previously “uncultivated” bacteria are amenable to conventional cultivation. PMID:27449870

  13. Potential of siderophore production by bacteria isolated from heavy metal: polluted and rhizosphere soils.

    PubMed

    Hussein, Khalid A; Joo, Jin Ho

    2014-06-01

    Recently, heavy metals have been shown to have a stimulating effect on siderophore biosynthesis in various bacteria. In addition, several studies have found that siderophore production is greater in bacteria isolated from soil near plant roots. The aim of this study was to compare the production of siderophores by bacterial strains isolated from heavy metal-contaminated and uncontaminated soils. Chrome azurol sulphonate was used to detect siderophore secretion by several bacterial strains isolated from heavy metal-contaminated and rhizosphere-uncontaminated soils with both a qualitative disc diffusion method and a quantitative ultraviolet spectrophotometric method. Siderophore production by rhizosphere bacteria was significantly greater than by bacteria isolated from contaminated soil. The Pearson's correlation test indicated a positive correlation between the amount of siderophore produced by bacteria isolated from the rhizosphere using the quantitative and qualitative detection methods and the amount of heavy metal in the soil. However, a significant negative correlation was observed between the amount of siderophore produced by bacteria isolated from heavy metal-contaminated soil and the amount of heavy metal (r value of -0.775, P < 0.001).

  14. Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses.

    PubMed

    Safari Sinegani, Ali Akbar; Younessi, Nayereh

    2017-09-01

    The main objective of this study was to determine the relationship between the antibiotic and heavy metal tolerance of culturable bacteria isolated from mining waste, pasture, and agricultural soils containing different levels of heavy metals. The populations of total culturable bacteria, and heavy metal- and antibiotic-tolerant bacteria in the soils were enumerated on nutrient agar, nutrient agar amended with metals, and Mueller-Hinton agar amended with antibiotics, respectively. The multiple antibiotic resistance index, and patterns of antibiotic resistance and heavy metal-antibiotic co-resistance were determined for 237 isolates. Among all the samples, those of the tailings of mines with higher levels of heavy metals had the lowest number of bacteria, but a relatively higher abundance of heavy metal- and antibiotic-resistant bacteria. A high degree of resistance was observed for ampicillin and amoxicillin in the isolates from all soils. The agricultural soil isolates had a high prevalence of resistance towards vancomycin, tetracycline, and streptomycin. Among all the tested antibiotics, gentamicin was the most potent. The most frequent pattern of multiple antibiotic resistance in the isolates from agricultural soils was amoxicillin, ampicillin, streptomycin, vancomycin, tetracycline, and doxycycline. The percentage of isolates with multiple antibiotic resistance was considerably higher in the agricultural soils than in the mining waste soils. A high rate of co-resistance towards Hg and antibiotics was observed among the gram-negative isolates, and towards Zn, Ni, Hg, and the beta-lactam antibiotics among the gram-positive isolates. The higher percentage of isolates with multiple antibiotic resistance in the agricultural soils that in the mining waste soils may be related to (1) the level of soil heavy metals, (2) the population and diversity of soil bacteria, (3) the application of manures, and (4) other factors affecting gene transfer between bacteria

  15. Isolation and identification of bacteria from paperboard food packaging

    PubMed Central

    Mashhadi Mohammadzadeh-Vazifeh, Mojtaba; Khajeh-Nasiri, Shamsolmoluk; Hashemi, Shabnam; Fakhari, Javad

    2015-01-01

    Background and Objectives: Paper and paperboard packaging play an important role in safety and quality of food products. Common bacteria of paper and paperboard food packaging could grow due to specific conditions included humidity, temperature and major nutrition to contaminate the food. The purpose of this research was to investigate numbers and the types of bacteria in the food packaging paperboard. Materials and Methods: The surface and the depth of the each paperboard sample were examined by the dimension of one cm2 and one gram. The paperboard samples were randomly collected from popular confectionaries and fast food restaurants in Tehran, Iran. Results: The results indicated the range of 0.2×103 to >1.0×105 cfu/1g bacterial contamination in paperboard food packaging. Also, most detected bacteria were from spore forming and family Bacillaceae. Conclusion: The bioburden paperboard used for food packaging showed high contamination rate more than standard acceptance level. PMID:26719786

  16. Identification and antibacterial resistance of bacteria isolated from poultry.

    PubMed

    El-Rami, Fadi E; Sleiman, Fawwak T; Abdelnoor, Alexander M

    2012-01-01

    Food-borne infections are among the prominent health hazards. Antibacterial agents (ABA) are usually administered to poultry in Lebanon as antibiotic growth promoters (AGP), which might lead to the dissemination of resistant bacterial strains. The aims of this study were to isolate potential food borne pathogens from poultry and investigate an association between AGP usage and antibacterial resistance (ABR). Isolates were obtained from the culture of cloacae swabs and identified. Escherichia coli was the predominant isolate. There was a significant association between the use of tetracycline and gentamicin as AGP and the number of E. coli isolates resistant to these ABA.

  17. Phylogenetically Diverse Aerobic Anoxygenic Phototrophic Bacteria Isolated from Epilithic Biofilms in Tama River, Japan

    PubMed Central

    Hirose, Setsuko; Matsuura, Katsumi; Haruta, Shin

    2016-01-01

    The diversity of aerobic anoxygenic phototrophic (AAP) bacteria in freshwater environments, particularly in rivers, has not been examined in as much detail as in ocean environments. In the present study, we investigated the phylogenetic and physiological diversities of AAP bacteria in biofilms that developed on submerged stones in a freshwater river using culture methods. The biofilms collected were homogenized and inoculated on solid media and incubated aerobically in the dark. Sixty-eight red-, pink-, yellow-, orange-, or brown-colored colonies were isolated, and, of these, 28 isolates contained the photosynthetic pigment, bacteriochlorophyll (BChl) a. Phylogenetic analyses based on 16S rRNA gene sequences showed that the isolates were classified into 14 groups in 8 operational taxonomic units (OTUs) and distributed in the orders Rhodospirillales, Rhodobacterales, and Sphingomonadales of Alphaproteobacteria and in Betaproteobacteria. Physiological analyses confirmed that none of the representative isolates from any of the groups grew under anaerobic phototrophic conditions. Seven isolates in 4 OTUs showed a 16S rRNA gene sequence identity of 98.0% or less with any established species, suggesting the presence of previously undescribed species of AAP bacteria. Six isolates in 2 other OTUs had the closest relatives, which have not been reported to be AAP bacteria. Physiological comparisons among the isolates revealed differences in preferences for nutrient concentrations, BChl contents, and light-harvesting proteins. These results suggest that diverse and previously unknown AAP bacteria inhabit river biofilms. PMID:27453124

  18. Genetic Diversity and Association Characters of Bacteria Isolated from Arbuscular Mycorrhizal Fungal Spore Walls.

    PubMed

    Selvakumar, Gopal; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sa, Tong-Min

    2016-01-01

    Association between arbuscular mycorrhizal fungi (AMF) and bacteria has long been studied. However, the factors influencing their association in the natural environment is still unknown. This study aimed to isolate bacteria associated with spore walls of AMF and identify their potential characters for association. Spores collected from coastal reclamation land were differentiated based on their morphology and identified by 18S rDNA sequencing as Funneliformis caledonium, Racocetra alborosea and Funneliformis mosseae. Bacteria associated with AMF spore walls were isolated after treating them with disinfection solution at different time intervals. After 0, 10 and 20 min of spore disinfection, 86, 24 and 10 spore associated bacteria (SAB) were isolated, respectively. BOX-PCR fingerprinting analysis showed that diverse bacterial communities were associated to AMF spores. Bacteria belonging to the same genera could associate with different AMF spores. Gram positive bacteria were more closely associated with AMF spores. Isolated SAB were characterized and tested for spore association characters such as chitinase, protease, cellulase enzymes and exopolysaccharide production (EPS). Among the 120 SAB, 113 SAB were able to show one or more characters for association and seven SAB did not show any association characters. The 16S rDNA sequence of SAB revealed that bacteria belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bactereiodes were associated with AMF spore walls.

  19. Genetic Diversity and Association Characters of Bacteria Isolated from Arbuscular Mycorrhizal Fungal Spore Walls

    PubMed Central

    Selvakumar, Gopal; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sa, Tong-Min

    2016-01-01

    Association between arbuscular mycorrhizal fungi (AMF) and bacteria has long been studied. However, the factors influencing their association in the natural environment is still unknown. This study aimed to isolate bacteria associated with spore walls of AMF and identify their potential characters for association. Spores collected from coastal reclamation land were differentiated based on their morphology and identified by 18S rDNA sequencing as Funneliformis caledonium, Racocetra alborosea and Funneliformis mosseae. Bacteria associated with AMF spore walls were isolated after treating them with disinfection solution at different time intervals. After 0, 10 and 20 min of spore disinfection, 86, 24 and 10 spore associated bacteria (SAB) were isolated, respectively. BOX-PCR fingerprinting analysis showed that diverse bacterial communities were associated to AMF spores. Bacteria belonging to the same genera could associate with different AMF spores. Gram positive bacteria were more closely associated with AMF spores. Isolated SAB were characterized and tested for spore association characters such as chitinase, protease, cellulase enzymes and exopolysaccharide production (EPS). Among the 120 SAB, 113 SAB were able to show one or more characters for association and seven SAB did not show any association characters. The 16S rDNA sequence of SAB revealed that bacteria belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bactereiodes were associated with AMF spore walls. PMID:27479250

  20. Bacteria isolated from parasitic nematodes--a potential novel vector of pathogens?

    PubMed

    Lacharme-Lora, Lizeth; Salisbury, Vyv; Humphrey, Tom J; Stafford, Kathryn; Perkins, Sarah E

    2009-12-21

    Bacterial pathogens are ubiquitous in soil and water - concurrently so are free-living helminths that feed on bacteria. These helminths fall into two categories; the non-parasitic and the parasitic. The former have been the focus of previous work, finding that bacterial pathogens inside helminths are conferred survival advantages over and above bacteria alone in the environment, and that accidental ingestion of non-parasitic helminths can cause systemic infection in vertebrate hosts. Here, we determine the potential for bacteria to be associated with parasitic helminths. After culturing helminths from fecal samples obtained from livestock the external bacteria were removed. Two-hundred parasitic helminths from three different species were homogenised and the bacteria that were internal to the helminths were isolated and cultured. Eleven different bacterial isolates were found; of which eight were indentified. The bacteria identified included known human and cattle pathogens. We concluded that bacteria of livestock can be isolated in parasitic helminths and that this suggests a mechanism by which bacteria, pathogenic or otherwise, can be transmitted between individuals. The potential for helminths to play a role as pathogen vectors poses a potential livestock and human health risk. Further work is required to assess the epidemiological impact of this finding.

  1. Production of halomethanes and isoprene in the culture of bacteria isolated from brackish water

    NASA Astrophysics Data System (ADS)

    Fujimori, T.; Taniai, G.; Kurihara, M.; Tamegai, H.; Hashimoto, S.

    2010-12-01

    Halomethanes produced naturally are important source of halogen in troposphere and stratosphere. In the ocean, macroalgae and phytoplankton have been considered to be the main producers of halomethanes. Recent investigations have shown that marine bacteria also produces halomethane such as iodomethane. However, knowledge of aquatic halomethane production, especially by bacteria, is insufficient. Here we survey bacteria, which produce volatile organic compounds (VOCs) including halomethanes, from brackish area (salinity: about 5‰) where high halomethane productions were observed. Bacteria was isolated and incubated in marine broth 2216, which is the media for marine bacteria. The VOCs such as halomethanes in the gas phase above cultured samples was determined using dynamic headspace (GESTEL DHS) - gas chromatograph (Agilent 6890N)- mass spectrometer (Agilent 5975C). The optical density at 600 nm (OD600) was also measured during the cultured period. From the result of the isolation and measurement of VOCs, some of the isolated bacteria produced halomethanes. For example, monohalomethanes (from 1 to about 600 nM) and isoprene (up to about 400 nM) were increased for several days in the culture (dibromomethane, chloroiodomethane, bromoiodomethane, and tribromomethane were not detected). Since halomethanes are abundant at the sampling point (under 1% of light intensity of the surface), bacteria is one of the possible candidates for halomethane producer there. Now, we are studying on the identification by 16S rRNA sequence analysis of bacteria collected from brackish water.

  2. [Characteristics of microbial community structure during isolation of electrical active bacteria].

    PubMed

    Wang, Min; Zhao, Yang- Guo; Lu, Shan-Shan

    2014-10-01

    To investigate the effect of selective culturing on microorganisms and functional role of electrical active bacteria in biofilm, some exoelectrogens were isolated from microbial fuel cell (MFC) anodic biofilm using Hungate roll-tube technique with iron oxide as indicator. At the same time, the dynamics of the microbial community structure was monitored during the pure culture isolation. The results show that maximum voltages of MFCs feeding with lactic acid, acetic acid and steroid wastewater are 0.57, 0.60 and 0.40 V respectively. The dominant bacteria isolated from seed sludge and anodic films feeding with acetate and lactate belong to phylum Proteobacteria; while steroid wastewater contains relative high diversity of bacteria, i. e. Proteobacteria, Firmicutes and Bacteroidetes. After enriching and culturing, two bacteria were consequently obtained, which shared the highest similarity with Enterobacter ludwigii and Citrobacter freundii respectively. When inoculated in MFC with lactic acid as the substrate, they produced maximum voltage of 0.10 and 0.17 V individually. This study shows that electrical active bacteria can be isolated from the MFC anodic biofilm using anaerobic gradient dilution culture techniques with iron oxide as indicator. Microbial community structure presents markedly shifting during the bacteria isolation owing to its selectivity.

  3. Multidrug-Resistance and Toxic Metal Tolerance of Medically Important Bacteria Isolated from an Aquaculture System

    PubMed Central

    Resende, Juliana Alves; Silva, Vânia L.; Fontes, Cláudia Oliveira; Souza-Filho, Job Alves; de Oliveira, Tamara Lopes Rocha; Coelho, Cíntia Marques; César, Dionéia Evangelista; Diniz, Cláudio Galuppo

    2012-01-01

    The use of antimicrobials and toxic metals should be considered carefully in aquaculture and surrounding environments. We aimed to evaluate medically relevant bacteria in an aquaculture system and their susceptibility to antimicrobials and toxic metals. Selective cultures for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC) were obtained from water samples collected in two different year seasons. The isolated bacteria were biochemically identified and antimicrobial and toxic metal susceptibility patterns were determined. Overall, 407 representative strains were recovered. In general, bacteria isolated from fish ponds showed higher multiple antibiotic resistance indices when compared to those isolated from a water-fed canal. Resistance to penicillin and azithromycin was observed more frequently in the GPC group, whereas resistance to ampicillin and ampicillin/sulbactam or gentamicin was observed more frequently in the ENT and NFR groups, respectively. All the isolated bacteria were tolerant to nickel, zinc, chromium and copper at high levels (≥1,024 μg mL−1), whereas tolerance to cadmium and mercury varied among the isolated bacteria (2–1,024 μg mL−1). Multidrug-resistant bacteria were more frequent and diverse in fish ponds than in the water-fed canal. A positive correlation was observed between antimicrobial resistance and metal tolerance. The data point out the need for water treatment associated with the aquaculture system. PMID:22972388

  4. [Influence of predominant aerobic bacteria isolated from different healthy animals on daidzein biotransforming capacity by co-culture with different daidzein biotransforming bacteria].

    PubMed

    Luo, Jinglong; Wang, Xiuling; Fan, Jinru; Wang, Shiying; Li, Jia

    2011-08-01

    To investigate the influence of isolated predominant aerobic bacteria on daidzein biotransformation capacity by co-culture with daidzein biotransforming bacteria. Predominant aerobic bacteria were isolated from diluted feces solutions of different healthy animals, including ICR mice, Luhua chicken, Landrace pigs and Rex rabbits. Daidzein biotransforming bacteria were anaerobically co-cultured with the isolated predominant aerobic bacteria and the cultural broth was extracted and detected by high performance liquid chromatography (HPLC). Twenty two predominant aerobic bacteria were isolated from the four different healthy animals mentioned above. Based on the analyses of 16S rRNA gene sequences, morphology study and relative biophysico-biochemical characteristics, all 22 isolates belong to the 5 genera, i. e. Escherichia (10) , Proteus (5) , Enterococcus (4), Bacillus (2) and Pseudomonas (1). Co-culture between predominant aerobic bacteria and daidzein biotransforming bacteria was carried out under anaerobic conditions. The results showed that the biotransformation capacity was totally lost when different daidzein biotransforming bacterium was co-cultured with either Bacillus cereus ( R1 ) or Pseudomonas aerginosa (R5) and continuously inoculated for 2 or 3 passages. However, no obvious influence was observed when daidzein biotransforming bacteria were co-cultured with all the other isolated predominant aerobic bacteria except R1 and R5. In addition, when strain R1 and R5 was co-cultured with the intestinal microflora of the ICR mice anaerobically and continuously inoculated for 5 passages, about 90% of the co-cultures totally lost the activity to convert daidzein to equol effectively. Different predominant aerobic bacteria showed different influence on daidzein biotransformation capacity after being co-cultured with different daidzein biotransforming bacteria. Among all the isolated predominant aerobic bacteria used for co-culture, both Bacillus cereus ( R1) and

  5. Isolation and Physiology of Bacteria from Contaminated Subsurface Sediments▿ †

    PubMed Central

    Bollmann, Annette; Palumbo, Anthony V.; Lewis, Kim; Epstein, Slava S.

    2010-01-01

    The majority of environmental microorganisms cannot be grown by traditional techniques. Here we employed, and contrasted with conventional plating, an alternative approach based on cultivation of microorganisms inside diffusion chambers incubated within natural samples, followed by subculturing in petri dishes. Using this approach, we isolated microorganisms from subsurface sediments from the Field Research Center (FRC) in Oak Ridge, TN. The sediments were acidic and highly contaminated with uranium, heavy metals, nitrate, and organic pollutants. Phylogenetic analysis of 16S rRNA gene sequences revealed clear differences between diversity of isolates obtained by the diffusion chamber approach and those obtained by conventional plating. The latter approach led to isolation of members of the Alpha- and Gammaproteobacteria, Actinobacteria, and Verrucomicrobia. Isolates obtained via the diffusion chamber approach represented the Alpha-, Beta-, and Gammaproteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. Notably, one-third of the isolates obtained by the new method were closely related to species known from previous molecular surveys conducted in the FRC area. Since the initial growth of microorganisms inside diffusion chambers occurred in the presence of the environmental stress factors, we expected the isolates we obtained to be tolerant of these factors. We investigated the physiologies of selected isolates and discovered that the majority were indeed capable of growth under low pH and/or high concentrations of heavy metals and nitrate. This indicated that in contrast to conventional isolation, the diffusion chamber-based approach leads to isolation of species that are novel, exhibit tolerance to extant environmental conditions, and match some of the species previously discovered by molecular methods. PMID:20870785

  6. Enumeration and isolation of cellulolytic and hemicellulolytic bacteria from human feces.

    PubMed

    Wedekind, K J; Mansfield, H R; Montgomery, L

    1988-06-01

    The fibrolytic microbiota of the human large intestine was examined to determine the numbers and types of cellulolytic and hemicellulolytic bacteria present. Fecal samples from each of five individuals contained bacteria capable of degrading the hydrated cellulose in spinach and in wheat straw pretreated with alkaline hydrogen peroxide (AHP-WS), whereas degradation of the relatively crystalline cellulose in Whatman no. 1 filter paper (PMC) was detected for only one of the five samples. The mean concentration of cellulolytic bacteria, estimated with AHP-WS as a substrate, was 1.2 X 10(8)/ml of feces. Pure cultures of bacteria isolated on AHP-WS were able to degrade PMC, indicating that interactions with other microbes were primarily responsible for previous low success rates in detecting fecal cellulolytic bacteria with PMC as a substrate. The cellulolytic bacteria included Ruminococcus spp., Clostridium sp., and two unidentified strains. The mean concentration of hemicellulolytic bacteria, estimated with larchwood xylan as a substrate, was 1.8 X 10(10)/ml of feces. The hemicellulose-degrading bacteria included Butyrivibrio sp., Clostridium sp., Bacteroides sp., and two unidentified strains, as well as four of the five cellulolytic strains. This work demonstrates that many humans harbor intestinal cellulolytic bacteria and that a hydrated cellulose source such as AHP-WS is necessary for their consistent detection and isolation.

  7. Isolation, Characterisation and Antagonistic Activity of Bacteria Symbionts Hardcoral Pavona sp. Isolated from Panjang Island, Jepara Against Infectious Multi-drug Resistant (MDR) Bacteria

    NASA Astrophysics Data System (ADS)

    Ayuningrum, D.; Kristiana, R.; Asagabaldan, M. A.; Sabdono, A.; Radjasa, O. K.; Nuryadi, H.; Trianto, A.

    2017-02-01

    Pavona sp. is highly spread over Indonesian waters including Panjang Island. Several studies showed that bacteria symbionts hardcoral were the big source of antibiotic product, but there was limited research of the bacteria symbionts with hardcoral Pavona sp. In this research bacteria symbionts from hardcoral Pavona sp. had been collected from Panjang Island, Jepara. Marine bacteria symbionts were isolated by serial dillution method, while antibacterial activity was performed by using overlay and agar block method. The total of 2 from 5 isolates were active to MDR bacteria such as Enterobacter aerogenes and Acinetobacter baumanii, the code were PHC 44/04 and PHC 44/05. Then both of them were identified by morphological and molecular DNA characterization using 16 S rRNA gene sequence. The result of 16 S rRNA identification shows PHC 44/04 has 99% similarities with Virgibacillus salarius strain sa-Vb 1, while PHC 44/05 shows 99% similarities with Pseudoalteromonas flavipulchra strain NCIMB 2033.

  8. Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand.

    PubMed

    Stott, Matthew B; Crowe, Michelle A; Mountain, Bruce W; Smirnova, Angela V; Hou, Shaobin; Alam, Maqsudul; Dunfield, Peter F

    2008-08-01

    We examined bacterial diversity of three geothermal soils in the Taupo Volcanic Zone of New Zealand. Phylogenetic analysis of 16S rRNA genes recovered directly from soils indicated that the bacterial communities differed in composition and richness, and were dominated by previously uncultured species of the phyla Actinobacteria, Acidobacteria, Chloroflexi, Proteobacteria and candidate division OP10. Aerobic, thermophilic, organotrophic bacteria were isolated using cultivation protocols that involved extended incubation times, low-pH media and gellan as a replacement gelling agent to agar. Isolates represented previously uncultured species, genera, classes, and even a new phylum of bacteria. They included members of the commonly cultivated phyla Proteobacteria, Firmicutes, Thermus/Deinococcus, Actinobacteria and Bacteroidetes, as well as more-difficult-to-cultivate groups. Isolates possessing < 85% 16S rRNA gene sequence identity to any cultivated species were obtained from the phyla Acidobacteria, Chloroflexi and the previously uncultured candidate division OP10. Several isolates were prevalent in 16S rRNA gene clone libraries constructed directly from the soils. A key factor facilitating isolation was the use of gellan-solidified plates, where the gellan itself served as an energy source for certain bacteria. The results indicate that geothermal soils are a rich potential source of novel bacteria, and that relatively simple cultivation techniques are practical for isolating bacteria from these habitats.

  9. Isolation characterization and growth of locally isolated hydrocarbonoclastic marine bacteria (eastern Algerian coast).

    PubMed

    Feknous, N; Branes, Z; Rouabhia, K; Batisson, I; Amblard, C

    2017-01-01

    The Algerian coastline is being exposed to several types of pollution, including that of hydrocarbons. This environment rich in oil could be the source of proliferation of hydrocarbonoclastic bacteria. The objective of the study is to isolate and identify indigenous bacterial strains from marine waters of two ports in the eastern Algerian coast and to test their growth in the presence of hydrocarbons with and without biostimulation throughout the intake of nitrogen and phosphate. Results recorded the highest level of both total hydrocarbons and phosphates in the port of Annaba, followed by El-Kala station and then the control station, while that of total nitrogen was vice versa. Fifty-three bacterial strains were identified from which four were selected to perform the growth tests. Results showed that the growth and the biodegradation differ from one species to another. Thus, the strains tested (Halomonas venusta NY-8, Exiguobacterium aurantiacum NB11-3A, Vibrio alginolyticus Pb-WC11099, and Dietzia sp. CNJ898 PL04) seem very active, in which better growth was obtained with the last two strains during nitrogen and phosphate supplementation. Such strains are suggested to participate a lot in the biodegradation of oil at polluted sites.

  10. The aflatoxin B1 isolating potential of two lactic acid bacteria

    PubMed Central

    Hamidi, Adel; Mirnejad, Reza; Yahaghi, Emad; Behnod, Vahid; Mirhosseini, Ali; Amani, Sajad; Sattari, Sara; Darian, Ebrahim Khodaverdi

    2013-01-01

    Objective To determine lactic acid bacteria's capability to enhance the process of binding and isolating aflatoxin B1 and to utilize such lactic acid bacteria as a food supplement or probiotic products for preventing absorption of aflatoxin B1 in human and animal bodies. Methods In the present research, the bacteria were isolated from five different sources. For surveying the capability of the bacteria in isolating aflatoxin B1, ELISA method was implemented, and for identifying the resultant strains through 16S rRNA sequencing method, universal primers were applied. Results Among the strains which were isolated, two strains of Lactobacillus pentosus and Lactobacillus beveris exhibited the capability of absorbing and isolating aflatoxin B1 by respectively absorbing and discharging 17.4% and 34.7% of the aforementioned toxin existing in the experiment solution. Conclusions Strains of Lactobacillus pentosus and Lactobacillus beveris were isolated from human feces and local milk samples, respectively. And both strains has the ability to isolate or bind with aflatoxin B1. PMID:23998015

  11. Application of a single-colony coculture technique to the isolation of hitherto unculturable gut bacteria.

    PubMed

    Tanaka, Yoshiki; Benno, Yoshimi

    2015-02-01

    Molecular studies have led to postulation of a relationship between gut microbiota and certain diseases. However, because studies of hitherto uncultured species in vivo are essential for characterizing the biology and pathogenic properties of gut bacteria, techniques for culturing and isolating such bacteria must be developed. Here, a technique is described that partially overcomes the obstacles that prevent detection of interbacterial communication in vitro and are thus responsible for the failure to culture certain bacterial species. For this purpose, a ring with a membrane filter at the bottom was designed and a relatively simple nutrient medium was used instead of conventional media. Gut bacteria were cocultivated in soft agar separated by the membrane filter to simulate interbacterial communication in vitro. Use of this soft agar coculture technique led to the successful isolation of hitherto uncultured bacteria and the demonstration of multistage interbacterial communication among gut bacteria in vitro. Cultivation and isolation of single colonies of bacteria that require other bacteria for growth will enhance efforts to better understand the physiological and pathogenic roles of gut microbiota.

  12. Frequency and antimicrobial resistance of bacteria isolated from oral and topical medicaments from Hilla, Iraq.

    PubMed

    Al-Charrakh, Alaa H

    2012-06-15

    The presence of microorganisms in pharmaceuticals is undesirable because they may cause spoilage of the product and may present an infection hazard to the consumers or patients. A total of 102 samples of oral and topical non-sterile pharmaceutical products were collected at random from different drug houses and pharmacies in Iraq, to investigate the microbial contamination of these products. Bacterial isolates recovered from these medicaments were subjected to susceptibility testing against various antibiotics by disk diffusion method according to Clinical and Laboratory Standards (CLSI) guidelines. The results revealed that the occurrence of gram-positive bacteria was in oral and topical medicaments while gram-negative bacteria were only detected in topical medicaments. More than 58% of Bacillus isolates were resistant to lincomycin and Bacillus mycoides isolates were resistant to beta-lactam antibiotics and trimethoprim-sulfamethoxazole. Staphylococcus spp. showed a relatively high resistance to ampicillin, amoxicillin, penicillin, tetracycline, and trimethoprim-sulfamethoxazole. S. epidermidis had the highest number of multi-resistant isolates. Furthermore, 87.5% of isolated gram-negative rods showed high resistance to beta-lactam antibiotics and 75% of them were highly resistant to erythromycin. One isolate of Pseudomonas aeruginosa was the most resistant among all gram-negative rod isolates. The high rate of resistance to antimicrobial agents of bacterial isolates recovered from oral and topical medicaments in this study may indicate a widespread antibiotic resistance among bacteria isolated from different sources, including those of anthropological and environmental origin.

  13. Isolation and characterization of monochloroacetic acid-degrading bacteria.

    PubMed

    Horisaki, Tadafumi; Yoshida, Eiko; Sumiya, Kaori; Takemura, Tetsuo; Yamane, Hisakazu; Nojiri, Hideaki

    2011-01-01

    Five Burkholderia strains (CL-1, CL-2, CL-3, CL-4, and CL-5) capable of degrading monochloroacetic acid (MCA) were isolated from activated sludge or soil samples gathered from several parts of Japan. All five isolates were able to grow on MCA as the sole source of carbon and energy, and argentometry and gas chromatography-mass spectroscopy analyses showed that these five strains consumed MCA completely and released chloride ions stoichiometrically within 25 h. The five isolates also grew on monobromoacetic acid, monoiodoacetic acid, and L-2-monochloropropionic acid as sole sources of carbon and energy. In addition, the five isolates could not grow with DCA but dehalogenate single chlorine from DCA. Because PCR analyses revealed that all five isolates have an identical group II dehalogenase gene fragment and no group I deh gene, only strain CL-1 was analyzed further. The partial amino acid sequence of the group II dehalogenase of strain CL-1, named DehCL1, showed 74.6% and 65.2% identities to corresponding regions of the two MCA dehalogenases, DehCI from Pseudomonas sp. strain CBS-3 and Hdl IVa from Burkholderia cepacia strain MBA4, respectively. The secondary-structure motifs of the haloacid dehalogenase (HAD) superfamily and the amino acid residues involved in substrate binding, catalysis, and hydrophobic pocket formation were conserved in the partial amino acid sequence of DehCL1.

  14. High isolation rates of multidrug-resistant bacteria from water and carpets of mosques

    PubMed Central

    Mohamed Ali, Mostafa Mohamed; Alemary, Fuoad; Alrtail, Amna; Rzeg, Moftah M.; Albakush, Abdulla M.; Ghenghesh, Khalifa Sifaw

    2014-01-01

    Objective There is little information regarding the isolation of antimicrobial-resistant potentially pathogenic bacteria from water and carpets of mosques worldwide. The objective of the present investigation is to determine the bacteriological quality of water and carpets of mosques in Elkhomes city in Libya. Methods Potentially pathogenic bacteria were isolated from water samples (n=44) and dust samples from carpets (n=50) of 50 mosques in Elkhomes city, Libya, using standard bacteriological procedures. Susceptibility of isolated bacteria to antimicrobial agents was determined by the disc-diffusion method. Results Of the water samples examined, 12 (27.3%) were positive for Escherichia coli, 10 (22.7%) for Klebsiella spp., and 15 (34.1%) for other enteric bacteria. Of the dust samples of carpets examined, 6 (12%) were positive for E. coli, 33 (66%) for Klebsiella spp., and 30 (60%) for Staphylococcus spp. Multidrug resistance (MDR, resistance to three or more antimicrobial groups) was found among 48.7% (19/37) and 46.9% (30/64) of the examined enterobacteria from water and carpets, respectively, and among 66.7% (20/30) of Staphylococcus spp. from carpets. In addition, methicillin-resistant Staphylococcus aureus (MRSA) was isolated from a carpet of one mosque. Conclusion Presence of multidrug-resistant potentially pathogenic bacteria in examined water and carpets indicate that mosques as communal environments may play a role in the spread of multidrug-resistant bacteria in the community and pose a serious health risk to worshipers. PMID:25128691

  15. High isolation rates of multidrug-resistant bacteria from water and carpets of mosques.

    PubMed

    Mohamed Ali, Mostafa Mohamed; Alemary, Fuoad; Alrtail, Amna; Rzeg, Moftah M; Albakush, Abdulla M; Ghenghesh, Khalifa Sifaw

    2014-01-01

    There is little information regarding the isolation of antimicrobial-resistant potentially pathogenic bacteria from water and carpets of mosques worldwide. The objective of the present investigation is to determine the bacteriological quality of water and carpets of mosques in Elkhomes city in Libya. Potentially pathogenic bacteria were isolated from water samples (n=44) and dust samples from carpets (n=50) of 50 mosques in Elkhomes city, Libya, using standard bacteriological procedures. Susceptibility of isolated bacteria to antimicrobial agents was determined by the disc-diffusion method. Of the water samples examined, 12 (27.3%) were positive for Escherichia coli, 10 (22.7%) for Klebsiella spp., and 15 (34.1%) for other enteric bacteria. Of the dust samples of carpets examined, 6 (12%) were positive for E. coli, 33 (66%) for Klebsiella spp., and 30 (60%) for Staphylococcus spp. Multidrug resistance (MDR, resistance to three or more antimicrobial groups) was found among 48.7% (19/37) and 46.9% (30/64) of the examined enterobacteria from water and carpets, respectively, and among 66.7% (20/30) of Staphylococcus spp. from carpets. In addition, methicillin-resistant Staphylococcus aureus (MRSA) was isolated from a carpet of one mosque. Presence of multidrug-resistant potentially pathogenic bacteria in examined water and carpets indicate that mosques as communal environments may play a role in the spread of multidrug-resistant bacteria in the community and pose a serious health risk to worshipers.

  16. Isolation of faecal coliform bacteria from the American alligator (Alligator mississippiensis).

    PubMed

    Johnston, M A; Porter, D E; Scott, G I; Rhodes, W E; Webster, L F

    2010-03-01

    To determine whether American alligators (Alligator mississippiensis) are an unrecognized poikilothermic source of faecal coliform and/or potential pathogenic bacteria in South Carolina's coastal waters. Bacteria from the cloaca of American alligators, as well as bacteria from surface water samples from their aquatic habitat, were isolated and identified. The predominant enteric bacteria identified from alligator samples using biochemical tests included Aeromonas hydrophila, Citrobacter braakii, Edwardsiella tarda, Escherichia coli, Enterobacter cloacae, Plesiomonas shigelloides and putative Salmonella, and these were similar to bacteria isolated from the surface waters in which the alligators inhabited. Based on most-probable-number enumeration estimates from captive alligator faeces, faecal coliform bacteria numbered 8.0x10(9) g(-1) (wet weight) of alligator faecal material, a much higher concentration than many other documented endothermic animal sources. A prevalence of enteric bacteria, both faecal coliforms and potential pathogens, was observed in American alligators. The high faecal coliform bacterial density of alligator faeces may suggest that alligators are a potential source of bacterial contamination in South Carolina coastal waters. These findings help to increase our understanding of faecal coliform and potential pathogenic bacteria from poikilothermic reptilian sources, as there is the potential for these sources to raise bacterial water quality levels above regulatory thresholds.

  17. [Selective-differential nutrient medium "Shewanella IRHLS agar" for isolation of Shewanella genus bacteria].

    PubMed

    Sivolodsky, E P

    2015-01-01

    Development of a selective-differential nutrient medium for isolation of Shewanella genus bacteria. 73 strains of Shewanella bacteria (S. algae--3, S. baltica--26, S. putrefaciens--44) and 80 strains of 22 other bacteria genera were used. Shewanella species were identified by methods and criteria proposed by Nozue H. et al., 1992; Khashe S. et al., 1998. Nutrient media "Shewanella IRHLS Agar" for shewanella isolation was developed. Medium selective factors: irgazan DP-300 (I). 0.14-0.2 g/l and rifampicin (R) 0.0005-0.001 g/l. Shevanella colonies were detected by the production of hydrogen sulfide (H), lipase presence (L), lack of sorbitol fermentation (S). The medium suppressed the growth of hydrogen sulfide producers (Salmonella, Proteus) and blocked hydrogen sulfide production by Citrobacter. Growth of Escherichia, Enterobacter, Klebsiella, Shigella, Staphylococcus, Bacillus was also suppressed, Analytical sensitivity of the medium was 1-2 CFU/ml for Shewanella and Stenotrophomonas, Aerombnas, Serratia genera bacteria. 72 strains of Shewanella were isolated from water of Neva river in this medium, 91.7 ± 3.2% of those produced H2S. 1 strain of S. algae was isolated from clinical material. The developed media allows to use it in a complex for Stenotrophomo- nas sp., Aeromonas sp., Serratia sp., Citrobactersp. and Shewanella bacteria isolation.

  18. Properties of Bacteria Isolated from Deep-Sea Sediments

    PubMed Central

    Quigley, M. M.; Colwell, R. R.

    1968-01-01

    Thirty-eight isolates were subjected to taxonomic analysis by computer. Of the 38 isolates, 31 were from sediment samples collected at depths from 9,400 to 10,400 meters in the Philippine and Marianas Trenches of the Pacific Ocean, and 7 cultures were from seawater samples collected at various depths from surface to 4,000 meters and from several locations in the Pacific Ocean. A total of 116 characteristics were determined for each isolate, coded, and transferred to punch cards. Similarity values were obtained by computer analysis, with the use of two recently developed computer programs. Five distinct phenetic clusters were observed from the numerical analyses. Four of the clusters were identified as species of the genus Pseudomonas, and one, as an aerogenic species of Aeromonas. Group IV was identified as pigmented Pseudomonas fluorescens, and the major cluster, consisting of groups I and II, which merged at a species level of similarity, was treated as a new species of Pseudomonas. The 38 strain data were compared with data for 132 marine and nonmarine strains previously subjected to computer taxonomic analysis. The barotolerant deep-sea strains, with the exception of the deep-sea P. fluorescens isolates, clustered separately from all other marine strains. Images PMID:5636819

  19. Isolation and characterisation of azoxystrobin degrading bacteria from soil.

    PubMed

    Howell, Christopher C; Semple, Kirk T; Bending, Gary D

    2014-01-01

    The first strobilurin fungicides were introduced in 1996, and have since been used in a vast array of disease/plant systems worldwide. The strobilurins now consist of 16 compounds and represent the 2nd most important fungicide group worldwide with 15% of the total fungicide market share. Strobilurins are moderately persistent in soil, and some degradation products (e.g. azoxystrobin acid) have been detected as contaminants of freshwater systems. Little is currently known about the transformation processes involved in the biodegradation of strobilurins or the microbial groups involved. Using sequential soil and liquid culture enrichments, we isolated two bacterial strains which were able to degrade the most widely used strobilurin, azoxystrobin, when supplied as a sole carbon source. 16S rRNA showed that the strains showed homology to Cupriavidus sp. and Rhodanobacter sp. Both isolated strains were also able to degrade the related strobilurin compounds trifloxystrobin, pyraclostrobin, and kresoxim-methyl. An additional nitrogen source was required for degradation to occur, but the addition of a further carbon source reduced compound degradation by approximately 50%. However, (14)C radiometric analysis showed that full mineralisation of azosxystrobin to (14)CO2 was negligible for both isolates. 16S rRNA T-RFLP analysis using both DNA and RNA extracts showed that degradation of azoxystrobin in soil was associated with shifts in bacterial community structure. However, the phylotypes which proliferated during degradation could not be attributed to the isolated degraders.

  20. Isolation and identification of cobalt- and caesium-resistant bacteria from a nuclear fuel storage pond.

    PubMed

    Dekker, Linda; Osborne, Thomas H; Santini, Joanne M

    2014-10-01

    One of the issues facing the nuclear power industry is how to store spent nuclear fuel which is contaminated with radionuclides produced during nuclear fission, including caesium ((134)Cs(+), (135)Cs(+) and (137)Cs(+)) and cobalt ((60)Co(2+)). In this study, we have isolated Co(2+)- and Cs(+)-resistant bacteria from water collected from a nuclear fuel storage pond. The most resistant Cs(+) and Co(2+) isolates grew in the presence of 500 mM CsCl and 3 mM CoCl2. Strain Cs67-2 is resistant to fourfold more Cs(+) than Cupriavidus metallidurans str. CH34 making it the most Cs(+)-resistant strain identified to date. The Cs(+)-resistant isolates were closely related to bacteria in the Serratia and Yersinia genera, while the Co(2+)-resistant isolates were closely related to the Curvibacter and Tardiphaga genera. These new isolates could be used for bioremediation.

  1. Reproduction and metabolism at - 10 degrees C of bacteria isolated from Siberian permafrost.

    PubMed

    Bakermans, Corien; Tsapin, Alexandre I; Souza-Egipsy, Virginia; Gilichinsky, David A; Nealson, Kenneth H

    2003-04-01

    We report the isolation and properties of several species of bacteria from Siberian permafrost. Half of the isolates were spore-forming bacteria unable to grow or metabolize at subzero temperatures. Other Gram-positive isolates metabolized, but never exhibited any growth at - 10 degrees C. One Gram-negative isolate metabolized and grew at - 10 degrees C, with a measured doubling time of 39 days. Metabolic studies of several isolates suggested that as temperature decreased below + 4 degrees C, the partitioning of energy changes with much more energy being used for cell maintenance as the temperature decreases. In addition, cells grown at - 10 degrees C exhibited major morphological changes at the ultrastructural level.

  2. Isolation and characterization of osmotolerant bacteria from thar desert of western Rajasthan (India).

    PubMed

    Sharma, Ramavtar; Manda, Rajni; Gupta, Shikha; Kumar, Sushil; Kumar, Vinod

    2013-12-01

    The Thar Desert harsher environment harbors a limited diversity of life forms due to extreme conditions like low moisture of sandy soils and high soil temperature. In the present study, osmotolerant bacteria from the Thar soils were isolated and characterized. Bacteria were isolated from 20 soil samples (100 g), collected from sand dunes, suspended in water and absolute alcohol. A total of 11 biochemical and morphological tests were carried out for generic identification of bacteria. Osmotic tolerance capacity of isolates was examined on glycerol, NaCI and alcohol; and sequencing of 16S rRNA gene was also performed for bacterial identification. 16S to 23S rRNA internal transcribed spacer analysis (RISA) was done for phylogenetic analysis of isolates. The soil suspended in water contained 2.5 x 10(6) bacteria/g of soil while alcohol suspended soil had 4.4 x 10(4) bacteria/g. The 24 bacterial isolates were found tolerant to 26% glycerol, 14% NaCI and 10% of alcohol, and 22 out of 24 isolates were found Gram positive. The results showed that 45.83% and 41.67% bacteria belong to Bacillus spp. and Corynebacterium spp., respectively, while Acinetobacter spp., Aeromonas spp. and Staphylococcus spp. were in equal proportion (4.16% each). Six isolates were selected for 16S rRNA gene sequencing and five were found 95% similar with Bacillus licheniformis whereas one isolate was identified as B. subtilis. All the isolates showed good growth up to 50 degrees C with gradual reduction on subsequent increment of temperature. Out of 24 isolates, six could survive at 65 degrees C while one isolate could grow at 63 degrees C. Growth kinetic studies revealed that the reduction in generation time in solute(s) and temperature stress was more as compared to generation time in plain medium. This study suggests that virgin sand dunes may be a rich source of bacteria, tolerant to osmotrophic solutes, and can be examined for plant growth promotion activity in agriculture. Moreover, study

  3. Resistance to β-lactams in Bacteria Isolated from Different Types of Portuguese Cheese

    PubMed Central

    Amador, Paula; Fernandes, Ruben; Prudêncio, Cristina; Brito, Luísa

    2009-01-01

    The purpose of this study was to investigate the presence of β-lactam-resistant bacteria in six different types of Portuguese cheese. The numbers of ampicillin resistant (AMPr) bacteria varied from 4.7 × 102 to 1.5 × 107 CFU/g. Within 172 randomly selected β-lactam-resistant bacteria, 44 resistant phenotypes were found and 31.4% were multidrug resistant. The majority (85%) of the isolates identified belonged to the Enterobacteriaceae family. The presence of the blaTEM gene was detected in 80.9% of the tested isolates. The results suggest that without thermal processing of the milk and good hygienic practices, cheese may act as a vehicle of transfer of β-lactam-resistant bacteria to the gastrointestinal tract of consumers. PMID:19468324

  4. New and Rare Carotenoids Isolated from Marine Bacteria and Their Antioxidant Activities

    PubMed Central

    Shindo, Kazutoshi; Misawa, Norihiko

    2014-01-01

    Marine bacteria have not been examined as extensively as land bacteria. We screened carotenoids from orange or red pigments-producing marine bacteria belonging to rare or novel species. The new acyclic carotenoids with a C30 aglycone, diapolycopenedioc acid xylosylesters A–C and methyl 5-glucosyl-5,6-dihydro-apo-4,4′-lycopenoate, were isolated from the novel Gram-negative bacterium Rubritalea squalenifaciens, which belongs to phylum Verrucomicrobia, as well as the low-GC Gram-positive bacterium Planococcus maritimus strain iso-3 belonging to the class Bacilli, phylum Firmicutes, respectively. The rare monocyclic C40 carotenoids, (3R)-saproxanthin and (3R,2′S)-myxol, were isolated from novel species of Gram-negative bacteria belonging to the family Flavobacteriaceae, phylum Bacteroidetes. In this review, we report the structures and antioxidant activities of these carotenoids, and consider relationships between bacterial phyla and carotenoid structures. PMID:24663119

  5. [Bacteria isolated from surgical infections and its susceptibilities to antimicrobial agents--Special references to bacteria isolated between July 1982 and March 2012].

    PubMed

    Shinagawa, Nagao; Iwasaki, Mitsuhiro

    2015-06-01

    This is an integrated summary of the results obtained from a 3-decade multicenter study on bacteria isolated from surgical infections in Japan between July 1982 and March 2012. During the 3-decade study, 11,196 strains were isolated from 4,787 patients consisting of 2,132 patients with primary infection and 2,655 patients with surgical site infection. Almost half of the primary infection was peritonitis, which accounted for 42.3%-55.5%. In contrast, most of the surgical site infection was wound infection, which accounted for 49.3%-66.1%. The most commonly isolated bacteria throughout three decades were Escherichia coli (1,164 strains), Enterococcus faecalis (842), Staphylococcus aureus (833), Pseudomonas aeruginosa (706), Bacteroides fragilis (705), Klebsiella pneumoniae (498), Enterobacter cloacae (391) and coagulase-negative staphylococci (CNS) (325). Overall, S. aureus and CNS had sensitivity for vancomycin, whose MIC90s were 0.78 to 3.13 μg/mL; E. faecalis had sensitivity for vancomycin and imipenem, whose MIC90s were 0.78-4 μg/mL; E coli, E. cloacae, K. pneumoniae, and B. fragilis had preferable sensitivity for imipenem. No antibacterial agents had a long-term good activity (e.g. MIC90 < 2 μg/mL) for P aeruginosa and Bilophila wadsworthia. Among antibacterial agents tested, ciprofloxacin had most bactericidal activity for P. aeruginosa; its MIC90 varied from 0.5 to 8 μg/mL. The MIC90s of all antibacterial agents tested except levofloxacin and minocycline were at least 128 μg/mL for B. wadsworthia. S. aureus accounted for approximately 20% to 60% of bacteria isolated after clean operation. Overall, at least 55% of the bacteria isolated after clean operation consisted of S. aureus, CNS, E. faecalis, E. coli, E. cloacae, K. pneunoniae, P. aeruginosa, B. fragilis, and B. wadsworthia throughout three decades. However, the percentage of other Gram-positive and negative bacteria increased with the worse of sterile condition in surgical operation. E. faecalis

  6. Characterization and Identification of Phosphate Solubilizing Bacteria Isolate GPC3.7 from Limestone Mining Region

    NASA Astrophysics Data System (ADS)

    Fitriyanti, D.; Mubarik, N. R.; Tjahjoleksono, A.

    2017-03-01

    Phosphate (P) are one of major macronutrients needed by plants. P in the soil are present in the organic and inorganic form. The amounts of P in marginal soil can be increased with plant growth promoting rhizobacteria (PGPR). The aim of this study was to characterize and identify P solubilizing bacteria (PSB) isolate GPC3.7 that characteristically could fix N from the soil around limestone mining area. There were 44 PSB isolates found from 15 soil samples around limestone mining area, Blindis mountain, Cirebon. The solubility index of all strain were measured about 0.125 to 2.375 on Pikovskaya media. There were 22 PSB isolates were grown on N-free bromothymol blue (NfB) medium and 19 isolates were grown on Congo Red Agar (CRA) medium. Only 10 isolates were indicated as symbiotic living microorganisms whereas 12 others were categorized as N-free fixing bacteria. Isolate GPC3.7 was chosen to be further observed, based on its P solubility index, N-fixing ability and growth stability. Phosphate quantitative estimation assay of isolate GPC3.7 was unmeasured. The P soluble concentration of GPC3.7 might be lower than 1 mg/L. The colony of GPC3.7 morphologically had round shape, entire margin, raised elevation and white color. Isolate GPC3.7 was Gram negative bacteria with coccus cell shape. Based on 16S rRNA gene, GPC3.7 was closely relative to Acinetobacter baumannii.

  7. Molecular analysis of antimicrobial resistance in gram-negative bacteria isolated from fish farms in Egypt.

    PubMed

    Ishida, Yojiro; Ahmed, Ashraf M; Mahfouz, Nadia B; Kimura, Tomomi; El-Khodery, Sabry A; Moawad, Amgad A; Shimamoto, Tadashi

    2010-06-01

    As little is known about antimicrobial resistance genes in fish farms, this study was conducted to monitor the incidence and prevalence of a wide range of antimicrobial resistance genes in Gram-negative bacteria isolated from water samples taken from fish farms in the northern part of Egypt. Ninety-one out of two hundred seventy-four (33.2%) non-repetitive isolates of Gram-negative bacteria showed multidrug resistance phenotypes and harbored at least one antimicrobial resistance gene. PCR and DNA sequencing results showed that 72 (26.3%) isolates contain tetracycline resistance genes and 19 (6.9%) isolates were positive for class 1 integrons with 12 different gene cassettes. The beta-lactamase-encoding genes were identified in 14 (5.1%) isolates. The plasmid-mediated quinolone resistance genes, qnr and aac(6')-Ib-cr, were identified in 16 (5.8%) and 3 (1.1%) isolates, respectively. Finally, the florphenicol resistance gene, floR, was identified in four (1.5%) isolates. To the best of our knowledge, this is the first report for molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from fish farms in Africa.

  8. Coincident plasmids and antimicrobial resistance in marine bacteria isolated from polluted and unpolluted Atlantic Ocean Samples

    SciTech Connect

    Baya, A.M.; Brayton, P.R.; Brown, V.L.; Grimes, D.J.; Russek-Cohen, E.; Colwell, R.R.

    1986-06-01

    Sewage effluent and outfall confluence samples were collected at the Barceloneta Regional Treatment Plant in Barceloneta, Puerto Rico; outfall confluence samples at Ocean City, Md., were also collected. Samples from uncontaminated open ocean areas served as clean-water controls. Bacteria were enriched in marine broth 2216 amended with 1 ..mu..g of one of a set of chemical selected for study per ml: nitrobenzene, dibutyl phthalate, m-cresol, o-cresol, 4-nitroaniline, bis(tributyltin) oxide, and quinone. MICs of the chemicals were determined individually for all isolates. Bacterial isolates were evaluated for resistance to nine different antibiotics and for the presence of plasmid DNA. Treated sewage was found to contain large numbers of bacteria simultaneously possessing antibiotic resistance, chemical resistance, and multiple bands of plasmic DNA. Bacteria resistant to penicillin, erythromycin, nalidixic acid, ampicillin, m-cresol, quinone, and bis(tributyltin) oxide were detected in nearly all samples, but only sewage outfall confluence samples yielded bacterial isolates that were resistant to streptomycin. Bacteria resistant to a combination of antibiotics, including kanamycin, chloramphenicol, gentamicin, and tetracycline, were isolated only from sewage effluent samples. It is concluded that bacterial isolates derived from toxic chemical wastes more frequently contain plasmid DNA and demonstrate antimicrobial resistance than do bacterial isolates from domestic sewage-impacted waters or from uncontaminated open ocean sites.

  9. Isolation, characterization and optimization of indigenous acetic acid bacteria and evaluation of their preservation methods.

    PubMed

    Sharafi, Sm; Rasooli, I; Beheshti-Maal, K

    2010-03-01

    Acetic acid bacteria (AAB) are useful in industrial production of vinegar. The present study aims at isolation and identification of acetic acid bacteria with characterization, optimization, and evaluation of their acetic acid productivity. Samples from various fruits were screened for presence of acetic acid bacteria on glucose, yeast extract, calcium carbonate (GYC) medium. Carr medium supplemented with bromocresol green was used for distinguishing Acetobacter from Gluconobacter. The isolates were cultured in basal medium to find the highest acetic acid producer. Biochemical tests followed by 16S rRNA and restriction analyses were employed for identification of the isolate and phylogenic tree was constructed. Bacterial growth and acid production conditions were optimized based on optimal inoculum size, pH, temperature, agitation, aeration and medium composition. Thirty-seven acetic acid bacteria from acetobacter and gluconobacter members were isolated. Acetic acid productivity yielded 4 isolates that produced higher amounts of acid. The highest producer of acid (10.03%) was selected for identification. The sequencing and restriction analyses of 16S rRNA revealed a divergent strain of Acetobacter pasteurianus (Gene bank accession number#GU059865). The optimum condition for acid production was a medium composed of 2% glucose, 2% yeast extract, 3% ethanol and 3% acid acetic at inoculum size of 4% at 3L/Min aeration level in the production medium. The isolate was best preserved in GYC medium at 12°C for more than a month. Longer preservation was possible at -70°C. The results are suggestive of isolation of an indigenous acetic acid bacteria. Pilot plan is suggested to study applicability of the isolated strain in acetic acid production.

  10. [Pigments of green sulfur bacteria isolated from reservoirs of Iavoriv sulfur deposit].

    PubMed

    Baran, I M; Hudz', S P; Hnatush, S O; Fedorovych, A M

    2004-01-01

    The enormous amount of hydrogen sulfide (up to 11 mg/ml) is present in the Yavoriv sulfur deposit reservoirs owing to sulfur reductive bacteria activity. As a consequence the ecological situation is badly affected and requires recovering. The biological H2S decomposition by photosynthetic sulfur bacteria, which use the hydrogen sulfide as electron donor during photosynthesis, can be one of the possible ways of this toxic substance destruction. The qualitative and quantitative analysis of photosynthetic pigments composition that derived from green photosynthesizing sulfur bacteria from reservoirs of Yavoriv sulfur deposit is carried out. It was fixed that Pelodictyon sp., Chlorobium sp. and isolated consortia "Pelochromatium sp." contain the bacteriochlorophyll c and d. All the isolated cultures contained bacteriochlorophyll a in trace amounts. The obtained photosynthetic pigments (bacteriochlorophylls, carotenoids) were recognized by their absorption spectra in the visible and far-red region and by their quantity. The difference was not essential. All investigated cultures of isolated bacteria contain some carotenoid the Chlorobium sp. and obtained consortia possesses isorenieratene. The absorption maxima of extracted pigments from young cultures of isolated green sulfur bacteria are more definitely displayed than those from old cultures. Investigations of phototrophic sulfur bacteria were carried out in Ukraine up to now. Ecological problem that occurred in the Yavoriv sulfur deposit as a result of the deposit exploitation caused a necessity of the investigation of photosynthetic sulfur bacteria and bacterial photosynthesis mechanism. The photosynthetic pigments nature identification will promote the fast and precise identification of the new forms of photosynthetic sulfur bacteria and will extend our knowledge about their role in the anoxygenic photosynthesis.

  11. Isolation and characterization of marine bacteria from macroalgae Gracilaria salicornia and Gelidium latifolium on agarolitic activity for bioethanol production

    NASA Astrophysics Data System (ADS)

    Kawaroe, M.; Pratiwi, I.; Sunudin, A.

    2017-05-01

    Gracilaria salicornia and Gelidium latifolium have high content of agar and potential to be use as raw material for bioethanol. In bioethanol production, one of the processes level is enzyme hydrolysis. Various microorganisms, one of which is bacteria, can carry out the enzyme hydrolysis. Bacteria that degrade the cell walls of macroalgae and produce an agarase enzyme called agarolytic bacteria. The purpose of this study was to isolate bacteria from macroalgae G. salicornia and G. latifolium, which has the highest agarase enzyme activities, and to obtain agarase enzyme characteristic for bioethanol production. There are two isolates bacteria resulted from G. salicornia that are N1 and N3 and there are two isolates from G. latifolium that are BSUC2 and BSUC4. The result of agarase enzyme qualitative test showed that isolates bacteria from G. latifolium were greater than G. salicornia. The highest agarolitic index of bacteria from G. salicornia produced by isolate N3 was 2.32 mm and isolate N3 was 2.27 mm. Bacteria from G. latifolium produced by isolate BSUC4 was 4.28 mm and isolate BSUC2 was 4.18 mm, respectively. Agarase enzyme activities from isolates N1 and N3 were optimum working at pH 7 and temperature 30 °C, while from isolates BSUC4 was optimum at pH 7 and temperature 50 °C. This is indicated that the four bacteria are appropriate to hydrolyze macro alga for bioethanol production.

  12. The antagonism activity of bacteria isolated from potato cultivated soil.

    PubMed

    Mezaache-Aichour, S; Sayah, N; Zerroug, M M; Guechi, A

    2012-01-01

    Soil-borne fungal and bacterial root pathogens can cause serious losses to agricultural crops. Resistant plant varieties are not available for several soil-borne pathogens and chemical control is often insufficiently effective in soil. The enhancement of disease suppressive properties of soils will limit disease development, thus, being of great importance for sustainable agriculture as well as organic farming systems. The aim of this research is to find and identify suppressive soils in the Sétif's areas (potato field located in different regions of Sétif); this allows the selection of the indigenous soil bacteria that are able to develop several mechanisms of action related to biocontrol of phytopathogenic fungi affecting potato crops. Among 50 bacterial strains only 14 showed a wide range of antifungal action against the tested phytopathogenic fungi. With a range of inhibition percent from 0 to 92.30% especially Fusarium oxysporum f. sp. albedinis with 92% inhibition.

  13. Multi-drug resistant gram-negative enteric bacteria isolated from flies at Chengdu Airport, China.

    PubMed

    Liu, Yang; Yang, Yu; Zhao, Feng; Fan, Xuejun; Zhong, Wei; Qiao, Dairong; Cao, Yi

    2013-11-01

    We collected flies from Chengdu Shuangliu International Airport to examine for the presence of bacteria and to determine the sensitivity patterns of those bacteria. A total of 1,228 flies were collected from 6 sites around Chengdu Shuangliu International Airport from April to September 2011. The predominant species was Chrysomya megacephala (n=276, 22.5%). Antimicrobial-resistant gram-negative enteric bacteria (n=48) were isolated from flies using MacConkey agar supplemented with cephalothin (20 microg/ml). These were identified as Escherichia coli (n=37), Klebsiella pneumoniae (n=6), Pseudomonas aeruginosa (n=3) and Aeromonas hydrophila (n=2). All isolated bacteria were tested for resistance to 21 commonly used antimicrobials: amoxicillin (100%), ticarcillin (100%), cephalothin (100%), cefuroxime (100%), ceftazidime 1 (93.8%), piperacillin (93.8%), cefotaxime (89.6%), ticarcillin-clavulanate (81.3%), trimethoprim-sulfamethoxazole (62.5%), ciprofloxacin (54.2%), gentamicin (45.8%), cefepime (39.6%), tobramycin (39.6%), ceftazidime (22.9%), cefoxitin (16.7%), amikacin (16.7%), netilmicin (14.6%), amoxicillin-clavulanate (6.3%) and piperacillin-tazobactam (2.1%). No resistance to meropenem or imipenem was observed. Antibiotic resistance genes among the isolated bacteria were analyzed for by polymerase chain reaction. Thirty of the 48 bacteria with resistance (62.5%) possessed the blaTEM gene.

  14. Plant growth-promoting potential of bacteria isolated from active volcano sites of Barren Island, India.

    PubMed

    Amaresan, N; Kumar, K; Sureshbabu, K; Madhuri, K

    2014-02-01

    To elucidate the biodiversity of plant growth-promoting (PGP) bacteria in active volcano sites of Barren Island, India, a total of 102 bacteria were isolated and screened for their multifunctional PGP properties. The results revealed that 21 isolates (20.6%) survived heat shock at 72°C and 11 (10.8%) isolates were able to grow exposed to 25% NaCl (w/v). In assaying for PGP properties, 59 (57.8%) isolates shown indole acetic acid (IAA) like substances production, 57 isolates (55.9%) produced siderophore and 34 (33.3%) solubilized inorganic phosphate qualitatively. Whereas in the production of extracellular enzymes, 42 isolates (41.2%) produced protease and amylase, 26 (25.5%) isolates produced lipase and 24 (23.5%) isolates produced cellulase. In antagonistic activity, 30 isolates (29.4%) were found antagonistic against Macrophomina sp., 20 isolates (19.6%) against Rhizoctonia solani and 15 isolates (14.7%) against Sclerotium rolfsii. The results based on 16 rRNA gene sequencing revealed that the PGP bacteria belonged to 22 different species comprising 13 genera. Based on multifunctional properties, nine isolates were further selected to determine the PGP in brinjal and chilli seeds. Of the bacteria tested, the isolate BAN87 showed increased root and shoot length of both the crops followed in plant growth promotion by BAN86 and BAN43. The outcome of this research proves plausible practical applicability of these PGPB for crop production in soils of saline and arid environments. The present research shows diverse plant growth-promoting (PGP) bacteria could be isolated from the active volcano site and suggests that volcano sites represent an ecological niche, which harbours a diverse and hitherto largely uncharacterized microbial population with yet unknown and untapped potential biotechnological applications, for example, plant growth promoters, as evidenced from this study. The outcome of this research may have a practical effect on crop production methodologies in

  15. Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay.

    PubMed Central

    West, P A; Okpokwasili, G C; Brayton, P R; Grimes, D J; Colwell, R R

    1984-01-01

    Phenanthrene-degrading bacteria were isolated from Chesapeake Bay samples by the use of a solid medium which had been overlaid with an ethanol solution of phenanthrene before inoculation. Eighteen representative strains of phenanthrene-degrading bacteria with 21 type and reference bacteria were examined for 123 characteristics representing physiological, biochemical, and nutritional properties. Relationships between strains were computed with several similarity coefficients. The phenogram constructed by unweighted-pair-group arithmetic average linkage and use of the simple Jaccard (SJ) coefficient was used to identify seven phena. Phenanthrene-degrading bacteria were identified as Vibrio parahaemolyticus and Vibrio fluvialis by their clustering with type and reference strains. Several phenanthrene-degrading bacteria resembled Enterobacteriaceae family members, although some Vibrio-like phenanthrene degraders could not be identified. PMID:6508314

  16. Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay

    SciTech Connect

    West, P.A.; Okpokwasili, G.C.; Brayton, P.R.; Grimes, D.J.; Colwell, R.R.

    1984-11-01

    Phenanthrene-degrading bacteria were isolated from Chesapeake Bay samples by the use of a solid medium which had been overlaid with an ethanol solution of phenanthrene before inoculation. Eighteen representative strains of phenanthrene-degrading bacteria with 21 type and reference bacteria were examined for 123 characteristics representing physiological, biochemical, and nutritional properties. Relationships between strains were computed with several similarity coefficients. The phenogram constructed by unweighted-pair-group arithmetic average linkage and use of the simple Jaccard (S/sub J/) coefficient was used to identify seven phena. Phenanthrene-degrading bacteria were identified as Vibrio parahaemolyticus and Vibrio fluvialis by their clustering with type and reference strains. Several phenanthrene-degrading bacteria resembled Enterobacteriaceae family members, although some Vibrio-like phenanthrene degraders could not be identified. 22 references, 1 figure, 2 tables.

  17. Anaerobic facultative bacteria isolated from the gut of rabbits fed different diets.

    PubMed

    Canganella, F; Zirletta, G; Gualterio, L; Massa, S; Trovatelli, L D

    1992-11-01

    Anaerobic facultative bacteria colonizing the intestinal tract of conventional rabbits fed three different diets (standard pellet, hay and pellet/hay mixture) were enumerated in brain heart infusion agar. Colony counts recovered from homogenized samples of small intestine, caecum and rectum differed with reference to the diet given. Among anaerobic groups, identified from rabbit fed pellet/hay mixture, Enterococci (E. faecalis, E. avium, E. faecium and E. durans) represented the predominant flora. Enterobacters (E. cloacae and E. aerogenes) accounted for about 10 to 25% of the bacteria in the rectum and colon respectively, whereas Staphylococci (S. intermedius, S. epidermidis and S. lentus) represented 11% of the bacteria isolated from colon.

  18. Isolation and characterization of bacteria from midgut of the rice water weevil (Coleoptera: Curculionidae).

    PubMed

    Lu, Fang; Kang, Xiaoying; Jiang, Cong; Lou, Binggan; Jiang, Mingxing; Way, Michael O

    2013-10-01

    Gut bacteria are known to play important and often essential roles in the biology of insects. Theoretically, they can be genetically manipulated, then reintroduced into insects to negatively modify specific biological features. The weevil superfamily Curculionoidea is one of the most species-rich and successful animal groups on earth, but currently the overall knowledge of the bacterial communities in weevils and their associations with hosts is still limited. In this study, we isolated and characterized the bacteria in the midgut of an invasive weevil, Lissorhoptrus oryzophilus Kuschel, by culturing methods. Female adults of this weevil were collected from four different geographic regions of the United States and mainland China. Sequencing of the bacterial 16S rRNA amplicons demonstrated that the major culturable gut bacteria of rice water weevil are γ-proteobacteria and Bacilli. The gut bacterial composition differs among regions, with many of the bacteria isolated from only a single region while several were detected from more than one region. Overall, the diversity of gut bacteria in rice water weevil is relatively low. The possible origins of certain bacteria are discussed in relation to the weevil, rice plant, and bacteria.

  19. Isolation and identification of bacteria associated with the surfaces of several algal species

    NASA Astrophysics Data System (ADS)

    Wang, Zifeng; Xiao, Tian; Pang, Shaojun; Liu, Min; Yue, Haidong

    2009-09-01

    We conducted this study to assess the diversity of bacteria associated with the surfaces of algae based on 16S rDNA sequence analyses. Twelve strains of bacteria were obtained from the surfaces of the following four species of algae: Gracilaria textorii, Ulva pertusa, Laminaria japonica, and Polysiphonia urceolata. The isolated strains of bacteria can be divided into two groups: Halomonas and Vibrio, in physiology, biochemical characteristics and 16S rDNA sequence analyses. The phylogenetic tree constructed based on 16S rDNA sequences of the isolates shows four obvious clusters, Halomonas venusta, Vibrio tasmaniensis, Vibrio lentus, and Vibrio splendidus. Isolates from the surface of P. urceolata are more abundant and diverse, of which strains P9 and P28 have a 16S rDNA sequence very similar (97.5%-99.8%) to that of V. splendidus. On the contrary, the isolates from the surfaces of G. textorii, U. pertusa and L. japonica are quite simple and distribute on different branches of the phylogenetic tree. In overall, the results of this study indicate that the genetic relationships among the isolates are quite close and display a certain level of host species specificity, and alga-associated bacteria species are algal species specific.

  20. Arsenic resistance and accumulation by two bacteria isolated from a natural arsenic contaminated site.

    PubMed

    Pandey, Neha; Bhatt, Renu

    2015-11-01

    Forty-three indigenous arsenic resistant bacteria were isolated from arsenic rich soil of Rajnandgaon district in the state of Chhattisgarh, India by enrichment culture technique. Among the isolates, two of the bacteria (As-9 and As-14) exhibited high resistance to As(V) [MIC ≥ 700 mM] and As(III) [MIC ≥ 10 mM] and were selected for further studies. Both these bacteria grew well in the presence of arsenic [20 mM As(V) and 5 mM As(III)], but the isolate As-14 strictly required arsenic for its survival and growth and was characterized as a novel arsenic dependent bacterium. The isolates contributed to 99% removal of arsenic from the growth medium which was efficiently accumulated in the cell. Quantitative estimation of arsenic through Atomic Absorption Spectrophotometer revealed that there was >60% accumulation of both As(V) and As(III) by the two isolates. Scanning Electron Microscopic analysis showed a fourfold increase in bacterial cell volume when grown in the presence of arsenic and the results of Transmission Electron Microscopy and energy-dispersive X-ray spectroscopy proved that such an alteration was due to arsenic accumulation. Such arsenic resistant bacteria with efficient accumulating property could be effectively applied in the treatment of arsenic contaminated water.

  1. Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics.

    PubMed

    Cavalca, Lucia; Zanchi, Raffaella; Corsini, Anna; Colombo, Milena; Romagnoli, Cristina; Canzi, Enrica; Andreoni, Vincenza

    2010-04-01

    A rhizobacterial community, associated with the roots of wild thistle Cirsium arvense (L.) growing in an arsenic polluted soil, was studied by fluorescence in situ hybridization (FISH) analysis in conjunction with cultivation-based methods. In the bulk, rhizosphere, and rhizoplane fractions of the soil, the qualitative picture obtained by FISH analysis of the main phylogenetic bacterial groups was similar and was predominantly comprised of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. The arsenic-resistant isolates belonged to 13 genera, the most abundant being those of Bacillus, Achromobacter, Brevundimonas, Microbacterium, and Ochrobactrum. Most bacteria grew in the presence of high arsenic concentrations (over 100mM arsenate and 10mM arsenite). Most strains possessed the ArsC, ArsB and ACR3 genes homologous to arsenate reductase and to the two classes of arsenite efflux pumps, respectively, peculiar to the ars operon of the arsenic detoxification system. ArsB and ACR3 were present simultaneously in highly resistant strains. An inconsistency between 16S rRNA phylogenetic affiliations and the arsenate reductase sequences of the strains was observed, indicating possible horizontal transfer of arsenic resistance genes in the soil bacterial community. Several isolates were able to reduce arsenate and to oxidise arsenite. In particular, Ancylobacter dichloromethanicum strain As3-1b possessed both characteristics, and arsenite oxidation occurred in the strain also under chemoautotrophic conditions. Some rhizobacteria produced siderophores, indole acetic acid and 1-amino-cyclopropane-1-carboxylic acid deaminase, thus possessing potential plant growth-promoting traits.

  2. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    PubMed

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Isolation and characterization of crude oil degrading bacteria from the Persian Gulf (Khorramshahr provenance).

    PubMed

    Hassanshahian, Mehdi; Zeynalipour, Mohammad Saleh; Musa, Farzaneh Hosseinzadeh

    2014-05-15

    Fifteen crude oil degrading bacteria were isolated from oil contaminated sites in the Persian Gulf at Khorramshahr provenance. These bacteria were screened with two important factors such as growth rate on crude oil and hydrocarbon biodegradation, and then three strains were selected from 15 isolated strains for further study. One strain (PG-Z) that show the best crude oil biodegradation was selected between all isolates. Nucleotides sequencing of the gene encoding for 16S rRNA show that strain PG-Z belong to Corynebacterium variabile genus. This strain was efficient in degrading of crude oil. This strain was capable to degraded 82% of crude-oil after one week incubation in ONR7a medium. The PG-Z strain had high emulsification activity and biosurfactant production between all isolates. GC-MS analysis shows that C. variabile strain PG-Z can degrade different alkanes in crude oil.

  4. Isolation of naturally associated bacteria of necromenic Pristionchus nematodes and fitness consequences.

    PubMed

    Rae, Robbie; Riebesell, Metta; Dinkelacker, Iris; Wang, Qiong; Herrmann, Matthias; Weller, Andreas M; Dieterich, Christoph; Sommer, Ralf J

    2008-06-01

    Nematodes and bacteria are major components of the soil ecosystem. Many nematodes use bacteria for food, whereas others evolved specialized bacterial interactions ranging from mutualism to parasitism. Little is known about the biological mechanisms by which nematode-bacterial interactions are achieved, largely because in the laboratory nematodes are often cultured under artificial conditions. We investigated the bacterial interactions of nematodes from the genus Pristionchus that have a strong association with scarab beetles. Pristionchus has a different feeding strategy than Caenorhabditis and meta-genomic 16S sequence analysis of Pristionchus individuals showed a diversity of living bacteria within the nematode gut and on the nematode cuticle. Twenty-three different bacterial strains were isolated from three Pristionchus-beetle associations and were used to study nematode-bacterial interactions under controlled laboratory conditions. We show a continuum of bacterial interactions from dissemination, to reduction in brood size and nematode mortality caused by bacteria derived from insect hosts. Olfactory discrimination experiments show distinct chemoattraction and fitness profiles of Pristionchus nematodes when exposed to different bacteria. For example, Pristionchus pacificus avoids Serratia marcescens possibly because of pathogenicity. Also, P. pacificus avoids Bacillus thuringiensis and insect pathogenic bacteria but is resistant to the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa, unlike Caenorhabditis elegans. Pristionchus specifically recognize and respond to bacteria that cause ill health. Bringing the nematode-bacterial interaction into the laboratory allows detailed functional studies, including the genetic manipulation of the interaction in both nematodes and bacteria.

  5. Growth characteristics and biofilm formation of various spoilage bacteria isolated from fresh produce.

    PubMed

    Bae, Young-Min; Zheng, Ling; Hyun, Jeong-Eun; Jung, Kyu-Seok; Heu, Sunggi; Lee, Sun-Young

    2014-10-01

    This study investigated the characteristics of spoilage bacteria isolated from fresh produce including growth at various temperatures, biofilm formation, cell hydrophobicity, and colony spreading. The number of spoilage bacteria present when stored at 35 °C was significantly greater than when stored at lower temperatures, and maximum population size was achieved after 10 h. However, Bacillus pumilus, Dickeya zeae, Pectobacterium carotovorum subsp. Carotovorum Pcc21, and Bacillus pumilus (RDA-R) did not grow at the storage temperature of 5 °C. The biofilm formation by Clavibacter michiganensis, Acinetobacter calcoaceticus, and A. calcoaceticus (RDA-R) are higher than other spoilage bacteria. Biofilm formation showed low correlation between hydrophobicity, and no significant correlation with colony spreading. These results might be used for developing safe storage guidelines for fresh produce at various storage temperatures, and could be basic information on the growth characteristics and biofilm formation properties of spoilage bacteria from fresh produce. Growth of spoilage bacteria was different depending on the bacteria strains and storage temperature. Between biofilm formation and cell hydrophobicity was low correlation on spoilage bacteria. Therefore, growth characteristics and biofilm formation of spoilage bacteria might be used for developing safe storage guidelines for fresh produce at various storage temperatures. © 2014 Institute of Food Technologists®

  6. Production of biosurfactant by indigenous isolated bacteria in fermentation system

    NASA Astrophysics Data System (ADS)

    Fooladi, Tayebeh; Hamid, Aidil Bin Abd; Yusoff, Wan Mohtar Wan; Moazami, Nasrin; Shafiee, Zahra

    2013-11-01

    Bacillus pumilus 2IR is a soil isolate bacterium from an Iranian oil field that produces promising yield of biosurfactant in medium E. The production of biosurfactant by strain 2IR has been investigated using different carbon and nitrogen sources. The strain was able to grow and to produce surfactant, reducing the surface tension of the medium from 60mN/m to 31mN/m on glucose after 72 h of cultivation. The strain was able to produce the maximum amount of biosurfactant (0.72 g/l) when potassium nitrate and glucose used as a nitrogen and carbon sources respectively. Production of biosurfactant reaches to highest amount at a C/N ratio of 12.

  7. Evaluation of Malolactic Bacteria Isolated from Oregon Wines †

    PubMed Central

    Henick-Kling, T.; Sandine, W. E.; Heatherbell, D. A.

    1989-01-01

    Oregon is a cool wine-producing region where grapes characteristically contain high concentrations of organic acids. To reduce the natural acidity and increase the microbiological stability and flavor complexity of the wine, malolactic fermentation is encouraged. In this study, strains of Leuconostoc oenos indigenous to Oregon wines were evaluated for their suitability to conduct malolactic fermentation in Oregon wines. Tests determined the malolactic activity of the Oregon isolates in comparison with commercial strains ML-34, PSU-1, MLT-kli, and ens 44-40 under various temperature and pH conditions. Sensitivities to sulfur dioxide, ethanol, and fumaric acid also were determined. Two Oregon strains, Er-1a and Ey-2d, were selected for commercial winemaking tests because they had greater malolactic activity under conditions of low pH (3.0) and low temperature (15 and 8°C), respectively. PMID:16347992

  8. Thermophilic bacteria from Mexican thermal environments: isolation and potential applications.

    PubMed

    Pinzón-Martínez, D L; Rodríguez-Gómez, C; Miñana-Galbis, D; Carrillo-Chávez, J A; Valerio-Alfaro, G; Oliart-Ros, R

    2010-01-01

    Extremophiles are microorganisms that possess application possibilities in several industrial fields, including agricultural, chemical, laundry, pharmaceutical, food, petroleum and bioremediation. This work reports the isolation of 19 thermophilic, alkalitolerant and halotolerant bacterial strains from two thermal sites in Veracruz, México: El Carrizal thermal pool and Los Baños hot spring. These strains belong to the Geobacillus, Anoxybacillus and Aeribacillus genera. The strains produce lipases, proteases, and amylases under thermophilic conditions. They may have good potential for application in microbial enhanced oil recovery, since they are thermophilic and halotolerant, produce exopolymers (up to 11.8 mg/mg) and acids, show emulsifying activity (E24 up to 7.5%), and are able to grow in kerosene as carbon source; these strains may also be used in biodesulphurization since they can grow in dibenzothiophene producing 2-hydroxybiphenyl under thermophilic conditions (up to 2.9 mg/L).

  9. Thermophilic lactic acid bacteria phages isolated from Argentinian dairy industries.

    PubMed

    Suárez, V B; Quiberoni, A; Binetti, A G; Reinheimer, J A

    2002-10-01

    Sixty-one natural phages (59 of Streptococcus thermophilus and 2 of Lactobacillus delbrueckii subsp. bulgaricus) were isolated from Argentinian dairy plants from November 1994 to July 2000. Specifically, 17 yogurt samples (18% of all samples) and 26 cheese samples (79%) contained phages lytic to S. thermophilus strains. The number of viral particles found in samples ranged from 10(2) to 10(9) PFU/ml. The phages belonged to Bradley's group B or the Siphoviridae family (morphotype B1). They showed high burst size values and remarkably short latent periods. The results of this study show that phages were found more frequently in cheesemaking processes than in yogurt-making processes. The commercial streptococcus strains appeared to propagate more phages, whereas the natural strains propagated fewer phage strains. These results suggest that the naturally occurring cultures are inherently more phage resistant.

  10. Multidrug resistant bacteria isolated from cockroaches in long-term care facilities and nursing homes.

    PubMed

    Pai, Hsiu-Hua

    2013-01-01

    Residents in long-term care facilities and nursing homes have a relative higher risk for infections. The nocturnal and filthy habits of cockroaches may be ideal disseminators of pathogenic microorganisms in these institutions. This study was designed to determine the infestation and vector potential of cockroaches under this institutional environment. Cockroaches were collected from 69 long-term care facilities and nursing homes in Kaohsiung City. Risk factors related to cockroach infestation were determined by questionnaire survey. In addition, bacteria were isolated and identified from the alimentary tract and external surface of these insects. Antibiotic resistances of these microorganisms were then determined. Cockroach infestation was found in 45 (65.2%) institutions and 558 cockroaches (119 Periplaneta americana and 439 Blattella germanica) were collected. A significant association was found between cockroach infestation and indoor environmental sanitation. From 250 adult cockroaches, 38 species of gram-negative bacteria, 20 species of glucose non-fermenter bacilli and 6 species of gram-positive bacteria were isolated. Moreover, antibiotic resistances were found among the bacteria isolated. These findings indicate that cockroaches have the potential in transmitting pathogenic bacteria with multidrug resistances in long-term care facilities and nursing homes.

  11. Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi.

    PubMed

    Lecomte, Julie; St-Arnaud, Marc; Hijri, Mohamed

    2011-04-01

    Soil-microorganism symbioses are of fundamental importance for plant adaptation to the environment. Research in microbial ecology has revealed that some soil bacteria are associated with arbuscular mycorrhizal fungi (AMF). However, these interactions may be much more complex than originally thought. To assess the type of bacteria associated with AMF, we initially isolated spores of Glomus irregulare from an Agrostis stolonifera rhizosphere. The spores were washed with sterile water and plated onto G. irregulare mycelium growing in vitro in a root-free compartment of bicompartmented Petri dishes. We hypothesized that this system should select for bacteria closely associated with the fungus because the only nutrients available to the bacteria were those derived from the hyphae. Twenty-nine bacterial colonies growing on the AMF hyphae were subcultured and identified using 16S rRNA gene sequences. All bacterial isolates showed high sequence identity to Bacillus cereus, Bacillus megaterium, Bacillus simplex, Kocuria rhizophila, Microbacterium ginsengisoli, Sphingomonas sp. and Variovorax paradoxus. We also assessed bacterial diversity on the surface of spores by PCR-denaturating gradient gel electrophoresis. Finally, we used live cellular imaging to show that the bacteria isolated can grow on the surface of hyphae with different growing patterns in contrast to Escherichia coli as a control. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product "lukanka".

    PubMed

    Todorov, Svetoslav Dimitrov; Stojanovski, Saso; Iliev, Ilia; Moncheva, Penka; Nero, Luis Augusto; Ivanova, Iskra Vitanova

    The present work discusses the technological and new selection criteria that should be included for selecting lactic acid bacteria for production of fermented meat. Lactic acid bacteria isolated from Bulgarian traditional fermented "lulanka" salami was studied regarding some positive technological parameters (growth at different temperature, pH, and proteolytic activity). The presence of genes related to the virulence factors, production of biogenic amines, and vancomycin resistance were presented in low frequency in the studied lactic acid bacteria. On the other hand, production of antimicrobial peptides and high spread of bacteriocin genes were broadly presented. Very strong activity against L. monocytogenes was detected in some of the studied lactic acid bacteria. In addition, the studied strains did not present any antimicrobial activity against tested closely related bacteria such as Lactobacillus spp., Lactococcus spp., Enterococcus spp. or Pediococcus spp. To our knowledge this is the first study on the safety and antimicrobial properties of lactic acid bacteria isolated from Bulgarian lukanka obtained by spontaneous fermentation. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Isolation and identification of 3-bromocarbazole-degrading bacteria.

    PubMed

    Ma, Yun; Li, Zhiwei; Yuan, Mei; Chen, Linhua; Zhou, Shanshan

    2017-09-26

    In this study, a bacterial strain, CH-1, capable of degrading 3-bromocarbazole (3-BCZ) was isolated from a polluted soil. Based on its physio-biochemical characteristics and 16S rRNA genes, strain CH-1 was identified as a Stenotrophomonas sp. Strain CH-1 was able to degrade 70% of 50 mg/L 3-BCZ within 8 d at pH 7.0 and 30°C in mineral salt medium (MSM). During the process, the main intermediate metabolite was identified as (2E, 4Z)-6-(2-amino-5-bromophenyl)-2-hydroxy-6-oxhexa-2, 4-dienoic by gas (2E, 4Z)-6-(2-amino-5-bromophenyl)-2-hydroxy-6-oxhexa-2,4-dienoic via gas chromatograph-mass spectrometry (GC-MS) analysis. The metabolite disappeared after 14 d, suggesting that the metabolite can also be degraded by strain CH-1. 3-BCZ is a new persistent organic pollutant. This is the first report of the biodegradation of 3-BCZ. The results indicated that strain CH-1 may be a promising bacterial candidate for the bioremediation of environments polluted with polyhalogenated carbazoles (PHCs).

  14. Diversity of denitrifying bacteria isolated from Daejeon Sewage Treatment Plant.

    PubMed

    Lim, Young-Woon; Lee, Soon-Ae; Kim, Seung Bum; Yong, Hae-Young; Yeon, Seon-Hee; Park, Yong-Keun; Jeong, Dong-Woo; Park, Jin-Sook

    2005-10-01

    The diversity of the denitrifying bacterial populations in Daejeon Sewage Treatment Plant was examined using a culture-dependent approach. Of the three hundred and seventy six bacterial colonies selected randomly from agar plates, thirty-nine strains that showed denitrifying activity were selected and subjected to further analysis. According to the morphological and biochemical properties, the thirty nine isolates were divided into seven groups. This grouping was supported by an unweighted pair group method, using an arithmetic mean (UPGMA) analysis with fatty acid profiles. Restriction pattern analysis of 16S rDNA with four endonucleases (AluI, BstUI, MspI and RsaI) again revealed seven distinct groups, consistent with those defined from the morphological and biochemical properties and fatty acid profiles. Through the phylogenetic analysis using the 16S rDNA partial sequences, the main denitrifying microbial populations were found to be members of the phylum, Proteobacteria; in particular, classes Gamma proteobacteria (Aeromonas, Klebsiella and Enterobacter) and Beta proteobacteria (Acidovorax, Burkholderia and Comamonas), with Firmicutes, represented by Bacillus, also comprised a major group.

  15. Strategies for isolation of in vivo expressed genes from bacteria.

    PubMed

    Handfield, M; Levesque, R C

    1999-01-01

    The discovery and characterization of genes specifically induced in vivo upon infection and/or at a specific stage of the infection will be the next phase in studying bacterial virulence at the molecular level. Genes isolated are most likely to encode virulence-associated factors or products essential for survival, bacterial cell division and multiplication in situ. Identification of these genes is expected to provide new means to prevent infection, new targets for, antimicrobial therapy, as well as new insights into the infection process. Analysis of genes and their sequences initially discovered as in vivo induced may now be revealed by functional and comparative genomics. The new field of virulence genomics and their clustering as pathogenicity islands makes feasible their in-depth analysis. Application of new technologies such as in vivo expression technologies, signature-tagged mutagenesis, differential fluorescence induction, differential display using polymerase chain reaction coupled to bacterial genomics is expected to provide a strong basis for studying in vivo induced genes, and a better understanding of bacterial pathogenicity in vivo. This review presents technologies for characterization of genes expressed in vivo.

  16. Epibiotic Vibrio luminous bacteria isolated from some hydrozoa and bryozoa species.

    PubMed

    Stabili, L; Gravili, C; Tredici, S M; Piraino, S; Talà, A; Boero, F; Alifano, P

    2008-11-01

    Luminous bacteria are isolated from both Hydrozoa and Bryozoa with chitinous structures on their surfaces. All the specimens of the examined hydroid species (Aglaophenia kirchenpaueri, Aglaophenia octodonta, Aglaophenia tubiformis, Halopteris diaphana, Plumularia setacea, Ventromma halecioides), observed under blue light excitation, showed a clear fluorescence on the external side of the perisarc (chitinous exoskeleton) around hydrocladia. In the bryozoan Myriapora truncata, luminous bacteria are present on the chitinous opercula. All the isolated luminous bacteria were identified on the basis of both phenotypic and genotypic analysis. The isolates from A. tubiformis and H. diaphana were unambiguously assigned to the species Vibrio fischeri. In contrast, the isolates from the other hydroids, phenotypically assigned to the species Vibrio harveyi, were then split into two distinct species by phylogenetic analysis of 16S rRNA gene sequences and DNA-DNA hybridization experiments. Scanning electron microscopy analysis and results of culture-based and culture-independent approaches enabled us to establish that luminous vibrios represent major constituents of the bacterial community inhabiting the A. octodonta surface suggesting that the interactions between luminous bacteria and the examined hydrozoan and bryozoan species are highly specific. These interactions might have epidemiological as well as ecological implications because of the opportunistic pathogenicity of luminous Vibrio species for marine organisms and the wide-distribution of the hydrozoan and bryozoan functioning as carriers.

  17. Cellulolytic and proteolytic ability of bacteria isolated from gastrointestinal tract and composting of a hippopotamus.

    PubMed

    da Cruz Ramos, Geomárcia Feitosa; Ramos, Patricia Locosque; Passarini, Michel Rodrigo Zambrano; Vieira Silveira, Marghuel A; Okamoto, Débora Noma; de Oliveira, Lilian Caroline Gonçalves; Zezzo, Larissa Vieira; Marem, Alyne; Santos Rocha, Rafael Costa; da Cruz, João Batista; Juliano, Luiz; de Vasconcellos, Suzan Pantaroto

    2016-03-01

    The bioprospection for cellulase and protease producers is a promise strategy for the discovery of potential biocatalysts for use in hydrolysis of lignocellulosic materials as well as proteic residues. These enzymes can increment and turn viable the production of second generation ethanol from different and alternative sources. In this context, the goal of this study was the investigation of cellulolytic and proteolytic abilities of bacteria isolated from the gastrointestinal tract of a hippopotamus as well as from its composting process. It is important to highlight that hippopotamus gastrointestinal samples were a non-typical sources of efficient hydrolytic bacteria with potential for application in biotechnological industries, like biofuel production. Looking for this, a total of 159 bacteria were isolated, which were submitted to qualitative and quantitative enzymatic assays. Proteolytic analyzes were conducted through the evaluation of fluorescent probes. Qualitative assays for cellulolytic abilities revealed 70 positive hits. After quantitative analyzes, 44 % of these positive hits were selected, but five (5) strains showed cellulolytic activity up to 11,8 FPU/mL. Regarding to proteolytic activities, six (6) strains showed activity above 10 %, which overpassed results described in the literature. Molecular analyzes based on the identification of 16S rDNA, revealed that all the selected bacterial isolates were affiliated to Bacillus genus. In summary, these results strongly indicate that the isolated bacteria from a hippopotamus can be a potential source of interesting biocatalysts with cellulolytic and proteolytic activities, with relevance for industrial applications.

  18. Phenotypic and genotypic characterization of lactic acid bacteria isolated from Artisanal Italian goat cheese.

    PubMed

    Colombo, E; Franzetti, L; Frusca, M; Scarpellini, M

    2010-04-01

    The lactic acid bacteria community in traditional goat cheese produced in three dairies in Valsesia (Piemonte, Italy) was studied at different steps of the manufacturing process. These cheeses were produced from raw milk without starter bacteria, and no protocol was followed during the manufacturing process. Three hundred thirty-two isolates were characterized and grouped by results of both morphophysiological tests and random amplification of polymorphic DNA plus PCR analysis. Bacteria were identified by partial sequencing of the 16S rRNA gene. Lactococci were the dominant lactic acid bacteria in raw milk. Their initial numbers ranged from 5 to 7 log CFU ml(-1). Their levels increased during manufacturing and decreased during ripening. The growth trend for enterococci was comparable to that of lactococci, although enterococci counts were lower. Lactococcus lactis subsp. cremoris, Lactococcus garviae, and Enterococcus faecalis were the most frequently isolated species during goat cheese manufacturing, whereas the highest numbers of Enterococcus (E. faecium, E. durans, E. gilvus, and E. casseliflavus) were isolated with the greatest frequency from ripened cheese samples. Occasionally, Leuconostoc mesenteroides, Leuconostoc lactis, and Lactobacillus paraplantarum also were isolated.

  19. How-to-Do-It: A Simple DNA Isolation Technique Using Halophilic Bacteria.

    ERIC Educational Resources Information Center

    Guilfoile, Patrick

    1989-01-01

    Described is a simple technique for isolating DNA from halophilic bacteria. Materials, procedure, and additional experiments are outlined. It is stated that the DNA obtained will be somewhat contaminated with cellular proteins and RNA. Offers a procedure for greater purification. (RT)

  20. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars.

    PubMed

    Ji, Sang Hye; Gururani, Mayank Anand; Chun, Se-Chul

    2014-01-20

    We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants.

  1. Characterization of six phosphate-dissolving bacteria isolated from rhizospheric soils in Mali

    USDA-ARS?s Scientific Manuscript database

    Maize rhizospheric soils in Mali were analyzed for concentrations of microorganisms capable of dissolving phosphate rock and producing plant growth substances. Six bacteria were isolated and found to have the capacity to dissolve /solubilize the Tilemsi phosphate rock (TPR) available in Mali by prod...

  2. Phenotypic and Genotypic Characterization of Some Lactic Acid Bacteria Isolated from Bee Pollen: A Preliminary Study

    PubMed Central

    BELHADJ, Hani; HARZALLAH, Daoud; BOUAMRA, Dalila; KHENNOUF, Seddik; Dahamna, Saliha; GHADBANE, Mouloud

    2014-01-01

    In the present work, five hundred and sixty-seven isolates of lactic acid bacteria were recovered from raw bee pollen grains. All isolates were screened for their antagonistic activity against both Gram-positive and Gram-negative pathogenic bacteria. Neutralized supernatants of 54 lactic acid bacteria (LAB) cultures from 216 active isolates inhibited the growth of indicator bacteria. They were phenotypically characterized, based on the fermentation of 39 carbohydrates. Using the simple matching coefficient and unweighted pair group algorithm with arithmetic averages (UPGMA), seven clusters with other two members were defined at the 79% similarity level. The following species were characterized: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Pediococcus acidilactici, Pediococcus pentosaceus, and unidentified lactobacilli. Phenotypic characteristics of major and minor clusters were also identified. Partial sequencing of the 16S rRNA gene of representative isolates from each cluster was performed, and ten strains were assigned to seven species: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Lactobacillus ingluviei, Pediococcus pentosaceus, Lactobacillus acidipiscis and Weissella cibaria. The molecular method used failed to determine the exact taxonomic status of BH0900 and AH3133. PMID:24936378

  3. How-to-Do-It: A Simple DNA Isolation Technique Using Halophilic Bacteria.

    ERIC Educational Resources Information Center

    Guilfoile, Patrick

    1989-01-01

    Described is a simple technique for isolating DNA from halophilic bacteria. Materials, procedure, and additional experiments are outlined. It is stated that the DNA obtained will be somewhat contaminated with cellular proteins and RNA. Offers a procedure for greater purification. (RT)

  4. [Isolation, identification and diversity analysis of petroleum-degrading bacteria in Shengli Oil Field wetland soil].

    PubMed

    Han, Ping; Zheng, Li; Cui, Zhi-Song; Guo, Xiu-Chun; Tian, Li

    2009-05-01

    The petroleum-degrading bacteria in Shengli Oil Field wetland soil were isolated and identified by traditional experiment methods, and their diversity was analyzed by PCR-DGGE (denaturing gradient gel electrophoresis). A total of thirteen petroleum-degrading bacterial strains were isolated, among which, six strains were found to have the ability of degrading the majority of C12-C26 petroleum hydrocarbon, with a degradation rate of > 90%. These petroleum degraders were phylogeneticly identified as the members of Halomonas, Alcanivorax, and Marinobacter, which were all belonged to gamma-proteobacteria. The uncultured predominant bacteria in Shengli Oil Field wetland soil were of Sulfurovum, Gillisia and Arcobacter. Among the predominant bacteria, gamma-proteobacteria accounted for a larger proportion, followed by alpha-proteobactiria, epsilon-proteobactiria, Actinobacteria, and Flavobacteria.

  5. Isolation of bacteria with antibiotic resistance from household cockroaches (Periplaneta americana and Blattella germanica).

    PubMed

    Pai, Hsiu-Hua; Chen, Wei-Chen; Peng, Chien-Fang

    2005-03-01

    Cockroaches may harbor and disseminate microorganisms to the environment. In this study, Periplaneta americana and Blattella germanica were collected from 40 households in Kaohsiung City and Kaohsiung County, Taiwan. Cockroach infestation was found in 50% of the studied households and 226 cockroaches (123 P. americana and 103 B. germanica) collected by trapping. P. americana was more often found in the kitchen (70.7%) whereas B. germanica in the storage room (51.5%) and kitchen (36.9%). There was no significant difference between the percentages of P. americana (99.9%) and B. germanica (98.0%) carrying bacteria. A total of 25 species of bacteria was isolated from P. americana and only 21 from B. germanica. Antibiotic resistance was found in Staphylococcus aureus, Enterococcus species, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Serratia marcescens, and Proteus species isolated from the cockroaches. These findings suggest a potential role of cockroaches in the transmission of pathogenic bacteria with antibiotic resistance in households.

  6. [Characteristics of bacteria isolated from body surface of German cockroaches caught in hospitals].

    PubMed

    Czajka, Ewa; Pancer, Katarzyna; Kochman, Maria; Gliniewicz, Aleksandra; Sawicka, Bozena; Rabczenko, Daniel; Stypułkowska-Misiurewicz, Hanna

    2003-01-01

    The objective of the study was to identify bacterial flora from external parts of German cockroaches caught in hospitals. The susceptibility of the bacteria to the most important groups of antimicrobial agents was also examined. 80 strains of bacteria were isolated, among them 34 strains of Gram-positive cocci and 31 strains of Gram-negative rods. One of isolated strains of Citrobacter freundii and two strains of Serratia liquefaciens showed ESBL mechanism of resistance and extended level of AmpC--type beta-lactamases. Two Staphylococcus strains (S. epidermidis and S. equorum) were resistant to erythromycin and clindamycin (MLSB mechanism of resistance). Such strains, resistant to antibiotics and chemiotherapeutics may be reservoirs of resistance genes which can be transmitted into other bacteria. Presence of such pathogens on the body surface of German cockroaches, very mobile insects, might create conditions for easy dissemination of them in hospital environment.

  7. Amoebae-resisting bacteria isolated from human nasal swabs by amoebal coculture.

    PubMed

    Greub, Gilbert; La Scola, Bernard; Raoult, Didier

    2004-03-01

    Amoebae feed on bacteria, and few bacteria can resist their microbicidal ability. Amoebal coculture could therefore be used to selectively grow these amoebae-resisting bacteria (ARB), which may be human pathogens. To isolate new ARB, we performed amoebal coculture from 444 nasal samples. We recovered 7 (1.6%) ARB from 444 nasal swabs, including 4 new species provisionally named Candidatus Roseomonas massiliae, C. Rhizobium massiliae, C. Chryseobacterium massiliae, and C. Amoebinatus massiliae. The remaining isolates were closely related to Methylobacterium extorquens, Bosea vestrii, and Achromobacter xylosoxidans. Thus, amoebal coculture allows the recovery of new bacterial species from heavily contaminated samples and might be a valuable approach for the recovery of as-yet unrecognized emerging pathogens from clinical specimens.

  8. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production.

    PubMed

    García-Hernández, Yaneisy; Pérez-Sánchez, Tania; Boucourt, Ramón; Balcázar, José L; Nicoli, Jacques R; Moreira-Silva, João; Rodríguez, Zoraya; Fuertes, Héctor; Nuñez, Odalys; Albelo, Nereyda; Halaihel, Nabil

    2016-10-01

    In livestock production, lactic acid bacteria (LAB) are the most common microorganisms used as probiotics. For such use, these bacteria must be correctly identified and characterized to ensure their safety and efficiency. In the present study, LAB were isolated from broiler excreta, where a fermentation process was used. Nine among sixteen isolates were identified by biochemical and molecular (sequencing of the 16S rRNA gene) methods as Lactobacillus crispatus (n=1), Lactobacillus pentosus (n=1), Weissella cibaria (n=1), Pediococcus pentosaceus (n=2) and Enterococcus hirae (n=4). Subsequently, these bacteria were characterized for their growth capabilities, lactic acid production, acidic pH and bile salts tolerance, cell surface hydrophobicity, antimicrobial susceptibility and antagonistic activity. Lactobacillus pentosus strain LB-31, which showed the best characteristics, was selected for further analysis. This strain was administered to broilers and showed the ability of modulating the immune response and producing beneficial effects on morpho-physiological, productive and health indicators of the animals.

  9. Characterization of root-nodule bacteria isolated from Vicia faba and selection of plant growth promoting isolates.

    PubMed

    Saïdi, Sabrine; Chebil, Samir; Gtari, Maher; Mhamdi, Ridha

    2013-06-01

    A collection of 104 isolates from root-nodules of Vicia faba was submitted to 16S rRNA PCR-RFLP typing. A representative sample was further submitted to sequence analysis of 16S rRNA. Isolates were assigned to 12 genera. All the nodulating isolates (45 %) were closely related to Rhizobium leguminosarum USDA2370(T) (99.34 %). The remaining isolates, including potential human pathogens, failed to nodulate their original host. They were checked for presence of symbiotic genes, P-solubilization, phytohormone and siderophore production, and then tested for their growth promoting abilities. Results indicated that 9 strains could induce significant increase (41-71 %) in shoot dry yield of faba bean. A Pseudomonas strain was further assessed in on-farm trial in combination with a selected rhizobial strain. This work indicated that nodule-associated bacteria could be a valuable pool for selection of effective plant growth promoting isolates. Nevertheless, the possible involvement of nodules in increasing risks related to pathogenic bacteria should not be neglected and needs to be investigated further.

  10. Efficacy of Locally Isolated Lactic Acid Bacteria Against Antibiotic-Resistant Uropathogens.

    PubMed

    Manzoor, Asma; Ul-Haq, Ikram; Baig, Shahjhan; Qazi, Javed Iqbal; Seratlic, Sanja

    2016-01-01

    Antibiotic resistance represents a serious global health threat to public health, so infections such as pneumonia and urinary tract infection (UTI) are becoming harder to treat. Therefore, it is necessary to develop an action plan to restrain the problem of antibiotic resistance. One approach in UTI control could be the use of lactobacilli because these indigenous inhabitants in human intestine have been found to play an important role in protecting the host from various infections. We sought to check the efficacy of locally isolated Lactobacillus species to eradicate antibiotic-resistant pathogenic bacteria causing UTI. Lactic acid bacteria isolated from spoiled fruits and vegetables and grown in MRS medium were screened against multi-drug-resistant Candida albicans, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus fecalis. Fifty-four lactic acid bacteria were isolated from spoiled fruits and vegetables, of which 11 Gram-positive and catalase-negative Lactobacillus isolates were identified by carbohydrate assimilation profiles as Lactobacillus acidophilus, L. paracasei, L. delbrueckii, L. casei, L. helveticus, L. brevis, L. salivarius, L. fermentum, L. rhamnosus, L. animalis, and L. plantarum. The latter organism had the highest abundance of all the samples, so its isolates were also verified through 16S rRNA gene sequencing. The isolated Lactobacilli were screened against multi-drug-resistant uropathogens, viz. C. albicans, P. aeruginosa, K. pneumoniae, E. fecalis, and E. coli. The growth inhibition zone (GIZ) was over 10 mm against all the uropathogenic test organisms, where L. fermentum and L. plantarum strains demonstrated remarkable inhibitory activities against E. coli and E. faecalis, with a GIZ up to 28 mm. The susceptibility test to 16 antibiotics showed multidrug resistance (3 to 5 antibiotics) among all the tested uropathogens. The obtained results revealed that all the Lactobacillus isolates displayed antimicrobial

  11. Efficacy of Locally Isolated Lactic Acid Bacteria Against Antibiotic-Resistant Uropathogens

    PubMed Central

    Manzoor, Asma; Ul-Haq, Ikram; Baig, Shahjhan; Qazi, Javed Iqbal; Seratlic, Sanja

    2016-01-01

    Background: Antibiotic resistance represents a serious global health threat to public health, so infections such as pneumonia and urinary tract infection (UTI) are becoming harder to treat. Therefore, it is necessary to develop an action plan to restrain the problem of antibiotic resistance. One approach in UTI control could be the use of lactobacilli because these indigenous inhabitants in human intestine have been found to play an important role in protecting the host from various infections. Objectives: We sought to check the efficacy of locally isolated Lactobacillus species to eradicate antibiotic-resistant pathogenic bacteria causing UTI. Materials and Methods: Lactic acid bacteria isolated from spoiled fruits and vegetables and grown in MRS medium were screened against multi-drug-resistant Candida albicans, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus fecalis. Results: Fifty-four lactic acid bacteria were isolated from spoiled fruits and vegetables, of which 11 Gram-positive and catalase-negative Lactobacillus isolates were identified by carbohydrate assimilation profiles as Lactobacillus acidophilus, L. paracasei, L. delbrueckii, L. casei, L. helveticus, L. brevis, L. salivarius, L. fermentum, L. rhamnosus, L. animalis, and L. plantarum. The latter organism had the highest abundance of all the samples, so its isolates were also verified through 16S rRNA gene sequencing. The isolated Lactobacilli were screened against multi-drug-resistant uropathogens, viz. C. albicans, P. aeruginosa, K. pneumoniae, E. fecalis, and E. coli. The growth inhibition zone (GIZ) was over 10 mm against all the uropathogenic test organisms, where L. fermentum and L. plantarum strains demonstrated remarkable inhibitory activities against E. coli and E. faecalis, with a GIZ up to 28 mm. The susceptibility test to 16 antibiotics showed multidrug resistance (3 to 5 antibiotics) among all the tested uropathogens. Conclusions: The obtained results

  12. Indigenous Probiotic Lactobacillus Isolates Presenting Antibiotic like Activity against Human Pathogenic Bacteria

    PubMed Central

    Halder, Debashis; Mandal, Manisha; Chatterjee, Shiv Sekhar; Pal, Nishith Kumar; Mandal, Shyamapada

    2017-01-01

    Background: Indigenous lactic acid bacteria are well known probiotics having antibacterial activity against potentially pathogenic bacteria. This study aims to characterize the curd lactobacilli for their probiotic potentiality and antagonistic activity against clinical bacteria. Methods: Four curd samples were processed microbiologically for the isolation of lactic acid bacteria (LAB). The LAB strains obtained were identified by conventional methods: cultural aspect, gram-staining, biochemical and sugar fermentation tests. The probiotic properties were justified with tolerance to low-pH, bile salt and sodium chloride, and the antagonistic activity of the lactobacilli against human pathogenic bacteria (Escherichia coli, Proteus vulgaris, Acinetobacter baumannii and Salmonella enterica serovar Typhi) was assessed. Hemolytic activity and antibiotic susceptibility were determined for the lactobacilli isolates, and the cumulative probiotic potential (CPP) values were recorded. Result: Four lactobacilli isolates, L. animalis LMEM6, L. plantarum LMEM7, L. acidophilus LMEM8 and L. rhamnosus LMEM9, procured from the curd samples, survived in low-pH and high bile salt conditions, and showed growth inhibitory activity against the indicator bacteria by agar-well (zone diameter of inhibition; ZDIs: 13.67 ± 0.58–29.50 ± 2.10 mm) and agar overlay (ZDIs: 11.33 ± 0.58–35.67 ± 2.52 mm) methods; the average growth inhibitory activity of lactobacilli ranged 233.34 ± 45.54–280.56 ± 83.67 AU/mL, against the test bacterial pathogens. All the lactobacilli were non-hemolytic and sensitive to most of the test antibiotics. The CPP values of the isolated LAB were recorded as 80–100%. Conclusion: The curd lactobacilli procured might be used as the valid candidates of probiotics, and bio-therapeutics against bacterial infection to humans. PMID:28621711

  13. Potential sources of bacteria that are isolated from contact lenses during wear.

    PubMed

    Willcox, M D; Power, K N; Stapleton, F; Leitch, C; Harmis, N; Sweeney, D F

    1997-12-01

    The aim of this paper was to determine the possible contamination sources of contact lenses during wear. Potential sources of the microbiota that colonized hydrogel contact lenses during wear were examined. The microorganisms that colonize contact lenses were grown, identified, and compared to those microorganisms that colonized the lower lid margins, upper bulbar conjunctiva, hands, and contact lens cases of contact lens wearers. In addition, the incidence of contamination of the domestic water supply in the Sydney area was obtained, and this was compared to the incidence of colonization of contact lenses by microorganisms in general and gram-negative bacteria in particular. There was a wide diversity of bacteria that were isolated from each site sampled. Coagulase-negative staphylococci and Propionibacterium spp. were the most common isolates from all ocular sites examined, and constituted the normal ocular microbiota. Other bacteria, including members of the families Enterobacteriaceae and Pseudomonadaceae, were isolated infrequently from all sites, but most frequently from contact lens cases. Statistical analysis revealed that there was a correlation between the isolation of bacteria from the contact lens and the lower lid margin (p < 0.001). Analysis of this correlation revealed that this was true for the normal microbiota. A correlation was also noted between the colonization of contact lenses by gram-negative bacteria and contamination of the domestic water supply. This study has demonstrated that the likely route for the normal ocular microbiota colonizing contact lenses is via the lid margins, whereas colonization by gram-negative bacteria, including potential agents of microbial keratitis, is likely to be from the domestic water supply.

  14. [Antibiotic properties of the Pseudoalteromonas genus bacteria isolated from the Black Sea water and molluscs].

    PubMed

    Onyshchenko, O M; Kiprianova, O A; Lysenko, T H; Smirnov, V V

    2002-01-01

    Antagonistic properties of 41 strains of Alteromonas-like bacteria isolated from the Black Sea water and molluscs have been studied. Being grown on the rich medium "B" for marine bacteria, 21% of strains have shown high antagonistic activity against phytopathogenic fungi; 6% of strains inhibited the growth of Bacillus subtilis, Proteus vulgaris and Candida albicans. Spectrum of antagonistic activity was essentially changed on synthetic "BM" medium with acetate, glutamate, alpha-alanine as a single source of carbon and was directed against Pseudomonas aeruginosa. Culture liquids and acetone extracts of microbial biomass of 34% of the studied strains have shown activity against bacteria, fungi and cyanobacteria. Strains producing the wide spectrum of antimicrobial substances (Alteromonas macleodii, Pseudoalteromonas citrea, P. haloplanktis, P. aurantia, Pseudoalteromonas sp.), fungicidal and algocidal substances have been found. Both extra- and intracellular metabolities of marine bacteria (including the pigments) were active.

  15. Gram-positive bacteria of marine origin: a numerical taxonomic study on Mediterranean isolates.

    PubMed

    Ortigosa, M; Garay, E; Pujalte, M J

    1997-12-01

    A numerical taxonomic study was performed on 65 Gram-positive wild strains of heterotrophic, aerobic, marine bacteria, and 9 reference strains. The isolates were obtained from oysters and seawater sampled monthly over one year, by direct plating on Marine Agar. The strains were characterized by 96 morphological, biochemical, physiological and nutritional tests. Clustering yielded 13 phena at 0.62 similarity level (Sl coefficient). Only one of the seven phena containing wild isolates could be identified (Bacillus marinus). A pronounced salt requirement was found in most isolates.

  16. Isolation of Fecal Coliform Bacteria from the Diamondback Terrapin (Malaclemys terrapin centrata)

    PubMed Central

    Harwood, Valerie J.; Butler, Joseph; Parrish, Danny; Wagner, Victoria

    1999-01-01

    Total and fecal coliform bacteria were isolated from the cloaca and feces of the estuarine diamondback terrapin. The majority of samples contained fecal coliforms. Escherichia coli was the predominant fecal coliform species isolated, and members of the genus Salmonella were isolated from 2 of 39 terrapins. Fecal coliform numbers are used to regulate shellfish harvests, and diamondback terrapins inhabit the brackish-water habitats where oyster beds are found; therefore, these findings have implications for the efficacy of current regulatory parameters in shellfishing waters. PMID:9925633

  17. Isolation of fecal coliform bacteria from the diamondback terrapin (Malaclemys terrapin centrata).

    PubMed

    Harwood, V J; Butler, J; Parrish, D; Wagner, V

    1999-02-01

    Total and fecal coliform bacteria were isolated from the cloaca and feces of the estuarine diamondback terrapin. The majority of samples contained fecal coliforms. Escherichia coli was the predominant fecal coliform species isolated, and members of the genus Salmonella were isolated from 2 of 39 terrapins. Fecal coliform numbers are used to regulate shellfish harvests, and diamondback terrapins inhabit the brackish-water habitats where oyster beds are found; therefore, these findings have implications for the efficacy of current regulatory parameters in shellfishing waters.

  18. Linear alkylbenzene sulfonate tolerance in bacteria isolated from sediment of tropical water bodies polluted with detergents.

    PubMed

    Eniola, Kehinde I T; Olayemi, Albert B

    2008-12-01

    The discharge of untreated detergent-bearing waste introduces linear alklcylbenzene sulfonates (LAS) to the aquatic environment. The surfactant persists in some streams and rivers in Nigeria, some is adsorbed to suspended materials and end in the sediment of the receiving water bodies. In this study, bacteria isolated from sediments of some tropical detergent-effluent-polluted streams were tested for tolerance to LAS using the media dilution technique. LAS-tolerance was indicated by growth of the bacteria in the presence of the surfactant. The pH, concentrations of surfactant, population of heterotrophic bacteria and population of LAS-tolerant bacteria in the sediments were determined. A direct relationship (r = 0.9124) was found between the alkaline conditions (pH= 8.2-12.0) and high surfactant concentrations (45-132 mg/g) in the sediment. The sediments harboured a high population and a wide variety of bacteria; the populations of viable heterotrophic bacteria (VHB: 2.9 x 10(5) to 1.2 x 10(7) cfu/g) and LAS tolerant bacteria (LTB: 1.5 x 10(4) to 1.2 x 10(6) cfu/g) had a direct relationship (r = 0.9500). An inverse relationship resulted between each of them and the concentration of surfactant in the sediment, r(VHB/LAS) = -0.9303 and r(LTB/LAS) = -0.9143, respectively. Twelve bacteria species were isolated from the sediment: Alcaligenes odorans, Bacillus subtilis, Burkholderia cepacia, Citrobacter freundii, Citrobacter diversus, Escherichia coli, Micrococcus luteus, Micrococcus albus, Pseudomonas putida, Pseudomonas stutzeri, Staphylococcus aureus and Streptococcusfaecalis. Most of them were adapted to the surfactant with their maximum acceptable concentrations ranging between 0.03 and >1.0% (w/v). The sediments could serve as source of adapted organisms which can be used in bio-treatment of LAS-bearing waste.

  19. Innovative Approaches Using Lichen Enriched Media to Improve Isolation and Culturability of Lichen Associated Bacteria.

    PubMed

    Biosca, Elena G; Flores, Raquel; Santander, Ricardo D; Díez-Gil, José Luis; Barreno, Eva

    2016-01-01

    Lichens, self-supporting mutualistic associations between a fungal partner and one or more photosynthetic partners, also harbor non-photosynthetic bacteria. The diversity and contribution of these bacteria to the functioning of lichen symbiosis have recently begun to be studied, often by culture-independent techniques due to difficulties in their isolation and culture. However, culturing as yet unculturable lichenic bacteria is critical to unravel their potential functional roles in lichen symbiogenesis, to explore and exploit their biotechnological potential and for the description of new taxa. Our objective was to improve the recovery of lichen associated bacteria by developing novel isolation and culture approaches, initially using the lichen Pseudevernia furfuracea. We evaluated the effect of newly developed media enriched with novel lichen extracts, as well as the influence of thalli washing time and different disinfection and processing protocols of thalli. The developed methodology included: i) the use of lichen enriched media to mimic lichen nutrients, supplemented with the fungicide natamycin; ii) an extended washing of thalli to increase the recovery of ectolichenic bacteria, thus allowing the disinfection of thalli to be discarded, hence enhancing endolichenic bacteria recovery; and iii) the use of an antioxidant buffer to prevent or reduce oxidative stress during thalli disruption. The optimized methodology allowed significant increases in the number and diversity of culturable bacteria associated with P. furfuracea, and it was also successfully applied to the lichens Ramalina farinacea and Parmotrema pseudotinctorum. Furthermore, we provide, for the first time, data on the abundance of culturable ecto- and endolichenic bacteria that naturally colonize P. furfuracea, R. farinacea and P. pseudotinctorum, some of which were only able to grow on lichen enriched media. This innovative methodology is also applicable to other microorganisms inhabiting these

  20. Innovative Approaches Using Lichen Enriched Media to Improve Isolation and Culturability of Lichen Associated Bacteria

    PubMed Central

    Biosca, Elena G.; Flores, Raquel; Santander, Ricardo D.; Díez-Gil, José Luis; Barreno, Eva

    2016-01-01

    Lichens, self-supporting mutualistic associations between a fungal partner and one or more photosynthetic partners, also harbor non-photosynthetic bacteria. The diversity and contribution of these bacteria to the functioning of lichen symbiosis have recently begun to be studied, often by culture-independent techniques due to difficulties in their isolation and culture. However, culturing as yet unculturable lichenic bacteria is critical to unravel their potential functional roles in lichen symbiogenesis, to explore and exploit their biotechnological potential and for the description of new taxa. Our objective was to improve the recovery of lichen associated bacteria by developing novel isolation and culture approaches, initially using the lichen Pseudevernia furfuracea. We evaluated the effect of newly developed media enriched with novel lichen extracts, as well as the influence of thalli washing time and different disinfection and processing protocols of thalli. The developed methodology included: i) the use of lichen enriched media to mimic lichen nutrients, supplemented with the fungicide natamycin; ii) an extended washing of thalli to increase the recovery of ectolichenic bacteria, thus allowing the disinfection of thalli to be discarded, hence enhancing endolichenic bacteria recovery; and iii) the use of an antioxidant buffer to prevent or reduce oxidative stress during thalli disruption. The optimized methodology allowed significant increases in the number and diversity of culturable bacteria associated with P. furfuracea, and it was also successfully applied to the lichens Ramalina farinacea and Parmotrema pseudotinctorum. Furthermore, we provide, for the first time, data on the abundance of culturable ecto- and endolichenic bacteria that naturally colonize P. furfuracea, R. farinacea and P. pseudotinctorum, some of which were only able to grow on lichen enriched media. This innovative methodology is also applicable to other microorganisms inhabiting these

  1. Isolation and identification of amylase-producing, endospore-forming bacteria from the alimentary tract of commercially processed broilers

    USDA-ARS?s Scientific Manuscript database

    Bacterial cultures of crop and cecal contents of adult poultry contain beneficial bacteria that reduce colonization of young poultry by Salmonella. Since endospore-forming bacteria may play a role in competitive exclusion of Salmonella in poultry, 3 trials were conducted to isolate these bacteria fr...

  2. Isolation and Characterization of Integron-Containing Bacteria without Antibiotic Selection

    PubMed Central

    Barlow, Robert S.; Pemberton, John M.; Desmarchelier, Patricia M.; Gobius, Kari S.

    2004-01-01

    The emergence of antibiotic resistance among pathogenic and commensal bacteria has become a serious problem worldwide. The use and overuse of antibiotics in a number of settings are contributing to the development of antibiotic-resistant microorganisms. The class 1 and 2 integrase genes (intI1 and intI2, respectively) were identified in mixed bacterial cultures enriched from bovine feces by growth in buffered peptone water (BPW) followed by integrase-specific PCR. Integrase-positive bacterial colonies from the enrichment cultures were then isolated by using hydrophobic grid membrane filters and integrase-specific gene probes. Bacterial clones isolated by this technique were then confirmed to carry integrons by further testing by PCR and DNA sequencing. Integron-associated antibiotic resistance genes were detected in bacteria such as Escherichia coli, Aeromonas spp., Proteus spp., Morganella morganii, Shewanella spp., and urea-positive Providencia stuartii isolates from bovine fecal samples without the use of selective enrichment media containing antibiotics. Streptomycin and trimethoprim resistance were commonly associated with integrons. The advantages conferred by this methodology are that a wide variety of integron-containing bacteria may be simultaneously cultured in BPW enrichments and culture biases due to antibiotic selection can be avoided. Rapid and efficient identification, isolation, and characterization of antibiotic resistance-associated integrons are possible by this protocol. These methods will facilitate greater understanding of the factors that contribute to the presence and transfer of integron-associated antibiotic resistance genes in bacterial isolates from red meat production animals. PMID:14982773

  3. Isolation of Extended Spectrum β-lactamase (ESBL) Producing Bacteria from Urban Surface Waters in Malaysia

    PubMed Central

    Tissera, Shehani; Lee, Sui Mae

    2013-01-01

    Background: This was a preliminary study to test for the presence of multiple antibiotic-resistant extended spectrum β-lactamase (ESBL) producing bacteria in Malaysian urban surface waters. Although the literature review revealed several published papers on clinical ESBL isolates in Malaysia, none were found on ESBL isolates obtained from local surface waters Methods: Isolated bacterial species were tested for resistance to cefotaxime, amoxicillin/clavulanate and aztreonam, and susceptibility to imipenem and meropenem using antibiotic susceptibility testing (AST) by disc diffusion. This served as a screening step to detect bacteria that could be potential ESBL species. 16S ribose ribonucleic acid (rRNA) polymerase chain reaction (PCR) testing with two clusters of bla (β-lactamase) gene primers was used to test for the bla genes CTX-M (Groups 1, 2, 9), OXA-1, SHV and TEM. Results: A total of 19 isolates were found, possessing at least one of the bla genes tested for. There was a relatively high occurrence of CTX-M genes (84.2%) among these, followed by TEM genes (47.4%). The isolates were identified as Enterobacteriaceae (89.5%), predominantly Escherichia coli and Klebsiella pneumoniae. Conclusion: There appears to be a high occurrence of ESBL-bacteria in local surface waters, among these being opportunistic pathogens. The persistence and spread of these species in the environment poses a threat to exposed human populations. PMID:23966820

  4. Isolation and characterization of integron-containing bacteria without antibiotic selection.

    PubMed

    Barlow, Robert S; Pemberton, John M; Desmarchelier, Patricia M; Gobius, Kari S

    2004-03-01

    The emergence of antibiotic resistance among pathogenic and commensal bacteria has become a serious problem worldwide. The use and overuse of antibiotics in a number of settings are contributing to the development of antibiotic-resistant microorganisms. The class 1 and 2 integrase genes (intI1 and intI2, respectively) were identified in mixed bacterial cultures enriched from bovine feces by growth in buffered peptone water (BPW) followed by integrase-specific PCR. Integrase-positive bacterial colonies from the enrichment cultures were then isolated by using hydrophobic grid membrane filters and integrase-specific gene probes. Bacterial clones isolated by this technique were then confirmed to carry integrons by further testing by PCR and DNA sequencing. Integron-associated antibiotic resistance genes were detected in bacteria such as Escherichia coli, Aeromonas spp., Proteus spp., Morganella morganii, Shewanella spp., and urea-positive Providencia stuartii isolates from bovine fecal samples without the use of selective enrichment media containing antibiotics. Streptomycin and trimethoprim resistance were commonly associated with integrons. The advantages conferred by this methodology are that a wide variety of integron-containing bacteria may be simultaneously cultured in BPW enrichments and culture biases due to antibiotic selection can be avoided. Rapid and efficient identification, isolation, and characterization of antibiotic resistance-associated integrons are possible by this protocol. These methods will facilitate greater understanding of the factors that contribute to the presence and transfer of integron-associated antibiotic resistance genes in bacterial isolates from red meat production animals.

  5. Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments.

    PubMed

    Vishnivetskaya, T; Kathariou, S; McGrath, J; Gilichinsky, D; Tiedje, J M

    2000-06-01

    Permafrost represents a unique ecosystem that has allowed the prolonged survival of certain bacterial lineages at subzero temperatures. To better understand the permafrost microbial community, it is important to identify isolation protocols that optimize the recovery of genetically diverse bacterial lineages. We have investigated the impact of different low-temperature isolation protocols on recovery of aerobic bacteria from northeast Siberian permafrost of variable geologic origin and frozen for 5000 to 3 million years. Low-nutrient media enhanced the quantitative recovery of bacteria, whereas the isolation of diverse morphotypes was maximized on rich media. Cold enrichments done directly in natural, undisturbed permafrost led not only to recovery of increased numbers of bacteria but also to isolation of genotypes not recovered by means of liquid low-temperature enrichments. On the other hand, direct plating and growth at 4 degrees C also led to recovery of diverse genotypes, some of which were not recovered following enrichment. Strains recovered from different permafrost samples were predominantly oligotrophic and non-spore-forming but were otherwise variable from each other in terms of a number of bacteriological characteristics. Our data suggest that a combination of isolation protocols from different permafrost samples should be used to establish a culture-based survey of the different bacterial lineages in permafrost.

  6. Isolation and characterization of beneficial bacteria associated with citrus roots in Florida.

    PubMed

    Trivedi, Pankaj; Spann, Timothy; Wang, Nian

    2011-08-01

    Cultivable diversity of bacteria associated with citrus was investigated as part of a larger study to understand the roles of beneficial bacteria and utilize them to increase the productive capacity and sustainability of agro-ecosystems. Citrus roots from Huanglongbing (HLB) diseased symptomatic and asymptomatic citrus were used in this study. A total of 227 and 125 morphologically distinct colonies were isolated and characterized from HLB asymptomatic and symptomatic trees, respectively. We observed that the frequency of bacterial isolates possessing various plant beneficial properties was significantly higher in the asymptomatic samples. A total of 39 bacterial isolates showing a minimum of five beneficial traits related to mineral nutrition [phosphate (P) solubilization, siderophore production, nitrogen (N) fixation], development [indole acetic acid (IAA) synthesis], health [production of antibiotic and lytic enzymes (chitinase)], induction of systemic resistance [salicylic acid (SA) production], stress relief [production of 1-amino-cyclopropane-1-carboxylate deaminase] and production of quorum sensing [N-acyl homoserine lactones] signals were characterized. A bioassay using ethidium monoazide (EMA)-qPCR was developed to select bacteria antagonistic to Candidatus Liberibacter asiaticus. Using the modified EMA-qPCR assay, we found six bacterial isolates showing maximum similarity to Paenibacillus validus, Lysinibacillus fusiformis, Bacillus licheniformis, Pseudomonas putida, Microbacterium oleivorans, and Serratia plymutica could significantly reduce the population of viable Ca. L. asiaticus in HLB symptomatic leaf samples. In conclusion, we have isolated and characterized multiple beneficial bacterial strains from citrus roots which have the potential to enhance plant growth and suppress diseases.

  7. [Diversity of associated nitrogen-fixing bacteria isolated from the pioneer plants-Vetiver zizanioides].

    PubMed

    Zhao, Xianwei; Javed, Chaudhary Hassan; He, Yumei; Zhang, Zhiying; Peng, Guixiang; Tan, Zhiyuan

    2009-11-01

    Vetiver zizanioides is a perennial grass of the Poaceae family, known of its silage, soil and water conservation role. The aim of the study was to collect and identify the resources of the nitrogen-fixing bacteria associated with Vetiver zizanioides. Associated nitrogen-fixing bacteria isolated from Vetiver zizanioides were studied by SDS-PAGE whole-cell protein patterns, insert sequence (IS)-PCR finger printing, utilization of sole carbon sources and 16S rRNA gene sequence analysis. Based on the results of finger printing analysis, protein patterns and biological test, isolates were grouped into 6 clusters, except 4 single strains. Phylogenetic analysis of 16S rDNA sequences indicated that isolates belonged to Herbaspirillum frisingense, Enterobacter ludwigii, Pseudacidovorax intermedius, Mitsuaria chitosanitabida, Pseudomonas putida, Pseudomonas fluorescens, Burkholderia vietnamiensis and Enterobacter cloacae. The nitrogen fixers associated with Vetiver zizanioides showed great diversity and may have a potential application for the grass forage and agriculture.

  8. Thermotolerance and multidrug resistance in bacteria isolated from equids and their environment.

    PubMed

    Singh, B R

    2009-06-13

    Sixty-nine vaginal swabs and 138 rectal swabs collected from 195 equids were analysed for the presence of thermotolerant bacteria, that is, bacteria surviving at 60+/-0.1 degrees C for one hour. Thermotolerant Escherichia coli, Enterobacter species, Klebsiella pneumoniae, Proteus species and Pseudomonas species were isolated from 41, 16, nine, three and three of the 138 rectal swabs, respectively; seven of the E coli and two of the Enterobacter species isolates survived pasteurisation at 63.8+/-0.1 degrees C for 30 minutes. All except three E coli, two Enterobacter species and one Proteus species isolate were resistant to three or more antimicrobial drugs, that is, they were multidrug resistant. Thermotolerant E coli, Enterobacter species and Proteus species were isolated from 11, two and two of the 69 vaginal swabs, respectively, but only one isolate of E coli survived pasteurisation at 63.8+/-0.1 degrees C for 30 minutes. All except two of the E coli isolates were multidrug resistant. None of the four thermotolerant isolates from nine soil samples collected on four of the farms where the equids were kept was pasteurisation resistant, but they were all multidrug resistant. Of the 10 pasteurisation-resistant isolates, nine were multidrug resistant but none was resistant to chloramphenicol, ciprofloxacin, cotrimazine, cotrimoxazole or streptomycin. All the isolates grew at 42+/-0.1 degrees C but none grew at 46+/-0.1 degrees C or above. The Enterobacter isolates were more tolerant to pasteurisation than the E coli isolates, particularly during the first few minutes of exposure.

  9. Isolation and characterization of cellulose-decomposing bacteria inhabiting sawdust and coffee residue composts.

    PubMed

    Fathallh Eida, Mohamed; Nagaoka, Toshinori; Wasaki, Jun; Kouno, Kenji

    2012-01-01

    Clarifying the identity and enzymatic activities of microorganisms associated with the decomposition of organic materials is expected to contribute to the evaluation and improvement of composting processes. In this study, we examined the cellulolytic and hemicellulolytic abilities of bacteria isolated from sawdust compost (SDC) and coffee residue compost (CRC). Cellulolytic bacteria were isolated using Dubos mineral salt agar containing azurine cross-linked (AZCL) HE-cellulose. Bacterial identification was performed based on the sequence analysis of 16S rRNA genes, and cellulase, xylanase, β-glucanase, mannanase, and protease activities were characterized using insoluble AZCL-linked substrates. Eleven isolates were obtained from SDC and 10 isolates from CRC. DNA analysis indicated that the isolates from SDC and CRC belonged to the genera Streptomyces, Microbispora, and Paenibacillus, and the genera Streptomyces, Microbispora, and Cohnella, respectively. Microbispora was the most dominant genus in both compost types. All isolates, with the exception of two isolates lacking mannanase activity, showed cellulase, xylanase, β-glucanase, and mannanase activities. Based on enzyme activities expressed as the ratio of hydrolysis zone diameter to colony diameter, it was suggested that the species of Microbispora (SDCB8, SDCB9) and Paenibacillus (SDCB10, SDCB11) in SDC and Microbispora (CRCB2, CRCB6) and Cohnella (CRCB9, CRCB10) in CRC contribute to efficient cellulolytic and hemicellulolytic processes during composting.

  10. Isolation of Thermophilic Lignin Degrading Bacteria from Oil-Palm Empty Fruit Bunch (EFB) Compost

    NASA Astrophysics Data System (ADS)

    Lai, C. M. T.; Chua, H. B.; Danquah, M. K.; Saptoro, A.

    2017-06-01

    Empty Fruit Bunch (EFB) is a potential and sustainable feedstock for bioethanol production due to its high cellulosic content and availability in Malaysia. Due to high lignin content of EFB and the lack of effective delignification process, commercial bioethanol production from EFB is presently not viable. Enzymatic delignification has been identified as one of the key steps in utilising EFB as a feedstock for bioethanol conversion. To date, limited work has been reported on the isolation of lignin degrading bacteria. Hence, there is a growing interest to search for new lignin degrading bacteria with greater tolerance to temperature and high level of ligninolytic enzymes for more effective lignin degradation. This study aimed to isolate and screen thermophilic ligninolytic microorganisms from EFB compost. Ten isolates were successfully isolated from EFB compost. Although they are not capable of decolorizing Methylene Blue (MB) dye under agar plate assay method, they are able to utilize lignin mimicked compound - guaiacol as a sole carbon on the agar plate assay. This infers that there is no correlation of ligninolytic enzymes with dye decolourization for all the isolates that have been isolated. However, they are able to produce ligninolytic enzymes (Lignin peroxidase, Manganese peroxidase, Laccase) in Minimal Salt Medium with Kraft Lignin (MSM-KL) with Lignin Peroxidase (LiP) as the predominant enzyme followed by Manganese Peroxidase (MnP) and Laccase (Lac). Among all the tested isolates, CLMT 29 has the highest LiP production up to 8.7673 U/mL following 24 h of growth.

  11. Isolation of palm oil-utilising, polyhydroxyalkanoate (PHA)-producing bacteria by an enrichment technique.

    PubMed

    Alias, Zazali; Tan, Irene K P

    2005-07-01

    In early attempts to isolate palm oil-utilising bacteria from palm oil mill effluent (POME), diluted liquid samples of POME were spread on agar containing POME as primary nutrient. 45 purified colonies were screened for intracellular lipids by staining with Sudan Black B. Of these, 10 isolates were positively stained. The latter were grown in a nitrogen-limiting medium with palm olein (a triglyceride) or saponified palm olein (salts of fatty acids) as carbon source. None of the isolates grew in the palm olein medium but all grew well in the saponified palm olein medium. Of the latter however, only one isolate was positively stained with Nile Blue A, indicating the presence of PHA. This method did not successfully generate bacterial isolates which could metabolise palm olein to produce PHA. An enrichment technique was therefore developed whereby a selective medium was designed. The latter comprised minerals and palm olein (1% w/v) as sole carbon source to which POME (2.5% v/v) was added as the source of bacteria. The culture was incubated with shaking at 30 degrees C for 4 weeks. Out of seven isolates obtained from the selective medium, two isolates, FLP1 and FLP2, could utilise palm olein for growth and production of the homopolyester, poly(3-hydroxybutyrate). FLP1 is gram-negative and is identified (BIOLOG) to have 80% similarity to Burkholderia cepacia. When grown with propionate or valerate, FLP1 produced a copolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate).

  12. [Isolation and identification of root endophytic and rhizosphere bacteria of rice landraces in Yuanyang Terrace, China].

    PubMed

    Zhao, Juan; Liu, Tao; Pan, Lei; Jin, Bai-hui; Zhao, Dan; Chen, Chen; Zhu, You-yong; He, Xia-hong

    2015-12-01

    To reveal root endophytic and rhizosphere bacteria constitution of rice landraces in Yuanyang Terrace, isolation was carried out by tissue isolation method and soil dilution plate method for two landraces of Yuelianggu and Hongjiaolaojing. A total of 399 bacterial strains isolated were identified by morphological characteristics, physiological and biochemical identification. The results showed that there were 8 genera isolated from the root of Yuelianggu and 5 genera from its rhizosphere soil, and 5 genera were same. For Hongjiaolaojing, there were 10 genera isolated from its root and 7 genera from its rhizosphere soil, and 6 genera were same. By molecular biology, identification, a total of 11 species and 5 genera were isolated from the root of Yuelianggu, 8 species and 4 genera from its rhizosphere soil, and 5 species and 4 genera were same. As for Hongjiaolaojing, there were 9 species and 5 genera isolated from its root, and 10 species and 3 genera from its rhizosphere soil, and 4 species and 2 genera were same. The results of physiological and biochemical characteristics identification method and molecular identification method were basically same at the genus level, while most of the strains could be identified to species by molecular identification. There were certain species homology and specificity in the root endophytic and rhizosphere bacteria of Yuanyang rice landraces.

  13. Isolation and Characterization of Cellulose-decomposing Bacteria Inhabiting Sawdust and Coffee Residue Composts

    PubMed Central

    Eida, Mohamed Fathallh; Nagaoka, Toshinori; Wasaki, Jun; Kouno, Kenji

    2012-01-01

    Clarifying the identity and enzymatic activities of microorganisms associated with the decomposition of organic materials is expected to contribute to the evaluation and improvement of composting processes. In this study, we examined the cellulolytic and hemicellulolytic abilities of bacteria isolated from sawdust compost (SDC) and coffee residue compost (CRC). Cellulolytic bacteria were isolated using Dubos mineral salt agar containing azurine cross-linked (AZCL) HE-cellulose. Bacterial identification was performed based on the sequence analysis of 16S rRNA genes, and cellulase, xylanase, β-glucanase, mannanase, and protease activities were characterized using insoluble AZCL-linked substrates. Eleven isolates were obtained from SDC and 10 isolates from CRC. DNA analysis indicated that the isolates from SDC and CRC belonged to the genera Streptomyces, Microbispora, and Paenibacillus, and the genera Streptomyces, Microbispora, and Cohnella, respectively. Microbispora was the most dominant genus in both compost types. All isolates, with the exception of two isolates lacking mannanase activity, showed cellulase, xylanase, β-glucanase, and mannanase activities. Based on enzyme activities expressed as the ratio of hydrolysis zone diameter to colony diameter, it was suggested that the species of Microbispora (SDCB8, SDCB9) and Paenibacillus (SDCB10, SDCB11) in SDC and Microbispora (CRCB2, CRCB6) and Cohnella (CRCB9, CRCB10) in CRC contribute to efficient cellulolytic and hemicellulolytic processes during composting. PMID:22353767

  14. Spore-Forming Thermophilic Sulfate-Reducing Bacteria Isolated from North Sea Oil Field Waters

    PubMed Central

    Rosnes, Jan Thomas; Torsvik, Terje; Lien, Torleiv

    1991-01-01

    Thermophilic sulfate-reducing bacteria were isolated from oil field waters from oil production platforms in the Norwegian sector of the North Sea. Spore-forming rods dominated in the enrichments when lactate, propionate, butyrate, or a mixture of aliphatic fatty acids (C4 through C6) was added as a carbon source and electron donor. Representative strains were isolated and characterized. The isolates grew autotrophically on H2-CO2 and heterotrophically on fatty acids such as formate, propionate, butyrate, caproate, valerate, pyruvate, and lactate and on alcohols such as methanol, ethanol, and propanol. Sulfate, sulfite, and thiosulfate but not nitrate could be used as an electron acceptor. The temperature range for growth was 43 to 78°C; the spores were extremely heat resistant and survived 131°C for 20 min. The optimum pH was 7.0. The isolates grew well in salt concentrations ranging from 0 to 800 mmol of NaCl per liter. Sulfite reductase P582 was present, but cytochrome c and desulfoviridin were not found. Electron micrographs revealed a gram-positive cell organization. The isolates were classified as a Desulfotomaculum sp. on the basis of spore formation, general physiological characteristics, and submicroscopic organization. To detect thermophilic spore-forming sulfate-reducing bacteria in oil field water, polyvalent antisera raised against antigens from two isolates were used. These bacteria were shown to be widespread in oil field water from different platforms. The origin of thermophilic sulfate-reducing bacteria in the pore water of oil reservoirs is discussed. Images PMID:16348538

  15. Characterization of nitrogen-fixing bacteria isolated from field-grown barley, oat, and wheat.

    PubMed

    Venieraki, Anastasia; Dimou, Maria; Vezyri, Eleni; Kefalogianni, Io; Argyris, Nikolaos; Liara, Georgia; Pergalis, Panagiotis; Chatzipavlidis, Iordanis; Katinakis, Panagiotis

    2011-08-01

    Diazotrophic bacteria were isolated from the rhizosphere of field-grown Triticum aestivum, Hordeum vulgare, and Avena sativa grown in various regions of Greece. One isolate, with the highest nitrogen-fixation ability from each of the eleven rhizospheres, was selected for further characterisation. Diazotrophic strains were assessed for plant-growth-promoting traits such as indoleacetic acid production and phosphate solubilisation. The phylogenies of 16S rRNA gene of the selected isolates were compared with those based on dnaK and nifH genes. The constructed trees indicated that the isolates were members of the species Azospirillum brasilense, Azospirillum zeae, and Pseudomonas stutzeri. Furthermore, the ipdC gene was detected in all A. brasilence and one A. zeae isolates. The work presented here provides the first molecular genetic evidence for the presence of culturable nitrogen-fixing P. stutzeri and A. zeae associated with field-grown A. sativa and H. vulgare in Greece.

  16. Inactivation of koi-herpesvirus in water using bacteria isolated from carp intestines and carp habitats.

    PubMed

    Yoshida, N; Sasaki, R-K; Kasai, H; Yoshimizu, M

    2013-12-01

    Since its first outbreak in Japan in 2003, koi-herpesvirus (KHV) remains a challenge to the carp Cyprinus carpio L. breeding industry. In this study, inactivation of KHV in water from carp habitats (carp habitat water) was investigated with the aim of developing a model for rapidly inactivating the pathogen in aquaculture effluent. Experiments with live fish showed that, in carp habitat water, KHV lost its infectivity within 3 days. Indications were that inactivation of KHV was caused by the antagonistic activity of bacteria (anti-KHV bacteria) in the water from carp habitats. Carp habitat water and the intestinal contents of carp were therefore screened for anti-KHV bacteria. Of 581 bacterial isolates, 23 showed anti-KHV activity. An effluent treatment model for the disinfection of KHV in aquaculture effluent water using anti-KHV bacteria was developed and evaluated. The model showed a decrease in cumulative mortality and in the number of KHV genome copies in kidney tissue of fish injected with treated effluent compared with a positive control. It is thought that anti-KHV bacteria isolated from the intestinal contents of carp and from carp habitat water can be used to control KHV outbreaks.

  17. Bacteria isolated from field cases of equine amnionitis and fetal loss.

    PubMed

    Todhunter, K H; Muscatello, G; Blishen, A J; Chicken, C; Perkins, N R; Gilkerson, J R; Begg, A P

    2013-04-01

    A series of unusual abortions occurred in Thoroughbred and Quarterhorse mares in the Hunter Valley region of New South Wales from mid-March to November 2004. The initial link between early cases was the microbiological culture of atypical environmental coryneforms from the stomach contents and/or lungs of fetuses aborted on different properties. The unique pathologic lesions were described with a case definition and the term 'equine amnionitis and fetal loss' (EAFL) was established. The causal factor was the ingestion of the processionary caterpillar (Ochrogaster lunifer). Bacteria from the Actinomycetales order were isolated from 40% of the combined suspect and confirmed EAFL cases and included Microbacterium arborescens, Cellulomonas sp., Arthrobacter spp. and Cellulosimicrobium sp. Other bacteria isolated included various Gram-negative bacilli and Gram-positive cocci. Although the predominant type of bacteria isolated from EAFL was environmental coryneforms, it is important to note that a variety of bacteria were associated with the characteristic histopathological changes outlined by the case definition. This highlights the importance of histopathology on both fetal membranes and fetuses, as well as culture to confirm EAFL and to exclude other possible causes of abortion. © 2013 The Authors. Australian Veterinary Journal © 2013 Australian Veterinary Association.

  18. Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India.

    PubMed

    Nithya, Angamuthu; Babu, Subramanian

    2017-03-14

    The study aimed at enumerating, identifying and categorizing the endophytic cultivable bacterial community in selected salad vegetables (carrot, cucumber, tomato and onion). Vegetable samples were collected from markets of two vegetable hot spot growing areas, during two different crop harvest seasons. Crude and diluted vegetable extracts were plated and the population of endophytic bacteria was assessed based on morphologically distinguishable colonies. The bacterial isolates were identified by growth in selective media, biochemical tests and 16S rRNA gene sequencing. The endophytic population was found to be comparably higher in cucumber and tomato in both of the sampling locations, whereas lower in carrot and onion. Bacterial isolates belonged to 5 classes covering 46 distinct species belonging to 19 genera. Human opportunistic pathogens were predominant in carrot and onion, whereas plant beneficial bacteria dominated in cucumber and tomato. Out of the 104 isolates, 16.25% are human pathogens and 26.5% are human opportunistic pathogens. Existence of a high population of plant beneficial bacteria was found to have suppressed the population of plant and human pathogens. There is a greater potential to study the native endophytic plant beneficial bacteria for developing them as biocontrol agents against human pathogens that are harboured by plants.

  19. Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment.

    PubMed

    Capkin, Erol; Terzi, Ertugrul; Altinok, Ilhan

    2015-05-21

    Antibiotic resistance and presence of the resistance genes were investigated in the bacteria isolated from water, sediment, and fish in trout farms. A total of 9 bacterial species, particularly Escherichia coli, were isolated from the water and sediment samples, and 12 species were isolated from fish. The antimicrobial test indicated the highest resistance against sulfamethoxazole and ampicillin in coliform bacteria, and against sulfamethoxazole, imipenem, and aztreonam in known pathogenic bacteria isolated from fish. The most effective antibiotics were rifampicin, chloramphenicol, and tetracycline. The multiple antibiotic resistance index was above the critical limit for almost all of the bacteria isolated. The most common antibiotic resistance gene was ampC, followed by tetA, sul2, blaCTX-M1, and blaTEM in the coliform bacteria. At least one resistance gene was found in 70.8% of the bacteria, and 66.6% of the bacteria had 2 or more resistance genes. Approximately 36.54% of the bacteria that contain plasmids were able to transfer them to other bacteria. The plasmid-mediated transferable resistance genes were ampC, blaCTX-M1, tetA, sul2, and blaTEM. These results indicate that the aquatic environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria.

  20. Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria with tolerance to hypoxic environments.

    PubMed

    Li, Chun-Hua; Ye, Chun; Hou, Xiao-Peng; Chen, Ming-Hua; Zheng, Xiang-Yong; Cai, Xu-Yi

    2017-03-10

    Hypoxic conditions are considerably different from aerobic and anaerobic conditions, and they are widely distributed in natural environments. Many pollutants, including polycyclic aromatic hydrocarbons (PAHs), tend to accumulate in hypoxic environments. However, PAH biodegradation under hypoxic conditions is poorly understood compared with that under obligate aerobic and obligate anaerobic conditions. In the present study, PAH-degrading bacteria were enriched, and their biodegradation rates were tested using a hypoxic station with an 8% oxygen concentration. PAH-degrading bacteria collected from sediments in low-oxygen environments were enriched using phenanthrene (Phe) or pyrene (Pyr) as the sole carbon and energy source. Individual bacterial colonies showing the ability to degrade Phe or Pyr were isolated and identified by 16S rDNA gene sequencing. Morphological and physiological characterizations of the isolated bacterial colonies were performed. The isolated bacteria were observed by scanning electron microscopy (SEM) and were identified as Pseudomonas sp., Klebsiella sp., Bacillus sp., and Comamonas sp. Phylogenetic tree of the isolated PAH-degrading bacteria was also constructed. The biodegradation ability of these bacteria was tested at an initial Phe or Pyr concentration of 50 mg L(-1). The biodegradation kinetics were best fit by a first-order rate model and presented regression coefficients (r(2)) that varied from 0.7728 to 0.9725 (P < 0.05). The half-lives of the PAHs varied from 2.99 to 3.65 d for Phe and increased to 60.3-82.5 d for Pyr. These half-lives were much shorter than those observed under anaerobic conditions but were similar to those observed under aerobic conditions.

  1. [Resistance of chemoorganotrophic bacteria isolated from Antarctic cliffs to toxic metals].

    PubMed

    Tashirev, A B; Rokitko, P V; Levishko, A S; Romanovskaia, V A; Tashireva, A A

    2012-01-01

    Resistance to toxic metals ( Hg2+, Cu2+, Ni2+, Co2+, Cr(VI)) of bacteria isolated from rock lichen samples of vertical cliffs located on the biogeographic polygon of Ukrainian Antarctic Station Akademik Vernadsky (island Galindez) is studied. Among the Antarctic rock microorganisms isolated on nonselective medium (without toxic metals), bacteria able to grow at toxic metal concentrations lethal for the majority of microorganisms (Hg2+, Cu2+, Ni2+, Co2+, Cr(VI)) are found out. The studied bacteria are most resistant to Cr(VI) possessing oxidative properties in concentration range 1.25-20.0 g/l depending on the strain. Maximal metal concentrations, at which the growth of bacteria was possible, was: Ni2+ to toxic metals - 2.0 g/l, Co(2+) - 0.1 g/l. In the presence of metal ions possessing both replacing and oxidative properties the strains grew in a concentration range: Hg(2+) - 0.005-0.05 g/l, Cu(2+) - 0.1-1.25 g/l. The highest toxic effect was shown for mercury ions. One of the isolated Antarctic strains which was superresistant to high toxic metal concentrations (g/l): Cr(VI) - 20.0, Ni(2+) - 2.0, Cu(2+) - 1.25, Co(2+) - 0.1, Hg(2+) - 0.05. Thus, for the Antarctic bacteria isolated from rock damaging or bactericidal toxic metal concentrations are by 2-3 orders higher than for the majority of microorganisms.

  2. Stone-isolated carbonatogenic bacteria as inoculants in bioconsolidation treatments for historical limestone.

    PubMed

    Jroundi, Fadwa; Gómez-Suaga, Patricia; Jimenez-Lopez, Concepción; González-Muñoz, Maria Teresa; Fernandez-Vivas, Maria Antonia

    2012-05-15

    Stone consolidation treatments that use bacterial biomineralization are mainly based on two strategies: (1) the inoculation of a bacterial culture with proven carbonatogenic ability and/or (2) the application of a culture medium capable of activating those bacteria able to induce the formation of calcium carbonate, from amongst the bacterial community of the stone. While the second strategy has been demonstrated to be effective and, unlike first strategy, it does not introduce any exogenous microorganism into the stone, problems may arise when the bacterial community of the stone is altered, for instance by the use of biocides in the cleaning process. In this study we isolate bacteria that belong to the natural microbial community of the stone and which have proven biomineralization capabilities, with the aim of preparing an inoculum that may be used in stone consolidation treatments wherein the natural community of those stones is altered. With this aim, outdoor experiments were undertaken to activate and isolate bacteria that display high biomineralization capacity from altered calcarenite stone. Most of the bacteria precipitated calcium carbonate in the form of calcite. The selected bacteria were phylogenetically affiliated with members of Actinobacteria, Gamma-proteobacteria and Firmicutes. Furthermore, the capability of these selected carbonatogenic bacteria to consolidate altered calcarenite stone slabs was studied in in vitro experiments, both in the presence and the absence of Myxococcus xanthus, as a potential reinforcement for the bacterial biomineralization. Herein, Acinetobacter species, belonging to the microbial community of the stone, are proposed as powerful carbonatogenic bacteria that, inoculated under appropriate conditions, may be used as inoculum for calcareous stone conservation/consolidation in restoration interventions where the microbial community of the stone is altered. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria.

    PubMed

    Simões, Lúcia Chaves; Simões, Manuel; Vieira, Maria João

    2010-10-01

    This study was performed in order to characterize the relationship between adhesion and biofilm formation abilities of drinking water-isolated bacteria (Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata and Staphylococcus sp.). Adhesion was assessed by two distinct methods: thermodynamic prediction of adhesion potential by quantifying hydrophobicity and the free energy of adhesion; and by microtiter plate assays. Biofilms were developed in microtiter plates for 24, 48 and 72 h. Polystyrene (PS) was used as adhesion substratum. The tested bacteria had negative surface charge and were hydrophilic. PS had negative surface charge and was hydrophobic. The free energy of adhesion between the bacteria and PS was > 0 mJ/m(2) (thermodynamic unfavorable adhesion). The thermodynamic approach was inappropriate for modelling adhesion of the tested drinking water bacteria, underestimating adhesion to PS. Only three (B. cepacia, Sph. capsulata and Staphylococcus sp.) of the six bacteria were non-adherent to PS. A. calcoaceticus, Methylobacterium sp. and M. mucogenicum were weakly adherent. This adhesion ability was correlated with the biofilm formation ability when comparing with the results of 24 h aged biofilms. Methylobacterium sp. and M. mucogenicum formed large biofilm amounts, regardless the biofilm age. Given time, all the bacteria formed biofilms; even those non-adherents produced large amounts of matured (72 h aged) biofilms. The overall results indicate that initial adhesion did not predict the ability of the tested drinking water-isolated bacteria to form a mature biofilm, suggesting that other events such as phenotypic and genetic switching during biofilm development and the production of extracellular polymeric substances (EPS), may play a significant role on biofilm formation and differentiation. This understanding of the relationship between adhesion and biofilm formation is important for

  4. Anti-Quorum Sensing Activity of Substances Isolated from Wild Berry Associated Bacteria

    PubMed Central

    Abudoleh, Suha M.; Mahasneh, Adel M.

    2017-01-01

    Background: Quorum Sensing (QS) is a mechanism used by bacteria to determine their physiological activities and coordinate gene expression based on cell to cell signaling. Many bacterial physiological functions are under the regulation of quorum sensing such as virulence, luminescence, motility, sporulation and biofilm formation. The aim of the present study was to isolate and characterize Quorum Sensing Inhibitory (QSI) substances from epiphytic bacteria residing on wild berries surfaces. Methods: Fifty nine bacterial isolates out of 600 screened bacteria were successfully isolated. These bacteria were obtained from berry surfaces of different plants in the wild forests of Ajloun-Jordan. Screening for QSI activity using Chromobacterium violaceum ATCC 12472 monitor strain, resulted in isolating 6 isolates exhibiting QSI activity only, 11 isolates with QSI and antibacterial activity, and 42 isolates with antibacterial activity only. Three potential isolates S 130, S 153, and S 664, were gram positive rods and spore formers, catalase positive and oxidase negative. These were chosen for further testing and characterization. Results: Different solvent extraction of the QSI substances based on polarity indicated that the activity of S 130 was in the butanol extract, S 153 activity in both chloroform and butanol; and for S 664, the activity was detected in the hexane extract. The chloroform extract of S 153 and hexane extract of S 664 were proteinaceous in nature while QSI substances of the butanol extract of S 130 and S 153 were non-proteinaceous. All the tested QSI substances showed a marked thermal stability when subjected at several time intervals to 70°C, with the highest stability observed for the butanol extract of S 153. Assessing the QSI substances using violacein quantification assay revealed varying degrees of activity depending upon the extracting solvent, type of the producer bacteria and the concentration of the substances. Conclusion: This study

  5. Isolation and characterization of halophilic lactic acid bacteria isolated from "terasi" shrimp paste: a traditional fermented seafood product in Indonesia.

    PubMed

    Kobayashi, Takeshi; Kajiwara, Michika; Wahyuni, Mita; Kitakado, Toshihide; Hamada-Sato, Naoko; Imada, Chiaki; Watanabe, Etsuo

    2003-10-01

    Lactic acid bacteria from "terasi" shrimp paste, a highly popular fermented seafood in Indonesia were isolated and characterized. Viable cell counts were 10(4) to 10(6) cfu/g on MRS medium. All the isolates were catalase-negative, gram-positive cocci and were able to grow at 15% NaCl. Numerical phenotypic analysis showed that the isolates clustered into one group. However, they could be classified into two types: the Tetragenococcus halophilus group and the T. muriaticus group as revealed by a restriction fragment length polymorphism (RFLP) analysis and sequencing of the 16S rRNA gene. This study is the first to show that both species of Tetragenococcus are distributed in Indonesian fermented foods.

  6. Bioprospection and selection of bacteria isolated from environments contaminated with petrochemical residues for application in bioremediation.

    PubMed

    Cerqueira, Vanessa S; Hollenbach, Emanuel B; Maboni, Franciele; Camargo, Flávio A O; Peralba, Maria do Carmo R; Bento, Fátima M

    2012-03-01

    The use of microorganisms with hydrocarbon degrading capability and biosurfactant producers have emerged as an alternative for sustainable treatment of environmental passives. In this study 45 bacteria were isolated from samples contaminated with petrochemical residues, from which 21 were obtained from Landfarming soil contaminated with oily sludge, 11 were obtained from petrochemical industry effluents and 13 were originated directly from oily sludge. The metabolization capability of different carbon sources, growth capacity and tolerance, biosurfactant production and enzymes detection were determined. A preliminary selection carried out through the analysis of capability for degrading hydrocarbons showed that 22% of the isolates were able to degrade all carbon sources employed. On the other hand, in 36% of the isolates, the degradation of the oily sludge started within 18-48 h. Those isolates were considered as the most efficient ones. Twenty isolates, identified based on partial sequencing of the 16S rRNA gene, were pre-selected. These isolates showed ability for growing in a medium containing 1% of oily sludge as the sole carbon source, tolerance in a medium containing up to 30% of oily sludge, ability for biosurfactant production, and expression of enzymes involved in degradation of aliphatic and aromatic compounds. Five bacteria, identified as Stenotrophomonas acidaminiphila BB5, Bacillus megaterium BB6, Bacillus cibi, Pseudomonas aeruginosa, and Bacillus cereus BS20 were shown to be promising for use as inoculum in bioremediation processes (bioaugmentation) of areas contaminated with petrochemical residues since they can use oily sludge as the sole carbon source and produce biosurfactants.

  7. Preliminary study on swarming marine bacteria isolated from Pulau Tinggi's sponges

    NASA Astrophysics Data System (ADS)

    Sairi, Fareed; Idris, Hamidah; Zakaria, Nur Syuhana; Usup, Gires; Ahmad, Asmat

    2015-09-01

    Marine sponges were known to produce novel bioactive compounds that have anti-bacterial, anti-viral, anti-cancer and anti-fungal activities. Most of the bioactive compounds were secreted from the bacteria that lives on the sponges. The bacterial communities also produced biofilm, toxin or biosurfactant that protect the sponges from disease or in-coming predator. In this study, twenty nine marine bacteria with swarming motility characteristic was isolated from 2 different sponge samples collected in Pulau Tinggi These isolates were grown and their genome were extracted for molecular identification using the 16S rRNA approach. Sequence comparison using BLASTn and multiple alignments using MEGA4 was performed to produce a phylogenetic tree. The phylogenetic tree revealed that 20 of the isolates were grouped under α-Proteobacteria that comprised of 19 isolates in the Vibrionaceae family and one belongs to Aeromonadaceae family. Furthermore, six isolates from Actinobacteria family and three isolates from Firmicutes were also detected. The swarming characteristic indicates the possible production of biosurfactant.

  8. Characterization of culturable bacteria isolated from the cold-water coral Lophelia pertusa

    USGS Publications Warehouse

    Galkiewicz, Julia P.; Pratte, Zoe A.; Gray, Michael A.; Kellogg, Christina A.

    2011-01-01

    Microorganisms associated with corals are hypothesized to contribute to the function of the host animal by cycling nutrients, breaking down carbon sources, fixing nitrogen, and producing antibiotics. This is the first study to culture and characterize bacteria from Lophelia pertusa, a cold-water coral found in the deep sea, in an effort to understand the roles that the microorganisms play in the coral microbial community. Two sites in the northern Gulf of Mexico were sampled over 2 years. Bacteria were cultured from coral tissue, skeleton, and mucus, identified by 16S rRNA genes, and subjected to biochemical testing. Most isolates were members of the Gammaproteobacteria, although there was one isolate each from the Betaproteobacteria and Actinobacteria. Phylogenetic results showed that both sampling sites shared closely related isolates (e.g. Pseudoalteromonas spp.), indicating possible temporally and geographically stable bacterial-coral associations. The Kirby-Bauer antibiotic susceptibility test was used to separate bacteria to the strain level, with the results showing that isolates that were phylogenetically tightly grouped had varying responses to antibiotics. These results support the conclusion that phylogenetic placement cannot predict strain-level differences and further highlight the need for culture-based experiments to supplement culture-independent studies.

  9. Characterization of some bacteriocins produced by lactic acid bacteria isolated from fermented foods.

    PubMed

    Grosu-Tudor, Silvia-Simona; Stancu, Mihaela-Marilena; Pelinescu, Diana; Zamfir, Medana

    2014-09-01

    Lactic acid bacteria (LAB) isolated from different sources (dairy products, fruits, fresh and fermented vegetables, fermented cereals) were screened for antimicrobial activity against other bacteria, including potential pathogens and food spoiling bacteria. Six strains have been shown to produce bacteriocins: Lactococcus lactis 19.3, Lactobacillus plantarum 26.1, Enterococcus durans 41.2, isolated from dairy products and Lactobacillus amylolyticus P40 and P50, and Lactobacillus oris P49, isolated from bors. Among the six bacteriocins, there were both heat stable, low molecular mass polypeptides, with a broad inhibitory spectrum, probably belonging to class II bacteriocins, and heat labile, high molecular mass proteins, with a very narrow inhibitory spectrum, most probably belonging to class III bacteriocins. A synergistic effect of some bacteriocins mixtures was observed. We can conclude that fermented foods are still important sources of new functional LAB. Among the six characterized bacteriocins, there might be some novel compounds with interesting features. Moreover, the bacteriocin-producing strains isolated in our study may find applications as protective cultures.

  10. Screening, characterization and biofilm formation of nickel resistant bacteria isolated from indigenous environment.

    PubMed

    Wadood, Hafiz Z; Sabri, Anjum N

    2013-01-01

    Nickel resistant bacteria (ZB, ZC, ZD, ZL, ZK and S1X) were isolated from industrial effluents and corroded iron pieces from indigenous environment of Punjab, Pakistan. These six strains could tolerate nickel at different levels with ZB, ZC, ZD, ZL, ZK, and S1X having 233, 225, 267, 233, 228 and 296 mM minimum inhibitory concentration (MIC) of nickel ions, respectively. These bacteria were sensitive to Cu(+2), Cr(+3), Co(+2), and Al(+3) as they did not grow even in the presence of 1 mM concentration of all these ions in minimal medium, whereas all of them were resistant to Fe3 upto 1.3 mM in minimal medium. The best appropriate temperature for nickel resistant bacteria was 37 degrees C and all of them showed maximum growth at pH 8. These bacteria were characterized morphologically and biochemically. Biofilm forming ability of the bacteria was checked with and without nickel stress and it was found that strains ZK and S1X were able to form a compact biofilm even under nickel stress. The sequencing of 16S rRNA-encoding genes from these nickel resistant bacteria showed that they belonged to four different genera namely, Klebsiella, Pseudomonas, Bacillus and Cronobacter.

  11. Bioleaching of electronic waste using bacteria isolated from the marine sponge Hymeniacidon heliophila (Porifera).

    PubMed

    Rozas, Enrique E; Mendes, Maria A; Nascimento, Claudio A O; Espinosa, Denise C R; Oliveira, Renato; Oliveira, Guilherme; Custodio, Marcio R

    2017-05-05

    The bacteria isolated from Hymeniacidon heliophila sponge cells showed bioleaching activity. The most active strain, Hyhel-1, identified as Bacillus sp., was selected for bioleaching tests under two different temperatures, 30°C and 40°C, showing rod-shaped cells and filamentous growth, respectively. At 30°C, the bacteria secreted substances which linked to the leached copper, and at 40°C metallic nanoparticles were produced inside the cells. In addition, infrared analysis detected COOH groups and linear peptides in the tested bacteria at both temperatures. The Hyhel-1 strain in presence of electronic waste (e-waste) induced the formation of crust, which could be observed due to bacteria growing on the e-waste fragment. SEM-EDS measurements showed that the bacterial net surface was composed mostly of iron (16.1% w/w), while a higher concentration of copper was observed in the supernatant (1.7% w/w) and in the precipitated (49.8% w/w). The substances linked to copper in the supernatant were sequenced by MALDI-TOF-ms/ms and identified as macrocyclic surfactin-like peptides, similar to the basic sequence of Iturin, a lipopeptide from Bacillus subtilis. Finally, the results showed that Hyhel-1 is a bioleaching bacteria and cooper nanoparticles producer and that this bacteria could be used as a copper recovery tool from electronic waste.

  12. Comparative genomics of Roseobacter clade bacteria isolated from the accessory nidamental gland of Euprymna scolopes.

    PubMed

    Collins, Andrew J; Fullmer, Matthew S; Gogarten, Johann P; Nyholm, Spencer V

    2015-01-01

    The accessory nidamental gland (ANG) of the female Hawaiian bobtail squid, Euprymna scolopes, houses a consortium of bacteria including members of the Flavobacteriales, Rhizobiales, and Verrucomicrobia but is dominated by members of the Roseobacter clade (Rhodobacterales) within the Alphaproteobacteria. These bacteria are deposited into the jelly coat of the squid's eggs, however, the function of the ANG and its bacterial symbionts has yet to be elucidated. In order to gain insight into this consortium and its potential role in host reproduction, we cultured 12 Rhodobacterales isolates from ANGs of sexually mature female squid and sequenced their genomes with Illumina sequencing technology. For taxonomic analyses, the ribosomal proteins of 79 genomes representing both roseobacters and non-roseobacters along with a separate MLSA analysis of 33 housekeeping genes from Roseobacter organisms placed all 12 isolates from the ANG within two groups of a single Roseobacter clade. Average nucelotide identity analysis suggests the ANG isolates represent three genera (Leisingera, Ruegeria, and Tateyamaria) comprised of seven putative species groups. All but one of the isolates contains a predicted Type VI secretion system, which has been shown to be important in secreting signaling and/or effector molecules in host-microbe associations and in bacteria-bacteria interactions. All sequenced genomes also show potential for secondary metabolite production, and are predicted to be involved with the production of acyl homoserine lactones (AHLs) and/or siderophores. An AHL bioassay confirmed AHL production in three tested isolates and from whole ANG homogenates. The dominant symbiont, Leisingera sp. ANG1, showed greater viability in iron-limiting conditions compared to other roseobacters, possibly due to higher levels of siderophore production. Future comparisons will try to elucidate novel metabolic pathways of the ANG symbionts to understand their putative role in host development.

  13. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae)

    PubMed Central

    Graça, Ana Patrícia; Viana, Flávia; Bondoso, Joana; Correia, Maria Inês; Gomes, Luis; Humanes, Madalena; Reis, Alberto; Xavier, Joana R.; Gaspar, Helena; Lage, Olga M.

    2015-01-01

    Interest in the study of marine sponges and their associated microbiome has increased both for ecological reasons and for their great biotechnological potential. In this work, heterotrophic bacteria associated with three specimens of the marine sponge Erylus deficiens, were isolated in pure culture, phylogenetically identified and screened for antimicrobial activity. The isolation of bacteria after an enrichment treatment in heterotrophic medium revealed diversity in bacterial composition with only Pseudoalteromonas being shared by two specimens. Of the 83 selected isolates, 58% belong to Proteobacteria, 23% to Actinobacteria and 19% to Firmicutes. Diffusion agar assays for bioactivity screening against four bacterial strains and one yeast, revealed that a high number of the isolated bacteria (68.7%) were active, particularly against Candida albicans and Vibrio anguillarum. Pseudoalteromonas, Microbacterium, and Proteus were the most bioactive genera. After this preliminary screening, the bioactive strains were further evaluated in liquid assays against C. albicans, Bacillus subtilis and Escherichia coli. Filtered culture medium and acetone extracts from three and 5 days-old cultures were assayed. High antifungal activity against C. albicans in both aqueous and acetone extracts as well as absence of activity against B. subtilis were confirmed. Higher levels of activity were obtained with the aqueous extracts when compared to the acetone extracts and differences were also observed between the 3 and 5 day-old extracts. Furthermore, a low number of active strains was observed against E. coli. Potential presence of type-I polyketide synthases (PKS-I) and non-ribosomal peptide synthetases (NRPSs) genes were detected in 17 and 30 isolates, respectively. The high levels of bioactivity and the likely presence of associated genes suggest that Erylus deficiens bacteria are potential sources of novel marine bioactive compounds. PMID:25999928

  14. Isolation and characterization of putative endophytic bacteria antagonistic to Phoma tracheiphila and Verticillium albo-atrum.

    PubMed

    Kalai-Grami, Leila; Saidi, Sabrine; Bachkouel, Sarra; Ben Slimene, Imen; Mnari-Hattab, Monia; Hajlaoui, Mohamed Rebah; Limam, Ferid

    2014-09-01

    A collection of 200 bacterial isolates recovered from citrus plants (Citrus limon, Citrus sinensis, and Citrus reticulata), Medicago truncatula and Laurus nobilis, was established. In vitro screening indicated that 28 isolates exhibited an inhibitory activity against the vascular pathogens Phoma tracheiphila and Verticillium albo-atrum. Isolates were screened according to their hydrolytic activities, plant growth-promoting bacteria (PGPB) abilities, as well as for the presence of nonribosomal peptide synthetase (NRPS) genes responsible of the lipopeptide biosynthesis. The results were positive for 16 isolates which exhibited at least two PGPB activities and a single NRPS gene. Genetic diversity of the selected isolates was studied using random amplified polymorphic DNA (RAPD) and repetitive element PCR (REP) tools that showed clustering of strains into three major groups (I, II, and III) (i, ii, and iii), respectively. Clustering was further confirmed by the 16S rDNA sequencing that assigned nine isolates to Bacillus velezensis, four isolates to Bacillus methyltrophicus, one isolate to Bacillus amyloliquefaciens, and two isolates to Bacillus mojavensis. Organ-bacterial genotype interaction as well as positive correlation with NRPS genes are discussed.

  15. Phytate degrading activities of lactic acid bacteria isolated from traditional fermented food

    NASA Astrophysics Data System (ADS)

    Damayanti, Ema; Ratisiwi, Febiyani Ndaru; Istiqomah, Lusty; Sembiring, Langkah; Febrisiantosa, Andi

    2017-03-01

    The objective of this study was to determine the potential of LAB with phytate degrading activity from fermented traditional food grain-based and legume-based. Lactic acid bacteria were isolated from different sources of traditional fermented food from Gunungkidul Yogyakarta Indonesia such as gembus tempeh (tofu waste), soybean tempeh, lamtoro tempeh (Leucaena bean) and kara tempeh. Isolation of LAB was performed using Total Plate Count (TPC) on de Man Rogosa Sharpe Agar (MRSA) medium supplemented with CaCO3. They were screened for their ability to degrade myo-inositol hexaphosphate or IP6 by using qualitative streak platemethod with modified de Man Rogosa-MorpholinoPropanesulfonic Acid Sharpe (MRS-MOPS) medium contained sodium salt of phytic acid as substrate and cobalt chloride staining (plate assay) method. The selected isolates were further assayed for phytase activities using quantitative method with spectrophotometer and the two selected isolates growth were optimized. Furthermore, thhe isolates that shown the highest phytase activity was characterized and identified using API 50 CH kitand 16S rRNA gene sequencing. The results showed that there were 18 LAB isolates obtained from samplesand 13 isolates were able to degrade sodium phytate based on qualitative screening. According to quantitative assay, the highest phytate degrading activities were found in TG-2(23.562 U/mL) and TG-1 (19.641 U/mL) isolated from gembus tempeh. The phytate activity of TG-2 was optimum at 37 °C with agitation, while the phytate activity of TG-1 was optimum at 45 °C without agitation. Characterization and identification of TG-2 isolate with the highest phytate degrading activity using API 50 CH and 16S rRNA showed that TG-2had homology with Lactobacillus fermentum. It could be concluded that LAB from from fermented traditional food grain-based and legume-based produced the extracellular phytase. Keywords: lactic acid bacteria, tempeh, phytatedegrading activity

  16. [Diversity and heavy-metal tolerance of bacteria isolated from Gejiu tin mining area of Yunnan].

    PubMed

    Xiao, Wei; Zhang, Shiying; Zhao, Qin; Wang, Yongxia; Lai, Yonghong; Li, Zhiying; Cui, Xiaolong

    2013-11-04

    We assessed the culturable bacterial diversity in tin mine area in Gejiu, Yunnan, China, and heavy-metal tolerance of the isolated bacteria. Bacterial strains were isolated from the samples by using the culture-dependent method and investigated by using phylogenetic analysis based on 16S rRNA gene sequence comparisons. Representatives of isolates were selected to detect their tolerance against heavy metals of Pb2+ and Cd2+. We isolated 214 bacterial strains from soils by using two media. Based on colony characteristics, we selected 107 representatives of strains for phylogenetic analysis based on 16S rRNA gene sequences. Results showed that 107 isolates belong to 42 genera of 25 families of 12 orders in 5 phyla. The most abundant isolates were within the phylum Proteobacteria (69.2%) and the genus Pseudomonas (24.8%). Among the 107 isolates, at least 2 strains should represent 2 potential novel species. One hundred and five strains were selected to investigate heavy-metal tolerance and results showed that 73.3% and 8.6% isolates could grow under 1000 mg/L Pb2+ and Cd2+, respectively. Most strains were more sensitive to Cd2+ than Pb2+. Isolates from tin mine tunnel adit were more sensitive to Cd2+ or Pb2+ than those from tin tailings area. Moreover, 2 strains (DT47-2A and DT50-1) can grow under both 1000 mg/L Cd2+ and Pb2+. There is abundant bacteria as well as source of novel taxa in Gejiu tin mining area. Most of them had the ability of high resistance against heavy-metal Cd2+ or Pb2+.

  17. Isolation and partial characterization of phosphate solubilizing bacteria isolated from soil and marine samples.

    PubMed

    Mujahid, Talat Yasmeen; Siddiqui, Khaizran; Ahmed, Rifat; Kazmi, Shahana U; Ahmed, Nuzhat

    2014-09-01

    In the present study the potential of indigenous bacterial isolates from soil rhizosphere and marine environment to promote plant growth was determined. Eight bacterial strains isolated from soil and marine samples were characterized for the phosphate solubilizing activity. Qualitative and quantitative estimation of phosphate solubilization is done. MIC of antibiotic and heavy metals were checked for these strains. Strains show a diverse pattern of antibiotic and heavy metals resistance.

  18. Prevalence of heavy metal resistance in bacteria isolated from tannery effluents and affected soil.

    PubMed

    Alam, Mohammad Zubair; Ahmad, Shamim; Malik, Abdul

    2011-07-01

    In the present study, a total of 198 bacteria were isolated, 88 from the tannery effluents and 110 from agricultural soil irrigated with the tannery effluents. Tannery effluents and soils were analyzed for metal concentrations by atomic absorption spectrophotometer. The tannery effluents and soil samples were found to be contaminated with chromium, nickel, zinc, copper, and cadmium. All isolates were tested for their resistance against Cr(6+ ), Cr(3+ ), Ni(2+ ), Zn(2+ ), Cu(2+ ), Cd(2+ ), and Hg(2+ ). From the total of 198 isolates, maximum bacterial isolates were found to be resistant to Cr(6+ ) 178 (89.9%) followed by Cr(3+ ) 146 (73.7%), Cd(2+ ) 86 (43.4%), Zn(2+ ) 83 (41.9%), Ni(2+ ) 61 (30.8%), and Cu(2+ ) 51 (25.6%). However, most of the isolates were sensitive to Hg(2+ ). Among the isolates from tannery effluents, 97.8% were resistant to Cr(6+ ) and 64.8% were resistant to Cr(3+ ). Most of the soil isolates were resistant against Cr(6+ ) (83.6%) and Cr(3+ ) (81.8%). All isolates were categorized into Gram-positive and Gram-negative bacteria. In a total of 114 Gram-positive isolates, 91.2% were resistant to Cr(6+ ) followed by 73.7% to Cr(3+ ), 42.1% to Zn(2+ ), 40.4% to Cd(2+ ), and 32.5% to Ni(2+ ). Among Gram-negative isolates, 88.1% were found showing resistance to Cr(6+ ), 75.0% to Cr(3+ ), and 47.6% were resistant to Cd(2+ ). Majority of these metal-resistant isolates were surprisingly found sensitive to the ten commonly used antibiotics. Out of 198 isolates, 114 were found sensitive to all antibiotics whereas only two isolates were resistant to maximum eight antibiotics at a time. Forty-one and 40 isolates which constitute 20.7% and 20.2% were resistant to methicilin and amoxicillin, respectively.

  19. Isolation and Screening of Rhizosphere Bacteria from Grasses in East Kavango Region of Namibia for Plant Growth Promoting Characteristics.

    PubMed

    Haiyambo, D H; Chimwamurombe, P M; Reinhold-Hurek, B

    2015-11-01

    A diverse group of soil bacteria known as plant growth promoting rhizobacteria (PGPR) is able to inhabit the area close to plant roots and exert beneficial effects on plant growth. Beneficial interactions between rhizospheric bacteria and plants provide prospects for isolating culturable PGPR that can be used as bio-fertilizers for sustainable crop production in communities that cannot easily afford chemical fertilizers. This study was conducted with the aim of isolating rhizospheric bacteria from grasses along the Kavango River and screening the bacterial isolates for plant growth promoting characteristics. The bacteria were isolated from rhizospheres of Phragmites australis, Sporobolus sp., Vetiveria nigritana, Pennisetum glaucum and Sorghum bicolor. The isolates were screened for inorganic phosphate solubilization, siderophore production and indole-3-acetic acid (IAA) production. The nitrogen-fixing capability of the bacteria was determined by screening for the presence of the nifH gene. Up to 21 isolates were obtained from P. australis, Sporobolus sp., S. bicolor, P. glaucum and V. nigritana. The genera Bacillus, Enterobacter, Kocuria, Pseudomonas and Stenotrophomonas, identified via 16S rDNA were represented in the 13 PGPR strains isolated. The isolates exhibited more than one plant growth promoting trait and they were profiled as follows: three phosphate solubilizers, four siderophore producers, eight IAA producing isolates and five nitrogen-fixers. These bacteria can be used to develop bio-fertilizer inoculants for improved soil fertility management and sustainable production of local cereals.

  20. Diverse endophytic bacteria isolated from a leguminous tree Conzattia multiflora grown in Mexico.

    PubMed

    Wang, En Tao; Tan, Zhi Yuan; Guo, Xian Wu; Rodríguez-Duran, Rolando; Boll, Gisela; Martínez-Romero, Esperanza

    2006-10-01

    Conzattia multiflora is a leguminous tree present only in Mexico and Guatemala. There is no record about its symbiotic or pathogenic microbes. In this study, we found that numerous bacteria with 10(4)-10(6) individuals per gram of fresh epidermis were distributed in the tissue of this plant. All the bacteria isolated from the Conzattia epidermis were Gram-negative, facultative anaerobic rods and formed yellow or colorless colonies. They were identified as endophytes by inoculation tests. Some of the bacteria could significantly promote the growth of Conzattia seedlings. Nine different groups were defined by PCR-based RFLP, which were classified as Pantoea, Erwinia, Salmonella, Enterobacter, Citrobacter and Klebsiella by the phylogenetic analysis of 16S rRNA genes. The existence of plant-borne lineages of Salmonella indicates that the unexplored plants may harbor some unknown microbes.

  1. Isolation and characterization of histamine-producing bacteria from fermented fish products.

    PubMed

    Moon, Jin Seok; Kim, So-Young; Cho, Kyung-Ju; Yang, Seung-Joon; Yoon, Gun-Mook; Eom, Hyun-Ju; Han, Nam Soo

    2013-12-01

    Histamine is mainly produced by microorganisms that are found in fermented foods, and is frequently involved in food poisoning. Two histamine-producing bacteria were isolated from fermented fish products, anchovy sauce, and sand lance sauce by using a histidine decarboxylating medium. The species were identified as Bacillus licheniformis A7 and B. coagulans SL5. Multiplex PCR analysis showed the presence of the conserved histidine decarboxylase (hdc) gene in the chromosome of these bacteria. B. licheniformis A7 and B. coagulans SL5 produced the maximum amount of histamine (22.3±3.5 and 15.1±1.5 mg/L, respectively). As such, they were determined to be potential histamine-producing bacteria among the tested cultures.

  2. Characterization of some efficient cellulase producing bacteria isolated from paper mill sludges and organic fertilizers

    PubMed Central

    Maki, Miranda L; Broere, Michael; Leung, Kam Tin; Qin, Wensheng

    2011-01-01

    The wide variety of bacteria in the environment permits screening for more efficient cellulases to help overcome current challenges in biofuel production. This study focuses on the isolation of efficient cellulase producing bacteria found in organic fertilizers and paper mill sludges which can be considered for use in large scale biorefining. Pure isolate cultures were screened for cellulase activity. Six isolates: S1, S2, S3, S4, E2, and E4, produced halos greater in diameter than the positive control (Cellulomonas xylanilytica), suggesting high cellulase activities. A portion of the 16S rDNA genes of cellulase positive isolates were amplified and sequenced, then BLASTed to determine likely genera. Phylogenetic analysis revealed genera belonging to two major Phyla of Gram positive bacteria: Firmicutes and Actinobacteria. All isolates were tested for the visible degradation of filter paper; only isolates E2 and E4 (Paenibacillus species) were observed to completely break down filter paper within 72 and 96 h incubation, respectively, under limited oxygen condition. Thus E2 and E4 were selected for the FP assay for quantification of total cellulase activities. It was shown that 1% (w/v) CMC could induce total cellulase activities of 1652.2±61.5 and 1456.5±30.7 μM of glucose equivalents for E2 and E4, respectively. CMC could induce cellulase activities 8 and 5.6X greater than FP, therefore CMC represented a good inducing substrate for cellulase production. The genus Paenibacillus are known to contain some excellent cellulase producing strains, E2 and E4 displayed superior cellulase activities and represent excellent candidates for further cellulase analysis and characterization. PMID:21969070

  3. Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination.

    PubMed

    Green, Stefan J; Prakash, Om; Gihring, Thomas M; Akob, Denise M; Jasrotia, Puja; Jardine, Philip M; Watson, David B; Brown, Steven D; Palumbo, Anthony V; Kostka, Joel E

    2010-05-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria), and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. rRNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter are a diverse population of denitrifiers that are circumneutral to moderately acidophilic, with a high relative abundance in areas of the acidic source zone at the OR-IFRC site. Based on genome analysis, Rhodanobacter species contain two nitrite reductase genes and have not been detected in functional-gene surveys of denitrifying bacteria at the OR-IFRC site. Nitrite and nitrous oxide reductase gene sequences were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation and genomic and metagenomic data is essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifiers. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.

  4. Denitrifying Bacteria Isolated from Terrestrial Subsurface Sediments Exposed to Mixed-Waste Contamination▿ †

    PubMed Central

    Green, Stefan J.; Prakash, Om; Gihring, Thomas M.; Akob, Denise M.; Jasrotia, Puja; Jardine, Philip M.; Watson, David B.; Brown, Steven D.; Palumbo, Anthony V.; Kostka, Joel E.

    2010-01-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria), and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. rRNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter are a diverse population of denitrifiers that are circumneutral to moderately acidophilic, with a high relative abundance in areas of the acidic source zone at the OR-IFRC site. Based on genome analysis, Rhodanobacter species contain two nitrite reductase genes and have not been detected in functional-gene surveys of denitrifying bacteria at the OR-IFRC site. Nitrite and nitrous oxide reductase gene sequences were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation and genomic and metagenomic data is essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifiers. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface. PMID:20305024

  5. Evaluation of the probiotic characteristics of newly isolated lactic acid bacteria.

    PubMed

    Aswathy, Ravindran Girija; Ismail, Bindhumol; John, Rojan Pappy; Nampoothiri, Kesavan Madhavan

    2008-12-01

    Lactic acid bacteria were isolated from fermented vegetables, sour dough, milk products, sheep and human excreta. The newly isolated cultures were evaluated for a number of probiotic characteristics like bile salt resistance, salt tolerance in general, survival in low pH, hydrophobicity of the cell surface, resistance to low phenol concentration, antimicrobial activity and susceptibility pattern against vancomycin and erythromycin. The selected cultures were further screened for their ability to produce the nutraceticals such as folic acid and exopolysaccharide (EPS). Two potent isolates, CB2 (from cabbage) and SD2 (from sour dough) were found to produce both extracellular and intracellular folate. One of the isolates from yogurt (MC-1) and the one from whey (W3) produced significant amount of EPS with a maximum production of 8.79 +/- 0.05 g/l by MC-1.

  6. Isolation and characterization of PAH-degrading bacteria from the Eastern Province, Saudi Arabia.

    PubMed

    Oyehan, Tajudeen A; Al-Thukair, Assad A

    2017-02-15

    Contaminated sediment samples were collected from the Eastern Province, Saudi Arabia for isolation of pyrene- and phenanthrene-degrading bacteria by enrichment method. Four isolates were morphologically characterized as Gram-negative rod strains and 16S rRNA sequence analysis revealed the isolates as closely related to Pseudomonas aeruginosa, P. citronellolis, Ochrobactrum intermedium and Cupriavidus taiwanensis. Degradation of the polycyclic aromatic hydrocarbons (PAHs) by the latter three strains was investigated in liquid cultures. Results of concentration reduction analyzed with gas chromatography show that P. citronellolis_LB was efficient in removing phenanthrene, degrading 94% of 100ppm in 15days while O. intermedium_BC1 was more efficient in pyrene-removal, degrading 62% in 2weeks. Furthermore, bacterial growth assessment using optical density and population counts revealed the latter as more suitable for microbial growth analysis in PAH-containing cultures. In conclusion, the isolated bacterial strains could be further developed for efficient use in biodegradation of PAH.

  7. Isolation and identification of bacteria to improve the strength of concrete.

    PubMed

    Krishnapriya, S; Venkatesh Babu, D L; G, Prince Arulraj

    2015-05-01

    The objective of this research work is to isolate and identify calcite precipitating bacteria and to check the suitability of these bacteria for use in concrete to improve its strength. Bacteria to be incorporated in concrete should be alkali resistant to endure the high pH of concrete and endospore forming to withstand the mechanical stresses induced in concrete during mixing. They must exhibit high urease activity to precipitate calcium carbonate in the form of calcite. Bacterial strains were isolated from alkaline soil samples of a cement factory and were tested for urease activity, potential to form endospores and precipitation of calcium carbonate. Based on these results, three isolates were selected and identified by 16S rRNA gene sequencing. They were identified as Bacillus megaterium BSKAU, Bacillus licheniformis BSKNAU and Bacillus flexus BSKNAU. The results were compared with B. megaterium MTCC 1684 obtained from Microbial Type Culture Collection and Gene Bank, Chandigarh, India. Experimental work was carried out to assess the influence of bacteria on the compressive strength and tests revealed that bacterial concrete specimens showed enhancement in compressive strength. The efficiency of bacteria toward crack healing was also tested. Substantial increase in strength and complete healing of cracks was observed in concrete specimens cast with B. megaterium BSKAU, B. licheniformis BSKNAU and B. megaterium MTCC 1684. This indicates the suitability of these bacterial strains for use in concrete. The enhancement of strength and healing of cracks can be attributed to the filling of cracks in concrete by calcite which was visualized by scanning electron microscope.

  8. Isolation of Butanol- and Isobutanol-Tolerant Bacteria and Physiological Characterization of Their Butanol Tolerance

    PubMed Central

    Kanno, Manabu; Katayama, Taiki; Tamaki, Hideyuki; Mitani, Yasuo; Meng, Xian-Ying; Hori, Tomoyuki; Narihiro, Takashi; Morita, Naoki; Hoshino, Tamotsu; Yumoto, Isao; Kimura, Nobutada; Hanada, Satoshi

    2013-01-01

    Despite their importance as a biofuel production platform, only a very limited number of butanol-tolerant bacteria have been identified thus far. Here, we extensively explored butanol- and isobutanol-tolerant bacteria from various environmental samples. A total of 16 aerobic and anaerobic bacteria that could tolerate greater than 2.0% (vol/vol) butanol and isobutanol were isolated. A 16S rRNA gene sequencing analysis revealed that the isolates were phylogenetically distributed over at least nine genera: Bacillus, Lysinibacillus, Rummeliibacillus, Brevibacillus, Coprothermobacter, Caloribacterium, Enterococcus, Hydrogenoanaerobacterium, and Cellulosimicrobium, within the phyla Firmicutes and Actinobacteria. Ten of the isolates were phylogenetically distinct from previously identified butanol-tolerant bacteria. Two relatively highly butanol-tolerant strains CM4A (aerobe) and GK12 (obligate anaerobe) were characterized further. Both strains changed their membrane fatty acid composition in response to butanol exposure, i.e., CM4A and GK12 exhibited increased saturated and cyclopropane fatty acids (CFAs) and long-chain fatty acids, respectively, which may serve to maintain membrane fluidity. The gene (cfa) encoding CFA synthase was cloned from strain CM4A and expressed in Escherichia coli. The recombinant E. coli showed relatively higher butanol and isobutanol tolerance than E. coli without the cfa gene, suggesting that cfa can confer solvent tolerance. The exposure of strain GK12 to butanol by consecutive passages even enhanced the growth rate, indicating that yet-unknown mechanisms may also contribute to solvent tolerance. Taken together, the results demonstrate that a wide variety of butanol- and isobutanol-tolerant bacteria that can grow in 2.0% butanol exist in the environment and have various strategies to maintain structural integrity against detrimental solvents. PMID:24014527

  9. Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance.

    PubMed

    Kanno, Manabu; Katayama, Taiki; Tamaki, Hideyuki; Mitani, Yasuo; Meng, Xian-Ying; Hori, Tomoyuki; Narihiro, Takashi; Morita, Naoki; Hoshino, Tamotsu; Yumoto, Isao; Kimura, Nobutada; Hanada, Satoshi; Kamagata, Yoichi

    2013-11-01

    Despite their importance as a biofuel production platform, only a very limited number of butanol-tolerant bacteria have been identified thus far. Here, we extensively explored butanol- and isobutanol-tolerant bacteria from various environmental samples. A total of 16 aerobic and anaerobic bacteria that could tolerate greater than 2.0% (vol/vol) butanol and isobutanol were isolated. A 16S rRNA gene sequencing analysis revealed that the isolates were phylogenetically distributed over at least nine genera: Bacillus, Lysinibacillus, Rummeliibacillus, Brevibacillus, Coprothermobacter, Caloribacterium, Enterococcus, Hydrogenoanaerobacterium, and Cellulosimicrobium, within the phyla Firmicutes and Actinobacteria. Ten of the isolates were phylogenetically distinct from previously identified butanol-tolerant bacteria. Two relatively highly butanol-tolerant strains CM4A (aerobe) and GK12 (obligate anaerobe) were characterized further. Both strains changed their membrane fatty acid composition in response to butanol exposure, i.e., CM4A and GK12 exhibited increased saturated and cyclopropane fatty acids (CFAs) and long-chain fatty acids, respectively, which may serve to maintain membrane fluidity. The gene (cfa) encoding CFA synthase was cloned from strain CM4A and expressed in Escherichia coli. The recombinant E. coli showed relatively higher butanol and isobutanol tolerance than E. coli without the cfa gene, suggesting that cfa can confer solvent tolerance. The exposure of strain GK12 to butanol by consecutive passages even enhanced the growth rate, indicating that yet-unknown mechanisms may also contribute to solvent tolerance. Taken together, the results demonstrate that a wide variety of butanol- and isobutanol-tolerant bacteria that can grow in 2.0% butanol exist in the environment and have various strategies to maintain structural integrity against detrimental solvents.

  10. Isolation and characterization of diesel degrading bacteria, Sphingomonas sp. and Acinetobacter junii from petroleum contaminated soil

    NASA Astrophysics Data System (ADS)

    Zhang, Qiuzhuo; Wang, Duanchao; Li, Mengmeng; Xiang, Wei-Ning; Achal, Varenyam

    2014-03-01

    Two indigenous bacteria of petroleum contaminated soil were characterized to utilize diesel fuel as the sole carbon and energy sources in this work. 16S rRNA gene sequence analysis identified these bacteria as Sphingomonas sp. and Acinetobacter junii. The ability to degrade diesel fuel has been demonstrated for the first time by these isolates. The results of IR analyses showed that Sphingomonas sp. VA1 and A. junii VA2 degraded up to 82.6% and 75.8% of applied diesel over 15 days, respectively. In addition, Sphingomonas sp. VA1 possessed the higher cellular hydrophobicities of 94% for diesel compared to 81% by A. junii VA2. The isolates Sphingomonas sp. VA1 and A. junii VA2 exhibited 24% and 18%, respectively emulsification activity. This study reports two new diesel degrading bacterial species, which can be effectively used for bioremediation of petroleum contaminated sites.

  11. Biochemical characteristics and virulence of environmental group F bacteria isolated in the United States.

    PubMed Central

    Seidler, R J; Allen, D A; Colwell, R R; Joseph, S W; Daily, O P

    1980-01-01

    Bacteria phenotypically resembling Aeromonas hydrophila, but requiring NaCl for growth, have been isolated form the New York Bight. The bacteria proved to be identical to group F organisms isolated from cases of human diarrhea in Indonesia and Bangladesh. Anaerogenic strains initiated responses in Y-1 tissue culture and rabbit ileal loop, consistent with those associated with cytotoxin- and enterotoxin-producing Aeromonas spp. strains. Separation on the basis of production of gas from glucose by group F strains was correlated with differences in mean guanine-plus-cytosine deoxyribonucleic acid base composition and in deoxyribonucleic acid relative reassociation. Both aerogenic and anaerogenic strains reassociated to a significantly greater extent with Vibrio spp. than with Aeromonas spp. and indeed should be considered a new species of the genus Vibrio. PMID:7425623

  12. Isolation and characterization of entomopathogenic bacteria from soil samples from the western region of Cuba.

    PubMed

    González, Aileen; Rodríguez, Graciela; Bruzón, Rosa Y; Díaz, Manuel; Companionis, Ariamys; Menéndez, Zulema; Gato, René

    2013-06-01

    The use of insect pathogens is a viable alternative for insect control because of their relative specificity and lower environmental impact. The search for wild strains against dipterans could have an impact on mosquito control programs. We have made an extensive screening of soil in western Cuba to find bacteria with larvicidal activity against mosquitoes. A total of 150 soil samples were collected and isolates were identifying using the API 50 CHB gallery. Phenotypic characteristics were analyzed by hierarchical ascending classification. Quantitative bioassays were conducted under laboratory conditions following the World Health Organization protocol in order to ascertain the toxicity and efficacy of isolates. The protein profiles of the crystal components were determined by SDS-PAGE. Eight hundred and eighty-one bacterial isolates were obtained, and 13 isolates with entomopathogenic activity were isolated from nine samples. Nine isolates displayed higher entomopathogenic activity against both Cx. quinquefasciatus and Ae. aegypti compared with the reference strain 266/2. All toxic isolates showed higher biological potency than the 266/2 strain. These isolates with high entomopathogenic activity displayed a protein pattern similar to the B. thuringiensis var. israelensis IPS-82 and 266/2 strains. These results are a valuable tool for the control of Diptera of medical importance.

  13. Isolation and Characterization of Bacteria Capable of Tolerating the Extreme Conditions of Clean Room Environments▿

    PubMed Central

    La Duc, Myron T.; Dekas, Anne; Osman, Shariff; Moissl, Christine; Newcombe, David; Venkateswaran, Kasthuri

    2007-01-01

    In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4°C to 65°C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 106 cells/m2. However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (α- and β-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means of translocation of

  14. Diversity of cutaneous bacteria with antifungal activity isolated from female four-toed salamanders.

    PubMed

    Lauer, Antje; Simon, Mary Alice; Banning, Jenifer L; Lam, Brianna A; Harris, Reid N

    2008-02-01

    Among the microbiota of amphibian skin are bacteria that produce antifungal compounds. We isolated cutaneous bacteria from the skins of three populations of the nest-attending plethodontid salamander Hemidactylium scutatum and subsequently tested the bacterial isolates against two different fungi (related to Mariannaea elegans and Rhizomucor variabilis) that were obtained from dead salamander eggs. The culturable antifungal bacteria were phylogenetically characterized based on 16S rRNA phylogeny, and belonged to four phyla, comprising 14 bacterial families, 16 genera and 48 species. We found that about half of the antifungal bacterial genera and families were shared with a related salamander species, but there was virtually no overlap at the species level. The proportion of culturable antifungal bacterial taxa shared between two large populations of H. scutatum was the same as the proportion of taxa shared between H. scutatum and Plethodon cinereus, suggesting that populations within a species have unique antifungal bacterial species. Approximately 30% of individuals from both salamander species carried anti-M. elegans cutaneous bacteria and almost 90% of P. cinereus and 100% of H. scutatum salamanders carried anti-R. variabilis cutaneous bacteria. A culture independent method (PCR/DGGE) revealed a shared resident bacterial community of about 25% of the entire resident bacterial community within and among populations of H. scutatum. Thus, the culturable antifungal microbiota was far more variable on salamander skins than was the bacterial microbiota detected by PCR/DGGE. The resident cutaneous antifungal bacteria may play an important role in amphibians' innate defense against pathogens, including the lethal chytrid fungus Batrachochytrium dendrobatidis.

  15. Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments.

    PubMed

    La Duc, Myron T; Dekas, Anne; Osman, Shariff; Moissl, Christine; Newcombe, David; Venkateswaran, Kasthuri

    2007-04-01

    In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4 degrees C to 65 degrees C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 10(6) cells/m(2). However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (alpha- and beta-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means

  16. APPLICATIONS OF THE PLASTIC FILM TECHNIQUE IN THE ISOLATION AND STUDY OF ANAEROBIC BACTERIA

    PubMed Central

    Shank, J. L.

    1963-01-01

    Shank, J. L. (Swift & Co., Chicago, Ill.). Applications of the plastic film technique in the isolation and study of anaerobic bacteria. J. Bacteriol. 86:95–100. 1963.—The use of plastic films as oxygen barriers on the surface of agar pour plates, in conjunction with thioglycolate and other selective and differential agents, allows the primary isolation and enumeration of clostridia and other anaerobes. Quantitative studies reveal little if any inhibition of the test organisms under these conditions, and toxin production, where it occurs, is shown to be virtually unimpaired. Images PMID:14051828

  17. Bacteriocin-Producing Lactic Acid Bacteria Isolated from Traditional Fermented Food

    PubMed Central

    Kormin, Salasiah; Rusul, Gulam; Radu, Son; Ling, Foo Hooi

    2001-01-01

    Lactic Acid Bacteria (LAB) isolated from several traditional fermented foods such as “tempeh”, “tempoyak” and “tapai” were screened for the production of bacteriocin. One strain isolated from “tempeh” gives an inhibitory activity against several LAB. The strain was later identified as Lactobacillus plantarum BS2. Study shows that the inhibitory activity was not caused by hydrogen peroxide, organic acids or bacteriophage. The bacteriocin production was maximum after 10 hours of incubation with an activity of 200 AU/ml. The bacteriocin was found to be sensitive towards trypsin, α-chymotrypsin, β-chymotrypsin, α-amylase and lysozyme. PMID:22973159

  18. Growth of moderately halophilic bacteria isolated from sea water using phenol as the sole carbon source.

    PubMed

    Muñoz, J A; Pérez-Esteban, B; Esteban, M; de la Escalera, S; Gómez, M A; Martínez-Toledo, M V; González-López, J

    2001-01-01

    Moderately halophilic bacteria utilizing phenol as the sole carbon source were isolated by selective enrichment from sea water. The isolate (Gram-negative motile rods) was identified as Deleya venusta. It grew well in the presence of up to 1600 mg/L of phenol and 8% NaCl under aerobic conditions. When the cells were treated with chloramphenicol prior to the addition of phenol they did not utilize added phenol, even after prolonged incubation. Thus, the enzymes necessary for phenol metabolism appeared to be inducible.

  19. Isolation and Genetic Analysis of Multidrug Resistant Bacteria from Diabetic Foot Ulcers

    PubMed Central

    Shahi, Shailesh K.; Kumar, Ashok

    2016-01-01

    Severe diabetic foot ulcers (DFUs) patients visiting Sir Sunderlal Hospital, Banaras Hindu University, Varanasi, were selected for this study. Bacteria were isolated from swab and deep tissue of 42 patients, for examining their prevalence and antibiotic sensitivity. DFUs of majority of the patients were found infected with Enterococcus spp. (47.61%), Escherichia coli (35.71%), Staphylococcus spp. (33.33%), Alcaligenes spp. (30.95%), Pseudomonas spp. (30.95%), and Stenotrophomonas spp. (30.95%). Antibiotic susceptibility assay of 142 bacteria with 16 antibiotics belonging to eight classes showed the presence of 38 (26.76%) isolates with multidrug resistance (MDR) phenotypes. MDR character appeared to be governed by integrons as class 1 integrons were detected in 26 (68.42%) isolates. Altogether six different arrays of genes (aadA1, aadB, aadAV, dhfrV, dhfrXII, and dhfrXVII) were found within class 1 integron. Gene cassette dhfrAXVII-aadAV (1.6 kb) was present in 12 (3 Gram positive and 9 Gram negative) isolates and was conserved across all the isolates as evident from RFLP analysis. In addition to the presence of class 1 integron, six β-lactamase resistance encoding genes namely blaTEM, blaSHV, blaOXA, blaCTX−M−gp1, blaCTX−M−gp2, and blaCTX−M−gp9 and two methicillin resistance genes namely mecA and femA and vancomycin resistance encoding genes (vanA and vanB) were identified in different isolates. Majority of the MDR isolates were positive for blaTEM (89.47%), blaOXA (52.63%), and blaCTX−M−gp1 (34.21%). To our knowledge, this is the first report of molecular characterization of antibiotic resistance in bacteria isolated from DFUs from North India. In conclusion, findings of this study suggest that class-1 integrons and β-lactamase genes contributed to the MDR in above bacteria. PMID:26779134

  20. Isolation and Genetic Analysis of Multidrug Resistant Bacteria from Diabetic Foot Ulcers.

    PubMed

    Shahi, Shailesh K; Kumar, Ashok

    2015-01-01

    Severe diabetic foot ulcers (DFUs) patients visiting Sir Sunderlal Hospital, Banaras Hindu University, Varanasi, were selected for this study. Bacteria were isolated from swab and deep tissue of 42 patients, for examining their prevalence and antibiotic sensitivity. DFUs of majority of the patients were found infected with Enterococcus spp. (47.61%), Escherichia coli (35.71%), Staphylococcus spp. (33.33%), Alcaligenes spp. (30.95%), Pseudomonas spp. (30.95%), and Stenotrophomonas spp. (30.95%). Antibiotic susceptibility assay of 142 bacteria with 16 antibiotics belonging to eight classes showed the presence of 38 (26.76%) isolates with multidrug resistance (MDR) phenotypes. MDR character appeared to be governed by integrons as class 1 integrons were detected in 26 (68.42%) isolates. Altogether six different arrays of genes (aadA1, aadB, aadAV, dhfrV, dhfrXII, and dhfrXVII) were found within class 1 integron. Gene cassette dhfrAXVII-aadAV (1.6 kb) was present in 12 (3 Gram positive and 9 Gram negative) isolates and was conserved across all the isolates as evident from RFLP analysis. In addition to the presence of class 1 integron, six β-lactamase resistance encoding genes namely bla TEM, bla SHV, bla OXA, bla CTX-M-gp1, bla CTX-M-gp2, and bla CTX-M-gp9 and two methicillin resistance genes namely mecA and femA and vancomycin resistance encoding genes (vanA and vanB) were identified in different isolates. Majority of the MDR isolates were positive for bla TEM (89.47%), bla OXA (52.63%), and bla CTX-M-gp1 (34.21%). To our knowledge, this is the first report of molecular characterization of antibiotic resistance in bacteria isolated from DFUs from North India. In conclusion, findings of this study suggest that class-1 integrons and β-lactamase genes contributed to the MDR in above bacteria.

  1. Enrichment, isolation and identification of sulfur-oxidizing bacteria from sulfide removing bioreactor.

    PubMed

    Luo, Jianfei; Tian, Guoliang; Lin, Weitie

    2013-07-01

    Sulfur-oxidizing bacteria (SOB) are the main microorganisms that participate in the natural sulfur cycle. To obtain SOB with high sulfur-oxidizing ability under aerobic or anaerobic conditions, aerobic and anaerobic enrichments were carried out. Denaturing gradient gel electrophoresis (DGGE) profiles showed that the microbial community changed according to the thiosulfate utilization during enrichments, and Rhodopseudomonas and Halothiobacillus were the predominant bacteria in anaerobic enrichment and aerobic enrichment, respectively, which mainly contributed to the thiosulfate oxidization in the enrichments. Based on the enriched cultures, six isolates were isolated from the aerobic enrichment and four isolates were obtained from the anaerobic enrichment. Phylogenetic analysis suggested the 16S rRNA gene of isolates belonged to the genus Acinetobacter, Rhodopseudomonas, Pseudomonas, Halothiobacillus, Ochrobactrum, Paracoccus, Thiobacillus, and Alcaligenes, respectively. The tests suggested isolates related to Halothiobacillus and Rhodopseudomonas had the highest thiosulfate oxidizing ability under aerobic or anaerobic conditions, respectively; Paracoccus and Alcaligenes could aerobically and anaerobically oxidize thiosulfate. Based on the DGGE and thiosulfate oxidizing ability analysis, Rhodopseudomonas and Halothiobacillus were found to be the main SOB in the sulfide-removing reactor, and were responsible for the sulfur-oxidizing in the treatment system.

  2. Inhibition of Listeria monocytogenes biofilms by bacteriocin-producing bacteria isolated from mushroom substrate.

    PubMed

    Bolocan, A S; Pennone, V; O'Connor, P M; Coffey, A; Nicolau, A I; McAuliffe, O; Jordan, K

    2017-01-01

    This study was designed to investigate the ability of naturally occurring bacteria isolated from mushroom substrate to prevent biofilm formation by Listeria monocytogenes or to remove existing biofilms in mushroom production facilities. It is generally recognized that L. monocytogenes forms biofilms that can facilitate its survival in food-processing environments. Eleven bacteriocin-producing isolates were identified and the bacteriocins characterized based on heat and enzyme inactivation studies. Further characterization was undertaken by MALDI-TOF mass spectrometry, PCR and sequencing. Production of nisin Z (by Lactococcus lactis isolates), subtilomycin (by Bacillus subtilis isolates) and lichenicidin (by Bacillus licheniformis and Bacillus sonorensis isolates) was detected. In co-culture with L. monocytogenes, the bacteriocin-producing strains could prevent biofilm formation and reduce pre-formed biofilms. Mushroom substrate can be a source of bacteriocin-producing bacteria that can antagonize L. monocytogenes. The results highlight the potential of bacteriocin-producing strains from mushroom substrate to reduce L. monocytogenes biofilm in food production environments, contributing to a reduction in the risk of food contamination from the environment. © 2016 The Society for Applied Microbiology.

  3. Polyhydroxyalkanoate production by antarctic soil bacteria isolated from Casey Station and Signy Island.

    PubMed

    Goh, Yuh Shan; Tan, Irene Kit Ping

    2012-04-20

    Polyhydroxyalkanoate (PHA) is a family of biopolymers produced by some bacteria and is accumulated intracellularly as carbon and energy storage material. Fifteen PHA-producing bacterial strains were identified from bacteria isolated from Antarctic soils collected around Casey Station (66°17'S, 110°32'E) and Signy Island (60°45'S, 45°36'W). Screening for PHA production was carried out by incubating the isolates in PHA production medium supplemented with 0.5% (w/v) sodium octanoate or glucose. 16S rRNA gene sequence analysis revealed that the isolated PHA-producing strains were mainly Pseudomonas spp. and a few were Janthinobacterium spp. All the isolated Pseudomonas strains were able to produce medium-chain-length (mcl) PHA using fatty acids as carbon source, while some could also produce mcl-PHA by using glucose. The Janthinobacterium strains could only utilize glucose to produce polyhydroxybutyrate (PHB). A Pseudomonas isolate, UMAB-40, accumulated PHA up to 48% cell dry mass when utilizing fatty acids as carbon source. This high accumulation occurred at between 5°C and 20°C, then decreased with increasing temperatures. Highly unsaturated mcl-PHA was produced by UMAB-40 from glucose. Such characteristics may be associated with the ability of UMAB-40 to survive in the cold.

  4. Isolation of Indole Utilizing Bacteria Arthrobacter sp. and Alcaligenes sp. From Livestock Waste.

    PubMed

    Kim, Minsu; Lee, Jin-Hyung; Kim, Eonmi; Choi, Hyukjae; Kim, Younghoon; Lee, Jintae

    2016-06-01

    Indole is an interspecies and interkingdom signaling molecule widespread in different environmental compartment. Although multifaceted roles of indole in different biological systems have been established, little information is available on the microbial utilization of indole in the context of combating odor emissions from different types of waste. The present study was aimed at identifying novel bacteria capable of utilizing indole as the sole carbon and energy source. From the selective enrichment of swine waste and cattle feces, we identified Gram-positive and Gram-negative bacteria belonging to the genera Arthrobacter and Alcaligenes. Bacteria belonging to the genus Alcaligenes showed higher rates of indole utilization than Arthrobacter. Indole at 1.0 mM for growth was completely utilized by Alcaligenes sp. in 16 h. Both strains produced two intermediates, anthranilic acid and isatin, during aerobic indole metabolism. These isolates were also able to grow on several indole derivatives. Interestingly, an adaptive response in terms of a decrease in cell size was observed in both strains in the presence of indole. The present study will help to explain the degradation of indole by different bacteria and also the pathways through which it is catabolized. Furthermore, these novel bacterial isolates could be potentially useful for the in situ attenuation of odorant indole and its derivatives emitted from different types of livestock waste.

  5. Isolation, Culture Characteristics, and Identification of Anaerobic Bacteria from the Chicken Cecum

    PubMed Central

    Salanitro, J. P.; Fairchilds, I. G.; Zgornicki, Y. D.

    1974-01-01

    Studies on the anaerobic cecal microflora of the 5-week-old chicken were made to determine a suitable roll-tube medium for enumeration and isolation of the bacterial population, to determine effects of medium components on recovery of total anaerobes, and to identify the predominant bacterial groups. The total number of microorganisms in cecal contents determined by direct microscope cell counts varied (among six samples) from 3.83 × 1010 to 7.64 × 1010 per g. Comparison of different nonselective media indicated that 60% of the direct microscope count could be recovered with a rumen fluid medium (M98-5) and 45% with medium 10. Deletion of rumen fluid from M98-5 reduced the total anaerobic count by half. Colony counts were lower if chicken cecal extract was substituted for rumen fluid in M98-5. Supplementing medium 10 with liver, chicken fecal, or cecal extracts improved recovery of anaerobes slightly. Prereduced blood agar media were inferior to M98-5. At least 11 groups of bacteria were isolated from high dilutions (10-9) of cecal material. Data on morphology and physiological and fermentation characteristics of 90% of the 298 isolated strains indicated that these bacteria represented species of anaerobic gram-negative cocci, facultatively anaerobic cocci and streptococci, Peptostreptococcus, Propionibacterium, Eubacterium, Bacteroides, and Clostridium. The growth of many of these strains was enhanced by rumen fluid, yeast extract, and cecal extract additions to basal media. These studies indicate that some of the more numerous anaerobic bacteria present in chicken cecal digesta can be isolated and cultured when media and methods that have been developed for ruminal bacteria are employed. PMID:4596749

  6. Improved oil recovery using bacteria isolated from North Sea petroleum reservoirs

    SciTech Connect

    Davey, R.A.; Lappin-Scott, H.

    1995-12-31

    During secondary oil recovery, water is injected into the formation to sweep out the residual oil. The injected water, however, follows the path of least resistance through the high-permeability zones, leaving oil in the low-permeability zones. Selective plugging of these their zones would divert the waterflood to the residual oil and thus increase the life of the well. Bacteria have been suggested as an alternative plugging agent to the current method of polymer injection. Starved bacteria can penetrate deeply into rock formations where they attach to the rock surfaces, and given the right nutrients can grow and produce exo-polymer, reducing the permeability of these zones. The application of microbial enhanced oil recovery has only been applied to shallow, cool, onshore fields to date. This study has focused on the ability of bacteria to enhance oil recovery offshore in the North Sea, where the environment can be considered extreme. A screen of produced water from oil reservoirs (and other extreme subterranean environments) was undertaken, and two bacteria were chosen for further work. These two isolates were able to grow and survive in the presence of saline formation waters at a range of temperatures above 50{degrees}C as facultative anaerobes. When a solution of isolates was passed through sandpacks and nutrients were added, significant reductions in permeabilities were achieved. This was confirmed in Clashach sandstone at 255 bar, when a reduction of 88% in permeability was obtained. Both isolates can survive nutrient starvation, which may improve penetration through the reservoir. Thus, the isolates show potential for field trials in the North Sea as plugging agents.

  7. Detection of volatile sulfide-producing bacteria isolated from poultry-processing plants.

    PubMed Central

    McMeekin, T A; Gibbs, P A; Patterson, J T

    1978-01-01

    A technique using filter paper strips impregnated with 5-5'-dithiobis-nitrobenzoic acid was developed to allow the detection of bacteria (isolated from poultry-processing environs) which produced volatile sulfides (H2S, CH3SH, [CH3]2S). The technique is preferred to conventional methods in that it allows the detection of volatile organic sulfides in addition to hydrogen sulfide. PMID:567037

  8. Ultrastructure of two oil-degrading bacteria isolated from the tropical soil environment.

    PubMed

    Ilori, M O; Amund, D; Robinson, G K

    2000-01-01

    Two oil-degrading bacteria identified as Pseudomonas aeruginosa and Micrococcus luteus were isolated from crude-oil-polluted soils in Nigeria. The organisms were grown on n-hexadecane and sodium succinate and then examined for the presence of hydrocarbon inclusions. Inclusion bodies were found in n-hexadecane-grown cells and were absent in succinate-grown cells. Formation of hydrocarbon inclusion bodies appears to be a general phenomenon among hydrocarbon utilizers.

  9. Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates.

    PubMed

    Mori, Miho; Gomi, Mitsuhiro; Matsumune, Norihiko; Niizeki, Kazuma; Sakagami, Yoshikazu

    2013-01-01

    To evaluate the sanitary conditions of toilets, the bacterial counts of the toilet bowl biofilms in 5 Kansai area and 11 Kansai and Kanto area homes in Japan were measured in winter and summer seasons, respectively. Isolates (128 strains) were identified by analyzing 16S ribosomal RNA sequences. The number of colonies and bacterial species from biofilms sampled in winter tended to be higher and lower, respectively, than those in summer. Moreover, the composition of bacterial communities in summer and winter samples differed considerably. In summer samples, biofilms in Kansai and Kanto areas were dominated by Blastomonas sp. and Mycobacterium sp., respectively. Methylobacterium sp. was detected in all toilet bowl biofilms except for one sample. Methylobacterium sp. constituted the major presence in biofilms along with Brevundimonas sp., Sphingomonas sp., and/or Pseudomonas sp. The composition ratio of the sum of their genera was 88.0 from 42.9% of the total bacterial flora. The biofilm formation abilities of 128 isolates were investigated, and results suggested that Methylobacterium sp. and Sphingomonas sp. were involved in biofilm formation in toilet bowls. The biofilm formation of a mixed bacteria system that included bacteria with the highest biofilm-forming ability in a winter sample was greater than mixture without such bacteria. This result suggests that isolates possessing a high biofilm-forming activity are involved in the biofilm formation in the actual toilet bowl. A bactericidal test against 25 strains indicated that the bactericidal activities of didecyldimethylammonium chloride (DDAC) tended to be higher than those of polyhexamethylene biguanide (PHMB) and N-benzyl-N,N-dimethyldodecylammonium chloride (ADBAC). In particular, DDAC showed high bactericidal activity against approximately 90% of tested strains under the 5 h treatment.

  10. [Isolation of periodontal bacteria from blood samples and atheromas in patients with atherosclerosis and periodontitis].

    PubMed

    Padilla E, Carlos; Lobos G, Olga; Jure O, Gema; Matus F, Sergio; Descouvieres C, Claudia; Hasbún A, Sandra; Maragaño L, Patricio; Núñez F, Loreto

    2007-09-01

    Periodontitis is a common oral disease produced by bacterial species that reside in the subgingival plaque. These microorganisms have been associated to atherosclerosis and it is suggested that periodontitis is a cardiovascular risk factor. To isolate periodontal bacteria from blood and atheroma samples, from patients with atherosclerosis and periodontitis. Twelve patients with periodontitis and a clinical diagnosis of atherosclerosis and 12 patients with periodontitis but without atherosclerosis were studied. Blood samples were obtained immediately before and after scaling and root planing. The samples were incubated in aerobic and anaerobic conditions. One week after scaling, atheromatous plaques were obtained during endarterectomy in the 12 patients with atherosclerosis. These were homogenized and cultured for aerobic and anaerobic bacteria. Microorganisms were identified by means ofPCR. Five patients with and two without atherosclerosis, had bacteremia after scaling and root planing. Bacterial species isolated from blood samples were the same found in periodontic pockets. Four atheromatous plaques of patients with bacteremia yielded positive cultures. The isolated bacteria were the same found in blood samples and periodontal pockets. Bacteremia occurred in seven of 24 patients after scaling and root planing. In four patients, the same species found in periodontic pockets and blood cultures were detected in atherosclerotic plaques obtained one week after the dental procedure.

  11. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics

    PubMed Central

    Perron, Gabriel G.; Whyte, Lyle; Turnbaugh, Peter J.; Goordial, Jacqueline; Hanage, William P.; Dantas, Gautam; Desai, Michael M.

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes. PMID:25807523

  12. Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes.

    PubMed

    Ikeda, Angela Cristina; Bassani, Luciana Lange; Adamoski, Douglas; Stringari, Danyelle; Cordeiro, Vanessa Kava; Glienke, Chirlei; Steffens, Maria Berenice Reynaud; Hungria, Mariangela; Galli-Terasawa, Lygia Vitoria

    2013-01-01

    Maize is one of the most important crops worldwide, and in Brazil, the state of Paraná stands as its largest producer. The crop demands high inputs of N fertilizers, therefore all strategies aiming to optimize the grain production with lower inputs are very relevant. Endophytic bacteria have a high potential to increment maize grain yield by means of input via biological nitrogen fixation and/or plant growth promotion, in this last case increasing the absorption of water and nutrients by the plants. In this study, we established a collection of 217 endophytic bacteria, isolated from roots of four lineages and three hybrid genotypes of maize, and isolated in four different N-free culture media. Biochemical-comprising growth in different carbon sources, intrinsic tolerance to antibiotics, and biochemical tests for catalase, nitrate reductase, urease, and growth in N-free media in vitro-and genetic characterization by BOX-PCR revealed great variability among the isolates. Both commercial hybrids and homozygous lineages were broadly colonized by endophytes, and sequencing of the 16S rRNA gene revealed the presence of bacteria belonging to the genera Pantoea, Bacillus, Burkholderia, and Klebsiella. Qualitative differences in endophytic colonization were detected between lineages and hybrid genotypes.

  13. Bioaccumulation of Vanadium by Vanadium-Resistant Bacteria Isolated from the Intestine of Ascidia sydneiensis samea.

    PubMed

    Romaidi; Ueki, Tatsuya

    2016-06-01

    Isolation of naturally occurring bacterial strains from metal-rich environments has gained popularity due to the growing need for bioremediation technologies. In this study, we found that the vanadium concentration in the intestine of the vanadium-rich ascidian Ascidia sydneiensis samea could reach 0.67 mM, and thus, we isolated vanadium-resistant bacteria from the intestinal contents and determined the ability of each bacterial strain to accumulate vanadium and other heavy metals. Nine strains of vanadium-resistant bacteria were successfully isolated, of which two strains, V-RA-4 and S-RA-6, accumulated vanadium at a higher rate than did the other strains. The maximum vanadium absorption by these bacteria was achieved at pH 3, and intracellular accumulation was the predominant mechanism. Each strain strongly accumulated copper and cobalt ions, but accumulation of nickel and molybdate ions was relatively low. These bacterial strains can be applied to protocols for bioremediation of vanadium and heavy metal toxicity.

  14. Isolation of butyrate-utilizing bacteria from thermophilic and mesophilic methane-producing ecosystems

    SciTech Connect

    Henson, J.M.

    1983-01-01

    The ability of various ecosystems to convert butyrate to methane was studied in order to isolate the bacteria responsible for the conversion. When thermophilic digester sludge was enriched with butyrate, methane was produced without a lag period. Marine sediments enriched with butyrate required a 2-week incubation period before methanogenesis began. A thermophilic digester was studied in more detail and found by most-probable-number enumeration to have ca. 5 x 10/sup 6/ butyrate-utilizing bactera/ml of sludge. A thermophilic butyrate-utilizing bacterium was isolated in coculture with Methanobacterium thermoautotrophicum and a Methanosarcina sp. This bacterium was a gram-negative, slightly curved rod that occurred singly, was nonmotile, and did not appear to produce spores. The thermophilic digester was infused with butyrate at the rate of 10 ..mu..moles/ml of sludge per day. Biogas production increased by 150%, with the percentage of methane increasing from 58% to 68%. Acetate, propionate, and butyrate did not accumulate. Butyrate-utilizing enrichments from mesophilic ecosystems were used in obtaining cocultures of butyrate-utilizing bacteria. These cocultures served as inocula for attempts to isolate pure cultures of butyrate-utilizing bacteria by use of hydrogenase-containing membrane fragments of Escherichia coli. After a 3-week incubation period, colonies appeared only in inoculated tubes that contained membrane fragments and butyrate.

  15. Isolation and Identification of Cellulolytic Bacteria from the Gut of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae)

    PubMed Central

    Huang, Shengwei; Sheng, Ping; Zhang, Hongyu

    2012-01-01

    In this study, 207 strains of aerobic and facultatively anaerobic cellulolytic bacteria were isolated from the gut of Holotrichia parallela larvae. These bacterial isolates were assigned to 21 genotypes by amplified ribosomal DNA restriction analysis (ARDRA). A partial 16S rDNA sequence analysis and standard biochemical and physiological tests were used for the assignment of the 21 representative isolates. Our results show that the cellulolytic bacterial community is dominated by the Proteobacteria (70.05%), followed by the Actinobacteria (24.15%), the Firmicutes (4.35%), and the Bacteroidetes (1.45%). At the genus level, Gram-negative bacteria including Pseudomonas, Ochrobactrum, Rhizobium, Cellulosimicrobium, and Microbacterium were the predominant groups, but members of Bacillus, Dyadobacter, Siphonobacter, Paracoccus, Kaistia, Devosia, Labrys, Ensifer, Variovorax, Shinella, Citrobacter, and Stenotrophomonas were also found. Furthermore, our results suggest that a significant amount of bacterial diversity exists among the cellulolytic bacteria, and that Siphonobacter aquaeclarae, Cellulosimicrobium funkei, Paracoccus sulfuroxidans, Ochrobactrum cytisi, Ochrobactrum haematophilum, Kaistia adipata, Devosia riboflavina, Labrys neptuniae, Ensifer adhaerens, Shinella zoogloeoides, Citrobacter freundii, and Pseudomonas nitroreducens are reported to be cellulolytic for the first time in this study. Our results indicate that the scarab gut is an attractive source for the study of novel cellulolytic microorganisms and enzymes useful for cellulose degradation. PMID:22489111

  16. Survey of antibiotic-resistant bacteria isolated from bottlenose dolphins Tursiops truncatus in the southeastern USA.

    PubMed

    Stewart, Jill R; Townsend, Forrest I; Lane, Suzanne M; Dyar, Elizabeth; Hohn, Aleta A; Rowles, Teri K; Staggs, Lydia A; Wells, Randall S; Balmer, Brian C; Schwacke, Lori H

    2014-02-19

    Contamination of coastal waters can carry pathogens and contaminants that cause diseases in humans and wildlife, and these pathogens can be transported by water to areas where they are not indigenous. Marine mammals may be indicators of potential health effects from such pathogens and toxins. Here we isolated bacterial species of relevance to humans from wild bottlenose dolphins Tursiops truncatus and assayed isolated bacteria for antibiotic resistance. Samples were collected during capture-release dolphin health assessments at multiple coastal and estuarine sites along the US mid-Atlantic coast and the Gulf of Mexico. These samples were transported on ice and evaluated using commercial systems and aerobic culture techniques routinely employed in clinical laboratories. The most common bacteria identified were species belonging to the genus Vibrio, although Escherichia coli, Shewanella putrefaciens, and Pseudomonas fluorescens/putida were also common. Some of the bacterial species identified have been associated with human illness, including a strain of methicillin-resistant Staphylococcus aureus (MRSA) identified in 1 sample. Widespread antibiotic resistance was observed among all sites, although the percentage of resistant isolates varied across sites and across time. These data provide a baseline for future comparisons of the bacteria that colonize bottlenose dolphins in the southeastern USA.

  17. Bacteria isolated from dugongs (Dugong dugon) submitted for postmortem examination in Queensland, Australia, 2000-2011.

    PubMed

    Nielsen, Kristen A; Owen, Helen C; Mills, Paul C; Flint, Mark; Gibson, Justine S

    2013-03-01

    Microbial infection may contribute to disease in a significant proportion of marine mammal mortalities, but little is known about infectious bacterial species and their prevalence in dugongs (Dugong dugon). This study represents a survey of the species of bacteria and fungi isolated from dugongs submitted to the University of Queensland's School of Veterinary Science for postmortem examination. Thirty-six dugongs were included in the survey, with 23 species of bacteria and four species of fungus cultured from lesions that were suspected of contributing to local infection, systemic infection, or both. The most abundant bacteria included Aeromonas spp., Clostridium spp., Vibrio spp., Enterococcus faecalis, and Pseudomonas spp. In six cases, the microorganism(s) cultured were considered to have been associated with disease. Mixed infections containing Aeromonas spp. and Vibrio spp.; Morganella morganii, Pasteurella multocida, and Serratia marcescens; and Actinomyces spp. and Peptostreptococcus spp. were associated with pneumonia or pleuritis, and Enterococcus faecalis was associated with a multisystemic infection in a neonate. Clostridium spp. was cultured from two animals with peritonitis and likely septicemia. The significance of many of the other isolates is uncertain because the samples were taken after death, and some of the species isolated may represent postmortem overgrowth. It is also difficult to fulfil Koch's postulates through experimental infection in marine mammals. Regardless, this information will assist clinicians working with dugongs to make treatment decisions and the baseline data on the prevalence of bacterial and fungal species is of value for monitoring coastal water habitat health and risks of zoonotic disease transmission.

  18. Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics.

    PubMed

    Perron, Gabriel G; Whyte, Lyle; Turnbaugh, Peter J; Goordial, Jacqueline; Hanage, William P; Dantas, Gautam; Desai, Michael M

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes.

  19. Antimicrobial activities of novel cultivable bacteria isolated from marine sponge Tedania anhelans

    NASA Astrophysics Data System (ADS)

    Zeng, Zhen; Zhao, Jing; Ke, Caihuan; Wang, Dexiang

    2013-05-01

    Marine sponge Tedania anhelans distributes throughout the intertidal zone of Fujian, southeastern China, and is a potential source of natural bioactive products. The sponge harbors a large number of bacterial groups that have been identified using various techniques, including fluorescent in situ hybridization (FISH). Fractionation of dissociated sponge allowed isolation of 25 bacterial species. Based on 16S rRNA gene sequencing, phylogenetic analysis attributed most of these eubacteria to α- Proteobacteria, γ- Proteobacteria, Cytophaga / Flavobacterium / Bacteroidetes (CFB group), and the family Bacillaceae of Gram-positive bacteria. In sequence similarity, five putatively novel species were identified with less than 98% similarity to other strains in the NCBI database. Tests for antimicrobial activities were performed against Gram-positive bacteria, Gram-negative bacteria, fungi, antitumor indicators Escherichia coli 343/591 (with DNA repair deficiency), regular E. coli 343/636 (with different DNA repair capacity), and 10 bacterial isolates exhibited inhibitory bioactivities. Among these strains, three isolates were detected involving function gene NRPS-A domains, which were most closely related to the amino acid sequences of linear gramicidin synthetase and pyoverdine synthetase. These results contribute to our knowledge of the microbes associated with marine sponges and further reveal novel bacterial resources for the screening of bioactive marine natural products.

  20. Isolation of heterotrophic bacteria from Palk Bay sediments showing heavy metal tolerance and antibiotic production.

    PubMed

    Nithya, Chari; Pandian, Shunmugiah Karutha

    2010-09-20

    Analysis of culturable and unculturable bacteria and their potential bioactive compounds from Palk Bay is yet to be explored. The present study for the first time characterizes the culturable bacteria from Palk Bay sediment using 16S rRNA gene sequencing. The characterized bacteria were also screened for antibacterial activity against human and aquaculture pathogens. In the 16S rRNA gene sequence analysis characterized that most of the bacteria were affiliated to members of Firmicutes and less with Gammaproteobacteria, Actinobacteria and Alphaproteobacteria. A high portion of (39%) of the bacteria showed antibacterial activity against both Gram positive and Gram negative test strains. The antibiotics from the strain S6-05 were partially purified using solvent extraction followed by TLC and silica column and further characterized by IR analysis. Two active principles A and B showed difference in the activity against Gram positive and Gram negative pathogens. But in the synergistic application they showed excellent activity against all the test pathogens. This study provides the first evidence on the existence of certain Bacillus species in the marine environment, namely Bacillus arsenicus, Bacillus indicus, Bacillus boroniphilus, Bacillus cibi and Bacillus niabensis which also had antibacterial activity. Several of the isolates exhibited tolerance to arsenic and boron to a new level of 25 and 100 mM, respectively. The current study reveals the fact that a great deal remains in the bacterial diversity of Palk Bay region. 2009 Elsevier GmbH. All rights reserved.

  1. Multidrug-resistant bacteria infection control: study of compliance with isolation precautions in a Paris university hospital.

    PubMed

    Vidal-Trecan, G M; Delamare, N; Tcherny-Lessenot, S; Lamory, J; Baudin, F; de Prittwitz, M; Salmon-Ceron, D

    2001-02-01

    Isolation practices in a university hospital were analyzed for 137 patients with multidrug-resistant bacteria. Isolation was ordered in writing by physicians for 40% and instituted by nurses for 60%; 74% were isolated. Compliance depended on physician ordering in writing (odds ratio, 36.3; 95% confidence interval, 4.8-274.9). Nurses complied best with hand washing.

  2. Bacteria isolated from sewage influent resistant to ciprofloxacin, chloramphenicol and tetracycline.

    PubMed

    Zwenger, Sam R; Gillock, Eric T

    2009-02-01

    This study assessed the presence of antibiotic-resistant bacteria in sewage influent. Resistance was measured by determining the lowest concentration of antibiotic, in micrograms per milliliter (microg mL(- 1)). To determine the minimum inhibitory concentration (MIC), which is used in diagnostic laboratories, we used the Etest, a plastic strip containing an antibiotic concentration gradient. In total, we sampled five sewage treatment plants of various sizes in Kansas and isolated bacteria resistant to three broad-spectrum antibiotics; ciprofloxacin (1-cyclopropyl-6-fluoro-4-oxo-7-piperazin-1-yl-quinoline-3-carboxylic acid), chloramphenicol 2,2-dichlor-N-[(aR, bR)-b-hydroxy-a-hydroxymethyl-4-nitrophenethyl] acetamide), and tetracycline (2-(amino-hydroxy-ethylidene)-4-dimethylamino-6,10,11,12a-tetrahydroxy-6-methyl-4,4a,5,5a-tetrahydrotetracene-1,3,12-trione). In total, 25 Gram-negative isolates were found to be resistant to at least one of the antibiotics tested. Some isolates were multi-drug resistant, regardless of the amount of influent the sewage treatment plant received. A Pseudomonas isolate from the smallest sewage treatment plant (approximately 2 million gallons treated per day) showed resistance to all three antibiotics, albeit at low levels (10 microg mL(- 1)). The largest number of bacteria (6 species) were isolated from the largest sewage treatment plant (45 million gallons per day). Regardless, the results of this study are in agreement with similar studies, antibiotic resistance can persist long after the antibiotics have been forgotten.

  3. Comparative genomics of Roseobacter clade bacteria isolated from the accessory nidamental gland of Euprymna scolopes

    PubMed Central

    Collins, Andrew J.; Fullmer, Matthew S.; Gogarten, Johann P.; Nyholm, Spencer V.

    2015-01-01

    The accessory nidamental gland (ANG) of the female Hawaiian bobtail squid, Euprymna scolopes, houses a consortium of bacteria including members of the Flavobacteriales, Rhizobiales, and Verrucomicrobia but is dominated by members of the Roseobacter clade (Rhodobacterales) within the Alphaproteobacteria. These bacteria are deposited into the jelly coat of the squid’s eggs, however, the function of the ANG and its bacterial symbionts has yet to be elucidated. In order to gain insight into this consortium and its potential role in host reproduction, we cultured 12 Rhodobacterales isolates from ANGs of sexually mature female squid and sequenced their genomes with Illumina sequencing technology. For taxonomic analyses, the ribosomal proteins of 79 genomes representing both roseobacters and non-roseobacters along with a separate MLSA analysis of 33 housekeeping genes from Roseobacter organisms placed all 12 isolates from the ANG within two groups of a single Roseobacter clade. Average nucelotide identity analysis suggests the ANG isolates represent three genera (Leisingera, Ruegeria, and Tateyamaria) comprised of seven putative species groups. All but one of the isolates contains a predicted Type VI secretion system, which has been shown to be important in secreting signaling and/or effector molecules in host–microbe associations and in bacteria–bacteria interactions. All sequenced genomes also show potential for secondary metabolite production, and are predicted to be involved with the production of acyl homoserine lactones (AHLs) and/or siderophores. An AHL bioassay confirmed AHL production in three tested isolates and from whole ANG homogenates. The dominant symbiont, Leisingera sp. ANG1, showed greater viability in iron-limiting conditions compared to other roseobacters, possibly due to higher levels of siderophore production. Future comparisons will try to elucidate novel metabolic pathways of the ANG symbionts to understand their putative role in host

  4. Bacterial Coaggregation Among the Most Commonly Isolated Bacteria From Contact Lens Cases.

    PubMed

    Datta, Ananya; Stapleton, Fiona; Willcox, Mark D P

    2017-01-01

    To examine the coaggregation and cohesion between the commonly isolated bacteria from contact lens cases. Four or five strains each of commonly isolated bacteria from contact lens cases, Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Serratia marcescens, were grown, washed, mixed in equal proportions, and allowed to coaggregate for 24 hours. Lactose (0.06 M), sucrose (0.06 M), and pronase (2 mg/mL; 2 hours, 37°C) were used to inhibit coaggregation. Oral bacterial isolates of Actinomyces naeslundii and Streptococcus sanguinis were used as a positive control for coaggregation. Cohesion was performed with the ocular bacteria that demonstrated the highest level of coaggregation. Production of growth-inhibitory substances was measured by growing strains together on agar plates. The oral bacterial pair showed >80% coaggregation. Coaggregation occurred between ocular strains of S. aureus (2/5) or S. epidermidis (2/5) with P. aeruginosa strains (3/5); 42% to 62%. There was only slight coaggregation between staphylococci and S. marcescens. Staphylococcus aureus coaggregated with S. epidermidis. Lactose or sucrose treatment of S. aureus but pronase treatment of P. aeruginosa reversed the coaggregation. There was no cohesion between the ocular isolates. P. aeruginosa was able to stop growth of S. aureus but not vice versa. This study demonstrated for the first time that ocular isolates of P. aeruginosa and S. aureus could coaggregate, probably through lectin-carbohydrate interactions. However, this may not be related to biofilm formation in contact lens cases, as there was no evidence that the coaggregation was associated with cohesion between the strains.

  5. Extensive characterizations of bacteria isolated from catheterized urine and stone matrices in patients with nephrolithiasis.

    PubMed

    Tavichakorntrakool, Ratree; Prasongwattana, Vitoon; Sungkeeree, Seksit; Saisud, Phitsamai; Sribenjalux, Pipat; Pimratana, Chaowat; Bovornpadungkitti, Sombat; Sriboonlue, Pote; Thongboonkerd, Visith

    2012-11-01

    Urinary tract infections are generally known to be associated with nephrolithiasis, particularly struvite stone, in which the most common microbe found is urea-splitting bacterium, i.e. Proteus mirabilis. However, our observation indicated that it might not be the case of stone formers in Thailand. We therefore extensively characterized microorganisms associated with all types of kidney stones. A total of 100 kidney stone formers (59 males and 41 females) admitted for elective percutaneous nephrolithotomy were recruited and microorganisms isolated from catheterized urine and cortex and nidus of their stones were analyzed. From 100 stone formers recruited, 36 cases had a total of 45 bacterial isolates cultivated from their catheterized urine and/or stone matrices. Among these 36 cases, chemical analysis by Fourier-transformed infrared spectroscopy revealed that 8 had the previously classified 'infection-induced stones', whereas the other 28 cases had the previously classified 'metabolic stones'. Calcium oxalate (in either pure or mixed form) was the most common and found in 64 and 75% of the stone formers with and without bacterial isolates, respectively. Escherichia coli was the most common bacterium (approximately one-third of all bacterial isolates) found in urine and stone matrices (both nidus and periphery). Linear regression analysis showed significant correlation (r = 0.860, P < 0.001) between bacterial types in urine and stone matrices. Multidrug resistance was frequently found in these isolated bacteria. Moreover, urea test revealed that only 31% were urea-splitting bacteria, whereas the majority (69%) had negative urea test. Our data indicate that microorganisms are associated with almost all chemical types of kidney stones and urea-splitting bacteria are not the major causative microorganisms found in urine and stone matrices of the stone formers in Thailand. These data may lead to rethinking and a new roadmap for future research regarding the role of

  6. Antimicrobial resistance of gram-negative bacteria isolated from foods in Mexico.

    PubMed

    Wood, L V; Morgan, D R; DuPont, H L

    1983-10-01

    When trimethoprim-sulfamethoxazole was given to US travelers in Mexico to prevent diarrheal illness, high-level resistance to the drug emerged [2], although in previous studies such resistance had not been observed among enteric flora following administration of trimethoprim-sulfamethoxazole as prophylaxis against urinary tract infection [3]. Since food has been shown to be an important vehicle of transmission of travelers' diarrhea, food samples were examined for the presence of drug-resistant bacteria to explain the acquisition of high-level resistance among enteric flora of individuals taking antibiotics as prophylaxis against traveler's diarrhea. Of 34 strains of ETEC isolated from US students in Guadalajara, Mexico, who had acute gastroenteritis, one was resistant to trimethoprim and one was resistant to trimethoprim-sulfamethoxazole. Eight of the ETEC strains tested demonstrated multiple drug resistance. Twenty-two of 149 isolates from food produced enterotoxin. Only one isolate, which was nontoxigenic, was resistant to trimethoprim, and no coliforms were resistant to trimethoprim-sulfamethoxazole; however, 16 isolates demonstrated multiple drug resistance. Of 235 gram-negative organisms recovered from frozen food samples grown on antibiotic-containing media and tested for enterotoxin production, no isolates were enterotoxigenic. Thirty-four isolates were resistant to trimethoprim, 15 were resistant to trimethoprim-sulfamethoxazole, and 33 demonstrated multiple resistance. Multiple drug resistance was demonstrated among gram-negative organisms isolated from patients' stools and foods in Mexico.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Identification and characterization of endophytic bacteria isolated from in vitro cultures of peach and pear rootstocks.

    PubMed

    Liaqat, Fakhra; Eltem, Rengin

    2016-12-01

    Endophytes are microorganisms which live symbiotically with almost all varieties of plant and in turn helping the plant in a number of ways. Instead of satisfactory surface sterilization approaches, repeatedly occurring bacterial growth on in vitro rootstock cultures of peach and pear was identified and isolated as endophytic bacteria in our present study. Five different isolates from peach rootstocks were molecularly identified by 16S rRNA gene sequencing as Brevundimonas diminuta, Leifsonia shinshuensis, Sphingomonas parapaucimobilis Brevundimonas vesicularis, Agrobacterium tumefaciens while two endophytic isolates of pear were identified as Pseudoxanthomonas mexicana, and Stenotrophomonas rhizophilia. Identified endophytes were also screened for their potential of plant growth promotion according to indoleacetic acid (IAA) production, nitrogen fixation, solubilization of phosphate and production of siderophore. All seven endophytic isolates have shown positive results for IAA, nitrogen fixation and phosphate solubilization tests. However, two out of seven isolates showed positive results for siderophore production. On the basis of these growth promoting competences, isolated endophytes can be presumed to have significant influence on the growth of host plants. Future studies required to determine the antimicrobial susceptibility profile and potential application of these isolates in biological control, microbial biofertilizers and degradative enzyme production.

  8. Isolation of phylogenetically diverse nonylphenol ethoxylate-degrading bacteria and characterization of their corresponding biotransformation pathways.

    PubMed

    Gu, Xin; Zhang, Yu; Zhang, Jing; Yang, Min; Tamaki, Hideyuki; Kamagata, Yoichi; Li, Dong

    2010-06-01

    Most nonylphenol ethoxylate (NPEO)-degrading isolates have been assigned to gamma-Proteobacteria, which is different from the results acquired by using molecular ecological techniques. To better understand the environmental fate of NPEOs, bacterial isolation strategy characterized by the use of gellan gum as a gelling reagent and a low concentration of target carbon source were used to isolate phylogenetically diverse NPEO-degrading bacteria from activated sludge, and the biotransformation pathways of the isolates were investigated. Eight NPEO-degrading isolates with high diversity were acquired, which were distributed among seven different genera: Pseudomonas, Sphingomonas, Sphingobium, Cupriavidus, Ralstonia, Achromobacter and Staphylococcus. The latter five genera have never been reported to be able to degrade NPEOs. Three biotransformation pathways of NPEOs were observed in the eight stains. Six strains belonging to alpha, beta and gamma classes of Proteobacteria and Firmicutes phylum degraded NPEOs by initially shortening the EO chain and then oxidizing the terminal alcohol of the shortened NPEOs to the corresponding nonylphenoxy carboxylates (NPECs), which could explain most of the reported observations for the degradation of NPEOs in environment. An isolate (NP42a) belonging to the genus Sphingomonas degraded NPEOs through a non-oxidative pathway, with nonylphenol monoethoxylate (NP(1)EO) as the dominant product. Another isolate (NP47a) belonging to the genus Ralstonia degraded NPEOs by oxidizing the EO chain directly without the formation of short chain products. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Incidence and transferability of antibiotic resistance in the enteric bacteria isolated from hospital wastewater

    PubMed Central

    Alam, Mohammad Zubair; Aqil, Farrukh; Ahmad, Iqbal; Ahmad, Shamim

    2013-01-01

    This study reports the occurrence of antibiotic resistance and production of β-lactamases including extended spectrum beta-lactamases (ESβL) in enteric bacteria isolated from hospital wastewater. Among sixty-nine isolates, tested for antibiotic sensitivity, 73.9% strains were resistant to ampicillin followed by nalidixic acid (72.5%), penicillin (63.8%), co-trimoxazole (55.1%), norfloxacin (53.6%), methicillin (52.7%), cefuroxime (39.1%), cefotaxime (23.2%) and cefixime (20.3%). Resistance to streptomycin, chloramphenicol, nitrofurantoin, tetracycline, and doxycycline was recorded in less than 13% of the strains. The minimum inhibitory concentration (MIC) showed a high level of resistance (800–1600 μg/mL) to one or more antibiotics. Sixty three (91%) isolates produced β-lactamases as determined by rapid iodometric test. Multiple antibiotic resistances were noted in both among ESβL and non-ESβL producers. The β-lactamases hydrolyzed multiple substrates including penicillin (78.8% isolates), ampicillin (62.3%), cefodroxil (52.2%), cefotoxime (21.7%) and cefuroxime (18.8%). Fifteen isolates producing ESβLs were found multidrug resistant. Four ESβL producing isolates could transfer their R-plasmid to the recipient strain E. coli K-12 with conjugation frequency ranging from 7.0 × 10−3 to 8.8 × 10−4. The findings indicated that ESβL producing enteric bacteria are common in the waste water. Such isolates may disseminate the multiple antibiotic resistance traits among bacterial community through genetic exchange mechanisms and thus requires immediate attention. PMID:24516448

  10. Incidence and transferability of antibiotic resistance in the enteric bacteria isolated from hospital wastewater.

    PubMed

    Alam, Mohammad Zubair; Aqil, Farrukh; Ahmad, Iqbal; Ahmad, Shamim

    2013-01-01

    This study reports the occurrence of antibiotic resistance and production of β-lactamases including extended spectrum beta-lactamases (ESβL) in enteric bacteria isolated from hospital wastewater. Among sixty-nine isolates, tested for antibiotic sensitivity, 73.9% strains were resistant to ampicillin followed by nalidixic acid (72.5%), penicillin (63.8%), co-trimoxazole (55.1%), norfloxacin (53.6%), methicillin (52.7%), cefuroxime (39.1%), cefotaxime (23.2%) and cefixime (20.3%). Resistance to streptomycin, chloramphenicol, nitrofurantoin, tetracycline, and doxycycline was recorded in less than 13% of the strains. The minimum inhibitory concentration (MIC) showed a high level of resistance (800-1600 μg/mL) to one or more antibiotics. Sixty three (91%) isolates produced β-lactamases as determined by rapid iodometric test. Multiple antibiotic resistances were noted in both among ESβL and non-ESβL producers. The β-lactamases hydrolyzed multiple substrates including penicillin (78.8% isolates), ampicillin (62.3%), cefodroxil (52.2%), cefotoxime (21.7%) and cefuroxime (18.8%). Fifteen isolates producing ESβLs were found multidrug resistant. Four ESβL producing isolates could transfer their R-plasmid to the recipient strain E. coli K-12 with conjugation frequency ranging from 7.0 × 10(-3) to 8.8 × 10(-4). The findings indicated that ESβL producing enteric bacteria are common in the waste water. Such isolates may disseminate the multiple antibiotic resistance traits among bacterial community through genetic exchange mechanisms and thus requires immediate attention.

  11. Biochemical and molecular characterization of high population density bacteria isolated from sunflower.

    PubMed

    Guerra Pinheiro de Goes, Kelly Campos; de Castro Fisher, Maria Luisa; Cattelan, Alexandre José; Nogueira, Marco Antonio; Portela de Carvalho, Claudio Guilherme; Martinez de Oliveira, Andre Luiz

    2012-04-01

    Natural and beneficial associations between plants and bacteria have demonstrated potential commercial application for several agricultural crops. The sunflower has acquired increasing importance in Brazilian agribusiness owing to its agronomic characteristics such as the tolerance to edaphoclimatic variations, resistance to pests and diseases, and adaptation to the implements commonly used for maize and soybean, as well as the versatility of the products and by-products obtained from its cultivation. A study of the cultivable bacteria associated with two sunflower cultivars, using classical microbiological methods, successfully obtained isolates from different plant tissues (roots, stems, florets, and rhizosphere). Out of 57 plantgrowth- promoting isolates obtained, 45 were identified at the genus level and phylogenetically positioned based on 16S rRNA gene sequencing: 42 Bacillus (B. subtilis, B. cereus, B. thuringiensis, B. pumilus, B. megaterium, and Bacillus sp.) and 3 Methylobacterium komagatae. Random amplified polymorphic DNA (RAPD) analysis showed a broad diversity among the Bacillus isolates, which clustered into 2 groups with 75% similarity and 13 subgroups with 85% similarity, suggesting that the genetic distance correlated with the source of isolation. The isolates were also analyzed for certain growth-promoting activities. Auxin synthesis was widely distributed among the isolates, with values ranging from 93.34 to 1653.37 microM auxin per microng of protein. The phosphate solubilization index ranged from 1.25 to 3.89, and siderophore index varied from 1.15 to 5.25. From a total of 57 isolates, 3 showed an ability to biologically fix atmospheric nitrogen, and 7 showed antagonism against the pathogen Sclerotinia sclerotiorum. The results of biochemical characterization allowed identification of potential candidates for the development of biofertilizers targeted to the sunflower crop.

  12. Identification and characterization of probiotic lactic acid bacteria isolated from traditional persian pickled vegetables.

    PubMed

    Soltan Dallal, M M; Zamaniahari, S; Davoodabadi, A; Hosseini, M; Rajabi, Z

    2017-01-01

    Background: The pickle, a traditional fermented product, is popular among Iranians. Much research has been conducted worldwide on this food group. Due to a lack of related data in Iran, this study was conducted to isolate and identify dominant lactic acid bacteria (LAB) in pickles and salted pickles. Materials and methods: Seventy samples were collected from different regions of Iran. The isolated bacteria were identified as LAB by Gram staining and catalase by using MRS agar. Then, those strains were identified at the species level by physiological tests (e.g., gas production from glucose, arginine hydrolysis, CO2 production from glucose in MRS broth, carbohydrate fermentation) and growth at temperatures of 15°C, 30°C, and 45°C in MRS broth for 3 days. The probiotic characteristics of these bacteria were studied using acid and bile tolerance. The corresponding results were verified using PCR analyses of the 16S rDNA region. Results: 114 presumptive lactic acid bacteria (LAB) with Gram-positive and catalase-negative properties were obtained from the samples. The results revealed that all isolated bacteria were identfied as Lactobacillus (L.) plantarum, L. brevis, L. pentosus, L. casei, L. paracasei and Leuconostoc mesenteroides. The predominant LAB in these pickles was L. plantarum, which was isolated from most of the samples. Among the 114 LAB, 7 isolated species have probiotic potential. Six out of seven were recognized as L. plantarum and one remained unidentifiable by biochemical testing. PCR analysis and sequencing of the 16S rDNA region using 27f and 1522r primers showed that all of the probiotic strains were L. plantarum. Conclusion: The results of this study showed that the dominant LAB in traditional Persian pickled vegetables are L. plantarum, L. brevis, L. pentosus, L. casei, L. paracasei, and Leuconostoc mesenteroides. Moreover, L. plantarum was recognized as a probiotic species in pickled vegetables. The raw data obtained from this study can be used

  13. Identification and characterization of psychrotolerant coliform bacteria isolated from pasteurized fluid milk.

    PubMed

    Masiello, S N; Martin, N H; Trmčić, A; Wiedmann, M; Boor, K J

    2016-01-01

    The presence of coliform bacteria in pasteurized fluid milk typically indicates that product contamination occurred downstream of the pasteurizer, but it may also indicate pasteurization failure. Although coliform detection is frequently used as a hygiene indicator for dairy products, our understanding of the taxonomic and phenotypic coliform diversity associated with dairy products is surprisingly limited. Therefore, using Petrifilm Coliform Count plates (3M, St. Paul, MN), we isolated coliforms from high-temperature, short-time (HTST)-pasteurized fluid milk samples from 21 fluid milk processing plants in the northeast United States. Based on source information and initial characterization using partial 16S rDNA sequencing, 240 nonredundant isolates were obtained. The majority of these isolates were identified as belonging to the genera Enterobacter (42% of isolates), Hafnia (13%), Citrobacter (12%), Serratia (10%), and Raoultella (9%); additional isolates were classified into the genera Buttiauxella, Cedecea, Kluyvera, Leclercia, Pantoea, and Rahnella. A subset of 104 representative isolates was subsequently characterized phenotypically. Cold growth analysis in skim milk broth showed that all isolates displayed at least a 2-log increase over 10 d at 6°C; the majority of isolates (n=74) displayed more than a 5-log increase. In total, 43% of the representative isolates displayed lipolysis when incubated on spirit blue agar at 6°C for 14 d, whereas 71% of isolates displayed proteolysis when incubated on skim milk agar at 6°C for 14 d. Our data indicate that a considerable diversity of coliforms is found in HTST-pasteurized fluid milk and that a considerable proportion of these coliforms have phenotypic characteristics that will allow them to cause fluid milk spoilage. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Isolation and characterization of methane utilizing bacteria from wetland paddy ecosystem.

    PubMed

    Jhala, Y K; Vyas, R V; Shelat, H N; Patel, H K; Patel, H K; Patel, K T

    2014-06-01

    Methylotrophic bacteria which are known to utilize C1 compounds including methane. Research during past few decades increased the interest in finding out novel genera of methane degrading bacteria to efficiently utilize methane to decrease global warming effect. Moreover, evaluation of certain known plant growth promoting strains for their methane degrading potential may open up a new direction for multiple utility of such cultures. In this study, efficient methylotrophic cultures were isolated from wetland paddy fields of Gujarat. From the overall morphological, biochemical and molecular characterization studies, the isolates were identified and designated as Bacillus aerius AAU M 8; Rhizobium sp. AAU M 10; B. subtilis AAU M 14; Paenibacillus illinoisensis AAU M 17 and B. megaterium AAU M 29. Gene specific PCR analysis of the isolates, P. illinoisensis, B. aerius, Rhizobium sp. and B. subtilis showed presence of pmoA gene encoding α subunit particulate methane monooxygenase cluster. B. megaterium, P. illinoisensis, Rhizobium sp. and Methylobacterium extrorquens showed presence of mmoX gene encoding α subunit of the hydroxylase component of the soluble methane monooxygenase cluster. P. illinoisensis and Rhizobium sp. showed presence mxaF gene encoding α subunit region of methanol dehydrogenase gene cluster showing that both isolates are efficient utilizers of methane. To the best of our knowledge, this is the first time report showing presence of methane degradation enzymes and genes within the known PGPB group of organisms from wet land paddy agro-ecosystem, which is considered as one of the leading methane producer.

  15. Isolation and Physiological Characterization of Psychrophilic Denitrifying Bacteria from Permanently Cold Arctic Fjord Sediments (Svalbard, Norway)

    NASA Technical Reports Server (NTRS)

    Canion, Andy; Prakash, Om; Green, Stefan J.; Jahnke, Linda; Kuypers, Marcel M. M.; Kostka, Joel E.

    2013-01-01

    A large proportion of reactive nitrogen loss from polar sediments is mediated by denitrification, but microorganisms mediating denitrification in polar environments remain poorly characterized. A combined approach of most-probable-number (MPN) enumeration, cultivation and physiological characterization was used to describe psychrophilic denitrifying bacterial communities in sediments of three Arctic fjords in Svalbard (Norway). A MPN assay showed the presence of 10(sup 3)-10(sup 6) cells of psychrophilic nitrate-respiring bacteria g(sup -1) of sediment. Fifteen strains within the Proteobacteria were isolated using a systematic enrichment approach with organic acids as electron donors and nitrate as an electron acceptor. Isolates belonged to five genera, including Shewanella, Pseudomonas, Psychromonas (Gammaproteobacteria), Arcobacter (Epsilonproteobacteria) and Herminiimonas (Betaproteobacteria). All isolates were denitrifiers, except Shewanella, which exhibited the capacity for dissimilatory nitrate reduction to ammonium (DNRA). Growth from 0 to 40 degC demonstrated that all genera except Shewanella were psychrophiles with optimal growth below 15 degC, and adaptation to low temperature was demonstrated as a shift from primarily C16:0 saturated fatty acids to C16:1 monounsaturated fatty acids at lower temperatures. This study provides the first targeted enrichment and characterization of psychrophilic denitrifying bacteria from polar sediments, and two genera, Arcobacter and Herminiimonas, are isolated for the first time from permanently cold marine sediments.

  16. Isolation and physiological characterization of psychrophilic denitrifying bacteria from permanently cold Arctic fjord sediments (Svalbard, Norway).

    PubMed

    Canion, Andy; Prakash, Om; Green, Stefan J; Jahnke, Linda; Kuypers, Marcel M M; Kostka, Joel E

    2013-05-01

    A large proportion of reactive nitrogen loss from polar sediments is mediated by denitrification, but microorganisms mediating denitrification in polar environments remain poorly characterized. A combined approach of most-probable-number (MPN) enumeration, cultivation and physiological characterization was used to describe psychrophilic denitrifying bacterial communities in sediments of three Arctic fjords in Svalbard (Norway). A MPN assay showed the presence of 10(3) -10(6) cells of psychrophilic nitrate-respiring bacteria g(-1) of sediment. Fifteen strains within the Proteobacteria were isolated using a systematic enrichment approach with organic acids as electron donors and nitrate as an electron acceptor. Isolates belonged to five genera, including Shewanella, Pseudomonas, Psychromonas (Gammaproteobacteria), Arcobacter (Epsilonproteobacteria) and Herminiimonas (Betaproteobacteria). All isolates were denitrifiers, except Shewanella, which exhibited the capacity for dissimilatory nitrate reduction to ammonium (DNRA). Growth from 0 to 40°C demonstrated that all genera except Shewanella were psychrophiles with optimal growth below 15°C, and adaptation to low temperature was demonstrated as a shift from primarily C16:0 saturated fatty acids to C16:1 monounsaturated fatty acids at lower temperatures. This study provides the first targeted enrichment and characterization of psychrophilic denitrifying bacteria from polar sediments, and two genera, Arcobacter and Herminiimonas, are isolated for the first time from permanently cold marine sediments.

  17. Heavy-metal resistance in Gram-negative bacteria isolated from Kongsfjord, Arctic.

    PubMed

    Neethu, C S; Mujeeb Rahiman, K M; Saramma, A V; Mohamed Hatha, A A

    2015-06-01

    Isolation and characterization of heterotrophic Gram-negative bacteria was carried out from the sediment and water samples collected from Kongsfjord, Arctic. In this study, the potential of Arctic bacteria to tolerate heavy metals that are of ecological significance to the Arctic (selenium (Se), mercury (Hg), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) was investigated. Quantitative assay of 130 isolates by means of plate diffusion and tube dilution methods was carried out by incorporation of different concentrations of metals. Growth in Se and Pb at a concentration of 3000 μg/L was significantly lower (P≤0.0001) than at 2000 μg/L. The minimum inhibitory concentration for Cd and Hg was 50 μg/L (P≤0.0001, F=264.23 and P≤0.0001, F=291.08, respectively) even though in the tube dilution test, Hg-containing tubes showed much less growth, revealing its superior toxicity to Cd. Thus, the level of toxicity of heavy metals was found to be in the order of Hg>Cd>Cu>Zn>Pb>Se. Multiple-metal-resistant isolates were investigated for their resistance against antibiotics, and a positive correlation was observed between antibiotic and metal resistance for all the isolates tested. The resistant organisms thus observed might influence the organic and inorganic cycles in the Arctic and affect the ecosystem.

  18. Biogeochemistry and Genetic Potential related to Denitrification of Heterotrophic Bacteria isolated from Lake Vida Cryobrine

    NASA Astrophysics Data System (ADS)

    Trubl, G.; Kuhn, E.; Ichimura, A.; Fritsen, C. H.; Murray, A. E.

    2012-12-01

    Lake Vida, one of the largest lakes in McMurdo Dry Valleys, Antarctica, is a thick block of ice permeated by brine channels below 16 m that contain the highest levels of nitrous oxide (N2O) that have been reported from a terrestrial environment (86.6 ± 5.9 μM). The subzero -13.4oC brine (18% salinity) has an unusual geochemistry with high levels of iron, dissolved organic carbon, nitrate, and ammonium. A number of heterotrophic bacteria were cultivated from this unusual, extreme ecosystem that has been isolated for at least three thousand years. The aim of this research was to phylogenetically characterize the bacterial isolates (using 16S ribosomal RNA analysis) and investigate their denitrifying abilities and genetic potential related to key reactions in the denitrification cycle. Fifteen phylotypes were isolated from Lake Vida brine among three phyla: Gammaproteobacteria, Actinobacteria, and Firmicutes. Based on the 16S ribosomal RNA analysis, Marinobacter was the most abundant (56%) genus identified among the 57 isolates. The other isolates were related to the genera Psychrobacter, Exiguobacterium, Kocuria, and Microbacterium. Representatives of each phylotype were characterized and verified for: (1) Nitrate (NO3-) reduction to either N2O or dinitrogen (N2) by Gas Chromatography; (2) presence of the genes nirK or nirS for NO3- reduction and nosZ for nitric oxide (NO) reduction by polymerase chain reaction (PCR); and (3) growth response to salinity and temperature gradients. Thirty five of the Lake Vida isolates produced either N2O or N2 coupled to cell growth. All 57 isolates have grown across a 32°C temperature range (-10°C to 22°C) and 54 isolates were halotolerant bacteria (growing in 0% to 16% salinity), while the last three isolates were halophilic. Electron microscopy revealed membrane vesicles and extracellular polymeric substances (EPS) around the Lake Vida isolates, which may be a survival adaptation. Investigating the denitrification and other

  19. Isolation, screening and characterization of bacteriocin-producing lactic acid bacteria isolated from traditional fermented food.

    PubMed

    El-Shafei, H A; Abd-El-Sabour, H; Ibrahim, N; Mostafa, Y A

    2000-03-01

    100 lactic acid bacterial strains isolated from traditional fermented foods (yoghurt, milk cream, sour dough and milk) were screened for bacteriocin production. Twenty six strains producing a nisin-like bacteriocin were selected. Most of these isolates gave only a narrow inhibitory spectrum, although one showed a broad inhibitory spectrum against the indicator strains tested, this strain was determined as Lactococcus lactis. The influence of several parameters on the fermentative production of nisin by Lactococcus lactis was studied. Production of nisin was optimal at 30 degrees C and in the pH range 5.5-6.3. The effect of different sulphur and nitrogen sources on Lactococcus lactis growth and nisin production was studied. Magnesium sulfate and manganese sulfate were found to be the best sulphur sources while triammonium citrate was the best inorganic nitrogen source and meat extract, peptone and yeast extract were the best organic nitrogen source for nisin production.

  20. Antibiogram of bacteria isolated from automated teller machines in Hamadan, West Iran

    PubMed Central

    Mahmoudi, Hassan; Arabestani, Mohammad Reza; Alikhani, Mohammad Yousef; Sedighi, Iraj; Kohan, Hamed Farhadi; Molavi, Mohammad

    2017-01-01

    Aim: Bacteria are ubiquitous in the environment. In keeping with the continued expansion of urbanization and the growing population, an increasing number of people use automated banking, i.e. automated teller machines (ATMs). The aim of this study was to investigate the bacterial contamination and its antibiotic sensitivity on computer keyboards located at ATMs in Hamadan province, Iran. Method: Out of 360 ATMs at four locations in Hamadan, 96 were randomly selected for this study. The antibiotic susceptibility pattern of all isolates was determined by the agar disk diffusion method using gentamicin (10 µg), vancomycin (30 µg), trimethoprim/sulfamethoxazole (25 µg), amikacin (30 µg), tobramycin (10 µg), cephalotin (30 µg), norfloxacin (5 µg), and ceftizoxim (30 µg) disks. Results: Melli and Saderat Banks had the most frequently contaminated ATMS, with 18 (27.7%) and 12 (18.5%), respectively. The most frequently isolated bacteria were Staphylococcus epidermidis in 12 (18.5%) ATMs, Pseudomonas aeruginosa in 12 (18.5%), Bacillus subtilis in 11 (16.9%), Escherichia coli in 6 (9.2%), Klebsiella spp. in 8 (12.3%), Enterobacter spp. in 2 (3.1%), Bacillus cereus in 6 (9.2%), Staphylococcus aureus in 3 (4.6%), and Micrococcaceae spp. in 5 (7.69%) cases. All isolated bacteria were susceptible to gentamicin, cephalotin, tobramycin, amikacin, norfloxacin, and vancomycin. The S. aureus resistance rate to trimethoprim/sulfamethoxazole was 50%. Conclusion: All tested ATM keyboards were contaminated with at least one species of bacteria. Based on these findings, it is recommendable to disinfect the hands after entering one’s own apartment, work area or a hospital, in order to hinder the spread of critical pathogens in the personal environment or in the hospital. PMID:28197394

  1. [Isolation and Identification of Petroleum Degradation Bacteria and Interspecific Interactions Among Four Bacillus Strains].

    PubMed

    Wang, Jia-nan; Shi, Yan-yun; Zheng, Li-yan; Wang, Zhe; Cai, Zhang; Liu, Jie

    2015-06-01

    Six petroleum-degrading strains were isolated from oil-contaminated soil at Dagang oil field and oil sewage on Bohai offshore drilling platform in Tianjin using enrichment culture and isolation method. The physiological biochemical test together with 16S rDNA sequencing analysis indicated that they belonged to Bacillus (S1, S2, S3, S4), Pseudomonas (W1) and Ochrobactrum (W2), respectively. The strain S3 had the maximum degradation rate of alkane (41.3%) and aromatic hydrocarbon (30.9%) among all isolated strains showing the better degradation efficiency by endogenous bacteria when compared to that by the exogenous bacteria. The four Bacillus strains were used to construct microbiome, thereafter subjected to petroleum degradation efficiency test and analyzed. The results showed that microbiome F3 consisting of S1 and S4 had the maximum degradation rates of alkane (50.5%) and aromatic hydrocarbon (54.0%), which were 69.9% and 156.1% higher than those by single bacterium, respectively. Furthermore, they were 22.1% and 74.6% respectively higher than those by the most optimal degradation bacterium S3. Microbiome F4 consisting of S2 and S3 had the minimum degradation rates of alkane (18.5%) and aromatic hydrocarbon (18.9%) which were 55.3% and 39.0% lower than the degradation rates of single bacterium, respectively. The results also demonstrated that there were both microbial synergy promotion and antagonism inhibition among bacteria of the same genus in the petroleum degradation period. Bacteria with close affinity in Bacillus genus displayed mainly promoted petroleum degradation effect.

  2. [Isolation of functional bacteria guided by PCR-DGGE technology from high temperature petroleum reservoirs].

    PubMed

    Wang, Jun; Ma, Ting; Liu, Jing; Liu, Qing-kun; Zhao, Ling-xia; Liang, Feng-lai; Liu, Ru-lin

    2008-02-01

    It is a brand-new method to isolate functional bacteria from high temperature petroleum reservoirs according to the sequence information obtained from PCR-DGGE patterns. Three-set primers of 16S rDNA high variable region, V3, V8, V9, were compared. The results showed that more microbial diversity information could be obtained from the PCR product of V9 region. Sequence analysis indicated that the dominant bacteria in the petroleum reservoir had high sequence similarity with bacteria from alpha, beta, gamma-Proteobacterias and Bacilli from the GenBank database. According to the sequences information, multi-cultivation technology including enrichment cultivation, special cultivation and direct cultivation methods were employed, and finally, five strains (three strains by traditional methods) were isolated from oil-water samples. Among them, three thermophilic hydrocarbon-degrading bacteria, which belonged to Bacillus sp., Geobacillus sp. and Petrobacter sp., respectively, could grow well under 55 degrees C in obligate anaerobic condition. The crude oil could be utilized by these strains with the degradation rate of 56.5%, 70.01% and 31.78% respectively along with the viscosity reduction rate of 40%, 54.55% and 29.09%, meanwhile the solidify points of crude oil were reduced by 3.7, 5.2 and 3.1 degrees C. Therefore, the combination of sequence information from PCR-DGGE and altering cultivation conditions is an available novel method to isolate more functional microorganisms which could be utilized for microbial enhanced oil recovery.

  3. Isolation of Acetogenic Bacteria That Induce Biocorrosion by Utilizing Metallic Iron as the Sole Electron Donor

    PubMed Central

    Yumoto, Isao; Kamagata, Yoichi

    2014-01-01

    Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion. PMID:25304512

  4. Antibiogram of bacteria isolated from automated teller machines in Hamadan, West Iran.

    PubMed

    Mahmoudi, Hassan; Arabestani, Mohammad Reza; Alikhani, Mohammad Yousef; Sedighi, Iraj; Kohan, Hamed Farhadi; Molavi, Mohammad

    2017-01-01

    Aim: Bacteria are ubiquitous in the environment. In keeping with the continued expansion of urbanization and the growing population, an increasing number of people use automated banking, i.e. automated teller machines (ATMs). The aim of this study was to investigate the bacterial contamination and its antibiotic sensitivity on computer keyboards located at ATMs in Hamadan province, Iran. Method: Out of 360 ATMs at four locations in Hamadan, 96 were randomly selected for this study. The antibiotic susceptibility pattern of all isolates was determined by the agar disk diffusion method using gentamicin (10 µg), vancomycin (30 µg), trimethoprim/sulfamethoxazole (25 µg), amikacin (30 µg), tobramycin (10 µg), cephalotin (30 µg), norfloxacin (5 µg), and ceftizoxim (30 µg) disks. Results: Melli and Saderat Banks had the most frequently contaminated ATMS, with 18 (27.7%) and 12 (18.5%), respectively. The most frequently isolated bacteria were Staphylococcus epidermidis in 12 (18.5%) ATMs, Pseudomonas aeruginosa in 12 (18.5%), Bacillus subtilis in 11 (16.9%), Escherichia coli in 6 (9.2%), Klebsiella spp. in 8 (12.3%), Enterobacter spp. in 2 (3.1%), Bacillus cereus in 6 (9.2%), Staphylococcus aureus in 3 (4.6%), and Micrococcaceae spp. in 5 (7.69%) cases. All isolated bacteria were susceptible to gentamicin, cephalotin, tobramycin, amikacin, norfloxacin, and vancomycin. The S. aureus resistance rate to trimethoprim/sulfamethoxazole was 50%. Conclusion: All tested ATM keyboards were contaminated with at least one species of bacteria. Based on these findings, it is recommendable to disinfect the hands after entering one's own apartment, work area or a hospital, in order to hinder the spread of critical pathogens in the personal environment or in the hospital.

  5. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor.

    PubMed

    Kato, Souichiro; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion.

  6. Isolation of Typical Marine Bacteria by Dilution Culture: Growth, Maintenance, and Characteristics of Isolates under Laboratory Conditions

    PubMed Central

    Schut, Frits; de Vries, Egbert J.; Gottschal, Jan C.; Robertson, Betsy R.; Harder, Wim; Prins, Rudolf A.; Button, Don K.

    1993-01-01

    Marine bacteria in Resurrection Bay near Seward, Alaska, and in the central North Sea off the Dutch coast were cultured in filtered autoclaved seawater following dilution to extinction. The populations present before dilution varied from 0.11 × 109 to 1.07 × 109 cells per liter. The mean cell volume varied between 0.042 and 0.074 μm3, and the mean apparent DNA content of the cells ranged from 2.5 to 4.7 fg of DNA per cell. All three parameters were determined by high-resolution flow cytometry. All 37 strains that were obtained from very high dilutions of Resurrection Bay and North Sea samples represented facultatively oligotrophic bacteria. However, 15 of these isolates were eventually obtained from dilution cultures that could initially be cultured only on very low-nutrient media and that could initially not form visible colonies on any of the agar media tested, indicating that these cultures contained obligately oligotrophic bacteria. It was concluded that the cells in these 15 dilution cultures had adapted to growth under laboratory conditions after several months of nutrient deprivation prior to isolation. From the North Sea experiment, it was concluded that the contribution of facultative oligotrophs and eutrophs to the total population was less than 1% and that while more than half of the population behaved as obligately oligotrophic bacteria upon first cultivation in the dilution culture media, around 50% could not be cultured at all. During one of the Resurrection Bay experiments, 53% of the dilution cultures obtained from samples diluted more than 2.5 × 105 times consisted of such obligate oligotrophs. These cultures invariably harbored a small rod-shaped bacterium with a mean cell volume of 0.05 to 0.06 μm3 and an apparent DNA content of 1 to 1.5 fg per cell. This cell type had the dimensions of ultramicrobacteria. Isolates of these ultramicrobacterial cultures that were eventually obtained on relatively high-nutrient agar plates were, with respect

  7. Isolation and identification of sulfate reducing bacteria (SRB) from the sediment pond after a coal mine in Samarinda, East Kalimantan

    NASA Astrophysics Data System (ADS)

    Kusumawati, Eko; Sudrajat, Putri, Junita Susilaning

    2017-02-01

    Title isolation and identification of sulfate reducing bacteria (SRB) of sediment pond former coal mine in Samarinda, East Kalimantan. Sulfate reducing bacteria (SRB) is a group of microbes that can be used to improve the quality of sediment former coal mine. In the metabolic activities, the SRB can reduce sulfate to H2S which immediately binds to metals that are widely available on mined lands and precipitated in the form of metal sulfides reductive. Isolation and identification of sulfate reducing bacteria carried out in the Laboratory of Microbiology and Molecular Genetics, Faculty of Mathematics and Natural Sciences, University of Mulawarman, Samarinda. Postgate B is a liquid medium used for isolation through serial dilution. Physiological and biochemical characterization was done by Bergey's Manual of Determinative Bacteriology. Six isolates of sulfate reducing bacteria were isolated from the sediment pond former coal mine in Samarinda. Several groups of bacteria can grow at 14 days of incubation, however, another group of bacteria which takes 21 days to grow. The identification results showed that two isolates belong to the genus Desulfotomaculum sp., and each of the other isolates belong to the genus Desulfococcus sp., Desulfobacter sp., Desulfobulbus sp. and Desulfobacterium sp.

  8. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    SciTech Connect

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-06-17

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263+-0.02 g cellulose L{sup -1} for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  9. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-06-01

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263±0.02 g cellulose L-1 for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  10. The diversity of bacteria isolated from antarctic freshwater reservoirs possessing the ability to produce polyhydroxyalkanoates.

    PubMed

    Ciesielski, Slawomir; Górniak, Dorota; Możejko, Justyna; Świątecki, Aleksander; Grzesiak, Jakub; Zdanowski, Marek

    2014-11-01

    The diversity of polyhydroxyalkanoates-producing bacteria in freshwater reservoirs in the Ecology Glacier foreland, Antarctica, was examined by a cultivation-dependent method. Isolated strains were analyzed phylogenetically by 16S rRNA gene sequencing, and classified as members of Alpha-, Beta-, or Gammaproteobacteria classes. Polymerase chain reaction was used to detect PHA synthase genes. Potential polyhydroxyalkanoates (PHAs) producers belonging mainly to Pseudomonas sp., and Janthinobacterium sp. were isolated from all five sampling sites, suggesting that PHA synthesis is a common bacterial feature at pioneer sites. All Pseudomonas strains had the genetic potential to synthesize medium-chain-length PHAs, whereas some isolated Janthinobacterium strains might produce short-chain-length PHAs or medium-chain-length PHAs. It is the first report revealing that Janthinobacterium species could have the potential to produce medium-chain-length PHAs.

  11. Biosequestration of copper by bacteria isolated from an abandoned mine by using microbially induced calcite precipitation.

    PubMed

    Kang, Chang-Ho; Shin, YuJin; Anbu, Periasamy; Nam, In-Hyun; So, Jae-Seong

    2016-09-12

    Abandoned mine sites are frequently polluted with high concentrations of heavy metals. In this study, 25 calcite-forming bacteria were newly isolated from the soil of an abandoned metal mine in Korea. Based on their urease activity, calcite production, and resistance to copper toxicity, four isolates were selected and further identified by 16S rRNA gene sequencing. Among the isolates, Sporosarcina soli B-22 was selected for subsequent copper biosequestration studies, using the sand impermeability test by production of calcite and extracellular polymeric substance. High removal rates (61.8%) of copper were obtained when the sand samples were analyzed using an inductively coupled plasma-optical emission spectrometer following 72 h of incubation. Scanning electron microscopy showed that the copper carbonate precipitates had a diameter of approximately 5-10 μm. X-ray diffraction further confirmed the presence of copper carbonate and calcium carbonate crystals.

  12. Identification and Antibacterial Activity of Bacteria Isolated from Marine Sponge Haliclona (Reniera) sp. against Multi-Drug Resistant Human Pathogen

    NASA Astrophysics Data System (ADS)

    Ardhanu Asagabaldan, Meezan; Ayuningrum, D.; Kristiana, R.; Sabdono, A.; Radjasa, O. K.; Trianto, A.

    2017-02-01

    The marine sponge Haliclona (Reniera) sp. was a potential source of natural bioactive compounds. This sponge widely distributed along the coast of Panjang Island, Jepara, Indonesia. The aims of this research were to isolate the associated bacteria with Haliclona (Reniera) sp. and to screen the antibacterial activity against Multi-Drug Resistant (MDR) bacteria. Amount five bacteria were isolated using media selective for bacteria. The antibacterial activities of bacteria were performed by overlay methods. The bacteria strain PSP. 39-04 had the best activity against Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter baumannii, and Enterobacter cloaceae. Based on colony morphology and phylogenetic characterization using 16S rRNA gene sequencing, PSP 39-04 was closely related with Chromohalobacter salixigens strain DSM3043.

  13. Isolation and Screening of Polyhydroxyalkanoates Producing Bacteria from Pulp, Paper, and Cardboard Industry Wastes

    PubMed Central

    Bhuwal, Anish Kumari; Singh, Gulab; Aggarwal, Neeraj Kumar; Goyal, Varsha; Yadav, Anita

    2013-01-01

    Background. Polyhydroxyalkanoates (PHAs) are storage materials that accumulate by various bacteria as energy and carbon reserve materials. They are biodegradable, environmentally friendly, and also biocompatible bioplastics. Unlike petrochemical-based plastics that take several decades to fully degrade, PHAs can be completely degraded within a year by variety of microorganisms into CO2 and water. In the present study, we aim to utilize pulp, paper, and cardboard industry sludge and waste water for the isolation and screening of polyhydroxyalkanoates (PHAs) accumulating bacteria and production of cost-effective PHB using cardboard industry waste water. Results. A total of 42 isolates showed black-blue coloration when stained with Sudan black B, a preliminary screening agent for lipophilic compounds, and a total of 15 isolates showed positive result with Nile blue A staining, a more specific dye for PHA granules. The isolates NAP11 and NAC1 showed maximum PHA production 79.27% and 77.63% with polymer concentration of 5.236 g/L and 4.042 g/L with cardboard industry waste water. Both of the selected isolates, NAP11 and NAC1, were classified up to genus level by studying their morphological and biochemical characteristics and were found to be Enterococcus sp., Brevundimonas sp. and, respectively. Conclusion. The isolates Enterococcus sp. NAP11 and Brevundimonas sp. NAC1 can be considered as good candidates for industrial production of PHB from cardboard industry waste water. We are reporting for the first time the use of cardboard industry waste water as a cultivation medium for the PHB production. PMID:24288534

  14. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts

    PubMed Central

    2012-01-01

    The biopreservation of foods using bacteriocinogenic lactic acid bacteria (LAB) isolated directly from foods is an innovative approach. The objectives of this study were to isolate and identify bacteriocinogenic LAB from various cheeses and yogurts and evaluate their antimicrobial effects on selected spoilage and pathogenic microorganisms in vitro as well as on a food commodity. LAB were isolated using MRS and M17 media. The agar diffusion bioassay was used to screen for bacteriocin or bacteriocin-like substances (BLS) producing LAB using Lactobacillus sakei and Listeria innocua as indicator organisms. Out of 138 LAB isolates, 28 were found to inhibit these bacteria and were identified as strains of Enterococcus faecium, Streptococcus thermophilus, Lactobacillus casei and Lactobacillus sakei subsp. sakei using 16S rRNA gene sequencing. Eight isolates were tested for antimicrobial activity at 5°C and 20°C against L. innocua, Escherichia coli, Bacillus cereus, Pseudomonas fluorescens, Erwinia carotovora, and Leuconostoc mesenteroides subsp. mesenteroides using the agar diffusion bioassay, and also against Penicillium expansum, Botrytis cinerea and Monilinia frucitcola using the microdilution plate method. The effect of selected LAB strains on L. innocua inoculated onto fresh-cut onions was also investigated. Twenty percent of our isolates produced BLS inhibiting the growth of L. innocua and/or Lact. sakei. Organic acids and/or H2O2 produced by LAB and not the BLS had strong antimicrobial effects on all microorganisms tested with the exception of E. coli. Ent. faecium, Strep. thermophilus and Lact. casei effectively inhibited the growth of natural microflora and L. innocua inoculated onto fresh-cut onions. Bacteriocinogenic LAB present in cheeses and yogurts may have potential to be used as biopreservatives in foods. PMID:22963659

  15. Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes.

    PubMed

    Bhuwal, Anish Kumari; Singh, Gulab; Aggarwal, Neeraj Kumar; Goyal, Varsha; Yadav, Anita

    2013-01-01

    Background. Polyhydroxyalkanoates (PHAs) are storage materials that accumulate by various bacteria as energy and carbon reserve materials. They are biodegradable, environmentally friendly, and also biocompatible bioplastics. Unlike petrochemical-based plastics that take several decades to fully degrade, PHAs can be completely degraded within a year by variety of microorganisms into CO2 and water. In the present study, we aim to utilize pulp, paper, and cardboard industry sludge and waste water for the isolation and screening of polyhydroxyalkanoates (PHAs) accumulating bacteria and production of cost-effective PHB using cardboard industry waste water. Results. A total of 42 isolates showed black-blue coloration when stained with Sudan black B, a preliminary screening agent for lipophilic compounds, and a total of 15 isolates showed positive result with Nile blue A staining, a more specific dye for PHA granules. The isolates NAP11 and NAC1 showed maximum PHA production 79.27% and 77.63% with polymer concentration of 5.236 g/L and 4.042 g/L with cardboard industry waste water. Both of the selected isolates, NAP11 and NAC1, were classified up to genus level by studying their morphological and biochemical characteristics and were found to be Enterococcus sp., Brevundimonas sp. and, respectively. Conclusion. The isolates Enterococcus sp. NAP11 and Brevundimonas sp. NAC1 can be considered as good candidates for industrial production of PHB from cardboard industry waste water. We are reporting for the first time the use of cardboard industry waste water as a cultivation medium for the PHB production.

  16. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts.

    PubMed

    Yang, En; Fan, Lihua; Jiang, Yueming; Doucette, Craig; Fillmore, Sherry

    2012-09-10

    The biopreservation of foods using bacteriocinogenic lactic acid bacteria (LAB) isolated directly from foods is an innovative approach. The objectives of this study were to isolate and identify bacteriocinogenic LAB from various cheeses and yogurts and evaluate their antimicrobial effects on selected spoilage and pathogenic microorganisms in vitro as well as on a food commodity.LAB were isolated using MRS and M17 media. The agar diffusion bioassay was used to screen for bacteriocin or bacteriocin-like substances (BLS) producing LAB using Lactobacillus sakei and Listeria innocua as indicator organisms. Out of 138 LAB isolates, 28 were found to inhibit these bacteria and were identified as strains of Enterococcus faecium, Streptococcus thermophilus, Lactobacillus casei and Lactobacillus sakei subsp. sakei using 16S rRNA gene sequencing. Eight isolates were tested for antimicrobial activity at 5°C and 20°C against L. innocua, Escherichia coli, Bacillus cereus, Pseudomonas fluorescens, Erwinia carotovora, and Leuconostoc mesenteroides subsp. mesenteroides using the agar diffusion bioassay, and also against Penicillium expansum, Botrytis cinerea and Monilinia frucitcola using the microdilution plate method. The effect of selected LAB strains on L. innocua inoculated onto fresh-cut onions was also investigated.Twenty percent of our isolates produced BLS inhibiting the growth of L. innocua and/or Lact. sakei. Organic acids and/or H2O2 produced by LAB and not the BLS had strong antimicrobial effects on all microorganisms tested with the exception of E. coli. Ent. faecium, Strep. thermophilus and Lact. casei effectively inhibited the growth of natural microflora and L. innocua inoculated onto fresh-cut onions. Bacteriocinogenic LAB present in cheeses and yogurts may have potential to be used as biopreservatives in foods.

  17. Characterization of microbiota in Arapaima gigas intestine and isolation of potential probiotic bacteria.

    PubMed

    do Vale Pereira, Gabriella; da Cunha, Delcio G; Pedreira Mourino, Jose Luiz; Rodiles, Ana; Jaramillo-Torres, Alexander; Merrifield, Daniel L

    2017-08-18

    The aim of this study was to determine the intestinal microbiota of pirarucu (A. gigas) in different growth stages (adult and fingerlings), and to isolate and identify potential probiotic bacteria. High-throughput sequencing (HTS) analysis of the intestinal contents revealed that the majority of sequences belonged to the Proteobacteria, Fusobacteria and Firmicutes phyla. At the genus level, the greatest number of sequences belonged to Bradyrhizobium in adult fish, while Cetobacterium was the most abundant in juvenile fish. Twenty-three lactic acid bacteria (LAB) were isolated on MRS agar from healthy juvenile fish. The isolates were tested in vitro for probiotic properties. Two isolates (identified as strains of Lactococcus lactis subsp. lactis and Enterococcus faecium) displayed antagonism against all ten pathogens tested, were non-hemolytic and maintained good viability for at least 3 weeks when supplemented to fish diets. The presence of a number of antibiotic resistance genes (ARGs), conferring resistance to erythromycin, tetracycline and chloramphenicol, was investigated by PCR. The absence of ARGs investigated, the potential to antagonize pathogens and favorable growth and survival characteristics indicates that these autochthonous isolates have the potential to be considered probiotics, which will be studied in future in vivo experiments. The present study has demonstrated, for the first time, the normal microbiota in the A. gigas intestine during different life stages and the presence of LAB strains. It also demonstrated LAB antibiotic resistance and antagonistic behavior against pathogens isolated from the same fish. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Isolation and Chemical Characterization of Lipid A from Gram-negative Bacteria

    PubMed Central

    Henderson, Jeremy C.; O'Brien, John P.; Brodbelt, Jennifer S.; Trent, M. Stephen

    2013-01-01

    Lipopolysaccharide (LPS) is the major cell surface molecule of gram-negative bacteria, deposited on the outer leaflet of the outer membrane bilayer. LPS can be subdivided into three domains: the distal O-polysaccharide, a core oligosaccharide, and the lipid A domain consisting of a lipid A molecular species and 3-deoxy-D-manno-oct-2-ulosonic acid residues (Kdo). The lipid A domain is the only component essential for bacterial cell survival. Following its synthesis, lipid A is chemically modified in response to environmental stresses such as pH or temperature, to promote resistance to antibiotic compounds, and to evade recognition by mediators of the host innate immune response. The following protocol details the small- and large-scale isolation of lipid A from gram-negative bacteria. Isolated material is then chemically characterized by thin layer chromatography (TLC) or mass-spectrometry (MS). In addition to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS, we also describe tandem MS protocols for analyzing lipid A molecular species using electrospray ionization (ESI) coupled to collision induced dissociation (CID) and newly employed ultraviolet photodissociation (UVPD) methods. Our MS protocols allow for unequivocal determination of chemical structure, paramount to characterization of lipid A molecules that contain unique or novel chemical modifications. We also describe the radioisotopic labeling, and subsequent isolation, of lipid A from bacterial cells for analysis by TLC. Relative to MS-based protocols, TLC provides a more economical and rapid characterization method, but cannot be used to unambiguously assign lipid A chemical structures without the use of standards of known chemical structure. Over the last two decades isolation and characterization of lipid A has led to numerous exciting discoveries that have improved our understanding of the physiology of gram-negative bacteria, mechanisms of antibiotic resistance, the human innate

  19. Isolation and characterization of lactic acid bacteria strains with ornithine producing capacity from natural sea salt.

    PubMed

    Yu, Jin-Ju; Oh, Suk-Heung

    2010-08-01

    Two lactic acid bacteria (LAB) having ornithine-producing capacity were isolated from Korean natural sea salt. They were Gram-positive, short rod-type bacteria, and able to grow anaerobically with CO(2) production. The isolates grew well on MRS broth at 30-37 degrees C and a pH of 6.5-8.0. The optimum temperature and pH for growth are 37 degrees C and pH 7.0. The isolates fermented D-ribose, D-galactose, D-lactose, D-maltose, Dcellobiose, D-tagatose, D-trehalose, sucrose, D-melezitose, gentiobiose, D-glucose but not D-melibiose, inositol, and L-sorbose. The 16S rDNA sequences of the two isolates showed 99.5% and 99.6% homology with the Weissella koreensis S5623 16S rDNA (Access no. AY035891). They were accordingly identified and named as Weissella koreensis MS1-3 and Weissella koreensis MS1-14, and produced intracellular ornithine at levels of 72 mg/100 g cell F.W. and 105 mg/100 g cell F.W. and extracellular ornithine at levels of 4.5 mg/100 ml and 4.6 mg/100 ml medium, respectively, by culturing in MRS broth supplemented with 1% arginine. High cell growth was maintained in MRS broth with a NaCl concentration of 0-6%. These results show for the first time that Korean natural sea salts contain lactic acid bacteria Weissella koreensis strains having ornithine producing capacity.

  20. [Effect of lactic acid bacteria isolated from Tibetan Plateau on silage fermentation quality of Elms nutans].

    PubMed

    Zhang, Hongmei; Ke, Wencan; Jing, Peixin; Zhang, Juan; Chen, Ming; Yu, Yingwen; Guo, Xusheng

    2015-10-04

    In order to detect the effect of lactic acid bacteria isolated from Tibetan Plateau on silage fermentation quality of Elms nutans. We used 3 isolated lactic acid bacteria with better growth at low temperatures of 10 and 15 degrees C at ensiling of Elymus nutans. Subsequently, effects of the selected lactic acid bacteria on fermentation profiles of Elymus nutans silages stored at 15 and 25 degrees C were evaluated by using the same species of commercial inoculants as the control. PP-6 isolated from Tibetan Plateau could ferment raffinose, lactose, sorbitol, melibiose and sucrose, and LS-5 could ferment cottonseed sugar, laetrile, rhamnose, lactose, sorbitol, xylose, arabinose, melibiose and sucrose, but the same species of commercial strains could not use these sugars. Inoculation of these three strains into Elymus nutans at 15 and 25 degrees C ensiled for 50 d, we found that LS-5 significantly reduced silage pH, propionic acid concentration and ratio of ammonia nitrogen/total nitrogen at 15 degrees C (P < 0.05), salvaged more water-soluble carbohydrate and crude protein; Application of LP-2 and PP-6 as a combined inoculant to Elymus nutans significantly improved lactic acid concentration (P < 0.05), resulting in a lower ratio of ammonia nitrogen/total nitrogen, saved more crude protein and significantly reduced neutral detergent fiber content (P < 0.05) as compared with the commercial strains. The three isolated strains can improve silage quality of Elymus nutans growing on the Qinghai-Tibetan Plateau at low temperature, but these strains have no obvious advantages at 25 degrees C in comparison with the commercial inoculants.

  1. In vitro antibacterial potency of Butea monosperma Lam. against 12 clinically isolated multidrug resistant bacteria

    PubMed Central

    Sahu, Mahesh Chandra; Padhy, Rabindra Nath

    2013-01-01

    Objective To investigate the antibacterial activity, using cold and hot extraction procedures with five solvents, petroleum ether, acetone, ethanol, methanol and water to validate medicinal uses of Butea monosperma Lam (B. monosperma) in controlling infections; and to qualitatively estimate phytochemical constituents of leaf-extracts of the plant. Methods The antibacterial activity of leaf-extracts was evaluated by the agar-well diffusion method against clinically isolated 12 Gram-positive and -negative multidrug resistant (MDR) pathogenic bacteria in vitro. Values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of leaf-extracts against each bacterium were obtained in a 96-well micro-titre plate, by broth dilution micro-titre plate technique. Results The presence of tannins, flavonoids, starch, glycosides and carbohydrates in different leaf extracts was established. Pathogenic bacteria used were, Acinetobacter sp., Chromobacterium violaceum, Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, Shigella sp., Enterococcus sp., Staphylococcus aureus (S. aureus), methicillin resistant S. aureus and vancomycin resistant S. aureus, along with standard bacterial strains. These MDR bacteria had been recorded to have significant inhibitions by leaf extracts, obtained by cold and hot extraction procedures with five solvents. In addition, the hot aqueous extract against Enterococcus sp. had the highest inhibition zone-size (21 mm). Ciprofloxacin 30 µg/disc was the positive/reference control and the diluting solvent, 10% dimethyl sulphoxide was the negative control. Recorded MIC values of different extracts ranged between 0.23 and 13.30 mg/mL, and MBC values were 0.52 to 30.00 mg/mL, for these bacteria. Conclusions Leaf-extracts with hot water and ethanol had shown significant antibacterial activity against all bacteria. B. monosperma leaf-extract could be used in treating infectious

  2. The antimicrobial efficacy of silver on antibiotic-resistant bacteria isolated from burn wounds.

    PubMed

    Percival, Steven L; Thomas, John; Linton, Sara; Okel, Tyler; Corum, Linda; Slone, Will

    2012-10-01

    The antibiotic-resistant bacteria are a major concern to wound care because of their ability to resist many of the antibiotics used today to treat infections. Consequently, other antimicrobials, in particular ionic silver, are considered ideal topical agents for effectively helping to manage and prevent local infections. Little is known about the antimicrobial efficacy of ionic silver on antibiotic-resistant bacteria at different pH values. Consequently, in this study our aim was to evaluate the effect of pH on the antimicrobial efficacy of a silver alginate (SA) and a silver carboxymethyl cellulose (SCMC) dressing on antibiotic-resistant bacteria isolated from burn patients. Forty-nine antibiotic-resistant bacteria, including Vancomycin-resistant Enterococcus faecium, meticillin-resistant Staphylococcus aureus, multidrug-resistant (MDR) Pseudomonas aeruginosa, MDR Vibrio sp, MDR Stenotrophomonas maltophilia, extended-spectrum ß-lactamase (ESBL) producing Salmonella sp, ESBL producing Klebsiella pneumoniae, ESBL producing Proteus mirabilis, ESBL producing Escherichia coli and MDR Acinetobacter baumannii, routinely isolated from burn wounds were used in the study and evaluated for their susceptibility to two silver containing wound dressings using a standardised antimicrobial efficacy screening assay [corrected zone of inhibition (CZOI)]. The mean overall CZOI for the Gram-positive isolates at a pH of 5·5 were very similar for both dressings. A mean CZOI of 5 mm was recorded for the SCMC dressing, which was slightly higher, at 5·4 mm for the SA dressing. At a pH of 7·0 both dressings, in general, showed a similar activity. However, at a pH of 8·5 the mean CZOI of the SCMC dressing was found to be significantly (P < 0·05) higher than the SA dressing for a select number of isolates. The mean overall CZOI for the Gram-negative bacteria followed a similar pattern as observed with the Gram-positive bacteria. Susceptibility to silver ions did vary significantly

  3. Molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Egypt.

    PubMed

    Ahmed, Ashraf M; Shimamoto, Tadashi

    2011-05-01

    The aim of this study was to characterize the genetic basis of multidrug resistance in Gram-negative bacteria isolated from bovine mastitis cases in Egypt. Multidrug resistance phenotypes were found in 34 of 112 (30.4%) Gram-negative bacterial isolates, which harbored at least one antimicrobial resistance gene. The most prevalent multidrug-resistant (MDR) species were Enterobacter cloacae (8 isolates, 7.1%), Klebsiella pneumoniae (7 isolates, 6.3%), Klebsiella oxytoca (7 isolates, 6.3%), Escherichia coli (5 isolates, 4.5%), and Citrobacter freundii (3 isolates, 2.7%). The most commonly observed resistance phenotypes were against ampicillin (97.0%), streptomycin (94.1%), tetracycline (91.2%), trimethoprim-sulfamethoxazole (88.2%), nalidixic acid (85.3%), and chloramphenicol (76.5%). Class 1 integrons were detected in 28 (25.0%) isolates. The gene cassettes within class 1 integrons included those encoding resistance to trimethoprim (dfrA1, dfrA5, dfrA7, dfrA12, dfrA15, dfrA17, and dfrA25), aminoglycosides (aadA1, aadA2, aadA5, aadA7, aadA12, aadA22, and aac(3)-Id), chloramphenicol (cmlA), erythromycin (ereA2), and rifampicin (arr-3). Class 2 integrons were identified in 6 isolates (5.4%) with three different profiles. Furthermore, the β-lactamase encoding genes, bla(TEM), bla(SHV), bla(CTX-M), and bla(OXA), the plasmid-mediated quinolone resistance genes, qnr and aac(6)-Ib-cr, and the florfenicol resistance gene, floR, were also identified. To the best of our knowledge, the results identified class 2 integrons, qnr and aac(6)-Ib-cr from cases of mastitis for the first time. This is the first report of molecular characterization for antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Africa.

  4. Isolation, characterization and beneficial effects of rice associated plant growth promoting bacteria from Zanzibar soils.

    PubMed

    Yasmin, Sumera; Rahman Bakar, M Abdul; Malik, Kausar A; Hafeez, Fauzia Y

    2004-01-01

    This study was undertaken to isolate and characterize plant growth promoting bacteria (PGPB) occurring in four soils of Zanzibar, Tanzania as well as to evaluate their potential use as biofertilizers for rice. A total of 12 PGPB strains were isolated from rice and studied for growth characteristics, carbon/nitrogen source utilization patterns using QTS-24 kits, phosphate solubilization, indole acetic acid (IAA) production, antibiotic resistance patterns and growth at different pH, temperature and salt concentrations. All the isolates were motile and gram negative except Z3-4. Acetylene reduction activity was detected in all isolates ranging from 5.9-76.4 nmole C2H2 reduced/h x mg protein while 9 isolates produced IAA ranged from 20-90.8 mg/l. Most of the isolates showed resistance against different environmental stresses like 10-40 degrees C temperature, 0.2-1 M salt concentration and 4-8.5 pH range. Only one isolate Z2-7 formed clear zones on Pikovskaia's medium showing its ability to solubilize phosphates. Z3-2 was used to develop fluorescent antibodies to check the cross reactivity of the isolates. Inoculation of these bacterial isolates resulted in higher plant biomass, root area, and total N and P contents on Tanzanian rice variety BKN PRAT3036B under controlled conditions. Bacillus sp. Z3-4 and Azospirillum sp. Z3-1 are effective strains and, after further testing under field conditions, can be used for inoculum production of rice in Tanzania. The plant growth promoting effects of these PGPRs suggest that these can be exploited to improve crop productivity of rice in Tanzania. Copyright 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  5. Phytobeneficial Properties of Bacteria Isolated from the Rhizosphere of Maize in Southwestern Nigerian Soils

    PubMed Central

    Odebode, A. C.; Hsu, S. F.

    2015-01-01

    Biocontrol agents isolated outside Africa have performed inconsistently under field conditions in Africa. The development of indigenous phytobeneficial microbial strains that suit local environments may help enhance competitiveness with in situ microorganisms and effectiveness at suppressing local pathogen strains. We isolated bacteria from the rhizosphere of maize growing in southwestern Nigeria and assessed them for growth-promoting characteristics. The best isolates were characterized using 16S rRNA genes and were further evaluated in the greenhouse on maize seedlings. Four isolates (EBS8, IGBR11, EPR2, and ADS14) were outstanding in in vitro assays of antagonistic activity against a local strain of Fusarium verticillioides, phosphate solubilization efficiency, chitinase enzyme activity, and indole-3-acetic acid production. Inoculation of maize seeds with these isolates resulted in ≥95% maize seed germination and significantly enhanced radicle and plumule length. In the greenhouse, maize seedling height, stem girth, number of leaves, leaf area, shoot mass (dry matter), and nutrient contents were significantly enhanced. The bioprotectant and phytobeneficial effects were strongest and most consistent for isolate EBS8, which was identified as a Bacillus strain by 16S rRNA gene analysis. As a bacterial strain that exhibits multiple growth-promoting characteristics and is adapted to local conditions, EBS8 should be considered for the development of indigenous biological fertilizer treatments. PMID:25956774

  6. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem.

    PubMed

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems.

  7. Phytobeneficial Properties of Bacteria Isolated from the Rhizosphere of Maize in Southwestern Nigerian Soils.

    PubMed

    Abiala, M A; Odebode, A C; Hsu, S F; Blackwood, C B

    2015-07-01

    Biocontrol agents isolated outside Africa have performed inconsistently under field conditions in Africa. The development of indigenous phytobeneficial microbial strains that suit local environments may help enhance competitiveness with in situ microorganisms and effectiveness at suppressing local pathogen strains. We isolated bacteria from the rhizosphere of maize growing in southwestern Nigeria and assessed them for growth-promoting characteristics. The best isolates were characterized using 16S rRNA genes and were further evaluated in the greenhouse on maize seedlings. Four isolates (EBS8, IGBR11, EPR2, and ADS14) were outstanding in in vitro assays of antagonistic activity against a local strain of Fusarium verticillioides, phosphate solubilization efficiency, chitinase enzyme activity, and indole-3-acetic acid production. Inoculation of maize seeds with these isolates resulted in ≥95% maize seed germination and significantly enhanced radicle and plumule length. In the greenhouse, maize seedling height, stem girth, number of leaves, leaf area, shoot mass (dry matter), and nutrient contents were significantly enhanced. The bioprotectant and phytobeneficial effects were strongest and most consistent for isolate EBS8, which was identified as a Bacillus strain by 16S rRNA gene analysis. As a bacterial strain that exhibits multiple growth-promoting characteristics and is adapted to local conditions, EBS8 should be considered for the development of indigenous biological fertilizer treatments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Isolation of alkaliphilic bacteria for production of high optically pure L-(+)-lactic acid.

    PubMed

    Yokaryo, Hiroto; Tokiwa, Yutaka

    2014-01-01

    Lactic acid bacteria that grow under alkaline conditions (pH 10) were isolated from various sources in Okinawa (Japan). These alkali-tolerant and alkaliphilic bacteria were classified as follows: Microbacterium sp. (1 strain), Enterococcus spp. (9 strains), Alkalibacterium spp. (3 strains), Exiguobacterium spp. (5 strains), Oceanobacillus spp. (3 strains) and Bacillus spp. (7 strains) by 16S rRNA gene sequencing. By fermentation, many strains were able to convert glucose into mainly L-(+)-lactic acid of high optical purity in alkaline broth. This result indicated that valuable L-(+)-lactic acid-producing bacteria could be isolated efficiently by screening under alkaline conditions. Six strains were selected and their ability to produce lactic acid at different initial pH was compared. Enterococcus casseliflavus strain 79w3 gave the highest lactic acid concentration. Lactic acid concentration and productivity were 103 g L(-1) (optical purity of 99.5% as L-isomer) and 2.2 g L(-1) h(-1), respectively when 129 g L(-1) of glucose was used by batch fermentation.

  9. Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards.

    PubMed

    Flores-Vargas, R D; O'Hara, G W

    2006-05-01

    Deleterious rhizosphere inhabiting bacteria (DRB) have potential to suppress plant growth. This project focuses on the isolation of DRB with potential for development as commercial products for weed control. Bacteria were isolated from the rhizosphere, rhizoplane, and endorhizosphere of seedlings and mature plants of wild radish (Raphanus raphanistrum), annual ryegrass (Lolium rigidum) and capeweed (Arctotheca calendula) growing in vineyards in the Swan Valley, Western Australia. A majority (81.5%) of the 442 strains was obtained from either rhizospheres or rhizoplanes. Rapid screening techniques were developed to evaluate in the laboratory and glasshouse the effects of bacteria on plants. Strains were screened in the glasshouse for deleterious effects on annual ryegrass, wild radish, grapevine rootlings (Vitis vinifera) and the legume cover crop subterranean clover (Trifolium subterraneum). Three strains were identified using the Biolog system and 16S rRNA gene sequencing as two strains of Pseudomonas fluorescens (WSM3455 and WSM3456) and one strain of Alcaligenes xylosoxidans (WSM3457). One of the P. fluorescens (WSM3455) strain produced hydrogen cyanide, an inhibitor of plant roots and a broad-spectrum antimicrobial compound. Three strains specifically inhibited wild radish but had no significant deleterious effects on either grapevine rootlings or subterranean clover. This study suggested manipulation of the weed seedling rhizosphere using identified DRB as a potential biocontrol agent for wild radish.

  10. Isolation and assessment of phytate-hydrolysing bacteria from the DelMarVa Peninsula.

    PubMed

    Hill, Jane E; Kysela, David; Elimelech, Menachem

    2007-12-01

    The Delaware-Maryland-Virginia (DelMarVa) Peninsula, flanking one side of the Chesapeake Bay, is home to a substantial broiler chicken industry. As such, it produces a significant amount of manure that is typically composted and spread onto local croplands as a fertilizer. Phytate (myo inositol hexakisphosphate), the major form of organic phosphorus in the manure, can be hydrolysed by microorganisms to produce orthophosphate. Orthophosphate is a eutrophication agent which can lead to algal blooms, hypoxia and fish kills in the Chesapeake Bay and its tributaries. This transect study reveals a subpopulation of heterotrophic, thiosulfate-utilizing bacteria that can degrade phytate within the watershed as well as its receiving water sediment. Aerobic isolates were typical soil bacteria, e.g. Pseudomonad, Bacillus and Arthrobacter species, as well as a less common Staphylococcus inhabitant. Bacillus pumilus, Staphyloccocus equorum, Arthrobacter bergei and Pseudomonas marginalis strains have not been previously described as phytate-degrading. Each site along the transect - from manure pile to receiving sediment - was host to a population of bacteria that can degrade phytate and hence, each is a possible non-point source of orthophosphate pollution. Each new isolate could provide an enzyme additive for monogastric feed, thus reducing the impact of excessive phytate load on the environment.

  11. Isolation of Sphaerotilus-Leptothrix strains from iron bacteria communities in Tierra del Fuego wetlands.

    PubMed

    Schmidt, Bertram; Sánchez, Leandro A; Fretschner, Till; Kreps, Gastón; Ferrero, Marcela A; Siñeriz, Faustino; Szewzyk, Ulrich

    2014-11-01

    Sheath-forming iron- and manganese-depositing bacteria belonging to the Sphaerotilus-Leptothrix group (SLG) are widespread in natural and artificial water systems. Known requirements for their growth include the presence of organic substrates and molecular oxygen. High concentrations of reduced iron or manganese, although not necessary for most species, make their growth a noticeable phenomenon. Such microbial communities have been studied mostly in the Northern Hemisphere. Here, we present descriptions of diverse ochre-depositing microbial communities in Tierra del Fuego, Argentina, using a combined approach of microscopical examination, clone library construction and cultivation focused on SLG bacteria. To date, only few SLG type strains are available. The present work increases the number and diversity of cultivated SLG bacteria by obtaining isolates from biofilms and sediment samples of wetlands in Tierra del Fuego. Thirty isolates were selected based on morphological features such as sheath formation and iron/manganese deposition. Five operational taxonomic units (OTUs) were deduced. Sequencing of 16S rRNA genes showed that one OTU is identical to the Leptothrix mobilis Feox-1(T) -sequence while the four remaining OTUs show similarity values related to previously described type strains. Similarity values ranged from 96.5% to 98.8%, indicating possible new species and subspecies.

  12. luxS in bacteria isolated from 25- to 40-million-year-old amber.

    PubMed

    Santiago-Rodriguez, Tasha M; Patrício, Ana R; Rivera, Jessica I; Coradin, Mariel; Gonzalez, Alfredo; Tirado, Gabriela; Cano, Raúl J; Toranzos, Gary A

    2014-01-01

    Interspecies bacterial communication is mediated by autoinducer-2, whose synthesis depends on luxS. Due to the apparent universality of luxS (present in more than 40 bacterial species), it may have an ancient origin; however, no direct evidence is currently available. We amplified luxS in bacteria isolated from 25- to 40-million-year-old amber. The phylogenies and molecular clocks of luxS and the 16S rRNA gene from ancient and extant bacteria were determined as well. Luminescence assays using Vibrio harveyi BB170 aimed to determine the activity of luxS. While the phylogeny of luxS was very similar to that of extant Bacillus spp., amber isolates exhibited unique 16S rRNA gene phylogenies. This suggests that luxS may have been acquired by horizontal transfer millions of years ago. Molecular clocks of luxS suggest slow evolutionary rates, similar to those of the 16S rRNA gene and consistent with a conserved gene. Dendograms of the 16S rRNA gene and luxS show two separate clusters for the extant and ancient bacteria, confirming the uniqueness of the latter group. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics.

    PubMed

    Johnson, D Barrie; Okibe, Naoko; Roberto, Francisco F

    2003-07-01

    Moderately thermophilic acidophilic bacteria were isolated from geothermal (30-83 degrees C) acidic (pH 2.7-3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 degrees C, and pH 1.0-1.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria ( Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstone strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the alpha -Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also alpha-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes ( SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.

  14. Isolation and Identification of Lactic Acid Bacteria Isolated from a Traditional Jeotgal Product in Korea

    NASA Astrophysics Data System (ADS)

    Cho, Gyu Sung; Do, Hyung Ki

    2006-06-01

    Seventeen lactic acid bacterial strains (LAB) were isolated using MRS agar medium from Jeotgal, a Korean fermented food, purchased at the Jukdo market of Pohang. To identify the strains isolated, they were tested by examining their cell morphologies, gram-staining, catalase activity, arginine hydrolase activity, D-L lactate form and carbohydrate fermentation. According to the phenotypic characteristics, three strains were tent atively identified as Lactobacillus spp., ten were Enterococcus spp. (or Streptococcus spp., or Pediococcus spp.) and the rest were Leuconostoc spp. (or Weissella spp.). Five strains among 17 were chosen by preliminary bacteriocin activity test. Four bacterial strains which inhibited both indicator microorganisms were identified by 16S rRNA sequencing. The results are as follows; Leuconostoc mesenteroides (HK 4), Leuconostoc mesenteroides (HK 5), Leuconostoc mesenteroides(HK 11), Streptococcus salivarius(HK 8). In order to check LAB which are showing a high survival rate in gut, we investigated three strains inhibiting both indicator microorganisms in artificial gastric acid and bile juice -all except HK8. The three strains mentioned above grew in extreme low acid conditions.

  15. Isolation and Identification of Nonoral Pathogenic Bacteria in the Oral Cavity of Patients with Removable Dentures.

    PubMed

    Derafshi, Reza; Bazargani, Abdollah; Ghapanchi, Jannan; Izadi, Yazdan; Khorshidi, Hooman

    2017-01-01

    Dentures in the oral cavity may act as a reservoir of microorganisms, which may be related to systemic infections. The aim of this study was to investigate the nonoral pathogenic bacteria in the oral cavity of patients with removable dentures in Shiraz, Southern Iran. The bacterial flora of saliva samples from 50 men and 50 women with removable dentures and 100 age- and sex-matched controls with normal dentate were compared using culture, Gram staining, and API20E Kit methods. All data were analyzed using SPSS software. Except for Enterobacter cloacae isolate (P = 0.03), there was no significant difference between both groups for the presence of Escherichia coli, Klebsiella pneumoniae, nonfermenting Gram-negative bacilli, Raoultella ornithinolytica, Raoultella planticola, Kluyvera spp., and Enterobacter aerogenes. No significant correlation was noticed between age and presence of bacteria in the oral cavity. The Gram-negative rod bacteria were more in males, but the difference was not significant. When a total of Gram-negative rods were considered, there was a significant difference between case and control groups (P = 0.004). Based on our findings that nonoral pathogenic bacteria are detected from the saliva of the denture wearers, general and oral health measures in patients with removable dentures should be adopted to decrease the risk of cross infection.

  16. Isolation and Identification of Nonoral Pathogenic Bacteria in the Oral Cavity of Patients with Removable Dentures

    PubMed Central

    Derafshi, Reza; Bazargani, Abdollah; Ghapanchi, Jannan; Izadi, Yazdan; Khorshidi, Hooman

    2017-01-01

    Aims and Objectives: Dentures in the oral cavity may act as a reservoir of microorganisms, which may be related to systemic infections. The aim of this study was to investigate the nonoral pathogenic bacteria in the oral cavity of patients with removable dentures in Shiraz, Southern Iran. Materials and Methods: The bacterial flora of saliva samples from 50 men and 50 women with removable dentures and 100 age- and sex-matched controls with normal dentate were compared using culture, Gram staining, and API20E Kit methods. All data were analyzed using SPSS software. Results: Except for Enterobacter cloacae isolate (P = 0.03), there was no significant difference between both groups for the presence of Escherichia coli, Klebsiella pneumoniae, nonfermenting Gram-negative bacilli, Raoultella ornithinolytica, Raoultella planticola, Kluyvera spp., and Enterobacter aerogenes. No significant correlation was noticed between age and presence of bacteria in the oral cavity. The Gram-negative rod bacteria were more in males, but the difference was not significant. When a total of Gram-negative rods were considered, there was a significant difference between case and control groups (P = 0.004). Conclusions: Based on our findings that nonoral pathogenic bacteria are detected from the saliva of the denture wearers, general and oral health measures in patients with removable dentures should be adopted to decrease the risk of cross infection. PMID:28852636

  17. Bacteria Isolated from Bats Inhibit the Growth of Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome

    PubMed Central

    Hoyt, Joseph R.; Cheng, Tina L.; Langwig, Kate E.; Hee, Mallory M.; Frick, Winifred F.; Kilpatrick, A. Marm

    2015-01-01

    Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas) to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species. PMID:25853558

  18. Bacteria isolated from bats inhibit the growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome.

    PubMed

    Hoyt, Joseph R; Cheng, Tina L; Langwig, Kate E; Hee, Mallory M; Frick, Winifred F; Kilpatrick, A Marm

    2015-01-01

    Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas) to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species.

  19. [Identification of Azospirillum genus bacteria isolated from the spring wheat root zone].

    PubMed

    Kopylov, Ie P; Spyrydonov, V H; Patyka, V P

    2009-01-01

    Bacteria with high N2-fixing activity were isolated from the root zone of spring wheat grown on leach chernozem and soddy podzolic soil in Ukrainian marshy woodlands. They were characterized by phenotypic signs and investigated with the help of molecular-genetic methods. On the basis of diagnostic signs the investigated strains were referred to Azospirillum brasilense from Azospirillum genus. Their 3'- and 5'-thermal 16S RNA hypervariable sites with length from 373 to 395 nucleotides were amplified and sequenced. The comparative analysis of results confirmed the 100% identity of 16S RNA sequences from investigated bacteria with the same sequences of A. brasilense from Gene Bank database. Thus the results of sequence analysis agree with results obtained during the investigation of phenotypic signs.

  20. Identification and Characteristics of Lactic Acid Bacteria Isolated from Sour Dough Sponges.

    PubMed

    Okada, S; Ishikawa, M; Yoshida, I; Uchimura, T; Ohara, N; Kozaki, M

    1992-01-01

    Lactic acid bacteria in four samples of sour dough sponges were studied quantitatively and qualitatively. In each sponge, there were one or two species of the genus Lactobacillus: L. reuteri and L. curvatus in San Francisco sour dough sponge, L. brevis and L. hilgardii in panettone sour dough sponge produced in Italy, L. sanfrancisco from a rye sour dough sponge produced in Germany, and L. casei and L. curvatus from a rye sour dough sponge produced in Switzerland. For all isolates except the L. reuteri strains oleic acid, a component of the Tween 80 added to the medium, was essential for growth. It was of interest that lactobacilli requiring oleic acid were the predominant flora of lactic acid bacteria in the microbial environment of sour dough sponges.

  1. Behavior of Psychrotrophic Lactic Acid Bacteria Isolated from Spoiling Cooked Meat Products

    PubMed Central

    Hamasaki, Yoshikatsu; Ayaki, Mitsuko; Fuchu, Hidetaka; Sugiyama, Masaaki; Morita, Hidetoshi

    2003-01-01

    Three kinds of lactic acid bacteria were isolated from spoiling cooked meat products stored below 10°C. They were identified as Leuconostoc mesenteroides subsp. mesenteroides, Lactococcus lactis subsp. lactis, and Leuconostoc citreum. All three strains grew well in MRS broth at 10°C. In particular, L. mesenteroides subsp. mesenteroides and L. citreum grew even at 4°C, and their doubling times were 23.6 and 51.5 h, respectively. On the other hand, although the bacteria were initially below the detection limit (<10 CFU/g) in model cooked meat products, the bacterial counts increased to 108 CFU/g at 10°C after 7 to 12 days. PMID:12788779

  2. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent.

    PubMed

    Fulazzaky, Mohamad Ali; Abdullah, Shakila; Salim, Mohd Razman

    2016-06-01

    The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 "Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30" (Fulazzaky et al., 2015) [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments.

  3. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    PubMed

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  4. Isolation of Adherent Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Bacteria Using PAH-Sorbing Carriers

    PubMed Central

    Bastiaens, Leen; Springael, Dirk; Wattiau, Pierre; Harms, Hauke; deWachter, Rupert; Verachtert, Hubert; Diels, Ludo

    2000-01-01

    Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonas spp., whereas the membrane method exclusively led to the selection of Mycobacterium spp. Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobacterium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge. PMID:10788347

  5. Occurrence of antibiotic resistance in bacteria isolated from seawater organisms caught in Campania Region: preliminary study.

    PubMed

    Smaldone, Giorgio; Marrone, Raffaele; Cappiello, Silvia; Martin, Giuseppe A; Oliva, Gaetano; Cortesi, Maria L; Anastasio, Aniello

    2014-07-15

    Environmental contamination by pharmaceuticals is a public health concern: drugs administered to humans and animals are excreted with urine or faeces and attend the sewage treatment. The main consequences of use and abuse of antibiotics is the development and diffusion of antibiotic resistance that has become a serious global problem. Aim of the study is to evaluate the presence of antimicrobial residues and to assess the antimicrobial resistance in bacteria species isolated from different wild caught seawater fish and fishery products. Three antibiotic substances (Oxytetracicline, Sulfamethoxazole and Trimethoprim) were detected (by screening and confirmatory methods) in Octopus vulgaris, Sepia officinalis and Thais haemastoma. All Vibrio strains isolated from fish were resistant to Vancomycin (VA) and Penicillin (P). In Vibrio alginolyticus, isolated in Octopus vulgaris, a resistance against 9 antibiotics was noted. Wild caught seawater fish collected in Gulf of Salerno (Campania Region), especially in marine areas including mouths of streams, were contaminated with antibiotic-resistant bacteria strains and that they might play an important role in the spread of antibiotic-resistance.

  6. Isolation and identification of lactic acid bacteria from fermented red dragon fruit juices.

    PubMed

    Ong, Yien Yien; Tan, Wen Siang; Rosfarizan, Mohamad; Chan, Eng Seng; Tey, Beng Ti

    2012-10-01

    Red dragon fruit or red pitaya is rich in potassium, fiber, and antioxidants. Its nutritional properties and unique flesh color have made it an attractive raw material of various types of food products and beverages including fermented beverages or enzyme drinks. In this study, phenotypic and genotypic methods were used to confirm the identity of lactic acid bacteria (LAB) appeared in fermented red dragon fruit (Hylocereus polyrhizus) beverages. A total of 21 isolates of LAB were isolated and characterized. They belonged to the genus of Enterococcus based on their biochemical characteristics. The isolates can be clustered into two groups by using the randomly amplified polymorphic DNA method. Nucleotide sequencing and restriction fragment length polymorphism of the 16S rRNA region suggested that they were either Enterococcus faecalis or Enterococcus durans. Current research revealed the use of biochemical analyses and molecular approaches to identify the microbial population particularly lactic acid bacteria from fermented red dragon fruit juices. © 2012 Institute of Food Technologists®

  7. Isolation and Characterization of Bacteria Resistant to Metallic Copper Surfaces▿ †

    PubMed Central

    Espírito Santo, Christophe; Morais, Paula Vasconcelos; Grass, Gregor

    2010-01-01

    Metallic copper alloys have recently attracted attention as a new antimicrobial weapon for areas where surface hygiene is paramount. Currently it is not understood on a molecular level how metallic copper kills microbes, but previous studies have demonstrated that a wide variety of bacteria, including Escherichia coli, Staphylococcus aureus, and Clostridium difficile, are inactivated within minutes or a few hours of exposure. In this study, we show that bacteria isolated from copper alloy coins comprise strains that are especially resistant against the toxic properties exerted by dry metallic copper surfaces. The most resistant of 294 isolates were Gram-positive staphylococci and micrococci, Kocuria palustris, and Brachybacterium conglomeratum but also included the proteobacterial species Sphingomonas panni and Pseudomonas oleovorans. Cells of some of these bacterial strains survived on copper surfaces for 48 h or more. Remarkably, when these dry-surface-resistant strains were exposed to moist copper surfaces, resistance levels were close to those of control strains and MICs for copper ions were at or below control strain levels. This suggests that mechanisms conferring resistance against dry metallic copper surfaces in these newly isolated bacterial strains are different from well-characterized copper ion detoxification systems. Furthermore, staphylococci on coins did not exhibit increased levels of resistance to antibiotics, arguing against coselection with copper surface resistance traits. PMID:20048058

  8. Characterization of acetanilide herbicides degrading bacteria isolated from tea garden soil.

    PubMed

    Wang, Yei-Shung; Liu, Jian-Chang; Chen, Wen-Ching; Yen, Jui-Hung

    2008-04-01

    Three different green manures were added to the tea garden soils separately and incubated for 40 days. After, incubation, acetanilide herbicides alachlor and metolachlor were spiked into the soils, separately, followed by the isolation of bacteria in each soil at designed intervals. Several bacterial strains were isolated from the soils and identified as Bacillus silvestris, B. niacini, B. pseudomycoides, B. cereus, B. thuringiensis, B. simplex, B. megaterium, and two other Bacillus sp. (Met1 and Met2). Three unique strains with different morphologies were chosen for further investigation. They were B. megaterium, B. niacini, and B. silvestris. The isolated herbicide-degrading bacteria showed optimal performance among three incubation temperatures of 30 degrees C and the best activity in the 10 to 50 microg/ml concentration of the herbicide. Each bacterial strain was able to degrade more than one kind of test herbicides. After incubation for 119 days, B. cereus showed the highest activity to degrade alachlor and propachlor, and B. thuringiensis to degrade metolachlor.

  9. Occurrence of antibiotic resistance in bacteria isolated from seawater organisms caught in Campania Region: preliminary study

    PubMed Central

    2014-01-01

    Background Environmental contamination by pharmaceuticals is a public health concern: drugs administered to humans and animals are excreted with urine or faeces and attend the sewage treatment. The main consequences of use and abuse of antibiotics is the development and diffusion of antibiotic resistance that has become a serious global problem. Aim of the study is to evaluate the presence of antimicrobial residues and to assess the antimicrobial resistance in bacteria species isolated from different wild caught seawater fish and fishery products. Results Three antibiotic substances (Oxytetracicline, Sulfamethoxazole and Trimethoprim) were detected (by screening and confirmatory methods) in Octopus vulgaris, Sepia officinalis and Thais haemastoma. All Vibrio strains isolated from fish were resistant to Vancomycin (VA) and Penicillin (P). In Vibrio alginolyticus, isolated in Octopus vulgaris, a resistance against 9 antibiotics was noted. Conclusions Wild caught seawater fish collected in Gulf of Salerno (Campania Region), especially in marine areas including mouths of streams, were contaminated with antibiotic-resistant bacteria strains and that they might play an important role in the spread of antibiotic-resistance. PMID:25027759

  10. Isolation and characterization of phosphate solubilizing bacteria from Western Indian Himalayan soils.

    PubMed

    Tomer, Supriya; Suyal, Deep Chandra; Shukla, Anjana; Rajwar, Jyoti; Yadav, Amit; Shouche, Yogesh; Goel, Reeta

    2017-06-01

    Previous studies confirmed the existence of diversified microbial flora in the rhizosphere of Himalayan Red Kidney Bean (RKB) (Phaseolus vulgaris L.). Therefore, fifteen different temperate and subtropical regions of Western Indian Himalaya (WIH) were explored for the isolation of RKB rhizosphere-associated Phosphorus (P) solubilizing bacteria. On the basis of qPCR analysis, three soils, i.e., Munsyari, Kandakhal and Nainital soils were selected for the isolation of P solubilizers. Among 133 isolates, three bacteria viz. Lysinibaccilus macroides ST-30, Pseudomonas palleroniana N-26 and Pseudomonas jessenii MP-1 were selected based on their P solubilization potential. Moreover, in vitro seed germination assay was performed to investigate their effectiveness against four native crops viz. (Cicer arietrinum L.), (Vigna radiata L.), (Pisum sativum L.) and (Zea mays L.). Treated seeds showed significant increase in germination efficiency over their respective controls. The results suggest that Lysinibaccilus macroides ST-30, strain is a potential plant growth-promoting bacterium for chickpea (Cicer arietrinum L.) and, therefore, could be implemented as a low-cost bio-inoculant in hill agriculture system.

  11. Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria.

    PubMed

    Kaškonienė, Vilma; Stankevičius, Mantas; Bimbiraitė-Survilienė, Kristina; Naujokaitytė, Gintarė; Šernienė, Loreta; Mulkytė, Kristina; Malakauskas, Mindaugas; Maruška, Audrius

    2017-02-01

    The scientific interest for the search of natural means of microbial inhibitors has not faded for several years. A search of natural antibiotics, so-called bacteriocins which are produced by lactic acid bacteria (LAB), gains a huge attention of the scientists in the last century, in order to reduce the usage of synthetic food additives. Pure bacteriocins with wide spectra of antibacterial activity are promising among the natural biopreservatives. The usage of bacteriocin(s) producing LAB as starter culture for the fermentation of some food products, in order to increase their shelf-life, when synthetic preservatives are not allowable, is also possible. There are a lot of studies focusing on the isolation of new bacteriocins from traditional fermented food, dairy products and other foods or sometimes even from unusual non-food matrices. Bacteriocins producing bacteria have been isolated from different sources with the different antibacterial activity against food-borne microorganisms. This review covers the classification of bacteriocins, diversity of sources of bacteriocin(s) producing LAB, antibacterial spectra of isolated bacteriocins and analytical methods for the bacteriocin purification and analysis within the last 15 years.

  12. Taxonomic status and ecologic function of methanogenic bacteria isolated from the oral cavity of humans

    SciTech Connect

    Kemp, C.W.

    1985-01-01

    The detection of methane gas in samples of dental plaque and media inoculated with dental plaque was attributed to the presence of methane-producing bacteria in the plaque microbiota. The results of a taxonomic analysis of the 12 methanogenic isolates obtained from human dental plaque, (ABK1-ABK12), placed the organisms in the genus Methanobrevibacter. A DNA-DNA hybridization survey established three distinct genetic groups of oral methanogens based on percent homology values. The groups exhibited less than 32% homology between themselves and less than 17% homology with the three known members of the genus methanobrevibacter. The ecological role of the oral methanogens was established using mixed cultures of selected methanogenic isolates (ABK1, ABK4, ABK6, or ABK7) with oral heterotrophic bacteria. Binary cultures of either Streptococcus mutans, Streptococcus sanguis, Veillonella rodentium, Lactobacillus casei, or Peptostreptococcus anaerobius together with either methanogenic isolates ABK6 or ABK7 were grown to determine the effect of the methanogens on the distribution of carbon end products produced by the heterotrophs. Binary cultures of S. mutans and ABK7 exhibited a 27% decrease in lactic acid formation when compared to pure culture of S. mutans. The decrease in lactic acid production was attributed to the removal of formate by the methanogen, (ABK7), which caused an alteration in the distribution of carbon end products by S. mutans.

  13. Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers.

    PubMed

    Bastiaens, L; Springael, D; Wattiau, P; Harms, H; deWachter, R; Verachtert, H; Diels, L

    2000-05-01

    Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonas spp., whereas the membrane method exclusively led to the selection of Mycobacterium spp. Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobacterium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge.

  14. Isolation of Soil Bacteria Adapted To Degrade Humic Acid-Sorbed Phenanthrene

    PubMed Central

    Vacca, D. J.; Bleam, W. F.; Hickey, W. J.

    2005-01-01

    The goal of these studies was to determine how sorption by humic acids affected the bioavailability of polynuclear aromatic hydrocarbons (PAHs) to PAH-degrading microbes. Micellar solutions of humic acid were used as sorbents, and phenanthrene was used as a model PAH. Enrichments from PAH-contaminated soils established with nonsorbed phenanthrene yielded a total of 25 different isolates representing a diversity of bacterial phylotypes. In contrast, only three strains of Burkholderia spp. and one strain each of Delftia sp. and Sphingomonas sp. were isolated from enrichments with humic acid-sorbed phenanthrene (HASP). Using [14C]phenanthrene as a radiotracer, we verified that only HASP isolates were capable of mineralizing HASP, a phenotype hence termed “competence.” Competence was an all-or-nothing phenotype: noncompetent strains showed no detectable phenanthrene mineralization in HASP cultures, but levels of phenanthrene mineralization effected by competent strains in HASP and NSP cultures were not significantly different. Levels and rates of phenanthrene mineralization exceeded those predicted to be supported solely by the metabolism of phenanthrene in the aqueous phase of HASP cultures. Thus, competent strains were able to directly access phenanthrene sorbed by the humic acids and did not rely on desorption for substrate uptake. To the best of our knowledge, this is the first report of (i) a selective interaction between aerobic bacteria and humic acid molecules and (ii) differential bioavailability to bacteria of PAHs sorbed to a natural biogeopolymer. PMID:16000791

  15. Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers

    SciTech Connect

    Bastiaens, L.; Springael, D.; Wattiau, P.; Harms, H.; DeWachter, R.; Verachtert, H.; Diels, L.

    2000-05-01

    Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonas spp., whereas the membrane method exclusively led to the selection of Mycobacterium spp. Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobactereium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge.

  16. Isolation and characterization of bacteria from the rhizosphere and bulk soil of Stellera chamaejasme L.

    PubMed

    Cui, Haiyan; Yang, Xiaoyan; Lu, Dengxue; Jin, Hui; Yan, Zhiqiang; Chen, Jixiang; Li, Xiuzhuang; Qin, Bo

    2015-03-01

    This study is the first to describe the composition and characteristics of culturable bacterial isolates from the rhizosphere and bulk soil of the medicinal plant Stellera chamaejasme L. at different growth stages. Using a cultivation-dependent approach, a total of 148 isolates showing different phenotypic properties were obtained from the rhizosphere and bulk soil. Firmicutes and Actinobacteria were the major bacterial groups in both the rhizosphere and bulk soil at all 4 growth stages of S. chamaejasme. The diversity of the bacterial community in the rhizosphere was higher than that in bulk soil in flowering and fruiting stages. The abundance of bacterial communities in the rhizosphere changed with the growth stages and had a major shift at the fruiting stage. Dynamic changes of bacterial abundance and many bacterial groups in the rhizosphere were similar to those in bulk soil. Furthermore, most bacterial isolates exhibited single or multiple biochemical activities associated with S. chamaejasme growth, which revealed that bacteria with multiple physiological functions were abundant and widespread in the rhizosphere and bulk soil. These results are essential (i) for understanding the ecological roles of bacteria in the rhizosphere and bulk soil and (ii) as a foundation for further evaluating their efficacy as effective S. chamaejasme growth-promoting rhizobacteria.

  17. Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species

    PubMed Central

    Bulgasem, Bulgasem Y.; Lani, Mohd Nizam; Wan Yusoff, Wan Mohtar; Fnaish, Sumaya G.

    2016-01-01

    The role of lactic acid bacteria (LAB) in honey as antifungal activity has received little attention and their mechanism of inhibitory of fungi is not fully understood. In this study, LAB were isolated from honey samples from Malaysia, Libya, Saudi Arabia, and Yemen. Twenty-five isolates were confirmed LAB by catalase test and Gram staining, and were screened for antifungal activity. Four LAB showed inhibitory activity against Candida spp. using the dual agar overlay method. And they were identified as Lactobacillus plantarum HS isolated from Al-Seder honey, Lactobacillus curvatus HH isolated from Al-Hanon honey, Pediococcus acidilactici HC isolated from Tualang honey and Pediococcus pentosaceus HM isolated from Al-Maray honey by the 16S rDNA sequence. The growth of Candida glabrata ATCC 2001 was strongly inhibited (>15.0 mm) and (10~15 mm) by the isolates of L. curvatus HH and P. pentosaceus HM, respectively. The antifungal activity of the crude supernatant (cell free supernatant, CFS) was evaluated using well diffusion method. The CFS showed high antifungal activity against Candida spp. especially The CFS of L. curvatus HH was significantly (p < 0.05) inhibited growth of C. glabrata ATCC 2001, C. parapsilosis ATCC 2201, and C. tropicalis ATCC 750 with inhibitory zone 22.0, 15.6, and 14.7 mm, respectively. While CFS of P. pentosaceus HM was significantly (p < 0.05) effective against C. krusei, C. glabrata, and C. albicans with inhibition zone 17.2, 16.0, and 13.3 mm, respectively. The results indicated that LAB isolated from honey produced compounds which can be used to inhibit the growth of the pathogenic Candida species. PMID:28154488

  18. Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species.

    PubMed

    Bulgasem, Bulgasem Y; Lani, Mohd Nizam; Hassan, Zaiton; Wan Yusoff, Wan Mohtar; Fnaish, Sumaya G

    2016-12-01

    The role of lactic acid bacteria (LAB) in honey as antifungal activity has received little attention and their mechanism of inhibitory of fungi is not fully understood. In this study, LAB were isolated from honey samples from Malaysia, Libya, Saudi Arabia, and Yemen. Twenty-five isolates were confirmed LAB by catalase test and Gram staining, and were screened for antifungal activity. Four LAB showed inhibitory activity against Candida spp. using the dual agar overlay method. And they were identified as Lactobacillus plantarum HS isolated from Al-Seder honey, Lactobacillus curvatus HH isolated from Al-Hanon honey, Pediococcus acidilactici HC isolated from Tualang honey and Pediococcus pentosaceus HM isolated from Al-Maray honey by the 16S rDNA sequence. The growth of Candida glabrata ATCC 2001 was strongly inhibited (>15.0 mm) and (10~15 mm) by the isolates of L. curvatus HH and P. pentosaceus HM, respectively. The antifungal activity of the crude supernatant (cell free supernatant, CFS) was evaluated using well diffusion method. The CFS showed high antifungal activity against Candida spp. especially The CFS of L. curvatus HH was significantly (p < 0.05) inhibited growth of C. glabrata ATCC 2001, C. parapsilosis ATCC 2201, and C. tropicalis ATCC 750 with inhibitory zone 22.0, 15.6, and 14.7 mm, respectively. While CFS of P. pentosaceus HM was significantly (p < 0.05) effective against C. krusei, C. glabrata, and C. albicans with inhibition zone 17.2, 16.0, and 13.3 mm, respectively. The results indicated that LAB isolated from honey produced compounds which can be used to inhibit the growth of the pathogenic Candida species.

  19. Isolation of Lactic Acid Bacteria Showing Antioxidative and Probiotic Activities from Kimchi and Infant Feces.

    PubMed

    Ji, Keunho; Jang, Na Young; Kim, Young Tae

    2015-09-01

    The purpose of this study was to investigate lactic acid bacteria with antioxidative and probiotic activities isolated from Korean healthy infant feces and kimchi. Isolates A1, A2, S1, S2, and S3 were assigned to Lactobacillus sp. and isolates A3, A4, E1, E2, E3, and E4 were assigned to Leuconostoc sp. on the basis of their physiological properties and 16S ribosomal DNA sequence analysis. Most strains were confirmed as safe bioresources through nonhemolytic activities and non-production of harmful enzymes such as β-glucosidase, β- glucuronidase and tryptophanase. The 11 isolates showed different resistance to acid and bile acids. In addition, they exhibited antibacterial activity against foodborne bacteria, especially Bacillus cereus, Listeria monocytogenes, and Escherichia coli. Furthermore, all strains showed significantly high levels of hydrophobicity. The antioxidant effects of culture filtrates of the 11 strains included 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging capacity, 2.2'- azino-bis (2-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical cation scavenging activity, and superoxide dismutase activity. The results revealed that most of the culture filtrates have effective scavenging activity for DPPH and ABTS radicals. All strains appeared to have effective superoxide dismutase activity. In conclusion, the isolated strains A1, A3, S1, and S3 have significant probiotic activities applicable to the development of functional foods and health-related products. These strains might also contribute to preventing and controlling several diseases associated with oxidative stress, when used as probiotics.

  20. Isolation, identification and characterization of highly tellurite-resistant, tellurite-reducing bacteria from Antarctica

    NASA Astrophysics Data System (ADS)

    Arenas, Felipe A.; Pugin, Benoit; Henríquez, Nicole A.; Arenas-Salinas, Mauricio A.; Díaz-Vásquez, Waldo A.; Pozo, María F.; Muñoz, Claudia M.; Chasteen, Thomas G.; Pérez-Donoso, José M.; Vásquez, Claudio C.

    2014-03-01

    The tellurium oxyanion, tellurite, is extremely noxious to most living organisms. Its toxicity has been mainly related to the generation of reactive oxygen species (ROS) as well as to an unbalancing of the thiol:redox buffering system. Nevertheless, a few bacteria are capable of thriving at high tellurite concentrations. One mechanism of resistance is the enzymatic and non-enzymatic reduction of tellurite to the less toxic elemental tellurium. This reduction generates nano- to micrometric tellurium crystals that display different shapes and sizes. To date, a very limited number of highly tellurite-resistant and tellurite-reducing bacterial species are available from international culture collections. In this work, we decided to look for tellurite-reducing bacteria from an extreme environment, Antarctica. This environment exhibits a combination of several extreme factors such as high UV-radiation and desiccation and freezing conditions that impact directly on the local biodiversity. Since, as does, all these factors induce ROS formation, we hypothesized that Antarctic bacteria could also exhibit tellurite-resistance. In this context, we isolated 123 tellurite-resistant bacteria, and characterized six new tellurite-resistant and tellurite-reducing bacterial strains from samples collected in Antarctica. These strains were identified according to their 16S rRNA gene sequence as Staphylococcus hameolyticus, Staphylococcus sciuri, Acinetobacter haemolyticus, Pseudomonas lini, and two strains of Psychrobacter immobilis. The isolates display tellurite-resistance about 35- to 500-fold higher than Escherichia coli (Te-sensitive organism), and a high level of tellurite reduction which might be interesting for an application in the field of bioremediation or nanoparticle biosynthesis.

  1. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product.

    PubMed

    Duncan, Sylvia H; Louis, Petra; Flint, Harry J

    2004-10-01

    The microbial community of the human colon contains many bacteria that produce lactic acid, but lactate is normally detected only at low concentrations (<5 mM) in feces from healthy individuals. It is not clear, however, which bacteria are mainly responsible for lactate utilization in the human colon. Here, bacteria able to utilize lactate and produce butyrate were identified among isolates obtained from 10(-8) dilutions of fecal samples from five different subjects. Out of nine such strains identified, four were found to be related to Eubacterium hallii and two to Anaerostipes caccae, while the remaining three represent a new species within clostridial cluster XIVa based on their 16S rRNA sequences. Significant ability to utilize lactate was not detected in the butyrate-producing species Roseburia intestinalis, Eubacterium rectale, or Faecalibacterium prausnitzii. Whereas E. hallii and A. caccae strains used both D- and L-lactate, the remaining strains used only the d form. Addition of glucose to batch cultures prevented lactate utilization until the glucose became exhausted. However, when two E. hallii strains and one A. caccae strain were grown in separate cocultures with a starch-utilizing Bifidobacterium adolescentis isolate, with starch as the carbohydrate energy source, the L-lactate produced by B. adolescentis became undetectable and butyrate was formed. Such cross-feeding may help to explain the reported butyrogenic effect of certain dietary substrates, including resistant starch. The abundance of E. hallii in particular in the colonic ecosystem suggests that these bacteria play important roles in preventing lactate accumulation.

  2. Isolation of free-living dinitrogen-fixing bacteria and their activity in compost containing de-inking paper sludge.

    PubMed

    Beauchamp, Chantal J; Lévesque, Gabriel; Prévost, Danielle; Chalifour, François-P

    2006-05-01

    Knowledge of the microbiology of dinitrogen (N2)-fixing bacteria in compost rich in de-inking paper sludge (DPS) is limited. Dinitrogen (N2)-fixing bacteria from DPS composts were isolated and studied for their N2-fixing activity in vitro and in vivo. Two Gram-negative N2-fixing isolates were identified as Pseudomonas. At 20 degrees C, both isolates revealed that N2-fixing activity was higher than that of three arctic Pseudomonas strains. Their N2-fixing activity was found to occur between 18 and 25 degrees C, a pattern that was similar to the reference isolate Azotobacter ATCC 7486. Composts successfully showed N2-fixing activity after carbohydrate amendments both with and without inoculation of a N2-fixing isolate. These results suggest that DPS composts support N2-fixing bacteria and that N2-fixing activity is dependent on a usable carbohydrate source.

  3. Identification of lactic acid bacteria isolated from Tarhana, a traditional Turkish fermented food.

    PubMed

    Sengun, Ilkin Yucel; Nielsen, Dennis S; Karapinar, Mehmet; Jakobsen, Mogens

    2009-10-31

    Tarhana is a traditional fermented product produced from a mixture of spontaneously fermented yogurt and wheat flour in Turkey. The aims of the present study were to enumerate and identify for the first time by molecular biology-based methods predominant lactic acid bacteria (LAB) isolated during processing of Tarhana. Samples were collected from eight different regions of Turkey. In order to explore the relationship between raw material and the microbiology of Tarhana, yogurt and wheat flour were also analyzed. A total of 226 Gram-positive and catalase-negative isolates were obtained from MRS, M17 and SBM (Slanetz and Bartley Medium). The isolates were grouped and identified using a combination of pheno- and genotypic methods including rep-PCR fingerprinting [(GTG)(5) primer], multiplex PCR, 16S rRNA gene sequencing and carbohydrate assimilation profiling. Pediococcus acidilactici were found to constitute 27% of the isolates, 19% were identified as Streptococcus thermophilus, 19% as Lactobacillus fermentum, 12% as Enterococcus faecium, 7% as Pediococcus pentosaceus, 5% as Leuconostoc pseudomesenteroides, 4% as Weissella cibaria, 2% as Lactobacillus plantarum, 2% as Lactobacillus delbrueckii spp. bulgaricus, 2% as Leuconostoc citreum, 1% as Lactobacillus paraplantarum and 0.5% as Lactobacillus casei. The different production sites investigated all had individual LAB profiles, but with P. acidilactici and S. thermophilus being isolated from the majority of samples. The main source of P. acidilactici and S. thermophilus was found to be the yogurt.

  4. [Effectiveness and risks of isolation precautions in patients with MRSA and other multidrug-resistant bacteria].

    PubMed

    Dettenkofer, M; Utzolino, S; Luft, D; Lemmen, S

    2010-04-01

    The transmission of multidrug-resistant organisms (MRSA, VRE and ESBL producing bacteria) occurs predominantly if health-care workers are not compliant with hand hygiene procedures. The impact of single-room isolation in transmission prevention is often overestimated. As long as hand disinfection is not performed before and after patient contact and gloves are not removed, a single room will not prevent transmission by -itself. Understaffing is additionally worsening the situation. There is no consistent evidence sup-port-ing strict single-room isolation even though data show supportive tendencies. Social isolation is one of the risks that should be considered as well as the economic impact of using shared rooms as a single room. Up-to-date, evidence-based standard operating procedures and individual infection control recommendations should take these considerations into account. In general, contact precautions including isolation in a single room are performed in MRSA and VRE-positive patients. If a single room cannot be provided in a given case (a common problem in intensive care units), contact precautions can be performed in a shared room as an alternative. The problem of establishing an optimal compliance with standard precautions (especially hand hygiene) throughout all professional groups should be addressed. Additional precautions, including single-room isolation, should be implemented critically if indicated.

  5. Deep subsurface life from North Pond: Enrichment, isolation, characterization and genomes of heterotrophic bacteria

    DOE PAGES

    Russell, Joseph A.; Leon-Zayas, Rosa; Wrighton, Kelly; ...

    2016-05-10

    Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic watercolumn west of the Mid-Atlantic Ridge at 22° N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sedimentmore » column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. Furthermore, the cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.« less

  6. Selection of antagonistic bacteria isolated from the Physalis peruviana rhizosphere against Fusarium oxysporum.

    PubMed

    Urrea, R; Cabezas, L; Sierra, R; Cárdenas, M; Restrepo, S; Jiménez, P

    2011-09-01

    Cape gooseberries (Physalis peruviana) have become increasingly important in Colombia for both domestic consumption and the international export market. Vascular wilting caused by Fusarium oxysporum is the most damaging disease to P. peruviana crops in Colombia. The control of this pathogen is mainly carried out by chemical and cultural practices, increasing production costs and generating resistance. Therefore, the objectives of this study were to test rhizobacteria isolates from P. peruviana rhizosphere against F. oxysporum under in vitro and in vivo conditions. Over 120 strains were isolated, and five were selected for their high inhibition of F. oxysporum growth and conidia production under in vitro conditions. These strains inhibited growth by 41-58% and reduced three- to fivefold conidia production. In the in vivo assays, all the tested isolates significantly reduced fungal pathogenicity in terms of virulence. Isolate B-3.4 was the most efficient in delaying the onset of the first symptoms. All isolates were identified as belonging to the genus Pseudomonas except for A-19 (Bacillus sp.). Our results confirmed that there are prospective rhizobacteria strains that can be used as biological control agents; some of them being able to inhibit in vitro F. oxysporum growth and sporulation. Incorporating these bacteria into biological control strategies for the disease that causes high economical losses in the second most exported fruit from Colombia would result in a reduced impact on environment and economy. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  7. Highly effective bacterial agents against Cimbex quadrimaculatus (Hymenoptera: Cimbicidae): isolation of bacteria and their insecticidal activities.

    PubMed

    Cakici, Filiz Ozkan; Ozgen, İnanc; Bolu, Halil; Erbas, Zeynep; Demirbağ, Zihni; Demir, İsmail

    2015-01-01

    Cimbex quadrimaculatus (Hymenoptera: Cimbicidae) is one of the serious pests of almonds in Turkey and worldwide. Since there is no effective control application against this pest, it has been a serious problem up to now. Therefore, we aimed to find an effective bacterium that can be utilized as a biocontrol agent against C. quadrimaculatus in pest management. We isolated seven bacteria from dead and live C. quadrimaculatus larvae, and evaluated the larvicidal potency of all isolates on the respective pest. Based on the morphological, physiological, biochemical and molecular properties (partial sequence of 16S rRNA gene), the isolates were identified to be Bacillus safensis (CQ1), Bacillus subtilis (CQ2), Bacillus tequilensis (CQ3), Enterobacter sp. (CQ4), Kurthia gibsonii (CQ5), Staphylococcus sp. (CQ6) and Staphylococcus sciuri (CQ7). The results of the larvicidal activities of these isolates indicated that the mortality value obtained from all treatments changed from 58 to 100 %, and reached 100 % with B. safensis (CQ1) and B. subtilis (CQ2) on the 3rd instar larvae within 10 days of application of 1.89 × 10(9) cfu/mL bacterial concentration at 25 °C under laboratory conditions. Findings from this study indicate that these isolates appear to be a promising biocontrol agent for C. quadrimaculatus.

  8. Deep Subsurface Life from North Pond: Enrichment, Isolation, Characterization and Genomes of Heterotrophic Bacteria

    PubMed Central

    Russell, Joseph A.; León-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F.

    2016-01-01

    Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. The cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface. PMID:27242705

  9. Antibiotic resistance in lactic acid bacteria isolated from some pharmaceutical and dairy products.

    PubMed

    Gad, Gamal Fadl M; Abdel-Hamid, Ahmed M; Farag, Zeinab Shawky H

    2014-01-01

    A total of 244 lactic acid bacteria (LAB) strains were isolated from 180 dairy and pharmaceutical products that were collected from different areas in Minia governorate, Egypt. LAB were identified phenotypically on basis of morphological, physiological and biochemical characteristics. Lactobacillus isolates were further confirmed using PCR-based assay. By combination of phenotypic with molecular identification Lactobacillus spp. were found to be the dominant genus (138, 76.7%) followed by Streptococcus spp. (65, 36.1%) and Lactococcus spp. (27, 15%). Some contaminant organisms such as (Staphylococcus spp., Escherichia coli, Salmonella spp., mould and yeast) were isolated from the collected dairy samples but pharmaceutical products were free of such contaminants. Susceptibility of LAB isolates to antibiotics representing all major classes was tested by agar dilution method. Generally, LAB were highly susceptible to Beta-lactams except penicillin. Lactobacilli were resistant to vancomycin, however lactococci and streptococci proved to be very susceptible. Most strains were susceptible to tetracycline and showed a wide range of streptomycin MICs. The MICs of erythromycin and clindamycin for most of the LAB were within the normal range of susceptibility. Sixteen Lactobacillus, 8 Lactococcus and 8 Streptococcus isolates including all tetracycline and/or erythromycin resistant strains were tested for the presence of tetracycline and/or erythromycin resistant genes [tet(M) and/or erm(B)]. PCR assays shows that some resistant strains harbor tet(M) and/or erm(B) resistance genes.

  10. Plant growth-promoting potential of endophytic bacteria isolated from roots of coastal sand dune plants.

    PubMed

    Shin, Dong-Sung; Park, Myung Soo; Jung, Sera; Lee, Myoung Sook; Lee, Kang Hyun; Bae, Kyung Sook; Kim, Seung Bum

    2007-08-01

    Endophytic bacteria associated with the roots of coastal sand dune plants were isolated, taxonomically characterized, and tested for their plant growth-promoting activities. Ninety-one endophytic bacterial isolates were collected and assigned to 17 different genera of 6 major bacterial phyla based on partial 16S rDNA sequence analyses. Gammaproteobacteria represented the majority of the isolates (65.9%), and members of Pseudomonas constituted 49.5% of the total isolates. When testing for antagonism towards plant pathogenic fungi, 25 strains were antagonistic towards Rhizoctonia solani, 57 strains were antagonistic towards Pythium ultimum, 53 strains were antagonistic towards Fusarium oxysporum, and 41 strains were antagonistic towards Botrytis cinerea. Seven strains were shown to produce indole acetic acid (IAA), 33 to produce siderophores, 23 to produce protease, 37 to produce pectinase, and 38 to produce chitinase. The broadest spectra of activities were observed among the Pseudomonas strains, indicating outstanding plant growth-promoting potential. The isolates from C. kobomugi and M. sibirica also exhibited good plant growth-promoting potential. The correlations among individual plant growth-promoting activities were examined using phi coefficients, and the resulting data indicated that the production of protease, pectinase, chitinase, and siderophores was highly related.

  11. Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae).

    PubMed

    Kuzina, L V; Peloquin, J J; Vacek, D C; Miller, T A

    2001-04-01

    From the guts of new and old colonies (female and male) of Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae), we identified a total of 18 different bacterial species belonging to the family Enterobacteriaceae, Pseudomonadaceae, Vibrionaceae, Micrococcaceae, Deinococcacea, Bacillaceae, and the genus Listeria. Enterobacter, Providencia, Serratia, and Staphylococcus spp. were the most frequently isolated genera, with Citrobacter, Streptococcus, Aerococcus, and Listeria found less frequently. We found Bacillus cereus, Enterobacter sakazakii, Providencia stuartii, and Pseudomonas aeruginosa only in the new colony, Aeromonas hydrophila and Klebsiella pneumoniae spp. pneumoniae only in the old colony. We also studied resistance/sensitivity to 12 antibiotics for six bacterial isolates such as Enterobacter cloacae, E. sakazakii, K. pneumoniae spp., Providencia rettgeri, P. aeruginosa, and Bacillus cereus. Isolates on the whole were resistant to penicillin and ampicillin (five of six isolates) and sensitive to rifampin and streptomycin (six of six isolates). Antibiotic resistance profiles might be useful characteristics for distinguishing among species and strains of these bacteria, probably having ecological significance with respect to intra- and inter-specific competition within host cadavers, and could have implications for the utility of these organisms for biological control, including the alternative control strategy, paratransgenesis.

  12. [Isolation and identification of thermophilic bacteria for efficient dead-pig composting].

    PubMed

    Li, Hailong; Li, Lvmu; Qian, Kun; Xu, Fazhi

    2015-09-04

    To isolate thermophilic bacteria to degrade organic substances of dead-pig. Primary screening was done by using diluted plate count and selective medium, and then enzyme activity was measured for secondary screening. Two thermophilic bacterial strains N-3 and Y-3 were isolated, and could degrade protein and lipids. To test their effect, the isolates were mixed (V: V = 1:1, the number of bacteria was 10(8) CFU/mL) and inoculated in dead-pigs and sawdust composting with different doses (0%, 0.3%, 0.6% and 0.9% of the wet weight of fermentation materials). Strain N-3 was identified as Bacillus aestuarii and Y-3 as Geobacillus thermodenitrificans, based on their 16S rDNA gene sequences. The composting temperature of the 0.3%, 0.6% and 0.9% inoculation group could reach 60 degrees C and maintain at the high temperature for about 10 d, which is higher than control (P < 0.01). At the end of composting, the dead-pig degradation rate of the (0%, 0.3%, 0.6% and 0.9% inoculation groups were 71.2%, 75.7%, 96.7% and 97.1%, respectively. The groups of 0.6% and 0.9% were significantly higher than the control (P < 0.01). Sufficient amount inoculation of thermophilic bacteria (> 0.6%) could effectively increase composting temperature, maintain thermophilic stage for longer time, and accelerate degradation of dead-pig by composting.

  13. Isolation and identification of chitinolytic bacteria of pohara river of South East Sulawesi and the optimization production of chitinase enzyme

    NASA Astrophysics Data System (ADS)

    Halimahtussadiyah, R.; Natsir, Muh.; Kurniawati, Desy; Utamy, Sukma Puspita

    2017-03-01

    Isolation and identification of chitinolytic bacteria from pohara river and optimation of chitinase enzyme production has been conducted. The aims of the study were isolation, characterize and optimaze of chitinase enzyme production. This study was carried out in three stages; isolation and selection of chitinolytic bacteria, characterization and identification of selected bacteria; optimization of the production of the enzyme (substrate concentration, temperature, and pH), and the determination of growth curve of T3 isolate. The chitinase activity assay was carried out using Schales method. The results of the screening obtained 6 isolates of potential bacteria of chitinolytic. The T3 isolate then was selected for the enzyme production, because it had the highest chitinolytic index of 22.31 mm. The morphological and biochemical observation showed that T3 isolate as a group of bacteria Aerobacter with Gram-negative nature, and shaped bacillus. The optimum condition for chitinase enzyme production was in chitin substrat concentration 0.06%, temperature of 30°C, and pH of 6.

  14. [Isolation and characterization of two bacteria with heavy metal resistance and phosphate solubilizing capability].

    PubMed

    Tian, Jiang; Peng, Xia-Wei; Li, Xia; Sun, Ya-Jun; Feng, Hong-Mei; Jiang, Ze-Ping

    2014-06-01

    Two phosphate solubilizing bacteria (T PSB1 and T PSB 2) with high heavy metal resistance were isolated from soil of a lead-zinc mine in Huayuan of Hunan Province, China. These two bacteria were identified as Stenotrophomonas maltophilia and Burkholderia gladioli by 16S rRNA sequencing analysis, respectively. In the media containing insoluble inorganic calcium phosphate, the soluble phosphate amounts reached respectively 402.9 mg x L(-1) and 589.9 mg x L(-1) with the bacteria T PSB1 and T PSB2 after two weeks' growth. Moreover, the two bacteria developed solubilizing halos on the plates supplemented with the organic phosphate compounds, and the resulting soluble phosphate amounts in the broth media were respectively 2.97 mg x L(-1) and 4.69 mg x L(-1). In addition, these two bacteria showed the resistance to up to 2000 mg x L(-1) Zn2+, and their phosphate solubilizing amounts reached respectively 114.8 mg x L(-1) and 125.1 mg x L(-1). Similarly, their heavy metal resistance and phosphate solubilizing ability were also found in the Cr and Pb broth media with the concentration of 1000 mg x L(-1). In the Pb media, the soluble phosphate amounts reached respectively 57.9 mg x L(-1) and 71.7 mg x L(-1), and the soluble P amounts in the Cr media were 60.1 mg x L(-1) and 98.4 mg x L(-1) at the concentration of 1000 mg x L(-1).

  15. Isolation, Identification and Phenotypic Characterization of Microcystin-Degrading Bacteria from Lake Erie

    NASA Astrophysics Data System (ADS)

    Krishnan, A.; Mou, X. J.

    2015-12-01

    Lake Erie, the smallest and warmest lake among the Laurentian Great Lakes, is known for its problem of eutrophication and frequent occurrence of harmful cyanobacterial blooms (CyanoHABs). One major harmful effect of CyanoHABs is the production of cyanotoxins, especially microcystins. Microcystins (MC) are a group of hepatotoxins and the predominant variant of them is MC-LR. Field measurements and lab experiments indicate that MC degradation in Lake Erie is mainly carried out by indigenous bacteria. However, our knowledge on taxa involved in this process is very limited. This study aimed to fill this knowledge gap using a culture-dependent approach. Water and surface sediment samples were collected from Lake Erie in 2014 and 2015 and enriched with MC-LR. Cells were plated on a number of culturing media. The obtained pure bacterial cultures were screened for MC degrading abilities by MT2 BIO-LOG assays and by growing cells in liquid media containing MC-LR as the sole carbon source. In the latter experiment, MC concentrations were measured using HPLC. Isolates showing positive MC degradation activities in the screening steps were designated MC+ bacteria and characterized based on their phenotypic properties, including colony pigmentation, elevation, opacity, margin, gram nature and motility. The taxonomic identity of MC+ bacteria was determined by 16S rRNA gene full-length DNA sequencing. The presence of mlrA, a gene encoding MC cleavage pathway, was detected by PCR. Our culturing efforts obtained 520 pure cultures; 44 of them were identified as MC+. These MC+ isolates showed diversity in taxonomic identities and differed in their morphology, gram nature, colony characteristics and motility. PCR amplification of mlrA gene yield negative results for all MC+ isolates, indicating that the primers that were used may not be ubiquitous enough to cover the heterogeneity of mlrA genes or, more likely, alternative degradative genes/pathways were employed by Lake Erie bacteria

  16. Diversity of bacteria isolated from crustacea larvae and their rearing water

    NASA Astrophysics Data System (ADS)

    Haryanti; Sugama, Ketut; Nishijima, Toshitaka

    2003-04-01

    The bacteria in the genus Vibrio are heterothrophic, which exist in the larval rearing water of Crustacea and often show diverse pathogenicities to marine animals. In order to assess the bacterial diversity associated with Crustacean seed production, 32 strains were isolated from black tiger shrimp (Penaeus monodon) and mangrove crab (Scylla paramamosain) larvae and their rearing-water and characterized using biochemical and molecular approaches. Two or more genotypically different species were identified. The vibriosis of black tiger shrimp was causes by V. harveyi, V. alginolyticus and Vibrio spp. predominantly, while that of crab by V. harveyi and V. alginolyticus only.

  17. [Antagonistic properties of lactic acid bacteria isolated from apparently healthy and osteoporotic women].

    PubMed

    Ohirchuk, K S; Poltavs'ka, O A; Kovalenko, N K

    2013-01-01

    Antagonistic activity of 74 cultures of lactic acid bacteria, isolated from healthy and osteoporotic women-patients aged 50-79 years, has been studied. It has been shown that the inhibitory effect of the strain studied was independent of the health of women (control group of women or patients with osteoporosis), but had strain specificity. Seventeen most active strains of lactobacilli, which showed the highest inhibitory activity against B. cereus, P. aeruginosa, P. vulgaris were selected. Only 6 strains of lactobacillus demonstrated specific antagonistic activity against the test-strains.

  18. Phospholipid composition of gliding bacteria: oral isolates of Capnocytophaga compared with Sporocytophaga.

    PubMed Central

    Holt, S C; Doundowlakis, J; Takacs, B J

    1979-01-01

    The distribution of acetone-soluble (neutral glycolipid) and acetone-insoluble (phospholipid isoprenoids) lipids in oral isolates of gram-negative gliding bacteria of the genus Capnocytophaga was compared with those in a non-host-related gliding bacterium, Sporocytophaga myxococcoides. The acetone-soluble material accounted for 34 to 55% of the extracted lipids; the remainder was acetone-insoluble material. The major phospholipid was phosphatidylethanolamine (67%), with lesser amounts of lysophosphatidylethanolamine and several unidentified phosphate-containing compounds. Capnocytophaga also contained significant amounts of an ornithine-amino lipid. PMID:500209

  19. Isolation of Optically Targeted Single Bacteria by Application of Fluidic Force Microscopy to Aerobic Anoxygenic Phototrophs from the Phyllosphere

    PubMed Central

    Stiefel, Philipp; Zambelli, Tomaso

    2013-01-01

    In their natural environment, bacteria often behave differently than they do under laboratory conditions. To gain insight into the physiology of bacteria in situ, dedicated approaches are required to monitor their adaptations and specific behaviors under environmental conditions. Optical microscopy is crucial for the observation of fundamental characteristics of bacteria, such as cell shape, size, and marker gene expression. Here, fluidic force microscopy (FluidFM) was exploited to isolate optically selected bacteria for subsequent identification and characterization. In this study, bacteriochlorophyll-producing bacteria, which can be visualized due to their characteristic fluorescence in the infrared range, were isolated from leaf washes. Bacterial communities from the phyllosphere were investigated because they harbor genes indicative of aerobic anoxygenic photosynthesis. Our data show that different species of Methylobacterium express their photosystem in planta, and they show a distinct pattern of bacteriochlorophyll production under laboratory conditions that is dependent on supplied carbon sources. PMID:23770907

  20. Biotransformation of phosphogypsum by bacteria isolated from petroleum-refining wastewaters.

    PubMed

    Wolicka, Dorota; Kowalski, Włodzimierz; Boszczyk-Maleszak, Hanka

    2005-01-01

    The biotransformation of phosphogypsum in cultures of sulfate-reducing bacteria (SRB) isolated from crude petroleum-refining wastewaters or purified using activated sludge method was studied. Selection was with the microcosms method on Postgate and minimal medium with different carbon sources, Emerson medium and petroleum-refining wastewaters. Highest hydrogen sulfide production, in excess of 500 mg/L, was observed in culture of microorganisms isolated from purified petroleum-refining wastewaters in Postgate medium with phenol as sole carbon source. 76% phenol reduction with simultaneous biotransformation of 2.7g phosphogypsum/L (1350 mg SO4/L) was obtained. The results regarding post-culture sediment indicated 66% utilization of phosphogypsum introduced into the culture (5 g/L), which reflects the active biotransformation of phosphogypsum by the community selected from the wastewaters.

  1. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice.

    PubMed

    Christner, B C; Mosley-Thompson, E; Thompson, L G; Reeve, J N

    2001-09-01

    Lake Vostok, the largest subglacial lake in Antarctica, is separated from the surface by approximately 4 km of glacial ice. It has been isolated from direct surface input for at least 420 000 years, and the possibility of a novel environment and ecosystem therefore exists. Lake Vostok water has not been sampled, but an ice core has been recovered that extends into the ice accreted below glacial ice by freezing of Lake Vostok water. Here, we report the recovery of bacterial isolates belonging to the Brachybacteria, Methylobacterium, Paenibacillus and Sphingomonas lineages from a sample of melt water from this accretion ice that originated 3593 m below the surface. We have also amplified small-subunit ribosomal RNA-encoding DNA molecules (16S rDNAs) directly from this melt water that originated from alpha- and beta-proteobacteria, low- and high-G+C Gram-positive bacteria and a member of the Cytophaga/Flavobacterium/Bacteroides lineage.

  2. Operational taxonomic units (OTUs) of endophytic bacteria isolated from banana cultivars in the Amazon.

    PubMed

    Souza, Á; Nogueira, V B; Cruz, J C; Sousa, N R; Procópio, A R L; Silva, G F

    2015-08-19

    Endophytic microorganisms colonize plants, inhibit the growth of pathogens (by competing for nutrients and/or space), or produce antagonistic substances. Fifty-five endophytic bacteria were isolated from the leaf tissue of the FHIA 18 banana cultivar. Genetic diversity analyses were performed using the enterobacterial repetitive intergenic consensus sequence polymerase chain reaction method and BOX molecular markers. These analyses resulted in 33 and 21 polymorphic bands, respectively. The similarity data, obtained using the Dice coefficient based on the polyphasic analysis method, ranged from 22 to 100%. This indicated a high genetic diversity among the analyzed isolates. Sixty percent similarity was utilized as the cut-off criterion for the formation of operational taxonomic units (OTUs); this resulted in the identification of 32 possible OTUs, indicating a high number of potential species.

  3. Isolation and Characterization of α-Endosulfan Degrading Bacteria from the Microflora of Cockroaches.

    PubMed

    Ozdal, Murat; Ozdal, Ozlem Gur; Alguri, Omer Faruk

    2016-01-01

    Extensive applications of organochlorine pesticides like endosulfan have led to the contamination of soil and environments. Five different bacteria were isolated from cockroaches living in pesticide contaminated environments. According to morphological, physiological, biochemical properties, and total cellular fatty acid profile by Fatty Acid Methyl Esters (FAMEs), the isolates were identified as Pseudomonas aeruginosa G1, Stenotrophomonas maltophilia G2, Bacillus atrophaeus G3, Citrobacter amolonaticus G4 and Acinetobacter lwoffii G5. This is the first study on the bacterial flora of Blatta orientalis evaluated for the biodegradation of α-endosulfan. After 10 days of incubation, the biodegradation yields obtained from P. aeruginosa G1, S. maltophilia G2, B. atrophaeus G3, C. amolonaticus G4 and A. lwoffii G5 were 88.5% , 85.5%, 64.4%, 56.7% and 80.2%, respectively. As a result, these bacterial strains may be utilized for biodegradation of endosulfan polluted soil and environments.

  4. Isolation and characterization of bacteria degrading polychlorinated biphenyls from transformer oil.

    PubMed

    Rojas-Avelizapa, N G; Rodríguez-Vázquez, R; Martínez-Cruz, J; Esparza-García, F; Montes de Oca-García, A; Ríos-Leal, E; Fernández-Villagómez, G

    1999-01-01

    Polychlorinated biphenyls from transformer oil were degraded in liquid culture under aerobic conditions using a mixed bacterial culture isolated from a transformer oil sample with a high content of polychlorinated biphenyls and other hydrocarbons. Four strains were identified, three of them corresponded to genus Bacillus, the other one to Erwinia. Bacteria in the transformer oil could remove as much as 65% of polychlorinated biphenyls (88% W/V in the transformer oil). Additional data showed that the two isolated strains of B. lentus were able to grow on transformer oil and degrade polychlorinated biphenyls by 80 and 83%. Our results provide evidence that microorganisms occurring in transformer oil have the potential to degrade polychlorinated biphenyls.

  5. Isolation and extraction of antimicrobial substances against oral bacteria from lemon peel.

    PubMed

    Miyake, Yoshiaki; Hiramitsu, Masanori

    2011-10-01

    We have isolated 4 antibacterial substances that were active against the oral bacteria that cause dental caries and periodontitis, such as Streptococcus mutans, Prevotella intermedia, and Porphyromonas gingivalis, from lemon peel, a waste product in the citrus industry. The isolated substances were identified as 8-geranyloxypsolaren, 5-geranyloxypsolaren, 5-geranyloxy-7-methoxycoumarin, and phloroglucinol 1-β-D-glucopyranoside (phlorin) upon structural analyses. Among these, 8-Geranyloxypsolaren, 5-geranyloxypsolaren, and 5-geranyloxy-7-methoxycoumarin exhibited high antibacterial activity. These 3 compounds were effectively extracted using ethanol and n-hexane, whereas phlorin was extracted with water. Further, the above 3 compounds were present in lemon essential oil and abundantly present in the residue produced upon the cooling treatment of concentrated lemon essential oil.

  6. Laboratory identification of anaerobic bacteria isolated on Clostridium difficile selective medium.

    PubMed

    Rodriguez, Cristina; Warszawski, Nathalie; Korsak, Nicolas; Taminiau, Bernard; Van Broeck, Johan; Delmée, Michel; Daube, Georges

    2016-06-01

    Despite increasing interest in the bacterium, the methodology for Clostridium difficile recovery has not yet been standardized. Cycloserine-cefoxitin fructose taurocholate (CCFT) has historically been the most used medium for C. difficile isolation from human, animal, environmental, and food samples, and presumptive identification is usually based on colony morphologies. However, CCFT is not totally selective. This study describes the recovery of 24 bacteria species belonging to 10 different genera other than C. difficile, present in the environment and foods of a retirement establishment that were not inhibited in the C. difficile selective medium. These findings provide insight for further environmental and food studies as well as for the isolation of C. difficile on supplemented CCFT.

  7. Inhibitory activity of Aloe vera gel on some clinically isolated cariogenic and periodontopathic bacteria.

    PubMed

    Fani, Mohammadmehdi; Kohanteb, Jamshid

    2012-03-01

    Aloe vera is a medicinal plant with anti-inflammatory, antimicrobial, antidiabetic and immune-boosting properties. In the present study we investigated the inhibitory activities of Aloe vera gel on some cariogenic (Streptococcus mutans), periodontopathic (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis) and an opportunistic periodontopathogen (Bacteroides fragilis) isolated from patients with dental caries and periodontal diseases. Twenty isolates of each of these bacteria were investigated for their sensitivity to Aloe vera gel using the disk diffusion and microdilution methods. S. mutans was the species most sensitive to Aloe vera gel with a MIC of 12.5 µg/ml, while A. actinomycetemcomitans, P. gingivalis, and B. fragilis were less sensitive, with a MIC of 25-50 µg/ml (P < 0.01). Based on our present findings it is concluded that Aloe vera gel at optimum concentration could be used as an antiseptic for prevention of dental caries and periodontal diseases.

  8. Incidence and behaviour of Tn916-like elements within tetracycline-resistant bacteria isolated from root canals.

    PubMed

    Rossi-Fedele, G; Scott, W; Spratt, D; Gulabivala, K; Roberts, A P

    2006-08-01

    Tetracycline resistance is commonly found in endodontic bacteria. One of the most common tetracycline-resistance genes is tet(M), which is often encoded on the broad-host-range conjugative transposon Tn916. This study aimed to determine whether tet(M) was present in bacteria isolated from endodontic patients at the Eastman Dental Institute and whether this gene was carried on the transferable conjugative transposon Tn916. The cultivable microflora isolated from 15 endodontic patients was screened for resistance to tetracycline. Polymerase chain reactions for tet(M) and for unique regions of Tn916 were carried out on the DNA of all tetracycline-resistant bacteria. Filter-mating experiments were used to see if transfer of any Tn916-like elements could occur. Eight out of 15 tetracycline-resistant bacteria isolated were shown to possess tet(M). Furthermore, four of these eight were shown to possess the Tn916-unique regions linked to the tet(M) gene. Transfer experiments demonstrated that a Neisseria sp. donor could transfer an extremely unstable Tn916-like element to Enterococcus faecalis. The tet(M) gene is present in the majority of tetracycline-resistant bacteria isolated in this study and the conjugative transposon Tn916 has been shown to be responsible for the support and transfer of this gene in some of the bacteria isolated.

  9. Antimicrobial susceptibility of clinical isolates of anaerobic bacteria in Ontario, 2010-2011.

    PubMed

    Marchand-Austin, Alex; Rawte, Prasad; Toye, Baldwin; Jamieson, Frances B; Farrell, David J; Patel, Samir N

    2014-08-01

    The local epidemiology of antimicrobial susceptibility patterns in anaerobic bacteria is important in guiding the empiric treatment of infections. However, susceptibility data are very limited on anaerobic organisms, particularly among non-Bacteroides organisms. To determine susceptibility profiles of clinically-significant anaerobic bacteria in Ontario Canada, anaerobic isolates from sterile sites submitted to Public Health Ontario Laboratory (PHOL) for identification and susceptibility testing were included in this study. Using the E-test method, isolates were tested for various antimicrobials including, penicillin, cefoxitin, clindamycin, meropenem, piperacillin-tazobactam and metronidazole. The MIC results were interpreted based on guidelines published by Clinical and Laboratory Standards Institute. Of 2527 anaerobic isolates submitted to PHOL, 1412 were either from sterile sites or bronchial lavage, and underwent susceptibility testing. Among Bacteroides fragilis, 98.2%, 24.7%, 1.6%, and 1.2% were resistant to penicillin, clindamycin, piperacillin-tazobactam, and metronidazole, respectively. Clostridium perfringens was universally susceptible to penicillin, piperacillin-tazobactam, and meropenem, whereas 14.2% of other Clostridium spp. were resistant to penicillin. Among Gram-positive anaerobes, Actinomyces spp., Parvimonas micra and Propionibacterium spp. were universally susceptible to β-lactams. Eggerthella spp., Collinsella spp., and Eubacterium spp. showed variable resistance to penicillin. Among Gram-negative anaerobes, Fusobacterium spp., Prevotella spp., and Veillonella spp. showed high resistance to penicillin but were universally susceptible to meropenem and piperacillin-tazobactam. The detection of metronidazole resistant B. fragilis is concerning as occurrence of these isolates is extremely rare. These data highlight the importance of ongoing surveillance to provide clinically relevant information to clinicians for empiric management of

  10. Relationship between Triclosan and Susceptibilities of Bacteria Isolated from Hands in the Community

    PubMed Central

    Aiello, Allison E.; Marshall, Bonnie; Levy, Stuart B.; Della-Latta, Phyllis; Larson, Elaine

    2004-01-01

    The possible association between triclosan and bacterial susceptibility to antibiotic was examined among staphylococci and several species of gram-negative bacteria (GNB) isolated from the hands of individuals in a community setting. Hand cultures from individuals randomized to using either antibacterial cleaning and hygiene products (including a hand soap containing 0.2% triclosan) or nonantibacterial cleaning and hygiene products for a 1-year period were taken at baseline and at the end of the year. Although there was no statistically significant association between triclosan MICs and susceptibility to antibiotic, there was an increasing trend in the association the odds ratios (ORs) for all species were compared at baseline (OR = 0.65, 95% confidence interval [95%CI] = 0.33 to 1.27) versus at the end of the year (OR = 1.08, 95%CI = 0.62 to 1.97) and for GNB alone at baseline(OR = 0.66, 95%CI = 0.29 to 1.51) versus the end of year (OR = 2.69, 95%CI = 0.78 to 9.23) regardless of the hand-washing product used. Moreover, triclosan MICs were higher in some of the species compared to earlier reports on household, clinical, and industrial isolates, and some of these isolates had triclosan MICs in the range of concentrations used in consumer products. The absence of a statistically significant association between elevated triclosan MICs and reduced antibiotic susceptibility may indicate that such a correlation does not exist or that it is relatively small among the isolates that were studied. Still, a relationship may emerge after longer-term or higher-dose exposure of bacteria to triclosan in the community setting. PMID:15273108

  11. Detection of AmpC β-lactamase producing bacteria isolated in neonatal sepsis

    PubMed Central

    Salamat, Sonia; Ejaz, Hasan; Zafar, Aizza; Javed, Humera

    2016-01-01

    Objective: The objective of this study was to determine the occurrence and antimicrobial profile of AmpC β-lactamase producing bacteria. Methods: The study was conducted at The Children’s Hospital and The Institute of Child Health Lahore, Pakistan, during September 2011 to June 2012. A total number of 1,914 blood samples of suspected neonatal septicemia were processed. Isolates were identified using Gram’s staining, API 20E and API 20NE tests. Gram negative isolates were screened for AmpC β-lactamase production against ceftazidime, cefotaxime and cefoxitin resistance and confirmed by inhibitor based method. Results: Total number of 54 (8.49%) Gram positive and 582 (91.5%) Gram negative bacteria were identified. Among Gram negative isolates 141 (22%) were AmpC producers and found to be 100% resistant to co-amoxiclav, cefoxitin, ceftazidime, cefotaxime, cefuroxime, cefixime, ceftriaxone, cefpodoxime, gentamicin, amikacin and aztreonam. Less resistance was observed against cefepime (30.4%), sulbactam-cefoperazone (24.8%), piperacillin-tazobactam (10.6%), ciprofloxacin (20.5%) and meropenem (2.1%). All the isolates were found sensitive to imipenem. The patients harbored AmpC β-lactamases were on various interventions in which intravenous line was noted among (51.1%), naso-gastric tube (37.6%), ambu bag (8.5%), endotracheal tube (3.5%), ventilator (2.1%) and surgery (0.7%). Conclusion: Extensive use of invasive procedures and third generation cephalosporins should be restricted to avoid the emergence of AmpC beta-lactamases in neonates. PMID:28083055

  12. The depletion of sodium nitrite by lactic acid bacteria isolated from kimchi.

    PubMed

    Oh, Chang-Kyung; Oh, Myung-Chul; Kim, Soo-Hyun

    2004-01-01

    Nitrites, whether added or naturally occurring in foods, are potential carcinogens, and controlling their concentrations is important for maintaining a safe food supply. In this study we investigated the depletion of sodium nitrite (150 microg/mL) during the fermentation in Lactobacilli MRS broth at 5, 10, 15, 20, 25, 30, and 36 degrees C by lactic acid bacteria (LAB-A, -B, -C, and -D) isolated from kimchi and Leuconostoc mesenteroides strain KCTC3100. The four species of lactic acid bacteria isolated from kimchi were identified as L. mesenteroides, and all produced depletion of less than 20% of sodium nitrite after 10 days of incubation at 5 degrees C. There was less than 40% depletion after 9 days at 10 degrees C, 86.4-92.8% after 7 days at 15 degrees C, 81.4-87.8% after 4 days and more than 90.0% after 5 days at 20 degrees C, 76.3-85.7% after 3 days and more than 90.0% after 5 days at 25 degrees C, and more than 90.0% after 2 days at 30 and 36 degrees C. The depletion by LAB isolates was similar or higher than that by L. mesenteroides strain KCTC3100, and in particular, the LAB-D strain showed the highest depletion effect of all the strains tested, up to 15 degrees C. From these results, the strains isolated from kimchi were very effective for the depletion of sodium nitrite at high temperature, and all sodium nitrite was depleted at the initial period of incubation (1-2 days) at 30 and 36 degrees C. But as the temperature was lowered, the depletion effect of sodium nitrite was decreased in all the strains tested from kimchi. This illustrates that the depletion of nitrite by each strain is subject to the influence of temperatures.

  13. Diversity of Bacteria Associated with Bursaphelenchus xylophilus and Other Nematodes Isolated from Pinus pinaster Trees with Pine Wilt Disease

    PubMed Central

    Proença, Diogo Neves; Francisco, Romeu; Santos, Clara Vieira; Lopes, André; Fonseca, Luís; Abrantes, Isabel M. O.; Morais, Paula V.

    2010-01-01

    The pinewood nematode (PWN), Bursaphelenchus xylophilus, has been thought to be the only causal agent of pine wilt disease (PWD), however, since bacteria have been suggested to play a role in PWD, it is important to know the diversity of the microbial community associated to it. This study aimed to assess the microbial community associated with B. xylophilus and with other nematodes isolated from pine trees, Pinus pinaster, with PWD from three different affected forest areas in Portugal. One hundred and twenty three bacteria strains were isolated from PWN and other nematodes collected from 14 P. pinaster. The bacteria strains were identified by comparative analysis of the 16S rRNA gene partial sequence. All except one Gram-positive strain (Actinobacteria) belonged to the Gram-negative Beta and Gammaproteobacteria. Most isolates belonged to the genus Pseudomonas, Burkholderia and to the family Enterobacteriaceae. Species isolated in higher percentage were Pseudomonas lutea, Yersinia intermedia and Burkholderia tuberum. The major bacterial population associated to the nematodes differed according to the forest area and none of the isolated bacterial species was found in all different forest areas. For each of the sampled areas, 60 to 100% of the isolates produced siderophores and at least 40% produced lipases. The ability to produce siderophores and lipases by most isolates enables these bacteria to have a role in plant physiological response. This research showed a high diversity of the microbial community associated with B. xylophilus and other nematodes isolated from P. pinaster with PWD. PMID:21151611

  14. Bacteriocinogenic Bacteria Isolated from Raw Goat Milk and Goat Cheese Produced in the Center of México.

    PubMed

    Hernández-Saldaña, Oscar F; Valencia-Posadas, Mauricio; de la Fuente-Salcido, Norma M; Bideshi, Dennis K; Barboza-Corona, José E

    2016-09-01

    Currently, there are few reports on the isolation of microorganisms from goat milk and goat cheese that have antibacterial activity. In particular, there are no reports on the isolation of microorganisms with antibacterial activity from these products in central Mexico. Our objective was to isolate bacteria, from goat products, that synthesized antimicrobial peptides with activity against a variety of clinically significant bacteria. We isolated and identified Lactobacillus rhamnosus, L. plantarum, L. pentosus, L. helveticus and Enterococcus faecium from goat cheese, and Aquabacterium fontiphilum, Methylibium petroleiphilum, Piscinobacter aquaticus and Staphylococcus xylosus from goat milk. These bacteria isolated from goat cheese were able to inhibit Staphylococcus aureus, Bacillus cereus, Escherichia coli, Listeria monocytogenes, L. inoccua, Pseudomona aeruginosa, Shigella flexneri, Serratia marcescens, Enterobacter cloacae and Klebsiella pneumoniae. In addition, bacteria from goat milk showed inhibitory activity against B. cereus, L. lactis, E. coli, S. flexneri, E. cloacae and K. pneumonia; S. aureus, L. innocua, S. agalactiae and S. marcescens. The bacteriocins produced by these isolates were shown to be acid stable (pH 2-6) and thermotolerant (up to 100 °C), but were susceptible to proteinases. When screened by PCR for the presence of nisin, pediocin and enterocin A genes, none was found in isolates recovered from goat milk, and only the enterocin A gene was found in isolates from goat cheese.

  15. Newly cultured bacteria with broad diversity isolated from 8 week continuous culture enrichments of cow feces on complex polysaccharides

    USDA-ARS?s Scientific Manuscript database

    One of the fascinating functions of the mammalian intestinal microbiota is the fermentation of plant cell wall components. Eight week continuous culture enrichments of cow feces with cellulose and xylan/pectin were used to isolate bacteria from this community. A total of 459 bacterial isolates were ...

  16. Diversity of bacteria associated with Bursaphelenchus xylophilus and other nematodes isolated from Pinus pinaster trees with pine wilt disease.

    PubMed

    Proença, Diogo Neves; Francisco, Romeu; Santos, Clara Vieira; Lopes, André; Fonseca, Luís; Abrantes, Isabel M O; Morais, Paula V

    2010-12-09

    The pinewood nematode (PWN), Bursaphelenchus xylophilus, has been thought to be the only causal agent of pine wilt disease (PWD), however, since bacteria have been suggested to play a role in PWD, it is important to know the diversity of the microbial community associated to it. This study aimed to assess the microbial community associated with B. xylophilus and with other nematodes isolated from pine trees, Pinus pinaster, with PWD from three different affected forest areas in Portugal. One hundred and twenty three bacteria strains were isolated from PWN and other nematodes collected from 14 P. pinaster. The bacteria strains were identified by comparative analysis of the 16S rRNA gene partial sequence. All except one gram-positive strain (Actinobacteria) belonged to the gram-negative Beta and Gammaproteobacteria. Most isolates belonged to the genus Pseudomonas, Burkholderia and to the family Enterobacteriaceae. Species isolated in higher percentage were Pseudomonas lutea, Yersinia intermedia and Burkholderia tuberum. The major bacterial population associated to the nematodes differed according to the forest area and none of the isolated bacterial species was found in all different forest areas. For each of the sampled areas, 60 to 100% of the isolates produced siderophores and at least 40% produced lipases. The ability to produce siderophores and lipases by most isolates enables these bacteria to have a role in plant physiological response. This research showed a high diversity of the microbial community associated with B. xylophilus and other nematodes isolated from P. pinaster with PWD.

  17. Isolation of Bacteria Whose Growth Is Dependent on High Levels of CO2 and Implications of Their Potential Diversity▿ †

    PubMed Central

    Ueda, Kenji; Tagami, Yudai; Kamihara, Yuka; Shiratori, Hatsumi; Takano, Hideaki; Beppu, Teruhiko

    2008-01-01

    Although some bacteria require an atmosphere with high CO2 levels for their growth, CO2 is not generally supplied to conventional screening cultures. Here, we isolated 84 bacterial strains exhibiting high-CO2 dependence. Their phylogenetic affiliations imply that high-CO2 culture has potential as an effective method to isolate unknown microorganisms. PMID:18487395

  18. [Epidemiological features of multidrug resistant bacteria isolated from urine samples at the Mohammed V Military Teaching Hospital in Rabat, Morocco].

    PubMed

    Zohoun, A; Ngoh, E; Bajjou, T; Sekhsokh, Y; Elhamzaoui, S

    2010-08-01

    Hospital-acquired multidrug resistant bacteria infections are a serious public health issue causing increased morbidity, mortality and care cost. These risks underscore the need for health care institutions to maintain active panels to monitor, prevent, and manage hospital-acquired infections. The purpose of this study was to assess the epidemiology of urinary tract infection involving multidrug resistant bacteria at the Microbiology Laboratory of the Mohammed-V Military Teaching Hospital in Rabat. Study was carried out retrospectively on bacteria isolated from 10,243 urinary samples collected from January 1 to December 31, 2008. A total of 1,439 non-redundant bacteria (14.1%) meeting the criteria of urinary infection were identified. One hundred and three of the 1,439 bacteria isolated (7%) were multidrug resistant. Multidrug-resistant bacteria were more common in in-patients (63.1%). Mean patient age was 53.8 +/- 18.2 and the M/F sex ratio was 2.2. The most common multi-drug resistant bacteria were Enterobacteria producing extended spectrum bêta-lactamase (54.4% including 40.8% of Klebsiella pneumonia) and non-fermenting bacteria (45.6% including 26.2% of Pseudomonas aeruginosa. and 19.4% of Acinetobacter baumannii. These bacteria were resistant to the most commonly used antibiotics but remained highly sensitive to colistin, imipenem and amikacin.

  19. Isolation of bacteria from remote high altitude Andean lakes able to grow in the presence of antibiotics.

    PubMed

    Dib, Julián R; Weiss, Annika; Neumann, Anna; Ordoñez, Omar; Estévez, María C; Farías, Maria E

    2009-01-01

    High altitude Andean lakes are placed in Puna desert over 4400 above sea level. Completely isolated, they are exposed to extreme environmental factors like high levels of salinity, UV radiation and heavy metals and low concentrations of phosphorus. Nevertheless, they are the habitat of enormous populations of three flamingo species that migrate among these Lakes. Previous reports have determined that bacteria isolated from these environments present high levels of resistance to antibiotics. The aim of this work was to determine the diversity of antibiotic resistant bacteria in water from Andean Lakes and their connection with flamingo enteric biota. Bacteria from water and birds faeces from high altitude Lakes: Laguna (L.) Aparejos, L. Negra, L. Vilama and L. Azul (all are located between 4,200 and 4,600 m altitude) were isolated by plating in five different Antibiotics (ampicillin, 100 microg ml(-1); chloramphenicol, 170 microg ml(-1); colistin , 20 microg ml(-1); erythromycin, 50 microg ml(-1) and tetracycline 50 microg ml(-1)). 56 bacteria were isolated and identified by 16 S rDNA sequencing. Antibiotic resistance profiles of isolated bacteria were determined for 22 different antibiotics. All identified bacteria were able to growth in multiple ATBs. Colistin, ceftazidime, ampicillin/sulbactam, cefotaxime, cefepime, cefalotin, ampicillin and erythromycin were the most distributed resistances among the 56 tested bacteria. The current results demonstrated that antibiotic resistance was abundant and diverse in high altitude Lakes. Also the present article indicates some useful patents regarding the isolation of bacteria able to grow in the present of antibiotics.

  20. Identification of clinical isolates of anaerobic bacteria using matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Fedorko, D P; Drake, S K; Stock, F; Murray, P R

    2012-09-01

    We evaluated the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) for the rapid identification of anaerobic bacteria that had been isolated from clinical specimens and previously identified by 16s rRNA sequencing. The Bruker Microflex MALDI-TOF instrument with the Biotyper Software was used. We tested 152 isolates of anaerobic bacteria from 24 different genera and 75 different species. A total of 125 isolates (82%) had Biotyper software scores greater than 2.0 and the correct identification to genus and species was made by MALDI-TOF for 120 (79%) of isolates. Of the 12 isolates with a score between 1.8 and 2.0, 2 (17%) organisms were incorrectly identified by MALDI-TOF. Only 15 (10%) isolates had a score less than 1.8 and MALDI-TOF gave the wrong genus and species for four isolates, the correct genus for two isolates, and the correct genus and species for nine isolates. Therefore, we found the Bruker MALDI-TOF MicroFlex LT with an expanded database and the use of bacteria extracts rather than whole organisms correctly identified 130 of 152 (86%) isolates to genus and species when the cut-off for an acceptable identification was a spectrum score ≥1.8.

  1. Investigation of cultivable bacteria isolated from longstanding retreatment-resistant lesions of teeth with apical periodontitis.

    PubMed

    Signoretti, Fernanda G C; Gomes, Brenda P F A; Montagner, Francisco; Jacinto, Rogério C

    2013-10-01

    The objective of this research was to investigate the presence of viable bacteria in tissue samples from persistent apical lesions and to correlate the microbiological findings with the histopathological diagnosis of the lesion. Twenty persistent apical lesions associated with well-performed endodontic retreatment were collected. Tissue samples were processed through culture techniques including serial dilution, plating, aerobic and anaerobic incubation, and biochemical tests for microbial identification followed by histopathological diagnosis. Cysts were more frequently diagnosed (13/20). Strict anaerobic species predominated in both cysts (80.4% of the species detected) and granulomas (65% of the species detected). Viable gram-positive bacteria were frequently recovered from apical lesions (cysts = 70.6%, granulomas = 84.4%). Gemella morbillorum and Propionibacterium acnes were the most frequently recovered species from cysts and granulomas, respectively. At least 1 gram-positive bacterial species was present in almost every sample (cysts = 12/13, granulomas = 7/7). No significant correlation was found between histologic findings and bacterial species. In conclusion, although cysts were more frequent than granulomas in cases of failure of endodontic retreatment, bacteria were isolated from both types of lesions, with a predominance of gram-positive species, suggesting that these species can survive outside the root canal and might be related to the persistence of the pathological process even after accurate endodontic retreatment. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods.

    PubMed

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound.

  3. Recurrent Isolation of Extremotolerant Bacteria from the Clean Room Where Phoenix Spacecraft Components Were Assembled

    NASA Astrophysics Data System (ADS)

    Ghosh, Sudeshna; Osman, Shariff; Vaishampayan, Parag; Venkateswaran, Kasthuri

    2010-04-01

    The microbial burden of the Phoenix spacecraft assembly environment was assessed in a systematic manner via several cultivation-based techniques and a suite of NASA-certified, cultivation-independent biomolecule-based detection assays. Extremotolerant bacteria that could potentially survive conditions experienced en route to Mars or on the planet's surface were isolated with a series of cultivation-based assays that promoted the growth of a variety of organisms, including spore formers, mesophilic heterotrophs, anaerobes, thermophiles, psychrophiles, alkaliphiles, and bacteria resistant to UVC radiation and hydrogen peroxide exposure. Samples were collected from the clean room where Phoenix was housed at three different time points, before (1P), during (2P), and after (3P) Phoenix's presence at the facility. There was a reduction in microbial burden of most bacterial groups, including spore formers, in samples 2P and 3P. Analysis of 262 isolatisolattivable bacterial populations accompanied by a reduction in diversity during 2P and 3P. It is suggested that this shift was a result of increased cleaning when Phoenix was present in the assembly facility and that certain species, such as Acinetobacter johnsonii and Brevundimonas diminuta, may be better adapted to environmental conditions found during 2P and 3P. In addition, problematic bacteria resistant to multiple extreme conditions, such as Bacillus pumilus, were able to survive these periods of increased cleaning.

  4. Physiology and Molecular Phylogeny of Bacteria Isolated from Alkaline Distillery Lime.

    PubMed

    Kalwasińska, Agnieszka; Felföldi, Tamàs; Walczak, Maciej; Kosobucki, Przemysław

    2015-01-01

    This paper presents the results of the research on the number, taxonomic composition, and biochemical properties of bacterial strains isolated from the alkaline Solvay distillery lime, deposited at the repository in Janikowo (central Poland). Fifteen strains out of 17 were facultative alkaliphiles and moderate halophiles, and two were alkalitolerants and moderate halophiles. The number of aerobic bacteria cultured in alkaline lime was approximately 10(5) CFU ml(-1), and the total number of bacteria was 10(7) cells g(-1). According to 16S rRNA gene sequence analysis, nine strains belonged to the genus Bacillus, six to the genus Halomonas, one to the genus Planococcus, and one to the genus Microcella. Strains that hydrolyse starch and protein were the most numerous. Esterase (C4) and esterase lipase (C8) were detected in the majority of bacterial strains. Twelve strains exhibited α-glucosidase activity and nine, naphtol-AS-BI-phosphohydrolase activity. The present study proves that alkaliphilic bacteria of this type may constitute a source of potentially useful extremozymes.

  5. Screening and isolation of PHB-producing bacteria in a polluted marine microbial mat.

    PubMed

    López-Cortés, Alejandro; Lanz-Landázuri, Alberto; García-Maldonado, José Q

    2008-07-01

    The characteristics of microbial mats within the waste stream from a seafood cannery were compared to a microbial community at a pristine site near a sandy beach at Puerto San Carlos, Baja California Sur, Mexico. Isolation of poly-beta-hydroxybutyrate (PHB)-producing bacteria, recognition of brightly refractile cytoplasmatic inclusions, lipophilic stains with Sudan Black and Nile Red, and chemical extraction of PHB were used as a culture-dependent strategy for the detection of PHB-producing bacteria. The culture-independent approach included denaturing gradient gel electrophoresis of phylotypes of 16S rRNA of microbial communities from environmental samples. Significant differences in community structure were found among the polluted and pristine sites. These differences were correlated with the physicochemical characteristics of the seawater column. At the polluted site, the seawater was rich in nutrients (ammonia, phosphates, and organic matter), compared to the pristine location. Partial sequencing of 16S rDNA of cultures of bacteria producing PHB included Bacillus and Staphylococcus at both sites; Paracoccus and Micrococcus were found only at the polluted site and Rhodococcus and Methylobacterium were found only at the pristine site. Bands of the sequences of 16S rDNA from both field samples in the denaturing gradient gel electrophoresis (DGGE) analyses affiliated closely only with bacterial sequences of cultures of Bacillus and Staphylococcus. High concentrations of organic and inorganic nutrients at the polluted site had a clear effect on the composition and diversity of the microbial community compared to the unpolluted site.