Science.gov

Sample records for art dosimetrie individuelle

  1. Reactor Dosimetry State of the Art 2008

    NASA Astrophysics Data System (ADS)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  2. Reactor Dosimetry State of the Art 2008

    NASA Astrophysics Data System (ADS)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  3. State-of-the-Art Beta Detection and Dosimetry

    SciTech Connect

    David M. Hamby

    2008-08-15

    The research funded by this NEER grant establishes the framework for a detailed understanding of the challenges in beta dosimetry, especially in the presence of a mixed radiation field. The work also stimulated the thinking of the research group which will lead to new concepts in digital signal processing to allow collection of detection signals and real-time analysis such that simultaneous beta and gamma spectroscopy can take place. The work described herein (with detail in the many publications that came out of this research) was conducted in a manner that provided dissertation and thesis topics for three students, one of whom was completely funded by this grant. The overall benefit of the work came in the form of a dramatic shift in signal processing that is normally conducted in analog pulse shape analysis. Analog signal processing was shown not to be feasible for this type of work; digital signal processing was a must. This, in turn, led the research team to a new understanding of pulse analysis, one in which expands the state-of-the-art in simultaneous beta and gamma spectroscopy with a single detector.

  4. Passive detectors for neutron personal dosimetry: state of the art.

    PubMed

    d'Errico, Francesco; Bos, Adrie J J

    2004-01-01

    Passive, solid-state detectors still dominate the field of neutron personal dosimetry, mainly thanks to their low cost, high reliability and elevated throughput. However, the recent appearance in the market of several electronic personal dosemeters for neutrons presents a challenge to the exclusive use of passive systems for primary or official dosimetry. This scenario drives research and development activities on passive dosemeters towards systems offering greater accuracy of response and lower detection limits. In addition, further applications and properties of the passive detectors, which are not met by the electronic devices, are also being explored. In particular, extensive investigations are in progress on the use of solid-state detectors for aviation and space dosimetry, where high-energy neutron fields are encountered. The present situation is also stimulating an acceleration in the development of international standards on performance and test requirements for passive dosimetry systems, which can expedite significantly the implementation of techniques in commercial personal dosimetry services. Upcoming standards will cover thermoluminescence albedo dosemeters, etched-track detectors, superheated emulsions and direct ion storage chambers, attesting to the level of maturity reached by these techniques. This work reviews the developments in the field of passive neutron dosimetry emerged since the previous Neutron Dosimetry Symposium, reporting on the current status of the subject and indicating the direction of ongoing research. PMID:15353644

  5. Current state of the art brachytherapy treatment planning dosimetry algorithms

    PubMed Central

    Pantelis, E; Karaiskos, P

    2014-01-01

    Following literature contributions delineating the deficiencies introduced by the approximations of conventional brachytherapy dosimetry, different model-based dosimetry algorithms have been incorporated into commercial systems for 192Ir brachytherapy treatment planning. The calculation settings of these algorithms are pre-configured according to criteria established by their developers for optimizing computation speed vs accuracy. Their clinical use is hence straightforward. A basic understanding of these algorithms and their limitations is essential, however, for commissioning; detecting differences from conventional algorithms; explaining their origin; assessing their impact; and maintaining global uniformity of clinical practice. PMID:25027247

  6. Neutron personnel dosimetry

    SciTech Connect

    Griffith, R.V.

    1981-06-16

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments. (ACR)

  7. Art.

    ERIC Educational Resources Information Center

    Arviso, Kathern; And Others

    Designed as a helpful guide and "how-to-do-it" outline for those on the Navajo Reservation who work with children, this guide is arranged to offer quick reference and simple projects requiring the minimum of materials. The projects are designed to meet the Navajo child's art needs based on the belief that the art program of the elementary school…

  8. SU-D-213-05: Design, Evaluation and First Applications of a Off-Site State-Of-The-Art 3D Dosimetry System

    SciTech Connect

    Malcolm, J; Mein, S; McNiven, A; Letourneau, D; Oldham, M

    2015-06-15

    Purpose: To design, construct and commission a prototype in-house three dimensional (3D) dose verification system for stereotatic body radiotherapy (SBRT) verification at an off-site partner institution. To investigate the potential of this system to achieve sufficient performance (1mm resolution, 3% noise, within 3% of true dose reading) for SBRT verification. Methods: The system was designed utilizing a parallel ray geometry instigated by precision telecentric lenses and an LED 630nm light source. Using a radiochromic dosimeter, a 3D dosimetric comparison with our gold-standard system and treatment planning software (Eclipse) was done for a four-field box treatment, under gamma passing criteria of 3%/3mm/10% dose threshold. Post off-site installation, deviations in the system’s dose readout performance was assessed by rescanning the four-field box irradiated dosimeter and using line-profiles to compare on-site and off-site mean and noise levels in four distinct dose regions. As a final step, an end-to-end test of the system was completed at the off-site location, including CT-simulation, irradiation of the dosimeter and a 3D dosimetric comparison of the planned (Pinnacle{sup 3}) to delivered dose for a spinal SBRT treatment(12 Gy per fraction). Results: The noise level in the high and medium dose regions of the four field box treatment was relatively 5% pre and post installation. This reflects the reduction in positional uncertainty through the new design. This At 1mm dose voxels, the gamma pass rates(3%,3mm) for our in-house gold standard system and the off-site system were comparable at 95.8% and 93.2% respectively. Conclusion: This work will describe the end-to-end process and results of designing, installing, and commissioning a state-of-the-art 3D dosimetry system created for verification of advanced radiation treatments including spinal radiosurgery.

  9. Computational dosimetry

    SciTech Connect

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  10. Epid Dosimetry

    SciTech Connect

    Greer, Peter B.; Vial, Philip

    2011-05-05

    Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

  11. Epid Dosimetry

    NASA Astrophysics Data System (ADS)

    Greer, Peter B.; Vial, Philip

    2011-05-01

    Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

  12. (Biological dosimetry)

    SciTech Connect

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  13. International Reactor Dosimetry Data.

    1982-06-28

    Version 00 IRDF-82 contains 620 neutron group cross sections (SAND-II format) based on the ENDF/B-V Special Purpose Dosimetry File as well as other reaction cross sections important for dosimetry applications. In addition, multigroup spectra for ten reference benchmarks are also provided.

  14. Dosimetry for radiation processing

    NASA Astrophysics Data System (ADS)

    Miller, Arne

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. Several dosimeter systems like calorimetry, perspex, and radiochromic dye films are being improved and new systems have emerged, e.g. spectrophotometry of dichromate solution for reference and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading to traceable and reliable dosimetry are discussed.

  15. Thermoluminescence in medical dosimetry.

    PubMed

    Rivera, T

    2012-12-01

    Thermoluminescence dosimetry (TLD) is applied worldwide for personal and medical dosimetry. TLD method has resulted in many interesting findings in medicine as TL dosimeters have many relevant advantages such as high sensitivity, small physical size, tissue equivalence, etc. The main characteristics of various TL materials used in radiation measurements and their practical consequences are overviewed: well defined TL glow curve, batch homogeneity, signal stability after irradiation, precision and accuracy, response with dose, and influence of energy. In this paper a brief summary of the advances in the application of thermally stimulated luminescence (TSL) to dosimetry in radiation therapy application is presented.

  16. Optically stimulated luminescence dosimetry

    NASA Astrophysics Data System (ADS)

    McKeever, Stephen W. S.

    2001-09-01

    Models and the conceptual framework necessary for an understanding of optically stimulated luminescence (OSL) are described. Examples of various OSL readout schemes are described, along with examples of the use of OSL in radiation dosimetry.

  17. Optically stimulated luminescence dosimetry

    NASA Astrophysics Data System (ADS)

    McKeever, Stephen W.

    1999-02-01

    Optically Stimulated Luminescence (OSL) dosimetry is attractive to the health physics and dosimetry community due to its all-optical character, fast data acquisition and the avoidance of heating the detector. Until recently there was no luminescent material sensitive enough to radiation, and at the same time suitable for stimulation with visible light, for use in this application. However, anion-deficient aluminum oxide doped with carbon (Al2O3:C) appears to be not only an extremely sensitive thermoluminescence (TL) material, but is also well-suited to OSL applications. Several OSL readout protocols have been suggested, including cw-OSL, pulsed OSL (POSL), and 'delayed' OSL (DOSL). The paper discusses the physical mechanisms that give rise to the OSL signals and the dependence of these signals upon absorbed dose. Example applications of the use of OSL from Al2O3:C in environmental radiation and ultraviolet-B dosimetry are discussed.

  18. Dosimetry with diamond detectors

    NASA Astrophysics Data System (ADS)

    Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.

    2010-05-01

    In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.

  19. Dosimetry in diagnostic radiology.

    PubMed

    Meghzifene, Ahmed; Dance, David R; McLean, Donald; Kramer, Hans-Michael

    2010-10-01

    Dosimetry is an area of increasing importance in diagnostic radiology. There is a realisation amongst health professionals that the radiation dose received by patients from modern X-ray examinations and procedures can be at a level of significance for the induction of cancer across a population, and in some unfortunate instances, in the acute damage to particular body organs such as skin and eyes. The formulation and measurement procedures for diagnostic radiology dosimetry have recently been standardised through an international code of practice which describes the methodologies necessary to address the diverging imaging modalities used in diagnostic radiology. Common to all dosimetry methodologies is the measurement of the air kerma from the X-ray device under defined conditions. To ensure the accuracy of the dosimetric determination, such measurements need to be made with appropriate instrumentation that has a calibration that is traceable to a standards laboratory. Dosimetric methods are used in radiology departments for a variety of purposes including the determination of patient dose levels to allow examinations to be optimized and to assist in decisions on the justification of examination choices. Patient dosimetry is important for special cases such as for X-ray examinations of children and pregnant patients. It is also a key component of the quality control of X-ray equipment and procedures. PMID:20655679

  20. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  1. Reconstructive dosimetry for cutaneous radiation syndrome

    PubMed Central

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Valverde, N.J.; Da Silva, F.C.A.

    2015-01-01

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. PMID:26445332

  2. Dosimetry for Radiopharmaceutical Therapy

    PubMed Central

    Sgouros, George; Hobbs, Robert F.

    2014-01-01

    Radiopharmaceutical therapy (RPT) involves the use of radionuclides that are either conjugated to tumor-targeting agents (eg, nanoscale constructs, antibodies, peptides, and small molecules) or concentrated in tissue through natural physiological mechanisms that occur predominantly in neoplastic or otherwise targeted cells (eg, Graves disease). The ability to collect pharmacokinetic data by imaging and use this to perform dosimetry calculations for treatment planning distinguishes RPT from other systemic treatment modalities. Treatment planning has not been widely adopted, in part, because early attempts to relate dosimetry to outcome were not successful. This was partially because a dosimetry methodology appropriate to risk evaluation rather than efficacy and toxicity was being applied to RPT. The weakest links in both diagnostic and therapeutic dosimetry are the accuracy of the input and the reliability of the radiobiological models used to convert dosimetric data to the relevant biologic end points. Dosimetry for RPT places a greater demand on both of these weak links. To date, most dosimetric studies have been retrospective, with a focus on tumor dose-response correlations rather than prospective treatment planning. In this regard, transarterial radioembolization also known as intra-arterial radiation therapy, which uses radiolabeled (90Y) microspheres of glass or resin to treat lesions in the liver holds much promise for more widespread dosimetric treatment planning. The recent interest in RPT with alpha-particle emitters has highlighted the need to adopt a dosimetry methodology that specifically accounts for the unique aspects of alpha particles. The short range of alpha-particle emitters means that in cases in which the distribution of activity is localized to specific functional components or cell types of an organ, the absorbed dose will be equally localized and dosimetric calculations on the scale of organs or even voxels (~5 mm) are no longer sufficient

  3. In vivo dosimetry for IMRT

    SciTech Connect

    Vial, Philip

    2011-05-05

    In vivo dosimetry has a well established role in the quality assurance of 2D radiotherapy and 3D conformal radiotherapy. The role of in vivo dosimetry for IMRT is not as well established. IMRT introduces a range of technical issues that complicate in vivo dosimetry. The first decade or so of IMRT implementation has largely relied upon pre-treatment phantom based dose verification. During that time, several new devices and techniques for in vivo dosimetry have emerged with the promise of providing the ultimate form of IMRT dose verification. Solid state dosimeters continue to dominate the field of in vivo dosimetry in the IMRT era. In this report we review the literature on in vivo dosimetry for IMRT, with an emphasis on clinical evidence for different detector types. We describe the pros and cons of different detectors and techniques in the IMRT setting and the roles that they are likely to play in the future.

  4. In vivo dosimetry for IMRT

    NASA Astrophysics Data System (ADS)

    Vial, Philip

    2011-05-01

    In vivo dosimetry has a well established role in the quality assurance of 2D radiotherapy and 3D conformal radiotherapy. The role of in vivo dosimetry for IMRT is not as well established. IMRT introduces a range of technical issues that complicate in vivo dosimetry. The first decade or so of IMRT implementation has largely relied upon pre-treatment phantom based dose verification. During that time, several new devices and techniques for in vivo dosimetry have emerged with the promise of providing the ultimate form of IMRT dose verification. Solid state dosimeters continue to dominate the field of in vivo dosimetry in the IMRT era. In this report we review the literature on in vivo dosimetry for IMRT, with an emphasis on clinical evidence for different detector types. We describe the pros and cons of different detectors and techniques in the IMRT setting and the roles that they are likely to play in the future.

  5. Electron Paramagnetic Resonance Retrospective Dosimetry

    SciTech Connect

    Romanyukha, Alex; Trompier, Francois

    2011-05-05

    Necessity for, principles of, and general concepts of the electron paramagnetic resonance (EPR) retrospective dosimetry are presented. Also presented and given in details are examples of EPR retrospective dosimetry applications in tooth enamel, bone, and fingernails with focus on general approaches for solving technical and methodological problems. Advantages, drawbacks, and possible future developments are discussed and an extensive bibliography on EPR retrospective dosimetry is provided.

  6. Neutron beam measurement dosimetry

    SciTech Connect

    Amaro, C.R.

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  7. Quantitative imaging for clinical dosimetry

    NASA Astrophysics Data System (ADS)

    Bardiès, Manuel; Flux, Glenn; Lassmann, Michael; Monsieurs, Myriam; Savolainen, Sauli; Strand, Sven-Erik

    2006-12-01

    Patient-specific dosimetry in nuclear medicine is now a legal requirement in many countries throughout the EU for targeted radionuclide therapy (TRT) applications. In order to achieve that goal, an increased level of accuracy in dosimetry procedures is needed. Current research in nuclear medicine dosimetry should not only aim at developing new methods to assess the delivered radiation absorbed dose at the patient level, but also to ensure that the proposed methods can be put into practice in a sufficient number of institutions. A unified dosimetry methodology is required for making clinical outcome comparisons possible.

  8. The International Reactor Dosimetry File.

    1994-01-19

    Version 01 The International Reactor Dosimetry File (IRDF-90) contains recommended neutron cross-section data to be used for reactor neutron dosimetry by foil activation. It also contains selected recommended values for radiation damage cross-sections and benchmark neutron spectra. This library supersedes all earlier versions of IRDF.

  9. Heavy-ion dosimetry

    SciTech Connect

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.

  10. Uranium Dispersion & Dosimetry Model.

    SciTech Connect

    MICHAEL,; MOMENI, H.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.

  11. Uranium Dispersion & Dosimetry Model.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for applicationmore » to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.« less

  12. Fast neutron dosimetry

    SciTech Connect

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  13. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  14. Internal dosimetry technical basis manual

    SciTech Connect

    Not Available

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  15. Radioembolization Dosimetry: The Road Ahead

    SciTech Connect

    Smits, Maarten L. J. Elschot, Mattijs; Sze, Daniel Y.; Kao, Yung H.; Nijsen, Johannes F. W.; Iagaru, Andre H.; Jong, Hugo W. A. M. de; Bosch, Maurice A. A. J. van den; Lam, Marnix G. E. H.

    2015-04-15

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

  16. Fundamentals of Radiation Dosimetry

    NASA Astrophysics Data System (ADS)

    Bos, Adrie J. J.

    2011-05-01

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  17. Fundamentals of Radiation Dosimetry

    SciTech Connect

    Bos, Adrie J. J.

    2011-05-05

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  18. Hanford internal dosimetry program manual

    SciTech Connect

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  19. The International Reactor Dosimetry File.

    2008-08-07

    Version 01 The International Reactor Dosimetry File (IRDF-2002) contains recommended neutron cross-section data to be used for reactor neutron dosimetry by foil activation and subsequent neutron spectrum unfolding. It also contains selected recom�mended values for radiation damage cross-sections and benchmark neutron spectra. Two related programs available from NEADB and RSICC are: SPECTER-ANL (PSR-263) & STAY’SL (PSR-113).

  20. Fifth international radiopharmaceutical dosimetry symposium

    SciTech Connect

    Watson, E.E.; Schlafke-Stelson, A.T.

    1992-05-01

    This meeting was held to exchange information on how to get better estimates of the radiation absorbed dose. There seems to be a high interest of late in patient dosimetry; discussions were held in the light of revised risk estimates for radiation. Topics included: Strategies of Dose Assessment; Dose Estimation for Radioimmunotherapy; Dose Calculation Techniques and Models; Dose Estimation for Positron Emission Tomography (PET); Kinetics for Dose Estimation; and Small Scale Dosimetry and Microdosimetry. (VC)

  1. Laser heated thermoluminescence dosimetry

    SciTech Connect

    Justus, B.L.; Huston, A.L.

    1996-06-01

    We report a novel laser-heated thermoluminescence dosimeter that is radically different from previous laser-heated dosimeters. The dosimeter is a semiconductor and metal ion doped silica glass that has excellent optical transparency. The high optical quality of the glass essentially eliminates laser power loss due to light scattering. This efficient utilization of the laser power permits operation of the dosimeter without strong absorption of the laser, as is required in traditional laser-heated dosimetry. Our laser-heated dosimeter does not rely on the diffusion of heat from a separate, highly absorbing substrate, but operates via intimate, localized heating within the glass dosimeter due to the absorption of the laser light by rare earth ion dopants in the glass. Following absorption of the laser light, the rare earth ions transfer energy to the surrounding glass via nonradiative relaxation processes, resulting in rapid, localized temperature increases sufficient to release all the filled traps near the ions. As the heat diffuses radially away from the rare earth ions the temperature plummets dramatically on a manometer distance scale and the release of additional filled traps subsides. A key distinguishing feature of this laser-heated dosimeter is the ability to read the dose information more than once. While laser-heating provides complete information about the radiation exposure experienced by the glass due to the release of locally heated traps, the process leaves the remaining filled bulk traps undisturbed. The bulk traps can be read using traditional bulk heating methods and can provide a direct determination of an accumulated dose, measured following any number of laser-heated readouts. Laser-heated dosimetry measurements have been performed using a solid state diode laser for the readout following radiation exposure with a {sup 60}Co source.

  2. Characterising an aluminium oxide dosimetry system.

    PubMed

    Conheady, Clement F; Gagliardi, Frank M; Ackerly, Trevor

    2015-09-01

    In vivo dosimetry is recommended as a defence-in-depth strategy in radiotherapy treatments and is currently employed by clinics around the world. The characteristics of a new optically stimulated luminescence dosimetry system were investigated for the purpose of replacing an aging thermoluminescence dosimetry system for in vivo dosimetry. The stability of the system was not sufficient to satisfy commissioning requirements and therefore it has not been released into clinical service at this time. PMID:26224358

  3. Taurine for EPR dosimetry.

    PubMed

    Maghraby, A; Mansour, A; Tarek, E

    2012-08-01

    EPR dosimetry is characterized by its non-destructive read-out and the possibility of dose archival. Here, taurine is proposed as a radiation dosimeter using EPR spectroscopy. The EPR spectrum of taurine was studied and assigned, and changes in the taurine EPR spectrum as a result of the change in both modulation amplitude and microwave power were quantified. For gamma radiation, the energy absorption coefficient and the collision mass stopping power of taurine were compared to the corresponding values of soft tissue and alanine, in addition to calculation of effective atomic numbers. The response of taurine to gamma radiation doses in the range from 0.1 to 50 kGy was investigated, as well as that in the range from 1.0 to 20.0 Gy using numerically enhanced EPR taurine spectra. Both response curves showed a linear behavior. In addition, the time dependence of radiation-induced radicals was studied for short (during the first 6 h after irradiation) and long (during about 3 months after irradiation) time periods, and a reasonable degree of stability of the taurine radicals was observed. It is concluded that taurine is a promising dosimeter, which is characterized by its simple spectrum, radical stability, and wide range of linear response to gamma radiation.

  4. Experience Art.

    ERIC Educational Resources Information Center

    Turner, Brenda

    This Arkansas art education curriculum guide for grades 1 to 6 covers basic concepts, vocabulary, activities, and evaluation for each grade. The basic concepts to be taught throughout these grades include line, shape, color, space, drawing, painting, printing, art history, and art careers. Specific art techniques and types of arts are introduced…

  5. Initial radiation dosimetry at Hiroshima and Nagasaki

    SciTech Connect

    Loewe, W.E.

    1983-09-01

    The dosimetry of A-bomb survivors at Hiroshima and Nagasaki is discussed in light of the new dosimetry developed in 1980 by the author. The important changes resulting from the new dosimetry are the ratios of neutron to gamma doses, particularly at Hiroshima. The implications of these changes in terms of epidemiology and radiation protection standards are discussed. (ACR)

  6. 4.2 Methods for Internal Dosimetry

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.2 Methods for Internal Dosimetry' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy' with the contents:

  7. A History of Dosimetry for the Advanced Gas-cooled Reactors

    NASA Astrophysics Data System (ADS)

    Shaw, Simon; Thornton, Dean

    2016-02-01

    This paper presents a summary of the methods used in the first ˜40 years of AGR neutron dosimetry and nuclear heating calculations, and the influence of the earlier Magnox reactor dosimetry programme. While the current state-of-the-art Monte Carlo methods are extremely powerful they still require very careful consideration of the quality of the input data, nuclear data validation and variance reduction techniques; in particular, this paper examines the difficulties in assuring the adequate convergence of calculations when Monte Carlo acceleration is applied in the presence of significant streaming paths through attenuating or scattering media.

  8. Gourdeous Art

    ERIC Educational Resources Information Center

    Coy, Mary

    2007-01-01

    In this article, the author describes a gourd art project for her art club. Prior to students actually working on the gourds, the author and her art volunteer did a joint demonstration on the process students would go through to create their project. The volunteer brought in and explained her gourd art and shared information about the drying and…

  9. Plutonium worker dosimetry.

    PubMed

    Birchall, Alan; Puncher, M; Harrison, J; Riddell, A; Bailey, M R; Khokryakov, V; Romanov, S

    2010-05-01

    Epidemiological studies of the relationship between risk and internal exposure to plutonium are clearly reliant on the dose estimates used. The International Commission on Radiological Protection (ICRP) is currently reviewing the latest scientific information available on biokinetic models and dosimetry, and it is likely that a number of changes to the existing models will be recommended. The effect of certain changes, particularly to the ICRP model of the respiratory tract, has been investigated for inhaled forms of (239)Pu and uncertainties have also been assessed. Notable effects of possible changes to respiratory tract model assumptions are (1) a reduction in the absorbed dose to target cells in the airways, if changes under consideration are made to the slow clearing fraction and (2) a doubling of absorbed dose to the alveolar region for insoluble forms, if evidence of longer retention times is taken into account. An important factor influencing doses for moderately soluble forms of (239)Pu is the extent of binding of dissolved plutonium to lung tissues and assumptions regarding the extent of binding in the airways. Uncertainty analyses have been performed with prior distributions chosen for application in epidemiological studies. The resulting distributions for dose per unit intake were lognormal with geometric standard deviations of 2.3 and 2.6 for nitrates and oxides, respectively. The wide ranges were due largely to consideration of results for a range of experimental data for the solubility of different forms of nitrate and oxides. The medians of these distributions were a factor of three times higher than calculated using current default ICRP parameter values. For nitrates, this was due to the assumption of a bound fraction, and for oxides due mainly to the assumption of slower alveolar clearance. This study highlights areas where more research is needed to reduce biokinetic uncertainties, including more accurate determination of particle transport rates

  10. Art Education/Art Therapy.

    ERIC Educational Resources Information Center

    Rogers, John R., Ed.

    1978-01-01

    The special issue presents 13 articles dealing with art education and art therapy for special groups. Included are the following titles and authors: "Art Education for Special Groups: The Emotionally Disturbed" (E. Ulman); "You Are The Early Warning System" (C. Stember); "School Art Therapist Rationale for DPI Certification" (V. Minar); "Art…

  11. The Latin American Biological Dosimetry Network (LBDNet).

    PubMed

    García, O; Di Giorgio, M; Radl, A; Taja, M R; Sapienza, C E; Deminge, M M; Fernández Rearte, J; Stuck Oliveira, M; Valdivia, P; Lamadrid, A I; González, J E; Romero, I; Mandina, T; Guerrero-Carbajal, C; ArceoMaldonado, C; Cortina Ramírez, G E; Espinoza, M; Martínez-López, W; Di Tomasso, M

    2016-09-01

    Biological Dosimetry is a necessary support for national radiation protection programmes and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 to provide early biological dosimetry assistance in case of radiation emergencies in the Latin American Region. Here are presented the main topics considered in the foundational document of the network, which comprise: mission, partners, concept of operation, including the mechanism to request support for biological dosimetry assistance in the region, and the network capabilities. The process for network activation and the role of the coordinating laboratory during biological dosimetry emergency response is also presented. This information is preceded by historical remarks on biological dosimetry cooperation in Latin America. A summary of the main experimental and practical results already obtained by the LBDNet is also included.

  12. Results from 2010 Caliban Criticality Dosimetry Intercomparison

    SciTech Connect

    Veinot, K. G.

    2011-10-12

    The external dosimetry program participated in a criticality dosimetry intercomparison conducted at the Caliban facility in Valduc, France in 2010. Representatives from the dosimetry and instrumentation groups were present during testing which included irradiations of whole-body beta/gamma (HBGT) and neutron thermoluminescent dosimeters (TLDs), a fixed nuclear accident dosimeter (FNAD), electronic alarming dosimeters, and a humanoid phantom filled with reference man concentrations of sodium. This report reviews the testing procedures, preparations, irradiations, and presents results of the tests.

  13. Neutron personnel dosimetry intecomparison studies

    SciTech Connect

    Sims, C.S.

    1991-01-01

    The Dosimetry Applications Research (DOSAR) Group at the Oak Ridge National Laboratory (ORNL) has conducted sixteen Neutron Personnel Dosimetry Intercomparison Studies (PDIS) since 1974. During these studies dosimeters are mailed to DOSAR, exposed to low-level (typically in the 0.3 -- 5.0 mSv range) neutron dose equivalents in a variety of mixed neutron-gamma radiation fields, and then returned to the participants for evaluation. The Health Physics Research Reactor (HPRR) was used as the primary radiation source in PDIS 1--12 and radioisotopic neutron sources at DOSAR's Radiation Calibration Laboratory (RADCAL) were mainly used, along with sources and accelerators at cooperating institutions, in PDIS 13--16. Conclusions based on 13,560 measurements made by 146 different participating organizations (102 - US) are presented.

  14. Integrating Art.

    ERIC Educational Resources Information Center

    BCATA Journal for Art Teachers, 1991

    1991-01-01

    These articles focus on art as a component of interdisciplinary integration. (1) "Integrated Curriculum and the Visual Arts" (Anna Kindler) considers various aspects of integration and implications for art education. (2) "Integration: The New Literacy" (Tim Varro) illustrates how the use of technology can facilitate cross-curricular integration.…

  15. Art English.

    ERIC Educational Resources Information Center

    Preece, Robert

    1994-01-01

    Art English is a combination of English-as-a-Second-Language (ESL)/English-as-a-Foreign-Language (EFL) and art content. As a new instructional area, it faces several challenges: as with all English for Special Purposes (ESP), exchange of information among programs; development of a suitable combination of art content and ESL, due to lack of…

  16. Art Safety.

    ERIC Educational Resources Information Center

    BCATA Journal for Art Teachers, 1991

    1991-01-01

    Advocating that Canadian art programs should use and model environmentally safe practices, the articles in this journal focus on issues of safe practices in art education. Articles are: (1) "What is WHMIS?"; (2) "Safety Precautions for Specific Art Processes"; (3) "Toxic Substances"; (4) "Using Clay, Glazes, and Kilns Safely in the Classroom"…

  17. Wall Art

    ERIC Educational Resources Information Center

    McGinley, Connie Q.

    2004-01-01

    The author of this article, an art teacher at Monarch High School in Louisville, Colorado, describes how her experience teaching in a new school presented an exciting visual challenge for an art teacher--monotonous brick walls just waiting for decoration. This school experienced only minimal instances of graffiti, but as an art teacher, she did…

  18. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  19. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  20. [Art therapy and "art brut"].

    PubMed

    Kovács, Emese; Simon, Lajos

    2010-01-01

    The authors in this article explor the most important steps of the development of the research on the psychopathology of expression. They introduce the development of Art Brut and it's place in art history. They deal with the characteristics of art therapy.

  1. Dosimetry in Nuclear Medicine Diagnosis and Therapy

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.7 Necessity of Patient-Specific Dose Planning in Radionuclide Therapy' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy'.

  2. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low...

  3. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low...

  4. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low...

  5. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low...

  6. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low...

  7. Radon Dosimetry and Monitoring in Mines

    NASA Astrophysics Data System (ADS)

    Pineau, J. F.

    The following sections are included: * Introduction * The Atmosphere in Underground Mines * Origin of the radioactivity of the atmosphere in underground mines * Main characteristics of the atmosphere of mines * Temperature * Relative humidity * Particle size distribution of the aerosols * Volume concentration of radon * Age of the ventilation air * Volume concentration of radon decay products * Volume concentration of long-lived aerosols (LLA) * Order of magnitude of the volume concentrations to be measured * Dosimetry: Application to Miners * Dosimetry of miners in France * Integrated dosimetry system * Measuring head * Unit for the detection and measurement of exposure to potential alpha energy * Treatment and reading of the detector films * Expression of the results * Other examples of operational dosimetry * Use of closed passive dosimeters for the dosimetry of miners * Monitoring of Physical Parameters of the Atmospheres * Qualification of non-uranium mines * Monitoring of the environment of mining sites * Optimisation of radiation protection using the dosimetric data * Concluding Remarks * References

  8. Holographic art

    NASA Astrophysics Data System (ADS)

    Bryskin, V. Z.; Prostev, A.

    1991-02-01

    The authors of the present paper have been working together in the field of holographic art during the last three years. Our holographic works of art are based on the use of the Denisyuk reflection holograms. These holograms make it possible to creat an art image with the help of the completely new means of representation. The increase of the reflection holograms size could widen the possibilites of art holography. For example , the high quality holograms C size 60x80 cm ) are produced in the USSR. Assembled into large-sized panels, they can be used both in advertisments, interior decoration and in creating unique works of art. They can also be used for decoration of Christian cathedrals and churches, where such art holographic compositions would produce great impressin on people. Here we'd like to discuss the problem of an aesthetic perception of a holographic image.

  9. Mindful art.

    PubMed

    Malafouris, Lambros

    2013-04-01

    Bullot & Reber (B&R) begin asking if the study of the mind's inner life can provide a foundation for a science of art. Clearly there are many epistemological problems involved in the study of the cognitive and affective basis of art appreciation. I argue that context is key. I also propose that as long as the "mind's life" continues to be perceived as an "inner" intracranial phenomenon, little progress can be made. Mind and art are one.

  10. A Reactor Pressure Vessel Dosimetry Calculation Using ATTILA, An Unstructured Tetrahedral Mesh Discrete-Ordinates Code

    SciTech Connect

    Wareing, T.A.; Parsons, D.K.; Pautz, S.

    1997-12-31

    Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. In this paper we describe the application of ATTILA to a 3-D reactor pressure vessel dosimetry problem. We provide numerical results from ATTILA and the Monte Carlo code, MCNP. The results demonstrate the effectiveness and efficiency of ATTILA for such calculations.

  11. The future of medical dosimetry.

    PubMed

    Adams, Robert D

    2015-01-01

    The world of health care delivery is becoming increasingly complex. The purpose of this manuscript is to analyze current metrics and analytically predict future practices and principles of medical dosimetry. The results indicate five potential areas precipitating change factors: a) evolutionary and revolutionary thinking processes, b) social factors, c) economic factors, d) political factors, and e) technological factors. Outcomes indicate that significant changes will occur in the job structure and content of being a practicing medical dosimetrist. Discussion indicates potential variables that can occur within each process and change factor and how the predicted outcomes can deviate from normative values. Finally, based on predicted outcomes, future opportunities for medical dosimetrists are given.

  12. NMR mechanisms in gel dosimetry

    NASA Astrophysics Data System (ADS)

    Schreiner, L. J.

    2009-05-01

    Nuclear magnetic resonance was critical to the development of gel dosimetry, as it established the potential for three dimensional dosimetry with chemical dosimeter systems through magnetic resonance imaging [1]. In the last two decades MRI has served as the gold standard for imaging, while NMR relaxometry has played an important role in the development and understanding of the behaviour of new gel dosimetry systems. Therefore, an appreciation of the relaxation mechanisms determining the NMR behaviour of irradiated gel dosimeters is important for a full comprehension of a considerable component of the literature on gel dosimetry. A number of excellent papers have presented this important theory, this brief review will highlight some of the salient points made previously [1-5]. The spin relaxation of gel dosimeters (which determines the dose dependence in most conventional MR imaging) is determined principally by the protons on water molecules in the system. These water protons exist in different environments, or groups (see Figure 1): on bulk water, on water hydrating the chemical species that are being modified under irradiation, and on water hydrating the gel matrix used to spatially stabilize the dosimeter (e.g., gelatin, agarose, etc). The spin relaxation depends on the inherent relaxation rate of each spin group, that is, on the relaxation rate which would be observed for the specific group if it were isolated. Also, the different water environments are not isolated from each other, and the observed relaxation rate also depends on the rate of exchange of magnetization between the groups, and on the fraction of protons in each group. In fact, the water exchanges quickly between the environments, so that relaxation is in what is usually termed the fast exchange regime. In the limit of fast exchange, the relaxation of the water protons is well characterized by a single exponential and hence by a single apparent relaxation rate. In irradiated gel dosimeters this

  13. Solid-State Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.

    2005-01-01

    This document is a web site page, and a data sheet about Personal protection (i.e., space suits) presented to the Radiation and Micrometeoroid Mitigation Technology Focus Group meeting. The website describes the work of the PI to improve solid state personal radiation dosimetry. The data sheet presents work on the active personal radiation detection system that is to provide real-time local radiation exposure information during EVA. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.

  14. The Future of Medical Dosimetry

    SciTech Connect

    Adams, Robert D.

    2015-07-01

    The world of health care delivery is becoming increasingly complex. The purpose of this manuscript is to analyze current metrics and analytically predict future practices and principles of medical dosimetry. The results indicate five potential areas precipitating change factors: a) evolutionary and revolutionary thinking processes, b) social factors, c) economic factors, d) political factors, and e) technological factors. Outcomes indicate that significant changes will occur in the job structure and content of being a practicing medical dosimetrist. Discussion indicates potential variables that can occur within each process and change factor and how the predicted outcomes can deviate from normative values. Finally, based on predicted outcomes, future opportunities for medical dosimetrists are given.

  15. April Arts.

    ERIC Educational Resources Information Center

    Instructor, 1983

    1983-01-01

    Ideas for spring arts activities include a whimsical play about royal dragons, a skit on an April fool, and a song. Instructions for making brightly colored birds from boxes, a happy day hat, decorated eggs, and other art projects are given. (PP)

  16. Art Rocks!

    ERIC Educational Resources Information Center

    Chapin, Erika

    2008-01-01

    Though people may like different types of music, everyone likes music. In middle school, music and art are of key importance for students to express and define what kind of person they are. In this article, the author presents an art project where students are asked to create their own guitars. (Contains 1 resource and 3 online resources.)

  17. Indigenous Art

    ERIC Educational Resources Information Center

    Hu, Helen

    2012-01-01

    Linda Lomahaftewa, a noted painter, has taught at much bigger places than the Institute of American Indian Arts (IAIA). But Lomahaftewa, who is Hopi-Choctaw, and others on the faculty of IAIA are intensely devoted to the mission of this small but unique school. IAIA--the nation's only four-year fine arts institution devoted to American Indian and…

  18. Graphic Arts.

    ERIC Educational Resources Information Center

    Kempe, Joseph; Kinde, Bruce

    This curriculum guide is intended to assist vocational instructors in preparing students for entry-level employment in the graphic arts field and getting them ready for advanced training in the workplace. The package contains an overview of new and emerging graphic arts technologies, competency/skill and task lists for the occupations of…

  19. Art Playgroup

    ERIC Educational Resources Information Center

    Heiniger, Christina

    2004-01-01

    In this article, the author discusses how parents can be involved in a developmentally appropriate art program for very young children. "Art Playgroup," a program for children ages two to five and their parents is one suggestion. Operating under the auspices of DTA Center for Learning & Growing, a nonprofit in Ellsworth, Maine, DTA received a…

  20. Creative Arts.

    ERIC Educational Resources Information Center

    Castellano, Richard J.; Fleming, Mary Ann

    Educational goals and objectives, student activities, and visual aids are included in this guide to a three-dimensional design unit that combines creative art and industrial arts skills. Course goals include challenging students' creative skills, encouraging student interaction and successful group work, and providing an atmosphere of fun and…

  1. Art Experiences.

    ERIC Educational Resources Information Center

    Spodek, Bernard; And Others

    1996-01-01

    Presents four articles that examine the role of art experiences in early childhood education: "Educationally Appropriate Art Activities for Young Children," by Bernard Spodek; "Teachers and Children Together: Constructing New Learning," by Lella Gandini; "Fostering Experiences between Young Children and Clay," by Cathy Weisman Topal; and…

  2. Advances in radiation therapy dosimetry

    PubMed Central

    Paliwal, Bhudatt; Tewatia, Dinesh

    2009-01-01

    During the last decade, there has been an explosion of new radiation therapy planning and delivery tools. We went through a rapid transition from conventional three-dimensional (3D) conformal radiation therapy to intensity-modulated radiation therapy (IMRT) treatments, and additional new techniques for motion-adaptive radiation therapy are being introduced. These advances push the frontiers in our effort to provide better patient care; and with the addition of IMRT, temporal dimensions are major challenges for the radiotherapy patient dosimetry and delivery verification. Advanced techniques are less tolerant to poor implementation than are standard techniques. Mis-administrations are more difficult to detect and can possibly lead to poor outcomes for some patients. Instead of presenting a manual on quality assurance for radiation therapy, this manuscript provides an overview of dosimetry verification tools and a focused discussion on breath holding, respiratory gating and the applications of four-dimensional computed tomography in motion management. Some of the major challenges in the above areas are discussed. PMID:20098555

  3. OSL Based Anthropomorphic Phantom and Real-Time Organ Dosimetry

    SciTech Connect

    David E. Hintenlang, Ph.D

    2009-02-10

    The overall objective of this project was the development of a dosimetry system that provides the direct measurement of organ does in real-time with a sensitivity that makes it an effective tool for applications in a wide variety of health physics applications. The system included the development of a real-time readout system for fiber optic coupled (FOC) dosimeters that is integrated with a state-of-art anthropomorphic phantom to provide instantaneous measures of organ doses throughout the phantom. The small size of the FOC detectors and optical fibers allow the sensitive volume of the detector to be located at organ centroids (or multiple locations distributed through the organ) within a tissue equivalent, anthropomorphic phantom without perturbing the tissue equivalent features of the phantom. The developed phantom/dosimetry system can be used in any environment where personnel may be exposed to gamma or x-ray radiations to provide the most accurate determinations of organ and effective doses possible to date.

  4. Reference dosimetry for helical tomotherapy: Practical implementation and a multicenter validation

    SciTech Connect

    De Ost, B.; Schaeken, B.; Vynckier, S.; Sterpin, E.; Van den Weyngaert, D.

    2011-11-15

    Purpose: The aim of this study was to implement a protocol for reference dosimetry in tomotherapy and to validate the beam output measurements with an independent dosimetry system. Methods: Beam output was measured at the reference depth of 10 cm in water for the following three cases: (1) a 5 x 10 cm{sup 2} static machine specific reference field (MSR), (2) a rotational 5 x 10 cm{sup 2} field without modulation and no tabletop in the beam, (3) a plan class specific reference (PCSR) field defined as a rotational homogeneous dose delivery to a cylindrical shaped target volume: plan with modulation and table-top movement. The formalism for reference dosimetry of small and nonstandard fields [Med.Phys.35: 5179-5186, 2008] and QA recommendations [Med.Phys.37: 4817-4853, 2010] were adopted in the dose measurement protocol. All ionization chamber measurements were verified independently using alanine/EPR dosimetry. As a pilot study, the beam output was measured on tomotherapy Hi-art systems at three other centers and directly compared to the centers specifications and to alanine dosimetry. Results: For the four centers, the mean static output at a depth of 10 cm in water and SAD = 85 cm, measured with an A1SL chamber following the TG-148 report was 6.238 Gy/min {+-} 0.058 (1 SD); the rotational output was 6.255 Gy/min {+-} 0.069 (1 SD). The dose stated by the center was found in good agreement with the measurements of the visiting team: D{sub center}/D{sub visit} = 1.000 {+-} 0.003 (1 SD). The A1SL chamber measurements were all in good agreement with Alanine/EPR dosimetry. Going from the static reference field to the rotational/non modulated field the dose rate remains constant within 0.2% except for one center where a deviation of 1.3% was detected. Conclusions: Following the TG-148 report, beam output measurements in water at the reference depth using a local protocol, as developed at different centers, was verified. The measurements were found in good agreement with

  5. INTERSPECIES DOSIMETRY MODELS FOR PULMONARY PHARMACOLOGY

    EPA Science Inventory

    Interspecies Dosimetry Models for Pulmonary Pharmacology

    Ted B. Martonen, Jeffry D. Schroeter, and John S. Fleming

    Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangl...

  6. Cross sections required for FMIT dosimetry

    SciTech Connect

    Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.

    1980-05-02

    The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies.

  7. Internal dosimetry performing dose assessments via bioassay measurements

    SciTech Connect

    Bailey, K.M.

    1993-05-11

    The Internal Dosimetry Department at the Y-12 Plant maintains a state-of-the-art bioassay program managed under the guidance and regulations of the Department of Energy. The two major bioassay techniques currently used at Y-12 are the in vitro (urinalysis) and in vivo (lung counting) programs. Fecal analysis (as part of the in vitro program) is another alternative; however, since both urine and fecal analysis provide essentially the same capabilities for detecting exposures to uranium, the urinalysis is the main choice primarily for aesthetic reasons. The bioassay frequency is based on meeting NCRP 87 objectives which are to monitor the accumulation of radioactive material in exposed individuals, and to ensure that significant depositions are detected.

  8. In vivo dosimetry in brachytherapy

    SciTech Connect

    Tanderup, Kari; Beddar, Sam; Andersen, Claus E.; Kertzscher, Gustavo; Cygler, Joanna E.

    2013-07-15

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and the large range of dose and dose rate. Due to these challenges, the sensitivity and specificity toward error detection has been limited, and IVD has mainly been restricted to detection of gross errors. Given these factors, routine use of IVD is currently limited in many departments. Although the impact of potential errors may be detrimental since treatments are typically administered in large fractions and with high-gradient-dose-distributions, BT is usually delivered without independent verification of the treatment delivery. This Vision 20/20 paper encourages improvements within BT safety by developments of IVD into an effective method of independent treatment verification.

  9. Audits for advanced treatment dosimetry

    NASA Astrophysics Data System (ADS)

    Ibbott, G. S.; Thwaites, D. I.

    2015-01-01

    Radiation therapy has advanced rapidly over the last few decades, progressing from 3D conformal treatment to image-guided intensity modulated therapy of several different flavors, both 3D and 4D and to adaptive radiotherapy. The use of intensity modulation has increased the complexity of quality assurance and essentially eliminated the physicist's ability to judge the validity of a treatment plan, even approximately, on the basis of appearance and experience. Instead, complex QA devices and procedures are required at the institutional level. Similarly, the assessment of treatment quality through remote and on-site audits also requires greater sophistication. The introduction of 3D and 4D dosimetry into external audit systems must follow, to enable quality assurance systems to perform meaningful and thorough audits.

  10. In aqua vivo EPID dosimetry

    SciTech Connect

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Olaciregui-Ruiz, Igor; Pecharroman-Gallego, Raul; Sonke, Jan-Jakob; Stroom, Joep; Herk, Marcel J.; Mijnheer, Ben van

    2012-01-15

    Purpose: At the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the original back-projection dose-reconstruction algorithm uses water-based scatter-correction kernels and therefore does not account for tissue inhomogeneities accurately. The aim of this study was to test a new method, in aqua vivo EPID dosimetry, for fast dose verification of lung cancer irradiations during actual patient treatment. Methods: The key feature of our method is the dose reconstruction in the patient from EPID images, obtained during the actual treatment, whereby the images have been converted to a situation as if the patient consisted entirely of water; hence, the method is termed in aqua vivo. This is done by multiplying the measured in vivo EPID image with the ratio of two digitally reconstructed transmission images for the unit-density and inhomogeneous tissue situation. For dose verification, a comparison is made with the calculated dose distribution with the inhomogeneity correction switched off. IMRT treatment verification is performed for each beam in 2D using a 2D {gamma} evaluation, while for the verification of volumetric-modulated arc therapy (VMAT) treatments in 3D a 3D {gamma} evaluation is applied using the same parameters (3%, 3 mm). The method was tested using two inhomogeneous phantoms simulating a tumor in lung and measuring its sensitivity for patient positioning errors. Subsequently five IMRT and five VMAT clinical lung cancer treatments were investigated, using both the conventional back-projection algorithm and the in aqua vivo method. The verification results of the in aqua vivo method were statistically analyzed for 751 lung cancer patients treated with IMRT and 50 lung cancer patients treated with VMAT. Results: The improvements by

  11. Response Art: The Art of the Art Therapist

    ERIC Educational Resources Information Center

    Fish, Barbara J.

    2012-01-01

    Response art is artwork created by art therapists in response to material that arises in their therapy work. Art therapists use response art to contain difficult material, express and examine their experiences, and share their experiences with others. In this viewpoint, some of the varied uses of response art are discussed and illuminated with…

  12. Breast dosimetry in clinical mammography

    NASA Astrophysics Data System (ADS)

    Benevides, Luis Alberto Do Rego

    The objective of this study was show that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. In the study, AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The protocol proposes the use of a fiber-optic coupled (FOCD) or Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeter to measure the entrance skin exposure at the time of the mammogram without interfering with diagnostic information of the mammogram. The study showed that FOCD had sensitivity with less than 7% energy dependence, linear in all tube current-time product stations, and was reproducible within 2%. FOCD was superior to MOSFET dosimeter in sensitivity, reusability, and reproducibility. The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. In addition, the study population anthropometric

  13. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    SciTech Connect

    COOPER, J.R.

    2000-04-17

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  14. Personnel neutron dosimetry at Department of Energy facilities

    SciTech Connect

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered.

  15. Fine Arts.

    ERIC Educational Resources Information Center

    Danzer, Gerald A.; Newman, Mark

    1992-01-01

    Discusses the use of fine arts as sources to enrich the study of history. Suggests that such works will serve as barometers of change, examples of cross-cultural influences, and political messages. Includes suggestions of works and artists from different historic periods. (DK)

  16. Scanner Art

    ERIC Educational Resources Information Center

    Jaworski, Joy; Murphy, Kris

    2009-01-01

    In this article, the authors describe how they incorporated environmental awareness into their art curriculum. Here, they describe a digital photography project in which their students used flatbed scanners as cameras. Their students composed their objects directly on the scanner. The lesson enabled students to realize that artists have voices…

  17. Chicken Art

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2009-01-01

    In this article, the author describes how a visit from a flock of chickens provided inspiration for the children's chicken art. The gentle clucking of the hens, the rooster crowing, and the softness of the feathers all provided rich aural, tactile, visual, and emotional experiences. The experience affirms the importance and value of direct…

  18. Nature's Art.

    ERIC Educational Resources Information Center

    Sterling, Vicki; And Others

    Over 60 art activities, designed to enhance environmental awareness and incorporate environmental concepts, are outlined in this document. A sample of the activities presented are: decorated notepaper and cards with feathers or weeds; wall plaques of prairie plants; methods of flower preservation; water plant prints; construction of dolls,…

  19. Commercial Art.

    ERIC Educational Resources Information Center

    Vassallo, Thomas

    This curriculum guide provides materials for a competency-based course in commercial art at the secondary level. The curriculum design uses the curriculum infused model for the teaching of basic skills as part of vocational education and demonstrates the relationship of vocationally related skills to communication, mathematics, and science…

  20. Language Arts.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    The language arts course content guides presented in this manual cover English, oral communications, and journalism in grades 9-12 and provide a framework from which a curriculum can be built. Within each subject area and at each grade level, skills are identified at three instructional levels: basic, developmental, and extension. The basic skills…

  1. Language Arts.

    ERIC Educational Resources Information Center

    Keener, Paul L.

    Capitalizing on the resources available in an urban city block, this resource guide for the emotionally handicapped (K-6) presents a resource list and objectives and activities relative to teaching language arts (reading, English, listening, speaking, and writing). The resource list is comprised of approximately 150 physical facilities (e.g.,…

  2. Art History

    ERIC Educational Resources Information Center

    Lukehart, Wendy

    2004-01-01

    Whether one views art as a cultural record, a political or religious instrument, a celebration of form and color, or an instinctual force, it is a given that sharing diverse expressions of creativity with children plants fresh understandings and pathways for their own questions and drives. It is impossible to do justice to the many outstanding…

  3. Patient dosimetry in nuclear medicine.

    PubMed

    Mattsson, Sören

    2015-07-01

    In diagnostic nuclear medicine, the biokinetics of the radiopharmaceutical (actually of the radionuclide) is determined for a number of representative patients. At therapy, it is essential to determine the patient's individual biokinetics of the radiopharmaceutical in order to calculate the absorbed doses to critical normal organs/tissues and to the target volume(s) with high accuracy. For the diagnostic situations, there is still a lack of quantitative determinations of the organ/tissue contents of radiopharmaceuticals and their variation with time. Planar gamma camera imaging using the conjugate view technique combined with a limited number of SPECT/CT images is the main method for such studies. In a similar way, PET/CT is used for 3D image-based internal dosimetry for PET substances. The transition from stylised reference phantoms to voxel phantoms will lead to improved dose estimates for diagnostic procedures. Examples of dose coefficients and effective doses for diagnostic substances are given. For the therapeutic situation, a pre-therapeutic low activity administration is used for quantitative measurements of organ/tissue distribution data by a gamma camera or a SPECT- or PET-unit. Together with CT and/or MR images this will be the base for individual dose calculations using Monte Carlo technique. Treatments based on administered activity should only be used if biological variations between patients are small or if a pre-therapeutic activity administration is impossible.

  4. Seventh Personnel Dosimetry Intercomparison Study

    SciTech Connect

    Swaja, R.E.; Sims, C.S.; Greene, R.T.

    1981-12-01

    The Seventh Personnel Dosimetry Intercomparison Study was conducted March 31-April 10, 1981, at the Oak Ridge National Laboratory. Dosimeters from 34 participating agencies were mounted on anthropomorphic phantoms and exposed to a range of low-level dose equivalents (1.5-15.0mSv neutron and 0.1-2.8 mSv gamma) which could be encountered during routine personnel monitoring in mixed radiation fields. The Health Physics Research Reactor, operating in the steady-state mode, served as the source of radiation for two equivalent sets of six separate exposures. Lucite and concrete shields along with the unshielded reactor provided three different neutron and gamma spectra for five of the exposures in each set. Results reported by the participating agencies showed that no single type of neutron dosimeter exhibited acceptable performance characteristics for all mixed-field environments encountered in this study. Film, TLD, and TLD-albed dosimeters were found to be inadequate for neutron dose equivalent measurements when large numbers of slow neutrons are present unless significant corrections are made to measured results. Track dosimeters indicated the least sensitivity to spectral characteristics, but did not always yield to the most accurate results. Gamma dose measurements showed that TLD-700 dosimeters produced significantly more accurate results than film dosimeters which tend to overestimate gamma doses in mixed radiation fields.

  5. EVA dosimetry in manned spacecraft.

    PubMed

    Thomson, I

    1999-12-01

    Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space.

  6. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  7. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  8. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  9. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  10. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  11. [Intraoperative radiotherapy with electrons (IORT). Dosimetry problems, first experience].

    PubMed

    Bianciardi, L; Panichelli, V; Benassi, M; Sulprizio, S; Piermattei, A; Azario, L; Arcovito, G; Valentini, V

    1990-10-01

    In this paper, preliminary results on the IORT dosimetry performed on the two radiotherapy centers, "Regina Elena National Cancer Institute" and "S. Cuore Catholic University", are presented. The absolute dosimetry has been performed with ion chambers (ENEA chamber and Markus flat chamber) using a water phantom. The relative measurements have been performed with solid state diodes and radiographic films, calibrated on absolute dosimetry system.

  12. A dynamic dosimetry system for prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Kuo, Nathanael; Dehghan, Ehsan; Deguet, Anton; Song, Danny Y.; Prince, Jerry L.; Lee, Junghoon

    2013-03-01

    The lack of dynamic dosimetry tools for permanent prostate brachytherapy causes otherwise avoidable problems in prostate cancer patient care. The goal of this work is to satisfy this need in a readily adoptable manner. Using the ubiquitous ultrasound scanner and mobile non-isocentric C-arm, we show that dynamic dosimetry is now possible with only the addition of an arbitrarily configured marker-based fiducial. Not only is the system easily configured from accessible hardware, but it is also simple and convenient, requiring little training from technicians. Furthermore, the proposed system is built upon robust algorithms of seed segmentation, fiducial detection, seed reconstruction, and image registration. All individual steps of the pipeline have been thoroughly tested, and the system as a whole has been validated on a study of 25 patients. The system has shown excellent results of accurately computing dose, and does so with minimal manual intervention, therefore showing promise for widespread adoption of dynamic dosimetry.

  13. Dosimetry procedures for an industrial irradiation plant

    NASA Astrophysics Data System (ADS)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  14. Snow Art

    ERIC Educational Resources Information Center

    Kraus, Nicole

    2012-01-01

    It was nearing the end of a very long, rough winter with a lot of snow and too little time to play outside. The snow had formed small hills and valleys over the bushes and this was at the perfect height for the students to paint. In this article, the author describes how her transitional first-grade students created snow art paintings. (Contains 1…

  15. Art Preservation

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A new class of polyimides, synthesized by Langley Research Center, has been evaluated by the Getty Conservation Institute's Materials Science Group for possible art conservation applications. Polyimides are noted for resistance to high temperature, wear and radiation. They are thermally stable and soluble in some common solvents. After testing under simulated exposures for changes in color, permeability and flexibility, one coating, ODPA-3, 3-ODA may be used to protect bronze statues from corrosion. A test on stained glass windows was unsuccessful.

  16. Recent progresses in tritium radioecology and dosimetry

    SciTech Connect

    Galeriu, D.; Davis, P.; Raskob, W.; Melintescu, A.

    2008-07-15

    In this paper, some aspects of recent progress in tritium radioecology and dosimetry are presented, with emphasis on atmospheric releases to terrestrial ecosystems. The processes involved in tritium transfer through the environment are discussed, together with the current status of environmental tritium models. Topics include the deposition and reemission of HT and HTO, models for the assessment of routine and accidental HTO emissions, a new approach to modeling the dynamics of tritium in mammals, the dose consequences of tritium releases and aspects of human dosimetry. The need for additional experimental data is identified, together with the attributes that would be desirable in the next generation of tritium codes. (authors)

  17. Practical neutron dosimetry at high energies

    SciTech Connect

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently.

  18. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  19. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  20. Personnel radiation dosimetry symposium: program and abstracts

    SciTech Connect

    Not Available

    1984-10-01

    The purpose was to provide applied and research dosimetrists with sufficient information to evaluate the status and direction of their programs relative to the latest guidelines and techniques. A technical program was presented concerning experience, requirements, and advances in gamma, beta, and neutron personnel dosimetry.

  1. Computational Techniques of Electromagnetic Dosimetry for Humans

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Fujiwara, Osamu

    There has been increasing public concern about the adverse health effects of human exposure to electromagnetic fields. This paper reviews the rationale of international safety guidelines for human protection against electromagnetic fields. Then, this paper also presents computational techniques to conduct dosimetry in anatomically-based human body models. Computational examples and remaining problems are also described briefly.

  2. Dosimetry implant for treating restenosis and hyperplasia

    DOEpatents

    Srivastava, Suresh; Gonzales, Gilbert R; Howell, Roger W; Bolch, Wesley E; Adzic, Radoslav

    2014-09-16

    The present invention discloses a method of selectively providing radiation dosimetry to a subject in need of such treatment. The radiation is applied by an implant comprising a body member and .sup.117mSn electroplated at selected locations of the body member, emitting conversion electrons absorbed immediately adjacent selected locations while not affecting surrounding tissue outside of the immediately adjacent area.

  3. Development of A-bomb survivor dosimetry

    SciTech Connect

    Kerr, G.D.

    1995-12-31

    An all important datum in risk assessment is the radiation dose to individual survivors of the bombings in Hiroshima and Nagasaki. The first set of dose estimates for survivors was based on a dosimetry system developed in 1957 by the Oak Ridge National Laboratory (ORNL). These Tentative 1957 Doses (T57D) were later replaced by a more extensive and refined set of Tentative 1965 Doses (T65D). The T65D system of dose estimation for survivors was also developed at ORNL and served as a basis for risk assessment throughout the 1970s. In the late 1970s, it was suggested that there were serious inadequacies with the T65D system, and these inadequacies were the topic of discussion at two symposia held in 1981. In early 1983, joint US- Japan research programs were established to conduct a thorough review of all aspects of the radiation dosimetry for the Hiroshima and Nagasaki A-bomb survivors. A number of important contributions to this review were made by ORNL staff members. The review was completed in 1986 and a new Dosimetry System 1986 (DS86) was adopted for use. This paper discusses the development of the various systems of A-bomb survivor dosimetry, and the status of the current DS86 system as it is being applied in the medical follow-up studies of the A-bomb survivors and their offspring.

  4. New dosimetry of atomic bomb radiations.

    PubMed

    Fry, R J; Sinclair, W K

    1987-10-10

    The reassessment of the radiation dosimetry from the Hiroshima and Nagasaki atomic bombs is almost complete. Since atomic bomb survivors provide a major source of data for estimates of risk of cancer induction by radiation the impact of the new dosimetry on risk estimates and radiation protection standards is important. The changes include an increase of about 20% in the estimated yield of the Hiroshima bomb and a reduction in the estimated doses from neutrons in both cities. The estimated neutron dose for Hiroshima is about 10% of the previous estimate. The neutron doses are now so small that direct estimates of neutron relative biological effectiveness may be precluded or be much more difficult. There is little change in most of the gamma ray organ doses because various changes in the new estimates tend to cancel each other out. The new estimate of the attenuation of the free-in-air kerma by the walls of the homes is about twice that used in the previous dosimetry. But the transmission of gamma radiation to the deep organs such as bone marrow is significantly greater than earlier estimates. Probably future risk estimates for radiogenic cancer will be somewhat higher because of both the new dosimetry and the new cancer mortality data. New risk estimates should be available in 1988.

  5. Software for 3D radiotherapy dosimetry. Validation

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr; Karwowski, Andrzej C.

    2014-08-01

    The subject of this work is polyGeVero® software (GeVero Co., Poland), which has been developed to fill the requirements of fast calculations of 3D dosimetry data with the emphasis on polymer gel dosimetry for radiotherapy. This software comprises four workspaces that have been prepared for: (i) calculating calibration curves and calibration equations, (ii) storing the calibration characteristics of the 3D dosimeters, (iii) calculating 3D dose distributions in irradiated 3D dosimeters, and (iv) comparing 3D dose distributions obtained from measurements with the aid of 3D dosimeters and calculated with the aid of treatment planning systems (TPSs). The main features and functions of the software are described in this work. Moreover, the core algorithms were validated and the results are presented. The validation was performed using the data of the new PABIGnx polymer gel dosimeter. The polyGeVero® software simplifies and greatly accelerates the calculations of raw 3D dosimetry data. It is an effective tool for fast verification of TPS-generated plans for tumor irradiation when combined with a 3D dosimeter. Consequently, the software may facilitate calculations by the 3D dosimetry community. In this work, the calibration characteristics of the PABIGnx obtained through four calibration methods: multi vial, cross beam, depth dose, and brachytherapy, are discussed as well.

  6. From ``micro`` to ``macro`` internal dosimetry

    SciTech Connect

    Fisher, D.R.

    1994-06-01

    Radiation dose is the amount of radiation energy deposited per unit mass of absorbing tissue. Internal dosimetry applies to assessments of dose to internal organs from penetrating radiation sources outside the body and from radionuclides taken into the body. Dosimetry is essential for correlating energy deposition with biological effects that are observed when living tissues are irradiated. Dose-response information provides the basis for radiation protection standards and risk assessment. Radiation interactions with living matter takes place on a microscopic scale, and the manifestation of damage may be evident at the cellular, multi-cellular, and even organ levels of biological organization. The relative biological effectiveness of ionization radiation is largely determined by the spatial distribution of energy deposition events within microscopic as well as macroscopic biological targets of interest. The spatial distribution of energy imparted is determined by the spatial distribution of radionuclides and properties of the emitted charged-particle radiation involved. The nonuniformity of energy deposition events in microscopic volumes, particularly from high linear energy transfer (LET) radiation, results in large variations in the amount of energy imparted to very small volumes or targets. Microdosimetry is the study of energy deposition events at the cellular level. Macrodosimetry is a term for conventional dose averaging at the tissue or organ level. In between is a level of dosimetry sometimes referred to as multi-cellular dosimetry. The distinction between these terms and their applications in assessment of dose from internally deposited radionuclides is described.

  7. Dosimetry of an Implantable 252 Californium Source

    SciTech Connect

    Oliver, G.D. Jr.

    2001-08-29

    The radiation dose from 252 Californium needles designed for use as a source of neutrons for radiotherapy has been measured. The dosimetry information presented in this paper will enable clinical studies of neutron radiotherapy with 252 Californium needles to be planned and begun.

  8. A-bomb survivor dosimetry update

    SciTech Connect

    Loewe, W.E.

    1982-06-01

    A-bomb survivor data have been generally accepted as applicable. Also, the initial radiations have tended to be accepted as the dominant radiation source for all survivors. There was general acceptance of the essential reliability of both the biological effects data and the causative radiation dose values. There are considerations casting doubt on these acceptances, but very little quantification of th implied uncertainties has been attempted. The exception was A-bomb survivor dosimetry, where free-field kerma values for initial radiations were thought to be accurate to about 30%, and doses to individual survivors were treated as effectively error-free. In 1980, a major challenge to the accepted A-bomb survivor dosimetry was announced, and was quickly followed by a succession of explanations and displays showing the soundness of that challenge. In fact, a complete replacement set of free-field kerma values was provided which was suitable for use in constructing an entire new dosimetry for Hiroshima and Nagasaki. The new values showed many changes greater than the accepted 30% uncertainty. An approximate new dosimetry was indeed constructed, and used to convert existing leukemia cause-and-effect data from the old to the new dose values, by way of assessing the impact. (ERB)

  9. Protocol for emergency EPR dosimetry in fingernails

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an increased need for after-the fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effect...

  10. American Art Therapy Association

    MedlinePlus

    ... Welcome Board of Directors National Staff Financial Information Strategic Plan Local Chapters About Art Therapy What is Art ... Sheet MEDIA About Us About AATA President's Welcome Strategic Plan About Art Therapy What is Art Therapy Fact ...

  11. A new paradigm in personal dosimetry using LiF:Mg,Cu,P.

    PubMed

    Cassata, J R; Moscovitch, M; Rotunda, J E; Velbeck, K J

    2002-01-01

    The United States Navy has been monitoring personnel for occupational exposure to ionising radiation since 1947. Film was exclusively used until 1973 when thermoluminescence dosemeters were introduced and used to the present time. In 1994, a joint research project between the Naval Dosimetry Center, Georgetown University, and Saint Gobain Crystals and Detectors (formerly Bicron RMP formerly Harshaw TLD) began to develop a state of the art thermoluminescent dosimetry system. The study was conducted from a large-scale dosimetry processor point of view with emphasis on a systems approach. Significant improvements were achieved by replacing the LiF:Mg,Ti with LiF:Mg,Cu,P TL elements due to the significant sensitivity increase, linearity, and negligible hiding. Dosemeter filters were optimised for gamma and X ray energy discrimination using Monte Carlo modelling (MCNP) resulting in significant improvement in accuracy and precision. Further improvements were achieved through the use of neural-network based dose calculation algorithms. Both back propagation and functional link methods were implemented and the data compared with essentially the same results. Several operational aspects of the system are discussed, including (1) background subtraction using control dosemeters, (2) selection criteria for control dosemeters, (3) optimisation of the TLD readers, (4) calibration methodology, and (5) the optimisation of the heating profile.

  12. Defining Art Appreciation.

    ERIC Educational Resources Information Center

    Seabolt, Betty Oliver

    2001-01-01

    Discusses the differences and goals of four areas: (1) art appreciation; (2) art history; (3) art aesthetics; and (4) art criticism. Offers a definition of art appreciation and information on how the view of art appreciation in education has changed over time. (CMK)

  13. History and Art: The Heart of Art.

    ERIC Educational Resources Information Center

    Seiferth, Berniece B; And Others

    Learning to appreciate religious art and to understand the interdependence of history and art are basic to the foundations of culture. Students need to be exposed to the art of the diverse adherents of all major religions in order to understand the beliefs and practices of others. Students can examine religious art from ancient times, including…

  14. Art Supply Inventors. Children's Art Diary.

    ERIC Educational Resources Information Center

    Szekely, George

    2001-01-01

    Discusses types of art materials that children enjoy using in their artworks. Explores the art materials such as tasty art supplies, such as candy; peeled supplies, such as pencil shavings; sticky art supplies, such as Band-Aids; and fast-food supplies, such as forks and spoons. (CMK)

  15. Small Art Images--Big Art Learning

    ERIC Educational Resources Information Center

    Stephens, Pam

    2005-01-01

    When small art images are incorporated into the curriculum, students are afforded opportunities to slow down, observe minute details, and communicate ideas about art and artists. This sort of purposeful art contemplation takes students beyond the day-to-day educational practice. It is through these sorts of art activities that students develop…

  16. Art Therapy Teaching as Performance Art

    ERIC Educational Resources Information Center

    Moon, Bruce L.

    2012-01-01

    This viewpoint asserts that art therapy education is a form of performance art. By designing class sessions as performance artworks, art therapy educators can help their students become more fully immersed in their studies. This view also can be extended to conceptualizing each semester--and the entire art therapy curriculum--as a complex and…

  17. Fine Arts: Secondary Visual Arts Curriculum.

    ERIC Educational Resources Information Center

    Utah State Office of Education, Salt Lake City.

    This guide to Utah's requirements for students in secondary visual arts is organized and based upon a student achievement portfolio for each course. Foundation I, the required junior high/middle school visual arts course, is designed to provide an overview of visual arts while studying various art tools and materials. With an emphasis on studio…

  18. PREFACE: The 5th International Conference on Radiotherapy Gel Dosimetry (DOSGEL 2008)

    NASA Astrophysics Data System (ADS)

    Maris, Thomas G.; Pappas, Evangelos

    2009-07-01

    The International Conference on Radiotherapy Gel Dosimetry (DOSGEL) is held every two years. Its purpose is to bring together basic science and clinical researchers, medical physicists and clinicians from around the world to discuss the state-of-the-art of the gel dosimetry technique and to set the directions and trends for its future improvements. Gel dosimetry can be broadly defined as using a gel that can react to the absorption of ionizing radiation, and that can retain this information which can subsequently be retrieved by an external imaging modality. Examples of radiation-sensitive gels include, but are not limited to, polymer gel dosimeters, Fricke gel dosimeters and others. Imaging modalities that are of general use in this field are (in alphabetical order) magnetic resonance imaging (MRI), optical light computed tomography and x-ray computed tomography. This volume comprises the proceedings of the 5th International Conference on Radiotherapy Gel Dosimetry (DOSGEL 2008). The conference, organised by the University of Crete, Medical Physics Department, took place in Hersonissos, Crete, Greece from 29 September to 3 October 2008. The meeting aimed to continue the series of biannual DOSGEL conferences and focused on the promotion of gel dosimetry techniques by setting the trends for their future improvements. The main scientific session topics of DOSGEL 2008 were the following: Chemistry and fundamental properties of polymer gel dosimeters Gel dosimetry with Optical Computed Tomography Gel dosimetry with Magnetic Resonance Imaging Gel dosimetry with other than Optical CT and MR scan Techniques Other 3D dosimeters Gel dosimetry applications Local Organizing Committee Thomas G Maris (University of Crete, Greece, Chairman DOSGEL 2008) John Damilakis (University of Crete, Greece) Evangelos Pappas (University of Crete, Greece) Antonios Papadakis (University of Crete, Greece) Fotini Zacharopoulou (University of Crete, Greece) John Stratakis (University of Crete

  19. Neutron dosimetry using optically stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Eschbach, P. A.

    1991-06-01

    The addition of thermoluminescent (TL) materials within hydrogenous matrices to detect neutron induced proton recoils for radiation dosimetry is a well known concept. Previous attempts to implement this technique have met with limited success, primarily due to the high temperatures required for TL readout and the low melting temperatures of hydrogen-rich plastics. Research in recent years PNL has produced a new Optically Stimulated Luminescence (OSL) technique known as the Cooled Optically Stimulated Luminescence (COSL) that offers, for the first time, the capability of performing extremely sensitive radiation dosimetry at low temperatures. In addition to its extreme sensitivity, the COSL technique offers multiple readout capability, limited fading in a one year period, and the capability of analyzing single grains within a hydrogenous matrix.

  20. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  1. Neutron dosimetry using optically stimulated luminescence

    SciTech Connect

    Miller, S.D.; Eschbach, P.A.

    1991-06-01

    The addition of thermoluminescent (TL) materials within hydrogenous matrices to detect neutron-induced proton recoils for radiation dosimetry is a well-known concept. Previous attempts to implement this technique have met with limited success, primarily due to the high temperatures required for TL readout and the low melting temperatures of hydrogen-rich plastics. Research in recent years at Pacific Northwest laboratories (PNL) has produced a new Optically Stimulated Luminescence (OSL) technique known as the Cooled Optically Stimulated Luminescence (COSL) that offers, for the first time, the capability of performing extremely sensitive radiation dosimetry at low temperatures. In addition to its extreme sensitivity, the COSL technique offers multiple readout capability, limited fading in a one-year period, and the capability of analyzing single grains within a hydrogenous matrix. 4 refs., 10 figs.

  2. Trigeminal neuralgia treatment dosimetry of the Cyberknife

    SciTech Connect

    Ho, Anthony; Lo, Anthony T.; Dieterich, Sonja; Soltys, Scott G.; Gibbs, Iris C.; Chang, Steve G.; Adler, John R.

    2012-04-01

    There are 2 Cyberknife units at Stanford University. The robot of 1 Cyberknife is positioned on the patient's right, whereas the second is on the patient's left. The present study examines whether there is any difference in dosimetry when we are treating patients with trigeminal neuralgia when the target is on the right side or the left side of the patient. In addition, we also study whether Monte Carlo dose calculation has any effect on the dosimetry. We concluded that the clinical and dosimetric outcomes of CyberKnife treatment for trigeminal neuralgia are independent of the robot position. Monte Carlo calculation algorithm may be useful in deriving the dose necessary for trigeminal neuralgia treatments.

  3. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  4. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  5. Simple optical theory for light dosimetry during PDT (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Jacques, Steven L.

    1992-06-01

    Photons are one of the three major reactants in the photodynamic reaction that yields toxic photoproduct for cell killing. Dosimetry of light is a major concern when planning a photodynamic therapy (PDT) protocol. This paper presents a very simple approach toward the tissue optics with a practical conclusion about how tissue optics affects planning of day-to-day PDT dosimetry. The paper does not address all the complexities of real tissue dosimetry, such as heterogeneous tissues, variable absorption due to changing tissue blood content, and variable tissue oxygen levels. The paper outlines the optical behavior in a homogeneous tissue, which is a starting point for understanding light dosimetry.

  6. In vivo dosimetry: trends and prospects for brachytherapy

    PubMed Central

    Rosenfeld, A; Beddar, S; Tanderup, K; Cygler, J E

    2014-01-01

    The error types during brachytherapy (BT) treatments and their occurrence rates are not well known. The limited knowledge is partly attributed to the lack of independent verification systems of the treatment progression in the clinical workflow routine. Within the field of in vivo dosimetry (IVD), it is established that real-time IVD can provide efficient error detection and treatment verification. However, it is also recognized that widespread implementations are hampered by the lack of available high-accuracy IVD systems that are straightforward for the clinical staff to use. This article highlights the capabilities of the state-of-the-art IVD technology in the context of error detection and quality assurance (QA) and discusses related prospects of the latest developments within the field. The article emphasizes the main challenges responsible for the limited practice of IVD and provides descriptions on how they can be overcome. Finally, the article suggests a framework for collaborations between BT clinics that implemented IVD on a routine basis and postulates that such collaborations could improve BT QA measures and the knowledge about BT error types and their occurrence rates. PMID:25007037

  7. Quantities and units in radiation protection dosimetry

    NASA Astrophysics Data System (ADS)

    Jennings, W. A.

    1994-08-01

    A new report, entitled Quantities and Units in Radiation Protection Dosimetry, has recently been published by the international Commission on Radiation Units and Measurements. That report (No. 51) aims to provide a coherent system of quantities and units for purposes of measurement and calculation in the assessment of compliance with dose limitations. The present paper provides an extended summary of that report, including references to the operational quantities needed for area and individual monitoring of external radiations.

  8. a Generalized Program for Internal Radionuclide Dosimetry

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy Karl

    The development of monoclonal antibodies specific for tumor surface antigens promises a highly specific carrier medium for delivering a tumorcidal radiation dose. Dosimetry calculations of monoclonal antibodies are made difficult, however, precisely because the focus of radioactivity is targeted for a nonstandard volume in a nonstandard geometry. This precludes straightforward application of the formalism developed for internal radionuclide dosimetry by the Medical Internal Radiation Dose Committee. A software program was written to account for the perturbations introduced by the inclusion of a tumor mass as an additional source of, and target for, radiation. The program allows the interactive development of a mathematical model to account for observed biodistribution data. The model describes the time dependence of radioactivity in each organ system that retains radiolabeled antibody, including tumor. Integration of these "time-activity" curves yield cumulative activity for each organ system identified as a 'source' of radioactivity. A Monte Carlo simulation of photon transport is then executed for each source organ to obtain the fraction of radiation energy absorbed by various 'target' organs. When combined with the cumulative activity, this absorbed fraction allows an estimate of dose to be made for each target organ. The program has been validated against ten analytic models designed to span a range of common input data types. Additionally, a performance benchmark has been defined to assess the practicality of implementing the program on different computing hardware platforms. Sources of error in the computation are elaborated on, and future directions and improvements discussed. The software presents an integrated modeling/dosimetry environment particularly suited for performing Monoclonal Antibody dosimetry. It offers a viable methodology for performing prospective treatment planning, based on extrapolation of tracer kinetic data to therapeutic levels.

  9. Growing with the Arts.

    ERIC Educational Resources Information Center

    Bernstein, Bebe

    1985-01-01

    The author describes programs of the National Committee, Arts with the Handicapped, including the Very Special Arts Festival program for the visual and peforming arts and Project REAP (Retirement with Enrichment, the Arts and Purpose), which uses retired volunteers in arts education of disabled children and adults. (CL)

  10. Hanford Internal Dosimetry Project manual. Revision 1

    SciTech Connect

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.

  11. In vivo dosimetry in external beam radiotherapy

    SciTech Connect

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  12. EPR dosimetry with tooth enamel: A review.

    PubMed

    Fattibene, Paola; Callens, Freddy

    2010-11-01

    When tooth enamel is exposed to ionizing radiation, radicals are formed, which can be detected using electron paramagnetic resonance (EPR) techniques. EPR dosimetry using tooth enamel is based on the (presumed) correlation between the intensity or amplitude of some of the radiation-induced signals with the dose absorbed in the enamel. In the present paper a critical review is given of this widely applied dosimetric method. The first part of the paper is fairly fundamental and deals with the main properties of tooth enamel and some of its model systems (e.g., synthetic apatites). Considerable attention is also paid to the numerous radiation-induced and native EPR signals and the radicals responsible for them. The relevant methods for EPR detection, identification and spectrum analyzing are reviewed from a general point of view. Finally, the needs for solid-state modelling and studies of the linearity of the dose response are investigated. The second part is devoted to the practical implementation of EPR dosimetry using enamel. It concerns specific problems of preparation of samples, their irradiation and spectrum acquisition. It also describes how the dosimetric signal intensity and dose can be retrieved from the EPR spectra. Special attention is paid to the energy dependence of the EPR response and to sources of uncertainties. Results of and problems encountered in international intercomparisons and epidemiological studies are also dealt with. In the final section the future of EPR dosimetry with tooth enamel is analyzed.

  13. Static magnetic field therapy: dosimetry considerations.

    PubMed

    Colbert, Agatha P; Markov, Marko S; Souder, James S

    2008-06-01

    The widespread use of static magnetic field (SMF) therapy as a self-care physical intervention has led to the conduct of numerous randomized controlled trials (RCTs). A recent systematic review of SMF trials for pain reduction concluded that the evidence does not support the use of permanent magnets for pain relief. We argue that this conclusion is unwarranted if the SMF dosage was inadequate or inappropriate for the clinical condition treated. The purpose of this communication is to (1) provide a rationale and an explanation for each of 10 essential SMF dosing parameters that should be considered when conducting trials of SMF therapy, and (2) advocate for the conduct of Phase I studies to optimize SMF dosimetry for each condition prior to implementing a large-scale RCT. A previous critical review of SMF dosimetry in 56 clinical studies found that reporting SMF dosages in a majority of those studies was of such poor quality that the magnetic field exposure at the target tissue could not be characterized. Without knowing what magnetic field actually reached the target, it is impossible to judge dosage adequacy. In order to quantify SMF exposure at the site of pathology (target tissue/s), that site must be clearly named; the distance of the permanent magnet surface from the target must be delineated; the physical parameters of the applied permanent magnet must be described; and the dosing regimen must be precisely reported. If the SMF dosimetry is inadequate, any inferences drawn from reported negative findings are questionable.

  14. Bayesian Methods for Radiation Detection and Dosimetry

    SciTech Connect

    Peter G. Groer

    2002-09-29

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed compartmental activities. From the estimated probability densities of the model parameters we were able to derive the densities for compartmental activities for a two compartment catenary model at different times. We also calculated the average activities and their standard deviation for a simple two compartment model.

  15. Effects of temperature variation on MOSFET dosimetry.

    PubMed

    Cheung, Tsang; Butson, Martin J; Yu, Peter K N

    2004-07-01

    This note investigates temperature effects on dosimetry using a metal oxide semiconductor field effect transistor (MOSFET) for radiotherapy x-ray treatment. This was performed by analysing the dose response and threshold voltage outputs for MOSFET dosimeters as a function of ambient temperature. Results have shown that the clinical semiconductor dosimetry system (CSDS) MOSFET provides stable dose measurements with temperatures varying from 15 degrees C up to 40 degrees C. Thus standard irradiations performed at room temperature can be directly compared to in vivo dose assessments performed at near body temperature without a temperature correction function. The MOSFET dosimeter threshold voltage varies with temperature and this level is dependent on the dose history of the MOSFET dosimeter. However, the variation can be accounted for in the measurement method. For accurate dosimetry, the detector should be placed for approximately 60 s on a patient to allow thermal equilibrium before measurements are taken with the final reading performed whilst still attached to the patient or conversely left for approximately 120 s after removal from the patient if initial readout was measured at room temperature to allow temperature equilibrium to be established. PMID:15285264

  16. Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-09-01

    A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which

  17. Visual Contradictions. Teaching Art with Art.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    2000-01-01

    Focuses on works of art that are dreamlike and surrealistic and include visual contradictions. Includes four reproductions of artworks with information about the works of art and the artists. Explains that the four pictures will stimulate students' creativity. (CMK)

  18. National ART Success Rates

    MedlinePlus

    ... ART and Birth Defects ART and Autism 2013 Assisted Reproductive Technology National Summary Report Recommend on Facebook Tweet Share ... live-birth rate? [PDF - 1.37MB] Section 2: ART Cycles using fresh nondonor eggs or embryos What ...

  19. Teaching Art with Art: Grotesque Visions.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    2001-01-01

    Discusses a type of visual art called grotesque art and includes four different examples of grotesque art: (1) the painting "Head of Medusa" by Peter Paul Rubens; (2) Rangda, the widow witch from Bali (Indonesia); (3) totem poles; and (4) grotesque sculptures from the Cathedral of Notre Dame (Paris, France). (CMK)

  20. Arts Impact: Lessons from ArtsBridge

    ERIC Educational Resources Information Center

    Shimshon-Santo, Amy R.

    2010-01-01

    Arts Impact summarizes lessons learned at the ArtsBridge Program. It is informed by in-depth participant observation, logic modeling, and quantitative evaluation of program impact on K-12 students in inner city schools and arts students at the University of California Los Angeles over a two year period. The case study frames its analysis through a…

  1. The Liberal Arts and the Martial Arts.

    ERIC Educational Resources Information Center

    Levine, Donald N.

    1984-01-01

    Liberal arts and the martial arts are compared from the perspective that courses of training in the martial arts often constitute exemplary educational programs and are worth examining closely. Program characteristics, individual characteristics fostered by them, the relationship between liberal and utilitarian learning, and the moral…

  2. Artists, Art Historians, and Visual Art Information.

    ERIC Educational Resources Information Center

    Layne, Sara Shatford

    1994-01-01

    Discusses the information-seeking and information-using behavior of artists, particularly in the applied arts, and art historians. Topics include visual information; technological and intellectual aspects of access to visual information; physical characteristics of art works; cataloging and indexing tools; access to images; and the role of…

  3. Keeping the Arts Alive: Fine Arts Databases

    ERIC Educational Resources Information Center

    Young, Terrence E., Jr.

    2005-01-01

    When budgets are tightened, the school library media specialists and/or the arts programs are often considered expendable. No Child Left Behind legislation means increasing academic time for core subjects, which translates into cutting time for arts education. As money becomes tight, frills are cut (i.e., the arts). Schools don't seem able to fill…

  4. Automatic in vivo portal dosimetry of all treatments

    NASA Astrophysics Data System (ADS)

    Olaciregui-Ruiz, I.; Rozendaal, R.; Mijnheer, B.; van Herk, M.; Mans, A.

    2013-11-01

    At our institution EPID (electronic portal imaging device) dosimetry is routinely applied to perform in vivo dose verification of all patient treatments with curative intent since January 2008. The major impediment of the method has been the amount of work required to produce and inspect the in vivo dosimetry reports (a time-consuming and labor-intensive process). In this paper we present an overview of the actions performed to implement an automated in vivo dosimetry solution clinically. We reimplemented the EPID dosimetry software and modified the acquisition software. Furthermore, we introduced new tools to periodically inspect the record-and-verify database and automatically run the EPID dosimetry software when needed. In 2012, 95% of our 3839 treatments scheduled for in vivo dosimetry were analyzed automatically (27 633 portal images of intensity-modulated radiotherapy (IMRT) fields, 5551 portal image data of VMAT arcs, and 2003 portal images of non-IMRT fields). The in vivo dosimetry verification results are available a few minutes after delivery and alerts are immediately raised when deviations outside tolerance levels are detected. After the clinical introduction of this automated solution, inspection of the detected deviations is the only remaining work. These newly developed tools are a major step forward towards full integration of in vivo EPID dosimetry in radiation oncology practice.

  5. Neutron dosimetry and radiation damage calculations for HFBR

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  6. [Instrumental radiofrequency electromagnetic radiation dosimetry: general principals and modern methodology].

    PubMed

    Perov, S Iu; Kudriashov, Iu B; Rubtsova, N B

    2012-01-01

    The modern experimental radiofrequency electromagnetic field dosimetry approach has been considered. The main principles of specific absorbed rate measurement are analyzed for electromagnetic field biological effect assessment. The general methodology of specific absorbed rate automated dosimetry system applied to establish the compliance of radiation sources with the safety standard requirements (maximum permissible levels and base restrictions) is described.

  7. EURADOS strategic research agenda: vision for dosimetry of ionising radiation.

    PubMed

    Rühm, W; Fantuzzi, E; Harrison, R; Schuhmacher, H; Vanhavere, F; Alves, J; Bottollier Depois, J F; Fattibene, P; Knežević, Ž; Lopez, M A; Mayer, S; Miljanić, S; Neumaier, S; Olko, P; Stadtmann, H; Tanner, R; Woda, C

    2016-02-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). PMID:25752758

  8. Dosimetry Methods of Fast Neutron Using the Semiconductor Diodes

    NASA Astrophysics Data System (ADS)

    H. Zaki, Dizaji; Kakavand, T.; F. Abbasi, Davani

    2014-01-01

    Semiconductor detectors based on a silicon pin diode are frequently used in the detection of different nuclear radiations. For the detection and dosimetry of fast neutrons, these silicon detectors are coupled with a fast neutron converter. Incident neutrons interact with the converter and produce charged particles that can deposit their energy in the detectors and produce a signal. In this study, three methods are introduced for fast neutron dosimetry by using the silicon detectors, which are: recoil proton spectroscopy, similarity of detector response function with conversion function, and a discriminator layer. Monte Carlo simulation is used to calculate the response of dosimetry systems based on these methods. In the different doses of an 241Am-Be neutron source, dosimetry responses are evaluated. The error values of measured data for dosimetry by these methods are in the range of 15-25%. We find fairly good agreement in the 241Am-Be neutron sources.

  9. Improving neutron dosimetry using bubble detector technology

    SciTech Connect

    Buckner, M.A.

    1993-02-01

    Providing accurate neutron dosimetry for a variety of neutron energy spectra is a formidable task for any dosimetry system. Unless something is known about the neutron spectrum prior to processing the dosimeter, the calculated dose may vary greatly from that actually encountered; that is until now. The entrance of bubble detector technology into the field of neutron dosimetry has eliminated the necessity of having an a priori knowledge of the neutron energy spectra. Recently, a new approach in measuring personnel neutron dose equivalent was developed at Oak Ridge National Laboratory. By using bubble detectors in combination with current thermoluminescent dosimeters (TLDs) as a Combination Personnel Neutron Dosimeter (CPND), not only is it possible to provide accurate dose equivalent results, but a simple four-interval neutron energy spectrum is obtained as well. The components of the CPND are a Harshaw albedo TLD and two bubble detectors with theoretical energy thresholds of 100 key and 1500 keV. Presented are (1) a synoptic history surrounding emergence of bubble detector technology, (2) a brief overview of the current theory on mechanisms of interaction, (3) the data and analysis process involved in refining the response functions, (4) performance evaluation of the original CPND and a reevaluation of the same data under the modified method, (5) the procedure used to determine the reference values of component fluence and dose equivalent for field assessment, (6) analysis of the after-modification results, (7) a critique of some currently held assumptions, offering some alternative explanations, and (8) thoughts concerning potential applications and directions for future research.

  10. Model selection for radiochromic film dosimetry

    NASA Astrophysics Data System (ADS)

    Méndez, I.

    2015-05-01

    The purpose of this study was to find the most accurate model for radiochromic film dosimetry by comparing different channel independent perturbation models. A model selection approach based on (algorithmic) information theory was followed, and the results were validated using gamma-index analysis on a set of benchmark test cases. Several questions were addressed: (a) whether incorporating the information of the non-irradiated film, by scanning prior to irradiation, improves the results; (b) whether lateral corrections are necessary when using multichannel models; (c) whether multichannel dosimetry produces better results than single-channel dosimetry; (d) which multichannel perturbation model provides more accurate film doses. It was found that scanning prior to irradiation and applying lateral corrections improved the accuracy of the results. For some perturbation models, increasing the number of color channels did not result in more accurate film doses. Employing Truncated Normal perturbations was found to provide better results than using Micke-Mayer perturbation models. Among the models being compared, the triple-channel model with Truncated Normal perturbations, net optical density as the response and subject to the application of lateral corrections was found to be the most accurate model. The scope of this study was circumscribed by the limits under which the models were tested. In this study, the films were irradiated with megavoltage radiotherapy beams, with doses from about 20-600 cGy, entire (8 inch  × 10 inch) films were scanned, the functional form of the sensitometric curves was a polynomial and the different lots were calibrated using the plane-based method.

  11. Linking Art and Books.

    ERIC Educational Resources Information Center

    McCoubrey, Sharon, Ed.

    1993-01-01

    This serial issue examines the theme of picture books as resources for art production and art response; gives specific project descriptions; and looks at the relationship between words and pictures, and the creative connection between art and language. Articles are: (1) "Editor's View" (Sharon McCoubrey); (2) "The Creative Connection: Art and…

  12. K-12 Art Guide.

    ERIC Educational Resources Information Center

    Furney, Trudy; And Others

    The development of students in various art fields is the focus of this K-12 art curriculum guide. The philosophy of the art program and the roles of administrator, teacher, and parent are outlined. The underlying school community relationships, and the objective, goals, and purposes of art education are described. Phases of child development in…

  13. Cultivating Demand for the Arts: Arts Learning, Arts Engagement, and State Arts Policy. Summary

    ERIC Educational Resources Information Center

    Zakaras, Laura; Lowell, Julia F.

    2008-01-01

    The findings summarized in this report are intended to shed light on what it means to cultivate demand for the arts, why it is necessary and important to cultivate this demand, and what state arts agencies (SAAs) and other arts and education policymakers can do to help. The research considered only the benchmark arts central to public policy:…

  14. Children as Art Teachers

    ERIC Educational Resources Information Center

    Szekely, George

    2011-01-01

    A goal of art learning is always independence, for everyone to become their own art teacher. Teaching for artistic independence can never start too early. As art teachers, children acquire confidence in their art, and in coming to school as artists. Children should be considered artists in residence and visiting artists in schools. It makes sense…

  15. Cultural Arts Handbook.

    ERIC Educational Resources Information Center

    Pistone, Kathleen A.

    The handbook presents activities to aid elementary school classroom teachers as they develop and implement cultural arts lessons. A cultural arts program is interpreted as a way to help students develop perceptual awareness, build a basic vocabulary in some art cultural form, evaluate their own works of art, appreciate creative expressions, and…

  16. Spotlight on Arts Education.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Education, Raleigh.

    In this annual edition selected cultural arts organizations from across the state are featured, with a specific focus on how these organizations have aided local school systems as they implemented the arts education component of North Carolina's Basic Education Program. The following arts organizations are featured: Winston-Salem Arts Council;…

  17. Art Therapy Verses Psychotherapy

    ERIC Educational Resources Information Center

    Del Giacco, Maureen

    2009-01-01

    The purpose of my paper is to identify the difference between psychotherapy and art therapy. Then to introduce a technique within the field of art therapy that is relevant to neuro-plasticity Del Giacco Neuro Art Therapy. The paper identifies the importance of the amygdala and the hippocampus within the role of art therapy. Supporting…

  18. Art Education Communicating Experience.

    ERIC Educational Resources Information Center

    Wallace, Sue-Anne

    1997-01-01

    Transcribes the Leon Jackman Memorial Address to the Australasian Art Educators Conference in 1996. Discusses distinctions between the formal world of pedagogy and the informal world of experiential learning in art education. Focuses on art educators as communicators, on how they talk about the arts, and on communication as sharing knowledge. (DSK)

  19. Art and Religion

    ERIC Educational Resources Information Center

    Shusterman, Richard

    2008-01-01

    Since the nineteenth century's interest in "art for art's sake," many thinkers have argued that art would supplant traditional religion as the spiritual locus of the increasingly secular society of Western modernity. If art can capture the sort of spirituality, idealism, and expressive community of traditional religions but without being ensnared…

  20. Soviet Arts Curriculum Guide.

    ERIC Educational Resources Information Center

    San Diego County Office of Education, CA.

    This extensive curriculum guide was written in conjunction with the San Diego Arts Festival of Soviet Arts in 1989. It aimed to provide teachers with insights and ideas about arts in the Soviet Union before, during, and after the Arts Festival. A curriculum model is presented at the beginning of the guide to illustrate how the lessons were…

  1. Winter Art Education Project

    ERIC Educational Resources Information Center

    Jokela, Timo

    2007-01-01

    The purpose of this article is to describe how the Department of Art Education at the University of Lapland in Finland has developed winter art as a method of environmental and community-based art education. I will focus on the Snow Show Winter Art Education Project, a training project funded by the European Union and the State Provincial Office…

  2. Arts Inspire Community Support.

    ERIC Educational Resources Information Center

    Moore, Dan W.

    1983-01-01

    Describes Southeastern Community College's efforts to focus on the arts, which included a campus visit by the artist Kenneth Larson and events centered on his Heroic Individual prints; a performing arts series supported by local corporations; an Associate in Fine Arts degree; regular art exhibits; and an artist-in-residence program. (DMM)

  3. Characterization of new materials for fiberoptic dosimetry

    NASA Astrophysics Data System (ADS)

    Molina, P.; Santiago, M.; Marcassó, J.; Caselli, E.; Prokic, M.; Khaidukov, N.; Furetta, C.

    2011-09-01

    In this work we have investigated the radioluminescence (RL) characteristics of three materials (Mg2SiO4:Tb, CsY2F7:Tb and KMgF3:Sm) in order to determine whether they can be used as real time dosimeters in the the framework the fiberoptic dosimetry (FOD) technique. This technique is based on the use of scintillating materials coupled to the end of an optical fiber, which collects the light emitted by the scintillator during irradiation. Since usually the intensity of the emitted light is proportional to the dose-rate, the technique provides a reliable measuring method, which can be employed in radiotherapy treatments.

  4. Neutron dosimetry of the Little Boy device

    SciTech Connect

    Pederson, R.A.; Plassmann, E.A.

    1984-01-01

    Neutron dose rates at several angular locations and at distances out to 0.5 mile have been measured during critical operation of the Little Boy replica. We used modified remmetes and thermoluminescent dosimetry techniques for the measurements. The present status of our analysis is presented including estimates of the neutron-dose-relaxation length in air and the variation of the neutron-to-gamma-ray dose ratio with distance from the replica. These results are preliminary and are subject to detector calibration measurements.

  5. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    SciTech Connect

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y.; Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N.

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  6. The next decade in external dosimetry

    SciTech Connect

    Griffith, R.V.

    1986-10-01

    As the radiation protection community moves through the last half of the '80s and into the next decade, we can expect the requirements for external dosimetry to become increasingly more restrictive and demanding. As in other health protection fields, growing regulatory and legal pressures, together with a natural evolution in philosophy, require the health physicist to display an increasing degree of accountability, rigor, and professionalism. The good news is that, for the most part, the technology necessary to solve many of the problems will be available or not far behind. This paper describes anticipated technology. 66 refs., 10 figs.

  7. USF/Russian dosimetry on STS-57

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The major purpose of this experiment was to conduct an international comparison of passive dosimetry methods in space. Two APD's were flown in the charged particle directional spectrometer (CPDS)/tissue equivalent proportional counter (TEPC) locker on the space shuttle during the STS-57 mission. Due to placement, the shielding and radiation environment of the APD's were nearly the same and the dosimeters distributed in the two boxes can be considered equally exposed. The dosimeter types included plastic nuclear track detectors (PNTD's), thermoluminescent detectors (TLD), nuclear emulsions, and thermal/resonance neutron detectors (TRND's). The USF dosimeters included PNTD's, TLD's, and TRND's, while the Russian dosimeters included PNTD's, TLD's, and nuclear emulsions.

  8. ARTS BETA testing report

    NASA Technical Reports Server (NTRS)

    Mccune, M. C.

    1981-01-01

    The advanced real time system (ARTS) was tested utilizing existing commercial system hardware and software which has been operating under advanced operating system (AOS) for several years in a multitasking, multiprocessing, and multiple computer environment. Experiences with ARTS in terms of compatibility with AOS, ease of transmission between AOS and ARTS, and functional areas of ARTS which were tested are discussed. Relative and absolute performance of ARTS versus AOS as measured in the system environment are also presented.

  9. Development of silicon monolithic arrays for dosimetry in external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Bisello, Francesca; Menichelli, David; Scaringella, Monica; Talamonti, Cinzia; Zani, Margherita; Bucciolini, Marta; Bruzzi, Mara

    2015-10-01

    New tools for dosimetry in external beam radiotherapy have been developed during last years in the framework of the collaboration among the University of Florence, INFN Florence and IBA Dosimetry. The first step (in 2007) was the introduction in dosimetry of detector solutions adopted from high energy physics, namely epitaxial silicon as the base detector material and a guard ring in diode design. This allowed obtaining state of the art radiation hardness, in terms of sensitivity dependence on accumulated dose, with sensor geometry particularly suitable for the production of monolithic arrays with modular design. Following this study, a 2D monolithic array has been developed, based on 6.3×6.3 cm2 modules with 3 mm pixel pitch. This prototype has been widely investigated and turned out to be a promising tool to measure dose distributions of small and IMRT fields. A further linear array prototype has been recently design with improve spatial resolution (1 mm pitch) and radiation hardness. This 24 cm long device is constituted by 4×64 mm long modules. It features low sensitivity changes with dose (0.2%/kGy) and dose per pulse (±1% in the range 0.1-2.3 mGy/pulse, covering applications with flattened and unflattened photon fields). The detector has been tested with very satisfactory results as a tool for quality assurance of linear accelerators, with special regards to small fields, and proton pencil beams. In this contribution, the characterization of the linear array with unflattened MV X-rays, 60Co radiation and 226 MeV protons is reported.

  10. The importance of 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Low, Daniel

    2015-01-01

    Radiation therapy has been getting progressively more complex for the past 20 years. Early radiation therapy techniques needed only basic dosimetry equipment; motorized water phantoms, ionization chambers, and basic radiographic film techniques. As intensity modulated radiation therapy and image guided therapy came into widespread practice, medical physicists were challenged with developing effective and efficient dose measurement techniques. The complex 3-dimensional (3D) nature of the dose distributions that were being delivered demanded the development of more quantitative and more thorough methods for dose measurement. The quality assurance vendors developed a wide array of multidetector arrays that have been enormously useful for measuring and characterizing dose distributions, and these have been made especially useful with the advent of 3D dose calculation systems based on the array measurements, as well as measurements made using film and portal imagers. Other vendors have been providing 3D calculations based on data from the linear accelerator or the record and verify system, providing thorough evaluation of the dose but lacking quality assurance (QA) of the dose delivery process, including machine calibration. The current state of 3D dosimetry is one of a state of flux. The vendors and professional associations are trying to determine the optimal balance between thorough QA, labor efficiency, and quantitation. This balance will take some time to reach, but a necessary component will be the 3D measurement and independent calculation of delivered radiation therapy dose distributions.

  11. Dosimetry of radium-223 and progeny

    SciTech Connect

    Fisher, D.R.; Sgouros, G.

    1999-01-01

    Radium-223 is a short-lived (11.4 d) alpha emitter with potential applications in radioimmunotherapy of cancer. Radium-223 can be complexed and linked to protein delivery molecules for specific tumor-cell targeting. It decays through a cascade of short-lived alpha- and beta-emitting daughters with emission of about 28 MeV of energy through complete decay. The first three alpha particles are essentially instantaneous. Photons associated with Ra-223 and progeny provide the means for tumor and normal-organ imaging and dosimetry. Two beta particles provide additional therapeutic value. Radium-223 may be produced economically and in sufficient amounts for widescale application. Many aspects of the chemistry of carrier-free isotope preparation, complexation, and linkage to the antibody have been developed and are being tested. The radiation dosimetry of a Ra-223-labeled antibody shows favorable tumor to normal tissue dose ratios for therapy. The 11.4-d half-life of Ra-223 allows sufficient time for immunoconjugate preparation, administration, and tumor localization by carrier antibodies before significant radiological decay takes place. If 0.01 percent of a 37 MBq (1 mCi) injection deposits in a one gram tumor mass, and if the activity is retained with a typical effective half-time (75 h), the absorbed dose will be 163 mGy MBq{sup {minus}1} (600 rad mCi{sup {minus}1}) administered. 49 refs., 5 figs., 2 tabs.

  12. Dosimetry of inhaled radon and thoron progeny

    SciTech Connect

    James, A.C.

    1994-06-01

    This chapter reviews recent developments in modeling doses received by lung tissues, with particular emphasis on application of ICRP`s new dosimetric model of the respiratory tract for extrapolating to other environments the established risks from exposure to radon progeny in underground mines. Factors discussed include: (1) the influence of physical characteristics of radon progeny aerosols on dose per unit exposure, e.g., the unattached fraction, and the activity-size distributions of clustered and attached progeny; (2) the dependence of dose on breathing rate, and on the exposed subject (man, woman or child); (3) the variability of dose per unit exposure in a home when exposure is expressed in terms of potential {alpha} energy or radon gas concentration; (4) the comparative dosimetry of thoron progeny; and (5) the effects of air-cleaning on lung dose. Also discussed is the apparent discrepancy between lung cancer risk estimates derived purely from dosimetry and the lung cancer incidence observed in the epidemiological studies of radon-exposed underground miners. Application of ICRP`s recommended risk factors appears to overestimate radon lung-cancer risk for miners by a factor of three. ``Normalization`` of the calculated effective dose is therefore needed, at least for {alpha} dose from radon and thoron progeny, in order to obtain a realistic estimate of lung cancer risk.

  13. Radiotherapy dosimetry using a commercial OSL system

    SciTech Connect

    Viamonte, A.; Rosa, L. A. R. da; Buckley, L. A.; Cherpak, A.; Cygler, J. E.

    2008-04-15

    A commercial optically stimulated luminescence (OSL) system developed for radiation protection dosimetry by Landauer, Inc., the InLight microStar reader, was tested for dosimetry procedures in radiotherapy. The system uses carbon-doped aluminum oxide, Al{sub 2}O{sub 3}:C, as a radiation detector material. Using this OSL system, a percent depth dose curve for {sup 60}Co gamma radiation was measured in solid water. Field size and SSD dependences of the detector response were also evaluated. The dose response relationship was investigated between 25 and 400 cGy. The decay of the response with time following irradiation and the energy dependence of the Al{sub 2}O{sub 3}:C OSL detectors were also measured. The results obtained using OSL dosimeters show good agreement with ionization chamber and diode measurements carried out under the same conditions. Reproducibility studies show that the response of the OSL system to repeated exposures is 2.5% (1sd), indicating a real possibility of applying the Landauer OSL commercial system for radiotherapy dosimetric procedures.

  14. Radiotherapy dosimetry using a commercial OSL system.

    PubMed

    Viamonte, A; da Rosa, L A R; Buckley, L A; Cherpak, A; Cygler, J E

    2008-04-01

    A commercial optically stimulated luminescence (OSL) system developed for radiation protection dosimetry by Landauer, Inc., the InLight microStar reader, was tested for dosimetry procedures in radiotherapy. The system uses carbon-doped aluminum oxide, Al2O3:C, as a radiation detector material. Using this OSL system, a percent depth dose curve for 60Co gamma radiation was measured in solid water. Field size and SSD dependences of the detector response were also evaluated. The dose response relationship was investigated between 25 and 400 cGy. The decay of the response with time following irradiation and the energy dependence of the Al2O3:C OSL detectors were also measured. The results obtained using OSL dosimeters show good agreement with ionization chamber and diode measurements carried out under the same conditions. Reproducibility studies show that the response of the OSL system to repeated exposures is 2.5% (1sd), indicating a real possibility of applying the Landauer OSL commercial system for radiotherapy dosimetric procedures. PMID:18491518

  15. Eleventh DOE workshop on personnel neutron dosimetry

    SciTech Connect

    Not Available

    1991-12-31

    Since its formation, the Office of Health (EH-40) has stressed the importance of the exchange of information related to and improvements in neutron dosimetry. This Workshop was the eleventh in the series sponsored by the Department of Energy (DOE). It provided a forum for operational personnel at DOE facilities to discuss current issues related to neutron dosimetry and for leading investigators in the field to discuss promising approaches for future research. A total of 26 papers were presented including the keynote address by Dr. Warren K. Sinclair, who spoke on, ``The 1990 Recommendations of the ICRP and their Biological Background.`` The first several papers discussed difficulties in measuring neutrons of different energies and ways of compensating or deriving correction factors at individual facilities. Presentations were also given by the US Navy and Air Force. Current research in neutron dosimeter development was the subject of the largest number of papers. These included a number on the development of neutron spectrometers. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  16. An absorbed dose calorimeter for IMRT dosimetry

    NASA Astrophysics Data System (ADS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N. D.; Thomas, C. G.; Palmans, H.

    2012-10-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%).

  17. Dosimetry of ionising radiation in modern radiation oncology

    NASA Astrophysics Data System (ADS)

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B.

    2016-07-01

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these.

  18. Dosimetry of ionising radiation in modern radiation oncology.

    PubMed

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B

    2016-07-21

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these. PMID:27351409

  19. A deformable head and neck phantom with in-vivo dosimetry for adaptive radiotherapy quality assurance

    SciTech Connect

    Graves, Yan Jiang; Smith, Arthur-Allen; Mcilvena, David; Manilay, Zherrina; Lai, Yuet Kong; Rice, Roger; Mell, Loren; Cerviño, Laura E-mail: steve.jiang@utsouthwestern.edu; Jia, Xun; Jiang, Steve B. E-mail: steve.jiang@utsouthwestern.edu

    2015-04-15

    Purpose: Patients’ interfractional anatomic changes can compromise the initial treatment plan quality. To overcome this issue, adaptive radiotherapy (ART) has been introduced. Deformable image registration (DIR) is an important tool for ART and several deformable phantoms have been built to evaluate the algorithms’ accuracy. However, there is a lack of deformable phantoms that can also provide dosimetric information to verify the accuracy of the whole ART process. The goal of this work is to design and construct a deformable head and neck (HN) ART quality assurance (QA) phantom with in vivo dosimetry. Methods: An axial slice of a HN patient is taken as a model for the phantom construction. Six anatomic materials are considered, with HU numbers similar to a real patient. A filled balloon inside the phantom tissue is inserted to simulate tumor. Deflation of the balloon simulates tumor shrinkage. Nonradiopaque surface markers, which do not influence DIR algorithms, provide the deformation ground truth. Fixed and movable holders are built in the phantom to hold a diode for dosimetric measurements. Results: The measured deformations at the surface marker positions can be compared with deformations calculated by a DIR algorithm to evaluate its accuracy. In this study, the authors selected a Demons algorithm as a DIR algorithm example for demonstration purposes. The average error magnitude is 2.1 mm. The point dose measurements from the in vivo diode dosimeters show a good agreement with the calculated doses from the treatment planning system with a maximum difference of 3.1% of prescription dose, when the treatment plans are delivered to the phantom with original or deformed geometry. Conclusions: In this study, the authors have presented the functionality of this deformable HN phantom for testing the accuracy of DIR algorithms and verifying the ART dosimetric accuracy. The authors’ experiments demonstrate the feasibility of this phantom serving as an end

  20. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2009-08-28

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  1. Methods and procedures for external radiation dosimetry at ORNL

    SciTech Connect

    Gupton, E.D.

    1981-09-01

    Procedures, methods, materials, records, and reports used for accomplishing the personnel, external radiation monitoring program at Oak Ridge National Laboratory are described for the purpose of documenting what is done now for future reference. This document provides a description of the methods and procedures for external radiation metering, monitoring, dosimetry, and records which are in effect at ORNL July 1, 1981. This document does not include procedures for nuclear accident dosimetry except insofar as routine techniques may apply also to nuclear accident dosimetry capability.

  2. a Decade of Dosimetry for Magnox Reactor Plants

    NASA Astrophysics Data System (ADS)

    Lewis, T. A.; Thornton, D. A.

    2003-06-01

    This paper reviews the reactor dosimetry program that has supported steel pressure vessel integrity assessments for magnox power plants over the last ten years. The dosimetry program has aimed to achieve consistent:. • calculated and measured fast and thermal neutron doses. • data for surveillance specimens and reactor pressure vessels. Throughout the program, the flux measurements on the plants have been judged essential for any doses where a high degree of confidence is required. The work to support operation is now largely complete and the dosimetry is being extended to assess radioactive inventories as part of the decommissioning process.

  3. [Blood in art, art in blood].

    PubMed

    Danic, B; Lefrère, J-J

    2010-12-01

    In the different forms of art developed by Humanity over the centuries, artists have at times chosen themes from the world of medicine or health, such as blood donation or transfusion. In order to illustrate this, we have looked at three artistic domains: painting, movies and body art.

  4. Land Art in Preschools. An Art Practice

    ERIC Educational Resources Information Center

    Solberg, Ingunn

    2016-01-01

    The basis for my article is how, and if, a collaborative land art project can provide opportunities for such co-creating as suggested in the national framework plan for preschools, which explicitly states the child as a co-creator of a shared expressive culture. I further wish to propose land art as a meaningful cultural practice, closely…

  5. Art, Ecological Restoration, and Art Education.

    ERIC Educational Resources Information Center

    Blandy, Doug; Congdon, Kristin G.; Krug, Don H.

    1998-01-01

    Aims to foster among art educators and students an awareness of how many contemporary artists are promoting ecological restoration. Grounds these artists' work historically, and discusses its view of humanity as interconnected with nature. Offers suggestions for involving art educators and students in ecological theory and artistic creation. (DSK)

  6. Inspired Spirals. Teaching Art with Art.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    2001-01-01

    Discusses spirals in nature, man-made objects, and art. Focuses on art that incorporates the spiral, including works by M. C. Escher and Frank Lloyd Wright, an African headdress, and a burial urn. Describes activities to help students make spirals of their own, such as constructing a coil clay pot. (CMK)

  7. CyberArts: Exploring Art and Technology.

    ERIC Educational Resources Information Center

    Jacobson, Linda, Ed.

    This book takes the position that CyberArts(TM) is the new frontier in creativity, where the worlds of science and art meet. Computer technologies, visual design, music and sound, education and entertainment merge to form the new artistic territory of interactive multimedia. This diverse collection of essays, articles, and commentaries…

  8. Neolithic Art and the Art History Class.

    ERIC Educational Resources Information Center

    Hilson, Muriel

    1991-01-01

    Addresses issues that might be raised in the study of art history from a critical theory perspective. Suggests that, in view of contemporary environmental and social concerns, Neolithic art would be of particular interest to students as would the possibility of having a society in which neither sex was dominant. (KM)

  9. Comparison of Real-Time Intraoperative Ultrasound-Based Dosimetry With Postoperative Computed Tomography-Based Dosimetry for Prostate Brachytherapy

    SciTech Connect

    Nag, Subir; Shi Peipei; Liu Bingren; Gupta, Nilendu; Bahnson, Robert R.; Wang, Jian Z.

    2008-01-01

    Purpose: To evaluate whether real-time intraoperative ultrasound (US)-based dosimetry can replace conventional postoperative computed tomography (CT)-based dosimetry in prostate brachytherapy. Methods and Materials: Between December 2001 and November 2002, 82 patients underwent {sup 103}Pd prostate brachytherapy. An interplant treatment planning system was used for real-time intraoperative transrectal US-guided treatment planning. The dose distribution was updated according to the estimated seed position to obtain the dose-volume histograms. Postoperative CT-based dosimetry was performed a few hours later using the Theraplan-Plus treatment planning system. The dosimetric parameters obtained from the two imaging modalities were compared. Results: The results of this study revealed correlations between the US- and CT-based dosimetry. However, large variations were found in the implant-quality parameters of the two modalities, including the doses covering 100%, 90%, and 80% of the prostate volume and prostate volumes covered by 100%, 150%, and 200% of the prescription dose. The mean relative difference was 38% and 16% for doses covering 100% and 90% of the prostate volume and 10% and 21% for prostate volumes covered by 100% and 150% of the prescription dose, respectively. The CT-based volume covered by 200% of the prescription dose was about 30% greater than the US-based one. Compared with CT-based dosimetry, US-based dosimetry significantly underestimated the dose to normal organs, especially for the rectum. The average US-based maximal dose and volume covered by 100% of the prescription dose for the rectum was 72 Gy and 0.01 cm{sup 3}, respectively, much lower than the 159 Gy and 0.65 cm{sup 3} obtained using CT-based dosimetry. Conclusion: Although dosimetry using intraoperative US-based planning provides preliminary real-time information, it does not accurately reflect the postoperative CT-based dosimetry. Until studies have determined whether US-based dosimetry

  10. Permanent Breast Seed Implant Dosimetry Quality Assurance

    SciTech Connect

    Keller, Brian M.; Ravi, Ananth; Sankreacha, Raxa; Pignol, Jean-Philippe

    2012-05-01

    Purpose: A permanent breast seed implant is a novel method of accelerated partial breast irradiation for women with early-stage breast cancer. This article presents pre- and post-implant dosimetric data, relates these data to clinical outcomes, and makes recommendations for those interested in starting a program. Methods and Materials: A total of 95 consecutive patients were accrued into one of three clinical trials after breast-conserving surgery: a Phase I/II trial (67 patients with infiltrating ductal carcinoma); a Phase II registry trial (25 patients with infiltrating ductal carcinoma); or a multi-center Phase II trial for patients with ductal carcinoma in situ (3 patients). Contouring of the planning target volume (PTV) was done on a Pinnacle workstation and dosimetry calculations, including dose-volume histograms, were done using a Variseed planning computer. Results: The mean pre-implant PTV coverage for the V{sub 90}, V{sub 100}, V{sub 150}, and V{sub 200} were as follows: 98.8% {+-} 1.2% (range, 94.5-100%); 97.3% {+-} 2.1% (range, 90.3-99.9%), 68.8% {+-} 14.3% (range, 32.7-91.5%); and 27.8% {+-} 8.6% (range, 15.1-62.3%). The effect of seed motion was characterized by post-implant dosimetry performed immediately after the implantation (same day) and at 2 months after the implantation. The mean V{sub 100} changed from 85.6% to 88.4% (p = 0.004) and the mean V{sub 200} changed from 36.2% to 48.3% (p < 0.001). Skin toxicity was associated with maximum skin dose (p = 0.014). Conclusions: Preplanning dosimetry should aim for a V{sub 90} of approximately 100%, a V{sub 100} between 95% and 100%, and a V{sub 200} between 20% and 30%, as these numbers are associated with no local recurrences to date and good patient tolerance. In general, the target volume coverage improved over the duration of the seed therapy. The maximum skin dose, defined as the average dose over the hottest 1 Multiplication-Sign 1-cm{sup 2} surface area, should be limited to 90% of the

  11. Creating Art Appreciation Activities.

    ERIC Educational Resources Information Center

    Heidt, Ann H.

    1986-01-01

    The experiences of college students enrolled as majors in elementary education in designing art appreciation activities for use in elementary classrooms are described. The college students had no art background. (RM)

  12. Visual Arts and Handicrafts.

    ERIC Educational Resources Information Center

    Winkel, Lois

    1998-01-01

    Lists recommended book titles for children on art, crafts, artists, optical illusions, and drawing. Provides the address for a Web site featuring art activities and information about artists for children. (PEN)

  13. Chemistry, Color, and Art.

    ERIC Educational Resources Information Center

    Orna, Mary Virginia

    2001-01-01

    Describes pigments and artists' colors from a chronological perspective. Explains how chemical analysis can be used to distinguish the differences between artists' palettes, identify the evolution of art, and lead to restoration of an art work. (Contains 13 references.) (YDS)

  14. Gamma-ray dosimetry measurements of the Little Boy replica

    SciTech Connect

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis.

  15. Software for evaluation of EPR-dosimetry performance.

    PubMed

    Shishkina, E A; Timofeev, Yu S; Ivanov, D V

    2014-06-01

    Electron paramagnetic resonance (EPR) with tooth enamel is a method extensively used for retrospective external dosimetry. Different research groups apply different equipment, sample preparation procedures and spectrum processing algorithms for EPR dosimetry. A uniform algorithm for description and comparison of performances was designed and implemented in a new computer code. The aim of the paper is to introduce the new software 'EPR-dosimetry performance'. The computer code is a user-friendly tool for providing a full description of method-specific capabilities of EPR tooth dosimetry, from metrological characteristics to practical limitations in applications. The software designed for scientists and engineers has several applications, including support of method calibration by evaluation of calibration parameters, evaluation of critical value and detection limit for registration of radiation-induced signal amplitude, estimation of critical value and detection limit for dose evaluation, estimation of minimal detectable value for anthropogenic dose assessment and description of method uncertainty.

  16. Proceedings of the third conference on radiation protection and dosimetry

    SciTech Connect

    Swaja, R.E.; Sims, C.S.; Casson, W.H.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database.

  17. Albedo neutron dosimetry in Germany: regulations and performance.

    PubMed

    Luszik-Bhadra, M; Zimbal, A; Busch, F; Eichelberger, A; Engelhardt, J; Figel, M; Frasch, G; Günther, K; Jordan, M; Martini, E; Haninger, T; Rimpler, A; Seifert, R

    2014-12-01

    Personal neutron dosimetry has been performed in Germany using albedo dosemeters for >20 y. This paper describes the main principles, the national standards, regulations and recommendations, the quality management and the overall performance, giving some examples. PMID:24639589

  18. USF/Russian dosimetry on STS-57

    SciTech Connect

    1995-03-01

    The major purpose of this experiment was to conduct an international comparison of passive dosimetry methods in space. Two APD`s were flown in the charged particle directional spectrometer (CPDS)/tissue equivalent proportional counter (TEPC) locker on the space shuttle during the STS-57 mission. Due to placement, the shielding and radiation environment of the APD`s were nearly the same and the dosimeters distributed in the two boxes can be considered equally exposed. The dosimeter types included plastic nuclear track detectors (PNTD`s), thermoluminescent detectors (TLD), nuclear emulsions, and thermal/resonance neutron detectors (TRND`s). The USF dosimeters included PNTD`s, TLD`s, and TRND`s, while the Russian dosimeters included PNTD`s, TLD`s, and nuclear emulsions.

  19. Gastroesophageal scintiscanning in a pediatric population: dosimetry

    SciTech Connect

    Castronovo, F.P. Jr.

    1986-07-01

    The dosimetry associated with orally administered (/sup 99m/Tc)sulfur colloid for the diagnosis of gastroesophageal reflux has not been adequately described for the pediatric populations. Standard MIRD methodology was performed for the following: newborn, 1, 5, 10, and 15 yr old, and adult standard man. The critical organ for all pediatric groups was the lower large intestine with absorbed dose of 0.927, 0.380, 0.194, 0.120 and 0.0721 rad/100 microCi, respectively. For the adult the critical organ was the upper large intestine with an absorbed dose of 0.0518 rad/100 microCi. These data should be considered when administering (99mTc)sulfur colloid orally in a pediatric population.

  20. The radiation dosimetry of intrathecally administered radionuclides

    SciTech Connect

    Stabin, M.G.; Evans, J.F.

    1999-01-01

    The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energy deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.

  1. Heat transfer mechanisms and thermal dosimetry.

    PubMed

    Bowman, H F

    1982-06-01

    The heat transfer mechanisms that led to the development of the bioheat equation are reviewed. Thermal modeling and analytical judgments which must be made in application of the equation are noted. Temperature profiles that result from solution of the equation with a simple spherical model are considered with particular emphasis on the influence of thermal conductivity and perfusion. Thermal conductivity values of a host of both normal and tumor tissues are discussed. The importance of adequate macroscopic thermal dosimetry to the evaluation of the ultimate promise of hyperthermia is observed. Experience in the quantification of temperature, thermal conductivity, thermal diffusivity, and perfusion from a single, minimally invasive measurement in small volumes of tissue with the thermal diffusion probe is presented.

  2. Novel approaches in radon and thoron dosimetry

    NASA Astrophysics Data System (ADS)

    Pressyanov, D.; Dimitrov, D.; Dimitrova, I.; Georgiev, S.; Mitev, K.

    2014-07-01

    This report presents some novel approaches for radon/radon progeny and thoron measurements that can help to resolve some long-lasting problems in dosimetry, but which are not yet part of the common practice. The focus is in two directions: The use of CDs/DVDs as radon and thoron detectors and the employment of grab-sampling and/or integrated radon progeny measurements for diagnostic of the air conditions related to mitigation and indoor ventilation. The potential of these approaches is illustrated by several successful applications: (1) Study of the 222Rn distribution in large buildings and identification of places with radon problem; (2) Radon and thoron monitoring in underground mines; (3) Radon measurements in natural waters, including directly in the water source; (4) Grab sampling 222Rn progeny measurements for the purposes of pre- and post-mitigation diagnostic; (5) Integrated measurements of individual 222Rn short-lived decay products for diagnostic of indoor ventilation conditions.

  3. Advanced Semiconductor Dosimetry in Radiation Therapy

    SciTech Connect

    Rosenfeld, Anatoly B.

    2011-05-05

    Modern radiation therapy is very conformal, resulting in a complexity of delivery that leads to many small radiation fields with steep dose gradients, increasing error probability. Quality assurance in delivery of such radiation fields is paramount and requires real time and high spatial resolution dosimetry. Semiconductor radiation detectors due to their small size, ability to operate in passive and active modes and easy real time multichannel readout satisfy many aspects of in vivo and in a phantom quality assurance in modern radiation therapy. Update on the recent developments and improvements in semiconductor radiation detectors and their application for quality assurance in radiation therapy, based mostly on the developments at the Centre for Medical Radiation Physics (CMRP), University of Wollongong, is presented.

  4. AMS applied to Hiroshima and Chernobyl dosimetry

    SciTech Connect

    Straume, T.; Marchetti, A.A.; Anspaugh, L.R.

    1995-12-01

    Two projects employing AMS are summarized and updated. One project employs AMS to measure {sup 36}Cl in concrete and other mineral samples from Hiroshima and Nagasaki to help reconstruct neutron fluences received by the atom-bomb survivors. In this project, we have demonstrated a large discrepancy between the neutron activation measured in Hiroshima and predictions based on the current dosimetry system. This discrepancy has practical implications for radiation risk assessment and radiation protection standards. The other project employs AMS to measure {sup 129}I in soil and other environmental samples from Belarus, Ukraine, and Russia. This is a proof-of-principle study to determine if the long lived {sup 129}I isotope (half life, 16 x 10{sup 6} y) measured by AMS can be used to reconstruct deposition of the short lived {sup 131}I isotope from the 1986 Chernobyl reactor accident. This is required because {sup 131}I disappeared before adequate measurements could be made.

  5. Dosimetry considerations for electrical stun devices

    NASA Astrophysics Data System (ADS)

    Reilly, J. Patrick; Diamant, Alan M.; Comeaux, James

    2009-03-01

    Electrical dosimetry issues are discussed in relation to electrical stun devices (ESDs). A measure of effectiveness is based on a 'threshold factor,' FT, calculated with a myelinated nerve model that simulates stimulation of a reference-case neuron (20 µm diameter, 1 cm distant). Several ESDs were measured in the laboratory using resistive loads of 100-1000 Ω some included air gaps bridged via an electric arc. Conducted current waveform parameters and the associated threshold factors depend on the resistance of the load. Thresholds were also determined for ideal monophasic and biphasic square-wave stimuli, and compared with measured ESD waveforms. Although FT is proposed as a metric of strength, an approximate surrogate is the charge within the largest phase of the current versus time waveform. The approximation is reasonably accurate for monophasic waveforms with phase durations below about 100 µs, and for charge-balanced biphasic square-wave stimuli with phase durations between about 40 and 100 µs.

  6. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2003-10-10

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP). It describes the roles of and relationships between the IDP and site contractors, and provides recommendations and guidance for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs. Guidance includes identifying conditions under which workers should be placed on bioassay programs, types, descritptions, and capabilities of measurements, suggested routine bioassay programs, limitations on services, and practices for recording and reporting results.

  7. On flattening filter-free portal dosimetry.

    PubMed

    Pardo, Eduardo; Castro Novais, Juan; Molina López, María Yolanda; Ruiz Maqueda, Sheila

    2016-07-08

    Varian introduced (in 2010) the option of removing the flattening filter (FF) in their C-Arm linacs for intensity-modulated treatments. This mode, called flattening filter-free (FFF), offers the advantage of a greater dose rate. Varian's "Portal Dosimetry" is an electronic portal imager device (EPID)-based tool for IMRT verification. This tool lacks the capability of verifying flattening filter-free (FFF) modes due to saturation and lack of an image prediction algorithm. (Note: the latest versions of this software and EPID correct these issues.) The objective of the present study is to research the feasibility of said verifications (with the older versions of the software and EPID). By placing the EPID at a greater distance, the images can be acquired without saturation, yielding a linearity similar to the flattened mode. For the image prediction, a method was optimized based on the clinically used algorithm (analytical anisotropic algorithm (AAA)) over a homogeneous phantom. The depth inside the phantom and its electronic density were tailored. An application was developed to allow the conversion of a dose plane (in DICOM format) to Varian's custom format for Portal Dosimetry. The proposed method was used for the verification of test and clinical fields for the three qualities used in our institution for IMRT: 6X, 6FFF and 10FFF. The method developed yielded a positive verification (more than 95% of the points pass a 2%/2 mm gamma) for both the clinical and test fields. This method was also capable of "predicting" static and wedged fields. A workflow for the verification of FFF fields was developed. This method relies on the clinical algorithm used for dose calculation and is able to verify the FFF modes, as well as being useful for machine quality assurance. The procedure described does not require new hardware. This method could be used as a verification of Varian's Portal Dose Image Prediction.

  8. Biological dosimetry for astronauts: a real challenge.

    PubMed

    Testard, I; Sabatier, L

    1999-12-01

    Manned space missions recently increased in number and duration, thus it became important to estimate the biological risks encountered by astronauts. They are exposed to cosmic and galactic rays, a complex mixture of different radiations. In addition to the measurements realized by physical dosimeters, it becomes essential to estimate real biologically effective doses and compare them to physical doses. Biological dosimetry of radiation exposures has been widely performed using cytogenetic analysis of chromosomes. This approach has been used for many years in order to estimate absorbed doses in accidental or chronic overexposures of humans. In addition to conventional techniques (Giemsa or FPG staining, R- or G-banding), faster and accurate means of analysis have been developed (fluorescence in situ hybridization [FISH] painting). As results accumulate, it appears that strong interindividual variability exists in the basal level of aberrations. Moreover, some aberrations such as translocations exhibit a high background level. Radiation exposures seem to induce variability between individual responses. Its extent strongly differs with the mode of exposure, the doses delivered, the kind of radiation, and the cytogenetic method used. This paper aims to review the factors that may influence the reliability of cytogenetic dosimetry. The emphasis is on the exposure to high linear energy transfer (LET) particles in space as recent studies demonstrated interindividual variations in doses estimated from aberration analysis after long-term space missions. In addition to the problem of dose estimates, the heterogeneity of cosmic radiation raises questions relating to the real numbers of damaged cells in an individual, and potential long-term risks. Actually, densely ionizing particles are extremely potent to induce late chromosomal instability, and again, interindividual variability exists in the expression of damage. PMID:10631347

  9. Dosimetry for occupational exposure to cosmic radiation.

    PubMed

    Bartlett, D T; McAulay, I R; Schrewe, U J; Schnuer, K; Menzel, H G; Bottollier-Depois, J F; Dietze, G; Gmur, K; Grillmaeir, R E; Heinrich, W; Lim, T; Lindborg, L; Reitz, G; Schraube, H; Spurny, F; Tommasino, L

    1997-01-01

    In the course of their work, aircraft crew and frequent flyers are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, aircraft structure, etc. This has been recognised for some time and estimates of the exposure of aircraft crew have been made previously and included in, for example, UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) publications. The recent increased interest has been brought about by several factors--the consideration that the relative biological effectiveness of the neutron component as being underestimated; the trend towards higher cruising altitudes for subsonic commercial aircraft and business jet aircraft; and, most importantly, the recommendations of the International Commission on Radiological Protection (ICRP) in Publication 60, and the revision of the Euratom Basic Safety Standards Directive (BSS). In 1992, the European Dosimetry Group (EURADOS) established a Working Group to consider the exposure to cosmic radiation of aircraft crew, and the scientific and technical problems associated with radiation protection dosimetry for this occupational group. The Working Group was composed of fifteen scientists (plus a corresponding member) involved in this field of study and with knowledge of radiation measurement at aviation altitudes. This paper is based on the findings of this Working Group. Where arrangements are made to take account of the exposure of aircraft crew to cosmic radiation, dose estimation procedures will not be necessary for persons for whom total annual doses are not liable to exceed 1 mSv, and therefore, in general, for crew on aircraft not routinely flying above 8 km. Where estimates of effective dose and, in the case of female staff who are pregnant, equivalent dose to the embryo or fetus, are required (for regulatory or other purposes), it was concluded that the preferred procedure was to determine route doses and

  10. On flattening filter-free portal dosimetry.

    PubMed

    Pardo, Eduardo; Castro Novais, Juan; Molina López, María Yolanda; Ruiz Maqueda, Sheila

    2016-01-01

    Varian introduced (in 2010) the option of removing the flattening filter (FF) in their C-Arm linacs for intensity-modulated treatments. This mode, called flattening filter-free (FFF), offers the advantage of a greater dose rate. Varian's "Portal Dosimetry" is an electronic portal imager device (EPID)-based tool for IMRT verification. This tool lacks the capability of verifying flattening filter-free (FFF) modes due to saturation and lack of an image prediction algorithm. (Note: the latest versions of this software and EPID correct these issues.) The objective of the present study is to research the feasibility of said verifications (with the older versions of the software and EPID). By placing the EPID at a greater distance, the images can be acquired without saturation, yielding a linearity similar to the flattened mode. For the image prediction, a method was optimized based on the clinically used algorithm (analytical anisotropic algorithm (AAA)) over a homogeneous phantom. The depth inside the phantom and its electronic density were tailored. An application was developed to allow the conversion of a dose plane (in DICOM format) to Varian's custom format for Portal Dosimetry. The proposed method was used for the verification of test and clinical fields for the three qualities used in our institution for IMRT: 6X, 6FFF and 10FFF. The method developed yielded a positive verification (more than 95% of the points pass a 2%/2 mm gamma) for both the clinical and test fields. This method was also capable of "predicting" static and wedged fields. A workflow for the verification of FFF fields was developed. This method relies on the clinical algorithm used for dose calculation and is able to verify the FFF modes, as well as being useful for machine quality assurance. The procedure described does not require new hardware. This method could be used as a verification of Varian's Portal Dose Image Prediction. PMID:27455487

  11. Neutron dosimetry in boron neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na/sub 2/B/sub 12/H/sub 11/SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with /sup 10/B in boron containing cells through the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction producing charged particles with a maximum range of approx. 10..mu..m in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize /sup 6/Li and /sup 10/B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the /sup 14/N(n,p)/sup 14/C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils.

  12. Creative Art for Learning.

    ERIC Educational Resources Information Center

    Karnes, Merle B.

    The book presents a creative art program for preschool children that utilizes art as a vehicle to develop many desirable behaviors -- social, emotional, and intellectual. A total of 45 art activities are described, organized under the headings "Exploration--Seeing and Feeling" (including seeing and feeling different textures, and seeing repeating…

  13. Arts Opportunity Gap

    ERIC Educational Resources Information Center

    Principal, 2012

    2012-01-01

    The increasing focus on arts education during the past few years has brought much-needed attention to the benefits it affords to students of all ages. Past research has proved time and again that the arts support teaching and learning in numerous ways, and recommendations abound that schools should find ways to integrate the arts in classrooms.…

  14. Women Art Educators.

    ERIC Educational Resources Information Center

    Zimmerman, Enid, Ed.; Stankiewicz, Mary Ann, Ed.

    This collection of papers on women art educators reveals the variety of roles played by those women, from anonymous art teachers to leaders in their profession. "Mary Rouse: A Remembrance" (G. Hubbard) is a personal perspective on Rouse, the development of her career, and her considerable impact in the field of art education. "The Search for Mrs.…

  15. Arts Advocacy Roundtable.

    ERIC Educational Resources Information Center

    Costa, Ann Marie; Green, Sharon; Haedicke, Susan; Mardirosian, Gail Humphries; Martin, Deborah; Schildcrout, Jordan; Spencer, Jenny; Weinberg, Mark

    2001-01-01

    Records discussion of an arts advocacy roundtable began at the August 2000 meeting of the Association for Theatre in Higher Education and continued online. Explains how theatre departments have found themselves defending their very existence in the past decade. Includes discussions of the meaning of arts advocacy; how to incorporate arts advocacy…

  16. The Art of Opera.

    ERIC Educational Resources Information Center

    King, David L.

    1994-01-01

    Describes a two-week arts appreciation unit implemented by a sixth-grade teacher at Graham Elementary School in Los Angeles. The unit introduces the students to Parisian art and architecture, the music of Wagner and Stravinsky, and the paintings of Monet and Chagall. Visual and aural exposure to art and music, group discussions, and hands-on art…

  17. Design for Visual Arts.

    ERIC Educational Resources Information Center

    Skeries, Larry

    Experiences suggested within this visual arts packet provide high school students with awareness of visual expression in graphic design, product design, architecture, and crafts. The unit may be used in whole or in part and includes information about art careers and art-related jobs found in major occupational fields. Specific lesson topics…

  18. "I like Art Because..."

    ERIC Educational Resources Information Center

    Leishear, Christina Chiddo

    2012-01-01

    There is a lot of creative energy between students and their art materials. In this lesson, the author discusses materials an artist may use to create a work of art--paint, a paintbrush, a palette, crayons, markers, pastels, and so on. Each student sketched a picture of themselves holding some tools that can be used in art. The objectives of this…

  19. Art Meets Science

    ERIC Educational Resources Information Center

    Rohs, C. Renee

    2007-01-01

    Numerous connections between the visual arts and sciences are evident if we choose to look for them. In February 2006, students and faculty from the Art and Geol/Geog departments at NW Missouri State University put together an exhibit at a local art gallery featuring works that were born out of science, inspired by science, or exploring the…

  20. Transpersonal Art Therapy Education.

    ERIC Educational Resources Information Center

    Franklin, Michael; Farrelly-Hansen, Mimi; Marek, Bernie; Swan-Foster, Nora; Wallingford, Sue

    2000-01-01

    Addresses the task of training future art therapists through a unique branch of transpersonal psychology referred to as "contemplative education." Discusses contemplative practices, such as meditation, and their relationship to creating art. Offers a definition of transpersonal art therapy as well as a literature review. (Contains 80 references.)…

  1. Art's Educational Value

    ERIC Educational Resources Information Center

    Richmond, Stuart

    2009-01-01

    This paper explores critically the nature of art's value in education and argues in favor of both intrinsic and instrumental value. Form and expression, while being out of favor in some contemporary circles, are re-claimed as appropriate features of art. Concepts and forms in art as elsewhere serve to structure impressions and experience and…

  2. Arts and Education.

    ERIC Educational Resources Information Center

    Berube, Maurice R.

    1999-01-01

    Describes the American public's growing interest in art after World War II. Discusses the problematic history of arts in the public school curricula, in which arts programs are seen as a last priority in school reform and are the first to be eliminated in school districts facing financial retrenchment. (SR)

  3. The Art of Running

    ERIC Educational Resources Information Center

    Brown, Jill Harris

    2007-01-01

    Every year, the Parent-Teacher Association of Ferndale Elementary School in Atlanta, Georgia sponsors a fun road race for the students, teachers, families, and community. This annual event has inspired the author to develop the Running and Art project to show off her students' art and squeeze in a little art history, too. In this article, the…

  4. Art and Montessori.

    ERIC Educational Resources Information Center

    Turner, Joy

    1982-01-01

    Designed for Montessori teachers with little background in the plastic arts, this discussion points out that, while the Montessori program has many features that support creative development, presently, no art curriculum exists. The article indicates the limitations of Maria Montessori's ideas and attitudes about the role of art in the education…

  5. Navajo Arts and Crafts.

    ERIC Educational Resources Information Center

    Roessel, Robert A., Jr.

    A profusely-illustrated book on Navajo arts and crafts, from the Navajo Curriculum Center, includes sections on weaving, silversmithing, basket making, pottery making, and the economics of Navajo arts and crafts. The book is intended for use by Navajo students and Navajo people in general, so they can read about their arts and crafts from a Navajo…

  6. Early Childhood Arts Games.

    ERIC Educational Resources Information Center

    Suthers, Louie; Larkin, Veronicah

    The arts are central to quality early childhood programs. Experiences in the arts commonly attract and sustain children's involvement and provide opportunities for individualized creative responses. This research project investigated the implementation of arts games (structured play experiences based on drama, music, dance, and movement) into the…

  7. Research Explains Modern Art!

    ERIC Educational Resources Information Center

    Eickhorst, William S.

    1985-01-01

    This tongue-in-cheek article calls for the critical reexamination of the history of modern art. The author believes that modern art is neither an extension of the Renaissance aesthetic nor a collective by-product of artists possessed of creative genius. Creators of modern art were actually representational artists suffering from visual stuttering.…

  8. Art on Wheels.

    ERIC Educational Resources Information Center

    Szekely, George

    2002-01-01

    Discusses the use of wheels in children's art. Focuses on collecting wheels, ideas for decorating different artworks with wheels, and objects that can move on wheels. Sees wheels as an inspiration for children's art, reflecting on the use of this object in the art classroom. (CMK)

  9. Computer Aided Art Major.

    ERIC Educational Resources Information Center

    Gibson, Jim

    The Computer Aided Art program offered at Northern State State University (Aberdeen, South Dakota), is coordinated with the traditional art major. The program is designed to familiarize students with a wide range of art-related computer hardware and software and their applications and to prepare students for problem-solving with unfamiliar…

  10. Teaching with Public Art

    ERIC Educational Resources Information Center

    Argiro, Carol

    2004-01-01

    "Public art" is a broad term that refers to art in public spaces and includes architecture, landscape, and urban design. Public art makes public spaces more beautiful, encourages us to pause and interact with our environment, or reminds us of important people and events. Just as often, public sculptures become such a part of our everyday…

  11. Art and Technology.

    ERIC Educational Resources Information Center

    Lamal, Pauline Dove

    Art has always adapted technological advances to its own uses. In the last 15 years, art has turned to color photocopiers, computers, mimeograph machines, and thermofax copiers. With this in mind, Central Piedmont Community College began offering a course in 1982 called "Art and Technology" which focused on the application of office machines to…

  12. Arts throughout the Curriculum.

    ERIC Educational Resources Information Center

    Manner, Jane Carol

    2002-01-01

    Describes how curriculum integration can help art enhance learning during times when the arts may be considered dispensable and removed from education, presenting examples of how classroom teachers have examined art as a link to expanded understanding of history, science, math, reading, current events, geography, cultural studies, emotions,…

  13. Art as Transformation.

    ERIC Educational Resources Information Center

    London, Peter

    Western society sees art as beautiful, well crafted objects; and art education derives almost its entire theory and practice from this concept. However, this is only one function of the creative process and art educators need to reconsider the fullness and depth of the usage of that process and provide an alternative mission and practice of art…

  14. Art and Physics

    ERIC Educational Resources Information Center

    Metcalf, Suesi

    2004-01-01

    In this paper, the author offers lesson plan ideas that are designed to guide teachers of art and science to encourage their students to see connections between art images and physics principles. The four works of art discussed are examples that can be linked visually and conceptually to physics properties in mathematics, space, energy, and light.…

  15. Basic Skills: Visual Arts.

    ERIC Educational Resources Information Center

    Kentucky State Dept. of Education, Frankfort.

    A curriculum guide for the visual arts is presented. The goal of elementary and middle school education in the four arts disciplines is the development of basic understanding and skills by every student. In secondary education the aim is to continue a sequential curriculum for those students who study the arts. This document is intended as a guide…

  16. Windows to Art Excitement.

    ERIC Educational Resources Information Center

    Laird, Shirley; Crumpecker, Cheryl

    2003-01-01

    Describes an art project that aimed to bring more attention to an art program. Explains that the students created themed murals on the windows of the art classroom, such as a "Jungle,""Ocean,""Masterpiece Paintings," and "Rainforest Tree Frogs." Discusses how the murals were created. (CMK)

  17. The Arts & Compensatory Education.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Education, Lansing.

    Intended to help compensatory education personnel better understand the role of the arts in cognitive growth, this booklet provides practical suggestions for using arts strategies in basic education. Following a discussion of the role of the arts in the learning process, the booklet presents a number of activities that involve the interaction of…

  18. From soil in art towards Soil Art

    NASA Astrophysics Data System (ADS)

    Feller, C.; Landa, E. R.; Toland, A.; Wessolek, G.

    2015-02-01

    The range of art forms and genres dealing with soil is wide and diverse, spanning many centuries and artistic traditions, from prehistoric painting and ceramics to early Renaissance works in Western literature, poetry, paintings, and sculpture, to recent developments in cinema, architecture and contemporary art. Case studies focused on painting, installation, and cinema are presented with the view of encouraging further exploration of art about, in, with, or featuring soil or soil conservation issues, created by artists, and occasionally scientists, educators or collaborative efforts thereof.

  19. Review of the near-earth space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Guo, Jianming; Chen, Xiaoqian; Li, Shiyou

    2016-07-01

    The near-earth space radiation environment has a great effect to the spacecraft and maybe do harm to the astronaut's health. Thus, how to measure the radiation has become a serious challenge. In order to provide sufficient protection both for astronauts and for instruments on-board, dose equivalent and linear energy transfer should be measured instead of merely measuring total radiation dose. This paper reviews the methods of radiation measurement and presents a brief introduction of dosimetry instruments. The method can be divided into two different kinds, i.e., positive dosimetry and passive dosimetry. The former usually includes electronic devices which can be used for data storage and can offer simultaneous monitoring on space radiation. The passive dosimetry has a much simple structure, and need extra operation after on-orbit missions for measuring. To get more reliable data of radiation dosimetry, various instruments and methods had been applied in the spacecrafts and the manned spacecrafts in particular. The outlook of the development in the space radiation dosimetry measurement is also presented.

  20. Highlights and pitfalls of 20 years of application of computerised glow curve analysis to thermoluminescence research and dosimetry.

    PubMed

    Horowitz, Y S; Moscovitch, M

    2013-01-01

    The technical and dosimetric aspects of computerised glow curve analysis are described in detail including a review of the current 'state-of-the-achieved' in applications to environmental and personal dosimetry, clinical dosimetry, quality control, characterisation of new materials, continuing characterisation of 'old' materials, heavy charged particle dosimetry, mixed field n-gamma dosimetry, X-ray dosimetry and other aspects of thermoluminescence dosimetry. Fearless emphasis is placed on 'pitfalls' as well as successes.

  1. The Art Classroom as Art Teacher.

    ERIC Educational Resources Information Center

    Barr-Johnson, Virginia; Brockmyer, James J.

    1981-01-01

    Suggests ways of turning the art room into a microenvironment of sensory intensification--a place where a student steps into a new world of color, sound, and smell that delights the eye and inspires the imagination. (Author/SJL)

  2. Art-Based Learning Strategies in Art Therapy Graduate Education

    ERIC Educational Resources Information Center

    Deaver, Sarah P.

    2012-01-01

    This mixed methods research study examined the use of art-based teaching methods in master's level art therapy graduate education in North America. A survey of program directors yielded information regarding in which courses and how frequently art-based methods (individual in-class art making, dyad or group art making, student art projects as…

  3. New School Art Styles: The Project of Art Education

    ERIC Educational Resources Information Center

    Gude, Olivia

    2013-01-01

    Art projects are appropriate building blocks for visual art curriculum because good art projects encode complex aesthetic strategies, giving students tools to investigate and make meaning. Art made in schools will inevitably be some form of "school art," defined by Arthur Efland in "The School Art Style: a Functional Analysis,"…

  4. A probabilistic gastrointestinal tract dosimetry model

    NASA Astrophysics Data System (ADS)

    Huh, Chulhaeng

    In internal dosimetry, the tissues of the gastrointestinal (GI) tract represent one of the most radiosensitive organs of the body with the hematopoietic bone marrow. Endoscopic ultrasound is a unique tool to acquire in-vivo data on GI tract wall thicknesses of sufficient resolution needed in radiation dosimetry studies. Through their different echo texture and intensity, five layers of differing echo patterns for superficial mucosa, deep mucosa, submucosa, muscularis propria and serosa exist within the walls of organs composing the alimentary tract. Thicknesses for stomach mucosa ranged from 620 +/- 150 mum to 1320 +/- 80 mum (total stomach wall thicknesses from 2.56 +/- 0.12 to 4.12 +/- 0.11 mm). Measurements made for the rectal images revealed rectal mucosal thicknesses from 150 +/- 90 mum to 670 +/- 110 mum (total rectal wall thicknesses from 2.01 +/- 0.06 to 3.35 +/- 0.46 mm). The mucosa thus accounted for 28 +/- 3% and 16 +/- 6% of the total thickness of the stomach and rectal wall, respectively. Radiation transport simulations were then performed using the Monte Carlo N-particle transport code (MCNP) 4C transport code to calculate S values (Gy/Bq-s) for penetrating and nonpenetrating radiations such as photons, beta particles, conversion electrons and auger electrons of selected nuclides, I123, I131, Tc 99m and Y90 under two source conditions: content and mucosa sources, respectively. The results of this study demonstrate generally good agreement with published data for the stomach mucosa wall. The rectal mucosa data are consistently higher than published data compared with the large intestine due to different radiosensitive cell thicknesses (350 mum vs. a range spanning from 149 mum to 729 mum) and different geometry when a rectal content source is considered. Generally, the ICRP models have been designed to predict the amount of radiation dose in the human body from a "typical" or "reference" individual in a given population. The study has been performed to

  5. Twenty new ISO standards on dosimetry for radiation processing

    NASA Astrophysics Data System (ADS)

    Farrar, H., IV

    2000-03-01

    Twenty standards on essentially all aspects of dosimetry for radiation processing were published as new ISO standards in December 1998. The standards are based on 20 standard practices and guides developed over the past 14 years by Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). The transformation to ISO standards using the 'fast track' process under ISO Technical Committee 85 (ISO/TC85) commenced in 1995 and resulted in some overlap of technical information between three of the new standards and the existing ISO Standard 11137 Sterilization of health care products — Requirements for validation and routine control — Radiation sterilization. Although the technical information in these four standards was consistent, compromise wording in the scopes of the three new ISO standards to establish precedence for use were adopted. Two of the new ISO standards are specifically for food irradiation applications, but the majority apply to all forms of gamma, X-ray, and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruit, vegetables, meats, spices, processed foods, plastics, inks, medical wastes, and paper. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties using the new ISO Type A and Type B evaluations. Unfortunately, nine of the 20 standards just adopted by the ISO are not the most recent versions of these standards and are therefore already out of date. To help solve this problem, efforts are being made to develop procedures to coordinate the ASTM and ISO development and revision processes for these and future ASTM-originating dosimetry standards. In the meantime, an additional four dosimetry standards have recently been published by the ASTM but

  6. Improved dosimetry techniques for intravascular brachytherapy

    NASA Astrophysics Data System (ADS)

    Sehgal, Varun

    Coronary artery disease leads to the accumulation of atheromatous plaque leading to coronary stenosis. Coronary intervention techniques such as balloon angioplasty and atherectomy are used to address coronary stenosis and establish a stable lumen thus enhancing blood flow to the myocardium. Restenosis or re-blockage of the arteries is a major limitation of the above mentioned interventional techniques. Neointimal hyperplasia or proliferation of cells in response to the vascular injury as a result of coronary intervention is considered to be one of the major causes of restenosis. Recent studies indicated that irradiation of the coronary lesion site, with radiation doses ranging from 15 to 30 Gy, leads to diminishing neointimal hyperplasia with subsequent reduction in restenosis. The radiation dose is given by catheter-based radiation delivery systems using beta-emitters 90Sr/90Y, 32P and gamma-emitting 192Ir among others. However the dose schema used for dose prescription for these sources are relatively simplistic, and are based on calculations using uniform homogenous water or tissue media and simple cylinder geometry. Stenotic coronary vessels are invariably lined with atheromatous plaque of heterogeneous composition, the radiation dose distribution obtained from such dosimetry data can cause significant variations in the actual dose received by a given patient. Such discrepancies in dose calculation can introduce relatively large uncertainties in the limits of dose window for effective and safe application of intravascular brachytherapy, and consequently in the clinical evaluation of the efficacy of this modality. In this research study we investigated the effect of different geometrical and material heterogeneities, including residual plaque, catheter non-centering, lesion eccentricity and cardiac motion on the radiation dose delivered at the lesion site. Correction factors including dose perturbation factors and dose variation factors have been calculated

  7. The martial arts.

    PubMed

    Terry, Charles M

    2006-08-01

    Given the increasing popularity of the martial arts, it is likely that physicians in all specialties encounter patients who participate. From pediatric patients, to geriatric patients, to those living with various disabilities, the martial arts may offer physical, psychologic, and therapeutic benefits. An appreciation of the physical demands of the martial arts is crucial to understanding the pathogenesis of injury as well as to planning treatment and prevention strategies and to determining safe return to participation after injury.

  8. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2007-03-12

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor

  9. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2010-04-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  10. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2011-04-04

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  11. Code of practice for clinical proton dosimetry.

    PubMed

    Vynckier, S; Bonnett, D E; Jones, D T

    1991-01-01

    The objective of this document is to make recommendations for the determination of absorbed dose to tissue for clinical proton beams and to achieve uniformity in proton dosimetry. A Code of Practice has been chosen, providing specific guidelines for the choice of the detector and the method of determination of absorbed dose for proton beams only. This Code of Practice is confined specifically to the determination of absorbed dose and is not concerned with the biological effects of proton beams. It is recommended that dosimeters be calibrated by comparison with a calorimeter. If this is not available, a Faraday cup, or alternatively, an ionization chamber, with a 60Co calibration factor should be used. Physical parameters for determining the dose from tissue-equivalent ionization chamber measurements are given together with a worksheet. It is recommended that calibrations be carried out in water at the centre of the spread-out-Bragg-peak and that dose distributions be measured in a water phantom. It is estimated that the error in the calibrations will be less than +/- 5% (1 S.D.) in all cases. Adoption and implementation of this Code of Practice will facilitate the exchange of clinical information.

  12. Inhalation exposure technology, dosimetry, and regulatory issues.

    PubMed

    Dorato, M A; Wolff, R K

    1991-01-01

    Inhalation toxicology technology has provided the scientific community with important advances in studies of inhaled toxicants. These advances include new and more efficient exposure systems (e.g., flow-past nose-only exposure systems), and improved approaches to inhalation chamber environmental control (e.g., temperature, humidity, air quality). Practical problems and approaches to testing and operating inhalation exposure systems and the advantages and disadvantages of the major inhalation exposure types (e.g., whole-body, nose-only) are discussed. Important aspects of study design, such as high level particulate exposures resulting in large lung burdens (e.g., greater than or equal to 2 mg/g of lung), slowed pulmonary clearance rates, and nonspecific toxicity are considered, along with practical issues of comparative dosimetry. Regulatory guidelines have continued to present challenges in designing and conducting acute, subchronic, and chronic inhalation studies. The important regulatory issue of performing acute inhalation toxicity studies at high aerosol concentrations and "respirable" particle size distribution is discussed. PMID:1813983

  13. Calibration facility for environment dosimetry instruments

    SciTech Connect

    Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin

    2013-12-16

    In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (∼10{sup −9} - 10{sup −8} Sv/h). A correct measurement of H in this range involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.

  14. Calibration facility for environment dosimetry instruments

    NASA Astrophysics Data System (ADS)

    Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin

    2013-12-01

    In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (˜10-9 - 10-8 Sv/h). A correct measurement of H in this range involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.

  15. Biological dosimetry in Russian and Italian astronauts

    NASA Astrophysics Data System (ADS)

    Greco, O.; Durante, M.; Gialanella, G.; Grossi, G.; Pugliese, M.; Scampoli, P.; Snigiryova, G.; Obe, G.

    Large uncertainties are associated with estimates of equivalent dose and cancer risk for crews of longterm space missions. Biological dosimetry in astronauts is emerging as a useful technique to compare predictions based on quality factors and risk coefficients with actual measurements of biological damage in-flight. In the present study, chromosomal aberrations were analyzed in one Italian and eight Russian cosmonauts following missions of different duration on the MIR and the international space station (ISS). We used the technique of fluorescence in situ hybridization (FISH) to visualize translocations in chromosomes 1 and 2. In some cases, an increase in chromosome damage was observed after flight, but no correlation could be found between chromosome damage and flight history, in terms of number of flights at the time of sampling, duration in space and extra-vehicular activity. Blood samples from one of the cosmonauts were exposed in vitro to 6 MeV X-rays both before and after the flight. An enhancement in radiosensitivity induced by the spaceflight was observed.

  16. Biological dosimetry in Russian and Italian astronauts.

    PubMed

    Greco, O; Durante, M; Gialanella, G; Grossi, G; Pugliese, M; Scampoli, P; Snigiryova, G; Obe, G

    2003-01-01

    Large uncertainties are associated with estimates of equivalent dose and cancer risk for crews of long-term space missions. Biological dosimetry in astronauts is emerging as a useful technique to compare predictions based on quality factors and risk coefficients with actual measurements of biological damage in-flight. In the present study, chromosomal aberrations were analyzed in one Italian and eight Russian cosmonauts following missions of different duration on the MIR and the international space station (ISS). We used the technique of fluorescence in situ hybridization (FISH) to visualize translocations in chromosomes 1 and 2. In some cases, an increase in chromosome damage was observed after flight, but no correlation could be found between chromosome damage and flight history, in terms of number of flights at the time of sampling, duration in space and extra-vehicular activity. Blood samples from one of the cosmonauts were exposed in vitro to 6 MeV X-rays both before and after the flight. An enhancement in radiosensitivity induced by the spaceflight was observed. PMID:12971404

  17. A dosimetry intercomparison phantom for intraoperative radiotherapy.

    PubMed

    Armoogum, Kris; Watson, Colin

    2008-01-01

    Intraoperative radiotherapy (IORT) using very low kV x-rays is a promising new treatment modality and has proven to be effective for managing breast and neurological tumours. We have treated in excess of 75 patients using four Zeiss Intrabeam x-ray sources (XRS). To date there has been no published data of any dosimetric intercomparison of this type of x-ray source used at other cancer centres worldwide. This paper describes the design of a simple dosimetry intercomparison phantom for use with these very low kV x-ray sources. A prototype polymethyl methacrylate (PMMA) phantom has been manufactured, the dimensions of which were determined by the dimensions of the XRS, the beam energy and the attenuating properties of PMMA. The phantom is used in conjunction with Gafchromic XR Type-R film (GC-XRR) and its purpose is to measure the absorbed dose at a fixed distance from the effective point source at the tip of the XRS. The utility of this phantom is further enhanced through the use of an interlock, which eliminates the need to use the mobile gantry. We have used this phantom to conduct a qualitative dosimetric intercomparison of four Zeiss Intrabeam x-ray sources with positive results. This phantom is low cost, easy to manufacture, simple to use and could be adopted as a standard method of dosimetric intercomparison for Intrabeam x-ray sources as this mode of IORT becomes more widespread. PMID:18705612

  18. Millimeter wave dosimetry of human skin.

    PubMed

    Alekseev, S I; Radzievsky, A A; Logani, M K; Ziskin, M C

    2008-01-01

    To identify the mechanisms of biological effects of mm waves it is important to develop accurate methods for evaluating absorption and penetration depth of mm waves in the epidermis and dermis. The main characteristics of mm wave skin dosimetry were calculated using a homogeneous unilayer model and two multilayer models of skin. These characteristics included reflection, power density (PD), penetration depth (delta), and specific absorption rate (SAR). The parameters of the models were found from fitting the models to the experimental data obtained from measurements of mm wave reflection from human skin. The forearm and palm data were used to model the skin with thin and thick stratum corneum (SC), respectively. The thin SC produced little influence on the interaction of mm waves with skin. On the contrary, the thick SC in the palm played the role of a matching layer and significantly reduced reflection. In addition, the palmar skin manifested a broad peak in reflection within the 83-277 GHz range. The viable epidermis plus dermis, containing a large amount of free water, greatly attenuated mm wave energy. Therefore, the deeper fat layer had little effect on the PD and SAR profiles. We observed the appearance of a moderate SAR peak in the therapeutic frequency range (42-62 GHz) within the skin at a depth of 0.3-0.4 mm. Millimeter waves penetrate into the human skin deep enough (delta = 0.65 mm at 42 GHz) to affect most skin structures located in the epidermis and dermis.

  19. Dosimetry of in situ activated dysprosium microspheres.

    PubMed

    Adnani, N

    2004-03-01

    This paper presents the results of a study aimed at investigating the dosimetry of stable dysprosium microspheres activated, in situ, by a linac generated photon beam. In phantom measurements of the neutron flux within an 18 MV photon beam were performed using CR-39 detectors and gold activation. The results were used in conjunction with a Monte Carlo computer simulation to investigate the dose distribution resulting from the activation of dysprosium (Dy) microspheres using an 18 MV photon beam. Different depths, lesion volumes and volume concentrations of microspheres are investigated. The linac lower collimator jaws are assumed completely closed to shield the tumour volume from the photon dose. Using a single AP field with 0 x 0 cm2 field size (closed jaws), a photon dose rate of 600 MU min(-1) and 80 cm SSD for 10 min, an average dose exceeding 1 Gy can be delivered to spherical lesions of 0.5 cm and higher diameter. The variation of the average dose with the size of the lesion reaches saturation for tumour volumes exceeding 1 cm in diameter. This report shows that the photon beam of a high-energy linac can be used to activate Dy microspheres in situ and, as a result, deliver a significant dose of beta radiation. Non-radioactive Dy microspheres do not have the toxicity and imaging problems associated with commercially available yttrium-90 based products. PMID:15070199

  20. Current personnel dosimetry practices at DOE facilities

    SciTech Connect

    Fix, J.J.

    1981-05-01

    Only three parameters were included in the personnel occupational exposure records by all facilities. These are employee name, social security number, and whole body dose. Approximate percentages of some other parameters included in the record systems are sex (50%), birthdate (90%), occupation (26%), previous employer radiation exposure (74%), etc. Statistical analysis of the data for such parameters as sex versus dose distribution, age versus dose distribution, cumulative lifetime dose, etc. was apparently seldom done. Less than 50% of the facilities reported having formal documentation for either the dosimeter, records system, or reader. Slightly greater than 50% of facilities reported having routine procedures in place. These are considered maximum percentages because some respondents considered computer codes as formal documentation. The repository receives data from DOE facilities regarding the (a) distribution of annual whole body doses, (b) significant internal depositions, and (c) individual doses upon termination. It is expected that numerous differences exist in the dose data submitted by the different facilities. Areas of significant differences would likely include the determination of non-measurable doses, the methods used to determine previous employer radiation dose, the methods of determining cumulative radiation dose, and assessment of internal doses. Undoubtedly, the accuracy of the different dosimetry systems, especially at low doses, is very important to the credibility of data summaries (e.g., man-rem) provided by the repository.

  1. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  2. Optical dosimetry for interstitial photodynamic therapy

    SciTech Connect

    Arnfield, M.R.; Tulip, J.; Chetner, M.; McPhee, M.S. )

    1989-07-01

    An approach to photodynamic treatment of tumors is the interstitial implantation of fiber optic light sources. Dosimetry is critical in identifying regions of low light intensity in the tumor which may prevent tumor cure. We describe a numerical technique for calculating light distributions within tumors, from multiple fiber optic sources. The method was tested using four translucent plastic needles, which were placed in a 0.94 X 0.94 cm grid pattern within excised Dunning R3327-AT rat prostate tumors. A cylindrical diffusing fiber tip, illuminated by 630 nm dye laser light was placed within one needle and a miniature light detector was placed within another. The average penetration depth in the tumor region between the two needles was calculated from the optical power measured by the detector, using a modified diffusion theory. Repeating the procedure for each pair of needles revealed significant variations in penetration depth within individual tumors. Average values of penetration depth, absorption coefficient, scattering coefficient, and mean scattering cosine were 0.282 cm, 0.469 cm-1, 250 cm-1 and 0.964, respectively. Calculated light distributions from four cylindrical sources in tumors gave reasonable agreement with direct light measurements using fiber optic probes.

  3. Reactor dosimetry and RPV life management

    SciTech Connect

    Belousov, S.; Ilieva, K.; Mitev, M.

    2011-07-01

    Reactor dosimetry (RD) is a tool that provides data for neutron fluence accumulated over the reactor pressure vessel (RPV) during the reactor operation. This information, however, is not sufficient for RPV lifetime assessment. The life management of RPV is a multidisciplinary task. To assess whether the RPV steel properties at the current stage (for actual accumulated neutron fluence) of reactor operation are still 'safe enough,' the dependence of material properties on the fluence must be known; this is a task for material science (MS). Moreover, the mechanical loading over the RPV during normal operation and accidence have to be known, as well, for evaluation, if the RPV material integrity in this loading condition and existing cracks is provided. The crack loading path in terms of stress intensity factor is carried out by structural analyses (SA). Pressure and temperature distribution over RPV used in these analyses are obtained from a thermal hydraulic (TH) calculation. The conjunction of RD and other disciplines in RPV integrity assessment is analyzed in accordance with the FFP (fitness for purpose) approach. It could help to improve the efficiency in multi-disciplinary tasks solutions. (authors)

  4. Biological dosimetry by interphase chromosome painting

    NASA Technical Reports Server (NTRS)

    Durante, M.; George, K.; Yang, T. C.

    1996-01-01

    Both fluorescence in situ hybridization of metaphase spreads with whole-chromosome probes and premature chromosome condensation in interphase nuclei have been used in the past to estimate the radiation dose to lymphocytes. We combined these techniques to evaluate the feasibility of using painted interphase chromosomes for biodosimetry. Human peripheral lymphocytes were exposed to gamma rays and fused to mitotic Chinese hamster cells either immediately after irradiation or after 8 h incubation at 37 degrees C. Interphase or metaphase human chromosomes were hybridized with a composite probe specific for human chromosomes 3 and 4. The dose-response curve for fragment induction immediately after irradiation was linear; these results reflected breakage frequency in the total genome in terms of DNA content per chromosome. At 8 h after irradiation, the dose-response curve for chromosome interchanges, the prevalent aberration in interphase chromosomes, was linear-quadratic and similar to that observed for metaphase chromosomes. These results suggest that painting prematurely condensed chromosomes can be useful for biological dosimetry when blood samples are available shortly after the exposure, or when interphase cells are to be scored instead of mitotic cells.

  5. Student Perceptions of an Online Medical Dosimetry Program

    SciTech Connect

    Lenards, Nishele

    2011-07-01

    The University of Wisconsin-La Crosse offers the first online medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was a need to collect and analyze student perceptions of online learning in medical dosimetry. This research provided a guide for future implementation by other programs as well as validated the University of Wisconsin-La Crosse program. Methodology used consisted of an electronic survey sent to all previous and currently enrolled students in the University of Wisconsin-La Crosse medical dosimetry program. The survey was both quantitative and qualitative in demonstrating attitudinal perceptions of students in the program. Quantitative data was collected and analyzed using a 5-point Likert scale. Qualitative data was gathered based on the open-ended responses and the identifying themes from the responses. The results demonstrated an overall satisfaction with this program, the instructor, and the online courses. Students felt a sense of belonging to the courses and the program. Considering that a majority of the students had never taken an online course previously, the students felt there were no technology issues. Future research should include an evaluation of board exam statistics for students enrolled in the online and face-to-face medical dosimetry programs.

  6. Student perceptions of an online medical dosimetry program.

    PubMed

    Lenards, Nishele

    2011-01-01

    The University of Wisconsin-La Crosse offers the first online medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was a need to collect and analyze student perceptions of online learning in medical dosimetry. This research provided a guide for future implementation by other programs as well as validated the University of Wisconsin-La Crosse program. Methodology used consisted of an electronic survey sent to all previous and currently enrolled students in the University of Wisconsin-La Crosse medical dosimetry program. The survey was both quantitative and qualitative in demonstrating attitudinal perceptions of students in the program. Quantitative data was collected and analyzed using a 5-point Likert scale. Qualitative data was gathered based on the open-ended responses and the identifying themes from the responses. The results demonstrated an overall satisfaction with this program, the instructor, and the online courses. Students felt a sense of belonging to the courses and the program. Considering that a majority of the students had never taken an online course previously, the students felt there were no technology issues. Future research should include an evaluation of board exam statistics for students enrolled in the online and face-to-face medical dosimetry programs.

  7. Macroscopic to Microscopic Scales of Particulate Dosimetry: From Source to Fate in the Body

    EPA Science Inventory

    Additional perspective with regards to particle dosimetry is achieved by exploring dosimetry across a range of scales from macroscopic to microscopic in scope. Typically, one thinks of dosimetry as what happens when a particle is inhaled, where it is deposited, and how it is clea...

  8. Implementation of IMRT and VMAT using Delta4 phantom and portal dosimetry as dosimetry verification tools

    NASA Astrophysics Data System (ADS)

    Daci, Lulzime; Malkaj, Partizan

    2016-03-01

    In this study we analyzed and compared the dose distribution of different IMRT and VMAT plans with the intent to provide pre-treatment quality assurance using two different tools. Materials/Methods: We have used the electronic portal imaging device EPID after calibration to dose and correction for the background offset signal and also the Delta4 phantom after en evaluation of angular sensitivity. The Delta4 phantom has a two-dimensional array with ionization chambers. We analyzed three plans for each anatomical site calculated by Eclipse treatment planning system. The measurements were analyzed using γ-evaluation method with passing criteria 3% absolute dose and 3 mm distance to agreement (DTA). For all the plans the range of score has been from 97% to 99% for gantry fixed at 0° while for rotational planes there was a slightly decreased pass rates and above 95%. Point measurement with a ionization chamber were done in additional to see the accuracy of portal dosimetry and to evaluate the Delta4 device to various dose rates. Conclusions: Both Delt4 and Portal dosimetry shows good results between the measured and calculated doses. While Delta4 is more accurate in measurements EPID is more time efficient. We have decided to use both methods in the first steps of IMRT and VMAT implementation and later on to decide which of the tools to use depending on the complexity of plans, how much accurate we want to be and the time we have on the machine.

  9. Segmented ART - The new era in ART?

    PubMed

    Ozgur, Kemal; Humaidan, Peter; Coetzee, Kevin

    2016-06-01

    Currently up to 4% of infants born in developing countries are conceived through assisted reproductive technology (ART). Even though most of these conceptions occur and progress without complications, ART procedures and processes may increase iatrogenesis through complications in - and after conception. We herein review and discuss the clinically and scientific implications and evidence of iatrogenesis, and show how the evolution in ART technologies and procedures has led to the current presumption that frozen embryo transfer might be a more optimal strategy than fresh embryo transfer, in terms of not only reproduction, but also of maternal and fetal outcomes. There is increasing scientific evidence to support the notion that controlled ovarian stimulation could induce significant changes to the endocrine profile of a reproductive cycle, especially to the reproductively important early luteal phase. These changes may not only have a negative effect on implantation and early placentation, but also on the mother, the fetus, and the infant. The overt consequences of controlled ovarian stimulation include ovarian hyperstimulation syndrome, reduced embryo implantation, increased ectopic pregnancy, and altered placentation and fetal growth. The cumulative scientific evidence from this review suggests that GnRHa trigger in segmented ART might constitute the future routine treatment regimen for IVF patients, providing a safe, effective, and patient friendly treatment.

  10. Art in Chemistry; Chemistry in Art.

    ERIC Educational Resources Information Center

    Greenberg, Barbara R.; Patterson, Dianne

    High school teachers are often challenged to motivate students who have little or no interest in a subject and are bored with traditional instruction. This unique book is designed to help educators make chemistry classes more interesting and links art curriculum to practical applications, integrating the two subjects through scores of hands-on…

  11. Segmented ART - The new era in ART?

    PubMed

    Ozgur, Kemal; Humaidan, Peter; Coetzee, Kevin

    2016-06-01

    Currently up to 4% of infants born in developing countries are conceived through assisted reproductive technology (ART). Even though most of these conceptions occur and progress without complications, ART procedures and processes may increase iatrogenesis through complications in - and after conception. We herein review and discuss the clinically and scientific implications and evidence of iatrogenesis, and show how the evolution in ART technologies and procedures has led to the current presumption that frozen embryo transfer might be a more optimal strategy than fresh embryo transfer, in terms of not only reproduction, but also of maternal and fetal outcomes. There is increasing scientific evidence to support the notion that controlled ovarian stimulation could induce significant changes to the endocrine profile of a reproductive cycle, especially to the reproductively important early luteal phase. These changes may not only have a negative effect on implantation and early placentation, but also on the mother, the fetus, and the infant. The overt consequences of controlled ovarian stimulation include ovarian hyperstimulation syndrome, reduced embryo implantation, increased ectopic pregnancy, and altered placentation and fetal growth. The cumulative scientific evidence from this review suggests that GnRHa trigger in segmented ART might constitute the future routine treatment regimen for IVF patients, providing a safe, effective, and patient friendly treatment. PMID:27288333

  12. Wearable Arts of Japan: Seattle Art Museum.

    ERIC Educational Resources Information Center

    Loudon, Sarah

    1996-01-01

    Presents four lesson plans centered around artworks involving Japanese clothing. Instructional materials include color plates of a 19th century print showing women's clothing, two beautifully handcrafted coats, and a coverlet in kimono form. The lesson plans discuss Japanese clothing, art, society, and culture. (MJP)

  13. Dosimetry and cross section measurements at RTNS II

    SciTech Connect

    Greenwood, L.R.; Kneff, D.W.

    1987-01-01

    Numerous measurements have been conducted at TRNS-II in order to map the neutron field for materials irradiations, to measure activation cross sections, and to measure helium production cross sections. Experiments of up to two weeks duration irradiated large numbers of activation dosimetry and helium samples both close to the source and throughout the target room. Many other samples have been irradiated in piggy-back positions over periods lasting many months. All of these experiments fall into four main classes, namely, fluence-mapping, activation dosimetry, the production of long-lived isotopes, and helium generation measurements. Radiometric dosimetry and activation cross section measurements were performed at Argonne National Laboratory; helium production was measured at Rockwell International Corporation. This paper briefly summarizes the principal results of our measurements at RTNS-II; references are given for more detailed publications. 14 refs., 4 figs.

  14. Topical Review: Optically stimulated luminescence (OSL) dosimetry in medicine

    NASA Astrophysics Data System (ADS)

    Yukihara, E. G.; McKeever, S. W. S.

    2008-10-01

    This paper reviews fundamental and practical aspects of optically stimulated luminescence (OSL) dosimetry pertaining to applications in medicine, having particularly in mind new researchers and medical physicists interested in gaining familiarity with the field. A basic phenomenological model for OSL is presented and the key processes affecting the outcome of an OSL measurement are discussed. Practical aspects discussed include stimulation modalities (continuous-wave OSL, pulsed OSL and linear modulation OSL), basic experimental setup, available OSL readers, optical fiber systems and basic properties of available OSL dosimeters. Finally, results from the recent literature on applications of OSL in radiotherapy, radiodiagnostics and heavy charged particle dosimetry are discussed in light of the theoretical and practical framework presented in this review. Open questions and future challenges in OSL dosimetry are highlighted as a guide to the research needed to further advance the field.

  15. Report from the dosimetry working group to CEDR project management

    SciTech Connect

    Fix, J J

    1994-08-01

    On August 2, 1989, Admiral Watkins, Secretary of the US Department of Energy (DOE), presented a four-point program designed to enhance the DOE epidemiology program. One part of this program was the establishment of a Comprehensive Epidemiologic Data Resource (CEDR) to facilitate independent research to validate and supplement DOE research on human health effects. A Dosimetry Working Group was formed during May 1991 to evaluate radiation dose variables and associated documentation that would be most useful to researchers for retrospective and prospective studies. The Working Group consisted of thirteen individuals with expertise and experience in health physics, epidemiology, dosimetry, computing, and industrial hygiene. A final report was delivered to CEDR Project Management during February 1992. The report contains a number of major recommendations concerning collection, interpretation, and documentation of dosimetry data to maximize their usefulness to researchers using CEDR for examining possible health effects of occupational exposure to ionizing radiation.

  16. Support for Arts Education. State Arts Agency Fact Sheet

    ERIC Educational Resources Information Center

    National Assembly of State Arts Agencies, 2011

    2011-01-01

    Supporting lifelong learning in the arts is a top priority for state arts agencies. By supporting arts education in the schools, state arts agencies foster young imaginations, address core academic standards, and promote the critical thinking and creativity skills essential to a 21st century work force. State arts agencies also support…

  17. Arts Week: A Canadian School Celebrates the Arts.

    ERIC Educational Resources Information Center

    Ryan, Charlene A.

    2003-01-01

    Focuses on the program called "Arts Week" that demonstrates the importance of the arts in the lives of students at West Point Gray Academy in Vancouver (British Columbia). Describes Arts Week and discusses the process of creating Arts Week. States that Art Week was a success. (CMK)

  18. Thinking about Art: Encouraging Art Appreciation in Early Childhood Settings.

    ERIC Educational Resources Information Center

    Epstein, Ann S.

    2001-01-01

    Examines the place of art appreciation in early childhood education programs. Discusses historical changes in philosophies of art education and young children's capability for appreciating art. Presents suggestions for including art appreciation in the preschool curriculum, and describes ways to tie art activities to children's interests,…

  19. Old Friends, Bookends: Art Educators and Art Therapists

    ERIC Educational Resources Information Center

    Allison, Amanda

    2013-01-01

    This viewpoint presents a reflection on a meaningful relationship that developed between a university art education department and a local art therapy studio. Such partnerships are desirable and mutually beneficial because of the significant interest many art educators have in the field of art therapy. The author, an art educator, describes the…

  20. Cable and the Arts.

    ERIC Educational Resources Information Center

    Mayer, Martin

    Television has been less hospitable to the arts in the United States than in other parts of the world, although there have been some efforts to provide the public with some artistic forms of entertainment. If the reason that the arts have been largely neglected on television is its limited channel capacity that democracy must devote to more…

  1. Visual Arts Research, 1995.

    ERIC Educational Resources Information Center

    Gardner, Nancy C., Ed.; Thompson, Christine, Ed.

    1995-01-01

    This document consists of the two issues of the journal "Visual Arts Research" published in 1995. This journal focuses on the theory and practice of visual arts education from educational, historical, philosophical, and psychological perspectives. Number 1 of this volume includes the following contributions: (1) "Children's Sensitivity to…

  2. Art & Science Grow Together

    ERIC Educational Resources Information Center

    Stellflue, Pat; Allen, Marie; Gerber, D. Timothy

    2005-01-01

    This article describes a collaborative effort that included a botany professor, an art teacher, and a science teacher, called,"Plants, Pots, and Paints." This interdisciplinary project was successful in connecting content across disciplines (science to art) and for motivating fourth-and fifth-grade students to create something beautiful both they…

  3. Art-By-Telephone.

    ERIC Educational Resources Information Center

    Jesser, David L.; Clarke, Michael ael J.

    In an attempt to bring art instruction into small schools financially unable to support such a program, 11 high schools in 4 western states have been receiving simultaneous instruction in art from a central source with the aid of an amplified telephone and coordinated overhead transparencies. Before the onset of classes, the instructor visits each…

  4. Normalizing Art Therapy.

    ERIC Educational Resources Information Center

    Congdon, Kristin G.

    1990-01-01

    Contends that art therapy promotes mental health beyond diagnosing and treating illness. Outlines four overlapping ways that art contributes to mental health: (1) giving people a sense of identity and place; (2) conferring status; (3) expanding and directing thought processes; and (4) utilizing the security of the rhythmic "takeover" phenomenon.…

  5. INDUSTRIAL ARTS HANDBOOK.

    ERIC Educational Resources Information Center

    JOHNSON, ALLEN

    TO AID TEACHERS, GUIDANCE COUNSELORS, AND ADMINISTRATORS, AS WELL AS THE STUDENT HIMSELF, THE HANDBOOK OFFERED PURPOSES AND COURSE DESCRIPTIONS IN THE FIELD OF INDUSTRIAL ARTS. IT APPLIED TO ELEMENTARY, JUNIOR HIGH, AND SENIOR HIGH SCHOOL STUDENTS. INDUSTRIAL ARTS PROVIDED AN OPPORTUNITY FOR STUDENTS TO DISCOVER THEIR APTITUDES AND ABILITIES IN…

  6. Looking into Oceanic Art.

    ERIC Educational Resources Information Center

    Parks, Nancy Schien; Maxedon, G. Edward

    1997-01-01

    Presents background material, suggested teaching activities, and four color plates illustrating the folk art of the Oceania islands (Melanesia, Micronesia, and Polynesia). The background material is incorporated into an interview with two Oceanic art specialists from Indiana University who discuss the culture of the islands. (MJP)

  7. Gerontology and the Arts.

    ERIC Educational Resources Information Center

    Jones, Jean Ellen, Ed.

    1982-01-01

    Reviews research on the place of the arts in programs for the elderly. In nine articles deals with characteristics and attitudes of adult students in art and music, dance therapy, and creativity. Discusses the aging advocacy movement and suggests it can be useful to program planners and gerontologists. (JAC)

  8. Art in the Garden.

    ERIC Educational Resources Information Center

    Greenman, Geri

    2003-01-01

    Describes an art project in which beginning art students created ceramic vegetables that are supposed to be functional, such as a container. Explains how the teacher can demonstrate the process of creating the ceramic vegetables. Includes a list of materials. (CMK)

  9. [Aesthetic Response to Art.

    ERIC Educational Resources Information Center

    Muth, Helen, Ed.

    1986-01-01

    The "Bulletin of the Caucus on Social Theory and Art Education" is an annual publication, with each issue devoted to a unified theme. The theme of this issue is aesthetic response. The following papers focus on the audience and the persons responding to art: "Attitudes of Three Urban Appalachian Teenagers Toward Selected Early Modern American…

  10. PLANNING THE ART ROOM.

    ERIC Educational Resources Information Center

    POPOLIZIO, VINCENT J.; AND OTHERS

    FACILITIES FOR CARRYING OUT AN ART PROGRAM MUST BE DESIGNED TO MEET THE NEEDS OF STUDENTS IN SCHOOL AND THOSE ENROLLED IN ADULT PROGRAMS. PROVISIONS MUST BE INCLUDED FOR PAINTING AND DRAWING, THE GRAPHIC ARTS, GENERAL CRAFTS, MODELING, SCHULPTURING, PHOTOGRAPHY, SERIGRAPHY, AND MECHANICAL DRAWING. WORK CENTERS AND TRAFFIC FLOW NEED CAREFUL…

  11. Art Teacher Education.

    ERIC Educational Resources Information Center

    Grauer, Kit, Ed.

    1994-01-01

    This journal issue provides a cogent look at general issues in art teacher education, specific teacher education programs and particular agendas as they are played out in a number of different countries. The topic is introduced in the Editorial, "The Education of Educators: Art Teacher Education around the World" (Kit Grauer). Articles that follow…

  12. The Art of Inclusion

    ERIC Educational Resources Information Center

    MacLean, Jan

    2008-01-01

    In this article, the author focuses on secondary students with cognitive or intellectual disabilities. She discusses that these students can be successfully included into the classroom community if schools can provide the appropriate tools such literacy in the arts. Here, she cites the number of reasons why arts can meet the varied needs and…

  13. Language Arts Topics Papers.

    ERIC Educational Resources Information Center

    Bailey, Jane M.; And Others

    This document brings together six papers on language skills and language arts teaching of gifted students. "The State of the Art Issues in Language Study for High Ability Learners: Thinking about Language with Gifted Children" (Michael Clay Thompson) considers two areas traditionally included in discussions of language study--grammar and…

  14. The Art of Education

    ERIC Educational Resources Information Center

    Abdul-Alim, Jamaal

    2012-01-01

    Dr. Robert F. Sabol, professor of visual and performing arts at Purdue University says that art education has suffered some serious setbacks since No Child Left Behind--the landmark federal education law that put a greater emphasis on high-stakes testing. Since No Child Left Behind became law in 2002, school systems--under increased pressure to…

  15. Visual Arts Research, 1994.

    ERIC Educational Resources Information Center

    Gardner, Nancy C., Ed.; Thompson, Christine, Ed.

    1994-01-01

    This document consists of the two issues of the journal "Visual Arts in Research" published in 1994. This journal focuses on the theory and practice of visual arts education from educational, historical, philosophical, and psychological perspectives. Number 1 of this volume includes the following contributions: (1) "Zooming in on the Qualitative…

  16. Elegant Art Nouveau

    ERIC Educational Resources Information Center

    Fontes, Kris

    2005-01-01

    Gustav Klimt (1862-1918), a Viennese painter, was the founder of the Vienna Secession, the Austrian Art Nouveau movement. Art Nouveau is characterised by flowing lines and flat designs based on organic structures. This style is found in the symbolic aspect of Klimt's later work, and in the works of other artists of the late 1890s and early 1900s…

  17. PLANNING AN ART ROOM.

    ERIC Educational Resources Information Center

    KROEGER, GARY

    THIS GUIDE IS INTENDED TO PROVIDE SUGGESTIONS IN PLANNING ART FACILITIES FOR ELEMENTARY AND SECONDARY SCHOOLS. AREAS PROVIDED FOR ARE (1) DRAWING AND PAINTING, (2) GRAPHIC ARTS, (3) GENERAL CRAFTS, (4) MODELING, AND (5) SCULPTURING. WORK CENTERS CAN BE PLANNED IN RELATION TO TRAFFIC FLOW. AT JUNIOR HIGH LEVEL, 24 STUDENTS ARE BEST ACCOMMODATED FOR…

  18. Cybernetics, Art and Ideas.

    ERIC Educational Resources Information Center

    Reichardt, Jasia, Ed.

    The essays in this volume deal with the relationship of the computer and the arts, especially the exploration and demonstration of connections between creativity and technology, the links between scientific or mathematical approaches, intuitions, and the more irrational and oblique urges associated with the making of music, art, and poetry. The…

  19. I: Making Art

    ERIC Educational Resources Information Center

    Rosenfeld, Malke; Johnson, Marquetta; Plemons, Anna; Makol, Suzanne; Zanskas, Meghan; Dzula, Mark; Mahoney, Meg Robson

    2014-01-01

    Writing about the teaching artist practice should mean writing about art making. As both teacher and artist, the authors are required to be cognizant of their own art-making processes, both how it works and why it is important to them, in order to make this process visible to their students. They also need the same skills to write about how and…

  20. Art without Boundaries.

    ERIC Educational Resources Information Center

    Colt, Elizabeth H.

    1980-01-01

    Described is an eleventh- and twelfth-grade art curriculum which meets four times a week and is largely a conceptual approach to the arts. It is built around a reading and film list and uses as raw materials ourselves and our environment. The lists are not included. (KC)

  1. Tangrams: Puzzles of Art

    ERIC Educational Resources Information Center

    Fee, Brenda

    2009-01-01

    Challenging one's brain is the beginning of making great art. Tangrams are a great way to keep students thinking about their latest art project long after leaving the classroom. A tangram is a Chinese puzzle. The earliest known reference to tangrams appears in a Chinese book dated 1813, but the puzzles existed long before that date. The puzzle…

  2. Mola Art: Elementary

    ERIC Educational Resources Information Center

    Barsamian, Araxey

    2004-01-01

    In this brief article, the author describes a lesson plan on Mola art she used in her elementary classroom. Using four examples of Kuna Indian molas, the teacher introduced students to the beautiful, colorful, creative art form of molas. The Kuna women have been making these layered pieces of cloth for more than one hundred years. They use a…

  3. The Art of Mexico.

    ERIC Educational Resources Information Center

    Saccardi, Marianne

    1997-01-01

    Provides an annotated bibliography of books for grades K and up which explores the folklore, poetry, fiction, and art of Mexico, and focuses on the Mayans and Aztecs and Diego Rivera and Frida Kahlo. Also suggests various research, reading, drama, music, social studies, physical education, and art activities and lists related videos and Internet…

  4. Primary Art Resource Guide.

    ERIC Educational Resources Information Center

    Newton Unified School District 373, KS.

    GRADES OR AGES: Primary Grades. SUBJECT MATTER: Art. ORGANIZATION AND PHYSICAL APPEARANCE: The guide begins with a list of topics for art expression. The main body of the guide contains 15 color-coded sections on the following subjects: 1) mobiles and folded paper; 2) collage and photo montage; 3) square paper and mosaics; 4) wax paper and…

  5. The Boutique Liberal Arts?

    ERIC Educational Resources Information Center

    Cohen, Scott

    2014-01-01

    The structure of higher education today, in conjunction with those actively trying to devalue a liberal arts degree in the public sphere, has set the table for what seems like a completely rational solution: finding a "niche." Broadly speaking, colleges offering a liberal arts education identify their "niche market" in terms of…

  6. Industrial Arts Facilities.

    ERIC Educational Resources Information Center

    Georgia State Dept. of Education, Atlanta. Office of Vocational Education.

    Requirements and planning guidelines for industrial arts facilities are outlined for application to three types of industrial arts shops. The ratios of areas to students are discussed in regard to the sizes, shapes, and locations of shops. Specifications for walls, floors, ceilings, windows, paint, and illumination are included. An equipment…

  7. ART MODERN/DIALOG.

    ERIC Educational Resources Information Center

    Sheng, Katharine K.

    1979-01-01

    Reviews ART MODERN, an on-line data base which provides comprehensive coverage of current worldwide literature on modern art and design since 1800. Areas described include scope, coverage, arrangement of printed and on-line indexes, characteristics of basic index and code searching; also search hints, search negotiation, searchguide, and data base…

  8. Comics as Art Therapy

    ERIC Educational Resources Information Center

    Mulholland, Matthew J.

    2004-01-01

    Spider Man and the Green Lantern are not the first images that most people conjure up when someone mentions "important art." In the world of fine art, comic books are often viewed as the bottom rung of the artistic ladder. In the early half of the 1900s, such an assessment would not have been unreasonable. With their rudimentary visuals and…

  9. Cultivating Demand for the Arts: Arts Learning, Arts Engagement, and State Arts Policy

    ERIC Educational Resources Information Center

    Zakaras, Laura; Lowell, Julia F.

    2008-01-01

    To shed light on the decline in demand for the nonprofit arts, the authors describe what it means to cultivate demand for the arts, examine how well U.S. institutions are serving this function, and discuss whether it is in the public interest to make such cultivation a higher priority than it has been in the past. The authors propose that a strong…

  10. Performance Art: Kinetic Reproductions.

    ERIC Educational Resources Information Center

    Kassin, Cherie

    2001-01-01

    Provides an art project for use with eighth-grade students, who choose a work of art and recreate it in an interpretive and informative manner. Explains that students re-create the background of the artwork and then the students become a part of the painting via characters or objects. (CMK)

  11. LANGUAGE ARTS LABORATORY.

    ERIC Educational Resources Information Center

    ROBERTS, HERMESE E.

    THE LANGUAGE ARTS LABORATORY WAS ESTABLISHED TO IMPROVE READING ABILITY AND OTHER LANGUAGE ARTS SKILLS AS AN AID IN THE PREVENTION OF DROPOUTS. THE LABORATORY WAS OPERATED ON A SUMMER SCHEDULE WITH A FLEXIBLE PROGRAM OF FROM 45 MINUTES TO 2 1/2 HOURS DAILY. ALL PUPILS WERE 14 YEARS OF AGE OR OLDER, AND EXPRESSED A DESIRE TO IMPROVE THEIR READING…

  12. Art Therapy: A Bibliography.

    ERIC Educational Resources Information Center

    Gantt, Linda, Comp.; Schmal, Marilyn Strauss, Comp.

    The bibliography on art therapy presents 1175 citations (1940-1973) drawn from searches of the medical indexes, computer systems of the National Library of Medicine and the National Institute of Mental Health, other bibliographies, Centre International de Documentation Concernant les Expressions Plastiques, and the American Journal of Art Therapy.…

  13. Art as Peace Building

    ERIC Educational Resources Information Center

    Marshall, Laurie

    2014-01-01

    Art educators can "critique" senseless violence--mistreatment, exclusion, intimidation, bullying, violation, abuse, corruption, murder, and war--by unleashing the power of students' creativity. In this article, the author, sharing her philosophical context, discusses how art is preventative medicine with the power to transform the…

  14. The Art of Science.

    ERIC Educational Resources Information Center

    Jory, Tina

    1997-01-01

    Advocates introducing young students to realistic nature drawing as a way of integrating art and science. Describes an earthworm art project using a salt dough model and a realistic drawing. This activity should begin with a view of the real subject whenever possible before proceeding to the actual artwork. (AIM)

  15. The Talking Art Museum

    ERIC Educational Resources Information Center

    Bundy, Jacqui

    2009-01-01

    Every year, fourth graders at Sterling Morton Elementary School in Ohio present a talking art museum for the school and community. In this article, the author describes a lesson on art history which culminates in an activity showcasing all the students' finished paintings in gold frames. A student stands behind the painting and pokes his or her…

  16. The Art Show

    ERIC Educational Resources Information Center

    Scolarici, Alicia

    2004-01-01

    This article describes what once was thought to be impossible--a formal art show extravaganza at an elementary school with 1,000 students, a Department of Defense Dependent School (DODDS) located overseas, on RAF Lakenheath, England. The dream of this this event involved the transformation of the school cafeteria into an elegant art show…

  17. Art Education Is Violent

    ERIC Educational Resources Information Center

    Tavin, Kevin

    2014-01-01

    In an era that is rife with aggression and hostility, most art educators hold close to their hearts the belief that they, and their students, can contribute to making the world a better place. Through their acts as teachers and the daily work of art education, they often strive toward creating a space of "non-violence." For K-12…

  18. Reading, Writing, and Art

    ERIC Educational Resources Information Center

    Reist, Kay M.

    2010-01-01

    With No Child Left Behind, schools are cutting extracurricular activities, doing away with aides, and even getting rid of art and physical education so that reading specialists and writing tutors can be hired. But what can the art teachers do to assist in teaching reading and writing skills? The author believes they need to provide their students…

  19. Hungry for Art.

    ERIC Educational Resources Information Center

    Buck, Susan

    2002-01-01

    Describes what occurred during an "Art Exchange Day" between two high schools that offered students access to varying viewpoints about art. Explains how the students created their own artworks of cakes and other desserts, inspired by the work of Wayne Thiebaud. Includes examples. (CMK)

  20. Art in Public.

    ERIC Educational Resources Information Center

    Henry, David J.

    1991-01-01

    Examines four works of art, created for public spaces, to help students understand the value of public art in the community. Illustrates work by Claes Oldenburg and Coosje van Bruggen, Siah Armajani, Jackie Ferrara, and Deborah Butterfield. Outlines lesson activities for elementary and secondary students. (KM)

  1. Bringing Art to Schools.

    ERIC Educational Resources Information Center

    Butterfield, Eric

    2000-01-01

    Discusses the Art and Architecture program that involves K-12 students in the creation of public art. The program provides students with a sense of ownership through design and construction assignments created as part of an integrated curriculum, including mock bids and interpreting a floor plan into an elevation. Tips on how architects can start…

  2. Arte Brasileno Erudito y Arte Brasileno Popular. (Brazilian Fine Art and Brazilian Popular Art)

    ERIC Educational Resources Information Center

    Valladares, Clarival Do Prado

    1969-01-01

    Class differences in Brazil explain the inequality between the art produced in the high strata of society and that originating in the economically inferior communities. Genuine expression of art degenerates for two reasons: the influence of modern industrial civilization and the tendency to satisfy the taste of the acquisitive group. (Author/MF)

  3. Parallels in the Arts

    ERIC Educational Resources Information Center

    Laffey, Grace

    1972-01-01

    A mini-course of nine weeks was organized as a laboratory course to survey relationships in literature, music, and art. Three periods in the arts (Romanticism, Impressionism, and Contemporary) were matched with three major activities; the basic areas of study and activity were poetry, short story, and novel. (Author)

  4. Mathematics and Art

    ERIC Educational Resources Information Center

    Sharp, John

    2012-01-01

    This relationship is omnipresent to those who appreciate the shared attributes of these two areas of creativity. The dynamic nature of media, and further study, enable mathematicians and artists to present new and exciting manifestations of the "mathematics in art", and the "art in mathematics". The illustrative images of the relationship--that…

  5. When Curriculum Meets Art

    ERIC Educational Resources Information Center

    Giardina, Nicola

    2016-01-01

    A three-year grant program at the Metropolitan Museum of Art in New York City encourages teachers to draw connections between curricular topics and works of art. In this article, museum educator Nicola Giardina describes how the program uses inquiry-based lessons to create meaningful learning experiences for underserved students. She highlights…

  6. Fully 3D refraction correction dosimetry system

    NASA Astrophysics Data System (ADS)

    Manjappa, Rakesh; Sharath Makki, S.; Kumar, Rajesh; Mohan Vasu, Ram; Kanhirodan, Rajan

    2016-02-01

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  7. Fully 3D refraction correction dosimetry system.

    PubMed

    Manjappa, Rakesh; Makki, S Sharath; Kumar, Rajesh; Vasu, Ram Mohan; Kanhirodan, Rajan

    2016-02-21

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  8. NEUTRON AND NON-NEUTRON NUCLEAR DATA FOR RADIATION DOSIMETRY

    SciTech Connect

    HOLDEN,N.E.

    1999-09-10

    NEUTRON NUCLEAR DATA THAT IS USED IN REACTOR DOSIMETRY INCLUDE THERMAL NEUTRON CROSS SECTIONS AND NEUTRON RESONANCE INTEGRALS, FISSION SPECTRUM AVERAGED CROSS SECTIONS FOR REACTIONS ON A TARGET NUCLEUS. NON-NEUTRON NUCLEAR DATA USED IN REACTOR DOSIMETRY INCLUDE ISOTOPIC COMPOSITIONS OF TARGET NUCLIDES AND RADIOACTIVE HALF-LIVES, GAMMA-RAY ENERGIES AND INTENSITIES OF REACTION PRODUCT NUCLIDES. ALL OF THESE DATA ARE PERIODICALLY EVALUATED AND RECOMMENDED VALUES ARE PROVIDED IN THE HANDBOOK OF CHEMISTRY AND PHYSICS. THE LATEST RECOMMENDED VALUES ARE DISCUSSED AND THEY ARE CONTRASTED WITH SOME EARLIER NUCLEAR DATA, WHICH WAS PROVIDED WITH NEUTRON DETECTOR FOILS.

  9. Third conference on radiation protection and dosimetry. Program and abstracts

    SciTech Connect

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  10. Personal nuclear accident dosimetry at Sandia National Laboratories

    SciTech Connect

    Ward, D.C.; Mohagheghi, A.H.; Burrows, R.

    1996-09-01

    DOE installations possessing sufficient quantities of fissile material to potentially constitute a critical mass, such that the excessive exposure of personnel to radiation from a nuclear accident is possible, are required to provide nuclear accident dosimetry services. This document describes the personal nuclear accident dosimeter (PNAD) used by SNL and prescribes methodologies to initially screen, and to process PNAD results. In addition, this report describes PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study (NAD23), held during 12-16 June 1995, at Los Alamos National Laboratories. Biases for reported neutron doses ranged from -6% to +36% with an average bias of +12%.

  11. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-24

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP), which is operated by the Pacific Northwest National Laboratory.( ) for the U.S. Department of Energy Richland Operations Office, Office of River Protection and their Hanford Site contractors. The manual describes the roles of and relationships between the IDP and the radiation protection programs of the Hanford Site contractors. Recommendations and guidance are also provided for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs.

  12. Subwavelength films for standoff radiation dosimetry

    SciTech Connect

    Alvine, Kyle J.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan L.; Suter, Jonathan D.

    2015-05-22

    We present optical subwavelength nanostructure architecture suitable for standoff radiation dosimetry with remote optical readout in the visible or infrared spectral regions. To achieve this, films of subwavelength structures are fabricated over several square inches via the creation of a 2D non-close packed (NCP) array template of radiation-sensitive polymeric nanoparticles, followed by magnetron sputtering of a metallic coating to form a 2D array of separated hemispherical nanoscale metallic shells. The nanoshells are highly reflective at resonance in the visible or infrared depending on design. These structures and their behavior are based on the open ring resonator (ORR) architecture and have their analog in resonant inductive-capacitive (LC) circuits, which display a resonance wavelength that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any modification of the nanostructure material properties due to radiation alters the inductive or capacitive behavior of the subwavelength features, which in turn changes their optical properties resulting in a shift in the optical resonance. This shift in resonance may be remotely interrogated actively using either laser illumination or passively by hyperspectral or multispectral sensing with broadband illumination. These structures may be designed to be either anisotropic or isotropic, which can also offer polarization-sensitive interrogation. We present experimental measurements of a radiation induced shift in the optical resonance of a subwavelength film after exposure to an absorbed dose of gamma radiation from 2 Mrad up to 62 Mrad demonstrating the effect. Interestingly the resonance shift is non-monotonic for this material system and possible radiation damage mechanisms to the nanoparticles are discussed.

  13. Subwavelength films for standoff radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Alvine, Kyle J.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan; Suter, Jonathan D.

    2015-05-01

    We present optical subwavelength nanostructure architecture suitable for standoff radiation dosimetry with remote optical readout in the visible or infrared spectral regions. To achieve this, films of subwavelength structures are fabricated over several square inches via the creation of a 2D non-close packed (NCP) array template of radiationsensitive polymeric nanoparticles, followed by magnetron sputtering of a metallic coating to form a 2D array of separated hemispherical nanoscale metallic shells. The nanoshells are highly reflective at resonance in the visible or infrared depending on design. These structures and their behavior are based on the open ring resonator (ORR) architecture and have their analog in resonant inductive-capacitive (LC) circuits, which display a resonance wavelength that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any modification of the nanostructure material properties due to radiation alters the inductive or capacitive behavior of the subwavelength features, which in turn changes their optical properties resulting in a shift in the optical resonance. This shift in resonance may be remotely interrogated actively using either laser illumination or passively by hyperspectral or multispectral sensing with broadband illumination. These structures may be designed to be either anisotropic or isotropic, which can also offer polarization-sensitive interrogation. We present experimental measurements of a radiation induced shift in the optical resonance of a subwavelength film after exposure to an absorbed dose of gamma radiation from 2 Mrad up to 62 Mrad demonstrating the effect. Interestingly the resonance shift is non-monotonic for this material system and possible radiation damage mechanisms to the nanoparticles are discussed.

  14. Code for INternal DosimetrY

    2002-05-30

    The Code for Internal Dosimetry Software Package (CINDY1.4) was developed to assist in the interpretation of bioassay data, provide bioassay projections, and evaluate committed and calendar-year doses from intake or bioassay measurement data. CINDY1.4 addresses the U.S. Department of Energy's (DOE) Order 5480.11 and the U.S. Nuclear Regulatory Commission's (NRC) 10 CFR 20 by providing the capabilities to calculate organ dose equivalents and effective dose equivalents using the International Commission on radiological Protection (ICRP) 30more » approach. Biokinetic models, which allow user-modified parameter values, are used to estimate intakes based on bioassay data using weighted and unweighted least-squares regression between measured and expected bioassay values, to estimate organ burdens as well as urinary and fecal excretion rates from a given intake, and to determine organ doses for annual, 50-year, calendar year, or any other time point. Intakes to be considered may be either acute or chronic, and may consist of many combinations of intake routes, radionuclides, and physical and chemical forms. A four-compartment input model (with user defined parameters) is used for wounds and absorption. Direct injection can be simulated as direct absorption. Appropriate metabolic models for each radionuclide are selected by the user from menus. Metabolic models available in CINDY1.4 are the ICRP 30 lung model, ICRP 30 gastrointestinal model, ICRP 30 general systematic model, Johnson and Dunford tritium model, ICRP 30 tritium model, including the Johnson HT lung model, Johnson alkaline earth model, ICRP 54 iodine model, tellurium-iodine model, Jones excretion model, Durbin excretion model, ICRP 54 excretion models, Wrenn-Lipsztein uranium model, Fisher Modified Wrenn-Lipsztein uranium model, and the ICRP 30 carbon model. For Windows 95 or Windows NT an alternate CD is required.« less

  15. Tenth ORNL Personnel Dosimetry Intercomparison Study

    SciTech Connect

    Swaja, R.E.; Chou, T.L.; Sims, C.S.; Greene, R.T.

    1985-03-01

    The Tenth Personnel Dosimetry Intercomparison Study was conducted at the Oak Ridge National Laboratory during April 9-11, 1984. Dosemeter badges from 31 participating organizations were mounted on 40cm Lucite phantoms and exposed to a range of dose equivalents which could be encountered during routine personnel monitoring in mixed radiation fields. The Health Physics Research Reactor served as the only source of radiation for eight of the ten irradiations which included a low (approx. 0.50 mSv) and high (approx. 10.00 mSv) neutron dose equivalent run for each of four shield conditions. Two irradiations were also conducted for which concrete- and Lucite-shield reactor irradiations were gamma-enhanced using a /sup 137/Cs source. Results indicated that some participants had difficulty obtaining measurable indication of neutron and gamma exposures at dose equivalents less than about 0.50 mSv and 0.20 mSv, respectively. Albedo dosemeters provided the best overall accuracy and precision for the neutron measurements. Direct interaction TLD systems showed significant variation in accuracy with incident spectrum, and threshold neutron dosemeters (film and recoil track) underestimated reference values by more than 50%. Gamma dose equivalents estimated in the mixed fields were higher than reference values with TL gamma dosemeters generally yielding more accurate results than film. Under the conditions of this study in which participants had information concerning exposure conditions and radiation field characteristics prior to dosemeter evaluation, only slightly more than half of all reported results met regulatory standards for neutron and gamma accuracy. 19 refs., 2 figs., 29 tabs.

  16. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  17. How flatbed scanners upset accurate film dosimetry.

    PubMed

    van Battum, L J; Huizenga, H; Verdaasdonk, R M; Heukelom, S

    2016-01-21

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner's transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner's optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  18. It's Time for Art Club

    ERIC Educational Resources Information Center

    Hubbert, Beth

    2007-01-01

    In this article, the author describes how her school's art club works. She relates that the art projects made by students at the art club became permanent fixtures at their school. Because of this incentive, students were very eager to contribute to the art club knowing that their art projects will be permanently displayed for all to enjoy in the…

  19. 4D dosimetry and its applications to pre-treatment quality control and real-time in vivo dosimetry of VMAT treatments

    NASA Astrophysics Data System (ADS)

    Nordström, F.; Wetterstedt, S. af; Bäck, S. Å. J.

    2013-06-01

    In this study, a 4D dosimetry concept was developed. This concept included a method for calculation of 3D reference absorbed dose matrices at every control point of the delivery using a clinical treatment planning system (TPS). Further, the gamma evaluation method was extended to incorporate the 4th dimension of the TPS calculated dose distributions. The applications of the 4D dosimetry concept on pre-treatment quality control and real-time in vivo dosimetry were investigated.

  20. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2010-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Maintenance and distribution of controlled hard copies of the

  1. In-Vessel and Ex-Vessel Neutron Dosimetry Programs in Korea

    NASA Astrophysics Data System (ADS)

    Yoo, Choon Sung; Kim, Byoung Chul; Fero, Arnold H.; Anderson, Stanwood L.

    2016-02-01

    In Korea, 20 PWRs are operating and 4 more PWRs are under construction. The in-vessel neutron dosimetry programs have been designed and implemented since each plant began operation. In addition to the in-vessel dosimetry program, ex-vessel neutron dosimetry systems have been installed for 16 PWRs. The objective of this paper is to describe the in-vessel and ex-vessel neutron dosimetry program of the PWRs in Korea and to compare in-vessel and ex-vessel dosimetry evaluation results. For this purpose plant and cycle specific forward neutron transport calculations and dosimetry measurement evaluations were carried out according to Regulatory Guide 1.190. Comparisons between the calculations and measurements were also performed for the reaction rates of each dosimetry sensor and the results show good agreement.

  2. Art and Delusion: Unreality in Art School

    ERIC Educational Resources Information Center

    Neher, Ross

    2010-01-01

    The author teaches painting in a Master of Fine Arts (MFA) program at Pratt Institute in Brooklyn, New York. Each fall semester he asks his students why they have come to Pratt and what they want to do when they graduate. The common answer is to develop as artists and find a commercial gallery to show and sell their work. Some want the MFA degree…

  3. Arts Teachers' Perceptions and Attitudes on Arts Integration While Participating in a Statewide Arts Integration Initiative

    ERIC Educational Resources Information Center

    May, Brittany Nixon; Robinson, Nicole R.

    2016-01-01

    The purpose of this study was to examine the perceptions and attitudes of the Beverley Taylor Sorenson Arts Learning Program (BTSALP) arts specialists on arts integration. BTSALP arts specialists (N = 50) throughout the state of Utah responded to a 20-item survey. Results indicated that a majority of BTSALP arts specialists believe that arts…

  4. California: Art on the Road.

    ERIC Educational Resources Information Center

    Mark, David

    1982-01-01

    Describes a touring exhibit of posters which has been used to promote cultural events in California since 1976. Many art forms and disciplines were represented, including all the visual arts, photography, film, folk arts, music, theater, and dance. (AM)

  5. Genetics Home Reference: Arts syndrome

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions Arts syndrome Arts syndrome Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Arts syndrome is a disorder that causes serious neurological ...

  6. Dosimetry for audit and clinical trials: challenges and requirements

    NASA Astrophysics Data System (ADS)

    Kron, T.; Haworth, A.; Williams, I.

    2013-06-01

    Many important dosimetry audit networks for radiotherapy have their roots in clinical trial quality assurance (QA). In both scenarios it is essential to test two issues: does the treatment plan conform with the clinical requirements and is the plan a reasonable representation of what is actually delivered to a patient throughout their course of treatment. Part of a sound quality program would be an external audit of these issues with verification of the equivalence of plan and treatment typically referred to as a dosimetry audit. The increasing complexity of radiotherapy planning and delivery makes audits challenging. While verification of absolute dose delivered at a reference point was the standard of external dosimetry audits two decades ago this is often deemed inadequate for verification of treatment approaches such as Intensity Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT). As such, most dosimetry audit networks have successfully introduced more complex tests of dose delivery using anthropomorphic phantoms that can be imaged, planned and treated as a patient would. The new challenge is to adapt this approach to ever more diversified radiotherapy procedures with image guided/adaptive radiotherapy, motion management and brachytherapy being the focus of current research.

  7. Review of physics, instrumentation and dosimetry of radioactive isotopes

    NASA Technical Reports Server (NTRS)

    Sinclair, W. K.

    1967-01-01

    General radioactive isotope information, stressing radioactivity, methods of measurement, and dosimetry of radioactive nuclides have been reviewed to serve as a reference for the medical profession. Instability of radionuclides, principal types of emission, and measurement of ionizing radiation are among the topics discussed.

  8. Dose calibration optimization and error propagation in polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Jirasek, A.; Hilts, M.

    2014-02-01

    This study reports on the relative precision, relative error, and dose differences observed when using a new full-image calibration technique in NIPAM-based x-ray CT polymer gel dosimetry. The effects of calibration parameters (e.g. gradient thresholding, dose bin size, calibration fit function, and spatial remeshing) on subsequent errors in calibrated gel images are reported. It is found that gradient thresholding, dose bin size, and fit function all play a primary role in affecting errors in calibrated images. Spatial remeshing induces minimal reductions or increases in errors in calibrated images. This study also reports on a full error propagation throughout the CT gel image pre-processing and calibration procedure thus giving, for the first time, a realistic view of the errors incurred in calibrated CT polymer gel dosimetry. While the work is based on CT polymer gel dosimetry, the formalism is valid for and easily extended to MRI or optical CT dosimetry protocols. Hence, the procedures developed within the work are generally applicable to calibration of polymer gel dosimeters.

  9. BUILDING 122 CONTAINS THREE GENERAL AREAS: OFFICE AREAS, INTERNAL DOSIMETRY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BUILDING 122 CONTAINS THREE GENERAL AREAS: OFFICE AREAS, INTERNAL DOSIMETRY, AND MEDICAL/HEALTH. BUILDING 122 SHARES A COMMON WALL WITH BUILDING 121, THE PLANT SECURITY BUILDING. THE TWO-STORY BUILDING IN THE BACKGROUND IS BUILDING 111. (9/26/52) - Rocky Flats Plant, Emergency Medical Services Facility, Southwest corner of Central & Third Avenues, Golden, Jefferson County, CO

  10. In vivo dosimetry with silicon diodes in total body irradiation

    NASA Astrophysics Data System (ADS)

    Oliveira, F. F.; Amaral, L. L.; Costa, A. M.; Netto, T. G.

    2014-02-01

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments.

  11. Radiation dosimetry onboard the International Space Station ISS.

    PubMed

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is onboard the International Space Station (ISS) is accomplished to one part as "operational" dosimetry accomplished to one part as "operational" dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on "scientific" dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities.

  12. Dissolution rate and radiation dosimetry of metal tritides

    SciTech Connect

    Cheng, Y.

    1993-12-31

    Metal tritides including titanium tritide (Ti{sup 3}H{sub x}) and erbium tritide (Er{sup 3}H{sub x}) have been used as components of neutron generators. These compounds can be released to the air as aerosols during fabrication, assembling, and testing of components or in accidental or fugitive releases; as a result, workers may be exposed to these compounds by inhalation. A joint research project between Sandia National Laboratories and the Inhalation Toxicology Research Institute was initiated to investigate the solubility of metal tritide particles, to determine retention and translocation of inhaled particles in animals, and to develop an internal dosimetry model. The current understanding of metal tritides and their radiation dosimetry for internal exposure is very limited. The ICRP Report 30 does not provide for tritium dosimetry in metal tritide form. The current radiation protection guidelines for metal tritide particles are based on the assumption that the biological behavior is similar to tritiated water which could be easily absorbed into body fluid, and therefore, a relatively short biological half life (10 days). If the solubility is low, the biological half life of metal tritide particles and the dosimetry of inhalation exposure to these particles could be quite different from tritiated water. This would have significant implications in the current health protection guidelines including annual limits of intakes and derived air concentrations. The preliminary results of our metal tritide dissolution study indicated that the solubility of titanium tritide is low.

  13. Advances in Photon and Neutronskeletal Dosimetry Through NMR Microscopy

    SciTech Connect

    Welsey Bolch

    2002-11-26

    The long-term goals of this project are to: (1) develop detailed 3D models of electron and charged particle transport within trabecular bone taken from various skeletal sites, subject ages, and both sexes, and (2) to extend current Reference Man skeletal dosimetry models to more clinically relevant patient populations.

  14. IMRT verification using a radiochromic/optical-CT dosimetry system

    NASA Astrophysics Data System (ADS)

    Oldham, Mark; Guo, Pengyi; Gluckman, Gary; Adamovics, John

    2006-12-01

    This work represents our first experiences relating to IMRT verification using a relatively new 3D dosimetry system consisting of a PRESAGETM dosimeter (Heuris Inc, Pharma LLC) and an optical-CT scanning system (OCTOPUSTM TM MGS Inc). This work builds in a step-wise manner on prior work in our lab.

  15. Advances in kilovoltage x-ray beam dosimetry

    NASA Astrophysics Data System (ADS)

    Hill, Robin; Healy, Brendan; Holloway, Lois; Kuncic, Zdenka; Thwaites, David; Baldock, Clive

    2014-03-01

    This topical review provides an up-to-date overview of the theoretical and practical aspects of therapeutic kilovoltage x-ray beam dosimetry. Kilovoltage x-ray beams have the property that the maximum dose occurs very close to the surface and thus, they are predominantly used in the treatment of skin cancers but also have applications for the treatment of other cancers. In addition, kilovoltage x-ray beams are used in intra operative units, within animal irradiators and in on-board imagers on linear accelerators and kilovoltage dosimetry is important in these applications as well. This review covers both reference and relative dosimetry of kilovoltage x-ray beams and provides recommendations for clinical measurements based on the literature to date. In particular, practical aspects for the selection of dosimeter and phantom material are reviewed to provide suitable advice for medical physicists. An overview is also presented of dosimeters other than ionization chambers which can be used for both relative and in vivo dosimetry. Finally, issues related to the treatment planning and the use of Monte Carlo codes for solving radiation transport problems in kilovoltage x-ray beams are presented.

  16. Interviewing Art Linkletter

    ERIC Educational Resources Information Center

    American Vocational Journal, 1974

    1974-01-01

    The article reports on the assignments and activities of Dean Griffin, one of four American Vocational Association associates directors; highlighted is a conversation of Griffin's with Art Linkletter, who addressed the Minnesota Vocational Association in October. (AJ)

  17. Sandpainting: A Healing Art

    ERIC Educational Resources Information Center

    Walter, Bethany

    2005-01-01

    As part of a unit on Native American art studies, students researched Navajo sand painting. They used Navajo image resources to develop designs for their sand paintings. The process and precautions for this lesson are described in this article.

  18. Anatomy and art.

    PubMed

    Laios, Konstantinos; Tsoukalas, Gregory; Karamanou, Marianna; Androutsos, George

    2013-01-01

    Leonardo da Vinci, Jean Falcon, Andreas Vesalius, Henry Gray, Henry Vandyke Carter and Frank Netter created some of the best atlases of anatomy. Their works constitute not only scientific medical projects but also masterpieces of art. PMID:24640589

  19. Art and Culture

    ERIC Educational Resources Information Center

    Foster, Robin

    1975-01-01

    The art department at Fremont Junior High School in Mesa, Arizona, developed a project in which Indian, Mexican-American, and White-Anglo American students learned about their different cultural values and tradititions. (Author/RK)

  20. Views on Surrealist Art

    ERIC Educational Resources Information Center

    Jean, Marcel

    1975-01-01

    Author attempted to throw some light on events in which he had been a witness and sometimes an actor, and to bring out the main lines of the surrealist adventure in the domain of the visual arts. (Author/RK)

  1. Arts/Crafts.

    ERIC Educational Resources Information Center

    Instructor, 1980

    1980-01-01

    Described are various arts and crafts ideas, mostly with a February theme. Included are: ceramic boxes, valentine ideas, and patriotic projects--symbols of our country, silhouettes of George Washington and Abraham Lincoln, and stars and stripes. (KC)

  2. 3-D Art Tasks.

    ERIC Educational Resources Information Center

    Niswander, Virginia

    1983-01-01

    Perceptual motor dysfunctions may not allow children with learning and behavior problems to perform as most children do. A successful art activity for these children is construction using wood scraps. (SR)

  3. Vocational/Industrial Arts.

    ERIC Educational Resources Information Center

    American School & University, 2002

    2002-01-01

    Describes the design of notable school vocational/industrial arts facilities, including the educational context and design goals. Includes information on architects, suppliers, and cost, as well as photographs. (EV)

  4. Building Arts Partnerships.

    ERIC Educational Resources Information Center

    Soper, Stephanie

    1993-01-01

    Discusses the activities of the Education Department at the John F. Kennedy Center for the Performing Arts, including the local education outreach program and the Partners in Education program promoting school-community partnerships. (SR)

  5. Workshop: Teaching Primitive Arts.

    ERIC Educational Resources Information Center

    Jordison, Jerry

    1999-01-01

    Discusses the concrete and spiritual aspects of teaching workshops on survival skills or primitive arts. Gives details on lostproofing, or ways to teach a child not to get lost in the outdoors; building a survival shelter; and wilderness cooking. (CDS)

  6. Wth Basic Art Materials

    ERIC Educational Resources Information Center

    Herberholz, Barbara

    2010-01-01

    In this article, the author presents a checklist of basic materials for two-dimensional activities that are necessary for an elementary-school art program. She also provides a few tips on how to use them.

  7. Internal Dosimetry Code System Using Biokinetics Models

    2003-11-12

    Version 00 InDose is an internal dosimetry code to calculate dose estimations using biokinetic models (presented in ICRP-56 to ICRP71) as well as older ones. The code uses the ICRP-66 respiratory tract model and the ICRP-30 gastrointestinal tract model as well as the new and old biokinetic models. The code was written in such a way that the user can change any parameters of any one of the models without recompiling the code. All parametersmore » are given in well annotated parameters files that the user may change. As default, these files contain the values listed in ICRP publications. The full InDose code was planned to have three parts: 1) the main part includes the uptake and systemic models and is used to calculate the activities in the body tissues and excretion as a function of time for a given intake. 2) An optimization module for automatic estimation of the intake for a specific exposure case. 3) A module to calculate the dose due to the estimated intake. Currently, the code is able to perform only it`s main task (part 1) while the other two have to be done externally using other tools. In the future, developers would like to add these modules in order to provide a complete solution. The code was tested extensively to verify accuracy of its results. The verification procedure was divided into three parts: 1) verification of the implementation of each model, 2) verification of the integrity of the whole code, and 3) usability test. The first two parts consisted of comparing results obtained with InDose to published results for the same cases. For example ICRP-78 monitoring data. The last part consisted of participating in the 3rd EIE-IDA and assessing some of the scenarios provided in this exercise. These tests where presented in a few publications. Good agreement was found between the results of InDose and published data.« less

  8. On multichannel film dosimetry with channel-independent perturbations

    SciTech Connect

    Méndez, I. Peterlin, P.; Hudej, R.; Strojnik, A.; Casar, B.

    2014-01-15

    Purpose: Different multichannel methods for film dosimetry have been proposed in the literature. Two of them are the weighted mean method and the method put forth byMicke et al. [“Multichannel film dosimetry with nonuniformity correction,” Med. Phys. 38, 2523–2534 (2011)] and Mayer et al. [“Enhanced dosimetry procedures and assessment for EBT2 radiochromic film,” Med. Phys. 39, 2147–2155 (2012)]. The purpose of this work was to compare their results and to develop a generalized channel-independent perturbations framework in which both methods enter as special cases. Methods: Four models of channel-independent perturbations were compared: weighted mean, Micke–Mayer method, uniform distribution, and truncated normal distribution. A closed-form formula to calculate film doses and the associated type B uncertainty for all four models was deduced. To evaluate the models, film dose distributions were compared with planned and measured dose distributions. At the same time, several elements of the dosimetry process were compared: film type EBT2 versus EBT3, different waiting-time windows, reflection mode versus transmission mode scanning, and planned versus measured dose distribution for film calibration and for γ-index analysis. The methods and the models described in this study are publicly accessible through IRISEU. Alpha 1.1 ( http://www.iriseu.com ). IRISEU. is a cloud computing web application for calibration and dosimetry of radiochromic films. Results: The truncated normal distribution model provided the best agreement between film and reference doses, both for calibration and γ-index verification, and proved itself superior to both the weighted mean model, which neglects correlations between the channels, and the Micke–Mayer model, whose accuracy depends on the properties of the sensitometric curves. With respect to the selection of dosimetry protocol, no significant differences were found between transmission and reflection mode scanning

  9. Dwarfism in art.

    PubMed

    Limon, Janusz

    2015-01-01

    Throughout the history of mankind the birth of a child with congenital malformation raised anxiety and torment, along with attempts to explain its origins. It is possible to find relics of such events in prehistoric rock drawings and primitive sculptures, in numerous art pieces produced through the centuries up to modern sculptures, paintings and drawings. The aim of the present article is to show how dwarfs were portrayed in a variety of art forms at different moments in the history of our world.

  10. Pop-Art Panels

    ERIC Educational Resources Information Center

    Alford, Joanna

    2012-01-01

    James Rosenquist's giant Pop-art panels included realistic renderings of well-known contemporary foods and objects, juxtaposed with famous people in the news--largely from the 1960s, '70s and '80s--and really serve as visual time capsules. In this article, eighth-graders focus on the style of James Rosenquist to create their own Pop-art panel that…

  11. Memories of art.

    PubMed

    Hirstein, William

    2013-04-01

    Although the art-historical context of a work of art is important to our appreciation of it, it is our knowledge of that history that plays causal roles in producing the experience itself. This knowledge is in the form of memories, both semantic memories about the historical circumstances, but also episodic memories concerning our personal connections with an artwork. We also create representations of minds in order to understand the emotions that artworks express.

  12. Epitaxial silicon devices for dosimetry applications

    SciTech Connect

    Bruzzi, M.; Bucciolini, M.; Casati, M.; Menichelli, D.; Talamonti, C.; Piemonte, C.; Svensson, B. G.

    2007-04-23

    A straightforward improvement of the efficiency and long term stability of silicon dosimeters has been obtained with a n{sup +}-p junction surrounded by a guard-ring structure implanted on an epitaxial p-type Si layer grown on a Czochralski substrate. The sensitivity of devices made on 50-{mu}m-thick epitaxial Si degrades by only 7% after an irradiation with 6 MeV electrons up to 1.5 kGy, and shows no significant further decay up to 10 kGy. These results prove the enhanced radiation tolerance and stability of epitaxial diodes as compared to present state-of-the-art Si devices.

  13. Generalized EPID calibration for in vivo transit dosimetry.

    PubMed

    Fidanzio, Andrea; Cilla, Savino; Greco, Francesca; Gargiulo, Laura; Azario, Luigi; Sabatino, Domenico; Piermattei, Angelo

    2011-01-01

    Many researchers are studying new in vivo dosimetry methods based on the use of Elelctronic portal imaging devices (EPIDs) that are simple and efficient in their daily use. However the need of time consuming implementation measurements with solid water phantoms for the in vivo dosimetry implementation can discourage someone in their use. In this paper a procedure has been proposed to calibrate aSi EPIDs for in vivo transit dosimetry. The dosimetric equivalence of three aSi Varian EPIDs has been investigated in terms of signal reproducibility and long term stability, signal linearity with MU and dose per pulse and signal dependence on the field dimensions. The signal reproducibility was within ± 0.5% (2SD), while the long term signal stability has been maintained well within ± 2%. The signal linearity with the monitor units (MU) was within ± 2% and within ± 0.5% for the EPIDs controlled by the IAS 2, and IAS 3 respectively. In particular it was verified that the correction factor for the signal linearity with the monitor units, k(lin), is independent of the beam quality, and the dose per pulse absorbed by the EPID. For 6, 10 and 15 MV photon beams, a generalized set of correlation functions F(TPR,w,L) and empirical factors f(TPR,d,L) as a function of the Tissue Phantom Ratio (TPR), the phantom thickness, w, the square field side, L, and the distance, d, between the phantom mid-plane and the isocentre were determined to reconstruct the isocenter dose. The tolerance levels of the present in vivo dosimetry method ranged between ± 5% and ± 6% depending on the tumor body location. In conclusion, the procedure proposed, that use generalized correlation functions, reduces the effort for the in vivo dosimetry method implementation for those photon beams with TPR within ± 0.3% as respect those here used.

  14. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    NASA Astrophysics Data System (ADS)

    Andersen, Claus E.

    2011-05-01

    Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic scintillator, attached to 10-20 m long optical fiber cables of plastic. During irradiation, each dosimeter probe spontaneously emits radioluminescence (RL) in proportion to the dose rate. The luminescence intensity can be detected with photomultiplier tubes, CCD cameras or other highly sensitive photodetectors. Some crystalline phosphors, such as carbon-doped aluminium oxide (Al2O3:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal therefore reflects the passively integrated dose. In contrast to thermoluminescence dosimetry, fiber-coupled OSL dosimetry may be performed in vivo while the dosimeter is still in the patient. Within the last few years, several improvements and new applications of these techniques have been published, and the objective of this review is to provide an introduction to this field and to outline some of these new results. Emphasis will be given to applications in medical dosimetry such as in vivo real-time dose verification in brachytherapy and methods aimed for improved quality assurance of linear accelerators.

  15. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    SciTech Connect

    Andersen, Claus E.

    2011-05-05

    Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic scintillator, attached to 10-20 m long optical fiber cables of plastic. During irradiation, each dosimeter probe spontaneously emits radioluminescence (RL) in proportion to the dose rate. The luminescence intensity can be detected with photomultiplier tubes, CCD cameras or other highly sensitive photodetectors. Some crystalline phosphors, such as carbon-doped aluminium oxide (Al{sub 2}O{sub 3}:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal therefore reflects the passively integrated dose. In contrast to thermoluminescence dosimetry, fiber-coupled OSL dosimetry may be performed in vivo while the dosimeter is still in the patient. Within the last few years, several improvements and new applications of these techniques have been published, and the objective of this review is to provide an introduction to this field and to outline some of these new results. Emphasis will be given to applications in medical dosimetry such as in vivo real-time dose verification in brachytherapy and methods aimed for improved quality assurance of linear accelerators.

  16. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 2, Users' manual: Hanford Environmental Dosimetry Upgrade Project

    SciTech Connect

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-11-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. This second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The first volume describes the theoretical considerations of the system. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 27 refs., 17 figs., 23 tabs.

  17. GENII (Generation II): The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    SciTech Connect

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs.

  18. State Arts Agency Fact Sheet: Support for Arts Education

    ERIC Educational Resources Information Center

    Online Submission, 2015

    2015-01-01

    This national overview of state arts agency grants and services for arts education includes summary statistics and geographic distribution. The fact sheet uses data from Final Descriptive Reports of state arts agency grant-making activities submitted annually to the National Assembly of State Arts Agencies (NASAA) and the National Endowment for…

  19. [Art-chance and art-experience in classical Greece].

    PubMed

    Ban, Deokjin

    2011-06-30

    In Classical Greece, works defining the nature of art appeared in the various disciplines like medicine, rhetoric, dietetics, architecture and painting. Hippocratic authors tried to show that an art of medicine existed indeed. They contrasted the concept of art with that of chance, not experience that Plato and Aristotle distinguished from art. In fact there are similarities and discrepancies between Hippocratic epistemology and Platoic epistemology. Hippocratic authors maintained that the products of chance were not captured by art. They distinguished the domain of art charactered by explanatory knowledge and prediction from the domain of chance ruled by the unexplained and the unforeseeable. They minimized the role of luck and believed the role of art. Hippocratic authors thought that professional ability contained both knowledge and experience. In Hippocratic corpus, experience is a synonym of competence and usually has a positive meaning. But Plato gave empirical knowledge the disdainful sense and decided a ranking between two types of knowledge. Both Hippocratic authors and Plato held that a genuine art had connection with explanatory knowledge of the nature of its subject matter. A common theme that goes through arguments about art-chance and art-chance is the connection between art and nature. Hippocratic authors and Plato regarded art as a highly systematic process. Art provides us with general and explanatory knowledge of human nature. Art and nature is a mutual relationship. The systematic understanding of nature helps us gain the exactness of art and an exact art helps us understand nature well.

  20. The Sociology of Art and Art Education: A Relationship Reconsidered.

    ERIC Educational Resources Information Center

    LaChapelle, Joseph R.

    1984-01-01

    Recent methodological and conceptual changes in sociology of art research are valuable because they provide descriptive material and counter prevalent sociological assumptions. Researchers now see the need for a sociological component in the study of aesthetics and art. An effective sociology of art is of vital concern to art education. (RM)

  1. ArtsBridge America: Bringing the Arts Back to School

    ERIC Educational Resources Information Center

    Brouillette, Liane R.; Burns, Maureen A.

    2005-01-01

    This article examines the origin of ArtsBridge America, a K-12 school/university arts education partnership. It also summarizes findings from a research study on the effect that ArtsBridge participation had on a sample of university arts students. The study indicated that the transition from student to teaching artist required transformation of…

  2. Arts Smarts: First-Rate Arts Education Programs.

    ERIC Educational Resources Information Center

    Chen, Vivien; Granger, Lenny

    1988-01-01

    The Alliance for Arts Education, formed by an agreement between the U.S. Department of Education and the John F. Kennedy Center for the Performing Arts (Washington, D.C.), aims to advance arts education for all U.S. students through networking activities. This article highlights center activities, suggests fine arts leadership strategies, and…

  3. The Artful Universe Expanded

    NASA Astrophysics Data System (ADS)

    Barrow, John D.

    2005-07-01

    Our love of art, writes John Barrow, is the end product of millions of years of evolution. How we react to a beautiful painting or symphony draws upon instincts laid down long before humans existed. Now, in this enhanced edition of the highly popular The Artful Universe , Barrow further explores the close ties between our aesthetic appreciation and the basic nature of the Universe. Barrow argues that the laws of the Universe have imprinted themselves upon our thoughts and actions in subtle and unexpected ways. Why do we like certain types of art or music? What games and puzzles do we find challenging? Why do so many myths and legends have common elements? In this eclectic and entertaining survey, Barrow answers these questions and more as he explains how the landscape of the Universe has influenced the development of philosophy and mythology, and how millions of years of evolutionary history have fashioned our attraction to certain patterns of sound and color. Barrow casts the story of human creativity and thought in a fascinating light, considering such diverse topics as our instinct for language, the origins and uses of color in nature, why we divide time into intervals as we do, the sources of our appreciation of landscape painting, and whether computer-generated fractal art is really art. Drawing on a wide variety of examples, from the theological questions raised by St. Augustine and C.S. Lewis to the relationship between the pure math of Pythagoras and the music of the Beatles, The Artful Universe Expanded covers new ground and enters a wide-ranging debate about the meaning and significance of the links between art and science.

  4. Performance of the CEDS Accident Dosimetry System at the 1995 Los Alamos National Laboratory Nuclear Accident Dosimetry Intercomparison

    SciTech Connect

    McMahan, K.L.; Schwanke, L.J.

    1996-12-01

    In July 1995, LANL hosted an accident dosimetry intercomparison. When all reactors on the Oak Ridge Reservation were idled in 1988, the Health Physics Research Reactor (HPRR), which had been used for 22 previous intercomparisons dating from 1965, was shut down for an indefinite period. The LANL group began characterization of two critical assemblies for dosimetry purposes. As a result, NAD-23 was conceived and 10 DOE facilities accepted invitations to participate in the intercomparison. This report is a summary of the performance of one of the participants, the Centralized External Dosimetry System (CEDS). The CEDS is a cooperative personnel dosimetry arrangement between three DOE sites in Oak Ridge, Tennessee. Many successes and failures are reported herein. Generally, the TL dosimeters performed poorly and always over-reported the delivered dose. The TLD processing procedures contain efforts that would lead to large biases in the reported absorbed dose, and omit several key steps in the TLD reading process. The supralinear behavior of lithium fluoride (LiF) has not been characterized for this particular dosimeter and application (i.e., in high-dose mixed neutron/gamma fields). The use of TLD materials may also be precluded given the limitations of the LiF material itself, the TLD reading system, and the upper dose level to which accident dosimetry systems are required to perform as set forth in DOE regulations. The indium foil results confirm the expected inability of that material to predict the magnitude of the wearer`s dose reliably, although it is quite suitable as a quick-sort material. Biological sample (hair) results were above the minimum detectable activity (MDA) for only one of the tests. Several questions as to the best methods for sample handling and processing remain.

  5. Photon beam dosimetry with EBT3 film in heterogeneous regions: Application to the evaluation of dose-calculation algorithms

    NASA Astrophysics Data System (ADS)

    Jung, Hyunuk; Kum, Oyeon; Han, Youngyih; Park, Byungdo; Cheong, Kwang-Ho

    2014-12-01

    For a better understanding of the accuracy of state-of-the-art-radiation therapies, 2-dimensional dosimetry in a patient-like environment will be helpful. Therefore, the dosimetry of EBT3 films in non-water-equivalent tissues was investigated, and the accuracy of commercially-used dose-calculation algorithms was evaluated with EBT3 measurement. Dose distributions were measured with EBT3 films for an in-house-designed phantom that contained a lung or a bone substitute, i.e., an air cavity (3 × 3 × 3 cm3) or teflon (2 × 2 × 2 cm3 or 3 × 3 × 3 cm3), respectively. The phantom was irradiated with 6-MV X-rays with field sizes of 2 × 2, 3 × 3, and 5 × 5 cm2. The accuracy of EBT3 dosimetry was evaluated by comparing the measured dose with the dose obtained from Monte Carlo (MC) simulations. A dose-to-bone-equivalent material was obtained by multiplying the EBT3 measurements by the stopping power ratio (SPR). The EBT3 measurements were then compared with the predictions from four algorithms: Monte Carlo (MC) in iPlan, acuros XB (AXB), analytical anisotropic algorithm (AAA) in Eclipse, and superposition-convolution (SC) in Pinnacle. For the air cavity, the EBT3 measurements agreed with the MC calculation to within 2% on average. For teflon, the EBT3 measurements differed by 9.297% (±0.9229%) on average from the Monte Carlo calculation before dose conversion, and by 0.717% (±0.6546%) after applying the SPR. The doses calculated by using the MC, AXB, AAA, and SC algorithms for the air cavity differed from the EBT3 measurements on average by 2.174, 2.863, 18.01, and 8.391%, respectively; for teflon, the average differences were 3.447, 4.113, 7.589, and 5.102%. The EBT3 measurements corrected with the SPR agreed with 2% on average both within and beyond the heterogeneities with MC results, thereby indicating that EBT3 dosimetry can be used in heterogeneous media. The MC and the AXB dose calculation algorithms exhibited clinically-acceptable accuracy (<5%) in

  6. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications

    SciTech Connect

    Sarrut, David; Bardiès, Manuel; Marcatili, Sara; Mauxion, Thibault; Boussion, Nicolas; Freud, Nicolas; Létang, Jean-Michel; Jan, Sébastien; Maigne, Lydia; Perrot, Yann; Pietrzyk, Uwe; Robert, Charlotte; and others

    2014-06-15

    In this paper, the authors' review the applicability of the open-source GATE Monte Carlo simulation platform based on the GEANT4 toolkit for radiation therapy and dosimetry applications. The many applications of GATE for state-of-the-art radiotherapy simulations are described including external beam radiotherapy, brachytherapy, intraoperative radiotherapy, hadrontherapy, molecular radiotherapy, and in vivo dose monitoring. Investigations that have been performed using GEANT4 only are also mentioned to illustrate the potential of GATE. The very practical feature of GATE making it easy to model both a treatment and an imaging acquisition within the same frameworkis emphasized. The computational times associated with several applications are provided to illustrate the practical feasibility of the simulations using current computing facilities.

  7. Standards for Art Teacher Preparation

    ERIC Educational Resources Information Center

    National Art Education Association, 2009

    2009-01-01

    The National Art Education Association (NAEA) is committed to ensuring student access to a highly qualified, certified visual arts educator in every K-12 public school across the United States, recognizing that effective arts instruction is a core component to a 21st-century education. "Standards for Art Teacher Preparation" represents the…

  8. The Value of the Arts

    ERIC Educational Resources Information Center

    Tubbs, Nigel

    2013-01-01

    The value of the arts is often measured in terms of human creativity against instrumental rationality, while art for art's sake defends against a utility of art. Such critiques of the technical and formulaic are themselves formulaic, repeating the dualism of the head and the heart. How should we account for this formula? We should do so by…

  9. Communication Access to the Arts

    ERIC Educational Resources Information Center

    Duchan, Judith; Jennings, Marian; Barrett, Ray; Butler, Brian

    2006-01-01

    Art galleries, theaters, and museums are often communicatively inaccessible to people with aphasia. This article describes how a group of people with aphasia and a group of health and arts service providers worked together to develop an arts access initiative that involved people with aphasia in accessing museums and arts courses in the community…

  10. Contemporary Art and Multicultural Education.

    ERIC Educational Resources Information Center

    Cahan, Susan; Kocur, Zoya

    1994-01-01

    Argues that much of what is used currently to teach about multiculturalism in art consists of art made "long ago" or "far away." Presents four contemporary art works incorporating elements of mass media, popular culture, and diverse artistic traditions. Includes four full-page color photographs of the art works. (CFR)

  11. [Social Ramifications of Art Education.

    ERIC Educational Resources Information Center

    Muth, Helen, Ed.

    1985-01-01

    The "Bulletin of the Caucus on Social Theory and Art Education" is an annual publication, with each issue devoted to a unified theme. The theme of this issue is the social ramifications of the teaching of art. This issue focuses on art teachers to gain a perspective on the art education process as a socially relevant experience. The volume…

  12. On Culture, Art, and Experience

    ERIC Educational Resources Information Center

    Chernoff, Carolyn

    2009-01-01

    While the arts in the United States are themselves often controversial, arts in public schools rarely are. That is to say that teachers, administrators, parents, students, and community members tend to agree that the opportunity to participate in the arts is beneficial to students and to the wider society. Whether discipline-based arts education…

  13. Qualitative Assessment of Arts Education

    ERIC Educational Resources Information Center

    Stake, Robert; Munson, April

    2008-01-01

    Exploring the complicated issues of assessment in the arts, the authors discuss assessment of arts education and arts programs from a qualitative perspective: experiential, naturalistic, and ethnographic interpretation. With special attention to the practices of teaching, learning, and administration of education in the arts, quality is sought…

  14. Putting Pow into Art Instruction

    ERIC Educational Resources Information Center

    Berkowitz, Jay; Packer, Todd

    2004-01-01

    How would you like to put some "Pow!" into your art instruction? A lesson in comic books--history, design, story, and production--can make your classes come alive. The authors present a new approach to using comics to build artistic skills and involve students in art appreciation. Why Comics? Many art teachers have students who say, "I hate art!"…

  15. Making Art for Professional Processing

    ERIC Educational Resources Information Center

    Wadeson, Harriet

    2003-01-01

    Although art therapists readily recognize the value of artmaking for their clients and for themselves, do they utilize its potentialities for professional self-processing? In the hope of encouraging art therapists to use this valuable resource, this paper presents examples of art expressions for professional processing by many art therapists…

  16. 2008 Arts Education Assessment Framework

    ERIC Educational Resources Information Center

    National Assessment Governing Board, 2008

    2008-01-01

    The National Assessment of Educational Progress (NAEP) for the arts measures students' knowledge and skills in creating, performing, and responding to works of music, theatre, and visual arts. This framework document asserts that dance, music, theatre and the visual arts are important parts of a full education. When students engage in the arts,…

  17. A FLARE for the Arts.

    ERIC Educational Resources Information Center

    Aschbacher, Pamela

    1996-01-01

    Although arts programs have been cut from many school budgets, an innovative program in Pasadena, California, is keeping art and artists in classrooms. Project FLARE (Fun with Language, Arts, and Reading) pairs classroom teachers with local artists, who together develop an integrated language and visual arts curriculum. Students also take field…

  18. Reaching the Retarded Through Art.

    ERIC Educational Resources Information Center

    Baumgartner, Bernice B.; Shultz, Joyce B.

    Included in the manual on art are suggestions concerning growth through a good classroom climate, orderly arrangements, displays, and a good visual experience; a view of development through art, concept differentiation, motor and sensory skills, self fulfillment and thought processes, and art as therapy; and the art program itself. The program…

  19. The Art of Science

    NASA Astrophysics Data System (ADS)

    Vaidya, Ashwin; Munakata, Mika

    2014-03-01

    The Art of Science project at Montclair State University strives to communicate the creativity inherent in the sciences to students and the general public alike. The project uses connections between the arts and sciences to show the underlying unity and interdependence of the two. The project is planned as one big `performance' bringing together the two disciplines around the theme of sustainability. In the first phase, physics students learned about and built human-powered generators including hand cranks and bicycle units. In the second phase, using the generators to power video cameras, art students worked with a visiting artist to make short films on the subject of sustainability, science, and art. The generators and films were showcased at an annual university Physics and Art exhibition which was open to the university and local community. In the final phase, to be conducted, K12 teachers will learn about the project through a professional development workshop and will be encouraged to adapt the experiment for their own classrooms. The last phase will also combine the university and K12 projects for an exhibition to be displayed on Earth Day, 2014. Project funded by the APS Outreach Grant.

  20. Abstraction and art.

    PubMed Central

    Gortais, Bernard

    2003-01-01

    In a given social context, artistic creation comprises a set of processes, which relate to the activity of the artist and the activity of the spectator. Through these processes we see and understand that the world is vaster than it is said to be. Artistic processes are mediated experiences that open up the world. A successful work of art expresses a reality beyond actual reality: it suggests an unknown world using the means and the signs of the known world. Artistic practices incorporate the means of creation developed by science and technology and change forms as they change. Artists and the public follow different processes of abstraction at different levels, in the definition of the means of creation, of representation and of perception of a work of art. This paper examines how the processes of abstraction are used within the framework of the visual arts and abstract painting, which appeared during a period of growing importance for the processes of abstraction in science and technology, at the beginning of the twentieth century. The development of digital platforms and new man-machine interfaces allow multimedia creations. This is performed under the constraint of phases of multidisciplinary conceptualization using generic representation languages, which tend to abolish traditional frontiers between the arts: visual arts, drama, dance and music. PMID:12903659

  1. EPR/PTFE dosimetry for test reactor environments

    SciTech Connect

    Vehar, D.W.; Griffin, P.J.; Quirk, T.J.

    2011-07-01

    The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement of absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of dosimetry in

  2. A practical three-dimensional dosimetry system for radiation therapy.

    PubMed

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-10-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of < or = 1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R2 value of 0.9979 and a standard error of estimation of approximately 1%) relative to independent measurement. The overall performance of the PRESAGE/OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed

  3. A practical three-dimensional dosimetry system for radiation therapy.

    PubMed

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-10-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of < or = 1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R2 value of 0.9979 and a standard error of estimation of approximately 1%) relative to independent measurement. The overall performance of the PRESAGE/OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed

  4. A practical three-dimensional dosimetry system for radiation therapy

    SciTech Connect

    Guo Pengyi; Adamovics, John; Oldham, Mark

    2006-10-15

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of {<=}1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R{sup 2} value of 0.9979 and a standard error of estimation of {approx}1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed full

  5. Trash to art

    SciTech Connect

    Heumann, J.M.

    1998-02-01

    The Materials for the Arts (MFA) center in New York City is nothing like your typical materials recovery facility. The center does not process recyclable materials collected through a municipal or commercial recycling program. Rather, it reaches up higher on the solid waste management hierarchy, by enabling reuse, rather than reprocessing, of discarded materials. MFA collects all sorts of discarded, but still usable, materials--ranging from furniture, computers, fabric, and paint, to paper, radios, boxes, lighting fixtures, construction and demolition debris, and more--from major corporations, small businesses, and individuals throughout the city. These materials then find a second home as resources for the city`s art and cultural community. MFA serves as a materials broker between businesses and individuals trying to get rid of unwanted materials and the city`s nonprofit art and cultural institutions.

  6. Neutron dosimetry in containment of a pressurized water reactor utilizing the Panasonic UD-802 dosimetry system

    SciTech Connect

    Kralick, S.C.

    1984-01-01

    The Panasonic UD-802 dosimeter was evaluated as a potential neutron dosimeter for use in containment of a PWR. The Panasonic UD-802 dosimeter, although designed as a beta and gamma dosimeter, is also sensitive to neutrons. UD-802 dosimeters were mounted on polyethylene phantoms and irradiated to known doses at selected locations in containment. The known neutron dose equivalents were determined based on remmeter dose rate measurements and stay times. The thermoluminescent response of the dosimeters and the known neutron dose equivalents were used to obtain a calibration factor at each location. The average calibration factor was 3.7 (unit of dosimeter response per mrem) and all calibration factors were within +-30% of this mean value. The dosimeter distance from the phantom was found to have minimal effect on the response but the system was directionally dependent, necessitating a correction in the calibration factor. The minimum significant dosimeter response was determined independent of any calibration factor. The minimum significant response of the UD-802 to neutrons is a function of the corresponding gamma exposure rate. It is concluded that the Panasonic UD-802 dosimeter can be used for neutron dosimetry in PWR containment.

  7. Science Is Art

    NASA Astrophysics Data System (ADS)

    Burke, Michael

    2010-03-01

    Michael Burke is an artist who's work combines scientific principles with aesthetic goals. He will describe how he became an artist after careers in astronomy and city planning, and discuss the supposed separation of science and art. The talk will be illustrated with photographs of his work, including an installation in an Etruscan tomb and one at the port city of Savona in Italy. Mr. Burke sees a romance in science equivalent to that of art, and will argue that the two should not be so resolutely separated.

  8. Internal radiation dosimetry for clinical testing of radiolabeled monoclonal antibodies

    SciTech Connect

    Fisher, D.R.; Durham, J.S.; Hui, T.E.; Hill, R.L.

    1990-11-01

    In gauging the efficacy of radiolabeled monoclonal antibodies in cancer treatment, it is important to know the amount of radiation energy absorbed by tumors and normal tissue per unit administered activity. This paper describes methods for estimating absorbed doses to human tumors and normal tissues, including intraperitoneal tissue surfaces, red marrow, and the intestinal tract from incorporated radionuclides. These methods use the Medical Internal Radiation Dose (MIRD) scheme; however, they also incorporate enhancements designed to solve specific dosimetry problems encountered during clinical studies, such as patient-specific organ masses obtained from computerized tomography (CT) volumetrics, estimates of the dose to tumor masses within normal organs, and multicellular dosimetry for studying dose inhomogeneities in solid tumors. Realistic estimates of absorbed dose are provided within the short time requirements of physicians so that decisions can be made with regard to patient treatment and procurement of radiolabeled antibodies. Some areas in which further research could improve dose assessment are also discussed. 16 refs., 3 figs.

  9. Dosimetry using environmental and biological materials. Final report

    SciTech Connect

    Haskell, E.; Kenner, G.; Hayes, R.

    1998-02-01

    This report summarizes a five year effort to improve the sensitivity and reliability of retrospective dosimetry methods, to collaborate with laboratories engaged in related research and to share the technology with startup laboratories seeking similar capabilities. This research program has focused on validation of electron paramagnetic resonance (EPR) as a dosimetry tool and on optimization of the technique by reducing the lower limits of detection, simplifying the process of sample preparation and analysis and speeding analysis to allow greater throughput in routine measurement situations. The authors have investigated the dosimetric signal of hard tissues in enamel, deorganified dentin, synthetic carbonated apatites and synthetic hydroxyapatite. This research has resulted in a total of 27 manuscripts which have been published, are in press, or have been submitted for publication. Of these manuscripts, 14 are included in this report and were indexed separately for inclusion in the data base.

  10. Dosimetry of Radiopharmaceuticals for Diagnostic and Therapeutic Nuclear Medicine

    SciTech Connect

    Smart, Richard

    2011-05-05

    A standard formalism for radionuclide internal radiation dosimetry was developed in the 1960s and continues to be refined today. Early work was based on a mathematical phantom but this is being replaced by phantoms developed from whole-body CT scans to give more realistic dose estimates. The largest contributors to the uncertainties in these dose estimates are the errors associated with in vivo activity quantitation, the variability of the biokinetics between patients and the limited information that can be obtained on these kinetics in individual patients. Despite these limitations, pre-treatment patient-specific dosimetry is being increasing used, particularly to limit the toxicity to non-target organs such as the bone marrow.

  11. NCRP Program Area Committee 6: Radiation Measurements and Dosimetry.

    PubMed

    Simon, Steven L; Zeman, Gary H

    2016-02-01

    Program Area Committee (PAC) 6 of the National Council on Radiation Protection and Measurements provides guidance for radiation measurements and dosimetry--one of the most fundamental scientific areas of the Council's expertise. Seminal reports published by PAC 6 over many decades have documented the scientific and technical foundations of radiation measurements and dosimetry for generations of radiation scientists and radiation protection professionals. Ongoing work of PAC 6 is driven by advancing technology, such as development of new types of instruments, biodosimetry and nanotechnology; by evolving understanding of radiation hazards, such as effects on the lens of the eye and risks as from some high-dose medical imaging procedures; and by new situations faced in the modern socio-political environment including radiological and nuclear threats. The activities of PAC 6 are intended to formulate and document the dosimetric framework for radiological science to address these ever-emerging challenges. PMID:26717161

  12. NCRP Program Area Committee 6: Radiation Measurements and Dosimetry.

    PubMed

    Simon, Steven L; Zeman, Gary H

    2016-02-01

    Program Area Committee (PAC) 6 of the National Council on Radiation Protection and Measurements provides guidance for radiation measurements and dosimetry--one of the most fundamental scientific areas of the Council's expertise. Seminal reports published by PAC 6 over many decades have documented the scientific and technical foundations of radiation measurements and dosimetry for generations of radiation scientists and radiation protection professionals. Ongoing work of PAC 6 is driven by advancing technology, such as development of new types of instruments, biodosimetry and nanotechnology; by evolving understanding of radiation hazards, such as effects on the lens of the eye and risks as from some high-dose medical imaging procedures; and by new situations faced in the modern socio-political environment including radiological and nuclear threats. The activities of PAC 6 are intended to formulate and document the dosimetric framework for radiological science to address these ever-emerging challenges.

  13. Methods and computer readable medium for improved radiotherapy dosimetry planning

    DOEpatents

    Wessol, Daniel E.; Frandsen, Michael W.; Wheeler, Floyd J.; Nigg, David W.

    2005-11-15

    Methods and computer readable media are disclosed for ultimately developing a dosimetry plan for a treatment volume irradiated during radiation therapy with a radiation source concentrated internally within a patient or incident from an external beam. The dosimetry plan is available in near "real-time" because of the novel geometric model construction of the treatment volume which in turn allows for rapid calculations to be performed for simulated movements of particles along particle tracks therethrough. The particles are exemplary representations of alpha, beta or gamma emissions emanating from an internal radiation source during various radiotherapies, such as brachytherapy or targeted radionuclide therapy, or they are exemplary representations of high-energy photons, electrons, protons or other ionizing particles incident on the treatment volume from an external source. In a preferred embodiment, a medical image of a treatment volume irradiated during radiotherapy having a plurality of pixels of information is obtained.

  14. Consistency of external dosimetry in epidemiologic studies of nuclear workers

    SciTech Connect

    Fix, J.J.; Gilbert, E.S.

    1991-10-01

    To make the best use of available epidemiologic data in assessing risks from exposure to low-level radiation, it is important that biases and uncertainties in estimated doses be understood and documented. With this understanding, analyses of mortality data can be strengthened by including the use of correction factors where judged appropriate, excluding portions of the data where uncertainty in dose estimates is judged to be very large, and conducting sensitivity analyses to examine the effect of alternative assumptions about dosimetry errors and biases on results. It is hoped that the pooling of data from several epidemiologic studies and improved understanding of dosimetry will lead to better estimates of radiation risks. 10 refs., 4 tabs.

  15. Computer simulations for internal dosimetry using voxel models.

    PubMed

    Kinase, Sakae; Mohammadi, Akram; Takahashi, Masa; Saito, Kimiaki; Zankl, Maria; Kramer, Richard

    2011-07-01

    In the Japan Atomic Energy Agency, several studies have been conducted on the use of voxel models for internal dosimetry. Absorbed fractions (AFs) and S values have been evaluated for preclinical assessments of radiopharmaceuticals using human voxel models and a mouse voxel model. Computational calibration of in vivo measurement system has been also made using Japanese and Caucasian voxel models. In addition, for radiation protection of the environment, AFs have been evaluated using a frog voxel model. Each study was performed by using Monte Carlo simulations. Consequently, it was concluded that these data of Monte Carlo simulations and voxel models could adequately reproduce measurement results. Voxel models were found to be a significant tool for internal dosimetry since the models are anatomically realistic. This fact indicates that several studies on correction of the in vivo measurement efficiency for the variability of human subjects and interspecies scaling of organ doses will succeed.

  16. KCl:Dy phosphor for thermoluminescence dosimetry of ionizing radiation.

    PubMed

    Bhujbal, P M; Dhoble, S J

    2013-01-01

    The thermoluminescence (TL) characterizations of γ-irradiated KCl:Dy phosphor for radiation dosimetry are reported. All phosphors were synthesized via a wet chemical route. Minimum fading of TL intensity is recorded in the prepared material. TL in samples containing different concentrations of Dy impurity was studied at different γ-irradiation doses. Peak TL intensities varied sublinearly with γ-ray dose in all samples, but were linear between 0.08 to 0.75 kGy for the KCl:Dy (0.1 mol%) sample. This material may be useful for dosimetry within this range of γ-ray dose. TL peak height was found to be dependant on the concentration (0.05-0.5 mol%) of added Dy in the host.

  17. Identification and dosimetry of irradiated walnuts (Juglans regia) using EPR

    NASA Astrophysics Data System (ADS)

    Maghraby, A.; Salama, E.; Sami, A.; Mansour, A.; El-Sayed, M.

    2012-03-01

    Electron paramagnetic resonance (EPR) is an easy, fast, and reliable tool for identification of irradiated food. Untreated nuts may encounter hazards of carrying several pathogens or microbial contamination; walnuts are of specific importance due to their nutritional and medicinal values, and hence walnut processing via gamma irradiation is a necessary step. EPR was employed for the identification and dosimetry of Cs-137 gamma-irradiated walnuts (shells and kernels). Several important parameters were studied, such as spectral features, microwave power dependence of signal intensities, and short- and long-term time dependences. Responses of walnut shells and kernels to different radiation doses in the range 0-10 kGy were investigated. Results confirmed that EPR is a suitable tool for the identification and dosimetry of irradiated walnuts using either their shells or only kernels.

  18. Development of CVD diamond detectors for clinical dosimetry

    NASA Astrophysics Data System (ADS)

    Piliero, M. A.; Hugtenburg, R. P.; Ryde, S. J. S.; Oliver, K.

    2014-11-01

    The use of chemical vapour deposition (CVD) methods for the manufacture of diamonds could lead to detectors for high-resolution radiotherapy dosimetry that are cheaper and more reproducible than detectors based on natural diamonds. In this work two prototype designs (Diamond Detectors Ltd, Poole) of CVD diamond detectors were considered. The detectors were encapsulated in a water-proof housing in a form-factor that would be suitable for dosimetry measurements in water, as well as solid material phantoms. Stability of the dosimeter over time, the dose-response, dose-rate response and angular-response were examined. The study demonstrated that the detector behaviour conformed with theory in terms of the dose-rate response and had acceptable properties for use in the clinic.

  19. Phantom Positioning Variation in the Gamma Knife® Perfexion Dosimetry

    NASA Astrophysics Data System (ADS)

    Costa, N. A.; Potiens, M. P. A.; Saraiva, C. W. C.

    2016-07-01

    The use of small volume ionization chamber has become required for the dosimetry of equipments that use small radiation fields such as the Gamma Knife® Perfexion (GKP) unit. In this work, a pinpoint ionization chamber was inserted into the dosimetry phantom and measurements were performed with the phantom in different positions, in order to verify if the change in the phantom positioning affects the dosimetry of the GKP. Four different phantom positions were performed. The variation in the result is within the range allowed for the dosimetry of a GKP equipment.

  20. Handbook for the Department of Energy Laboratory Accreditation Program for personnel dosimetry systems

    SciTech Connect

    Not Available

    1986-12-01

    The program contained in this Handbook provides a significant advance in the field of radiation protection through a structured means for assuring the quality of personnel dosimetry performance. Since personnel dosimetry performance is directly related to the assurance of worker safety, it has been of key interest to the Department of Energy. Studies conducted over the past three decades have clearly demonstrated a need for personnel dosimetry performance criteria, related testing programs, and improvements in dosimetry technology. In responding to these needs, the DOE Office of Nuclear Safety (EH) has developed and initiated a DOE Laboratory Accreditation Program (DOELAP) which is intended to improve the quality of personnel dosimetry through (1) performance testing, (2) dosimetry and calibration intercomparisons, and (3) applied research. In the interest of improving dosimetry technology, the DOE Laboratory Accreditation Program (DOELAP) is also designed to encourage cooperation and technical interchange between DOE laboratories. Dosimetry intercomparison programs have been scheduled which include the use of transport standard instruments, transport standard radioactive sources and special dosimeters. The dosimeters used in the intercomparison program are designed to obtain optimum data on the comparison of dosimetry calibration methodologies and capabilities. This data is used in part to develop enhanced calibration protocols. In the interest of overall calibration update, assistance and guidance for the calibration of personnel dosimeters is available through the DOELAP support laboratories. 20 refs., 1 tab.

  1. Radiochromic film based dosimetry of image-guidance procedures on different radiotherapy modalities.

    PubMed

    Nobah, Ahmad; Aldelaijan, Saad; Devic, Slobodan; Tomic, Nada; Seuntjens, Jan; Al-Shabanah, Mohammed; Moftah, Belal

    2014-11-08

    In this work we compare doses from imaging procedures performed on today's state-of-the-art integrated imaging systems using a reference radiochromic film dosimetry system. Skin dose and dose profile measurements from different imaging systems were performed using radiochromic films at different anatomical sites on a humanoid RANDO phantom. EBT3 film was used to measure imaging doses from a TomoTherapy MVCT system, while XRQA2 film was used for dose measurements from kilovoltage imaging systems (CBCT on 21eX and TrueBeam Varian linear accelerators and CyberKnife stereoscopic orthogonal imagers). Maximum measured imaging doses in cGy at head, thorax, and pelvis regions were respectively 0.50, 1.01, and 4.91 for CBCT on 21eX, 0.38, 0.84, and 3.15 for CBCT on TrueBeam, 4.33, 3.86, and 6.50 for CyberKnife imagers, and 3.84, 1.90, and 2.09 for TomoTherapy MVCT. In addition, we have shown how an improved calibration system of XRQA2 film can achieve dose uncertainty level of better than 2% for doses above 0.25 cGy. In addition to simulation-based studies in literature, this study provides the radiation oncology team with data necessary to aid in their decision about imaging frequency for image-guided radiation therapy protocols.

  2. Radiological protection and medical dosimetry for the Skylab crewmen

    NASA Technical Reports Server (NTRS)

    Bailey, J. V.; Hoffman, R. A.; English, R. A.

    1977-01-01

    Dosimetry results for Skylab crewmembers show that the Skylab 4 crewmen received the highest dose equivalents but remained well within the established limits for Skylab missions below the threshold of significant clinical effects. These dose equivalents apply specificially to long term effects such as general life shortening, increased neoplasm incidence, and cataract production. A Skylab crewman could fly a mission comparable to one 84-day Skylab 4 mission per year for 50 years before exceeding these career limits.

  3. Optimization of the double dosimetry algorithm for interventional cardiologists

    NASA Astrophysics Data System (ADS)

    Chumak, Vadim; Morgun, Artem; Bakhanova, Elena; Voloskiy, Vitalii; Borodynchik, Elena

    2014-11-01

    A double dosimetry method is recommended in interventional cardiology (IC) to assess occupational exposure; yet currently there is no common and universal algorithm for effective dose estimation. In this work, flexible and adaptive algorithm building methodology was developed and some specific algorithm applicable for typical irradiation conditions of IC procedures was obtained. It was shown that the obtained algorithm agrees well with experimental measurements and is less conservative compared to other known algorithms.

  4. Feasibility of portal dosimetry for flattening filter-free radiotherapy.

    PubMed

    Chuter, Robert W; Rixham, Philip A; Weston, Steve J; Cosgrove, Vivian P

    2016-01-08

    The feasibility of using portal dosimetry (PD) to verify 6 MV flattening filter-free (FFF) IMRT treatments was investigated. An Elekta Synergy linear accelerator with an Agility collimator capable of delivering FFF beams and a standard iViewGT amorphous silicon (aSi) EPID panel (RID 1640 AL5P) at a fixed SSD of 160 cm were used. Dose rates for FFF beams are up to four times higher than for conventional flattened beams, meaning images taken at maximum FFF dose rate can saturate the EPID. A dose rate of 800 MU/min was found not to saturate the EPID for open fields. This dose rate was subsequently used to characterize the EPID for FFF portal dosimetry. A range of open and phantom fields were measured with both an ion chamber and the EPID, to allow comparison between the two. The measured data were then used to create a model within The Nederlands Kanker Instituut's (NKI's) portal dosimetry software. The model was verified using simple square fields with a range of field sizes and phantom thicknesses. These were compared to calculations performed with the Monaco treatment planning system (TPS) and isocentric ion chamber measurements. It was found that the results for the FFF verification were similar to those for flattened beams with testing on square fields, indicating a difference in dose between the TPS and portal dosimetry of approximately 1%. Two FFF IMRT plans (prostate and lung SABR) were delivered to a homogeneous phantom and showed an overall dose difference at isocenter of ~0.5% and good agreement between the TPS and PD dose distributions. The feasibility of using the NKI software without any modifications for high-dose-rate FFF beams and using a standard EPID detector has been investigated and some initial limitations highlighted.

  5. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    PubMed Central

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre

    2015-01-01

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed. PMID:25799311

  6. Shared dosimetry error in epidemiological dose-response analyses.

    PubMed

    Stram, Daniel O; Preston, Dale L; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J; Boice, John; Beck, Harold; Till, John; Bouville, Andre

    2015-01-01

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.

  7. Feasibility of portal dosimetry for flattening filter-free radiotherapy.

    PubMed

    Chuter, Robert W; Rixham, Philip A; Weston, Steve J; Cosgrove, Vivian P

    2016-01-01

    The feasibility of using portal dosimetry (PD) to verify 6 MV flattening filter-free (FFF) IMRT treatments was investigated. An Elekta Synergy linear accelerator with an Agility collimator capable of delivering FFF beams and a standard iViewGT amorphous silicon (aSi) EPID panel (RID 1640 AL5P) at a fixed SSD of 160 cm were used. Dose rates for FFF beams are up to four times higher than for conventional flattened beams, meaning images taken at maximum FFF dose rate can saturate the EPID. A dose rate of 800 MU/min was found not to saturate the EPID for open fields. This dose rate was subsequently used to characterize the EPID for FFF portal dosimetry. A range of open and phantom fields were measured with both an ion chamber and the EPID, to allow comparison between the two. The measured data were then used to create a model within The Nederlands Kanker Instituut's (NKI's) portal dosimetry software. The model was verified using simple square fields with a range of field sizes and phantom thicknesses. These were compared to calculations performed with the Monaco treatment planning system (TPS) and isocentric ion chamber measurements. It was found that the results for the FFF verification were similar to those for flattened beams with testing on square fields, indicating a difference in dose between the TPS and portal dosimetry of approximately 1%. Two FFF IMRT plans (prostate and lung SABR) were delivered to a homogeneous phantom and showed an overall dose difference at isocenter of ~0.5% and good agreement between the TPS and PD dose distributions. The feasibility of using the NKI software without any modifications for high-dose-rate FFF beams and using a standard EPID detector has been investigated and some initial limitations highlighted. PMID:26894337

  8. Shared dosimetry error in epidemiological dose-response analyses

    SciTech Connect

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.

  9. Shared dosimetry error in epidemiological dose-response analyses

    DOE PAGES

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.« less

  10. Shared dosimetry error in epidemiological dose-response analyses.

    PubMed

    Stram, Daniel O; Preston, Dale L; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J; Boice, John; Beck, Harold; Till, John; Bouville, Andre

    2015-01-01

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed. PMID:25799311

  11. Dysprozium-activated calcium sulphate in gamma dosimetry

    NASA Astrophysics Data System (ADS)

    Majchrowski, Andrzej; Korman, A.; Zmija, Jozef; Borys, Wieslaw; Malecki, M.; Warkocki, Stanislaw

    1995-10-01

    Results of preliminary investigations of thermoluminescent response of CaSO4Dy to ionizing radiation are reported. Very high sensitivity and good linearity of this luminofor are confirmed in the case of gamma irradiation. Neutron sensitivity of calcium sulphate due to internal conversion of 32S to 32P by fast neutrons was investigated as well, but it does not seem to be sensitive enough to be used in personal dosimetry.

  12. Radiochromic Film Dosimetry and its Applications in Radiotherapy

    SciTech Connect

    Williams, Matthew; Metcalfe, Peter

    2011-05-05

    Radiochromic film can be a fast and inexpensive means for performing accurate quantitative radiation dosimetry. The development of new radiochromic compositions that have greater dose sensitivity and fewer environmental dependencies has led to an ever increasing use of the film in radiotherapy applications. In this report the various physical and dosimetric properties of radiochromic film are presented and the strategies to adequately manage these properties when using radiochromic film for radiotherapy applications are discussed.

  13. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    SciTech Connect

    Stram, Daniel; Preston, D. L.; Sokolnkov, Mikhail; Napier, Bruce A.; Kopecky, Kenneth; Boice, John; Beck, Harold L.; Till, John E.; Bouville, A.

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. Use of these methods for several studies, including the Mayak Worker Cohort and the U.S. Atomic Veterans Study, is discussed.

  14. Art Portraying Medicine

    ERIC Educational Resources Information Center

    Koski, Kaisu

    2011-01-01

    A number of art projects are currently tackling the medical domain. This activity stems from a perceived need to increase the transparency and democracy of the medical domain, and it often questions the power relations and the one-dimensionality in current medical practices. This article sheds light on how artists process medical themes,…

  15. The art of psychiatry

    PubMed Central

    BLOCH, SIDNEY

    2005-01-01

    Psychiatrists would undoubtedly support the notion of promoting such qualities as empathy, sensitivity and caring in the pursuit of good clinical practice. However, cultivating what we may call the "art of psychiatry" is not straightforward, since the qualities that constitute it are elusive. I propose that the means by which we can accomplish the goal of relating empathically and compassionately to our patients and their families is by regarding the humanities and the sciences as of equal relevance and as complementary. The humanities, particularly literature, the visual arts, film and music, are most suited to promoting empathic skills when they are woven into the clinical scenario. Examples are provided to demonstrate how this may be achieved. Were we to succeed in highlighting the art of psychiatry in our educational programs, and as part of continuing professional development, I surmise that our patients and their families would be the beneficiaries. We cannot merely vow to act empathically and sensitively. Instead, we should embark on a lifelong journey through the wonderful world of literature, the visual arts, film and music. The experience will not only prove appealing and engaging, but it will also go far to enrich our personal and professional lives. PMID:16633530

  16. The Art of Fresco.

    ERIC Educational Resources Information Center

    Macaulay, Sara Grove

    2001-01-01

    Discusses a fresco assignment taught during a workshop for an art history class where students created their own fresco paintings. Provides background information on the fresco technique and the materials that are used. Describes the process of creating the frescos and lists the needed materials. (CMK)

  17. Understanding the Storyteller's Art.

    ERIC Educational Resources Information Center

    Curtis, William; Moir, Hughes

    A sensitivity to both a story's content and art form can bring children to the understandings and feelings that are basic to the humane encounter that is education. Two approaches seem to dominate the use of stories in schools today. The first is the placement of literary selections in basal readers. However, the ways in which teachers are…

  18. Art in the Garden

    ERIC Educational Resources Information Center

    Tucciarelli, Teri

    2004-01-01

    Meadow Woods Elementary in Orlando, Florida has a garden ceremony at the end of each year. This is a time when the whole school gathers together to celebrate another successful school year. The classrooms are built around the garden, so it is the centerpiece of the school. Students always do an art project for this ceremony. One year, students…

  19. Art in Action

    ERIC Educational Resources Information Center

    Kelleher, Joanne

    2016-01-01

    Students are often required to create work in a vacuum, handing in papers to an inauthentic audience for the purpose of receiving a grade. As a result, students often neglect to consider the effects that their work can have on others. In this article, the author highlights an art project from her middle school in Kings Park, New York, that…

  20. Chimera: Experiencing Language Arts.

    ERIC Educational Resources Information Center

    Paul, Rebecca K.

    1991-01-01

    Describes the production of a dramatic musical, Chimera: A Journey to Redoubtia, at Chapman Elementary School in Anchor Point, Alaska. Student participation in the project, and students' rewards from participation, are detailed. Benefits of the integration of dramatics into the language arts curriculum are listed. (BB)

  1. Art and Recollection

    ERIC Educational Resources Information Center

    Carroll, Noel

    2005-01-01

    Modern aesthetic theory maintains that a work is an artwork if it is intended to afford aesthetic experiences that are valuable for their own sake. The author claims that such a definition eliminates from art most of the poetry, novels, films, and music that have been produced in the world. The author examines several responses to his claim from…

  2. Language Arts - Spanish Grammar.

    ERIC Educational Resources Information Center

    Andrade, Magdalena; Sones, Mary

    This publication presents three suggested language arts curriculum units. They represent a cross-section of materials that have been developed to deal with the learning problems of students with special language difficulties. Originally developed for grades 7-12, these units may be adapted for use in adult education or at other grade levels. They…

  3. Science through ARts (STAR)

    ERIC Educational Resources Information Center

    Densmore, Marycay; Kolecki, Joseph C.; Miller, Allan; Petersen, Ruth; Terrell, Mike

    2005-01-01

    Science Through ARts (STAR) is a free, international, cross-curricular program thematically aligned with "The Vision for Space Exploration," a framework of goals and objectives published by NASA in February 2004. Through the STAR program, students in grades 5 through 12 are encouraged to apply their knowledge in creative ways as they approach a…

  4. [Personal motif in art].

    PubMed

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy.

  5. Art Appreciation and Technique.

    ERIC Educational Resources Information Center

    Dean, Diane R.; Milam, Debora

    1985-01-01

    Presents examples of independent study units for gifted high school students in a resource room setting. Both art appreciation and technique are covered in activities concerned with media (basics of pencil, India ink, pastels, crayons, oil, acrylics, and watercolors), subject matter (landscapes, animals, the human figure), design and illustration…

  6. Compu-Art.

    ERIC Educational Resources Information Center

    Edwards, Gerald D.

    1985-01-01

    To many students the complex technical problems of computer graphics seem to put them beyond reach. Computer technology can be reduced to the bare basics, however. In this activity elementary art students add an intriguing dimension to a crayon drawing by completing a computer image counterpart of a previously drawn image. (RM)

  7. Connect with the Arts

    ERIC Educational Resources Information Center

    Principal, 2012

    2012-01-01

    "What if?" might be the most powerful question in education. NAESP and Crayola challenge schools with that question every year in their Champion Creatively Alive Children grant competition. Schools are encouraged to ask questions such as: What if arts-infused learning thrived every day in schools? What if schools relied more on project-based…

  8. Exploring Global Art.

    ERIC Educational Resources Information Center

    Needler, Toby; Goodman, Bonnie

    The eight units in this volume are designed for use by an art teacher/specialist. Thematic ideas are presented, while skills, techniques, and materials are not dictated. The lessons encourage students to compare and contrast cultures, understand their own cultural experiences, and explore differences and commonalities among cultures. The materials…

  9. Language Arts Philosophy.

    ERIC Educational Resources Information Center

    [Dolch, E.W.

    This document articulates a philosophy of language arts that is based on the teacher's recognition of the need for an idividualized rate of growth for each child. Writing is presented as a personal and practical means of communication, and writing skills are listed that should be taught in the writing program. The goals for an effective creative…

  10. Virtual art revisited

    NASA Astrophysics Data System (ADS)

    Ruzanka, S.

    2014-02-01

    Virtual reality art at the turn of the millenium saw an explosion of creative exploration around this nascent technoloy. Though VR art has much in common with media art in general, the affordances of the technology gave rise to unique experiences, discourses, and artistic investigations. Women artists were at the forefront of the medium, shaping its aesthetic and technical development, and VR fostered a range of artistic concerns and experimentation that was largely distinct from closely related forms such as digital games. Today, a new wave of consumer technologies including 3D TV's, gestural and motion tracking interfaces, and headmount displays as viable, low-cost gaming peripherals drives a resurgence in interest in VR for interactive art and entertainment. Designers, game developers, and artists working with these technologies are in many cases discovering them anew. This paper explores ways of reconnecting this current moment in VR with its past. Can the artistic investigations begun in previous waves of VR be continued? How do the similarities and differences in contexts, communities, technologies, and discourses affect the development of the medium?

  11. Chemistry and Art.

    ERIC Educational Resources Information Center

    Berry, Martyn

    1999-01-01

    Describes a Chemistry and Art project developed for secondary students and teachers sponsored by the National Gallery and The Royal Society of Chemistry in the United Kingdom. Discusses aspects of the techniques used in creating five paintings as well as the chemistry involved in their making, deterioration, conservation, and restoration.…

  12. Leave No Arts Behind

    ERIC Educational Resources Information Center

    Rohrer, Ken

    2005-01-01

    The goal of No Child Left Behind Act is for 100% of all children to pass their state's standardized tests by the year 2014. With the act steadily increasing expectations for schools, teachers are scrambling to raise test scores. Because the arts are not included in most state standardized tests, schools are cutting these programs and putting all…

  13. Language Arts Tutorial Handbook.

    ERIC Educational Resources Information Center

    Dorsey, Mary E., Comp.

    This handbook is designed for tutors in a language arts tutorial program for migrant students who are deficient in reading and language skills. Introductory materials discuss the special problems of migrant children, point to programs developed to meet their needs, and explain the basic design of the tutorial program. The handbook then discusses…

  14. Art Means a Lot

    ERIC Educational Resources Information Center

    Almanzar, Victor B.

    2013-01-01

    The author, Victor B. Almanzar, reports on his introduction to the arts while growing up in New York as a young teenager. He felt like an outcast from society due to his language barrier and numerous ethnic groups different from his. He became involved with other students who, like himself, were harassed and suffered from bullying due to their…

  15. Reading, Language Arts & Literacy.

    ERIC Educational Resources Information Center

    Matthew, Kathy, Ed.

    This document contains the following papers on educational technology issues related to reading, language arts, and literacy: (1) "The Infusion of Technology into a Teacher Education Course: Issues and Strategies" (Mary Ann Kolloff); (2) "Project READ: Developing Online Course Materials for a Reading Methods Class" (Judith A. Crowe); (3) "Reading…

  16. Art and Sport.

    ERIC Educational Resources Information Center

    Best, David

    1980-01-01

    The author refutes arguments by S. K. Wertz, based on a definition by Ruth Shaw, that some sports may be classified as art forms. For Wertz's article, see "Journal of Aesthetic Education," v13, n1, p107-09, January, 1979. (SJL)

  17. Applying Art and Action

    ERIC Educational Resources Information Center

    Viglione, Nick M.

    2009-01-01

    The education system in the United States is going through change. Consequently, curriculum and instructional delivery are focusing on math, reading, and science. This focus is causing an effect that reduces the amount of arts becoming infused into the school design. An alternative education program in a charter school has created a…

  18. The Gift of Art.

    ERIC Educational Resources Information Center

    Papanoutsos, E. P.

    1978-01-01

    Using the theater as an example, four successive stages of affect can be distinguished in any work of art: detachment from ordinary life, enjoyment of the decorative aspects of the work, emotional enrichment through empathy with its content, and, finally, spiritual fulfillment through comprehension of its meaning. (Author/SJL)

  19. Art, Pedagogy and Dyslexia

    ERIC Educational Resources Information Center

    Hickman, Richard; Brens, Madeleine

    2014-01-01

    This article presents exploratory research examining the strategies employed by art teachers who identify as dyslexic. The study originated out of the personal interest of the researchers better to understand the strategies for learning used by teachers with dyslexia and the potential influence it has on their pedagogy. The question that this…

  20. Enrichment through Creative Arts.

    ERIC Educational Resources Information Center

    Krause, Claire S.

    The CREST (Creative Resources Enriching Student Talents) Project, an enrichment approach for elementary gifted, talented, and creative students, is described. The project is explained to incorporate an interdisciplinary approach to instruction in art and science using resources within the community. Chapter 1 outlines the project philosophy,…

  1. Earth as art three

    USGS Publications Warehouse

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  2. Indian Ledger Art.

    ERIC Educational Resources Information Center

    Chilcoat, George W.

    1990-01-01

    Offers an innovative way to teach mid-nineteenth century North American Indian history by having students create their own Indian Ledger art. Purposes of the project are: to understand the role played by American Indians, to reveal American Indian stereotypes, and to identify relationships between cultures and environments. Background and…

  3. Adventures in Art.

    ERIC Educational Resources Information Center

    Ladewig-Goodman, Jeanne

    Classroom teachers are provided with ideas and procedures for teaching art in grades one through six. The activities encourage individuality, creativity, and aesthetic awareness in the child. For grades one through three, activity suggestions include two-dimensional painting, painting stuffed animals, and painting with sponges; paper tearing and…

  4. American Folk Art Paintings

    ERIC Educational Resources Information Center

    Lang, April Hulse

    2007-01-01

    Anna Mary Robertson Moses, popularly known as Grandma Moses, may be the most famous American folk artist. A fortuitous combination of original vision, innate talent, spunky character, and long life, Moses is known for her landscapes that depict nostalgic views of country life. In this article, the author describes an art activity she introduced to…

  5. Robotics and Industrial Arts.

    ERIC Educational Resources Information Center

    Edmison, Glenn A.; And Others

    Robots are becoming increasingly common in American industry. By l990, they will revolutionize the way industry functions, replacing hundreds of workers and doing hot, dirty jobs better and more quickly than the workers could have done them. Robotics should be taught in high school industrial arts programs as a major curriculum component. The…

  6. Beating Heart of Art

    ERIC Educational Resources Information Center

    Kelin, Daniel A., II

    2015-01-01

    This article presents a critical and comparative look at how two theatre programs help young people develop an artistic voice and sense of self as an artist. Each program begins with art. Individuals explore basic tenets of dramatic expression through foundational activities. As they play and experiment, the individuals discover their capacity for…

  7. [Personal motif in art].

    PubMed

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy. PMID:26202617

  8. Art Therapy and Alexithymia.

    ERIC Educational Resources Information Center

    Heiman, Marilyn; And Others

    1994-01-01

    Investigated effect of alexithymia upon person's art production. Administered Toronto Alexithymia Scale and 100-mm analog scales for depression and anxiety to 100 psychiatric patients. Each subject drew and identified his/her illness. All subjects, even those quantified as alexithymic, were able to graphically communicate their illness using these…

  9. Art and Dream.

    ERIC Educational Resources Information Center

    Guo, Shesen

    2003-01-01

    A computer-assisted learning/teaching model is conceived with implications of constructivist theory and an analogy between the traditional art form Shuanghuang and the teaching/learning environment. The virtual character of the model interacts with the learner, in the form of human behavior and speech supported by recognition biometrics,…

  10. Bulgarians: Arts and Crafts.

    ERIC Educational Resources Information Center

    Kolar, Walter W.

    This paper presents a general survey of Bulgarian folk handicrafts. It is part of an ethnic heritage teaching unit on Bulgarian culture. The objective of the project is to help American students in elementary, junior high, and high schools understand and appreciate Bulgarians and their culture. Arts and crafts discussed in the paper are masks,…

  11. Arts & Crafts for Everyone.

    ERIC Educational Resources Information Center

    Crane, Diane, Ed.

    1982-01-01

    Five different art activities, using different media, are described: (1) "mystery molds," using plaster and discarded packaging materials; (2) "calico cottages," using boxes and fabric; (3) "foam friends," using plastic foam packing pieces; (4) "bauble boxes," using spray can tops and papier mache; and (5) "soft stuff," using old clothing. (CJ)

  12. Artful Biology Projects

    ERIC Educational Resources Information Center

    Hall, Megan

    2005-01-01

    While teaching science in an alternative arts high school, the author continuously addresses the challenge of welcoming creative, right-brained students into the world of systematic inquiry. Busily mixing paint colors, choreographing futuristic dances, performing comedic theater, and practicing the banjo, the students rarely initiate authentic…

  13. We [Heart] Art!

    ERIC Educational Resources Information Center

    Castellanos, Dalina

    2011-01-01

    The passage of the No Child Left Behind law in 2001, which measures student achievement based on English and math scores, has pressured schools to cut the arts. A 2006 survey by the Center on Education Policy found that 44 percent of school districts had increased time for English and math while cutting time for other subjects. And a follow-up…

  14. Art and Archaeology.

    ERIC Educational Resources Information Center

    Wildman, Jul; Schumacher, Leni

    Organized in eight chapters, this interdisciplinary resource packet highlights the relationship between art and archaeology. Chapter 1 presents the vocabulary and several introductory activities that prepare students to participate in the subsequent chapters. These chapters focus on (2) "Lascaux Cave Paintings"; (3) "Life Along the Nile" (ancient…

  15. Arts Are Basics!

    ERIC Educational Resources Information Center

    Hughes, Anna May

    1979-01-01

    Argues for the inclusion of the arts in the curriculum because they involve elements of sound, movement, color, mass, energy, line, space, shape, and language, as well as emotion. Classes encourage perception of the cultural, aesthetic, and social development of man through a medium of personal expression. (JMF)

  16. Teacher as Public Art

    ERIC Educational Resources Information Center

    Wright, Sheila

    2006-01-01

    In this article "teacher as public art" is used as a metaphor to describe and explain the all-too-common perceptions and experiences of professors of color, especially women, within the academy. Highlighted throughout this discussion are: (1) the relevance of locating self within the context of people and place; and (2) the importance of bringing…

  17. Art as Social Concern

    ERIC Educational Resources Information Center

    Hodge, Stephanie

    2010-01-01

    In this article, the author describes how her eleventh- and twelfth-grade portfolio class used art as a social concern through a sketchbook and a linoleum print. Students thumbed through copies of the "New York Times" to find an article that described a modern-day social concern. Students were assigned to choose an article, summarize it, and come…

  18. The Art of Camouflage

    ERIC Educational Resources Information Center

    Martin, Rebecca

    2010-01-01

    The zoo is a favorite field trip destination for young students. This lesson was created for use before their excursion to increase their awareness of camouflage as a pattern design in animals. In this article, the author describes how her students made an art project on camouflage. (Contains 1 online resource.)

  19. Queering Art Teacher Education

    ERIC Educational Resources Information Center

    Cosier, Kimberly; Sanders, James H., III

    2007-01-01

    This article sounds a call to action and addresses the challenges of creating inclusive, queer-affirming art teacher education curricula. We examine such challenges through case study vignettes of our varied US university settings and explore the perils of teaching in an increasingly queer-hostile culture. Strategies are given for avoiding attacks…

  20. A Curandera of Art

    ERIC Educational Resources Information Center

    Warwick, Sharon

    2010-01-01

    This article features artist Amalia Mesa-Baines and discusses her background and influences, her creative style, and her cultural connection. Mesa-Baines is the director of Visual and Public Art at California State University, Monterey Bay. She is an independent artist, a cultural critic, and an author of scholarly research. She is also a McArthur…