Science.gov

Sample records for art dosimetrie individuelle

  1. Reactor Dosimetry State of the Art 2008

    NASA Astrophysics Data System (ADS)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  2. State-of-the-Art Beta Detection and Dosimetry

    SciTech Connect

    David M. Hamby

    2008-08-15

    The research funded by this NEER grant establishes the framework for a detailed understanding of the challenges in beta dosimetry, especially in the presence of a mixed radiation field. The work also stimulated the thinking of the research group which will lead to new concepts in digital signal processing to allow collection of detection signals and real-time analysis such that simultaneous beta and gamma spectroscopy can take place. The work described herein (with detail in the many publications that came out of this research) was conducted in a manner that provided dissertation and thesis topics for three students, one of whom was completely funded by this grant. The overall benefit of the work came in the form of a dramatic shift in signal processing that is normally conducted in analog pulse shape analysis. Analog signal processing was shown not to be feasible for this type of work; digital signal processing was a must. This, in turn, led the research team to a new understanding of pulse analysis, one in which expands the state-of-the-art in simultaneous beta and gamma spectroscopy with a single detector.

  3. Current state of the art brachytherapy treatment planning dosimetry algorithms

    PubMed Central

    Pantelis, E; Karaiskos, P

    2014-01-01

    Following literature contributions delineating the deficiencies introduced by the approximations of conventional brachytherapy dosimetry, different model-based dosimetry algorithms have been incorporated into commercial systems for 192Ir brachytherapy treatment planning. The calculation settings of these algorithms are pre-configured according to criteria established by their developers for optimizing computation speed vs accuracy. Their clinical use is hence straightforward. A basic understanding of these algorithms and their limitations is essential, however, for commissioning; detecting differences from conventional algorithms; explaining their origin; assessing their impact; and maintaining global uniformity of clinical practice. PMID:25027247

  4. Neutron personnel dosimetry

    SciTech Connect

    Griffith, R.V.

    1981-06-16

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments. (ACR)

  5. Computational dosimetry

    SciTech Connect

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  6. SU-D-213-05: Design, Evaluation and First Applications of a Off-Site State-Of-The-Art 3D Dosimetry System

    SciTech Connect

    Malcolm, J; Mein, S; McNiven, A; Letourneau, D; Oldham, M

    2015-06-15

    Purpose: To design, construct and commission a prototype in-house three dimensional (3D) dose verification system for stereotatic body radiotherapy (SBRT) verification at an off-site partner institution. To investigate the potential of this system to achieve sufficient performance (1mm resolution, 3% noise, within 3% of true dose reading) for SBRT verification. Methods: The system was designed utilizing a parallel ray geometry instigated by precision telecentric lenses and an LED 630nm light source. Using a radiochromic dosimeter, a 3D dosimetric comparison with our gold-standard system and treatment planning software (Eclipse) was done for a four-field box treatment, under gamma passing criteria of 3%/3mm/10% dose threshold. Post off-site installation, deviations in the system’s dose readout performance was assessed by rescanning the four-field box irradiated dosimeter and using line-profiles to compare on-site and off-site mean and noise levels in four distinct dose regions. As a final step, an end-to-end test of the system was completed at the off-site location, including CT-simulation, irradiation of the dosimeter and a 3D dosimetric comparison of the planned (Pinnacle{sup 3}) to delivered dose for a spinal SBRT treatment(12 Gy per fraction). Results: The noise level in the high and medium dose regions of the four field box treatment was relatively 5% pre and post installation. This reflects the reduction in positional uncertainty through the new design. This At 1mm dose voxels, the gamma pass rates(3%,3mm) for our in-house gold standard system and the off-site system were comparable at 95.8% and 93.2% respectively. Conclusion: This work will describe the end-to-end process and results of designing, installing, and commissioning a state-of-the-art 3D dosimetry system created for verification of advanced radiation treatments including spinal radiosurgery.

  7. (Biological dosimetry)

    SciTech Connect

    Sega, G.A.

    1990-11-06

    The traveler participated in an International Symposium on Trends in Biological Dosimetry and presented an invited paper entitled, Adducts in sperm protamine and DNA vs mutation frequency.'' The purpose of the Symposium was to examine the applicability of new methods to study quantitatively the effects of xenobiotic agents (radiation and chemicals) on molecular, cellular and organ systems, with special emphasis on human biological dosimetry. The general areas covered at the meeting included studies on parent compounds and metabolites; protein adducts; DNA adducts; gene mutations; cytogenetic end-points and reproductive methods.

  8. (Biological dosimetry)

    SciTech Connect

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  9. Radiation dosimetry.

    PubMed Central

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists. PMID:2040250

  10. SNL RML recommended dosimetry cross section compendium

    SciTech Connect

    Griffin, P.J.; Kelly, J.G.; Luera, T.F.; VanDenburg, J.

    1993-11-01

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.

  11. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  12. REVIEW OF DOSIMETRY FIELD

    DTIC Science & Technology

    three, oxalic acid , polyisobutylene, and Mylar film, seem sufficiently promising to warrant further development. Their current states of development...ceric sulfate dosimeters be included in the dosimetry handbook, but that additional work should be done on oxalic acid , polyisobutylene, and Mylar as dosimetry materials. (Author)

  13. Internal dosimetry - a review.

    SciTech Connect

    Potter, Charles Augustus

    2004-06-01

    The field history and current status of internal dosimetry is reviewed in this article. Elements of the field that are reviewed include standards and models, derivation of dose coefficients and intake retention fractions, bioassay measurements, and intake and dose calculations. In addition, guidance is developed and provided as to the necessity of internal dosimetry for a particular facility or operation and methodology for implementing a program. A discussion of the purposes of internal dosimetry is included as well as recommendations for future development and direction.

  14. Patient-specific internal radionuclide dosimetry.

    PubMed

    Tsougos, Ioannis; Loudos, George; Georgoulias, Panagiotis; Theodorou, Kiki; Kappas, Constantin

    2010-02-01

    The development of patient-specific treatment planning systems is of outmost importance in the development of radionuclide dosimetry, taking into account that quantitative three-dimensional nuclear medical imaging can be used in this regard. At present, the established method for dosimetry is based on the measurement of the biokinetics by serial gamma-camera scans, followed by calculations of the administered activity and the residence times, resulting in the radiation-absorbed doses of critical organs. However, the quantification of the activity in different organs from planar data is hampered by inaccurate attenuation and scatter correction as well as because of background and organ overlay. In contrast, dosimetry based on quantitative three-dimensional data can be more accurate and allows an individualized approach, provided that all effects that degrade the quantitative content of the images have been corrected for. In addition, inhomogeneous organ accumulation of the radionuclide can be detected and possibly taken into account. The aim of this work is to provide adequate information on internal emitter dosimetry and a state-of-the-art review of the current methodology and future trends.

  15. Ion storage dosimetry

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.

    2001-09-01

    The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters, a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber, the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device, underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided.

  16. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  17. Reconstructive dosimetry for cutaneous radiation syndrome

    PubMed Central

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Valverde, N.J.; Da Silva, F.C.A.

    2015-01-01

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. PMID:26445332

  18. In vivo dosimetry for IMRT

    SciTech Connect

    Vial, Philip

    2011-05-05

    In vivo dosimetry has a well established role in the quality assurance of 2D radiotherapy and 3D conformal radiotherapy. The role of in vivo dosimetry for IMRT is not as well established. IMRT introduces a range of technical issues that complicate in vivo dosimetry. The first decade or so of IMRT implementation has largely relied upon pre-treatment phantom based dose verification. During that time, several new devices and techniques for in vivo dosimetry have emerged with the promise of providing the ultimate form of IMRT dose verification. Solid state dosimeters continue to dominate the field of in vivo dosimetry in the IMRT era. In this report we review the literature on in vivo dosimetry for IMRT, with an emphasis on clinical evidence for different detector types. We describe the pros and cons of different detectors and techniques in the IMRT setting and the roles that they are likely to play in the future.

  19. Dosimetry for Radiopharmaceutical Therapy

    PubMed Central

    Sgouros, George; Hobbs, Robert F.

    2014-01-01

    Radiopharmaceutical therapy (RPT) involves the use of radionuclides that are either conjugated to tumor-targeting agents (eg, nanoscale constructs, antibodies, peptides, and small molecules) or concentrated in tissue through natural physiological mechanisms that occur predominantly in neoplastic or otherwise targeted cells (eg, Graves disease). The ability to collect pharmacokinetic data by imaging and use this to perform dosimetry calculations for treatment planning distinguishes RPT from other systemic treatment modalities. Treatment planning has not been widely adopted, in part, because early attempts to relate dosimetry to outcome were not successful. This was partially because a dosimetry methodology appropriate to risk evaluation rather than efficacy and toxicity was being applied to RPT. The weakest links in both diagnostic and therapeutic dosimetry are the accuracy of the input and the reliability of the radiobiological models used to convert dosimetric data to the relevant biologic end points. Dosimetry for RPT places a greater demand on both of these weak links. To date, most dosimetric studies have been retrospective, with a focus on tumor dose-response correlations rather than prospective treatment planning. In this regard, transarterial radioembolization also known as intra-arterial radiation therapy, which uses radiolabeled (90Y) microspheres of glass or resin to treat lesions in the liver holds much promise for more widespread dosimetric treatment planning. The recent interest in RPT with alpha-particle emitters has highlighted the need to adopt a dosimetry methodology that specifically accounts for the unique aspects of alpha particles. The short range of alpha-particle emitters means that in cases in which the distribution of activity is localized to specific functional components or cell types of an organ, the absorbed dose will be equally localized and dosimetric calculations on the scale of organs or even voxels (~5 mm) are no longer sufficient

  20. Electron Paramagnetic Resonance Retrospective Dosimetry

    SciTech Connect

    Romanyukha, Alex; Trompier, Francois

    2011-05-05

    Necessity for, principles of, and general concepts of the electron paramagnetic resonance (EPR) retrospective dosimetry are presented. Also presented and given in details are examples of EPR retrospective dosimetry applications in tooth enamel, bone, and fingernails with focus on general approaches for solving technical and methodological problems. Advantages, drawbacks, and possible future developments are discussed and an extensive bibliography on EPR retrospective dosimetry is provided.

  1. Prostate PDT dosimetry

    PubMed Central

    Zhu, Timothy C.; Finlay, Jarod C.

    2015-01-01

    Summary We provide a review of the current state of dosimetry in prostate photodynamic therapy (PDT). PDT of the human prostate has been performed with a number of different photosensitizers and with a variety of dosimetry schemes. The simplest clinical light dose prescription is to quantify the total light energy emitted per length (J/cm) of cylindrical diffusing fibers (CDF) for patients treated with a defined photosensitizer injection per body weight. However, this approach does not take into account the light scattering by tissue and usually underestimates the local light fluence rate, and consequently the fluence. Techniques have been developed to characterize tissue optical properties and light fluence rates in vivo using interstitial measurements during prostate PDT. Optical methods have been developed to characterize tissue absorption and scattering spectra, which in turn provide information about tissue oxygenation and drug concentration. Fluorescence techniques can be used to quantify drug concentrations and photobleaching rates of photosensitizers. PMID:25046988

  2. Hanford External Dosimetry Program

    SciTech Connect

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs.

  3. Neutron beam measurement dosimetry

    SciTech Connect

    Amaro, C.R.

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  4. Photostimulable Storage Phosphor Dosimetry

    NASA Astrophysics Data System (ADS)

    Frye, Douglas Mahaffey Danks

    The feasibility of employing alkaline earth sulfide based photostimulable storage phosphors for relative dosimetry in radiation oncology has been investigated. The dosimetric characteristics, radiologic characteristics, and spacial sensitivity of calcium sulfide and strontium sulfide based phosphors were determined. Dosimetric characteristics were explored by cavity theory calculation, Monte Carlo simulation, and physical measurement. Dosimetric characteristics obtained with cavity theory and Monte Carlo simulations agree well. The dose perturbation of the phosphor base materials were comparable to those produced by clinical dosimeter materials over the energy region employed in radiation oncology. Dose perturbation in regions downstream of the phosphor were measured with a variety of clinical dosimeters and compared with simulation results. The results of the measurements and simulations agreed within the uncertainty levels of the simulations and the measurements. Radiological characteristics of sensitivity, fading, dose response, dose rate response, and energy dependence of response were studied with an experimental phosphor output reader. Relative sensitivity was found to be dependent upon the mass thickness of phosphor layer. Fading was quantified for the calcium sulfide phosphor, with a half time of 2300 minutes. The strontium sulfide sample exhibited some fading, however, the regression lines yielded low correlation coefficients. A linear dose response over the range of doses employed in radiation oncology was obtained for both phosphors. No significant dose rate dependence of response was measured for the phosphors. The phosphor's energy dependence of response paralleled the dose perturbation relative to water predicted by cavity theory and simulations. Spatial sensitivity was demonstrated with an experimental phosphor scanner. The phosphors exhibited spatial sensitivity, however, infrared scattering/piping in the transparent substrate appeared to cause

  5. Uranium Dispersion & Dosimetry Model.

    SciTech Connect

    MICHAEL,; MOMENI, H.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.

  6. Fast neutron dosimetry

    SciTech Connect

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  7. Heavy-ion dosimetry

    SciTech Connect

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.

  8. Instrumental carbon monoxide dosimetry.

    PubMed

    Stetter, J R; Rutt, D R

    1980-10-01

    Modern technology for the ambient monitoring of carbon monoxide has been developed to produce a portable electrochemical instrument capable of the personal exposure to carbon monoxide. The performance characteristics of this device have been studied so that the unambiguous interpretation of field data could be performed. A study of the carbon monoxide exposure in a light manufacturing facility illustrate that effective dosimetry can be performed with expectations of accuracy typically better than +/- 15%, and that voluntary carbon monoxide exposures such as smoking were a significant contribution to the individual's exposure. Significant definition of the carbon monoxide exposure profile can be achieved with an instrument approach to the collection of the dosimetric data.

  9. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  10. TOPICAL REVIEW: Polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K. B.; Oldham, M.; Schreiner, L. J.

    2010-03-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

  11. Internal dosimetry technical basis manual

    SciTech Connect

    Not Available

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  12. Radioembolization Dosimetry: The Road Ahead

    SciTech Connect

    Smits, Maarten L. J. Elschot, Mattijs; Sze, Daniel Y.; Kao, Yung H.; Nijsen, Johannes F. W.; Iagaru, Andre H.; Jong, Hugo W. A. M. de; Bosch, Maurice A. A. J. van den; Lam, Marnix G. E. H.

    2015-04-15

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

  13. Radioembolization dosimetry: the road ahead.

    PubMed

    Smits, Maarten L J; Elschot, Mattijs; Sze, Daniel Y; Kao, Yung H; Nijsen, Johannes F W; Iagaru, Andre H; de Jong, Hugo W A M; van den Bosch, Maurice A A J; Lam, Marnix G E H

    2015-04-01

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

  14. A State-of-the-Art Review of Enhanced Personal Protection Equipment Options (Analyse de Pointe des Options en Matiere D’equipement de Protection Individuelle Accrue)

    DTIC Science & Technology

    2007-03-01

    cell extractions, or other tactical applications. The ExoTech™ provides substantial protection from blunt force trauma. The contour molded PE outer...shell features impact ridges that disperse the brunt of the blows , while EVA foam inner padding cushions the body. Soft brush tricot and mesh lines the...Inner PE (polyethylene) shell • Commercial grade elastic adjusters and connectors Hard-Shell Shin Guards • PVC (polyvinyl carbonate) knee cap • EVA

  15. Fifth international radiopharmaceutical dosimetry symposium

    SciTech Connect

    Watson, E.E.; Schlafke-Stelson, A.T.

    1992-05-01

    This meeting was held to exchange information on how to get better estimates of the radiation absorbed dose. There seems to be a high interest of late in patient dosimetry; discussions were held in the light of revised risk estimates for radiation. Topics included: Strategies of Dose Assessment; Dose Estimation for Radioimmunotherapy; Dose Calculation Techniques and Models; Dose Estimation for Positron Emission Tomography (PET); Kinetics for Dose Estimation; and Small Scale Dosimetry and Microdosimetry. (VC)

  16. The International Reactor Dosimetry File.

    SciTech Connect

    DUNFORD, CHARLIE

    2008-08-07

    Version 01 The International Reactor Dosimetry File (IRDF-2002) contains recommended neutron cross-section data to be used for reactor neutron dosimetry by foil activation and subsequent neutron spectrum unfolding. It also contains selected recom�mended values for radiation damage cross-sections and benchmark neutron spectra. Two related programs available from NEADB and RSICC are: SPECTER-ANL (PSR-263) & STAY’SL (PSR-113).

  17. Hanford internal dosimetry program manual

    SciTech Connect

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  18. Dosimetry of iodoantipyrine.

    PubMed

    Chu, R Y; Ekeh, S; Basmadjian, G

    1989-01-01

    Dosimetry of iodoantipyrine labeled with radioactive iodine was determined by measuring the biodistribution of 131I-iodoantipyrine in 41 female rabbits. Following administration of the radiopharmaceutical, subjects were killed at 0.5, 6, 12, 17, 24, 36, and 48 h. Organs and samples of tissues and body fluids were assayed. Results were corrected for physical decay. Exponential functions were employed to describe the time-concentration curves; representative value would be the biological half life of 9.96 +/- 0.55 h for blood. Cumulated activity estimates for 123I, 125I and 131I were then computed. Extrapolation to absorbed dose in humans followed the formulation of the Medical International Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The whole body absorbed doses are 7 mu Gray, 5 mu Gray and 29 mu Gray per MBq of 123I, 125I, and 131I administered respectively.

  19. Fundamentals of Radiation Dosimetry

    SciTech Connect

    Bos, Adrie J. J.

    2011-05-05

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  20. Fundamentals of Radiation Dosimetry

    NASA Astrophysics Data System (ADS)

    Bos, Adrie J. J.

    2011-05-01

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  1. Dosimetry considerations in phototherapy

    SciTech Connect

    Profio, A.E.; Doiron, D.R.

    1981-03-01

    Dosimetry in phototherapy involves a determination of the energy absorbed per unit mass of tissue, corrected for the quantum yield in a photochemical reaction. The dose rate in photochemotherapy of cancer with hematoporphyrin derivative and visible light is related to the extinction coefficient, quantum yield for singlet oxygen production, concentration of sensitizer and energy flux density at depth. Data or methods of determining these quantities are presented. Calculations have been performed for the energy flux density at depth, as a function of the total attenuation coefficient and ratio of scattering coefficient to total attenuation coefficient, for isotropic scattering in slab geometry. For small absorption, these depth dose curves exhibit a maximum within the tissue followed by an exponential decrease.

  2. Remote optical fiber dosimetry

    NASA Astrophysics Data System (ADS)

    Huston, A. L.; Justus, B. L.; Falkenstein, P. L.; Miller, R. W.; Ning, H.; Altemus, R.

    2001-09-01

    Optical fibers offer a unique capability for remote monitoring of radiation in difficult-to-access and/or hazardous locations. Optical fiber sensors can be located in radiation hazardous areas and optically interrogated from a safe distance. A variety of remote optical fiber radiation dosimetry methods have been developed. All of the methods take advantage of some form of radiation-induced change in the optical properties of materials such as: radiation-induced darkening due to defect formation in glasses, luminescence from native defects or radiation-induced defects, or population of metastable charge trapping centers. Optical attenuation techniques are used to measure radiation-induced darkening in fibers. Luminescence techniques include the direct measurement of scintillation or optical excitation of radiation-induced luminescent defects. Optical fiber radiation dosimeters have also been constructed using charge trapping materials that exhibit thermoluminescence or optically stimulated luminescence (OSL).

  3. Initial radiation dosimetry at Hiroshima and Nagasaki

    SciTech Connect

    Loewe, W.E.

    1983-09-01

    The dosimetry of A-bomb survivors at Hiroshima and Nagasaki is discussed in light of the new dosimetry developed in 1980 by the author. The important changes resulting from the new dosimetry are the ratios of neutron to gamma doses, particularly at Hiroshima. The implications of these changes in terms of epidemiology and radiation protection standards are discussed. (ACR)

  4. 4.2 Methods for Internal Dosimetry

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.2 Methods for Internal Dosimetry' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy' with the contents:

  5. Nuclear accident dosimetry intercomparison studies.

    PubMed

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.

  6. Studies in Ultrasonic Dosimetry.

    NASA Astrophysics Data System (ADS)

    Zitouni, Abderrachid

    The widespread use of ultrasonic devices in both industry and medicine confirms the great importance of ultrasound as a source of nonionizing radiation. The biological effects of this type of radiation are not completely known up to today, and the need for proper dosimetry is evident. Previous work in the field has been limited to the determination of ultrasonic energy deposition by attenuation measurements of traveling sound waves in homogenized specimens. Alternatively, observed effects were correlated to the output of the source. The objective of this work was to correlate the absorption properties of sound absorbing media to their elastic properties and deduce a correlation between the sonic absorption coefficient and the corresponding Young's modulus. Energy deposition measurements were performed in isotropic rubber samples and in anisotropic meat specimens by the use of the thermocouple probe method which measures the absorbed energy directly. Elasticity measurements were performed for the different types of materials used. The Young's modulus for each type was deduced from defletion measurements on rectangular strips when subjected to successive forces of varying magnitude. The final experimental results showed the existence of a linear relationship between the absorption coefficient of a given elastic material and the inverse square root of its Young's modulus.

  7. EDITORIAL: Special issue on radiation dosimetry Special issue on radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Sharpe, Peter

    2009-04-01

    This special issue of Metrologia on radiation dosimetry is the second in a trilogy on the subject of ionizing radiation measurements, a field that is overseen by Sections I, II and III of the CIPM's Consultative Committee for Ionizing Radiation (CCRI). The work of Section II, on radionuclide metrology, was covered in issue 44(4), published in 2007, and that of Section III, on neutron metrology, will be covered in a special issue to be published shortly. This issue covers the work of Section I (x-rays and γ rays, and charged particles). The proposal to publish special issues of Metrologia covering the work of the CCRI Sections was first made in 2003 and refined at the two subsequent meetings of the CCRI in 2005 and 2007. The overall aim is to present the work of the CCRI to a wider metrological audience and to highlight the relevance and importance of the field. The main focus of our special issue on dosimetry metrology is on the 'state of the art' in the various areas covered, with an indication of the current developments taking place and the problems and challenges that remain. Where appropriate, this is set in a brief historical context, although it is not the aim to give a historical review. The need for accurate measurement has been appreciated from the pioneering days of the use of ionizing radiation in the early 20th century, particularly in the fields of diagnostic and therapeutic medicine. Over the years, the range of applications for ionizing radiation has expanded both in scope and in the types and energies of radiation employed. This has led to the need to develop a wide variety of measurement techniques and standards covering fields ranging from the low doses experienced in environmental and protection applications to the extremely high doses used in industrial processing. The different types of radiation employed give rise to the need for dose measurements in radiation beams whose effective penetration through a material such as water ranges from a

  8. Plutonium worker dosimetry.

    PubMed

    Birchall, Alan; Puncher, M; Harrison, J; Riddell, A; Bailey, M R; Khokryakov, V; Romanov, S

    2010-05-01

    Epidemiological studies of the relationship between risk and internal exposure to plutonium are clearly reliant on the dose estimates used. The International Commission on Radiological Protection (ICRP) is currently reviewing the latest scientific information available on biokinetic models and dosimetry, and it is likely that a number of changes to the existing models will be recommended. The effect of certain changes, particularly to the ICRP model of the respiratory tract, has been investigated for inhaled forms of (239)Pu and uncertainties have also been assessed. Notable effects of possible changes to respiratory tract model assumptions are (1) a reduction in the absorbed dose to target cells in the airways, if changes under consideration are made to the slow clearing fraction and (2) a doubling of absorbed dose to the alveolar region for insoluble forms, if evidence of longer retention times is taken into account. An important factor influencing doses for moderately soluble forms of (239)Pu is the extent of binding of dissolved plutonium to lung tissues and assumptions regarding the extent of binding in the airways. Uncertainty analyses have been performed with prior distributions chosen for application in epidemiological studies. The resulting distributions for dose per unit intake were lognormal with geometric standard deviations of 2.3 and 2.6 for nitrates and oxides, respectively. The wide ranges were due largely to consideration of results for a range of experimental data for the solubility of different forms of nitrate and oxides. The medians of these distributions were a factor of three times higher than calculated using current default ICRP parameter values. For nitrates, this was due to the assumption of a bound fraction, and for oxides due mainly to the assumption of slower alveolar clearance. This study highlights areas where more research is needed to reduce biokinetic uncertainties, including more accurate determination of particle transport rates

  9. On the reliability of 3D gel dosimetry

    NASA Astrophysics Data System (ADS)

    De Deene, Y.; Vandecasteele, J.

    2013-06-01

    Gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as it covers the whole treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. A major obstacle that has hindered the wider dissemination of polymer gel dosimetry in radiotherapy centres is the lack of confidence in the reliability of the measured dose. Discrepancies in dose response of small versus large polymer gel dosimeters have been reported and although several hypothesis for these discrepancies have been postulated, the actual contribution of these error sources to the overall inaccuracy of the dose maps has not been determined. Several gel dosimetry research groups have chosen to use an internal calibration of gel dosimeters. In this study, the inter-and intra-batch reproducibility of the current state-of-the-art 3D gel dosimeters has been assessed. It is demonstrated that with a carefully designed scanning set-up, the overall accuracy that can be obtained with an independent calibration is well within 5% of all pixels.

  10. Unexplained overexposures on physical dosimetry reported by biological dosimetry.

    PubMed

    Montoro, A; Almonacid, M; Villaescusa, J I; Verdu, G

    2009-01-01

    The Medical Service of the Radiation Protection Service from the University Hospital La Fe (Valencia, Spain), carries out medical examinations of the workers occupationally exposed to ionising radiation. The Biological Dosimetry Laboratory is developing its activity since 2001. Up to now, the activities have been focused in performing biological dosimetry studies of Interventionists workers from La Fe Hospital. Recently, the Laboratory has been authorized by the Health Authority in the Valencian Community. Unexplained overexposures of workers and patients are also studied. Workers suspected of being overexposed to ionising radiation were referred for investigation by cytogenetic analysis. Two of these were from Hospitals of the Valencian Community and one belonged to an uranium mine from Portugal. Hospital workers had a physical dose by thermoluminiscence dosimeters (TLD) that exceeded the established limit. The worker of the uranium mine received a dose from a lost source of Cesium 137 with an activity of 170 mCi. All three cases showed normal values after the hematological analysis. Finally, the aim of this study consist to determine whether the dose showed by the dosimeter is reliable or not. In the case of workers that wore dosimeter, it is concluded that the doses measured by dosimeter are not corresponding to real doses. Hospital worker with a physical dose of 2.6 Sv and 0.269 Sv had an estimated absorbed dose by biological dosimetry of 0.076 Gy (0-0.165 Gy) and 0 Gy (0-0.089 Gy), respectively. In case of the mine worker an estimated absorbed dose of 0.073 Gy (0-0.159 Gy) was obtained by biological dosimetry. In all cases we used the odds ratio to present the results due to a very low frequency of observed aberrations [1].

  11. Results from 2010 Caliban Criticality Dosimetry Intercomparison

    SciTech Connect

    Veinot, K. G.

    2011-10-12

    The external dosimetry program participated in a criticality dosimetry intercomparison conducted at the Caliban facility in Valduc, France in 2010. Representatives from the dosimetry and instrumentation groups were present during testing which included irradiations of whole-body beta/gamma (HBGT) and neutron thermoluminescent dosimeters (TLDs), a fixed nuclear accident dosimeter (FNAD), electronic alarming dosimeters, and a humanoid phantom filled with reference man concentrations of sodium. This report reviews the testing procedures, preparations, irradiations, and presents results of the tests.

  12. Dosimetry studies in Zaborie village.

    PubMed

    Takada, J; Hoshi, M; Endo, S; Stepanenko, V F; Kondrashov, A E; Petin, D; Skvortsov, V; Ivannikov, A; Tikounov, D; Gavrilin, Y; Snykov, V P

    2000-05-01

    Dosimetry studies in Zaborie, a territory in Russia highly contaminated by the Chernobyl accident, were carried out in July, 1997. Studies on dosimetry for people are important not only for epidemiology but also for recovery of local social activity. The local contamination of the soil was measured to be 1.5-6.3 MBq/m2 of Cs-137 with 0.7-4 microSv/h of dose rate. A case study for a villager presently 40 years old indicates estimations of 72 and 269 mSv as the expected internal and external doses during 50 years starting in 1997 based on data of a whole-body measurement of Cs-137 and environmental dose rates. Mean values of accumulated external and internal doses for the period from the year 1986 till 1996 are also estimated to be 130 mSv and 16 mSv for Zaborie. The estimation of the 1986-1996 accumulated dose on the basis of large scale ESR teeth enamel dosimetry provides for this village, the value of 180 mSv. For a short term visitor from Japan to this area, external and internal dose are estimated to be 0.13 mSv/9d (during visit in 1997) and 0.024 mSv/50y (during 50 years starting from 1997), respectively.

  13. I-124 Imaging and Dosimetry.

    PubMed

    Kuker, Russ; Sztejnberg, Manuel; Gulec, Seza

    2016-01-05

    Although radioactive iodine imaging and therapy are one of the earliest applications of theranostics, there still remain a number of unresolved clinical questions as to the optimization of diagnostic techniques and dosimetry protocols. I-124 as a positron emission tomography (PET) radiotracer has the potential to improve the current clinical practice in the diagnosis and treatment of differentiated thyroid cancer. The higher sensitivity and spatial resolution of PET/computed tomography (CT) compared to standard gamma scintigraphy can aid in the detection of recurrent or metastatic disease and provide more accurate measurements of metabolic tumor volumes. However the complex decay schema of I-124 poses challenges to quantitative PET imaging. More prospective studies are needed to define optimal dosimetry protocols and to improve patient-specific treatment planning strategies, taking into account not only the absorbed dose to tumors but also methods to avoid toxicity to normal organs. A historical perspective of I-124 imaging and dosimetry as well as future concepts are discussed.

  14. I-124 Imaging and Dosimetry

    PubMed Central

    Kuker, Russ; Sztejnberg, Manuel; Gulec, Seza

    2017-01-01

    Although radioactive iodine imaging and therapy are one of the earliest applications of theranostics, there still remain a number of unresolved clinical questions as to the optimization of diagnostic techniques and dosimetry protocols. I-124 as a positron emission tomography (PET) radiotracer has the potential to improve the current clinical practice in the diagnosis and treatment of differentiated thyroid cancer. The higher sensitivity and spatial resolution of PET/computed tomography (CT) compared to standard gamma scintigraphy can aid in the detection of recurrent or metastatic disease and provide more accurate measurements of metabolic tumor volumes. However the complex decay schema of I-124 poses challenges to quantitative PET imaging. More prospective studies are needed to define optimal dosimetry protocols and to improve patient-specific treatment planning strategies, taking into account not only the absorbed dose to tumors but also methods to avoid toxicity to normal organs. A historical perspective of I-124 imaging and dosimetry as well as future concepts are discussed. PMID:28117290

  15. Small fields: Nonequilibrium radiation dosimetry

    SciTech Connect

    Das, Indra J.; Ding, George X.; Ahnesjoe, Anders

    2008-01-15

    Advances in radiation treatment with beamlet-based intensity modulation, image-guided radiation therapy, and stereotactic radiosurgery (including specialized equipments like CyberKnife, Gamma Knife, tomotherapy, and high-resolution multileaf collimating systems) have resulted in the use of reduced treatment fields to a subcentimeter scale. Compared to the traditional radiotherapy with fields {>=}4x4 cm{sup 2}, this can result in significant uncertainty in the accuracy of clinical dosimetry. The dosimetry of small fields is challenging due to nonequilibrium conditions created as a consequence of the secondary electron track lengths and the source size projected through the collimating system that are comparable to the treatment field size. It is further complicated by the prolonged electron tracks in the presence of low-density inhomogeneities. Also, radiation detectors introduced into such fields usually perturb the level of disequilibrium. Hence, the dosimetric accuracy previously achieved for standard radiotherapy applications is at risk for both absolute and relative dose determination. This article summarizes the present knowledge and gives an insight into the future procedures to handle the nonequilibrium radiation dosimetry problems. It is anticipated that new miniature detectors with controlled perturbations and corrections will be available to meet the demand for accurate measurements. It is also expected that the Monte Carlo techniques will increasingly be used in assessing the accuracy, verification, and calculation of dose, and will aid perturbation calculations of detectors used in small and highly conformal radiation beams.

  16. Fourth international radiopharmaceutical dosimetry symposium

    SciTech Connect

    Schlafke-Stelson, A.T.; Watson, E.E.

    1986-04-01

    The focus of the Fourth International Radiopharmaceutical Dosimetry Symposium was to explore the impact of current developments in nuclear medicine on absorbed dose calculations. This book contains the proceedings of the meeting including the edited discussion that followed the presentations. Topics that were addressed included the dosimetry associated with radiolabeled monoclonal antibodies and blood elements, ultrashort-lived radionuclides, and positron emitters. Some specific areas of discussion were variations in absorbed dose as a result of alterations in the kinetics, the influence of radioactive contaminants on dose, dose in children and in the fetus, available instrumentation and techniques for collecting the kinetic data needed for dose calculation, dosimetry requirements for the review and approval of new radiopharmaceuticals, and a comparison of the effect on the thyroid of internal versus external irradiation. New models for the urinary blader, skeleton including the active marrow, and the blood were presented. Several papers dealt with the validity of traditional ''average-organ'' dose estimates to express the dose from particulate radiation that has a short range in tissue. These problems are particularly important in the use of monoclonal antibodies and agents used to measure intracellular functions. These proceedings have been published to provide a resource volume for anyone interested in the calculation of absorbed radiation dose.

  17. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low...

  18. Solid-State Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.

    2005-01-01

    This document is a web site page, and a data sheet about Personal protection (i.e., space suits) presented to the Radiation and Micrometeoroid Mitigation Technology Focus Group meeting. The website describes the work of the PI to improve solid state personal radiation dosimetry. The data sheet presents work on the active personal radiation detection system that is to provide real-time local radiation exposure information during EVA. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.

  19. The future of medical dosimetry.

    PubMed

    Adams, Robert D

    2015-01-01

    The world of health care delivery is becoming increasingly complex. The purpose of this manuscript is to analyze current metrics and analytically predict future practices and principles of medical dosimetry. The results indicate five potential areas precipitating change factors: a) evolutionary and revolutionary thinking processes, b) social factors, c) economic factors, d) political factors, and e) technological factors. Outcomes indicate that significant changes will occur in the job structure and content of being a practicing medical dosimetrist. Discussion indicates potential variables that can occur within each process and change factor and how the predicted outcomes can deviate from normative values. Finally, based on predicted outcomes, future opportunities for medical dosimetrists are given.

  20. The Future of Medical Dosimetry

    SciTech Connect

    Adams, Robert D.

    2015-07-01

    The world of health care delivery is becoming increasingly complex. The purpose of this manuscript is to analyze current metrics and analytically predict future practices and principles of medical dosimetry. The results indicate five potential areas precipitating change factors: a) evolutionary and revolutionary thinking processes, b) social factors, c) economic factors, d) political factors, and e) technological factors. Outcomes indicate that significant changes will occur in the job structure and content of being a practicing medical dosimetrist. Discussion indicates potential variables that can occur within each process and change factor and how the predicted outcomes can deviate from normative values. Finally, based on predicted outcomes, future opportunities for medical dosimetrists are given.

  1. Health physics research reactor reference dosimetry

    SciTech Connect

    Sims, C.S.; Ragan, G.E.

    1987-06-01

    Reference neutron dosimetry is developed for the Health Physics Research Reactor (HPRR) in the new operational configuration directly above its storage pit. This operational change was physically made early in CY 1985. The new reference dosimetry considered in this document is referred to as the 1986 HPRR reference dosimetry and it replaces any and all HPRR reference documents or papers issued prior to 1986. Reference dosimetry is developed for the unshielded HPRR as well as for the reactor with each of five different shield types and configurations. The reference dosimetry is presented in terms of three different dose and six different dose equivalent reporting conventions. These reporting conventions cover most of those in current use by dosimetrists worldwide. In addition to the reference neutron dosimetry, this document contains other useful dosimetry-related data for the HPRR in its new configuration. These data include dose-distance measurements and calculations, gamma dose measurements, neutron-to-gamma ratios, ''9-to-3 inch'' ratios, threshold detector unit measurements, 56-group neutron energy spectra, sulfur fluence measurements, and details concerning HPRR shields. 26 refs., 11 figs., 31 tabs.

  2. A Reactor Pressure Vessel Dosimetry Calculation Using ATTILA, An Unstructured Tetrahedral Mesh Discrete-Ordinates Code

    SciTech Connect

    Wareing, T.A.; Parsons, D.K.; Pautz, S.

    1997-12-31

    Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. In this paper we describe the application of ATTILA to a 3-D reactor pressure vessel dosimetry problem. We provide numerical results from ATTILA and the Monte Carlo code, MCNP. The results demonstrate the effectiveness and efficiency of ATTILA for such calculations.

  3. In vitro dosimetry of agglomerates

    NASA Astrophysics Data System (ADS)

    Hirsch, V.; Kinnear, C.; Rodriguez-Lorenzo, L.; Monnier, C. A.; Rothen-Rutishauser, B.; Balog, S.; Petri-Fink, A.

    2014-06-01

    Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction.Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction. Electronic supplementary information (ESI) available: ITC data for tiopronin/Au-NP interactions, agglomeration kinetics at different pHs for tiopronin-coated Au-NPs, UV-Vis spectra in water, PBS and DMEM and temporal correlation functions for single Au-NPs and corresponding agglomerates, calculation of diffusion and sedimentation parameters, modelling of relative cell uptake based on the ISDD model and cytotoxicity of single Au-NPs and their agglomerates, and synthesis and cell uptake of large spherical Au-NPs. See DOI: 10.1039/c4nr00460d

  4. An Automated Biological Dosimetry System

    NASA Astrophysics Data System (ADS)

    Lorch, T.; Bille, J.; Frieben, M.; Stephan, G.

    1986-04-01

    The scoring of structural chromosome aberrations in peripheral human blood lymphocytes can be used in biological dosimetry to estimate the radiation dose which an individual has received. Especially the dicentric chromosome is a rather specific indicator for an exposure to ionizing radiation. For statistical reasons, in the low dose range a great number of cells must be analysed, which is a very tedious task. The resulting high cost of a biological dose estimation limits the application of this method to cases of suspected irradiation for which physical dosimetry is not possible or not sufficient. Therefore an automated system has been designed to do the major part of the routine work. It uses a standard light microscope with motorized scanning stage, a Plumbicon TV-camera, a real-time hardware preprocessor, a binary and a grey level image buffer system. All computations are performed by a very powerful multi-microprocessor-system (POLYP) based on a MIMD-architecture. The task of the automated system can be split in finding the metaphases (see Figure 1) at low microscope magnification and scoring dicentrics at high magnification. The metaphase finding part has been completed and is now in routine use giving good results. The dicentric scoring part is still under development.

  5. International intercomparison for criticality dosimetry: the case of biological dosimetry.

    PubMed

    Roy, L; Buard, V; Delbos, M; Durand, V; Paillole, N; Grégoire, E; Voisin, P

    2004-01-01

    The Institute of Radiation Protection and Nuclear Safety (IRSN) organized a biological dosimetry international intercomparison with the purpose of comparing (i) dicentrics yield produced in human lymphocytes; (ii) the gamma and neutron dose estimate according to the corresponding laboratory calibration curve. The experimental reactor SILENE was used with different configurations: bare source 4 Gy, lead shield 1 and 2 Gy and a 60Co source 2 Gy. An increasing variation of dicentric yield per cell was observed between participants when there were more damages in the samples. Doses were derived from the observed dicentric rates according to the dose-effect relationship provided by each laboratory. Differences in dicentric rate values are more important than those in the corresponding dose values. The doses obtained by the participants were found to be in agreement with the given physical dose within 20%. The evaluation of the respective gamma and neutron dose was achieved only by four laboratories, with some small variations among them.

  6. Computational methods in radionuclide dosimetry

    NASA Astrophysics Data System (ADS)

    Bardiès, M.; Myers, M. J.

    1996-10-01

    The various approaches in radionuclide dosimetry depend on the size and spatial relation of the sources and targets considered in conjunction with the emission range of the radionuclide used. We present some of the frequently reported computational techniques on the basis of the source/target size. For whole organs, or for sources or targets bigger than some centimetres, the acknowledged standard was introduced 30 years ago by the MIRD committee and is still being updated. That approach, based on the absorbed fraction concept, is mainly used for radioprotection purposes but has been updated to take into account the dosimetric challenge raised by therapeutic use of vectored radiopharmaceuticals. At this level, the most important computational effort is in the field of photon dosimetry. On the millimetre scale, photons can often be disregarded, and or electron dosimetry is generally reported. Heterogeneities at this level are mainly above the cell level, involving groups of cell or a part of an organ. The dose distribution pattern is often calculated by generalizing a point source dose distribution, but direct calculation by Monte Carlo techniques is also frequently reported because it allows media of inhomogeneous density to be considered. At the cell level, and electron (low-range or Auger) are the predominant emissions examined. Heterogeneities in the dose distribution are taken into account, mainly to determine the mean dose at the nucleus. At the DNA level, Auger electrons or -particles are considered from a microdosimetric point of view. These studies are often connected with radiobiological experiments on radionuclide toxicity.

  7. OSL Based Anthropomorphic Phantom and Real-Time Organ Dosimetry

    SciTech Connect

    David E. Hintenlang, Ph.D

    2009-02-10

    The overall objective of this project was the development of a dosimetry system that provides the direct measurement of organ does in real-time with a sensitivity that makes it an effective tool for applications in a wide variety of health physics applications. The system included the development of a real-time readout system for fiber optic coupled (FOC) dosimeters that is integrated with a state-of-art anthropomorphic phantom to provide instantaneous measures of organ doses throughout the phantom. The small size of the FOC detectors and optical fibers allow the sensitive volume of the detector to be located at organ centroids (or multiple locations distributed through the organ) within a tissue equivalent, anthropomorphic phantom without perturbing the tissue equivalent features of the phantom. The developed phantom/dosimetry system can be used in any environment where personnel may be exposed to gamma or x-ray radiations to provide the most accurate determinations of organ and effective doses possible to date.

  8. Emerging technological bases for retrospective dosimetry.

    PubMed

    Straume, T; Anspaugh, L R; Haskell, E H; Lucas, J N; Marchetti, A A; Likhtarev, I A; Chumak, V V; Romanyukha, A A; Khrouch, V T; Gavrilin YuI; Minenko, V F

    1997-01-01

    In this article we discuss examples of challenging problems in retrospective dosimetry and describe some promising solutions. The ability to make measurements by accelerator mass spectrometry and luminescence techniques promises to provide improved dosimetry for regions of Belarus, Ukraine and Russian Federation contaminated by radionuclides from the Chernobyl accident. In addition, it may soon be possible to resolve the large neutron discrepancy in the dosimetry system for Hiroshima through novel measurement techniques that can be used to reconstruct the fast-neutron fluence emitted by the bomb some 51 years ago. Important advances in molecular cytogenetics and electron paramagnetic resonance measurements have produced biodosimeters that show potential in retrospective dosimetry. The most promising of these are the frequency of reciprocal translocations measured in chromosomes of blood lymphocytes using fluorescence in situ hybridization and the electron paramagnetic resonance signal in tooth enamel.

  9. INTERSPECIES DOSIMETRY MODELS FOR PULMONARY PHARMACOLOGY

    EPA Science Inventory

    Interspecies Dosimetry Models for Pulmonary Pharmacology

    Ted B. Martonen, Jeffry D. Schroeter, and John S. Fleming

    Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangl...

  10. Reference dosimetry for helical tomotherapy: Practical implementation and a multicenter validation

    SciTech Connect

    De Ost, B.; Schaeken, B.; Vynckier, S.; Sterpin, E.; Van den Weyngaert, D.

    2011-11-15

    Purpose: The aim of this study was to implement a protocol for reference dosimetry in tomotherapy and to validate the beam output measurements with an independent dosimetry system. Methods: Beam output was measured at the reference depth of 10 cm in water for the following three cases: (1) a 5 x 10 cm{sup 2} static machine specific reference field (MSR), (2) a rotational 5 x 10 cm{sup 2} field without modulation and no tabletop in the beam, (3) a plan class specific reference (PCSR) field defined as a rotational homogeneous dose delivery to a cylindrical shaped target volume: plan with modulation and table-top movement. The formalism for reference dosimetry of small and nonstandard fields [Med.Phys.35: 5179-5186, 2008] and QA recommendations [Med.Phys.37: 4817-4853, 2010] were adopted in the dose measurement protocol. All ionization chamber measurements were verified independently using alanine/EPR dosimetry. As a pilot study, the beam output was measured on tomotherapy Hi-art systems at three other centers and directly compared to the centers specifications and to alanine dosimetry. Results: For the four centers, the mean static output at a depth of 10 cm in water and SAD = 85 cm, measured with an A1SL chamber following the TG-148 report was 6.238 Gy/min {+-} 0.058 (1 SD); the rotational output was 6.255 Gy/min {+-} 0.069 (1 SD). The dose stated by the center was found in good agreement with the measurements of the visiting team: D{sub center}/D{sub visit} = 1.000 {+-} 0.003 (1 SD). The A1SL chamber measurements were all in good agreement with Alanine/EPR dosimetry. Going from the static reference field to the rotational/non modulated field the dose rate remains constant within 0.2% except for one center where a deviation of 1.3% was detected. Conclusions: Following the TG-148 report, beam output measurements in water at the reference depth using a local protocol, as developed at different centers, was verified. The measurements were found in good agreement with

  11. Intra-Operative Dosimetry in Prostate Brachytherapy

    DTIC Science & Technology

    2006-11-01

    phantoms and pre-recorded patient data. 15. SUBJECT TERMS Prostate Brachytherapy, X-ray reconstruction, C-arm, TRUS 16. SECURITY CLASSIFICATION...prostate brachytherapy system that provides dosimetry analysis (Aim-2), and evaluate the system experimentally on phantoms and pre-recorded patient data...prostate brachytherapy system to enable dosimetry calculation Aim-3: Experimental Validation: Evaluate the performance of the RUF system on phantoms and

  12. Audits for advanced treatment dosimetry

    NASA Astrophysics Data System (ADS)

    Ibbott, G. S.; Thwaites, D. I.

    2015-01-01

    Radiation therapy has advanced rapidly over the last few decades, progressing from 3D conformal treatment to image-guided intensity modulated therapy of several different flavors, both 3D and 4D and to adaptive radiotherapy. The use of intensity modulation has increased the complexity of quality assurance and essentially eliminated the physicist's ability to judge the validity of a treatment plan, even approximately, on the basis of appearance and experience. Instead, complex QA devices and procedures are required at the institutional level. Similarly, the assessment of treatment quality through remote and on-site audits also requires greater sophistication. The introduction of 3D and 4D dosimetry into external audit systems must follow, to enable quality assurance systems to perform meaningful and thorough audits.

  13. In vivo dosimetry in brachytherapy

    SciTech Connect

    Tanderup, Kari; Beddar, Sam; Andersen, Claus E.; Kertzscher, Gustavo; Cygler, Joanna E.

    2013-07-15

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and the large range of dose and dose rate. Due to these challenges, the sensitivity and specificity toward error detection has been limited, and IVD has mainly been restricted to detection of gross errors. Given these factors, routine use of IVD is currently limited in many departments. Although the impact of potential errors may be detrimental since treatments are typically administered in large fractions and with high-gradient-dose-distributions, BT is usually delivered without independent verification of the treatment delivery. This Vision 20/20 paper encourages improvements within BT safety by developments of IVD into an effective method of independent treatment verification.

  14. Internal dosimetry performing dose assessments via bioassay measurements

    SciTech Connect

    Bailey, K.M.

    1993-05-11

    The Internal Dosimetry Department at the Y-12 Plant maintains a state-of-the-art bioassay program managed under the guidance and regulations of the Department of Energy. The two major bioassay techniques currently used at Y-12 are the in vitro (urinalysis) and in vivo (lung counting) programs. Fecal analysis (as part of the in vitro program) is another alternative; however, since both urine and fecal analysis provide essentially the same capabilities for detecting exposures to uranium, the urinalysis is the main choice primarily for aesthetic reasons. The bioassay frequency is based on meeting NCRP 87 objectives which are to monitor the accumulation of radioactive material in exposed individuals, and to ensure that significant depositions are detected.

  15. Gourdeous Art

    ERIC Educational Resources Information Center

    Coy, Mary

    2007-01-01

    In this article, the author describes a gourd art project for her art club. Prior to students actually working on the gourds, the author and her art volunteer did a joint demonstration on the process students would go through to create their project. The volunteer brought in and explained her gourd art and shared information about the drying and…

  16. Uncertainty in 3D gel dosimetry

    NASA Astrophysics Data System (ADS)

    De Deene, Yves; Jirasek, Andrew

    2015-01-01

    Three-dimensional (3D) gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as the technique can cover the full treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. It can also be applied to benchmark new treatment strategies such as image guided and tracking radiotherapy techniques. A major obstacle that has hindered the wider dissemination of gel dosimetry in radiotherapy centres is a lack of confidence in the reliability of the measured dose distribution. Uncertainties in 3D dosimeters are attributed to both dosimeter properties and scanning performance. In polymer gel dosimetry with MRI readout, discrepancies in dose response of large polymer gel dosimeters versus small calibration phantoms have been reported which can lead to significant inaccuracies in the dose maps. The sources of error in polymer gel dosimetry with MRI readout are well understood and it has been demonstrated that with a carefully designed scanning protocol, the overall uncertainty in absolute dose that can currently be obtained falls within 5% on an individual voxel basis, for a minimum voxel size of 5 mm3. However, several research groups have chosen to use polymer gel dosimetry in a relative manner by normalizing the dose distribution towards an internal reference dose within the gel dosimeter phantom. 3D dosimetry with optical scanning has also been mostly applied in a relative way, although in principle absolute calibration is possible. As the optical absorption in 3D dosimeters is less dependent on temperature it can be expected that the achievable accuracy is higher with optical CT. The precision in optical scanning of 3D dosimeters depends to a large extend on the performance of the detector. 3D dosimetry with X-ray CT readout is a low contrast imaging modality for polymer gel dosimetry. Sources of error in x-ray CT polymer gel dosimetry (XCT) are currently under investigation and include inherent

  17. Art Education/Art Therapy.

    ERIC Educational Resources Information Center

    Rogers, John R., Ed.

    1978-01-01

    The special issue presents 13 articles dealing with art education and art therapy for special groups. Included are the following titles and authors: "Art Education for Special Groups: The Emotionally Disturbed" (E. Ulman); "You Are The Early Warning System" (C. Stember); "School Art Therapist Rationale for DPI Certification" (V. Minar); "Art…

  18. Personnel neutron dosimetry at Department of Energy facilities

    SciTech Connect

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered.

  19. Breast dosimetry in clinical mammography

    NASA Astrophysics Data System (ADS)

    Benevides, Luis Alberto Do Rego

    The objective of this study was show that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. In the study, AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The protocol proposes the use of a fiber-optic coupled (FOCD) or Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeter to measure the entrance skin exposure at the time of the mammogram without interfering with diagnostic information of the mammogram. The study showed that FOCD had sensitivity with less than 7% energy dependence, linear in all tube current-time product stations, and was reproducible within 2%. FOCD was superior to MOSFET dosimeter in sensitivity, reusability, and reproducibility. The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. In addition, the study population anthropometric

  20. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  1. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  2. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  3. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  4. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  5. Dosimetry and Risk Assessment: Fundamental Concepts

    SciTech Connect

    Fisher, Darrell R.

    2005-12-29

    Radiation dosimetry is important for characterizing radiation exposures and for risk assessment. In a medical setting, dosimetry is important for evaluating the safety of administered radiopharmaceuticals and for planning the safe administration of therapeutic radionuclides. Environmental dosimetry helps establish the safety of radionuclide releases from electric power production and other human activities. Internal and external dosimetry help us understand the consequences of radiation exposure. The absorbed dose is the fundamental quantity in radiation dosimetry from which all other operational values in radiation protection are obtained. Equivalent dose to tissue and effective dose to the whole body are derivatives of absorbed dose and constructs of risk. Mathematical systems supported by computer software facilitate dose calculations and make it possible to estimate internal dose based on bioassay or other biokinetic data. Risk coefficients for radiation-induced cancer rely primarily on data from animal studies and long-term observations of the Hiroshima and Nagasaki bomb survivors. Low-dose research shows that mechanisms of radiation interactions with tissue are dose-dependent, but the resulting biological effects are not necessarily linear with absorbed dose. Thus, the analysis of radiation effects and associated risks must account for the influences of microscopic energy distributions at the cellular level, dose-rate, cellular repair of sub-lethal radiation damage, and modifying factors such as bystander effects, adaptive response, and genomic instability.

  6. Chemical dosimetry system for criticality accidents.

    PubMed

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values.

  7. Seventh Personnel Dosimetry Intercomparison Study

    SciTech Connect

    Swaja, R.E.; Sims, C.S.; Greene, R.T.

    1981-12-01

    The Seventh Personnel Dosimetry Intercomparison Study was conducted March 31-April 10, 1981, at the Oak Ridge National Laboratory. Dosimeters from 34 participating agencies were mounted on anthropomorphic phantoms and exposed to a range of low-level dose equivalents (1.5-15.0mSv neutron and 0.1-2.8 mSv gamma) which could be encountered during routine personnel monitoring in mixed radiation fields. The Health Physics Research Reactor, operating in the steady-state mode, served as the source of radiation for two equivalent sets of six separate exposures. Lucite and concrete shields along with the unshielded reactor provided three different neutron and gamma spectra for five of the exposures in each set. Results reported by the participating agencies showed that no single type of neutron dosimeter exhibited acceptable performance characteristics for all mixed-field environments encountered in this study. Film, TLD, and TLD-albed dosimeters were found to be inadequate for neutron dose equivalent measurements when large numbers of slow neutrons are present unless significant corrections are made to measured results. Track dosimeters indicated the least sensitivity to spectral characteristics, but did not always yield to the most accurate results. Gamma dose measurements showed that TLD-700 dosimeters produced significantly more accurate results than film dosimeters which tend to overestimate gamma doses in mixed radiation fields.

  8. Patient dosimetry in nuclear medicine.

    PubMed

    Mattsson, Sören

    2015-07-01

    In diagnostic nuclear medicine, the biokinetics of the radiopharmaceutical (actually of the radionuclide) is determined for a number of representative patients. At therapy, it is essential to determine the patient's individual biokinetics of the radiopharmaceutical in order to calculate the absorbed doses to critical normal organs/tissues and to the target volume(s) with high accuracy. For the diagnostic situations, there is still a lack of quantitative determinations of the organ/tissue contents of radiopharmaceuticals and their variation with time. Planar gamma camera imaging using the conjugate view technique combined with a limited number of SPECT/CT images is the main method for such studies. In a similar way, PET/CT is used for 3D image-based internal dosimetry for PET substances. The transition from stylised reference phantoms to voxel phantoms will lead to improved dose estimates for diagnostic procedures. Examples of dose coefficients and effective doses for diagnostic substances are given. For the therapeutic situation, a pre-therapeutic low activity administration is used for quantitative measurements of organ/tissue distribution data by a gamma camera or a SPECT- or PET-unit. Together with CT and/or MR images this will be the base for individual dose calculations using Monte Carlo technique. Treatments based on administered activity should only be used if biological variations between patients are small or if a pre-therapeutic activity administration is impossible.

  9. Car Art.

    ERIC Educational Resources Information Center

    Meilach, Dona Z.

    2002-01-01

    Discusses car art and its appeal to boys and girls. Describes the popularity of customizing cars, focusing on this as a future career for students. Includes a list of project ideas that focuses on car art. (CMK)

  10. 3-D Imaging Based, Radiobiological Dosimetry

    PubMed Central

    Sgouros, George; Frey, Eric; Wahl, Richard; He, Bin; Prideaux, Andrew; Hobbs, Robert

    2008-01-01

    Targeted radionuclide therapy holds promise as a new treatment against cancer. Advances in imaging are making it possible to evaluate the spatial distribution of radioactivity in tumors and normal organs over time. Matched anatomical imaging such as combined SPECT/CT and PET/CT have also made it possible to obtain tissue density information in conjunction with the radioactivity distribution. Coupled with sophisticated iterative reconstruction algorithims, these advances have made it possible to perform highly patient-specific dosimetry that also incorporates radiobiological modeling. Such sophisticated dosimetry techniques are still in the research investigation phase. Given the attendant logistical and financial costs, a demonstrated improvement in patient care will be a prerequisite for the adoption of such highly-patient specific internal dosimetry methods. PMID:18662554

  11. INTEGRATED OPERATIONAL DOSIMETRY SYSTEM AT CERN.

    PubMed

    Dumont, Gérald; Pedrosa, Fernando Baltasar Dos Santos; Carbonez, Pierre; Forkel-Wirth, Doris; Ninin, Pierre; Fuentes, Eloy Reguero; Roesler, Stefan; Vollaire, Joachim

    2016-11-24

    CERN, the European Organization for Nuclear Research, upgraded its operational dosimetry system in March 2013 to be prepared for the first Long Shutdown of CERN's facilities. The new system allows the immediate and automatic checking and recording of the dosimetry data before and after interventions in radiation areas. To facilitate the analysis of the data in context of CERN's approach to As Low As Reasonably Achievable (ALARA), this new system is interfaced to the Intervention Management Planning and Coordination Tool (IMPACT). IMPACT is a web-based application widely used in all CERN's accelerators and their associated technical infrastructures for the planning, the coordination and the approval of interventions (work permit principle). The coupling of the operational dosimetry database with the IMPACT repository allows a direct and almost immediate comparison of the actual dose with the estimations, in addition to enabling the configuration of alarm levels in the dosemeter in function of the intervention to be performed.

  12. Dosimetry procedures for an industrial irradiation plant

    NASA Astrophysics Data System (ADS)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  13. Dosimetry of the Atomic Bomb Survivors

    SciTech Connect

    Sinclair, W.K.; Failla, P.

    1981-12-01

    A brief account of the presentations and discussions at the Late Effects Workshop on Dosimetry of the Atomic Bomb Survivors held in conjunction with the 29th Annual Meeting of the Radiation Reserch Society in Minneapolis, MN, on May 32, 1981 is presented. The following five papers are briefly reviewed: 1)Radiobiological significance of the Hiroshima/Nagasaki data by V.P. Bond; 2)Revised Dose Estimates at Hiroshima and Nagasaki, by W.E. Loewe; 3)Review of dosimetry for the Japanese atomic bomb survivors by G.D. Kerr; 4)Ichiban: numberoriginal studies, by J. Auxier; and 5)NCRP's involvement in the Hiroshima and Nagasaki Dosimetry, by H.O. Wyckoff. (JMT)

  14. Protocol for emergency EPR dosimetry in fingernails.

    PubMed

    Trompier, F; Kornak, L; Calas, C; Romanyukha, A; Leblanc, B; Mitchell, C A; Swartz, H M; Clairand, I

    2007-08-01

    There is an increased need for after-the-fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effective medical triage. Dosimetry based on EPR measurements of fingernails potentially could be an effective tool for this purpose. This paper presents the first operational protocols for EPR fingernail dosimetry, including guidelines for collection and storage of samples, parameters for EPR measurements, and the method of dose assessment. In a blinded test of this protocol application was carried out on nails freshly sampled and irradiated to 4 and 20 Gy; this protocol gave dose estimates with an error of less than 30%.

  15. Small Field: dosimetry in electron disequilibrium region

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.

    2010-11-01

    Small fields are more commonly used for radiation therapy because of the development of IMRT, stereotactic radiosurgery, and other special equipments such as Cyberknife and Tomotherapy. The dosimetry in the sub-centimeter field can result in substantial uncertainties because of the presence of electron disequilibrium due to the large dose gradients in the field. It is further complicated by the introduction of various radiation detectors, which usually perturb the conditions of disequilibrium. Hence additional corrections are required to maintain the dosimetric accuracy previously achieved for standard radiation dosimetry. A review of small field dosimetry provides some insights into the methods to characterize the detector convolution kernel and other methods to characterize detector perturbation effect.

  16. Czech results at criticality dosimetry intercomparison 2002.

    PubMed

    Frantisek, Spurný; Jaroslav, Trousil

    2004-01-01

    Two criticality dosimetry systems were tested by Czech participants during the intercomparison held in Valduc, France, June 2002. The first consisted of the thermoluminescent detectors (TLDs) (Al-P glasses) and Si-diodes as passive neutron dosemeters. Second, it was studied to what extent the individual dosemeters used in the Czech routine personal dosimetry service can give a reliable estimation of criticality accident exposure. It was found that the first system furnishes quite reliable estimation of accidental doses. For routine individual dosimetry system, no important problems were encountered in the case of photon dosemeters (TLDs, film badge). For etched track detectors in contact with the 232Th or 235U-Al alloy, the track density saturation for the spark counting method limits the upper dose at approximately 1 Gy for neutrons with the energy >1 MeV.

  17. Art English.

    ERIC Educational Resources Information Center

    Preece, Robert

    1994-01-01

    Art English is a combination of English-as-a-Second-Language (ESL)/English-as-a-Foreign-Language (EFL) and art content. As a new instructional area, it faces several challenges: as with all English for Special Purposes (ESP), exchange of information among programs; development of a suitable combination of art content and ESL, due to lack of…

  18. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  19. Art Safety.

    ERIC Educational Resources Information Center

    BCATA Journal for Art Teachers, 1991

    1991-01-01

    Advocating that Canadian art programs should use and model environmentally safe practices, the articles in this journal focus on issues of safe practices in art education. Articles are: (1) "What is WHMIS?"; (2) "Safety Precautions for Specific Art Processes"; (3) "Toxic Substances"; (4) "Using Clay, Glazes, and…

  20. Wall Art

    ERIC Educational Resources Information Center

    McGinley, Connie Q.

    2004-01-01

    The author of this article, an art teacher at Monarch High School in Louisville, Colorado, describes how her experience teaching in a new school presented an exciting visual challenge for an art teacher--monotonous brick walls just waiting for decoration. This school experienced only minimal instances of graffiti, but as an art teacher, she did…

  1. Integrating Art.

    ERIC Educational Resources Information Center

    BCATA Journal for Art Teachers, 1991

    1991-01-01

    These articles focus on art as a component of interdisciplinary integration. (1) "Integrated Curriculum and the Visual Arts" (Anna Kindler) considers various aspects of integration and implications for art education. (2) "Integration: The New Literacy" (Tim Varro) illustrates how the use of technology can facilitate…

  2. Advances in personnel neutron dosimetry: part 2

    SciTech Connect

    Vallario, E.; Faust, L.

    1983-08-01

    A continuation of the advances in personnel neutron dosimetry research programs and technology transfer reviews work on active dosimeters, electronic devices that determine the dose equivalent to a worker during an exposure to neutron radiation. Active dosemeters are routinely used for gamma radiation dosimetry. Experience with neutron-sensitive pocket rem-meters at several DOE laboratories covers three prototypes. Pocket rem-meters work well for detecting neutrons over a wide energy range. They give instantaneous readout of the accumulated neutron dose-equivalent. 1 figure.

  3. Practical neutron dosimetry at high energies

    SciTech Connect

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently.

  4. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  5. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  6. Applicability of Topaz Composites to Electron Dosimetry

    NASA Astrophysics Data System (ADS)

    Bomfim, K. S.; Souza, D. N.

    2010-11-01

    Thermoluminescent dosimetric topaz properties have been investigated and the results have shown that this mineral presents characteristics of a good dosimeter mainly in doses evaluation in radiotherapy with photons beams in radiotherapy. Typical applications of thermoluminescent dosimeters in radiotherapy are: in vivo dosimetry on patients (either as a routine quality assurance procedure or for dose monitoring in special cases); verification of treatment techniques; dosimetry audits; and comparisons among hospitals. The mean aim of this work was to evaluate the efficiency of topaz-Teflon pellets as thermoluminescent dosimeters in high-energy electron beams used to radiotherapy. Topaz-Teflon pellets were used as TLD.

  7. Recent progresses in tritium radioecology and dosimetry

    SciTech Connect

    Galeriu, D.; Davis, P.; Raskob, W.; Melintescu, A.

    2008-07-15

    In this paper, some aspects of recent progress in tritium radioecology and dosimetry are presented, with emphasis on atmospheric releases to terrestrial ecosystems. The processes involved in tritium transfer through the environment are discussed, together with the current status of environmental tritium models. Topics include the deposition and reemission of HT and HTO, models for the assessment of routine and accidental HTO emissions, a new approach to modeling the dynamics of tritium in mammals, the dose consequences of tritium releases and aspects of human dosimetry. The need for additional experimental data is identified, together with the attributes that would be desirable in the next generation of tritium codes. (authors)

  8. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  9. [Art therapy and "art brut"].

    PubMed

    Kovács, Emese; Simon, Lajos

    2010-01-01

    The authors in this article explor the most important steps of the development of the research on the psychopathology of expression. They introduce the development of Art Brut and it's place in art history. They deal with the characteristics of art therapy.

  10. The Mayak Worker Dosimetry System (MWDS-2013): Internal Dosimetry Results.

    PubMed

    Vostrotin, Vadim; Birchall, Alan; Zhdanov, Alexey; Puncher, Matthew; Efimov, Alexander; Napier, Bruce; Sokolova, Alexandra; Miller, Scott; Suslova, Klara

    2016-09-24

    The distribution of calculated internal doses has been determined for 8043 Mayak Production Associate (Mayak PA) workers. This is a subset of the entire cohort of 25 757 workers, for whom monitoring data are available. Statistical characteristics of point estimates of accumulated doses to 17 different tissues and organs and the uncertainty ranges were calculated. Under the MWDS-2013 dosimetry system, the mean accumulated lung dose was 185 ± 594 mGy (geometric mean = 28 mGy; geometric standard deviation = 9.32; median value = 31 mGy; maximum value = 8980 mGy). The ranges of relative standard uncertainty were from 40 to 2200% for accumulated lung dose, from 25-90% to 2600-3000% for accumulated dose to different regions of respiratory tract, from 13-22% to 2300-2500% for systemic organs and tissues. The Mayak PA workers accumulated internal plutonium lung dose is shown to be close to log normal. The accumulated internal plutonium dose to systemic organs was close to a log triangle. The dependency of uncertainty of accumulated absorbed lung and liver doses on the dose estimates itself is also shown. The accumulated absorbed doses to lung, alveolar-interstitial region, liver, bone surface cells and red bone marrow calculated both with MWDS-2013 and MWDS-2008 have been compared. In general, the accumulated lung doses increased by a factor of 1.8 in median value, while the accumulated doses to systemic organs decreased by factor of 1.3-1.4 in median value. For the cases with identical initial data, accumulated lung doses increased by a factor of 2.1 in median value, while accumulated doses to systemic organs decreased by 8-13% in median value. For the cases with both identical initial data and all of plutonium activity in urine measurements above the decision threshold, accumulated lung doses increased by a factor of 2.7 in median value, while accumulated doses to systemic organs increased by 6-12% in median value.

  11. A-bomb survivor dosimetry update

    SciTech Connect

    Loewe, W.E.

    1982-06-01

    A-bomb survivor data have been generally accepted as applicable. Also, the initial radiations have tended to be accepted as the dominant radiation source for all survivors. There was general acceptance of the essential reliability of both the biological effects data and the causative radiation dose values. There are considerations casting doubt on these acceptances, but very little quantification of th implied uncertainties has been attempted. The exception was A-bomb survivor dosimetry, where free-field kerma values for initial radiations were thought to be accurate to about 30%, and doses to individual survivors were treated as effectively error-free. In 1980, a major challenge to the accepted A-bomb survivor dosimetry was announced, and was quickly followed by a succession of explanations and displays showing the soundness of that challenge. In fact, a complete replacement set of free-field kerma values was provided which was suitable for use in constructing an entire new dosimetry for Hiroshima and Nagasaki. The new values showed many changes greater than the accepted 30% uncertainty. An approximate new dosimetry was indeed constructed, and used to convert existing leukemia cause-and-effect data from the old to the new dose values, by way of assessing the impact. (ERB)

  12. Personnel radiation dosimetry symposium: program and abstracts

    SciTech Connect

    Not Available

    1984-10-01

    The purpose was to provide applied and research dosimetrists with sufficient information to evaluate the status and direction of their programs relative to the latest guidelines and techniques. A technical program was presented concerning experience, requirements, and advances in gamma, beta, and neutron personnel dosimetry.

  13. Distribution effectiveness for space radiation dosimetry

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1975-01-01

    A simplified risk basis and a theory of hematological response are presented and applied to the problem of dosimetry in the manned space program. Unlike previous studies, the current work incorporates radiation exposure distribution effects into its definition of dose equivalent. The fractional cell lethality model for prediction of hematological response is integral in the analysis.

  14. Computational Techniques of Electromagnetic Dosimetry for Humans

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Fujiwara, Osamu

    There has been increasing public concern about the adverse health effects of human exposure to electromagnetic fields. This paper reviews the rationale of international safety guidelines for human protection against electromagnetic fields. Then, this paper also presents computational techniques to conduct dosimetry in anatomically-based human body models. Computational examples and remaining problems are also described briefly.

  15. Development of A-bomb survivor dosimetry

    SciTech Connect

    Kerr, G.D.

    1995-12-31

    An all important datum in risk assessment is the radiation dose to individual survivors of the bombings in Hiroshima and Nagasaki. The first set of dose estimates for survivors was based on a dosimetry system developed in 1957 by the Oak Ridge National Laboratory (ORNL). These Tentative 1957 Doses (T57D) were later replaced by a more extensive and refined set of Tentative 1965 Doses (T65D). The T65D system of dose estimation for survivors was also developed at ORNL and served as a basis for risk assessment throughout the 1970s. In the late 1970s, it was suggested that there were serious inadequacies with the T65D system, and these inadequacies were the topic of discussion at two symposia held in 1981. In early 1983, joint US- Japan research programs were established to conduct a thorough review of all aspects of the radiation dosimetry for the Hiroshima and Nagasaki A-bomb survivors. A number of important contributions to this review were made by ORNL staff members. The review was completed in 1986 and a new Dosimetry System 1986 (DS86) was adopted for use. This paper discusses the development of the various systems of A-bomb survivor dosimetry, and the status of the current DS86 system as it is being applied in the medical follow-up studies of the A-bomb survivors and their offspring.

  16. Dosimetry implant for treating restenosis and hyperplasia

    DOEpatents

    Srivastava, Suresh; Gonzales, Gilbert R; Howell, Roger W; Bolch, Wesley E; Adzic, Radoslav

    2014-09-16

    The present invention discloses a method of selectively providing radiation dosimetry to a subject in need of such treatment. The radiation is applied by an implant comprising a body member and .sup.117mSn electroplated at selected locations of the body member, emitting conversion electrons absorbed immediately adjacent selected locations while not affecting surrounding tissue outside of the immediately adjacent area.

  17. From ``micro`` to ``macro`` internal dosimetry

    SciTech Connect

    Fisher, D.R.

    1994-06-01

    Radiation dose is the amount of radiation energy deposited per unit mass of absorbing tissue. Internal dosimetry applies to assessments of dose to internal organs from penetrating radiation sources outside the body and from radionuclides taken into the body. Dosimetry is essential for correlating energy deposition with biological effects that are observed when living tissues are irradiated. Dose-response information provides the basis for radiation protection standards and risk assessment. Radiation interactions with living matter takes place on a microscopic scale, and the manifestation of damage may be evident at the cellular, multi-cellular, and even organ levels of biological organization. The relative biological effectiveness of ionization radiation is largely determined by the spatial distribution of energy deposition events within microscopic as well as macroscopic biological targets of interest. The spatial distribution of energy imparted is determined by the spatial distribution of radionuclides and properties of the emitted charged-particle radiation involved. The nonuniformity of energy deposition events in microscopic volumes, particularly from high linear energy transfer (LET) radiation, results in large variations in the amount of energy imparted to very small volumes or targets. Microdosimetry is the study of energy deposition events at the cellular level. Macrodosimetry is a term for conventional dose averaging at the tissue or organ level. In between is a level of dosimetry sometimes referred to as multi-cellular dosimetry. The distinction between these terms and their applications in assessment of dose from internally deposited radionuclides is described.

  18. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within...

  19. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within...

  20. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within...

  1. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within...

  2. Dosimetry of an Implantable 252 Californium Source

    SciTech Connect

    Oliver, G.D. Jr.

    2001-08-29

    The radiation dose from 252 Californium needles designed for use as a source of neutrons for radiotherapy has been measured. The dosimetry information presented in this paper will enable clinical studies of neutron radiotherapy with 252 Californium needles to be planned and begun.

  3. Protocol for emergency EPR dosimetry in fingernails

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an increased need for after-the fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effect...

  4. Mindful art.

    PubMed

    Malafouris, Lambros

    2013-04-01

    Bullot & Reber (B&R) begin asking if the study of the mind's inner life can provide a foundation for a science of art. Clearly there are many epistemological problems involved in the study of the cognitive and affective basis of art appreciation. I argue that context is key. I also propose that as long as the "mind's life" continues to be perceived as an "inner" intracranial phenomenon, little progress can be made. Mind and art are one.

  5. A new paradigm in personal dosimetry using LiF:Mg,Cu,P.

    PubMed

    Cassata, J R; Moscovitch, M; Rotunda, J E; Velbeck, K J

    2002-01-01

    The United States Navy has been monitoring personnel for occupational exposure to ionising radiation since 1947. Film was exclusively used until 1973 when thermoluminescence dosemeters were introduced and used to the present time. In 1994, a joint research project between the Naval Dosimetry Center, Georgetown University, and Saint Gobain Crystals and Detectors (formerly Bicron RMP formerly Harshaw TLD) began to develop a state of the art thermoluminescent dosimetry system. The study was conducted from a large-scale dosimetry processor point of view with emphasis on a systems approach. Significant improvements were achieved by replacing the LiF:Mg,Ti with LiF:Mg,Cu,P TL elements due to the significant sensitivity increase, linearity, and negligible hiding. Dosemeter filters were optimised for gamma and X ray energy discrimination using Monte Carlo modelling (MCNP) resulting in significant improvement in accuracy and precision. Further improvements were achieved through the use of neural-network based dose calculation algorithms. Both back propagation and functional link methods were implemented and the data compared with essentially the same results. Several operational aspects of the system are discussed, including (1) background subtraction using control dosemeters, (2) selection criteria for control dosemeters, (3) optimisation of the TLD readers, (4) calibration methodology, and (5) the optimisation of the heating profile.

  6. PREFACE: The 5th International Conference on Radiotherapy Gel Dosimetry (DOSGEL 2008)

    NASA Astrophysics Data System (ADS)

    Maris, Thomas G.; Pappas, Evangelos

    2009-07-01

    The International Conference on Radiotherapy Gel Dosimetry (DOSGEL) is held every two years. Its purpose is to bring together basic science and clinical researchers, medical physicists and clinicians from around the world to discuss the state-of-the-art of the gel dosimetry technique and to set the directions and trends for its future improvements. Gel dosimetry can be broadly defined as using a gel that can react to the absorption of ionizing radiation, and that can retain this information which can subsequently be retrieved by an external imaging modality. Examples of radiation-sensitive gels include, but are not limited to, polymer gel dosimeters, Fricke gel dosimeters and others. Imaging modalities that are of general use in this field are (in alphabetical order) magnetic resonance imaging (MRI), optical light computed tomography and x-ray computed tomography. This volume comprises the proceedings of the 5th International Conference on Radiotherapy Gel Dosimetry (DOSGEL 2008). The conference, organised by the University of Crete, Medical Physics Department, took place in Hersonissos, Crete, Greece from 29 September to 3 October 2008. The meeting aimed to continue the series of biannual DOSGEL conferences and focused on the promotion of gel dosimetry techniques by setting the trends for their future improvements. The main scientific session topics of DOSGEL 2008 were the following: Chemistry and fundamental properties of polymer gel dosimeters Gel dosimetry with Optical Computed Tomography Gel dosimetry with Magnetic Resonance Imaging Gel dosimetry with other than Optical CT and MR scan Techniques Other 3D dosimeters Gel dosimetry applications Local Organizing Committee Thomas G Maris (University of Crete, Greece, Chairman DOSGEL 2008) John Damilakis (University of Crete, Greece) Evangelos Pappas (University of Crete, Greece) Antonios Papadakis (University of Crete, Greece) Fotini Zacharopoulou (University of Crete, Greece) John Stratakis (University of Crete

  7. Art Playgroup

    ERIC Educational Resources Information Center

    Heiniger, Christina

    2004-01-01

    In this article, the author discusses how parents can be involved in a developmentally appropriate art program for very young children. "Art Playgroup," a program for children ages two to five and their parents is one suggestion. Operating under the auspices of DTA Center for Learning & Growing, a nonprofit in Ellsworth, Maine, DTA…

  8. Creative Arts.

    ERIC Educational Resources Information Center

    Castellano, Richard J.; Fleming, Mary Ann

    Educational goals and objectives, student activities, and visual aids are included in this guide to a three-dimensional design unit that combines creative art and industrial arts skills. Course goals include challenging students' creative skills, encouraging student interaction and successful group work, and providing an atmosphere of fun and…

  9. Indigenous Art

    ERIC Educational Resources Information Center

    Hu, Helen

    2012-01-01

    Linda Lomahaftewa, a noted painter, has taught at much bigger places than the Institute of American Indian Arts (IAIA). But Lomahaftewa, who is Hopi-Choctaw, and others on the faculty of IAIA are intensely devoted to the mission of this small but unique school. IAIA--the nation's only four-year fine arts institution devoted to American Indian and…

  10. Art Rocks!

    ERIC Educational Resources Information Center

    Chapin, Erika

    2008-01-01

    Though people may like different types of music, everyone likes music. In middle school, music and art are of key importance for students to express and define what kind of person they are. In this article, the author presents an art project where students are asked to create their own guitars. (Contains 1 resource and 3 online resources.)

  11. Graphic Arts.

    ERIC Educational Resources Information Center

    Towler, Alan L.

    This guide to teaching graphic arts, one in a series of instructional materials for junior high industrial arts education, is designed to assist teachers as they plan and implement new courses of study and as they make revisions and improvements in existing courses in order to integrate classroom learning with real-life experiences. This graphic…

  12. Dosimetry of the Leksell gamma knife

    NASA Astrophysics Data System (ADS)

    Meltsner, Sheridan Griffin

    No accepted official protocol exists for the dosimetry of the Leksell Gamma KnifeRTM (GK) stereotactic radiosurgery device. Establishment of a dosimetry protocol has been complicated by the unique partial-hemisphere arrangement of 201 separate 60Co beams simultaneously focused on the treatment volume and by the rigid geometry of the GK unit itself. This paper proposes an air kerma based dosimetry protocol using an in-air or in-acrylic phantom measurement to determine the dose rate of fields collimated by the 18 mm helmet of a GK unit. A small-volume ionization chamber was used to make measurements at the physical isocenter of three GK units. The dose rate to water was determined using a modified version of the AAPM Task Group 21 protocol designed for use with 60Co-based teletherapy machines. This experimentally determined dose rate was compared to the treatment planning system (TPS) dose rate that is determined by the clinical medical physicist at the time of machine commissioning. The TPS dose rate is defined as dose rate to water at a depth of 8 cm. The dose rate to water for the 18 mm helmet determined using the air kerma based calculations presented here is consistently between 1.5% and 2.9% higher than the TPS dose rate. These air kerma based measurements allow GK dosimetry to be performed with an established dosimetry protocol and without complications arising from the use of and possible variations in solid phantom material. Measurements were made with the same chamber in a spherical acrylic phantom for comparison. This methodology will allow future development of calibration methods appropriate for the smaller fields of GK units to be compared to a well established standard. Multiple three-dimensional dosimetry methods were also used to capture the dose distribution of the entire field of the GK. These methods included radiosensitive gel, a novel three-dimensional radiochromic film phantom, and Monte Carlo modeling. These methods were also compared to the

  13. EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting.

    PubMed

    Lassmann, M; Chiesa, C; Flux, G; Bardiès, M

    2011-01-01

    Many recent publications in nuclear medicine contain data on dosimetric findings for existing and new diagnostic and therapeutic agents. In many of these articles, however, a description of the methodology applied for dosimetry is lacking or important details are omitted. The intention of the EANM Dosimetry Committee is to guide the reader through a series of suggestions for reporting dosimetric approaches. The authors are aware of the large amount of data required to report the way a given clinical dosimetry procedure was implemented. Another aim of this guidance document is to provide comprehensive information for preparing and submitting publications and reports containing data on internal dosimetry. This guidance document also contains a checklist which could be useful for reviewers of manuscripts submitted to scientific journals or for grant applications. In addition, this document could be used to decide which data are useful for a documentation of dosimetry results in individual patient records. This may be of importance when the approval of a new radiopharmaceutical by official bodies such as EMA or FDA is envisaged.

  14. TU-F-201-00: Radiochromic Film Dosimetry Update

    SciTech Connect

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  15. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  16. Neutron dosimetry using optically stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Eschbach, P. A.

    1991-06-01

    The addition of thermoluminescent (TL) materials within hydrogenous matrices to detect neutron induced proton recoils for radiation dosimetry is a well known concept. Previous attempts to implement this technique have met with limited success, primarily due to the high temperatures required for TL readout and the low melting temperatures of hydrogen-rich plastics. Research in recent years PNL has produced a new Optically Stimulated Luminescence (OSL) technique known as the Cooled Optically Stimulated Luminescence (COSL) that offers, for the first time, the capability of performing extremely sensitive radiation dosimetry at low temperatures. In addition to its extreme sensitivity, the COSL technique offers multiple readout capability, limited fading in a one year period, and the capability of analyzing single grains within a hydrogenous matrix.

  17. Criticality accident dosimetry with ESR spectroscopy.

    PubMed

    d'Errico, F; Fattibene, P; Onori, S; Pantaloni, M

    1996-01-01

    The suitability of the ESR alanine and sugar detectors for criticality accident dosimetry was experimentally investigated during an intercomparison of dosimetry techniques. Tests were performed irradiating detectors both free-in-air and on-phantom during controlled critcality excursions at the SILENE reactor in Valduc, France. Several grays of absorbed dose were imparted in neutron gamma-ray fields of various relative intensities and spectral distributions. Analysed results confirmed the potential of these systems which can immediately provide an acute dose assessment with an average underestimate of 30%in the various fields. This performance allows for the screening of severely exposed individuals and meets the IAEA recommendations on the early estimate of accident absorbed doses.

  18. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  19. Patient-specific dosimetry in radionuclide therapy.

    PubMed

    Lyra, Maria; Lagopati, Nefeli; Charalambatou, Paraskevi; Vamvakas, Ioannis

    2011-09-01

    This study presents an attempt to compare individualised palliative treatment absorbed doses, by planar images data and Monte Carlo simulation, in two in vivo treatment cases, one of bone metastases and the other of liver lesions. Medical Internal Radiation Dose schema was employed to estimate the absorbed doses. Radiopharmaceutical volume distributions and absorbed doses in the lesions as well as in critical organs were also calculated by Monte Carlo simulation. Individualised planar data calculations remain the method of choice in internal dosimetry in nuclear medicine, but with the disadvantage of attenuation and scatter corrections lack and organ overlay. The overall error is about 7 % for planar data calculations compared with that using Monte Carlo simulation. Patient-specific three-dimensional dosimetric calculations using single-photon emission computed tomography with a parallel computed tomography study is proposed as an accurate internal dosimetry with the additional use of dose-volume histograms, which express dose distributions in cases with obvious inhomogeneity.

  20. Trigeminal neuralgia treatment dosimetry of the Cyberknife

    SciTech Connect

    Ho, Anthony; Lo, Anthony T.; Dieterich, Sonja; Soltys, Scott G.; Gibbs, Iris C.; Chang, Steve G.; Adler, John R.

    2012-04-01

    There are 2 Cyberknife units at Stanford University. The robot of 1 Cyberknife is positioned on the patient's right, whereas the second is on the patient's left. The present study examines whether there is any difference in dosimetry when we are treating patients with trigeminal neuralgia when the target is on the right side or the left side of the patient. In addition, we also study whether Monte Carlo dose calculation has any effect on the dosimetry. We concluded that the clinical and dosimetric outcomes of CyberKnife treatment for trigeminal neuralgia are independent of the robot position. Monte Carlo calculation algorithm may be useful in deriving the dose necessary for trigeminal neuralgia treatments.

  1. Absolute and relative dosimetry for ELIMED

    NASA Astrophysics Data System (ADS)

    Cirrone, G. A. P.; Cuttone, G.; Candiano, G.; Carpinelli, M.; Leonora, E.; Lo Presti, D.; Musumarra, A.; Pisciotta, P.; Raffaele, L.; Randazzo, N.; Romano, F.; Schillaci, F.; Scuderi, V.; Tramontana, A.; Cirio, R.; Marchetto, F.; Sacchi, R.; Giordanengo, S.; Monaco, V.

    2013-07-01

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  2. Advances in personnel neutron dosimetry: part 3

    SciTech Connect

    Vallario, E.J.; Faust, L.G.

    1983-09-01

    DOE-sponsored evaluation and upgrading of personnel neutron dosimetry includes a review of new devices involving unique concepts: resonance ionization spectroscopy and organic semiconductor detectors. Resonance ionization spectroscopy uses a laser to detect atoms released by neutron interactions, while organic semiconductors contain large amounts of hydrogen. Although these and other research and evaluation projects reviewed in the first two articles appear promising, there is much more research needed, such as finding a chemically stable organic semiconductor that will be suitable.

  3. Permethrin Exposure Dosimetry: Biomarkers and Modifiable Factors

    DTIC Science & Technology

    2016-08-01

    the effect of body weight/BMI and total energy expenditure on permethrin absorption and dose, as determined by measurement of urinary biomarkers...Data collection for Study 2 is in progress. 15. SUBJECT TERMS Permethrin, biomarkers, military, dose, exposure dosimetry, military, energy expenditure...body weight/BMI and total energy expenditure on permethrin absorption and dose, as determined by measurement of urinary biomarkers (3PBA and cis- and

  4. Bayesian Methods for Radiation Detection and Dosimetry

    SciTech Connect

    Peter G. Groer

    2002-09-29

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed compartmental activities. From the estimated probability densities of the model parameters we were able to derive the densities for compartmental activities for a two compartment catenary model at different times. We also calculated the average activities and their standard deviation for a simple two compartment model.

  5. Hanford Internal Dosimetry Project manual. Revision 1

    SciTech Connect

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.

  6. In vivo dosimetry in external beam radiotherapy

    SciTech Connect

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  7. Static magnetic field therapy: dosimetry considerations.

    PubMed

    Colbert, Agatha P; Markov, Marko S; Souder, James S

    2008-06-01

    The widespread use of static magnetic field (SMF) therapy as a self-care physical intervention has led to the conduct of numerous randomized controlled trials (RCTs). A recent systematic review of SMF trials for pain reduction concluded that the evidence does not support the use of permanent magnets for pain relief. We argue that this conclusion is unwarranted if the SMF dosage was inadequate or inappropriate for the clinical condition treated. The purpose of this communication is to (1) provide a rationale and an explanation for each of 10 essential SMF dosing parameters that should be considered when conducting trials of SMF therapy, and (2) advocate for the conduct of Phase I studies to optimize SMF dosimetry for each condition prior to implementing a large-scale RCT. A previous critical review of SMF dosimetry in 56 clinical studies found that reporting SMF dosages in a majority of those studies was of such poor quality that the magnetic field exposure at the target tissue could not be characterized. Without knowing what magnetic field actually reached the target, it is impossible to judge dosage adequacy. In order to quantify SMF exposure at the site of pathology (target tissue/s), that site must be clearly named; the distance of the permanent magnet surface from the target must be delineated; the physical parameters of the applied permanent magnet must be described; and the dosing regimen must be precisely reported. If the SMF dosimetry is inadequate, any inferences drawn from reported negative findings are questionable.

  8. Dosimetry tools and techniques for IMRT.

    PubMed

    Low, Daniel A; Moran, Jean M; Dempsey, James F; Dong, Lei; Oldham, Mark

    2011-03-01

    Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA) radiation dose distributions. This report provides a comprehensive overview of how dosimeters, phantoms, and dose distribution analysis techniques should be used to support the commissioning and quality assurance requirements of an IMRT program. The proper applications of each dosimeter are described along with the limitations of each system. Point detectors, arrays, film, and electronic portal imagers are discussed with respect to their proper use, along with potential applications of 3D dosimetry. Regardless of the IMRT technique utilized, some situations require the use of multiple detectors for the acquisition of accurate commissioning data. The overall goal of this task group report is to provide a document that aids the physicist in the proper selection and use of the dosimetry tools available for IMRT QA and to provide a resource for physicists that describes dosimetry measurement techniques for purposes of IMRT commissioning and measurement-based characterization or verification of IMRT treatment plans. This report is not intended to provide a comprehensive review of commissioning and QA procedures for IMRT. Instead, this report focuses on the aspects of metrology, particularly the practical aspects of measurements that are unique to IMRT. The metrology of IMRT concerns the application of measurement instruments and their suitability, calibration, and quality control of measurements. Each of the dosimetry measurement tools has limitations that need to be considered when incorporating them into a commissioning process or a comprehensive QA program. For example, routine quality assurance procedures require the use of robust field dosimetry systems. These often exhibit limitations with respect to spatial resolution or energy response and need to themselves be commissioned against more established dosimeters. A chain of

  9. In vivo dosimetry: trends and prospects for brachytherapy

    PubMed Central

    Rosenfeld, A; Beddar, S; Tanderup, K; Cygler, J E

    2014-01-01

    The error types during brachytherapy (BT) treatments and their occurrence rates are not well known. The limited knowledge is partly attributed to the lack of independent verification systems of the treatment progression in the clinical workflow routine. Within the field of in vivo dosimetry (IVD), it is established that real-time IVD can provide efficient error detection and treatment verification. However, it is also recognized that widespread implementations are hampered by the lack of available high-accuracy IVD systems that are straightforward for the clinical staff to use. This article highlights the capabilities of the state-of-the-art IVD technology in the context of error detection and quality assurance (QA) and discusses related prospects of the latest developments within the field. The article emphasizes the main challenges responsible for the limited practice of IVD and provides descriptions on how they can be overcome. Finally, the article suggests a framework for collaborations between BT clinics that implemented IVD on a routine basis and postulates that such collaborations could improve BT QA measures and the knowledge about BT error types and their occurrence rates. PMID:25007037

  10. Neutron dosimetry and radiation damage calculations for HFBR

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  11. Student Perceptions of an Online Medical Dosimetry Program

    ERIC Educational Resources Information Center

    Lenards, Nishele D.

    2007-01-01

    The University of Wisconsin--La Crosse offers the first web-based medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was need to…

  12. [Instrumental radiofrequency electromagnetic radiation dosimetry: general principals and modern methodology].

    PubMed

    Perov, S Iu; Kudriashov, Iu B; Rubtsova, N B

    2012-01-01

    The modern experimental radiofrequency electromagnetic field dosimetry approach has been considered. The main principles of specific absorbed rate measurement are analyzed for electromagnetic field biological effect assessment. The general methodology of specific absorbed rate automated dosimetry system applied to establish the compliance of radiation sources with the safety standard requirements (maximum permissible levels and base restrictions) is described.

  13. Basic principles in the radiation dosimetry of nuclear medicine.

    PubMed

    Stabin, Michael; Xu, Xie George

    2014-05-01

    The basic principles of the use of radiation dosimetry in nuclear medicine are reviewed. The basic structure of the main mathematical equations are given and formal dosimetry systems are discussed. An extensive overview of the history and current status of anthropomorphic models (phantoms) is given. The sources and magnitudes of uncertainties in calculated internal dose estimates are reviewed.

  14. EURADOS strategic research agenda: vision for dosimetry of ionising radiation

    PubMed Central

    Rühm, W.; Fantuzzi, E.; Harrison, R.; Schuhmacher, H.; Vanhavere, F.; Alves, J.; Bottollier Depois, J. F.; Fattibene, P.; Knežević, Ž.; Lopez, M. A.; Mayer, S.; Miljanić, S.; Neumaier, S.; Olko, P.; Stadtmann, H.; Tanner, R.; Woda, C.

    2016-01-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises—based on input from EURADOS Working Groups (WGs) and Voting Members—five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). PMID:25752758

  15. Sandia National Laboratories Internal Dosimetry Technical Basis Manual (Rev 4)

    SciTech Connect

    Goke, Sarah Hayes; Elliott, Nathan Ryan

    2014-09-01

    The Sandia National Laboratories’ Internal Dosimetry Technical Basis Manual is intended to provide extended technical discussion and justification of the internal dosimetry program at SNL. It serves to record the approach to evaluating internal doses from radiobioassay data, and where appropriate, from workplace monitoring data per the Department of Energy Internal Dosimetry Program Guide DOE G 441.1C. The discussion contained herein is directed primarily to current and future SNL internal dosimetrists. In an effort to conserve space in the TBM and avoid duplication, it contains numerous references providing an entry point into the internal dosimetry literature relevant to this program. The TBM is not intended to act as a policy or procedure statement, but will supplement the information normally found in procedures or policy documents. The internal dosimetry program outlined in this manual is intended to meet the requirements of Federal Rule 10CFR835 for monitoring the workplace and for assessing internal radiation doses to workers.

  16. Electron dosimetry for 10-MEV linac

    NASA Astrophysics Data System (ADS)

    Mehta, K. K.; Chu, R.; VanDyk, G.

    Recent developments in electron accelerator technology may allow the role of high-energy machines to expand. Implementation of appropriate dosimetry and quality comtrol methods for non-homogeneous materials is an important part of the expansion of this technology. To implement such methods and provide electron dosimetry for an applications development program, we recently conducted several dosimetry experiments. Our 10-MeV prototype electron accelerator as well as the accelerator at the National Research Council of Canada were used for these experiments. Polystyrene and graphite phantoms were constructed to measure the dose profile with depth. This yielded the extrapolated range and hence the most probable energy of the electrons in the beam. A polymethyl methacrylate (PMMA) sandwich-type range finder was also designed and used to directly measure the range and therefore the electron energy. Some of the range-finder results indicated that the charge buildup in the non- conducting PMMA affected the dose distribution. The measured energy values agreed very well with the beam energy values calculated from the analyzing magnet current of the accelerator. Also, responses of a graphite calorimeter as well as of various dosimeters compared fairly well in an electron field. The interface effects near the surface of homogeneous products were studied by analyzing the transmitted dose measured by the red acrylic continuous dosimeter placed under the products. The same technique was also used to examine the nature of inhomogeneity of various food products. We found this dosimeter extremely convenient and useful for measuring dose distribution in a plane. A Monte Carlo computer code was used to compute the depth-dose distributions in various materials and to compute the dose distribution near the interface of acrylic and air. These results were then compared against the measured distributions.

  17. Improving neutron dosimetry using bubble detector technology

    SciTech Connect

    Buckner, M.A.

    1993-02-01

    Providing accurate neutron dosimetry for a variety of neutron energy spectra is a formidable task for any dosimetry system. Unless something is known about the neutron spectrum prior to processing the dosimeter, the calculated dose may vary greatly from that actually encountered; that is until now. The entrance of bubble detector technology into the field of neutron dosimetry has eliminated the necessity of having an a priori knowledge of the neutron energy spectra. Recently, a new approach in measuring personnel neutron dose equivalent was developed at Oak Ridge National Laboratory. By using bubble detectors in combination with current thermoluminescent dosimeters (TLDs) as a Combination Personnel Neutron Dosimeter (CPND), not only is it possible to provide accurate dose equivalent results, but a simple four-interval neutron energy spectrum is obtained as well. The components of the CPND are a Harshaw albedo TLD and two bubble detectors with theoretical energy thresholds of 100 key and 1500 keV. Presented are (1) a synoptic history surrounding emergence of bubble detector technology, (2) a brief overview of the current theory on mechanisms of interaction, (3) the data and analysis process involved in refining the response functions, (4) performance evaluation of the original CPND and a reevaluation of the same data under the modified method, (5) the procedure used to determine the reference values of component fluence and dose equivalent for field assessment, (6) analysis of the after-modification results, (7) a critique of some currently held assumptions, offering some alternative explanations, and (8) thoughts concerning potential applications and directions for future research.

  18. Model selection for radiochromic film dosimetry.

    PubMed

    Méndez, I

    2015-05-21

    The purpose of this study was to find the most accurate model for radiochromic film dosimetry by comparing different channel independent perturbation models. A model selection approach based on (algorithmic) information theory was followed, and the results were validated using gamma-index analysis on a set of benchmark test cases. Several questions were addressed: (a) whether incorporating the information of the non-irradiated film, by scanning prior to irradiation, improves the results; (b) whether lateral corrections are necessary when using multichannel models; (c) whether multichannel dosimetry produces better results than single-channel dosimetry; (d) which multichannel perturbation model provides more accurate film doses. It was found that scanning prior to irradiation and applying lateral corrections improved the accuracy of the results. For some perturbation models, increasing the number of color channels did not result in more accurate film doses. Employing Truncated Normal perturbations was found to provide better results than using Micke-Mayer perturbation models. Among the models being compared, the triple-channel model with Truncated Normal perturbations, net optical density as the response and subject to the application of lateral corrections was found to be the most accurate model. The scope of this study was circumscribed by the limits under which the models were tested. In this study, the films were irradiated with megavoltage radiotherapy beams, with doses from about 20-600 cGy, entire (8 inch  × 10 inch) films were scanned, the functional form of the sensitometric curves was a polynomial and the different lots were calibrated using the plane-based method.

  19. In vivo light dosimetry for pleural PDT

    NASA Astrophysics Data System (ADS)

    Dimofte, Andreea; Zhu, Timothy C.; Finlay, Jarod C.; Culligan, Melissa; Edmonds, Christine E.; Friedberg, Joseph S.; Cengel, Keith; Hahn, Stephen M.

    2009-02-01

    In-vivo light Dosimetry for patients undergoing photodynamic therapy (PDT) is one of the important dosimetry quantities critical for predicting PDT outcome. This study examines the light fluence (rate) delivered to patients undergoing pleural PDT as a function of treatment time, treatment volume and surface area, and its accuracy as a function of the calibration accuracies of each isotropic detector and the calibration integrating sphere. The patients studied here were enrolled in Phase II clinical trial of Photofrin-mediated PDT for the treatment of non-small cell lung cancer with pleural effusion. The ages of the patients studied varied from 34 to 69 year old. All patients were administered 2mg per kg body weight Photoprin 24 hours before the surgery. Patients undergoing photodynamic therapy (PDT) are treated with laser light with a light fluence of 60 J/cm^2 at 630nm. Fluence rate (mW/cm^2) and cumulative fluence (J/cm^2) was monitored at 7 different sites during the entire light treatment delivery. Isotropic detectors were used for in-vivo light dosimetry. The anisotropy of each isotropic detector was found to be within 30%. The mean fluence rate delivery varied from 37.84 to 94.05 mW/cm^2 and treatment time varied from 1762 to 5232s. We have established a correlation between the treatment time and the treatment volume. The results are discussed using an integrating sphere theory and the measured tissue optical properties. The result can be used as a clinical guideline for future pleural PDT treatment.

  20. The next decade in external dosimetry

    SciTech Connect

    Griffith, R.V.

    1986-10-01

    As the radiation protection community moves through the last half of the '80s and into the next decade, we can expect the requirements for external dosimetry to become increasingly more restrictive and demanding. As in other health protection fields, growing regulatory and legal pressures, together with a natural evolution in philosophy, require the health physicist to display an increasing degree of accountability, rigor, and professionalism. The good news is that, for the most part, the technology necessary to solve many of the problems will be available or not far behind. This paper describes anticipated technology. 66 refs., 10 figs.

  1. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    SciTech Connect

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y.; Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N.

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  2. Characteristics of in vivo radiotherapy dosimetry.

    PubMed

    Edwards, C R; Mountford, P J

    2009-11-01

    The recent discussion and debate about the use of in vivo dosimetry as a routine component of the radiotherapy treatment process has not included the limitations introduced by the physical characteristics of the detectors. Although a robust calibration procedure will ensure acceptable uncertainties in the measurements of tumour dose, further work is required to confirm the accuracy of critical organ measurements with a diode or a thermoluminescent dosemeter outside the main field owing to limitations caused by a non-uniform X-ray energy response of the detector, differences between the X-ray energy spectrum inside and outside the main field, and contaminating electrons.

  3. Neutron dosimetry of the Little Boy device

    SciTech Connect

    Pederson, R.A.; Plassmann, E.A.

    1984-01-01

    Neutron dose rates at several angular locations and at distances out to 0.5 mile have been measured during critical operation of the Little Boy replica. We used modified remmetes and thermoluminescent dosimetry techniques for the measurements. The present status of our analysis is presented including estimates of the neutron-dose-relaxation length in air and the variation of the neutron-to-gamma-ray dose ratio with distance from the replica. These results are preliminary and are subject to detector calibration measurements.

  4. USF/Russian dosimetry on STS-57

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The major purpose of this experiment was to conduct an international comparison of passive dosimetry methods in space. Two APD's were flown in the charged particle directional spectrometer (CPDS)/tissue equivalent proportional counter (TEPC) locker on the space shuttle during the STS-57 mission. Due to placement, the shielding and radiation environment of the APD's were nearly the same and the dosimeters distributed in the two boxes can be considered equally exposed. The dosimeter types included plastic nuclear track detectors (PNTD's), thermoluminescent detectors (TLD), nuclear emulsions, and thermal/resonance neutron detectors (TRND's). The USF dosimeters included PNTD's, TLD's, and TRND's, while the Russian dosimeters included PNTD's, TLD's, and nuclear emulsions.

  5. Art & Literacy

    ERIC Educational Resources Information Center

    Shmulsky, Lucinda

    2009-01-01

    In July 2004, The National Endowment for the Arts released the results of a survey entitled "Reading at Risk." The survey covered a 20-year period from 1982 to 2002 and documented a dramatic decline in the reading of literary works by all age groups during that period. The steepest decline of 28 percent was found among the youngest age group of…

  6. Producing Art.

    ERIC Educational Resources Information Center

    Hiller, Peter

    1999-01-01

    Describes an art activity for use in a unit on agriculture in which third grade students create packing crate labels. Students compare examples of packing crate labels, identifying the name, image, product description, and visual elements such as color and balance. Discusses the process of creating the labels. (CMK)

  7. Art History

    ERIC Educational Resources Information Center

    Lukehart, Wendy

    2004-01-01

    Whether one views art as a cultural record, a political or religious instrument, a celebration of form and color, or an instinctual force, it is a given that sharing diverse expressions of creativity with children plants fresh understandings and pathways for their own questions and drives. It is impossible to do justice to the many outstanding…

  8. Spanish Art.

    ERIC Educational Resources Information Center

    Henderson, Anne; Wilson, Mary Ellen

    1995-01-01

    Provides instructional strategies and materials designed to introduce students to Spanish art. Includes four lesson plans with student objectives, background information, and step-by-step instructional procedures. Also includes four full-page color reproductions of paintings by Murillo, Picasso, El Greco, and de Goya. (CFR)

  9. Language Arts.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    The language arts course content guides presented in this manual cover English, oral communications, and journalism in grades 9-12 and provide a framework from which a curriculum can be built. Within each subject area and at each grade level, skills are identified at three instructional levels: basic, developmental, and extension. The basic skills…

  10. Scanner Art

    ERIC Educational Resources Information Center

    Jaworski, Joy; Murphy, Kris

    2009-01-01

    In this article, the authors describe how they incorporated environmental awareness into their art curriculum. Here, they describe a digital photography project in which their students used flatbed scanners as cameras. Their students composed their objects directly on the scanner. The lesson enabled students to realize that artists have voices…

  11. Nature's Art.

    ERIC Educational Resources Information Center

    Sterling, Vicki; And Others

    Over 60 art activities, designed to enhance environmental awareness and incorporate environmental concepts, are outlined in this document. A sample of the activities presented are: decorated notepaper and cards with feathers or weeds; wall plaques of prairie plants; methods of flower preservation; water plant prints; construction of dolls,…

  12. Fine Arts.

    ERIC Educational Resources Information Center

    Danzer, Gerald A.; Newman, Mark

    1992-01-01

    Discusses the use of fine arts as sources to enrich the study of history. Suggests that such works will serve as barometers of change, examples of cross-cultural influences, and political messages. Includes suggestions of works and artists from different historic periods. (DK)

  13. Chicken Art

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2009-01-01

    In this article, the author describes how a visit from a flock of chickens provided inspiration for the children's chicken art. The gentle clucking of the hens, the rooster crowing, and the softness of the feathers all provided rich aural, tactile, visual, and emotional experiences. The experience affirms the importance and value of direct…

  14. Language Arts.

    ERIC Educational Resources Information Center

    Keener, Paul L.

    Capitalizing on the resources available in an urban city block, this resource guide for the emotionally handicapped (K-6) presents a resource list and objectives and activities relative to teaching language arts (reading, English, listening, speaking, and writing). The resource list is comprised of approximately 150 physical facilities (e.g.,…

  15. Dosimetry of ionising radiation in modern radiation oncology

    NASA Astrophysics Data System (ADS)

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B.

    2016-07-01

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these.

  16. Dosimetry of inhaled radon and thoron progeny

    SciTech Connect

    James, A.C.

    1994-06-01

    This chapter reviews recent developments in modeling doses received by lung tissues, with particular emphasis on application of ICRP`s new dosimetric model of the respiratory tract for extrapolating to other environments the established risks from exposure to radon progeny in underground mines. Factors discussed include: (1) the influence of physical characteristics of radon progeny aerosols on dose per unit exposure, e.g., the unattached fraction, and the activity-size distributions of clustered and attached progeny; (2) the dependence of dose on breathing rate, and on the exposed subject (man, woman or child); (3) the variability of dose per unit exposure in a home when exposure is expressed in terms of potential {alpha} energy or radon gas concentration; (4) the comparative dosimetry of thoron progeny; and (5) the effects of air-cleaning on lung dose. Also discussed is the apparent discrepancy between lung cancer risk estimates derived purely from dosimetry and the lung cancer incidence observed in the epidemiological studies of radon-exposed underground miners. Application of ICRP`s recommended risk factors appears to overestimate radon lung-cancer risk for miners by a factor of three. ``Normalization`` of the calculated effective dose is therefore needed, at least for {alpha} dose from radon and thoron progeny, in order to obtain a realistic estimate of lung cancer risk.

  17. Dosimetry of two new interstitial brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Saidi, Pooneh; Sadeghi, Mahdi

    2011-01-01

    With increased demand for low 103Pd (palladium) seed sources, to treat prostate and eye cancers, new sources have been designed and introduced. This article presents the two new palladium brachytherapy sources, IR03-103Pd and IR04-103Pd that have been developed at Nuclear Science and Technology Research Institute. The dosimetry parameters such as the dose rate constant Λ, the radial dose function g(r), and the anisotropy function F(r,θ), around the sources have been characterized using Version 5 Monte Carlo radiation transport code in accordance with the update AAPM Task Group No. 43 report (TG-43U1). The results indicated the dose rate constant of 0.689±0.02 and 0.667±0.02 cGy h-1 U-1 for the IR03-103Pd and IR04-103Pd sources respectively, which are in acceptable agreement with other commercial seeds. The calculated results were compared with published results for those of other source manufacturers. However, they show an acceptable dose distribution, using for clinical applications is pending experimental dosimetry.

  18. Eleventh DOE workshop on personnel neutron dosimetry

    SciTech Connect

    Not Available

    1991-12-31

    Since its formation, the Office of Health (EH-40) has stressed the importance of the exchange of information related to and improvements in neutron dosimetry. This Workshop was the eleventh in the series sponsored by the Department of Energy (DOE). It provided a forum for operational personnel at DOE facilities to discuss current issues related to neutron dosimetry and for leading investigators in the field to discuss promising approaches for future research. A total of 26 papers were presented including the keynote address by Dr. Warren K. Sinclair, who spoke on, ``The 1990 Recommendations of the ICRP and their Biological Background.`` The first several papers discussed difficulties in measuring neutrons of different energies and ways of compensating or deriving correction factors at individual facilities. Presentations were also given by the US Navy and Air Force. Current research in neutron dosimeter development was the subject of the largest number of papers. These included a number on the development of neutron spectrometers. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  19. PDT dose dosimetry for pleural photodynamic therapy

    PubMed Central

    Sharikova, Anna V.; Finlay, Jarod C.; Liang, Xing; Zhu, Timothy C.

    2015-01-01

    PDT dose is the product of the photosensitizer concentration and the light fluence in target tissue. Although existing systems are capable of measuring the light fluence in vivo, the concurrent measurement of photosensitizer in the treated tissue so far has been lacking. We have developed and tested a new method to simultaneously acquire light dosimetry and photosensitizer fluorescence data via the same isotropic detector, employing treatment light as the excitation source. A dichroic beamsplitter is used to split light from the isotropic detector into two fibers, one for light dosimetry, the other, after the 665 nm treatment light is removed by a band-stop filter, to a spectrometer for fluorescence detection. The light fluence varies significantly during treatment because of the source movement. The fluorescence signal is normalized by the light fluence measured at treatment wavelength. We have shown that the absolute photosensitizer concentration can be obtained by an optical properties correction factor and linear spectral fitting. Tissue optical properties are determined using an absorption spectroscopy probe immediately before PDT at the same sites. This novel method allows accurate real-time determination of delivered PDT dose using existing isotropic detectors, and may lead to a considerable improvement of PDT treatment quality compared to the currently employed systems. Preliminary data in patient studies is presented. PMID:25999645

  20. Acoustic images of gel dosimetry phantoms

    NASA Astrophysics Data System (ADS)

    Vieira, Silvio L.; Baggio, André; Kinnick, Randall R.; Fatemi, M.; Carneiro, Antonio Adilton O.

    2010-01-01

    This work presents Vibro-acoustography (VA) as a tool to visualize absorbed dose in a polymer gel dosimetry phantom. VA relies on the mechanical excitation introduced by the acoustic radiation force of focused modulated ultrasound in a small region of the object. A hydrophone or microphone is used to measure the sound emitted from the object in response to the excitation, and by using the amplitude or phase of this signal, an image of the object can be generated. To study the phenomena of dose distribution in a gel dosimetry phantom, continuous wave (CW), tone burst and multi-frequency VA were used to image this phantom. The phantom was designed using 'MAGIC' gel polymer with addition of glass microspheres at 2% w/w having an average diameter range between 40-75 μm. The gel was irradiated using conventional 10 MeV X-rays from a linear accelerator. The field size in the surface of the phantom was 1.0×1.0 cm2 and a source-surface distance (SSD) of 100 cm. The irradiated volume corresponds to an approximately 8.0 cm3, where a dose of 50 gray was delivered to the gel. Polymer gel dosimeters are sensitive to radiation-induced chemical changes that occur in the irradiated polymer. VA images of the gel dosimeter showed the irradiate area. It is concluded that VA imaging has potential to visualize dose distribution in a polymer gel dosimeter.

  1. Dosimetry of radium-223 and progeny

    SciTech Connect

    Fisher, D.R.; Sgouros, G.

    1999-01-01

    Radium-223 is a short-lived (11.4 d) alpha emitter with potential applications in radioimmunotherapy of cancer. Radium-223 can be complexed and linked to protein delivery molecules for specific tumor-cell targeting. It decays through a cascade of short-lived alpha- and beta-emitting daughters with emission of about 28 MeV of energy through complete decay. The first three alpha particles are essentially instantaneous. Photons associated with Ra-223 and progeny provide the means for tumor and normal-organ imaging and dosimetry. Two beta particles provide additional therapeutic value. Radium-223 may be produced economically and in sufficient amounts for widescale application. Many aspects of the chemistry of carrier-free isotope preparation, complexation, and linkage to the antibody have been developed and are being tested. The radiation dosimetry of a Ra-223-labeled antibody shows favorable tumor to normal tissue dose ratios for therapy. The 11.4-d half-life of Ra-223 allows sufficient time for immunoconjugate preparation, administration, and tumor localization by carrier antibodies before significant radiological decay takes place. If 0.01 percent of a 37 MBq (1 mCi) injection deposits in a one gram tumor mass, and if the activity is retained with a typical effective half-time (75 h), the absorbed dose will be 163 mGy MBq{sup {minus}1} (600 rad mCi{sup {minus}1}) administered. 49 refs., 5 figs., 2 tabs.

  2. Internal dosimetry verification and validation database.

    PubMed

    Miller, G; Bertelli, L; Little, T; Guilmette, R A

    2007-01-01

    Simulated-data internal dosimetry cases for use in intercomparison exercises or as a software verification and validation tool have been published on the internet (www.lanl.gov/bayesian/software Bayesian software package II). A user may validate their internal dosimetry code or method using this simulated bioassay data. Or, the user may choose to try out the Los Alamos National Laboratory codes ID and UF, which are also supplied. A Poisson-lognormal model of data uncertainty is assumed. A collection of different possible models for each nuclide (e.g. solubility types and particle sizes) are used. For example, for 238Pu, 14 different biokinetic models or types (8 inhalation, 4 wound and 2 ingestion) are assumed. Simulated data are generated for all the assumed biokinetic models, both for incidents, where the time of intake is known, and for non-incidents, where it is not. For the dose calculations, the route of intake, but not the biokinetic model, is considered to be known. The object is to correctly calculate the known true dose from simulated data covering a period of time. A 'correct' result has been defined in two ways: (1) that the credible limits of the calculated dose include the correct dose and (2) that the calculated dose is within a factor of 2 of the correct dose.

  3. Radiotherapy dosimetry using a commercial OSL system

    SciTech Connect

    Viamonte, A.; Rosa, L. A. R. da; Buckley, L. A.; Cherpak, A.; Cygler, J. E.

    2008-04-15

    A commercial optically stimulated luminescence (OSL) system developed for radiation protection dosimetry by Landauer, Inc., the InLight microStar reader, was tested for dosimetry procedures in radiotherapy. The system uses carbon-doped aluminum oxide, Al{sub 2}O{sub 3}:C, as a radiation detector material. Using this OSL system, a percent depth dose curve for {sup 60}Co gamma radiation was measured in solid water. Field size and SSD dependences of the detector response were also evaluated. The dose response relationship was investigated between 25 and 400 cGy. The decay of the response with time following irradiation and the energy dependence of the Al{sub 2}O{sub 3}:C OSL detectors were also measured. The results obtained using OSL dosimeters show good agreement with ionization chamber and diode measurements carried out under the same conditions. Reproducibility studies show that the response of the OSL system to repeated exposures is 2.5% (1sd), indicating a real possibility of applying the Landauer OSL commercial system for radiotherapy dosimetric procedures.

  4. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2009-08-28

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  5. [Computational radiofrequency electromagnetic field dosimetry in evaluation of biological effects].

    PubMed

    Perov, S Iu; Kudryashov, Iu B; Rubtsova, N B

    2012-01-01

    Given growing computational resources, radiofrequency electromagnetic field dosimetry is becoming more vital in the study of biological effects of non-ionizing electromagnetic radiation. The study analyzes numerical methods which are used in theoretical dosimetry to assess the exposure level and specific absorption rate distribution. The advances of theoretical dosimetry are shown. Advantages and disadvantages of different methods are analyzed in respect to electromagnetic field biological effects. The finite-difference time-domain method was implemented in detail; also evaluated were possible uncertainties of complex biological structure simulation for bioelectromagnetic investigations.

  6. Dosimetry of Auger emitters: Physical and phenomenological approaches

    SciTech Connect

    Sastry, K.S.R.; Howell, R.W.; Rao, D.V.; Mylavarapu, V.B.; Kassis, A.I.; Adelstein, S.J.; Wright, H.A.; Hamm, R.N.; Turner, J.E.

    1987-01-01

    Recent radiobiological studies have demonstrated that Auger cascades can cause severe biological damage contrary to expectations based on conventional dosimetry. Several determinants govern these effects, including the nature of the Auger electron spectrum; localized energy deposition; cellular geometry; chemical form of the carrier; cellular localization, concentration, and subcellular distribution of the radionuclide. Conventional dosimetry is inadequate in that these considerations are ignored. Our results provide the basis for biophysical approaches toward subcellular dosimetry of Auger emitters in vitro and in vivo. 12 refs., 7 figs., 2 tabs.

  7. Snow Art

    ERIC Educational Resources Information Center

    Kraus, Nicole

    2012-01-01

    It was nearing the end of a very long, rough winter with a lot of snow and too little time to play outside. The snow had formed small hills and valleys over the bushes and this was at the perfect height for the students to paint. In this article, the author describes how her transitional first-grade students created snow art paintings. (Contains 1…

  8. Art Preservation

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A new class of polyimides, synthesized by Langley Research Center, has been evaluated by the Getty Conservation Institute's Materials Science Group for possible art conservation applications. Polyimides are noted for resistance to high temperature, wear and radiation. They are thermally stable and soluble in some common solvents. After testing under simulated exposures for changes in color, permeability and flexibility, one coating, ODPA-3, 3-ODA may be used to protect bronze statues from corrosion. A test on stained glass windows was unsuccessful.

  9. Overview of the nuclear data related to the Hiroshima Dosimetry Discrepancy

    SciTech Connect

    Pace, J.V. III

    1994-09-01

    Nearly half a century ago the first atomic bomb was dropped on Hiroshima; several days later, a second atomic bomb was dropped on Nagasaki. Japan immediately initiated a study of all aspects of the effects of the bombings. Thus the initial effort was begun to estimate the overall risks of radiation effects in man due to nuclear detonations. By the 1950s, Japan and the United States had produced several studies that reported on the elevated risk of cancer. In 1957 the first dose estimates for survivors were designated as Tentative 1957 Doses or T57D. In 1965 a revised dosimetry system was adopted to replace T57D, and the dose estimates were designated as Tentative 1965 Doses or T65D. The current evaluation, known as Dosimetry System 1986 or DS86, was the result of a presentation by H.H. Rossi in 1976 to the US National Council on Radiation Protection and Measurements (NCRP). In the presentation, Rossi recommended that the NCRP reduce its permissible neutron dose limits by an order of magnitude. A direct result of this drastic proposal was a new dosimetry reevaluation effort. After the calculations were made and compared to the measurements, it was found that the thermal data at both cities was in disagreement. The state-of-the-art radiation transport calculational codes require evaluated neutron and gamma-ray reaction cross-section data (which themselves were determined empirically or theoretically) to complete the cycle and calculate the measured data. This paper will review some of the more important in situ measured data taken over the last forty-five years, the measurement and reevaluation of some of the major cross sections required for the calculations, and the effort to agreement through calculations with some of the in situ measurements.

  10. Development of silicon monolithic arrays for dosimetry in external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Bisello, Francesca; Menichelli, David; Scaringella, Monica; Talamonti, Cinzia; Zani, Margherita; Bucciolini, Marta; Bruzzi, Mara

    2015-10-01

    New tools for dosimetry in external beam radiotherapy have been developed during last years in the framework of the collaboration among the University of Florence, INFN Florence and IBA Dosimetry. The first step (in 2007) was the introduction in dosimetry of detector solutions adopted from high energy physics, namely epitaxial silicon as the base detector material and a guard ring in diode design. This allowed obtaining state of the art radiation hardness, in terms of sensitivity dependence on accumulated dose, with sensor geometry particularly suitable for the production of monolithic arrays with modular design. Following this study, a 2D monolithic array has been developed, based on 6.3×6.3 cm2 modules with 3 mm pixel pitch. This prototype has been widely investigated and turned out to be a promising tool to measure dose distributions of small and IMRT fields. A further linear array prototype has been recently design with improve spatial resolution (1 mm pitch) and radiation hardness. This 24 cm long device is constituted by 4×64 mm long modules. It features low sensitivity changes with dose (0.2%/kGy) and dose per pulse (±1% in the range 0.1-2.3 mGy/pulse, covering applications with flattened and unflattened photon fields). The detector has been tested with very satisfactory results as a tool for quality assurance of linear accelerators, with special regards to small fields, and proton pencil beams. In this contribution, the characterization of the linear array with unflattened MV X-rays, 60Co radiation and 226 MeV protons is reported.

  11. All About Art.

    ERIC Educational Resources Information Center

    Silverman, Ronald H.

    This is an experimental textbook for teaching about the visual arts at the elementary level. The content answers five questions about art: what is art; who makes art; what are the sources for art; why is art important to you; and why is art important to society. At the end of each section of the text is a set of questions and suggestions for…

  12. Permanent Breast Seed Implant Dosimetry Quality Assurance

    SciTech Connect

    Keller, Brian M.; Ravi, Ananth; Sankreacha, Raxa; Pignol, Jean-Philippe

    2012-05-01

    Purpose: A permanent breast seed implant is a novel method of accelerated partial breast irradiation for women with early-stage breast cancer. This article presents pre- and post-implant dosimetric data, relates these data to clinical outcomes, and makes recommendations for those interested in starting a program. Methods and Materials: A total of 95 consecutive patients were accrued into one of three clinical trials after breast-conserving surgery: a Phase I/II trial (67 patients with infiltrating ductal carcinoma); a Phase II registry trial (25 patients with infiltrating ductal carcinoma); or a multi-center Phase II trial for patients with ductal carcinoma in situ (3 patients). Contouring of the planning target volume (PTV) was done on a Pinnacle workstation and dosimetry calculations, including dose-volume histograms, were done using a Variseed planning computer. Results: The mean pre-implant PTV coverage for the V{sub 90}, V{sub 100}, V{sub 150}, and V{sub 200} were as follows: 98.8% {+-} 1.2% (range, 94.5-100%); 97.3% {+-} 2.1% (range, 90.3-99.9%), 68.8% {+-} 14.3% (range, 32.7-91.5%); and 27.8% {+-} 8.6% (range, 15.1-62.3%). The effect of seed motion was characterized by post-implant dosimetry performed immediately after the implantation (same day) and at 2 months after the implantation. The mean V{sub 100} changed from 85.6% to 88.4% (p = 0.004) and the mean V{sub 200} changed from 36.2% to 48.3% (p < 0.001). Skin toxicity was associated with maximum skin dose (p = 0.014). Conclusions: Preplanning dosimetry should aim for a V{sub 90} of approximately 100%, a V{sub 100} between 95% and 100%, and a V{sub 200} between 20% and 30%, as these numbers are associated with no local recurrences to date and good patient tolerance. In general, the target volume coverage improved over the duration of the seed therapy. The maximum skin dose, defined as the average dose over the hottest 1 Multiplication-Sign 1-cm{sup 2} surface area, should be limited to 90% of the

  13. Art Therapy: What Is Art Therapy?

    MedlinePlus

    ... from art therapy? Art therapy is practiced in mental health, rehabilitation, medical, educational, forensic, wellness, private practice and community settings with diverse client populations in ...

  14. Albedo neutron dosimetry in Germany: regulations and performance.

    PubMed

    Luszik-Bhadra, M; Zimbal, A; Busch, F; Eichelberger, A; Engelhardt, J; Figel, M; Frasch, G; Günther, K; Jordan, M; Martini, E; Haninger, T; Rimpler, A; Seifert, R

    2014-12-01

    Personal neutron dosimetry has been performed in Germany using albedo dosemeters for >20 y. This paper describes the main principles, the national standards, regulations and recommendations, the quality management and the overall performance, giving some examples.

  15. Gamma-ray dosimetry measurements of the Little Boy replica

    SciTech Connect

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis.

  16. Proceedings of the third conference on radiation protection and dosimetry

    SciTech Connect

    Swaja, R.E.; Sims, C.S.; Casson, W.H.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database.

  17. Retrospective dosimetry analyses of reactor vessel cladding samples

    SciTech Connect

    Greenwood, L. R.; Soderquist, C. Z.; Fero, A. H.

    2011-07-01

    Reactor pressure vessel cladding samples for Ringhals Units 3 and 4 in Sweden were analyzed using retrospective reactor dosimetry techniques. The objective was to provide the best estimates of the neutron fluence for comparison with neutron transport calculations. A total of 51 stainless steel samples consisting of chips weighing approximately 100 to 200 mg were removed from selected locations around the pressure vessel and were sent to Pacific Northwest National Laboratory for analysis. The samples were fully characterized and analyzed for radioactive isotopes, with special interest in the presence of Nb-93m. The RPV cladding retrospective dosimetry results will be combined with a re-evaluation of the surveillance capsule dosimetry and with ex-vessel neutron dosimetry results to form a comprehensive 3D comparison of measurements to calculations performed with 3D deterministic transport code. (authors)

  18. Software for evaluation of EPR-dosimetry performance.

    PubMed

    Shishkina, E A; Timofeev, Yu S; Ivanov, D V

    2014-06-01

    Electron paramagnetic resonance (EPR) with tooth enamel is a method extensively used for retrospective external dosimetry. Different research groups apply different equipment, sample preparation procedures and spectrum processing algorithms for EPR dosimetry. A uniform algorithm for description and comparison of performances was designed and implemented in a new computer code. The aim of the paper is to introduce the new software 'EPR-dosimetry performance'. The computer code is a user-friendly tool for providing a full description of method-specific capabilities of EPR tooth dosimetry, from metrological characteristics to practical limitations in applications. The software designed for scientists and engineers has several applications, including support of method calibration by evaluation of calibration parameters, evaluation of critical value and detection limit for registration of radiation-induced signal amplitude, estimation of critical value and detection limit for dose evaluation, estimation of minimal detectable value for anthropogenic dose assessment and description of method uncertainty.

  19. Extremity dosimetry at US Department of Energy facilities

    SciTech Connect

    Harty, R.; Reece, W.D.; MacLellan, J.A.

    1986-05-01

    A questionnaire on extremity dosimetry was distributed to DOE facilities along with a questionnaire on beta dosimetry. An informal telephone survey was conducted as a follow-up survey to answer a few additional questions concerning extremity monitoring practices. The responses to the questionnaire and the telephone survey are summarized in this report. Background information, developed from operational experience and a review of the current literature, is presented as a basis for understanding the information obtained by the survey and questionnaire.

  20. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2003-10-10

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP). It describes the roles of and relationships between the IDP and site contractors, and provides recommendations and guidance for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs. Guidance includes identifying conditions under which workers should be placed on bioassay programs, types, descritptions, and capabilities of measurements, suggested routine bioassay programs, limitations on services, and practices for recording and reporting results.

  1. Surveillance dosimetry of operating power plants

    SciTech Connect

    McElroy, W.N.; Davis, A.I.; Gold, R.

    1981-10-16

    The main focus of the research efforts presently underway is the LWR power reactor surveillance program in which metallurgical test specimens of the reactor PV and dosimetry sensors are placed in three or more surveillance capsules at or near the reactor PV inner wall. They are then irradiated in a temperature and neutron flux-spectrum environment as similar as possible to the PV itself for periods of about 1.5 to 15 effective full-power years (EFPY), with removal of the last capsule at a fluence corresponding to the 30- to 40-year plant end-of-life (EOL) fluence. Because the neutron flux level at the surveillance position is greater than at the vessel, the test is accelerated wit respect to the vessel exposure, allowing early assessment of EOL conditions.

  2. Dosimetry for radiocolloid therapy of cystic craniopharyngiomas.

    PubMed

    Rojas, E Leticia; Al-Dweri, Feras M O; Lallena, Antonio M; Bodineau, Coral; Galán, Pedro

    2003-09-01

    The dosimetry for radiocolloid therapy of cystic craniopharyngiomas is investigated. Analytical calculations based on the Loevinger and the Berger formulas for electrons and photons, respectively, are compared with Monte Carlo simulations. The role of the material of which the colloid introduced inside the craniopharyngioma is made of as well as that forming the cyst wall is analyzed. It is found that the analytical approaches provide a very good description of the simulated data in the conditions where they can be applied (i.e., in the case of a uniform and infinite homogeneous medium). However, the consideration of the different materials and interfaces produces a strong reduction of the dose delivered to the cyst wall in relation to that predicted by the Loevinger and the Berger formulas.

  3. Accidental neutron dosimetry with human hair

    NASA Astrophysics Data System (ADS)

    Ekendahl, Daniela; Bečková, Věra; Zdychová, Vlasta; Bulánek, Boris; Prouza, Zdeněk; Štefánik, Milan

    2014-11-01

    Human hair contains sulfur, which can be activated by fast neutrons. The 32S(n,p)32P reaction with a threshold of 2.5 MeV was used for fast neutron dose estimation. It is a very important parameter for individual dose reconstruction with regards to the heterogeneity of the neutron transfer to the human body. Samples of human hair were irradiated in a radial channel of a training reactor VR-1. 32P activity in hair was measured both, directly by means of a proportional counter, and as ash dispersed in a liquid scintillator. Based on neutron spectrum estimation, a relationship between the neutron dose and induced activity was derived. The experiment verified the practical feasibility of this dosimetry method in cases of criticality accidents or malevolent acts with nuclear materials.

  4. Pediatric renal iodine-123 orthoiodohippurate dosimetry

    SciTech Connect

    Marcus, C.S.; Kuperus, J.H.

    1985-10-01

    Radiation exposure to the kidney from iodine- ST orthoiodohippurate (( STI)OIH) and any associated ( SUI)OIH contamination may vary by a factor of several hundred depending upon the health of the kidney. Calculations of kidney dose were made for patients with the following renal states: normal, acute tubular necrosis (ATN), obstruction, and renal transplant. The dosimetry was based on a minimum practical administered activity (MPAA) of 200 microCi for pediatric patients and 500 microCi for adults. High-grade obstruction of recent onset and severe ATN are the only disease processes which could result in high exposures, and this is due primarily to the contribution of SUI. For selected cases, OIH labeled with pure STI should be very seriously considered.

  5. Neutron generator (HIRRAC) and dosimetry study.

    PubMed

    Endo, S; Hoshi, M; Takada, J; Tauchi, H; Matsuura, S; Takeoka, S; Kitagawa, K; Suga, S; Komatsu, K

    1999-12-01

    Dosimetry studies have been made for neutrons from a neutron generator at Hiroshima University (HIRRAC) which is designed for radiobiological research. Neutrons in an energy range from 0.07 to 2.7 MeV are available for biological irradiations. The produced neutron energies were measured and evaluated by a 3He-gas proportional counter. Energy spread was made certain to be small enough for radiobiological studies. Dose evaluations were performed by two different methods, namely use of tissue equivalent paired ionization chambers and activation of method with indium foils. Moreover, energy deposition spectra in small targets of tissue equivalent materials, so-called lineal energy spectrum, were also measured and are discussed. Specifications for biological irradiation are presented in terms of monoenergetic beam conditions, dose rates and deposited energy spectra.

  6. The radiation dosimetry of intrathecally administered radionuclides

    SciTech Connect

    Stabin, M.G.; Evans, J.F.

    1999-01-01

    The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energy deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.

  7. Liulin-type spectrometry-dosimetry instruments.

    PubMed

    Dachev, Ts; Dimitrov, Pl; Tomov, B; Matviichuk, Yu; Spurny, F; Ploc, O; Brabcova, K; Jadrnickova, I

    2011-03-01

    The main purpose of Liulin-type spectrometry-dosimetry instruments (LSDIs) is cosmic radiation monitoring at the workplaces. An LSDI functionally is a low mass, low power consumption or battery-operated dosemeter. LSDIs were calibrated in a wide range of radiation fields, including radiation sources, proton and heavy-ion accelerators and CERN-EC high-energy reference field. Since 2000, LSDIs have been used in the scientific programmes of four manned space flights on the American Laboratory and ESA Columbus modules and on the Russian segment of the International Space Station, one Moon spacecraft and three spacecraft around the Earth, one rocket, two balloons and many aircraft flights. In addition to relative low price, LSDIs have proved their ability to qualify the radiation field on the ground and on the above-mentioned carriers.

  8. Space radiation dosimetry using bubble detectors.

    PubMed

    Ing, H; Mortimer, A

    1994-10-01

    Bubble detectors--a new development in radiation detection--has only recently been used for radiation measurements in space. One important characteristic of the bubble detector is that it operates on a phenomenon which bears considerable resemblance to biological response. Recent experimental results from irradiating bubble detectors with high-energy heavy ions point to the need to re-examine the methodology used for assessing space radiation and the relevance of conventional quantities such as dose equivalent for space dosimetry. It may be that biological hazard associated with the intensely ionizing events--associated with nuclear fragmentation but delivering relatively small dose equivalent--may be much more important than that associated with lightly ionizing events which comprise the bulk of the conventional radiation dose equivalent.

  9. Dosimetry in mixed neutron-gamma fields

    SciTech Connect

    Remec, I.

    1998-04-01

    The gamma field accompanying neutrons may, in certain circumstances, play an important role in the analysis of neutron dosimetry and even in the interpretation of radiation induced steel embrittlement. At the High Flux Isotope Reactor pressure vessel the gamma induced reactions dominate the responses of {sup 237}Np and {sup 238}U dosimeters, and {sup 9}Be helium accumulation fluence monitors. The gamma induced atom displacement rate in steel is higher than corresponding neutron rate, and is the cause of ``accelerated embrittlement`` of HFIR materials. In a large body of water, adjacent to a fission plate, photofissions contribute significantly to the responses of fission monitors and need to be taken into account if the measurements are used for the qualification of the transport codes and cross-section libraries.

  10. Gastroesophageal scintiscanning in a pediatric population: dosimetry

    SciTech Connect

    Castronovo, F.P. Jr.

    1986-07-01

    The dosimetry associated with orally administered (/sup 99m/Tc)sulfur colloid for the diagnosis of gastroesophageal reflux has not been adequately described for the pediatric populations. Standard MIRD methodology was performed for the following: newborn, 1, 5, 10, and 15 yr old, and adult standard man. The critical organ for all pediatric groups was the lower large intestine with absorbed dose of 0.927, 0.380, 0.194, 0.120 and 0.0721 rad/100 microCi, respectively. For the adult the critical organ was the upper large intestine with an absorbed dose of 0.0518 rad/100 microCi. These data should be considered when administering (99mTc)sulfur colloid orally in a pediatric population.

  11. Review of the near-earth space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Guo, Jianming; Chen, Xiaoqian; Li, Shiyou

    2016-07-01

    The near-earth space radiation environment has a great effect to the spacecraft and maybe do harm to the astronaut's health. Thus, how to measure the radiation has become a serious challenge. In order to provide sufficient protection both for astronauts and for instruments on-board, dose equivalent and linear energy transfer should be measured instead of merely measuring total radiation dose. This paper reviews the methods of radiation measurement and presents a brief introduction of dosimetry instruments. The method can be divided into two different kinds, i.e., positive dosimetry and passive dosimetry. The former usually includes electronic devices which can be used for data storage and can offer simultaneous monitoring on space radiation. The passive dosimetry has a much simple structure, and need extra operation after on-orbit missions for measuring. To get more reliable data of radiation dosimetry, various instruments and methods had been applied in the spacecrafts and the manned spacecrafts in particular. The outlook of the development in the space radiation dosimetry measurement is also presented.

  12. Boron dose determination for BNCT using Fricke and EPR dosimetry

    SciTech Connect

    Wielopolski, L.; Ciesielski, B.

    1995-02-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to {alpha} and {sup 7}Li charged particles resulting from a neutron capture by {sup 10}B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient`s dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here.

  13. Specific issues in small animal dosimetry and irradiator calibration

    PubMed Central

    Yoshizumi, Terry; Brady, Samuel L.; Robbins, Mike E.; Bourland, J. Daniel

    2013-01-01

    Purpose In response to the increased risk of radiological terrorist attack, a network of Centers for Medical Countermeasures against Radiation (CMCR) has been established in the United States, focusing on evaluating animal model responses to uniform, relatively homogenous whole- or partial-body radiation exposures at relatively high dose rates. The success of such studies is dependent not only on robust animal models but on accurate and reproducible dosimetry within and across CMCR. To address this issue, the Education and Training Core of the Duke University School of Medicine CMCR organised a one-day workshop on small animal dosimetry. Topics included accuracy in animal dosimetry accuracy, characteristics and differences of cesium-137 and X-ray irradiators, methods for dose measurement, and design of experimental irradiation geometries for uniform dose distributions. This paper summarises the information presented and discussed. Conclusions Without ensuring accurate and reproducible dosimetry the development and assessment of the efficacy of putative countermeasures will not prove successful. Radiation physics support is needed, but is often the weakest link in the small animal dosimetry chain. We recommend: (i) A user training program for new irradiator users, (ii) subsequent training updates, and (iii) the establishment of a national small animal dosimetry center for all CMCR members. PMID:21961967

  14. Neutron dosimetry in boron neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na/sub 2/B/sub 12/H/sub 11/SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with /sup 10/B in boron containing cells through the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction producing charged particles with a maximum range of approx. 10..mu..m in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize /sup 6/Li and /sup 10/B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the /sup 14/N(n,p)/sup 14/C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils.

  15. Real-time volumetric scintillation dosimetry

    NASA Astrophysics Data System (ADS)

    Beddar, S.

    2015-01-01

    The goal of this brief review is to review the current status of real-time 3D scintillation dosimetry and what has been done so far in this area. The basic concept is to use a large volume of a scintillator material (liquid or solid) to measure or image the dose distributions from external radiation therapy (RT) beams in three dimensions. In this configuration, the scintillator material fulfills the dual role of being the detector and the phantom material in which the measurements are being performed. In this case, dose perturbations caused by the introduction of a detector within a phantom will not be at issue. All the detector configurations that have been conceived to date used a Charge-Coupled Device (CCD) camera to measure the light produced within the scintillator. In order to accurately measure the scintillation light, one must correct for various optical artefacts that arise as the light propagates from the scintillating centers through the optical chain to the CCD chip. Quenching, defined in its simplest form as a nonlinear response to high-linear energy transfer (LET) charged particles, is one of the disadvantages when such systems are used to measure the absorbed dose from high-LET particles such protons. However, correction methods that restore the linear dose response through the whole proton range have been proven to be effective for both liquid and plastic scintillators. Volumetric scintillation dosimetry has the potential to provide fast, high-resolution and accurate 3D imaging of RT dose distributions. Further research is warranted to optimize the necessary image reconstruction methods and optical corrections needed to achieve its full potential.

  16. On flattening filter-free portal dosimetry.

    PubMed

    Pardo, Eduardo; Castro Novais, Juan; Molina López, María Yolanda; Ruiz Maqueda, Sheila

    2016-07-08

    Varian introduced (in 2010) the option of removing the flattening filter (FF) in their C-Arm linacs for intensity-modulated treatments. This mode, called flattening filter-free (FFF), offers the advantage of a greater dose rate. Varian's "Portal Dosimetry" is an electronic portal imager device (EPID)-based tool for IMRT verification. This tool lacks the capability of verifying flattening filter-free (FFF) modes due to saturation and lack of an image prediction algorithm. (Note: the latest versions of this software and EPID correct these issues.) The objective of the present study is to research the feasibility of said verifications (with the older versions of the software and EPID). By placing the EPID at a greater distance, the images can be acquired without saturation, yielding a linearity similar to the flattened mode. For the image prediction, a method was optimized based on the clinically used algorithm (analytical anisotropic algorithm (AAA)) over a homogeneous phantom. The depth inside the phantom and its electronic density were tailored. An application was developed to allow the conversion of a dose plane (in DICOM format) to Varian's custom format for Portal Dosimetry. The proposed method was used for the verification of test and clinical fields for the three qualities used in our institution for IMRT: 6X, 6FFF and 10FFF. The method developed yielded a positive verification (more than 95% of the points pass a 2%/2 mm gamma) for both the clinical and test fields. This method was also capable of "predicting" static and wedged fields. A workflow for the verification of FFF fields was developed. This method relies on the clinical algorithm used for dose calculation and is able to verify the FFF modes, as well as being useful for machine quality assurance. The procedure described does not require new hardware. This method could be used as a verification of Varian's Portal Dose Image Prediction.

  17. A deformable head and neck phantom with in-vivo dosimetry for adaptive radiotherapy quality assurance

    SciTech Connect

    Graves, Yan Jiang; Smith, Arthur-Allen; Mcilvena, David; Manilay, Zherrina; Lai, Yuet Kong; Rice, Roger; Mell, Loren; Cerviño, Laura E-mail: steve.jiang@utsouthwestern.edu; Jia, Xun; Jiang, Steve B. E-mail: steve.jiang@utsouthwestern.edu

    2015-04-15

    Purpose: Patients’ interfractional anatomic changes can compromise the initial treatment plan quality. To overcome this issue, adaptive radiotherapy (ART) has been introduced. Deformable image registration (DIR) is an important tool for ART and several deformable phantoms have been built to evaluate the algorithms’ accuracy. However, there is a lack of deformable phantoms that can also provide dosimetric information to verify the accuracy of the whole ART process. The goal of this work is to design and construct a deformable head and neck (HN) ART quality assurance (QA) phantom with in vivo dosimetry. Methods: An axial slice of a HN patient is taken as a model for the phantom construction. Six anatomic materials are considered, with HU numbers similar to a real patient. A filled balloon inside the phantom tissue is inserted to simulate tumor. Deflation of the balloon simulates tumor shrinkage. Nonradiopaque surface markers, which do not influence DIR algorithms, provide the deformation ground truth. Fixed and movable holders are built in the phantom to hold a diode for dosimetric measurements. Results: The measured deformations at the surface marker positions can be compared with deformations calculated by a DIR algorithm to evaluate its accuracy. In this study, the authors selected a Demons algorithm as a DIR algorithm example for demonstration purposes. The average error magnitude is 2.1 mm. The point dose measurements from the in vivo diode dosimeters show a good agreement with the calculated doses from the treatment planning system with a maximum difference of 3.1% of prescription dose, when the treatment plans are delivered to the phantom with original or deformed geometry. Conclusions: In this study, the authors have presented the functionality of this deformable HN phantom for testing the accuracy of DIR algorithms and verifying the ART dosimetric accuracy. The authors’ experiments demonstrate the feasibility of this phantom serving as an end

  18. Fine Arts: Secondary Visual Arts Curriculum.

    ERIC Educational Resources Information Center

    Utah State Office of Education, Salt Lake City.

    This guide to Utah's requirements for students in secondary visual arts is organized and based upon a student achievement portfolio for each course. Foundation I, the required junior high/middle school visual arts course, is designed to provide an overview of visual arts while studying various art tools and materials. With an emphasis on studio…

  19. History and Art: The Heart of Art.

    ERIC Educational Resources Information Center

    Seiferth, Berniece B; And Others

    Learning to appreciate religious art and to understand the interdependence of history and art are basic to the foundations of culture. Students need to be exposed to the art of the diverse adherents of all major religions in order to understand the beliefs and practices of others. Students can examine religious art from ancient times, including…

  20. Art Supply Inventors. Children's Art Diary.

    ERIC Educational Resources Information Center

    Szekely, George

    2001-01-01

    Discusses types of art materials that children enjoy using in their artworks. Explores the art materials such as tasty art supplies, such as candy; peeled supplies, such as pencil shavings; sticky art supplies, such as Band-Aids; and fast-food supplies, such as forks and spoons. (CMK)

  1. Small Art Images--Big Art Learning

    ERIC Educational Resources Information Center

    Stephens, Pam

    2005-01-01

    When small art images are incorporated into the curriculum, students are afforded opportunities to slow down, observe minute details, and communicate ideas about art and artists. This sort of purposeful art contemplation takes students beyond the day-to-day educational practice. It is through these sorts of art activities that students develop…

  2. Art Therapy Teaching as Performance Art

    ERIC Educational Resources Information Center

    Moon, Bruce L.

    2012-01-01

    This viewpoint asserts that art therapy education is a form of performance art. By designing class sessions as performance artworks, art therapy educators can help their students become more fully immersed in their studies. This view also can be extended to conceptualizing each semester--and the entire art therapy curriculum--as a complex and…

  3. A probabilistic gastrointestinal tract dosimetry model

    NASA Astrophysics Data System (ADS)

    Huh, Chulhaeng

    In internal dosimetry, the tissues of the gastrointestinal (GI) tract represent one of the most radiosensitive organs of the body with the hematopoietic bone marrow. Endoscopic ultrasound is a unique tool to acquire in-vivo data on GI tract wall thicknesses of sufficient resolution needed in radiation dosimetry studies. Through their different echo texture and intensity, five layers of differing echo patterns for superficial mucosa, deep mucosa, submucosa, muscularis propria and serosa exist within the walls of organs composing the alimentary tract. Thicknesses for stomach mucosa ranged from 620 +/- 150 mum to 1320 +/- 80 mum (total stomach wall thicknesses from 2.56 +/- 0.12 to 4.12 +/- 0.11 mm). Measurements made for the rectal images revealed rectal mucosal thicknesses from 150 +/- 90 mum to 670 +/- 110 mum (total rectal wall thicknesses from 2.01 +/- 0.06 to 3.35 +/- 0.46 mm). The mucosa thus accounted for 28 +/- 3% and 16 +/- 6% of the total thickness of the stomach and rectal wall, respectively. Radiation transport simulations were then performed using the Monte Carlo N-particle transport code (MCNP) 4C transport code to calculate S values (Gy/Bq-s) for penetrating and nonpenetrating radiations such as photons, beta particles, conversion electrons and auger electrons of selected nuclides, I123, I131, Tc 99m and Y90 under two source conditions: content and mucosa sources, respectively. The results of this study demonstrate generally good agreement with published data for the stomach mucosa wall. The rectal mucosa data are consistently higher than published data compared with the large intestine due to different radiosensitive cell thicknesses (350 mum vs. a range spanning from 149 mum to 729 mum) and different geometry when a rectal content source is considered. Generally, the ICRP models have been designed to predict the amount of radiation dose in the human body from a "typical" or "reference" individual in a given population. The study has been performed to

  4. Improved dosimetry techniques for intravascular brachytherapy

    NASA Astrophysics Data System (ADS)

    Sehgal, Varun

    Coronary artery disease leads to the accumulation of atheromatous plaque leading to coronary stenosis. Coronary intervention techniques such as balloon angioplasty and atherectomy are used to address coronary stenosis and establish a stable lumen thus enhancing blood flow to the myocardium. Restenosis or re-blockage of the arteries is a major limitation of the above mentioned interventional techniques. Neointimal hyperplasia or proliferation of cells in response to the vascular injury as a result of coronary intervention is considered to be one of the major causes of restenosis. Recent studies indicated that irradiation of the coronary lesion site, with radiation doses ranging from 15 to 30 Gy, leads to diminishing neointimal hyperplasia with subsequent reduction in restenosis. The radiation dose is given by catheter-based radiation delivery systems using beta-emitters 90Sr/90Y, 32P and gamma-emitting 192Ir among others. However the dose schema used for dose prescription for these sources are relatively simplistic, and are based on calculations using uniform homogenous water or tissue media and simple cylinder geometry. Stenotic coronary vessels are invariably lined with atheromatous plaque of heterogeneous composition, the radiation dose distribution obtained from such dosimetry data can cause significant variations in the actual dose received by a given patient. Such discrepancies in dose calculation can introduce relatively large uncertainties in the limits of dose window for effective and safe application of intravascular brachytherapy, and consequently in the clinical evaluation of the efficacy of this modality. In this research study we investigated the effect of different geometrical and material heterogeneities, including residual plaque, catheter non-centering, lesion eccentricity and cardiac motion on the radiation dose delivered at the lesion site. Correction factors including dose perturbation factors and dose variation factors have been calculated

  5. Macroscopic to Microscopic Scales of Particulate Dosimetry: From Source to Fate in the Body

    EPA Science Inventory

    Additional perspective with regards to particle dosimetry is achieved by exploring dosimetry across a range of scales from macroscopic to microscopic in scope. Typically, one thinks of dosimetry as what happens when a particle is inhaled, where it is deposited, and how it is clea...

  6. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2007-03-12

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor

  7. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2011-04-04

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  8. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2010-04-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  9. Student Perceptions of an Online Medical Dosimetry Program

    SciTech Connect

    Lenards, Nishele

    2011-07-01

    The University of Wisconsin-La Crosse offers the first online medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was a need to collect and analyze student perceptions of online learning in medical dosimetry. This research provided a guide for future implementation by other programs as well as validated the University of Wisconsin-La Crosse program. Methodology used consisted of an electronic survey sent to all previous and currently enrolled students in the University of Wisconsin-La Crosse medical dosimetry program. The survey was both quantitative and qualitative in demonstrating attitudinal perceptions of students in the program. Quantitative data was collected and analyzed using a 5-point Likert scale. Qualitative data was gathered based on the open-ended responses and the identifying themes from the responses. The results demonstrated an overall satisfaction with this program, the instructor, and the online courses. Students felt a sense of belonging to the courses and the program. Considering that a majority of the students had never taken an online course previously, the students felt there were no technology issues. Future research should include an evaluation of board exam statistics for students enrolled in the online and face-to-face medical dosimetry programs.

  10. Current personnel dosimetry practices at DOE facilities

    SciTech Connect

    Fix, J.J.

    1981-05-01

    Only three parameters were included in the personnel occupational exposure records by all facilities. These are employee name, social security number, and whole body dose. Approximate percentages of some other parameters included in the record systems are sex (50%), birthdate (90%), occupation (26%), previous employer radiation exposure (74%), etc. Statistical analysis of the data for such parameters as sex versus dose distribution, age versus dose distribution, cumulative lifetime dose, etc. was apparently seldom done. Less than 50% of the facilities reported having formal documentation for either the dosimeter, records system, or reader. Slightly greater than 50% of facilities reported having routine procedures in place. These are considered maximum percentages because some respondents considered computer codes as formal documentation. The repository receives data from DOE facilities regarding the (a) distribution of annual whole body doses, (b) significant internal depositions, and (c) individual doses upon termination. It is expected that numerous differences exist in the dose data submitted by the different facilities. Areas of significant differences would likely include the determination of non-measurable doses, the methods used to determine previous employer radiation dose, the methods of determining cumulative radiation dose, and assessment of internal doses. Undoubtedly, the accuracy of the different dosimetry systems, especially at low doses, is very important to the credibility of data summaries (e.g., man-rem) provided by the repository.

  11. Biological dosimetry in Russian and Italian astronauts

    NASA Astrophysics Data System (ADS)

    Greco, O.; Durante, M.; Gialanella, G.; Grossi, G.; Pugliese, M.; Scampoli, P.; Snigiryova, G.; Obe, G.

    Large uncertainties are associated with estimates of equivalent dose and cancer risk for crews of longterm space missions. Biological dosimetry in astronauts is emerging as a useful technique to compare predictions based on quality factors and risk coefficients with actual measurements of biological damage in-flight. In the present study, chromosomal aberrations were analyzed in one Italian and eight Russian cosmonauts following missions of different duration on the MIR and the international space station (ISS). We used the technique of fluorescence in situ hybridization (FISH) to visualize translocations in chromosomes 1 and 2. In some cases, an increase in chromosome damage was observed after flight, but no correlation could be found between chromosome damage and flight history, in terms of number of flights at the time of sampling, duration in space and extra-vehicular activity. Blood samples from one of the cosmonauts were exposed in vitro to 6 MeV X-rays both before and after the flight. An enhancement in radiosensitivity induced by the spaceflight was observed.

  12. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  13. Biological dosimetry by interphase chromosome painting

    NASA Technical Reports Server (NTRS)

    Durante, M.; George, K.; Yang, T. C.

    1996-01-01

    Both fluorescence in situ hybridization of metaphase spreads with whole-chromosome probes and premature chromosome condensation in interphase nuclei have been used in the past to estimate the radiation dose to lymphocytes. We combined these techniques to evaluate the feasibility of using painted interphase chromosomes for biodosimetry. Human peripheral lymphocytes were exposed to gamma rays and fused to mitotic Chinese hamster cells either immediately after irradiation or after 8 h incubation at 37 degrees C. Interphase or metaphase human chromosomes were hybridized with a composite probe specific for human chromosomes 3 and 4. The dose-response curve for fragment induction immediately after irradiation was linear; these results reflected breakage frequency in the total genome in terms of DNA content per chromosome. At 8 h after irradiation, the dose-response curve for chromosome interchanges, the prevalent aberration in interphase chromosomes, was linear-quadratic and similar to that observed for metaphase chromosomes. These results suggest that painting prematurely condensed chromosomes can be useful for biological dosimetry when blood samples are available shortly after the exposure, or when interphase cells are to be scored instead of mitotic cells.

  14. Mayak worker dosimetry study: An overview

    SciTech Connect

    Vasilenko, E. K.; Khokhryakov, V. F.; Miller, S C.; Fix, Jack J.; Eckerman, Keith F.; Choe, Dong Ok; Gorelov, Mikhail; Khokhryakov, Victor V.; Knyazev, V.; Krahenbuhl, Melinda P.; Scherpelz, Robert I.; Smetanin, Mikhail; Suslova, K. G.; Vostrotin, V.

    2007-09-01

    The Mayak Production Association (MPA) was the first plutonium production plant in the former Soviet Union. Workers at the MPA were exposed to relatively large internal radiation intakes and external radiation exposures, particularly in the early years of plant operations. This paper describes the updated dosimetry database, Doses-2005. Doses-2005 represents a significant improvement in the determination of absorbed organ dose from external radiation and plutonium intake for the original cohort of 18,831 Mayak workers. The methods of dose reconstruction of absorbed organ doses from external radiation uses: 1) archive records of measured dose and worker exposure history, 2) measured energy and directional response characteristics of historical Mayak film dosimeters, and 3) calculated dose conversion factors for Mayak Study-defined exposure scenarios using Monte Carlo techniques. The methods of dose reconstruction for plutonium intake uses two revised models developed from empirical data derived from bioassay and autopsy cases and/or updates from prevailing or emerging International Commission on Radiological Protection models. Other sources of potential significant exposure to workers such as medical diagnostic x-rays, ambient onsite external radiation, neutron radiation, intake of airborne effluent, and intake of nuclides other than plutonium were evaluated to determine their impact on the dose estimates.

  15. Calibration facility for environment dosimetry instruments

    NASA Astrophysics Data System (ADS)

    Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin

    2013-12-01

    In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (˜10-9 - 10-8 Sv/h). A correct measurement of H in this range involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.

  16. Optical dosimetry for interstitial photodynamic therapy

    SciTech Connect

    Arnfield, M.R.; Tulip, J.; Chetner, M.; McPhee, M.S. )

    1989-07-01

    An approach to photodynamic treatment of tumors is the interstitial implantation of fiber optic light sources. Dosimetry is critical in identifying regions of low light intensity in the tumor which may prevent tumor cure. We describe a numerical technique for calculating light distributions within tumors, from multiple fiber optic sources. The method was tested using four translucent plastic needles, which were placed in a 0.94 X 0.94 cm grid pattern within excised Dunning R3327-AT rat prostate tumors. A cylindrical diffusing fiber tip, illuminated by 630 nm dye laser light was placed within one needle and a miniature light detector was placed within another. The average penetration depth in the tumor region between the two needles was calculated from the optical power measured by the detector, using a modified diffusion theory. Repeating the procedure for each pair of needles revealed significant variations in penetration depth within individual tumors. Average values of penetration depth, absorption coefficient, scattering coefficient, and mean scattering cosine were 0.282 cm, 0.469 cm-1, 250 cm-1 and 0.964, respectively. Calculated light distributions from four cylindrical sources in tumors gave reasonable agreement with direct light measurements using fiber optic probes.

  17. Reactor dosimetry and RPV life management

    SciTech Connect

    Belousov, S.; Ilieva, K.; Mitev, M.

    2011-07-01

    Reactor dosimetry (RD) is a tool that provides data for neutron fluence accumulated over the reactor pressure vessel (RPV) during the reactor operation. This information, however, is not sufficient for RPV lifetime assessment. The life management of RPV is a multidisciplinary task. To assess whether the RPV steel properties at the current stage (for actual accumulated neutron fluence) of reactor operation are still 'safe enough,' the dependence of material properties on the fluence must be known; this is a task for material science (MS). Moreover, the mechanical loading over the RPV during normal operation and accidence have to be known, as well, for evaluation, if the RPV material integrity in this loading condition and existing cracks is provided. The crack loading path in terms of stress intensity factor is carried out by structural analyses (SA). Pressure and temperature distribution over RPV used in these analyses are obtained from a thermal hydraulic (TH) calculation. The conjunction of RD and other disciplines in RPV integrity assessment is analyzed in accordance with the FFP (fitness for purpose) approach. It could help to improve the efficiency in multi-disciplinary tasks solutions. (authors)

  18. Millimeter wave dosimetry of human skin.

    PubMed

    Alekseev, S I; Radzievsky, A A; Logani, M K; Ziskin, M C

    2008-01-01

    To identify the mechanisms of biological effects of mm waves it is important to develop accurate methods for evaluating absorption and penetration depth of mm waves in the epidermis and dermis. The main characteristics of mm wave skin dosimetry were calculated using a homogeneous unilayer model and two multilayer models of skin. These characteristics included reflection, power density (PD), penetration depth (delta), and specific absorption rate (SAR). The parameters of the models were found from fitting the models to the experimental data obtained from measurements of mm wave reflection from human skin. The forearm and palm data were used to model the skin with thin and thick stratum corneum (SC), respectively. The thin SC produced little influence on the interaction of mm waves with skin. On the contrary, the thick SC in the palm played the role of a matching layer and significantly reduced reflection. In addition, the palmar skin manifested a broad peak in reflection within the 83-277 GHz range. The viable epidermis plus dermis, containing a large amount of free water, greatly attenuated mm wave energy. Therefore, the deeper fat layer had little effect on the PD and SAR profiles. We observed the appearance of a moderate SAR peak in the therapeutic frequency range (42-62 GHz) within the skin at a depth of 0.3-0.4 mm. Millimeter waves penetrate into the human skin deep enough (delta = 0.65 mm at 42 GHz) to affect most skin structures located in the epidermis and dermis.

  19. Personnel real time dosimetry in interventional radiology.

    PubMed

    Servoli, L; Bissi, L; Fabiani, S; Magalotti, D; Placidi, P; Scorzoni, A; Calandra, A; Cicioni, R; Chiocchini, S; Dipilato, A C; Forini, N; Paolucci, M; Di Lorenzo, R; Cappotto, F P; Scarpignato, M; Maselli, A; Pentiricci, A

    2016-12-01

    Interventional radiology and hemodynamic procedures have rapidly grown in number in the past decade, increasing the importance of personnel dosimetry not only for patients but also for medical staff. The optimization of the absorbed dose during operations is one of the goals that fostered the development of real-time dosimetric systems. Indeed, introducing proper procedure optimization, like correlating dose rate measurements with medical staff position inside the operating room, the absorbed dose could be reduced. Real-time dose measurements would greatly facilitate this task through real-time monitoring and automatic data recording. Besides real-time dose monitoring could allow automatic data recording. In this work, we will describe the calibration and validation of a wireless real-time prototype dosimeter based on a new sensor device (CMOS imager). The validation measurement campaign in clinical conditions has demonstrated the prototype capability of measuring dose-rates with a frequency in the range of few Hz, and an uncertainty smaller than 10%.

  20. Dosimetry of in situ activated dysprosium microspheres.

    PubMed

    Adnani, N

    2004-03-07

    This paper presents the results of a study aimed at investigating the dosimetry of stable dysprosium microspheres activated, in situ, by a linac generated photon beam. In phantom measurements of the neutron flux within an 18 MV photon beam were performed using CR-39 detectors and gold activation. The results were used in conjunction with a Monte Carlo computer simulation to investigate the dose distribution resulting from the activation of dysprosium (Dy) microspheres using an 18 MV photon beam. Different depths, lesion volumes and volume concentrations of microspheres are investigated. The linac lower collimator jaws are assumed completely closed to shield the tumour volume from the photon dose. Using a single AP field with 0 x 0 cm2 field size (closed jaws), a photon dose rate of 600 MU min(-1) and 80 cm SSD for 10 min, an average dose exceeding 1 Gy can be delivered to spherical lesions of 0.5 cm and higher diameter. The variation of the average dose with the size of the lesion reaches saturation for tumour volumes exceeding 1 cm in diameter. This report shows that the photon beam of a high-energy linac can be used to activate Dy microspheres in situ and, as a result, deliver a significant dose of beta radiation. Non-radioactive Dy microspheres do not have the toxicity and imaging problems associated with commercially available yttrium-90 based products.

  1. Implementation of IMRT and VMAT using Delta4 phantom and portal dosimetry as dosimetry verification tools

    NASA Astrophysics Data System (ADS)

    Daci, Lulzime; Malkaj, Partizan

    2016-03-01

    In this study we analyzed and compared the dose distribution of different IMRT and VMAT plans with the intent to provide pre-treatment quality assurance using two different tools. Materials/Methods: We have used the electronic portal imaging device EPID after calibration to dose and correction for the background offset signal and also the Delta4 phantom after en evaluation of angular sensitivity. The Delta4 phantom has a two-dimensional array with ionization chambers. We analyzed three plans for each anatomical site calculated by Eclipse treatment planning system. The measurements were analyzed using γ-evaluation method with passing criteria 3% absolute dose and 3 mm distance to agreement (DTA). For all the plans the range of score has been from 97% to 99% for gantry fixed at 0° while for rotational planes there was a slightly decreased pass rates and above 95%. Point measurement with a ionization chamber were done in additional to see the accuracy of portal dosimetry and to evaluate the Delta4 device to various dose rates. Conclusions: Both Delt4 and Portal dosimetry shows good results between the measured and calculated doses. While Delta4 is more accurate in measurements EPID is more time efficient. We have decided to use both methods in the first steps of IMRT and VMAT implementation and later on to decide which of the tools to use depending on the complexity of plans, how much accurate we want to be and the time we have on the machine.

  2. A Comparison of Singlet Oxygen Explicit Dosimetry (SOED) and Singlet Oxygen Luminescence Dosimetry (SOLD) for Photofrin-Mediated Photodynamic Therapy

    PubMed Central

    Kim, Michele M.; Penjweini, Rozhin; Gemmell, Nathan R.; Veilleux, Israel; McCarthy, Aongus; Buller, Gerald S.; Hadfield, Robert H.; Wilson, Brian C.; Zhu, Timothy C.

    2016-01-01

    Accurate photodynamic therapy (PDT) dosimetry is critical for the use of PDT in the treatment of malignant and nonmalignant localized diseases. A singlet oxygen explicit dosimetry (SOED) model has been developed for in vivo purposes. It involves the measurement of the key components in PDT—light fluence (rate), photosensitizer concentration, and ground-state oxygen concentration ([3O2])—to calculate the amount of reacted singlet oxygen ([1O2]rx), the main cytotoxic component in type II PDT. Experiments were performed in phantoms with the photosensitizer Photofrin and in solution using phosphorescence-based singlet oxygen luminescence dosimetry (SOLD) to validate the SOED model. Oxygen concentration and photosensitizer photobleaching versus time were measured during PDT, along with direct SOLD measurements of singlet oxygen and triplet state lifetime (τΔ and τt), for various photosensitizer concentrations to determine necessary photophysical parameters. SOLD-determined cumulative [1O2]rx was compared to SOED-calculated [1O2]rx for various photosensitizer concentrations to show a clear correlation between the two methods. This illustrates that explicit dosimetry can be used when phosphorescence-based dosimetry is not feasible. Using SOED modeling, we have also shown evidence that SOLD-measured [1O2]rx using a 523 nm pulsed laser can be used to correlate to singlet oxygen generated by a 630 nm laser during a clinical malignant pleural mesothelioma (MPM) PDT protocol by using a conversion formula. PMID:27929427

  3. A transferability study of the EPR-tooth-dosimetry technique.

    PubMed

    Sholom, S; Chumak, V; Desrosiers, M; Bouville, A

    2006-01-01

    The transferability of a measurement protocol from one laboratory to another is an important feature of any mature, standardised protocol. The electron paramagnetic resonance (EPR)-tooth dosimetry technique that was developed in Scientific Center for Radiation Medicine, AMS, Ukraine (SCRM) for routine dosimetry of Chernobyl liquidators has demonstrated consistent results in several inter-laboratory measurement comparisons. Transferability to the EPR dosimetry laboratory at the National Institute of Standards and Technology (NIST) was examined. Several approaches were used to test the technique, including dose reconstruction of SCRM-NIST inter-comparison samples. The study has demonstrated full transferability of the technique and the possibility to reproduce results in a different laboratory environment.

  4. Report from the dosimetry working group to CEDR project management

    SciTech Connect

    Fix, J J

    1994-08-01

    On August 2, 1989, Admiral Watkins, Secretary of the US Department of Energy (DOE), presented a four-point program designed to enhance the DOE epidemiology program. One part of this program was the establishment of a Comprehensive Epidemiologic Data Resource (CEDR) to facilitate independent research to validate and supplement DOE research on human health effects. A Dosimetry Working Group was formed during May 1991 to evaluate radiation dose variables and associated documentation that would be most useful to researchers for retrospective and prospective studies. The Working Group consisted of thirteen individuals with expertise and experience in health physics, epidemiology, dosimetry, computing, and industrial hygiene. A final report was delivered to CEDR Project Management during February 1992. The report contains a number of major recommendations concerning collection, interpretation, and documentation of dosimetry data to maximize their usefulness to researchers using CEDR for examining possible health effects of occupational exposure to ionizing radiation.

  5. National ART Success Rates

    MedlinePlus

    ... 2: ART Cycles using fresh nondonor eggs or embryos What are the steps for an ART cycle ... 37MB] Section 3: ART Cycles using frozen nondonor embryos Did implantation rates differ by a woman’s age? [ ...

  6. Funding the Arts.

    ERIC Educational Resources Information Center

    Starr, Douglas P.

    1983-01-01

    The nature of the National Endowment of the Arts (NEA), its birth, growth, and uncertain future, are examined. What the arts community is doing to insure a national arts environment is discussed. (RM)

  7. American Art Therapy Association

    MedlinePlus

    ... more My AATA Collaborate Types & Benefits Local Chapters Education Art Therapy Education ...Read more Educational Standards Approved Art Therapy Master’s ... Art Therapy Credentials Board (ATCB) Institute for Continuing Education (ICE) Ethics Multicultural Conference Conference Information ...Read more ...

  8. Teaching Art with Art: Grotesque Visions.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    2001-01-01

    Discusses a type of visual art called grotesque art and includes four different examples of grotesque art: (1) the painting "Head of Medusa" by Peter Paul Rubens; (2) Rangda, the widow witch from Bali (Indonesia); (3) totem poles; and (4) grotesque sculptures from the Cathedral of Notre Dame (Paris, France). (CMK)

  9. Arts Impact: Lessons from ArtsBridge

    ERIC Educational Resources Information Center

    Shimshon-Santo, Amy R.

    2010-01-01

    Arts Impact summarizes lessons learned at the ArtsBridge Program. It is informed by in-depth participant observation, logic modeling, and quantitative evaluation of program impact on K-12 students in inner city schools and arts students at the University of California Los Angeles over a two year period. The case study frames its analysis through a…

  10. Keeping the Arts Alive: Fine Arts Databases

    ERIC Educational Resources Information Center

    Young, Terrence E., Jr.

    2005-01-01

    When budgets are tightened, the school library media specialists and/or the arts programs are often considered expendable. No Child Left Behind legislation means increasing academic time for core subjects, which translates into cutting time for arts education. As money becomes tight, frills are cut (i.e., the arts). Schools don't seem able to fill…

  11. The Liberal Arts and the Martial Arts.

    ERIC Educational Resources Information Center

    Levine, Donald N.

    1984-01-01

    Liberal arts and the martial arts are compared from the perspective that courses of training in the martial arts often constitute exemplary educational programs and are worth examining closely. Program characteristics, individual characteristics fostered by them, the relationship between liberal and utilitarian learning, and the moral…

  12. The Art of Teaching Art Teachers.

    ERIC Educational Resources Information Center

    Grauer, Kit

    1999-01-01

    Examines the conceptions of educating beginning art teachers with specific reference to Canadian art education. Addresses the use of the visual journal, which demonstrates visual and verbal thinking, by preservice teachers at the University of British Columbia as a means to develop an artistic understanding of their growth as art teachers. (CMK)

  13. Optical-CT gel-dosimetry I: basic investigations.

    PubMed

    Oldham, Mark; Siewerdsen, Jeffrey H; Kumar, Sai; Wong, John; Jaffray, David A

    2003-04-01

    Comprehensive verification of the intricate dose distributions associated with advanced radiation treatments is now an immediate and substantial problem. The task is challenging using traditional dosimeters because of restrictions to point measurements (ion chambers, diodes, TLD, etc.) or planar measurements (film). In essence, rapid advances in the technology to deliver radiation treatments have not been paralleled by corresponding advances in the ability to verify these treatments. A potential solution has emerged in the form of water equivalent three dimensional (3D) gel-dosimetry. In this paper we present basic characterization and performance studies of a prototype optical-CT scanning system developed in our laboratory. An analysis of the potential role or scope of gel dosimetry, in relation to other dosimeters, and to verification across the spectrum of therapeutic techniques is also given. The characterization studies enabled the determination of nominal operating conditions for optical-CT scanning. "Finger" phantoms are introduced as a powerful and flexible tool for the investigation of optical-CT performance. The modulation-transfer function (MTF) of the system is determined to be better than 10% out to 1 mm(-1), confirming sub-mm imaging ability. System performance is demonstrated by the acquisition of a 1 x 1 x 1 mm3 dataset through the dose distribution delivered by an x-ray lens that focuses x rays in the energy range 40-80 KeV. This 3D measurement would be extremely difficult to achieve with other dosimetry techniques and highlights some of the strengths of gel dosimetry. Finally, an optical Monte Carlo model is introduced and shown to have potential to model light transport through gel-dosimetry systems, and to provide a tool for the study and optimization of optical-CT gel dosimetry. The model utilizes Mie scattering theory and requires knowledge of the variation of the particle size distribution with dose. The latter was determined here using the

  14. Faraday cup: absolute dosimetry for ELIMED beam line

    NASA Astrophysics Data System (ADS)

    Leanza, R.; Romano, F.; Scuderi, V.; Amico, A. G.; Cuttone, G.; Larosa, G.; Margarone, D.; Milluzzo, G.; Petringa, G.; Pipek, J.; Schillaci, F.; Cirrone, G. A. P.

    2017-03-01

    The scientific community has shown a growing interest towards multidisciplinary applications of laser-driven beams. In this framework, the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline will be the first transport beamline dedicated to the medical and multidisciplinary studies with laser-accelerated ion beams. Detectors for dosimetry represent one of key-element of the ELIMED beamline, allowing a dose delivering with good result as required in the clinical applications. In this contribution, a Faraday Cup for absolute dosimetry, designed and realized at INFN-LNS, is described.

  15. Third conference on radiation protection and dosimetry. Program and abstracts

    SciTech Connect

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  16. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-24

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP), which is operated by the Pacific Northwest National Laboratory.( ) for the U.S. Department of Energy Richland Operations Office, Office of River Protection and their Hanford Site contractors. The manual describes the roles of and relationships between the IDP and the radiation protection programs of the Hanford Site contractors. Recommendations and guidance are also provided for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs.

  17. The use of a portable electronic device in accident dosimetry.

    PubMed

    Beerten, Koen; Vanhavere, Filip

    2008-01-01

    The use of a portable electronic device in accident dosimetry has been investigated. The thermoluminescence properties of a surface-mount alumina-rich ceramic resonator from a USB flash drive were investigated. The following characteristics were verified: the absence of a zero-dose signal, gamma dose response, dose recycling behaviour, fading and optical bleaching. Finally, this component has been successfully used to determine a simulated accident dose (1 d following the irradiation event). It is concluded that it should be possible to perform rapid and reliable accident dose assessments with such components using conventional thermoluminescence dosimetry equipment.

  18. Tenth ORNL Personnel Dosimetry Intercomparison Study

    SciTech Connect

    Swaja, R.E.; Chou, T.L.; Sims, C.S.; Greene, R.T.

    1985-03-01

    The Tenth Personnel Dosimetry Intercomparison Study was conducted at the Oak Ridge National Laboratory during April 9-11, 1984. Dosemeter badges from 31 participating organizations were mounted on 40cm Lucite phantoms and exposed to a range of dose equivalents which could be encountered during routine personnel monitoring in mixed radiation fields. The Health Physics Research Reactor served as the only source of radiation for eight of the ten irradiations which included a low (approx. 0.50 mSv) and high (approx. 10.00 mSv) neutron dose equivalent run for each of four shield conditions. Two irradiations were also conducted for which concrete- and Lucite-shield reactor irradiations were gamma-enhanced using a /sup 137/Cs source. Results indicated that some participants had difficulty obtaining measurable indication of neutron and gamma exposures at dose equivalents less than about 0.50 mSv and 0.20 mSv, respectively. Albedo dosemeters provided the best overall accuracy and precision for the neutron measurements. Direct interaction TLD systems showed significant variation in accuracy with incident spectrum, and threshold neutron dosemeters (film and recoil track) underestimated reference values by more than 50%. Gamma dose equivalents estimated in the mixed fields were higher than reference values with TL gamma dosemeters generally yielding more accurate results than film. Under the conditions of this study in which participants had information concerning exposure conditions and radiation field characteristics prior to dosemeter evaluation, only slightly more than half of all reported results met regulatory standards for neutron and gamma accuracy. 19 refs., 2 figs., 29 tabs.

  19. Subwavelength films for standoff radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Alvine, Kyle J.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan; Suter, Jonathan D.

    2015-05-01

    We present optical subwavelength nanostructure architecture suitable for standoff radiation dosimetry with remote optical readout in the visible or infrared spectral regions. To achieve this, films of subwavelength structures are fabricated over several square inches via the creation of a 2D non-close packed (NCP) array template of radiationsensitive polymeric nanoparticles, followed by magnetron sputtering of a metallic coating to form a 2D array of separated hemispherical nanoscale metallic shells. The nanoshells are highly reflective at resonance in the visible or infrared depending on design. These structures and their behavior are based on the open ring resonator (ORR) architecture and have their analog in resonant inductive-capacitive (LC) circuits, which display a resonance wavelength that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any modification of the nanostructure material properties due to radiation alters the inductive or capacitive behavior of the subwavelength features, which in turn changes their optical properties resulting in a shift in the optical resonance. This shift in resonance may be remotely interrogated actively using either laser illumination or passively by hyperspectral or multispectral sensing with broadband illumination. These structures may be designed to be either anisotropic or isotropic, which can also offer polarization-sensitive interrogation. We present experimental measurements of a radiation induced shift in the optical resonance of a subwavelength film after exposure to an absorbed dose of gamma radiation from 2 Mrad up to 62 Mrad demonstrating the effect. Interestingly the resonance shift is non-monotonic for this material system and possible radiation damage mechanisms to the nanoparticles are discussed.

  20. Activities at the NEA for Dosimetry Applications

    NASA Astrophysics Data System (ADS)

    Henriksson, H.; Kodeli, I.

    2009-08-01

    The Nuclear Energy Agency (NEA) is a specialised agency within the Organisation for Economic Co-operation and Development (OECD) that assists its member countries in maintaining and further developing, through international co-operation, the scientific and technological use of nuclear energy for peaceful purposes. The main role of the NEA is the collection, validation and distribution of basic nuclear data, computer codes covering the areas of nuclear research and engineering, and experimental data. The activities linked to dosimetry applications are described in this paper, such as those of the Working Party on international nuclear data Evaluation Co-operation (WPEC) established at the NEA to promote the exchange of nuclear data evaluations, measurements, nuclear model calculations and validation. Collection, validation, and distribution of the computer codes and nuclear data libraries will be presented and, in particular, the Joint Evaluated Fusion and Fission (JEFF) library project. For the verification of activation and transport nuclear data, as well as computational methods, several integral experimental databases are collected and distributed by the Data Bank, for example the Shielding Integral Benchmark Archive Database (SINBAD), the International Criticality Safety Benchmark Experiments Project (ICSBEP) and the International Reactor Physics Experiments (IRPhE). Another important activity at the NEA is the collection of experimental differential nuclear reaction data for the EXFOR database. A recent WPEC project emphasizes the need for a coherent format that could be used for computer code calculations and improved validation of experimental data. JANIS is a graphical visualization tool that has been found to be useful for checking the content of EXFOR.

  1. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  2. Subwavelength films for standoff radiation dosimetry

    SciTech Connect

    Alvine, Kyle J.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan L.; Suter, Jonathan D.

    2015-05-22

    We present optical subwavelength nanostructure architecture suitable for standoff radiation dosimetry with remote optical readout in the visible or infrared spectral regions. To achieve this, films of subwavelength structures are fabricated over several square inches via the creation of a 2D non-close packed (NCP) array template of radiation-sensitive polymeric nanoparticles, followed by magnetron sputtering of a metallic coating to form a 2D array of separated hemispherical nanoscale metallic shells. The nanoshells are highly reflective at resonance in the visible or infrared depending on design. These structures and their behavior are based on the open ring resonator (ORR) architecture and have their analog in resonant inductive-capacitive (LC) circuits, which display a resonance wavelength that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any modification of the nanostructure material properties due to radiation alters the inductive or capacitive behavior of the subwavelength features, which in turn changes their optical properties resulting in a shift in the optical resonance. This shift in resonance may be remotely interrogated actively using either laser illumination or passively by hyperspectral or multispectral sensing with broadband illumination. These structures may be designed to be either anisotropic or isotropic, which can also offer polarization-sensitive interrogation. We present experimental measurements of a radiation induced shift in the optical resonance of a subwavelength film after exposure to an absorbed dose of gamma radiation from 2 Mrad up to 62 Mrad demonstrating the effect. Interestingly the resonance shift is non-monotonic for this material system and possible radiation damage mechanisms to the nanoparticles are discussed.

  3. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2010-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Maintenance and distribution of controlled hard copies of the

  4. Dosimetry quality assurance in Martin Marietta Energy Systems' centralized external dosimetry system

    SciTech Connect

    Souleyrette, M.L.

    1992-10-23

    External dosimetry needs at the four Martin Marietta Energy Systems facilities are served by Energy Systems Centralized External Dosimetry System (CEDS). The CEDS is a four plant program with four dosimeter distribution centers and two dosimeter processing centers. Each plant has its own distribution center, while processing centers are located at ORNL and the Y-12 Plant. The program has been granted accreditation by the Department of Energy Laboratory Accreditation Program (DOELAP). The CEDS is a TLD based system which is responsible for whole-body beta-gamma, neutron, and extremity monitoring. Beta-gamma monitoring is performed using the Harshaw/Solon Technologies model 8805 dosimeter. Effective October 1, 1992 the standard silver mylar has been replaced with an Avery mylar foil blackened on the underside with ink. This was done in an effort to reduce the number of light induced suspect readings. At this time we have little operational experience with the new blackened mylars-The CEDS neutron dosimeter is the Harshaw model 8806B. This card/holder configuration contains two TLD-600/TLD-700 chip pairs; one pair is located beneath a cadmium filter and one pair is located beneath a plastic filter. In routine personnel monitoring the CEDS neutron dosimeter is always paired with a CEDS beta-gamma dosimeter.The CEDS extremity dosimeter is composed of a Harshaw thin TLD-700 dosiclip placed inside a Teledyne RB-4 finger sachet. The finger sachet provides approximately 7 mg/cm[sup 2] filtration over the chip. A teflon ring surrounds the dosiclip to help prevent tearing of the vinyl sachet.

  5. Fully 3D refraction correction dosimetry system.

    PubMed

    Manjappa, Rakesh; Makki, S Sharath; Kumar, Rajesh; Vasu, Ram Mohan; Kanhirodan, Rajan

    2016-02-21

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  6. Fully 3D refraction correction dosimetry system

    NASA Astrophysics Data System (ADS)

    Manjappa, Rakesh; Sharath Makki, S.; Kumar, Rajesh; Mohan Vasu, Ram; Kanhirodan, Rajan

    2016-02-01

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  7. Women, Art, and Education.

    ERIC Educational Resources Information Center

    Collins, Georgia; Sandell, Renee

    Sex equity issues and efforts in art and art education are examined in five major focus areas: (1) "Matters of Conscious and Consciousness" deals with problematic relationships between women, art and education. (2) "Matters of Protest and Progress" explores the sex equity progress made in art and education. (3) "Matters of Herstory and Heritage"…

  8. Soviet Arts Curriculum Guide.

    ERIC Educational Resources Information Center

    San Diego County Office of Education, CA.

    This extensive curriculum guide was written in conjunction with the San Diego Arts Festival of Soviet Arts in 1989. It aimed to provide teachers with insights and ideas about arts in the Soviet Union before, during, and after the Arts Festival. A curriculum model is presented at the beginning of the guide to illustrate how the lessons were…

  9. Cultivating Demand for the Arts: Arts Learning, Arts Engagement, and State Arts Policy. Summary

    ERIC Educational Resources Information Center

    Zakaras, Laura; Lowell, Julia F.

    2008-01-01

    The findings summarized in this report are intended to shed light on what it means to cultivate demand for the arts, why it is necessary and important to cultivate this demand, and what state arts agencies (SAAs) and other arts and education policymakers can do to help. The research considered only the benchmark arts central to public policy:…

  10. Spotlight on Arts Education.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Education, Raleigh.

    In this annual edition selected cultural arts organizations from across the state are featured, with a specific focus on how these organizations have aided local school systems as they implemented the arts education component of North Carolina's Basic Education Program. The following arts organizations are featured: Winston-Salem Arts Council;…

  11. Art and Religion

    ERIC Educational Resources Information Center

    Shusterman, Richard

    2008-01-01

    Since the nineteenth century's interest in "art for art's sake," many thinkers have argued that art would supplant traditional religion as the spiritual locus of the increasingly secular society of Western modernity. If art can capture the sort of spirituality, idealism, and expressive community of traditional religions but without being ensnared…

  12. Winter Art Education Project

    ERIC Educational Resources Information Center

    Jokela, Timo

    2007-01-01

    The purpose of this article is to describe how the Department of Art Education at the University of Lapland in Finland has developed winter art as a method of environmental and community-based art education. I will focus on the Snow Show Winter Art Education Project, a training project funded by the European Union and the State Provincial Office…

  13. Art Therapy Verses Psychotherapy

    ERIC Educational Resources Information Center

    Del Giacco, Maureen

    2009-01-01

    The purpose of my paper is to identify the difference between psychotherapy and art therapy. Then to introduce a technique within the field of art therapy that is relevant to neuro-plasticity Del Giacco Neuro Art Therapy. The paper identifies the importance of the amygdala and the hippocampus within the role of art therapy. Supporting…

  14. Arts Inspire Community Support.

    ERIC Educational Resources Information Center

    Moore, Dan W.

    1983-01-01

    Describes Southeastern Community College's efforts to focus on the arts, which included a campus visit by the artist Kenneth Larson and events centered on his Heroic Individual prints; a performing arts series supported by local corporations; an Associate in Fine Arts degree; regular art exhibits; and an artist-in-residence program. (DMM)

  15. Art, Reading . . . and Evaluation.

    ERIC Educational Resources Information Center

    Seidenberg, Irving

    1979-01-01

    Interdisciplinary programs which use art to improve or enhance another subject are being developed, perhaps in an attempt to save art education in an era of budget constraints. It is suggested that this trend must not be allowed to destroy the magic of art for art's sake. (KC)

  16. Art Mini-Course

    ERIC Educational Resources Information Center

    Braun, Charlotte

    1976-01-01

    The idea of an open art studio or art mini-course to serve a need above and beyond the regularly scheduled art classes is important and necessary to a school program that is designed to meet the needs of the general intellectual and cultural growth of the child. Describes the art mini-course introduced at the Willow Ridge School in Tonawanda, New…

  17. Cultural Arts Handbook.

    ERIC Educational Resources Information Center

    Pistone, Kathleen A.

    The handbook presents activities to aid elementary school classroom teachers as they develop and implement cultural arts lessons. A cultural arts program is interpreted as a way to help students develop perceptual awareness, build a basic vocabulary in some art cultural form, evaluate their own works of art, appreciate creative expressions, and…

  18. The Language of Art.

    ERIC Educational Resources Information Center

    Winarski, Diana L.

    1995-01-01

    Describes activities of kindergarten through grade-four students in an art classroom that emphasizes expression of creative process along with the product. Explores interconnections between art, thinking, and writing as expressed by a former language arts teacher who transfers her knowledge of language, words, and creative expression to art. (BAC)

  19. K-12 Art Guide.

    ERIC Educational Resources Information Center

    Furney, Trudy; And Others

    The development of students in various art fields is the focus of this K-12 art curriculum guide. The philosophy of the art program and the roles of administrator, teacher, and parent are outlined. The underlying school community relationships, and the objective, goals, and purposes of art education are described. Phases of child development in…

  20. Review of physics, instrumentation and dosimetry of radioactive isotopes

    NASA Technical Reports Server (NTRS)

    Sinclair, W. K.

    1967-01-01

    General radioactive isotope information, stressing radioactivity, methods of measurement, and dosimetry of radioactive nuclides have been reviewed to serve as a reference for the medical profession. Instability of radionuclides, principal types of emission, and measurement of ionizing radiation are among the topics discussed.

  1. In vivo dosimetry with silicon diodes in total body irradiation

    NASA Astrophysics Data System (ADS)

    Oliveira, F. F.; Amaral, L. L.; Costa, A. M.; Netto, T. G.

    2014-02-01

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments.

  2. Radiation dosimetry onboard the International Space Station ISS.

    PubMed

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is onboard the International Space Station (ISS) is accomplished to one part as "operational" dosimetry accomplished to one part as "operational" dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on "scientific" dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities.

  3. Metamorphic modifications and EPR dosimetry in tooth enamel.

    PubMed

    Brik, A; Radchuk, V; Scherbina, O; Matyash, M; Gaver, O

    1996-01-01

    It is shown that metamorphic modifications in tooth enamel have an essential influence on the results of EPR dosimetry. The metamorphic modifications in minerals of biological origin proceed more quickly than in usual natural minerals. The approaches which at present are applied for reconstruction of doses connected with Chernobyl accident need additional investigation.

  4. Dosimetry for audit and clinical trials: challenges and requirements

    NASA Astrophysics Data System (ADS)

    Kron, T.; Haworth, A.; Williams, I.

    2013-06-01

    Many important dosimetry audit networks for radiotherapy have their roots in clinical trial quality assurance (QA). In both scenarios it is essential to test two issues: does the treatment plan conform with the clinical requirements and is the plan a reasonable representation of what is actually delivered to a patient throughout their course of treatment. Part of a sound quality program would be an external audit of these issues with verification of the equivalence of plan and treatment typically referred to as a dosimetry audit. The increasing complexity of radiotherapy planning and delivery makes audits challenging. While verification of absolute dose delivered at a reference point was the standard of external dosimetry audits two decades ago this is often deemed inadequate for verification of treatment approaches such as Intensity Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT). As such, most dosimetry audit networks have successfully introduced more complex tests of dose delivery using anthropomorphic phantoms that can be imaged, planned and treated as a patient would. The new challenge is to adapt this approach to ever more diversified radiotherapy procedures with image guided/adaptive radiotherapy, motion management and brachytherapy being the focus of current research.

  5. Bayesian internal dosimetry calculations using Markov Chain Monte Carlo.

    PubMed

    Miller, G; Martz, H F; Little, T T; Guilmette, R

    2002-01-01

    A new numerical method for solving the inverse problem of internal dosimetry is described. The new method uses Markov Chain Monte Carlo and the Metropolis algorithm. Multiple intake amounts, biokinetic types, and times of intake are determined from bioassay data by integrating over the Bayesian posterior distribution. The method appears definitive, but its application requires a large amount of computing time.

  6. Dosimetry studies on prototype 241Am sources for brachytherapy.

    PubMed

    Nath, R; Gray, L

    1987-06-01

    Sealed sources of 241Am emit primarily 60 keV photons which, because of multiple Compton scattering, produce dose distributions in water that are comparable to those from 226Ra or 137Cs. However, americium gamma rays can be shielded by thin layers of high atomic number materials since the half value layer thickness is only 1/8th of a mm of lead for americium gamma rays as compared to a value of 12 mm for 226Ra gamma rays. This may allow effective in vivo shielding of critical organs, for example; the bladder can be partially shielded by hypaque solution, and the rectum and sigmoid colon by barium sulfate. In addition, the exposure to medical personnel involved in intracavitary application and patient care may be reduced substantially by the use of relatively thin lead aprons and light weight, portable shields. To investigate the feasibility of 241Am sources for intracavitary irradiation, dosimetry studies on prototype 241Am sources have been performed and a computer model for the determination of dose distributions around encapsulated cylindrical sources of 241Am has been developed and tested. Results of dosimetry measurements using ionization chambers, lithium fluoride thermoluminescent dosimeters, a scanning scintillation probe, and film dosimetry, confirm theoretical predictions that these sources can deliver dose rates adequate for intracavitary irradiation. Further dosimetry measurements in simulated clinical situations using lead foils and test tubes filled with hypaque or barium sulfate, confirm the predicted effectiveness of in vivo shielding which can be readily achieved with 241Am sources.

  7. IMRT verification using a radiochromic/optical-CT dosimetry system

    NASA Astrophysics Data System (ADS)

    Oldham, Mark; Guo, Pengyi; Gluckman, Gary; Adamovics, John

    2006-12-01

    This work represents our first experiences relating to IMRT verification using a relatively new 3D dosimetry system consisting of a PRESAGETM dosimeter (Heuris Inc, Pharma LLC) and an optical-CT scanning system (OCTOPUSTM TM MGS Inc). This work builds in a step-wise manner on prior work in our lab.

  8. Dose calibration optimization and error propagation in polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Jirasek, A.; Hilts, M.

    2014-02-01

    This study reports on the relative precision, relative error, and dose differences observed when using a new full-image calibration technique in NIPAM-based x-ray CT polymer gel dosimetry. The effects of calibration parameters (e.g. gradient thresholding, dose bin size, calibration fit function, and spatial remeshing) on subsequent errors in calibrated gel images are reported. It is found that gradient thresholding, dose bin size, and fit function all play a primary role in affecting errors in calibrated images. Spatial remeshing induces minimal reductions or increases in errors in calibrated images. This study also reports on a full error propagation throughout the CT gel image pre-processing and calibration procedure thus giving, for the first time, a realistic view of the errors incurred in calibrated CT polymer gel dosimetry. While the work is based on CT polymer gel dosimetry, the formalism is valid for and easily extended to MRI or optical CT dosimetry protocols. Hence, the procedures developed within the work are generally applicable to calibration of polymer gel dosimeters.

  9. BUILDING 122 CONTAINS THREE GENERAL AREAS: OFFICE AREAS, INTERNAL DOSIMETRY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BUILDING 122 CONTAINS THREE GENERAL AREAS: OFFICE AREAS, INTERNAL DOSIMETRY, AND MEDICAL/HEALTH. BUILDING 122 SHARES A COMMON WALL WITH BUILDING 121, THE PLANT SECURITY BUILDING. THE TWO-STORY BUILDING IN THE BACKGROUND IS BUILDING 111. (9/26/52) - Rocky Flats Plant, Emergency Medical Services Facility, Southwest corner of Central & Third Avenues, Golden, Jefferson County, CO

  10. Bioelectromagnetics, Carl Durney, and dosimetry: some historical remarks.

    PubMed

    Schwan, H P

    1999-01-01

    The contributions of Carl Durney to dosimetry have decisively advanced the bioelectromagnetics field and led to significant revisions of relevant health standards. Three items come to mind while studying his work: 1. The work of Carl Durney and his colleagues in dosimetry has advanced the bioelectromagnetics field most significantly whereas more abundant work of a biomedical nature has had less impact. More biophysics work is desirable. 2. The rationale for the specific absorption rate as a basis of health standards needs further elaboration. The need for scaling animal results is stressed. 3. Dosimetry at the cellular level (microdosimetry) is essential if one cares to discuss direct field interactions at the cellular and macromolecular level. Carl Durney's recognition of this need is stated. Carl Durney's wide range of productive interests is indicated by several tables. They summarize his many contributions to electrical engineering, education, bioelectromagnetic dosimetry, hyperthermia, NMR, and field-induced biophysical phenomena at the molecular and cellular level. His scientific work is summarized, including how his interest changed with time. His scientific accomplishment and productive interaction with students, colleagues, and society sets an example to be admired.

  11. Holography: science and art

    NASA Astrophysics Data System (ADS)

    Boone, Pierre M.

    1998-09-01

    Art and science are separated by a very large distance nowadays. Long ago, e.g. in Renaissance, or even earlier, in classic Greece and Rome, or still earlier in Egypt or Mesopotamia, arts and sciences were united. Today they seem to go separate paths: science for the industry, arts for the gallery. Holography is an exception: no art without science, but also no science without art.

  12. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases.

    PubMed

    Hänscheid, Heribert; Canzi, Cristina; Eschner, Wolfgang; Flux, Glenn; Luster, Markus; Strigari, Lidia; Lassmann, Michael

    2013-07-01

    The EANM Dosimetry Committee Series "Standard Operational Procedures for Pre-Therapeutic Dosimetry" (SOP) provides advice to scientists and clinicians on how to perform patient-specific absorbed dose assessments. This particular SOP describes how to tailor the therapeutic activity to be administered for radioiodine therapy of benign thyroid diseases such as Graves' disease or hyperthyroidism. Pretherapeutic dosimetry is based on the assessment of the individual (131)I kinetics in the target tissue after the administration of a tracer activity. The present SOP makes proposals on the equipment to be used and guides the user through the measurements. Time schedules for the measurement of the fractional (131)I uptake in the diseased tissue are recommended and it is shown how to calculate from these datasets the therapeutic activity necessary to administer a predefined target dose in the subsequent therapy. Potential sources of error are pointed out and the inherent uncertainties of the procedures depending on the number of measurements are discussed. The theoretical background and the derivation of the listed equations from compartment models of the iodine kinetics are explained in a supplementary file published online only.

  13. Development of probabilistic internal dosimetry computer code

    NASA Astrophysics Data System (ADS)

    Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki

    2017-02-01

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values ( e.g. the 2.5th, 5th, median, 95th, and 97.5th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases of

  14. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    NASA Astrophysics Data System (ADS)

    Andersen, Claus E.

    2011-05-01

    Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic scintillator, attached to 10-20 m long optical fiber cables of plastic. During irradiation, each dosimeter probe spontaneously emits radioluminescence (RL) in proportion to the dose rate. The luminescence intensity can be detected with photomultiplier tubes, CCD cameras or other highly sensitive photodetectors. Some crystalline phosphors, such as carbon-doped aluminium oxide (Al2O3:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal therefore reflects the passively integrated dose. In contrast to thermoluminescence dosimetry, fiber-coupled OSL dosimetry may be performed in vivo while the dosimeter is still in the patient. Within the last few years, several improvements and new applications of these techniques have been published, and the objective of this review is to provide an introduction to this field and to outline some of these new results. Emphasis will be given to applications in medical dosimetry such as in vivo real-time dose verification in brachytherapy and methods aimed for improved quality assurance of linear accelerators.

  15. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    SciTech Connect

    Andersen, Claus E.

    2011-05-05

    Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic scintillator, attached to 10-20 m long optical fiber cables of plastic. During irradiation, each dosimeter probe spontaneously emits radioluminescence (RL) in proportion to the dose rate. The luminescence intensity can be detected with photomultiplier tubes, CCD cameras or other highly sensitive photodetectors. Some crystalline phosphors, such as carbon-doped aluminium oxide (Al{sub 2}O{sub 3}:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal therefore reflects the passively integrated dose. In contrast to thermoluminescence dosimetry, fiber-coupled OSL dosimetry may be performed in vivo while the dosimeter is still in the patient. Within the last few years, several improvements and new applications of these techniques have been published, and the objective of this review is to provide an introduction to this field and to outline some of these new results. Emphasis will be given to applications in medical dosimetry such as in vivo real-time dose verification in brachytherapy and methods aimed for improved quality assurance of linear accelerators.

  16. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 2, Users' manual: Hanford Environmental Dosimetry Upgrade Project

    SciTech Connect

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-11-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. This second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The first volume describes the theoretical considerations of the system. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 27 refs., 17 figs., 23 tabs.

  17. GENII (Generation II): The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    SciTech Connect

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs.

  18. Performance of the CEDS Accident Dosimetry System at the 1995 Los Alamos National Laboratory Nuclear Accident Dosimetry Intercomparison

    SciTech Connect

    McMahan, K.L.; Schwanke, L.J.

    1996-12-01

    In July 1995, LANL hosted an accident dosimetry intercomparison. When all reactors on the Oak Ridge Reservation were idled in 1988, the Health Physics Research Reactor (HPRR), which had been used for 22 previous intercomparisons dating from 1965, was shut down for an indefinite period. The LANL group began characterization of two critical assemblies for dosimetry purposes. As a result, NAD-23 was conceived and 10 DOE facilities accepted invitations to participate in the intercomparison. This report is a summary of the performance of one of the participants, the Centralized External Dosimetry System (CEDS). The CEDS is a cooperative personnel dosimetry arrangement between three DOE sites in Oak Ridge, Tennessee. Many successes and failures are reported herein. Generally, the TL dosimeters performed poorly and always over-reported the delivered dose. The TLD processing procedures contain efforts that would lead to large biases in the reported absorbed dose, and omit several key steps in the TLD reading process. The supralinear behavior of lithium fluoride (LiF) has not been characterized for this particular dosimeter and application (i.e., in high-dose mixed neutron/gamma fields). The use of TLD materials may also be precluded given the limitations of the LiF material itself, the TLD reading system, and the upper dose level to which accident dosimetry systems are required to perform as set forth in DOE regulations. The indium foil results confirm the expected inability of that material to predict the magnitude of the wearer`s dose reliably, although it is quite suitable as a quick-sort material. Biological sample (hair) results were above the minimum detectable activity (MDA) for only one of the tests. Several questions as to the best methods for sample handling and processing remain.

  19. [Blood in art, art in blood].

    PubMed

    Danic, B; Lefrère, J-J

    2010-12-01

    In the different forms of art developed by Humanity over the centuries, artists have at times chosen themes from the world of medicine or health, such as blood donation or transfusion. In order to illustrate this, we have looked at three artistic domains: painting, movies and body art.

  20. Inspired Spirals. Teaching Art with Art.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    2001-01-01

    Discusses spirals in nature, man-made objects, and art. Focuses on art that incorporates the spiral, including works by M. C. Escher and Frank Lloyd Wright, an African headdress, and a burial urn. Describes activities to help students make spirals of their own, such as constructing a coil clay pot. (CMK)

  1. Focus on Fine Arts: Visual Arts.

    ERIC Educational Resources Information Center

    Brigham, Don L.

    Basic arts education must give students the essence of their civilization, the civilizations that contributed to it, and the more distant civilizations that enriched world civilizations as a whole. All students are potentially capable of experiencing and analyzing the fundamental qualitativeness of art; therefore, it is realistic to propose…

  2. CyberArts: Exploring Art and Technology.

    ERIC Educational Resources Information Center

    Jacobson, Linda, Ed.

    This book takes the position that CyberArts(TM) is the new frontier in creativity, where the worlds of science and art meet. Computer technologies, visual design, music and sound, education and entertainment merge to form the new artistic territory of interactive multimedia. This diverse collection of essays, articles, and commentaries…

  3. Land Art in Preschools. An Art Practice

    ERIC Educational Resources Information Center

    Solberg, Ingunn

    2016-01-01

    The basis for my article is how, and if, a collaborative land art project can provide opportunities for such co-creating as suggested in the national framework plan for preschools, which explicitly states the child as a co-creator of a shared expressive culture. I further wish to propose land art as a meaningful cultural practice, closely…

  4. EPR/PTFE dosimetry for test reactor environments

    SciTech Connect

    Vehar, D.W.; Griffin, P.J.; Quirk, T.J.

    2011-07-01

    The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement of absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of dosimetry in

  5. A practical three-dimensional dosimetry system for radiation therapy

    SciTech Connect

    Guo Pengyi; Adamovics, John; Oldham, Mark

    2006-10-15

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of {<=}1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R{sup 2} value of 0.9979 and a standard error of estimation of {approx}1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed full

  6. A practical three-dimensional dosimetry system for radiation therapy.

    PubMed

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-10-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of < or = 1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R2 value of 0.9979 and a standard error of estimation of approximately 1%) relative to independent measurement. The overall performance of the PRESAGE/OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed

  7. TU-F-201-01: General Aspects of Radiochromic Film Dosimetry

    SciTech Connect

    Niroomand-Rad, A.

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  8. The US Department of Energy Personnel Dosimetry Evaluation and Upgrade Program

    SciTech Connect

    Faust, L.G.; Stroud, C.M.; Swinth, K.L.; Vallario, E.J.

    1987-11-01

    The US Department of Energy (DOE) Personnel Dosimetry Evaluation and Upgrade Program is designed to identify and evaluate dosimetry deficiencies and to conduct innovative research and development programs that will improve overall capabilities, thus ensuring that DOE can comply with applicable standards and regulations for dose measurement. To achieve these goals, two programs were initiated to evaluate and upgrade beta measurement and neutron dosimetry. 3 refs.

  9. Visual Arts and Handicrafts.

    ERIC Educational Resources Information Center

    Winkel, Lois

    1998-01-01

    Lists recommended book titles for children on art, crafts, artists, optical illusions, and drawing. Provides the address for a Web site featuring art activities and information about artists for children. (PEN)

  10. Chemistry, Color, and Art.

    ERIC Educational Resources Information Center

    Orna, Mary Virginia

    2001-01-01

    Describes pigments and artists' colors from a chronological perspective. Explains how chemical analysis can be used to distinguish the differences between artists' palettes, identify the evolution of art, and lead to restoration of an art work. (Contains 13 references.) (YDS)

  11. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications.

    PubMed

    Sarrut, David; Bardiès, Manuel; Boussion, Nicolas; Freud, Nicolas; Jan, Sébastien; Létang, Jean-Michel; Loudos, George; Maigne, Lydia; Marcatili, Sara; Mauxion, Thibault; Papadimitroulas, Panagiotis; Perrot, Yann; Pietrzyk, Uwe; Robert, Charlotte; Schaart, Dennis R; Visvikis, Dimitris; Buvat, Irène

    2014-06-01

    In this paper, the authors' review the applicability of the open-source GATE Monte Carlo simulation platform based on the GEANT4 toolkit for radiation therapy and dosimetry applications. The many applications of GATE for state-of-the-art radiotherapy simulations are described including external beam radiotherapy, brachytherapy, intraoperative radiotherapy, hadrontherapy, molecular radiotherapy, and in vivo dose monitoring. Investigations that have been performed using GEANT4 only are also mentioned to illustrate the potential of GATE. The very practical feature of GATE making it easy to model both a treatment and an imaging acquisition within the same framework is emphasized. The computational times associated with several applications are provided to illustrate the practical feasibility of the simulations using current computing facilities.

  12. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications

    SciTech Connect

    Sarrut, David; Bardiès, Manuel; Marcatili, Sara; Mauxion, Thibault; Boussion, Nicolas; Freud, Nicolas; Létang, Jean-Michel; Jan, Sébastien; Maigne, Lydia; Perrot, Yann; Pietrzyk, Uwe; Robert, Charlotte; and others

    2014-06-15

    In this paper, the authors' review the applicability of the open-source GATE Monte Carlo simulation platform based on the GEANT4 toolkit for radiation therapy and dosimetry applications. The many applications of GATE for state-of-the-art radiotherapy simulations are described including external beam radiotherapy, brachytherapy, intraoperative radiotherapy, hadrontherapy, molecular radiotherapy, and in vivo dose monitoring. Investigations that have been performed using GEANT4 only are also mentioned to illustrate the potential of GATE. The very practical feature of GATE making it easy to model both a treatment and an imaging acquisition within the same frameworkis emphasized. The computational times associated with several applications are provided to illustrate the practical feasibility of the simulations using current computing facilities.

  13. Phantom Positioning Variation in the Gamma Knife® Perfexion Dosimetry

    NASA Astrophysics Data System (ADS)

    Costa, N. A.; Potiens, M. P. A.; Saraiva, C. W. C.

    2016-07-01

    The use of small volume ionization chamber has become required for the dosimetry of equipments that use small radiation fields such as the Gamma Knife® Perfexion (GKP) unit. In this work, a pinpoint ionization chamber was inserted into the dosimetry phantom and measurements were performed with the phantom in different positions, in order to verify if the change in the phantom positioning affects the dosimetry of the GKP. Four different phantom positions were performed. The variation in the result is within the range allowed for the dosimetry of a GKP equipment.

  14. Handbook for the Department of Energy Laboratory Accreditation Program for personnel dosimetry systems

    SciTech Connect

    Not Available

    1986-12-01

    The program contained in this Handbook provides a significant advance in the field of radiation protection through a structured means for assuring the quality of personnel dosimetry performance. Since personnel dosimetry performance is directly related to the assurance of worker safety, it has been of key interest to the Department of Energy. Studies conducted over the past three decades have clearly demonstrated a need for personnel dosimetry performance criteria, related testing programs, and improvements in dosimetry technology. In responding to these needs, the DOE Office of Nuclear Safety (EH) has developed and initiated a DOE Laboratory Accreditation Program (DOELAP) which is intended to improve the quality of personnel dosimetry through (1) performance testing, (2) dosimetry and calibration intercomparisons, and (3) applied research. In the interest of improving dosimetry technology, the DOE Laboratory Accreditation Program (DOELAP) is also designed to encourage cooperation and technical interchange between DOE laboratories. Dosimetry intercomparison programs have been scheduled which include the use of transport standard instruments, transport standard radioactive sources and special dosimeters. The dosimeters used in the intercomparison program are designed to obtain optimum data on the comparison of dosimetry calibration methodologies and capabilities. This data is used in part to develop enhanced calibration protocols. In the interest of overall calibration update, assistance and guidance for the calibration of personnel dosimeters is available through the DOELAP support laboratories. 20 refs., 1 tab.

  15. Transpersonal Art Therapy Education.

    ERIC Educational Resources Information Center

    Franklin, Michael; Farrelly-Hansen, Mimi; Marek, Bernie; Swan-Foster, Nora; Wallingford, Sue

    2000-01-01

    Addresses the task of training future art therapists through a unique branch of transpersonal psychology referred to as "contemplative education." Discusses contemplative practices, such as meditation, and their relationship to creating art. Offers a definition of transpersonal art therapy as well as a literature review. (Contains 80…

  16. Alaska Arts Resource Directory.

    ERIC Educational Resources Information Center

    Dugan, Gene, Ed.

    This directory lists over 250 non-profit and for-profit arts organizations in 90 Alaskan communities. Compiled as a resource guide for artists, arts administrators, and teachers, this document offers information that assist them in sharing resources, communicating, and coordinating arts activities. It contains information from and about arts…

  17. Art Is for Everyone.

    ERIC Educational Resources Information Center

    Ensign, Arselia, Ed.

    1994-01-01

    This pamphlet examines what art can mean to a child with a disability and offers "how-to's" for involving students in the creation of art. It emphasizes that the outcome of an art activity can be more than just the finished piece of work and that emphasis should be placed on involvement with the materials rather than on design or abstract concepts…

  18. Women Art Educators.

    ERIC Educational Resources Information Center

    Zimmerman, Enid, Ed.; Stankiewicz, Mary Ann, Ed.

    This collection of papers on women art educators reveals the variety of roles played by those women, from anonymous art teachers to leaders in their profession. "Mary Rouse: A Remembrance" (G. Hubbard) is a personal perspective on Rouse, the development of her career, and her considerable impact in the field of art education. "The…

  19. Windows to Art Excitement.

    ERIC Educational Resources Information Center

    Laird, Shirley; Crumpecker, Cheryl

    2003-01-01

    Describes an art project that aimed to bring more attention to an art program. Explains that the students created themed murals on the windows of the art classroom, such as a "Jungle,""Ocean,""Masterpiece Paintings," and "Rainforest Tree Frogs." Discusses how the murals were created. (CMK)

  20. Cultural Policy and Art.

    ERIC Educational Resources Information Center

    Degge, Rogena M., Ed.

    1987-01-01

    This document presents three papers by scholars who participated in a lecture series on current controversies regarding politics and the arts. Judith H. Balfe argues in her paper, "Affinities of Art and Politics: Gilt by Association," that despite a history of institutional separateness, art and politics are linked with one another because they…

  1. Art and Montessori.

    ERIC Educational Resources Information Center

    Turner, Joy

    1982-01-01

    Designed for Montessori teachers with little background in the plastic arts, this discussion points out that, while the Montessori program has many features that support creative development, presently, no art curriculum exists. The article indicates the limitations of Maria Montessori's ideas and attitudes about the role of art in the education…

  2. Art and the Handicapped.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Education, Richmond. Div. of Humanities and Secondary Administration.

    The contributions of art experiences to special education are discussed and guidelines for integrating art into the curriculum are provided. Art is seen to have potential for developing handicapped children's self expression, independence, sensory stimulation and motivation, perception discrimination, skill development, and career and personal…

  3. Art and Technology.

    ERIC Educational Resources Information Center

    Lamal, Pauline Dove

    Art has always adapted technological advances to its own uses. In the last 15 years, art has turned to color photocopiers, computers, mimeograph machines, and thermofax copiers. With this in mind, Central Piedmont Community College began offering a course in 1982 called "Art and Technology" which focused on the application of office…

  4. The Arts & Compensatory Education.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Education, Lansing.

    Intended to help compensatory education personnel better understand the role of the arts in cognitive growth, this booklet provides practical suggestions for using arts strategies in basic education. Following a discussion of the role of the arts in the learning process, the booklet presents a number of activities that involve the interaction of…

  5. Art and Physics

    ERIC Educational Resources Information Center

    Metcalf, Suesi

    2004-01-01

    In this paper, the author offers lesson plan ideas that are designed to guide teachers of art and science to encourage their students to see connections between art images and physics principles. The four works of art discussed are examples that can be linked visually and conceptually to physics properties in mathematics, space, energy, and light.…

  6. "I like Art Because..."

    ERIC Educational Resources Information Center

    Leishear, Christina Chiddo

    2012-01-01

    There is a lot of creative energy between students and their art materials. In this lesson, the author discusses materials an artist may use to create a work of art--paint, a paintbrush, a palette, crayons, markers, pastels, and so on. Each student sketched a picture of themselves holding some tools that can be used in art. The objectives of this…

  7. Arts throughout the Curriculum.

    ERIC Educational Resources Information Center

    Manner, Jane Carol

    2002-01-01

    Describes how curriculum integration can help art enhance learning during times when the arts may be considered dispensable and removed from education, presenting examples of how classroom teachers have examined art as a link to expanded understanding of history, science, math, reading, current events, geography, cultural studies, emotions,…

  8. Catalyst--The Arts.

    ERIC Educational Resources Information Center

    Feldman, Edmund Burke

    1978-01-01

    Throughout European history, artists have celebrated the values of their patrons. Today, the schools are the largest employer of artists. To justify art education according to current Back-to-Basics values, art teachers should explain visual art as a language, which they can teach students to read and use. (SJL)

  9. Art Meets Science

    ERIC Educational Resources Information Center

    Rohs, C. Renee

    2007-01-01

    Numerous connections between the visual arts and sciences are evident if we choose to look for them. In February 2006, students and faculty from the Art and Geol/Geog departments at NW Missouri State University put together an exhibit at a local art gallery featuring works that were born out of science, inspired by science, or exploring the…

  10. Computer Aided Art Major.

    ERIC Educational Resources Information Center

    Gibson, Jim

    The Computer Aided Art program offered at Northern State State University (Aberdeen, South Dakota), is coordinated with the traditional art major. The program is designed to familiarize students with a wide range of art-related computer hardware and software and their applications and to prepare students for problem-solving with unfamiliar…

  11. The Art of Running

    ERIC Educational Resources Information Center

    Brown, Jill Harris

    2007-01-01

    Every year, the Parent-Teacher Association of Ferndale Elementary School in Atlanta, Georgia sponsors a fun road race for the students, teachers, families, and community. This annual event has inspired the author to develop the Running and Art project to show off her students' art and squeeze in a little art history, too. In this article, the…

  12. A Work of Art

    ERIC Educational Resources Information Center

    Sloan, Katherine

    2009-01-01

    During the 2002-03 fiscal crisis in Massachusetts, Gov. Mitt Romney proposed sweeping changes for public colleges in the state. Among them was a proposal to privatize three highly specialized colleges, including the Massachusetts College of Art and Design (MassArt), the nation's only independent public college of art and design. The rationale was…

  13. Arts in the Curriculum.

    ERIC Educational Resources Information Center

    Weinstock, Ruth

    This monograph, part of an ongoing series, discusses the need for school arts programs and provides some examples of how the arts can be infused into the regular curriculum at the elementary level. Support systems for such programs are also discussed. Properly conceived, the arts constitute a great integrating force in the curriculum. To achieve…

  14. Windows into Art Classrooms.

    ERIC Educational Resources Information Center

    Grauer, Kit, Ed.

    1995-01-01

    An editorial by Kit Grauer introduces this collection of articles which establish that there is no such thing as a simple definition of art education even within one culture, and that people's views can be reflected by art educators across the world. The first article, "A Window on Three Singapore Art Classrooms" (Jane Chia; John…

  15. The Art of Research

    ERIC Educational Resources Information Center

    Sullivan, Graeme

    2014-01-01

    The purpose of this article is to make the argument that when viewed as mutually supportive processes of inquiry, art and research have the potential to put the agency of educational change well within reach of artists and art teachers. As researchers well schooled in studio practices of many kinds, artists and art teachers understand that, as we…

  16. From soil in art towards Soil Art

    NASA Astrophysics Data System (ADS)

    Feller, C.; Landa, E. R.; Toland, A.; Wessolek, G.

    2015-02-01

    The range of art forms and genres dealing with soil is wide and diverse, spanning many centuries and artistic traditions, from prehistoric painting and ceramics to early Renaissance works in Western literature, poetry, paintings, and sculpture, to recent developments in cinema, architecture and contemporary art. Case studies focused on painting, installation, and cinema are presented with the view of encouraging further exploration of art about, in, with, or featuring soil or soil conservation issues, created by artists, and occasionally scientists, educators or collaborative efforts thereof.

  17. Dosimetry using environmental and biological materials. Final report

    SciTech Connect

    Haskell, E.; Kenner, G.; Hayes, R.

    1998-02-01

    This report summarizes a five year effort to improve the sensitivity and reliability of retrospective dosimetry methods, to collaborate with laboratories engaged in related research and to share the technology with startup laboratories seeking similar capabilities. This research program has focused on validation of electron paramagnetic resonance (EPR) as a dosimetry tool and on optimization of the technique by reducing the lower limits of detection, simplifying the process of sample preparation and analysis and speeding analysis to allow greater throughput in routine measurement situations. The authors have investigated the dosimetric signal of hard tissues in enamel, deorganified dentin, synthetic carbonated apatites and synthetic hydroxyapatite. This research has resulted in a total of 27 manuscripts which have been published, are in press, or have been submitted for publication. Of these manuscripts, 14 are included in this report and were indexed separately for inclusion in the data base.

  18. NCRP PROGRAM AREA COMMITTEE 6: RADIATION DOSIMETRY AND MEASUREMENTS

    PubMed Central

    Simon, Steven L.; Zeman, Gary H.

    2015-01-01

    Program Area Committee (PAC) 6 of the National Council on Radiation Protection and Measurements provides guidance for radiation measurements and dosimetry – one of the most fundamental scientific areas of the Council’s expertise. Seminal reports published by PAC 6 over many decades have documented the scientific and technical foundations of radiation measurements and dosimetry for generations of radiation scientists and radiation protection professionals. Ongoing work of PAC 6 is driven by advancing technology such as development of new types of instruments, biodosimetry and nanotechnology; by evolving understanding of radiation hazards such as effects on lens of the eye, and risks as from some high-dose medical imaging procedures; and by new situations faced in the modern socio-political environment including radiological and nuclear threats. The activities of PAC 6 are intended to formulate and document the dosimetric framework for radiological science to address these ever emerging challenges. PMID:26717161

  19. A new technique for dosimetry reaction cross-section evaluation

    SciTech Connect

    Badikov, S.A.

    2011-07-01

    Document available in abstract form only, full text of document follows: An objective of this paper is a unification of the procedure for dosimetry reaction cross-section evaluation. A set of requirements for the unified evaluation procedure is presented. A new code (ORTHO) was developed in order to meet these requirements. A statistical model, an algorithm, and the basic formulae employed in the code are described. The code was used for Ti48(n,p) reaction cross-section evaluation. The results of the evaluation are compared to International Reactor Dosimetry File (IRDF)-2002 data. The evaluated cross-sections and their correlations from this work are in good agreement with the IRDF-2002 evaluated data, whereas the uncertainties of the evaluated cross-sections are inconsistent. (authors)

  20. Advanced dosimetry systems for the space transport and space station

    NASA Technical Reports Server (NTRS)

    Wailly, L. F.; Schneider, M. F.; Clark, B. C.

    1972-01-01

    Advanced dosimetry system concepts are described that will provide automated and instantaneous measurement of dose and particle spectra. Systems are proposed for measuring dose rate from cosmic radiation background to greater than 3600 rads/hr. Charged particle spectrometers, both internal and external to the spacecraft, are described for determining mixed field energy spectra and particle fluxes for both real time onboard and ground-based computer evaluation of the radiation hazard. Automated passive dosimetry systems consisting of thermoluminescent dosimeters and activation techniques are proposed for recording the dose levels for twelve or more crew members. This system will allow automatic onboard readout and data storage of the accumulated dose and can be transmitted to ground after readout or data records recovered with each crew rotation.

  1. NCRP Program Area Committee 6: Radiation Measurements and Dosimetry.

    PubMed

    Simon, Steven L; Zeman, Gary H

    2016-02-01

    Program Area Committee (PAC) 6 of the National Council on Radiation Protection and Measurements provides guidance for radiation measurements and dosimetry--one of the most fundamental scientific areas of the Council's expertise. Seminal reports published by PAC 6 over many decades have documented the scientific and technical foundations of radiation measurements and dosimetry for generations of radiation scientists and radiation protection professionals. Ongoing work of PAC 6 is driven by advancing technology, such as development of new types of instruments, biodosimetry and nanotechnology; by evolving understanding of radiation hazards, such as effects on the lens of the eye and risks as from some high-dose medical imaging procedures; and by new situations faced in the modern socio-political environment including radiological and nuclear threats. The activities of PAC 6 are intended to formulate and document the dosimetric framework for radiological science to address these ever-emerging challenges.

  2. The specifics of dosimetry for food irradiation applications

    NASA Astrophysics Data System (ADS)

    Kuntz, Florent; Strasser, Alain

    2016-12-01

    Dose measurement applied to food irradiation is obviously a very important and critical aspect of this process. It is described in many standards and guides. The application of appropriate dosimetry tools is explained. This helps to ensure traceability of this measurement and number of dosimeters available on the market are well studied even though theirs response should be characterized while used in routine processing conditions. When employed in low energy radiation fields, these dosimeters may exhibit specific response compared to the usual Cobalt 60 source irradiation. Traceable calibration or correction factor assessment of this energy dependency is mandatory. It is to mention that the absorbed dose is measured in the dosimeter itself and unfortunately not in/on the food product. However, existing dosimetry systems fulfill all relevant requirements.

  3. Methods and computer readable medium for improved radiotherapy dosimetry planning

    DOEpatents

    Wessol, Daniel E.; Frandsen, Michael W.; Wheeler, Floyd J.; Nigg, David W.

    2005-11-15

    Methods and computer readable media are disclosed for ultimately developing a dosimetry plan for a treatment volume irradiated during radiation therapy with a radiation source concentrated internally within a patient or incident from an external beam. The dosimetry plan is available in near "real-time" because of the novel geometric model construction of the treatment volume which in turn allows for rapid calculations to be performed for simulated movements of particles along particle tracks therethrough. The particles are exemplary representations of alpha, beta or gamma emissions emanating from an internal radiation source during various radiotherapies, such as brachytherapy or targeted radionuclide therapy, or they are exemplary representations of high-energy photons, electrons, protons or other ionizing particles incident on the treatment volume from an external source. In a preferred embodiment, a medical image of a treatment volume irradiated during radiotherapy having a plurality of pixels of information is obtained.

  4. Radiation accident dosimetry on plastics by EPR spectrometry.

    PubMed

    Trompier, F; Bassinet, C; Clairand, I

    2010-02-01

    In case of acute exposure to ionizing radiation, the dose absorbed by the victims has to be rapidly and accurately assessed in order to choose an appropriate medical treatment. Tooth enamel and bone biopsies measured by EPR spectrometry are often used as dose indicators, due to the good radiation sensitivity and the stability of EPR radiation-sensitive signals. Nevertheless, the invasive sampling of teeth and bones limits the application of this technique to retrospective dosimetry. Therefore, we have investigated an alternative non-invasive methodology. We have surveyed with EPR spectrometry the dosimetric properties of the plastics that can be found in personal effects such as glasses (CR-39, polycarbonate), mobile phones (PMMA, polycarbonate), watches and buttons. Dose response, signal stability and effects of storage conditions were investigated. Significant signal fading limits the use for radiation accident dosimetry. Few plastics present the required characteristics to be used in case of a radiation accident.

  5. Clinical applications of alanine/electron spin resonance dosimetry.

    PubMed

    Baffa, Oswaldo; Kinoshita, Angela

    2014-05-01

    This paper discusses the clinical applications of electron spin resonance (ESR) dosimetry focusing on the ESR/alanine system. A review of few past studies in this area is presented offering a critical overview of the challenges and opportunities for extending this system into clinical applications. Alanine/ESR dosimetry fulfills many of the required properties for several clinical applications such as water-equivalent composition, independence of the sensitivity for the energy range used in therapy and high precision. Improvements in sensitivity and the development of minidosimeters coupled with the use of a spectrometer of higher microwave frequency expanded the possibilities for clinical applications to the new modalities of radiotherapy (intensity-modulated radiation therapy and radiosurgery) and to the detection of low doses such as those present in some radiological image procedures.

  6. Latest developments in silica-based thermoluminescence spectrometry and dosimetry.

    PubMed

    Bradley, D A; Jafari, S M; Siti Shafiqah, A S; Tamcheck, N; Shutt, A; Siti Rozaila, Z; Abdul Sani, S F; Sabtu, Siti Norbaini; Alanazi, Abdulaziz; Amouzad Mahdiraji, G; Abdul Rashid, H A; Maah, M J

    2016-11-01

    Using irradiated doped-silica preforms from which fibres for thermoluminescence dosimetry applications can be fabricated we have carried out a range of luminescence studies, the TL yield of the fibre systems offering many advantages over conventional passive dosimetry types. In this paper we investigate such media, showing emission spectra for irradiated preforms and the TL response of glass beads following irradiation to an (241)Am-Be neutron source located in a tank of water, the glass fibres and beads offering the advantage of being able to be placed directly into liquid. The outcomes from these and other lines of research are intended to inform development of doped silica radiation dosimeters of versatile utility, extending from environmental evaluations through to clinical and industrial applications.

  7. KCl:Dy phosphor for thermoluminescence dosimetry of ionizing radiation.

    PubMed

    Bhujbal, P M; Dhoble, S J

    2013-01-01

    The thermoluminescence (TL) characterizations of γ-irradiated KCl:Dy phosphor for radiation dosimetry are reported. All phosphors were synthesized via a wet chemical route. Minimum fading of TL intensity is recorded in the prepared material. TL in samples containing different concentrations of Dy impurity was studied at different γ-irradiation doses. Peak TL intensities varied sublinearly with γ-ray dose in all samples, but were linear between 0.08 to 0.75 kGy for the KCl:Dy (0.1 mol%) sample. This material may be useful for dosimetry within this range of γ-ray dose. TL peak height was found to be dependant on the concentration (0.05-0.5 mol%) of added Dy in the host.

  8. Dosimetry of Radiopharmaceuticals for Diagnostic and Therapeutic Nuclear Medicine

    SciTech Connect

    Smart, Richard

    2011-05-05

    A standard formalism for radionuclide internal radiation dosimetry was developed in the 1960s and continues to be refined today. Early work was based on a mathematical phantom but this is being replaced by phantoms developed from whole-body CT scans to give more realistic dose estimates. The largest contributors to the uncertainties in these dose estimates are the errors associated with in vivo activity quantitation, the variability of the biokinetics between patients and the limited information that can be obtained on these kinetics in individual patients. Despite these limitations, pre-treatment patient-specific dosimetry is being increasing used, particularly to limit the toxicity to non-target organs such as the bone marrow.

  9. Dosimetry of Radiopharmaceuticals for Diagnostic and Therapeutic Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Smart, Richard

    2011-05-01

    A standard formalism for radionuclide internal radiation dosimetry was developed in the 1960s and continues to be refined today. Early work was based on a mathematical phantom but this is being replaced by phantoms developed from whole-body CT scans to give more realistic dose estimates. The largest contributors to the uncertainties in these dose estimates are the errors associated with in vivo activity quantitation, the variability of the biokinetics between patients and the limited information that can be obtained on these kinetics in individual patients. Despite these limitations, pre-treatment patient-specific dosimetry is being increasing used, particularly to limit the toxicity to non-target organs such as the bone marrow.

  10. Computer simulations for internal dosimetry using voxel models.

    PubMed

    Kinase, Sakae; Mohammadi, Akram; Takahashi, Masa; Saito, Kimiaki; Zankl, Maria; Kramer, Richard

    2011-07-01

    In the Japan Atomic Energy Agency, several studies have been conducted on the use of voxel models for internal dosimetry. Absorbed fractions (AFs) and S values have been evaluated for preclinical assessments of radiopharmaceuticals using human voxel models and a mouse voxel model. Computational calibration of in vivo measurement system has been also made using Japanese and Caucasian voxel models. In addition, for radiation protection of the environment, AFs have been evaluated using a frog voxel model. Each study was performed by using Monte Carlo simulations. Consequently, it was concluded that these data of Monte Carlo simulations and voxel models could adequately reproduce measurement results. Voxel models were found to be a significant tool for internal dosimetry since the models are anatomically realistic. This fact indicates that several studies on correction of the in vivo measurement efficiency for the variability of human subjects and interspecies scaling of organ doses will succeed.

  11. Education and training activities on personal dosimetry service in Turkey.

    PubMed

    Tugrul Zeyrek, C; Akbiyik, Hayri

    2013-10-01

    A personal dosimetry service that evaluates the occupational doses for external and internal radiation of the radiation workers is one of the main components of radiation protection programme. The education and training (E&T) activities in this field are basic aspects of the optimisation of all exposures to radiation. The E&T activities in the field of occupational radiation protection at the national and international level are of main interest and implemented by the Ankara Nuclear Research and Training Center. This study describes the Turkish experience in E&T of the staff of dosimetry services, postgraduate students and medical physics experts. In Turkey, the first individual monitoring training course was conducted in 2012. The aim of this study is to provide a structured description of postgraduate courses that are addressed to qualified experts and medical physics experts, and the modules are mainly dedicated to individual monitoring.

  12. ACS Algorithm in Discrete Ordinates for Pressure Vessel Dosimetry

    NASA Astrophysics Data System (ADS)

    Walters, William; Haghighat, Alireza

    2016-02-01

    The Adaptive Collision Source (ACS) method can solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. This is similar to, and essentially an extension of, the first collision source method. Previously, the ACS methodology has been implemented into the TITAN discrete ordinates code, and has shown speedups of 2-4 on a simple test problem, with very little loss of accuracy (within a provided adaptive tolerance). This work examines the use of the ACS method for a more realistic problem: pressure vessel dosimetry with the VENUS-2 MOX-fuelled reactor dosimetry benchmark. The ACS method proved to be able to obtain accurate results while being approximately twice as efficient as using a constant quadrature in a standard source iteration scheme.

  13. Consistency of external dosimetry in epidemiologic studies of nuclear workers

    SciTech Connect

    Fix, J.J.; Gilbert, E.S.

    1991-10-01

    To make the best use of available epidemiologic data in assessing risks from exposure to low-level radiation, it is important that biases and uncertainties in estimated doses be understood and documented. With this understanding, analyses of mortality data can be strengthened by including the use of correction factors where judged appropriate, excluding portions of the data where uncertainty in dose estimates is judged to be very large, and conducting sensitivity analyses to examine the effect of alternative assumptions about dosimetry errors and biases on results. It is hoped that the pooling of data from several epidemiologic studies and improved understanding of dosimetry will lead to better estimates of radiation risks. 10 refs., 4 tabs.

  14. Internal radiation dosimetry for clinical testing of radiolabeled monoclonal antibodies

    SciTech Connect

    Fisher, D.R.; Durham, J.S.; Hui, T.E.; Hill, R.L.

    1990-11-01

    In gauging the efficacy of radiolabeled monoclonal antibodies in cancer treatment, it is important to know the amount of radiation energy absorbed by tumors and normal tissue per unit administered activity. This paper describes methods for estimating absorbed doses to human tumors and normal tissues, including intraperitoneal tissue surfaces, red marrow, and the intestinal tract from incorporated radionuclides. These methods use the Medical Internal Radiation Dose (MIRD) scheme; however, they also incorporate enhancements designed to solve specific dosimetry problems encountered during clinical studies, such as patient-specific organ masses obtained from computerized tomography (CT) volumetrics, estimates of the dose to tumor masses within normal organs, and multicellular dosimetry for studying dose inhomogeneities in solid tumors. Realistic estimates of absorbed dose are provided within the short time requirements of physicians so that decisions can be made with regard to patient treatment and procurement of radiolabeled antibodies. Some areas in which further research could improve dose assessment are also discussed. 16 refs., 3 figs.

  15. EPR dosimetry in a mixed neutron and gamma radiation field.

    PubMed

    Trompier, F; Fattibene, P; Tikunov, D; Bartolotta, A; Carosi, A; Doca, M C

    2004-01-01

    Suitability of Electron Paramagnetic Resonance (EPR) spectroscopy for criticality dosimetry was evaluated for tooth enamel, mannose and alanine pellets during the 'international intercomparison of criticality dosimetry techniques' at the SILENE reactor held in Valduc in June 2002, France. These three materials were irradiated in neutron and gamma-ray fields of various relative intensities and spectral distributions in order to evaluate their neutron sensitivity. The neutron response was found to be around 10% for tooth enamel, 45% for mannose and between 40 and 90% for alanine pellets according their type. According to the IAEA recommendations on the early estimate of criticality accident absorbed dose, analyzed results show the EPR potentiality and complementarity with regular criticality techniques.

  16. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    PubMed Central

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre

    2015-01-01

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed. PMID:25799311

  17. Dosimetry and microdosimetry using COTS ICs: A comparative study

    NASA Technical Reports Server (NTRS)

    Scheick, L.; Swift, G.; Guertin, S.; Roth, D.; McNulty, P.; Nguyen, D.

    2002-01-01

    A new method using an array of MOS transistors formeasuring dose absorbed from ionizing radiation is compared to previous dosimetric methods., The accuracy and precision of dosimetry based on COTS SRAMs, DRAMs, and WPROMs are compared and contrasted. Applications of these devices in various space missions will be discussed. TID results are presented for this summary and microdosimetricresults will be added to the full paper. Finally, an analysis of the optimal condition for a digital dosimeter will be presented.

  18. Optimization of the double dosimetry algorithm for interventional cardiologists

    NASA Astrophysics Data System (ADS)

    Chumak, Vadim; Morgun, Artem; Bakhanova, Elena; Voloskiy, Vitalii; Borodynchik, Elena

    2014-11-01

    A double dosimetry method is recommended in interventional cardiology (IC) to assess occupational exposure; yet currently there is no common and universal algorithm for effective dose estimation. In this work, flexible and adaptive algorithm building methodology was developed and some specific algorithm applicable for typical irradiation conditions of IC procedures was obtained. It was shown that the obtained algorithm agrees well with experimental measurements and is less conservative compared to other known algorithms.

  19. Radiochromic Film Dosimetry and its Applications in Radiotherapy

    SciTech Connect

    Williams, Matthew; Metcalfe, Peter

    2011-05-05

    Radiochromic film can be a fast and inexpensive means for performing accurate quantitative radiation dosimetry. The development of new radiochromic compositions that have greater dose sensitivity and fewer environmental dependencies has led to an ever increasing use of the film in radiotherapy applications. In this report the various physical and dosimetric properties of radiochromic film are presented and the strategies to adequately manage these properties when using radiochromic film for radiotherapy applications are discussed.

  20. Shared dosimetry error in epidemiological dose-response analyses

    DOE PAGES

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; ...

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.« less

  1. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    SciTech Connect

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. Use of these methods for several studies, including the Mayak Worker Cohort and the U.S. Atomic Veterans Study, is discussed.

  2. Radiological protection and medical dosimetry for the Skylab crewmen

    NASA Technical Reports Server (NTRS)

    Bailey, J. V.; Hoffman, R. A.; English, R. A.

    1977-01-01

    Dosimetry results for Skylab crewmembers show that the Skylab 4 crewmen received the highest dose equivalents but remained well within the established limits for Skylab missions below the threshold of significant clinical effects. These dose equivalents apply specificially to long term effects such as general life shortening, increased neoplasm incidence, and cataract production. A Skylab crewman could fly a mission comparable to one 84-day Skylab 4 mission per year for 50 years before exceeding these career limits.

  3. Shared dosimetry error in epidemiological dose-response analyses

    SciTech Connect

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.

  4. Shared dosimetry error in epidemiological dose-response analyses.

    PubMed

    Stram, Daniel O; Preston, Dale L; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J; Boice, John; Beck, Harold; Till, John; Bouville, Andre

    2015-01-01

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.

  5. Art Therapy: What Is Art Therapy?

    MedlinePlus

    ... skills, improve reality orientation, reduce anxiety, and increase self-esteem. A goal in art therapy is to improve ... supports federal and state policies, legislation, regulations, judicial actions, and initiatives that encourage, promote, and support efforts ...

  6. The Art Classroom as Art Teacher.

    ERIC Educational Resources Information Center

    Barr-Johnson, Virginia; Brockmyer, James J.

    1981-01-01

    Suggests ways of turning the art room into a microenvironment of sensory intensification--a place where a student steps into a new world of color, sound, and smell that delights the eye and inspires the imagination. (Author/SJL)

  7. Verification of total body photon irradiation dosimetry techniques

    SciTech Connect

    Kirby, T.H.; Hanson, W.F.; Cates, D.A.

    1988-05-01

    A method of verifying the dosimetry of patients undergoing total body irradiation (TBI) with photon beams having energies from cobalt-60 to 25 MV is presented. A simple set of spot checks at the TBI axis has been used to verify data used for TBI dosimetry. Calculations to verify dose delivered to TBI patients are done in the same manner as those irradiated at standard treatment distances. A simple method of effective field size determination for various anatomical locations in a typical adult is presented. Measurements in an Alderson phantom with thermoluminescent dosimeters and an ion chamber at several anatomical locations indicate that this calculational method can predict the dose along the patient axis to within 4% for /sup 60/Co and 18-MV photon beams, provided the dosimetry data are appropriate (as determined by the spot checks). Results of intercomparisons of TBI beam calibration, off-axis and depth-dose data at various institutions visited by the Radiological Physics Center are also presented.

  8. International cooperative effort to establish dosimetry standardization for radiation processing

    SciTech Connect

    Farrar, H. IV

    1989-01-01

    Radiation processing is a rapidly developing technology with numerous applications in food treatment, sterilization, and polymer modification. The effectiveness of the process depends, however, on the proper application of dose and its measurement. These aspects are being considered by a wide group of experts from around the world who have joined together to write a comprehensive set of standards for dosimetry for radiation processing. Originally formed in 1984 to develop standards for food processing dosimetry, the group has now expanded into a full subcommittee of the American Society for Testing and Materials (ASTM), with 97 members from 19 countries. The scope of the standards now includes dosimetry for all forms of radiation processing. The group has now completed and published four standards, and is working on an additional seven. Three are specifically for food applications and the others are for all radiation applications, including food processing. Together, this set of standards will specify acceptable guidelines and methods for accomplishing the required irradiation treatment, and will be available for adoption by national regulatory agencies in their procedures and protocols. 1 tab.

  9. A small-scale anatomical dosimetry model of the liver

    NASA Astrophysics Data System (ADS)

    Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-07-01

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and 125I, 90Y, 211At, 99mTc, 111In, 177Lu, 131I and 18F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons (125I) or high-LET alpha particles (211At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

  10. A review of instruments and methods for dosimetry in space

    NASA Astrophysics Data System (ADS)

    Caffrey, Jarvis A.; Hamby, D. M.

    2011-02-01

    Instruments and methods recently used for space radiation dosimetry are reviewed for the purposes of comparison and reference. Passive detection methods mentioned include track-etch, luminescent, nuclear emulsion, and metal foil detectors. These can provide a reliable source of data for all types of radiation, but often require processing that cannot occur in space. Experimental methods of LET determination using TLDs, such as the high temperature peak ratio (HTR) method, are also discussed. Portable readout passive detectors including Pille, MOSFET, and bubble detector systems provide a novel alternative to traditional passive detectors, but research is more limited and their widespread use has yet to be established. Active detectors including DOSTEL, CPDS, RRMD-III, TEPC, R-16, BBND, and the Liulin series are examined for technical details. These instruments allow the determination of dose in real-time, and some can determine LET of incident particles by measuring energy deposition over a known path-length, but size and power consumption limit their practical use for dosimetry. Improved neutron dosimetry and development of a small active or portable readout personnel dosimeter capable of accurate LET determination are important steps for managing the effects of long-term exposure to the space radiation environment.

  11. Effects of water on fingernail electron paramagnetic resonance dosimetry

    PubMed Central

    Zhang, Tengda; Zhao, Zhixin; Zhang, Haiying; Zhai, Hezheng; Ruan, Shuzhou; Jiao, Ling; Zhang, Wenyi

    2016-01-01

    Electron paramagnetic resonance (EPR) is a promising biodosimetric method, and fingernails are sensitive biomaterials to ionizing radiation. Therefore, kinetic energy released per unit mass (kerma) can be estimated by measuring the level of free radicals within fingernails, using EPR. However, to date this dosimetry has been deficient and insufficiently accurate. In the sampling processes and measurements, water plays a significant role. This paper discusses many effects of water on fingernail EPR dosimetry, including disturbance to EPR measurements and two different effects on the production of free radicals. Water that is unable to contact free radicals can promote the production of free radicals due to indirect ionizing effects. Therefore, varying water content within fingernails can lead to varying growth rates in the free radical concentration after irradiation—these two variables have a linear relationship, with a slope of 1.8143. Thus, EPR dosimetry needs to be adjusted according to the water content of the fingernails of an individual. When the free radicals are exposed to water, the eliminating effect will appear. Therefore, soaking fingernail pieces in water before irradiation, as many researchers have previously done, can cause estimation errors. In addition, nails need to be dehydrated before making accurately quantitative EPR measurements. PMID:27342838

  12. The Chernobyl experience in the area of retrospective dosimetry.

    PubMed

    Chumak, Vadim V

    2012-03-01

    The Chernobyl accident, which occurred on 26 April 1986 at a nuclear power plant located less than 150 km north of Kiev, was the largest nuclear accident to date. The unprecedented scale of the accident was determined not only by the amount of released activity, but also by the number of workers and of the general public involved, and therefore exposed to increased doses of ionising radiation. Due to the unexpected and large scale of the accident, dosimetry techniques and practices were far from the optimum; personal dosimetry of cleanup workers (liquidators) was not complete, and there were no direct measurements of the exposures of members of the public. As a result, an acute need for retrospective dose assessment was dictated by radiation protection and research considerations. In response, substantial efforts have been made to reconstruct doses for the main exposed cohorts, using a broad variety of newly developed methods: analytical, biological and physical (electron paramagnetic resonance spectroscopy of teeth, thermoluminescence of quartz) and modelling. This paper reviews the extensive experience gained by the National Research Center for Radiation Medicine, Academy of Medical Sciences, Ukraine in the field of retrospective dosimetry of large cohorts of exposed population and professionals. These dose reconstruction projects were implemented, in particular, in the framework of epidemiological studies, designed to follow-up the medical consequences of the Chernobyl accident and study health effects of ionizing radiation, particularly Ukrainian-American studies of cataracts and leukaemia among liquidators.

  13. Tumor dosimetry in radioimmunotherapy: Methods of calculation for beta particles

    SciTech Connect

    Leichner, P.K. ); Kwok, C.S. )

    1993-03-01

    Calculational methods of beta-particle dosimetry in radioimmunotherapy (RIT) are reviewed for clinical and experimental studies and computer modeling of tumors. In clinical studies, absorbed-dose estimates are usually based on the [ital in]-[ital vivo] quantitation of the activity in tumors from gamma camera images. Because of the limited spatial resolution of gamma cameras, clinical dosimetry is necessarily limited to the macroscopic level (macrodosimetry) and the MIRD formalism for absorbed-dose calculations is appropriate. In experimental RIT, tumor dimensions are often comparable to or smaller than the beta-particle range of commonly used radionuclides (for example, [sup 131]I, [sup 67]Cu, [sup 186]Re, [sup 188]Re, [sup 90]Y) and deviations from the equilibrium dose must be taken into account in absorbed-dose calculations. Additionally, if small tumors are growing rapidly at the time of RIT, the effects of tumor growth will need to be included in absorbed-dose estimates. In computer modeling of absorbed-dose distributions, analytical, numerical, and Monte Carlo methods have been used to investigate the consequences of uniform and nonuniform activity distributions and the effects of inhomogeneous media. Measurements and calculations of the local absorbed dose at the multicellular level have shown that variations in this dose are large. Knowledge of the absorbed dose is essential for any form of radiotherapy. Therefore, it is important that clinical, experimental, and theoretical investigations continue to provide information on tumor dosimetry that is necessary for a better understanding of the radiobiological effects of RIT.

  14. Proceedings of the second conference on radiation protection and dosimetry

    SciTech Connect

    Swaja, R. E.; Sims, C. S.

    1988-11-01

    The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base.

  15. INTRINSIC DOSIMETRY: A POTENTIAL NEW TOOL FOR NUCLEAR FORENSICS INVESTIGATIONS

    SciTech Connect

    Clark, Richard A.; Miller, Steven D.; Robertson, Dave J.; Gregg, Roger A.; Murphy, Mark K.; Schwantes, Jon M.

    2010-08-11

    Thermoluminescence (TL) dosimetry was used to measure dose effects on the raw stock material of borosilicate container glass from different geographical locations. Effects were studied at times up to 60 days post-irradiation at doses from 0.15 to 20 Gy. The minimum detectable dose using this technique was estimated to be 0.15 Gy which is roughly equivalent to a 24 hr irradiation 1 cm from a 50 ng source of 60Co. Two peaks were identified in the TL glow curve, a relatively unstable peak around 125°C and a more stable peak around 225°C. Differences in TL glow curve shape and intensity were also observed for the glasses from different geographical origins. We investigate radiation induced defects in glass to further develop the technique of intrinsic dosimetry–the measurement of the total absorbed dose received by the walls of a container holding radioactive material. Intrinsic dosimetry is intended to be used as an interrogation tool to provide enhanced pathway information on interdicted or newly discovered waste containers of unknown origin or history by considering the total absorbed dose received by a container in tandem with the physical characteristics of the radioactive material housed within that container. One hypothetical scenario is presented to illustrate the application of intrinsic dosimetry to waste management and nuclear forensics.

  16. A small-scale anatomical dosimetry model of the liver.

    PubMed

    Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-07-07

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and (125)I, (90)Y, (211)At, (99m)Tc, (111)In, (177)Lu, (131)I and (18)F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons ((125)I) or high-LET alpha particles ((211)At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

  17. Real-time dosimetry in radiotherapy using tailored optical fibers

    NASA Astrophysics Data System (ADS)

    Rahman, A. K. M. Mizanur; Zubair, H. T.; Begum, Mahfuza; Abdul-Rashid, H. A.; Yusoff, Z.; Omar, Nasr Y. M.; Ung, N. M.; Mat-Sharif, K. A.; Bradley, D. A.

    2016-05-01

    Real-time dosimetry plays an important role for accurate patient-dose measurement during radiotherapy. A tiny piece of laboratory fabricated Ge-doped optical fiber has been investigated as a radioluminescence (RL) sensor for real-time dosimetry over the dose range from 1 Gy to 8 Gy under 6 MV photon beam by LINAC. Fiber-coupled software-based RL prototype system was used to assess essential dosimetric characteristics including dose response linearity, dose rate dependency, sensitivity, repeatability and output dependence on field sizes. The consistency level of RL photon counts versus dose rate was also compared with that of standard Al2O3:C chips. Sensitivity of Ge-doped fiber were found to be sufficiently sensitive for practical use and also provided linear dose responses for various dose rates from 100 cGy/min to 600 cGy/min using both 6 MV photon and 6 MeV electron beams. SEM-EDX analysis was performed to identify Ge-dopant concentration level within the optical fiber RL material. Accumulated doses were also estimated using simple integral technique and the error was found to be around less than 1% under dissimilar dose rates or repeat measurements. The evaluation of the Ge-doped optical fiber based RL dosimeter system indicates its potential in medical dosimetry.

  18. Beauty and art.

    PubMed

    Chang, C W David

    2006-08-01

    Definitions of beauty and art have been turned upside down when trying to describe 20th century and postmodern art. The classical sense of beauty looks toward the replication of nature as its inspiration. The development of Impressionist art and modern art forced the rules of aesthetics to be rethought and revised. Old standards of aesthetics were brought into question with each successive artistic challenge. This article endeavors to explore the meaning of beauty and the aesthetic experience as it relates to defining art.

  19. Reference dosimetry measurements for the international intercomparison of criticality accident dosimetry SILENE 9-21 June 2002.

    PubMed

    Asselineau, B; Trompier, F; Texier, C; Itié, C; Médioni, R; Tikunov, D; Muller, H; Pelcot, G

    2004-01-01

    An international intercomparison of criticality accident dosimetry systems took place in the SILENE reactor, in June 2002. Participants from 60 laboratories irradiated their dosemeters (physical and biological) using two different configurations of the reactor. In preparation for this intercomparison, the leakage radiation fields were characterised by spectrometry and dosimetry measurements using the ROSPEC spectrometer associated with a NE-213 scintillator, ionisation chambers, GM counters, diodes and thermoluminescence dosemeters (TLDs). For this intercomparison, a large area was required to irradiate the dosemeters both in free air and on phantoms. Therefore, measurements of the uniformity of the field were performed with activation detectors and TLDs for neutron and gammas, respectively. This paper describes the procedures used and the results obtained.

  20. Quasi 3D dosimetry (EPID, conventional 2D/3D detector matrices)

    NASA Astrophysics Data System (ADS)

    Bäck, A.

    2015-01-01

    Patient specific pretreatment measurement for IMRT and VMAT QA should preferably give information with a high resolution in 3D. The ability to distinguish complex treatment plans, i.e. treatment plans with a difference between measured and calculated dose distributions that exceeds a specified tolerance, puts high demands on the dosimetry system used for the pretreatment measurements and the results of the measurement evaluation needs a clinical interpretation. There are a number of commercial dosimetry systems designed for pretreatment IMRT QA measurements. 2D arrays such as MapCHECK® (Sun Nuclear), MatriXXEvolution (IBA Dosimetry) and OCTAVIOUS® 1500 (PTW), 3D phantoms such as OCTAVIUS® 4D (PTW), ArcCHECK® (Sun Nuclear) and Delta4 (ScandiDos) and software for EPID dosimetry and 3D reconstruction of the dose in the patient geometry such as EPIDoseTM (Sun Nuclear) and Dosimetry CheckTM (Math Resolutions) are available. None of those dosimetry systems can measure the 3D dose distribution with a high resolution (full 3D dose distribution). Those systems can be called quasi 3D dosimetry systems. To be able to estimate the delivered dose in full 3D the user is dependent on a calculation algorithm in the software of the dosimetry system. All the vendors of the dosimetry systems mentioned above provide calculation algorithms to reconstruct a full 3D dose in the patient geometry. This enables analyzes of the difference between measured and calculated dose distributions in DVHs of the structures of clinical interest which facilitates the clinical interpretation and is a promising tool to be used for pretreatment IMRT QA measurements. However, independent validation studies on the accuracy of those algorithms are scarce. Pretreatment IMRT QA using the quasi 3D dosimetry systems mentioned above rely on both measurement uncertainty and accuracy of calculation algorithms. In this article, these quasi 3D dosimetry systems and their use in patient specific pretreatment IMRT

  1. The Return of the Body: Performance Art and Art Education.

    ERIC Educational Resources Information Center

    Green, Gaye Leigh

    1999-01-01

    Explains that performance art incorporates different artistic forms, emphasizes the process of art over the product, and blurs the line between life and art. Discusses the history of performance art, highlights the Performance Art, Culture, and Pedagogy Symposium, and provides examples of how to use performance art in the classroom. (CMK)

  2. Art-Based Learning Strategies in Art Therapy Graduate Education

    ERIC Educational Resources Information Center

    Deaver, Sarah P.

    2012-01-01

    This mixed methods research study examined the use of art-based teaching methods in master's level art therapy graduate education in North America. A survey of program directors yielded information regarding in which courses and how frequently art-based methods (individual in-class art making, dyad or group art making, student art projects as…

  3. New School Art Styles: The Project of Art Education

    ERIC Educational Resources Information Center

    Gude, Olivia

    2013-01-01

    Art projects are appropriate building blocks for visual art curriculum because good art projects encode complex aesthetic strategies, giving students tools to investigate and make meaning. Art made in schools will inevitably be some form of "school art," defined by Arthur Efland in "The School Art Style: a Functional Analysis,"…

  4. Updating and extending the IRDF-2002 dosimetry library

    SciTech Connect

    Capote, R.; Zolotarev, K.I.; Pronyaev, V.G.; Trkov, A.

    2011-07-01

    The International Reactor Dosimetry File (IRDF)-2002 released in 2004 by the IAEA (see http://www-nds.iaea.org/irdf2002/) contains cross-section data and corresponding uncertainties for 66 dosimetry reactions. New cross-section evaluations have become available recently that re-define some of these dosimetry reactions including: (1) high-fidelity evaluation work undertaken by one of the authors (KIZ); (2) evaluations from the US ENDF/B-VII.0 and candidate evaluations from the US ENDF/B-VII.1 libraries that cover reactions within the International Evaluation of Neutron Cross-Section Standards; (3) European JEFF3.1 library; and (4) Japanese JENDL-4.0 library. Additional high-threshold reactions not included in IRDF-2002 (e.g., {sup 59C}o(n,3n) and {sup 209}Bi(n,3n)) have been also evaluated to characterize higher-energy neutron fields. Overall, 37 new evaluations of dosimetry reactions have been assessed and intercomparisons made with integral measurements in reference neutron fields to determine whether they should be adopted to update and improve IRDF-2002. Benchmark calculations performed for newly evaluated reactions using the ENDF/B-VII.0 {sup 235}U thermal fission and {sup 252}Cf spontaneous fission neutron spectra show that calculated integral cross sections exhibit improved agreement with evaluated experimental data when compared with the equivalent data from the IRDF-2002 library. Data inconsistencies or deficiencies of new evaluations have been identified for {sup 63}Cu(n,2n), {sup 60}Ni(n,p) {sup 60m+g}Co, {sup 55}Mn(n,{gamma}), and {sup 232}Th(n,f) reactions. Compared with IRDF-2002, the upper neutron energy boundary was formally increased from the actual maximum energy of typically 20 MeV up to 60 MeV by using the TENDL-2010 cross sections and covariance matrices. This extension would allow the updated IRDF library to be also used in fusion dosimetry applications. Uncertainties in the cross sections for all new evaluations are given in the form of

  5. Air kerma based dosimetry calibration for the Leksell Gamma Knife

    SciTech Connect

    Meltsner, Sheridan Griffin; DeWerd, Larry A.

    2009-02-15

    No accepted official protocol exists for the dosimetry of the Leksell Gamma Knife registered (GK) stereotactic radiosurgery device. Establishment of a dosimetry protocol has been complicated by the unique partial-hemisphere arrangement of 201 individual {sup 60}Co beams simultaneously focused on the treatment volume and by the rigid geometry of the GK unit itself. This article proposes an air kerma based dosimetry protocol using either an in-air or in-acrylic phantom measurement to determine the absorbed dose rate of fields of the 18 mm helmet of a GK unit. A small-volume air ionization chamber was used to make measurements at the physical isocenter of three GK units. The absorbed dose rate to water was determined using a modified version of the AAPM Task Group 21 protocol designed for use with {sup 60}Co-based teletherapy machines. This experimentally determined absorbed dose rate was compared to the treatment planning system (TPS) absorbed dose rate. The TPS used with the GK unit is Leksell GammaPlan. The TPS absorbed dose rate at the time of treatment is the absorbed dose rate determined by the physicist at the time of machine commissioning decay corrected to the treatment date. The TPS absorbed dose rate is defined as absorbed dose rate to water at the isocenter of a water phantom with a radius of 8 cm. Measurements were performed on model B and C Gamma Knife units. The absorbed dose rate to water for the 18 mm helmet determined using air-kerma based calculations is consistently between 1.5% and 2.9% higher than the absorbed dose rate provided by the TPS. These air kerma based measurements allow GK dosimetry to be performed with an established dosimetry protocol and without complications arising from the use of and possible variations in solid phantom material. Measurements were also made with the same ionization chamber in a spherical acrylic phantom for comparison. This methodology will allow further development of calibration methods appropriate for the

  6. Art in Elementary Education Today

    ERIC Educational Resources Information Center

    Brittain, Lambert

    1976-01-01

    Article discussed the practicalities in art education from the current economic squeeze on art programs to the overworked elementary art teacher attempting to implement art programs of dubious merit. (RK)

  7. An international dosimetry exchange for BNCT part II: computational dosimetry normalizations.

    PubMed

    Riley, K J; Binns, P J; Harling, O K; Albritton, J R; Kiger, W S; Rezaei, A; Sköld, K; Seppälä, T; Savolainen, S; Auterinen, I; Marek, M; Viererbl, L; Nievaart, V A; Moss, R L

    2008-12-01

    The meaningful sharing and combining of clinical results from different centers in the world performing boron neutron capture therapy (BNCT) requires improved precision in dose specification between programs. To this end absorbed dose normalizations were performed for the European clinical centers at the Joint Research Centre of the European Commission, Petten (The Netherlands), Nuclear Research Institute, Rez (Czech Republic), VTT, Espoo (Finland), and Studsvik, Nyköping (Sweden). Each European group prepared a treatment plan calculation that was bench-marked against Massachusetts Institute of Technology (MIT) dosimetry performed in a large, water-filled phantom to uniformly evaluate dose specifications with an estimated precision of +/-2%-3%. These normalizations were compared with those derived from an earlier exchange between Brookhaven National Laboratory (BNL) and MIT in the USA. Neglecting the uncertainties related to biological weighting factors, large variations between calculated and measured dose are apparent that depend upon the 10B uptake in tissue. Assuming a boron concentration of 15 microg g(-1) in normal tissue, differences in the evaluated maximum dose to brain for the same nominal specification of 10 Gy(w) at the different facilities range between 7.6 and 13.2 Gy(w) in the trials using boronophenylalanine (BPA) as the boron delivery compound and between 8.9 and 11.1 Gy(w) in the two boron sulfhydryl (BSH) studies. Most notably, the value for the same specified dose of 10 Gy(w) determined at the different participating centers using BPA is significantly higher than at BNL by 32% (MIT), 43% (VTT), 49% (JRC), and 74% (Studsvik). Conversion of dose specification is now possible between all active participants and should be incorporated into future multi-center patient analyses.

  8. Art 10, Art 20, Art 30 Curriculum Guide 1986.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    The curriculum guide details a unified sequential art program for grades 7-12 and clearly outlines specific objectives and descriptions of concepts and experiences. The objectives are designed to accommodate sequential learning and are derived from the goals and philosophy of the program. The format describes appropriate objectives and concepts…

  9. Develop real-time dosimetry concepts and instrumentation for long term missions

    NASA Technical Reports Server (NTRS)

    Braby, L. A.

    1981-01-01

    The development of a rugged portable dosimetry system, based on microdosimetry techniques, which will measure dose and evaluate dose equivalent in a mixed radiation field is described. Progress in the desired dosimetry system can be divided into three distinct areas: development of the radiation detector, and electron system are presented. The mathematical techniques required are investigated.

  10. Dosimetry and quantitative radionuclide imaging in radioimmunotherapy: Final report, July 15, 1992-July 14, 1996

    SciTech Connect

    Leichner, P.K.

    1996-09-01

    Brief summaries of the principal accomplishments of this project on the development of quantitative SPECT for high energy photons (87Y, 19F) and stability testing of 87Y-labeled antibodies in the nude mouse model, development of an unified approach to photon and beta particle dosimetry, quantitative SPECT for nonuniform attenuation, and development of patient-specific dosimetry in radioimmunotherapy.

  11. Relationship between student selection criteria and learner success for medical dosimetry students.

    PubMed

    Baker, Jamie; Tucker, Debra; Raynes, Edilberto; Aitken, Florence; Allen, Pamela

    2016-01-01

    Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees) and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student׳s previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant׳s undergraduate cumulative GPA and increase the weight assigned to previous degrees.

  12. Dosimetry in 131I-mIBG therapy: moving toward personalized medicine.

    PubMed

    Chiesa, C; Castellani, R; Mira, M; Lorenzoni, A; Flux, G D

    2013-06-01

    Internal dosimetry was developed as a basis for 131I-mIBG treatment at an early stage and has continued to develop for over the last 20 years. Whole-body dosimetry was introduced to prevent hematological toxicity. It will be the basis for a forthcoming European multicentre trial, in which the activity of a second administration is determined according to the results calculated from the first. Lesion dosimetry has also been performed in a small number of centres. The major goal of dosimetry now is to establish dose-effect correlation studies, which will be the basis for individualized treatment planning. The aim of this paper is to analyse previously published studies and to consider the potential for improvement in order to obtain a stronger predictive power of dosimetry. The intrinsic radiobiological limits of dosimetry are also illustrated. Due to the development and dissemination of methods of internal dosimetry and radiobiology over the last two decades, and to the increasing availability of quantitative 124I PET imaging, dosimetry could provide in the near future a more systematic basis for standardization and individualization of mIBG therapy. This will however require a number of multicentre trials which are performed under good instrumental and scientific methodology.

  13. Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2003-01-03

    This manual describes the technical basis for the design of the routine radiobioassay monitoring program and assessments of internal dose. Its purpose is to provide a historical record of the methods, models, and assumptions used for internal dosimetry at Hanford, and serve as a technical reference for radiation protection and dosimetry staff.

  14. Relationship between student selection criteria and learner success for medical dosimetry students

    SciTech Connect

    Baker, Jamie; Tucker, Debra; Raynes, Edilberto; Aitken, Florence; Allen, Pamela

    2016-04-01

    Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees) and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student's previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant's undergraduate cumulative GPA and increase the weight assigned to previous degrees.

  15. The martial arts.

    PubMed

    Terry, Charles M

    2006-08-01

    Given the increasing popularity of the martial arts, it is likely that physicians in all specialties encounter patients who participate. From pediatric patients, to geriatric patients, to those living with various disabilities, the martial arts may offer physical, psychologic, and therapeutic benefits. An appreciation of the physical demands of the martial arts is crucial to understanding the pathogenesis of injury as well as to planning treatment and prevention strategies and to determining safe return to participation after injury.

  16. Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production

    SciTech Connect

    Leggett, Richard Wayne; Eckerman, Keith F; Manger, Ryan P

    2013-08-01

    This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

  17. Uncertainty Estimation in Intensity-Modulated Radiotherapy Absolute Dosimetry Verification

    SciTech Connect

    Sanchez-Doblado, Francisco . E-mail: paco@us.es; Hartmann, Guenther H.; Pena, Javier; Capote, Roberto; Paiusco, Marta; Rhein, Bernhard; Leal, Antonio; Lagares, Juan Ignacio

    2007-05-01

    Purpose: Intensity-modulated radiotherapy (IMRT) represents an important method for improving RT. The IMRT relative dosimetry checks are well established; however, open questions remain in reference dosimetry with ionization chambers (ICs). The main problem is the departure of the measurement conditions from the reference ones; thus, additional uncertainty is introduced into the dose determination. The goal of this study was to assess this effect systematically. Methods and Materials: Monte Carlo calculations and dosimetric measurements with five different detectors were performed for a number of representative IMRT cases, covering both step-and-shoot and dynamic delivery. Results: Using ICs with volumes of about 0.125 cm{sup 3} or less, good agreement was observed among the detectors in most of the situations studied. These results also agreed well with the Monte Carlo-calculated nonreference correction factors (c factors). Additionally, we found a general correlation between the IC position relative to a segment and the derived correction factor c, which can be used to estimate the expected overall uncertainty of the treatment. Conclusion: The increase of the reference dose relative standard uncertainty measured with ICs introduced by nonreference conditions when verifying an entire IMRT plan is about 1-1.5%, provided that appropriate small-volume chambers are used. The overall standard uncertainty of the measured IMRT dose amounts to about 2.3%, including the 0.5% of reproducibility and 1.5% of uncertainty associated with the beam calibration factor. Solid state detectors and large-volume chambers are not well suited to IMRT verification dosimetry because of the greater uncertainties. An action level of 5% is appropriate for IMRT verification. Greater discrepancies should lead to a review of the dosimetric procedure, including visual inspection of treatment segments and energy fluence.

  18. RADON PROGENY AS AN EXPERIMENTAL TOOL FOR DOSIMETRY OF NANOAEROSOLS

    SciTech Connect

    Ruzer, Lev; Ruzer, Lev S.; Apte, Michael G.

    2008-02-25

    The study of aerosol exposure and dosimetry measurements and related quantitation of health effects are important to the understanding of the consequences of air pollution, and are discussed widely in the scientific literature. During the last 10 years the need to correlate aerosol exposure and biological effects has become especially important due to rapid development of a new, revolutionary industry ?-- nanotechnology. Nanoproduct commerce is predicted to top $1 trillion by 2015. Quantitative assessment of aerosol particle behavior in air and in lung deposition, and dosimetry in different parts of the lung, particularly for nanoaerosols, remains poor despite several decades of study. Direct measurements on humans are still needed in order to validate the hollow cast, animal studies, and lung deposition modeling. We discuss here the use of nanoscale radon decay products as an experimental tool in the study of local deposition and lung dosimetry for nanoaerosols. The issue of the safe use of radon progeny in such measurements is discussed based on a comparison of measured exposure in 3 settings: general population, miners, and in a human experiment conducted at the Paul Scherer Institute (PSI) in Switzerland. One of the properties of radon progeny is that they consist partly of 1 nm radioactive particles called unattached activity; having extremely small size and high diffusion coefficients, these particles can be potentially useful as radioactive tracers in the study of nanometer-sized aerosols. We present a theoretical and experimental study of the correlation between the unattached activity and aerosol particle surface area, together with a description of its calibration and method for measurement of the unattached fraction.

  19. In-vivo Light dosimetry for pleural PDT

    PubMed Central

    Dimofte, Andreea; Zhu, Timothy C.; Finlay, Jarod C.; Cullighan, Melissa; Edmonds, Christine E.; Friedberg, Joseph S.; Cengel, Keith; Hahn, Stephen M.

    2015-01-01

    In-vivo light dosimetry for patients undergoing photodynamic therapy (PDT) is one of the critical dosimetry quantities for predicting PDT outcome. This study examines the relationship between the PDT treatment time and thoracic treatment volume and surface area for patients undergoing pleural PDT. In addition, the mean light fluence (rate) and its accuracy were quantified. The patients studied here were enrolled in Phase II clinical trial of Photofrin-mediated PDT for the treatment of non-small cell lung cancer with pleural effusion. The ages of the patients studied varied from 34 to 69 years old. All patients were administered 2mg per kg body weight Photoprin 24 hours before the surgery. Patients undergoing photodynamic therapy (PDT) are treated with laser light with a light fluence of 60 J/cm2 at 630nm. Fluence rate (mW/cm2) and cumulative fluence (J/cm2) was monitored at 7 different sites during the entire light treatment delivery. Isotropic detectors were used for in-vivo light dosimetry. The anisotropy of each isotropic detector was found to be within 30%. The mean fluence rate deliver varied from 37.84 to 94.05 mW/cm2 and treatment time varied from 1762 to 5232s. We found a linear correlation between the total treatment time and the treatment area: t (sec) = 4.80 A (cm2). A similar correlation exists between the treatment time and the treatment volume: t (sec) = 2.33 V (cm3). The results can be explained using an integrating sphere theory and the measured tissue optical properties assuming that the saline liquid has a mean absorption coefficient of 0.05 cm−1. Our long term accuracy studies confirmed light fluence rate measurement accuracy of ±10%. The results can be used as a clinical guideline for future pleural PDT treatment. PMID:25914792

  20. Dose verification of eye plaque brachytherapy using spectroscopic dosimetry.

    PubMed

    Jarema, T; Cutajar, D; Weaver, M; Petasecca, M; Lerch, M; Kejda, A; Rosenfeld, A

    2016-09-01

    Eye plaque brachytherapy has been developed and refined for the last 80 years, demonstrating effective results in the treatment of ocular malignancies. Current dosimetry techniques for eye plaque brachytherapy (such as TLD- and film-based techniques) are time consuming and cannot be used prior to treatment in a sterile environment. The measurement of the expected dose distribution within the eye, prior to insertion within the clinical setting, would be advantageous, as any errors in source loading will lead to an erroneous dose distribution and inferior treatment outcomes. This study investigated the use of spectroscopic dosimetry techniques for real-time quality assurance of I-125 based eye plaques, immediately prior to insertion. A silicon detector based probe, operating in spectroscopy mode was constructed, containing a small (1 mm(3)) silicon detector, mounted within a ceramic holder, all encapsulated within a rubber sheath to prevent water infiltration of the electronics. Preliminary tests of the prototype demonstrated that the depth dose distribution through the central axis of an I-125 based eye plaque may be determined from AAPM Task Group 43 recommendations to a deviation of 6 % at 3 mm depth, 7 % at 5 mm depth, 1 % at 10 mm depth and 13 % at 20 mm depth, with the deviations attributed to the construction of the probe. A new probe design aims to reduce these discrepancies, however the concept of spectroscopic dosimetry shows great promise for use in eye plaque quality assurance in the clinical setting.

  1. Wearable Arts of Japan: Seattle Art Museum.

    ERIC Educational Resources Information Center

    Loudon, Sarah

    1996-01-01

    Presents four lesson plans centered around artworks involving Japanese clothing. Instructional materials include color plates of a 19th century print showing women's clothing, two beautifully handcrafted coats, and a coverlet in kimono form. The lesson plans discuss Japanese clothing, art, society, and culture. (MJP)

  2. Art in Chemistry; Chemistry in Art.

    ERIC Educational Resources Information Center

    Greenberg, Barbara R.; Patterson, Dianne

    High school teachers are often challenged to motivate students who have little or no interest in a subject and are bored with traditional instruction. This unique book is designed to help educators make chemistry classes more interesting and links art curriculum to practical applications, integrating the two subjects through scores of hands-on…

  3. Sequencing Events: Exploring Art and Art Jobs.

    ERIC Educational Resources Information Center

    Stephens, Pamela Geiger; Shaddix, Robin K.

    2000-01-01

    Presents an activity for upper-elementary students that correlates the actions of archaeologists, patrons, and artists with the sequencing of events in a logical order. Features ancient Egyptian art images. Discusses the preparation of materials, motivation, a pre-writing activity, and writing a story in sequence. (CMK)

  4. Math in Art or Art in Math.

    ERIC Educational Resources Information Center

    Biller, Jerry

    The concept of integrating mathematics and art course work broadens an appreciation of the connection between the two. Although calculations and getting the right answer have traditionally been the focus of mathematics at the secondary level, other topics have recently begun to be addressed, such as mathographics, or the relationship between art…

  5. High Z particle Apollo astronaut dosimetry with plastics

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Henke, R. P.

    1972-01-01

    On Apollo missions, the individual astronauts' high Z particle exposure is measured by means of Lexan polycarbonate plastic. These layers form one component of the passive dosimetry packets worn in the constant wear garment. They serve as threshold type, high Z, charged particle track detectors, recording only the very highly ionizing particles. The detectors yield information on the particles' charge, energy, and direction of travel. This data, in turn, is used to obtain the track fluence, the stopping particle density as an integral Z distribution, and the particles' integral LET spectrum. Some of the data gathered on Apollo missions 8-13 is presented.

  6. Investigations of recombination chambers for BNCT beam dosimetry.

    PubMed

    Tulik, P; Golnik, N; Zielczynski, M

    2007-01-01

    A set of cylindrical recombination chambers, including a tissue-equivalent chamber and three graphite chambers filled with different gases-CO(2), N(2) and (10)BF(3), was designed for the dosimetry of therapeutic neutron radiation beams used for BNCT. The separation of the dose components is based on differences of the shape of the saturation curve depending on the LET spectrum of the investigated radiation. The measurements using all the chambers were performed in a reactor beam of NRI ReZ (Czech Republic) and in the reference radiation fields of a (252)Cf radiation source free in air or in filters.

  7. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    NASA Astrophysics Data System (ADS)

    Hu, J.-P.; Holden, N. E.; Reciniello, R. N.

    2016-02-01

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4-7% lower than

  8. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  9. Effect of respiratory motion on internal radiation dosimetry

    SciTech Connect

    Xie, Tianwu; Zaidi, Habib

    2014-11-01

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Methods: Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the MCNP transport code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. Results: The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For {sup 18}F-FDG, organ absorbed doses are less influenced by respiratory motion. Conclusions: Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic

  10. Maine Yankee dosimetry capsule and pressure vessel neutron fluence calculations

    SciTech Connect

    White, J.R.; Spinney, K.B.; Morrissey, K.J.; Cacciapouti, R.J.

    1994-12-31

    In-house capability for deterministic neutron and gamma transport analyses has been implemented at Yankee Atomic Electric Company (YAEC). A detailed R-Theta (R-{theta}) calculational model of Maine Yankee was developed to help in validation of the methods and to establish appropriate models for support of the ongoing Maine Yankee pressure vessel surveillance program. Several data and modeling sensitivity studies were performed and comparisons to measured dosimetry capsule data were emphasized. The calculated results establish confidence in the YAEC in-house computational methodology for general pressure vessel fluence analyses.

  11. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    SciTech Connect

    Hu, J. P.; Holden, N. E.; Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  12. Heavy ion passive dosimetry with silver halide single crystals

    NASA Technical Reports Server (NTRS)

    Childs, C. B.; Parnell, T. A.

    1972-01-01

    A method of detecting radiation damage tracks due to heavy particles in large single crystals of the silver halides is described. The tracks, when made visible with a simple electrical apparatus, appear similar to tracks in emulsions. The properties of the crystals, the technique of printing out the tracks, and evidence concerning the threshold energy for registering particles indicates that this method may find application in heavy ion dosimetry. The method has been found to be sensitive to stopping He nuclei and relativistic M group cosmic rays. Some impurities strongly influence the printout of the tracks, and the effects of these impurities are discussed.

  13. Dosimetry commissioning of the gamma irradiation facility ``ROBO''

    NASA Astrophysics Data System (ADS)

    Kovacs, A.; Moussa, A.; Othman, I.; Alnaal, K.

    1998-06-01

    A product-overlap type gamma irradiation facility with wet storage was put into operation recently in Damascus, Syria and its technical specifications were controlled by dosimetry commissioning experiments and compared to the data specified by the supplier. In the course of this procedure detailed dose mapping using different density products was carried out, and thus the minimum and maximum dose locations within the product boxes were determined. Using these data the plant efficiency and the dose uniformity ratio have been calculated. The dose distribution was also determined vertically along the product carrier. The results were then analyzed with respect to the construction of the facility.

  14. Games for "Seeing" Art.

    ERIC Educational Resources Information Center

    Osmundson, Linda

    2000-01-01

    Provides various activities that museum docents use to help students "see" rather than "look" at art objects. Ideas include playing a looking game, using the five senses to describe the painting, creating stories about the art object, and having a treasure hunt while visiting a museum. (CMK)

  15. Art for Libraries' Sake.

    ERIC Educational Resources Information Center

    Lugo, Mark-Elliot

    1999-01-01

    Illustrates the benefits of an aggressive library program of regularly scheduled and professionally curated art exhibitions and related events. Describes the Visual Arts Program at the Pacific Beach branch library (San Diego). A sidebar by Debra Wilcox Johnson discusses libraries' development of cultural programming for adults. (AEF)

  16. Art Education Is Violent

    ERIC Educational Resources Information Center

    Tavin, Kevin

    2014-01-01

    In an era that is rife with aggression and hostility, most art educators hold close to their hearts the belief that they, and their students, can contribute to making the world a better place. Through their acts as teachers and the daily work of art education, they often strive toward creating a space of "non-violence." For K-12…

  17. Language Arts Topics Papers.

    ERIC Educational Resources Information Center

    Bailey, Jane M.; And Others

    This document brings together six papers on language skills and language arts teaching of gifted students. "The State of the Art Issues in Language Study for High Ability Learners: Thinking about Language with Gifted Children" (Michael Clay Thompson) considers two areas traditionally included in discussions of language study--grammar and…

  18. Parallels in the Arts

    ERIC Educational Resources Information Center

    Laffey, Grace

    1972-01-01

    A mini-course of nine weeks was organized as a laboratory course to survey relationships in literature, music, and art. Three periods in the arts (Romanticism, Impressionism, and Contemporary) were matched with three major activities; the basic areas of study and activity were poetry, short story, and novel. (Author)

  19. Art Teacher Education.

    ERIC Educational Resources Information Center

    Grauer, Kit, Ed.

    1994-01-01

    This journal issue provides a cogent look at general issues in art teacher education, specific teacher education programs and particular agendas as they are played out in a number of different countries. The topic is introduced in the Editorial, "The Education of Educators: Art Teacher Education around the World" (Kit Grauer). Articles…

  20. Art in the Garden.

    ERIC Educational Resources Information Center

    Greenman, Geri

    2003-01-01

    Describes an art project in which beginning art students created ceramic vegetables that are supposed to be functional, such as a container. Explains how the teacher can demonstrate the process of creating the ceramic vegetables. Includes a list of materials. (CMK)

  1. Art as Peace Building

    ERIC Educational Resources Information Center

    Marshall, Laurie

    2014-01-01

    Art educators can "critique" senseless violence--mistreatment, exclusion, intimidation, bullying, violation, abuse, corruption, murder, and war--by unleashing the power of students' creativity. In this article, the author, sharing her philosophical context, discusses how art is preventative medicine with the power to transform the cycle…

  2. The Art of Inclusion

    ERIC Educational Resources Information Center

    MacLean, Jan

    2008-01-01

    In this article, the author focuses on secondary students with cognitive or intellectual disabilities. She discusses that these students can be successfully included into the classroom community if schools can provide the appropriate tools such literacy in the arts. Here, she cites the number of reasons why arts can meet the varied needs and…

  3. Art in a Democracy.

    ERIC Educational Resources Information Center

    Blandy, Doug, Ed.; Congdon, Kristin G., Ed.

    Society truly cannot be democratic unless the educational systems function democratically. Art education has a role to play in this process. The perceptions of many different groups in a pluralistic society must be considered in a new multicultural approach to the teaching of art. A "Foreword" (June King McFee) and "Introduction" (Doug Blandy;…

  4. Looking into Oceanic Art.

    ERIC Educational Resources Information Center

    Parks, Nancy Schien; Maxedon, G. Edward

    1997-01-01

    Presents background material, suggested teaching activities, and four color plates illustrating the folk art of the Oceania islands (Melanesia, Micronesia, and Polynesia). The background material is incorporated into an interview with two Oceanic art specialists from Indiana University who discuss the culture of the islands. (MJP)

  5. Cybernetics, Art and Ideas.

    ERIC Educational Resources Information Center

    Reichardt, Jasia, Ed.

    The essays in this volume deal with the relationship of the computer and the arts, especially the exploration and demonstration of connections between creativity and technology, the links between scientific or mathematical approaches, intuitions, and the more irrational and oblique urges associated with the making of music, art, and poetry. The…

  6. The Art of Mexico.

    ERIC Educational Resources Information Center

    Saccardi, Marianne

    1997-01-01

    Provides an annotated bibliography of books for grades K and up which explores the folklore, poetry, fiction, and art of Mexico, and focuses on the Mayans and Aztecs and Diego Rivera and Frida Kahlo. Also suggests various research, reading, drama, music, social studies, physical education, and art activities and lists related videos and Internet…

  7. Comics as Art Therapy

    ERIC Educational Resources Information Center

    Mulholland, Matthew J.

    2004-01-01

    Spider Man and the Green Lantern are not the first images that most people conjure up when someone mentions "important art." In the world of fine art, comic books are often viewed as the bottom rung of the artistic ladder. In the early half of the 1900s, such an assessment would not have been unreasonable. With their rudimentary visuals and…

  8. Gerontology and the Arts.

    ERIC Educational Resources Information Center

    Jones, Jean Ellen, Ed.

    1982-01-01

    Reviews research on the place of the arts in programs for the elderly. In nine articles deals with characteristics and attitudes of adult students in art and music, dance therapy, and creativity. Discusses the aging advocacy movement and suggests it can be useful to program planners and gerontologists. (JAC)

  9. Performance Art: Kinetic Reproductions.

    ERIC Educational Resources Information Center

    Kassin, Cherie

    2001-01-01

    Provides an art project for use with eighth-grade students, who choose a work of art and recreate it in an interpretive and informative manner. Explains that students re-create the background of the artwork and then the students become a part of the painting via characters or objects. (CMK)

  10. Mola Art: Elementary

    ERIC Educational Resources Information Center

    Barsamian, Araxey

    2004-01-01

    In this brief article, the author describes a lesson plan on Mola art she used in her elementary classroom. Using four examples of Kuna Indian molas, the teacher introduced students to the beautiful, colorful, creative art form of molas. The Kuna women have been making these layered pieces of cloth for more than one hundred years. They use a…

  11. The Boutique Liberal Arts?

    ERIC Educational Resources Information Center

    Cohen, Scott

    2014-01-01

    The structure of higher education today, in conjunction with those actively trying to devalue a liberal arts degree in the public sphere, has set the table for what seems like a completely rational solution: finding a "niche." Broadly speaking, colleges offering a liberal arts education identify their "niche market" in terms of…

  12. Art, Society and Education

    ERIC Educational Resources Information Center

    Smith, Ralph A.

    1976-01-01

    In considering the relation of art with society the author comments on the ideas of the American philosopher, John Dewey, the art historian, Lord Kenneth Clark, a popular humanistic educator, Clifton Fadiman, and a major cultural critic, Jacques Barzun. (Author/RK)

  13. Arte Brasileno Erudito y Arte Brasileno Popular. (Brazilian Fine Art and Brazilian Popular Art)

    ERIC Educational Resources Information Center

    Valladares, Clarival Do Prado

    1969-01-01

    Class differences in Brazil explain the inequality between the art produced in the high strata of society and that originating in the economically inferior communities. Genuine expression of art degenerates for two reasons: the influence of modern industrial civilization and the tendency to satisfy the taste of the acquisitive group. (Author/MF)

  14. Visual Arts Research, 1994.

    ERIC Educational Resources Information Center

    Gardner, Nancy C., Ed.; Thompson, Christine, Ed.

    1994-01-01

    This document consists of the two issues of the journal "Visual Arts in Research" published in 1994. This journal focuses on the theory and practice of visual arts education from educational, historical, philosophical, and psychological perspectives. Number 1 of this volume includes the following contributions: (1) "Zooming in on the Qualitative…

  15. Culinary Arts Profile.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This chart is intended for use in documenting the fact that a student participating in a culinary arts program has achieved the performance standards specified in the Missouri Competency Profile for culinary arts. The chart includes space for recording basic student and instructor information and the student's on-the-job training and work…

  16. Art Education with Attitude

    ERIC Educational Resources Information Center

    Williams, Jere

    2016-01-01

    Purpose: This paper explores the way in which art education advances the goals of citizenship education. In the first section of this paper the similarities between ethical and aesthetic concepts will be outlined and the visual art symbol system will be carefully examined. Findings: It will be argued that the transference of a value-adaptive…

  17. Mathematics and Art

    ERIC Educational Resources Information Center

    Sharp, John

    2012-01-01

    This relationship is omnipresent to those who appreciate the shared attributes of these two areas of creativity. The dynamic nature of media, and further study, enable mathematicians and artists to present new and exciting manifestations of the "mathematics in art", and the "art in mathematics". The illustrative images of the relationship--that…

  18. Sustaining the Military Arts

    DTIC Science & Technology

    1989-09-01

    pidgin isn’t the antidote for strategic illiteracy. The military arts of strategy, operations, and tactics are merely the creative bridges that allow...Strategic pidgin isn’t the antidote for strategic illiteracy. about military arts and sciences is not merely a ’question of rhetorical clarity. Indeed

  19. Art Therapy: A Bibliography.

    ERIC Educational Resources Information Center

    Gantt, Linda, Comp.; Schmal, Marilyn Strauss, Comp.

    The bibliography on art therapy presents 1175 citations (1940-1973) drawn from searches of the medical indexes, computer systems of the National Library of Medicine and the National Institute of Mental Health, other bibliographies, Centre International de Documentation Concernant les Expressions Plastiques, and the American Journal of Art Therapy.…

  20. Art Supports Reading Comprehension

    ERIC Educational Resources Information Center

    Wurst, Douglas; Jones, Dana; Moore, Jim

    2005-01-01

    State-mandated, high-stakes testing is the primary means by which schools are judged. Whether this is a fair and accurate way of judging the performance of schools may remain in debate for a long time. Some school districts have gone so far as reducing or eliminating "special" classes--in particular art and music. Art teachers can help prepare…

  1. Socialization in the Arts.

    ERIC Educational Resources Information Center

    Orend, Richard J.

    Socialization is a process by which children learn the attitudes and orientations that will guide their behavior as adults. The analyses described in this report use this socialization model as a basis for describing the relationship between childhood and early adult arts-related experiences and current arts-related leisure participation. Three…

  2. Bringing Art to Schools.

    ERIC Educational Resources Information Center

    Butterfield, Eric

    2000-01-01

    Discusses the Art and Architecture program that involves K-12 students in the creation of public art. The program provides students with a sense of ownership through design and construction assignments created as part of an integrated curriculum, including mock bids and interpreting a floor plan into an elevation. Tips on how architects can start…

  3. Art in Public.

    ERIC Educational Resources Information Center

    Henry, David J.

    1991-01-01

    Examines four works of art, created for public spaces, to help students understand the value of public art in the community. Illustrates work by Claes Oldenburg and Coosje van Bruggen, Siah Armajani, Jackie Ferrara, and Deborah Butterfield. Outlines lesson activities for elementary and secondary students. (KM)

  4. Visual Arts Research, 1995.

    ERIC Educational Resources Information Center

    Gardner, Nancy C., Ed.; Thompson, Christine, Ed.

    1995-01-01

    This document consists of the two issues of the journal "Visual Arts Research" published in 1995. This journal focuses on the theory and practice of visual arts education from educational, historical, philosophical, and psychological perspectives. Number 1 of this volume includes the following contributions: (1) "Children's Sensitivity to…

  5. Tangrams: Puzzles of Art

    ERIC Educational Resources Information Center

    Fee, Brenda

    2009-01-01

    Challenging one's brain is the beginning of making great art. Tangrams are a great way to keep students thinking about their latest art project long after leaving the classroom. A tangram is a Chinese puzzle. The earliest known reference to tangrams appears in a Chinese book dated 1813, but the puzzles existed long before that date. The puzzle…

  6. I: Making Art

    ERIC Educational Resources Information Center

    Rosenfeld, Malke; Johnson, Marquetta; Plemons, Anna; Makol, Suzanne; Zanskas, Meghan; Dzula, Mark; Mahoney, Meg Robson

    2014-01-01

    Writing about the teaching artist practice should mean writing about art making. As both teacher and artist, the authors are required to be cognizant of their own art-making processes, both how it works and why it is important to them, in order to make this process visible to their students. They also need the same skills to write about how and…

  7. The Talking Art Museum

    ERIC Educational Resources Information Center

    Bundy, Jacqui

    2009-01-01

    Every year, fourth graders at Sterling Morton Elementary School in Ohio present a talking art museum for the school and community. In this article, the author describes a lesson on art history which culminates in an activity showcasing all the students' finished paintings in gold frames. A student stands behind the painting and pokes his or her…

  8. Walking, Talking Art Gallery.

    ERIC Educational Resources Information Center

    Piazza, Sheila

    2002-01-01

    Discusses a project that aimed at educating the public about art by bringing art to the people. Explains that students selected their favorite artwork and made a t-shirt displaying their artwork. States that the students went into their community and also created a mural. (CMK)

  9. The Art of Science.

    ERIC Educational Resources Information Center

    Jory, Tina

    1997-01-01

    Advocates introducing young students to realistic nature drawing as a way of integrating art and science. Describes an earthworm art project using a salt dough model and a realistic drawing. This activity should begin with a view of the real subject whenever possible before proceeding to the actual artwork. (AIM)

  10. Elegant Art Nouveau

    ERIC Educational Resources Information Center

    Fontes, Kris

    2005-01-01

    Gustav Klimt (1862-1918), a Viennese painter, was the founder of the Vienna Secession, the Austrian Art Nouveau movement. Art Nouveau is characterised by flowing lines and flat designs based on organic structures. This style is found in the symbolic aspect of Klimt's later work, and in the works of other artists of the late 1890s and early 1900s…

  11. Elementary Art Education. Focus.

    ERIC Educational Resources Information Center

    Caucutt, Allen, Ed.

    This collection of writings addresses the issue of developing a generation of aesthetically aware and involved individuals. Each of the 19 articles emphasizes art education as an indispensable force in the total school program. Together these writings form sources of inspiration and ideas for the elementary art teacher. Divided into four…

  12. Primary Art Resource Guide.

    ERIC Educational Resources Information Center

    Newton Unified School District 373, KS.

    GRADES OR AGES: Primary Grades. SUBJECT MATTER: Art. ORGANIZATION AND PHYSICAL APPEARANCE: The guide begins with a list of topics for art expression. The main body of the guide contains 15 color-coded sections on the following subjects: 1) mobiles and folded paper; 2) collage and photo montage; 3) square paper and mosaics; 4) wax paper and…

  13. Art & Science Grow Together

    ERIC Educational Resources Information Center

    Stellflue, Pat; Allen, Marie; Gerber, D. Timothy

    2005-01-01

    This article describes a collaborative effort that included a botany professor, an art teacher, and a science teacher, called,"Plants, Pots, and Paints." This interdisciplinary project was successful in connecting content across disciplines (science to art) and for motivating fourth-and fifth-grade students to create something beautiful both they…

  14. PLANNING THE ART ROOM.

    ERIC Educational Resources Information Center

    POPOLIZIO, VINCENT J.; AND OTHERS

    FACILITIES FOR CARRYING OUT AN ART PROGRAM MUST BE DESIGNED TO MEET THE NEEDS OF STUDENTS IN SCHOOL AND THOSE ENROLLED IN ADULT PROGRAMS. PROVISIONS MUST BE INCLUDED FOR PAINTING AND DRAWING, THE GRAPHIC ARTS, GENERAL CRAFTS, MODELING, SCHULPTURING, PHOTOGRAPHY, SERIGRAPHY, AND MECHANICAL DRAWING. WORK CENTERS AND TRAFFIC FLOW NEED CAREFUL…

  15. When Curriculum Meets Art

    ERIC Educational Resources Information Center

    Giardina, Nicola

    2016-01-01

    A three-year grant program at the Metropolitan Museum of Art in New York City encourages teachers to draw connections between curricular topics and works of art. In this article, museum educator Nicola Giardina describes how the program uses inquiry-based lessons to create meaningful learning experiences for underserved students. She highlights…

  16. Art and Thinking Skills.

    ERIC Educational Resources Information Center

    McCoubrey, Sharon

    1994-01-01

    This theme issue reviews and confirms the connection between thinking skills and art education. Articles offer possible teaching approaches and specific lesson plans dealing with thinking skills. The issue includes: (1) "Editor's View" (Sharon McCoubrey); (2) "Critical and Creative Thinking and Making Art" (Carol Fineberg); (3)…

  17. The Art of Education

    ERIC Educational Resources Information Center

    Abdul-Alim, Jamaal

    2012-01-01

    Dr. Robert F. Sabol, professor of visual and performing arts at Purdue University says that art education has suffered some serious setbacks since No Child Left Behind--the landmark federal education law that put a greater emphasis on high-stakes testing. Since No Child Left Behind became law in 2002, school systems--under increased pressure to…

  18. Old Friends, Bookends: Art Educators and Art Therapists

    ERIC Educational Resources Information Center

    Allison, Amanda

    2013-01-01

    This viewpoint presents a reflection on a meaningful relationship that developed between a university art education department and a local art therapy studio. Such partnerships are desirable and mutually beneficial because of the significant interest many art educators have in the field of art therapy. The author, an art educator, describes the…

  19. Support for Arts Education. State Arts Agency Fact Sheet

    ERIC Educational Resources Information Center

    National Assembly of State Arts Agencies, 2011

    2011-01-01

    Supporting lifelong learning in the arts is a top priority for state arts agencies. By supporting arts education in the schools, state arts agencies foster young imaginations, address core academic standards, and promote the critical thinking and creativity skills essential to a 21st century work force. State arts agencies also support…

  20. Authenticity in Anatomy Art.

    PubMed

    Adkins, Jessica

    2017-01-12

    The aim of this paper is to observe the evolution and evaluate the 'realness' and authenticity in Anatomy Art, an art form I define as one which incorporates accurate anatomical representations of the human body with artistic expression. I examine the art of 17th century wax anatomical models, the preservations of Frederik Ruysch, and Gunther von Hagens' Body Worlds plastinates, giving consideration to authenticity of both body and art. I give extra consideration to the works of Body Worlds since the exhibit creator believes he has created anatomical specimens with more educational value and bodily authenticity than ever before. Ultimately, I argue that von Hagens fails to offer Anatomy Art 'real human bodies,' and that the lack of bodily authenticity of his plastinates results in his creations being less pedagogic than he claims.

  1. Reference dosimetry on TomoTherapy: an addendum to the 1990 UK MV dosimetry code of practice

    NASA Astrophysics Data System (ADS)

    Thomas, S. J.; Aspradakis, M. M.; Byrne, J. P.; Chalmers, G.; Duane, S.; Rogers, J.; Thomas, R. A. S.; Tudor, G. S. J.; Twyman, N.

    2014-03-01

    The current UK code of practice for high-energy photon therapy dosimetry (Lillicrap et al 1990 Phys. Med. Biol. 35 1355-60) gives instructions for measuring absorbed dose to water under reference conditions for megavoltage photons. The reference conditions and the index used to specify beam quality require that a machine be able to set a 10 cm × 10 cm field at the point of measurement. TomoTherapy machines have a maximum collimator setting of 5 cm × 40 cm at a source to axis distance of 85 cm, making it impossible for users of these machines to follow the code. This addendum addresses the specification of reference irradiation geometries, the choice of ionization chambers and the determination of dosimetry corrections, the derivation of absorbed dose to water calibration factors and choice of appropriate chamber correction factors, for carrying out reference dosimetry measurements on TomoTherapy machines. The preferred secondary standard chamber remains the NE2611 chamber, which with its associated secondary standard electrometer, is calibrated at the NPL through the standard calibration service for MV photon beams produced on linear accelerators with conventional flattening filters. Procedures are given for the derivation of a beam quality index specific to the TomoTherapy beam that can be used in the determination of a calibration coefficient for the secondary standard chamber from its calibration certificate provided by the NPL. The recommended method of transfer from secondary standard to field instrument is in a static beam, at a depth of 5 cm, by sequential substitution or by simultaneous side by side irradiation in either a water phantom or a water-equivalent solid phantom. Guidance is given on the use of a field instrument in reference fields.

  2. Essays on Art and Education.

    ERIC Educational Resources Information Center

    Geering, Adrian D.

    This document contains 10 essays which focus on various aspects of art education in the elementary, secondary, and postsecondary educational institutions of Australia. Titles are "Art Education in Australia," The Visual Arts and Society,""The Parallels Between Primitive Art and Child Art,""The Mildura Sculpture…

  3. Dumbing down Art in America.

    ERIC Educational Resources Information Center

    Swanger, David

    1993-01-01

    Argues that art education does not meet its objective of creativity and instead is replicative rather than original. Contends educational journals such as "Instructor" and "Good Apple" reduce fine art to its antithesis, popular art. Concludes that art educators must work diligently to protect fine art from becoming "dumb…

  4. Whither Programs and Arts Policy?

    ERIC Educational Resources Information Center

    Colwell, Richard

    2005-01-01

    Are these halcyon days for arts education, or are we at least in an auspicious or opportune period for the field? One encounters good news on a daily basis; arts advocates and policymakers are actively promoting the arts and arts education. Yet many in the arts education community do not feel that they are experiencing a renaissance period. What…

  5. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”

    PubMed Central

    Bodei, L.; Giammarile, F.; Linden, O.; Luster, M.; Oyen, W. J. G.; Tennvall, J.

    2007-01-01

    Introduction Radionuclide therapy has distinct similarities to, but also profound differences from external radiotherapy. Review This review discusses techniques and results of previously developed dosimetry methods in thyroid carcinoma, neuro-endocrine tumours, solid tumours and lymphoma. In each case, emphasis is placed on the level of evidence and practical applicability. Although dosimetry has been of enormous value in the preclinical phase of radiopharmaceutical development, its clinical use to optimise administered activity on an individual patient basis has been less evident. In phase I and II trials, dosimetry may be considered an inherent part of therapy to establish the maximum tolerated dose and dose–response relationship. To prove that dosimetry-based radionuclide therapy is of additional benefit over fixed dosing or dosing per kilogram body weight, prospective randomised phase III trials with appropriate end points have to be undertaken. Data in the literature which underscore the potential of dosimetry to avoid under- and overdosing and to standardise radionuclide therapy methods internationally are very scarce. Developments In each section, particular developments and insights into these therapies are related to opportunities for dosimetry. The recent developments in PET and PET/CT imaging, including micro-devices for animal research, and molecular medicine provide major challenges for innovative therapy and dosimetry techniques. Furthermore, the increasing scientific interest in the radiobiological features specific to radionuclide therapy will advance our ability to administer this treatment modality optimally. PMID:17268773

  6. ESR spectrometry: a future-oriented tool for dosimetry and dating.

    PubMed

    Regulla, Dieter F

    2005-02-01

    ESR spectroscopy is currently taking root as a key technology in dosimetry, dating and imaging. In dosimetry, it competes with cytometry in the fields of biological dosimetry and retrospective dosimetry, leads in high-level reference and routine dosimetry, is high-ranking among the methods to identify radiation preserved foods, represents a method of choice to date geological, archaeological and paleontological materials back millions of years, and has demonstrated capacity for imaging. Further scientific and technological progress as predicted in the recent past (Appl. Radiat. Isot. 52 (2000) 1023) is reviewed here. Additionally, the review is expanded to include international reports and recommendations on ESR dosimetry and dose reconstruction, under way at the American Society for Testing and Materials (ASTM), the International Organisation of Standards (ISO), the International Atomic Energy Agency (IAEA) and the International Commission on Radiation Units and Measurements (ICRU). Emphasis is placed on interpretation of tooth enamel doses in terms of organ and effective doses, using CT-based virtual humans. The future of EPR spectroscopy for in situ dose measurements is noted, depicting a non-destructive in vivo dosimetry applicable directly to individuals, but also to hominid and animal fossils for direct dating.

  7. The dosimetry system DS86 and the neutron discrepancy in Hiroshima--historical review, present status, and future options.

    PubMed

    Rühm, W; Kellerer, A M; Korschinek, G; Faestermann, T; Knie, K; Rugel, G; Kato, K; Nolte, E

    1998-12-01

    The historical development of the dosimetry systems for Hiroshima and Nagasaki is outlined from the time immediately after the A-bomb explosions to the publication of the dosimetry system DS86 in 1987, and the present status of the so-called Hiroshima neutron discrepancy is summarized. Several long-lived radionuclides are discussed with regard to their production by neutrons from the A-bomb explosions. With the exception of 63Ni, these radionuclides have not, up to now, been measured in samples from Hiroshima and Nagasaki. Two of them, 63Ni in copper samples and 39Ar in granite samples, were predominantly produced by fast neutrons. 63Ni can be determined by accelerator mass spectrometry with a gas-filled analyzing magnet. It should be measurable, in the near future, in copper samples up to 1500 m from the hypocenter in Hiroshima. 39Ar can be measured in terms of low-level beta-counting. This should be feasible up to a distance of about 1000 m from the hypocenter. Three radionuclides, 10Be, 14C, and 59Ni, were produced predominantly by thermal neutrons with smaller fractions due to the epithermal and fast neutrons, which contribute increasingly more at larger distances from the hypocenter. State-of-the-art accelerator mass spectrometry is likely to permit the determination of 10Be close to the hypocenter and of 14C up to a distance of about 1000 m. 59Ni should be detectable up to a distance of about 1000 m in terms of accelerator mass spectrometry with a gas-filled magnet. The measurements of 10Be, 14C, 39Ar, 59Ni -- and potentially of 131Xe -- can be performed in the same granitic sample that was already analyzed for 36Cl, 41Ca, 6Co, 152Eu, and 154Eu. This will provide extensive information on the neutron spectrum at the specified location, and similarly complete analyses can conceivably be performed on granite samples at other locations.

  8. Exact ART: A Complete Implementation of an ART Network.

    PubMed

    Molenaar, Peter C.M.; Raijmakers, Maartje E.J.

    1997-06-01

    In this article we introduce a continuous time implementation of adaptive resonance theory (ART). ART designed by Grossberg concerns neural networks that self-organize stable pattern recognition categories of arbitrary sequences of input patterns. In contrast to the current implementations of ART we introduce a complete implementation of an ART network, including all regulatory and logical functions, as a system of ordinary differential equations capable of stand-alone running in real time. This means that transient behavior is kept in tact. This implementation of ART is based on ART 2 and is called Exact ART. Exact ART includes an implementation of a gated dipole field and an implementation of the orienting sub-system. The most important features of Exact ART, which are the design principles of ART 2, are proven mathematically. Also simulation studies show that Exact ART self-organizes stable recognition codes that agree with the classification behavior of ART 2. Copyright 1997 Elsevier Science Ltd.

  9. SCALING PARAMETERS FOR HOT-PARTICLE BETA DOSIMETRY.

    PubMed

    Mangini, Colby D; Hamby, David M

    2016-12-01

    Scaling of dose-point kernel (DPK) values for beta particles transmitted by high-Z sources will overestimate dose at shallow depths while underestimating dose at greater depths due to spectral hardening. A new model has been developed based on a determination of the amount of monoenergetic electron absorption that occurs in a given source thickness through the use of EGSnrc (Electron Gamma Shower) Monte Carlo simulations. Integration over a particular beta spectrum provides the beta-particle DPK following self-absorption as a function of source thickness and radial depth in water, thereby accounting for spectral hardening that may occur in higher-Z materials. Beta spectra of varying spectral shapes and endpoint energies were used to test the model for select source materials with 7.42 ≤ Z ≤ 94. The results demonstrate that significant improvements can be made to DPK-based dosimetry models when dealing with high-Z volumetric sources. This new scaling model is currently being used to improve the accuracy of the beta-dosimetry calculations in VARSKIN 5.

  10. The PTB underground laboratory for dosimetry and spectrometry

    PubMed

    Neumaier; Arnold; Bohm; Funck

    2000-07-01

    In 1991, the Physikalisch-Technische Bundesanstalt established an underground laboratory for dosimetry and spectrometry (UDO) at the Asse salt mine, near Braunschweig. Due to the depth of 925 m below ground (equivalent to about 2100 m of water), the cosmic ray muon intensity in this facility is reduced by more than 5 orders of magnitude. In addition, the low specific activity of the pure rock salt and a low concentration of radon lead to an extremely low ambient dose equivalent rate of less than 1 nSv/h. The UDO facility is therefore well suited for dosimetry at very low dose rates, as well as for Ultra-Low-Background (ULB) gamma-ray spectrometry. In 1998, a coaxial low-background HPGe-detector (88% relative efficiency, FWHM 2.0 keV at 1.33 MeV) with an extended shielding (20 cm low-activity lead, 1 cm electrolytic copper, N2-flushing) was installed at UDO; the count rate per mass of germanium, integrated over the energy range from 40 to 2750 keV, was measured to be 0.012 s(-1) kg(-1). Results from test measurements and first applications are reported. The design of a ULB gamma-detector system, presently under construction, is described.

  11. Hanford Technical Basis for Multiple Dosimetry Effective Dose Methodology

    SciTech Connect

    Hill, Robin L.; Rathbone, Bruce A.

    2010-08-01

    The current method at Hanford for dealing with the results from multiple dosimeters worn during non-uniform irradiation is to use a compartmentalization method to calculate the effective dose (E). The method, as documented in the current version of Section 6.9.3 in the 'Hanford External Dosimetry Technical Basis Manual, PNL-MA-842,' is based on the compartmentalization method presented in the 1997 ANSI/HPS N13.41 standard, 'Criteria for Performing Multiple Dosimetry.' With the adoption of the ICRP 60 methodology in the 2007 revision to 10 CFR 835 came changes that have a direct affect on the compartmentalization method described in the 1997 ANSI/HPS N13.41 standard, and, thus, to the method used at Hanford. The ANSI/HPS N13.41 standard committee is in the process of updating the standard, but the changes to the standard have not yet been approved. And, the drafts of the revision of the standard tend to align more with ICRP 60 than with the changes specified in the 2007 revision to 10 CFR 835. Therefore, a revised method for calculating effective dose from non-uniform external irradiation using a compartmental method was developed using the tissue weighting factors and remainder organs specified in 10 CFR 835 (2007).

  12. Dosimetry in Mammography: Average Glandular Dose Based on Homogeneous Phantom

    NASA Astrophysics Data System (ADS)

    Benevides, Luis A.; Hintenlang, David E.

    2011-05-01

    The objective of this study was to demonstrate that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 and 46 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. The clinical dosimetry protocol developed in this study can reliably predict the AGD imparted to an individual patient during a routine screening mammogram.

  13. Dosimetry in Mammography: Average Glandular Dose Based on Homogeneous Phantom

    SciTech Connect

    Benevides, Luis A.; Hintenlang, David E.

    2011-05-05

    The objective of this study was to demonstrate that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 and 46 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. The clinical dosimetry protocol developed in this study can reliably predict the AGD imparted to an individual patient during a routine screening mammogram.

  14. Neutron discrepancies in the DS86 Hiroshima dosimetry system.

    PubMed

    Straume, T; Egbert, S D; Woolson, W A; Finkel, R C; Kubik, P W; Gove, H E; Sharma, P; Hoshi, M

    1992-10-01

    More than a decade has passed since a complete revision was initiated of the radiation doses received by survivors of the Hiroshima and Nagasaki atomic bombings. The new dosimetry system (DS86) was completed in 1986 and adopted shortly thereafter. Overall, DS86 was noted to be a clear improvement over the old dosimetry system. However, based on limited validation measurements, troublesome inconsistencies were suggested for neutrons. Since 1986, a substantial number of additional neutron activation measurements have been made in mineral and metal samples from Hiroshima. Importantly, a large number of measurements have now been made at distances beyond 1 km. Here, inconsistencies between neutron activation measurements and DS86 calculations for Hiroshima are examined using all available measurement data, including new measurements for 36Cl which extend the measurement range to more than 1.7 km from the epicenter, and Monte Carlo modeling calculations for each sample measured. Results show that thermal neutron activation measured beyond approximately 1 km in Hiroshima (at distances most relevant for radiation-risk evaluation) is two to 10, or more, times higher than that calculated based on DS86. Similar trends observed when comparing results by several independent measurement laboratories, using different analytical methods, suggest that the DS86 calculations for low-energy neutrons are in error. Because of the importance of the Hiroshima data in radiation risk evaluation, this large discrepancy is in need of resolution.

  15. Noninvasive dosimetry and monitoring of TTT using spectral imaging

    NASA Astrophysics Data System (ADS)

    Schuele, G.; Molnar, F. E.; Yellachich, D.; Vitkin, E.; Perelman, L. T.; Palanker, D.

    2006-02-01

    Transpupillary thermo therapy (TTT) is a slow (60 seconds) photothermal treatment of the fundus with a near-infrared (780-810nm) laser irradiating a large spot (0.5- 1. mm) on the retina. Due to high variability in ocular tissue properties and the lack of immediately observable outcome of the therapy, a real-time dosimetry is highly desirable. We found that fundus spectroscopy and spectrally-resolved imaging allow for non-invasive real-time monitoring and dosimetry of TTT. A 795nm laser was applied in rabbit eyes for 60 seconds using a 0.86mm retinal spot diameter. The fundus was illuminated with a broadband polarized light, and its reflectance spectra were measured in parallel and cross-polarizations. The fundus was also imaged in selected spectral domains. At irradiances that do not create ophthalmoscopically visible lesions the fundus reflectance increases at the wavelengths corresponding to absorption of the oxygenated blood indicating the reduced concentration of blood in the choroid. Vasoconstrictive response of the choroidal and retinal vasculature during TTT was also directly observed using spectrally-resolved imaging. At irradiances that produce ophthalmoscopically visible lesions a rapid reduction of the fundus reflectance was observed within the first 5-10 seconds of the exposure even when the visible lesions developed only by the end of the 60 second exposure. No visible lesions were produced where the laser was terminated after detection of the reduced scattering but prior to appearance of the enhanced scattering.

  16. Luminescence dosimetry using building materials and personal objects.

    PubMed

    Göksu, H Y; Bailiff, I K

    2006-01-01

    There is a growing public awareness of the risk of accidental radiation exposure due to ageing nuclear power installations, illegal dumping of nuclear waste and terrorist activities, and of the consequential health risks to populations in addition to social and economic disturbance extending beyond national boundaries. In the event of catastrophic incidents where no direct radiation monitoring data are available, the application of retrospective dosimetry techniques such as luminescence may be employed with materials from the immediate environment to confirm values of cumulative gamma dose to compare with or augment computational modeling calculations. Application of the method to post-Chernobyl studies has resulted in the development of new procedures using fired building materials with the capability to measure cumulative doses owing to artificial sources of gamma radiation as low as 20 mGy. Combined with Monte Carlo simulations of photon transport, values of cumulative dose in brick can be presented in a form suitable for use in dose-reconstruction efforts. Recent investigations have also shown that certain types of cementitious building material, including concrete, mortar and plaster, and personal objects in the form of telephone cards containing microchips and dental ceramics have the potential to be used for retrospective dosimetry. Examples of the most recent research concerning new materials and examples of application to sites in the Former Soviet Union are discussed.

  17. History of personal dosimetry performance testing in the United States.

    PubMed

    Soares, C G

    2007-01-01

    The basis for personal dosimetry performance testing in the United States is ANSI/HPS N13.11 (2001). Now in its third edition, this standard has been in place since 1983. Testing under this standard is administered by the National Voluntary Accreditation Program (NVLAP), and accreditation of dosimetry processors under this program is required by US Nuclear Regulatory Commission (NRC) regulations. The US Department of Energy (DOE) also maintains a testing program for its laboratories and contractors, administered by the Department of Energy Laboratory Accreditation Program (DOELAP). A focus in recent years has been the modification of ANSI/HPS N13.11 to allow acceptance by both testing programs in order to bring harmonisation to US personal dosemeter processing testing. Since there is no type testing program in the US for personal dosemeters, the testing philosophy of ANSI N13.11 has always combined elements of type testing and routine performance testing. This philosophy is explored in detail in this presentation, along with trends in the development of the document to its present state. In addition, a look will be taken at what the future holds for the next revision of the document, scheduled to begin in 2005.

  18. Energy response improvement for photon dosimetry using pulse analysis

    NASA Astrophysics Data System (ADS)

    Zaki, Dizaji H.

    2016-02-01

    During the last few years, active personal dosimeters have been developed and have replaced passive personal dosimeters in some external monitoring systems, frequently using silicon diode detectors. Incident photons interact with the constituents of the diode detector and produce electrons. These photon-induced electrons deposit energy in the detector's sensitive region and contribute to the response of diode detectors. To achieve an appropriate photon dosimetry response, the detectors are usually covered by a metallic layer with an optimum thickness. The metallic cover acts as an energy compensating shield. In this paper, a software process is performed for energy compensation. Selective data sampling based on pulse height is used to determine the photon dose equivalent. This method is applied to improve the energy response in photon dosimetry. The detector design is optimized for the response function and determination of the photon dose equivalent. Photon personal dose equivalent is determined in the energy range of 0.3-6 MeV. The error values of the calculated data for this wide energy range and measured data for 133Ba, 137Cs, 60Co and 241Am-Be sources respectively are up to 20% and 15%. Fairly good agreement is seen between simulation and dose values obtained from our process and specifications from several photon sources.

  19. Radiation dosimetry using three-dimensional optical random access memories

    NASA Technical Reports Server (NTRS)

    Moscovitch, M.; Phillips, G. W.

    2001-01-01

    Three-dimensional optical random access memories (3D ORAMs) are a new generation of high-density data storage devices. Binary information is stored and retrieved via a light induced reversible transformation of an ensemble of bistable photochromic molecules embedded in a polymer matrix. This paper describes the application of 3D ORAM materials to radiation dosimetry. It is shown both theoretically and experimentally, that ionizing radiation in the form of heavy charged particles is capable of changing the information originally stored on the ORAM material. The magnitude and spatial distribution of these changes are used as a measure of the absorbed dose, particle type and energy. The effects of exposure on 3D ORAM materials have been investigated for a variety of particle types and energies, including protons, alpha particles and 12C ions. The exposed materials are observed to fluoresce when exposed to laser light. The intensity and the depth of the fluorescence is dependent on the type and energy of the particle to which the materials were exposed. It is shown that these effects can be modeled using Monte Carlo calculations. The model provides a better understanding of the properties of these materials. which should prove useful for developing systems for charged particle and neutron dosimetry/detector applications. c2001 Published by Elsevier Science B.V.

  20. Total lymphoid irradiation in the Wistar rat: technique and dosimetry

    SciTech Connect

    Hoogenhout, J.; Kazem, I.; de Jong, J.

    1983-01-01

    The technical and dosimetric aspects of total lymphoid irradiation (TLI) in the Wistar rat were evaluated as part of a set-up to develop a new model for tumor xenotransplantation. Information obtained from anatomical dissections, radionuclide imaging of the spleen, lymphography and chromolymphography was used to standardize the localization portals cut out in a lead plate. The two portals encompassed the lymphoid tissue above and below the diaphragm. A specially designed masonite phantom was used to measure the dose distribution in the simulated target volumes. Ionization chamber dosimetery, thermoluminescence dosimetry and film densitometry were used for measuring exposure and absorbed dose. Irradiation was performed with 250 kV X rays (HVL 3.1 mm Cu). The dose rate was regulated by adjusting the treatment distance. The dose inhomogeneity measured in the target volumes varied between 80-100%. The side scatter dose to non target tissues under the shielded area between the two portals ranged between 20-30%. The technique and dosimetry of total lymphoid irradiation in Wistar rats are now standardized and validated and pave the way for tumor xenotransplantation experiments.

  1. Diamond dosimetry: Outcomes of the CANDIDO and CONRAD INFN projects

    NASA Astrophysics Data System (ADS)

    Bucciolini, M.; Borchi, E.; Bruzzi, M.; Casati, M.; Cirrone, P.; Cuttone, G.; De Angelis, C.; Lovik, I.; Onori, S.; Raffaele, L.; Sciortino, S.

    2005-10-01

    This paper reviews the main results of the study, carried out in the framework of the Italian National Institute of Nuclear Physics (INFN, Istituto Nazionale di Fisica Nucleare) projects, namely CANDIDO and CONRAD, on natural and synthetic diamond-based dosimeters for clinical radiotherapy. Characteristics of diamond such as radiation hardness, high sensitivity, tissue equivalence, etc., make this material interesting for dosimetry applications. For some years, natural diamonds have been commercially available for on-line radiotherapy dosimetry. Nevertheless, recent developments in the "Chemical Vapour Deposition" (CVD) technique have addressed the attention on synthetic samples that potentially could be grown at low cost and with features suitable for dosimetric use. Several samples, differently grown and with different electrical contacts, have been compared by measuring their current response during irradiation with high-energy photon, electron and proton beams. Properties of dosimetric interest such as linearity, pre-irradiation dose, dose rate dependence, stability and rise time have been investigated. The results obtained so far within the INFN collaboration demonstrate the suitability of natural diamond detectors for many radiotherapy applications and the great potential of CVD diamond-based devices even though, at present, the commercial natural diamond dosimeters have a better behaviour with respect to the synthetic samples. Further efforts have to be made mainly to improve the dynamic of response and performance stability.

  2. The fission track detector revisited: application to individual neutron dosimetry.

    PubMed

    Prêtre, S; Aroua, A; Boschung, M; Grecescu, M; Valley, J F; Wernli, C

    1996-08-01

    A system based on fission fragment tracks had previously been developed for individual neutron dosimetry. The dosimeter detects both fast neutrons by means of the 232Th(n,f) reaction, and thermal and albedo neutrons by means of the 235U(n,f) reaction. The fission tracks produced in a plastic foil are chemically etched and counted by spark discharges. The response of the dosimeter has recently been re-investigated in 36 different neutron fields: monoenergetic beams, reference fields near isotopic sources, and radiation fields encountered in a variety of situations inside nuclear power plants. The results obtained have been compared to those computed by convolution of the neutron spectra with the energy response functions of the dosimeters. In practical situations, it is essential to know the shape of the neutron spectrum, approximately at least, in order to perform an acceptably accurate dose evaluation. For that purpose, the neutron fields encountered inside nuclear power plants have been grouped into four categories, for which algorithms for dose evaluation have been developed. Concerning the neutron equivalent dose, the error associated with this approach does not exceed a factor of 2, a performance which is comparable to other detection systems used in the field of individual neutron dosimetry.

  3. Body growth considerations in age-specific dosimetry. Final report

    SciTech Connect

    Eckerman, K.F.

    1993-09-30

    This report describes the manner in which the age-specific dosimetric calculations of the International Commission on Radiological Protection (ICRP) addressed changes in organ size that occur with age. The approach involves an interpolation of dosimetric information derived for six reference individuals using the inverse of the total body mass as the interpolation variable. An alternative formulation is investigated that employs a functional representation of the organ mass as a function of age in conjunction with an explicit formulation of the dosimetric factors in terms of organ mass. Using an exponential-logistic growth function as suggested by Walker, this report demonstrates, through application to the dosimetry of radioiodines in the thyroid, that the alternative formulation can be formulated and implemented. Although either approach provides a workable basis for age-specific dosimetry, it is clear that the functional representation of organ growth has some attractive features. However, without question, the major difficulty is the quality and quantity of data available to address the age- and gender-specific parameters in the dosimetric formulations.

  4. Internal dosimetry: towards harmonisation and coordination of research.

    PubMed

    Lopez, M A; Etherington, G; Castellani, C M; Franck, D; Hurtgen, C; Marsh, J W; Nosske, D; Breustedt, B; Blanchardon, E; Andrasi, A; Bailey, M R; Balashazy, I; Battisti, P; Bérard, P; Birchall, A; Broggio, D; Challeton-de-Vathaire, C; Cruz-Suarez, R; Doerfel, H; Giussani, A; Hodgson, A; Koukouliou, V; Kramer, G H; Le Guen, B; Luciani, A; Malatova, I; Molokanov, A; Moraleda, M; Muikku, M; Oeh, U; Puncher, M; Rahola, T; Stradling, N; Vrba, T

    2008-01-01

    The CONRAD Project is a Coordinated Network for Radiation Dosimetry funded by the European Commission 6th Framework Programme. The activities developed within CONRAD Work Package 5 ('Coordination of Research on Internal Dosimetry') have contributed to improve the harmonisation and reliability in the assessment of internal doses. The tasks carried out included a study of uncertainties and the refinement of the IDEAS Guidelines associated with the evaluation of doses after intakes of radionuclides. The implementation and quality assurance of new biokinetic models for dose assessment and the first attempt to develop a generic dosimetric model for DTPA therapy are important WP5 achievements. Applications of voxel phantoms and Monte Carlo simulations for the assessment of intakes from in vivo measurements were also considered. A Nuclear Emergency Monitoring Network (EUREMON) has been established for the interpretation of monitoring data after accidental or deliberate releases of radionuclides. Finally, WP5 group has worked on the update of the existing IDEAS bibliographic, internal contamination and case evaluation databases. A summary of CONRAD WP5 objectives and results is presented here.

  5. Vapor Dosimetry in the Nose and Upper Airways of Humans

    SciTech Connect

    Thrall, Karla D.

    2010-04-01

    A number of methodologies have been reported for measuring vapor uptake efficiencies in the upper respiratory tract of experimental animals (1). Hybrid computational fluid dynamic (CFD) and physiologically based pharmacokinetic (PBPK) models, as described by Frederick et al. (2) that incorporate information on the anatomy of both rats and humans have been used to improve interspecies dosimetric corrections for human health risk assessments. However, validation of these models requires sufficient experimental data, and robust data defining the role of the upper respiratory tract in modulating the absorption of gases and vapors in human volunteers, are lacking. A survey of the available literature shows a limited number of experimental studies to evaluate the dosimetry of vapors in the nose and upper airways of humans. The scarcity of literature data undoubtedly reflects the complication of conducting controlled studies in human volunteers, and with the exception of a few limited studies, little experimental data is available. This chapter will highlight studies specific for nasal dosimetry data from humans and briefly review modeling approaches for predictive extrapolations from animal data.

  6. The Lesbian Art Project.

    PubMed

    Klein, Jennie

    2010-01-01

    Critics and artists influenced by the tenets of queer theory have dismissed much of the artwork made in the 1970s from a lesbian feminist perspective. The result has been very little being known or written about this pioneering work. This article is concerned with exploring an often overlooked aspect of lesbian art history: the activities and events associated with the Lesbian Art Project (LAP) founded by Terry Wolverton and Arlene Raven at the Woman's Building in Los Angeles. I argue that what is most significant about the LAP is the way in which the participants articulated lesbian identity and lesbian community through performance, art making, and writing.

  7. Dosimetry of x-ray beams: The measure of the problem

    SciTech Connect

    de Castro, T.M.

    1986-08-01

    This document contains the text of an oral presentation on dosimetry of analytical x-ray equipment presented at the Denver X-Ray Conference. Included are discussions of sources of background radiation, exposure limits from occupational sources, and the relationship of these sources to the high dose source of x-rays found in analytical machines. The mathematical basis of x-ray dosimetry is reviewed in preparation for more detailed notes on personnel dosimetry and the selection of the most appropriate dosimeter for a specific application. The presentation concludes with a discussion common to previous x-ray equipment accidents. 2 refs. (TEM)

  8. Sensitivity of linear CCD array based film scanners used for film dosimetry

    SciTech Connect

    Devic, Slobodan; Wang Yizhen; Tomic, Nada; Podgorsak, Ervin B.

    2006-11-15

    Film dosimetry is commonly performed by using linear CCD array transmission optical densitometers. However, these devices suffer from a variation in response along the detector array. If not properly corrected for, this nonuniformity may lead to significant overestimations of the measured dose as one approaches regions close to the edges of the scanning region. In this note, we present measurements of the spatial response of an AGFA Arcus II document scanner used for radiochromic film dosimetry. Results and methods presented in this work can be generalized to other CCD based transmission scanners used for film dosimetry employing either radiochromic or radiographic films.

  9. Dosimetry analyses of the Ringhals 3 and 4 reactor pressure vessels

    SciTech Connect

    Kulesza, J.A.; Fero, A.H.; Rouden, J.; Green, E.L.

    2011-07-01

    A comprehensive series of neutron dosimetry measurements consisting of surveillance capsules, reactor pressure vessel cladding samples, and ex-vessel neutron dosimetry has been analyzed and compared to the results of three-dimensional, cycle-specific neutron transport calculations for the Ringhals Unit 3 and Unit 4 reactors in Sweden. The comparisons show excellent agreement between calculations and measurements. The measurements also demonstrate that it is possible to perform retrospective dosimetry measurements using the {sup 93}Nb (n,n') {sup 93m}Nb reaction on samples of 18-8 austenitic stainless steel with only trace amounts of elemental niobium. (authors)

  10. US Department of Energy Laboratory Accredition Program (DOELAP) for personnel dosimetry systems

    SciTech Connect

    Cummings, F.M.; Carlson, R.D.; Loesch, R.M.

    1993-12-31

    Accreditation of personnel dosimetry systems is required for laboratories that conduct personnel dosimetry for the U.S. Department of Energy (DOE). Accreditation is a two-step process which requires the participant to pass a proficiency test and an onsite assessment. The DOE Laboratory Accreditation Program (DOELAP) is a measurement quality assurance program for DOE laboratories. Currently, the DOELAP addresses only dosimetry systems used to assess the whole body dose to personnel. A pilot extremity DOELAP has been completed and routine testing is expected to begin in January 1994. It is expected that participation in the extremity program will be a regulatory requirement by January 1996.

  11. Arts Teachers' Perceptions and Attitudes on Arts Integration While Participating in a Statewide Arts Integration Initiative

    ERIC Educational Resources Information Center

    May, Brittany Nixon; Robinson, Nicole R.

    2016-01-01

    The purpose of this study was to examine the perceptions and attitudes of the Beverley Taylor Sorenson Arts Learning Program (BTSALP) arts specialists on arts integration. BTSALP arts specialists (N = 50) throughout the state of Utah responded to a 20-item survey. Results indicated that a majority of BTSALP arts specialists believe that arts…

  12. California: Art on the Road.

    ERIC Educational Resources Information Center

    Mark, David

    1982-01-01

    Describes a touring exhibit of posters which has been used to promote cultural events in California since 1976. Many art forms and disciplines were represented, including all the visual arts, photography, film, folk arts, music, theater, and dance. (AM)

  13. Workshop: Teaching Primitive Arts.

    ERIC Educational Resources Information Center

    Jordison, Jerry

    1999-01-01

    Discusses the concrete and spiritual aspects of teaching workshops on survival skills or primitive arts. Gives details on lostproofing, or ways to teach a child not to get lost in the outdoors; building a survival shelter; and wilderness cooking. (CDS)

  14. Interviewing Art Linkletter

    ERIC Educational Resources Information Center

    American Vocational Journal, 1974

    1974-01-01

    The article reports on the assignments and activities of Dean Griffin, one of four American Vocational Association associates directors; highlighted is a conversation of Griffin's with Art Linkletter, who addressed the Minnesota Vocational Association in October. (AJ)

  15. Expressing Culture through Art.

    ERIC Educational Resources Information Center

    Nicholson, Jeffrey A.

    2002-01-01

    Describes an elementary art project in which students create a "mud cloth." States that the project was inspired by the clothing worn by teachers at the City School District (Rochester, New York). Includes a list of additional resources. (CMK)

  16. Building Arts Partnerships.

    ERIC Educational Resources Information Center

    Soper, Stephanie

    1993-01-01

    Discusses the activities of the Education Department at the John F. Kennedy Center for the Performing Arts, including the local education outreach program and the Partners in Education program promoting school-community partnerships. (SR)

  17. Assisted Reproductive Technology (ART)

    MedlinePlus

    ... Control and Prevention compiles annual reports on the success rates of ART. These reports can be accessed ... the chance of pregnancy in some cases. The success of IUI depends on the cause of the ...

  18. Sandpainting: A Healing Art

    ERIC Educational Resources Information Center

    Walter, Bethany

    2005-01-01

    As part of a unit on Native American art studies, students researched Navajo sand painting. They used Navajo image resources to develop designs for their sand paintings. The process and precautions for this lesson are described in this article.

  19. Anatomy and art.

    PubMed

    Laios, Konstantinos; Tsoukalas, Gregory; Karamanou, Marianna; Androutsos, George

    2013-01-01

    Leonardo da Vinci, Jean Falcon, Andreas Vesalius, Henry Gray, Henry Vandyke Carter and Frank Netter created some of the best atlases of anatomy. Their works constitute not only scientific medical projects but also masterpieces of art.

  20. Art, surgery and transplantation.

    PubMed

    Toledo-Pereyra, Luis H

    2009-01-01

    Roy Calne (1930-) has elegantly cultivated the science and art of transplantation. Throughout his medical and artistic career his eyes have remained fully open not only to science and scientific advances but to any new developments that would enhance his art of painting as applied to his patients, colleagues, events and surgical operations related to transplantation. Calne contributed to and developed a new field through art in the understanding of the lives of his patients, the working of his colleagues and the application of surgical principles to the specialty in which he labours, surgical transplantation. The application of "Art, Surgery and Transplantation" should in many ways be the fountain of information and support for those seeking this way of therapy.