Science.gov

Sample records for artemisia annua glandular

  1. Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing

    PubMed Central

    Wang, Wei; Wang, Yejun; Zhang, Qing; Qi, Yan; Guo, Dianjing

    2009-01-01

    Background Glandular trichomes produce a wide variety of commercially important secondary metabolites in many plant species. The most prominent anti-malarial drug artemisinin, a sesquiterpene lactone, is produced in glandular trichomes of Artemisia annua. However, only limited genomic information is currently available in this non-model plant species. Results We present a global characterization of A. annua glandular trichome transcriptome using 454 pyrosequencing. Sequencing runs using two normalized cDNA collections from glandular trichomes yielded 406,044 expressed sequence tags (average length = 210 nucleotides), which assembled into 42,678 contigs and 147,699 singletons. Performing a second sequencing run only increased the number of genes identified by ~30%, indicating that massively parallel pyrosequencing provides deep coverage of the A. annua trichome transcriptome. By BLAST search against the NCBI non-redundant protein database, putative functions were assigned to over 28,573 unigenes, including previously undescribed enzymes likely involved in sesquiterpene biosynthesis. Comparison with ESTs derived from trichome collections of other plant species revealed expressed genes in common functional categories across different plant species. RT-PCR analysis confirmed the expression of selected unigenes and novel transcripts in A. annua glandular trichomes. Conclusion The presence of contigs corresponding to enzymes for terpenoids and flavonoids biosynthesis suggests important metabolic activity in A. annua glandular trichomes. Our comprehensive survey of genes expressed in glandular trichome will facilitate new gene discovery and shed light on the regulatory mechanism of artemisinin metabolism and trichome function in A. annua. PMID:19818120

  2. A glandular trichome-specific monoterpene alcohol dehydrogenase from Artemisia annua.

    PubMed

    Polichuk, Devin R; Zhang, Yansheng; Reed, Darwin W; Schmidt, Janice F; Covello, Patrick S

    2010-08-01

    The major components of the isoprenoid-rich essential oil of Artemisia annua L. accumulate in the subcuticular sac of glandular secretory trichomes. As part of an effort to understand isoprenoid biosynthesis in A. annua, an expressed sequence tag (EST) collection was investigated for evidence of genes encoding trichome-specific enzymes. This analysis established that a gene denoted Adh2, encodes an alcohol dehydrogenase and shows a high expression level in glandular trichomes relative to other tissues. The gene product, ADH2, has up to 61% amino acid identity to members of the short chain alcohol dehydrogenase/reductase (SDR) superfamily, including Forsythia x intermedia secoisolariciresinol dehydrogenase (49.8% identity). Through in vitro biochemical analysis, ADH2 was found to show a strong preference for monoterpenoid secondary alcohols including carveol, borneol and artemisia alcohol. These results indicate a role for ADH2 in monoterpenoid ketone biosynthesis in A. annua glandular trichomes. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  3. Differential transcriptome analysis of glandular and filamentous trichomes in Artemisia annua

    PubMed Central

    2013-01-01

    Background The medicinal plant Artemisia annua is covered with filamentous trichomes and glandular, artemisinin producing trichomes. A high artemisinin supply is needed at a reduced cost for treating malaria. Artemisinin production in bioreactors can be facilitated if a better insight is obtained in the biosynthesis of artemisinin and other metabolites. Therefore, metabolic activities of glandular and filamentous trichomes were investigated at the transcriptome level. Results By laser pressure catapulting, glandular and filamentous trichomes as well as apical and sub-apical cells from glandular trichomes were collected and their transcriptome was sequenced using Illumina RNA-Seq. A de novo transcriptome was assembled (Trinity) and studied with a differential expression analysis (edgeR). A comparison of the transcriptome from glandular and filamentous trichomes shows that MEP, MVA, most terpene and lipid biosynthesis pathways are significantly upregulated in glandular trichomes. Conversely, some transcripts coding for specific sesquiterpenoid and triterpenoid enzymes such as 8-epi-cedrol synthase and an uncharacterized oxidosqualene cyclase were significantly upregulated in filamentous trichomes. All known artemisinin biosynthesis genes are upregulated in glandular trichomes and were detected in both the apical and sub-apical cells of the glandular trichomes. No significant differential expression could be observed between the apical and sub-apical cells. Conclusions Our results underscore the vast metabolic capacities of A. annua glandular trichomes but nonetheless point to the existence of specific terpene metabolic pathways in the filamentous trichomes. Candidate genes that might be involved in artemisinin biosynthesis are proposed based on their putative function and their differential expression level. PMID:24359620

  4. Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L.

    PubMed

    Yadav, Ritesh K; Sangwan, Rajender S; Sabir, Farzana; Srivastava, Awadesh K; Sangwan, Neelam S

    2014-01-01

    Artemisia annua L. accumulates substantial quantities of unique sesquiternoid artemisinin and related phytomolecules and characteristic essential oil in glandular trichomes, present on its leaves and inflorescence. Water stress is a major concern in controlling plant growth and productivity. In this study, our aim was to find out the modulation of artemisinin and essential oil constituents in plants grown under prolonged water stress conditions. A. annua CIM-Arogya plants grown in pots were subjected to mild (60% ± 5) and moderate (40% ± 5) water stress treatment and continued during entire developmental period. Results revealed that artemisinin, arteannuin-B, artemisinic acid, dihydroartemisinic acid and essential oil content were positively controlled by the growth and development however negatively modulated by water deficit stress. Interestingly, some of minor monoterpenes, all sesquiterpenes and other low molecular weight volatiles of essential oil components were induced by water deficit treatment. Camphor which is the major essential oil constituents did not alter much while 1, 8 cineole was modulated during development of plant as well as under water stress conditions. Water deficit stress induces a decrease in glandular trichome density and size as well. The dynamics of various secondary metabolites is discussed in the light of growth responses, trichomes and pathway gene expression in plants grown under two levels of prolonged water stress conditions. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Promoters of AaGL2 and AaMIXTA-Like1 genes of Artemisia annua direct reporter gene expression in glandular and non-glandular trichomes

    PubMed Central

    Jindal, Sunita; Longchar, Bendangchuchang; Singh, Alka; Gupta, Vikrant

    2015-01-01

    Herein, we report cloning and analysis of promoters of GLABRA2 (AaGL2) homolog and a MIXTA-Like (AaMIXTA-Like1) gene from Artemisia annua. The upstream regulatory regions of AaGL2 and AaMIXTA-Like1 showed the presence of several crucial cis-acting elements. Arabidopsis and A. annua seedlings were transiently transfected with the promoter-GUS constructs using a robust agro-infiltration method. Both AaGL2 and AaMIXTA-Like1 promoters showed GUS expression preferentially in Arabidopsis single-celled trichomes and glandular as well as T-shaped trichomes of A. annua. Transgenic Arabidopsis harboring constructs in which AaGL2 or AaMIXTA-Like1 promoters would control GFP expression, showed fluorescence emanating specifically from trichome cells. Our study provides a fast and efficient method to study trichome-specific expression, and 2 promoters that have potential for targeted metabolic engineering in plants. PMID:26340695

  6. Si-Accumulation In Artemisia annua Glandular Trichomes Increases Artemisinin Concentration, but Does Not Interfere In the Impairment of Toxoplasma gondii Growth

    PubMed Central

    Rostkowska, Cristina; Mota, Caroline M.; Oliveira, Taísa C.; Santiago, Fernanda M.; Oliveira, Lilian A.; Korndörfer, Gaspar H.; Lana, Regina M. Q.; Rossi, Monica L.; Nogueira, Neusa L.; Simonnet, Xavier; Mineo, Tiago W. P.; Silva, Deise A.O.; Mineo, José R.

    2016-01-01

    Artemisia annua is used as a source of artemisinin, a potent therapeutic agent used for the treatment of infectious diseases, chiefly malaria. However, the low concentration (from 0.01 to 1.4% of dried leaf matter) of artemisinin in the plant obtained with the traditional cropping system makes it a relatively expensive drug, especially in developing countries. Considering that artemisinin and silicon (Si) are both stored in A. annua glandular trichomes, and that Si accumulation has never been investigated, this study aimed to look into Si effects on A. annua trichome artemisinin concentration, and whether leaf infusion from Si-treated A. annua plants is able to control Toxoplasma gondii growth. T. gondii is the etiologic agent of toxoplasmosis, a zoonotic parasitic disease whose traditional treatment shows significant side effects. The experimental design consisted of A. annua seedlings randomly planted in soil treated with different doses of calcium/magnesium silicate (0, 200, 400, 800, and 1600 kg ha-1). Analysis of foliar macronutrients showed significant increases of nitrogen content only at the highest dose of silicate. Foliar micronutrients, Si concentrations, and plant height were not affected by any of the silicate doses. However, the dose of 400 kg ha-1 of silicate increased the trichome size, which in turn raised artemisinin concentration in leaves and the infusion. In contrast, the 800 and 1600 kg ha-1 doses dramatically decreased artemisinin concentration. HeLa cell treatment with the infusion of A. annua grown in soil treated with 400 kg ha-1 of silicate decreased parasite proliferation in a dose-dependent manner when the treatment was carried out after or along with T. gondii infection. However, this effect was similar to A. annua grown in soil without silicate treatment. Thus, it can be concluded that, even though Si applied to the soil at 400 kg ha-1 has a positive effect on the A. annua glandular trichome size and the artemisinin concentration

  7. Si-Accumulation In Artemisia annua Glandular Trichomes Increases Artemisinin Concentration, but Does Not Interfere In the Impairment of Toxoplasma gondii Growth.

    PubMed

    Rostkowska, Cristina; Mota, Caroline M; Oliveira, Taísa C; Santiago, Fernanda M; Oliveira, Lilian A; Korndörfer, Gaspar H; Lana, Regina M Q; Rossi, Monica L; Nogueira, Neusa L; Simonnet, Xavier; Mineo, Tiago W P; Silva, Deise A O; Mineo, José R

    2016-01-01

    Artemisia annua is used as a source of artemisinin, a potent therapeutic agent used for the treatment of infectious diseases, chiefly malaria. However, the low concentration (from 0.01 to 1.4% of dried leaf matter) of artemisinin in the plant obtained with the traditional cropping system makes it a relatively expensive drug, especially in developing countries. Considering that artemisinin and silicon (Si) are both stored in A. annua glandular trichomes, and that Si accumulation has never been investigated, this study aimed to look into Si effects on A. annua trichome artemisinin concentration, and whether leaf infusion from Si-treated A. annua plants is able to control Toxoplasma gondii growth. T. gondii is the etiologic agent of toxoplasmosis, a zoonotic parasitic disease whose traditional treatment shows significant side effects. The experimental design consisted of A. annua seedlings randomly planted in soil treated with different doses of calcium/magnesium silicate (0, 200, 400, 800, and 1600 kg ha(-1)). Analysis of foliar macronutrients showed significant increases of nitrogen content only at the highest dose of silicate. Foliar micronutrients, Si concentrations, and plant height were not affected by any of the silicate doses. However, the dose of 400 kg ha(-1) of silicate increased the trichome size, which in turn raised artemisinin concentration in leaves and the infusion. In contrast, the 800 and 1600 kg ha(-1) doses dramatically decreased artemisinin concentration. HeLa cell treatment with the infusion of A. annua grown in soil treated with 400 kg ha(-1) of silicate decreased parasite proliferation in a dose-dependent manner when the treatment was carried out after or along with T. gondii infection. However, this effect was similar to A. annua grown in soil without silicate treatment. Thus, it can be concluded that, even though Si applied to the soil at 400 kg ha(-1) has a positive effect on the A. annua glandular trichome size and the artemisinin

  8. Effect of external stress on density and size of glandular trichomes in full-grown Artemisia annua, the source of anti-malarial artemisinin

    PubMed Central

    Kjær, Anders; Grevsen, Kai; Jensen, Martin

    2012-01-01

    Background and aims Glandular trichomes (GT) of Artemisia annua produce valuable compounds for pharmaceutical and industrial uses, most notably the anti-malarial artemisinin. Our aim was to find out whether the density, number and size of GT can be manipulated to advantage by environmental stress. A range of external stress treatments, including stress response regulators, was therefore given to fully grown plants under field and greenhouse conditions. Methodology In a field experiment (Ex1), seed-grown plants were subjected to chemical or physical stress and plants analysed after 5 weeks. In a greenhouse experiment (Ex2), three groups of clonally derived plants were stressed at weekly intervals for 5 weeks. Stress treatments included sandblasting, leaf cutting and spraying with jasmonic acid, salicylic acid, chitosan oligosaccharide (COS), H2O2 (HP) and NaCl (SC)at different concentrations. Leaves from an upper and a lower position on the plants were analysed by fluorescence microscopy to determine the density and size of GT. Principal results Densities of GT on upper leaves of full-grown A. annua plants generally showed no response to external stress and only plants from one clone of Ex2 supported the hypothesis that increased density of GT was inducible in upper leaves by stress (significant for SC, HP and COS). The density of GT on lower leaves was not affected by stress in any experiment. Glandular trichomes were significantly smaller on the lower leaves in response to stress in Ex2, and a similar non-significant trend was observed in Ex1. Conclusions The results indicate a dynamic system in which stress treatments of large A. annua plants had a minor promoting effect on the initiation of GT in developing leaves, and a maturing effect of GT later in the lifetime of the individual GT. The hypothesis that applying stress can induce larger GT or more numerous GT was rejected. PMID:22833781

  9. [Spatial Distribution and Global Potential Suitability Regions of Artemisia annua].

    PubMed

    Wang, Huan; Li, Hui; Zeng, Fan-lin; Xie, Cai-xiang

    2015-03-01

    To study the spatial distribution and potential climatic suitability regions of Artemisia annua around the world. The spatial distribution and climatic characteristics were researched by factor analysis based on Global Biodiversity Information Facility Database and World Climate Database. The global potential suitability regions of Artemisia annua were analyzed by ArcGIS. Artemisia annua distributed in three longitude zones, including 90. 55 °W - 77. 14 °W, 2. 03 °E - 11. 75 °E and 98. 27 °E - 111. 05 °E,which were respectively in North America, Europe and Asia. The latitude range was mainly 29. 15 °N - 51. 36 ° N. 80% of Artemisia annua were in the regions which elevation range was 22. 00 - 491. 00 m, annual precipitation was 492. 30 ~ 1 366. 70 mm, annual average temperature was from 8. 10 to 17. 27 °C. The potential suitability regions of Artemisia annua with 95% ~ 100% climate similarity were mainly in 30 °S and 30 °N regions, centered around the equator axis. Conclusion: Latitude is closely related to the distribution of Artemisia annua, the key affecting climatic factors are annual precipitation, the wettest season precipitation, the warmest season precipitation and the highest temperature in the warmest month, the average temperature of the warmest season, as well as the average temperature of the wettest season. The potential suitability regions of Artemnisia annua are in eastern North America, western Europe and eastern Asia.

  10. Flower morphology and floral sequence in Artemisia annua (Asteraceae)

    USDA-ARS?s Scientific Manuscript database

    Premise of the study: Artemisia annua produces phytochemicals possessing antimalarial, antitumor, anti-inflammatory, and anthelmintic activities. The main active ingredient, artemisinin, is extremely effective against malaria. Breeding to develop cultivars producing high levels of artemisinin can he...

  11. [STUDIES ON THE CONSTITUENTS OF ARTEMISIA ANNUA L].

    PubMed

    Youyou, Tu; Muyun, Ni; Yurong, Zhong; Lanna, Li; Shulian, Gui; Muqun, Zhang; Xiuzhen, Wang; Xiaotian, Liang

    2015-10-01

    Six crystalline components were isolated from the lipophilic fraction of Artemisia annua L. They have been identified as four sesquiterpenes, one flavonol and one coumarin. Qinghaosu I and III are new sesquiterpenes. Five main constituents, camphene, iso-artemisia ketone, 1-camphor, β-carophyllene, and β-pinene were identified from the volatile oil of this herb.

  12. Artemisinin production in Artemisia annua tissue cultures

    SciTech Connect

    Martinez Isaza, B.C.

    1988-01-01

    Production of artemisinin was studied in both plants and tissue cultures of Artemisia annua L. Incorporation of (3{prime}-{sup 14}C) mevalonic acid sodium salt into artemisinin or arteannuin B was not found when field-grown plants were fed once with 10 or 50 {mu}Ci and harvested after 44, 144 or 288 hr. Artemisinin was not present in root organ cultures, but was present in the shoot cultures in a concentration of less than 5 mg/100 g dry weight. The content of artemisinin in a shoot culture line with elongated and indented shoots was significantly higher at p value of 0.01 from that with short and compact shoots. Induction of roots on shoot cultures was associated with increased artemisinin production. Shoot cultures that developed into plants with roots had higher artemisinin content than those shoots cultures with aerial roots, or shoots cultures with basal roots. The artemisinin content in shoot cultures apparently increased with age. Preliminary studies on the metabolism of arteannuin B demonstrated that shoot cultures absorbed the exogenous arteannuin B from the medium without an increase in artemisinin content.

  13. Artemisinin concentration and antioxidant capacity of Artemisia annua distillation byproduct

    USDA-ARS?s Scientific Manuscript database

    Artemisia annua is mostly known as the source of artemisinin, the raw material for the production of artemisinin-based combination therapy, used against drug-resistant Plasmodium falciparum where malaria is endemic. Artemisinin drugs are also effective against helminthic and protozoan parasites tha...

  14. Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L.

    PubMed

    Kapoor, Rupam; Chaudhary, Vidhi; Bhatnagar, A K

    2007-10-01

    Annual wormwood (Artemisia annua L.) produces an array of complex terpenoids including artemisinin, a compound of current interest in the treatment of drug-resistant malaria. However, this promising antimalarial compound remains expensive and is hardly available on the global scale. Synthesis of artemisinin has not been proved to be feasible commercially. Therefore, increase in yield of naturally occurring artemisinin is an important area of investigation. The effects of inoculation by two arbuscular mycorrhizal (AM) fungi, Glomus macrocarpum and Glomus fasciculatum, either alone or supplemented with P-fertilizer, on artemisinin concentration in A. annua were studied. The concentration of artemisinin was determined by reverse-phase high-performance liquid chromatography with UV detection. The two fungi significantly increased concentration of artemisinin in the herb. Although there was significant increase in concentration of artemisinin in nonmycorrhizal P-fertilized plants as compared to control, the extent of the increase was less compared to mycorrhizal plants grown with or without P-fertilization. This suggests that the increase in artemisinin concentration may not be entirely attributed to enhanced P-nutrition and improved growth. A strong positive linear correlation was observed between glandular trichome density on leaves and artemisinin concentration. Mycorrhizal plants possessed higher foliar glandular trichome (site for artemisinin biosynthesis and sequestration) density compared to nonmycorrhizal plants. Glandular trichome density was not influenced by P-fertilizer application. The study suggests a potential role of AM fungi in improving the concentration of artemisinin in A. annua.

  15. Characterization of development and artemisinin biosynthesis in self-pollinated Artemisia annua plants.

    PubMed

    Alejos-Gonzalez, Fatima; Qu, Guosheng; Zhou, Li-Li; Saravitz, Carole H; Shurtleff, Janet L; Xie, De-Yu

    2011-10-01

    Artemisia annua L. is the only natural resource that produces artemisinin (Qinghaosu), an endoperoxide sesquiterpene lactone used in the artemisinin-combination therapy of malaria. The cross-hybridization properties of A. annua do not favor studying artemisinin biosynthesis. To overcome this problem, in this study, we report on selection of self-pollinated A. annua plants and characterize their development and artemisinin biosynthesis. Self-pollinated F2 plants selected were grown under optimized growth conditions, consisting of long day (16 h of light) and short day (9 h of light) exposures in a phytotron. The life cycles of these plants were approximately 3 months long, and final heights of 30-35 cm were achieved. The leaves on the main stems exhibited obvious morphological changes, from indented single leaves to odd, pinnately compound leaves. Leaves and flowers formed glandular and T-shaped trichomes on their surfaces. The glandular trichome densities increased from the bottom to the top leaves. High performance liquid chromatography-mass spectrometry-based metabolic profiling analyses showed that leaves, flowers, and young seedlings of F2 plants produced artemisinin. In leaves, the levels of artemisinin increased from the bottom to the top of the plants, showing a positive correlation to the density increase of glandular trichomes. RT-PCR analysis showed that progeny of self-pollinated plants expressed the amorpha-4, 11-diene synthase (ADS) and cytochrome P450 monooxygenase 71 AV1 (CYP71AV1) genes, which are involved in artemisinin biosynthesis in leaves and flowers. The use of self-pollinated A. annua plants will be a valuable approach to the study of artemisinin biosynthesis.

  16. Antioxidant Properties of Artemisia annua Extracts in Model Food Emulsions

    PubMed Central

    Skowyra, Monika; Gallego, Maria Gabriela; Segovia, Francisco; Almajano, Maria Pilar

    2014-01-01

    Artemisia annua is currently the only commercial source of the sesquiterpene lactone artemisinin. Although artemisinin is a major bioactive component present in this Chinese herb, leaf flavonoids have shown a variety of biological activities. The polyphenolic profile of extract from leaves of A. annua was assessed as a source of natural antioxidants. Total phenolic content and total flavonoid content were established and three assays were used to measure the antioxidant capacity of the plant extract. The measurement of scavenging capacity against the 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation, the oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP) were 314.99 µM Trolox equivalents (TE)/g DW, 736.26 µM TE/g DW and 212.18 µM TE/g DW, respectively. A. annua extracts also showed good antioxidant properties in 10% sunflower oil-in-water emulsions during prolonged storage (45 days) at 32 °C. Artemisia extract at 2 g/L was as effective as butylated hydroxyanisole (BHA) at 0.02 g/L in slowing down the formation of hydroperoxides as measured by peroxide value and thiobarbituric acid reactive substances. The results of this study indicate that extract of A. annua may be suitable for use in the food matrix as substitutes for synthetic antioxidants. PMID:26784667

  17. Antioxidant Properties of Artemisia annua Extracts in Model Food Emulsions.

    PubMed

    Skowyra, Monika; Gallego, Maria Gabriela; Segovia, Francisco; Almajano, Maria Pilar

    2014-03-03

    Artemisia annua is currently the only commercial source of the sesquiterpene lactone artemisinin. Although artemisinin is a major bioactive component present in this Chinese herb, leaf flavonoids have shown a variety of biological activities. The polyphenolic profile of extract from leaves of A. annua was assessed as a source of natural antioxidants. Total phenolic content and total flavonoid content were established and three assays were used to measure the antioxidant capacity of the plant extract. The measurement of scavenging capacity against the 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation, the oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP) were 314.99 µM Trolox equivalents (TE)/g DW, 736.26 µM TE/g DW and 212.18 µM TE/g DW, respectively. A. annua extracts also showed good antioxidant properties in 10% sunflower oil-in-water emulsions during prolonged storage (45 days) at 32 °C. Artemisia extract at 2 g/L was as effective as butylated hydroxyanisole (BHA) at 0.02 g/L in slowing down the formation of hydroperoxides as measured by peroxide value and thiobarbituric acid reactive substances. The results of this study indicate that extract of A. annua may be suitable for use in the food matrix as substitutes for synthetic antioxidants.

  18. Efficient method for Agrobacterium mediated transformation of Artemisia annua L.

    PubMed

    Alam, Pravej; Mohammad, Anis; Ahmad, M M; Khan, Mather Ali; Nadeem, Mohd; Khan, Riyazuddeen; Akmal, Mohd; Ahlawat, Seema; Abdin, M Z

    2014-01-01

    Artemisinin, a potent antimalarial natural products isolated from aerial parts of Artemisia annua L. Many patents have been reported that the demand for artemisinin is exponentially increasing year after year due to increased incidences of drug resistant malaria throughout the world. Leaf explants were used frequently as target tissue to generate transgenic of Artemisia. annua L. However, obtaining a large number of transgenic lines through out the year is a laborious and delicate process. To circumvent this, we have developed a highly efficient leaf explant based Agrobacterium mediated transformation of A. annua L. plant. The gus gene was used as screenable marker to assess and optimize the performance of T-DNA delivery. The age of explant, kind of bacterial inoculation, suspension duration, infection times and co-culture conditions were optimized. The co-culture was carried out with Agrobacterium tumefaciens strain EHA105 under desiccation condition in the dark at 25-28 0C for 2-4 days. Complete analysis of transgene insertion demonstrated that the optimized method of transformation from leaf explants of A. annua L. was efficient and highly reproducible.

  19. Transgenic approach to increase artemisinin content in Artemisia annua L.

    PubMed

    Tang, Kexuan; Shen, Qian; Yan, Tingxiang; Fu, Xueqing

    2014-04-01

    Artemisinin, the endoperoxide sesquiterpene lactone, is an effective antimalarial drug isolated from the Chinese medicinal plant Artemisia annua L. Due to its effectiveness against multi-drug-resistant cerebral malaria, it becomes the essential components of the artemisinin-based combination therapies which are recommended by the World Health Organization as the preferred choice for malaria tropica treatments. To date, plant A. annua is still the main commercial source of artemisinin. Although semi-synthesis of artemisinin via artemisinic acid in yeast is feasible at present, another promising approach to reduce the price of artemisinin is using plant metabolic engineering to obtain a higher content of artemisinin in transgenic plants. In the past years, an Agrobacterium-mediated transformation system of A. annua has been established by which a number of genes related to artemisinin biosynthesis have been successfully transferred into A. annua plants. In this review, the progress on increasing artemisinin content in A. annua by transgenic approach and its future prospect are summarized and discussed.

  20. The effect of roots and media constituents on trichomes and artemisinin production in Artemisia annua L.

    PubMed

    Nguyen, Khanhvan T; Towler, Melissa J; Weathers, Pamela J

    2013-02-01

    KEY MESSAGE : Rooting of Artemisia annua increases trichome size on leaves and helps drive the final steps of the biosynthesis of the sesquiterpene antimalarial drug, artemisinin. Artemisia annua produces the antimalarial drug, artemisinin (AN), which is synthesized and stored in glandular trichomes (GLTs). In vitro-grown A. annua shoots produce more AN when they form roots. This may be a function not of the roots, but rather media components such as the phytohormones, α-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP), or salts and sucrose used to maintain either rooted or unrooted shoot cultures. We investigated how three main media components altered artemisinic metabolite production, pathway gene transcripts, and GLT formation in both mature and developing leaves in rooted and unrooted cultures. Although transcript levels of AN biosynthetic genes were not altered, AN levels were significantly different, and there were major differences in both artemisinic metabolite levels and trichomes in mature versus developing leaves. For example, NAA induced higher AN production in rooted shoots, but only in mature leaves. In developing leaves, BAP increased GLT density on the leaf surface. When both phytohormones were present, GLTs were larger on young developing leaves, but smaller on mature leaves. Furthermore, although other media components increased GLT density, their size decreased on young leaves, but there was no effect on mature leaves. Roots also appeared to drive conversion of artemisinic precursors towards end products. These results suggest that, while the presence of roots affects AN and trichome production, phytohormones and other media constituents used for in vitro culture of A. annua also exert an influence.

  1. Dried Whole Plant Artemisia annua as an Antimalarial Therapy

    PubMed Central

    Elfawal, Mostafa A.; Towler, Melissa J.; Reich, Nicholas G.; Golenbock, Douglas; Weathers, Pamela J.; Rich, Stephen M.

    2012-01-01

    Drugs are primary weapons for reducing malaria in human populations. However emergence of resistant parasites has repeatedly curtailed the lifespan of each drug that is developed and deployed. Currently the most effective anti-malarial is artemisinin, which is extracted from the leaves of Artemisia annua. Due to poor pharmacokinetic properties and prudent efforts to curtail resistance to monotherapies, artemisinin is prescribed only in combination with other anti-malarials composing an Artemisinin Combination Therapy (ACT). Low yield in the plant, and the added cost of secondary anti-malarials in the ACT, make artemisinin costly for the developing world. As an alternative, we compared the efficacy of oral delivery of the dried leaves of whole plant (WP) A. annua to a comparable dose of pure artemisinin in a rodent malaria model (Plasmodium chabaudi). We found that a single dose of WP (containing 24 mg/kg artemisinin) reduces parasitemia more effectively than a comparable dose of purified drug. This increased efficacy may result from a documented 40-fold increase in the bioavailability of artemisinin in the blood of mice fed the whole plant, in comparison to those administered synthetic drug. Synergistic benefits may derive from the presence of other anti-malarial compounds in A. annua. If shown to be clinically efficacious, well-tolerated, and compatible with the public health imperative of forestalling evolution of drug resistance, inexpensive, locally grown and processed A. annua might prove to be an effective addition to the global effort to reduce malaria morbidity and mortality. PMID:23289055

  2. Potential ecological roles of artemisinin produced by Artemisia annua L.

    PubMed

    Knudsmark Jessing, Karina; Duke, Stephen O; Cedergreeen, Nina

    2014-02-01

    Artemisia annua L. (annual wormwood, Asteraceae) and its secondary metabolite artemisinin, a unique sesquiterpene lactone with an endoperoxide bridge, has gained much attention due to its antimalarial properties. Artemisinin has a complex structure that requires a significant amount of energy for the plant to synthesize. So, what are the benefits to A. annua of producing this unique compound, and what is the ecological role of artemisinin? This review addresses these questions, discussing evidence of the potential utility of artemisinin in protecting the plant from insects and other herbivores, as well as pathogens and competing plant species. Abiotic factors affecting the artemisinin production, as well as mechanisms of artemisinin release to the surroundings also are discussed, and new data are provided on the toxicity of artemisinin towards soil and aquatic organisms. The antifungal and antibacterial effects reported are not very pronounced. Several studies have reported that extracts of A. annua have insecticidal effects, though few studies have proven that artemisinin could be the single compound responsible for the observed effects. However, the pathogen(s) or insect(s) that may have provided the selection pressure for the evolution of artemisinin synthesis may not have been represented in the research thus far conducted. The relatively high level of phytotoxicity of artemisinin in soil indicates that plant/plant allelopathy could be a beneficial function of artemisinin to the producing plant. The release routes of artemisinin (movement from roots and wash off from leaf surfaces) from A. annua to the soil support the rationale for allelopathy.

  3. Isolation and Characterization of Three New Monoterpene Synthases from Artemisia annua

    PubMed Central

    Ruan, Ju-Xin; Li, Jian-Xu; Fang, Xin; Wang, Ling-Jian; Hu, Wen-Li; Chen, Xiao-Ya; Yang, Chang-Qing

    2016-01-01

    Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5, and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, β-myrcene. Although both Mg2+ and Mn2+ were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn2+ for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography–mass spectrometry detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate, salicylic acid, and gibberellin, suggesting a role of these monoterpene synthases in plant–environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant. PMID:27242840

  4. Artemisia annua mutant impaired in artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism

    PubMed Central

    Czechowski, Tomasz; Larson, Tony R.; Catania, Theresa M.; Harvey, David; Brown, Geoffrey D.; Graham, Ian A.

    2016-01-01

    Artemisinin, a sesquiterpene lactone produced by Artemisia annua glandular secretory trichomes, is the active ingredient in the most effective treatment for malaria currently available. We identified a mutation that disrupts the amorpha-4,11-diene C-12 oxidase (CYP71AV1) enzyme, responsible for a series of oxidation reactions in the artemisinin biosynthetic pathway. Detailed metabolic studies of cyp71av1-1 revealed that the consequence of blocking the artemisinin biosynthetic pathway is the redirection of sesquiterpene metabolism to a sesquiterpene epoxide, which we designate arteannuin X. This sesquiterpene approaches half the concentration observed for artemisinin in wild-type plants, demonstrating high-flux plasticity in A. annua glandular trichomes and their potential as factories for the production of novel alternate sesquiterpenes at commercially viable levels. Detailed metabolite profiling of leaf maturation time-series and precursor-feeding experiments revealed that nonenzymatic conversion steps are central to both artemisinin and arteannuin X biosynthesis. In particular, feeding studies using 13C-labeled dihydroartemisinic acid (DHAA) provided strong evidence that the final steps in the synthesis of artemisinin are nonenzymatic in vivo. Our findings also suggest that the specialized subapical cavity of glandular secretory trichomes functions as a location for both the chemical conversion and the storage of phytotoxic compounds, including artemisinin. We conclude that metabolic engineering to produce high yields of novel secondary compounds such as sesquiterpenes is feasible in complex glandular trichomes. Such systems offer advantages over single-cell microbial hosts for production of toxic natural products. PMID:27930305

  5. Screening the Hemostatic Active Fraction of Artemisia annua L. In-vitro.

    PubMed

    Wang, Bochu; Sui, Jing; Yu, Zhengwen; Zhu, Liancai

    2011-01-01

    Artemisinin extracted from Artemisia annua L. is the best medicine with the highest efficiency, the most effective and the lowest toxicity in treating ague nowadays. At present, most studies focus on artemisinin and its derivatives, while the study and report about the other active components are rare. This paper purposed to further discover new indication of Artemisia annua L. connecting with the record of traditional medicine. We screened the hemostatic active fraction of Artemisia annua L. in-vitro by plasma recalcification time (PRT). The crude extract and the extract of n-butanol were purified by polyamide, MCI, gel column in order. Determining the part of 20% methanol fraction after column chromatography of MCI gel is the hemostatic active fraction of Artemisia annua L. The shorten rate of clotting time are followed by: crude extract of Artemisin annua L. (8.51%); the n-butanol extract (14.89%); water eluting fraction after the extract of n-butanol was purificated by polyamide (22.11%); 20% methanol fraction after column chromatography of MCI gel (27.37%). It can provide experimental data for the clinical application of Artemisia annua L. which can be exploited as hemostatic. This topic has a certain academic value and potential prospects on the deep research of the Artemisia annua L. resource.

  6. Screening the Hemostatic Active Fraction of Artemisia annua L. In-vitro

    PubMed Central

    Wang, Bochu; Sui, Jing; Yu, Zhengwen; Zhu, Liancai

    2011-01-01

    Artemisinin extracted from Artemisia annua L. is the best medicine with the highest efficiency, the most effective and the lowest toxicity in treating ague nowadays. At present, most studies focus on artemisinin and its derivatives, while the study and report about the other active components are rare. This paper purposed to further discover new indication of Artemisia annua L. connecting with the record of traditional medicine. We screened the hemostatic active fraction of Artemisia annua L. in-vitro by plasma recalcification time (PRT). The crude extract and the extract of n-butanol were purified by polyamide, MCI, gel column in order. Determining the part of 20% methanol fraction after column chromatography of MCI gel is the hemostatic active fraction of Artemisia annua L. The shorten rate of clotting time are followed by: crude extract of Artemisin annua L. (8.51%); the n-butanol extract (14.89%); water eluting fraction after the extract of n-butanol was purificated by polyamide (22.11%); 20% methanol fraction after column chromatography of MCI gel (27.37%). It can provide experimental data for the clinical application of Artemisia annua L. which can be exploited as hemostatic. This topic has a certain academic value and potential prospects on the deep research of the Artemisia annua L. resource. PMID:24363681

  7. Effects of Artemisia annua extracts on sporulation of Eimeria oocysts.

    PubMed

    Fatemi, Ahmadreza; Razavi, Seyyed Mostafa; Asasi, Keramat; Goudarzi, Majid Torabi

    2015-03-01

    The present study aimed to compare the effect of different Artemisia annua extracts on sporulation rate of mixed oocysts of Eimeria acervulina, Eimeria necatrix, and Eimeria tenella. Three types of A. annua extracts including petroleum ether (PE), ethanol 96° (E), and water (W) extracts were prepared. Artemisinin, a sesquiterpene lactone endoperoxide derived from the A. annua analysis of each extract was done by high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Fresh fecal samples containing three Eimeria species were floated and counted, and the oocysts were transferred into 50 tubes, each containing 10(5) oocysts per milliliter. Five tubes were control. Each of the other 45 tubes contained one of three doses (1 part per thousand (ppt), 2 ppt, and 5 ppt) and one of three extracts (PE, E, and W extracts) with five replications. The tubes were incubated for 48 h at 25-29 °C and aerated. Sporulation inhibition assay was used to evaluate the activity of extracts. The results showed that the E and PE extracts inhibit sporulation in 2 and 5 ppt concentrations, but the W extract stimulates it in all concentrations. The proportions of oocyst inhibition relative to control were 31 % (5 ppt) and 29 % (2 ppt) for PE and 34 % (5 ppt) and 46 % (2 ppt) for E extract. Furthermore, many oocysts in PE and E groups were wrinkled and contained abnormal sporocysts. The proportions of sporulation stimulation relative to control were 22 % (5 ppt), 24 % (2 ppt), and 27 % (1 ppt) in W extract. Our study is the first to demonstrate that all types of A. annua extracts do not necessarily have a similar activity, and the interaction of all contents and their relative concentrations is an important factor for sporulation stimulation or inhibition. It seems, some parts of unmetabolized excreted PE and E extracts could inhibit oocyst sporulation and eventually affect infection transmission.

  8. Activity of Artemisia annua and artemisinin derivatives, in prostate carcinoma.

    PubMed

    Michaelsen, Friedrich-Wilhelm; Saeed, Mohamed E M; Schwarzkopf, Jörg; Efferth, Thomas

    2015-12-15

    Artemisia annua L, artemisinin and artesunate reveal profound activity not only against malaria, but also against cancer in vivo and clinical trials. Longitudinal observations on the efficacy of A. annua in patients are, however missing as of yet. Clinical diagnosis was performed by imaging techniques (MRT, scintigraphy, SPECT/CT) and blood examinations of standard parameters from clinical chemistry. Immunohistochemistry of formalin-fixed, paraffin-embedded tumor material was performed to determine the expression of several biomarkers (cycloxygenase-2 (COX2), epidermal growth factor receptor (EGFR), glutathione S-transferase P1 (GSTP1), Ki-67, MYC, oxidized low density lipoprotein (lectin-like) receptor 1 (LOX1), p53, P-glycoprotein, transferrin receptor (TFR, CD71), vascular endothelial growth factor (VEGF), von Willebrand factor (CD31)). The immunohistochemical expression has been compared with the microarray-based mRNA expression of these markers in two prostate carcinoma cell lines (PC-3, DU-145). A patient with prostate carcinoma (pT3bN1M1, Gleason score 8 (4+4)) presented with a prostate specific antigen (PSA) level >800 µg/l. After short-term treatment with bacalitumide (50 mg/d for 14 days) and long-term oral treatment with A. annua capsules (continuously 5 × 50 mg/d), the PSA level dropped down to 0.98 µg/l. MRT, scintigraphy and SPECT/CT verified tumor remission. Seven months later, PSA and ostase levels increased, indicating tumor recurrence and skeletal metastases. Substituting A. annua capsules by artesunate injections (2 × 150 mg twice weekly i.v.) did not prohibit tumor recurrence. PSA and ostase levels rose to 1245 µg/l and 434 U/l, respectively, and MRT revealed progressive skeletal metastases, indicating that the tumor acquired resistance. The high expression of MYC, TFR, and VEGFC in the patient biopsy corresponded with high expression of these markers in the artemisinin-sensitive PC-3 cells compared to artemisinin-resistant DU-145 cells

  9. Flower morphology and development in Artemisia annua, a medicinal plant used as a treatment against malaria

    USDA-ARS?s Scientific Manuscript database

    Artemisia annua produces a wide spectrum of bioactive phytochemicals that possess pharmacological properties including antimalarial, antitumor, anti-inflammatory, and anthelmintic activities. The main active ingredient, artemisinin, is extremely effective against multi-drug resistant Plasmodium fal...

  10. A non-pharmaceutical form of Artemisia annua is not effective in preventing Plasmodium falciparum malaria.

    PubMed

    Lagarce, Laurence; Lerolle, Nicolas; Asfar, Pierre; Le Govic, Yohann; Lainé-Cessac, Pascale; de Gentile, Ludovic

    2016-05-01

    Non-pharmaceutical forms of Artemisia annua (a Chinese plant containing artemisinin) are used by some travellers who believe these products are safer than anti-malarial drugs. We report two cases of severe Plasmodium falciparum malaria requiring hospitalization in an Intensive Care Unit following prophylaxis with non-pharmaceutical A. annua in French travellers.

  11. Loss of artemisinin produced by Artemisia annua L. to the soil environment

    USDA-ARS?s Scientific Manuscript database

    Artemisia annua L. synthesizes and accumulates the secondary metabolite artemisinin, a compound with antimalarial properties. As cultivation of the plant is still the only cost effective source of artemisinin, the production takes place in monocultures of A. annua. Artemisinin is known to have inse...

  12. Complete Chloroplast Genome Sequence and Phylogenetic Analysis of the Medicinal Plant Artemisia annua.

    PubMed

    Shen, Xiaofeng; Wu, Mingli; Liao, Baosheng; Liu, Zhixiang; Bai, Rui; Xiao, Shuiming; Li, Xiwen; Zhang, Boli; Xu, Jiang; Chen, Shilin

    2017-08-11

    The complete chloroplast genome of Artemisia annua (Asteraceae), the primary source of artemisinin, was sequenced and analyzed. The A. annua cp genome is 150,995 bp, and harbors a pair of inverted repeat regions (IRa and IRb), of 24,850 bp each that separate large (LSC, 82,988 bp) and small (SSC, 18,267 bp) single-copy regions. Our annotation revealed that the A. annua cp genome contains 113 genes and 18 duplicated genes. The gene order in the SSC region of A. annua is inverted; this fact is consistent with the sequences of chloroplast genomes from three other Artemisia species. Fifteen (15) forward and seventeen (17) inverted repeats were detected in the genome. The existence of rich SSR loci in the genome suggests opportunities for future population genetics work on this anti-malarial medicinal plant. In A. annua cpDNA, the rps19 gene was found in the LSC region rather than the IR region, and the rps19 pseudogene was absent in the IR region. Sequence divergence analysis of five Asteraceae species indicated that the most highly divergent regions were found in the intergenic spacers, and that the differences between A. annua and A. fukudo were very slight. A phylogenetic analysis revealed a sister relationship between A. annua and A. fukudo. This study identified the unique characteristics of the A. annua cp genome. These results offer valuable information for future research on Artemisia species identification and for the selective breeding of A. annua with high pharmaceutical efficacy.

  13. Examining the extraction of artemisinin from artemisia annua using ultrasound

    NASA Astrophysics Data System (ADS)

    Briars, Rhianna; Paniwnyk, Larysa

    2012-05-01

    Artemisinin suppresses the life-cycle of the plasmodium parasite which causes malaria. It is found naturally occurring within the trichome glands of the Artemisia annua plant. Traditional methods for extracting artemisinin are time-consuming and have high environmental impact due to the temperatures and organic solvents which must be employed. Ultrasound decreases these through acoustic streaming and micro-jets. But to fully utilise this technology parameters, such as frequency, temperature and the properties of leaf and solvent, must be explored. As with the extraction process there is also no set analysis method for identification of artemisinin. Therefore several methods of analysing these extracts are employed. Initial results indicate that sonication is able to enhance levels of artemisinin extracted when compared to the conventional/traditional extraction process. In addition Thin Layer Chromatography (TLC) and High Performance Liquid Chromatography (HPLC) have been shown to have a high level of reproducible calibration.

  14. OSC2 and CYP716A14v2 catalyze the biosynthesis of triterpenoids for the cuticle of aerial organs of Artemisia annua.

    PubMed

    Moses, Tessa; Pollier, Jacob; Shen, Qian; Soetaert, Sandra; Reed, James; Erffelinck, Marie-Laure; Van Nieuwerburgh, Filip C W; Vanden Bossche, Robin; Osbourn, Anne; Thevelein, Johan M; Deforce, Dieter; Tang, Kexuan; Goossens, Alain

    2015-01-01

    Artemisia annua is widely studied for its ability to accumulate the antimalarial sesquiterpenoid artemisinin. In addition to producing a variety of sesquiterpenoids, A. annua also accumulates mono-, di-, and triterpenoids, the majority of which are produced in the glandular trichomes. A. annua also has filamentous trichomes on its aerial parts, but little is known of their biosynthesis potential. Here, through a comparative transcriptome analysis between glandular and filamentous trichomes, we identified two genes, OSC2 and CYP716A14v2, encoding enzymes involved in the biosynthesis of specialized triterpenoids in A. annua. By expressing these genes in Saccharomyces cerevisiae and Nicotiana benthamiana, we characterized the catalytic function of these proteins and could reconstitute the specialized triterpenoid spectrum of A. annua in these heterologous hosts. OSC2 is a multifunctional oxidosqualene cyclase that produces α-amyrin, β-amyrin, and δ-amyrin. CYP716A14v2 is a P450 belonging to the functionally diverse CYP716 family and catalyzes the oxidation of pentacyclic triterpenes, leading to triterpenes with a carbonyl group at position C-3, thereby providing an alternative biosynthesis pathway to 3-oxo triterpenes. Together, these enzymes produce specialized triterpenoids that are constituents of the wax layer of the cuticle covering the aerial parts of A. annua and likely function in the protection of the plant against biotic and abiotic stress. © 2015 American Society of Plant Biologists. All rights reserved.

  15. OSC2 and CYP716A14v2 Catalyze the Biosynthesis of Triterpenoids for the Cuticle of Aerial Organs of Artemisia annua

    PubMed Central

    Moses, Tessa; Pollier, Jacob; Shen, Qian; Soetaert, Sandra; Reed, James; Erffelinck, Marie-Laure; Van Nieuwerburgh, Filip C.W.; Vanden Bossche, Robin; Osbourn, Anne; Thevelein, Johan M.; Deforce, Dieter; Tang, Kexuan

    2015-01-01

    Artemisia annua is widely studied for its ability to accumulate the antimalarial sesquiterpenoid artemisinin. In addition to producing a variety of sesquiterpenoids, A. annua also accumulates mono-, di-, and triterpenoids, the majority of which are produced in the glandular trichomes. A. annua also has filamentous trichomes on its aerial parts, but little is known of their biosynthesis potential. Here, through a comparative transcriptome analysis between glandular and filamentous trichomes, we identified two genes, OSC2 and CYP716A14v2, encoding enzymes involved in the biosynthesis of specialized triterpenoids in A. annua. By expressing these genes in Saccharomyces cerevisiae and Nicotiana benthamiana, we characterized the catalytic function of these proteins and could reconstitute the specialized triterpenoid spectrum of A. annua in these heterologous hosts. OSC2 is a multifunctional oxidosqualene cyclase that produces α-amyrin, β-amyrin, and δ-amyrin. CYP716A14v2 is a P450 belonging to the functionally diverse CYP716 family and catalyzes the oxidation of pentacyclic triterpenes, leading to triterpenes with a carbonyl group at position C-3, thereby providing an alternative biosynthesis pathway to 3-oxo triterpenes. Together, these enzymes produce specialized triterpenoids that are constituents of the wax layer of the cuticle covering the aerial parts of A. annua and likely function in the protection of the plant against biotic and abiotic stress. PMID:25576188

  16. [Isolation and characterization of promoter of ADS from Artemisia annua].

    PubMed

    Yang, Ruiyi; Yang, Xueqin; Feng, Liling; Zeng, Qingping

    2011-08-01

    To try to find the ways to enhance the expression of ADS gene encoding amorpha-4,11-diene synthase, a key enzyme in artemisinin biosynthesis pathway catalyzing the formation of amorpha-4,11-diene from farnesyl diphosphate, and accelerate the artemisinin synthesis, the promoter of ADS was isolated and characterized. 5' untranslated regions of ADS were isolated from Artemisia annua with PCR. For functional characterization, the isolated fragment was fused with GUS reporter gene and introduced into Nicotiana tabacum by Agrobacterium-mediated transformation. The GUS expression regulated by 5' untranslated regions of ADS in transgenic N. tabacum under the normal or stressed conditions were detected by histochemical staining and quantitative spectrophotometry assay. The 2 448 bp DNA fragment upstream of ADS coding sequence was isolated from A. annua and introduced into N. tabacum. Histochemical staining showed that the isolated fragment conferred stable GUS expression in transgenic plants. The quantitative results showed that the GUS activity in transgenic tobacco plants treated by low-temperature (4 degrees C) and ultraviolet irradiation were 1. 6 and 2.2 folds higher than that in the controls. It was suggested that the isolated fragment had promoter activity and maybe responsive to adverse environmental stresses.

  17. Cloning and characterization of DELLA genes in Artemisia annua.

    PubMed

    Shen, Q; Cui, J; Fu, X Q; Yan, T X; Tang, K X

    2015-08-21

    Gibberellins (GA) are some of the most important phytohormones involved in plant development. DELLA proteins are negative regulators of GA signaling in many plants. In this study, the full-length cDNA sequences of three DELLA genes were cloned from Artemisia annua. Phylogenetic analysis revealed that AaDELLA1 and AaDELLA2 were located in the same cluster, but AaDELLA3 was not. Subcellular localization analysis suggested that AaDELLAs can be targeted to the nucleus and/or cytoplasm. Real-time PCR indicated that all three AaDELLA genes exhibited the highest expression in seeds. Expression of all AaDELLA genes was enhanced by exogenous MeJA treatment but inhibited by GA3 treatment. Yeast two-hybrid assay showed that AaDELLAs could interact with basic helix-loop-helix transcription factor AaMYC2, suggesting that GA and JA signaling may be involved in cross-talk via DELLA and MYC2 interaction in A. annua.

  18. Differentially Expressed Genes during Contrasting Growth Stages of Artemisia annua for Artemisinin Content

    PubMed Central

    Nair, Priya; Misra, Amita; Singh, Alka; Shukla, Ashutosh K.; Gupta, Madan M.; Gupta, Anil K.; Gupta, Vikrant; Khanuja, Suman P. S.; Shasany, Ajit K.

    2013-01-01

    Artemisia annua is the source of antimalarial phytomolecule, artemisinin. It is mainly produced and stored in the glandular secretory trichomes present in the leaves of the plant. Since, the artemisinin biosynthesis steps are yet to be worked out, in this investigation a microarray chip was strategized for the first time to shortlist the differentially expressing genes at a stage of plant producing highest artemisinin compared to the stage with no artemisinin. As the target of this study was to analyze differential gene expression associated with contrasting artemisinin content in planta and a genotype having zero/negligible artemisinin content was unavailable, it was decided to compare different stages of the same genotype with contrasting artemisinin content (seedling - negligible artemisinin, mature leaf - high artemisinin). The SCAR-marked artemisinin-rich (∼1.2%) Indian variety ‘CIM-Arogya’ was used in the present study to determine optimal plant stage and leaf ontogenic level for artemisinin content. A representative EST dataset from leaf trichome at the stage of maximal artemisinin biosynthesis was established. The high utility small scale custom microarray chip of A. annua containing all the significant artemisinin biosynthesis-related genes, the established EST dataset, gene sequences isolated in-house and strategically selected candidates from the A. annua Unigene database (NCBI) was employed to compare the gene expression profiles of two stages. The expression data was validated through semiquantitative and quantitative RT-PCR followed by putative annotations through bioinformatics-based approaches. Many candidates having probable role in artemisinin metabolism were identified and described with scope for further functional characterization. PMID:23573249

  19. Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants.

    PubMed

    Maes, Lies; Van Nieuwerburgh, Filip C W; Zhang, Yansheng; Reed, Darwin W; Pollier, Jacob; Vande Casteele, Sofie R F; Inzé, Dirk; Covello, Patrick S; Deforce, Dieter L D; Goossens, Alain

    2011-01-01

    • Biosynthesis of the sesquiterpene lactone and potent antimalarial drug artemisinin occurs in glandular trichomes of Artemisia annua plants and is subjected to a strict network of developmental and other regulatory cues. • The effects of three hormones, jasmonate, gibberellin and cytokinin, were studied at the structural and molecular levels in two different A. annua chemotypes by microscopic analysis of gland development, and by targeted metabolite and transcript profiling. Furthermore, a genome-wide cDNA-amplified fragment length polymorphism (AFLP)-based transcriptome profiling was carried out of jasmonate-elicited leaves at different developmental stages. • Although cytokinin and gibberellin positively affected at least one aspect of gland formation, these two hormones did not stimulate artemisinin biosynthesis. Only jasmonate simultaneously promoted gland formation and coordinated transcriptional activation of biosynthetic gene expression, which ultimately led to increased sesquiterpenoid accumulation with chemotype-dependent effects on the distinct pathway branches. Transcriptome profiling revealed a trichome-specific fatty acyl- coenzyme A reductase, trichome-specific fatty acyl-CoA reductase 1 (TFAR1), the expression of which correlates with trichome development and sesquiterpenoid biosynthesis. • TFAR1 is potentially involved in cuticular wax formation during glandular trichome expansion in leaves and flowers of A. annua plants. Analysis of phytohormone-modulated transcriptional regulons provides clues to dissect the concerted regulation of metabolism and development of plant trichomes. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  20. Ethnopharmacology in overdrive: the remarkable anti-HIV activity of Artemisia annua.

    PubMed

    Lubbe, Andrea; Seibert, Isabell; Klimkait, Thomas; van der Kooy, Frank

    2012-06-14

    Artemisia annua contains the well-known antimalarial compound artemisinin, which forms the backbone of the global malaria treatment regime. In African countries a tea infusion prepared from Artemisia annua has been used for the treatment of malaria only for the past 10-20 years. Several informal claims in Africa exist that the Artemisia annua tea infusions are also able to inhibit HIV. Since HIV is a relatively newly emerged disease, the claims, if substantiated, could provide a very good example of "ethnopharmacology in overdrive". The objective of this study was to provide quantitative scientific evidence that the Artemisia annua tea infusion exhibits anti-HIV activity through in vitro studies. A second objective was to determine if artemisinin plays a direct or indirect (synergistic) role in any observed activity. This was done by the inclusion of a chemically closely related species, Artemisia afra, known not to contain any artemisinin in our studies. Validated cellular systems were used to test Artemisia annua tea samples for anti-HIV activity. Two independent tests with different formats (an infection format and a co-cultivation format) were used. Samples were also tested for cellular toxicity against the human cells used in the assays. The Artemisia annua tea infusion was found to be highly active with IC(50) values as low as 2.0 μg/mL. Moreover we found that artemisinin was inactive at 25 μg/mL and that a chemically related species Artemisia afra (not containing artemisinin) showed a similar level of activity. This indicates that the role of artemisinin, directly or indirectly (synergism), in the observed activity is rather limited. Additionally, no cellular toxicity was seen for the tea infusion at the highest concentrations tested. This study provides the first in vitro evidence of anti-HIV activity of the Artemisia annua tea infusion. We also report for the first time on the anti-HIV activity of Artemisia afra although this was not an objective of this

  1. Artemisia annua as a possible contraceptive agent: a clue from mammalian rat model.

    PubMed

    Abolaji, Amos O; Eteng, Mbeh U; Ebong, Patrick E; Dar, Ahsana; Farombi, Ebenezer O; Choudhary, M Iqbal

    2014-01-01

    In a previous study, we evaluated the maternal and fetal safety of antimalarial herb Artemisia annua with artemisinin yield of 1.09%. Here, we attempted to ascertain the contraceptive claim of A. annua. Sexually matured female Wistar rats (180-220 g) were allotted into four study groups of six rats each. The control group received normal saline, while the A. annua-treated groups received 100, 200 and 300 mg/kg of A. annua for 2 weeks, followed by mating with proven fertile males (1:1). The rats were allowed to carry the pregnancy to term. At birth and weaning periods, selected reproductive outcome and fertility indices were determined. The results showed that A. annua significantly reduced litter size, reproductive outcome and fertility indices compared with the control (p <  0.05). These results imply that A. annua could serve as a prospective contraceptive agent in addition to its antimalarial activity.

  2. The effects of dried leaves of Manihot esculenta and Artemisia annua on coccidiosis in organically reared pullets in Brazil

    USDA-ARS?s Scientific Manuscript database

    The effects of Manihot esculenta and Artemisia annua as natural coccidiostats were investigated as compared to a vaccinated group. The inclusion of Artemisia annua showed poorer performance compared to the vaccinated group whereas dried leaves of M. esculenta presented similar results of a commercia...

  3. [Biotransformation of artemisinic acid by cell suspension cultures of Cephalotaxus fortunei and Artemisia annua].

    PubMed

    Hu, Yan-shan; Zhu, Jian-hua; Jiang, Bo; Yu, Rong-min

    2010-05-01

    To investigate the biotransformation of artemisinic acid by cell suspension cultures of Cephalotaxus fortunei and Artemisia annua. Artemisinic acid was added into to the media of the suspension cells of Cephalotaxus fortunei and Artemisia annua in their logarithmic growth phase. The biotransfromed product was detected with HPLC and isolated by silica gel column, Sephadex LH20 and ODS chromatography methods. The chemical structure of biotransformed product was elucidated on the basis of physical-chemical properties and spectroscopic data. Otherwise, the influence of co-cultured time on conversion ratio was investigated with HPLC. One biotransformed product, 3-alpha-hydroxyartemisinic acid, was obtained after two days of artemisinic acid administration to the suspension cells of Cephalotaxus fortunei and Artemisia annua. The optimal co-cultured time in suspension cells of Cephalotaxus fortunei was 2 days with the highest biotransformation rate of 8.42%, and in the case of Artemisia annua, it was 3 days and 3.95% respectively. It was the first time for the biotransformation of artemisinic acid to 3-alpha-hydroxyartemisinic acid by using cell suspension cultures of Cephalotaxus fortunei and Artemisia annua.

  4. Toxic essential oils. Part II: chemical, toxicological, pharmacological and microbiological profiles of Artemisia annua L. volatiles.

    PubMed

    Radulović, Niko S; Randjelović, Pavle J; Stojanović, Nikola M; Blagojević, Polina D; Stojanović-Radić, Zorica Z; Ilić, Ivan R; Djordjević, Vidosava B

    2013-08-01

    Botanical drugs based on Artemisia annua L. (Asteraceae) are important in the treatment of malaria. Alongside with artemisinin, this aromatic species produces high and variable amounts of other chemicals that have mostly unknown biological/pharmacological activities. Herein, we have studied the toxicological/pharmacological profile of volatile constituents of a Serbian population of A. annua. Fifty-eight components were identified, among them, artemisia ketone (35.7%), α-pinene (16.5%) and 1,8-cineole (5.5%) were the most abundant ones. Significant variability of A. annua volatile profile was confirmed by means of agglomerative hierarchical cluster analysis indicating the existence of several different A. annua chemotypes. In an attempt to connect the chemical profile of A. annua oil with its biological/toxicological effects, we have evaluated in vivo and/or in vitro toxicity (including hepato- and nephrotoxicity/protection), antinociceptive, antioxidant (DPPH, ABTS and superoxide radical scavenging activity assays), enzyme inhibiting (protein kinase A and α-amylase) and antimicrobial potential of A. annua oil and of its constituents. Our results revealed that the beneficial properties of A. annua botanical drugs are not limited only to their antimalarial properties. Taking into account its relatively low toxicity, the usage of A. annua volatiles (at least of the herein studied population) does not represent a health risk. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Molecular Farming in Artemisia annua, a Promising Approach to Improve Anti-malarial Drug Production

    PubMed Central

    Pulice, Giuseppe; Pelaz, Soraya; Matías-Hernández, Luis

    2016-01-01

    Malaria is a parasite infection affecting millions of people worldwide. Even though progress has been made in prevention and treatment of the disease; an estimated 214 million cases of malaria occurred in 2015, resulting in 438,000 estimated deaths; most of them occurring in Africa among children under the age of five. This article aims to review the epidemiology, future risk factors and current treatments of malaria, with particular focus on the promising potential of molecular farming that uses metabolic engineering in plants as an effective anti-malarial solution. Malaria represents an example of how a health problem may, on one hand, influence the proper development of a country, due to its burden of the disease. On the other hand, it constitutes an opportunity for lucrative business of diverse stakeholders. In contrast, plant biofarming is proposed here as a sustainable, promising, alternative for the production, not only of natural herbal repellents for malaria prevention but also for the production of sustainable anti-malarial drugs, like artemisinin (AN), used for primary parasite infection treatments. AN, a sesquiterpene lactone, is a natural anti-malarial compound that can be found in Artemisia annua. However, the low concentration of AN in the plant makes this molecule relatively expensive and difficult to produce in order to meet the current worldwide demand of Artemisinin Combination Therapies (ACTs), especially for economically disadvantaged people in developing countries. The biosynthetic pathway of AN, a process that takes place only in glandular secretory trichomes of A. annua, is relatively well elucidated. Significant efforts have been made using plant genetic engineering to increase production of this compound. These include diverse genetic manipulation approaches, such as studies on diverse transcription factors which have been shown to regulate the AN genetic pathway and other biological processes. Results look promising; however, further

  6. Subcellular compartmentalization in protoplasts from Artemisia annua cell cultures: engineering attempts using a modified SNARE protein.

    PubMed

    Di Sansebastiano, Gian Pietro; Rizzello, Francesca; Durante, Miriana; Caretto, Sofia; Nisi, Rossella; De Paolis, Angelo; Faraco, Marianna; Montefusco, Anna; Piro, Gabriella; Mita, Giovanni

    2015-05-20

    Plants are ideal bioreactors for the production of macromolecules but transport mechanisms are not fully understood and cannot be easily manipulated. Several attempts to overproduce recombinant proteins or secondary metabolites failed. Because of an independent regulation of the storage compartment, the product may be rapidly degraded or cause self-intoxication. The case of the anti-malarial compound artemisinin produced by Artemisia annua plants is emblematic. The accumulation of artemisinin naturally occurs in the apoplast of glandular trichomes probably involving autophagy and unconventional secretion thus its production by undifferentiated tissues such as cell suspension cultures can be challenging. Here we characterize the subcellular compartmentalization of several known fluorescent markers in protoplasts derived from Artemisia suspension cultures and explore the possibility to modify compartmentalization using a modified SNARE protein as molecular tool to be used in future biotechnological applications. We focused on the observation of the vacuolar organization in vivo and the truncated form of AtSYP51, 51H3, was used to induce a compartment generated by the contribution of membrane from endocytosis and from endoplasmic reticulum to vacuole trafficking. The artificial compartment crossing exocytosis and endocytosis may trap artemisinin stabilizing it until extraction; indeed, it is able to increase total enzymatic activity of a vacuolar marker (RGUSChi), probably increasing its stability. Exploring the 51H3-induced compartment we gained new insights on the function of the SNARE SYP51, recently shown to be an interfering-SNARE, and new hints to engineer eukaryote endomembranes for future biotechnological applications. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  7. [Breeding and spreading of new vairety "Yu-Qing No. 1" of Artemisia annua].

    PubMed

    Li, Longyun; Wu, Yekuan; Ma, Peng; Cui, Guanglin; Zhong, Guoyue; Wang, Meisheng; Li, Fangyi

    2010-10-01

    To breed and spread a new cultivar of Artemisia annua. The excellent germplasm resources of A. annua in the main production area of Artemisia were collected, and the improved germplasm were screened, the content of artemisinin was determined, and yield per plant was measured. The systematically maternal line and seed production techniques of mass selection were applied combined with the variety test, variety regional test trials and production trials for breeding and spreading the new cultivars of artemisia. The popularization and experiment illustrated the production of the new species reached 3 000 kg x hm(-2), compared with wild A. annua it increased 10% -14%. The content of artemisinin reached more than 1%, increased more than 0.2%. It is proved that the systematically maternal line and seed production techniques of mass selection can significantly improve the quality of A. annua and it is an acceptable way to cultivate new variety. By production verification, it is practicable and high technical and economic benefits to popularize the new cultivar "Yu-Qing No. 1" of A. annua.

  8. Cytotoxicity of ethanolic extracts of Artemisia annua to Molt-4 human leukemia cells

    USDA-ARS?s Scientific Manuscript database

    Cancer is the second cause of death in the United States, and current treatment is expensive and kills also healthy cells. Affordable alternatives that kill only cancer cells are needed. Artemisinin, extracted from the Artemisia annua, has potent anticancer activity and low toxicity to normal cell...

  9. DRYING AFFECTS ARTEMISININ, DIHYDROARTEMISINIC ACID, ARTEMISINIC ACID, AND THE ANTIOXIDANT CAPACITY OF ARTEMISIA ANNUA L. LEAVES

    USDA-ARS?s Scientific Manuscript database

    The anti-parasitic, anti-cancer, and anti-viral sesquiterpene lactone artemisinin, commercially extracted from Artemisia annua, is in high demand worldwide. However, limited information is available on how post-harvest drying procedures affect plant biochemistry leading to the biosynthesis of artem...

  10. Effects of artemisinin and Artemisia annua extracts on Haemonchus contortus in gerbils (Meriones unguiculatus)

    USDA-ARS?s Scientific Manuscript database

    Haemonchus contortus is a blood-sucking abomasal parasite of small ruminants that is responsible for major losses to producers worldwide. Resistance of this nematode to commercial anthelmintics has produced a demand for alternative control methods. Artemisia annua is the sole commercial source of ...

  11. Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with Artemisinin

    USDA-ARS?s Scientific Manuscript database

    Since artemisinin was discovered as the active antimalarial component in a diethyl ether extract of Artemisia annua in early 1970’s, hundreds of papers have focused on the antimalarial effects of the artemisinin semi-synthetic analogs dihydroartemisinin, artemether, arteether, and artesunate. Artem...

  12. Water deficit on the accumulation of biomass and artemisinin in annual wormwood (Artemisia annua L., Asteraceae)

    USDA-ARS?s Scientific Manuscript database

    Despite the importance of Artemisia annua as the only source of the anti-parasitic drug artemisinin, little can be found on the role of biotic and abiotic stress on artemisinin. Water stress is the most limiting factor on plant growth, but can trigger secondary metabolite accumulation, depending on...

  13. Volatile fingerprints of artemisinin-rich Artemisia annua cultivars by headspace solid-phase microextraction gas chromatography/ mass spectrometry.

    PubMed

    Reale, Samantha; Fasciani, Paolo; Pace, Loretta; De Angelis, Francesco; Marcozzi, Giordana

    2011-09-15

    The cultivar Anamed (A3) is a hybrid of Artemisia annua with a high content of the secondary metabolite artemisinin, a well-known antimalarial drug. Here we report for the first time the volatile profile of fresh leaves of this hybrid in comparison with that of Artemisia annua L. wild-type species. Evaluation and comparison of the volatile profiles of A. annua genotypes with different content in artemisinin were carried out by headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography/mass spectrometry (GC/MS) that was performed on fresh leaves of the plants under investigation using a polydimethylsiloxane (PDMS) fiber. The chromatograms obtained from hybrids with a high content of artemisinin (A. annua cv. Anamed A3 and A. annua cv. Artemis F2) reveal the total absence of artemisia ketone, one of the major and characteristic compounds of the wild-type A. annua L., along with a significantly lower variety of volatile compounds. In conclusion, HS-SPME coupled with GC/MS is a very useful, non-destructive and efficient method to describe the volatile pattern of Artemisia annua cultivars. It represents a rapid screening method for the evaluation of volatile biomarkers like artemisia ketone, whose absence is typical of artemisinin-rich A. annua cultivars. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Effects of Artemisia annua and Foeniculum vulgare on chickens highly infected with Eimeria tenella (Phylum Apicomplexa)

    PubMed Central

    2014-01-01

    Background Intensive poultry production systems depend on chemoprophylaxis with anticoccidial drugs to combat infection. A floor-pen study was conducted to evaluate the anticoccidial effect of Artemisia annua and Foeniculum vulgare on Eimeria tenella infection. Five experimental groups were established: negative control (untreated, unchallenged); positive control (untreated, challenged); a group medicated with 125 ppm lasalocid and challenged; a group medicated with A. annua leaf powder at 1.5% in feed and challenged; and a group treated with the mixed oils of A. annua and Foeniculum vulgare in equal parts, 7.5% in water and challenged. The effects of A. annua and oil extract of A. annua + F. vulgare on E. tenella infection were assessed by clinical signs, mortality, fecal oocyst output, faeces, lesion score, weight gain, and feed conversion. Results Clinical signs were noticed only in three chickens from the lasalocid group, six from the A. annua group, and nine from the A. annua + F. vulgare group, but were present in 19 infected chickens from the positive control group. Bloody diarrhea was registered in only two chickens from A. annua group, but in 17 chickens from the positive control group. Mortality also occurred in the positive control group (7/20). Chickens treated with A. annua had a significant reduction in faecal oocysts (95.6%; P = 0.027) and in lesion score (56.3%; P = 0.005) when compared to the positive control. At the end of experiment, chickens treated with A. annua leaf powder had the highest body weight gain (68.2 g/day), after the negative control group, and the best feed conversion (1.85) among all experimental groups. Conclusions Our results suggest that A. annua leaf powder (Aa-p), at 1.5% of the daily diet post-infection, can be a valuable alternative for synthetic coccidiostats, such as lasalocid. PMID:24731599

  15. Effects of Artemisia annua and Foeniculum vulgare on chickens highly infected with Eimeria tenella (phylum Apicomplexa).

    PubMed

    Drăgan, Liviu; Györke, Adriana; Ferreira, Jorge F S; Pop, Ioan A; Dunca, Ioan; Drăgan, Maria; Mircean, Viorica; Dan, Iosif; Cozma, Vasile

    2014-04-15

    Intensive poultry production systems depend on chemoprophylaxis with anticoccidial drugs to combat infection. A floor-pen study was conducted to evaluate the anticoccidial effect of Artemisia annua and Foeniculum vulgare on Eimeria tenella infection. Five experimental groups were established: negative control (untreated, unchallenged); positive control (untreated, challenged); a group medicated with 125 ppm lasalocid and challenged; a group medicated with A. annua leaf powder at 1.5% in feed and challenged; and a group treated with the mixed oils of A. annua and Foeniculum vulgare in equal parts, 7.5% in water and challenged. The effects of A. annua and oil extract of A. annua + F. vulgare on E. tenella infection were assessed by clinical signs, mortality, fecal oocyst output, faeces, lesion score, weight gain, and feed conversion. Clinical signs were noticed only in three chickens from the lasalocid group, six from the A. annua group, and nine from the A. annua + F. vulgare group, but were present in 19 infected chickens from the positive control group. Bloody diarrhea was registered in only two chickens from A. annua group, but in 17 chickens from the positive control group. Mortality also occurred in the positive control group (7/20). Chickens treated with A. annua had a significant reduction in faecal oocysts (95.6%; P = 0.027) and in lesion score (56.3%; P = 0.005) when compared to the positive control. At the end of experiment, chickens treated with A. annua leaf powder had the highest body weight gain (68.2 g/day), after the negative control group, and the best feed conversion (1.85) among all experimental groups. Our results suggest that A. annua leaf powder (Aa-p), at 1.5% of the daily diet post-infection, can be a valuable alternative for synthetic coccidiostats, such as lasalocid.

  16. Variations in antimalarial components of Artemisia annua Linn from three regions of Uganda.

    PubMed

    Engeu, Patrick Ogwang; Omujal, Francis; Agwaya, Moses; Kyakulaga, Hassan; Obua, Celestino

    2015-09-01

    Artemisia annua plant from the family Asteracea is a powerful antimalarial plant introduced to Uganda around 2003. In addition to the artemisinin component, the plant also contains flavonoids which work in synergy to artemisinin against malaria parasites. The plant also contains aromatic oils which repel mosquitoes. In this paper we report the variations in antimalarial components of A. annua samples from the regions cultivating it in Uganda. Artemisia annua samples were obtained from three regions that cultivated the plant at the time of this study. The samples were brought to laboratory, authenticated and processed. The levels of artemisinin, total flavonoids and aromatic components were quantified using high performance thin layer chromatography, ultra violet spectrophotometry and gas chromatography respectively. Artemisinin and total flavonoids levels were higher in samples obtained from high land areas (western and south western region) compared to that obtained from lowland regions (central) i.e 0.8% Vs 0.4% and 2.6% Vs 1.5% respectively. The aromatic oils (mosquito repellent components) were similar with camphor component being highest and levels ranging from 75.4% to 79.0%. Our findings show that the active components in Artemisia annua cultivated and used in the Uganda vary with geographical regions and this calls for standardisation by source.

  17. Effects of ethanol extract of Artemisia annua L. against monogenean parasites of Heterobranchus longifilis.

    PubMed

    Ekanem, Albert P; Brisibe, Ebiamadon Andi

    2010-04-01

    Ethanol extract of Artemisia annua was effective in the dislodgement and mortality of monogenean parasites of juvenile Heterobranchus longifilis at concentrations ranging from 50 to 200 mg/l. Five hundred 1-week-old juvenile fish were stocked in hapa in earthen pond for 7 days to accumulate parasites. The approximate number of parasites per fish was confirmed by counting the number of parasites attached to body surfaces and the gills with a stereo-microscope before being exposed to the extract under in vivo conditions. The bioactivity of the extract was conducted in plastic Petri dishes with three replications and controls. The results obtained from A. annua extract were matched against those produced by pure artemisinin and artesunate powder, respectively, under similar experimental conditions. There was a faster effect of pure artemisinin crystals on the parasites as compared to A. annua extract and artesunate. Coagulation of parasite cells was observed with artemisinin treatment, whereas parasites were merely dislodged from their attachment organs and killed some hours later in the same concentration of A. annua. There were positive correlations between the number of parasites dislodged/killed and the concentration of A. annua extract, artemisinin, and artesunate powder, respectively, as well as the duration of exposure of affected fish to the substances. This led to the conclusion that A. annua contains substances that are effective against helminthes parasites of H. longifilis.

  18. An Endophytic Pseudonocardia Species Induces the Production of Artemisinin in Artemisia annua

    PubMed Central

    Li, Jie; Zhao, Guo-Zhen; Varma, Ajit; Qin, Sheng; Xiong, Zhi; Huang, Hai-Yu; Zhu, Wen-Yong; Zhao, Li-Xing; Xu, Li-Hua; Zhang, Si; Li, Wen-Jun

    2012-01-01

    Endophytic actinobacteria colonize internal tissues of their host plants and are considered as a rich and reliable source of diverse species and functional microorganisms. In this study, endophytic actinobacterial strain YIM 63111 was isolated from surface-sterilized tissue of the medicinal plant Artemisia annua. We identified strain YIM 63111 as a member of the genus Pseudonocardia. A. annua seedlings grown under both sterile and greenhouse conditions were inoculated with strain YIM 63111. The growth of A. annua seedlings was strongly reduced when YIM 63111 was inoculated at higher concentrations under sterile conditions. However, no growth inhibition was observed when A. annua was grown under greenhouse conditions. Using an enhanced green fluorescent protein (EGFP) expressing YIM 63111 strain, we also observed the endophytic colonization of A. annua seedling using confocal laser-scanning microscopy. The transcription levels of the key genes involved in artemisinin biosynthesis were investigated using real time RT-PCR, revealing that cytochrome P450 monooxygenase (CYP71AV1) and cytochrome P450 oxidoreductase (CPR) expression were up-regulated in A. annua upon inoculation with strain YIM 63111 under certain conditions. The up-regulation of these genes was associated with the increased accumulation of artemisinin. These results suggest that endophytic actinobacteria effectively stimulate certain plant defense responses. Our data also demonstrate the use of Pseudonocardia sp. strain YIM 63111 as a promising means to enhance artemisinin production in plants. PMID:23251523

  19. An endophytic Pseudonocardia species induces the production of artemisinin in Artemisia annua.

    PubMed

    Li, Jie; Zhao, Guo-Zhen; Varma, Ajit; Qin, Sheng; Xiong, Zhi; Huang, Hai-Yu; Zhu, Wen-Yong; Zhao, Li-Xing; Xu, Li-Hua; Zhang, Si; Li, Wen-Jun

    2012-01-01

    Endophytic actinobacteria colonize internal tissues of their host plants and are considered as a rich and reliable source of diverse species and functional microorganisms. In this study, endophytic actinobacterial strain YIM 63111 was isolated from surface-sterilized tissue of the medicinal plant Artemisia annua. We identified strain YIM 63111 as a member of the genus Pseudonocardia. A. annua seedlings grown under both sterile and greenhouse conditions were inoculated with strain YIM 63111. The growth of A. annua seedlings was strongly reduced when YIM 63111 was inoculated at higher concentrations under sterile conditions. However, no growth inhibition was observed when A. annua was grown under greenhouse conditions. Using an enhanced green fluorescent protein (EGFP) expressing YIM 63111 strain, we also observed the endophytic colonization of A. annua seedling using confocal laser-scanning microscopy. The transcription levels of the key genes involved in artemisinin biosynthesis were investigated using real time RT-PCR, revealing that cytochrome P450 monooxygenase (CYP71AV1) and cytochrome P450 oxidoreductase (CPR) expression were up-regulated in A. annua upon inoculation with strain YIM 63111 under certain conditions. The up-regulation of these genes was associated with the increased accumulation of artemisinin. These results suggest that endophytic actinobacteria effectively stimulate certain plant defense responses. Our data also demonstrate the use of Pseudonocardia sp. strain YIM 63111 as a promising means to enhance artemisinin production in plants.

  20. T-shaped trichome-specific expression of monoterpene synthase ADH2 using promoter-β-GUS fusion in transgenic Artemisia annua L.

    PubMed

    Fu, Xueqing; Shi, Pu; Shen, Qian; Jiang, Weimin; Tang, Yueli; Lv, Zongyou; Yan, Tingxiang; Li, Ling; Wang, Guofeng; Sun, Xiaofen; Tang, Kexuan

    2016-11-01

    Artemisinin, a sesquiterpene lactone isolated from Artemisia annua L. (sweet wormwood), is extensively used in the treatment of malaria. In order to better understand the metabolism of terpenes in A. annua and the influence of terpene synthases on artemisinin yield, the expression pattern of a monoterpene alcohol dehydrogenase (ADH2) has been studied using transgenic plants expressing promoter-β-glucuronidase (GUS) fusion. ADH2 played a major role in monoterpenoid biosynthesis including carveol, borneol, and artemisia ketone through in vitro biochemical analysis. In this study, the ADH2 promoter was cloned by the genome walking method. A number of putative cis-acting elements were predicted in promoter region, suggesting that the ADH2 is driven by a complex regulation mechanism. ADH2 gene was highly expressed in old leaves, whereas the artemisinin biosynthetic genes were mainly expressed in bud and young leaves. The expression of ADH2 gene increased quickly during leaf development, revealed by qRT-PCR. GUS expression analysis in different tissues of transgenic A. annua demonstrates that ADH2 expression is exclusively located to T-shaped trichome, not glandular secretory trichome. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  1. Studies on the Expression of Sesquiterpene Synthases Using Promoter-β-Glucuronidase Fusions in Transgenic Artemisia annua L

    PubMed Central

    Wang, Hongzhen; Han, Junli; Kanagarajan, Selvaraju; Lundgren, Anneli; Brodelius, Peter E.

    2013-01-01

    In order to better understand the influence of sesquiterpene synthases on artemisinin yield in Artemisia annua, the expression of some sesquiterpene synthases has been studied using transgenic plants expressing promoter-GUS fusions. The cloned promoter sequences were 923, 1182 and 1510 bp for β-caryophyllene (CPS), epi-cedrol (ECS) and β-farnesene (FS) synthase, respectively. Prediction of cis-acting regulatory elements showed that the promoters are involved in complex regulation of expression. Transgenic A. annua plants carrying promoter-GUS fusions were studied to elucidate the expression pattern of the three sesquiterpene synthases and compared to the previously studied promoter of amorpha-4,11-diene synthase (ADS), a key enzyme of artemisinin biosynthesis. The CPS and ECS promoters were active in T-shaped trichomes of leaves and stems, basal bracts of flower buds and also in some florets cells but not in glandular secretory trichome while FS promoter activity was only observed in leaf cells and trichomes of transgenic shoots. ADS, CPS, ECS and FS transcripts were induced by wounding in a time depended manner. The four sesquiterpene synthases may be involved in responsiveness of A. annua to herbivory. Methyl jasmonate treatment triggered activation of the promoters of all four sesquiterpene synthases in a time depended manner. Southern blot result showed that the GUS gene was inserted into genomic DNA of transgenic lines as a single copy or two copies. The relative amounts of CPS and ECS as well as germacrene A synthase (GAS) transcripts are much lower than that of ADS transcript. Consequently, down-regulation of the expression of the CPS, ECS or GAS gene may not improve artemsinin yield. However, blocking the expression of FS may have effects on artemisinin production. PMID:24278301

  2. Studies on the expression of sesquiterpene synthases using promoter-β-glucuronidase fusions in transgenic Artemisia annua L.

    PubMed

    Wang, Hongzhen; Han, Junli; Kanagarajan, Selvaraju; Lundgren, Anneli; Brodelius, Peter E

    2013-01-01

    In order to better understand the influence of sesquiterpene synthases on artemisinin yield in Artemisia annua, the expression of some sesquiterpene synthases has been studied using transgenic plants expressing promoter-GUS fusions. The cloned promoter sequences were 923, 1182 and 1510 bp for β-caryophyllene (CPS), epi-cedrol (ECS) and β-farnesene (FS) synthase, respectively. Prediction of cis-acting regulatory elements showed that the promoters are involved in complex regulation of expression. Transgenic A. annua plants carrying promoter-GUS fusions were studied to elucidate the expression pattern of the three sesquiterpene synthases and compared to the previously studied promoter of amorpha-4,11-diene synthase (ADS), a key enzyme of artemisinin biosynthesis. The CPS and ECS promoters were active in T-shaped trichomes of leaves and stems, basal bracts of flower buds and also in some florets cells but not in glandular secretory trichome while FS promoter activity was only observed in leaf cells and trichomes of transgenic shoots. ADS, CPS, ECS and FS transcripts were induced by wounding in a time depended manner. The four sesquiterpene synthases may be involved in responsiveness of A. annua to herbivory. Methyl jasmonate treatment triggered activation of the promoters of all four sesquiterpene synthases in a time depended manner. Southern blot result showed that the GUS gene was inserted into genomic DNA of transgenic lines as a single copy or two copies. The relative amounts of CPS and ECS as well as germacrene A synthase (GAS) transcripts are much lower than that of ADS transcript. Consequently, down-regulation of the expression of the CPS, ECS or GAS gene may not improve artemsinin yield. However, blocking the expression of FS may have effects on artemisinin production.

  3. Anti-inflammatory, Antioxidant and Antimicrobial Effects of Artemisinin Extracts from Artemisia annua L.

    PubMed Central

    Kim, Wan-Su; Choi, Woo Jin; Lee, Sunwoo; Kim, Woo Joong; Lee, Dong Chae; Sohn, Uy Dong; Shin, Hyoung-Shik

    2015-01-01

    The anti-inflammatory, antioxidant, and antimicrobial properties of artemisinin derived from water, methanol, ethanol, or acetone extracts of Artemisia annua L. were evaluated. All 4 artemisinin-containing extracts had anti-inflammatory effects. Of these, the acetone extract had the greatest inhibitory effect on lipopolysaccharide-induced nitric oxide (NO), prostaglandin E2 (PGE2), and proinflammatory cytokine (IL-1β , IL-6, and IL-10) production. Antioxidant activity evaluations revealed that the ethanol extract had the highest free radical scavenging activity, (91.0±3.2%), similar to α-tocopherol (99.9%). The extracts had antimicrobial activity against the periodontopathic microorganisms Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum subsp. animalis, Fusobacterium nucleatum subsp. polymorphum, and Prevotella intermedia. This study shows that Artemisia annua L. extracts contain anti-inflammatory, antioxidant, and antimicrobial substances and should be considered for use in pharmaceutical products for the treatment of dental diseases. PMID:25605993

  4. The complexity of medicinal plants: the traditional Artemisia annua formulation, current status and future perspectives.

    PubMed

    van der Kooy, Frank; Sullivan, Shaun Edward

    2013-10-28

    Artemisia annua has a long tradition of use for the treatment of intermittent fevers which we now relate to malarial infections. The active principle artemisinin has been isolated from Artemisia annua and today forms the backbone of the global fight against malaria. The traditionally prepared Artemisia annua formulation is however still being used on a global scale for the treatment of malaria, and it is claimed that its action is superior to the single purified drug. Artemisia annua is therefore on the forefront of the heated debate between the single drug-single target approach of western based medicine and the holistic approach of traditional medicinal systems. This review aims to highlight the complexities we face in the general study of medicinal plants at the hand of three levels of complexity. These levels consist of (a) the chemistry of the medicinal plant, (b) the influence of the preparation method on the chemistry of the final formulation and (c) the influence of metabolism on the chemistry of the formulation. We also aim to provide an up-to-date report on all scientific work that has been conducted and published in English on the traditional formulation of Artemisia annua. All English scientific literatures published until the first quarter of 2013 were retrieved from well-known scientific databases (Scifinder scholar, Web of Science, PubMed, Google scholar) and Non-governmental organisations active in this field were consulted. A draft version of this manuscript was sent to the African office of the World Health Organisation (WHO), and to the Non-governmental organisations "Action Médicine Naturelle" (ANAMED) and "Iwerliewen fir bedreete Volleker - Réseau belgo-luxembourgeois pour la valorisation des herbes médicinales" (IFBV-BELHERB) for comments. Very little scientific work has been conducted on the Artemisia annua formulation. The available literature contains many discrepancies which are unfortunately selectively being used by the two different

  5. Molecular cloning and characterization of a flavanone 3-Hydroxylase gene from Artemisia annua L.

    PubMed

    Xiong, Shuo; Tian, Na; Long, Jinhua; Chen, Yuhong; Qin, Yu; Feng, Jinyu; Xiao, Wenjun; Liu, Shuoqian

    2016-08-01

    Flavonoids were found to synergize anti-malaria and anti-cancer compounds in Artemisia annua, a very important economic crop in China. In order to discover the regulation mechanism of flavonoids in Artemisia annua, the full length cDNA of flavanone 3-hydroxylase (F3H) were isolated from Artemisia annua for the first time by using RACE (rapid amplification of cDNA ends). The completed open read frame of AaF3H was 1095 bp and it encoded a 364-amino acid protein with a predicted molecular mass of 41.18 kDa and a pI of 5.67. The recombinant protein of AaF3H was expressed in E. coli BL21(DE3) as His-tagged protein, purified by Ni-NTA agrose affinity chromatography, and functionally characterized in vitro. The results showed that the His-tagged protein (AaF3H) catalyzed naringenin to dihydrokaempferol in the present of Fe(2+). The Km for naringenin was 218.03 μM. The optimum pH for AaF3H reaction was determined to be pH 8.5, and the optimum temperature was determined to be 35 °C. The AaF3H transcripts were found to be accumulated in the cultivar with higher level of flavonoids than that with lower level of flavonoids, which implied that AaF3H was a potential target for regulation of flavonoids biosynthesis in Artemisia annua through metabolic engineering. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Trichomes + roots + ROS = artemisinin: regulating artemisinin biosynthesis in Artemisia annua L

    PubMed Central

    Nguyen, Khanhvan T.; Arsenault, Patrick R.; Weathers, Pamela J.

    2011-01-01

    Artemisinin is a highly effective sesquiterpene lactone therapeutic produced in the plant, Artemisia annua. Despite its efficacy against malaria and many other infectious diseases and neoplasms, the drug is in short supply mainly because the plant produces low levels of the compound. This review updates the current understanding of artemisinin biosynthesis with a special focus on the emerging knowledge of how biosynthesis of the compound is regulated in planta. PMID:21666770

  7. [Determination of artemisinic acid in Artemisia annua at different growth stages based on spot area].

    PubMed

    Zhang, Xiao-rong; Deng, Qi-di; Xu, Ding-hua; Chen, Gong-xi; Xiong, Li-zhi; Lv, Jiang-ming

    2013-11-01

    Based on the important medicinal applications of artemisinic acid and the superiority of Thin Layer Chromagraphy (TLC), the spot area method of TLC was presented to determine the content changes of artemisinic acid of Artemisia annua at different growing stages. The separation conditions including chromatographic solutions and chromogenic agent were optimized. The detection limit and the linear concentration range were analyzed. And the content changes of artemisinic acid of Artemisia annua at different growing stages were detected. The results showed that artemisinic acid extracted from Artemisia annua could be separated completely by the chromatographic solutions composed by petroleum ether,acetone and ethyl acetate (80: 19: 1). The artemisinic acid was clearly colored using the chromogenic agent consisting by ethanol, bromophenol blue and sulfuric acid. The detection limit of TLC was 0.05 mg/mL. The spot area of TLC had a good linear relationship within the range of 0.05-0.6 mg/mL, accorded with regression equation of y = 11.162 x + 0.0823. The results showed that the content of artemisinic acid at 0.041 mg/g in April which below the detection limit of TLC had no color spot. Contrarily, the spots of artemisinic acid were obvious in materials growing from May to September, and content was about 0.7, 1.2, 2.1, 2.4 and 2.7 mg/g, respectively corresponding to results by HPLC. The method can be applied to the quantitative analysis of artemisinic acid in Artemisia annua.

  8. Prolonged exposure to salt stress affects specialized metabolites-artemisinin and essential oil accumulation in Artemisia annua L.: metabolic acclimation in preferential favour of enhanced terpenoid accumulation accompanying vegetative to reproductive phase transition.

    PubMed

    Yadav, Ritesh Kumar; Sangwan, Rajender Singh; Srivastava, Avadesh K; Sangwan, Neelam S

    2017-01-01

    Artemisia annua accumulates substantial quantities of unique and highly useful antimalarial sesquiternoid artemisinin and related phytomolecules as well as its characteristic essential oil in its glandular trichomes. The phytomolecules are mainly produced in its leaves and inflorescences. Artemisia annua plants were grown under NaCl salinity (50, 100 and 200 mM) stress conditions imposed throughout the entire life cycle of the plant. Results revealed that specialized metabolites like artemisinin, arteannuin-B, artemisinic acid + dihydroartemisinic acid and essential oil accumulation were positively modulated by NaCl salinity stress. Interestingly, total content of monoterpenoids and sesquiterpenoids of essential oil was induced by NaCl salinity treatment, contrary to previous observations. Production of camphor, the major essential oil constituent was induced under the influence of treatment. The metabolic acclimation and manifestations specific to terpenoid pathway are analysed vis-a-vis vegetative to reproductive periods and control of the modulation. WRKY and CYP71AV1 play a key role in mediating the responses through metabolism in glandular trichomes. The distinctness of the salinity induced responses is discussed in light of differential mechanism of adaptation to abiotic stresses and their impact on terpenoid-specific metabolic adjustments in A. annua. Results provide potential indications of possible adaptation of A. annua under saline conditions for agrarian techno-economic benefaction.

  9. [Enhancement of artemisinin biosynthesis in transgenic Artemisia annua L. by overexpressed HDR and ADS genes].

    PubMed

    Wang, Ya-Xiong; Long, Shi-Ping; Zeng, Li-Xia; Xiang, Li-En; Lin, Zhi; Chen, Min; Liao, Zhi-Hua

    2014-09-01

    Artemisnin is a novel sesquiterpene lactone with an internal peroxide bridge structure, which is extracted from traditional Chinese herb Artemisia annua L. (Qinghao). Recommended by World Health Organization, artemisinin is the first-line drug in the treatment of encephalic and chloroquine-resistant malaria. In the present study, transgenic A. annua plants were developed by overexpressing the key enzymes involved in the biosynthetic pathway of artemisinin. Based on Agrobacterium-mediated transformation methods, transgenic plants of A. annua with overexpression of both HDR and ADS were obtained through hygromycin screening. The genomic PCR analysis confirmed six transgenic lines in which both HDR and ADS were integrated into genome. The gene expression analysis given by real-time quantitative PCR showed that all the transgenic lines had higher expression levels of HDR and ADS than the non-transgenic control (except ah3 in which the expression level of ADS showed no significant difference compared with control); and the HPLC analysis of artemisinin demonstrated that transgenic A. annua plants produced artemisinin at significantly higher level than non-transgenic plants. Especially, the highest content of artemisinin was found in transgenic line ah70, in which the artemisinin content was 3.48 times compared with that in non-transgenic lines. In summary, overexpression of HDR and ADS facilitated artemisinin biosynthesis and this method could be applied to develop transgenic plants of A. annua with higher yield of artemisinin.

  10. [Influence of continuous cropping on growth of Artemisia annua and bacterial communities in soil].

    PubMed

    Li, Qian; Yuan, Ling; Yang, Shui-Ping; Cheng, Yu-Yuan; Cui, Guang-Lin; Huang, Jian-Guo

    2016-05-01

    In this study, several types of Artemisia annua in soil, including the soil which had not been planted, or planted for one year, or continuously planted for three or five years were collected, in order to study the influences of continuous cropping on the growth of A. annua, content of artemisinin, available nutrient of soil, and bacterial community structure through adopting routine analysis and Illumina MiSeq high-throughput sequencing. The results showed that continuous cropping inhibited significantly the growth of A. annua and reduced leaf biomass, content and yield of artemisinin, with the maximum decreasing amplitude of 30.20%, 7.70% and 35.58% respectively. The content of soil organic matter, available nitrogen, available phosphorus and 16S rRNA sequence number were increased to different extents after continuous cropping of A. annua. According to the results of high-throughput sequencing, 634-812 types of common bacteria belonged to 21 categories were planted in different soil of A. annua with different planting years, which represented that the distribution distance of the point of bacterial community with different years among coordinate system of principal component was relative distant, and community structure had significant changes (P<0.05). As the planting years increased, the abundance of Actinobacteria, Chloroflexi, Gemmatimonadetes decreased in contrast to Proteobacteria, Acidobacteria and Verrucomicrobia. In the top 20 types of predominant bacteria,Nitrospira japonica and Nitrospira disappeared, among which, only Gemmatimonadaceae, Micromonosporaceae, Nitrosomonadaceae, Xanthobacteraceae, and unculture bacterium JG30-KF-AS9 were similar, indicating that the planting and continuous cropping of A. annua selectively inhibited the growth and reproduction of soil bacteria, and influenced the supply and transform of soil nutrient, leading to a poor growth and resulting in reduction of artemisinin content and yield. Therefore, it is necessary to

  11. Dried-leaf Artemisia annua: A practical malaria therapeutic for developing countries?

    PubMed

    Weathers, Pamela J; Towler, Melissa; Hassanali, Ahmed; Lutgen, Pierre; Engeu, Patrick Ogwang

    2014-12-09

    Artemisinin from the plant Artemisia annua (A. annua) L, and used as artemisinin combination therapy (ACT), is the current best therapeutic for treating malaria, a disease that hits children and adults especially in developing countries. Traditionally, A. annua was used by the Chinese as a tea to treat "fever". More recently, investigators have shown that tea infusions and oral consumption of the dried leaves of the plant have prophylactic and therapeutic efficacy. The presence of a complex matrix of chemicals within the leaves seems to enhance both the bioavailability and efficacy of artemisinin. Although about 1000-fold less potent than artemisinin in their antiplasmodial activity, these plant chemicals are mainly small molecules that include other artemisinic compounds, terpenes (mainly mono and sesqui), flavonoids, and polyphenolic acids. In addition, polysaccharide constituents of A. annua may enhance bioavailability of artemisinin. Rodent pharmacokinetics showed longer T1/2 and Tmax and greater Cmax and AUC in Plasmodium chabaudi-infected mice treated with A. annua dried leaves than in healthy mice. Pharmacokinetics of deoxyartemisinin, a liver metabolite of artemisinin, was more inhibited in infected than in healthy mice. In healthy mice, artemisinin serum levels were > 40-fold greater in dried leaf fed mice than those fed with pure artemisinin. Human trial data showed that when delivered as dried leaves, 40-fold less artemisinin was required to obtain a therapeutic response compared to pure artemisinin. ACTs are still unaffordable for many malaria patients, and cost estimates for A. annua dried leaf tablet production are orders of magnitude less than for ACT, despite improvements in the production capacity. Considering that for > 2000 years this plant was used in traditional Chinese medicine for treatment of fever with no apparent appearance of artemisinin drug resistance, the evidence argues for inclusion of affordable A. annua dried leaf tablets into the

  12. Dried-leaf Artemisia annua: A practical malaria therapeutic for developing countries?

    PubMed Central

    Weathers, Pamela J; Towler, Melissa; Hassanali, Ahmed; Lutgen, Pierre; Engeu, Patrick Ogwang

    2015-01-01

    Artemisinin from the plant Artemisia annua (A. annua) L, and used as artemisinin combination therapy (ACT), is the current best therapeutic for treating malaria, a disease that hits children and adults especially in developing countries. Traditionally, A. annua was used by the Chinese as a tea to treat “fever”. More recently, investigators have shown that tea infusions and oral consumption of the dried leaves of the plant have prophylactic and therapeutic efficacy. The presence of a complex matrix of chemicals within the leaves seems to enhance both the bioavailability and efficacy of artemisinin. Although about 1000-fold less potent than artemisinin in their antiplasmodial activity, these plant chemicals are mainly small molecules that include other artemisinic compounds, terpenes (mainly mono and sesqui), flavonoids, and polyphenolic acids. In addition, polysaccharide constituents of A. annua may enhance bioavailability of artemisinin. Rodent pharmacokinetics showed longer T1/2 and Tmax and greater Cmax and AUC in Plasmodium chabaudi-infected mice treated with A. annua dried leaves than in healthy mice. Pharmacokinetics of deoxyartemisinin, a liver metabolite of artemisinin, was more inhibited in infected than in healthy mice. In healthy mice, artemisinin serum levels were > 40-fold greater in dried leaf fed mice than those fed with pure artemisinin. Human trial data showed that when delivered as dried leaves, 40-fold less artemisinin was required to obtain a therapeutic response compared to pure artemisinin. ACTs are still unaffordable for many malaria patients, and cost estimates for A. annua dried leaf tablet production are orders of magnitude less than for ACT, despite improvements in the production capacity. Considering that for > 2000 years this plant was used in traditional Chinese medicine for treatment of fever with no apparent appearance of artemisinin drug resistance, the evidence argues for inclusion of affordable A. annua dried leaf tablets into

  13. Larvicidal, oviposition, and ovicidal effects of Artemisia annua (Asterales: Asteraceae) against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Cheah, Shao-Xiong; Tay, Jia-Wei; Chan, Lai-Keng; Jaal, Zairi

    2013-09-01

    This study focuses on the larvicidal, oviposition, and ovicidal effects of a crude extract of Artemisia annua against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus. Dried cells of Artemisia annua from cell suspension cultures were extracted using hexane. The extract showed moderate larvicidal effects against mosquitoes. At 24-h post treatment, the LC50 values for Anopheles sinensis, Aedes aegypti, and Culex quinquefasciatus were recorded as 244.55, 276.14, and 374.99 ppm, respectively. The percentage mortality of larvae was directly proportional to the tested concentration. Anopheles sinensis was found to be the most susceptible species, whereas Culex quinquefasciatus was the most tolerant to the Artemisia annua extract. The results indicated that the Artemisia annua extract showed concentration-dependent oviposition deterrent activity and had a strong deterrent effect. At 500 ppm, the percentage effective repellency was more than 85% compared with the control group for all the species, with oviposition activity index values of -0.94, -0.95, and -0.78 for Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus, respectively. In the ovicidal assay, the percentage hatchability of eggs after treatment with 500 ppm of Artemisia annua extract was significantly lower than the control, with values of 48.84 ± 4.08, 38.42 ± 3.67, and 79.35 ± 2.09% for Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus, respectively. Artemisia annua was found to be more effective against Aedes aegypti and Anopheles sinensis compared with Culex quinquefasciatus. This study indicated that crude extract of A. annua could be a potential alternative for use in vector management programs.

  14. Engineering Isoprenoid Biosynthesis in Artemisia annua L. for the Production of Taxadiene: A Key Intermediate of Taxol

    PubMed Central

    Li, Meiya; Jiang, Fusheng; Yu, Xiangli; Miao, Zhiqi

    2015-01-01

    Taxadiene is the first committed precursor to paclitaxel, marketed as Taxol, arguably the most important anticancer agent against ovarian and breast cancer. In Taxus, taxadiene is directly synthesized from geranylgeranyl diphosphate (GGPP) that is the common precursor for diterpenoids and is found in most plants and microbes. In this study, Artemisia annua L., a Chinese medicinal herb that grows fast and is rich in terpenoids, was used as a genetic engineering host to produce taxadiene. The TXS (taxadiene synthase) gene, cloned from Taxus and inserted into pCAMBIA1304, was transformed into Artemisia annua L. using the Agrobacterium tumefaciens-mediated method. Thirty independent transgenic plants were obtained, and GC-MS analysis was used to confirm that taxadiene was produced and accumulated up to 129.7 μg/g dry mass. However, the high expression of TXS did not affect plant growth or photosynthesis in transgenic Artemisia annua L. It is notable that artemisinin is produced and stored in leaves and most taxadiene accumulated in the stem of transgenic Artemisia annua L., suggesting a new way to produce two important compounds in one transgenic plant: leaves for artemisinin and stem for taxadiene. Overall, this study demonstrates that genetic engineering of the taxane biosynthetic pathway in Artemisia annua L. for the production of taxadiene is feasible. PMID:25705665

  15. Engineering isoprenoid biosynthesis in Artemisia annua L. for the production of taxadiene: a key intermediate of taxol.

    PubMed

    Li, Meiya; Jiang, Fusheng; Yu, Xiangli; Miao, Zhiqi

    2015-01-01

    Taxadiene is the first committed precursor to paclitaxel, marketed as Taxol, arguably the most important anticancer agent against ovarian and breast cancer. In Taxus, taxadiene is directly synthesized from geranylgeranyl diphosphate (GGPP) that is the common precursor for diterpenoids and is found in most plants and microbes. In this study, Artemisia annua L., a Chinese medicinal herb that grows fast and is rich in terpenoids, was used as a genetic engineering host to produce taxadiene. The TXS (taxadiene synthase) gene, cloned from Taxus and inserted into pCAMBIA1304, was transformed into Artemisia annua L. using the Agrobacterium tumefaciens-mediated method. Thirty independent transgenic plants were obtained, and GC-MS analysis was used to confirm that taxadiene was produced and accumulated up to 129.7 μg/g dry mass. However, the high expression of TXS did not affect plant growth or photosynthesis in transgenic Artemisia annua L. It is notable that artemisinin is produced and stored in leaves and most taxadiene accumulated in the stem of transgenic Artemisia annua L., suggesting a new way to produce two important compounds in one transgenic plant: leaves for artemisinin and stem for taxadiene. Overall, this study demonstrates that genetic engineering of the taxane biosynthetic pathway in Artemisia annua L. for the production of taxadiene is feasible.

  16. Feeding Artemisia annua alters digesta pH and muscle lipid oxidation products in broiler chickens.

    PubMed

    Cherian, G; Orr, A; Burke, I C; Pan, W

    2013-04-01

    Because of growing consumer concern about the use of antimicrobials and the ban on most antibiotic feed additives in the European Union, there is increased interest in using alternatives to antimicrobials in poultry diets. Dried leaves of Artemisia annua have been used in Oriental medicine due to their antimicrobial activities. In the current study, the effect of including A. annua in broiler diets on hindgut and ceca pH, lipid oxidation products, and phenolic content of dark and white meat, and bird performance were investigated. A total of 96 broiler chicks were kept in 48 cages. Two cages with 2 birds per each cage are considered as 1 replicate, and there were 8 replications per treatment. The birds were fed corn-soy diets containing 0% (control), 2% (ART2), or 4% (ART4) dried A. annua leaves from d 14 through d 42. Cecal digesta pH was the lowest in birds fed the ART4 diet (P < 0.02), whereas the pH of ileal digesta was the lowest in ART2 (P < 0.01). Lipid oxidation products measured as TBA reactive substances (TBARS) were lower in the breast and thigh muscle of birds fed ART2 and ART4 diets compared with the control (P < 0.0001). No difference was found in total fat content of the liver, abdominal fat pads, or breast or thigh muscle content (P > 0.05). Artemisia annua addition did not affect final BW, weight gain, feed consumption, carcass weight, or feed:gain. No difference was observed in the relative weight of liver, abdominal fat, spleen, or heart tissue. Gastric acidity is protective against intestinal colonization and translocation of pathogenic bacteria. Therefore, gut pH and muscle tissue TBARS reduction in birds fed ART2 and ART4 suggest that A. annua may prove useful as a natural phytogenic feed additive with antioxidant potential that could be incorporated into poultry diets.

  17. Dual symbiosis between Piriformospora indica and Azotobacter chroococcum enhances the artemisinin content in Artemisia annua L.

    PubMed

    Arora, Monika; Saxena, Parul; Choudhary, Devendra Kumar; Abdin, Malik Zainul; Varma, Ajit

    2016-02-01

    At present, Artemisia annua L. is the major source of artemisinin production. To control the outbreaks of malaria, artemisinin combination therapies (ACTs) are recommended, and hence an ample amount of artemisinin is required for ACTs manufacture to save millions of lives. The low yield of this antimalarial drug in A. annua L. plants (0.01-1.1%) ensues its short supply and high cost, thus making it a topic of scrutiny worldwide. In this study, the effects of root endophyte, Piriformospora indica strain DSM 11827 and nitrogen fixing bacterium, Azotobacter chroococcum strain W-5, either singly and/or in combination for artemisinin production in A. annua L. plants have been studied under poly house conditions. The plant growth was monitored by measuring parameters like height of plant, total dry weight and leaf yield with an increase of 63.51, 52.61 and 79.70% respectively, for treatment with dual biological consortium, as compared to that of control plants. This significant improvement in biomass was associated with higher total chlorophyll content (59.29%) and enhanced nutrition (especially nitrogen and phosphorus, 55.75 and 86.21% respectively). The concentration of artemisinin along with expression patterns of artemisinin biosynthesis genes were appreciably higher in dual treatment, which showed positive correlation. The study suggested the potential use of the consortium P. indica strain DSM 11827 and A. chroococcum strain W-5 in A. annua L. plants for increased overall productivity and sustainable agriculture.

  18. Antimicrobial Activity of Artemisinin and Precursor Derived from In Vitro Plantlets of Artemisia annua L.

    PubMed Central

    Appalasamy, Suganthi; Lo, Kiah Yann; Ch'ng, Song Jin; Nornadia, Ku; Othman, Ahmad Sofiman; Chan, Lai-Keng

    2014-01-01

    Artemisia annua L., a medicinal herb, produces secondary metabolites with antimicrobial property. In Malaysia due to the tropical hot climate, A. annua could not be planted for production of artemisinin, the main bioactive compound. In this study, the leaves of three in vitro A. annua L. clones were, extracted and two bioactive compounds, artemisinin and a precursor, were isolated by thin layer chromatography. These compounds were found to be effective in inhibiting the growth of Gram-positive and Gram-negative bacteria but not Candida albicans. Their antimicrobial activity was similar to that of antibactericidal antibiotic streptomycin. They were found to inhibit the growth of the tested microbes at the minimum inhibition concentration of 0.09 mg/mL, and toxicity test using brine shrimp showed that even the low concentration of 0.09 mg/mL was very lethal towards the brine shrimps with 100% mortality rate. This study hence indicated that in vitro cultured plantlets of A. annua can be used as the alternative method for production of artemisinin and its precursor with antimicrobial activities. PMID:24575401

  19. Computational identification of sweet wormwood (Artemisia annua) microRNA and their mRNA targets.

    PubMed

    Pani, Alok; Mahapatra, Rajani Kanta; Behera, Niranjan; Naik, Pradeep Kumar

    2011-12-01

    Despite its efficacy against malaria, the relatively low yield (0.01%-0.8%) of artemisinin in Artemisia annua is a serious limitation to the commercialization of the drug. A better understanding of the biosynthetic pathway of artemisinin and its regulation by both exogenous and endogenous factors is essential to improve artemisinin yield. Increasing evidence has shown that microRNAs (miRNAs) play multiple roles in various biological processes. In this study, we used previously known miRNAs from Arabidopsis and rice against expressed sequence tag (EST) database of A. annua to search for potential miRNAs and their targets in A. annua. A total of six potential miRNAs were predicted, which belong to the miR414 and miR1310 families. Furthermore, eight potential target genes were identified in this species. Among them, seven genes encode proteins that play important roles in artemisinin biosynthesis, including HMG-CoA reductase (HMGR), amorpha-4,11-diene synthase (ADS), farnesyl pyrophosphate synthase (FPS) and cytochrome P450. In addition, a gene coding for putative AINTEGUMENTA, which is involved in signal transduction and development, was also predicted as one of the targets. This is the first in silico study to indicate that miRNAs target genes encoding enzymes involved in artemisinin biosynthesis, which may help to understand the miRNA-mediated regulation of artemisinin biosynthesis in A. annua.

  20. [Bioaccessibility of heavy metal in wild Artemisia annua and its health risk assessment].

    PubMed

    Zhou, Liang-yun; Yue, Hong; Li, Xuan; Mo, Ge; Kang, Li-ping; Guo, Lan-ping

    2015-05-01

    In this study, we investigate the bioaccessibility of heavy metals (Cu, Pb, As, Cd and Hg) in wild Artemisia annua and use target hazard quotients (THQ) proposed by US Environmental Protection Agency to assess the health risk under the heavy metal exposure. The results showed that the bioaccessibility of Cu, Pb, As, Cd and Hg in A. annua are 0.77, 0.66, 0.46, 0.68 and 0, respectively, and that the value of THQ for adults and children were 0.030 and 0.025 calculated by risk assessment model. The results indicated that the heavy metals in A. annua were not able to be completely absorbed by human body and that their contents were in a safe range. In this study, by combining the bioavailability of heavy metal and health risk assessment, we assessed the security of heavy metals of wild A. annua, which will provide reference for the standard of heavy metals for medicinal materials.

  1. Determination of dihydroartemisinic acid in Artemisia annua L. by gas chromatography with flame ionization detection.

    PubMed

    Tian, Na; Tang, Yuwei; Tian, Dongming; Liu, Zhonghua; Liu, Shuoqian

    2017-03-01

    Dihydroartemisinic acid (DHAA) is the direct precursor to artemisinin, an effective anti-malaria compound from Artemisia annua L. (A. annua), and it can be transformed to artemisinin without the catalysis of enzyme. A rapid and sensitive analysis of DHAA in A. annua is needed to screen excellent plant resources aimed to improve artemisinin production. In order to develop a rapid and sensitive determination method for DHAA in plant, the extraction and analysis conditions were extensively investigated in the present work. As a result, extraction of powdered A. annua leaves at 55°C for 50 min with chloroform resulted in the highest yield of DHAA, with a recovery of >98%. The precision of this gas chromatographic procedure ranged from 1.22 to 2.94% for intra-day and from 1.69 to 4.31% for inter-day, respectively. The accuracy was 99.55-103.02% for intra-day and 98.86-99.98% for inter-day, respectively. The measured LOQ and LOD values of the proposed method reached 5.00 and 2.00 μg/mL, respectively. Validation indicated the method was robust, quick, sensitive and adequate for DHAA analysis. Copyright © 2016 John Wiley & Sons, Ltd.

  2. [Effect of fertilization on phenolic components and antioxidant activities of Artemisia annua].

    PubMed

    Luo, Shi-Qiong; Yuan, Ling; Wu, Ye-Kuan; Huang, Jian-Guo

    2013-05-01

    A pot experiment with variable fertilizer treatments was carried out to study the influence of fertilization on the concentration and accumulation of polyphenols, scopoletin, chrysosplenol-D and chrysosplenetin in roots, stems and leaves and their antioxidant activities. The main aims were to fertilize scientifically in cultivation of Artemisia annua and improve the quality of the harvest organs. These active components in leaves, stems and roots in the squaring stage were analyzed by HPLC and antioxidant activities of the extracts were evaluated by ultraviolet visible light colorimetric method. The result showed the highest concentration of polyphenols, scopoletin, chrysosplenol-D and chrysosplenetin was in leaves, followed by stems and the lowest in roots. The antioxidant activities of the leaf extracts correlated positively with the concentrations of polyphenols, scopoletin, chrysosplenol-D and chrysosplenetin. Furthermore, fertilization promoted significantly the growth of A. annua, the biomass was increased by 57.37% (chemical fertilizer), 91.63% (mixture of chemical fertilizer and manure) and 92.27% (manure), respectively, compared to the blank control (without fertilizer). Fertilization, particularly mixture fertilization of chemical fertilizer and manure, increased generally the concentration and accumulation of polyphenols, scopoletin, chrysosplenol-D and chrysosplenetin as well as DPPH x scavenging ratio. Scopoletin, chrysosplenol-D and chrysosplenetin could be synthesized and stored mainly in leaves. The leaves might thus be the chief organ of A. annua for medical treatment. Finally, the mixture fertilization of chemical fertilizer and manure should be used to increase the yield and quality of A. annua.

  3. TRICHOME AND ARTEMISININ REGULATOR 1 Is Required for Trichome Development and Artemisinin Biosynthesis in Artemisia annua.

    PubMed

    Tan, Hexin; Xiao, Ling; Gao, Shouhong; Li, Qing; Chen, Junfeng; Xiao, Ying; Ji, Qian; Chen, Ruibing; Chen, Wansheng; Zhang, Lei

    2015-09-01

    Trichomes, small protrusions on the surface of many plant species, can produce and store various secondary metabolic products. Artemisinin, the most famous and potent medicine for malaria, is synthesized, stored, and secreted by Artemisia annua trichomes. However, the molecular basis regulating the biosynthesis of artemisinin and the development of trichomes in A. annua remains poorly understood. Here, we report that an AP2 transcription factor, TRICHOME AND ARTEMISININ REGULATOR 1 (TAR1), plays crucial roles in regulating the development of trichomes and the biosynthesis of artemisinin in A. annua. TAR1, which encodes a protein specially located in the nucleus, is mainly expressed in young leaves, flower buds, and some trichomes. In TAR1-RNAi lines, the morphology of trichomes and the composition of cuticular wax were altered, and the artemisinin content was dramatically reduced, which could be significantly increased by TAR1 oeverexpression. Expression levels of several key genes that are involved in artemisinin biosynthesis were altered when TAR1 was silenced or overexpressed. By the electrophoretic mobility shift, yeast one-hybrid and transient transformation β-glucuronidase assays, we showed that ADS and CYP71AV1, two key genes in the biosynthesis pathway of artemisinin, are likely the direct targets of TAR1. Taken together, our results indicate that TAR1 is a key component of the molecular network regulating trichome development and artemisinin biosynthesis in A. annua. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  4. Three-Dimensional Evaluation on Ecotypic Diversity of Traditional Chinese Medicine: A Case Study of Artemisia annua L.

    PubMed Central

    Li, Lin; Josef, Brinckmann A.; Liu, Bing; Zheng, Sihao; Huang, Linfang; Chen, Shilin

    2017-01-01

    Artemisinin is the first-line drug for anti-malaria recommended by the World Health Organization (WHO). As the sole natural plant source of artemisinin, ecotypes of Artemisia annua L. vary widely in artemisinin content between nations, and China is the main producing area of A. annua. Here we present a three-dimensional evaluation on ecotypic diversity of A. annua from 12 main producing areas in China using high-performance liquid chromatography coupled with evaporative light scattering detection (HPLC-ELSD) method, DNA barcoding and ecological analyses. The results indicated that A. annua exhibited high ecotypic diversity. A. annua grown in the South of the Qinling Mountains-Huaihe River Line had a high artemisinin content, whereas the northern ones were low. Similar pattern was noted in the genetic diversity. The southern A. annua had high intraspecific variation in contrast to the northern A. annua. In terms of ecological analyses, humidity and sunshine time could be the major limiting ecological factors that affect the accumulation of artemisinin. This is the first reported three-dimensional evaluation integrating chemical, molecular and ecological analyses of the ecotypic diversity of A. annua. The work will facilitate exploring the genetic basis of chemical variations and developing strategies for the breeding and cultivation of high quality A. annua. PMID:28744301

  5. Three-Dimensional Evaluation on Ecotypic Diversity of Traditional Chinese Medicine: A Case Study of Artemisia annua L.

    PubMed

    Li, Lin; Josef, Brinckmann A; Liu, Bing; Zheng, Sihao; Huang, Linfang; Chen, Shilin

    2017-01-01

    Artemisinin is the first-line drug for anti-malaria recommended by the World Health Organization (WHO). As the sole natural plant source of artemisinin, ecotypes of Artemisia annua L. vary widely in artemisinin content between nations, and China is the main producing area of A. annua. Here we present a three-dimensional evaluation on ecotypic diversity of A. annua from 12 main producing areas in China using high-performance liquid chromatography coupled with evaporative light scattering detection (HPLC-ELSD) method, DNA barcoding and ecological analyses. The results indicated that A. annua exhibited high ecotypic diversity. A. annua grown in the South of the Qinling Mountains-Huaihe River Line had a high artemisinin content, whereas the northern ones were low. Similar pattern was noted in the genetic diversity. The southern A. annua had high intraspecific variation in contrast to the northern A. annua. In terms of ecological analyses, humidity and sunshine time could be the major limiting ecological factors that affect the accumulation of artemisinin. This is the first reported three-dimensional evaluation integrating chemical, molecular and ecological analyses of the ecotypic diversity of A. annua. The work will facilitate exploring the genetic basis of chemical variations and developing strategies for the breeding and cultivation of high quality A. annua.

  6. Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L

    PubMed Central

    2011-01-01

    Background Recently, Artemisia annua L. (annual or sweet wormwood) has received increasing attention due to the fact that the plant produces the sesquiterpenoid endoperoxide artemisinin, which today is widely used for treatment of malaria. The plant produces relatively small amounts of artemisinin and a worldwide shortage of the drug has led to intense research in order to increase the yield of artemisinin. In order to improve our understanding of terpene metabolism in the plant and to evaluate the competition for precursors, which may influence the yield of artemisinin, we have used qPCR to estimate the expression of 14 genes of terpene metabolism in different tissues. Results The four genes of the artemisinin biosynthetic pathway (amorpha-4,11-diene synthase, amorphadiene-12-hydroxylase, artemisinic aldehyde ∆11(13) reductase and aldehyde dehydrogenase 1) showed remarkably higher expression (between ~40- to ~500-fold) in flower buds and young leaves compared to other tissues (old leaves, stems, roots, hairy root cultures). Further, dihydroartemisinic aldehyde reductase showed a very high expression only in hairy root cultures. Germacrene A and caryophyllene synthase were mostly expressed in young leaves and flower buds while epi-cedrol synthase was highly expressed in old leaves. 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase exhibited lower expression in old leaves compared to other tissues. Farnesyldiphosphate synthase, squalene synthase, and 1-deoxy-D-xylulose-5-phosphate reductoisomerase showed only modest variation in expression in the different tissues, while expression of 1-deoxy-D-xylulose-5-phosphate synthase was 7-8-fold higher in flower buds and young leaves compared to old leaves. Conclusions Four genes of artemisinin biosynthesis were highly expressed in flower buds and young leaves (tissues showing a high density of glandular trichomes). The expression of dihydroartemisinic aldehyde reductase has been suggested to have a negative effect on

  7. Artemisia annua L. as a plant with potential use in the treatment of acanthamoebiasis.

    PubMed

    Derda, Monika; Hadaś, Edward; Cholewiński, Marcin; Skrzypczak, Łukasz; Grzondziel, Anna; Wojtkowiak-Giera, Agnieszka

    2016-04-01

    The treatment of acanthamoebiasis is a great problem. Most cerebral invasions end with death, and the treatment of ocular invasions is usually long-lasting and not very effective. Numerous plant extracts and substances isolated from plants, which are effective against trophozoites or cysts, have been studied in the treatment of acanthamoebiasis. However, no agents that are simultaneously effective against both developing forms of amoebae have been discovered yet. It seems that such a plant which fulfils both tasks is Artemisia annua L. Our studies showed that water, alcohol and chloroform extracts from the herb A. annua L. can be applied in general and local treatment or in combined therapy with antibiotics in the treatment of acanthamoebiasis. Extracts from this plant show not only in vitro but also in vivo effects. Studies carried out on experimental animals infected with amoebae show that the application of these extracts significantly prolongs the survival of the animals.

  8. Expression of Beta-glucosidase increases trichome density and artemisinin content in transgenic Artemisia annua plants

    PubMed Central

    Singh, Nameirakpam Dolendro; Kumar, Shashi; Daniell, Henry

    2015-01-01

    Artemisinin is highly effective against multidrug-resistant strains of Plasmodium falciparum, the etiological agent of the most severe form of malaria. However, a low level of accumulation of artemisinin in Artemisia annua is a major limitation for its production and delivery to malaria endemic areas of the world. While several strategies to enhance artemisinin have been extensively explored, enhancing storage capacity in trichome has not yet been considered. Therefore, trichome density was increased with the expression of β glucosidase (bgl1) gene in A. annua through Agrobacterium-mediated transformation. Transgene (bgl1) integration and transcript was confirmed by molecular analysis. Trichome density increased up to 20% in leaves and 66% in flowers of BGL1 transgenic plants than Artemisia control plants. High-performance liquid chromatography (HPLC, MS-TOF) data showed that artemisinin content increased up to 1.4% in leaf and 2.56% in flowers (g-1DW), similar to the highest yields achieved so far through metabolic engineering. Artemisinin was enhanced up to 5-fold in BGL1 transgenic flowers. The present study opens the possibility of increasing artemisinin content by manipulating trichomes density, which is a major reservoir of artemisinin. Combining biosynthetic pathway engineering with enhancing trichome density may further increase artemisinin yield in A. annua. Because oral feeding of Artemisia plant cells reduced parasitemia more efficiently than the purified drug, reduced drug resistance and cost of prohibitively expensive purification process, enhanced expression should play a key role in making this valuable drug affordable to treat malaria in a large global population that disproportionally impacts low-socioeconomic areas and underprivileged children. PMID:26360801

  9. Expression of β-glucosidase increases trichome density and artemisinin content in transgenic Artemisia annua plants.

    PubMed

    Singh, Nameirakpam Dolendro; Kumar, Shashi; Daniell, Henry

    2016-03-01

    Artemisinin is highly effective against multidrug-resistant strains of Plasmodium falciparum, the aetiological agent of the most severe form of malaria. However, a low level of accumulation of artemisinin in Artemisia annua is a major limitation for its production and delivery to malaria endemic areas of the world. While several strategies to enhance artemisinin have been extensively explored, enhancing storage capacity in trichome has not yet been considered. Therefore, trichome density was increased with the expression of β-glucosidase (bgl1) gene in A. annua through Agrobacterium-mediated transformation. Transgene (bgl1) integration and transcript were confirmed by molecular analysis. Trichome density increased up to 20% in leaves and 66% in flowers of BGL1 transgenic plants than Artemisia control plants. High-performance liquid chromatography, time of flight mass spectrometer data showed that artemisinin content increased up to 1.4% in leaf and 2.56% in flowers (per g DW), similar to the highest yields achieved so far through metabolic engineering. Artemisinin was enhanced up to five-fold in BGL1 transgenic flowers. This study opens the possibility of increasing artemisinin content by manipulating trichomes' density, which is a major reservoir of artemisinin. Combining biosynthetic pathway engineering with enhancing trichome density may further increase artemisinin yield in A. annua. Because oral feeding of Artemisia plant cells reduced parasitemia more efficiently than the purified drug, reduced drug resistance and cost of prohibitively expensive purification process, enhanced expression should play a key role in making this valuable drug affordable to treat malaria in a large global population that disproportionally impacts low-socioeconomic areas and underprivileged children. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels.

    PubMed

    Mandal, Shantanu; Upadhyay, Shivangi; Wajid, Saima; Ram, Mauji; Jain, Dharam Chand; Singh, Ved Pal; Abdin, Malik Zainul; Kapoor, Rupam

    2015-07-01

    It is becoming increasingly evident that the formation of arbuscular mycorrhiza (AM) enhances secondary metabolite production in shoots. Despite mounting evidence, relatively little is known about the underlying mechanisms. This study suggests that increase in artemisinin concentration in Artemisia annua colonized by Rhizophagus intraradices is due to altered trichome density as well as transcriptional patterns that are mediated via enhanced jasmonic acid (JA) levels. Mycorrhizal (M) plants had higher JA levels in leaf tissue that may be due to induction of an allene oxidase synthase gene (AOS), encoding one of the key enzymes for JA production. Non-mycorrhizal (NM) plants were exogenously supplied with a range of methyl jasmonic acid concentrations. When leaves of NM and M plants with similar levels of endogenous JA were compared, these matched closely in terms of shoot trichome density, artemisinin concentration, and transcript profile of artemisinin biosynthesis genes. Mycorrhization increased artemisinin levels by increasing glandular trichome density and transcriptional activation of artemisinin biosynthesis genes. Transcriptional analysis of some rate-limiting enzymes of mevalonate and methyl erythritol phosphate (MEP) pathways revealed that AM increases isoprenoids by induction of the MEP pathway. A decline in artemisinin concentration in shoots of NM and M plants treated with ibuprofen (an inhibitor of JA biosynthesis) further confirmed the implication of JA in the mechanism of artemisinin production.

  11. AaERF1 positively regulates the resistance to Botrytis cinerea in Artemisia annua.

    PubMed

    Lu, Xu; Jiang, Weimin; Zhang, Ling; Zhang, Fei; Zhang, Fangyuan; Shen, Qian; Wang, Guofeng; Tang, Kexuan

    2013-01-01

    Plants are sessile organisms, and they can not move away under abiotic or biotic stresses. Thus plants have evolved a set of genes that response to adverse environment to modulate gene expression. In this study, we characterized and functionally studied an ERF transcription factor from Artemisia annua, AaERF1, which plays an important role in biotic stress responses. The AaERF1 promoter had been cloned and GUS staining results of AaERF1 promoter-GUS transgenic A. annua showed that AaERF1 is expressed ubiquitiously in all organs. Several putative cis-acting elements such as W-box, TGA-box and Py-rich element, which are involved in defense responsiveness, are present in the promoter. The expression of AaERF1 can be induced vigorously by methyl jasmonate as well as by ethephon and wounding, implying that AaERF1 may activate some of the defense genes via the jasmonic acid and ethylene signaling pathways of A. annua. The results of electrophoretic mobility shift assay (EMSA) and yeast one-hybrid experiments showed that AaERF1 was able to bind to the GCC box cis-acting element in vitro and in yeast. Ectopic expression of AaERF1 could enhance the expression levels of the defense marker genes PLANT DEFENSIN1.2 (PDF1.2) and BASIC CHITINASE (ChiB), and increase the resistance to Botrytis cinerea in the 35S::AaERF1 transgenic Arabidopsis. The down-regulated expression level of AaERF1 evidently reduced the resistance to B. cinerea in A. annua. The overall results showed that AaERF1 positively regulated the resistance to B. cinerea in A. annua.

  12. AaERF1 Positively Regulates the Resistance to Botrytis cinerea in Artemisia annua

    PubMed Central

    Lu, Xu; Jiang, Weimin; Zhang, Ling; Zhang, Fei; Zhang, Fangyuan; Shen, Qian; Wang, Guofeng; Tang, Kexuan

    2013-01-01

    Plants are sessile organisms, and they can not move away under abiotic or biotic stresses. Thus plants have evolved a set of genes that response to adverse environment to modulate gene expression. In this study, we characterized and functionally studied an ERF transcription factor from Artemisia annua, AaERF1, which plays an important role in biotic stress responses. The AaERF1 promoter had been cloned and GUS staining results of AaERF1 promoter-GUS transgenic A. annua showed that AaERF1 is expressed ubiquitiously in all organs. Several putative cis-acting elements such as W-box, TGA-box and Py-rich element, which are involved in defense responsiveness, are present in the promoter. The expression of AaERF1 can be induced vigorously by methyl jasmonate as well as by ethephon and wounding, implying that AaERF1 may activate some of the defense genes via the jasmonic acid and ethylene signaling pathways of A. annua. The results of electrophoretic mobility shift assay (EMSA) and yeast one-hybrid experiments showed that AaERF1 was able to bind to the GCC box cis-acting element in vitro and in yeast. Ectopic expression of AaERF1 could enhance the expression levels of the defense marker genes PLANT DEFENSIN1.2 (PDF1.2) and BASIC CHITINASE (ChiB), and increase the resistance to Botrytis cinerea in the 35S::AaERF1 transgenic Arabidopsis. The down-regulated expression level of AaERF1 evidently reduced the resistance to B. cinerea in A. annua. The overall results showed that AaERF1 positively regulated the resistance to B. cinerea in A. annua. PMID:23469042

  13. Vapour and Liquid-Phase Artemisia annua Essential Oil Activities against Several Clinical Strains of Candida.

    PubMed

    Santomauro, Francesca; Donato, Rosa; Sacco, Cristiana; Pini, Gabriella; Flamini, Guido; Bilia, Anna Rita

    2016-07-01

    Candida spp. are often the cause of infection in immune-compromised individuals. They are characterized by a strong resistance to antimicrobial drugs and disinfectants. The activity of Artemisia annua essential oil against Candida spp. was determined by vapour contact and microdilution assay. The oil was characterized by the presence of oxygenated monoterpenes (more than 75 % of the constituents), mainly represented by the irregular monoterpene artemisia ketone (ca. 22 %), and the widespread monoterpenes 1,8 cineole (ca. 19 %) and camphor (ca. 17 %). Other representative constituents were artemisia alcohol (5.9 %), α-pinene (5.7 %), and pinocarvone (3.0 %). Thujone, a typical toxic constituent of the Artemisia species, was not detected. The results are reported as minimum inhibitory concentration, minimum fungicidal concentration, and diameter of inhibition zone obtained by the vapour diffusion assay. We tested 10 clinical Candida strains, coming from both clinical samples and international collections. The results show that the antifungal activity of A. annua is influenced by the type of method adopted. The inhibitory action of the essential oil was, in fact, higher in the vapour than in the liquid phase. Our results show an average minimum inhibitory concentration in the liquid phase of 11.88 µL/mL, while in the vapour phase, the growth of all Candida strains tested at a concentration of 2.13 µL/cm(3) was inhibited. A strain of Candida glabrata was found to be less susceptible to the liquid medium than the vapour assay (50 µL/mL vs. 0.64 µL/cm(3), respectively). Candida albicans and Candida dubliniensis were the most susceptible to the vapour test, while Candida parapsilosis was the most resistant. Georg Thieme Verlag KG Stuttgart · New York.

  14. AaPDR3, a PDR Transporter 3, Is Involved in Sesquiterpene β-Caryophyllene Transport in Artemisia annua

    PubMed Central

    Fu, Xueqing; Shi, Pu; He, Qian; Shen, Qian; Tang, Yueli; Pan, Qifang; Ma, Yanan; Yan, Tingxiang; Chen, Minghui; Hao, Xiaolong; Liu, Pin; Li, Ling; Wang, Yuliang; Sun, Xiaofen; Tang, Kexuan

    2017-01-01

    Artemisinin, a sesquiterpenoid endoperoxide, isolated from the plant Artemisia annua L., is widely used in the treatment of malaria. Another sesquiterpenoid, β-caryophyllene having antibiotic, antioxidant, anticarcinogenic and local anesthetic activities, is also presented in A. annua. The role played by sesquiterpene transporters in trichomes and accumulation of these metabolites is poorly understood in A. annua and in trichomes of other plant species. We identified AaPDR3, encoding a pleiotropic drug resistance (PDR) transporter located to the plasma membrane from A. annua. Expression of AaPDR3 is tissue-specifically and developmentally regulated in A. annua. GUS activity is primarily restricted to T-shaped trichomes of old leaves and roots of transgenic A. annua plants expressing proAaPDR3: GUS. The level of β-caryophyllene was decreased in transgenic A. annua plants expressing AaPDR3-RNAi while transgenic A. annua plants expressing increased levels of AaPDR3 accumulated higher levels of β-caryophyllene. When AaPDR3 was expressed in transformed yeast, yeasts expressing AaPDR3 accumulated more β-caryophyllene, rather than germacrene D and β-farnesene, compared to the non-expressing control. PMID:28533790

  15. AaPDR3, a PDR Transporter 3, Is Involved in Sesquiterpene β-Caryophyllene Transport in Artemisia annua.

    PubMed

    Fu, Xueqing; Shi, Pu; He, Qian; Shen, Qian; Tang, Yueli; Pan, Qifang; Ma, Yanan; Yan, Tingxiang; Chen, Minghui; Hao, Xiaolong; Liu, Pin; Li, Ling; Wang, Yuliang; Sun, Xiaofen; Tang, Kexuan

    2017-01-01

    Artemisinin, a sesquiterpenoid endoperoxide, isolated from the plant Artemisia annua L., is widely used in the treatment of malaria. Another sesquiterpenoid, β-caryophyllene having antibiotic, antioxidant, anticarcinogenic and local anesthetic activities, is also presented in A. annua. The role played by sesquiterpene transporters in trichomes and accumulation of these metabolites is poorly understood in A. annua and in trichomes of other plant species. We identified AaPDR3, encoding a pleiotropic drug resistance (PDR) transporter located to the plasma membrane from A. annua. Expression of AaPDR3 is tissue-specifically and developmentally regulated in A. annua. GUS activity is primarily restricted to T-shaped trichomes of old leaves and roots of transgenic A. annua plants expressing proAaPDR3: GUS. The level of β-caryophyllene was decreased in transgenic A. annua plants expressing AaPDR3-RNAi while transgenic A. annua plants expressing increased levels of AaPDR3 accumulated higher levels of β-caryophyllene. When AaPDR3 was expressed in transformed yeast, yeasts expressing AaPDR3 accumulated more β-caryophyllene, rather than germacrene D and β-farnesene, compared to the non-expressing control.

  16. Optimization of genetic transformation of Artemisia annua L. Using Agrobacterium for Artemisinin production

    PubMed Central

    Elfahmi; Suhandono, Sony; Chahyadi, Agus

    2014-01-01

    Background: Artemisinin, a sesquiterpene lactone endoperoxide isolated from the medicinal plant Artemisia annua L., is a choice and effective drug for malaria treatment. Due to the low yield of artemisinin in plants, there is a need to enhance the production of artemisinin from A. annua and biotechnological technique may be one of the methods that can be used for the purpose. Aim: To study the transformation efficiency of Agrobacterium tumefaciens in A. annua that could be applied to enhance the production of artemisinin by means of transgenic plants. Setting and Designs: The factors influencing Agrobacterium-mediated transformation of A. annua were explored to optimize the transformation system, which included A. tumefaciens strain and effect of organosilicone surfactants. Three strains of A. tumefaciens, that is, LBA4404, GV1301, and AGL1 harboring the binary vector pCAMBIA 1303 have been used for transformation. The evaluation was based on transient β-glucuronidase (GUS). Materials and Methods: Plant cell cultures were inniatiated from the seeds of A. annua using the germination Murashige and Skoog medium. A. tumefaciens harboring pCAMBIA were tranformed into the leaves of A.annua cultures from 2-week-old-seedling and 2-month-old-seedling for 15 min by vacuum infiltration. Transformation efficiency was determinated by measuring of blue area (GUS expression) on the whole leaves explant using ImageJ 1.43 software. Two organosilicon surfactants, that is, Silwet L-77 and Silwet S-408 were used to improve the transformation efficiency. Results: The transformation frequency with AGL1 strain was higher than GV3101 and LBA4404 which were 70.91, 49.25, and 45.45%, respectively. Effect of organosilicone surfactants, that is, Silwet L-77 and Silwet S-408 were tested on A. tumefaciens AGL1 and GV3101 for their level of transient expression, and on A. rhizogenes R1000 for its hairy root induction frequency. For AGL1, Silwet S-408 produced higher level of expression than

  17. AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana.

    PubMed

    Matías-Hernández, Luis; Jiang, Weimin; Yang, Ke; Tang, Kexuan; Brodelius, Peter E; Pelaz, Soraya

    2017-05-01

    The effective anti-malarial drug artemisinin (AN) isolated from Artemisia annua is relatively expensive due to the low AN content in the plant as AN is only synthesized within the glandular trichomes. Therefore, genetic engineering of A. annua is one of the most promising approaches for improving the yield of AN. In this work, the AaMYB1 transcription factor has been identified and characterized. When AaMYB1 is overexpressed in A. annua, either exclusively in trichomes or in the whole plant, essential AN biosynthetic genes are also overexpressed and consequently the amount of AN is significantly increased. Artemisia AaMYB1 constitutively overexpressing plants displayed a greater number of trichomes. In order to study the role of AaMYB1 on trichome development and other possibly connected biological processes, AaMYB1 was overexpressed in Arabidopsis thaliana. To support our findings in Arabidopsis thaliana, an AaMYB1 orthologue from this model plant, AtMYB61, was identified and atmyb61 mutants characterized. Both AaMYB1 and AtMYB61 affected trichome initiation, root development and stomatal aperture in A. thaliana. Molecular analyses indicated that two crucial trichome activator genes are misexpressed in atmyb61 mutant plants and in plants overexpressing AaMYB1. Furthermore, AaMYB1 and AtMYB61 are also essential for gibberellin (GA) biosynthesis and degradation in both species by positively affecting the expression of the enzymes that convert GA9 into the bioactive GA4 as well as the enzymes involved in the degradation of GA4 . Overall, these results identify AaMYB1/AtMYB61 as a key component of the molecular network that connects important biosynthetic processes, and reveal its potential value for AN production through genetic engineering. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  18. Effects of Artemisia annua and Foeniculum vulgare on on chickens highly infected with Eimeria tenella (Phylum Apicomplexa)

    USDA-ARS?s Scientific Manuscript database

    Background: Intensive poultry production systems depend on chemoprophylaxis with anticoccidial drugs to combat infection. A floor-pen study was conducted to evaluate the anticoccidial effect of Artemisia annua and Foeniculum vulgare on Eimeria tenella infection. Five experimental groups were establi...

  19. Essential Oil of Artemisia annua L.: An Extraordinary Component with Numerous Antimicrobial Properties

    PubMed Central

    Bilia, Anna Rita; Sacco, Cristiana; Bergonzi, Maria Camilla; Donato, Rosa

    2014-01-01

    Artemisia annua L. (Asteraceae) is native to China, now naturalised in many other countries, well known as the source of the unique sesquiterpene endoperoxide lactone artemisinin, and used in the treatment of the chloroquine-resistant and cerebral malaria. The essential oil is rich in mono- and sesquiterpenes and represents a by-product with medicinal properties. Besides significant variations in its percentage and composition have been reported (major constituents can be camphor (up to 48%), germacrene D (up to 18.9%), artemisia ketone (up to 68%), and 1,8 cineole (up to 51.5%)), the oil has been subjected to numerous studies supporting exciting antibacterial and antifungal activities. Both gram-positive bacteria (Enterococcus, Streptococcus, Staphylococcus, Bacillus, and Listeria spp.), and gram-negative bacteria (Escherichia, Shigella, Salmonella, Haemophilus, Klebsiella, and Pseudomonas spp.) and other microorganisms (Candida, Saccharomyces, and Aspergillus spp.) have been investigated. However, the experimental studies performed to date used different methods and diverse microorganisms; as a consequence, a comparative analysis on a quantitative basis is very difficult. The aim of this review is to sum up data on antimicrobial activity of A. annua essential oil and its major components to facilitate future approach of microbiological studies in this field. PMID:24799936

  20. A safety assessment of the antimalarial herb Artemisia annua during pregnancy in Wistar rats.

    PubMed

    Abolaji, Amos O; Eteng, Mbeh U; Ebong, Patrick E; Brisibe, Ebiamadon Andi; Dar, Ahsana; Kabir, Nurul; Choudhary, M Iqbal

    2013-05-01

    Artemisia annua is a Chinese antimalarial herb that has been used for more than 2000 years. The maternal and foetal safety of the ethanolic leaf extract of therapeutically active Artemisia annua (EAA), with previously determined artemisinin yield of 1.098% was evaluated in Wistar rats. Twenty pregnant rats, divided into four study groups of saline treated (control), and test groups administered orally with 100, 200 and 300 mg/kg body weights of EAA, respectively, from gestation days (GD) 8 to 19. Following overnight fast, animals were sacrificed on GD 20, and maternal blood was collected to evaluate biochemical and haematological markers. Foetuses were carefully removed, weighed, and observed for any possible malformation. Biochemical and haematological studies revealed that EAA did not result in maternal hepatotoxicity, haematotoxicity, and hyperlipidemia. While litter size significantly decreased (p < 0.05) at 100 mg/kg EAA, maternal estrogen levels decreased in all the EAA-treated groups. Non-viable (21%) and malformed (31%) foetuses were observed at the 300 mg/kg dose of EAA, which implies that although consumption of the leaf extract may not predispose users to hepatotoxicity, haematotoxicity, and hyperlipidemia, it should be taken with caution during pregnancy due to possible risk of embryotoxicity at concentrations higher than the therapeutic dose.

  1. Chemical Composition and Antipathogenic Activity of Artemisia annua Essential Oil from Romania.

    PubMed

    Marinas, Ioana C; Oprea, Eliza; Chifiriuc, Mariana Carmen; Badea, Irinel Adriana; Buleandra, Mihaela; Lazar, Veronica

    2015-10-01

    The essential oil extracted by hydrodistillation from Romanian Artemisia annua aerial parts was characterized by GC/MS analysis, which allowed the identification of 94.64% of the total oil composition. The main components were camphor (17.74%), α-pinene (9.66%), germacrene D (7.55%), 1,8-cineole (7.24%), trans-β-caryophyllene (7.02%), and artemisia ketone (6.26%). The antimicrobial activity of this essential oil was evaluated by determining the following parameters: minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), minimal fungicidal concentration (MFC), and minimal biofilm eradication concentration (MBEC). Moreover, the soluble virulence factors were quantified with different biochemical substrates incorporated in the culture media. The reference and resistant, clinical strains proved to be susceptible to the A. annua oil, with MICs ranging from 0.51 to 16.33 mg/ml. The tested essential oil also showed good antibiofilm activity, inhibiting both the initial stage of the microbial cell adhesion to the inert substratum and the preformed mature biofilm. When used at subinhibitory concentrations, the essential oil proved to inhibit the phenotypic expression of five soluble virulence factors (hemolysins, gelatinase, DNase, lipases, and lecithinases). Briefly, the present results showed that the A. annua essential oil contained antimicrobial compounds with selective activity on Gram-positive and Gram-negative bacterial strains as well as on yeast strains and which also interfere with the expression of cell-associated and soluble virulence factors. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  2. Type 2C phosphatase 1 of Artemisia annua L. is a negative regulator of ABA signaling.

    PubMed

    Zhang, Fangyuan; Fu, Xueqing; Lv, Zongyou; Shen, Qian; Yan, Tingxian; Jiang, Weiming; Wang, Guofeng; Sun, Xiaofen; Tang, Kexuan

    2014-01-01

    The phytohormone abscisic acid (ABA) plays an important role in plant development and environmental stress response. Additionally, ABA also regulates secondary metabolism such as artemisinin in the medicinal plant Artemisia annua L. Although an earlier study showed that ABA receptor, AaPYL9, plays a positive role in ABA-induced artemisinin content improvement, many components in the ABA signaling pathway remain to be elucidated in Artemisia annua L. To get insight of the function of AaPYL9, we isolated and characterized an AaPYL9-interacting partner, AaPP2C1. The coding sequence of AaPP2C1 encodes a deduced protein of 464 amino acids, with all the features of plant type clade A PP2C. Transcriptional analysis showed that the expression level of AaPP2C1 is increased after ABA, salt, and drought treatments. Yeast two-hybrid and bimolecular fluorescence complementation assays (BiFC) showed that AaPYL9 interacted with AaPP2C1. The P89S, H116A substitution in AaPYL9 as well as G199D substitution or deletion of the third phosphorylation site-like motif in AaPP2C1 abolished this interaction. Furthermore, constitutive expression of AaPP2C1 conferred ABA insensitivity compared with the wild type. In summary, our data reveals that AaPP2C1 is an AaPYL9-interacting partner and involved in the negative modulation of the ABA signaling pathway in A. annua L.

  3. Artemisia annua as a self-reliant treatment for malaria in developing countries.

    PubMed

    de Ridder, Sanne; van der Kooy, Frank; Verpoorte, Robert

    2008-12-08

    Malaria is a vector-borne infectious disease caused by the protozoan Plasmodium parasites. Each year, it causes disease in approximately 515 million people and kills between one and three million people, the majority of whom are young children in sub-Saharan Africa. It is widespread in tropical and subtropical regions, including parts of the Americas, Asia, and Africa. Due to climate change and the gradual warming of the temperate regions the future distribution of the malaria disease might include regions which are today seen as safe. Currently, malaria control requires an integrated approach comprising of mainly prevention, including vector control and the use of effective prophylactic medicines, and treatment of infected patients with antimalarials. The antimalarial chloroquine, which was in the past a mainstay of malaria control, is now ineffective in most malaria areas and resistance to other antimalarials is also increasing rapidly. The discovery and development of artemisinins from Artemisia annua have provided a new class of highly effective antimalarials. ACTs are now generally considered as the best current treatment for uncomplicated Plasmodium falciparum malaria. This review gives a short history of the malaria disease, the people forming a high risk group and the botanical aspects of A. annua. Furthermore the review provides an insight in the use of ART and its derivatives for the treatment of malaria. Its mechanism of action and kinetics will be described as well as the possibilities for a self-reliant treatment will be revealed. This self-reliant treatment includes the local production practices of A. annua followed by the possibilities for using traditional prepared teas from A. annua as an effective treatment for malaria. Finally, HMM will be described and the advantages and disadvantages discussed.

  4. Effects of overexpression of AaWRKY1 on artemisinin biosynthesis in transgenic Artemisia annua plants.

    PubMed

    Han, Junli; Wang, Hongzhen; Lundgren, Anneli; Brodelius, Peter E

    2014-06-01

    The effective anti-malarial medicine artemisinin is costly because of the low content in Artemisia annua. Genetic engineering of A. annua is one of the most promising approaches to improve the yield of artemisinin. In this work, the transcription factor AaWRKY1, which is thought to be involved in the regulation of artemisinin biosynthesis, was cloned from A. annua var. Chongqing and overexpressed using the CaMV35S promoter or the trichome-specific CYP71AV1 promoter in stably transformed A. annua plants. The transcript level of AaWRKY1 was increased more than one hundred times under the CaMV35S promoter and about 40 times under the CYP71AV1 promoter. The overexpressed AaWRKY1 activated the transcription of CYP71AV1 and moreover the trichome-specific overexpression of AaWRKY1 improved the transcription of CYP71AV1 much more effectively than the constitutive overexpression of AaWRKY1, i.e. up to 33 times as compared to the wild-type plant. However the transcription levels of FDS, ADS, and DBR2 did not change significantly in transgenic plants. The significantly up-regulated CYP71AV1 promoted artemisinin biosynthesis, i.e. up to about 1.8 times as compared to the wild-type plant. It is demonstrated that trichome-specific overexpression of AaWRKY1 can significantly activate the transcription of CYP71AV1 and the up-regulated CYP71AV1 promotes artemisinin biosynthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Chemotype-dependent metabolic response to methyl jasmonate elicitation in Artemisia annua.

    PubMed

    Wu, Wei; Yuan, Man; Zhang, Qing; Zhu, Yanming; Yong, Li; Wang, Wei; Qi, Yan; Guo, Dianjing

    2011-07-01

    Considerable difference in artemisinin and its direct precursors, artemisinic acid and dihydroartemisinic acid, was detected between two chemotypes within the species Artemisia annua (A. annua). These two chemotypes showed differential metabolic response to methyl jasmonate (MeJA) elicitation. Exogenous application of MeJA resulted in an accumulation of dihydroartemisinic acid and artemisinin in Type I plants. In Type II plants, however, artemisinic acid and artemisinin level decreased dramatically under MeJA elicitation. Squalene and other sesquiterpenes, (e.g., caryophyllene, germacrene D), were stimulated by MeJA in both chemotypes. The effect of MeJA elicitation was also studied at the transcription level. Real time RT-PCR analysis showed a coordinated activation of most artemisinin pathway genes by MeJA in Type I plants. The lack of change in cytochrome P450 reductase (CPR) transcript in Type I plants indicates that the rate-limiting enzymes in artemisinin biosynthesis have yet to be identified. Other chemotype-specific electron donor proteins likely exist in A. annua to meet the demand for P450-mediated reactions in MeJA-mediated cellular processes. In Type II plants, mRNA expression patterns of most pathway genes were consistent with the reduced artemisinin level. Intriguingly, the mRNA transcript of aldehyde dehydrogenase1 (ADHL1), an enzyme which catalyzes the oxidation of artemisinic and dihydroartemisinic aldehydes, was upregulated by MeJA. The differential metabolic response to MeJA suggests a chemotype-dependent metabolic flux control towards artemisinin and sterol production in the species A. annua. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Enhanced artemisinin yield by expression of rol genes in Artemisia annua.

    PubMed

    Dilshad, Erum; Cusido, Rosa Maria; Palazon, Javier; Estrada, Karla Ramirez; Bonfill, Mercedes; Mirza, Bushra

    2015-10-29

    Despite of many advances in the treatment of malaria, it is still the fifth most prevalent disease worldwide and is one of the major causes of death in the developing countries which accounted for 584,000 deaths in 2013, as estimated by World Health Organization. Artemisinin from Artemisia annua is still one of the most effective treatments for malaria. Increasing the artemisinin content of A. annua plants by genetic engineering would improve the availability of this much-needed drug. In this regard, a high artemisinin-yielding hybrid of A. annua produced by the centre for novel agricultural products of the University of York, UK, was selected (artemisinin maximally 1.4 %). As rol genes are potential candidates of biochemical engineering, genetic transformation of A. annua with Agrobacterium tumefaciens GV3101 harbouring vectors with rol B and rol C genes was carried out with the objective of enhancement of artemisinin content. Transgenic lines produced were analysed by the LC-MS for quantitative analysis of artemisinin and analogues. These high artemisinin yielding transgenics were also analysed by real time quantitative PCR to find the molecular dynamics of artemisinin enhancement. Genes of artemisinin biosynthetic pathway were studied including amorphadiene synthase (ADS), cytochrome P450, (CYP71AV1) and aldehyde dehydrogenase 1 (ALDH1). Trichome-specific fatty acyl-CoA reductase 1(TAFR1) is an enzyme involved in both trichome development and sesquiterpenoid biosynthesis and both processes are important for artemisinin biosynthesis. Thus, real time qPCR analysis of the TAFR1 gene was carried out, and trichome density was determined. Transgenics of rol B gene showed two- to ninefold (the decimal adds nothing in the abstract, please simplify to two- to ninefold) increase in artemisinin, 4-12-fold increase in artesunate and 1.2-3-fold increase in dihydroartemisinin. Whereas in the case of rol C gene transformants, a fourfold increase in artemisinin, four to

  7. Artemisinin biosynthesis enhancement in transgenic Artemisia annua plants by downregulation of the β-caryophyllene synthase gene.

    PubMed

    Chen, Jian-Lin; Fang, Hua-Ming; Ji, Yun-Peng; Pu, Gao-Bin; Guo, Yan-Wu; Huang, Li-Li; Du, Zhi-Gao; Liu, Ben-Ye; Ye, He-Chun; Li, Guo-Feng; Wang, Hong

    2011-10-01

    Artemisinin is an effective antimalarial drug isolated from the medicinal plant Artemisia annua L. Due to its increasing market demand and the low yield in A. annua, there is a great interest in increasing its production. In this paper, in an attempt to increase artemisinin content of A. ANNUA by suppressing the expression of β-caryophyllene synthase, a sesquiterpene synthase competing as a precursor of artemisinin, the antisense fragment (750 bp) of β-caryophyllene synthase cDNA was inserted into the plant expression vector pBI121 and introduced into A. annua by Agrobacterium-mediated transformation. PCR and Southern hybridization confirmed the stable integration of multiple copies of the transgene in 5 different transgenic lines of A. annua. Reverse transcription PCR showed that the expression of endogenous CPS in the transgenic lines was significantly lower than that in the wild-type control A. annua plants, and β-caryophyllene content decreased sharply in the transgenic lines in comparison to the control. The artemisinin content of one of the transgenic lines showed an increase of 54.9 % compared with the wild-type control. The present study demonstrated that the inhibition pathway in the precursor competition for artemisinin biosynthesis by anti-sense technology is an effective means of increasing the artemisinin content of A. annua plants. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Use of Artemisia annua as a natural coccidiostat in free-range broilers and its effects on infection dynamics and performance

    USDA-ARS?s Scientific Manuscript database

    This work investigated the preventive effect of Artemisia annua L. dried leaves supplied as a botanical coccidiostat to two broiler genotypes reared in a Danish free-range system in a factorial experiment (two genotypes and +/- supplement of dried A. annua leaves). The genotypes White Bresse L40, a...

  9. Protective Effect of Artemisia annua L. Extract against Galactose-Induced Oxidative Stress in Mice

    PubMed Central

    Kim, Mi Hye; Seo, Ji Yeon; Liu, Kwang Hyun; Kim, Jong-Sang

    2014-01-01

    Artemisia annua L. (also called qinghao) has been well known as a source of antimalarial drug artemisinins. In addition, the herb was reported to have in vitro antioxidative activity. The present study investigated the protective effect of aqueous ethanol extract of Qinghao (AA extract) against D-galactose-induced oxidative stress in C57BL/6J mice. Feeding AA extract-containing diet lowered serum levels of malondialdehyde and 8-OH-dG that are biomarkers for lipid peroxidation and DNA damage, respectively. Furthermore, AA extract feeding enhanced the activity of NQO1, a typical antioxidant marker enzyme, in tissues such as kidney, stomach, small intestine, and large intestine. In conclusion, AA extract was found to have antioxidative activity in mouse model. PMID:24988450

  10. [Stability analysis of reference gene based on real-time PCR in Artemisia annua under cadmium treatment].

    PubMed

    Zhou, Liang-Yun; Mo, Ge; Wang, Sheng; Tang, Jin-Fu; Yue, Hong; Huang, Lu-Qi; Shao, Ai-Juan; Guo, Lan-Ping

    2014-03-01

    In this study, Actin, 18S rRNA, PAL, GAPDH and CPR of Artemisia annua were selected as candidate reference genes, and their gene-specific primers for real-time PCR were designed, then geNorm, NormFinder, BestKeeper, Delta CT and RefFinder were used to evaluate their expression stability in the leaves of A. annua under treatment of different concentrations of Cd, with the purpose of finding a reliable reference gene to ensure the reliability of gene-expression analysis. The results showed that there were some significant differences among the candidate reference genes under different treatments and the order of expression stability of candidate reference gene was Actin > 18S rRNA > PAL > GAPDH > CPR. These results suggested that Actin, 18S rRNA and PAL could be used as ideal reference genes of gene expression analysis in A. annua and multiple internal control genes were adopted for results calibration. In addition, differences in expression stability of candidate reference genes in the leaves of A. annua under the same concentrations of Cd were observed, which suggested that the screening of candidate reference genes was needed even under the same treatment. To our best knowledge, this study for the first time provided the ideal reference genes under Cd treatment in the leaves of A. annua and offered reference for the gene expression analysis of A. annua under other conditions.

  11. The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua.

    PubMed

    Shen, Qian; Lu, Xu; Yan, Tingxiang; Fu, Xueqing; Lv, Zongyou; Zhang, Fangyuan; Pan, Qifang; Wang, Guofeng; Sun, Xiaofen; Tang, Kexuan

    2016-06-01

    The plant Artemisia annua is well known due to the production of artemisinin, a sesquiterpene lactone that is widely used in malaria treatment. Phytohormones play important roles in plant secondary metabolism, such as jasmonic acid (JA), which can induce artemisinin biosynthesis in A. annua. Nevertheless, the JA-inducing mechanism remains poorly understood. The expression of gene AaMYC2 was rapidly induced by JA and AaMYC2 binds the G-box-like motifs within the promoters of gene CYP71AV1 and DBR2, which are key structural genes in the artemisinin biosynthetic pathway. Overexpression of AaMYC2 in A. annua significantly activated the transcript levels of CYP71AV1 and DBR2, which resulted in an increased artemisinin content. By contrast, artemisinin content was reduced in the RNAi transgenic A. annua plants in which the expression of AaMYC2 was suppressed. Meanwhile, the RNAi transgenic A. annua plants showed lower sensitivity to methyl jasmonate treatment than the wild-type plants. These results demonstrate that AaMYC2 is a positive regulator of artemisinin biosynthesis and is of great value in genetic engineering of A. annua for increased artemisinin production. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Liquid and Vapor-Phase Activity of Artemisia annua Essential Oil against Pathogenic Malassezia spp.

    PubMed

    Santomauro, Francesca; Donato, Rosa; Pini, Gabriella; Sacco, Cristiana; Ascrizzi, Roberta; Bilia, Anna Rita

    2017-09-06

    Artemisia annua essential oil has given us many encouraging results for its numerous antimicrobial properties. In this study, the essential oil, both in liquid and in vapor phases, was tested against various Malassezia species closely related to many skin disorders in humans and animals. Malassezia treatment and eradication are mainly based on old azole drugs, which are characterized by poor compliance, unpredictable clinical efficacy, emerging resistance, and several side effects. Monoterpenes (ca. 88%) represent the most abundant group of compounds in the essential oil, mainly the oxygenated derivatives (ca. 74%) with camphor (25.2%), 1,8-cineole (20%), and artemisia ketone (12.5%). In vapor phase, monoterpenes represent more than 98% of the constituents, α-pinene being the main constituent (22.8%), followed by 1,8-cineole (22.1%) and camphene (12.9%). Essential oil of A. annua, both in vapor phase and liquid, showed strong antimicrobial activity towards almost the tested twenty strains of Malassezia analyzed. The minimum fungicidal concentrations from most of the strains tested were from 0.78 µL/mL to 1.56 µL/mL, and only three strains of Malassezia sympodialis required a higher concentration of 3.125 µL/mL. Overall, the minimal inhibitor concentrations obtained by vapor diffusion assay were lower than those obtained by the liquid method. The average values of minimal inhibitor concentrations obtained by the two methods at 72 h are 1.3 - 8.0 times higher in liquid compared to those in the vapor phase. Georg Thieme Verlag KG Stuttgart · New York.

  13. Nutrient deficiency in the production of artemisinin, dihydroartemisinic acid, and artemisinic acid in Artemisia annua L.

    PubMed

    Ferreira, Jorge F S

    2007-03-07

    Artemisia annua became a valuable agricultural crop after the World Health Organization recommended artemisinin as a component of ACT (artemisinin-combination based therapies) for malaria in 2001. A cloned, greenhouse-grown, A. annua (Artemis) subjected to an acidic soil and macronutrient deficit was evaluated for artemisinin production. Lack of lime (L) and macronutrients (N, P, and K) reduced leaf biomass accumulation. When L was provided (pH 5.1), the highest average leaf biomass was achieved with the "complete" (+N, +P, +K, and +L) treatment (70.3 g/plant), and the least biomass was achieved with the untreated (-N, -P, -K, and -L) treatment (6.18 g/plant). The nutrient least required for biomass accumulation per plant (g) was K (49.0 g), followed by P (36.5 g) and N (14.3 g). The artemisinin concentration (g/100 g) was significantly higher (75.5%) in -K plants when compared to plants under the complete treatment (1.62 vs 0.93%). Although the artemisinin total yield (g/plant) was 21% higher in -K plants, it was not significantly different from plants under the complete treatment (0.80 vs 0.66 g/plant). There were no marked treatment effects for concentration (g/100 g) or yield (g/plant) of both dihydroartemisinic acid and artemisinic acid, although higher levels were achieved in plants under the complete or -K treatments. There was a positive and significant correlation between artemisinin and both artemisinic acid and dihydroartemisin acid, in g/100 g and g/plant. This is the first report where potassium deficiency significantly increases the concentration (g/100 g) of artemisinin. Thus, under a mild potassium deficiency, A. annua farmers could achieve similar gains in artemisinin/ha, while saving on potassium fertilization, increasing the profitability of artemisinin production.

  14. Cytotoxicity of ethanolic extracts of Artemisia annua to Molt-4 human leukemia cells.

    PubMed

    Singh, Narendra P; Ferreira, Jorge F; Park, Ji Sun; Lai, Henry C

    2011-11-01

    Although dihydroartemisinin (DHA) and other artemisinin derivatives have selective toxicity towards cancer cells, Artemisia annua (A. annua) extracts containing artemisinin have not been evaluated for their anticancer potential. Our main goal was to assess the anticancer effect of ethanolic leaf extracts of A. annua from Brazilian and Chinese origins (with DHA as a comparison) on normal and cancer cells. Leukocytes and leukemia (Molt-4) cells were counted at 0, 24, 48, and 72 hr after treatment with extracts having artemisinin concentrations of 0, 3.48, 6.96, and 13.92 µg/mL. Also, we assessed the antioxidant capacity of these extracts using the oxygen radical absorbance capacity (ORAC) test. Both extracts had high antioxidant capacity and toxicity towards Molt-4 cells. DHA was significantly more potent (p < 0.05) in killing Molt-4 cells than Brazilian extract at 48 and 72 hr and Chinese extract at 72 hr. In Molt-4 cells, LD₅₀ values for Brazilian and Chinese extracts were comparable at all time points and not significantly different from DHA at 24 hr. In leukocytes, DHA, Chinese extract, and Brazilian extract had LD₅₀ values of 760.42, 13.79, and 28.23 µg/mL of artemisinin, respectively, indicating a better safety index for the Brazilian extract compared to that of the Chinese extract at 24 hr. However, at 48 and 72 hr, the toxicity in leukocytes for any of the treatment groups was not significantly different. These experiments suggest that these extracts may have potential application in cancer treatment.

  15. Transcriptome responses involved in artemisinin production in Artemisia annua L. under UV-B radiation.

    PubMed

    Pan, Wei Song; Zheng, Li Ping; Tian, Hao; Li, Wan Yi; Wang, Jian Wen

    2014-11-01

    Artemisinin, an endoperoxide sesquiterpene lactone, is an effective antimalarial drug isolated from Artemisia annua L. In this study, a low dose (1.44 kJm(-2)d(-1)) of UV-B radiation (280-320 nm) for short-term (1h per day for 10 days) was applied to A. annua seedlings to stimulate artemisinin production. UV-B treatment not only induced the generation of reactive oxygen species (ROS), enhanced peroxidase activity and endogenous content of abscisic acid (ABA), but stimulated the biosynthesis of artemisinin in the seedlings. Here, transcriptomic changes during UV-B radiation in A. annua were detected using an Agilent GeneChip with 43,692 probe sets. In total, 358 transcripts were identified as differentially expressed under UV-B stress, of which 172 transcripts increased and 186 transcripts decreased in abundance. In terms of biological processes, gene ontology (GO) terms including primary carbohydrate and nitrogen compound metabolic processes were enriched in UV-B-repressed genes. The up-regulated genes were enriched in response to stress, ROS generation, hormone (ethylene, ABA) stimulus and cell cycle control. The expression of key enzymes such as amorpha-4,11-diene synthase (ADS) and cytochrome P450 dependent monooxygenase/hydroxylase (CYP71AV1), and related WRKY transcription factors was up-regulated significantly for artemisinin biosynthesis. This profile of global gene expression patterns during UV-B stress will be valuable for further identification of the enzymes involved in artemisinin biosynthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Effect of cadmium on photosynthetic pigments, lipid peroxidation, antioxidants, and artemisinin in hydroponically grown Artemisia annua.

    PubMed

    Li, Xuan; Zhao, Manxi; Guo, Lanping; Huang, Luqi

    2012-01-01

    The effects of different cadmium (Cd) concentrations (0, 20, 60, and 100 micromol/L) on hydroponically grown Artemisia annua L. were investigated. Cd treatments applied for 0, 4, 12, 24, 72, 144, 216, and 336 hr were assessed by measuring the changes in photosynthetic pigments, electrolyte leakage, malondialdehyde (MDA) and antioxidants (ascorbic acid and glutathione), while the artemisinin content was tested after 0, 12, 144, 216, and 336 hr. A significant decrease was observed in photosynthetic pigment levels over time with increasing Cd concentration. Chlorophyll b levels were more affected by Cd than were chlorophyll a or carotenoid levels. The cell membrane was sensitive to Cd stress, as MDA content in all treatment groups showed insignificant differences from the control group, except at 12 hr treatment time. Ascorbic acid (AsA) content changed slightly over time, while glutathione (GSH) content took less time to reach a maximum as Cd concentration increased. Cd was found to promote synthesis and accumulation of artemisinin, especially at concentrations of 20 and 100 micromol/L. In conclusion, Cd stress can damage to photosynthetic pigments, and vigorously growing A. annua showed a strong tolerance for Cd stress. Appropriate amounts of added Cd aided synthesis and accumulation of artemisinin.

  17. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua

    PubMed Central

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-01-01

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of trans-cinnamic acid in the plant due to AaC4H knockdown was accompanied with the reduction of p-coumaric acid, total phenolics, anthocyanin, cinnamate-4-hydroxylase (C4H) and phenylalanine ammonia lyase (PAL) activities but increase in salicylic acid (SA) and artemisinin. Interestingly, feeding trans-cinnamic acid to the RNAi line increased the level of artemisinin along with benzoic (BA) and SA with no effect on the downstream metabolites p-coumaric acid, coniferylaldehyde and sinapaldehyde, whereas p-coumaric acid feeding increased the content of downstream coniferylaldehyde and sinapaldehyde with no effect on BA, SA, trans-cinnamic acid or artemisinin. SA is reported earlier to be inducing the artemisinin yield. This report demonstrates the link between the phenylpropanoid/lignin pathway with artemisinin pathway through SA, triggered by accumulation of trans-cinnamic acid because of the blockage at C4H. PMID:27220407

  18. Effect of irradiated sodium alginate and phosphorus on biomass and artemisinin production in Artemisia annua.

    PubMed

    Aftab, Tariq; Khan, M Masroor A; Naeem, M; Idrees, Mohd; Siddiqi, T O; Moinuddin; Varshney, Lalit

    2014-09-22

    It is now being realized that irradiation products of natural bioactive agents can also be beneficially utilized to impart value addition in agriculture by converting these bioactive agents into more useful form. Polysaccharides, such as sodium alginate, have proven to be wonderful growth promoting substances in their depolymerized form for various plants. Artemisinin has been increasingly popular as an effective and safe alternative therapy against malaria; also proved effective against the highly adaptable malaria parasite, which has already become resistant to many other drugs. The drug artemisinin can be extracted from the leafy tissues of Artemisia annua. Therefore, experiments were conducted with an aim to evaluate artemisinin production and overall plant development though depolymerized sodium alginate application and nutrient supply. In the present study, sodium alginate, irradiated by Co-60 gamma rays together with various phosphorus doses, was used to study their effect on growth, physiological and biochemical processes and production of artemisinin in A. annua. Among various applied doses of phosphorus fertilizer, P40 (40 kg Pha(-1)) together with ISA80 (80 mg L(-1)) significantly improved all the parameters studied. Increase in plant height as well as weight was noted at this treatment. Dry leaf yield, artemisinin concentration in leaves and artemisinin yield was also significantly enhanced by the treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. T-DNA insertion alters the terpenoid content composition and bioactivity of transgenic Artemisia annua.

    PubMed

    Karaket, Netiya; Wiyakrutta, Suthep; Lacaille-Dubois, Marie-Aleth; Supaibulwatana, Kanyaratt

    2014-03-01

    In this study, the interference of T-DNA insertion upon Agrobacterium-mediated transformation on the biochemical expression of the host genome is discussed. Plant extracts of transgenic Artemisia annua L. with or without an overexpressed famesyl pyrophosphate synthase gene have been investigated for their bioactivity and metabolic profile in comparison with wild type A. annua. The highest antimicrobial activity against Staphylococcus aureus, Bacillus subtilis and Candida albicans was observed in the T253 transgenic lines. Moreover, the crude extract from T253 showed higher antimalarial activity against the Plasmodium faciparum K1 strain than those of the others. The terpenoid constituents and antimicrobial properties of the plant samples were grouped by hierarchical clustering analysis. The clustering showed that squalene is a putative compound that might be involved in increasing the bioactivity of the transgenic line. In addition, T253 had a triterpene content that was about twice as great as that of the T253-2 line, which had a higher content of sesquiterpenes. However, both lines were transformed by the same FPS gene. These results suggested that the different bioactive properties observed in each transgenic line may be caused by variations in their terpenoid composition, which is affected by T-DNA insertion at different positions in the host plant.

  20. Flavonoids casticin and chrysosplenol D from Artemisia annua L. inhibit inflammation in vitro and in vivo

    SciTech Connect

    Li, Yu-Jie; Guo, Yan; Yang, Qing; Weng, Xiao-Gang; Yang, Lan; Wang, Ya-Jie; Chen, Ying; Zhang, Dong; Li, Qi; Liu, Xu-Cen; Kan, Xiao-Xi; Chen, Xi; Zhu, Xiao-Xin; Kmoníèková, Eva; Zídek, Zdenìk

    2015-08-01

    Background: The aim of our experiments was to investigate the anti-inflammatory properties of casticin and chrysosplenol D, two flavonoids present in Artemisia annua L. Methods: Topical inflammation was induced in ICR mice using croton oil. Mice were then treated with casticin or chrysosplenol D. Cutaneous histological changes and edema were assessed. ICR mice were intragastrically administrated with casticin or chrysosplenol D followed by intraperitoneal injection of lipopolysaccharide (LPS). Mouse Raw264.7 macrophage cells were incubated with casticin or chrysosplenol D. Intracellular phosphorylation was detected, and migration was assessed by trans-well assay. HT-29/NFκB-luc cells were incubated with casticin or chrysosplenol D in the presence or absence of LPS, and NF-κB activation was quantified. Results: In mice, administration of casticin (0.5, 1 and 1.5 μmol/cm{sup 2}) and chrysosplenol D (1 and 1.5 μmol/cm{sup 2}) inhibited croton oil-induced ear edema (casticin: 29.39–64.95%; chrysosplenol D: 37.76–65.89%, all P < 0.05) in a manner similar to indomethacin (0.5, 1 and 1.5 μmol/cm{sup 2}; 55.63–84.58%). Casticin (0.07, 0.13 and 0.27 mmol/kg) and chrysosplenol D (0.07, 0.14 and 0.28 mmol/kg) protected against LPS-induced systemic inflammatory response syndrome (SIRS) in mice (all P < 0.05), in a manner similar to dexamethasone (0.03 mmol/kg). Casticin and chrysosplenol D suppressed LPS-induced release of IL-1 beta, IL-6 and MCP-1, inhibited cell migration, and reduced LPS-induced IκB and c-JUN phosphorylation in Raw264.7 cells. JNK inhibitor SP600125 blocked the inhibitory effect of chrysosplenol D on cytokine release. Conclusions: The flavonoids casticin and chrysosplenol D from A. annua L. inhibited inflammation in vitro and in vivo. - Highlights: • We report a new activity of the flavonoids present in Artemisia annua L. • These flavonoids inhibit croton oil-induced ear edema in mice. • These flavonoids protect against LPS-induced SIRS in

  1. Cloning and characterization of AabHLH1, a bHLH transcription factor that positively regulates artemisinin biosynthesis in Artemisia annua.

    PubMed

    Ji, Yunpeng; Xiao, Jingwei; Shen, Yalin; Ma, Dongming; Li, Zhenqiu; Pu, Gaobin; Li, Xing; Huang, Lili; Liu, Benye; Ye, Hechun; Wang, Hong

    2014-09-01

    Amorpha-4,11-diene synthase (ADS) and Cyt P450 monooxygenase (CYP71AV1) in Artemisia annua L. are two key enzymes involved in the biosynthesis of artemisinin. The promoters of ADS and CYP71AV1 contain E-box elements, which are putative binding sites for basic helix-loop-helix (bHLH) transcription factors. This study successfully isolated a bHLH transcription factor gene from A. annua, designated as AabHLH1, from a cDNA library of the glandular secretory trichomes (GSTs) in which artemisinin is synthesized and sequestered. AabHLH1 encodes a protein of 650 amino acids containing one putative bHLH domain. AabHLH1 and ADS genes were strongly induced by ABA and the fungal elicitor, chitosan. The transient expression analysis of the AabHLH1-green fluorescent protein (GFP) reporter gene revealed that AabHLH1 was targeted to nuclei. Biochemical analysis demonstrated that the AabHLH1 protein was capable of binding to the E-box cis-elements, present in both ADS and CYP71AV1 promoters, and possessed transactivation activity in yeast. In addition, transient co-transformation of AabHLH1 and CYP71AV1Pro::GUS in A. annua leaves showed a significant activation of the expression of the GUS (β-glucuronidase) gene in transformed A. annua, but mutation of the E-boxes resulted in abolition of activation, suggesting that the E-box is important for the CYP71AV1 promoter activity. Furthermore, transient expression of AabHLH1 in A. annua leaves increased transcript levels of the genes involved in artemisinin biosynthesis, such as ADS, CYP71AV1 and HMGR. These results suggest that AabHLH1 can positively regulate the biosynthesis of artemisinin. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Cytotoxic activity of secondary metabolites derived from Artemisia annua L. towards cancer cells in comparison to its designated active constituent artemisinin.

    PubMed

    Efferth, Thomas; Herrmann, Florian; Tahrani, Ahmed; Wink, Michael

    2011-08-15

    Artemisia annua L. (sweet wormwood, qinhao) has traditionally been used in Chinese medicine. The isolation of artemisinin from Artemisia annua and its worldwide accepted application in malaria therapy is one of the showcase success stories of phytomedicine during the past decades. Artemisinin-type compounds are also active towards other protozoal or viral diseases as well as cancer cells in vitro and in vivo. Nowadays, Artemisia annua tea is used as a self-reliant treatment in developing countries. The unsupervised use of Artemisia annua tea has been criticized to foster the development of artemisinin resistance in malaria and cancer due to insufficient artemisinin amounts in the plant as compared to standardized tablets with isolated artemisinin or semisynthetic artemisinin derivatives. However, artemisinin is not the only bioactive compound in Artemisia annua. In the present investigation, we analyzed different Artemisia annua extracts. Dichloromethane extracts were more cytotoxic (range of IC₅₀: 1.8-14.4 μg/ml) than methanol extracts towards Trypanosoma b. brucei (TC221 cells). The range of IC₅₀ values for HeLa cancer cells was 54.1-275.5 μg/ml for dichloromethane extracts and 276.3-1540.8 μg/ml for methanol extracts. Cancer and trypanosomal cells did not reveal cross-resistance among other compounds of Artemisia annua, namely the artemisinin-related artemisitene and arteanuine B as well as the unrelated compounds, scopoletin and 1,8-cineole. This indicates that cells resistant to one compound retained sensitivity to another one. These results were also supported by microarray-based mRNA expression profiling showing that molecular determinants of sensitivity and resistance were different between artemisinin and the other phytochemicals investigated. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. [Climate suitable rank distribution of artemisinin content of Artemisia annua in China].

    PubMed

    Zhang, Xiao-bo; Guo, Lan-ping; Huang, Lu-qi

    2011-04-01

    At the urgent request of Artemisia annua (ART) planting, the paper gets artemisinin content (ARTC) of ART in China from literatures. The paper analyses the relationships between ARTC and ecological factors by statistical analytical methods. The paper also analyses the climate suitable rank distribution of ARTC in China by ArcGIS. The results display that first, ARTC is significantly different in China, that ART from the south regions ARTC is higher. Greatest north parts of China have not suitable climate for the growing of ART and the ARTC is lower than 0.2%, when ART grows above the 34th degree of northern latitude. ARTC is higher and ART grows well, when ART grows under the 34 degrees N and grows at the areas between 100 degrees E and 120 degrees E. Second, subtropical zone is the best suitable climate zone for the growing of ART. ART grows well and ARTC is higher than 0.5%, when ART grows in the subtropical zone. Third, temperature, sunshine duration and rainfall are the main ecological factors that affect the growth of ART and the accumulation of ARTC. That the year temperature between 13.9 degrees C and 22 degrees C, sunshine duration between 853 h and 1507 h, rainfall between 814 mm and 1518 mm, is the best climate for the accumulation of ARTC. Temperature between 13 degrees C and 29 degrees C, rainfall between 600 mm and 1300 mm is the best climate for the growth of ART. Fourth, in northwest of Guangxi, eastern of Sichuan, Guizhou and Yunnan provinces, south Chongqing and west Hunan Province, there are suitable climate for the growth of Artemisia and for the accumulating of ARTC. There are also some suitable climate areas for the growing of artemisia in the south of Hubei, Anhui and Jiangsu provinces.

  4. Proteomic analysis of Artemisia annua--towards elucidating the biosynthetic pathways of the antimalarial pro-drug artemisinin.

    PubMed

    Bryant, Laura; Flatley, Brian; Patole, Chhaya; Brown, Geoffrey D; Cramer, Rainer

    2015-07-09

    MS-based proteomics was applied to the analysis of the medicinal plant Artemisia annua, exploiting a recently published contig sequence database (Graham et al. (2010) Science 327, 328-331) and other genomic and proteomic sequence databases for comparison. A. annua is the predominant natural source of artemisinin, the precursor for artemisinin-based combination therapies (ACTs), which are the WHO-recommended treatment for P. falciparum malaria. The comparison of various databases containing A. annua sequences (NCBInr/viridiplantae, UniProt/viridiplantae, UniProt/A. annua, an A. annua trichome Trinity contig database, the above contig database and another A. annua EST database) revealed significant differences in respect of their suitability for proteomic analysis, showing that an organism-specific database that has undergone extensive curation, leading to longer contig sequences, can greatly increase the number of true positive protein identifications, while reducing the number of false positives. Compared to previously published data an order-of-magnitude more proteins have been identified from trichome-enriched A. annua samples, including proteins which are known to be involved in the biosynthesis of artemisinin, as well as other highly abundant proteins, which suggest additional enzymatic processes occurring within the trichomes that are important for the biosynthesis of artemisinin. The newly gained information allows for the possibility of an enzymatic pathway, utilizing peroxidases, for the less well understood final stages of artemisinin's biosynthesis, as an alternative to the known non-enzymatic in vitro conversion of dihydroartemisinic acid to artemisinin. Data are available via ProteomeXchange with identifier PXD000703.

  5. Extracts of Artemisia annua leaves and seeds mediate programmed cell death in Leishmania donovani.

    PubMed

    Islamuddin, Mohammad; Farooque, Abdullah; Dwarakanath, B S; Sahal, Dinkar; Afrin, Farhat

    2012-12-01

    Leishmaniasis is one of the major tropical parasitic diseases, and the condition ranges in severity from self-healing cutaneous lesions to fatal visceral manifestations. There is no vaccine available against visceral leishmaniasis (VL) (also known as kala-azar in India), and current antileishmanial drugs face major drawbacks, including drug resistance, variable efficacy, toxicity and parenteral administration. We report here that n-hexane fractions of Artemisia annua leaves (AAL) and seeds (AAS) possess significant antileishmanial activity against Leishmania donovani promastigotes, with GI(50) of 14.4 and 14.6 µg ml(-1), respectively, and the IC(50) against intracellular amastigotes was found to be 6.6 and 5.05 µg ml(-1), respectively. Changes in the morphology of promastigotes and growth reversibility analysis following treatment confirmed the leishmanicidal effect of the active fractions, which presented no cytotoxic effect on mammalian cells. The antileishmanial activity was mediated via apoptosis, as evidenced by externalization of phosphatidylserine, in situ labelling of DNA fragments by terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) and cell-cycle arrest at the sub-G(0)/G(1) phase. High-performance thin-layer chromatography (HPTLC) fingerprinting showed that the content of artemisinin in crude bioactive extracts (~1.4 µg per 100 µg n-hexane fraction) was too low to account for the observed antileishmanial activity. Characterization of the active constituents by GC-MS showed that α-amyrinyl acetate, β-amyrine and derivatives of artemisinin were the major constituents in AAL and cetin, EINECS 211-126-2 and artemisinin derivatives in AAS. Our findings indicate the presence of antileishmanial compounds besides artemisinin in the n-hexane fractions of A. annua leaves and seeds.

  6. Branch Pathway Blocking in Artemisia annua is a Useful Method for Obtaining High Yield Artemisinin.

    PubMed

    Lv, Zongyou; Zhang, Fangyuan; Pan, Qifang; Fu, Xueqing; Jiang, Weimin; Shen, Qian; Yan, Tingxiang; Shi, Pu; Lu, Xu; Sun, Xiaofen; Tang, Kexuan

    2016-03-01

    There are many biosynthetic pathways competing for the metabolic flux with the artemisinin biosynthetic pathway in Artemisia annua L. To study the relationship between genes encoding enzymes at branching points and the artemisinin biosynthetic pathway, β-caryophyllene, β-farnesene and squalene were sprayed on young seedlings of A. annua. Transient expression assays indicated that the transcription levels of β-caryophyllene synthase (CPS), β-farnesene synthase (BFS) and squalene synthase (SQS) were inhibited by β-caryophyllene, β-farnesene and squalene, respectively, while expression of some artemisinin biosynthetic pathway genes increased. Thus, inhibition of these genes encoding enzymes at branching points may be helpful to improve the artemisinin content. For further study, the expression levels of four branch pathway genes CPS, BFS, germacrene A synthase (GAS) and SQS were down-regulated by the antisense method in A. annua. In anti-CPS transgenic plants, mRNA levels of BFS and ADS were increased, and the contents of β-farnesene, artemisinin and dihydroartemisinic acid (DHAA) were increased by 212, 77 and 132%, respectively. The expression levels of CPS, SQS, GAS, amorpha-4,11-diene synthase (ADS), amorphadiene 12-hydroxylase (CYP71AV1) and aldehyde dehydrogenase 1 (ALDH1) were increased in anti-BFS transgenic plants and, at the same time, the contents of artemisinin and DHAA were increased by 77% and 54%, respectively, and the content of squalene was increased by 235%. In anti-GAS transgenic plants, mRNA levels of CPS, BFS, ADS and ALDH1 were increased. The contents of artemisinin and DHAA were enhanced by 103% and 130%, respectively. In anti-SQS transgenic plants, the transcription levels of BFS, GAS, CPS, ADS, CYP71AV1 and ALDH1 were all increased. Contents of artemisinin and DHAA were enhanced by 71% and 223%, respectively, while β-farnesene was raised to 123%. The mRNA level of artemisinic aldehyde Δ11(13) reductase (DBR2) had changed little in

  7. Isolation, characterization and structural studies of amorpha - 4, 11-diene synthase (ADS(3963)) from Artemisia annua L.

    PubMed

    Alam, Pravej; Kiran, Usha; Ahmad, M Mobeen; Kamaluddin; Khan, Mather Ali; Jhanwar, Shalu; Abdin, Mz

    2010-03-31

    With the escalating prevalence of malaria in recent years, artemisinin demand has placed considerable stress on its production worldwide. At present, the relative low-yield of artemisinin (0.01-1.1 %) in the source plant (Artemisia annua L. plant) has imposed a serious limitation in commercializing the drug. Amorpha-4, 11-diene synthase (ADS) has been reported a key enzyme in enhancing the artemisinin level in Artemisia annua L. An understanding of the structural and functional correlations of Amorpha-4, 11-diene synthase (ADS) may therefore, help in the molecular up-regulation of the enzyme. In this context, an in silico approach was used to study the ADS₃₉₆₃ (3963 bp) gene cloned by us, from high artemisinin (0.7-0.9% dry wt basis) yielding strain of A. annua L. The full-length putative gene of ADS₃₉₆₃ was found to encode a protein consisting of 533 amino acid residues with conserved aspartate rich domain. The isoelectric point (pI) and molecular weight of the protein were 5.25 and 62.2 kDa, respectively. The phylogenetic analysis of ADS genes from various species revealed evolutionary conservation. Homology modeling method was used for prediction of the 3D structure of ADS₃₉₆₃ protein and Autodock 4.0 version was used to study the ligand binding. The predicted 3D model and docking studies may further be used in characterizing the protein in wet laboratory.

  8. Effect of leaf digestion and artemisinin solubility for use in oral consumption of dried Artemisia annua leaves to treat malaria.

    PubMed

    Desrosiers, Matthew R; Weathers, Pamela J

    2016-08-22

    Artemisia annua L. produces the antimalarial sesquiterpene lactone, artemisinin (AN), and was traditionally used by the Chinese to treat fever, which was often caused by malaria. To measure effects of plant-based and dietary components on release of artemisinin and flavonoids from A. annua dried leaves (DLA) after simulated digestion. Simulated digestion was performed on DLA in four types of capsules, or in conjunction with protein, and protein-based foods: dry milk, casein, bovine serum albumin, peanuts, peanut butter, Plumpy'nut(®), and A. annua essential oils. Artemisinin and total flavonoids were measured in the liquid phase of the intestinal stage of digestion. After simulated digestion, peanuts and Plumpy'nut(®) lowered AN and flavonoids, respectively, recovered from the liquid digestate fraction. None of the compositions of the tested capsules altered AN or flavonoid release. Surprisingly, bovine serum albumin (BSA) increased both AN and flavonoids recovered from liquid simulated digestate fractions while casein had no effect. AN delivered as DLA was about 4 times more soluble in digestates than AN delivered as pure drug. Addition of a volume of essential oil equivalent to that found in a high essential oil producing A. annua cultivar also significantly increased AN solubility in simulated digestates. These results indicate encapsulating DLA may provide a way to mask the taste of A. annua without altering bioavailability. Similarly, many peanut-based products can be used to mask the flavor with appropriate dosing. Finally, the essential oil fraction of A. annua contributes to the increased AN solubility in DLA after simulated digestion. Our results suggest that use of DLA in the treatment of malaria and other artemisinin-susceptible diseases should be further tested in animals and humans. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Differences in chemical constituents of Artemisia annua L from different geographical regions in China.

    PubMed

    Zhang, Xiaobo; Zhao, Yuping; Guo, Lanping; Qiu, Zhidong; Huang, Luqi; Qu, Xiaobo

    2017-01-01

    Daodi-herb is a part of Chinese culture, which has been naturally selected by traditional Chinese medicine clinical practice for many years. Sweet wormwood herb is a kind of Daodi-herb, and comes from Artemisia annua L. Artemisinin is a kind of effective antimalarial drug being extracted from A. annua. Because of artemisinin, Sweet wormwood herb earns a reputation. Based on the Pharmacopoeia of the People's Republic of China (PPRC), Sweet wormwood herb can be used to resolve summerheat-heat, and prevent malaria. Besides, it also has other medical efficacies. A. annua, a medicinal plant that is widely distributed in the world contains many kinds of chemical composition. Research has shown that compatibility of artemisinin, scopoletin, arteannuin B and arteannuic acid has antimalarial effect. Compatibility of scopoletin, arteannuin B and arteannuic acid is conducive to resolving summerheat-heat. Chemical constituents in A. annua vary significantly according to geographical locations. So, distribution of A. annua may play a key role in the characteristics of efficacy and chemical constituents of Sweet wormwood herb. It is of great significance to study this relationship. We mainly analyzed the relationship between the chemical constituents (arteannuin B, artemisinin, artemisinic acid, and scopoletin) with special efficacy in A. annua that come from different provinces in china, and analyzed the relationship between chemical constituents and spatial distribution, in order to find out the relationship between efficacy, chemical constituents and distribution. A field survey was carried out to collect A. annua plant samples. A global positioning system (GPS) was used for obtaining geographical coordinates of sampling sites. Chemical constituents in A. annua were determined by liquid chromatography tandem an atmospheric pressure ionization-electrospray mass spectrometry. Relationship between chemical constituents including proportions, correlation analysis (CoA), principal

  10. AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea.

    PubMed

    Lu, Xu; Zhang, Ling; Zhang, Fangyuan; Jiang, Weimin; Shen, Qian; Zhang, Lida; Lv, Zongyou; Wang, Guofeng; Tang, Kexuan

    2013-06-01

    · Six transcription factors of APETALA2/ethylene-response factor (AP2/ERF) family were cloned and analyzed in Artemisia annua. Real-time quantitative polymerase chain reaction (RT-Q-PCR) showed that AaORA exhibited similar expression patterns to those of amorpha-4,11-diene synthase gene (ADS), cytochrome P450-dependent hydroxylase gene (CYP71AV1) and double bond reductase 2 gene (DBR2) in different tissues of A. annua. · AaORA is a trichome-specific transcription factor, which is expressed in both glandular secretory trichomes (GSTs) and nonglandular T-shaped trichomes (TSTs) of A. annua. The result of subcellular localization shows that AaORA is targeted to the nuclei and the cytoplasm. · Overexpression and RNA interference (RNAi) of AaORA in A. annua regulated, positively and significantly, the expression levels of ADS, CYP71AV1, DBR2 and AaERF1. The up-regulated or down-regulated expression levels of these genes resulted in a significant increase or decrease in artemisinin and dihydroartemisinic acid. The results demonstrate that AaORA is a positive regulator in the biosynthesis of artemisinin. · Overexpression of AaORA in Arabidopsis thaliana increased greatly the transcript levels of the defense marker genes PLANT DEFENSIN1.2 (PDF1.2), HEVEIN-LIKE PROTEIN (HEL) and BASIC CHITINASE (B-CHI). After inoculation with Botrytis cinerea, the phenotypes of AaORA overexpression in A. thaliana and AaORA RNAi in A. annua demonstrate that AaORA is a positive regulator of disease resistance to B. cinerea. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. Anti-adipogenic effect of Artemisia annua in diet-induced-obesity mice model.

    PubMed

    Baek, Hye Kyung; Shim, Hyeji; Lim, Hyunmook; Shim, Minju; Kim, Chul-Kyu; Park, Sang-Kyu; Lee, Yong Seok; Song, Ki-Duk; Kim, Sung-Jo; Yi, Sun Shin

    2015-01-01

    Obesity has increased continuously in western countries during the last several decades and recently become a problem in developing countries. Currently, anti-obesity drugs originating from natural products are being investigated for their potential to overcome adverse effects associated with chemical drugs. Artemisinic acid, which was isolated from the well-known anti-malaria herb Artemisia annua (AA) L., was recently shown to possess anti-adipogenic effects in vitro. However, the anti-adipogenic effects of AA in animal models have not yet been investigated. Therefore, we conducted daily oral administration with AA water extract in a diet-induced obesity animal model and treated 3T3-L1 cells with AA to confirm the anti-adipogenic effects in the related protein expressions. We then evaluated the physiology, adipose tissue histology and mRNA expressions of many related genes. Inhibition of adipogenesis by the AA water extract was observed in vitro. In the animal model, weight gain was significantly lower in the AA treated group, but there were no changes in food intake volume or calories. Reductions in lipid droplet size and mRNA expression associated with adipogenesis were also observed in animal epididymal fat. This study is the first to report that AA has an anti-obese effects in vivo.

  12. Enhancing the growth, photosynthetic capacity and artemisinin content in Artemisia annua L. by irradiated sodium alginate

    NASA Astrophysics Data System (ADS)

    Aftab, Tariq; Khan, M. Masroor A.; Idrees, M.; Naeem, M.; Moinuddin; Hashmi, Nadeem; Varshney, Lalit

    2011-07-01

    Degrading the natural bioactive agents by ionizing radiation and then using them as growth promoting substances is a novel emerging technology to exploit the genetic potential of crops in terms of growth, yield and quality. Polysaccharides, such as sodium alginate, have proven to be wonderful growth promoting substances in their depolymerized form for various plants. The effect of depolymerized form of sodium alginate, produced by irradiating the latter by 60Co gamma rays, was studied on Artemisia annua L. with regard to growth attributes, physiological and biochemical parameters and artemisinin content. The study revealed that the irradiated sodium alginate (ISA), applied as leaf-sprays at a concentration of 20-120 mg L -1, improved the growth attributes, photosynthetic capability, enzyme activities and artemisinin content of the plant significantly. Application of ISA at 80 mg L -1 increased the values of the attributes studied to the maximum extent. The enhancement of leaf-artemisinin content was ascribed to the ISA-enhanced H 2O 2 content in the leaves.

  13. Anti-adipogenic effect of Artemisia annua in diet-induced-obesity mice model

    PubMed Central

    Baek, Hye Kyung; Shim, Hyeji; Lim, Hyunmook; Shim, Minju; Kim, Chul-Kyu; Park, Sang-Kyu; Lee, Yong Seok; Song, Ki-Duk; Kim, Sung-Jo

    2015-01-01

    Obesity has increased continuously in western countries during the last several decades and recently become a problem in developing countries. Currently, anti-obesity drugs originating from natural products are being investigated for their potential to overcome adverse effects associated with chemical drugs. Artemisinic acid, which was isolated from the well-known anti-malaria herb Artemisia annua (AA) L., was recently shown to possess anti-adipogenic effects in vitro. However, the anti-adipogenic effects of AA in animal models have not yet been investigated. Therefore, we conducted daily oral administration with AA water extract in a diet-induced obesity animal model and treated 3T3-L1 cells with AA to confirm the anti-adipogenic effects in the related protein expressions. We then evaluated the physiology, adipose tissue histology and mRNA expressions of many related genes. Inhibition of adipogenesis by the AA water extract was observed in vitro. In the animal model, weight gain was significantly lower in the AA treated group, but there were no changes in food intake volume or calories. Reductions in lipid droplet size and mRNA expression associated with adipogenesis were also observed in animal epididymal fat. This study is the first to report that AA has an anti-obese effects in vivo. PMID:26243598

  14. Pseudonocardia antimicrobica sp. nov., a novel endophytic actinomycete associated with Artemisia annua L. (sweet wormwood).

    PubMed

    Zhao, Guo-Zhen; Li, Jie; Qin, Yu-Li; Miao, Cui-Ping; Wei, Da-Qiao; Zhang, Si; Xu, Li-Hua; Li, Wen-Jun

    2012-09-01

    A Gram-reaction-positive, non-motile, endophytic actinomycete, designated strain YIM 63235(T), was isolated from the surface-sterilized stems of Artemisia annua L., and characterized to determine its taxonomic position. The strain YIM 63235(T) formed well-differentiated aerial and substrate mycelia on media tested. The phylogenetic tree based on 16S rRNA gene sequences showed that the new isolate formed a distinct lineage within the genus Pseudonocardia, and the strain YIM 63235(T) was closely related to Pseudonocardia parietis 04-St-002(T) (99.1%). However, DNA-DNA relatedness demonstrated that strain YIM 63235(T) was distinct from the closest phylogenetic neighbor. The chemotaxonomic properties of strain YIM 63235(T) were consistent with those of the genus Pseudonocardia: the diagnostic diamino acid of the cell-wall peptidoglycan was meso-diaminopimelic acid and MK-8(H(4)) was the predominant menaquinone. The major fatty acids were iso-C(16:0) and iso-C(16:1) H. The DNA G+C content of strain YIM 63235(T) was 71.0 mol%. On the basis of the phenotypic and phylogenetic distinctiveness, the novel isolate was identified as representing a novel species of the genus Pseudonocardia, for which the name Pseudonocardia antimicrobica sp. nov. (type strain YIM 63235(T) =CCTCC AA 208080(T)=DSM 45303(T)) is proposed.

  15. Polyphenolic profile and antioxidant effects of various parts of Artemisia annua L.

    PubMed

    Song, Yi; Desta, Kebede Taye; Kim, Gon-Sup; Lee, Soo Jung; Lee, Won Sup; Kim, Yun-Hi; Jin, Jong Sung; Abd El-Aty, A M; Shin, Ho-Chul; Shim, Jae-Han; Shin, Sung Chul

    2016-04-01

    An annual Korean weed, Artemisia annua L., has been used as a folk medicine for the treatment of a number of diseases. Remarkably, among the 32 polyphenols characterized in various parts of plant tissue, including flowers, leafs, stems and roots, 10 compounds were detected for the first time using liquid chromatography-tandem mass spectrometry (LC/MS/MS). The quantification method was validated using structurally related external standards with determination coefficients (R(2) ) ≥0.9995. The limits of detection and quantitation were 0.068-3.932 and 0.226-13.108 mg/L, respectively. The recoveries estimated at 50 and 100 mg/L ranged between 60.6-92.2 and 61.3-111%, respectively, with relative standard deviations <12%. The roots contained the largest concentration of identified components, while the flowers contained the least. The antioxidant capacity evaluated in terms of 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation-scavenging activities and reducing power was highest in the roots and lowest in the flowers. The findings are well correlated and suggest that the antioxidant capacities principally depend upon the polyphenol concentrations in each part of the plant. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Effects of different doses of cadmium on secondary metabolites and gene expression in Artemisia annua L.

    PubMed

    Zhou, Liangyun; Yang, Guang; Sun, Haifeng; Tang, Jinfu; Yang, Jian; Wang, Yizhan; Garran, Thomas Avery; Guo, Lanping

    2017-03-01

    This study aims to elucidate the underlying molecular mechanisms of artemisinin accumulation induced by Cd. The effects of different Cd concentrations (0, 20, 60, and 120 μmol/L) on the biosynthesis of Artemisia annua L. were examined. Intermediate and end products were quantified by HPLC-ESI-MS/MS analysis. The expression of key biosynthesis enzymes was also determined by qRT-PCR. The results showed that the application of treatment with 60 and 120 μmol/L Cd for 3 days significantly improved the biosynthesis of artemisinic acid, arteannuin B, and artemisinin. The concentrations of artemisinic acid, arteannuin B, and artemisinin in the 120 μmol/L Cd-treated group were 2.26, 102.08, and 33.63 times higher than those in the control group, respectively. The concentrations of arteannuin B and artemisinin in 60 μmol/L Cd-treated leaves were 61.10 and 26.40 times higher than those in the control group, respectively. The relative expression levels of HMGR, FPS, ADS, CYP71AV1, DBR2, ALDH1, and DXR were up-regulated in the 120 μmol/L Cd-treated group because of increased contents of artemisinic metabolites after 3 days of treatment. Hence, appropriate doses of Cd can increase the concentrations of artemisinic metabolites at a certain time point by up-regulating the relative expression levels of key enzyme genes involved in artemisinin biosynthesis.

  17. A Genome-Wide Scenario of Terpene Pathways in Self-pollinated Artemisia annua.

    PubMed

    Ma, Dong-Ming; Wang, Zhilong; Wang, Liangjiang; Alejos-Gonzales, Fatima; Sun, Ming-An; Xie, De-Yu

    2015-11-02

    Scenarios of genes to metabolites in Artemisia annua remain uninvestigated. Here, we report the use of an integrated approach combining metabolomics, transcriptomics, and gene function analyses to characterize gene-to-terpene and terpene pathway scenarios in a self-pollinating variety of this species. Eighty-eight metabolites including 22 sesquiterpenes (e.g., artemisinin), 26 monoterpenes, two triterpenes, one diterpene and 38 other non-polar metabolites were identified from 14 tissues. These metabolites were differentially produced by leaves and flowers at lower to higher positions. Sequences from cDNA libraries of six tissues were assembled into 18 871 contigs and genome-wide gene expression profiles in tissues were strongly associated with developmental stages and spatial specificities. Sequence mining identified 47 genes that mapped to the artemisinin, non-amorphadiene sesquiterpene, monoterpene, triterpene, 2-C-methyl-D-erythritol 4-phosphate and mevalonate pathways. Pearson correlation analysis resulted in network integration that characterized significant correlations of gene-to-gene expression patterns and gene expression-to-metabolite levels in six tissues simultaneously. More importantly, manipulations of amorpha-4,11-diene synthase gene expression not only affected the activity of this pathway toward artemisinin, artemisinic acid, and arteannuin b but also altered non-amorphadiene sesquiterpene and genome-wide volatile profiles. Such gene-to-terpene landscapes associated with different tissues are fundamental to the metabolic engineering of artemisinin. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  18. Survey on efficacy of chloroformic extract of Artemisia annua against Giardia lamblia trophozoite and cyst in vitro.

    PubMed

    Golami, Shirzad; Rahimi-Esboei, Bahman; Mousavi, Parisa; Marhaba, Zahra; Youssefi, Mohammad Reza; Rahimi, Mohammad Taghi

    2016-03-01

    Giardiasis is a parasitic cosmopolitan disease that the rate of infection in developing countries is considerable. This infection directly is associated with poor hygienic conditions, poor water quality control, and overcrowding. Reinfection and drug resistance are two major problems in endemic areas. Recently, researchers are concentrating on herbal drugs as a proper solution. Therefore, the objective of the present study was to survey on efficacy of chloroformic extract of Artemisia annua against Giardia lamblia trophozoite and cyst in vitro. G. lamblia cysts were prepared from faces of giardiasis patients from different hospitals of Mazandaran Medical University. Four concentrations (1, 10, 50 and 100 mg/ml) of chloroformic extract of A. annua were utilized for 1, 5, 30, 60 and 180 min. Viability of G. lamblia cysts was confirmed by 0.1 % Eosin staining. Cyst and trophozoite contact (intermix) of G. lamblia with extract of A. annua with variant concentrations (1, 10, 50 and 100 mg/ml) after 1 and 180 min caused following cyst and trophozoite elimination rates: (67, 69, 71 and 73 %), (65, 67, 67 and 72 %), (94, 96, 97 and 99 %) and (100, 100, 100 and 100 %), respectively. Authors from the current investigation draw a conclusion that chloroformic extract of A. annua has the ability to eliminate G. lamblia cysts and trophozoites in vitro.

  19. Cumulative role of bioinoculants on growth, antioxidant potential and artemisinin content in Artemisia annua L. under organic field conditions.

    PubMed

    Gupta, Rupali; Singh, Akanksha; Gupta, M M; Pandey, Rakesh

    2016-10-01

    Artemisia annua L. is mostly known for a bioactive metabolite, artemisinin, an effective sesquiterpene lactone used against malaria without any reputed cases of resistance. In this experiment, bioinoculants viz., Streptomyces sp. MTN14, Bacillus megaterium MTN2RP and Trichoderma harzianum Thu were applied as growth promoting substances to exploit full genetic potential of crops in terms of growth, yield, nutrient uptake and particularly artemisinin content. Further, multi-use of the bioinoculants singly and in combinations for the enhancement of antioxidant potential and therapeutic value was also undertaken which to our knowledge has never been investigated in context with microbial application. The results demonstrated that a significant (P < 0.05) increase in growth, nutrient uptake, total phenolic, flavonoid, free radical scavenging activity, ferric reducing antioxidant power, reducing power and total antioxidant capacity were observed in the A. annua treated with a combination of bioinoculants in comparison to control. Most importantly, an increase in artemisinin content and yield by 34 and 72 % respectively in the treatment having all the three microbes was observed. These results were further authenticated by the PCA analysis which showed positive correlation between plant macronutrients and antioxidant content with plant growth and artemisinin yield of A. annua. The present study thus highlights a possible new application of compatible bioinoculants for enhancing the growth along with antioxidant and therapeutic value of A. annua.

  20. In vitro and in vivo antileishmanial activity of Artemisia annua L. leaf powder and its potential usefulness in the treatment of uncomplicated cutaneous leishmaniasis in humans.

    PubMed

    Mesa, Luz Estella; Vasquez, Daniel; Lutgen, Pierre; Vélez, Iván Darío; Restrepo, Adriana María; Ortiz, Isabel; Robledo, Sara María

    2017-01-01

    Cutaneous leishmaniasis (CL) is a tropical disease that affects millions of individuals worldwide. The current drugs for CL may be effective but have serious side effects; hence, alternatives are urgently needed. Although plant-derived materials are used for the treatment of various diseases in 80% of the global population, the validation of these products is essential. Gelatin capsules containing dried Artemisia annua leaf powder were recently developed as a new herbal formulation (totum) for the oral treatment of malaria and other parasitic diseases. Here, we aimed to determine the usefulness of A. annua gel capsules in CL. The antileishmanial activity and cytotoxicity of A. annua L. capsules was determined via in vitro and in vivo studies. Moreover, a preliminary evaluation of its therapeutic potential as antileishmanial treatment in humans was conducted in 2 patients with uncomplicated CL. Artemisia annua capsules showed moderate in vitro activity in amastigotes of Leishmania (Viannia) panamensis; no cytotoxicity in U-937 macrophages or genotoxicity in human lymphocytes was observed. Five of 6 (83.3%) hamsters treated with A. annua capsules (500mg/kg/day) for 30 days were cured, and the 2 examined patients were cured 45 days after initiation of treatment with 30g of A. annua capsules, without any adverse reactions. Both patients remained disease-free 26 and 24 months after treatment completion. Capsules of A. annua L. represent an effective treatment for uncomplicated CL, although further randomized controlled trials are needed to validate its efficacy and safety.

  1. Simulated digestion of dried leaves of Artemisia annua consumed as a treatment (pACT) for malaria.

    PubMed

    Weathers, Pamela J; Jordan, Nikole J; Lasin, Praphapan; Towler, Melissa J

    2014-02-03

    Artemisinin (AN) is produced by Artemisia annua, a medicinal herb long used as a tea infusion in traditional Chinese medicine to treat fever; it is also the key ingredient in current artemisinin-based combination therapies (ACTs) effective in treating malaria. Recently we showed that dried leaves from the whole plant Artemisia annua that produces artemisinin and contains artemisinin-synergistic flavonoids seem to be more effective and less costly than ACT oral malaria therapy; however little is known about how digestion affects release of artemisinin and flavonoids from dried leaves. In the current study we used a simulated digestion system to determine how artemisinin and flavonoids are released prior to absorption into the bloodstream. Various delivery methods and staple foods were combined with dried leaves for digestion in order to investigate their impact on the bioavailability of artemisinin and flavonoids. Digestate was recovered at the end of the oral, gastric, and intestinal stages, separated into solid and liquid fractions, and extracted for measurement of artemisinin and total flavonoids. Compared to unencapsulated digested dried leaves, addition of sucrose, various cooking oils, and rice did not reduce the amount of artemisinin released in the intestinal liquid fraction, but the amount of released flavonoids nearly doubled. When dried leaves were encapsulated into either hydroxymethylcellulose or gelatin capsules, there was >50% decrease in released artemisinin but no change in released flavonoids. In the presence of millet or corn meal, the amount of released artemisinin declined, but there was no change in released flavonoids. Use of a mutant Artemisia annua lacking artemisinin showed that the plant matrix is critical in determining how artemisinin is affected during the digestion process. This study provides evidence showing how both artemisinin and flavonoids are affected by digestion and dietary components for an orally consumed plant delivered

  2. Flavonoids casticin and chrysosplenol D from Artemisia annua L. inhibit inflammation in vitro and in vivo.

    PubMed

    Li, Yu-Jie; Guo, Yan; Yang, Qing; Weng, Xiao-Gang; Yang, Lan; Wang, Ya-Jie; Chen, Ying; Zhang, Dong; Li, Qi; Liu, Xu-Cen; Kan, Xiao-Xi; Chen, Xi; Zhu, Xiao-Xin; Kmoníèková, Eva; Zídek, Zdenìk

    2015-08-01

    The aim of our experiments was to investigate the anti-inflammatory properties of casticin and chrysosplenol D, two flavonoids present in Artemisia annua L. Topical inflammation was induced in ICR mice using croton oil. Mice were then treated with casticin or chrysosplenol D. Cutaneous histological changes and edema were assessed. ICR mice were intragastrically administrated with casticin or chrysosplenol D followed by intraperitoneal injection of lipopolysaccharide (LPS). Mouse Raw264.7 macrophage cells were incubated with casticin or chrysosplenol D. Intracellular phosphorylation was detected, and migration was assessed by trans-well assay. HT-29/NFκB-luc cells were incubated with casticin or chrysosplenol D in the presence or absence of LPS, and NF-κB activation was quantified. In mice, administration of casticin (0.5, 1 and 1.5μmol/cm(2)) and chrysosplenol D (1 and 1.5μmol/cm(2)) inhibited croton oil-induced ear edema (casticin: 29.39-64.95%; chrysosplenol D: 37.76-65.89%, all P<0.05) in a manner similar to indomethacin (0.5, 1 and 1.5μmol/cm(2); 55.63-84.58%). Casticin (0.07, 0.13 and 0.27mmol/kg) and chrysosplenol D (0.07, 0.14 and 0.28mmol/kg) protected against LPS-induced systemic inflammatory response syndrome (SIRS) in mice (all P<0.05), in a manner similar to dexamethasone (0.03mmol/kg). Casticin and chrysosplenol D suppressed LPS-induced release of IL-1 beta, IL-6 and MCP-1, inhibited cell migration, and reduced LPS-induced IκB and c-JUN phosphorylation in Raw264.7 cells. JNK inhibitor SP600125 blocked the inhibitory effect of chrysosplenol D on cytokine release. The flavonoids casticin and chrysosplenol D from A. annua L. inhibited inflammation in vitro and in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. First-time comparison of the in vitro antimalarial activity of Artemisia annua herbal tea and artemisinin.

    PubMed

    De Donno, Antonella; Grassi, Tiziana; Idolo, Adele; Guido, Marcello; Papadia, Paride; Caccioppola, Alessandro; Villanova, Luciano; Merendino, Alessandro; Bagordo, Francesco; Fanizzi, Francesco Paolo

    2012-11-01

    Artemisia annua tea has been proven to be a very effective treatment for malaria in various clinical trials, but to date its efficacy has not been investigated in vitro. A study was therefore performed to evaluate the effects of A. annua tea on Plasmodium falciparum cultures in vitro. The concentration of artemisinin in the herbal tea preparation was also determined. The herbal tea extract was tested against chloroquine (CQ)-sensitive D10 and CQ-resistant W2 strains of P. falciparum using the parasite lactate dehydrogenase assay. Quantification of artemisinin in the extract of leaves of A. annua was performed using proton nuclear magnetic resonance ((1)H-NMR). Results of the in vitro tests were consistent with the clinical efficacy of A. annua tea [50% inhibitory concentration (IC(50)) for strain D10=1.11±0.21 μg/ml; IC(50) for strain W2=0.88±0.35 μg/ml]. The concentration of artemisinin in A. annua tea (0.18±0.02% of dry weight) was far too low to be responsible for the antimalarial activity. The artemisinin present in the tea is probably co-solubilised with other ingredients, some of which also have antimalarial activity and act synergistically with it. These compounds also merit further research to determine whether their presence hinders the development of parasite resistance compared with pure artemisinin. Copyright © 2012 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  4. Overexpression of the Artemisia Orthologue of ABA Receptor, AaPYL9, Enhances ABA Sensitivity and Improves Artemisinin Content in Artemisia annua L

    PubMed Central

    Zhang, Fangyuan; Lu, Xu; Lv, Zongyou; Zhang, Ling; Zhu, Mengmeng; Jiang, Weiming; Wang, Guofeng; Sun, Xiaofen; Tang, Kexuan

    2013-01-01

    The phytohormone abscisic acid (ABA) plays an important role in plant development and environmental stress response. In this study, we cloned an ABA receptor orthologue, AaPYL9, from Artemisia annua L. AaPYL9 is expressed highly in leaf and flower. AaPYL9 protein can be localized in both nucleus and cytoplasm. Yeast two-hybrid assay shows AaPYL9 can specifically interact with AtABI1 but not with AtABI2, AtHAB1 or AtHAB2. ABA can enhance the interaction between AaPYL9 and AtABI1 while AaPYL9-89 Pro→Ser and AaPYL9-116 His→Ala point mutations abolishes the interaction. BiFC assay shows that AaPYL9 interacts with AtABI1 in nucleus in planta. Transgenic Arabidopsis plants over-expressing AaPYL9 are more sensitive to ABA in the seed germination and primary root growth than wild type. Consistent with this, ABA report genes have higher expression in AaPYL9 overexpressing plants compared to wild type after ABA treatment. Moreover, overexpression of AaPYL9 in A. annua increases not only drought tolerance, but also artemisinin content after ABA treatment, with significant enhancement of the expression of key genes in artemisinin biosynthesis. This study provides a way to develop A. annua with high-yielding artemisinin and high drought resistance. PMID:23437216

  5. Phytomonospora endophytica gen. nov., sp. nov., isolated from the roots of Artemisia annua L.

    PubMed

    Li, Jie; Zhao, Guo-Zhen; Zhu, Wen-Yong; Huang, Hai-Yu; Xu, Li-Hua; Zhang, Si; Li, Wen-Jun

    2011-12-01

    A novel endophytic actinomycete, strain YIM 65646(T), was isolated from the roots of Artemisia annua L. collected from Yunnan Province, south-west China. Growth was observed in the temperature range 10-40 °C (optimum 20-28 °C) and at pH 6.0-9.0 (optimum pH 7.0). The organism formed well-developed, branched substrate mycelia, but aerial mycelium was not produced. Phenotypic characterization and 16S rRNA gene sequence analysis indicated that strain YIM 65646(T) belonged to the family Micromonosporaceae (sharing ≤93.6% sequence similarity with members of this family) and formed a distinct clade in the Micromonosporaceae phylogenetic tree. The strain contained meso-diaminopimelic acid in the cell wall and mannose, ribose, galactose and glucose in whole-cell hydrolysates. The major menaquinones were MK-10(H(4)), MK-10(H(2)), MK-8(H(2)), MK-9(H(2)) and MK-10(H(6)). The major fatty acids were iso-C(15:0), anteiso-C(15:0), anteiso-C(17:0), iso-C(17:0) and iso-C(16:0). The DNA G+C content of strain YIM 65646(T) was 70.0 mol%. On the basis of morphological and chemotaxonomic properties and phylogenetic analysis based on 16S rRNA gene sequence data, it is proposed that this strain should be classified in a novel genus and species, Phytomonospora endophytica gen. nov., sp. nov., in the family Micromonosporaceae. The type strain is YIM 65646(T) (=CCTCC AA 209041(T) =DSM 45386(T)).

  6. Leishmanicidal activities of Artemisia annua leaf essential oil against Visceral Leishmaniasis

    PubMed Central

    Islamuddin, Mohammad; Chouhan, Garima; Want, Muzamil Y.; Tyagi, Maujiram; Abdin, Malik Z.; Sahal, Dinkar; Afrin, Farhat

    2014-01-01

    Visceral leishmaniasis (VL), the second-most dreaded parasitic disease after malaria, is currently endemic in 88 countries. Dramatic increases in the rates of infection, drug resistance, and non-availability of safe vaccines have highlighted the need for identification of novel and inexpensive anti-leishmanial agents from natural sources. In this study, we showed the leishmanicidal effect of essential oil from Artemisia annua leaves (AALEO) against Leishmania donovani in vitro and in vivo. AALEO was extracted by hydrodistillation and characterized by GC-MS, the most abundant compounds were found to be camphor (52.06 %) followed by β-caryophyllene (10.95 %). AALEO exhibited significant leishmanicidal activity against L. donovani, with 50 % inhibitory concentration of 14.63 ± 1.49 μg ml-1 and 7.3 ± 1.85 μg ml-1, respectively, against the promastigotes and intracellular amastigotes. The effect was mediated through programmed cell death as confirmed by externalization of phosphatidylserine, DNA nicking by TdT-mediated dUTP nick-end labeling assay, dyskinetoplastidy, cell cycle arrest at sub-G0–G1 phase, loss of mitochondrial membrane potential and reactive oxygen species generation in promastigotes and nitric oxide generation in ex vivo model. AALEO presented no cytotoxic effects against mammalian macrophages even at 200 μg ml-1. Intra-peritoneal administration of AALEO (200 mg/ kg.b.w.) to infected BALB/c mice reduced the parasite burden by almost 90% in the liver and spleen with significant reduction in weight. There was no hepato- or nephro-toxicity as demonstrated by normal levels of serum enzymes. The promising antileishmanial activity shown by camphor-rich AALEO may provide a new lead in the treatment of VL. PMID:25505453

  7. Leishmanicidal activities of Artemisia annua leaf essential oil against Visceral Leishmaniasis.

    PubMed

    Islamuddin, Mohammad; Chouhan, Garima; Tyagi, Maujiram; Abdin, Malik Z; Sahal, Dinkar; Afrin, Farhat

    2014-01-01

    Visceral leishmaniasis (VL), the second-most dreaded parasitic disease after malaria, is currently endemic in 88 countries. Dramatic increases in the rates of infection, drug resistance, and non-availability of safe vaccines have highlighted the need for identification of novel and inexpensive anti-leishmanial agents from natural sources. In this study, we showed the leishmanicidal effect of essential oil from Artemisia annua leaves (AALEO) against Leishmania donovani in vitro and in vivo. AALEO was extracted by hydrodistillation and characterized by GC-MS, the most abundant compounds were found to be camphor (52.06 %) followed by β-caryophyllene (10.95 %). AALEO exhibited significant leishmanicidal activity against L. donovani, with 50 % inhibitory concentration of 14.63 ± 1.49 μg ml(-1) and 7.3 ± 1.85 μg ml(-1), respectively, against the promastigotes and intracellular amastigotes. The effect was mediated through programmed cell death as confirmed by externalization of phosphatidylserine, DNA nicking by TdT-mediated dUTP nick-end labeling assay, dyskinetoplastidy, cell cycle arrest at sub-G0-G1 phase, loss of mitochondrial membrane potential and reactive oxygen species generation in promastigotes and nitric oxide generation in ex vivo model. AALEO presented no cytotoxic effects against mammalian macrophages even at 200 μg ml(-1). Intra-peritoneal administration of AALEO (200 mg/ kg.b.w.) to infected BALB/c mice reduced the parasite burden by almost 90% in the liver and spleen with significant reduction in weight. There was no hepato- or nephro-toxicity as demonstrated by normal levels of serum enzymes. The promising antileishmanial activity shown by camphor-rich AALEO may provide a new lead in the treatment of VL.

  8. The effects of combining Artemisia annua and Curcuma longa ethanolic extracts in broilers challenged with infective oocysts of Eimeria acervulina and E. maxima

    USDA-ARS?s Scientific Manuscript database

    Due to an increasing demand for natural products to control coccidiosis in broilers we investigated the effects of supplementing a combination of ethanolic extracts of Artemisia annua and Curcuma longa in drinking water. Three different dosages of this herbal mixture were compared with a negative co...

  9. A Systematic Review of Anti-malarial Properties, Immunosuppressive Properties, Anti-inflammatory Properties, and Anti-cancer Properties of Artemisia Annua.

    PubMed

    Alesaeidi, Samira; Miraj, Sepide

    2016-10-01

    Artemisia annua belongs to the asteraceae family, indigenous to the mild climate of Asia. The aim of this study was to overview its anti-malarial properties, immunosuppressive properties, anti-inflammatory properties and anti-cancer properties. This systematic review was carried out by searching studies in PubMed, Medline, Web of Science, and IranMedex databases. The initial search strategy identified approximately ninety eight references. In this study, forty six studies were accepted for further screening and met all of our inclusion. The search terms were "Artemisia annua", "therapeutic properties", "and pharmacological effects". Artemisia annua is commonly used for its anti-malarial, immunosuppressive anti-inflammatory properties. Artemisia annua contributes to the treatment of various diseases such as diabetes, heart diseases, arthritis and eczema and possesses various effects such as antibacterial, antioxidant, anticoccidial, and antiviral effects. Furthermore, it was said to be good for cancer treatment. In this study, anti-malarial, immunosuppressive, anti-inflammatory properties of this plant are presented using published articles in scientific sites.

  10. Artemisia annua dried leaf tablets treated malaria resistant to ACT and i.v. artesunate: Case reports.

    PubMed

    Daddy, Nsengiyumva Bati; Kalisya, Luc Malemo; Bagire, Pascal Gisenya; Watt, Robert L; Towler, Melissa J; Weathers, Pamela J

    2017-08-15

    Dried leaf Artemisia annua (DLA) has shown efficacy against Plasmodium sp. in rodent studies and in small clinical trials. Rodent malaria also showed resiliency against the evolution of artemisinin drug resistance. This is a case report of a last resort treatment of patients with severe malaria who were responding neither to artemisinin combination therapy (ACT) nor i.v. artesunate. Of many patients treated with ACTs and i.v. artesunate during the 6 mon study period, 18 did not respond and were subsequently treated with DLA Artemisia annua. Patients were given a dose of 0.5g DLA per os, twice daily for 5d. Total adult delivered dose of artemisinin was 55mg. Dose was reduced for body weight under 30kg. Clinical symptoms, e.g. fever, coma etc., and parasite levels in thick blood smears were tracked. Patients were declared cured and released from hospital when parasites were microscopically undetectable and clinical symptoms fully subsided. All patients were previously treated with Coartem® provided through Santé Rurale (SANRU) and following the regimen prescribed by WHO. Of 18 ACT-resistant severe malaria cases compassionately treated with DLA, all fully recovered. Of the 18, this report details two pediatric cases. Successful treatment of all 18 ACT-resistant cases suggests that DLA should be rapidly incorporated into the antimalarial regimen for Africa and possibly wherever else ACT resistance has emerged. Copyright © 2017. Published by Elsevier GmbH.

  11. Antiulcerogenic activity of crude ethanol extract and some fractions obtained from aerial parts of Artemisia annua L.

    PubMed

    Dias, P C; Foglio, M A; Possenti, A; Nogueira, D C; de Carvalho, J E

    2001-12-01

    The resulting enriched sesquiterpene lactone fraction and the crude ethanol extract of Artemisia annua L. aerial parts, showed antiulcerogenic activity when administered orally, on the indomethacin induced ulcer in rats. The sesquiterpene lactone fraction yielded three different polarity fractions on column chromatography as follows: non-polar, medium polarity and polar fraction, When submitted to the same indomethacin-induced ulcer in rats they resulted in different levels of inhibition of the ulcerative lesion index. The participation of nitric oxide was evaluated on an ethanol-induced ulcer model which had a previous administration of L-NAME, a NO-synthase inhibitor. Under these conditions, the medium polarity fraction maintained the antiulcerogenic activity, suggesting that nitric oxide could not be involved in the antiulcerogenic activity. When the animal groups were treated with N-ethylmaleimide, an alkylator of sulphhydryl groups, using the same experimental model, the medium polarity fraction maintained its antiulcerogenic activity, suggesting that the pharmacological mechanism is not related to non-protein sulphydryl compounds. On the ethanol-induced ulcer with previous indomethacin treatment, the medium polarity fraction lost its antiulcerogenic activity indicating that the active compounds of Artemisia annua L. increase the prostaglandin levels in the gastric mucosa. This hypothesis was reinforced by an increase of adherent mucus production by the gastric mucosa, produced by the medium polarity fraction on the hypothermic restraint stress induced ulcer model.

  12. Development of a Specific Monoclonal Antibody for the Quantification of Artemisinin in Artemisia annua and Rat Serum.

    PubMed

    Guo, Suqin; Cui, Yongliang; Wang, Kunbi; Zhang, Wei; Tan, Guiyu; Wang, Baomin; Cui, Liwang

    2016-03-01

    Artemisinin, extracted from Artemisia annua, and its derivatives are important frontline antimalarials. To produce specific antibodies for the detection and quantification of artemisinin, artemisinin was transformed to 9-hydroxyartemisinin by microbial fermentation, which was used to prepare a 9-succinate artemisinin hapten for conjugation with ovalbumin. A monoclonal antibody (mAb), designated as 3H7A10, was selected from hybridoma cell lines which showed high specificity to artemisinin. No competitive inhibition was observed with artesunate, dihydroartemisinin, and artemether for up to 20,000 ng mL(-1). An indirect competitive enzyme-linked immunosorbent assay (icELISA) was developed, which showed a concentration causing 50% of inhibition (IC50) for artemisinin as 2.6 ng mL(-1) and a working range of 0.6-11.5 ng mL(-1). The icELISA was applied for the quantification of artemisinin in crude extracts of wild A. annua and the study of pharmacokinetics of artemisinin in rat serum after intraperitoneal injection. The results were highly correlated with those determined by HPLC-UV analysis (R(2) = 0.9919). In comparison with reported antiartemisinin mAbs which have broad cross-reactivity with other artemisinin derivatives, the high specificity of 3H7A10 for artemisinin will enable development of methods for quantification of artemisinin in Artemisia plants and antimalarial drugs such as Arco and for pharmacokinetic studies.

  13. The Use of Combining Ability Analysis to Identify Elite Parents for Artemisia annua F1 Hybrid Production

    PubMed Central

    Townsend, Theresa; Segura, Vincent; Chigeza, Godfree; Penfield, Teresa; Rae, Anne; Harvey, David; Bowles, Dianna; Graham, Ian A.

    2013-01-01

    Artemisia annua is an important medicinal crop used for the production of the anti-malarial compound artemisinin. In order to assist in the production of affordable high quality artemisinin we have carried out an A. annua breeding programme aimed at improving artemisinin concentration and biomass. Here we report on a combining ability analysis of a diallel cross to identify robust parental lines for hybrid breeding. The parental lines were selected based on a range of phenotypic traits to encourage heterosis. The general combining ability (GCA) values for the diallel parental lines correlated to the positive alleles of quantitative trait loci (QTL) in the same parents indicating the presence of beneficial alleles that contribute to parental performance. Hybrids generated from crossing specific parental lines with good GCA were identified as having an increase in both artemisinin concentration and biomass when grown either in glasshouse or experimental field trials and compared to controls. This study demonstrates that combining ability as determined by a diallel cross can be used to identify elite parents for the production of improved A. annua hybrids. Furthermore, the selection of material for breeding using this approach was found to be consistent with our QTL-based molecular breeding approach. PMID:23626762

  14. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities.

    PubMed

    Basavegowda, Nagaraj; Idhayadhulla, Akber; Lee, Yong Rok

    2014-10-01

    This work describes a plant-mediated approach to the preparation of metal nanoparticles using leaf extract of Artemisia annua (A. annua), an ethno-medicinal plant widely found in Asia, which was used as reducing and stabilizing agent. A. annua is used in traditional Chinese medicine to alleviate fever. Au and Ag nanoparticles were prepared using a one-step aqueous method at room temperature without any toxic chemicals. The formation of Au and Ag nanoparticles was monitored by UV-vis spectroscopy. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). TEM analysis of Au nanoparticles showed that they had triangular and spherical shapes with sizes ranging from 15 to 40 nm. The silver nanoparticles were predominantly spherical and uniformly sized (30-50 nm). The Au and Ag nanoparticles produced showed significant tyrosinase inhibitory and antibacterial effects. These results suggest that the synthesized nanoparticles provide good alternatives in varied medical and industrial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. (3R)-Linalool synthase from Artemisia annua L.: cDNA isolation, characterization, and wound induction.

    PubMed

    Jia, J W; Crock, J; Lu, S; Croteau, R; Chen, X Y

    1999-12-01

    Artemisia annua is an annual herb used in traditional Chinese medicine. A cDNA library was constructed from leaves of A. annua seedlings and target sequences were amplified by PCR using degenerate primers derived from a consensus sequence of angiosperm terpene synthases. Two clones, QH1 and QH5, with high sequence similarity to plant monoterpene synthases were ultimately obtained and expressed in Escherichia coli. These cDNAs encode peptides of 567 aa (65.7 kDa) and 583 aa (67.4 kDa), respectively, and display 88% identity with each other and 42% identity with Mentha spicata limonene synthase. The two recombinant enzymes yielded no detectable activity with isopentenyl diphosphate, dimethylallyl diphosphate, chrysanthemyl diphosphate, farnesyl diphosphate, (+)-copalyl diphosphate, or geranylgeranyl diphosphate, but were active with geranyl diphosphate in yielding (3R)-linalool as the sole product in the presence of divalent metal cation cofactors. QH1-linalool synthase displays a K(m) value of 64 microM for geranyl diphosphate, which is considerably higher than other known monoterpene synthases, and a K(m) value of 4.6 mM for Mg(+2). Transcripts of QH1 and QH5 could be detected by RT-PCR in the leaves and inflorescence of A. annua, but not in the stem stele or roots; transcripts of QH5 could also be detected in stem epidermis. Linalool could not be detected by GC-MS in the essential oil of A. annua, nor in acid or base hydrolysates of aqueous extracts of leaves. RT-PCR demonstrated a wound-inducible increase in QH1 and QH5 transcript abundance in both leaves and stems over a 3-day time course. Copyright 1999 Academic Press.

  16. A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua.

    PubMed

    Zhang, Fangyuan; Fu, Xueqing; Lv, Zongyou; Lu, Xu; Shen, Qian; Zhang, Ling; Zhu, Mengmeng; Wang, Guofeng; Sun, Xiaofen; Liao, Zhihua; Tang, Kexuan

    2015-01-01

    Artemisinin is a sesquiterpenoid especially synthesized in the Chinese herbal plant, Artemisia annua, which is widely used in the treatment of malaria. Artemisinin accumulation can be enhanced by exogenous abscisic acid (ABA) treatment. However, it is not known how ABA signaling regulates artemisinin biosynthesis. A global expression profile and phylogenetic analysis as well as the dual-LUC screening revealed that a basic leucine zipper family transcription factor from A. annua (namely AabZIP1) was involved in ABA signaling to regulate artemisinin biosynthesis. AabZIP1 had a higher expression level in the inflorescences than in other tissues; ABA treatment, drought, and salt stress strongly induced the expression of AabZIP1. Yeast one-hybrid assay and electrophoretic mobility shift assay (EMSA) showed that AabZIP1 bound to the ABA-responsive elements (ABRE) in the promoter regions of the amorpha-4,11-diene synthase (ADS) gene and CYP71AV1, which are two key structural genes of the artemisinin biosynthetic pathway. A mutagenesis assay showed that the C1 domain in the N-terminus of AabZIP1 was important for its transactivation activity. Furthermore, the activation of ADS and CYP71AV1 promoters by AabZIP1 was enhanced by ABA treatment in transient dual-LUC analysis. The AabZIP1 variant with C1 domain deletion lost the ability to activate ADS and CYP71AV1 promoters regardless of ABA treatment. Notably, overexpression of AabZIP1 in A. annua resulted in significantly increased accumulation of artemisinin. Our results indicate that ABA promotes artemisinin biosynthesis, likely through 1 activation of ADS and CYP71AV1 expression by AabZIP in A. annua. Meanwhile, our findings reveal the potential value of AabZIP1 in genetic engineering of artemisinin production. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  17. Investigation of the component in Artemisia annua L. leading to enhanced antiplasmodial potency of artemisinin via regulation of its metabolism.

    PubMed

    Cai, Tian-Yu; Zhang, Yun-Rui; Ji, Jian-Bo; Xing, Jie

    2017-07-31

    The chemical matrix of the herb Artemisia annua L. (A. annua), from which artemisinin (QHS) is isolated, can enhance both the bioavailability and efficacy of QHS. However, the exact mechanism of this synergism remains unknown. The biotransformation of QHS and potential "enzyme inhibitors" in plant matrix could be of great importance in understanding the improved efficacy of QHS in A. annua, which has been limited to the synergism with flavonoid components. To investigate the component in A. annua extracts (MAE) leading to enhanced antiplasmodial potency of QHS via regulation of its metabolism. The efficacy of QHS in combination with the synergistic component was also evaluated. The total MAE extract and its three MAE fractions (MAE-I eluted using 3% methanol, MAE-II eluted using 50% methanol and MAE-III eluted using 85% methanol) were obtained from dry plant materials and prepared after lyophilization. The pharmacokinetic profiles of QHS and its major phase I metabolite monohydroxylated artemisinin (QHS-M) were investigated in healthy rats after a single oral administration of QHS in each MAE extract. Major components isolated from the target MAE fraction were evaluated for their enzyme inhibition. The antimalarial activity of QHS in combination with the potential synergistic component against Plasmodium falciparum was studied in vivo (murine Plasmodium yoelii). The recrudescence and survival time of infected mice were also recorded after drug treatment. Compared to pure QHS, a 2-fold increase in QHS exposure (AUC and Cmax) was found in healthy rats after a single oral dose of QHS in the total MAE extract or its fraction MAE-III. In addition, metabolic biotransformation of QHS to the metabolite QHS-M (mediated by CYP3A) was inhibited by MAE or MAE-III. Among nine major components isolated from MAE-III (five sesquiterpenenes, three flavonoids and one phenolic acid), only arteannuin B (AB) showed an inhibition of CYP3A4 (IC50 1.2μM). The synergism between QHS and AB

  18. Th1-Biased Immunomodulation and Therapeutic Potential of Artemisia annua in Murine Visceral Leishmaniasis

    PubMed Central

    Islamuddin, Mohammad; Chouhan, Garima; Farooque, Abdullah; Dwarakanath, Bilikere S.; Sahal, Dinkar; Afrin, Farhat

    2015-01-01

    Background In the absence of vaccines and limitations of currently available chemotherapy, development of safe and efficacious drugs is urgently needed for visceral leishmaniasis (VL) that is fatal, if left untreated. Earlier we reported in vitro apoptotic antileishmanial activity of n-hexane fractions of Artemisia annua leaves (AAL) and seeds (AAS) against Leishmania donovani. In the present study, we investigated the immunostimulatory and therapeutic efficacy of AAL and AAS. Methodology/Principal Findings Ten-weeks post infection, BALB/c mice were orally administered AAL and AAS for ten consecutive days. Significant reduction in hepatic (86.67% and 89.12%) and splenic (95.45% and 95.84%) parasite burden with decrease in spleen weight was observed. AAL and AAS treated mice induced the strongest DTH response, as well as three-fold decrease in IgG1 and two-fold increase in IgG2a levels, as compared to infected controls. Cytometric bead array further affirmed the elicitation of Th1 immune response as indicated by increased levels of IFN-γ, and low levels of Th2 cytokines (IL-4 and IL-10) in serum as well as in culture supernatant of lymphocytes from treated mice. Lymphoproliferative response, IFN-γ producing CD4+ and CD8+ T lymphocytes and nitrite levels were significantly enhanced upon antigen recall in vitro. The co-expression of CD80 and CD86 on macrophages was significantly augmented. CD8+ T cells exhibited CD62Llow and CD44hi phenotype, signifying induction of immunological memory in AAL and AAS treated groups. Serum enzyme markers were in the normal range indicating inertness against nephro- and hepato-toxicity. Conclusions/Significance Our results establish the two-prong antileishmanial efficacy of AAL and AAS for cure against L. donovani that is dependent on both the direct leishmanicidal action as well as switching-on of Th1-biased protective cell-mediated immunity with generation of memory. AAL and AAS could represent adjunct therapies for the treatment

  19. Th1-biased immunomodulation and therapeutic potential of Artemisia annua in murine visceral leishmaniasis.

    PubMed

    Islamuddin, Mohammad; Chouhan, Garima; Farooque, Abdullah; Dwarakanath, Bilikere S; Sahal, Dinkar; Afrin, Farhat

    2015-01-01

    In the absence of vaccines and limitations of currently available chemotherapy, development of safe and efficacious drugs is urgently needed for visceral leishmaniasis (VL) that is fatal, if left untreated. Earlier we reported in vitro apoptotic antileishmanial activity of n-hexane fractions of Artemisia annua leaves (AAL) and seeds (AAS) against Leishmania donovani. In the present study, we investigated the immunostimulatory and therapeutic efficacy of AAL and AAS. Ten-weeks post infection, BALB/c mice were orally administered AAL and AAS for ten consecutive days. Significant reduction in hepatic (86.67% and 89.12%) and splenic (95.45% and 95.84%) parasite burden with decrease in spleen weight was observed. AAL and AAS treated mice induced the strongest DTH response, as well as three-fold decrease in IgG1 and two-fold increase in IgG2a levels, as compared to infected controls. Cytometric bead array further affirmed the elicitation of Th1 immune response as indicated by increased levels of IFN-γ, and low levels of Th2 cytokines (IL-4 and IL-10) in serum as well as in culture supernatant of lymphocytes from treated mice. Lymphoproliferative response, IFN-γ producing CD4+ and CD8+ T lymphocytes and nitrite levels were significantly enhanced upon antigen recall in vitro. The co-expression of CD80 and CD86 on macrophages was significantly augmented. CD8+ T cells exhibited CD62Llow and CD44hi phenotype, signifying induction of immunological memory in AAL and AAS treated groups. Serum enzyme markers were in the normal range indicating inertness against nephro- and hepato-toxicity. Our results establish the two-prong antileishmanial efficacy of AAL and AAS for cure against L. donovani that is dependent on both the direct leishmanicidal action as well as switching-on of Th1-biased protective cell-mediated immunity with generation of memory. AAL and AAS could represent adjunct therapies for the treatment of leishmaniasis, either alone or in combination with other

  20. Effect of drying temperature on essential oil content and composition of sweet wormwood (Artemisia annua) growing wild in Iran.

    PubMed

    Khangholil, Shahpour; Rezaeinodehi, Ayatollah

    2008-03-15

    Studies were conducted to show the effect of different temperatures in the drying process on the amount and quality of essential oils of sweet wormwood (Artemisia annua L.). The sweet wormwood aerial parts were harvested in full blooming time from an area around the Siahkal city in north of Iran in September 2005. In order to complete drying, the aerial parts were placed at shade (room temperature) and in oven at 35, 45, 55 and 65 degrees C temperatures. The aerial parts essential oil was extracted by hydrodistillation in a Clevenger apparatus and analyzed by GC/MS. Results showed that higher drying temperatures decreased the essential oil content, from 1.12% (room temperature) 0.88% (35 degrees C), 0.55% (45 degrees C) to 0.50% (55 degrees C) and 0.37% (65 degrees C). Thirty-five components were determined in essential oils, which were mostly monoterpenes. The drying temperatures had a significant effect on the essential oils composition and proportion of the various components, as when the temperature increased, the monoterpenes content gradually decreased and vice versa for sesquiterpenes. The major components were artemisia ketone and 1, 8 cineol for room and 45 degrees C; artemisia ketone, 1, 8 cineol and camphor for 35 and 55 degrees C and beta-caryophyllene and germacrene D for 65 degrees C temperatures.

  1. Pharmacokinetics of artemisinin delivered by oral consumption of Artemisia annua dried leaves in healthy vs. Plasmodium chabaudi-infected mice.

    PubMed

    Weathers, Pamela J; Elfawal, Mostafa A; Towler, Melissa J; Acquaah-Mensah, George K; Rich, Stephen M

    2014-05-14

    The Chinese have used Artemisia annua as a tea infusion to treat fever for >2000 years. The active component is artemisinin. Previously we showed that when compared to mice fed an equal amount of pure artemisinin, a single oral dose of dried leaves of Artemisia annua (pACT) delivered to Plasmodium chabaudi-infected mice reduced parasitemia at least fivefold. Dried leaves also delivered >40 times more artemisinin in the blood with no toxicity. The pharmacokinetics (PK) of artemisinin delivered from dried plant material has not been adequately studied. Healthy and Plasmodium chabaudi-infected mice were oral gavaged with pACT to deliver a 100 mg kg(-1) body weight dose of artemisinin. Concentrations of serum artemisinin and one of its liver metabolites, deoxyartemisinin, were measured over two hours by GCMS. The first order elimination rate constant for artemisinin in pACT-treated healthy mice was estimated to be 0.80 h(-1) with an elimination half-life (T½) of 51.6 min. The first order absorption rate constant was estimated at 1.39 h(-1). Cmax and Tmax were 4.33 mg L(-1) and 60 min, respectively. The area under the curve (AUC) was 299.5 mg min L(-1). In contrast, the AUC for pACT-treated infected mice was significantly greater at 435.6 mg min L(-1). Metabolism of artemisinin to deoxyartemisinin was suppressed in infected mice over the period of observation. Serum levels of artemisinin in the infected mice continued to rise over the 120 min of the study period, and as a result, the T½ was not determined; the Cmax and Tmax were estimated at ≥6.64 mgL(-1) and ≥120 min, respectively. Groups of healthy mice were also fed either artemisinin or artemisinin mixed in mouse chow. When compared at 60 min, artemisinin was undetectable in the serum of mice fed 100 mg AN kg(-1) body weight. When plant material was present either as mouse chow or Artemisia annua pACT, artemisinin levels in the serum rose to 2.44 and 4.32 mg L(-1), respectively, indicating that the presence of

  2. Cellular engineering of Artemisia annua and Artemisia dubia with the rol ABC genes for enhanced production of potent anti-malarial drug artemisinin.

    PubMed

    Kiani, Bushra Hafeez; Suberu, John; Mirza, Bushra

    2016-05-04

    Malaria is causing more than half of a million deaths and 214 million clinical cases annually. Despite tremendous efforts for the control of malaria, the global morbidity and mortality have not been significantly changed in the last 50 years. Artemisinin, extracted from the medicinal plant Artemisia sp. is an effective anti-malarial drug. In 2015, elucidation of the effectiveness of artemisinin as a potent anti-malarial drug was acknowledged with a Nobel prize. Owing to the tight market and low yield of artemisinin, an economical way to increase its production is to increase its content in Artemisia sp. through different biotechnological approaches including genetic transformation. Artemisia annua and Artemisia dubia were transformed with rol ABC genes through Agrobacterium tumefacienes and Agrobacterium rhizogenes methods. The artemisinin content was analysed and compared between transformed and untransformed plants with the help of LC-MS/MS. Expression of key genes [Cytochrome P450 (CYP71AV1), aldehyde dehydrogenase 1 (ALDH1), amorpha-4, 11 diene synthase (ADS)] in the biosynthetic pathway of artemisinin and gene for trichome development and sesquiterpenoid biosynthetic (TFAR1) were measured using Quantitative real time PCR (qRT-PCR). Trichome density was analysed using confocal microscope. Artemisinin content was significantly increased in transformed material of both Artemisia species when compared to un-transformed plants. The artemisinin content within leaves of transformed lines was increased by a factor of nine, indicating that the plant is capable of synthesizing much higher amounts than has been achieved so far through traditional breeding. Expression of all artemisinin biosynthesis genes was significantly increased, although variation between the genes was observed. CYP71AV1 and ALDH1 expression levels were higher than that of ADS. Levels of the TFAR1 expression were also increased in all transgenic lines. Trichome density was also significantly

  3. A Systematic Review of Anti-malarial Properties, Immunosuppressive Properties, Anti-inflammatory Properties, and Anti-cancer Properties of Artemisia Annua

    PubMed Central

    Alesaeidi, Samira; Miraj, Sepide

    2016-01-01

    Artemisia annua belongs to the asteraceae family, indigenous to the mild climate of Asia. The aim of this study was to overview its anti-malarial properties, immunosuppressive properties, anti-inflammatory properties and anti-cancer properties. This systematic review was carried out by searching studies in PubMed, Medline, Web of Science, and IranMedex databases. The initial search strategy identified approximately ninety eight references. In this study, forty six studies were accepted for further screening and met all of our inclusion. The search terms were “Artemisia annua”, “therapeutic properties”, “and pharmacological effects”. Artemisia annua is commonly used for its anti-malarial, immunosuppressive anti-inflammatory properties. Artemisia annua contributes to the treatment of various diseases such as diabetes, heart diseases, arthritis and eczema and possesses various effects such as antibacterial, antioxidant, anticoccidial, and antiviral effects. Furthermore, it was said to be good for cancer treatment. In this study, anti-malarial, immunosuppressive, anti-inflammatory properties of this plant are presented using published articles in scientific sites. PMID:27957318

  4. Water deficit-induced oxidative stress affects artemisinin content and expression of proline metabolic genes in Artemisia annua L.

    PubMed

    Soni, Priyanka; Abdin, Malik Z

    2017-03-01

    Water stress is one of the most critical abiotic stresses that restricts growth, development, and alters physiological and biochemical mechanisms of plant. The effects of long-term water shortage-induced oxidative stress on morphophysiological parameters, proline metabolic genes, and artemisinin content were studied in Artemisia annua L. under greenhouse conditions. Plant growth, biomass accumulation, relative water content, and chlorophyll content were reduced under drought. Leaf water potential ranged from -0.3248 MPa to -1.22 MPa in stress conditions. Increased levels of proline accumulation, protein concentration, and lipid peroxidation were detected in water-stressed plants. Stage-dependent increases in activity of antioxidants including superoxide dismutase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase were observed. The expression of proline biosynthetic genes including pyrroline-5-carboxylase synthase1, 1-pyrroline-5-carboxylase synthase2, and 1-pyrroline-5-carboxylase reductase was induced, while the ornithine aminotransferase transcript showed a variable response and the expression of proline catabolic genes including proline dehydrogenase1, proline dehydrogenase1, and proline 5-carboxylate dehydrogenase was reduced by water stress. Our results indicate that the glutamine pathway is predominant under drought stress in A. annua and a reduction of catabolic gene expression is adopted as a defense strategy in adverse conditions. Higher expression of biosynthetic genes and lower expression of catabolic genes at the preflowering stage confirmed the important role of proline in flower development. Artemisinin content decreased owing to water stress, but the slightly higher amounts were detected in leaves of severely stressed plants compared with moderately stressed plants. The artemisinin content of A. annua might be regulated by controlling irrigation regimes.

  5. Simulated Digestion of Dried Leaves of Artemisia annua Consumed as a Treatment (pACT) for Malaria

    PubMed Central

    Weathers, Pamela J.; Jordan, Nikole; Lasin, Praphapan; Towler, Melissa J.

    2014-01-01

    Ethnopharmacological Relevance Artemisinin (AN) is produced by Artemisia annua, a medicinal herb long used as a tea infusion in traditional Chinese medicine to treat fever; it is also the key ingredient in current artemisinin-based combination therapies (ACTs) effective in treating malaria. Recently we showed that dried leaves from the whole plant A. annua that produces artemisinin and contains artemisinin-synergistic flavonoids seems to be more effective and less costly than ACT oral malaria therapy; however little is known about how digestion affects release of artemisinin and flavonoids from dried leaves. Material and Methods In the current study we used a simulated digestion system to determine how artemisinin and flavonoids are released prior to absorption into the bloodstream. Various delivery methods and staple foods were combined with dried leaves for digestion in order to investigate their impact on the bioavailability of artemisinin and flavonoids. Digestate was recovered at the end of the oral, gastric, and intestinal stages, separated into solid and liquid fractions, and extracted for measurement of artemisinin and total flavonoids. Results Compared to unencapsulated digested dried leaves, addition of sucrose, various cooking oils, and rice did not reduce the amount of artemisinin released in the intestinal liquid fraction, but the amount of released flavonoids nearly doubled. When dried leaves were encapsulated into either hydroxymethylcellulose or gelatin capsules, there was >50% decrease in released artemisinin but no change in released flavonoids. In the presence of millet or corn meal, the amount of released artemisinin declined, but there was no change in released flavonoids. Use of a mutant A. annua lacking artemisinin showed that the plant matrix is critical in determining how artemisinin is affected during the digestion process. Conclusions This study provides evidence showing how both artemisinin and flavonoids are affected by digestion and

  6. Changes in key constituents of clonally propagated Artemisia annua L. during preparation of compressed leaf tablets for possible therapeutic use

    PubMed Central

    Weathers, Pamela J.; Towler, Melissa J.

    2014-01-01

    Artemisia annua L., long used as a tea infusion in traditional Chinese medicine, produces artemisinin. Although artemisinin is currently used as artemisinin-based combination therapy (ACT) against malaria, oral consumption of dried leaves from the plant showed efficacy and will be less costly than ACT. Many compounds in the plant have some antimalarial activity. Unknown, however, is how these plant components change as leaves are processed into tablets for oral consumption. Here we compared extracts from fresh and dried leaf biomass with compressed leaf tablets of A. annua. Using GC-MS, nineteen endogenous compounds, including artemisinin and several of its pathway metabolites, nine flavonoids, three monoterpenes, a coumarin, and two phenolic acids, were identified and quantified from solvent extracts to determine how levels of these compounds changed during processing. Results showed that compared to dried leaves, artemisinin, arteannuin B, artemisinic acid, chlorogenic acid, scopoletin, chrysoplenetin, and quercetin increased or remained stable with powdering and compression into tablets. Dihydroartemisinic acid, monoterpenes, and chrysoplenol-D decreased with tablet formation. Five target compounds were not detectable in any of the extracts of this cultivar. In contrast to the individually measured aglycone flavonoids, using the AlCl3 method, total flavonoids increased nearly fivefold during the tablet formation. To our knowledge this is the first study documenting changes that occurred in processing dried leaves of A. annua into tablets. These results will improve our understanding of the potential use of not only this medicinal herb, but also others to afford better quality control of intact plant material for therapeutic use. PMID:25228784

  7. Polyphenols from Artemisia annua L Inhibit Adhesion and EMT of Highly Metastatic Breast Cancer Cells MDA-MB-231.

    PubMed

    Ko, Young Shin; Lee, Won Sup; Panchanathan, Radha; Joo, Young Nak; Choi, Yung Hyun; Kim, Gon Sup; Jung, Jin-Myung; Ryu, Chung Ho; Shin, Sung Chul; Kim, Hye Jung

    2016-07-01

    Recent evidence suggests that polyphenolic compounds from plants have anti-invasion and anti-metastasis capabilities. The Korean annual weed, Artemisia annua L., has been used as a folk medicine for treatment of various diseases. Here, we isolated and characterized polyphenols from Korean A. annua L (pKAL). We investigated anti-metastatic effects of pKAL on the highly metastatic MDA-MB-231 breast cancer cells especially focusing on cancer cell adhesion to the endothelial cell and epithelial-mesenchymal transition (EMT). Firstly, pKAL inhibited cell viability of MDA-MB-231 cells in a dose-dependent manner, but not that of human umbilical vein endothelial cells (ECs). Polyphenols from Korean A. annua L inhibited the adhesion of MDA-MB-231 cells to ECs through reducing vascular cell adhesion molecule-1 expression of MDA-MB-231 and ECs, but not intracellular adhesion molecule-1 at the concentrations where pKAL did not influence the cell viability of either MDA-MB-231 cells nor EC. Further, pKAL inhibited tumor necrosis factor-activated MDA-MB-231 breast cancer cell invasion through inhibition of matrix metalloproteinase-2 and matrix metalloproteinase-9 and EMT. Moreover, pKAL inhibited phosphorylation of Akt, but not that of protein kinase C. These results suggest that pKAL may serve as a therapeutic agent against cancer metastasis at least in part by inhibiting the cancer cell adhesion to ECs through suppression of vascular cell adhesion molecule-1 and invasion through suppression of EMT. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Molecular cloning, characterization, and promoter analysis of the isochorismate synthase (AaICS1) gene from Artemisia annua *

    PubMed Central

    Wang, Lu-yao; Zhang, Ying; Fu, Xue-qing; Zhang, Ting-ting; Ma, Jia-wei; Zhang, Li-da; Qian, Hong-mei; Tang, Ke-xuan; Li, Shan; Zhao, Jing-ya

    2017-01-01

    Isochorismate synthase (ICS) is a crucial enzyme in the salicylic acid (SA) synthesis pathway. The full-length complementary DNA (cDNA) sequence of the ICS gene was isolated from Artemisia annua L. The gene, named AaICS1, contained a 1710-bp open reading frame, which encoded a protein with 570 amino acids. Bioinformatics and comparative study revealed that the polypeptide protein of AaICS1 had high homology with ICSs from other plant species. Southern blot analysis suggested that AaICS1 might be a single-copy gene. Analysis of the 1470-bp promoter of AaICS1 identified distinct cis-acting regulatory elements, including TC-rich repeats, MYB binding site (MBS), and TCA-elements. An analysis of AaICS1 transcript levels in multifarious tissues of A. annua using quantitative real-time polymerase chain reaction (qRT-PCR) showed that old leaves had the highest transcription levels. AaICS1 was up-regulated under wounding, drought, salinity, and SA treatments. This was corroborated by the presence of the predicted cis-acting elements in the promoter region of AaICS1. Overexpressing transgenic plants and RNA interference transgenic lines of AaICS1 were generated and their expression was compared. High-performance liquid chromatography (HPLC) results from leaf tissue of transgenic A. annua showed an increase in artemisinin content in the overexpressing plants. These results confirm that AaICS1 is involved in the isochorismate pathway. PMID:28786241

  9. Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: a novel approach to reduce oxidative browning in plant tissue culture.

    PubMed

    Jones, Andrew Maxwell Phineas; Saxena, Praveen Kumar

    2013-01-01

    Oxidative browning is a common and often severe problem in plant tissue culture systems caused by the accumulation and oxidation of phenolic compounds. The current study was conducted to investigate a novel preventative approach to address this problem by inhibiting the activity of the phenylalanine ammonia lyase enzyme (PAL), thereby reducing the biosynthesis of phenolic compounds. This was accomplished by incorporating 2-aminoindane-2-phosphonic acid (AIP), a competitive PAL inhibitor, into culture media of Artemisia annua as a model system. Addition of AIP into culture media resulted in significant reductions in visual tissue browning, a reduction in total phenol content, as well as absorbance and autoflourescence of tissue extracts. Reduced tissue browning was accompanied with a significant increase in growth on cytokinin based medium. Microscopic observations demonstrated that phenolic compounds accumulated in discrete cells and that these cells were more prevalent in brown tissue. These cells were highly plasmolyzed and often ruptured during examination, demonstrating a mechanism in which phenolics are released into media in this system. These data indicate that inhibiting phenylpropanoid biosynthesis with AIP is an effective approach to reduce tissue browning in A. annua. Additional experiments with Ulmus americana and Acer saccharum indicate this approach is effective in many species and it could have a wide application in systems where oxidative browning restricts the development of biotechnologies.

  10. Biochemical and haematological evaluation of repeated dose exposure of male Wistar rats to an ethanolic extract of Artemisia annua.

    PubMed

    Eteng, Mbeh U; Abolaji, Amos O; Ebong, Patrick E; Brisibe, Ebiamadon Andi; Dar, Ahsana; Kabir, Nurul; Iqbal Choudhary, M

    2013-04-01

    Artemisia annua is widely used for the treatment of malaria and other disorders. In a previous study, the artemisinin concentration in the dry leaves of A. annua grown under humid tropical conditions was determined to be 1.098% using reversed phase high performance liquid chromatography. In the current study, biochemical and haematological evaluations of ethanolic leaf extracts derived from such plants (EAA) were carried out in 20 male Wistar rats. Rats were divided into four study groups of saline-treated (control) and test groups exposed orally to graded doses of EAA for 28 days. The results showed that the liver function and haematological indices, and testosterone levels were not adversely affected. High density lipoprotein -cholesterol was reduced at 100 mg/kg of EAA, atherogenic index as well as low density lipoprotein -cholesterol was raised, and glucose concentration was reduced significantly at the 100 and 200 mg/kg of EAA (p < 0.05). In addition to serving as a possible antidiabetic agent, EAA may not predispose users to hepatotoxicity, haematotoxicity and testicular toxicity. However, due to the possible risk of atherosclerosis, we advise that the plant extract should be taken with caution in people with atherosclerotic condition. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Inhibition of Phenylpropanoid Biosynthesis in Artemisia annua L.: A Novel Approach to Reduce Oxidative Browning in Plant Tissue Culture

    PubMed Central

    Jones, Andrew Maxwell Phineas; Saxena, Praveen Kumar

    2013-01-01

    Oxidative browning is a common and often severe problem in plant tissue culture systems caused by the accumulation and oxidation of phenolic compounds. The current study was conducted to investigate a novel preventative approach to address this problem by inhibiting the activity of the phenylalanine ammonia lyase enzyme (PAL), thereby reducing the biosynthesis of phenolic compounds. This was accomplished by incorporating 2-aminoindane-2-phosphonic acid (AIP), a competitive PAL inhibitor, into culture media of Artemisia annua as a model system. Addition of AIP into culture media resulted in significant reductions in visual tissue browning, a reduction in total phenol content, as well as absorbance and autoflourescence of tissue extracts. Reduced tissue browning was accompanied with a significant increase in growth on cytokinin based medium. Microscopic observations demonstrated that phenolic compounds accumulated in discrete cells and that these cells were more prevalent in brown tissue. These cells were highly plasmolyzed and often ruptured during examination, demonstrating a mechanism in which phenolics are released into media in this system. These data indicate that inhibiting phenylpropanoid biosynthesis with AIP is an effective approach to reduce tissue browning in A. annua. Additional experiments with Ulmus americana and Acer saccharum indicate this approach is effective in many species and it could have a wide application in systems where oxidative browning restricts the development of biotechnologies. PMID:24116165

  12. Variations in key artemisinic and other metabolites throughout plant development in Artemisia annua L. for potential therapeutic use.

    PubMed

    Towler, Melissa J; Weathers, Pamela J

    2015-05-01

    Dried leaves of Artemisia annua show promise as an inexpensive and sustainable antimalarial therapeutic, especially for use in developing countries. Along with the potent terpene, artemisinin, many other small molecules produced by the plant seem to aid in the therapeutic response. However, little is known about the ontogenic and phenological production of artemisinin in the plant, and its plethora of other important secondary metabolites. From a consistently high artemisinin-producing A. annua clone (SAM) we extracted and analyzed by GC/MS 22 different metabolites including terpenes, flavonoids, a coumarin, and two phenolic acids as they varied during leaf development and growth of the plant from the vegetative stage through the reproductive, full flower stage. As leaves developed, the maximum amount of most metabolites was in the shoot apical meristem. Artemisinin, on the other hand, maximized once leaves matured. Leaf and apical tissues (e.g. buds, flowers) varied in their metabolite content with growth stage with maximum artemisinin and other important secondary metabolites determined to be at floral bud emergence. These results indicated that plants at the floral bud stage have the highest level of artemisinin and other therapeutic compounds for the treatment of malaria.

  13. Enhanced Production of Bioactive Isoprenoid Compounds from Cell Suspension Cultures of Artemisia annua L. Using β-Cyclodextrins

    PubMed Central

    Rizzello, Francesca; De Paolis, Angelo; Durante, Miriana; Blando, Federica; Mita, Giovanni; Caretto, Sofia

    2014-01-01

    Plant cell cultures as valuable tools for the production of specific metabolites can be greatly improved by the application of elicitors including cyclodextrins (CDs) for enhancing the yields of the desired plant compounds. Here the effects of 2,6-dimethyl-β-cyclodextrins (DIMEB) on the production of carotenoids and quinones from Artemisia annua L. cell suspension cultures were investigated. The addition of 50 mM DIMEB induced an early increase of intracellular carotenoid and quinone contents, which could be observed to a higher extent for lutein (10-fold), Q9 (3-fold) and Q10 (2.5-fold). Real Time PCR analysis revealed that the expression of 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) gene in DIMEB treated cell cultures after three days was 2.5-fold higher than in untreated samples, thus suggesting that the DIMEB induced increase of carotenoids and quinones could be due to the induction of the plastidial isoprenoid biosynthetic route. In addition, the DIMEB treatment induced an enhanced release of carotenoids and quinones into the culture medium of A. annua cell suspension cultures possibly due to the ability of CDs to form inclusion complexes with hydrophobic molecules. PMID:25338048

  14. Variations in key artemisinic and other metabolites throughout plant development in Artemisia annua L. for potential therapeutic use

    PubMed Central

    Towler, Melissa J.; Weathers, Pamela J.

    2015-01-01

    Dried leaves of Artemisia annua show promise as an inexpensive and sustainable antimalarial therapeutic, especially for use in developing countries. Along with the potent terpene, artemisinin, many other small molecules produced by the plant seem to aid in the therapeutic response. However, little is known about the ontogenic and phenological production of artemisinin in the plant, and its plethora of other important secondary metabolites. From a consistently high artemisinin-producing A. annua clone (SAM) we extracted and analyzed by GC/MS 22 different metabolites including terpenes, flavonoids, a coumarin, and two phenolic acids as they varied during leaf development and growth of the plant from the vegetative stage through the reproductive, full flower stage. As leaves developed, the maximum amount of most metabolites was in the shoot apical meristem. Artemisinin, on the other hand, maximized once leaves matured. Leaf and apical tissues (e.g. buds, flowers) varied in their metabolite content with growth stage with maximum artemisinin and other important secondary metabolites determined to be at floral bud emergence. These results indicated that plants at the floral bud stage have the highest level of artemisinin and other therapeutic compounds for the treatment of malaria. PMID:25729214

  15. Enhanced production of artemisinin by hairy root cultivation of Artemisia annua in a modified stirred tank reactor.

    PubMed

    Patra, Nivedita; Srivastava, Ashok K

    2014-11-01

    Artemisinin is an important drug commonly used in the treatment of malaria as a combination therapy. It is primarily produced by a plant Artemisia annua, however, its supply from plant is significantly lower than its huge demand and therefore alternative in vitro production routes are sought. Hairy root cultivation could be one such alternative production protocol. Agrobacterium rhizogenes was used to induce hairy roots of A. annua. Statistical optimization of media was thereafter attempted to maximize the biomass/artemisinin production. The growth and product formation kinetics and the significant role of O2 in hairy root propagation were established in optimized media. Mass cultivation of hairy roots was, thereafter, attempted in a modified 3-L Stirred Tank Bioreactor (Applikon Dependable Instruments, The Netherlands) using optimized culture conditions. The reactor was suitably modified to obtain profuse growth of hairy roots by segregating and protecting the growing roots from the agitator rotation in the reactor using a perforated Teflon disk. It was possible to produce 18 g biomass L(-1) (on dry weight basis) and 4.63 mg L(-1) of artemisinin in 28 days, which increased to 10.33 mg L(-1) by the addition of elicitor methyl jasmonate.

  16. Transcriptome Analysis of Genes Associated with the Artemisinin Biosynthesis by Jasmonic Acid Treatment under the Light in Artemisia annua.

    PubMed

    Hao, Xiaolong; Zhong, Yijun; Fu, Xueqing; Lv, Zongyou; Shen, Qian; Yan, Tingxiang; Shi, Pu; Ma, Yanan; Chen, Minghui; Lv, Xueying; Wu, Zhangkuanyu; Zhao, Jingya; Sun, Xiaofen; Li, Ling; Tang, Kexuan

    2017-01-01

    Artemisinin is a sesquiterpene lactone endoperoxide extracted from a traditional Chinese medicinal plant Artemisia annua. Artemisinin-based combination therapies (ACTs) are recommended as the best treatment of malaria by the World Health Organization (WHO). Both the phytohormone jasmonic acid (JA) and light promote artemisinin biosynthesis in A. annua. Interestingly, we found that the increase of artemisinin biosynthesis by JA was dependent on light. However, the relationship between the two signal pathways mediated by JA and light remains unclear. Here, we collected the A. annua seedlings of 24 h continuous light (Light), 24 h dark treatment (Dark), 4 h MeJA treatment under the continuous light conditions (Light-MeJA-4h) and 4 h MeJA treatment under the dark conditions (Dark-MeJA-4h) and performed the transcriptome sequencing using Illumina HiSeq 4000 System. A total of 266.7 million clean data were produced and assembled into 185,653 unigenes, with an average length of 537 bp. Among them, 59,490 unigenes were annotated and classified based on the public information. Differential expression analyses were performed between Light and Dark, Light and Light-MeJA-4h, Dark and Dark-MeJA-4h, Light-MeJA-4h, and Dark-MeJA-4h, respectively. Furthermore, transcription factor (TF) analysis revealed that 1588 TFs were identified and divided into 55 TF families, with 284 TFs down-regulated in the Dark relative to Light and 96 TFs up-regulated in the Light-MeJA-4h relative to Light. 8 TFs were selected as candidates for regulating the artemisinin biosynthesis and one of them was validated to be involved in artemisinin transcriptional regulation by Dual-Luciferase (Dual-LUC) assay. The transcriptome data shown in our study offered a comprehensive transcriptional expression pattern influenced by the MeJA and light in A. annua seedling, which will serve as a valuable resource for further studies on transcriptional regulation mechanisms underlying artemisinin biosynthesis.

  17. Transcriptome Analysis of Genes Associated with the Artemisinin Biosynthesis by Jasmonic Acid Treatment under the Light in Artemisia annua

    PubMed Central

    Hao, Xiaolong; Zhong, Yijun; Fu, Xueqing; Lv, Zongyou; Shen, Qian; Yan, Tingxiang; Shi, Pu; Ma, Yanan; Chen, Minghui; Lv, Xueying; Wu, Zhangkuanyu; Zhao, Jingya; Sun, Xiaofen; Li, Ling; Tang, Kexuan

    2017-01-01

    Artemisinin is a sesquiterpene lactone endoperoxide extracted from a traditional Chinese medicinal plant Artemisia annua. Artemisinin-based combination therapies (ACTs) are recommended as the best treatment of malaria by the World Health Organization (WHO). Both the phytohormone jasmonic acid (JA) and light promote artemisinin biosynthesis in A. annua. Interestingly, we found that the increase of artemisinin biosynthesis by JA was dependent on light. However, the relationship between the two signal pathways mediated by JA and light remains unclear. Here, we collected the A. annua seedlings of 24 h continuous light (Light), 24 h dark treatment (Dark), 4 h MeJA treatment under the continuous light conditions (Light-MeJA-4h) and 4 h MeJA treatment under the dark conditions (Dark-MeJA-4h) and performed the transcriptome sequencing using Illumina HiSeq 4000 System. A total of 266.7 million clean data were produced and assembled into 185,653 unigenes, with an average length of 537 bp. Among them, 59,490 unigenes were annotated and classified based on the public information. Differential expression analyses were performed between Light and Dark, Light and Light-MeJA-4h, Dark and Dark-MeJA-4h, Light-MeJA-4h, and Dark-MeJA-4h, respectively. Furthermore, transcription factor (TF) analysis revealed that 1588 TFs were identified and divided into 55 TF families, with 284 TFs down-regulated in the Dark relative to Light and 96 TFs up-regulated in the Light-MeJA-4h relative to Light. 8 TFs were selected as candidates for regulating the artemisinin biosynthesis and one of them was validated to be involved in artemisinin transcriptional regulation by Dual-Luciferase (Dual-LUC) assay. The transcriptome data shown in our study offered a comprehensive transcriptional expression pattern influenced by the MeJA and light in A. annua seedling, which will serve as a valuable resource for further studies on transcriptional regulation mechanisms underlying artemisinin biosynthesis. PMID

  18. Nutritional characterization and antioxidant capacity of different tissues of Artemisia Annua L.

    USDA-ARS?s Scientific Manuscript database

    Evaluation of different tissues of A. annua for their nutritional contents and antioxidant potential demonstrated that the leaves and inflorescence had the highest percentage of protein, crude fat and in vitro digestible fractions but the lowest levels of detergent fibers. These tissues also had th...

  19. In vitro susceptibility of Plasmodium falciparum Welch field isolates to infusions prepared from Artemisia annua L. cultivated in the Brazilian Amazon.

    PubMed

    Silva, Luiz Francisco Rocha e; Magalhães, Pedro Melillo de; Costa, Mônica Regina Farias; Alecrim, Maria das Graças Costa; Chaves, Francisco Célio Maia; Hidalgo, Ari de Freitas; Pohlit, Adrian Martin; Vieira, Pedro Paulo Ribeiro

    2012-11-01

    Artemisinin is the active antimalarial compound obtained from the leaves of Artemisia annua L. Artemisinin, and its semi-synthetic derivatives, are the main drugs used to treat multi-drug-resistant Plasmodium falciparum (one of the human malaria parasite species). The in vitro susceptibility of P. falciparum K1 and 3d7 strains and field isolates from the state of Amazonas, Brazil, to A. annua infusions (5 g dry leaves in 1 L of boiling water) and the drug standards chloroquine, quinine and artemisinin were evaluated. The A. annua used was cultivated in three Amazon ecosystems (várzea, terra preta de índio and terra firme) and in the city of Paulínia, state of São Paulo, Brazil. Artemisinin levels in the A. annua leaves used were 0.90-1.13% (m/m). The concentration of artemisinin in the infusions was 40-46 mg/L. Field P. falciparum isolates were resistant to chloroquine and sensitive to quinine and artemisinin. The average 50% inhibition concentration values for A. annua infusions against field isolates were 0.11-0.14 μL/mL (these infusions exhibited artemisinin concentrations of 4.7-5.6 ng/mL) and were active in vitro against P. falciparum due to their artemisinin concentration. No synergistic effect was observed for artemisinin in the infusions.

  20. Overexpression of artemisinic aldehyde Δ11 (13) reductase gene-enhanced artemisinin and its relative metabolite biosynthesis in transgenic Artemisia annua L.

    PubMed

    Yuan, Yuan; Liu, Wanhong; Zhang, Qiaozhuo; Xiang, Lien; Liu, Xiaoqiang; Chen, Min; Lin, Zhi; Wang, Qiang; Liao, Zhihua

    2015-01-01

    Artemisinic aldehyde Δ11 (13) reductase (DBR2) is the checkpoint enzyme catalyzing artemisinic aldehyde to form dihydroartemisinic aldehyde directly involved in artemisinin biosynthetic pathway. In the present study, DBR2 was employed to engineer the biosynthetic pathway of artemisinin in transgenic plants of Artemisia annua L. Seven independent transgenic plants of A. annua with DBR2 overexpression driven by the cauliflower mosaic virus 35S promoter were obtained by Agrobacterium-mediated genetic transformation and confirmed by genomic PCR. The results of real-time qPCR analysis showed that the expression levels of DBR2 gene in all the seven transgenic lines were significantly higher than in nontransgenic control. The high-performance liquid chromatography analysis of artemisinin and its relative metabolites demonstrated that the contents of artemisinin and its direct precursor dihydroartemisinic acid were remarkably increased in the transgenic plants of A. annua with DBR2 overexpression. Interestingly, it was also found that the contents of arteannuin B and its direct precursor artemisinic acid in the branch pathway competing against artemisinin biosynthesis were also improved in DBR2-overexpressed A. annua plants. The transgenic results in the present study indicated that DBR2 is a useful structural gene in engineering the artemisinin biosynthetic pathway to develop genetically modified A. annua with the higher yield of artemisinin. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  1. DMSO triggers the generation of ROS leading to an increase in artemisinin and dihydroartemisinic acid in Artemisia annua shoot cultures

    PubMed Central

    Mannan, Abdul; Liu, Chunzhao; Arsenault, Patrick R.; Towler, Melissa J.; Vail, Dan R.; Lorence, Argelia

    2010-01-01

    The antimalarial sesquiterpene, artemisinin, is in short supply; demand is not being met, and the role of artemisinin in the plant is not well established. Prior work showed that addition of dimethyl sulfoxide (DMSO) to seedlings increased artemisinin in their shoots and this study further investigated that serendipitous observation. When in vitro-cultured Artemisia annua rooted shoots were fed different amounts of DMSO (0–2.0% v/v), artemisinin levels doubled and showed biphasic optima at 0.25 and 2.0% DMSO. Both artemisinin and its precursor, dihydroartemisinic acid, increased with the former continuing 7 days after DMSO treatment. There was no stimulation of artemisinin production in DMSO-treated unrooted shoots. The first gene in the artemisinin biosynthetic pathway, amorphadiene synthase, showed no increase in transcript level in response to DMSO compared to controls. In contrast, the second gene in the pathway, CYP71AV1, did respond to DMSO but at a level of transcripts inverse to artemisinin levels. When rooted shoots were stained for the reactive oxygen species (ROS), H2O2, ROS increased with increasing DMSO concentration; unrooted shoots produced no ROS in response to DMSO. Both the increases in DMSO-induced ROS response and corresponding artemisinin levels were inhibited by addition of vitamin C. Together these data show that at least in response to DMSO, artemisinin production and ROS increase and that when ROS is reduced, so also is artemisinin suggesting that ROS may play a role in artemisinin production in A. annua. PMID:20084379

  2. Cloning and functional characterization of a beta-pinene synthase from Artemisia annua that shows a circadian pattern of expression.

    PubMed

    Lu, Shan; Xu, Ran; Jia, Jun-Wei; Pang, Jihai; Matsuda, Seiichi P T; Chen, Xiao-Ya

    2002-09-01

    Artemisia annua plants produce a broad range of volatile compounds, including monoterpenes, which contribute to the characteristic fragrance of this medicinal species. A cDNA clone, QH6, contained an open reading frame encoding a 582-amino acid protein that showed high sequence identity to plant monoterpene synthases. The prokaryotically expressed QH6 fusion protein converted geranyl diphosphate to (-)-beta-pinene and (-)-alpha-pinene in a 94:6 ratio. QH6 was predominantly expressed in juvenile leaves 2 weeks postsprouting. QH6 transcript levels were transiently reduced following mechanical wounding or fungal elicitor treatment, suggesting that this gene is not directly involved in defense reaction induced by either of these treatments. Under a photoperiod of 12 h/12 h (light/dark), the abundance of QH6 transcripts fluctuated in a diurnal pattern that ebbed around 3 h before daybreak (9th h in the dark phase) and peaked after 9 h in light (9th h in the light phase). The contents of (-)-beta-pinene in juvenile leaves and in emitted volatiles also varied in a diurnal rhythm, correlating strongly with mRNA accumulation. When A. annua was entrained by constant light or constant dark conditions, QH6 transcript accumulation continued to fluctuate with circadian rhythms. Under constant light, advanced cycles of fluctuation of QH6 transcript levels were observed, and under constant dark, the cycle was delayed. However, the original diurnal pattern could be regained when the plants were returned to the normal light/dark (12 h/12 h) photoperiod. This is the first report that monoterpene biosynthesis is transcriptionally regulated in a circadian pattern.

  3. Anti-Plasmodial Polyvalent Interactions in Artemisia annua L. Aqueous Extract – Possible Synergistic and Resistance Mechanisms

    PubMed Central

    Suberu, John O.; Gorka, Alexander P.; Jacobs, Lauren; Roepe, Paul D.; Sullivan, Neil

    2013-01-01

    Artemisia annua hot water infusion (tea) has been used in in vitro experiments against P. falciparum malaria parasites to test potency relative to equivalent pure artemisinin. High performance liquid chromatography (HPLC) and mass spectrometric analyses were employed to determine the metabolite profile of tea including the concentrations of artemisinin (47.5±0.8 mg L-1), dihydroartemisinic acid (70.0±0.3 mg L-1), arteannuin B (1.3±0.0 mg L-1), isovitexin (105.0±7.2 mg L-1) and a range of polyphenolic acids. The tea extract, purified compounds from the extract, and the combination of artemisinin with the purified compounds were tested against chloroquine sensitive and chloroquine resistant strains of P. falciparum using the DNA-intercalative SYBR Green I assay. The results of these in vitro tests and of isobologram analyses of combination effects showed mild to strong antagonistic interactions between artemisinin and the compounds (9-epi-artemisinin and artemisitene) extracted from A. annua with significant (IC50 <1 μM) anti-plasmodial activities for the combination range evaluated. Mono-caffeoylquinic acids, tri-caffeoylquinic acid, artemisinic acid and arteannuin B showed additive interaction while rosmarinic acid showed synergistic interaction with artemisinin in the chloroquine sensitive strain at a combination ratio of 1:3 (artemisinin to purified compound). In the chloroquine resistant parasite, using the same ratio, these compounds strongly antagonised artemisinin anti-plasmodial activity with the exception of arteannuin B, which was synergistic. This result would suggest a mechanism targeting parasite resistance defenses for arteannuin B’s potentiation of artemisinin. PMID:24244716

  4. Arsenic, chromium and NaCl induced artemisinin biosynthesis in Artemisia annua L.: a valuable antimalarial plant.

    PubMed

    Paul, Shilpi; Shakya, Kanika

    2013-12-01

    Effect of As(III), Cr(VI) and NaCl on plant growth, antioxidant enzymes, SOD, TBRAS, protein, cDNA amplification of key genes of artemisinin pathway and artemisinin biosynthesis have been investigated to explore the actual changes in total herb and artemisinin yield in a crop cycle of Artemisia annua. Enhanced TBARS and SOD activity (4 U mg⁻¹), decreased catalase activity and total cholorophyll content were observed under metal(loid) and NaCl stress. Accumulation of As (III; µg mg⁻¹ DW) was higher in roots (10.75±0.00) than shoot (0.43±0.00) at 10 µg ml⁻¹. While Cr(VI; µg ml⁻¹ DW) accumulated more in shoots (37±9.6, 41.1±7.2 and 52.71±19.6). cDNA template of these treated plants along with control were amplified with HMGR, ADS and CYP71AV1 genes (artemisinin biosynthetic pathway genes); showed very low expression with Cr(VI) while As(III) (5 and 7.5 µg ml⁻¹) showed higher expression than control. The results obtained from this study suggest that A. annua can grow well with favoring artemisinin biosynthesis with treatment of As(III) 5, 7.5 µg ml⁻¹ and NaCl, while 10 µg ml⁻¹ As(III) and all doses of Cr(VI) affect artemisinin synthesis. Finally some evidence also suggests that As(III), Cr(VI) and NaCl induces stress affects on total herb yield of plant.

  5. Overexpression of Allene Oxide Cyclase Improves the Biosynthesis of Artemisinin in Artemisia annua L.

    PubMed Central

    Lu, Xu; Zhang, Fangyuan; Shen, Qian; Jiang, Weimin; Pan, Qifang; Lv, Zongyou; Yan, Tingxiang; Fu, Xueqing; Wang, Yuliang; Qian, Hongmei; Tang, Kexuan

    2014-01-01

    Jasmonates (JAs) are important signaling molecules in plants and play crucial roles in stress responses, secondary metabolites' regulation, plant growth and development. In this study, the promoter of AaAOC, which was the key gene of jasmonate biosynthetic pathway, had been cloned. GUS staining showed that AaAOC was expressed ubiquitiously in A. annua. AaAOC gene was overexpressed under control of 35S promoter. RT-Q-PCR showed that the expression levels of AaAOC were increased from 1.6- to 5.2-fold in AaAOC-overexpression transgenic A. annua. The results of GC-MS showed that the content of endogenous jasmonic acid (JA) was 2- to 4.7-fold of the control level in AaAOC-overexpression plants. HPLC showed that the contents of artemisinin, dihydroartemisinic acid and artemisinic acid were increased significantly in AaAOC-overexpression plants. RT-Q-PCR showed that the expression levels of FPS (farnesyl diphosphate synthase), CYP71AV1 (cytochrome P450 dependent hydroxylase) and DBR2 (double bond reductase 2) were increased significantly in AaAOC-overexpression plants. All data demonstrated that increased endogenous JA could significantly promote the biosynthesis of artemisinin in AaAOC-overexpression transgenic A.annua. PMID:24642483

  6. Overexpression of allene oxide cyclase improves the biosynthesis of artemisinin in Artemisia annua L.

    PubMed

    Lu, Xu; Zhang, Fangyuan; Shen, Qian; Jiang, Weimin; Pan, Qifang; Lv, Zongyou; Yan, Tingxiang; Fu, Xueqing; Wang, Yuliang; Qian, Hongmei; Tang, Kexuan

    2014-01-01

    Jasmonates (JAs) are important signaling molecules in plants and play crucial roles in stress responses, secondary metabolites' regulation, plant growth and development. In this study, the promoter of AaAOC, which was the key gene of jasmonate biosynthetic pathway, had been cloned. GUS staining showed that AaAOC was expressed ubiquitiously in A. annua. AaAOC gene was overexpressed under control of 35S promoter. RT-Q-PCR showed that the expression levels of AaAOC were increased from 1.6- to 5.2-fold in AaAOC-overexpression transgenic A. annua. The results of GC-MS showed that the content of endogenous jasmonic acid (JA) was 2- to 4.7-fold of the control level in AaAOC-overexpression plants. HPLC showed that the contents of artemisinin, dihydroartemisinic acid and artemisinic acid were increased significantly in AaAOC-overexpression plants. RT-Q-PCR showed that the expression levels of FPS (farnesyl diphosphate synthase), CYP71AV1 (cytochrome P450 dependent hydroxylase) and DBR2 (double bond reductase 2) were increased significantly in AaAOC-overexpression plants. All data demonstrated that increased endogenous JA could significantly promote the biosynthesis of artemisinin in AaAOC-overexpression transgenic A. annua.

  7. In vitro trematocidal effects of crude alcoholic extracts of Artemisia annua, A. absinthium, Asimina triloba, and Fumaria officinalis: trematocidal plant alcoholic extracts.

    PubMed

    Ferreira, Jorge F S; Peaden, Paul; Keiser, Jennifer

    2011-12-01

    Trematode infections negatively affect human and livestock health, and threaten global food safety. The only approved human anthelmintics for trematodiasis are triclabendazole and praziquantel with no alternative drugs in sight. We tested six crude plant extracts against adult Schistosoma mansoni, Fasciola hepatica, and Echinostoma caproni in vitro. Mortality was best achieved by ethanolic extracts of Artemisia annua (sweet Annie), Asimina triloba (paw-paw), and Artemisia absinthium (wormwood) which, at 2 mg/mL, killed S. mansoni and E. caproni in 20 h or less (except for wormwood), F. hepatica between 16 and 23 h (sweet Annie), or 40 h (paw-paw). Some extracts were active at 0.2 mg/mL and 20 μg/mL, although more time was required to kill trematodes. However, aqueous A. annua and methanol extracts of Fumaria officinalis had no activity. Chromatographic analysis of the three best extracts established that A. annua and A. triloba extracts contained bioactive artemisinin and acetogenins (asimicin and bullatacin), respectively. The anthelmintic activity of our extracts at such low doses indicates that their anthelmintic activity deserves further testing as natural alternative controls for parasites of both animals and humans. Our results also support recent evidence that synergistic effects of multiple bioactive compounds present in crude plant extracts is worth exploring.

  8. Biosynthesis of silver nanoparticles using Artemisia annua callus for inhibiting stem-end bacteria in cut carnation flowers.

    PubMed

    Xia, Qian Hua; Zheng, Li Ping; Zhao, Pei Fei; Wang, Jian Wen

    2017-03-01

    A biological method for synthesising silver nanoparticles (AgNPs) was developed using the callus extracts from Artemisia annua L. under sunlight at 25,000 lx. The AgNPs were characterised using transmission electron microscopy, atomic force microscope, X-ray diffraction and Fourier transform infrared spectroscopy. The AgNPs were mostly spherical with the size of 2.1 to 45.2 nm (average 10.9 nm). Pulse treatments of AgNPs at 125, 250 and 500 mg/l for 1 h extended vase life of cut carnation (Dianthus caryophyllus cv. Green Land) flowers. Four dominant bacteria strains Arthrobacter arilaitensis, Kocuria sp., Staphylococcus equorum and Microbacterium oxydans were isolated from the stem-ends of cut D. caryophyllus flowers. AgNP pulse inhibited significantly bacterial growth in vase solution and cut stem ends during all of the vase period. The bacteria related blockage in the stem-ends was significantly alleviated by AgNP pulse because of its higher antibacterial efficacy against the dominant bacteria. In addition, ethylene release of cut carnation flowers was inhibited in response to AgNP pulse. This is the first time that the biologically synthesised AgNPs could be applied as a promising preservative agent for cut carnation flowers.

  9. Artemisia annua Leaf Extract Attenuates Hepatic Steatosis and Inflammation in High-Fat Diet-Fed Mice

    PubMed Central

    Kim, Kyung Eun; Ko, Keon-Hee; Heo, Rok Won; Yi, Chin-ok; Shin, Hyun Joo; Kim, Jun Young; Park, Jae-Ho; Nam, Sanghae; Kim, Hwajin

    2016-01-01

    Abstract Artemisia annua L. (AA) is a well-known source of the antimalarial drug artemisinin. AA also has an antibacterial and antioxidant activity. However, the effect of AA extract on hepatic steatosis induced by obesity is unclear. We investigated whether AA extract prevents obesity-induced insulin resistance and hepatic steatosis in high-fat diet (HFD)-fed mice. Mice were randomly divided into groups that received a normal chow diet or HFD with or without AA for 12 weeks. We found that AA extract reduced insulin resistance and hepatic steatosis in HFD-fed mice. Western blot analysis showed that HFD-induced expression of nuclear sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein in the livers was decreased by AA extract. In particular, dietary administration of AA extract decreased hepatic high-mobility group box 1 and cyclooxygenase-2 expression in HFD-fed mice. AA extract also attenuated HFD-induced collagen deposition and fibrosis-related transforming growth factor-β1 and connective tissue growth factor. These data indicate that dietary AA extract has beneficial effects on hepatic steatosis and inflammation in HFD-fed mice. PMID:26741655

  10. Artemisia annua Leaf Extract Attenuates Hepatic Steatosis and Inflammation in High-Fat Diet-Fed Mice.

    PubMed

    Kim, Kyung Eun; Ko, Keon-Hee; Heo, Rok Won; Yi, Chin-ok; Shin, Hyun Joo; Kim, Jun Young; Park, Jae-Ho; Nam, Sanghae; Kim, Hwajin; Roh, Gu Seob

    2016-03-01

    Artemisia annua L. (AA) is a well-known source of the antimalarial drug artemisinin. AA also has an antibacterial and antioxidant activity. However, the effect of AA extract on hepatic steatosis induced by obesity is unclear. We investigated whether AA extract prevents obesity-induced insulin resistance and hepatic steatosis in high-fat diet (HFD)-fed mice. Mice were randomly divided into groups that received a normal chow diet or HFD with or without AA for 12 weeks. We found that AA extract reduced insulin resistance and hepatic steatosis in HFD-fed mice. Western blot analysis showed that HFD-induced expression of nuclear sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein in the livers was decreased by AA extract. In particular, dietary administration of AA extract decreased hepatic high-mobility group box 1 and cyclooxygenase-2 expression in HFD-fed mice. AA extract also attenuated HFD-induced collagen deposition and fibrosis-related transforming growth factor-β1 and connective tissue growth factor. These data indicate that dietary AA extract has beneficial effects on hepatic steatosis and inflammation in HFD-fed mice.

  11. Enhanced Photosynthesis and Carbon Metabolism Favor Arsenic Tolerance in Artemisia annua, a Medicinal Plant as Revealed by Homology-Based Proteomics

    PubMed Central

    Pandey, Sarita; Shrivastava, Alok Kumar; Pandey Rai, Shashi

    2014-01-01

    This paper provides the first proteomic evidence of arsenic (As) tolerance and interactive regulatory network between primary and secondary metabolism in the medicinal plant, Artemisia annua. While chlorophyll fluorescence and photosynthetic rate depicted mild inhibition, there was a significant enhancement in PSI activity, whole chain, ATP, and NADPH contents in 100 μM As treatments compared to the control plants. However, a decrease in the above variables was recorded under 150 μM treatments. Proteomic decoding of the survival strategy of A. annua under As stress using 2-DE followed by MALDI-MS/MS revealed a total of 46 differentially expressed protein spots. In contrast to other plants where As inhibits photosynthesis, A. annua showed appreciable photosynthetic CO2 assimilation and allocation of carbon resources at 100 μM As concentration. While an increased accumulation of ATP synthase, ferredoxin-NADP(H) oxidoreductase, and FeS-rieske proteins supported the operation of cyclic electron transport, mdr ABC transporter protein and pcs gene might be involved in As detoxification. The most interesting observation was an increased accumulation of LEAFY like novel protein conceivably responsible for an early onset of flowering in A. annua under As stress. This study not only affirmed the role of energy metabolism proteins but also identified potential candidates responsible for As tolerance in plants. PMID:24868464

  12. Enhanced Photosynthesis and Carbon Metabolism Favor Arsenic Tolerance in Artemisia annua, a Medicinal Plant as Revealed by Homology-Based Proteomics.

    PubMed

    Rai, Rashmi; Pandey, Sarita; Shrivastava, Alok Kumar; Pandey Rai, Shashi

    2014-01-01

    This paper provides the first proteomic evidence of arsenic (As) tolerance and interactive regulatory network between primary and secondary metabolism in the medicinal plant, Artemisia annua. While chlorophyll fluorescence and photosynthetic rate depicted mild inhibition, there was a significant enhancement in PSI activity, whole chain, ATP, and NADPH contents in 100  μ M As treatments compared to the control plants. However, a decrease in the above variables was recorded under 150  μ M treatments. Proteomic decoding of the survival strategy of A. annua under As stress using 2-DE followed by MALDI-MS/MS revealed a total of 46 differentially expressed protein spots. In contrast to other plants where As inhibits photosynthesis, A. annua showed appreciable photosynthetic CO2 assimilation and allocation of carbon resources at 100  μ M As concentration. While an increased accumulation of ATP synthase, ferredoxin-NADP(H) oxidoreductase, and FeS-rieske proteins supported the operation of cyclic electron transport, mdr ABC transporter protein and pcs gene might be involved in As detoxification. The most interesting observation was an increased accumulation of LEAFY like novel protein conceivably responsible for an early onset of flowering in A. annua under As stress. This study not only affirmed the role of energy metabolism proteins but also identified potential candidates responsible for As tolerance in plants.

  13. Variation in the volatile constituents of Artemisia annua var. CIM-Arogya during plant ontogeny.

    PubMed

    Padalia, Rajendra C; Verma, Ram S; Chauhan, Amit; Chanotiya, Chandan S; Yadav, Anju

    2011-02-01

    The essential oils yield and composition of the aerial parts of A. annua var. CIM-Arogya grown in Uttarakhand, India were analyzed and compared by capillary GC and GC-MS at different stages of development. The analysis led to the identification of 81 constituents forming 91.0%-97.1% of the essential oils compositions. The essential oil content of the aerial parts was found to vary from 0.3% to 0.7% at different stages of growth. A. annua crop harvested at full flowering and seed setting stage gave higher yield of essential oil (0.6%, 0.7%) than that harvested at pre flowering (0.5%), late vegetative (0.4%, 0.5%), mid vegetative (0.4%, 0.4%) and early vegetative stages (0.3%, 0.3%). The essential oils at different stages of growth showed monoterpenoids (38.5%-72.0%) and sesquiterpenoids (22.2%-48.2%) as major grouped constituents. The major constituents identified were camphor (22.8%-42.6%), 1,8-cineole (3.7%-8.4%), linalool (<0.1%-11.9%), beta-caryophyllene (2.0%-9.2%), (E)-beta-farnesene (1.3%-8.5%), germacrene D (0.5%-7.3%) and 1-epi-cubenol (0.7%-5.2%) in essential oil samples collected at different crop stages.

  14. Overexpression of AaWRKY1 Leads to an Enhanced Content of Artemisinin in Artemisia annua

    PubMed Central

    Jiang, Weimin; Fu, Xueqing; Pan, Qifang; Tang, Yueli; Shen, Qian; Lv, Zongyou; Yan, Tingxiang; Shi, Pu; Li, Ling; Zhang, Lida; Wang, Guofeng; Sun, Xiaofen; Tang, Kexuan

    2016-01-01

    Artemisinin is an effective component of drugs against malaria. The regulation of artemisinin biosynthesis is at the forefront of artemisinin research. Previous studies showed that AaWRKY1 can regulate the expression of ADS, which is the first key enzyme in artemisinin biosynthetic pathway. In this study, AaWRKY1 was cloned, and it activated ADSpro and CYPpro in tobacco using dual-LUC assay. To further study the function of AaWRKY1, pCAMBIA2300-AaWRKY1 construct under 35S promoter was generated. Transgenic plants containing AaWRKY1 were obtained, and four independent lines with high expression of AaWRKY1 were analyzed. The expression of ADS and CYP, the key enzymes in artemisinin biosynthetic pathway, was dramatically increased in AaWRKY1-overexpressing A. annua plants. Furthermore, the artemisinin yield increased significantly in AaWRKY1-overexpressing A. annua plants. These results showed that AaWRKY1 increased the content of artemisinin by regulating the expression of both ADS and CYP. It provides a new insight into the mechanism of regulation on artemisinin biosynthesis via transcription factors in the future. PMID:27064403

  15. Characterization and comparison of transgenic Artemisia annua GYR and wild-type NON-GYR plants in an environmental release trial.

    PubMed

    Liu, H; Wu, G G; Wang, J B; Wu, X; Bai, L; Jiang, W; Lv, B B; Pan, A H; Jia, J W; Li, P; Zhao, K; Jiang, L X; Tang, X M

    2016-08-26

    The anti-malarial drug, artemisinin, is quite expensive as a result of its slow content in Artemisia annua. Recent investigations have suggested that genetic engineering of A. annua is a promising approach to improve the yield of artemisinin. In this study, the transgenic A. annua strain GYR, which has high artemisinin content, was evaluated in an environmental release trial. First, GYR plants were compared with the wild-type variety NON-GYR, with regard to phenotypic characters (plant height, crown width, stem diameter, germination rate, leaf dry weight, 1000-seed weight, leave shape). Second, stress resistance in the two varieties (salt, drought, herbicide, and cold resistance) was evaluated under different experimental conditions. Finally, gene flow was estimated. The results indicated that there were significant differences in several agronomic traits (plant height, stem diameter, and leave dry weight) between the transgenic GYR and NON-GYR plants. Salt stress in transgenic and control plants was similar, except under high NaCl concentrations (1.6%, w/w). Leaf water, proline, and MDA content (increased significantly) were significantly different. Transgenic A. annua GYR plants did not grow better than NON-GYR plants with respect to drought and herbicide resistance. The two varieties maintained vitality through the winter. Third, gene flow was studied in an environmental risk trial for transgenic GYR. The maximum gene flow frequency was 2.5%, while the maximum gene flow distance was 24.4 m; gene flow was not detected at 29.2 m at any direction. Our findings may provide an opportunity for risk assessment in future commercialization of transgenic A. annua varieties.

  16. Effects of enzymatically treated Artemisia annua L. on growth performance and some blood parameters of broilers exposed to heat stress.

    PubMed

    Wan, Xiaoli; Jiang, Luyi; Zhong, Haoran; Lu, Yufang; Zhang, Lili; Wang, Tian

    2017-08-01

    To evaluate the effects of enzymatically treated Artemisia annua L. (EA) on growth performance and some blood parameters of broilers exposed to heat stress (HS), 320 22-day-old Arbor Acres male broilers were randomly allotted into five groups with eight replicates of eight birds each. Broilers in the control group were housed at 22 ± 1°C and fed the basal diet. Broilers in the HS, HS-EA0.75 , HS-EA1.00 and HS-EA1.25 groups were reared under HS (34 ± 1°C for 8 h/day and 22 ± 1°C for 16 h/day), and fed basal diet with 0, 0.75, 1.00 and 1.25 g/kg EA, respectively. The experiment ended at 42 days. Dietary 1.00 and 1.25 g/kg EA decreased blood pH and elevated body weight gain, feed intake and carcass yield compared to the HS group. Broilers fed EA diets had lower serum concentrations of malondialdehyde and corticosterone and activities of alanine aminotransferase and aspartate aminotransferase, and higher serum total superoxide dismutase activity, tri-iodothyronine concentration and tri-iodothyronine/thyroxine than the HS group. Serum catalase activity in HS-EA1.00 and HS-EA1.25 groups and activity to inhibit hydroxyl in the HS-EA1.00 group were higher than the HS group. In conclusion, dietary 0.75-1.25 g/kg EA addition alleviated HS induced impairments in broilers. © 2017 Japanese Society of Animal Science.

  17. Enhancement of artemisinin concentration and yield in response to optimization of nitrogen and potassium supply to Artemisia annua

    PubMed Central

    Davies, Michael J.; Atkinson, Christopher J.; Burns, Corrinne; Woolley, Jack G.; Hipps, Neil A.; Arroo, Randolph R. J.; Dungey, Nigel; Robinson, Trevor; Brown, Paul; Flockart, Ian; Hill, Colin; Smith, Lydia; Bentley, Steven

    2009-01-01

    Background and Aims The resurgence of malaria, particularly in the developing world, is considerable and exacerbated by the development of single-gene multi-drug resistances to chemicals such as chloroquinone. Drug therapies, as recommended by the World Health Organization, now include the use of antimalarial compounds derived from Artemisia annua – in particular, the use of artemisinin-based ingredients. Despite our limited knowledge of its mode of action or biosynthesis there is a need to secure a supply and enhance yields of artemisinin. The present study aims to determine how plant biomass can be enhanced while maximizing artemisinin concentration by understanding the plant's nutritional requirements for nitrogen and potassium. Methods Experiments were carried out, the first with differing concentrations of nitrogen, at 6, 31, 56, 106, 206 or 306 mg L−1 being applied, while the other differing in potassium concentration (51, 153 or 301 mg L−1). Nutrients were supplied in irrigation water to plants in pots and after a growth period biomass production and leaf artemisinin concentration were measured. These data were used to determine optimal nutrient requirements for artemisinin yield. Key Results Nitrogen nutrition enhanced plant nitrogen concentration and biomass production successively up to 106 mg N L−1 for biomass and 206 mg N L−1 for leaf nitrogen; further increases in nitrogen had no influence. Artemisinin concentration in dried leaf material, measured by HPLC mass spectroscopy, was maximal at a nitrogen application of 106 mg L−1, but declined at higher concentrations. Increasing potassium application from 51 to 153 mg L−1 increased total plant biomass, but not at higher applications. Potassium application enhanced leaf potassium concentration, but there was no effect on leaf artemisinin concentration or leaf artemisinin yield. Conclusions Artemisinin concentration declined beyond an optimal point with increasing plant nitrogen concentration

  18. Seasonal variation of artemisinin, artemisinic acid, and dihydroartemisinic acid in Brazilian, Chinese, and Swiss cultivars of Artemisia annua in WV, and effect of drying procedures on artemisinin and its precursors

    USDA-ARS?s Scientific Manuscript database

    The increased demand for artemisinin worldwide has led to the increased worldwide cultivation of Artemisia annua for the production of artemisinin. Artemisinin is a safe and effective sesquiterpene lactone effective against a range of diseases caused by protozoa (e.g., malaria, coccidiosis, leishma...

  19. Use of Model-Based Nutrient Feeding for Improved Production of Artemisinin by Hairy Roots of Artemisia Annua in a Modified Stirred Tank Bioreactor.

    PubMed

    Patra, Nivedita; Srivastava, Ashok K

    2015-09-01

    Artemisinin has been indicated to be a potent drug for the cure of malaria. Batch growth and artemisinin production kinetics of hairy root cultures of Artemisia annua were studied under shake flask conditions which resulted in accumulation of 12.49 g/L biomass and 0.27 mg/g artemisinin. Using the kinetic data, a mathematical model was identified to understand and optimize the system behavior. The developed model was then extrapolated to design nutrient feeding strategies during fed-batch cultivation for enhanced production of artemisinin. In one of the fed-batch cultivation, sucrose (37 g/L) feeding was done at a constant feed rate of 0.1 L/day during 10-15 days, which led to improved artemisinin accumulation of 0.77 mg/g. The second strategy of fed-batch hairy root cultivation involved maintenance of pseudo-steady state sucrose concentration (20.8 g/L) during 10-15 days which resulted in artemisinin accumulation of 0.99 mg/g. Fed-batch cultivation (with the maintenance of pseudo-steady state of substrate) of Artemisia annua hairy roots was, thereafter, implemented in bioreactor cultivation, which featured artemisinin accumulation of 1.0 mg/g artemisinin in 16 days of cultivation. This is the highest reported artemisinin yield by hairy root cultivation in a bioreactor.

  20. Fast and reliable artemisinin determination from different Artemisia annua leaves based alimentary products by high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Carrà, Andrea; Bagnati, Renzo; Fanelli, Roberto; Bonati, Maurizio

    2014-01-01

    In many tropical countries malaria is endemic, causing acute illness and killing people, especially children. The availability of recommended malaria medicines is scant, even though these medicines are based on artemisinin, a compound extracted from the Artemisia annua plant that grows in many of these countries. New sources of treatment drawn from traditional medicine are therefore used, such as the tea infusion. An analytical method based on high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) was developed to quantify the artemisinin content of foods prepared with Artemisia annua leaves. A fast and reliable analytical method is described. The technique does not require any derivatisation prior to injection and offers excellent analytical intermediate precision. Robust qualitative and quantitative results were obtained using tea, biscuit or porridge specimens. Although further research is needed to define the potential therapeutic benefits of these alimentary formulations, the analytical method described can be employed in developing more convenient and appropriate foods for administering artemisinin to those infected with malaria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Mining of miRNAs and potential targets from gene oriented clusters of transcripts sequences of the anti-malarial plant, Artemisia annua.

    PubMed

    Pérez-Quintero, Alvaro L; Sablok, Gaurav; Tatarinova, Tatiana V; Conesa, Ana; Kuo, Jimmy; López, Camilo

    2012-04-01

    miRNAs involved in the biosynthesis of artemisinin, an anti-malarial compound form the plant Artemisia annua, have been identified using computational approaches to find conserved pre-miRNAs in available A. annua UniGene collections. Eleven pre-miRNAs were found from nine families. Targets predicted for these miRNAs were mainly transcription factors for conserved miRNAs. No target genes involved in artemisinin biosynthesis were found. However, miR390 was predicted to target a gene involved in the trichome development, which is the site of synthesis of artemisinin and could be a candidate for genetic transformation aiming to increase the content of artemisinin. Phylogenetic analyses were carried out to determinate the relation between A. annua and other plant pre-miRNAs: the pre-miRNA-based phylogenetic trees failed to correspond to known phylogenies, suggesting that pre-miRNA primary sequences may be too variable to accurately predict phylogenetic relations.

  2. Artemisinin production in Artemisia annua: studies in planta and results of a novel delivery method for treating malaria and other neglected diseases

    PubMed Central

    Arsenault, Patrick R.; Covello, Patrick S.; McMickle, Anthony; Teoh, Keat H.; Reed, Darwin W.

    2010-01-01

    Artemisia annua L. produces the sesquiterpene lactone, artemisinin, a potent antimalarial drug that is also effective in treating other parasitic diseases, some viral infections and various neoplasms. Artemisinin is also an allelopathic herbicide that can inhibit the growth of other plants. Unfortunately, the compound is in short supply and thus, studies on its production in the plant are of interest as are low cost methods for drug delivery. Here we review our recent studies on artemisinin production in A. annua during development of the plant as it moves from the vegetative to reproductive stage (flower budding and full flower formation), in response to sugars, and in concert with the production of the ROS, hydrogen peroxide. We also provide new data from animal experiments that measured the potential of using the dried plant directly as a therapeutic. Together these results provide a synopsis of a more global view of regulation of artemisinin biosynthesis in A. annua than previously available. We further suggest an alternative low cost method of drug delivery to treat malaria and other neglected tropical diseases. PMID:21643453

  3. Effect of long-term salinity on cellular antioxidants, compatible solute and fatty acid profile of Sweet Annie (Artemisia annua L.).

    PubMed

    Qureshi, M Irfan; Abdin, Malik Zainul; Ahmad, Javed; Iqbal, Muhammad

    2013-11-01

    Impact of long-term salinity and subsequent oxidative stress was studied on cellular antioxidants, proline accumulation and lipid profile of Artemisia annua L. (Sweet Annie or Qinghao) which yields artemisinin (Qinghaosu), effective against cerebral malaria-causing strains of Plasmodium falciparum. Under salinity (0.0-160 mM NaCl), in A. annua, proline accumulation, contents of ascorbate and glutathione and activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT) increased, but the contents of reduced forms of glutathione (GSH) and ascorbate declined. The fatty-acid profiling revealed a major salinity-induced shift towards long-chain and mono-saturated fatty acids. Myristic acid (14:0), palmitoleic acid (16:1), linoleic acid (18:2) and erucic acid (22:1) increased by 141%, 186%, 34% and 908%, respectively, in comparison with the control. Contents of oleic acid (18:1), linolenic acid (18:3), arachidonic acid (22:0) and lignoceric acid (24:0) decreased by 50%, 17%, 44% and 78%, respectively. Thus, in A. annua, salinity declines ascorbate and GSH contents. However, increased levels of proline and total glutathione (GSH+GSSG), and activities of antioxidant enzymes might provide a certain level of tolerance. Modification in fatty-acid composition might be a membrane adaptation to long-term salinity and oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Effects of oral administration of whole plants of Artemisia annua on Ichthyophthirius multifiliis and Aeromonas hydrophila after parasitism by I. multifiliis.

    PubMed

    Wu, Zhibin; Ling, Fei; Song, Chenguang; Chen, Weichao; Wang, Gaoxue

    2017-01-01

    Since the use of malachite green was banned, it is desirable to search for alternative drug to control Ichthyophthirius multifiliis infection. Moreover, route of administration which is easy to implement and less stressful to fish is important to treat infection of fish with this parasite. It is also important to enhance protective effect against Aeromonas hydrophila infection after parasitism by I. multifiliis. The present study evaluated the protective effect of diet supplemented with Artemisia annua against I. multifiliis and A. hydrophila infection after the parasitism. The results showed that oral administration with A. annua at a concentration of 20 g/kg feed for 45 days can provide strong protection against I. multifiliis infection. The incidence of infestation and mean number of trophonts on fish fins on day 3 post-challenge (15,000 theronts/fish) were significantly reduced compared with the control, and the survival rate of fish during 15-day period was also increased by nearly 30 %. But, this diet provided very limited protection against higher infection dose. Besides, this study demonstrated that this diet enhanced protective effect against A. hydrophila after the fish were infected with I. multifiliis. On the basis of the above results, oral administration with A. annua can be used as a potential strategy for control I. multifiliis infection and increasing fish survival after parasitism by I. multifiliis.

  5. Overexpression of a type-I isopentenyl pyrophosphate isomerase of Artemisia annua in the cytosol leads to high arteannuin B production and artemisinin increase.

    PubMed

    Ma, Dongming; Li, Gui; Alejos-Gonzalez, Fatima; Zhu, Yue; Xue, Zhen; Wang, Aimin; Zhang, Hui; Li, Xing; Ye, Hechun; Wang, Hong; Liu, Benye; Xie, De-Yu

    2017-08-01

    We recently characterized a gene-terpene network that is associated with artemisinin biosynthesis in self-pollinated (SP) Artemisia annua, an effective antimalarial plant. We hypothesize that an alteration of gene expression in the network may improve the production of artemisinin and its precursors. In this study, we cloned an isopentenyl pyrophosphate isomerase (IPPI) cDNA, AaIPPI1, from Artemisia annua (Aa). The full-length cDNA encodes a type-I IPPI containing a plastid transit peptide (PTP) at its amino terminus. After the removal of the PTP, the recombinant truncated AaIPPI1 isomerized isopentenyl pyrophosphate (IPP) to dimethyl allyl pyrophosphate (DMAPP) and vice versa. The steady-state equilibrium ratio of IPP/DMAPP in the enzymatic reactions was approximately 1:7. The truncated AaIPPI1 was overexpressed in the cytosol of the SP A. annua variety. The leaves of transgenic plants produced approximately 4% arteannuin B (g g(-1) , dry weight, dw) and 0.17-0.25% artemisinin (g g(-1) , dw), the levels of which were significantly higher than those in the leaves of wild-type plants. In addition, transgenic plants showed an increase in artemisinic acid production of more than 1% (g g(-1) , dw). In contrast, isoprene formation was significantly reduced in transgenic plants. These results provide evidence that overexpression of AaIPPI1 in the cytosol can lead to metabolic alterations of terpenoid biosynthesis, and show that these transgenic plants have the potential to yield high production levels of arteannuin B as a new precursor source for artemisinin. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  6. Biomass Production of Hairy Roots of Artemisia annua and Arachis hypogaea in a Scaled-Up Mist Bioreactor

    PubMed Central

    Sivakumar, Ganapathy; Liu, Chunzhao; Towler, Melissa J.

    2014-01-01

    Hairy roots have the potential to produce a variety of valuable small and large molecules. The mist reactor is a gas phase bioreactor that has shown promise for low-cost culture of hairy roots. Using a newer, disposable culture bag, mist reactor performance was studied with two species, Artemisia annua L. and Arachis hypogaea (peanut), at scales from 1 to 20 L. Both species of hairy roots when grown at 1 L in the mist reactor showed growth rates that surpassed that in shake flasks. From the information gleaned at 1 L, Arachis was scaled further to 4 and then 20 L. Misting duty cycle, culture medium flow rate, and timing of when flow rate was increased were varied. In a mist reactor increasing the misting cycle or increasing the medium flow rate are the two alternatives for increased delivery of liquid nutrients to the root bed. Longer misting cycles beyond 2–3 min were generally deemed detrimental to growth. On the other hand, increasing the medium flow rate to the sonic nozzle especially during the exponential phase of root growth (weeks 2–3) was the most important factor for increasing growth rates and biomass yields in the 20 L reactors. A. hypogaea growth in 1 L reactors was μ = 0.173 day−1 with biomass yield of 12.75 g DWL−1. This exceeded that in shake flasks at μ = 0.166 day−1 and 11.10 g DWL−1. Best growth rate and biomass yield at 20 L was μ = 0.147 and 7.77 g DWL−1, which was mainly achieved when medium flow rate delivery was increased. The mist deposition model was further evaluated using this newer reactor design and when the apparent thickness of roots (+hairs) was taken into account, the empirical data correlated with model predictions. Together these results establish the most important conditions to explore for future optimization of the mist bioreactor for culture of hairy roots. PMID:20687140

  7. Dietary enzymatically treated Artemisia annua L. supplementation alleviates liver oxidative injury of broilers reared under high ambient temperature

    NASA Astrophysics Data System (ADS)

    Wan, Xiaoli; Zhang, Jingfei; He, Jintian; Bai, Kaiwen; Zhang, Lili; Wang, Tian

    2017-03-01

    Heat stress induced by high ambient temperature is a major concern in commercial broiler production. To evaluate the effects of dietary enzymatically treated Artemisia annua L. (EA) supplementation on growth performance and liver oxidative injury of broilers reared under heat stress, a total of 320 22-day-old male broilers were randomly allotted into five groups with eight replicates of eight birds each. Broilers in the control group were housed at 22 ± 1 °C and fed the basal diet. Broilers in the HS, HS-EA1, HS-EA2, and HS-EA3 groups were fed basal diet supplemented with 0, 0.75, 1.00, and 1.25 g/kg EA, respectively, and reared under cyclic high temperature (34 ± 1 °C for 8 h/day and 22 ± 1 °C for 16 h/day). Broilers fed EA diets had higher final body weight, average daily body weight gain, and average daily feed intake, as well as liver concentration of reduced glutathione, activities of antioxidant enzymes, abilities to inhibit hydroxyl radical and superoxide radical (HS-EA2 and HS-EA3), and lower liver concentrations of reactive oxygen metabolites, malondialdehyde, and protein carbonyl (HS-EA1, HS-EA2, and HS-EA3) than HS group (P < 0.05). EA treatment downregulated the mRNA levels of heat shock proteins 70 and 90, upregulated the mRNA levels of nuclear factor erythroid 2-related factor 2 (HS-EA1, HS-EA2, and HS-EA3) and heme oxygenase 1 (HS-EA2 and HS-EA3) in liver of heat-treated broilers (P < 0.05). In conclusion, EA alleviated heat stress-induced growth depression and liver oxidative injury in broilers, possibly through improving the antioxidant capacity and regulating the pertinent mRNA expression. The appropriate inclusion level of EA in broiler diet is 1.00-1.25 g/kg.

  8. Biomass production of hairy roots of Artemisia annua and Arachis hypogaea in a scaled-up mist bioreactor.

    PubMed

    Sivakumar, Ganapathy; Liu, Chunzhao; Towler, Melissa J; Weathers, Pamela J

    2010-12-01

    Hairy roots have the potential to produce a variety of valuable small and large molecules. The mist reactor is a gas phase bioreactor that has shown promise for low-cost culture of hairy roots. Using a newer, disposable culture bag, mist reactor performance was studied with two species, Artemisia annua L. and Arachis hypogaea (peanut), at scales from 1 to 20 L. Both species of hairy roots when grown at 1 L in the mist reactor showed growth rates that surpassed that in shake flasks. From the information gleaned at 1 L, Arachis was scaled further to 4 and then 20 L. Misting duty cycle, culture medium flow rate, and timing of when flow rate was increased were varied. In a mist reactor increasing the misting cycle or increasing the medium flow rate are the two alternatives for increased delivery of liquid nutrients to the root bed. Longer misting cycles beyond 2-3 min were generally deemed detrimental to growth. On the other hand, increasing the medium flow rate to the sonic nozzle especially during the exponential phase of root growth (weeks 2-3) was the most important factor for increasing growth rates and biomass yields in the 20 L reactors. A. hypogaea growth in 1 L reactors was µ = 0.173 day(-1) with biomass yield of 12.75 g DW L(-1). This exceeded that in shake flasks at µ = 0.166 day(-1) and 11.10 g DW L(-1). Best growth rate and biomass yield at 20 L was µ = 0.147 and 7.77 g DW L(-1), which was mainly achieved when medium flow rate delivery was increased. The mist deposition model was further evaluated using this newer reactor design and when the apparent thickness of roots (+hairs) was taken into account, the empirical data correlated with model predictions. Together these results establish the most important conditions to explore for future optimization of the mist bioreactor for culture of hairy roots.

  9. Dietary enzymatically treated Artemisia annua L. supplementation alleviates liver oxidative injury of broilers reared under high ambient temperature

    NASA Astrophysics Data System (ADS)

    Wan, Xiaoli; Zhang, Jingfei; He, Jintian; Bai, Kaiwen; Zhang, Lili; Wang, Tian

    2017-09-01

    Heat stress induced by high ambient temperature is a major concern in commercial broiler production. To evaluate the effects of dietary enzymatically treated Artemisia annua L. (EA) supplementation on growth performance and liver oxidative injury of broilers reared under heat stress, a total of 320 22-day-old male broilers were randomly allotted into five groups with eight replicates of eight birds each. Broilers in the control group were housed at 22 ± 1 °C and fed the basal diet. Broilers in the HS, HS-EA1, HS-EA2, and HS-EA3 groups were fed basal diet supplemented with 0, 0.75, 1.00, and 1.25 g/kg EA, respectively, and reared under cyclic high temperature (34 ± 1 °C for 8 h/day and 22 ± 1 °C for 16 h/day). Broilers fed EA diets had higher final body weight, average daily body weight gain, and average daily feed intake, as well as liver concentration of reduced glutathione, activities of antioxidant enzymes, abilities to inhibit hydroxyl radical and superoxide radical (HS-EA2 and HS-EA3), and lower liver concentrations of reactive oxygen metabolites, malondialdehyde, and protein carbonyl (HS-EA1, HS-EA2, and HS-EA3) than HS group ( P < 0.05). EA treatment downregulated the mRNA levels of heat shock proteins 70 and 90, upregulated the mRNA levels of nuclear factor erythroid 2-related factor 2 (HS-EA1, HS-EA2, and HS-EA3) and heme oxygenase 1 (HS-EA2 and HS-EA3) in liver of heat-treated broilers ( P < 0.05). In conclusion, EA alleviated heat stress-induced growth depression and liver oxidative injury in broilers, possibly through improving the antioxidant capacity and regulating the pertinent mRNA expression. The appropriate inclusion level of EA in broiler diet is 1.00-1.25 g/kg.

  10. Use of Artemisia annua as a natural coccidiostat in free-range broilers and its effects on infection dynamics and performance.

    PubMed

    de Almeida, Gustavo F; Horsted, Klaus; Thamsborg, Stig M; Kyvsgaard, Niels C; Ferreira, Jorge F S; Hermansen, John E

    2012-05-25

    This work investigated the preventive effect of Artemisia annua L. dried leaves supplied as a botanical coccidiostat to two broiler genotypes reared in a Danish free-range system in a factorial experiment (two genotypes and ± supplement of dried A. annua leaves). The genotypes White Bresse L40, a pure slow-growing line, and Kosmos 8 Ross, a hybrid genotype with medium growing characteristics, were used. Broilers were raised indoor until 29-days-old and kept free of parasites. Twelve groups of 30 randomly selected broilers were placed in the range forming three replicates for each treatment combination. The paddocks were cultivated with a mix of grass and clover. A separate group of broilers was naturally infected with Eimeria spp. oocysts and five animals nominated as "seeders" were introduced to the above mentioned 12 groups, 10 days after its formation, with each group consisting of 35 animals per plot. This infection strategy was meant to imitate the transmission pathway observed at farm level. Ten individual birds from each of the 12 groups, in total 120 animals of mixed sex, were monitored twice weekly for 30 days for oocysts excretion. PCR of pooled faecal samples, oocyst morphology and localization upon necropsy were used to identify the Eimeria species involved in the infection. In general, broilers from both genotypes in the range coped well with a coccidia infection caused by Eimeria acervulina and Eimeria maxima as no clinical symptoms, or deaths, were reported during the experiment. In general, broilers supplemented with A. annua dried leaves showed a significantly (p<0.05) reduced number of excreted oocysts during the infection with no interaction to genotype. Females generally had a significantly higher shedding of oocysts than males (p<0.05). The overall body weight gain and the daily weight gain when infection was subdued showed a three-way interaction among genotype, sex and treatment - accounted mainly for the fact that Kosmos females responded

  11. Deciphering UV-B-induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression in Artemisia annua L.

    PubMed

    Pandey, Neha; Pandey-Rai, Shashi

    2015-10-01

    UV-B-caused DNA hypomethylation and UV-B-mediated epigenetic activation of additional WRKY-binding site(s) in the DBR2 promoter may contribute to the overexpression of the DBR2 gene in Artemisia annua. DNA methylation is one of the key mechanisms behind stress-induced transcriptional switch off/on. Here, we evaluate the DNA methylation level in response to UV-B radiation in Artemisia annua which produces artemisinin, a sesquiterpene that has been recommended by WHO for the frontline treatment of malaria. However, the drug is facing serious shortage due to its low concentration in plants. UV-B treatment (3 h) enhanced artemisinin concentration up to 1.91-fold as compared to control. A key regulatory gene of artemisinin biosynthesis, DBR2 was upregulated under UV-B. This study presents observations regarding contributions of DNA methylation to the gene regulation using DBR2 as an example. Restriction digestion of genomic DNA by isoschizomers (MspI and HpaII) suggested UV-B involvement in DNA hypomethylation in A. annua. The global level of DNA methylation (R) was 3.4 and 5.9% for UV-B treated and control plants, respectively, attesting hypomethylation of DNA in response to UV-B. Further bisulfite sequencing PCR showed demethylation at two CHG sites in 18S rRNA gene. Similarly, bisulfite sequencing of promoter region of DBR2 has demonstrated demethylation at 4 CG-, 4 CHH- and 2 CHG-sites. In silico analysis revealed UV-B-mediated demethylation at seven putative transcription factor binding sites including WRKY, which are positive regulators of artemisinin biosynthesis. UV-B treatment has resulted in activation of additional WRKY-binding site in UV-B-treated plants compared with single active WRKY-binding site in control and this could be the probable reason for overexpression of DBR2. It is suggested that DNA demethylation is an important epigenetic response to UV-B radiation in A. annua that surely will provide new horizons to further elucidate the mechanistic

  12. Effect of Rol Genes on Polyphenols Biosynthesis in Artemisia annua and Their Effect on Antioxidant and Cytotoxic Potential of the Plant.

    PubMed

    Dilshad, Erum; Zafar, Sara; Ismail, Hammad; Waheed, Mohammad Tahir; Cusido, Rosa Maria; Palazon, Javier; Mirza, Bushra

    2016-08-01

    Flavonoids are famous for their antioxidant capacity and redox potential. They can combat with cell aging, lipid peroxidation, and cancer. In the present study, Artemisia annua hybrid (Hyb8001r) was subjected to qualitative and quantitative analysis of flavonoids through HPLC. Rol genes transgenics of A. annua were also evaluated for an increase in their flavonoid content along with an increase in antioxidant and cytotoxic potential. This was also correlated with the expression level of flavonoids biosynthetic pathway genes as determined by real-time qPCR. Phenylalanine ammonia-lyase and chalcone synthase genes were found to be significantly more highly expressed in rol B (four to sixfold) and rol C transgenics (3.8-5.5-fold) than the wild-type plant. Flavonoids detected in the wild-type A. annua through HPLC include rutin (0.31 mg/g DW), quercetin (0.01 mg/g DW), isoquercetin (0.107 mg/g DW) and caffeic acid (0.03 mg/g DW). Transgenics of the rol B gene showed up to threefold increase in rutin and caffeic acid, sixfold increase in isoquercetin, and fourfold increase in quercetin. Whereas, in the case of transgenics of rol C gene, threefold increase in rutin and quercetin, 5 fold increase in isoquercetin, and 2.6-fold increase in caffeic acid was followed. Total phenolics and flavonoids content was also found to be increased in rol B (1.5-fold) and rol C (1.4-fold) transgenics as compared to the wild-type plant along with increased free radical scavenging activity. Similarly, the cytotoxic potential of rol gene transgenics against MCF7, HeLA, and HePG2 cancer cell lines was found to be significantly enhanced than the wild-type plant of A. annua. Current findings support the fact that rol genes can alter the secondary metabolism and phytochemical level of the plant. They increased the flavonoids content of A. annua by altering the expression level of flavonoids biosynthetic pathway genes. Increased flavonoid content also enhanced the antioxidant and cytotoxic

  13. Validation, transfer and measurement uncertainty estimation of an HPLC-UV method for the quantification of artemisinin in hydro alcoholic extracts of Artemisia annua L.

    PubMed

    Diawara, Hermine Zime; Gbaguidi, Fernand; Evrard, Brigitte; Leclercq, Joëlle Quetin; Moudachirou, Mansourou; Debrus, Benjamin; Hubert, Philippe; Rozet, Eric

    2011-08-25

    Malaria is the world's most important parasitic infection with 500 millions cases annually and almost 2 millions death per year. This disease is more present in Sub-Saharan Africa where 90% of the infections are found. Artemisinin and its semi synthetic derivatives (artemether, artesunate) have actually the most powerful activity on malaria, even in its complicated forms and resistance cases. Various methods have been proposed for detection and quantification of artemisinin in Artemisia annua L. by HPLC-UV, but the plant extracts used for this quantification were extracts obtained with organic solvents (toluene, petroleum ether, hexane). To be able to use crude A. annua extracts prepared at low cost to formulate antipaludic drugs, we chose the use of a mixture of water and ethanol as solvent of extraction, but no adequate analytical method for this kind of extracts is published. The main objectives of this work were first to develop an analytical method for artemisinin quantification in hydro alcoholic extracts of A. annua. Second, this method had to be thoroughly validated by the research and development laboratory and, third, the transfer of this method to the routine laboratory had to be demonstrated. The final aim was to compare the estimation of measurement uncertainty obtained during the method validation with validation standards to measurement uncertainty estimates obtained during the method transfer study with real samples. The method was validated following the accuracy profile methodology and was found to be accurate in the concentration range of 10.0-54.0 μg/ml with CV<8%. Limit of detection and of quantification were 2.73 and 10.0 μg/ml, respectively. The method was then successfully transferred to a laboratory in Benin by showing that the quality of the results that it will generate during routine application of the method is sufficient. Finally, the measurement uncertainty of the method was estimated from the validation experiments as well as from

  14. Cloning and characterization of trichome-specific promoter of cpr71av1 gene involved in artemisinin biosynthesis in Artemisia annua L.

    PubMed

    Wang, Yueyue; Yang, Ke; Jing, Fuyuan; Li, Meiya; Deng, Ting; Huang, Runze; Wang, Boshi; Wang, Guofeng; Sun, Xiaofen; Tang, Ke-Xuan

    2011-01-01

    Artemisinin, a sesquiterpene lactone endoperoxide derived from Artemisia annua L. (Asteraceae), is the most effective antimalarial drug. We used two methods: genome walking and thermal asymmetric interlaced polymerase chain reaction, to isolate the unknown 5'-flanking sequence of the cyp71av1 gene. The subsequent sequence analysis using bioinformatics software revealed that there are several cis-acting elements inside the cyp71av1 promoter. The 5'-rapid amplification of the cDNA ends method was used to determine the transcription start site of the cyp71av1 gene. We then mapped it at the 18 base upstream of the ATG initiation codon. For simple functional characterization, we built fusion vectors between the 5'-deletion promoter and the gas reporter gene. The expression levels of the transferred vectors into A. annua L. were analyzed by the transient expression way. The beta-glucuronidase assay results indicated that deletion of the region to -1551 bp did not lead to much damage in the GUS activity, whereas further deletion, to -1155 bp, resulted in a 5.5-fold reduction of GUS activity. In stabilized transgenic A. annua L. seedlings we observed that GUS expression was restricted to trichomes, which means that the promoter of the cyp71av1 gene is trichome-specific. Compared with the constitutive CaMV 35S promoter, which can express genes throughout the plant, influence on the trichome system through the trichome-specific expression promoter merely imperils plant growth. In addition, the promoter of the cyp71av1 gene contains several binding sites for transcription factors, which implies that the cyp71av1 promoter responds to more than one form of stimulation.

  15. Molecular cloning and promoter analysis of the specific salicylic acid biosynthetic pathway gene phenylalanine ammonia-lyase (AaPAL1) from Artemisia annua.

    PubMed

    Zhang, Ying; Fu, Xueqing; Hao, Xiaolong; Zhang, Lida; Wang, Luyao; Qian, Hongmei; Zhao, Jingya

    2016-07-01

    Phenylalanine ammonia-lyase (PAL) is the key enzyme in the biosynthetic pathway of salicylic acid (SA). In this study, a full-length cDNA of PAL gene (named as AaPAL1) was cloned from Artemisia annua. The gene contains an open reading frame of 2,151 bps encoding 716 amino acids. Comparative and bioinformatics analysis revealed that the polypeptide protein of AaPAL1 was highly homologous to PALs from other plant species. Southern blot analysis revealed that it belonged to a gene family with three members. Quantitative RT-PCR analysis of various tissues of A. annua showed that AaPAL1 transcript levels were highest in the young leaves. A 1160-bp promoter region was also isolated resulting in identification of distinct cis-regulatory elements including W-box, TGACG-motif, and TC-rich repeats. Quantitative RT-PCR indicated that AaPAL1 was upregulated by salinity, drought, wounding, and SA stresses, which were corroborated positively with the identified cis-elements within the promoter region. AaPAL1 was successfully expressed in Escherichia. coli and the enzyme activity of the purified AaPAL1 was approximately 287.2 U/mg. These results substantiated the involvement of AaPAL1 in the phenylalanine pathway.

  16. Overexpression and Suppression of Artemisia annua 4-Hydroxy-3-Methylbut-2-enyl Diphosphate Reductase 1 Gene (AaHDR1) Differentially Regulate Artemisinin and Terpenoid Biosynthesis

    PubMed Central

    Ma, Dongming; Li, Gui; Zhu, Yue; Xie, De-Yu

    2017-01-01

    4-Hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) catalyzes the last step of the 2-C-methyl-D-erythritol 4- phosphate (MEP) pathway to synthesize isopentenyl pyrophosphate (IPP) and dimethylallyl diphosphate (DMAPP). To date, little is known regarding effects of an increase or a decrease of a HDR expression on terpenoid and other metabolite profiles in plants. In our study, an Artemisia annua HDR cDNA (namely AaHDR1) was cloned from leaves. Expression profiling showed that it was highly expressed in leaves, roots, stems, and flowers with different levels. Green florescence protein fusion and confocal microscope analyses showed that AaHDR1 was localized in chloroplasts. The overexpression of AaHDR1 increased contents of artemisinin, arteannuin B and other sesquiterpenes, and multiple monoterpenes. By contrast, the suppression of AaHDR1 by anti-sense led to opposite results. In addition, an untargeted metabolic profiling showed that the overexpression and suppression altered non-polar metabolite profiles. In conclusion, the overexpression and suppression of AaHDR1 protein level in plastids differentially affect artemisinin and other terpenoid biosynthesis, and alter non-polar metabolite profiles of A. annua. Particularly, its overexpression leading to the increase of artemisinin production is informative to future metabolic engineering of this antimalarial medicine. PMID:28197158

  17. Anthelmintic activity of Artemisia annua L. extracts in vitro and the effect of an aqueous extract and artemisinin in sheep naturally infected with gastrointestinal nematodes.

    PubMed

    Cala, Aida C; Ferreira, Jorge F S; Chagas, Ana Carolina S; Gonzalez, Javier M; Rodrigues, Rodney A F; Foglio, Mary Ann; Oliveira, Marcia C S; Sousa, Ilza M O; Magalhães, Pedro M; Barioni Júnior, Waldomiro

    2014-06-01

    There is no effective natural alternative control for gastrointestinal nematodes (GIN) of small ruminants, with Haemonchus contortus being the most economically important GIN. Despite frequent reports of multidrug-resistant GIN, there is no new commercial anthelmintic to substitute failing ones. Although trematocidal activity of artemisinin analogs has been reported in sheep, neither artemisinin nor its plant source (Artemisia annua) has been evaluated for anthelmintic activity in ruminants. This study evaluated the anthelmintic activity of A. annua crude extracts in vitro and compared the most effective extract with artemisinin in sheep naturally infected with H. contortus. A. annua leaves extracted with water, aqueous 0.1% sodium bicarbonate, dichloromethane, and ethanol were evaluated in vitro by the egg hatch test (EHT) and with the bicarbonate extract only for the larval development test (LDT) using H. contortus. The A. annua water, sodium bicarbonate (SBE), ethanol, and dichloromethane extracts tested in vitro contained 0.3, 0.6, 4.4, and 9.8% of artemisinin, respectively. The sodium bicarbonate extract resulted in the lowest LC99 in the EHT (1.27 μg/mL) and in a LC99 of 23.8 μg/mL in the LDT. Following in vitro results, the SBE (2 g/kg body weight (BW)) and artemisinin (100 mg/kg BW) were evaluated as a single oral dose in naturally infected Santa Inês sheep. Speciation from stool cultures established that 84-91% of GIN were H. contortus, 8.4-15.6 % were Trichostrongylus sp., and 0.3-0.7% were Oesophagostomum sp. Packed-cell volume and eggs per gram (EPG) of feces were used to test treatment efficacy. The SBE tested in vivo contained no artemisinin, but had a high antioxidant capacity of 2,295 μmol of Trolox equivalents/g. Sheep dosed with artemisinin had maximum feces concentrations 24 h after treatment (126.5 μg/g artemisinin), which sharply decreased at 36 h. By day 15, only levamisole-treated sheep had a significant decrease of 97% in EPG

  18. UV-B and UV-C pre-treatments induce physiological changes and artemisinin biosynthesis in Artemisia annua L. - an antimalarial plant.

    PubMed

    Rai, Rashmi; Meena, Ram Prasad; Smita, Shachi Shuchi; Shukla, Aparna; Rai, Sanjay Kumar; Pandey-Rai, Shashi

    2011-12-02

    Present study was undertaken to investigate if short-term UV-B (4.2 kJ m(-2) day(-1)) and UV-C (5.7 kJ m(-2) day(-1)), pre-treatments can induce artemisinin biosynthesis in Artemisia annua. Twenty-one day old Artemisia seedlings were subjected to short-term (14 days) UV pre-treatment in an environmentally controlled growth chamber and then transplanted to the field under natural conditions. Treatment of A. annua with artificial UV-B and UV-C radiation not only altered the growth responses, biomass, pigment content and antioxidant enzyme activity but enhanced the secondary metabolites (artemisinin and flavonoid) content at all developmental stages as compared to non-irradiated plants. The extent of oxidative damage was measured in terms of the activities of enzymes such as catalase, superoxide dismutase and ascorbate peroxidase. Reinforcement in the antioxidative defense system seems to be a positive response of plants in ameliorating the negative effects of UV-B and UV-C radiations. While the carotenoid content was elevated, the chlorophyll content decreased under UV-B and UV-C pre-treatments. The reverse transcription PCR analysis of the genes associated in artemisinin/isoprenoid biosynthesis like 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), cytochrome P450 oxidoreductase (CPR) and amorpha-4,11-diene synthase (ADS) genes at different growth stages revealed UV induced significant over-expression of the above protein genes. UV-B and UV-C pre-treatments, led to an increase in the concentrations of artemisinin at full bloom stage by 10.5% and 15.7% than that of the control respectively. Thus, the result of our study suggests that short term UV-B pre-treatment of seedlings in greenhouse prior to transplantation into the field enhances artemisinin production with lesser yield related damages as compared to UV-C radiation in A. annua. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. [Botany of Artemisia].

    PubMed

    Ramay, B

    1987-06-01

    Artemisia vulgaris L. belongs to the family Compositae, sub-family Corymbiferae. The genus Artemisia groups together almost 200 species, the most of them are native of Eurasia and Northern America steppe regions. Artemisia are wind-pollinated plants, the flowers do not secrete any nectar and are not visited by bees. Two species of Artemisia are widely spread through the Lyon region and are with Ambrosiaceae to blame for the pollinosis in summer and autumn: A. annua and A. vulgaris.

  20. Cloning and Functional Characterization of a β-Pinene Synthase from Artemisia annua That Shows a Circadian Pattern of Expression1

    PubMed Central

    Lu, Shan; Xu, Ran; Jia, Jun-Wei; Pang, Jihai; Matsuda, Seiichi P.T.; Chen, Xiao-Ya

    2002-01-01

    Artemisia annua plants produce a broad range of volatile compounds, including monoterpenes, which contribute to the characteristic fragrance of this medicinal species. A cDNA clone, QH6, contained an open reading frame encoding a 582-amino acid protein that showed high sequence identity to plant monoterpene synthases. The prokaryotically expressed QH6 fusion protein converted geranyl diphosphate to (−)-β-pinene and (−)-α-pinene in a 94:6 ratio. QH6 was predominantly expressed in juvenile leaves 2 weeks postsprouting. QH6 transcript levels were transiently reduced following mechanical wounding or fungal elicitor treatment, suggesting that this gene is not directly involved in defense reaction induced by either of these treatments. Under a photoperiod of 12 h/12 h (light/dark), the abundance of QH6 transcripts fluctuated in a diurnal pattern that ebbed around 3 h before daybreak (9th h in the dark phase) and peaked after 9 h in light (9th h in the light phase). The contents of (−)-β-pinene in juvenile leaves and in emitted volatiles also varied in a diurnal rhythm, correlating strongly with mRNA accumulation. When A. annua was entrained by constant light or constant dark conditions, QH6 transcript accumulation continued to fluctuate with circadian rhythms. Under constant light, advanced cycles of fluctuation of QH6 transcript levels were observed, and under constant dark, the cycle was delayed. However, the original diurnal pattern could be regained when the plants were returned to the normal light/dark (12 h/12 h) photoperiod. This is the first report that monoterpene biosynthesis is transcriptionally regulated in a circadian pattern. PMID:12226526

  1. Effect of sweet wormwood Artemisia annua crude leaf extracts on some biological and physiological characteristics of the lesser mulberry pyralid, Glyphodes pyloalis.

    PubMed

    Khosravi, Roya; Sendi, Jalal Jalali; Ghadamyari, Mohammad; Yezdani, Elham

    2011-01-01

    The lesser mulberry pyralid, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is a monophagous and dangerous pest of mulberry that has been recently observed in Guilan province, northern Iran. In this study, the crude methanol extract of sweet wormwood Artemisia annua L. (Asterales: Asteracaea) was investigated on toxicity, biological and physiological characteristics of this pest under controlled conditions (24 ± 1 °C, 75 ± 5% RH, and 16:8 L:D photoperiod). The effect of acute toxicity and sublethal doses on physiological characteristics was performed by topical application. The LC₅₀ and LC₂₀ values on fourth instar larvae were calculated as 0.33 and 0.22 gram leaf equivalent/ mL, respectively. The larval duration of fifth instar larvae in LC₅₀ treatment was prolonged (5.8 ± 0.52 days) compared with the control group (4.26 ± 0.29 days). However larval duration was reduced in the LC₂₀ treatment. The female adult longevity in the LC₅₀ dose was the least (4.53 ± 0.3 days), while longevity among controls was the highest (9.2 ± 0.29 days). The mean fecundity of adults after larval treatment with LC₅₀ was recorded as 105.6 ± 16.84 eggs/female, while the control was 392.74 ± 22.52 eggs/female. The percent hatchability was reduced in all treatments compared with the control. The effect of extract in 0.107, 0.053, 0.026 and 0.013 gle/mL on biochemical characteristics of this pest was also studied. The activity of α-amylase and protease 48 hours post-treatment was significantly reduced compared with the control. Similarly lipase, esterase, and glutathione S-transferase activity were significantly affected by A. annua extract.

  2. The activity of the artemisinic aldehyde Δ11(13) reductase promoter is important for artemisinin yield in different chemotypes of Artemisia annua L.

    PubMed

    Yang, Ke; Monfared, Sajad Rashidi; Monafared, Rashidi Sajad; Wang, Hongzhen; Lundgren, Anneli; Brodelius, Peter E

    2015-07-01

    The artemisinic aldehyde double bond reductase (DBR2) plays an important role in the biosynthesis of the antimalarial artemisinin in Artemisia annua. Artemisinic aldehyde is reduced into dihydroartemisinic aldehyde by DBR2. Artemisinic aldehyde can also be oxidized by amorpha-4,11-diene 12-hydroxylase and/or aldehyde dehydrogenase 1 to artemisinic acid, a precursor of arteannuin B. In order to better understand the effects of DBR2 expression on the flow of artemisinic aldehyde into either artemisinin or arteannuin B, we determined the content of dihydroartemisinic aldehyde, artemisinin, artemisinic acid and arteannuin B content of A. annua varieties sorted into two chemotypes. The high artemisinin producers (HAPs), which includes the '2/39', 'Chongqing' and 'Anamed' varieties, produce more artemisinin than arteannuin B; the low artemisinin producers (LAPs), which include the 'Meise', 'Iran#8', 'Iran#14', 'Iran#24' and 'Iran#47' varieties, produce more arteannuin B than artemisinin. Quantitative PCR showed that the relative expression of DBR2 was significantly higher in the HAP varieties. We cloned and sequenced the promoter of the DBR2 gene from varieties of both the LAP and the HAP groups. There were deletions/insertions in the region just upstream of the ATG start codon in the LAP varities, which might be the reason for the different promoter activities of the HAP and LAP varieties. The relevance of promoter variation, DBR2 expression levels and artemisinin biosynthesis capabilities are discussed and a selection method for HAP varieties with a DNA marker is suggested. Furthermore, putative cis-acting regulatory elements differ between the HAP and LAP varieties.

  3. Effect of Sweet Wormwood Artemisia annua Crude Leaf Extracts on Some Biological and Physiological Characteristics of the Lesser Mulberry Pyralid, Glyphodes pyloalis

    PubMed Central

    Khosravi, Roya; Sendi, Jalal Jalali; Ghadamyari, Mohammad; Yezdani, Elham

    2011-01-01

    The lesser mulberry pyralid, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is a monophagous and dangerous pest of mulberry that has been recently observed in Guilan province, northern Iran. In this study, the crude methanol extract of sweet wormwood Artemisia annua L. (Asterales: Asteracaea) was investigated on toxicity, biological and physiological characteristics of this pest under controlled conditions (24 ± 1 °C, 75 ± 5% RH, and 16:8 L:D photoperiod). The effect of acute toxicity and sublethal doses on physiological characteristics was performed by topical application. The LC50 and LC20 values on fourth instar larvae were calculated as 0.33 and 0.22 gram leaf equivalent/ mL, respectively. The larval duration of fifth instar larvae in LC50 treatment was prolonged (5.8 ± 0.52 days) compared with the control group (4.26 ± 0.29 days). However larval duration was reduced in the LC20 treatment. The female adult longevity in the LC50 dose was the least (4.53 ± 0.3 days), while longevity among controls was the highest (9.2 ± 0.29 days). The mean fecundity of adults after larval treatment with LC50 was recorded as 105.6 ± 16.84 eggs/female, while the control was 392.74 ± 22.52 eggs/female. The percent hatchability was reduced in all treatments compared with the control. The effect of extract in 0.107, 0.053, 0.026 and 0.013 gle/mL on biochemical characteristics of this pest was also studied. The activity of α-amylase and protease 48 hours post—treatment was significantly reduced compared with the control. Similarly lipase, esterase, and glutathione S-transferase activity were significantly affected by A. annua extract. PMID:22239100

  4. Rice Cakes Containing Dietary Fiber Supplemented with or without Artemisia Annua and Gynura Procumbens Merr. Alleviated the Risk Factors of Metabolic Syndrome

    PubMed Central

    2016-01-01

    We investigated whether the consumption of Korean rice cakes enriched with dietary fiber with or without polyphenol rich plants might decrease the risk factors of metabolic syndrome (MetS). Rice cakes were manufactured using fructooligosaccharides, resistant starch, and psyllium as sources of dietary fibers with and without polyphenol rich Artemisia annua and Gynura procumbens Merr. (RC+FP and RC+F, respectively), and prepared in three forms (songpyeon, seolgidduk, and chaldduk). Ninety subjects with at least one MetS risk factor were recruited for 6 weeks of dietary intervention. Sixty subjects were finally included for the analysis. Compared to the initial values, RC+FP group had decreased levels of fasting blood glucose (FBG), HOMA-IR and blood pressure after 6 weeks, whereas RC+F group didn't have significant changes in them. Regarding the improvement of individual MetS risk factors, RC+FP group showed significant reduction in FBG and blood pressures but RC+F group only had reduction in systolic blood pressure. After the intervention, a reduction in the number of MetS risk factors was greatert in the RC+FP group than in the RC+F group. In conclusion, Dietary fiber enriched rice cakes with or without polyphenols decreased the number and/or the levels of MetS risk factors. Polyphenol rich plant components may provide additional health benefits in controlling FBG and blood pressure. PMID:27152297

  5. Evaluation of the In Vitro Efficacy of Artemisia annua, Rumex abyssinicus, and Catha edulis Forsk Extracts in Cancer and Trypanosoma brucei Cells

    PubMed Central

    Mossie, Andualem; Stich, August; Daugschies, Arwid

    2013-01-01

    The current drugs against sleeping sickness are derived from cancer chemotherapeutic approaches. Herein, we aimed at evaluating the in vitro effect of alcoholic extracts of Artemisia annua (AMR), Rumex abyssinicus (RMA), and Catha edulis Forsk (CEF) on proliferation/viability of 1321N1 astrocytoma, MCF-7 breast cancer, THP-1 leukemia, and LNCaP, Du-145, and PC-3 prostate cancer cells and on Trypanosoma brucei cells. Proliferation of tumor cells was evaluated by WST-1 assay and viability/behaviour of T. brucei by cell counting and light microscopy. CEF was the most efficient growth inhibitor in comparison to AMR and RMA. Nevertheless, in LNCaP and THP-1 cells, all extracts significantly inhibited tumor growth at 3 μg/mL. All extracts inhibited proliferation of T. brucei cells in a concentration-dependent manner. Microscopic analysis revealed that 95% of the T. brucei cells died when exposed to 33 μg/mL CEF for 3 hrs. Similar results were obtained using 33 μg/mL AMR for 6 hrs. In case of RMA, however, higher concentrations were necessary to obtain similar effects on T. brucei. This demonstrates the antitumor efficacy of these extracts as well as their ability to dampen viability and proliferation of T. brucei, suggesting a common mechanism of action on highly proliferative cells, most probably by targeting cell metabolism. PMID:25937964

  6. The effects of combining Artemisia annua and Curcuma longa ethanolic extracts in broilers challenged with infective oocysts of Eimeria acervulina and E. maxima.

    PubMed

    Almeida, Gustavo F D; Thamsborg, Stig M; Madeira, Alda M B N; Ferreira, Jorge F S; Magalhães, Pedro M; Demattê Filho, Luiz C; Horsted, Klaus; Hermansen, John E

    2014-03-01

    Due to an increasing demand for natural products to control coccidiosis in broilers, we investigated the effects of supplementing a combination of ethanolic extracts of Artemisia annua and Curcuma longa in drinking water. Three different dosages of this herbal mixture were compared with a negative control (uninfected), a positive control (infected and untreated), chemical coccidiostats (nicarbazin+narazin and, later, salinomycin), vaccination, and a product based on oregano. Differences in performance (weight gain, feed intake, and feed conversion rate), mortality, gross intestinal lesions and oocyst excretion were investigated. Broilers given chemical coccidiostats performed better than all other groups. Broilers given the two highest dosages of the herbal mixture had intermediate lesion scores caused by Eimeria acervulina, which was higher than in broilers given coccidiostats, but less than in broilers given vaccination, oregano and in negative controls. There was a trend for lower mortality (P = 0·08) in the later stage of the growing period (23-43 days) in broilers given the highest dosage of herbal mixture compared with broilers given chemical coccidiostats. In conclusion, the delivery strategy of the herbal extracts is easy to implement at farm level, but further studies on dose levels and modes of action are needed.

  7. Isolation of Dihydroartemisinic Acid from Artemisia annua L. By-Product by Combining Ultrasound-Assisted Extraction with Response Surface Methodology.

    PubMed

    Liu, Shuoqian; Ferreira, Jorge Freire da Silva; Liu, Liping; Tang, Yuwei; Tian, Dongming; Liu, Zhonghua; Tian, Na

    2017-08-01

    Malaria is the most devastating parasitic disease worldwide. Artemisinin is the only drug that can cure malaria that is resistant to quinine-derived drugs. After the commercial extraction of artemisinin from Artemisia annua, the recovery of dihydroartemisinic acid (DHAA) from artemisinin extraction by-product has the potential to increase artemisinin commercial yield. Here we describe the development and optimization of an ultrasound-assisted alkaline procedure for the extraction of DHAA from artemisinin production waste using response surface methodology. Our results using this methodology established that NaOH at 0.36%, extraction time of 67.96 min, liquid-solid ratio of 5.89, and ultrasonic power of 83.9 W were the optimal conditions to extract DHAA from artemisinin production waste. Under these optimal conditions, we achieved a DHAA yield of 2.7%. Finally, we conducted a validation experiment, and the results confirmed the prediction generated by the regression model developed in this study. This work provides a novel way to increase the production of artemisinin per cultivated area and to reduce artemisinin production costs by recycling its commercial waste to obtain DHAA, an immediate precursor of artemisinin. The use of this technology may reduce the costs of artemisinin-based antimalarial medicines.

  8. Overexpression of a Novel NAC Domain-Containing Transcription Factor Gene (AaNAC1) Enhances the Content of Artemisinin and Increases Tolerance to Drought and Botrytis cinerea in Artemisia annua.

    PubMed

    Lv, Zongyou; Wang, Shu; Zhang, Fangyuan; Chen, Lingxian; Hao, Xiaolong; Pan, Qifang; Fu, Xueqing; Li, Ling; Sun, Xiaofen; Tang, Kexuan

    2016-09-01

    The NAC (NAM, ATAF and CUC) superfamily is one of the largest plant-specific transcription factor families. NAC transcription factors always play important roles in response to various abiotic stresses. A NAC transcription factor gene AaNAC1 containing a complete open reading frame (ORF) of 864 bp was cloned from Artemisia annua. The expression of AaNAC1 could be induced by dehydration, cold, salicylic acid (SA) and methyl jasmonate (MJ), suggesting that it might be a key regulator of stress signaling pathways in A. annua. AaNAC1 was shown to be localized to the nuclei by transforming tobacco leaf epidermal cells. When AaNAC1 was overexpressed in A. annua, the content of artemisinin and dihydroartemisinic acid was increased by 79% and 150%, respectively. The expression levels of artemisinin biosynthetic pathway genes, i.e. amorpha-4,11-diene synthase (ADS), artemisinic aldehyde Δ11(13) reductase (DBR2) and aldehyde dehydrogenase 1 (ALDH1), were increased. Dual luciferase (dual-LUC) assays showed that AaNAC1 could activate the transcription of ADS in vivo. The transgenic A. annua exhibited increased tolerance to drought and resistance to Botrytis cinerea. When AaNAC1 was overexpressed in Arabidopsis, the transgenic Arabidopsis were markedly more tolerant to drought. The transgenic Arabidopsis showed increased resistance to B. cinerea. These results indicate that AaNAC1 can potentially be used in transgenic breeding for improving the content of artemisinin and drought tolerance in A. annua. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Antihistomonal effects of artemisinin and Artemisia annua extracts in vitro could not be confirmed by in vivo experiments in turkeys and chickens.

    PubMed

    Thøfner, I C N; Liebhart, D; Hess, M; Schou, T W; Hess, C; Ivarsen, E; Fretté, X C; Christensen, L P; Grevsen, K; Engberg, R M; Christensen, J P

    2012-10-01

    Five different Artemisia annua-derived materials (i.e. dry leaves, pure artemisinin, and hexane, dichloromethane or methanol extracts of leaves) were screened for their in vitro activities against six clonal cultures of Histomonas meleagridis. Except for the methanol extract, all tested materials displayed in vitro activity against all tested protozoal clones. Neither the dry plant material, extracts nor artemisinin showed any antibacterial activity against the xenic bacteria accompanying the six H. meleagridis clones at concentration levels identical to the antihistomonal setting. The dichloromethane extract of dry leaves (Ext-DCM) (minimal lethal concentration=1.0 mg/ml) and artemisinin (half-maximal inhibitory concentration=1.295 mg/ml) had the most promising antihistomonal properties and were therefore subsequently tested in a standardized experimental infection model in both turkeys and chickens infected with clonal H. meleagridis. There were no differences between treatment groups, where all infected turkeys showed severe clinical histomonosis and demonstrated severe typhlohepatitis typical for histomonosis. Consistent with the infection model used, the infected chickens did not show any adverse clinical signs but contracted severe lesions in their caeca 7 and 10 days post infection (d.p.i.), liver lesions were absent to mild after 7 d.p.i. and progressed to severe lesions at 10 d.p.i.; thus no differences between treatment groups were observed. In conclusion, neither artemisinin nor Ext-DCM was able to prevent experimental histomonosis in turkeys and chickens at the given concentrations, which is contrary to the antihistomonal effect noticed in vitro even though the same clonal culture was used. The results of this study therefore clearly demonstrate the importance of defined in vivo experimentation in order to assess and verify in vitro results.

  10. On-line quantitative monitoring of liquid-liquid extraction of Lonicera japonica and Artemisia annua using near-infrared spectroscopy and chemometrics.

    PubMed

    Wu, Sha; Jin, Ye; Liu, Qian; Liu, Qi-An; Wu, Jianxiong; Bi, Yu-An; Wang, Zhengzhong; Xiao, Wei

    2015-01-01

    Liquid-liquid extraction of Lonicera japonica and Artemisia annua (JQ) plays a significant role in manufacturing Reduning injection. Many process parameters may influence liquid-liquid extraction and cause fluctuations in product quality. To develop a near-infrared (NIR) spectroscopy method for on-line monitoring of liquid-liquid extraction of JQ. Eleven batches of JQ extraction solution were obtained, ten for building quantitative models and one for assessing the predictive accuracy of established models. Neochlorogenic acid (NCA), chlorogenic acid (CA), cryptochlorogenic acid (CCA), isochlorogenic acid B (ICAB), isochlorogenic acid A (ICAA), isochlorogenic acid C (ICAC) and soluble solid content (SSC) were selected as quality control indicators, and measured by reference methods. NIR spectra were collected in transmittance mode. After selecting the spectral sub-ranges, optimizing the spectral pretreatment and neglecting outliers, partial least squares regression models were built to predict the content of indicators. The model performance was evaluated by the coefficients of determination (R (2)), the root mean square errors of prediction (RMSEP) and the relative standard error of prediction (RSEP). For NCA, CA, CCA, ICAB, ICAA, ICAC and SSC, R (2) was 0.9674, 0.9704, 0.9641, 0.9514, 0.9436, 0.9640, 0.9809, RMSEP was 0.0280, 0.2913, 0.0710, 0.0590, 0.0815, 0.1506, 1.167, and RSEP was 2.32%, 4.14%, 3.86%, 5.65%, 7.29%, 6.95% and 4.18%, respectively. This study demonstrated that NIR spectroscopy could provide good predictive ability in monitoring of the content of quality control indicators in liquid-liquid extraction of JQ.

  11. On-line quantitative monitoring of liquid-liquid extraction of Lonicera japonica and Artemisia annua using near-infrared spectroscopy and chemometrics

    PubMed Central

    Wu, Sha; Jin, Ye; Liu, Qian; Liu, Qi-an; Wu, Jianxiong; Bi, Yu-an; Wang, Zhengzhong; Xiao, Wei

    2015-01-01

    Background: Liquid-liquid extraction of Lonicera japonica and Artemisia annua (JQ) plays a significant role in manufacturing Reduning injection. Many process parameters may influence liquid-liquid extraction and cause fluctuations in product quality. Objective: To develop a near-infrared (NIR) spectroscopy method for on-line monitoring of liquid-liquid extraction of JQ. Materials and Methods: Eleven batches of JQ extraction solution were obtained, ten for building quantitative models and one for assessing the predictive accuracy of established models. Neochlorogenic acid (NCA), chlorogenic acid (CA), cryptochlorogenic acid (CCA), isochlorogenic acid B (ICAB), isochlorogenic acid A (ICAA), isochlorogenic acid C (ICAC) and soluble solid content (SSC) were selected as quality control indicators, and measured by reference methods. NIR spectra were collected in transmittance mode. After selecting the spectral sub-ranges, optimizing the spectral pretreatment and neglecting outliers, partial least squares regression models were built to predict the content of indicators. The model performance was evaluated by the coefficients of determination (R2), the root mean square errors of prediction (RMSEP) and the relative standard error of prediction (RSEP). Results: For NCA, CA, CCA, ICAB, ICAA, ICAC and SSC, R2 was 0.9674, 0.9704, 0.9641, 0.9514, 0.9436, 0.9640, 0.9809, RMSEP was 0.0280, 0.2913, 0.0710, 0.0590, 0.0815, 0.1506, 1.167, and RSEP was 2.32%, 4.14%, 3.86%, 5.65%, 7.29%, 6.95% and 4.18%, respectively. Conclusion: This study demonstrated that NIR spectroscopy could provide good predictive ability in monitoring of the content of quality control indicators in liquid-liquid extraction of JQ. PMID:26246744

  12. Extraction mechanism of ultrasound assisted extraction and its effect on higher yielding and purity of artemisinin crystals from Artemisia annua L. leaves.

    PubMed

    Chemat, Smain; Aissa, Abdallah; Boumechhour, Abdenour; Arous, Omar; Ait-Amar, Hamid

    2017-01-01

    This study proposes an ultrasound-horn system for the extraction of a natural active compound "artemisinin" from Artemisia annua L. leaves as an alternative to hot maceration technique. Ultrasound leaching improves artemisinin recovery at all temperatures where only ten minutes is required to recover 70% (4.42mgg(-1)) compared to 60min of conventional hot leaching for the same yield. For instance, ultrasound treatment at 30°C produced a higher yield than the one obtained by conventional maceration at 40°C. Kinetic study suggests that the extraction pattern can be assimilated, during the first ten minutes, to a first order steady state, from which activation energy calculations revealed that each gram of artemisinin required 7.38kJ in ultrasound versus 10.3kJ in the conventional system. Modeling results indicate the presence of two extraction stages, a faster stage with a diffusion coefficient of 19×10(-5)cm(2)min(-1) for ultrasound technique at 40°C, seven times higher than the conventional one; and a second deceleration stage similar for both techniques with diffusion coefficient ranging from 1.7 to 3.1×10(-5)cm(2)min(-1). It is noted that the efficient ultrasound extraction potential implies extraction of higher amount of co-metabolites so low artemisinin crystal purity is engendered but a combination with a purification step using activated charcoal and celite adsorbents produced crystals with comparable purity for conventional and ultrasound samples.

  13. [Biochemical study of pollens of the genus Artemisia].

    PubMed

    Raynaud, J; Prum, N; Debourcieu, L

    1987-06-01

    Pollens of three Artemisia: Artemisia vulgaris, Artemisia absinthium, Artemisia annua were separated by ion exchange chromatography and amino acids concentrations were measured. In any cases, the most important amino acid was proline, then asparagine + glutamine group, then gamma aminobutyric acid and alanine. An important level of histidine (8.1%) and hydroxyproline (6.2%) was found in Artemisia annua relative to the two other Artemisia species. The high histidine level, the precursor of histamine, found in the three kinds of Artemisia might be correlated with allergenic power of these weeds.

  14. Evaluation of enzymatically treated Artemisia annua L. on growth performance, meat quality, and oxidative stability of breast and thigh muscles in broilers.

    PubMed

    Wan, X L; Song, Z H; Niu, Y; Cheng, K; Zhang, J F; Ahmad, H; Zhang, L L; Wang, T

    2017-04-01

    An experiment was conducted to evaluate the effects of including enzymatically treated Artemisia annua L. (EA) in broiler diets on growth performance, meat quality, and oxidative stability of breast and thigh muscles. A total of 256 one-d-old Arbor Acres broiler chicks were randomly allotted into four groups with eight replicates of eight birds each. Broilers in the four groups were offered basal diet supplemented with 0.0, 0.5, 1.0, and 1.5 g/kg EA during the 42-d experiment, respectively. The ADG, ADFI, and feed/gain ratio (F:G) were measured at 42 d of age. Breast and thigh muscle samples from eight birds per treatment were obtained at 42 d to determine meat quality, free radical scavenging activity, and lipid peroxidation. All treatment groups had similar ADG, ADFI, and F:G during the 42 d experiment (P > 0.05). Drip loss at 24 h and shearing force of breast muscle were linearly (P < 0.05) and quadratically (P < 0.05) decreased by EA addition. The drip loss at 24 h and 48 h, cooking loss and shearing force of thigh muscle followed the same fashion. The supplementation of EA quadratically increased 2, 2-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) (P = 0.004) and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) (P = 0.035) free radical scavenging activities in breast muscle, and linearly (P < 0.05) and quadratically (P < 0.05) increased ABTS and DPPH scavenging activities of thigh muscle. Increasing levels of EA linearly (P < 0.05) or quadratically (P < 0.05) or both decreased the malondialdehyde (MDA) concentrations in breast and thigh muscle samples during 15 d of storage at 4°C. The results indicated that EA supplementation improved meat quality and oxidative stability of breast and thigh muscles in broilers. The inclusion level of 1.0 g/kg EA in broiler diet was recommended. © 2016 Poultry Science Association Inc.

  15. Multivariate data analysis and metabolic profiling of artemisinin and related compounds in high yielding varieties of Artemisia annua field-grown in Madagascar.

    PubMed

    Suberu, John; Gromski, Piotr S; Nordon, Alison; Lapkin, Alexei

    2016-01-05

    An improved liquid chromatography-tandem mass spectrometry (LC-MS/MS) protocol for rapid analysis of co-metabolites of A. annua in raw extracts was developed and extensively characterized. The new method was used to analyse metabolic profiles of 13 varieties of A. annua from an in-field growth programme in Madagascar. Several multivariate data analysis techniques consistently show the association of artemisinin with dihydroartemisinic acid. These data support the hypothesis of dihydroartemisinic acid being the late stage precursor to artemisinin in its biosynthetic pathway. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Apoptosis-induced effects of extract from Artemisia annua Linné by modulating PTEN/p53/PDK1/Akt/ signal pathways through PTEN/p53-independent manner in HCT116 colon cancer cells.

    PubMed

    Kim, Eun Ji; Kim, Guen Tae; Kim, Bo Min; Lim, Eun Gyeong; Kim, Sang-Yong; Kim, Young Min

    2017-04-28

    The extracts from Artemisia annua Linné (AAE) has been known to possess various functions including anti-bacterial, anti-virus and anti-oxidant effects. However, the mechanism of those effects of AAE is not well known. Pursuantly, we determined the apoptotic effects of extract of AAE in HCT116 cell. In this study, we suggested that AAE may exert cancer cell apoptosis through PTEN/PDK1/Akt/p53signal pathway and mitochondria-mediated apoptotic proteins. We measured 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) assay, Hoechst 33342 staining, Annexin V-PI staining, Mitopotential assay, immunofluorescence (IF) and Western blotting. Accordingly, our study showed that AAE treatment to HCT116 cells resulted in inhibition of PDK1, Akt, MDM2, Bcl-2, and pro-caspase 3 as well as activation of PTEN, p53-upregulated modulator of apoptosis (PUMA), Bax and Bak expression. Also we measured in vivo assay that xenograft model, H&E assay, TUNEL assay and IHC. AAE induced apoptosis via PTEN/p53/PDK1/Akt signal pathways through PTEN/p53-independent manner. AAE inhibit cell viability and increase LDH release in HCT116 colon cancer cell. Also, AAE increase apoptotic bodies, caspase -3,7 activation and reduces mitochondria membrane potential. AAE regulates cytochrome c translocation to the cytoplasm and Bax translocation to the mitochondrial membrane in an Immunofluorescence staining and increase PTEN and p53 expression in an in vivo tumor xenograft model. To elucidate the role of the PTEN/p53/PDK1/Akt signal pathways in cancer control, we conditionally inactivated PTEN/p53/PDK1/Akt signal pathways. We used inhibitors of PTEN, p53, PDK1, Akt. In consequence, these results indicate that AAE induced apoptosis by means of a mitochondrial event through the regulation of proteins such as Bax, Bak and cytochrome c in PDK1/Akt signaling pathways via PTEM/p53-independent manner. We confirmed the apoptotic effect of extracts of AAE by

  17. Potential ecological roles of Artemisinin produced by Artemisis annua L

    USDA-ARS?s Scientific Manuscript database

    Artemisia annua L. (annual wormwood, Asteraceae) and its secondary metabolite artemisinin, a unique sesquiterpene lactone with an endoperoxide bridge, has gained much attention due to its antimalarial properties. Artemisinin is a complex structure that is requires a significant amount of energy for ...

  18. A pilot randomized, placebo-controlled clinical trial to investigate the efficacy and safety of an extract of Artemisia annua administered over 12 weeks, for managing pain, stiffness, and functional limitation associated with osteoarthritis of the hip and knee.

    PubMed

    Stebbings, Simon; Beattie, Elizabeth; McNamara, Debra; Hunt, Sheena

    2016-07-01

    The objective of this study was to investigate the safety and efficacy of a dietary supplement, Arthrem, containing an extract from the medicinal plant Artemisia annua, on pain, stiffness, and functional limitation in osteoarthritis (OA) of the hip or knee. Forty-two patients were randomized to one of three groups (n = 14 in each group): 150-mg Artemisia annua extract (ART) twice daily (BD) (ART low dose), 300-mg ART BD (ART high dose), or placebo BD administered over 12 weeks. Efficacy was assessed using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC®) and visual analog scale (VAS) for pain. Participants treated with ART low dose demonstrated significant improvement in WOMAC total scores from baseline to 12 weeks (mean change, -12.2; standard deviation, [SD] 13.84; p = 0.0159); improvement was not shown in the placebo group (mean change, -7.8; SD, 19.80; p = 0.1029). Statistically significant reductions were seen from baseline in the ART low-dose group for individual WOMAC components stiffness and physical function. VAS pain scores were statistically significantly reduced from baseline to 12 weeks in the ART low-dose group (mean change, -21.4 mm; SD, 23.48 mm; p = 0.0082) but not the placebo group (mean change, -11.5 mm; SD, 28.97 mm, p = 0.1757). No statistically significant changes occurred from baseline in the placebo or ART high-dose groups for any parameter. ART low dose was well tolerated. ART has potential as an anti-inflammatory/analgesic in OA. Treatment with ART 150 mg BD is associated with clinically relevant reductions in pain over 12 weeks. Further studies are warranted.

  19. Application of Partial Internal Transcribed Spacer Sequences for the Discrimination of Artemisia capillaris from Other Artemisia Species

    PubMed Central

    Doh, Eui Jeong; Paek, Seung-Ho; Lee, Guemsan; Lee, Mi-Young; Oh, Seung-Eun

    2016-01-01

    Several Artemisia species are used as herbal medicines including the dried aerial parts of Artemisia capillaris, which are used as Artemisiae Capillaris Herba (known as “Injinho” in Korean medicinal terminology and “Yin Chen Hao” in Chinese). In this study, we developed tools for distinguishing between A. capillaris and 11 other Artemisia species that grow and/or are cultured in China, Japan, and Korea. Based on partial nucleotide sequences in the internal transcribed spacer (ITS) that differ between the species, we designed primers to amplify a DNA marker for A. capillaris. In addition, to detect other Artemisia species that are contaminants of A. capillaris, we designed primers to amplify DNA markers of A. japonica, A. annua, A. apiacea, and A. anomala. Moreover, based on random amplified polymorphic DNA analysis, we confirmed that primers developed in a previous study could be used to identify Artemisia species that are sources of Artemisiae Argyi Folium and Artemisiae Iwayomogii Herba. By using these primers, we found that multiplex polymerase chain reaction (PCR) was a reliable tool to distinguish between A. capillaris and other Artemisia species and to identify other Artemisia species as contaminants of A. capillaris in a single PCR. PMID:27313651

  20. Artemisia dominant species succession relating to the soil moisture decrease in abandoned land of the Loess Plateau (China): comparative study of drought-adaptive characteristics.

    PubMed

    Wang, Yong; Yu, Jing; Xia, Pengguo; He, Shaoxuan; Zhou, Ziyun; Han, Ruilian; Liang, Zongsuo

    2016-01-01

    Artemisia scoparia, Artemisia sacrorum and Artemisia giraldii were three dominant Artemisia species which successive grew in the secondary succession on abandoned land of the Loess Plateau. The succession accompanied the soil moisture steady decrease with field age after their abandonment. To elucidate the relationship between the Artemisia species succession and their drought-adaptation, three dominant species and a contrastive species Artemisia annua (mesophyte), were selected to compare their drought-resistant characteristics, including morphological and anatomical traits of leaf and root. Then physiological responses were investigated in mature plants after drought treatment. The results indicated that three dominant species leaf presented drought-adaptive structures, such as bushy trichomes, transitional or isolateral leaf cells, thick cuticles and epidermal cells. However, A. annua had no leaf traits involved in drought-adaptation. In addition, A. sacrorum and A. giraldii contained large root systems, while A. scoparia and A. annua utilized succulent roots. The physiological responses to drought suggested that A. giraldii had strong regulation in water using strategy, growth, as well as superoxide dismutase and catalase activity. A. sacrorum and A. giraldii could maintain high ascorbate peroxidase activity and malondialdehyde content, while A. scoparia and A. giraldii presented higher peroxidase activity, ascorbate and soluble sugar content. A. annua exhibited high proline and carotenoid contents under drought. The drought-resistant of the four Artemisia species presented the order of A. giraldii > A. sacrorum > A. scoparia > A. annua, which was consistent with their succession on abandoned land.

  1. Skin prick test results to artesunate in children sensitized to Artemisia vulgaris L.

    PubMed

    Mori, F; Pantano, S; Rossi, M E; Montagnani, C; Chiappini, E; Novembre, E; Galli, L; de Martino, M

    2015-09-01

    Artemisia vulgaris L and Artemisia annua L (Chinese: qinghao) are similar plants of the Asterbaceae family. Artesunate, a semi-synthetic derivate of artemisin which is the active principle extract of the plant qinghao, has antimalarial properties. Some cases of severe allergic reactions to artesunate have been described. The purpose of this study was to evaluate the association between positive skin tests to Artemisia vulgaris L allergen and a preparation of injectable artesunate. A total of 531 children were skin prick tested with inhalants (including Artemisia vulgaris L), foods, and artesunate. Among the 59 patients positive to Artemisia vulgaris L only one child was also positive to artesunate. No child was positive to artesunate in those negative to Artemisia vulgaris L. We conclude that Artemisia vulgaris L sensitization is not associated with sensitization to artesunate; consequently, skin test to artesunate should not be carried out before using the drug considering the rare allergic reactions. © The Author(s) 2015.

  2. Artemisia spp. essential oils against the disease-carrying blowfly Calliphora vomitoria.

    PubMed

    Bedini, Stefano; Flamini, Guido; Cosci, Francesca; Ascrizzi, Roberta; Echeverria, Maria Cristina; Guidi, Lucia; Landi, Marco; Lucchi, Andrea; Conti, Barbara

    2017-02-13

    Synanthropic flies play a considerable role in the transmission of pathogenic and non-pathogenic microorganisms. In this work, the essential oil (EO) of two aromatic plants, Artemisia annua and Artemisia dracunculus, were evaluated for their abilities to control the blowfly Calliphora vomitoria. Artemisia annua and A. dracunculus EOs were extracted, analysed and tested in laboratory bioassays. Besides, the physiology of EOs toxicity and the EOs antibacterial and antifungal properties were evaluated. Both Artemisia EOs deterred C. vomitoria oviposition on fresh beef meat. At 0.05 μl cm(-2) A. dracunculus EO completely inhibited C. vomitoria oviposition. Toxicity tests, by contact, showed LD50 of 0.49 and 0.79 μl EO per fly for A. dracunculus and A. annua, respectively. By fumigation, LC50 values were 49.55 and 88.09 μl l(-1) air for A. dracunculus and A. annua, respectively. EOs AChE inhibition in C. vomitoria (IC50 = 202.6 and 472.4 mg l(-1), respectively, for A. dracunculus and A. annua) indicated that insect neural sites are targeted by the EOs toxicity. Finally, the antibacterial and antifungal activities of the two Artemisia EOs may assist in the reduction of transmission of microbial infections/contaminations. Results suggest that Artemisia EOs could be of use in the control of C. vomitoria, a common vector of pathogenic microorganisms and agent of human and animal cutaneous myiasis. The prevention of pathogenic and parasitic infections is a priority for human and animal health. The Artemisia EOs could represent an eco-friendly, low-cost alternative to synthetic repellents and insecticides to fight synanthropic disease-carrying blowflies.

  3. Survey of artemisinin production by diverse Artemisia species in northern Pakistan

    PubMed Central

    2010-01-01

    Background Artemisinin is the current drug of choice for treatment of malaria and a number of other diseases. It is obtained from the annual herb, Artemisia annua and some microbial sources by genetic engineering. There is a great concern that the artemisinin production at current rate will not meet the increasing demand by the pharmaceutical industry, so looking for additional sources is imperative. Methods In current study, artemisinin concentration was analysed and compared in the flowers, leaves, roots and stems of Artemisia annua and 14 other Artemisia species including two varieties each for Artemisia roxburghiana and Artemisia dracunculus using high performance liquid chromatography (HPLC). Results The highest artemisinin concentration was detected in the leaves (0.44 ± 0.03%) and flowers (0.42 ± 0.03%) of A. annua, followed by the flowers (0.34 ± .02%) of A. bushriences and leaves (0.27 ± 0%) of A. dracunculus var dracunculus. The average concentration of artemisinin varied in the order of flowers > leaves > stems > roots. Conclusion This study identifies twelve novel plant sources of artemisinin, which may be helpful for pharmaceutical production of artemisinin. This is the first report of quantitative comparison of artemisinin among a large number of Artemisia species. PMID:21047440

  4. The genus Artemisia: a comprehensive review.

    PubMed

    Bora, Kundan Singh; Sharma, Anupam

    2011-01-01

    Medicinal plants are nature's gift to human beings to make disease free healthy life, and play a vital role to preserve our health. They are believed to be much safer and proven elixir in the treatment of various ailments. The genus Artemisia (Astraceae) consists of about 500 species, occurring throughout the world. The present review comprises the ethnopharmacological, phytochemical and therapeutic potential of various species of Artemisia. The aim of this this review is to bring together most of the available scientific research conducted on the genus Artemisia, which is currently scattered across various publications. Through this review the authors hope to attract the attention of natural product researchers throughout the world to focus on the unexplored potential of Artemisia species. This review has been compiled using references from major databases such as Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, SciFinder, PubMed, King's American Dispensatory, Henriette's Herbal Homepage, Dr. Duke's Phytochemical and Ethnobotanical Databases. An exhaustive survey of literature revealed that the different species of Artemisia have a vast range of biological activities including antimalarial, cytotoxic, antihepatotoxic, antibacterial, antifungal and antioxidant activity. Some very important drug leads have been discovered from this genus, notably artemisinin, the well known antimalarial drug isolated from the Chinese herb Artemisia annua. Terpenoids, flavonoids, coumarins, caffeoylquinic acids, sterols and acetylenes constitute major classes of phytoconstituents of the genus. Various species of Artemisia seems to hold great potential for in-depth investigation for various biological activities, especially their effects on the central nervous and cardiovascular systems.

  5. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia - current trends.

    PubMed

    Ali, Mohammad; Abbasi, Bilal Haider; Ahmad, Nisar; Khan, Haji; Ali, Gul Shad

    2017-11-01

    The genus Artemisia has been utilized worldwide due to its immense potential for protection against various diseases, especially malaria. Artemisia absinthium, previously renowned for its utilization in the popular beverage absinthe, is gaining resurgence due to its extensive pharmacological activities. Like A. annua, this species exhibits strong biological activities like antimalarial, anticancer and antioxidant. Although artemisinin was found to be the major metabolite for its antimalarial effects, several flavonoids and terpenoids are considered to possess biological activities when used alone and also to synergistically boost the bioavailability of artemisinin. However, due to the limited quantities of these metabolites in wild plants, in vitro cultures were established and strategies have been adopted to enhance medicinally important secondary metabolites in these cultures. This review elaborates on the traditional medicinal uses of Artemisia species and explains current trends to establish cell cultures of A. annua and A. absinthium for enhanced production of medicinally important secondary metabolites.

  6. Anti-allergic effect of Artemisia extract in rats

    PubMed Central

    Deng, Yan; Liu, Zijun; Geng, Yiwei

    2016-01-01

    Artemisia apiacea (also known as Artemisia annua L) is a herb commonly used in traditional Chinese medicine. In the early 1970s, artemisinin was isolated and identified as the active antimalarial ingredient, and thereafter, A. apiacea and artemisinin have been studied extensively, such as anti-inflammation and antipyresis, antibacteria, antiparasitic and immunosuppression effects of A. apiacea extract. The present study investigated the extracts anti-allergic effect obtained from the dried flowering tips of A. apiacea in rats. A systemic anaphylactic reaction model was induced in rats using compound 48/80. Artemisia extract was administered 1 h prior to the injection of compound 48/80. Artemisia was extracted from dried flowering tips of A. deserti using 80% ethanol. Subsequently, the systemic anaphylactic shock, histamine release, scratching behavior and vascular permeability induced by compound 48/80 were evaluated. The administration of Artemisia extract at 200 and 400 mg/kg doses suppressed the systemic anaphylactic shock induced by compound 48/80 in a dose-dependent manner. Overall, the Artemisia extract was able to effectively decrease systemic anaphylactic shock, histamine release, scratching behavior and vascular permeability induced by compound 48/80 in a dose-dependent manner. PMID:27446332

  7. Comparative analysis of ADS gene promoter in seven Artemisia species.

    PubMed

    Ranjbar, Mojtaba; Naghavi, Mohammad Reza; Alizadeh, Hoshang

    2014-12-01

    Artemisinin is the most effective antimalarial drug that is derived from Artemisia annua. Amorpha-4,11-diene synthase (ADS) controls the first committed step in artemisinin biosynthesis. The ADS gene expression is regulated by transcription factors which bind to the cis-acting elements on the ADS promoter and are probably responsible for the ADS gene expression difference in the Artemisia species. To identify the elements that are significantly involved in ADS gene expression, the ADS gene promoter of the seven Artemisia species was isolated and comparative analysis was performed on the ADS promoter sequences of these species. Results revealed that some of the cis-elements were unique or in terms of number were more in the high artemisinin producer species, A. annua, than the other species. We have reported that the light-responsive elements, W-box, CAAT-box, 5'-UTR py-rich stretch, TATA-box sequence and tandem repeat sequences have been identified as important factors in the increased expression of ADS gene.

  8. Applying high-resolution melting (HRM) technology to identify five commonly used Artemisia species

    PubMed Central

    Song, Ming; Li, Jingjian; Xiong, Chao; Liu, Hexia; Liang, Junsong

    2016-01-01

    Many members of the genus Artemisia are important for medicinal purposes with multiple pharmacological properties. Often, these herbal plants sold on the markets are in processed forms so it is difficult to authenticate. Routine testing and identification of these herbal materials should be performed to ensure that the raw materials used in pharmaceutical products are suitable for their intended use. In this study, five commonly used Artemisia species included Artemisia argyi, Artemisia annua, Artemisia lavandulaefolia, Artemisia indica, and Artemisia atrovirens were analyzed using high resolution melting (HRM) analysis based on the internal transcribed spacer 2 (ITS2) sequences. The melting profiles of the ITS2 amplicons of the five closely related herbal species are clearly separated so that they can be differentiated by HRM method. The method was further applied to authenticate commercial products in powdered. HRM curves of all the commercial samples tested are similar to the botanical species as labeled. These congeneric medicinal products were also clearly separated using the neighbor-joining (NJ) tree. Therefore, HRM method could provide an efficient and reliable authentication system to distinguish these commonly used Artemisia herbal products on the markets and offer a technical reference for medicines quality control in the drug supply chain. PMID:27698485

  9. In vitro antiplasmodial and phytochemical study of five Artemisia species from Iran and in vivo activity of two species.

    PubMed

    Ramazani, Ali; Sardari, Soroush; Zakeri, Sedigheh; Vaziri, Behrouz

    2010-08-01

    The extract from Artemisia annua, containing artemisinin, has been proven active against multidrug resistant Plasmodium falciparum in previous studies. The purpose of this paper was to study five Artemisia species from Iran for their in vitro and in vivo antimalarial property and detection of artemisinin in the active species by chromatographic and spectroscopic methods including nuclear magnetic resonance (NMR) spectroscopy. Dried plants were extracted by 80% ethanol, and total extracts were investigated for antiplasmodial property and artemisinin content by TLC, HPLC, and (1)H-NMR techniques. Two plants (A. annua L. and Artemisia absinthium L.) showed good antiplasmodial activity against multidrug resistant and sensitive strain of P. falciparum. A. absinthium and A. annua at concentrations of 200 mg/kg for 4 days reduced parasitemia in BALB/C mice infected with Plasmodium bergei by 94.28% and 83.28%, respectively, but we could not detect artemisinin in all plants studied in this research. The antiplasmodial property of these two herbs is possibly related to essential oils that present in high amounts in their extracts.

  10. Artemisia arborescens "Powis Castle" extracts and α-thujone prevent fruit infestation by codling moth neonates.

    PubMed

    Creed, Cory; Mollhagen, Ariel; Mollhagen, Noelle; Pszczolkowski, Maciej A

    2015-01-01

    The codling moth, Cydia pomonella L. (Tortricidae), is a major cosmopolitan pest of the apple. The potential of plant-derived semiochemicals for codling moth control is poorly studied. To evaluate the potential of crude extracts of five plants from the Asteraceae family: Artemisia absinthium L., Artemisia arborescens L. "Powis Castle", Artemisia annua L., and Artemisia ludoviciana Nutt. to prevent apple infestation by C. pomonella larvae and to identify the deterrent(s) in these plants. Artemisia dried leaves were extracted in v/v mixture of 80% ethanol, 10% isopropanol, and 10% of methanol, and the extracts were analyzed using high-performance thin layer chromatography. Preference of fruit treated with test solutions (Artemisia extracts or α-thujone) versus fruit treated with solvent was studied using choice assays. α-Thujone was detected in A. arborescens extract at a concentration of 77.4 ± 2.4 mg/g of dry tissue, localized between Rf 0.75 and 0.79 and was absent from crude extracts of remaining Artemisia species. Material from each extract in the zone between Rf 0.75 and 0.79 was removed from chromatographic plates and tested for feeding deterrence. Only the material from A. arborescens showed feeding deterrent properties. Minimum concentrations that prevented fruit infestation were 10 mg/ml for α-thujone and 1 mg/ml for A. arborescens crude extract. Artemisia arborescens contains chemicals that prevent apple infestation by codling moth neonates. Thujone is one of these chemicals, but it is not the only constituent of A. arborescens crude extract that prevents fruit infestation by codling moth neonates.

  11. [Pollen counts (from Ambrosia and Artemisia) in Lyon-Bron from 1982 to 1985].

    PubMed

    Dechamp, C; Hoch, D; Chouraqui, M; Bensoussan, M; Dechamp, J

    1987-06-01

    The purpose of this work is to distinguish the broad outlines of the pollen calendar in the Lyons area for the 5th year, using the same method (P. COUR) and the same location--Lyon-Bron weather station. Weekly data is given for 1982, 1983, 1984, 1985 (1986 data was not complete at the time of the conference, October 1986). This work is the fruit of numerical counts integrated into a data processing program which enables pollens tested and not tested in allergology to be identified. In Lyon, we observe 3 pollen seasons: early Spring (TREES), Spring (TREES and GRAMINEAE) and Summer-Autumn (TREES, GRAMINEAE, and COMPOSITAE). During the late the following are present: Artemisia vulgaris (last 10 days of July), RAGWEED (mid-August-1st fortnight of October), Artemisia annua (end September-early October). The particularity of our region is that not only ragweed pollen is collected but also two categories of Mugwort pollen, at different periods.

  12. Artemisia L.: sagebrush

    Treesearch

    Susan E. Meyer

    2008-01-01

    Sagebrush - Artemisia L. - species are probably the most common shrubs in western North America. Big sagebrush alone occupies an estimated 60 million ha as a landscape dominant or codominant in the semiarid interior, and related species of the subgenus Tridentatae are estimated to occupy an additional 50 million ha (Beetle 1960; McArthur and Stevens in press)....

  13. Phytochemical Analysis, Biological Activity, and Secretory Structures of Stachys annua (L.) L. subsp. annua (Lamiaceae) from Central Italy.

    PubMed

    Venditti, Alessandro; Bianco, Armandodoriano; Quassinti, Luana; Bramucci, Massimo; Lupidi, Giulio; Damiano, Silvia; Papa, Fabrizio; Vittori, Sauro; Maleci Bini, Laura; Giuliani, Claudia; Lucarini, Domenico; Maggi, Filippo

    2015-08-01

    Stachys annua subsp. annua, well-known in central Italy as 'stregona annuale', is an annual, small, slightly-scented herb, commonly found in fields and uncultivated areas in almost all regions of Italy. In folk medicine, its aerial parts were used as anti-catarrhal, febrifuge, tonic, and vulnerary. In the present work, the chemical composition of the flowering aerial parts was studied. The hydrodistilled volatile oil, analysed by GC/MS, showed sesquiterpenoids as the major fraction (42.5%); phytol (9.8%), germacrene D (9.2%), and spathulenol (8.5%) were the most abundant constituents. The volatile oil was assayed for antioxidant and cytotoxic activity by DPPH, ABTS, FRAP, and MTT methods. The cytotoxicity results against HCT116, A375, and MDA-MB 231 human tumor cell lines were significant, with IC50 values of 23.5, 37.2, and 41.5 μg/ml, respectively, whereas the antioxidant power was negligible. The EtOH extract was composed mainly of three glycosidic flavonoids, namely 7-{[2-O-(6-O-acetyl-β-D-allopyranosyl)-β-D-glucopyranosyl]oxy}-5,8-dihydroxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one (1), 7-{[6-O-acetyl-2-O-(6-O-acetyl-β-D-allopyranosyl)-β-D-glucopyranosyl]oxy}-2-(3,4-dihydroxyphenyl)-5,8-dihydroxy-4H-1-benzopyran-4-one (2), and 7-{[6-O-acetyl-2-O-(β-D-allopyranosyl)-β-D-glucopyranosyl]oxy}-2-(3-hydroxy-4-methoxyphenyl)-5,8-dihydroxy-4H-1-benzopyran-4-one (3). On the contrary, iridoids, considered chemotaxonomic markers of the genus Stachys, were absent in this species. Finally, the morphological and histochemical survey showed that glandular trichomes were composed of two main types, i.e. peltate type A and capitate types B and C giving positive response for both lipids and polyphenols. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  14. Functional Analysis of Amorpha-4,11-Diene Synthase (ADS) Homologs from Non-Artemisinin-Producing Artemisia Species: The Discovery of Novel Koidzumiol and (+)-α-Bisabolol Synthases.

    PubMed

    Muangphrom, Paskorn; Seki, Hikaru; Suzuki, Munenori; Komori, Aya; Nishiwaki, Mika; Mikawa, Ryota; Fukushima, Ery Odette; Muranaka, Toshiya

    2016-08-01

    The production of artemisinin, the most effective antimalarial compound, is limited to Artemisia annua. Enzymes involved in artemisinin biosynthesis include amorpha-4,11-diene synthase (ADS), amorpha-4,11-diene 12-monooxygenase (CYP71AV1) and artemisinic aldehyde Δ(11)13 reductase (DBR2). Although artemisinin and its specific intermediates are not detected in other Artemisia species, we reported previously that CYP71AV1 and DBR2 homologs were expressed in some non-artemisinin-producing Artemisia plants. These homologous enzymes showed similar functions to their counterparts in A. annua and can convert fed intermediates into the following products along the artemisinin biosynthesis in planta These findings suggested a partial artemisinin-producing ability in those species. In this study, we examined genes highly homologous to ADS, the first committed gene in the pathway, in 13 Artemisia species. We detected ADS homologs in A. absinthium, A. kurramensis and A. maritima. We analyzed the enzymatic functions of all of the ADS homologs after obtaining their cDNA. We found that the ADS homolog from A. absinthium exhibited novel activity in the cyclization of farnesyl pyrophosphate (FPP) to koidzumiol, a rare natural sesquiterpenoid. Those from A. kurramensis and A. maritima showed similar, but novel, activities in the cyclization of FPP to (+)-α-bisabolol. The unique functions of the novel sesquiterpene synthases highly homologous to ADS found in this study could provide insight into the molecular basis of the exceptional artemisinin-producing ability in A. annua. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Artemisia allergy research in China.

    PubMed

    Tang, Rui; Sun, Jin-Lu; Yin, Jia; Li, Zhi

    2015-01-01

    Artemisia is the most important outdoor allergen throughout China. It can cause allergic rhinitis, asthma, or both of them. Since it was verified as an allergenic pollen in 1960, it was identified two times in the Chinese National Pollen Survey (1984, 2009). The first oral immunotherapy double-blinded trial for Artemisia pollen asthma research was conducted in China in 1989 and published in 1990. 40 years since that study, there have been many published research reports on Chinese Artemisia allergy. This review summarizes the information regarding the discovery of Artemisia as an allergenic pollen, pollen account, epidemiology, allergen components, immunological changes in hay fever patients, natural course from rhinitis to asthma, diagnosis, and immunotherapies in China.

  16. Artemisia Allergy Research in China

    PubMed Central

    Tang, Rui; Sun, Jin-Lu; Yin, Jia; Li, Zhi

    2015-01-01

    Artemisia is the most important outdoor allergen throughout China. It can cause allergic rhinitis, asthma, or both of them. Since it was verified as an allergenic pollen in 1960, it was identified two times in the Chinese National Pollen Survey (1984, 2009). The first oral immunotherapy double-blinded trial for Artemisia pollen asthma research was conducted in China in 1989 and published in 1990. 40 years since that study, there have been many published research reports on Chinese Artemisia allergy. This review summarizes the information regarding the discovery of Artemisia as an allergenic pollen, pollen account, epidemiology, allergen components, immunological changes in hay fever patients, natural course from rhinitis to asthma, diagnosis, and immunotherapies in China. PMID:26000282

  17. The presence of amorpha-4, 11-diene synthase, a key enzyme in artemisinin production in ten Artemisia species

    PubMed Central

    Hosseini, R.; Yazdani, N.; Garoosi, GA.

    2011-01-01

    Background and the purpose of the study Artemisinin is one of the most effective medicine against malaria, which is produced naturally by Artemisia annua in low yield. It is produced in a metabolic pathway, in which several genes and gene products are involved. One of the key genes in this pathway is am1, which encodes amorpha-4, 11-diene synthase (ADS), a key enzyme in artemisinin biosynthesis pathway. The aim of this study was to determine the presence of this gene in ten Artemisia species in order to increase the yield of production of Artemisinin. Methods The experiments were carried out using PCR. Specific primers were designed based on the published am1 gene sequence obtained from A. annua (NCBI, accession number AF327527). Results The amplification of this gene by the specific primers was considered as a positive sign for the potentiality of artemisinin production. Since the entire am1 gene was not amplified in any of the 10 species used, four parts of the gene, essential in ADS enzyme function, corresponding to a) pair site of Arg10-Pro12 in the first 100 amino acids, b) aspartate rich motif (DDXXD), c) active site final lid and d) active site including farnesyl diphosphate (FDP) ionization sites and catalytic site in the ADS enzyme, were investigated. Major conclusion The sequence corresponding to ADS active site was amplified only in A. annua, A. aucheri and A. chamaemelifolia. The negative results obtained with other species could be due to some sequence alteration, such as point mutations or INDELs. We propose A. aucheri and A. chamaemelifolia as two potential candidate species for further characterization, breeding and transferring am1 gene for artemisinin overproduction. PMID:22615678

  18. The monoterpenes of Artemisia tridentata ssp. vaseyana, Artemisia cana ssp. viscidula and Artemisia tridentata ssp. spiciformis.

    PubMed

    Gunawardena, K; Rivera, S B; Epstein, W W

    2002-01-01

    Monoterpenes from three different members of the Anthemideae family, Artemisia tridentata ssp. vaseyana, Artemisia cana ssp. viscidula and Artemisia tridentata ssp. spiciformis were isolated and their structures determined using spectroscopic techniques. A total of 26 irregular and regular monoterpenes were identified. Among these, 20 had previously been identified in the Anthemideae family. Of the remaining six, four were known, but previously unidentified in this family. 2,2-Dimethyl-6-isopropenyl-2H-pyran, 2,3-dimethyl-6-isopropyl-4H-pyran and 2-isopropenyl-5-methylhexa-trans-3,5-diene-1-ol were isolated from both A. tridentata ssp. vaseyana and A. cana ssp. viscidula. The irregular monoterpene 2,2-dimethyl-6-isopropenyl-2H-pyran has a carbon skeleton analogous to the biologically important triterpene squalene. Two additional irregular monoterpenes, artemisia triene and trans-chrysanthemal were isolated from A. cana ssp. viscidula and lavandulol was isolated from A. tridentata ssp. spiciformis. This is the first time a compound possessing a lavandulyl-skeletal type has been found in the Anthemideae family.

  19. Glandular prediction: the pride and the prejudice.

    PubMed

    Waddell, C

    2004-08-01

    For the cytologist and clinician alike, glandular lesions pose possibly the greatest challenge in cervical screening. Worldwide, with increasing confidence in cytological prediction, terminology is evolving. In the UK, with the adoption of liquid based methods, the technical aspects of cervical cytology are being addressed, it is now time to standardise our terminology in glandular reporting. Consideration of the cytological complexity, clinical needs and international protocols is essential in this endeavour.

  20. Glandular odontogenic cyst: systematic review

    PubMed Central

    MacDonald-Jankowski, D S

    2010-01-01

    Objectives The aim of this study was to evaluate the principal features of “glandular odontogenic cyst” (GOC), by systematic review (SR), and to compare their frequencies among four global groups. Methods The databases searched were the PubMed interface of MEDLINE and LILACS. Only those reports of GOCs that occurred in a series in the reporting authors' caseload were considered. All cases were confirmed histopathologically. Results 18 reports on 17 series of consecutive cases were included in the SR. GOC affected males twice as frequently and the mandible almost three times as frequently. The mean age at first presentation was 44 years, coincident with that of the Western global group, in which the largest proportion of reports and cases first presented in the second half of the fifth decade. However, age at presentation of GOCs in the East Asian and sub-Saharan African global groups was nearly a decade younger, this was significant. Six reports included details of at least one clinical presentation. Eight reports included at least one conventional radiological feature. There were some significant differences between global groups. The Western global group had a particular predilection for the anterior sextants of both jaws. The sub-Saharan African group displayed buccolingual expansion (as did the Latin American group) and tooth displacement in every case. 18% of GOCs recurred overall, except in the sub-Saharan African global group. Conclusions GOCs have a marked propensity to recur in most global groups. GOCs presented in older patients and with swellings, affected the anterior sextants of both jaws, and radiologically were more likely to present as a well-defined unilocular radiolucency with buccolingual expansion. Tooth displacement, root resorption and an association with unerupted teeth occurred in 50%, 30% and 11% of cases, respectively. PMID:20203274

  1. Sexual Dimorphism in the Response of Mercurialis annua to Stress

    PubMed Central

    Orlofsky, Ezra M.; Kozhoridze, Giorgi; Lyubenova, Lyudmila; Ostrozhenkova, Elena; Winkler, J. Barbro; Schröder, Peter; Bacher, Adelbert; Eisenreich, Wolfgang; Guy, Micha; Golan-Goldhirsh, Avi

    2016-01-01

    The research presented stemmed from the observations that female plants of the annual dioecious Mercurialis annua outlive male plants. This led to the hypothesis that female plants of M. annua would be more tolerant to stress than male plants. This hypothesis was addressed in a comprehensive way, by comparing morphological, biochemical and metabolomics changes in female and male plants during their development and under salinity. There were practically no differences between the genders in vegetative development and physiological parameters. However, under salinity conditions, female plants produced significantly more new reproductive nodes. Gender-linked differences in peroxidase (POD) and glutathione transferases (GSTs) were involved in anti-oxidation, detoxification and developmental processes in M. annua. 1H NMR metabolite profiling of female and male M. annua plants showed that under salinity the activity of the TCA cycle increased. There was also an increase in betaine in both genders, which may be explainable by its osmo-compatible function under salinity. The concentration of ten metabolites changed in both genders, while ‘Female-only-response’ to salinity was detected for five metabolites. In conclusion, dimorphic responses of M. annua plant genders to stress may be attributed to female plants’ capacity to survive and complete the reproductive life cycle. PMID:27128954

  2. Cytokinins and Differentiation Processes in Mercurialis annua

    PubMed Central

    Louis, Jean-Paul; Augur, Christofer; Teller, Gerard

    1990-01-01

    Cytokinins in apices of eight isogenic lines of Mercurialis annua were compared (high performance liquid chromatography-gas chromatography mass spectroscopy-computer system). These apices develop normal staminate or pistillate differentiation processes (sex series lines) or empty (sterile), semiempty (semisterile), and full anthers (restored fertile male) in the sterility series in which a pistillate line was constructed. Both series developed two different cytokinin pathways: trans-cytokinins characterized the sex series, whereas the cis pathway characterized the sterility series. Drastic changes in the trans pathway (0/250 nanograms trans-zeatin and 166/0 nanograms zeatin nucleotide) induced staminate/pistillate differentiations. Less drastic quantitative changes in the cis pathway induced sterility or restored fertility compared to normal fertile anthers (192 or 669 nanograms/traces). The action of the complete cis-pathway was morphologically effective in the sterility series when the ratio of cis to trans pathways was 1:2 or 1:1 instead of 1:3. A final diagram shows the action of each sex or sterility allele on the enzymes controlling specific metabolites in both pathways. The discussion provides insights on the regulation of cytokinin-auxin balances specific for each kind of reproductive differentiation. Images Figure 3 PMID:16667886

  3. New developments in endocervical glandular lesions.

    PubMed

    McCluggage, W Glenn

    2013-01-01

    McCluggage W G (2012) Histopathology New developments in endocervical glandular lesions There is evidence that the prevalence of premalignant and malignant endocervical glandular lesions is increasing in real as well as in apparent terms. In this review, new developments and selected controversial aspects of endocervical glandular lesions are covered, concentrating mainly on premalignant and malignant lesions. The terminology of premalignant endocervical glandular lesions is discussed with a comparison of the World Health Organization classification and the cervical glandular intraepithelial neoplasia (CGIN) system, which is in widespread use in the United Kingdom. Primary cervical adenocarcinomas comprise a heterogeneous group of different morphological types, and while it is known that the majority of these are associated with high-risk human papillomavirus (HPV), it has become clear in recent years that most of the more uncommon morphological types are unassociated with HPV, although they may sometimes be p16-positive. A spectrum of benign, premalignant and malignant cervical glandular lesions exhibiting gastric differentiation is now recognized; these include type A tunnel clusters, typical and atypical lobular endocervical glandular hyperplasia, adenoma malignum and gastric-type adenocarcinoma. The latter is a recently described variant of primary cervical adenocarcinoma which has a different morphological appearance to the usual endocervical type and which is probably associated with different patterns of spread and a worse prognosis. There is accumulating evidence that 'early invasive' cervical adenocarcinomas have an excellent prognosis and are suitable for conservative management. Immunohistochemical markers of value in the distinction between a primary cervical and endometrial adenocarcinoma are discussed. While it is well known that a panel of markers comprising oestrogen receptor (ER), vimentin, p16 and monoclonal carcinoembryonic antigen (CEA) is

  4. Multiplex PCR method to discriminate Artemisia iwayomogi from other Artemisia plants.

    PubMed

    Doh, Eui Jeong; Oh, Seung-Eun

    2012-01-01

    Some plants in the genus Artemisia have been used for medicinal purposes. Among them, Artemisia iwayomogi, commonly referred to as "Haninjin," is one of the major medicinal materials used in traditional Korean medicine. By contrast, Artemisia capillaris and both Artemisia argyi and Artemisia princeps, referred to as "Injinho" and "Aeyup," respectively, are used to treat diseases different from those for which "Haninjin" is prescribed. Therefore, the development of a reliable method to differentiate each Artemisia herb is necessary. We found that a random amplified polymorphic DNA (RAPD) method can be used to efficiently discriminate a few Artemisia plants from one another. To improve the reliability of RAPD amplification, we designed primer sets based on the nucleotide sequences of RAPD products to amplify a sequence-characterized amplified region (SCAR) marker of A. iwayomogi. In addition, we designed two other primer sets to amplify SCAR markers of "Aeyup" (A. argyi and A. princeps) along with "Injinho" (A. capillaris) and Artemisia japonica, which are also traded in Korean herbal markets. Using these three primer sets, we developed a multiplex PCR method concurrently not only to discriminate A. iwayomogi from other Artemisia plants, but also to identify Artemisia plants using a single PCR process.

  5. Pseudomonas fluorescens strains selectively suppress annual bluegrass (Poa annua L.)

    USDA-ARS?s Scientific Manuscript database

    Annual bluegrass (Poa annua L.) is a cool-season annual grass that is a major weed species in turf, turfgrass-seed production, sod production, and golf courses of the western United States. There are few selective herbicides available for the management of annual bluegrass. While the life cycles o...

  6. Malignant glandular lesions and glandular differentiation in invasive/noninvasive urothelial carcinoma of the urinary bladder.

    PubMed

    Behzatoğlu, Kemal

    2011-12-01

    Although the lumen of the urinary bladder is covered with only urothelial epithelium, malign glandular lesions (eg, nonurachal adenocarcinoma) and benign lesions (eg, cystitis cystica and cystitis glandularis) can also rarely occur in this site due to its characteristic embryologic development. Glandular differentiation is uncommon in urothelial carcinomas and is even less common in noninvasive urothelial cancers. In addition, in situ urothelial carcinomas are more likely to progress in the presence of glandular differentiation toward high-grade urothelial carcinomas and/or aggressive urothelial carcinomas. Pure nonurachal adenocarcinomas and mixed carcinomas (urothelial carcinoma and adenocarcinoma) are very rare, and their pathogenesis is not clear. Most of the nonurachal adenocarcinomas are thought to arise on the grounds of cystitis glandularus with intestinal metaplasia. Here, I present 2 cases with noninvasive urothelial carcinoma with substantial glandular differentiation showing progression to signet ring cell carcinoma and invasive urothelial carcinoma, one case with mixed carcinoma (urothelial carcinoma and adenocarcinoma) and another case with pure adenocarcinoma developing from cystitis glandularis with intestinal metaplasia, and discuss malign glandular lesions in the bladder and invasive/noninvasive urothelial carcinomas with glandular differentiation.

  7. Volatile Constituents of Artemisia vestita Oil1.

    PubMed

    Weyerstahl, P; Kaul, V K; Weirauch, M; Marschall-Weyerstahl, H

    1987-02-01

    The essential oil of ARTEMISIA VESTITA (Compositae) was investigated by GLC, NMR, and mass spectrometry. Main constituents are alpha-, beta-, gamma-himachalene, caryophyllene, germacrene D, himachalol, allohimachalol, alpha-, gamma-atlantone, 1,8-cineole, yomogi alcohol, artemisia, and santolina alcohol and their acetates, and the thujones and thujanols. The characteristic oder of the oil is determined by the freshly smelling, 1, 8-cineole and thujone, and by the woody and sweet note of himachalol and atlantone.

  8. Secreting glandular trichomes: more than just hairs.

    PubMed

    Wagner, G J

    1991-07-01

    Secreting glandular plant trichome types which accumulate large quantities of metabolic products in the space between their gland cell walls and cuticle permit the plant to amass secretions in a compartment that is virtually outside the plant body. These structures not only accumulate and store what are often phytotoxic oils but they position these compounds as an apparent first line of defense at the surface of the plant. Recent advances in methods for isolation and study of trichome glands have allowed more precise analysis of gland cell metabolism and enzymology. Isolation of mutants with altered trichome phenotypes provides new systems for probing the genetic basis of trichome development. These advances and their continuation can pave the way for future attempts at modification of trichome secretion. The biochemical capability of glandular secreting trichomes and the potential for its future manipulation to exploit this external storage compartment is the focus of this review.

  9. Secreting Glandular Trichomes: More than Just Hairs

    PubMed Central

    Wagner, George J.

    1991-01-01

    Secreting glandular plant trichome types which accumulate large quantities of metabolic products in the space between their gland cell walls and cuticle permit the plant to amass secretions in a compartment that is virtually outside the plant body. These structures not only accumulate and store what are often phytotoxic oils but they position these compounds as an apparent first line of defense at the surface of the plant. Recent advances in methods for isolation and study of trichome glands have allowed more precise analysis of gland cell metabolism and enzymology. Isolation of mutants with altered trichome phenotypes provides new systems for probing the genetic basis of trichome development. These advances and their continuation can pave the way for future attempts at modification of trichome secretion. The biochemical capability of glandular secreting trichomes and the potential for its future manipulation to exploit this external storage compartment is the focus of this review. PMID:16668241

  10. Development of peltate glandular trichomes of peppermint.

    PubMed

    Turner, G W; Gershenzon, J; Croteau, R B

    2000-10-01

    Cryofixation and conventional chemical fixation methods were employed to examine the ultrastructure of developing peltate glandular trichomes of peppermint (Mentha x piperita). Our results are discussed in relation to monoterpene production and the mechanism of essential oil secretion. Peltate glands arise as epidermal protuberances (initials) that divide asymmetrically to produce a vacuolate basal cell, a stalk cell, and a cytoplasmically dense apical cell. Further divisions of the apical cell produce a peltate trichome with one basal cell, one stalk cell, and eight glandular (secretory) disc cells. Presecretory gland cells resemble meristematic cells because they contain proplastids, small vacuoles, and large nuclei. The secretory phase coincides with the separation and filling of the sub-cuticular oil storage space, the maturation of glandular disc cell leucoplasts in which monoterpene biosynthesis is known to be initiated, and the formation of extensive smooth endoplasmic reticulum at which hydroxylation steps of the monoterpene biosynthetic pathway occur. The smooth endoplasmic reticulum of the secretory cells appears to form associations with both the leucoplasts and the plasma membrane bordering the sub-cuticular oil storage cavity, often contains densely staining material, and may be involved with the transport of the monoterpene-rich secretion product. Associated changes in the ultrastructure of the secretory stage stalk cell are also described, as is the ultrastructure of the fragile post-secretory gland for which cryofixation methods are particularly well suited for the preservation of organizational integrity.

  11. Genetic Transformation of Artemisia carvifolia Buch with rol Genes Enhances Artemisinin Accumulation.

    PubMed

    Dilshad, Erum; Cusido, Rosa Maria; Ramirez Estrada, Karla; Bonfill, Mercedes; Mirza, Bushra

    2015-01-01

    The potent antimalarial drug artemisinin has a high cost, since its only viable source to date is Artemisia annua (0.01-0.8% DW). There is therefore an urgent need to design new strategies to increase its production or to find alternative sources. In the current study, Artemisia carvifolia Buch was selected with the aim of detecting artemisinin and then enhancing the production of the target compound and its derivatives. These metabolites were determined by LC-MS in the shoots of A. carvifolia wild type plants at the following concentrations: artemisinin (8μg/g), artesunate (2.24μg/g), dihydroartemisinin (13.6μg/g) and artemether (12.8μg/g). Genetic transformation of A. carvifolia was carried out with Agrobacterium tumefaciens GV3101 harboring the rol B and rol C genes. Artemisinin content increased 3-7-fold in transgenics bearing the rol B gene, and 2.3-6-fold in those with the rol C gene. A similar pattern was observed for artemisinin analogues. The dynamics of artemisinin content in transgenics and wild type A.carvifolia was also correlated with the expression of genes involved in its biosynthesis. Real time qPCR analysis revealed the differential expression of genes involved in artemisinin biosynthesis, i.e. those encoding amorpha-4, 11 diene synthase (ADS), cytochrome P450 (CYP71AV1), and aldehyde dehydrogenase 1 (ALDH1), with a relatively higher transcript level found in transgenics than in the wild type plant. Also, the gene related to trichome development and sesquiterpenoid biosynthesis (TFAR1) showed an altered expression in the transgenics compared to wild type A.carvifolia, which was in accordance with the trichome density of the respective plants. The trichome index was significantly higher in the rol B and rol C gene-expressing transgenics with an increased production of artemisinin, thereby demonstrating that the rol genes are effective inducers of plant secondary metabolism.

  12. Prevalence of sensitization to weed pollens of Humulus scandens, Artemisia vulgaris, and Ambrosia artemisiifolia in northern China

    PubMed Central

    Hao, Guo-dong; Zheng, Yi-wu; Gjesing, Birgitte; Kong, Xing-ai; Wang, Jing-yuan; Song, Zhi-jing; Lai, Xu-xin; Zhong, Nan-shan; Spangfort, Michael D.

    2013-01-01

    Objective: Weed pollens are common sources of allergens worldwide. The prevalence of weed pollen sensitization is not yet fully known in China. The purpose of this study was to investigate the prevalence of sensitization to weed allergens from Artemisia, Ambrosia, and Humulus in northern China. Methods: A total of 1 144 subjects (aged from 5 to 68 years) visiting our clinic from June to October 2011 underwent intradermal testing using a panel of 25 allergen sources. Subjects with positive skin responses to any pollen were further tested for their serum concentrations of IgE antibodies against Artemisia vulgaris, Ambrosia artemisiifolia, and Humulus scandens, and against the purified allergens, Art v 1 and Amb a 1. Results: Of 1 144 subjects, 170 had positive intradermal reactions to pollen and 144 donated serum for IgE testing. The prevalence of positive intradermal responses to pollens of Artemisia sieversiana, Artemisia annua, A. artemisiifolia, and H. scandens was 11.0%, 10.2%, 3.7%, and 6.6%, respectively. Among the intradermal positive subjects, the prevalence of specific IgE antigens to A. vulgaris was 58.3%, to A. artemisiifolia 14.7%, and to H. scandens 41.0%. The prevalence of specific IgE antigens to the allergen Art v 1 was 46.9%, and to Amb a 1 was 11.2%. The correlation between the presence of IgE antibodies specific to A. vulgaris and to the Art v 1 antigen was very high. Subjects with A. artemisiifolia specific IgE also had A. vulgaris specific IgE, but with relatively high levels of A. vulgaris IgE antibodies. There were no correlations between the presence of IgE antibodies to H. scandens and A. vulgaris or to H. scandens and A. artemisiifolia. Conclusions: The intradermal prevalence of weed pollen sensitization among allergic subjects in northern China is about 13.5%. Correlations of specific IgE antibodies suggest that pollen allergens from Artemisia and Humulus are independent sources for primary sensitization. PMID:23463767

  13. Effect of Gaeddongssuk (Artemisia annua L.) Powder on Quality and Shelf Stability of Emulsion Sausages during Refrigerated Storage

    PubMed Central

    Ham, Hyoung-Joo; Kang, Geun-Ho; Choi, Yun-Sang; Jeong, Tae-Jun; Hwang, Ko-Eun; Kim, Cheon-Jei

    2016-01-01

    The objective of this study was to evaluate effects of Gaeddongssuk powder (GP) on quality characteristics and shelf stability of emulsion sausages during storage. Proximate composition properties showed no significant differences in all treatment (p>0.05). Control showed the highest cooking loss while the treatment with GP showed decreased cooking loss depending on increasing GP content (p<0.05). Apparent viscosity of batter was increased as the amount of GP increased, whereas hardness of emulsion sausages was decreased with increasing GP level. In sensory evaluation, emulsion sausage with 0.1% GP resulted in the highest score in overall acceptability. The pH values of all treatments decreased at the early storage stage, followed by gradual increase. The lightness and redness of treatments were decreased when the level of GP was increased. However, the yellowness of sausages with GP were higher than that of control (p<0.05). The addition of GP inhibited lipid oxidation of emulsion sausages during storage depending on its level. The aerobic bacteria population and VBN was unaffected by addition of GP during the storage (p>0.05). Therefore, Gaeddongssuk powder up to 0.1% has a potential as a natural antioxidant for meat products because it can inhibit lipid oxidation of sausages without decreasing their sensory properties. PMID:27857535

  14. Dried whole-plant Artemisia annua slows evolution of malaria drug resistance and overcomes resistance to artemisinin

    PubMed Central

    Elfawal, Mostafa A.; Towler, Melissa J.; Reich, Nicholas G.; Weathers, Pamela J.; Rich, Stephen M.

    2015-01-01

    Pharmaceutical monotherapies against human malaria have proven effective, although ephemeral, owing to the inevitable evolution of resistant parasites. Resistance to two or more drugs delivered in combination will evolve more slowly; hence combination therapies have become the preferred norm in the fight against malaria. At the forefront of these efforts has been the promotion of Artemisinin Combination Therapy, but despite these efforts, resistance to artemisinin has begun to emerge. In 2012, we demonstrated the efficacy of the whole plant (WP)—not a tea, not an infusion—as a malaria therapy and found it to be more effective than a comparable dose of pure artemisinin in a rodent malaria model. Here we show that WP overcomes existing resistance to pure artemisinin in the rodent malaria Plasmodium yoelii. Moreover, in a long-term artificial selection for resistance in Plasmodium chabaudi, we tested resilience of WP against drug resistance in comparison with pure artemisinin (AN). Stable resistance to WP was achieved three times more slowly than stable resistance to AN. WP treatment proved even more resilient than the double dose of AN. The resilience of WP may be attributable to the evolutionary refinement of the plant’s secondary metabolic products into a redundant, multicomponent defense system. Efficacy and resilience of WP treatment against rodent malaria provides compelling reasons to further explore the role of nonpharmaceutical forms of AN to treat human malaria. PMID:25561559

  15. Dried whole-plant Artemisia annua slows evolution of malaria drug resistance and overcomes resistance to artemisinin.

    PubMed

    Elfawal, Mostafa A; Towler, Melissa J; Reich, Nicholas G; Weathers, Pamela J; Rich, Stephen M

    2015-01-20

    Pharmaceutical monotherapies against human malaria have proven effective, although ephemeral, owing to the inevitable evolution of resistant parasites. Resistance to two or more drugs delivered in combination will evolve more slowly; hence combination therapies have become the preferred norm in the fight against malaria. At the forefront of these efforts has been the promotion of Artemisinin Combination Therapy, but despite these efforts, resistance to artemisinin has begun to emerge. In 2012, we demonstrated the efficacy of the whole plant (WP)--not a tea, not an infusion--as a malaria therapy and found it to be more effective than a comparable dose of pure artemisinin in a rodent malaria model. Here we show that WP overcomes existing resistance to pure artemisinin in the rodent malaria Plasmodium yoelii. Moreover, in a long-term artificial selection for resistance in Plasmodium chabaudi, we tested resilience of WP against drug resistance in comparison with pure artemisinin (AN). Stable resistance to WP was achieved three times more slowly than stable resistance to AN. WP treatment proved even more resilient than the double dose of AN. The resilience of WP may be attributable to the evolutionary refinement of the plant's secondary metabolic products into a redundant, multicomponent defense system. Efficacy and resilience of WP treatment against rodent malaria provides compelling reasons to further explore the role of nonpharmaceutical forms of AN to treat human malaria.

  16. Effect of mineral nutrition, growth regulators, and environmental stresses on biomass production and artemisinin concentration of Artemisia annua (L.)

    USDA-ARS?s Scientific Manuscript database

    Malaria is a mosquito-borne disease caused by different species of Plasmodium. It is the world’s most severe parasitic infection and kills almost two million people a year, afflicting more than one-third of the global population. The burden of malaria has increased by the worldwide spread of multi-d...

  17. An affordable and sensitive determination of artemisinin in Artemisia annua L. by gas chromatography with electron capture detector

    USDA-ARS?s Scientific Manuscript database

    Artemisinin demand has increased sharply since the Word Health Organization recommended its use as part of the artemisinin combination therapies (ACT) in 2001. The area for the crop cultivation has expanded in Africa and Asia and simpler and affordable methods for artemisinin analysis are needed fo...

  18. In vitro trematocidal effects of crude alcoholic extracts of Artemisia annua, A. absinthium, Asimina triloba, and Fumaria officinalis

    USDA-ARS?s Scientific Manuscript database

    Trematode infections negatively affect human and livestock health, and threaten global food safety. The only approved human anthelmintics for trematodiasis are triclabendazole and praziquantel with no alternative drugs in sight. We tested six crude plant extracts against adult Schistosoma mansoni,...

  19. Comparative functional genomic analysis of Solanum glandular trichome types.

    PubMed

    McDowell, Eric T; Kapteyn, Jeremy; Schmidt, Adam; Li, Chao; Kang, Jin-Ho; Descour, Anne; Shi, Feng; Larson, Matthew; Schilmiller, Anthony; An, Lingling; Jones, A Daniel; Pichersky, Eran; Soderlund, Carol A; Gang, David R

    2011-01-01

    Glandular trichomes play important roles in protecting plants from biotic attack by producing defensive compounds. We investigated the metabolic profiles and transcriptomes to characterize the differences between different glandular trichome types in several domesticated and wild Solanum species: Solanum lycopersicum (glandular trichome types 1, 6, and 7), Solanum habrochaites (types 1, 4, and 6), Solanum pennellii (types 4 and 6), Solanum arcanum (type 6), and Solanum pimpinellifolium (type 6). Substantial chemical differences in and between Solanum species and glandular trichome types are likely determined by the regulation of metabolism at several levels. Comparison of S. habrochaites type 1 and 4 glandular trichomes revealed few differences in chemical content or transcript abundance, leading to the conclusion that these two glandular trichome types are the same and differ perhaps only in stalk length. The observation that all of the other species examined here contain either type 1 or 4 trichomes (not both) supports the conclusion that these two trichome types are the same. Most differences in metabolites between type 1 and 4 glands on the one hand and type 6 glands on the other hand are quantitative but not qualitative. Several glandular trichome types express genes associated with photosynthesis and carbon fixation, indicating that some carbon destined for specialized metabolism is likely fixed within the trichome secretory cells. Finally, Solanum type 7 glandular trichomes do not appear to be involved in the biosynthesis and storage of specialized metabolites and thus likely serve another unknown function, perhaps as the site of the synthesis of protease inhibitors.

  20. Artemisia tridenata seed bank densities following wildfires

    USDA-ARS?s Scientific Manuscript database

    Big sagebrush (Artemisia spp.) is a critical shrub to such sagebrush obligate species as sage grouse, (Centocercus urophasianus), mule deer (Odocoileus hemionus), and pygmy rabbit (Brachylagus idahoensis). Big sagebrush do not sprout after wildfires and big sagebrush seed is generally short-lived a...

  1. Exploration and classification of chromatographic fingerprints as additional tool for identification and quality control of several Artemisia species.

    PubMed

    Alaerts, Goedele; Pieters, Sigrid; Logie, Hans; Van Erps, Jürgen; Merino-Arévalo, Maria; Dejaegher, Bieke; Smeyers-Verbeke, Johanna; Vander Heyden, Yvan

    2014-07-01

    The World Health Organization accepts chromatographic fingerprints as a tool for identification and quality control of herbal medicines. This is the first study in which the distinction, identification and quality control of four different Artemisia species, i.e. Artemisia vulgaris, A. absinthium, A. annua and A. capillaris samples, is performed based on the evaluation of entire chromatographic fingerprint profiles developed with identical experimental conditions. High-Performance Liquid Chromatography (HPLC) with Diode Array Detection (DAD) was used to develop the fingerprints. Application of factorial designs leads to methanol/water (80:20 (v/v)) as the best extraction solvent for the pulverised plant material and to a shaking bath for 30 min as extraction method. Further, so-called screening, optimisation and fine-tuning phases were performed during fingerprint development. Most information about the different Artemisia species, i.e. the highest number of separated peaks in the fingerprint, was acquired on four coupled Chromolith columns (100 mm × 4.6 mm I.D.). Trifluoroacetic acid 0.05% (v/v) was used as mobile-phase additive in a stepwise linear methanol/water gradient, i.e. 5, 34, 41, 72 and 95% (v/v) methanol at 0, 9, 30, 44 and 51 min, where the last mobile phase composition was kept isocratic till 60 min. One detection wavelength was selected to perform data analysis. The lowest similarity between the fingerprints of the four species was present at 214 nm. The HPLC/DAD method was applied on 199 herbal samples of the four Artemisia species, resulting in 357 fingerprints. The within- and between-day variation of the entire method, as well as the quality control fingerprints obtained during routine analysis, were found acceptable. The distinction of these Artemisia species was evaluated based on the entire chromatographic profiles, developed by a shared method, and visualised in score plots by means of the Principal Component Analysis (PCA) exploratory data

  2. [Flavonoids of Artemisia campestris, ssp. glutinosa].

    PubMed

    Hurabielle, M; Eberle, J; Paris, M

    1982-10-01

    Four flavanones (pinostrobin, pinocembrin, sakuranetin and naringenin), one dihydroflavonol (7-methyl aromadendrin) and one flavone (hispidulin) have been isolated from Artemisia campestris L. ssp. glutinosa Gay and identified by spectroscopic methods. Artemisia campestris L. sous-espèce glutinosa Gay est une Composée Anthémidée largement répandue sur les sables du littoral méditerranéean et abondante dans certaines régions d'Espagne et d'Italie. Dans le cadre d'une étude chimiotaxonomique du genre Artemisia Tourn., nous nous sommes intéressés à l'analyse des flavonoïdes, composés jamais décrits, à notre connaissance, dans cette espèce d' Artemisia. Les sommités fleuries d' Artemisia campestris sous-espèce glutinosa, séchées et pulvérisées, sont dégraissées à l'ether de pétrole et épuisées par le chloroforme. Le fractionnement de l'extrait chloroformique, par chromatographie sur colonne de silice, et la purification de certaines fractions conduisent à l'isolement de six génines flavoniques, à l'etat pur. L' étude des spectres UV, des spectres de masse et des spectres de RMN [1,2] et la comparaison avec des échantillons authentiques permettent de proposer, pour ces flavonoïdes, les structures de la pinostrobine [3], de la pinocembrine [4], de la sakuranétine, de la naringénine [5] (flavanones), de la méthyl-7-aromadendrine, [6, 7] (dihydroflavonol) et de l'hispiduline [8, 9] (flavone); quatre de ces génines sont méthylées. Parmi ces flavonoïdes, la pinostrobine n'a jamais été décrite, à notre connaissance, dans la famille des Composées; la pinocembrine, la sakuranétine et la naringénine ont déjà été signalées chez quelques Astéracées et Eupatoriées [10], et l'hispiduline dans la tribu des Anthémidées ( Santolina chamaecyparissus L.) [8]. Seule, la méthyl-7-aromadendrine semble décrite, à ce jour, dans le genre Artemisia Tourn. [7].

  3. Terpene biosynthesis in glandular trichomes of hop.

    PubMed

    Wang, Guodong; Tian, Li; Aziz, Naveed; Broun, Pierre; Dai, Xinbin; He, Ji; King, Andrew; Zhao, Patrick X; Dixon, Richard A

    2008-11-01

    Hop (Humulus lupulus L. Cannabaceae) is an economically important crop for the brewing industry, where it is used to impart flavor and aroma to beer, and has also drawn attention in recent years due to its potential pharmaceutical applications. Essential oils (mono- and sesquiterpenes), bitter acids (prenylated polyketides), and prenylflavonoids are the primary phytochemical components that account for these traits, and all accumulate at high concentrations in glandular trichomes of hop cones. To understand the molecular basis for terpene accumulation in hop trichomes, a trichome cDNA library was constructed and 9,816 cleansed expressed sequence tag (EST) sequences were obtained from random sequencing of 16,152 cDNA clones. The ESTs were assembled into 3,619 unigenes (1,101 contigs and 2,518 singletons). Putative functions were assigned to the unigenes based on their homology to annotated sequences in the GenBank database. Two mono- and two sesquiterpene synthases identified from the EST collection were expressed in Escherichia coli. Hop MONOTERPENE SYNTHASE2 formed the linear monterpene myrcene from geranyl pyrophosphate, whereas hop SESQUITERPENE SYNTHASE1 (HlSTS1) formed both caryophyllene and humulene from farnesyl pyrophosphate. Together, these enzymes account for the production of the major terpene constituents of the hop trichomes. HlSTS2 formed the minor sesquiterpene constituent germacrene A, which was converted to beta-elemene on chromatography at elevated temperature. We discuss potential functions for other genes expressed at high levels in developing hop trichomes.

  4. Anticomplement activity of various solvent extracts from Korea local Artemisia spp.

    PubMed

    Moon, Hyung-In; Jung, Seil; Lee, Young-Choon; Lee, Jai-Heon

    2012-02-01

    The study evaluated the anticomplement activity from various solvent extracts of eight Artemisia plants (Artemisia capillaris Thunb., Artemisia fukudo Makino., Artemisia japonica Thunb., Artemisia montana (Nakai) Pamp., Artemisia keiskeana Miq., Artemisia rubripes Nakai., Artemisia stolonifera (Maxim.) Kom., and Artemisia sylvatica Max.) from South Korea on the classical pathway (CP). We have evaluated various organic solvent extract from eight Artemisia plants with regard to its anticomplement activity on the CP. A. rubripes and A. montana chloroform extracts showed inhibitory activity against complement system with 50% inhibitory concentrations (IC₅₀) values of 54.3 and 64.2 μg/mL. This is the first report of anticomplement activity from Artemisia plants.

  5. Highly oxygenated sesquiterpenes in Artemisia alba Turra.

    PubMed

    Todorova, Milka; Trendafilova, Antoaneta; Danova, Kalina; Simmons, Luke; Wolfram, Evelyn; Meier, Beat; Riedl, Rainer; Evstatieva, Luba

    2015-02-01

    Ten new sesquiterpene alcohols of which seven germacranes, a eudesmane, a guaiane and an oplopane were isolated from the aerial parts of Artemisia alba Turra. Their structures and relative stereochemistry were elucidated by spectral methods ((1)H and (13)C NMR, COSY, HSQC, HMBC, NOESY, and MS). In addition, the known 7-hydroxycadin-4-en-3-one, centaureidin and axillarin were found for the first time in the studied species.

  6. Chlamydia muridarum Induction of Glandular Duct Dilation in Mice

    PubMed Central

    Sun, Xin; Yang, Zhangsheng; Zhang, Hongbo; Dai, Jin; Chen, Jianlin; Tang, Lingli; Rippentrop, Sheena; Xue, Min

    2015-01-01

    Although Chlamydia-induced hydrosalpinx in women and mice has been used as a surrogate marker for tubal infertility, the medical relevance of nontubal pathologies, such as uterine horn dilation, developed in mice following chlamydial infection remains unclear. We now report that the uterine horn dilation correlates with glandular duct dilation detected microscopically following Chlamydia muridarum infection. The dilated glandular ducts pushed the uterine horn lumen to closure or dilation and even broke through the myometrium to develop extrusion outside the uterine horn. The severity scores of uterine horn dilation observed macroscopically correlated well with the number of cross sections of the dilated glandular ducts counted under microscopy. Chlamydial infection was detected in the glandular epithelial cells, potentially leading to inflammation and dilation of the glandular ducts. Direct delivery of C. muridarum into the mouse uterus increased both uterine horn/glandular duct dilation and hydrosalpinx. However, the chlamydial plasmid, which is essential for the induction of hydrosalpinx, was not required for the induction of uterine horn/glandular duct dilation. Screening 12 strains of mice for uterine horn dilation following C. muridarum infection revealed that B10.D2, C57BL/10J, and C57BL/6J mice were most susceptible, followed by BALB/cJ and A/J mice. Deficiency in host genes involved in immune responses failed to significantly alter the C. muridarum induction of uterine horn dilation. Nevertheless, the chlamydial induction of uterine horn/glandular duct dilation may be used to evaluate plasmid-independent pathogenicity of Chlamydia in susceptible mice. PMID:25824829

  7. Chemical characterization by GC-MS and in vitro activity against Candida albicans of volatile fractions prepared from Artemisia dracunculus, Artemisia abrotanum, Artemisia absinthium and Artemisia vulgaris.

    PubMed

    Obistioiu, Diana; Cristina, Romeo T; Schmerold, Ivo; Chizzola, Remigius; Stolze, Klaus; Nichita, Ileana; Chiurciu, Viorica

    2014-01-29

    A large number of essential oils is reported to have significant activity against Candida albicans. But the different chemical composition influences the degree of their activity. The intention of this study was to investigate the chemical composition and the activity against Candida albicans of volatile oils obtained from Artemisia dracunculus, A. abrotanum, A. absinthium and A. vulgaris (Asteraceae). The aim of the study was to identify new chemical compounds that have effect against C. albicans.The essential oils were obtained by hydrodistillation or extraction with dichloromethane (a new procedure we developed trying to obtain better, more separated compounds) from air dried above ground plant material and analyzed by GC-MS. Additionally commercial essential oils from the same species were tested. The Candida albicans inhibition studies were carried out by the paper disc diffusion method. The essential oils shared common components but presented differences in composition and showed variable antifungal activity. Davanone and derivatives thereof, compounds with silphiperfolane skeleton, estragole, davanone oil, β-thujone, sabinyl acetate, herniarin, cis-chrysanthenyl acetate, 1,8-cineol, and terpineol were the main components of Artemisia volatiles. Among the volatile fractions tested those from A. abrotanum containing davanone or silphiperfolane derivatives showed the highest antifungal activity. The in vitro tests revealed that the Artemisia oils are promising candidates for further research to develop novel anti-candida drugs.

  8. Chemical characterization by GC-MS and in vitro activity against Candida albicans of volatile fractions prepared from Artemisia dracunculus, Artemisia abrotanum, Artemisia absinthium and Artemisia vulgaris

    PubMed Central

    2014-01-01

    Background A large number of essential oils is reported to have significant activity against Candida albicans. But the different chemical composition influences the degree of their activity. The intention of this study was to investigate the chemical composition and the activity against Candida albicans of volatile oils obtained from Artemisia dracunculus, A. abrotanum, A. absinthium and A. vulgaris (Asteraceae). The aim of the study was to identify new chemical compounds that have effect against C. albicans. The essential oils were obtained by hydrodistillation or extraction with dichloromethane (a new procedure we developed trying to obtain better, more separated compounds) from air dried above ground plant material and analyzed by GC-MS. Additionally commercial essential oils from the same species were tested. The Candida albicans inhibition studies were carried out by the paper disc diffusion method. Results The essential oils shared common components but presented differences in composition and showed variable antifungal activity. Davanone and derivatives thereof, compounds with silphiperfolane skeleton, estragole, davanone oil, β-thujone, sabinyl acetate, herniarin, cis-chrysanthenyl acetate, 1,8-cineol, and terpineol were the main components of Artemisia volatiles. Conclusions Among the volatile fractions tested those from A. abrotanum containing davanone or silphiperfolane derivatives showed the highest antifungal activity. The in vitro tests revealed that the Artemisia oils are promising candidates for further research to develop novel anti-candida drugs. PMID:24475951

  9. Dosimetric implications of age related glandular changes in screening mammography

    NASA Astrophysics Data System (ADS)

    Beckett, J. R.; Kotre, C. J.

    2000-03-01

    The UK National Health Service Breast Screening Programme is currently organized to routinely screen women between the ages of 50 and 64, with screening for older women available on request. The lower end of this age range closely matches the median age for the menopause (51 years), during which significant changes in the composition of the breast are known to occur. In order to quantify the dosimetric effect of these changes, radiographic factors and compressed breast thickness data for a cohort of 1258 women aged between 35 and 79 undergoing breast screening mammography have been used to derive estimates of breast glandularity and mean glandular dose (MGD), and examine their variation with age. The variation of mean radiographic exposure factors with age is also investigated. The presence of a significant number of age trial women within the cohort allowed an extended age range to be studied. Estimates of MGD including corrections for breast glandularity based on compressed breast thickness only, compressed breast thickness and age and for each individual woman are compared with the MGD based on the conventional assumption of a 50:50 adipose/glandular composition. It has been found that the use of the conventional 50:50 assumption leads to overestimates of MGD of up to 13% over the age range considered. By using compressed breast thickness to estimate breast glandularity, this error range can be reduced to 8%, whilst age and compressed breast thickness based glandularity estimates result in an error range of 1%.

  10. Monte Carlo simulation for correlation analysis of average glandular dose by breast thickness and glandular ratio in breast tissue.

    PubMed

    Kim, Sang-Tae; Cho, Jung-Keun

    2014-01-01

    A glandular breast tissue is a radio-sensitive tissue. So during the evaluation of an X-ray mammography device, Average Glandular Dose (AGD) measurement is a very important part. In reality, it is difficult to measure AGD directly, Monte Carlo simulation was used to analyze the correlation between the AGD and breast thickness. As a result, AGDs calculated through the Monte Carlo simulation were 1.64, 1.41 and 0.88 mGy. The simulated AGDs mainly depend on the glandular ratio of the breast. With the increase of glandular breast tissue, absorption of low photon-energy increased so that the AGDs increased, too. In addition, the thicker the breast was, the more the AGD became. Consequently, this study will be used as basic data for establishing the diagnostic reference levels of mammography.

  11. Genetic Transformation of Artemisia carvifolia Buch with rol Genes Enhances Artemisinin Accumulation

    PubMed Central

    Dilshad, Erum; Cusido, Rosa Maria; Estrada, Karla Ramirez; Bonfill, Mercedes; Mirza, Bushra

    2015-01-01

    The potent antimalarial drug artemisinin has a high cost, since its only viable source to date is Artemisia annua (0.01–0.8% DW). There is therefore an urgent need to design new strategies to increase its production or to find alternative sources. In the current study, Artemisia carvifolia Buch was selected with the aim of detecting artemisinin and then enhancing the production of the target compound and its derivatives. These metabolites were determined by LC-MS in the shoots of A. carvifolia wild type plants at the following concentrations: artemisinin (8μg/g), artesunate (2.24μg/g), dihydroartemisinin (13.6μg/g) and artemether (12.8μg/g). Genetic transformation of A. carvifolia was carried out with Agrobacterium tumefaciens GV3101 harboring the rol B and rol C genes. Artemisinin content increased 3-7-fold in transgenics bearing the rol B gene, and 2.3-6-fold in those with the rol C gene. A similar pattern was observed for artemisinin analogues. The dynamics of artemisinin content in transgenics and wild type A.carvifolia was also correlated with the expression of genes involved in its biosynthesis. Real time qPCR analysis revealed the differential expression of genes involved in artemisinin biosynthesis, i.e. those encoding amorpha-4, 11 diene synthase (ADS), cytochrome P450 (CYP71AV1), and aldehyde dehydrogenase 1 (ALDH1), with a relatively higher transcript level found in transgenics than in the wild type plant. Also, the gene related to trichome development and sesquiterpenoid biosynthesis (TFAR1) showed an altered expression in the transgenics compared to wild type A.carvifolia, which was in accordance with the trichome density of the respective plants. The trichome index was significantly higher in the rol B and rol C gene-expressing transgenics with an increased production of artemisinin, thereby demonstrating that the rol genes are effective inducers of plant secondary metabolism. PMID:26444558

  12. Mountain big sagebrush (Artemisia tridentata spp vaseyana) seed production

    Treesearch

    Melissa L. Landeen

    2015-01-01

    Big sagebrush (Artemisia tridentata Nutt.) is the most widespread and common shrub in the sagebrush biome of western North America. Of the three most common subspecies of big sagebrush (Artemisia tridentata), mountain big sagebrush (ssp. vaseyana; MBS) is the most resilient to disturbance, but still requires favorable climactic conditions and a viable post-...

  13. Artemisia systematics and phylogeny: Cytogenetic and molecular insights

    Treesearch

    Joan Valles; E. Durant. McArthur

    2001-01-01

    The genus Artemisia (Asteraceae, Anthemideae, Artemisiinae) is a large genus, one of the largest genera in its family. It is comprised of about 500 taxa at the specific or subspecific level, distributed in 5 sections or subgenera. Most species are perennial and many are landscape dominants of arid or semiarid regions. Artemisia is widely distributed in the Northern...

  14. Cytogeography and chromosome evolution of subgenus Tridentatae of Artemisia (Asteraceae)

    Treesearch

    E. Durant McArthur; Stewart C. Sanderson

    1999-01-01

    The subgenus Tridentatae of Artemisia (Asteraceae: Anthemideae) is composed of 11 species of various taxonomic and geographic complexities. It is centered on Artemisia tridentata with its three widespread common subspecies and two more geographically confined ones. Meiotic chromosome counts on pollen mother cells...

  15. Endometriosis mimicking glandular atypia in a cervical cytology

    PubMed Central

    Rodriguez–Urrego, Paula A; Dulcey–Hormiga, Isabel C; Barrera–Herrera, Luis E; Suarez–Zamora, David A; Palau–Lazaro, Mauricio A; Buritica–Cifuentes, Catalina

    2017-01-01

    Endometriosis involving the uterine cervix is a rare condition that can lead to diagnostic errors in the interpretation of Pap smear. We report the case of a 41-year-old patient in whom the initial Pap smear revealed three-dimensional clusters of glandular cells with elongated nuclei, occasional mitosis, and atypia, which was interpreted as atypical glandular cells, not otherwise specified (NOS). The patient was taken to colposcopy and endocervical biopsy. Colposcopy was normal and the biopsy presented glands with elongated nuclei and surrounded by endometrial stroma admixed with normal endocervical glands. Immunohistochemical studies were reactive for CD10 in the stromal cells and vimentin in endometrioid glands. The findings were consistent with cervical endometriosis. Endometriosis in the cervix is an uncommon pathology that mimics malignancy and may be interpreted as atypical or glandular neoplasia in the cytology. PMID:28182083

  16. Effects of flavonoids from Martynia annua and Tephrosia purpurea on cutaneous wound healing

    PubMed Central

    Lodhi, Santram; Jain, Avijeet; Jain, Alok Pal; Pawar, Rajesh Singh; Singhai, Abhay Kumar

    2016-01-01

    Objective: Martynia annua L. (M. annua), (Martyniaccae) has been traditionally used in the treatment of epilepsy, sore throat and inflammatory disorders. The leaf paste is used topically on Tuberculosis of the lymphatic glands and wounds of domestic animals. Tephrosia purpurea (T. purpurea), (Fabaceae) has been used traditionally as a remedy for asthma, gonorrhea, rheumatism and ulcers. This study aimed to evaluate the potential wound healing effects of different fractions ofethanol extract of M. annua leaves and aerial parts of T. purpurea. Materials and Methods: Methanol fraction of M. annua (MAF-C) and ethyl acetate fraction of T. purpurea (TPF-A) were evaluated for healing potential in dead-space and burn wound models. An ointment (5% w/w) of MAF-C and TPF-A, pongamol (0.2 and 0.5% w/w) and luteolin (0.2 and 0.5% w/w) was applied topically twice a day. The effects were compared with Povidone Iodine ointment with respect to protein, collagen content, enzymatic assay and histopathological finding of granuloma tissues. Results: Ethanol extracts of M. annua and T. purpureawere exhibited total flavonoid contents of 126.2 ± 4.69 and 171.6 ± 6.38 mg (quercetin equivalent), respectively. HPLC fingerprinting confirmed the presence of luteolin in M. annua and quercetin in T. purpurea. TPF-A and MAF-C ointments (5% w/w) significantly increases the hydroxyproline and protein contents. Luteolin and pongamol ointments were also found to be effective in both wound models. Conclusion: Our findings suggested that 5% w/w ointment of TPF-A and MAF-C fractions were more effective than isolated flavonoids in wound healing which may be due to synergistic interactions between the flavonoids and other constituents. PMID:27761428

  17. Tobacco NtLTP1, a glandular-specific lipid transfer protein, is required for lipid secretion from glandular trichomes.

    PubMed

    Choi, Yong Eui; Lim, Soon; Kim, Hyun-Jung; Han, Jung Yeon; Lee, Mi-Hyun; Yang, Yanyan; Kim, Ji-Ah; Kim, Yun-Soo

    2012-05-01

    Glandular trichomes are the phytochemical factories of plants, and they secrete a wide range of commercially important natural products such as lipids, terpenes and flavonoids. Herein, we report that the Nicotiana tabacum LTP1 (NtLTP1) gene, which is specifically expressed in long glandular trichomes, plays a role in lipid secretion from trichome heads. NtLTP1 mRNA is abundantly transcribed in trichomes, but NtLTP3, NtLTP4 and NtLTP5 are not. In situ hybridization revealed that NtLTP1 mRNAs accumulate specifically in long trichomes and not in short trichomes or epidermal cells. X-gluc staining of leaves from a transgenic plant expressing the NtLTP1 promoter fused to a GUS gene revealed that NtLTP1 protein accumulated preferentially on the tops of long glandular trichomes. GFP fluorescence from transgenic tobacco plants expressing an NtLTP1-GFP fusion protein was localized at the periphery of cells and in the excreted liquid droplets from the glandular trichome heads. In vitro assays using a fluorescent 2-p-toluidinonaphthalene-6-sulfonate probe indicated that recombinant NtLTP1 had lipid-binding activity. The overexpression of NtLTP1 in transgenic tobacco plants resulted in the increased secretion of trichome exudates, including epicuticular wax. In transgenic NtLTP1-RNAi lines, liquid secretion from trichomes was strongly reduced, but epicuticular wax secretion was not altered. Moreover, transgenic tobacco plants overexpressing NtLTP1 showed increased protection against aphids. Taken together, these data suggest that NtLTP1 is abundantly expressed in long glandular trichomes, and may play a role in lipid secretion from long glandular trichomes. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  18. Glandular Trichomes and Essential Oil of Thymus quinquecostatus

    PubMed Central

    Jia, Ping; Liu, Hanzhu; Gao, Ting; Xin, Hua

    2013-01-01

    The distribution and types of glandular trichomes and essential oil chemistry of Thymus quinquecostatus were studied. The glandular trichomes are distributed on the surface of stem, leaf, rachis, calyx and corolla, except petiole, pistil and stamen. Three morphologically distinct types of glandular trichomes are described. Peltate trichomes, consisting of a basal cell, a stalk cell and a 12-celled head, are distributed on the stem, leaf, corolla and outer side of calyx. Capitate trichomes, consisting of a unicellular base, a 1–2-celled stalk and a unicellular head, are distributed more diffusely than peltate ones, existing on stem, leaf, rachis and calyx. Digitiform trichomes are just distributed on the outer side of corolla, consisting of 1 basal cell, 3 stalk cells and 1 head cell. All three types of glandular trichomes can secrete essential oil, and in small capitate trichomes of rachis, all peltate trichomes and digitiform trichomes, essential oil is stored in a large subcuticular space, released by cuticle rupture, whereas, in other capitate trichomes, essential oil crosses the thin cuticle. The essential oil of T. quinquecostatus is yellow, and its content is highest in the growth period. 68 constituents were identified in the essential oils. The main constituent is linalool. PMID:24250266

  19. Clinical considerations of the glandular branch of the lacrimal artery.

    PubMed

    Kluckman, Matthew; Fan, Jerry; Balsiger, Heather; Scott, Gabriel; Gest, Thomas

    2015-10-01

    The lacrimal artery is classically described as a branch of the ophthalmic artery supplied by the internal carotid. In this study, 25 orbits were dissected to identify variations in glandular branching and to compare them to previously published accounts. The glandular branching patterns of the lacrimal artery fall into two categories, those that branch (56%) and those that do not branch (44%). We found the medial and lateral glandular branches to be equal in diameter with a divergence of 2.67-40.58 mm proximal to the gland parenchyma. The long glandular branches run alongside the superolateral aspect of the orbit. The lateral branch runs lateral to the lateral rectus muscle. The medial branch runs superomedial to the lateral rectus muscle and lateral to the superior rectus muscle. In relation to the lacrimal gland, the medial branch enters the superior aspect of the gland parenchyma and the lateral branch enters its inferior aspect. The average branch lengths were 17.88 mm (medial) and 13.51 mm (lateral) as measured with a Mitutoyo Absolute 1/100 mm caliper. We could not confirm the existence of a third branch supplying the lacrimal gland, as posited by other authors. The key finding in this study is that the lacrimal gland is predominantly supplied by two significant arterial branches, both of which must be identified during procedures involving the lateral orbit.

  20. Glandular dose in breast computed tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Mettivier, G.; Fedon, C.; Di Lillo, F.; Longo, R.; Sarno, A.; Tromba, G.; Russo, P.

    2016-01-01

    The purpose of this work is to provide an evaluation of the mean glandular dose (MGD) for breast computed tomography (CT) with synchrotron radiation in an axial scanning configuration with a partial or total organ volume irradiation, for the in vivo program of breast CT ongoing at the ELETTRA facility (Trieste, Italy). A Geant4 Monte Carlo code was implemented, simulating the photon irradiation from a synchrotron radiation source in the energetic range from 8 to 50 keV with 1 keV intervals, to evaluate the MGD. The code was validated with literature data, in terms of mammographic normalized glandular dose coefficients (DgN) and with ad hoc experimental data, in terms of computed tomography dose index (CTDI). Simulated cylindrical phantoms of different sizes (diameter at phantom base 8, 10, 12, 14 or 16 cm, axial length 1.5 times the radius) and glandular fraction by weight (0%, 14.3%, 25%, 50%, 75% and 100%) were implemented into the code. The validation of the code shows an excellent agreement both with previously published work and in terms of DgN and CDTI measurements. The implemented simulations show a dependence of the glandular dose estimate on the vertical dimension of the irradiated zone when a partial organ irradiation was implemented. Specific normalized coefficients for calculating the MGD to the whole breast or to the single irradiated slice were reported.

  1. Glandular trichomes and essential oil of Thymus quinquecostatus.

    PubMed

    Jia, Ping; Liu, Hanzhu; Gao, Ting; Xin, Hua

    2013-01-01

    The distribution and types of glandular trichomes and essential oil chemistry of Thymus quinquecostatus were studied. The glandular trichomes are distributed on the surface of stem, leaf, rachis, calyx and corolla, except petiole, pistil and stamen. Three morphologically distinct types of glandular trichomes are described. Peltate trichomes, consisting of a basal cell, a stalk cell and a 12-celled head, are distributed on the stem, leaf, corolla and outer side of calyx. Capitate trichomes, consisting of a unicellular base, a 1-2-celled stalk and a unicellular head, are distributed more diffusely than peltate ones, existing on stem, leaf, rachis and calyx. Digitiform trichomes are just distributed on the outer side of corolla, consisting of 1 basal cell, 3 stalk cells and 1 head cell. All three types of glandular trichomes can secrete essential oil, and in small capitate trichomes of rachis, all peltate trichomes and digitiform trichomes, essential oil is stored in a large subcuticular space, released by cuticle rupture, whereas, in other capitate trichomes, essential oil crosses the thin cuticle. The essential oil of T. quinquecostatus is yellow, and its content is highest in the growth period. 68 constituents were identified in the essential oils. The main constituent is linalool.

  2. Glandular dose in breast computed tomography with synchrotron radiation.

    PubMed

    Mettivier, G; Fedon, C; Di Lillo, F; Longo, R; Sarno, A; Tromba, G; Russo, P

    2016-01-21

    The purpose of this work is to provide an evaluation of the mean glandular dose (MGD) for breast computed tomography (CT) with synchrotron radiation in an axial scanning configuration with a partial or total organ volume irradiation, for the in vivo program of breast CT ongoing at the ELETTRA facility (Trieste, Italy). A Geant4 Monte Carlo code was implemented, simulating the photon irradiation from a synchrotron radiation source in the energetic range from 8 to 50 keV with 1 keV intervals, to evaluate the MGD. The code was validated with literature data, in terms of mammographic normalized glandular dose coefficients (DgN) and with ad hoc experimental data, in terms of computed tomography dose index (CTDI). Simulated cylindrical phantoms of different sizes (diameter at phantom base 8, 10, 12, 14 or 16 cm, axial length 1.5 times the radius) and glandular fraction by weight (0%, 14.3%, 25%, 50%, 75% and 100%) were implemented into the code. The validation of the code shows an excellent agreement both with previously published work and in terms of DgN and CDTI measurements. The implemented simulations show a dependence of the glandular dose estimate on the vertical dimension of the irradiated zone when a partial organ irradiation was implemented. Specific normalized coefficients for calculating the MGD to the whole breast or to the single irradiated slice were reported.

  3. Hypocholesterolemic and antiatherosclerotic effect of artemisia aucheri in hypercholesterolemic rabbits.

    PubMed

    Dinani, N Jafari; Asgary, Asgary; Madani, H; Naderi, Gh; Mahzoni, P

    2010-07-01

    Atherosclerosis which results from gradual deposition of lipids in arteries is a leading cause of mortality worldwide. Diet is one of the most important factors underlying atherosclerosis. High-cholesterol diets enhance atherosclerosis and vegetarian diets are known to slow down the process. Artemisia aucheri is an herb of the Composite family. Many species of Artemisia have proven hypolipidemic and antioxidant properties. This study determine the effects of Artemisia aucheri on lipoproteins and atherosclerosis in hypercholesterolemic rabbits. Fifteen male rabbits were randomly divided into three groups. Normal diet group, high-cholesterol diet group (1% cholesterol) and Artemisia aucheri group (1% cholesterol diet supplemented with 100 mg/kg body weight the Artemisi aucheri every other day). Biochemical factors were measured at the start, end of the first and second months of the study. At the end of the study, the aorta were removed for assessment of atherosclerotic plaques. The results indicate that Artemisia aucheri significantly reduced the level of total cholesterol, LDL cholesterol and triglycerids and increased HDL cholesterol. The degree of atherosclerotic thickness was significantly reduced in the treated group. Therefore, Artemisia aucheri is one of the useful herbal medicine for preventation of atherosclerosis and more studies in this regard is recommended.

  4. Preliminary pharmacological evaluation of Martynia annua Linn leaves for wound healing

    PubMed Central

    Santram, Lodhi; Singhai, AK

    2011-01-01

    Objective To evaluate the wound healing potential of fractions from ethanol extract of Martynia annua (M. annua) Linn leaves. Methods Ethanol extract of M. annua Linn leaves was fractionate into three different fractions (MAF-A, MAF-B and MAF-C) which were screened for wound healing potential using two models: excision and incision on rats. The thin layer chromatography (TLC) profile of all fractions were analyzed and TLC of luteolin was also done. The Povidone-Iodine Ointment was used as reference for comparision. Excision and incision wounds were created on dorsal portion of rats for study. Wound contraction, biochemical parameters (protein level and hydroxyproline level) and histopathological study were performed in excision wound model whereas incision model was used for determination of tensile strength. Results The wound contraction and tensile strength of skin tissues were observed significantly greater in MAF-C fraction treated group than other two fractions (P<0.01). In excision wound method (on day 18) protein content and hydroxyproline were found significantly higher in MAF-C group than control group (P<0.01). Histopathological study also showed better angiogenesis, matured collagen fibres and fibroblast cells as compared with the control group. Conclusions In conclusion, our findings suggest that fraction MAF-C from ethanol extract of M. annua leaves is found most effective in wound healing. PMID:23569806

  5. Pulmonary effects and disposition of luteolin and Artemisia afra extracts in isolated perfused lungs.

    PubMed

    Joel Mjiqiza, Sizwe; Abraham Syce, James; Chibuzo Obikeze, Kenechukwu

    2013-10-07

    Artemisia afra (Asteraceae) is a traditional medicinal plant frequently used in steam inhalation form to treat respiratory conditions. Quantify luteolin content in Artemisia afra dried crude and aqueous extract. Evaluate the pulmonary effects of Artemisia afra steam inhalation, nebulized Artemisia afra extract and luteolin in isolated perfused lungs (IPL). Evaluate the pulmonary disposition of intravenously administered luteolin. HPLC was used to quantify luteolin in Artemisia afra extracts. A modified version of the IPL was used to determine the effects of Artemisia afra steam inhalation, nebulized luteolin, and nebulized aqueous leaf extract on lung function, as well as the pulmonary disposition of IV luteolin. Artemisia afra extract contained significantly higher luteolin levels than the crude dried leaves. Inhaled Artemisia afra steam, and nebulized luteolin, and Artemisia afra extract and IV luteolin produced significant dose-dependent improvements in lung function, with nebulized Artemisia afra producing the greatest improvements. Nebulisation with Artemisia afra extract yielded higher quantities of luteolin than luteolin nebulisation. Results verify the traditional use of inhalation of Artemisia afra steam, although nebulized luteolin and aqueous extract are better alternatives. Luteolin significantly contributes to the bronchodilatory effects of Artemisia afra. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. A novel texture descriptor for detection of glandular structures in colon histology images

    NASA Astrophysics Data System (ADS)

    Sirinukunwattana, Korsuk; Snead, David R.; Rajpoot, Nasir M.

    2015-03-01

    The first step prior to most analyses on most histopathology images is the detection of area of interest. In this work, we present a superpixel-based approach for glandular structure detection in colon histology images. An image is first segmented into superpixels with the constraint on the presence of glandular boundaries. Texture and color information is then extracted from each superpixel to calculate the probability of that superpixel belonging to glandular regions, resulting in a glandular probability map. In addition, we present a novel texture descriptor derived from a region covariance matrix of scattering coefficients. Our approach shows encouraging results for the detection of glandular structures in colon tissue samples.

  7. Development of a greenhouse-based inoculation protocol for the fungus Colletotrichum cereale pathogenic to annual bluegrass (Poa annua)

    USDA-ARS?s Scientific Manuscript database

    The fungus Colletotrichum cereale incites anthracnose disease on Poa annua (annual bluegrass) turfgrass. Anthracnose disease is geographically widespread highly destructive, with infections by C. cereale resulting in extensive turfgrass loss. Comprehensive research aimed at controlling turfgrass a...

  8. Mean glandular dose in a breast screening programme

    SciTech Connect

    Galvan, H. A.; Perez-Badillo, M. P.; Villasenor, Y.

    2012-10-23

    Breast density has an important role in early detection of breast cancer, because has been reported the strong association between breast density and invasive breast cancer risk. Mammography is the gold standard to early detection of breast cancer, despite of this require ionizing radiation that may increase radio-induced cancer risk. This maybe limited with a quality control programme of mammographic units, with the main goal of achieving high quality images with low radiation dose. International Atomic Energy Agency (IAEA) published in 2011 the {sup Q}uality assurance programme for digital mammography{sup ,} where glandular tissue quantity is an important parameter to compute mean glandular dose (MGD), which is necessary to reduce its associated risk. In this work we show the first results in our country applying this protocol and studying breast density in a small group. MGD complies with national and IAEA dose limits.

  9. Glandular Odontogenic Cyst: The Value of Intraepithelial Hemosiderin.

    PubMed

    AbdullGaffar, Badr; Koilelat, Mohamed

    2017-05-01

    Glandular odontogenic cyst (GOC) is a relatively rare but well-described clinicopathologic entity. Its rarity and unpredictable clinical behavior are challenging to managing clinicians. Its variable and overlapping histomorphologic features are also diagnostically challenging for pathologists. Other odontogenic cysts and oral cystic neoplasms can simulate GOC. There are specific histologic criteria that help distinguish GOC from other mimickers. To our knowledge, the phenomenon of hemosiderin pigments deposition within the lining glandular epithelium of GOC has not been covered in detail or specifically reported so far in the literature. We report a case of nontraumatized anterior mandibular GOC in a middle-aged male, which histologically showed hemosiderin pigments within the lining epithelium without stromal siderophages. This finding might reflect a nonspecific spontaneous intraluminal hemorrhage. However, intraepithelial hemosiderin in GOC may be an additional helpful diagnostic clue of GOC in challenging cases since this phenomenon has not been reported in other mimicker cystic lesions.

  10. Pseudoneoplastic glandular lesions of the uterine cervix: a selective review.

    PubMed

    Nucci, Marisa R

    2014-07-01

    Pseudoneoplastic glandular lesions of the cervix continue to be diagnostically challenging for the surgical pathologist. This review covers a select number of these lesions that may be misinterpreted as premalignant or malignant, with an emphasis on those about which Dr Scully has advanced our knowledge. The topics covered include microglandular hyperplasia, mesonephric hyperplasia, diffuse laminar endocervical glandular hyperplasia, lobular endocervical glandular hyperplasia, and endocervical adenomyoma. The first listed entity has a greater diversity of morphology than the name might imply including, but not limited to solid growth and prominent hyaline stroma. The second entity may be remarkably diffuse within the cervical wall and reasonably result in consideration of diagnoses such as minimal deviation adenocarcinoma (adenoma malignum), but has nonmucinous epithelium and bland cytology. The third entity, one of the least common of those considered, represents a peculiar form of reactive hyperplasia of the endocervical epithelium. The fourth entity is the one about which knowledge is still fast advancing. In pure form with no atypia it is almost certainly a clinically benign process, but a subset of cases show cytologic atypia and an occasional association with adenocarcinoma is seen. Finally, adenomyomas of the uterus in general have received much attention in recent years, mostly in the corpus, but the less common endocervical variant may be particularly problematic because mucinous epithelium in abundant myogenic stroma may be potentially confused with an infiltrating differentiated mucinous adenocarcinoma. Although immunohistochemistry may play a role on occasion in evaluating benign endocervical glandular proliferations the mainstay of their interpretation remains conventional morphologic analysis of routinely stained slides.

  11. Bone metastasis of glandular cardiac myxoma mimicking a metastatic carcinoma.

    PubMed

    Uppin, Shantveer G; Jambhekar, Nirmala; Puri, Ajay; Kumar, Rajiv; Agarwal, Manish; Sanghvi, Darshana

    2011-01-01

    Skeletal metastasis from a cardiac myxoma is rare. We describe an extremely unusual case of a cardiac myxoma metastasing to the femur in a 46-year-old female presenting with pain in the right hip. Radiographs showed an expansile lytic lesion with pathological fracture involving the neck and proximal shaft of the right femur. Histology revealed features of cardiac myxoma with heterologous glandular elements, which was initially mistaken for a metastatic mucin-secreting adenocarcinoma.

  12. Keratin 17 Is a Prognostic Biomarker in Endocervical Glandular Neoplasia.

    PubMed

    Mockler, Daniel; Escobar-Hoyos, Luisa F; Akalin, Ali; Romeiser, Jamie; Shroyer, A Laurie; Shroyer, Kenneth R

    2017-09-01

    Previous work in our laboratory identified keratin 17 (K17) as a specific and sensitive biomarker for high-grade squamous intraepithelial lesions and cervical squamous cell carcinoma (SCC). K17, however, has not been previously evaluated in endocervical glandular neoplasia. Based on the similar pathogenesis of squamous and glandular lesions of the cervix, we hypothesized that K17 overexpression could also be a diagnostic and/or prognostic biomarker for endocervical neoplasia. Cases of endocervical adenocarcinoma (n = 90), adenocarcinoma in situ (AIS) (n = 32), benign glandular lesions (n = 36), and normal endocervical mucosa (n = 5) were selected from Stony Brook Medicine and the University of Massachusetts from 2002 to 2013. Immunohistochemical staining for K17 was performed by an indirect immunoperoxidase method and was scored based on the proportion of cells that showed strong (2+) staining. K17 was highly expressed in 21 (65.6%) of 32 AIS and in 75 (83.0%) of 90 adenocarcinoma cases. In adenocarcinomas, K17 staining was detected in a mean of 33.9% of malignant cells. Staining tended to be strongest at the periphery of pseudoglandular groups and at the invasive front of tumors. K17 was not detected in the epithelial cells of benign glandular lesions, but groups of cuboidal cells, residing beneath the epithelial layer of benign glands, were frequently positive for K17, especially in cases of microglandular hyperplasia. High levels of K17 expression were significantly associated with decreased patient survival. K17 is highly expressed in most cases of both invasive adenocarcinoma and in AIS and is a powerful, negative prognostic marker for patient survival.

  13. Genetic basis for glandular trichome formation in cotton

    PubMed Central

    Ma, Dan; Hu, Yan; Yang, Changqing; Liu, Bingliang; Fang, Lei; Wan, Qun; Liang, Wenhua; Mei, Gaofu; Wang, Lingjian; Wang, Haiping; Ding, Linyun; Dong, Chenguang; Pan, Mengqiao; Chen, Jiedan; Wang, Sen; Chen, Shuqi; Cai, Caiping; Zhu, Xiefei; Guan, Xueying; Zhou, Baoliang; Zhu, Shuijin; Wang, Jiawei; Guo, Wangzhen; Chen, Xiaoya; Zhang, Tianzhen

    2016-01-01

    Trichomes originate from epidermal cells and can be classified as either glandular or non-glandular. Gossypium species are characterized by the presence of small and darkly pigmented lysigenous glands that contain large amounts of gossypol. Here, using a dominant glandless mutant, we characterize GoPGF, which encodes a basic helix-loop-helix domain-containing transcription factor, that we propose is a positive regulator of gland formation. Silencing GoPGF leads to a completely glandless phenotype. A single nucleotide insertion in GoPGF, introducing a premature stop codon is found in the duplicate recessive glandless mutant (gl2gl3). The characterization of GoPGF helps to unravel the regulatory network of glandular structure biogenesis, and has implications for understanding the production of secondary metabolites in glands. It also provides a potential molecular basis to generate glandless seed and glanded cotton to not only supply fibre and oil but also provide a source of protein for human consumption. PMID:26795254

  14. Development of Peltate Glandular Trichomes of Peppermint1

    PubMed Central

    Turner, Glenn W.; Gershenzon, Jonathan; Croteau, Rodney B.

    2000-01-01

    Cryofixation and conventional chemical fixation methods were employed to examine the ultrastructure of developing peltate glandular trichomes of peppermint (Mentha × piperita). Our results are discussed in relation to monoterpene production and the mechanism of essential oil secretion. Peltate glands arise as epidermal protuberances (initials) that divide asymmetrically to produce a vacuolate basal cell, a stalk cell, and a cytoplasmically dense apical cell. Further divisions of the apical cell produce a peltate trichome with one basal cell, one stalk cell, and eight glandular (secretory) disc cells. Presecretory gland cells resemble meristematic cells because they contain proplastids, small vacuoles, and large nuclei. The secretory phase coincides with the separation and filling of the sub-cuticular oil storage space, the maturation of glandular disc cell leucoplasts in which monoterpene biosynthesis is known to be initiated, and the formation of extensive smooth endoplasmic reticulum at which hydroxylation steps of the monoterpene biosynthetic pathway occur. The smooth endoplasmic reticulum of the secretory cells appears to form associations with both the leucoplasts and the plasma membrane bordering the sub-cuticular oil storage cavity, often contains densely staining material, and may be involved with the transport of the monoterpene-rich secretion product. Associated changes in the ultrastructure of the secretory stage stalk cell are also described, as is the ultrastructure of the fragile post-secretory gland for which cryofixation methods are particularly well suited for the preservation of organizational integrity. PMID:11027716

  15. Collecting and paramuscular venules in glandular mucosa of rat stomach.

    PubMed

    Moskalewski, Stanislaw; Biernacka-Wawrzonek, Dorota; Klimkiewicz, Justyna; Zdun, Rafal

    2002-03-01

    Blood from the rat gastric mucosa is drained by collecting venules running from the subepithelial layer towards the lamina muscularis mucosae. Details of their structure were studied in translucent, flat strips of the glandular stomach, in thick sections of glandular mucosa cleared in mineral oil and in semi-thin plastic sections. The number and dimensions of collecting venule outlets revealed in flat strips of gastric mucosa increased after administration of atropine and papaverine and intravital ligation of the portal vein in comparison with that of intact animals or animals with intravitally ligated portal vein but without administration of relaxing agents. In hyperemic mucosa short venules running parallel to the lamina muscularis mucosae (paramuscular venules) and draining collecting venules were distinctly visible. Saccular outlets equipped with triangular protrusions usually intervened between these vessels, probably directing blood flow. Collecting venules were straight, curved, extended or two-armed. Furthermore, numerous collecting venules contained circumscribed dilatations (sacculi) connected with the lumen of the collecting venule. Connection of paramuscular and submucosal veins occurred within the muscularis mucosae. Thus, contraction of the muscularis mucosae might control the outflow of venous blood from the gastric mucosa. Conceivably, alternate contraction and relaxation of muscularis mucosae could cause expansion and collapse of collecting venules which, in turn, would facilitate the movement of glandular content to the surface of the stomach and/or movement of interstitial fluid between cells.

  16. Taxonomic and nomenclatural rearrangements in Artemisia subgen. Tridentatae, including a redefinition of Sphaeromeria (Asteraceae, Anthemideae)

    Treesearch

    Sonia Garcia; Teresa Garnatje; E. Durant McArthur; Jaume Pellicer; Stewart C. Sanderson; Joan Valles

    2011-01-01

    A recent molecular phylogenetic study of all members of Artemisia subgenus Tridentatae, as well as most of the other New World endemic Artemisia and the allied genera Sphaeromeria and Picrothamnus, raised the necessity of revising the taxonomic framework of the North American endemic Artemisia. Composition of the subgenus Tridentatae is enlarged to accommodate other...

  17. Study of artemisinin and sugar accumulation in Artemisia vulgaris and Artemisia dracunculus "hairy" root cultures.

    PubMed

    Drobot, Kateryna O; Matvieieva, Nadiia A; Ostapchuk, Andriy M; Kharkhota, Maxim A; Duplij, Volodymyr P

    2017-09-14

    We studied the effect of genetic transformation on biologically active compound (artemisinin and its co-products (ART) as well as sugars) accumulation in Artemisia vulgaris and Artemisia dracunculus "hairy" root cultures. Glucose, fructose, sucrose, and mannitol were accumulated in A. vulgaris and A. dracunculus "hairy" root lines. Genetic transformation has led in some cases to the sugar content increasing or appearing of nonrelevant for the control plant carbohydrates. Sucrose content was 1.6 times higher in A. vulgaris "hairy" root lines. Fructose content was found to be 3.4 times higher in A. dracunculus "hairy" root cultures than in the control roots. The accumulation of mannitol was a special feature of the leaves of A. vulgaris and A. dracunculus control roots. A. vulgaris "hairy" root lines differed also in ART accumulation level. The increase of ART content up to 1.02 mg/g DW in comparison with the nontransformed roots (up to 0.687 mg/g DW) was observed. Thus, Agrobacterium rhizogenes-mediated genetic transformation can be used for obtaining of A. vulgaris and A. dracunculus "hairy" root culture produced ART and sugars in a higher amount than mother plants.

  18. Artemisia absinthium and Artemisia vulgaris: a comparative study of infusion polysaccharides.

    PubMed

    Corrêa-Ferreira, Marília Locatelli; Noleto, Guilhermina Rodrigues; Oliveira Petkowicz, Carmen Lúcia

    2014-02-15

    The aerial parts of Artemisia absinthium and Artemisia vulgaris are used in infusions for the treatment of several diseases. Besides secondary metabolites, carbohydrates are also extracted with hot water and are present in the infusions. The plant carbohydrates exhibit several of therapeutic properties and their biological functions are related to chemical structure. In this study, the polysaccharides from infusions of the aerial parts of A. absinthium and A. vulgaris were isolated and characterized. In the A. absinthium infusion, a type II arabinogalactan was isolated. The polysaccharide had a Gal:Ara ratio of 2.3:1, and most of the galactose was (1 → 3)- and (1 → 6)-linked, as typically found in type II arabinogalactans. In the A. vulgaris infusion, an inulin-type fructan was the main polysaccharide. NMR analysis confirmed the structure of the polymer, which is composed of a chain of fructosyl units β-(2 ← 1) linked to a starting α-d-glucose unit. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Asteraceae Artemisia campestris and Artemisia herba-alba Essential Oils Trigger Apoptosis and Cell Cycle Arrest in Leishmania infantum Promastigotes

    PubMed Central

    Messaoud, Chokri; Haoues, Meriam; Neffati, Noura; Bassoumi Jamoussi, Imen; Essafi-Benkhadir, Khadija; Boussaid, Mohamed; Karoui, Habib

    2016-01-01

    We report the chemical composition and anti-Leishmania and antioxidant activity of Artemisia campestris L. and Artemisia herba-alba Asso. essential oils (EOs). Our results showed that these extracts exhibit different antioxidant activities according to the used assay. The radical scavenging effects determined by DPPH assay were of IC50 = 3.3 mg/mL and IC50 = 9.1 mg/mL for Artemisia campestris and Artemisia herba-alba essential oils, respectively. However, antioxidant effects of both essential oils, determined by ferric-reducing antioxidant power (FRAP) assay, were in the same range (2.3 and 2.97 mg eq EDTA/g EO, resp.), while the Artemisia herba-alba essential oil showed highest chelating activity of Fe2+ ions (27.48 mM Fe2+). Interestingly, we showed that both EOs possess dose-dependent activity against Leishmania infantum promastigotes with IC50 values of 68 μg/mL and 44 μg/mL for A. herba-alba and A. campestris, respectively. We reported, for the first time, that antileishmanial activity of both EOs was mediated by cell apoptosis induction and cell cycle arrest at the sub-G0/G1 phase. All our results showed that EOs from A. herba-alba and A. campestris plants are promising candidates as anti-Leishmania medicinal products. PMID:27807464

  20. Chemical composition and biological effects of Artemisia maritima and Artemisia nilagirica essential oils from wild plants of western Himalaya.

    PubMed

    Stappen, Iris; Wanner, Jürgen; Tabanca, Nurhayat; Wedge, David E; Ali, Abbas; Khan, Ikhlas A; Kaul, Vijay K; Lal, Brij; Jaitak, Vikas; Gochev, Velizar; Girova, Tania; Stoyanova, Albena; Schmidt, Erich; Jirovetz, Leopold

    2014-08-01

    Artemisia species possess pharmacological properties that are used for medical purposes worldwide. In this paper, the essential oils from the aerial parts of Artemisia nilagirica and Artemisia maritima from the western Indian Himalaya region are described. The main compounds analyzed by simultaneous GC/MS and GC/FID were camphor and 1,8-cineole from A. maritima, and camphor and artemisia ketone from A. nilagirica. Additionally, the oils were evaluated for their antibacterial, antifungal, mosquito biting deterrent, and larvicidal activities. A. nilagirica essential oil demonstrated nonselective antifungal activity against plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides, whereas A. maritima did not show antifungal activity. Both Artemisia spp. exhibited considerable mosquito biting deterrence, whereas only A. nilagirica showed larvicidal activity against Aedes aegypti. Antibacterial effects assessed by an agar dilution assay demonstrated greater activity of A. maritima essential oil against Staphylococcus aureus and Pseudomonas aeruginosa compared to A. nilagirica.

  1. Phenolic Derivatives of Artemisia Spicigera C. Koch Growing in Iran.

    PubMed

    Heshmati Afshar, Fariba; Delazar, Abbas; Nazemiyeh, Hossein; Khodaie, Laleh; Bamdad Moghaddam, Seddigheh

    2015-01-01

    This study aimed to determine phenolic compounds of Artemisia spicigera (family Asteraceae) growing in East-Azarbaijan province of Iran. 20%, 40 % and 60% SPE fractions of methanolic extract of A. spicigera, were subjected to reversed phase preparative HPLC, with the mobile phase consisted of methanol and water. Structural identification of phytochemicals by spectroscopic methods including UV and NMR spectroscopy, yielded 4, 6-di methoxy acetophenone-2-O-β-D-glucopyranoside from 20%, 5-methoxyluteolin 7-O-β-D-glucopyranoside, luteolin and chrysoeriol 7-O-β-D-glucopyranoside from 40% and 5-methoxy luteolin from 60% SPE fractions. Although within identified pure compounds, luteolin was the only phenolic reported from some other species of Artemisia, but occurrence of remained identified phenolics in this study, was firstly reported from Artemisia genus. Further phytochemical investigations were proposed in order to isolate some other active fractions and pure compounds.

  2. Phenolic Derivatives of Artemisia Spicigera C. Koch Growing in Iran

    PubMed Central

    Heshmati Afshar, Fariba; Delazar, Abbas; Nazemiyeh, Hossein; Khodaie, Laleh; Bamdad Moghaddam, Seddigheh

    2015-01-01

    This study aimed to determine phenolic compounds of Artemisia spicigera (family Asteraceae) growing in East-Azarbaijan province of Iran. 20%, 40 % and 60% SPE fractions of methanolic extract of A. spicigera, were subjected to reversed phase preparative HPLC, with the mobile phase consisted of methanol and water. Structural identification of phytochemicals by spectroscopic methods including UV and NMR spectroscopy, yielded 4, 6-di methoxy acetophenone-2-O-β-D-glucopyranoside from 20%, 5-methoxyluteolin 7-O-β-D-glucopyranoside, luteolin and chrysoeriol 7-O-β-D-glucopyranoside from 40% and 5-methoxy luteolin from 60% SPE fractions. Although within identified pure compounds, luteolin was the only phenolic reported from some other species of Artemisia, but occurrence of remained identified phenolics in this study, was firstly reported from Artemisia genus. Further phytochemical investigations were proposed in order to isolate some other active fractions and pure compounds. PMID:26664392

  3. Antifertility activity of Artemisia vulgaris leaves on female Wistar rats.

    PubMed

    Shaik, Afsar; Kanhere, Rupesh S; Cuddapah, Rajaram; Nelson, Kumar S; Vara, Prasanth Reddy; Sibyala, Saisaran

    2014-03-01

    To evaluate the antifertility activity of Artemisia vulgaris leaves on female Wistar rats. The plant extract was tested for its effect on implant formation at two dose levels, 300 and 600 mg·kg⁻¹, respectively. The effective methanolic plant extract was further studied for estrogenic potency on ovariectomised immature female Wistar rats. The data presented in this study demonstrate the antifertility potential of Artemisia vulgaris methanolic leaf extract, which shows a strong and significant decrease in implant formation (100%), and a strong estrogenic effect resulting in a significant increase in uterine weight in immature ovariectomised rats. These observations suggest that the methanolic extract of Artemisia vulgaris leaves has strong anti-implantation activity and estrogenic activity. The methanolic plant extract of A. vulgaris has antifertility activity. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  4. Artemisia herba alba: a popular plant with potential medicinal properties.

    PubMed

    Moufid, Abderrahmane; Eddouks, Mohamed

    2012-12-15

    Artemisia herba alba (Asteraceae), commonly known as desert or white wormwood, is used in folk medicine for treatment of various diseases. Phytochemical studies of this plant revealed the existence of many beneficial compounds such as herbalbin, cis-chryanthenyl acetate, flavonoids (hispidulin and cirsilineol), monoterpenes, sesquiterpene. The aerial parts are characterized by a very low degree of toxicity. This study reviews the main reports of the pharmacological and toxicological properties of Artemisia herba alba in addition to the main constituents. It would appear that this plant exhibits many beneficial properties. Further studies are warranted to more integrate this popular plant in human health care system.

  5. Clearance and metabolism of glandular kallikrein in the rat

    SciTech Connect

    Rabito, S.F.; Seto, M.; Maitra, S.R.; Carretero, O.A.

    1985-06-01

    This study was undertaken to characterize the clearance of circulating rat glandular kallikrein and to determine the contribution of various organs and the urinary excretion to the removal of glandular kallikrein from the bloodstream. The authors injected either active /sup 125/I-kallikrein or kallikrein inactivated with phenylmethylsulfonyl fluoride (/sup 125/I-PMSF-kallikrein) intravenously into intact or nephrectomized rats and then studied the disappearance rate of trichloroacetic acid (TCA)-precipitable radioactivity from the circulation. Inactivation by PMSF markedly reduced the binding of kallikrein to plasma protease inhibitors. The removal rate of the acid-precipitable radioactivity fit a biexponential curve for both active and inactive kallikrein. In the intact rats approximately 50% of the radioactivity was removed from the circulation 30 min after the injection of active /sup 125/I-kallikrein. Removal of the kidneys did not significantly affect the clearance of active kallikrein. On the other hand, inactive /sup 125/I-PMSF-kallikrein was removed from blood faster than active /sup 125/I-kallikrein in normal animals. Approximately 50% of the radioactivity was removed from the circulation 8 min after the injection, and the half-life of inactive /sup 125/I-PMSF-kallikrein was markedly prolonged by bilateral nephrectomy. Active /sup 125/I-kallikrein was taken up by tissues, particularly the liver and the kidney. In urine, less than 2% of the radioactivity was excreted in 60 min as TCA-precipitable material. The authors concluded that glandular kallikrein is cleared rapidly from the circulation of the rat, probably in the form of a complex with a plasma protease inhibitor.

  6. Antifibrotic effects of Artemisia capillaris and Artemisia iwayomogi in a carbon tetrachloride-induced chronic hepatic fibrosis animal model.

    PubMed

    Wang, Jing-Hua; Choi, Min-Kyung; Shin, Jang-Woo; Hwang, Seock-Yeon; Son, Chang-Gue

    2012-03-06

    Artemisia capillaris and Artemisia iwayomogi, both members of the Compositae family, have been indiscriminately used for various liver disorders as traditional hepatotherapeutic medicines in Korea for many years. In this study, the anti-hepatofibrotic effects of Artemisia capillaris and Artemisia iwayomogi were comparatively analyzed using a carbon tetrachloride (CCl(4))-induced liver fibrosis rat model. Hepatic fibrosis was induced via a 10-week course of intraperitoneal CCl(4) injections (50% dissolved in olive oil, 2mL/kg, twice per week). Water extract of Artemisia capillaris (AC) or Artemisia iwayomogi (AI) was orally administered six times per week from the 5th to the 10th week. AI (50mg/kg) significantly attenuated the CCl(4)-induced excessive release of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) in serum (p<0.05), and hydroxyproline and malondialdehyde (MDA) contents in liver tissue (p<0.05). Further, AI markedly ameliorated the depletion of total antioxidant capacity (TAC), glutathione (GSH), and superoxide dismutase (SOD) in liver tissue (p<0.01). Unexpectedly, AC did not exert any effects on the above parameters. Histopathological and immunohistochemical analyses revealed that AI drastically reduced inflammation, necrosis, fatty infiltration, collagen accumulation, and activation of hepatic satellite cells in liver tissue. These changes were not observed with AC treatment. Several critical genes of fibrosis-related cytokines including transforming growth factor beta (TGF-β), platelet-derived growth factor beta (PDGF-β), and alpha smooth muscle actin (α-SMA) were more prominently downregulated by AI compared to AC treatment. Our results show that AI exerts greater hepatoprotective and anti-fibrotic effects as compared with AC via enhancing antioxidant capacity and downregulating fibrogentic cytokines. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Genetic Control of Peltate Glandular Trichome Formation in Perilla frutescens.

    PubMed

    Nishizawa, A; Honda, G; Kobayashi, Y; Tabata, M

    1992-04-01

    The inheritance of peltate glandular trichome (PGT) formation in PERILLA FRUTESCENS leaves was investigated by crossing a normal strain with a variant strain with sparse PGT formation. The F (1) and F (2) data suggested that the sparse trichome is a dominant character that is controlled by a major gene and a few modifying genes which specifically inhibit the development of trichomes of the peltate type. Tracer experiments using [ (14)C]-sucrose showed that the quantity of essential oil components synthesized in the leaf was positively correlated with the number of PGTs, suggesting that the PGT is the main site for the biosynthesis of essential oil.

  8. Sexual dimorphism in intra- and interspecific competitive ability of the dioecious herb Mercurialis annua.

    PubMed

    Sánchez-Vilas, J; Turner, A; Pannell, J R

    2011-01-01

    Males and females of dioecious plant species often show different responses to competition with individuals of the same or opposite gender, but almost no data are available on the outcome of competition with members of other species. Here, we show that male and female individuals of the wind-pollinated herb Mercurialis annua are sexually dimorphic in both their intraspecific and interspecific competitive abilities. In a controlled experiment, we found that both sexes of M. annua were negatively affected by interspecific competition, but the sensitivity of males and females depended on the identity of their competitor species, with females tending to suppress the aboveground growth of competitor species more than males. Further, we found that intrasexual and intersexual competition affected the aboveground growth of males but not that of females: only males showed a significant reduction in growth when growing with conspecific competitors (male or female). We discuss our results with reference to related studies that suggest that males and females of M. annua have different resource requirements for reproduction, which in turn affect their competitive abilities.

  9. New method for generating breast models featuring glandular tissue spatial distribution

    NASA Astrophysics Data System (ADS)

    Paixão, L.; Oliveira, B. B.; Oliveira, M. A.; Teixeira, M. H. A.; Fonseca, T. C. F.; Nogueira, M. S.

    2016-02-01

    Mammography is the main radiographic technique used for breast imaging. A major concern with mammographic imaging is the risk of radiation-induced breast cancer due to the high sensitivity of breast tissue. The mean glandular dose (DG) is the dosimetric quantity widely accepted to characterize the risk of radiation induced cancer. Previous studies have concluded that DG depends not only on the breast glandular content but also on the spatial distribution of glandular tissue within the breast. In this work, a new method for generating computational breast models featuring skin composition and glandular tissue distribution from patients undergoing digital mammography is proposed. Such models allow a more accurate way of calculating individualized breast glandular doses taking into consideration the glandular tissue fraction. Sixteen breast models of four patients with different glandularity breasts were simulated and the results were compared with those obtained from recommended DG conversion factors. The results show that the internationally recommended conversion factors may be overestimating the mean glandular dose to less dense breasts and underestimating the mean glandular dose for denser breasts. The methodology described in this work constitutes a powerful tool for breast dosimetry, especially for risk studies.

  10. Mixed squamous cell and glandular papilloma of the lung in a 64-year-old woman.

    PubMed

    Yun, Ju Sik; Kim, Do Wan; Choi, Yoo Duk; Na, Kook Joo; Song, Sang Yun

    2014-02-01

    Mixed squamous cell and glandular papilloma of the lung is an extremely rare benign epithelial tumor showing a mixture of squamous and glandular epithelium. Here, we report a case of mixed squamous cell and glandular papilloma that presented as a solitary nodule in the left lower lobe of a 64-year-old woman. Chest computed tomography demonstrated a lobulated mass in the basal segment of the left lower lobe. The patient underwent a lobectomy under the suspicion of lung malignancy. The histopathological diagnosis was mixed squamous cell and glandular papilloma.

  11. Localization of Salvinorin A and Related Compounds in Glandular Trichomes of the Psychoactive Sage, Salvia divinorum

    PubMed Central

    SIEBERT, DANIEL J.

    2004-01-01

    • Background and Aims Salvia divinorum produces several closely related neoclerodane diterpenes. The most abundant of these, salvinorin A, is responsible for the psychoactive properties of the plant. To determine where these compounds occur in the plant, various organs, tissues and glandular secretions were chemically analysed. A microscopic survey of the S. divinorum plant was performed to examine the various types of trichomes present and to determine their distribution. • Methods Chemical analyses were performed using thin layer chromatographic and histochemical techniques. Trichomes were examined using conventional light microscopy and scanning electron microscopy. • Key Results It was found that neoclerodane diterpenes are secreted as components of a resin that accumulates in peltate glandular trichomes, specifically in the subcuticular space that exists between the trichome head cells and the cuticle that encloses them. Four main types of trichomes were observed: peltate glandular trichomes, short‐stalked capitate glandular trichomes, long‐stalked capitate glandular trichomes and non‐glandular trichomes. Their morphology and distribution is described. Peltate glandular trichomes were only found on the abaxial surfaces of the leaves, stems, rachises, bracts, pedicles and calyces. This was consistent with chemical analyses, which showed the presence of neoclerodane diterpenes in these organs, but not in parts of the plant where peltate glandular trichomes are absent. • Conclusions Salvinorin A and related compounds are secreted as components of a complex resin that accumulates in the subcuticular space of peltate glandular trichomes. PMID:15087301

  12. Population Responses of Potato Leafhopper (Hemiptera: Cicadellidae) to Insecticide in Glandular-Haired and Non-glandular-Haired Alfalfa Cultivars.

    PubMed

    Sulc, R Mark; McCormick, John S; Hammond, Ronald B; Miller, David J

    2014-12-01

    Conflicting results have been reported on the ability of glandular-haired alfalfa (Medicago sativa L.) cultivars to reduce potato leafhopper, Empoasca fabae Harris, population abundance in field environments. We measured potato leafhopper adult and nymph abundance and yield responses in a cultivar selected for high potato leafhopper resistance ('54H91') and in a non-glandular-haired susceptible cultivar ('54V54') with and without insecticide treatment across 3 yr. Treatments included no insecticide and insecticide applied either early or late in each summer growth cycle. Date × cultivar × treatment interactions were found for potato leafhopper population abundance. In the absence of insecticides, total potato leafhopper abundance (adults + nymphs per sweep) was lower in 54H91 than in 54V54 on 85% of sampling dates; cultivar differences were especially evident as potato leafhopper abundance peaked. Insecticide treatment reduced potato leafhopper populations in both cultivars, but populations recovered and often exceeded the normal action threshold in both cultivars within 2-3 wk of insecticide application. Yield gain from early insecticide treatment of 54V54 was >400 kg/ha in 11 of 14 summer harvests, whereas in 54H91 the yield gain was <250 kg/ha in 10 of 14 summer harvests. We conclude that glandular-haired alfalfa cultivars with high levels of potato leafhopper resistance significantly suppress potato leafhopper adult and nymph abundance, reduce yield losses in the absence of insecticides, and have potential within an integrated pest management strategy to reduce insecticide use in alfalfa production systems.

  13. Distribution of peltate glandular trichomes on developing leaves of peppermint.

    PubMed

    Turner, G W; Gershenzon, J; Croteau, R B

    2000-10-01

    The pattern of peltate glandular trichome initiation and ontogeny on expanding peppermint (Mentha x piperita) leaves was defined by surveying the populations of peltate glands in each of seven developmental stages within sampling areas of leaf apical, mid-, and basal zones for both abaxial and adaxial surfaces. It was shown that new peltate glands continue to form until leaf expansion ceases and that regions of active gland initiation are unevenly distributed. The distribution of gland initiation reflects the basipetal pattern of leaf maturation, with relatively immature regions at the leaf base continuing to produce oil glands long after gland production has stopped at the leaf apex. The proportion of glands in the secretory stage as a function of leaf development and the direct observations of living glands over a period of 33 h indicate that a period of only 20 to 30 h of secretory activity is required for filling of the gland storage compartment with essential oil. These findings are discussed in relation to earlier literature describing age-related changes in glandular essential oil content.

  14. Anaphylaxis to pine nut: cross-reactivity to Artemisia vulgaris?

    PubMed

    Rodrigues-Alves, R; Pregal, A; Pereira-Santos, M C; Branco-Ferreira, M; Lundberg, M; Oman, H; Pereira-Barbosa, M

    2008-01-01

    The use of pine nuts, the seeds of Pinus pinea, is on the increasing in the modern Mediterranean diet. Little more than 20 cases of allergy to this tree nut have been published, and cross-reactivity with pine pollen, peanut and almond has already been reported. We describe the case of a young boy with several episodes of anaphylaxis after pine nut ingestion. Specific IgE to pine nut and Artemisia vulgaris was demonstrated by skin prick tests and in vitro determination of specific IgE, although no IgE to pine pollen or other nuts was detected. Immunoblotting of Artemisia vulgaris and pine nut revealed two matching diffuse bands, just below 14 kDa and 30 kDa. The ImmunoCAP inhibition assays showed complete inhibition of pine nut specific IgE after serum incubation with Artemisia vulgaris extract. As far as we know, this is the first reported case of documented cross-reactivity between pine nut and Artemisia vulgaris.

  15. Big sagebrush (Artemisia tridentata) communities: Ecology, importance and restoration potential

    Treesearch

    Stephen B. Monsen; Nancy L. Shaw

    2000-01-01

    Big sagebrush (Artemisia tridentata Nutt.) is the most common and widespread sagebrush species in the Intermountain region. Climatic patterns, elevation gradients, soil characteristics and fire are among the factors regulating the distribution of its three major subspecies. Each of these subspecies is considered a topographic climax dominant....

  16. Artemisia communities in arid zones of Uzbekistan (Central Asia)

    Treesearch

    Lyubov A. Kapustina; Montserrat Torrell; Joan Valles

    2001-01-01

    Central Asia, and particularly the former Soviet Middle Asian countries, with more than 180 taxa (45 endemics), is one of the centers of origin and speciation of the genus Artemisia L. (Asteraceae, Anthemideae). Several species of this genus, mainly belonging to subgenus Seriphidium (Besser) Rouy, are shrubs that dominate the landscape and form large communities in...

  17. In vitro antiprotozoal activity of the leaves of Artemisia ludoviciana.

    PubMed

    Said Fernández, Salvador; Ramos Guerra, Monica Celina; Mata Cárdenas, Benito David; Vargas Villarreal, Javier; Villarreal Treviño, Licet

    2005-07-01

    The inhabitants of Northeast of Mexico use an infusion of leaves from Artemisia ludoviciana as an antidiarrheal remedy. The aqueous, methanol, acetone and hexane leaf extracts from mature plants were found to be active in vitro against the parasitic protozoa Entamoeba histolytica and Giardia lamblia.

  18. The artemisia L. Genus: a review of bioactive essential oils.

    PubMed

    Abad, María José; Bedoya, Luis Miguel; Apaza, Luis; Bermejo, Paulina

    2012-03-02

    Numerous members of the Anthemideae tribe are important as cut flowers and ornamental crops, as well as being medicinal and aromatic plants, many of which produce essential oils used in folk and modern medicine and in the cosmetics and pharmaceutical industry. Essential oils generally have a broad spectrum of bioactivity, owing to the presence of several active ingredients that work through various modes of action. Due to their mode of extraction, mostly by distillation from aromatic plants, they contain a variety of volatile molecules such as terpenes, phenol-derived aromatic and aliphatic components. The large genus Artemisia L., from the tribe Anthemideae, comprises important medicinal plants which are currently the subject of phytochemical attention due to their biological and chemical diversity. Artemisia species, widespread throughout the world, are one of the most popular plants in Chinese traditional preparations and are frequently used for the treatment of diseases such as malaria, hepatitis, cancer, inflammation and infections by fungi, bacteria and viruses. Extensive studies of the chemical components of Artemisia have led to the identification of many compounds as well as essentials oils. This review summarizes some of the main reports on the chemistry and anti-infective activities of Artemisia. Li. essential oils from the data in the recent literature (2000-2011).

  19. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils.

    PubMed

    Kordali, Saban; Kotan, Recep; Mavi, Ahmet; Cakir, Ahmet; Ala, Arzu; Yildirim, Ali

    2005-11-30

    The essential oil isolated from Turkish tarragon (Artemisia dracunculus) by hydrodistillation was analyzed by GC-MS. Thirty compounds representing 99.5% of total oil were identified. The predominant components in the oil were (Z)-anethole (81.0%), (Z)-beta-ocimene (6.5%), (E)-beta-ocimene (3.1%), limonene (3.1%), and methyleugenol (1.8%). The antibacterial and antifungal activities of the essential oils isolated from A. dracunculus, Artemisia absinthium, Artemisia santonicum, and Artemisia spicigera oils were also evaluated. In general, the oils exhibited potent antifungal activity at a wide spectrum on the growth of agricultural pathogenic fungi. Among the oils, the weakest antifungal activity was shown by the oil of A. dracunculus. In many cases, the oils of A. absinthium, A. santonicum, and A. spicigera completely inhibited the growth of some fungal species. As compared with antibacterial activities of all of tested oils, A. santonicum and A. spicigera oils showed antibacterial activities over a very wide spectrum. However, the essential oils tested showed lower inhibition zones than the inhibition zones of penicillin. In addition, antioxidant and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities of tarragon oil were determined, and weak antioxidant and DPPH radical scavenging activities were found in comparison to butylated hydroxytoluene.

  20. Allergy to foods in patients monosensitized to Artemisia pollen.

    PubMed

    Garcia Ortiz, J C; Cosmes, P M; Lopez-Asunsolo, A

    1996-12-01

    It is known that patients with pollinosis may display clinical characteristics caused by allergy to certain fruits and vegetables, but subjects allergic to Artemisia seem to show particularly peculiar characteristics. The clinical features of 84 patients with rhinitis, asthma, urticaria, and/or anaphylaxis whose inhalant allergy was exclusively to Artemisia vulgaris were studied and compared with a control group of 50 patients monosensitized to grass pollen. The mean age for the beginning of symptoms was 30.2 years, and this was higher than in the control group (P < 0.05). We found the main incidence to be in women (70.2%). Some 42.3% had family history of atopia, lower than in the control group (P < 0.05), while the prevalence of asthma and urticaria was significantly higher (P < 0.05). Food hypersensitivity was reported by 23 patients (27.3%) allergic to Artemisia. The foods responsible (with respective numbers of cases) were honey (14), sunflower seeds (11), camomile (four), pistachio (three), hazelnut (two), lettuce (two), pollen (two), beer (two), almond (one), peanut (one), other nuts (one), carrot (one), and apple (one). None of the patients monosensitized to grass had food allergy. CAP inhibition experiments were carried out on a single patient. Results showed the existence of common antigenic epitopes in pistachio and Artemisia pollen for this patient. We concluded that mugwort hay fever can be associated with the Compositae family of foods, but that it is not normally associated with other foods.

  1. Fire tolerance of a resprouting Artemisia (Asteraceae) shrub

    USGS Publications Warehouse

    Winter, S.L.; Fuhlendorf, S.D.; Goad, C.L.; Davis, C.A.; Hickman, K.R.; Leslie, David M.

    2011-01-01

    In North America, most Artemisia (Asteraceae) shrub species lack the ability to resprout after disturbances that remove aboveground biomass. We studied the response of one of the few resprouting Artemisia shrubs, Artemisia filifolia (sand sagebrush), to the effects of prescribed fires. We collected data on A. filifolia density and structural characteristics (height, canopy area, and canopy volume) in an A. filifolia shrubland in the southern Great Plains of North America. Our study sites included areas that had not been treated with prescribed fire, areas that had been treated with only one prescribed fire within the previous 5 years, and areas that had been treated with two prescribed fires within the previous 10 years. Our data were collected at time periods ranging from 1/2 to 5 years after the prescribed fires. Density of A. filifolia was not affected by one or two fires. Structural characteristics, although initially altered by prescribed fire, recovered to levels characteristic of unburned areas in 3-4 years after those fires. In contrast to most non-sprouting North American Artemisia shrub species, our research suggested that the resprouting A. filifolia is highly tolerant to the effects of fire. ?? 2011 Springer Science+Business Media B.V.

  2. Molecular characterization of a gender-linked DNA marker and a related gene in Mercurialis annua L.

    PubMed

    Khadka, Deepak Kumar; Nejidat, Ali; Tal, Moshe; Golan-Goldhirsh, Avi

    2005-12-01

    The dioecious Mercurialis annua L. was used as a model plant to study some aspects of the molecular basis of sex determination in plants. We report in this paper the characterization of a previously identified male specific DNA marker, OPB01-1562, from diploid dioecious M. annua. The marker co-segregated with male sex in the progeny of hormonally feminized males. Sequence analysis showed the presence of approximately 0.6 kb retrotransposon-like sequence at its 3' end. Homologous sequences were isolated from diploid female, hexaploid male and monoecious plants. These sequences contained RNaseH and integrase domains of reverse transcriptase and were most similar to pineapple retrotransposon dea1, hence were named M. annua retrotransposon-like sequences (MARL-1 to MARL-5). A 771 bp fragment isolated from a diploid female, named fem771, was homologous to the 5' end of OPB01-1562. Results from DNA blot hybridization suggested OPB01-1562 and fem771 to be from the same locus and MARL-1 from a different one. RNA blot hybridization with OPB01-1562 and MARL-1 detected an approximately 2.8 kb transcript which was expressed strongly in stems and flowers of females but not males. This transcript was named M. annua female expressed (Mafex). Sex linkage of OPB01-1562 and expression of Mafex detected by OPB01-1562 strongly suggested Mafex to be a candidate gene involved in sex determination in M. annua.

  3. Flat urothelial carcinoma in situ of the bladder with glandular differentiation.

    PubMed

    Lopez-Beltran, Antonio; Jimenez, Rafael E; Montironi, Rodolfo; Patriarca, Carlo; Blanca, Ana; Menendez, Carmen L; Algaba, Ferran; Cheng, Liang

    2011-11-01

    We present the clinicopathologic and immunonohistochemical features of 25 cases of flat urothelial carcinoma in situ with glandular differentiation. Previously, cases on this category have been reported as in situ adenocarcinoma (a term not currently preferred). Fourteen of 25 cases had concurrent conventional urothelial carcinoma in situ. Five of the cases were primary carcinoma in situ with glandular differentiation; twenty cases of secondary carcinoma in situ with glandular differentiation were associated with urothelial carcinoma alone (n = 11) or with glandular differentiation (n = 7), discohesive (n = 1) or micropapillary carcinoma (n = 1). The individual tumor cells were columnar. The architectural pattern of the carcinoma in situ with glandular differentiation consisted of 1 or more papillary, flat or cribriform glandular patterns. Univariate statistical analysis showed no survival differences between urothelial carcinoma in situ with glandular differentiation and conventional urothelial carcinoma in situ (log-rank 0.810; P = .368). Carcinoma in situ with glandular differentiation showed high ki-67 index and p53 accumulation, high nuclear and cytoplasmic p16 expression and diffuse PTEN expression, a phenotype that also characterized concurrent conventional carcinoma in situ. MUC5A, MUC2, CK20, and c-erbB2 were positive in all 25 cases of urothelial carcinoma in situ with glandular differentiation, and CDX-2 was present in 19 cases; MUC1, CK7, or 34βE12 was focally present in 21, 19, and 18 cases, respectively. MUC1core was negative in all cases. We concluded that urothelial carcinoma in situ with glandular differentiation is a variant of carcinoma in situ that follows the natural history of conventional urothelial carcinoma in situ. The immunophenotype suggests urothelial origin with the expression of MUC5A and CDX2 as signature for glandular differentiation.

  4. Anthelmintic activity of Artemisia annua L. extracts in vitro and the effect of an aqueous extract and artemisinin in sheep naturally infected with gastrointestinal nematodes

    USDA-ARS?s Scientific Manuscript database

    There is no effective natural alternative control for gastrointestinal nematodes (GIN) of small ruminants, with Haemonchus contortus being the most economically important GIN. Despite frequent reports of multidrug-resistant GIN, there is no new commercial anthelmintic to substitute failing ones. Alt...

  5. Isolation of dihydroatemisinic acid from the artemisia annua l. by-product by combining Ultrasound-assisted extraction with response surface methodology

    USDA-ARS?s Scientific Manuscript database

    Malaria is one of the world’s most important parasitic diseases, affecting 300-500 million people worldwide and killing more than one million per year. Artemisinin is currently the only raw material for the production of artemisinin combination therapies (ACT), the only medicine that cures drug-resi...

  6. Effect of varying ratios of produced water and municipal water on soil characteristics, plant biomass, and secondary metabolites of Artemisia annua and Panicum virgatum

    USDA-ARS?s Scientific Manuscript database

    Coal-bed natural gas production in the U.S. in 2012 was 1,655 billion cubic feet (bcf). A by-product of this production is co-produced water, which is categorized as a waste product by the Environmental Protection Agency. The effects of varying concentrations of coal-bed methane (produced) water wer...

  7. Chemical composition and biological effects of Artemisia maritima and Artemisia nilagirica essential oils from wild plant of Western Himalaya

    USDA-ARS?s Scientific Manuscript database

    Artemisia species possess pharmacological properties that are used for medical purposes worldwide. In this paper, the essential oils from the aerial parts of A. nilagirica and A. maritima from the western Indian Himalaya region are described. The main compounds analyzed by simultaneous GC/MS and GC/...

  8. Human bronchial epithelial cells differentiate to 3D glandular acini on basement membrane matrix.

    PubMed

    Wu, Xiaofang; Peters-Hall, Jennifer R; Bose, Sumit; Peña, Maria T; Rose, Mary C

    2011-06-01

    To create a model system that investigates mechanisms resulting in hyperplasia and hypertrophy of respiratory tract submucosal glands, we developed an in vitro three-dimensional (3D) system wherein normal human bronchial epithelial (HBE) cells differentiated into glandular acini when grown on a basement membrane matrix. The differentiation of primary HBE cells into glandular acini was monitored temporally by light microscopy. Apoptosis-induced lumen formation was observed by immunofluorescence analysis. The acinar cells expressed and secreted MUC5B mucin (marker for glandular mucous cells) and lysozyme, lactoferrin, and zinc-α2-glycoprotein (markers for glandular serous cells) at Day 22. β-Tubulin IV, a marker for ciliated cells, was not detected. Expression of mucous and serous cell markers in HBE glandular acini demonstrated that HBE cells grown on a basement membrane matrix differentiated into acini that exhibit molecular characteristics of respiratory tract glandular acinar cells. Inhibition studies with neutralizing antibodies resulted in a marked decrease in size of the spheroids at Day 7, demonstrating that laminin (a major component of the basement membrane matrix), the cell surface receptor integrin α6, and the cell junction marker E-cadherin have functional roles in HBE acinar morphogenesis. No significant variability was detected in the average size of glandular acini formed by HBE cells from two normal individuals. These results demonstrated that this in vitro model system is reproducible, stable, and potentially useful for studies of glandular differentiation and hyperplasia.

  9. Comparative Functional Genomic Analysis of Solanum Glandular Trichome Types1[W][OA

    PubMed Central

    McDowell, Eric T.; Kapteyn, Jeremy; Schmidt, Adam; Li, Chao; Kang, Jin-Ho; Descour, Anne; Shi, Feng; Larson, Matthew; Schilmiller, Anthony; An, Lingling; Jones, A. Daniel; Pichersky, Eran; Soderlund, Carol A.; Gang, David R.

    2011-01-01

    Glandular trichomes play important roles in protecting plants from biotic attack by producing defensive compounds. We investigated the metabolic profiles and transcriptomes to characterize the differences between different glandular trichome types in several domesticated and wild Solanum species: Solanum lycopersicum (glandular trichome types 1, 6, and 7), Solanum habrochaites (types 1, 4, and 6), Solanum pennellii (types 4 and 6), Solanum arcanum (type 6), and Solanum pimpinellifolium (type 6). Substantial chemical differences in and between Solanum species and glandular trichome types are likely determined by the regulation of metabolism at several levels. Comparison of S. habrochaites type 1 and 4 glandular trichomes revealed few differences in chemical content or transcript abundance, leading to the conclusion that these two glandular trichome types are the same and differ perhaps only in stalk length. The observation that all of the other species examined here contain either type 1 or 4 trichomes (not both) supports the conclusion that these two trichome types are the same. Most differences in metabolites between type 1 and 4 glands on the one hand and type 6 glands on the other hand are quantitative but not qualitative. Several glandular trichome types express genes associated with photosynthesis and carbon fixation, indicating that some carbon destined for specialized metabolism is likely fixed within the trichome secretory cells. Finally, Solanum type 7 glandular trichomes do not appear to be involved in the biosynthesis and storage of specialized metabolites and thus likely serve another unknown function, perhaps as the site of the synthesis of protease inhibitors. PMID:21098679

  10. Variation in the number of capitate glandular trichomes in wild and cultivated sunflower germplasm and potential for use in host plant resistance

    USDA-ARS?s Scientific Manuscript database

    Capitate glandular trichomes of wild sunflower (Helianthus spp.) are considered an effective defense against the sunflower moth, Homoeosoma electellum (Hulst), but cultivated sunflowers are reportedly deficient in glandular trichomes. To investigate whether glandular trichomes have a role in protect...

  11. Glandular odontogenic cyst: absence of PTCH gene mutation.

    PubMed

    Barreto, D C; De Marco, L; Castro, W H; Gomez, R S

    2001-02-01

    Glandular odontogenic cyst (GOC) is a rare jawbone cyst of odontogenic origin. Human patched (PTCH) is a tumour suppressor gene that has been recently associated with signalling pathways during odontogenesis. Recently alterations of this gene were found on sporadic odontogenic keratocysts. This evidence, together with the biological behaviour similarities of both lesions, and the absence of reports on molecular analysis of GOC, led us to hypothesize that PTCH gene mutations may underlie the tumorigenesis of GOC. Therefore the aim of this study was to report one additional case of GOC and investigate the PTCH gene of the cyst. No mutations were found in the splicing and coding regions of the PTCH gene. In conclusion, the PTCH gene does not seem to be involved in GOC pathogenesis.

  12. Glandular odontogenic cyst: report of an unusual bilateral occurrence.

    PubMed

    Amberkar, Vikram S; Jahagirdar, Abhishek; Ahmed Mujib, B R

    2011-01-01

    Glandular odontogenic cyst (GOC) is a recently recognized rare developmental odontogenic cyst having an aggressive behavior and accounting for 0.012% to 1.3% of all jaw cysts. GOC usually presents as a painless, slow-growing swelling that tends to affect the anterior part of the jaws. It chiefly occurs in the fourth and fifth decades of life and presents as an expansion of jaws with or without pain or paresthesia. Aggressive nature of the lesion has been reported, as supported by the fact that 25 to 55% of cases recur following curettage. So far only just over 113 cases of GOC have been reported in the literature. Here, we report a case of bilateral GOC in the posterior region of the maxilla, in a 29-year-old male patient, which is unique, being the first case of bilateral GOC to be reported in the literature.

  13. Complete Chloroplast Genome Sequences of Mongolia Medicine Artemisia frigida and Phylogenetic Relationships with Other Plants

    PubMed Central

    Liu, Yue; Huo, Naxin; Dong, Lingli; Wang, Yi; Zhang, Shuixian; Young, Hugh A.; Feng, Xiaoxiao; Gu, Yong Qiang

    2013-01-01

    Background Artemisia frigida Willd. is an important Mongolian traditional medicinal plant with pharmacological functions of stanch and detumescence. However, there is little sequence and genomic information available for Artemisia frigida, which makes phylogenetic identification, evolutionary studies, and genetic improvement of its value very difficult. We report the complete chloroplast genome sequence of Artemisia frigida based on 454 pyrosequencing. Methodology/Principal Findings The complete chloroplast genome of Artemisia frigida is 151,076 bp including a large single copy (LSC) region of 82,740 bp, a small single copy (SSC) region of 18,394 bp and a pair of inverted repeats (IRs) of 24,971 bp. The genome contains 114 unique genes and 18 duplicated genes. The chloroplast genome of Artemisia frigida contains a small 3.4 kb inversion within a large 23 kb inversion in the LSC region, a unique feature in Asteraceae. The gene order in the SSC region of Artemisia frigida is inverted compared with the other 6 Asteraceae species with the chloroplast genomes sequenced. This inversion is likely caused by an intramolecular recombination event only occurred in Artemisia frigida. The existence of rich SSR loci in the Artemisia frigida chloroplast genome provides a rare opportunity to study population genetics of this Mongolian medicinal plant. Phylogenetic analysis demonstrates a sister relationship between Artemisia frigida and four other species in Asteraceae, including Ageratina adenophora, Helianthus annuus, Guizotia abyssinica and Lactuca sativa, based on 61 protein-coding sequences. Furthermore, Artemisia frigida was placed in the tribe Anthemideae in the subfamily Asteroideae (Asteraceae) based on ndhF and trnL-F sequence comparisons. Conclusion The chloroplast genome sequence of Artemisia frigida was assembled and analyzed in this study, representing the first plastid genome sequenced in the Anthemideae tribe. This complete chloroplast genome sequence will be

  14. Complete chloroplast genome sequences of Mongolia medicine Artemisia frigida and phylogenetic relationships with other plants.

    PubMed

    Liu, Yue; Huo, Naxin; Dong, Lingli; Wang, Yi; Zhang, Shuixian; Young, Hugh A; Feng, Xiaoxiao; Gu, Yong Qiang

    2013-01-01

    Artemisia frigida Willd. is an important Mongolian traditional medicinal plant with pharmacological functions of stanch and detumescence. However, there is little sequence and genomic information available for Artemisia frigida, which makes phylogenetic identification, evolutionary studies, and genetic improvement of its value very difficult. We report the complete chloroplast genome sequence of Artemisia frigida based on 454 pyrosequencing. The complete chloroplast genome of Artemisia frigida is 151,076 bp including a large single copy (LSC) region of 82,740 bp, a small single copy (SSC) region of 18,394 bp and a pair of inverted repeats (IRs) of 24,971 bp. The genome contains 114 unique genes and 18 duplicated genes. The chloroplast genome of Artemisia frigida contains a small 3.4 kb inversion within a large 23 kb inversion in the LSC region, a unique feature in Asteraceae. The gene order in the SSC region of Artemisia frigida is inverted compared with the other 6 Asteraceae species with the chloroplast genomes sequenced. This inversion is likely caused by an intramolecular recombination event only occurred in Artemisia frigida. The existence of rich SSR loci in the Artemisia frigida chloroplast genome provides a rare opportunity to study population genetics of this Mongolian medicinal plant. Phylogenetic analysis demonstrates a sister relationship between Artemisia frigida and four other species in Asteraceae, including Ageratina adenophora, Helianthus annuus, Guizotia abyssinica and Lactuca sativa, based on 61 protein-coding sequences. Furthermore, Artemisia frigida was placed in the tribe Anthemideae in the subfamily Asteroideae (Asteraceae) based on ndhF and trnL-F sequence comparisons. The chloroplast genome sequence of Artemisia frigida was assembled and analyzed in this study, representing the first plastid genome sequenced in the Anthemideae tribe. This complete chloroplast genome sequence will be useful for molecular ecology and molecular phylogeny

  15. Anthelmintic properties of extracts from Artemisia plants against nematodes.

    PubMed

    Khan, S; Afshan, K; Mirza, B; Miller, J E; Manan, A; Irum, S; Rizvi, S S R; Qayyum, M

    2015-06-01

    Artemisia plant genus, natural inhabitant of northern Punjab Pakistan, is well known for its anthelmintic properties; many Artemisia species have not been so far scientifically proved. The aim of this study was to assess in vitro anthelmintic activity of Artemisia indica and Artemisia roxburghiana against mixed infection of gastrointestinal nematodes in small ruminants. This study is first scientifically proven study on anthelmintic activity of A. indica and A. roxburghiana. Five different concentrations (50, 25, 12.5, 6.25 and 3.75 mg/mL) accompanied by negative control (PBS) and positive control (albendazole, 10%) were used to carry out the egg hatch inhibition assay, larval mortality assay and adult worm mortality assay. The Baermann technique was used first time in larval mortality assay and proved to be effective. The results revealed that methanolic extracts of both A. indica and A. roxburghiana, showed maximum anthelmintic activity at concentration of 50 mg/ml by egg hatch inhibition (85±21.2; 80±28.3), larvae mortality (18±2.8; 17±4.2) and adult worm mortality (8.5±2.1; 8±2.8) assays. However, at concentration of 50 mg/ml both plant extracts in comparison to albendazole showed statistically insignificant (p≤0.05) results. The A. indica showed higher anthelmintic activity at all concentrations as compared to A. roburghiana. It has been concluded both plants exhibit anthelmintic activity and further evaluation of these plants should be carried out to purify the active ingredients for anthelmintic activity. Moreover, the decoctions of these plants could be used to GINs after confirming anthelmintic properties through in vivo.

  16. Burial increases seed longevity of two Artemisia tridentata (Asteraceae) subspecies

    USGS Publications Warehouse

    Wijayratne, Upekala C.; Pyke, David A.

    2012-01-01

    Premise of the study: Seed longevity and persistence in soil seed banks may be especially important for population persistence in ecosystems where opportunities for seedling establishment and disturbance are unpredictable. The fire regime, an important driver of population dynamics in sagebrush steppe ecosystems, has been altered by exotic annual grass invasion. Soil seed banks may play an active role in postfire recovery of the foundation shrub Artemisia tridentata, yet conditions under which seeds persist are largely unknown. Methods: We investigated seed longevity of two Artemisia tridentata subspecies in situ by retrieving seed bags that were placed at varying depths over a 2 yr period. We also sampled naturally dispersed seeds in litter and soil immediately after seed dispersal and before flowering in subsequent seasons to estimate seed persistence. Key results: After 24 mo, seeds buried at least 3 cm below the soil surface retained 30–40% viability whereas viability of seeds on the surface and under litter declined to 0 and Artemisia tridentata has the potential to form a short-term soil seed bank that persists longer than has been commonly assumed, and that burial is necessary for seed longevity. Use of seeding techniques that promote burial of some seeds to aid in formation of a soil seed bank may increase restoration potential.

  17. Burial increases seed longevity of two Artemisia tridentata (Asteraceae) subspecies.

    PubMed

    Wijayratne, Upekala C; Pyke, David A

    2012-03-01

    Seed longevity and persistence in soil seed banks may be especially important for population persistence in ecosystems where opportunities for seedling establishment and disturbance are unpredictable. The fire regime, an important driver of population dynamics in sagebrush steppe ecosystems, has been altered by exotic annual grass invasion. Soil seed banks may play an active role in postfire recovery of the foundation shrub Artemisia tridentata, yet conditions under which seeds persist are largely unknown. We investigated seed longevity of two Artemisia tridentata subspecies in situ by retrieving seed bags that were placed at varying depths over a 2 yr period. We also sampled naturally dispersed seeds in litter and soil immediately after seed dispersal and before flowering in subsequent seasons to estimate seed persistence. After 24 mo, seeds buried at least 3 cm below the soil surface retained 30-40% viability whereas viability of seeds on the surface and under litter declined to 0 and < 11%, respectively. The density of naturally dispersed seeds in the seed bank was highly heterogeneous both spatially and temporally, and attrition varied significantly by region. Our study suggests that Artemisia tridentata has the potential to form a short-term soil seed bank that persists longer than has been commonly assumed, and that burial is necessary for seed longevity. Use of seeding techniques that promote burial of some seeds to aid in formation of a soil seed bank may increase restoration potential.

  18. Glandular odontogenic cyst of the maxilla: a case report and literature review.

    PubMed

    Figueiredo, Nigel Roque; Dinkar, Ajit Dattatray; Khorate, Manisha Maruti

    2016-01-01

    Glandular Odontogenic Cyst is a relatively rare cyst of odontogenic origin, which shows glandular or salivary features that are thought to indicate the pluripotentiality of odontogenic epithelium. It is seen in middle-aged adults, and commonly involves the anterior region of the jaws, especially the mandible. It shows non-specific clinico-radiographic findings which may resemble other lesions, but has characteristic histopathologic features which help in its diagnosis. This paper reports an unusual presentation of a glandular odontogenic cyst which was diagnosed in a 64-year old female in the posterior maxilla, along with a literature review of this cyst, especially the cases reported in India in the past.

  19. Mixed mating in androdioecious Mercurialis annua inferred using progeny arrays and diploid-acting microsatellite loci in a hexaploid background

    PubMed Central

    Korbecka, Grażyna; Hamilton, Alastair; Pannell, John R.

    2011-01-01

    Background and Aims The frequency at which males can be maintained with hermaphrodites in androdioecious populations is predicted to depend on the selfing rate, because self-fertilization by hermaphrodites reduces prospective siring opportunities for males. In particular, high selfing rates by hermaphrodites are expected to exclude males from a population. Here, the first estimates are provided of the mating system from two wild hexaploid populations of the androdioecious European wind-pollinated plant M. annua with contrasting male frequencies. Methods Four diploid microsatellite loci were used to genotype 19–20 progeny arrays from two populations of M. annua, one with males and one without. Mating-system parameters were estimated using the program MLTR. Key Results Both populations had similar, intermediate outcrossing rates (tm = 0·64 and 0·52 for the population with and without males, respectively). The population without males showed a lower level of correlated paternity and biparental inbreeding and higher allelic richness and gene diversity than the population with males. Conclusions The results demonstrate the utility of new diploid microsatellite loci for mating system analysis in a hexaploid plant. It would appear that androdioecious M. annua has a mixed-mating system in the wild, an uncommon finding for wind-pollinated species. This study sets a foundation for future research to assess the relative importance of the sexual system, plant-density variation and stochastic processes for the regulation of male frequencies in M. annua over space and time. PMID:21320876

  20. Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered.

    PubMed

    Hernandez, Andrew M; Seibert, J Anthony; Boone, John M

    2015-11-01

    Current dosimetry methods in mammography assume that the breast is comprised of a homogeneous mixture of glandular and adipose tissues. Three-dimensional (3D) dedicated breast CT (bCT) data sets were used previously to assess the complex anatomical structure within the breast, characterizing the statistical distribution of glandular tissue in the breast. The purpose of this work was to investigate the effect of bCT-derived heterogeneous glandular distributions on dosimetry in mammography. bCT-derived breast diameters, volumes, and 3D fibroglandular distributions were used to design realistic compressed breast models comprised of heterogeneous distributions of glandular tissue. The bCT-derived glandular distributions were fit to biGaussian functions and used as probability density maps to assign the density distributions within compressed breast models. The MCNPX 2.6.0 Monte Carlo code was used to estimate monoenergetic normalized mean glandular dose "DgN(E)" values in mammography geometry. The DgN(E) values were then weighted by typical mammography x-ray spectra to determine polyenergetic DgN (pDgN) coefficients for heterogeneous (pDgNhetero) and homogeneous (pDgNhomo) cases. The dependence of estimated pDgN values on phantom size, volumetric glandular fraction (VGF), x-ray technique factors, and location of the heterogeneous glandular distributions was investigated. The pDgNhetero coefficients were on average 35.3% (SD, 4.1) and 24.2% (SD, 3.0) lower than the pDgNhomo coefficients for the Mo-Mo and W-Rh x-ray spectra, respectively, across all phantom sizes and VGFs when the glandular distributions were centered within the breast phantom in the coronal plane. At constant breast size, increasing VGF from 7.3% to 19.1% lead to a reduction in pDgNhetero relative to pDgNhomo of 23.6%-27.4% for a W-Rh spectrum. Displacement of the glandular distribution, at a distance equal to 10% of the compressed breast width in the superior and inferior directions, resulted in a 37

  1. Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered

    PubMed Central

    Hernandez, Andrew M.; Seibert, J. Anthony; Boone, John M.

    2015-01-01

    Purpose: Current dosimetry methods in mammography assume that the breast is comprised of a homogeneous mixture of glandular and adipose tissues. Three-dimensional (3D) dedicated breast CT (bCT) data sets were used previously to assess the complex anatomical structure within the breast, characterizing the statistical distribution of glandular tissue in the breast. The purpose of this work was to investigate the effect of bCT-derived heterogeneous glandular distributions on dosimetry in mammography. Methods: bCT-derived breast diameters, volumes, and 3D fibroglandular distributions were used to design realistic compressed breast models comprised of heterogeneous distributions of glandular tissue. The bCT-derived glandular distributions were fit to biGaussian functions and used as probability density maps to assign the density distributions within compressed breast models. The MCNPX 2.6.0 Monte Carlo code was used to estimate monoenergetic normalized mean glandular dose “DgN(E)” values in mammography geometry. The DgN(E) values were then weighted by typical mammography x-ray spectra to determine polyenergetic DgN (pDgN) coefficients for heterogeneous (pDgNhetero) and homogeneous (pDgNhomo) cases. The dependence of estimated pDgN values on phantom size, volumetric glandular fraction (VGF), x-ray technique factors, and location of the heterogeneous glandular distributions was investigated. Results: The pDgNhetero coefficients were on average 35.3% (SD, 4.1) and 24.2% (SD, 3.0) lower than the pDgNhomo coefficients for the Mo–Mo and W–Rh x-ray spectra, respectively, across all phantom sizes and VGFs when the glandular distributions were centered within the breast phantom in the coronal plane. At constant breast size, increasing VGF from 7.3% to 19.1% lead to a reduction in pDgNhetero relative to pDgNhomo of 23.6%–27.4% for a W–Rh spectrum. Displacement of the glandular distribution, at a distance equal to 10% of the compressed breast width in the superior and

  2. Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered

    SciTech Connect

    Hernandez, Andrew M.; Seibert, J. Anthony; Boone, John M.

    2015-11-15

    Purpose: Current dosimetry methods in mammography assume that the breast is comprised of a homogeneous mixture of glandular and adipose tissues. Three-dimensional (3D) dedicated breast CT (bCT) data sets were used previously to assess the complex anatomical structure within the breast, characterizing the statistical distribution of glandular tissue in the breast. The purpose of this work was to investigate the effect of bCT-derived heterogeneous glandular distributions on dosimetry in mammography. Methods: bCT-derived breast diameters, volumes, and 3D fibroglandular distributions were used to design realistic compressed breast models comprised of heterogeneous distributions of glandular tissue. The bCT-derived glandular distributions were fit to biGaussian functions and used as probability density maps to assign the density distributions within compressed breast models. The MCNPX 2.6.0 Monte Carlo code was used to estimate monoenergetic normalized mean glandular dose “DgN(E)” values in mammography geometry. The DgN(E) values were then weighted by typical mammography x-ray spectra to determine polyenergetic DgN (pDgN) coefficients for heterogeneous (pDgN{sub hetero}) and homogeneous (pDgN{sub homo}) cases. The dependence of estimated pDgN values on phantom size, volumetric glandular fraction (VGF), x-ray technique factors, and location of the heterogeneous glandular distributions was investigated. Results: The pDgN{sub hetero} coefficients were on average 35.3% (SD, 4.1) and 24.2% (SD, 3.0) lower than the pDgN{sub homo} coefficients for the Mo–Mo and W–Rh x-ray spectra, respectively, across all phantom sizes and VGFs when the glandular distributions were centered within the breast phantom in the coronal plane. At constant breast size, increasing VGF from 7.3% to 19.1% lead to a reduction in pDgN{sub hetero} relative to pDgN{sub homo} of 23.6%–27.4% for a W–Rh spectrum. Displacement of the glandular distribution, at a distance equal to 10% of the

  3. Artemisia copa aqueous extract as vasorelaxant and hypotensive agent.

    PubMed

    Gorzalczany, Susana; Moscatelli, Valeria; Ferraro, Graciela

    2013-06-21

    Artemisia copa Phil. (Asteraceae) is a medicinal plant commonly used in traditional medicine in Argentina. The vasorelaxant and hypotensive activities of the aqueous extract of Artemisia copa have been investigated. The in vitro effect of the extract and isolated compounds from Artemisia copa was investigated using isolated rat aortic rings. The acute effect caused by the intravenous (i.v.) infusion (0.1-300mg/kg) on blood pressure and heart rate was evaluated in spontaneous hypertensive rats. In addition, a phytochemical analysis of the extract was performed by HPLC. Artemisia copa had a relaxant effect in endothelium-intact aortic rings that had been pre-contracted with 10(-7)M phenylephrine (Emax=96.7±1.3%, EC50=1.1mg/ml), 10(-5)M 5-hydroxytriptamine (Emax=96.7±3.5%, EC50=1.5mg/ml) and 80mM KCl (Emax=97.9± 4.4%, EC50=1.6mg/ml). In denuded aortic rings contracted by phenylephrine, a similar pattern was observed (Emax=92.7±6.5%, EC50=1.8mg/ml). l-NAME, indomethacin, tetraethylammonium and glibenclamide were not able to block the relaxation induced by the extract. Nevertheless, the pre-treatment with Artemisia copa attenuated the CaCl2-induced contraction in a concentration-dependent manner (Emax: 86% of inhibition for 3mg/ml and 52% de-inhibition for 1mg/ml). This pre-treatment also induced a significant attenuation of the norepinephrine-induced contraction in a concentration-dependent manner (Emax: 72.7% of inhibition for 3mg/ml and 27% de inhibition for 1mg/ml) in a Ca(2+) free medium. Upon analyzing the composition of the extract, the presence of p-coumaric acid, isovitexin, luteolin and chrysoeriol were found. Luteolin (CE50: 1.5μg/ml), chrysoeriol (CE50: 13.2μg/ml) and p-coumaric acid (CE50: 95.2μg/ml), isolated from the aqueous extract, caused dilatation of thoracic aortic rings pre-contracted with phenylephrine. Artemisia copa administered i.v. also induced a decrease in the mean arterial pressure but did not affect the heart rate in hypertensive

  4. Dosimetry in Mammography: Average Glandular Dose Based on Homogeneous Phantom

    NASA Astrophysics Data System (ADS)

    Benevides, Luis A.; Hintenlang, David E.

    2011-05-01

    The objective of this study was to demonstrate that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 and 46 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. The clinical dosimetry protocol developed in this study can reliably predict the AGD imparted to an individual patient during a routine screening mammogram.

  5. Dosimetry in Mammography: Average Glandular Dose Based on Homogeneous Phantom

    SciTech Connect

    Benevides, Luis A.; Hintenlang, David E.

    2011-05-05

    The objective of this study was to demonstrate that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 and 46 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. The clinical dosimetry protocol developed in this study can reliably predict the AGD imparted to an individual patient during a routine screening mammogram.

  6. Chemical Diversity and Biological Activity of the Volatiles of Five Artemisia Species from Far East Russia

    DTIC Science & Technology

    2014-01-01

    bioautography assay and all showed non- selective weak antifungal activity. Antioxidant evaluation of the oils was performed by using β-carotene bleaching...Trolox equivalent and DPPH tests. The tested Artemisia oils demonstrated moderate antioxidant activity. Keywords: Artemisia; essential oil...antifungal; botanical insecticidal; mosquito control; antioxidant activity. ©2014 ACG Publications. All rights reserved. * Corresponding author. E-mail

  7. Climate drives adaptive genetic responses associated with survival in big sagebrush (Artemisia tridentata)

    Treesearch

    Lindsay Chaney; Bryce A. Richardson; Matthew J. Germino

    2016-01-01

    A genecological approach was used to explore genetic variation for survival in Artemisia tridentata (big sagebrush). Artemisia tridentata is a widespread and foundational shrub species in western North America. This species has become extremely fragmented, to the detriment of dependent wildlife, and efforts to restore it are now a land management priority. Common-...

  8. Studies of a new hybrid taxon in the Artemisia tridentata (Asteraceae: Anthemideae) complex

    Treesearch

    Heather D. Garrison; Leila M. Shultz; E. Durant McArthur

    2013-01-01

    Members of the Artemisia tridentata complex (ASTERACEAE: Anthemideae: Artemisia subgen. Tridentatae) have adapted to changing environmental conditions through geographic migration, introgression, and hybridization. These processes have resulted in morphologic and genetic variation. A presumed hybrid ("Bonneville" big sagebrush) of the complex occurs in the...

  9. [Study on characteristics of non-glandular hairs of cultivated Lonicera japonica].

    PubMed

    Zhang, Shan-shan; Yuan, Yuan; Huang, Lu-qi; Chen, Ping

    2015-02-01

    We collected 22 cultivated population of Lonicera japonica from 17 areas. The characteristics of non-glandular hairs were observed and measured by the scanning electron microscopy. The principal components analysis and correlation analysis were conduct based on length and density of L. japonica. The results showed a significant negative correlation between length and density of non-glandular hairs, and the characteristics of non-glandular was not corrrelated significantly with latitude. The correlation results indicated that the density was a key to separate "Damaohua" and "Jizhuahua". The contribution of climate and soil was important to the cultivated population. This reminded that the characteristics of non-glandular hairs were affected by environmental and genetic interaction.

  10. Pulmonary mixed squamous cell and glandular papilloma mimicking adenocarcinoma: a case study and literature review.

    PubMed

    Lin, Dongliang; Jiang, Yanxia; Wang, Jigang; Ding, Li; Xin, Fangjie; Zhao, Han; Li, Yujun

    2013-08-01

    Mixed squamous cell and glandular papilloma of the lung is an extremely rare benign neoplasm. Here we present another case of mixed squamous cell and glandular papilloma in a 64-year-old female nonsmoker. Histologically, the tumor was composed of mainly papillary structures covered with squamous, glandular and transitional epithelium. Some glandular structures extending into adjacent bronchiolar and alveolar spaces with mucus were similar to adenocarcinoma. Immunohistochemical analysis showed the different kinds of epithelia had similar immunophenotype. The different components were positive for cytokeratin (CK)7, CK19, CAM5.2, CK5/6, CK34βE12, and TTF-1, but negative for CK20. The transitional morphology and immunohistochemistry indicate the different components likely come from a same kind of progenitor in the bronchiolar wall.

  11. Rapidly growing glandular papilloma associated with mucus production: a case report.

    PubMed

    Suzuki, Shigeki; Goto, Taichiro; Emoto, Katsura; Hayashi, Yuichiro

    2014-05-22

    Pulmonary glandular papillomas are rare neoplasms, and their very slow or absent growth over time generally facilitates establishing the diagnosis. In an 84-year-old woman who underwent surgery for sigmoid colon cancer, a growing solitary pulmonary nodule was identified on postoperative follow-up computed tomography. A computer tomography-guided needle biopsy was performed under suspicion that the nodule was malignant. The histopathological findings suggested a glandular papilloma. Right basilar segmentectomy was carried out, and the lesion was completely resected. Postoperative histopathological examination revealed a benign glandular papilloma accompanied by mucus retention in the surrounding alveolar region. A malignant neoplasm is usually suspected when a pulmonary tumor shows rapid growth. However, glandular papillomas associated with mucus retention also tend to grow in some cases, and should be included in the differential diagnosis.

  12. Rapidly growing glandular papilloma associated with mucus production: a case report

    PubMed Central

    2014-01-01

    Background Pulmonary glandular papillomas are rare neoplasms, and their very slow or absent growth over time generally facilitates establishing the diagnosis. Case presentation In an 84-year-old woman who underwent surgery for sigmoid colon cancer, a growing solitary pulmonary nodule was identified on postoperative follow-up computed tomography. A computer tomography-guided needle biopsy was performed under suspicion that the nodule was malignant. The histopathological findings suggested a glandular papilloma. Right basilar segmentectomy was carried out, and the lesion was completely resected. Postoperative histopathological examination revealed a benign glandular papilloma accompanied by mucus retention in the surrounding alveolar region. Conclusions A malignant neoplasm is usually suspected when a pulmonary tumor shows rapid growth. However, glandular papillomas associated with mucus retention also tend to grow in some cases, and should be included in the differential diagnosis. PMID:24886616

  13. Treatment of Maxillary Glandular Odontogenic Cyst Involving the Same Place of Previously Treated Traumatic Bone Cyst.

    PubMed

    Bulut, Emel; Baş, Burcu; Dinçer, Duygu; Günhan, Ömer

    2016-03-01

    Glandular odontogenic cyst is a rare developmental odontogenic cysts of the jaws having an aggressive behavior. The most common site of occurrence is the anterior mandible, and it is widely seen in middle-aged people. It is suggested that trauma could be a precipitating factor for its occurrence. This article presents the diagnosis and treatment of a case of glandular odontogenic cyst at anterior maxilla that occurred at the same localization of a traumatic bone cyst, 5 years after its management.

  14. Susceptibilities of Different Test Systems from Maize (Zea mays), Poa annua, and Festuca rubra to Herbicides That Inhibit the Enzyme Acetyl-Coenzyme A Carboxylase

    PubMed

    Herbert; Cole; Pallett; Harwood

    1996-06-01

    The susceptibilities of maize (Zea mays cv. Champ) and two graminicide-resistant grass species, Poa annua (annual meadow grass) and Festuca rubra (red fescue), to two aryloxyphenoxypropionates (quizalofop and fluazifop) and a cyclohexanedione (sethoxydim) graminicide were evaluated in leaf blades and isolated chloroplasts, and by assaying acetyl-coenzyme A carboxylase (ACCase) in desalted leaf homogenates. The graminicide resistance of P. annua and F. rubra appeared to be at the level of ACCase. Festuca rubra ACCase was highly insensitive and P. annua ACCase was partially insensitive to the graminicides that were tested. Fatty acid synthesis in isolated maize chloroplasts was more susceptible to inhibition than was ACCase activity from whole leaves. There was a smaller difference in graminicide sensitivity between these two test systems in P. annua. The developmental pattern of ACCase specific activity and its inhibition by quizalofop was measured in maize and P. annua leaf blades. There was an age-dependent increase in the sensitivity of maize leaf ACCase activity to inhibition by quizalofop. Together with the greater susceptibility of chloroplasts compared with leaf homogenates this could imply that a graminicide-insensitive (extrachloroplastic) ACCase isoform is less highly expressed in older leaves. Poa annua ACCase did not significantly alter in sensitivity as leaves aged, consistent with the smaller difference in the level of inhibition between chloroplasts and leaf homogenates in this species. A small pyruvate carboxylase activity was detected in maize leaves after 9 days. By 38 days, when leaves were senescing, pyruvate carboxylase activity predominated over ACCase.

  15. Effect of artemisia species on cellular proliferation and apoptosis in human breast cancer cells via estrogen receptor-related pathway.

    PubMed

    Choi, Eunjeong; Kim, Gunhee

    2013-10-01

    To investigate the mechanism underlying the anticancer effect of Artemisia species through the inhibition of cell growth and induction of apoptosis in breast carcinoma cells. To evaluate the anticancer activity of methanol extracts of eight Artemisia species (Artemisia stolonifera, Artemisia selengensis, Artemisia japonica, Artemisia Montana, Artemisia capillaris, Artemisia sylvatica, Artemisia keiskeana, and Artemisia scoparia), we first investigated the proliferation of estrogen receptor (ER)-positive MCF-7 breast carcinoma cells exposed to 5 or 200 g/mL for 72 h. Apoptosis induction was assessed by an Annexin V binding assay in cells exposed to extracts at a high concentration (200 g/mL). To verify the mechanism of apoptosis, ER expression and its related signaling was investigated using an immunoblot assay under the same conditions. MCF-7 cells showed the strongest antiproliferative response to the tested extracts. However, a biphasic effect was observed: the extracts inhibited proliferation at high concentrations whereas they stimulated it at low ones. ER expression was similarly modulated by the extracts. However, all of the extracts induced apoptosis at a high concentration (200 g/mL). Compared to the control level, exposure to the extracts resulted in a remarkable increase in the shift of cell populations. The present study suggests that the tested Artemisia species exerted their anticancer effects through the induction of apoptosis via an ER-related pathway.

  16. [Studies on chemical constituents in herb from Artemisia rupestris].

    PubMed

    Song, Wei-Xia; Ji, Teng-Fei; Si, Yi-Kang; Su, Ya-Lun

    2006-11-01

    To study the chemical constituents of Artemisia rupestris. The chemical constituents were isolated by column chromatography on silical gel and sephadex LH - 20. Their structures were elucidated on the basis of spectral analysis. 8 compounds have isolated from this plant, and the structures of them have identified as rupestonic acid (1), chrysosplenetin B (2), artemetin (3), herniarin (4), isokaempferide (5), vanillic acid (6), kaempferol 3, 3', 4'-trimethyl ether (7) and ermanine (8). Compounds 2-8 have been isolated from this plant for the first time.

  17. Protective effect of artemisia asiatica extract against renal ischemia-reperfusion injury in mice.

    PubMed

    Jang, Hyuk Jai; Jeong, Eui Kyun; Kim, Seong Su; Lee, Ji Hwan; Oh, Mi Young; Kang, Ki Sung; Kwan, Hak Cheol; Song, Kyung Il; Eom, Dae Woon; Han, Duck Jong

    2015-04-01

    An extract of Artemisia asiatica was reported to possess antioxidative and cytoprotective actions in various experiments. Ischemia-reperfusion injury remains a major problem in kidney transplant, and the inflammatory response to ischemia-reperfusion injury exacerbates the resultant renal injury. In the present study, we investigated whether an extract of Artemisia asiatica exhibits renoprotective effects against ischemia-reperfusion-induced acute kidney injury in mice. Renal ischemia-reperfusion injury was induced in male C57BL/6 mice by bilateral renal pedicle occlusion for 30 minutes followed by reperfusion for 48 hours. An extract of Artemisia asiatica (100 mg/kg oral) was administered 4 days before ischemia-reperfusion injury. Sham operation and phosphate-buffered saline were used as controls. Blood and renal tissues were evaluated at 48 hours after ischemiareperfusion injury. Treatment with an extract of Artemisia asiatica significantly decreased blood urea nitrogen, serum creatinine levels, and kidney tubular injury (P ≤ .05). Western blot showed that an extract of Artemisia asiatica significantly increased the level of heme oxygenase-1 and B-cell lymphoma 2 at 48 hours after ischemia-reperfusion injury and attenuated the level of inducible nitric oxide synthase. An extract of Artemisia asiatica improves acute renal ischemia-reperfusion injury by reducing inflammation and apoptosis. These findings suggest that an extract of Artemisia asiatica is a potential therapeutic agent against acute ischemia-induced renal damage.

  18. Allergenicity of Artemisia contained in bee pollen is proportional to its mass.

    PubMed

    Nonotte-Varly, C

    2015-11-01

    Bee product mugwort is identified as being at the origin of allergic accidents but the biological potency of Artemisia contained in bee pollen is not well known. In this experiment, Artemisia mass was identified in bee pollen mass and after having calculated the proportion of Artemisia using the bee pollen melissopalynology spectrum. Skin reactivity to Artemisia was assessed by measuring wheal diameters (W) from skin prick tests using three serial dilutions of bee pollen on 11 allergic patients to Artemisia, in order to calculate the relationship between Artemisia mass (Massartemisia) in bee pollen and skin reactivity. The dose-response power regression curve (Wartemisia)=3.328 (Massartemisia)0.297 (R2=0.9947) and the linear function Log10 (Wartemisia)=0.297 (Log10 (Massartemisia)+0.520 (R=0.9974)) were established using a bee pollen sample with 0.246 mg of Artemisia pollen per mg. Mugwort allergens seem to be little or not altered by bee secretions and bee pollen retains its allergenic capacity. To our knowledge this is the first time it has been shown that skin reactivity of patients allergic to mugwort is proportional to the absolute mugwort mass contained in the bee pollen.

  19. Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera

    PubMed Central

    Watson, Linda E; Bates, Paul L; Evans, Timothy M; Unwin, Matthew M; Estes, James R

    2002-01-01

    Background Subtribe Artemisiinae of Tribe Anthemideae (Asteraceae) is composed of 18 largely Asian genera that include the sagebrushes and mugworts. The subtribe includes the large cosmopolitan, wind-pollinated genus Artemisia, as well as several smaller genera and Seriphidium, that altogether comprise the Artemisia-group. Circumscription and taxonomic boundaries of Artemisia and the placements of these small segregate genera is currently unresolved. Results We constructed a molecular phylogeny for the subtribe using the internal transcribed spacers (ITS) of nuclear ribosomal DNA analyzed with parsimony, likelihood, and Bayesian criteria. The resulting tree is comprised of three major clades that correspond to the radiate genera (e.g., Arctanthemum and Dendranthema), and two clades of Artemisia species. All three clades have allied and segregate genera embedded within each. Conclusions The data support a broad concept of Artemisia s.l. that includes Neopallasia, Crossostephium, Filifolium, Seriphidium, and Sphaeromeria. However, the phylogeny excludes Elachanthemum, Kaschgaria, and Stilnolepis from the Artemisia-group. Additionally, the monophyly of the four subgenera of Artemisia is also not supported, with the exception of subg. Dracunculus. Homogamous, discoid capitula appear to have arisen in parallel four to seven times, with the loss of ray florets. Thus capitular morphology is not a reliable taxonomic character, which traditionally has been one of the defining characters. PMID:12350234

  20. Computation of the glandular radiation dose in digital tomosynthesis of the breast

    PubMed Central

    Sechopoulos, Ioannis; Suryanarayanan, Sankararaman; Vedantham, Srinivasan; D’Orsi, Carl; Karellas, Andrew

    2008-01-01

    Tomosynthesis of the breast is currently a topic of intense interest as a logical next step in the evolution of digital mammography. This study reports on the computation of glandular radiation dose in digital tomosynthesis of the breast. Previously, glandular dose estimations in tomosynthesis have been performed using data from studies of radiation dose in conventional planar mammography. This study evaluates, using Monte Carlo methods, the normalized glandular dose (DgN) to the breast during a tomosynthesis study, and characterizes its dependence on breast size, tissue composition, and x-ray spectrum. The conditions during digital tomosynthesis imaging of the breast were simulated using a computer program based on the Geant4 toolkit. With the use of simulated breasts of varying size, thickness and tissue composition, the DgN to the breast tissue was computed for varying x-ray spectra and tomosynthesis projection angle. Tomosynthesis projections centered about both the cranio-caudal (CC) and medio-lateral oblique (MLO) views were simulated. For each projection angle, the ratio of the glandular dose for that projection to the glandular dose for the zero degree projection was computed. This ratio was denoted the relative glandular dose (RGD) coefficient, and its variation under different imaging parameters was analyzed. Within mammographic energies, the RGD was found to have a weak dependence on glandular fraction and x-ray spectrum for both views. A substantial dependence on breast size and thickness was found for the MLO view, and to a lesser extent for the CC view. Although RGD values deviate substantially from unity as a function of projection angle, the RGD averaged over all projections in a complete tomosynthesis study varies from 0.91 to 1.01. The RGD results were fit to mathematical functions and the resulting equations are provided. PMID:17278508

  1. Glandular epithelial AR inactivation enhances PTEN deletion-induced uterine pathology.

    PubMed

    Choi, Jaesung Peter; Zheng, Yu; Handelsman, David J; Simanainen, Ulla

    2016-05-01

    Phosphatase and tensin homolog (PTEN) deletion induces uterine pathology, whereas androgen actions via androgen receptor (AR) support uterine growth and therefore may modify uterine cancer risk. We hypothesized that the androgen actions mediated via uterine glandular epithelial AR could modify PTEN deletion-induced uterine pathology. To test our hypothesis, we developed uterine glandular epithelium-specific PTEN and/or AR knockout mouse models comparing the uterine pathology among wild-type (WT), glandular epithelium-specific AR inactivation (ugeARKO), PTEN deletion (ugePTENKO), and the combined PTEN and AR knockout (ugePTENARKO) female mice. The double knockout restricted to glandular epithelium showed that AR inactivation enhanced PTEN deletion-induced uterine pathology with development of intraepithelial neoplasia by 20 weeks of age. In ugePTENARKO, 6/10 (60%) developed intraepithelial neoplasia, whereas 3/10 (30%) developed only glandular hyperplasia in ugePTENKO uterus. No uterine pathology was observed in WT (n=8) and ugeARKO (n=7) uteri. Uterine weight was significantly (P=0.002) increased in ugePTENARKO (374±97 mg (mean±s.e.)) compared with WT (97±6 mg), ugeARKO (94±12 mg), and ugePTENKO (205±33 mg). Estrogen receptor alpha (ERα) and P-AKT expression was modified by uterine pathology but did not differ between ugePTENKO and ugePTENARKO, suggesting that its expressions are not directly affected by androgens. However, progesterone receptor (PR) expression was reduced in ugePTENARKO compared to ugePTENKO uterus, suggesting that PR expression could be regulated by glandular epithelial AR inactivation. In conclusion, glandular epithelial AR inactivation (with persistent stromal AR action) enhanced PTEN deletion-induced uterine pathology possibly by downregulating PR expression in the uterus. © 2016 Society for Endocrinology.

  2. Effects of carbon dioxide and nitrogen fertilization on phenolic content in Poa annua L.

    PubMed

    Martijn Bezemer T; Hefin Jones T; E Newington J

    2000-11-01

    Different but partially overlapping hypotheses have been developed to predict the allocation of phenolics in elevated atmospheric CO(2). The carbon-nutrient balance hypothesis predicts increased allocation to phenolics due to reduced relative availability of nitrogen. The growth-differentiation balance hypothesis states that allocation will depend on source and sink strength, while the protein competition model predicts that allocation will remain unchanged. We grew Poa annua at two CO(2) concentrations in soils of three different nutrient levels. Although plant-tissue nitrogen levels were reduced in high CO(2) and photosynthetic rate increased, phenolic concentration and biomass allocation remained unchanged. We discuss these data in the context of the three models' predictions of phenolic allocation in conditions of elevated CO(2).

  3. Anticancer, antiobesity, and anti-inflammatory activity of Artemisia species in vitro.

    PubMed

    Choi, Eunjeong; Park, Heesook; Lee, Jehyuk; Kim, Gunhee

    2013-02-01

    To investigate the anticancer, anti-inflammatory, and antiobesity activity of methanol extracts of eight distinct species: Artemisia Stolonifera (AST), Artemisia Selengensis (ASE), Artemisia Japonica, Artemisia Montana, Artemisia Capillaris (ACA), Artemisia Sylvatica (ASY), Artemisia Keiskeana (AKE), and Artemisia Scoparia (ASC) in vitro. Antiproliferative activity was investigated in human breast cancer estrogen receptor-a positive T47D and negative HS578T cell lines exposed to the extracts at various concentrations (5-200 mg/ mL) for 24, 48, and 72 h. For evaluating the anti-inflammatory activity of the extracts, inhibition of nitrite synthesis was investigated in lipopolysaccharide (LPS)-stimulated cultures of macrophages cells exposed to 10, 50, 100, and 200 mg/mL for 24 h. The antiobesity activity of the extracts was determined as triglyceride content and by a lipolysis assay in differentiated 3T3-L1 cells exposed to the extracts for 72 h at the same concentrations described above. All extracts showed similar antiproliferative activity in a dose- and time-dependent manner in HS578T cells. Although extracts at lower concentrations and shorter times stimulated growth of T47D cells, the antiproliferative effects of the extracts on T47D cells at higher concentrations (> 100 mg/ mL) for 72 h were significantly greater than those of HS578T cells. In case of anti-inflammatory activity, some extracts (AST, ASE, ACA, and AKE) significantly reduced nitric oxide production at higher concentrations in the presence of LPS compared with that in control cells. Antiobesity activity was showed with reducing lipid accumulation significantly (> 50%) at concentrations above 100 mg/mL in most extracts (except AST and ACA). Additionally, AKE and ASC increased lipolysis by 11%-24% compared with that in the control. Artemisia spp. demonstrates potential as bioactive food supplements.

  4. Average glandular dose and phantom image quality in mammography

    NASA Astrophysics Data System (ADS)

    Oliveira, M.; Nogueira, M. S.; Guedes, E.; Andrade, M. C.; Peixoto, J. E.; Joana, G. S.; Castro, J. G.

    2007-09-01

    Doses in mammography should be maintained as low as possible without reducing the high image quality needed for early detection of the breast cancer. The breast is composed of tissues with very close composition and densities. It increases the difficulty to detect small changes in the normal anatomical structures which may be associated with breast cancer. To achieve the standards of definition and contrast for mammography, the quality and intensity of the X-ray beam, the breast positioning and compression, the film-screen system, and the film processing have to be in optimal operational conditions. This study sought to evaluate average glandular dose (AGD) and image quality on a standard phantom in 134 mammography units in the state of Minas Gerais, Brazil, between December 2004 and May 2006. AGDs were obtained by means of entrance kerma measured with TL LiF100 dosimeters on phantom surface. Phantom images were obtained with automatic exposure technique, fixed 28 kV and molybdenum anode-filter combination. The phantom used contained structures simulating tumoral masses, microcalcifications, fibers and low contrast areas. High-resolution metallic meshes to assess image definition and a stepwedge to measure image contrast index were also inserted in the phantom. The visualization of simulated structures, the mean optical density and the contrast index allowed to classify the phantom image quality in a seven-point scale. The results showed that 54.5% of the facilities did not achieve the minimum performance level for image quality. It is mainly due to insufficient film processing observed in 61.2% of the units. AGD varied from 0.41 to 2.73 mGy with a mean value of 1.32±0.44 mGy. In all optimal quality phantom images, AGDs were in this range. Additionally, in 7.3% of the mammography units, the AGD constraint of 2 mGy was exceeded. One may conclude that dose level to patient and image quality are not in conformity to regulations in most of the facilities. This

  5. Essential oil from Artemisia phaeolepis: chemical composition and antimicrobial activities.

    PubMed

    Ben Hsouna, Anis; Ben Halima, Nihed; Abdelkafi, Slim; Hamdi, Naceur

    2013-01-01

    Artemisia phaeolepis, a perennial herb with a strong volatile odor, grows on the grasslands of Mediterranean region. Essential oil obtained from Artemisia phaeolepis was analyzed by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. A total of 79 components representing 98.19% of the total oil were identified, and the main compounds in the oil were found to be eucalyptol (11.30%), camphor (8.21%), terpine-4-ol (7.32%), germacrene D (6.39), caryophyllene oxide (6.34%), and caryophyllene (5.37%). The essential oil showed definite inhibitory activity against 10 strains of test microorganisms. Eucalyptol, camphor, terpine-4-ol, caryophyllene, germacrene D and caryophyllene oxide were also examined as the major components of the oil. Camphor showed the strongest antimicrobial activity; terpine-4-ol, eucalyptol, caryophyllene and germacrene D were moderately active and caryophyllene oxide was weakly active. The study revealed that the antimicrobial properties of the essential oil can be attributed to the synergistic effects of its diverse major and minor components.

  6. Plant Glandular Trichomes: Natural Cell Factories of High Biotechnological Interest1[OPEN

    PubMed Central

    2017-01-01

    Multicellular glandular trichomes are epidermal outgrowths characterized by the presence of a head made of cells that have the ability to secrete or store large quantities of specialized metabolites. Our understanding of the transcriptional control of glandular trichome initiation and development is still in its infancy. This review points to some central questions that need to be addressed to better understand how such specialized cell structures arise from the plant protodermis. A key and unique feature of glandular trichomes is their ability to synthesize and secrete large amounts, relative to their size, of a limited number of metabolites. As such, they qualify as true cell factories, making them interesting targets for metabolic engineering. In this review, recent advances regarding terpene metabolic engineering are highlighted, with a special focus on tobacco (Nicotiana tabacum). In particular, the choice of transcriptional promoters to drive transgene expression and the best ways to sink existing pools of terpene precursors are discussed. The bioavailability of existing pools of natural precursor molecules is a key parameter and is controlled by so-called cross talk between different biosynthetic pathways. As highlighted in this review, the exact nature and extent of such cross talk are only partially understood at present. In the future, awareness of, and detailed knowledge on, the biology of plant glandular trichome development and metabolism will generate new leads to tap the largely unexploited potential of glandular trichomes in plant resistance to pests and lead to the improved production of specialized metabolites with high industrial or pharmacological value. PMID:28724619

  7. Influence of Environment on Glandular Trichomes and Composition of Essential Oil of Perovskia abrotanoides Karel.

    PubMed

    Oreizi, Elaheh; Rahiminejad, Mohammad Reza; Asghari, Gholamreza

    2014-11-01

    Perovskia abrotanoides Karel. is a medicinal plant used in Iranian folk medicine as a pain killer. Forty-one components have been identified in P. abrotanoides samples collected from Baluchistan Province, and 29 components have been recognized in samples collected from Khorasan Province. The leaves of P. abrotanoides have glandular trichomes (capitates and peltate) on both sides of the lamina. This study aimed to evaluate the variation of oil constituents of the plant and illustrate the glandular trichomes types and then show the influence of environment on oil constituents and glandular trichomes. The essential oil of the plant was obtained using hydrodistillation and the analysis of oils carried out using GC-MS. The anatomical analysis of leaves was done by fixing, coloring, and photoing the sections. Glandular trichomes composed of capitates and peltate trichomes. The essential oil composition differs. Viridiflora and neryl acetate were not identified in yellow glandular trichomes. It seems that there is no relation between anatomical characteristics of the plant leaves and its essential oil composition.

  8. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores.

    PubMed

    Glas, Joris J; Schimmel, Bernardus C J; Alba, Juan M; Escobar-Bravo, Rocío; Schuurink, Robert C; Kant, Merijn R

    2012-12-12

    Glandular trichomes are specialized hairs found on the surface of about 30% of all vascular plants and are responsible for a significant portion of a plant's secondary chemistry. Glandular trichomes are an important source of essential oils, i.e., natural fragrances or products that can be used by the pharmaceutical industry, although many of these substances have evolved to provide the plant with protection against herbivores and pathogens. The storage compartment of glandular trichomes usually is located on the tip of the hair and is part of the glandular cell, or cells, which are metabolically active. Trichomes and their exudates can be harvested relatively easily, and this has permitted a detailed study of their metabolites, as well as the genes and proteins responsible for them. This knowledge now assists classical breeding programs, as well as targeted genetic engineering, aimed to optimize trichome density and physiology to facilitate customization of essential oil production or to tune biocide activity to enhance crop protection. We will provide an overview of the metabolic diversity found within plant glandular trichomes, with the emphasis on those of the Solanaceae, and of the tools available to manipulate their activities for enhancing the plant's resistance to pests.

  9. Influence of Environment on Glandular Trichomes and Composition of Essential Oil of Perovskia abrotanoides Karel.

    PubMed Central

    Oreizi, Elaheh; Rahiminejad, Mohammad Reza; Asghari, Gholamreza

    2014-01-01

    Background: Perovskia abrotanoides Karel. is a medicinal plant used in Iranian folk medicine as a pain killer. Forty-one components have been identified in P. abrotanoides samples collected from Baluchistan Province, and 29 components have been recognized in samples collected from Khorasan Province. The leaves of P. abrotanoides have glandular trichomes (capitates and peltate) on both sides of the lamina. Objectives: This study aimed to evaluate the variation of oil constituents of the plant and illustrate the glandular trichomes types and then show the influence of environment on oil constituents and glandular trichomes. Materials and Methods: The essential oil of the plant was obtained using hydrodistillation and the analysis of oils carried out using GC-MS. The anatomical analysis of leaves was done by fixing, coloring, and photoing the sections. Results: Glandular trichomes composed of capitates and peltate trichomes. The essential oil composition differs. Viridiflora and neryl acetate were not identified in yellow glandular trichomes. Conclusions: It seems that there is no relation between anatomical characteristics of the plant leaves and its essential oil composition. PMID:25625046

  10. Plant Glandular Trichomes as Targets for Breeding or Engineering of Resistance to Herbivores

    PubMed Central

    Glas, Joris J.; Schimmel, Bernardus C. J.; Alba, Juan M.; Escobar-Bravo, Rocío; Schuurink, Robert C.; Kant, Merijn R.

    2012-01-01

    Glandular trichomes are specialized hairs found on the surface of about 30% of all vascular plants and are responsible for a significant portion of a plant’s secondary chemistry. Glandular trichomes are an important source of essential oils, i.e., natural fragrances or products that can be used by the pharmaceutical industry, although many of these substances have evolved to provide the plant with protection against herbivores and pathogens. The storage compartment of glandular trichomes usually is located on the tip of the hair and is part of the glandular cell, or cells, which are metabolically active. Trichomes and their exudates can be harvested relatively easily, and this has permitted a detailed study of their metabolites, as well as the genes and proteins responsible for them. This knowledge now assists classical breeding programs, as well as targeted genetic engineering, aimed to optimize trichome density and physiology to facilitate customization of essential oil production or to tune biocide activity to enhance crop protection. We will provide an overview of the metabolic diversity found within plant glandular trichomes, with the emphasis on those of the Solanaceae, and of the tools available to manipulate their activities for enhancing the plant’s resistance to pests. PMID:23235331

  11. Establishing epithelial glandular polarity: interlinked roles for ARF6, Rac1, and the matrix microenvironment.

    PubMed

    Monteleon, Christine L; Sedgwick, Alanna; Hartsell, Alyssa; Dai, Michael; Whittington, Catherine; Voytik-Harbin, Sherry; D'Souza-Schorey, Crislyn

    2012-12-01

    Epithelial cysts comprise the structural units of the glandular epithelium. Although glandular inversion in epithelial tumors is thought to be a potential mechanism for the establishment of metastatic disease, little is known about the morphogenic cues and signaling pathways that govern glandular polarity and organization. Using organotypic cultures of Madin-Darby canine kidney cells in reconstituted basement membrane, we show that cellular depletion of the small GTP-binding protein ARF6 promotes the formation of inverted cysts, wherein the apical cell membrane faces the cyst exterior, and the basal domain faces the central lumen, while individual cell polarity is maintained. These cysts are also defective in interactions with laminin at the cyst-matrix interface. This inversion of glandular orientation is accompanied by Rac1 inactivation during early cystogenesis, and temporal activation of Rac1 is sufficient to recover the normal cyst phenotype. In an unnatural collagen I microenvironment, ARF6-depleted, inverted epithelial cysts exhibit some loss of cell polarity, a marked increase in Rho activation and Rac1 inactivation, and striking rearrangement of the surrounding collagen I matrix. These studies demonstrate the importance of ARF6 as a critical determinant of glandular orientation and the matrix environment in dictating structural organization of epithelial cysts.

  12. Aquaporins are upregulated in glandular epithelium at the time of implantation in the rat.

    PubMed

    Lindsay, Laura A; Murphy, Christopher R

    2007-03-01

    Regulation of luminal fluid is essential for blastocyst implantation. While it has been known for quite some time that there is a reduction in the amount of luminal fluid at the time of implantation, the mechanisms regulating this process are only just emerging. Previous studies have shown an upregulation of aquaporin (AQP) 5 channels in luminal epithelial cells at the time of implantation providing a mechanism for fluid reabsorption across the surface epithelium. However to date the contribution of fluid reabsorption by glandular epithelial cells has not been established. This study using reverse transcriptase polymerase chain reaction demonstrates the presence of several AQP isoforms in the rat uterus at the time of implantation while immunofluorescence data demonstrates an apical distribution of AQPs5 and 9 in the glandular epithelium at the time of implantation. The presence of AQPs5 and 9 in the apical plasma membrane of the glandular epithelium seen in this study provides a mechanism for transcellular fluid transport across these glandular epithelial cells similar to that seen in luminal epithelial cells. The reabsorption of glandular fluid via AQP channels may also regulate luminal fluid volume and be involved in the reduction in luminal fluid seen at the time of implantation.

  13. Anthelmintic activity of Artemisia vestita Wall ex DC. and Artemisia maritima L. against Haemonchus contortus from sheep.

    PubMed

    Irum, Shamaila; Ahmed, Haroon; Mukhtar, Muhammad; Mushtaq, Muhammad; Mirza, Bushra; Donskow-Łysoniewska, Katarzyna; Qayyum, Mazhar; Simsek, Sami

    2015-09-15

    Current study was designed to evaluate in vivo and in vitro anthelmintic activity of Artemisia vestita Wall ex DC. and Artemisia maritima L. against Haemonchus contortus in comparison with ivermectin to investigate the effect of plant extracts on survival of infective L3 and adults under in vitro condition. Plant extracts were given to H. contortus infected sheep orally and it was infected with L3 stage of H. contortus at dose of 5000 larvae/sheep. Total of 25-30 larvae were incubated with plant extracts in PBS alone and ivermectin at different concentration used as positive control. It was recorded that there is a significant decrease in fecal egg count (FEC) after post-treatment period for both plants. The highest fecal egg count reduction for A. vestita was 87.2% at 100mg/kg while for A. maritima it was 84.5% on day 28 post-treatment. Investigated extracts indicated significant activity against larvae and adult worms. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Development and characterization of microsatellite markers for diploid populations of the wind-pollinated herb Mercurialis annua.

    PubMed

    Machado, Ana Paula; Pannell, John R; Tonnabel, Jeanne

    2017-08-10

    Mercurialis annua is a wind-pollinated annual plant that has long been used as a model for the study of ploidy and sexual-systems evolution. However, no molecular markers are yet available for genetic studies of its diploid populations. Here, we develop and characterize a set of eight polymorphic microsatellite markers for diploid dioecious M. annua. Following an SSR-enrichment protocol, 13 microsatellite markers were proposed, eight of which yielded successful amplification and polymorphism. We screened the eight microsatellite loci in 100 individuals. The number of alleles per marker ranged from 6 to 12, and observed heterozygosity ranged from 0.57 to 0.76. To estimate potential allele scoring errors, these individuals' offspring were genotyped for the same loci, and error rates were estimated from parentage analyses. Error rates ranged from 0 to 6.8%. Cross-amplification tests were performed for congeneric M. huetti and M. canariensis, with successful amplification for seven and six of the eight loci, respectively. The novel microsatellite markers proposed here will be crucial for a multitude of genetic studies of M. annua and further establish its importance as a model species for addressing ecological and population genetic questions.

  15. Mesothelial glandular structures within pseudosarcomatous proliferative funiculitis--a diagnostic pitfall: report of 17 cases.

    PubMed

    Michal, Michal; Hes, Ondrej; Kazakov, Dmitry V

    2008-01-01

    We describe 17 cases of distinct benign pseudomalignant mesothelial proliferations, involving the spermatic cord. All cases revealed necrosis. The areas adjacent to the necrotic tissue comprised a cellular spindle cell proliferation with a haphazard arrangement of the myofibroblasts that in many areas revealed transitions into plump oval epithelioid cells and into cells with genuine epithelial appearances arranged in linear cords and often luminized into small microcysts. These epithelial cells formed isolated groups with glandular structures arising on the myofibroblastic background. Glandular structures were often situated deeply in the stroma of the spermatic cords. All cellular elements were strongly positive with AE1/AE3 antibody. All myofibroblasts stained with SM-actin antibody. Ultrastructurally, the spindle cells displayed features of myofibroblasts including actin microfilaments, as did the plump epithelioid cells that, additionally, had desmosomes, and the cords of the epithelial cells including those forming glandular structures had characteristics of mesothelias including the characteristic microvilli.

  16. Glandular odontogenic cyst of the maxilla: a case report and literature review

    PubMed Central

    Figueiredo, Nigel Roque; Dinkar, Ajit Dattatray; Khorate, Manisha Maruti

    2016-01-01

    Glandular Odontogenic Cyst is a relatively rare cyst of odontogenic origin, which shows glandular or salivary features that are thought to indicate the pluripotentiality of odontogenic epithelium. It is seen in middle-aged adults, and commonly involves the anterior region of the jaws, especially the mandible. It shows non-specific clinico-radiographic findings which may resemble other lesions, but has characteristic histopathologic features which help in its diagnosis. This paper reports an unusual presentation of a glandular odontogenic cyst which was diagnosed in a 64-year old female in the posterior maxilla, along with a literature review of this cyst, especially the cases reported in India in the past. PMID:28292079

  17. Inhibitory Activity of Eleven Artemisia Species from Iran against Leishmania Major Parasites

    PubMed Central

    Emami, Seyed Ahmad; Zamanai Taghizadeh Rabe, Shahrzad; Ahi, Ali; Mahmoudi, Mahmoud

    2012-01-01

    Objective(s) Annual incidence of cutaneous leishmaniasis is increasingly growing and development of the alternative drugs against it is a major concern. Artemisia genus is a traditional medicinal plant in Iran. The aim of this study was to examine the leishmanicidal activity of various Iranian Artemisia species extracts. Materials and Methods Different extracts were gathered from eleven Iranian Artemisia species. Their leishmanicidal activities against the growth of Leishmania major (L. major) promastigotes were examined as the half maximal inhibitory concentration (IC50) using MTT assay. Results Obtained results showed that ethanol extracts especially those taken from A. ciniformis, A. santolina and A. kulbadica have the strongest effects. Conclusion Looking for the effective leishmanicidal agents from natural resources in Iran, we found that the ethanol extract of collected Artemisia species had significant effect on in vitro leishmanicidal activity and may be suitable candidates in the treatment of leishmaniasis. PMID:23493354

  18. Immunoreactive glandular kallikrein in rat plasma: a radioimmunoassay for its determination

    SciTech Connect

    Rabito, S.F.; Scicli, A.G.; Kher, V.; Carretero, O.A.

    1982-04-01

    A radioimmunoassay (RIA) has been developed to measure immunoreactive glandular kallikrein in rat plasma. To prevent the binding of radioactive kallikrein to plasma inhibitors, /sup 125/I-kallikrein was inactivated with phenylmethylsulfonyl fluoride (PMSF), a procedure that maintained /sup 125/I-kallikrein immunoreactivity. Different volumes of plasma displaced /sup 125/I-PMSF-kallikrein in a parallel fashion to the kallikrein standard curve. The sensitivity of the RIA was 200 pg, and the recovery of nonradioactive active kallikrein added to plasma was 58.7%. The concentration of immunoreactive glandular kallikrein in normal rat plasma averaged 47.1 +/- 1.7 (SE) ng/ml. Bilateral nephrectomy caused a threefold increase in circulating glandular kallikrein (50 +/- 2.7 to 167 +/- 7 ng/ml; P < 0.001). Removal of the submandibular and sublingual glands signficantly decreased its concentration from 52 +/- 2.3 to 34 +/- 1.6 ng/ml (P < 0.001). Immunoreactive glandular kallikrein was higher in the submandibular gland vein than in arterial blood (venous; 94 +/- 10.5; arterial: 64 +/- 6.3 ng/ml; P < 0.05) and was lower in the renal venous blood (venous: 44 +/- 2.2; arterial: 53 +/- 2.6 ng/ml; P < 0.05). In conclusion, this study shows that the use of /sup 125/I-PMSF-kallikrein as tracer prevents the interference in the RIA caused by plasma protease inhibitors. It also indicates that the submandibular gland is an important source of the immunoreactive glandular kallikrein in rat plasma and that the kidney probably participates in its metabolism. Glandular kallikrein released by the submandibular gland into the circulation may participate in regulating local blood flow before it is inactivated by plasma inhibitors.

  19. Utilizing next-generation sequencing to study homeologous polymorphisms and herbicide-resistance-endowing mutations in Poa annua acetolactate synthase genes.

    PubMed

    Chen, Shu; McElroy, J Scott; Flessner, Michael L; Dane, Fenny

    2015-08-01

    Detection of single nucleotide polymorphisms (SNPs) related to herbicide resistance in non-model polyploid weed species is fraught with difficulty owing to the gene duplication and lack of reference sequences. Our research seeks to overcome these obstacles by Illumina HiSeq read mapping, SNP calling and allele frequency determinations. Our focus is on the acetolactate synthase (ALS) gene, the target site of ALS-inhibiting herbicides, in Poa annua, an allotetraploid weed species originating from two diploid parents, P. supina and P. infirma. ALS contigs with complete coding regions of P. supina, P. infirma and P. annua were assembled and compared with ALS genes from other plant species. The ALS infirma-homeolog of P. annua showed higher levels of nucleotide sequence variability than the supina-homeolog. Comparisons of read mappings of P. annua and a simulated P. supina × P. infirma hybrid showed high resemblance. Two homeolog-specific primer pairs were designed and used to amplify a 1860 bp region covering all resistance-conferring codons in the ALS gene. Four P. annua populations, GN, RB, GW and LG, showed high resistance to two ALS inhibitors, bispyribac-sodium and foramsulfuron, and two populations, HD and RS, showed lower resistance in the rate-response trial. Mutations conferring Trp-574-Leu substitution were observed in the infirma-homeolog of GN and RB and in the supina-homeolog of GW and LG, but no resistance-conferring mutation was observed in the two populations of lower resistance, HD and RS. In this study we have demonstrated the use of NGS data to study homeologous polymorphisms, parentage and herbicide resistance in an allotetraploid weed species, P. annua. Complete coding sequences of the ALS gene were assembled for P. infirma, P. supina, infirma-homeolog and supina-homeolog in P. annua. A pipeline consisting of read mapping, SNP calling and allele frequency calculation was developed to study the parentage of P. annua, which provided a new

  20. Genetic elaborations of glandular and non-glandular trichomes in Mentha arvensis genotypes: assessing genotypic and phenotypic correlations along with gene expressions.

    PubMed

    Mishra, Anand; Lal, R K; Chanotiya, C S; Dhawan, Sunita Singh

    2017-03-01

    Mentha arvensis (corn mint) is well known for the production of menthol, a widely used commodity in pharma and flavoring industries and provides natural fragrances and products. Glandular trichomes are specialized hairs found on the aerial surface of vascular plants species producing specific secondary metabolite chemistry. Correlations were established among trichomes, oil yield, and major secondary metabolites. Nine improved, elite cultivars representing different M. arvensis genotypes were used for analysis. Phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) were estimated; results indicated the presence of considerable amount of genetic variability, thereby emphasizing wide scope of selection. Positive and significant associations were found among glandular trichomes, oil yield, essential oil constituents, and leaf morphology itself, whereas morphological parameters of leaf show positive and negative correlations to average number of trichome and essential oil constituents. Average number of glandular, non-glandular trichomes, their ratios, menthol content, and trichome number showed a good heritability. Trichomes were studied microscopically in leaf parts in all varieties for analyzing their distribution pattern. The trichome number variations showed significant correlation throughout the genotypes with essential oil yield and monoterpenoid constituents. Differential changes were analyzed for Glutathione S-transferases, Glutathione reductase, Malondialdehyde, phenolics, and chlorophyll content. Gene expressions were analyzed for biosynthesis genes and selected transcription factors TRANSPARENT TESTA GLABRA 1 (TTG1), ENOLASE 1, GLABRA 3, GTL 1, NUCLEAR TRANSCRIPTION FACTOR Y SUBUNIT B-6, WRKY transcription factor 22, putative WRKY 33, WRKY 17, WRKY 1, and WRKY 65-like for harnessing their relation with trichome development in M. arvensis genotypes.

  1. A comparative pharmacognostical evaluation of two Artemisia species found in Nilgiris biosphere

    PubMed Central

    Suresh, J.; Elango, K.; Dhanabal, S.P.; Paramakrishnan, N.; Suresh, B.

    2007-01-01

    Artemisia pallens Wall. ex DC commonly known as “Davana” in Kannada and Artemisia abrotanum Linn. known as “Southernwood” (Asteraceae) are aromatic herbs, erect in habit, upto 60 cm tall, leaves are very small, much divided, bluish green. These plants find use in traditional systems of medicine viz., anthelmintic, tonic and antipyretic properties. Since, these species have not been scientifically evaluated; the present study was aimed to bring these plants under a suitable pharmacognostical scheme. PMID:22557262

  2. Artemisia santolinifolia enhances glutamatergic neurotransmission in the nucleus of the solitary tract

    PubMed Central

    Vance, Katie M.; Ribnicky, David M.; Rogers, Richard C.; Hermann, Gerlinda E.

    2014-01-01

    Artemisia extracts have been used as remedies for a variety of maladies related to metabolic and gastrointestinal control. Because the vagal afferent-nucleus of the solitary tract (NST) synapse regulates the same homeostatic functions affected by Artemisia, it is possible that these extracts may have activity at the synaptic level in the NST. Therefore, we evaluated how extracts of three common medicinal Artemisia species, Artemisia santolinifolia (SANT), Artemisia scoparia (SCO), and Artemisia dracunculus L (PMI-5011), modulate the excitability of the glutamatergic vagal afferent-NST synapse. Our in vitro live cell calcium imaging data from prelabeled vagal afferent terminals show that SANT extract is a positive modulator of vagal afferent calcium levels, as the extract significantly increased the calcium signal relative to the time control. Neither SCO nor PMI-5011 extract altered the vagal calcium signals compared to the time control. Furthermore, whole cell voltage-clamp recordings from NST neurons corroborated the vagal terminal calcium data in that SANT extract also significantly increased miniature excitatory postsynaptic current (mEPSC) frequency in NST neurons. These data suggest that SANT extract could be a pharmacologically significant mediator of glutamatergic neurotransmission within the CNS. PMID:25220699

  3. Artemisia santolinifolia enhances glutamatergic neurotransmission in the nucleus of the solitary tract.

    PubMed

    Vance, Katie M; Ribnicky, David M; Rogers, Richard C; Hermann, Gerlinda E

    2014-10-17

    Artemisia extracts have been used as remedies for a variety of maladies related to metabolic and gastrointestinal control. Because the vagal afferent-nucleus of the solitary tract (NST) synapse regulates the same homeostatic functions affected by Artemisia, it is possible that these extracts may have activity at the synaptic level in the NST. Therefore, we evaluated how extracts of three common medicinal Artemisia species, Artemisia santolinifolia (SANT), Artemisia scoparia (SCO), and Artemisia dracunculus L (PMI-5011), modulate the excitability of the glutamatergic vagal afferent-NST synapse. Our in vitro live cell calcium imaging data from prelabeled vagal afferent terminals show that SANT extract is a positive modulator of vagal afferent calcium levels, as the extract significantly increased the calcium signal relative to the time control. Neither SCO nor PMI-5011 extract altered the vagal calcium signals compared to the time control. Furthermore, whole cell voltage-clamp recordings from NST neurons corroborated the vagal terminal calcium data in that SANT extract also significantly increased miniature excitatory postsynaptic current (mEPSC) frequency in NST neurons. These data suggest that SANT extract could be a pharmacologically significant mediator of glutamatergic neurotransmission within the CNS. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Antimicrobial Activity and Chemical Composition of Essential Oil From the Seeds of Artemisia aucheri Boiss

    PubMed Central

    Asghari, Gholamreza; Jalali, Mohamad; Sadoughi, Ehsan

    2012-01-01

    Background Artemisia aerial parts are well known for antimicrobial activities including anti malaria. Objectives This study was carried out to evaluate the antimicrobial activity and chemical composition of essential oil from the seeds of Artemisia aucheri Boiss (Asteraceae). Materials and Methods Essential oil was extracted from the powdered seeds of Artemisia aucheri by hydrodistillation. Antimicrobial activity against five bacterial species was tested using the disc diffusion method, and the chemical composition of the essential oil was analyzed by gas chromatography-mass spectrometry (GC-MS). Results The essential oil of Artemisia aucheri seed showed activity against Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes. The essential oil constituents identified by GC-MS were as follows: decane, ρ-cymene, 1,8-cineole, linalool, ρ-mentha-8-ol, triene, borneol, lavandulol, bornyl acetate, chrysanthenyl acetate, dehydro aromadenderene, and caryophyllene oxide. Most of these compounds are also found in the aerial parts of Artemisia aucheri. Conclusions Variation in the compositions of essential oils from Artemisia aucheri, and thus variation in the antimicrobial activity of these oils, may be due to the plant parts used for essential oil prepration. PMID:24624145

  5. Antidiarrheal activity of dehydroleucodine isolated from Artemisia douglasiana.

    PubMed

    Wendel, G H; María, A O M; Guzmán, J A; Giordano, O; Pelzer, L E

    2008-01-01

    Dehydroleucodine (DhL), a sesquiterpene lactone obtained from Artemisia douglasiana, was screened for antidiarrheal effects. DhL inhibited castor oil-induced diarrhea in mice by judged by a decrease in the number of wet faeces in the DhL-treatment groups. DhL significantly reduced intestinal transit in mice. Yohimbine and phentolamine counteracted the inhibitory effect of DhL. It is suggested that alpha2-adrenergic receptors mediate the effect of DhL in intestinal motility. DhL reduced also intraluminal accumulation of fluid. Thus, the antidiarrheal activity of DhL is possibly related, at least in part, to its inhibitory action against gastrointestinal motility and the inhibition of enteropooling property.

  6. Highly oxidized sesquiterpenes from Artemisia austro-yunnanensis.

    PubMed

    Chi, Jun; Li, Bao-Cai; Dai, Wei-Feng; Liu, Lan; Zhang, Mi

    2016-12-01

    Eight new sesquiterpenes, including four guaianolides (1-4), one guaian sesquiterpene (5), one norguaianolide (6), one 1, 10-secoguaianolides (7), and one eudesmane sesquiterpene (8), along with fourteen known sesquiterpenes (9-22) were isolated from the whole plants of Artemisia austro-yunnanensis. Their structures were elucidated on the basis of spectroscopic date and HRESIMS analysis. All isolated sesquiterpenes (1-22) were evaluated their activities by the assay of LPS-induced NO production on RAW264.7, of which compounds 2-4, 9, 10 and 17 produced significant inhibition of NO production with IC50 values ranging from 2.38 to 10.67μM. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Antiprotozoal Effect of Artemisia indica Extracts and Essential Oil.

    PubMed

    Tasdemir, Deniz; Tierney, Michelle; Sen, Rupashree; Bergonzi, Maria Camilla; Demirci, Betül; Bilia, Anna Rita; Baser, Kemal Hüsnü Can; Brun, Reto; Chatterjee, Mitali

    2015-08-01

    Diverse solvent extracts of Artemisia indica leaves originating from the West Bengal region (India) were assessed for the content of artemisinin and characteristic Artemisia polymethoxyflavonoids, namely eupatin (1), casticin (2), chrysoplenetin (3), cirsilineol (4), chrysophenol-D (5), and artemetin (6). HPLC-DAD and HPLC-MS were used to investigate the extracts macerated by solvents of increasing polarity, i.e., petroleum ether, n-hexane, dichloromethane, acetone, MeOH, or EtOH (either 96, 80, or 60 % v/v), and hot water. Artemisinin was absent in all extracts. The acetone and EtOH extracts comprised the highest levels of polymethoxyflavonoids, whereas no flavonoid could be detected in the infusion. None of the remaining extracts contained chryosphenol-D (5) or artemetin (6), while chrysoplenetin (3) was found in all extracts. The essential oil of the plant was also obtained by hydrodistillation and analysed by gas chromatography and gas chromatography-mass spectrometry simultaneously. Of the 92 compounds detected in the oil, camphor (13.0 %) and caryophyllene oxide (10.87 %) were the major components. All solvent extracts and the volatile oil showed in vitro antimalarial activity, plus a potential malaria prophylactic effect by inhibiting at least two recombinant plasmodial fatty acid biosynthesis (PfFAS-II) enzymes. Except for the infusion, all extracts were also active against other parasitic protozoa and displayed low cytotoxicity against mammalian cells. This is the first detailed study investigating both artemisinin and polymethoxyflavonoid content as well as in vitro malaria prophylactic and detailed antiprotozoal potential of A. indica extracts against a panel of protozoan parasites. This is also the first report of antiparasitic activity of the essential oil of the plant. Georg Thieme Verlag KG Stuttgart · New York.

  8. Cardiac myxoma with glandular elements: a clinicopathological and immunohistochemical study of five new cases with an emphasis on differential diagnosis.

    PubMed

    Zhang, Minghui; Ding, Li; Liu, Yanhui; Xue, Ling

    2014-01-01

    This paper reported five new cases of cardiac myxoma with glandular components, known as glandular cardiac myxoma. The goals of this study were to analyze the clinicopathological features of this disease and to explore new features for differential diagnosis. The patient series included three women and two men. All tumors were located in the left atrium without invasion of the adjacent myocardium. Patients presented with cardiac-related or embolization symptoms. Histologically, neoplasms consisted of well-formed glandular structures and typical myxoma areas. No nuclear atypia, mitosis, or necrosis was identified in the glandular structures. Glandular lining cells were strongly positive for pan-cytokeratin, epithelial membrane antigen, CAM5.2 and cytokeratin 7, but were negative for some organ-specific markers, such as thyroid transcription factor-1, calretinin, estrogen receptor, progesterone receptor, gross cystic disease fluid protein, prostate-specific antigen, prostate-specific acid phosphatase, cytokeratin 20 and caudal type homeobox 2. In conclusion, glandular cardiac myxoma is a rare disease which shows characteristics similar to those of classical cardiac myxoma. Because of its rarity, glandular cardiac myxoma must be distinguished from adenocarcinoma metastatic to the heart. The combination of histopathological features and immunohistochemical profiles should improve the diagnostic accuracy of glandular cardiac myxoma.

  9. Engineering of Tomato Glandular Trichomes for the Production of Specialized Metabolites.

    PubMed

    Kortbeek, R W J; Xu, J; Ramirez, A; Spyropoulou, E; Diergaarde, P; Otten-Bruggeman, I; de Both, M; Nagel, R; Schmidt, A; Schuurink, R C; Bleeker, P M

    2016-01-01

    Glandular trichomes are specialized tissues on the epidermis of many plant species. On tomato they synthesize, store, and emit a variety of metabolites such as terpenoids, which play a role in the interaction with insects. Glandular trichomes are excellent tissues for studying the biosynthesis of specialized plant metabolites and are especially suitable targets for metabolic engineering. Here we describe the strategy for engineering tomato glandular trichomes, first with a transient expression system to provide proof of trichome specificity of selected promoters. Using microparticle bombardment, the trichome specificity of a terpene-synthase promoter could be validated in a relatively fast way. Second, we describe a method for stable expression of genes of interest in trichomes. Trichome-specific expression of another terpene-synthase promoter driving the yellow-fluorescence protein-gene is presented. Finally, we describe a case of the overexpression of farnesyl diphosphate synthase (FPS), specifically in tomato glandular trichomes, providing an important precursor in the biosynthetic pathway of sesquiterpenoids. FPS was targeted to the plastid aiming to engineer sesquiterpenoid production, but interestingly leading to a loss of monoterpenoid production in the transgenic tomato trichomes. With this example we show that trichomes are amenable to engineering though, even with knowledge of a biochemical pathway, the result of such engineering can be unexpected. © 2016 Elsevier Inc. All rights reserved.

  10. Bidirectional Secretions from Glandular Trichomes of Pyrethrum Enable Immunization of Seedlings[W

    PubMed Central

    Ramirez, Aldana M.; Stoopen, Geert; Menzel, Tila R.; Gols, Rieta; Bouwmeester, Harro J.; Dicke, Marcel; Jongsma, Maarten A.

    2012-01-01

    Glandular trichomes are currently known only to store mono- and sesquiterpene compounds in the subcuticular cavity just above the apical cells of trichomes or emit them into the headspace. We demonstrate that basipetal secretions can also occur, by addressing the organization of the biosynthesis and storage of pyrethrins in pyrethrum (Tanacetum cinerariifolium) flowers. Pyrethrum produces a diverse array of pyrethrins and sesquiterpene lactones for plant defense. The highest concentrations accumulate in the flower achenes, which are densely covered by glandular trichomes. The trichomes of mature achenes contain sesquiterpene lactones and other secondary metabolites, but no pyrethrins. However, during achene maturation, the key pyrethrin biosynthetic pathway enzyme chrysanthemyl diphosphate synthase is expressed only in glandular trichomes. We show evidence that chrysanthemic acid is translocated from trichomes to pericarp, where it is esterified into pyrethrins that accumulate in intercellular spaces. During seed maturation, pyrethrins are then absorbed by the embryo, and during seed germination, the embryo-stored pyrethrins are recruited by seedling tissues, which, for lack of trichomes, cannot produce pyrethrins themselves. The findings demonstrate that plant glandular trichomes can selectively secrete in a basipetal direction monoterpenoids, which can reach distant tissues, participate in chemical conversions, and immunize seedlings against insects and fungi. PMID:23104830

  11. [Computerized estimation of a percent glandular tissue composition in computed radiography mammography].

    PubMed

    Tsujita, Naoko; Goto, Sachiko; Azuma, Yoshiharu; Shiraishi, Junji

    2011-01-01

    Measurement of a percent glandular tissue composition (%GTC) is important in terms of the estimation of individual patient exposure dose and the prediction of malignancy, and thus a number of reports for estimating %GTC by use of a mammogram have been published. In this study, we propose a method for estimating individual %GTC by use of computed radiography (CR) mammograms. By employing breast-equivalent phantoms that are able to create breast phantom images with various combinations of fat and glandular tissue, as well as the thickness of whole breast, we determined a reference table for converting an each pixel value on CR mammography to the glandular tissue ratio. Therefore, the %GTC for individual breast was estimated by averaging glandular tissue ratio for a whole region. The clinical image data set that consisted of 49 CR mammograms were used for estimating %GTC. A paired comparison method for determining subjective ranking of the degree of breast density was employed in order to demonstrate the validity of our method. The results indicate that the average estimated %GTC was 35.0% (ranged from 12.0% to 67.0%) and they had a increased correlation with the ranking of those obtained by observer test. Therefore, it was suggested that our proposed method would be utilized for estimating the %GTC in objective manner.

  12. Glandular diphallus with urethral duplication: Conventional technique for a rare congenital anomaly

    PubMed Central

    Aihole, Jayalaxmi S.; Babu, Narendra; Shankar, Gauri

    2015-01-01

    Diphallus is a rare anomaly and its association with urethral duplication is extremely rare. Numerous associated genitourinary and gastrointestinal anomalies have been reported with this condition. Challenges in the management are incorporation of the glans and the dominant urethra during reconstruction. We report the successful management of a case of glandular diphallus with complete urethral duplication retaining the dorsal urethra. PMID:26604454

  13. Effect of anode/filter combination on average glandular dose in mammography.

    PubMed

    Biegała, Michał; Jakubowska, Teresa; Markowska, Karolina

    2015-01-01

    A comparative analysis of the mean glandular doses was conducted in 100 female patients who underwent screening mammography in 2011 and 2013. Siemens Mammomat Novation with the application of the W/Rh anode/filter combination was used in 2011, whereas in 2013 anode/filter combination was Mo/Mo or Mo/Rh. The functioning of mammography was checked and the effectiveness of the automatic exposure control (AEC) system was verified by measuring compensation of changes in the phantom thickness and measuring tube voltage. On the base of exposure parameters, an average glandular dose for each of 100 female patients was estimated. The images obtained by using AEC system had the acceptable threshold contrast visibility irrespective of the applied anode/filter combination. Mean glandular doses in the females, examined with the application of the W/Rh anode/filter combination, were on average 23.6% lower than that of the Mo/Mo or Mo/Rh anode/filter combinations. It is recommended to use a combination of the W/Rh anode /filter which exhibited lower mean glandular doses.

  14. Biochemical and Histochemical Localization of Monoterpene Biosynthesis in the Glandular Trichomes of Spearmint (Mentha spicata) 12

    PubMed Central

    Gershenzon, Jonathan; Maffei, Massimo; Croteau, Rodney

    1989-01-01

    The primary monoterpene accumulated in the glandular trichomes of spearmint (Mentha spicata) is the ketone (−)-carvone which is formed by cyclization of the C10 isoprenoid intermediate geranyl pyrophosphate to the olefin (−)-limonene, hydroxylation to (−)-trans-carveol and subsequent dehydrogenation. Selective extraction of the contents of the glandular trichomes indicated that essentially all of the cyclase and hydroxylase activities resided in these structures, whereas only about 30% of the carveol dehydrogenase was located here with the remainder located in the rest of the leaf. This distribution of carveol dehydrogenase activity was confirmed by histochemical methods. Electrophoretic analysis of the partially purified carveol dehydrogenase from extracts of both the glands and the leaves following gland removal indicated the presence of a unique carveol dehydrogenase species in the glandular trichomes, suggesting that the other dehydrogenase found throughout the leaf probably utilizes carveol only as an adventitious substrate. These results demonstrate that carvone biosynthesis takes place exclusively in the glandular trichomes in which this natural product accumulates. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:16666709

  15. Biochemical and histochemical localization of monoterpene biosynthesis in the glandular trichomes of spearmint (Mentha spicata)

    SciTech Connect

    Gershenzon, J.; Maffei, M.; Croteau, R. )

    1989-04-01

    The primary monoterpene accumulated in the glandular trichomes of spearmint (Mentha spicata) is the ketone (-)-carvone which is formed by cyclization of the C{sub 10} isoprenoid intermediate geranyl pyrophosphate to the olefin (-)-limonene, hydroxylation to (-)-trans-carveol and subsequent dehydrogenation. Selective extraction of the contents of the glandular trichomes indicated that essentially all of the cyclase and hydroxylase activities resided in these structures, whereas only about 30% of the carveol dehydrogenase was located here with the remainder located in the rest of the leaf. This distribution of carveol dehydrogenase activity was confirmed by histochemical methods. Electrophoretic analysis of the partially purified carveol dehydrogenase from extracts of both the glands and the leaves following gland removal indicated the presence of a unique carveol dehydrogenase species in the glandular trichomes, suggesting that the other dehydrogenase found throughout the leaf probably utilizes carveol only as an adventitious substrate. These results demonstrate that carvone biosynthesis takes place exclusively in the glandular trichomes in which this natural product accumulates.

  16. Phenylpropanoid biosynthesis in leaves and glandular trichomes of basil (Ocimum basilicum L.).

    PubMed

    Deschamps, Cícero; Simon, James E

    2010-01-01

    Basil (Ocimum basilicum L.) essential oil phenylpropenes are synthesized and accumulate in peltate glandular trichomes and their content and composition depend on plant developmental stage. Studies on gene expression and enzymatic activity indicate that the phenylpropene biosynthetic genes are developmentally regulated. In this study, the methylchavicol accumulation in basil leaves and the enzyme activities and gene expression of both chavicol O-methyltransferase (CVOMT) and eugenol O-methyltransferase (EOMT) were investigated in all leaves at four plant developmental stages. Methylchavicol accumulation decreased over time as leaves matured. There was a significant correlation between methylchavicol accumulation and CVOMT (r(2) = 0.88) enzyme activity, suggesting that the levels of biosynthetic enzymes control the essential oil content. CVOMT and EOMT transcript expression levels, which decreased with leaf age, followed the same pattern in both whole leaves and isolated glandular trichomes, providing evidence that CVOMT transcript levels are developmentally regulated in basil glandular trichomes themselves and that differences in CVOMT expression observed in whole leaves are not solely the result of differences in glandular trichome density.

  17. 21 CFR 201.300 - Notice to manufacturers, packers, and distributors of glandular preparations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Notice to manufacturers, packers, and distributors of glandular preparations. 201.300 Section 201.300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING Specific Labeling...

  18. 21 CFR 201.300 - Notice to manufacturers, packers, and distributors of glandular preparations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Notice to manufacturers, packers, and distributors of glandular preparations. 201.300 Section 201.300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING Specific Labeling...

  19. 21 CFR 201.300 - Notice to manufacturers, packers, and distributors of glandular preparations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Notice to manufacturers, packers, and distributors of glandular preparations. 201.300 Section 201.300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING Specific Labeling...

  20. 21 CFR 201.300 - Notice to manufacturers, packers, and distributors of glandular preparations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Notice to manufacturers, packers, and distributors of glandular preparations. 201.300 Section 201.300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING Specific Labeling...

  1. Method for the evaluation of a average glandular dose in mammography

    SciTech Connect

    Okunade, Akintunde Akangbe

    2006-04-15

    This paper concerns a method for accurate evaluation of average glandular dose (AGD) in mammography. At different energies, the interactions of photons with tissue are not uniform. Thus, optimal accuracy in the estimation of AGD is achievable when the evaluation is carried out using the normalized glandular dose values, g(x,E), that are determined for each (monoenergetic) x-ray photon energy, E, compressed breast thickness (CBT), x, breast glandular composition, and data on photon energy distribution of the exact x-ray beam used in breast imaging. A generalized model for the values of g(x,E) that is for any arbitrary CBT ranging from 2 to 9 cm (with values that are not whole numbers inclusive, say, 4.2 cm) was developed. Along with other dosimetry formulations, this was integrated into a computer software program, GDOSE.FOR, that was developed for the evaluation of AGD received from any x-ray tube/equipment (irrespective of target-filter combination) of up to 50 kVp. Results are presented which show that the implementation of GDOSE.FOR yields values of normalized glandular dose that are in good agreement with values obtained from methodologies reported earlier in the literature. With the availability of a portable device for real-time acquisition of spectra, the model and computer software reported in this work provide for the routine evaluation of AGD received by a specific woman of known age and CBT.

  2. Phytotoxicity of Constituents of Glandular Trichomes and the Leaf Surface of Camphorweed, Heterotheca subaxillaris

    USDA-ARS?s Scientific Manuscript database

    Camphorweed, Heterotheca subaxillaris (Lam.) Britt. & Rusby has a camphor-like odor, and its leaf surfaces contain glandular trichomes of the type shown to contain high levels of isoprenoids in other species. Phytotoxic calamenene-type sesquiterpenes (1-4, 8-10), borneol (11) and methylated flavone...

  3. [Onset feature and efficacy of early interventional treatment of Artemisia pollinosis].

    PubMed

    Ouyang, Yuhui; Fan, Erzhong; Li, Ying; Zhang, Luo

    2014-04-01

    To analyze the clinical feature and treatment methods of Artemisia pollinosis. Skin prick test results of 14 426 cases from Beijing Tongren hospital and pollen concentration of Beijing observatory from 2007 to 2011 were analyzed to identify the clinical feature of Artemisia pollinosis patients and its correlation with the pollen concentration. Patients were given leukotriene receptor antagonists (Montelukast) for 2 weeks, followed by 4 weeks of mometasone furoate nasal spray (EIT group: n = 21), or only 4 weeks of mometasone furoate nasal spray (POT group: n = 16). The nasal symptom score was compared between 2 groups.SPSS 16.0 software was used to analyze the data. Artemisia pollinosis accounted for 30.8% (4 442/14 426) of all SPT positive allergic rhinitis patients, and most Artemisia SPT positive results were strong positive(3 793/4 442, 85.4%); onset age peak of Artemisia pollinosis patients was at the age of 19 to 30, onset time concentrated in August to September, was consistent with the peak period of Artemisia pollen concentration; EIT treatment using leukotriene receptor antagonists two weeks before pollen season significantly improved sneeze, sniveling and rhinocnesmus symptoms (t value was 3.28, 3.92, 3.09, respectively, all P < 0.01) compared with post-onset treatment (POT). But nasal obstruction and cough symptoms had no significant difference between two groups (t value was 0.85, 1.52, respectively, all P > 0.05). Artemisia pollen is the main pollen allergen in Beijing, EIT treatment was effective to pollinosis.

  4. Master Regulatory Genes, Auxin Levels, and Sexual Organogeneses in the Dioecious Plant Mercurialis annua

    PubMed Central

    Hamdi, Saïd; Teller, Gerard; Louis, Jean-Paul

    1987-01-01

    In Mercurialis annua L. (2n = 16) genes for sex determination are considered as major regulator genes controlling stamen and ovary development and sexual phenotypes. After stamen induction, sterility determinants control sporogenous tissue and pollen formation. Moreover, exogenous auxins are able to induce male flowers on female plants. In order to verify if sex and sterility genes have an effect on indole-3-acetic acid (IAA) contents of these plants, various wild or genetically constructed strains were assayed. The IAA levels of their apices were determined by HPLC followed by gas chromatography, selected ion monitoring, mass spectrometry. Results show that high auxin levels are linked to male phenotypes. The genes inducing maleness and the determinants of restored male fertility appear to control and modulate the IAA content. Close correspondence between the number of these dominant genes and IAA levels was established. A final hypothesis about the control of sexual specialization by phytohormones induced by the presence of these genes is discussed. Images Fig. 4 PMID:16665709

  5. Is rapid evolution of reproductive traits in Adonis annua consistent with pollinator decline?

    NASA Astrophysics Data System (ADS)

    Thomann, M.; Imbert, E.; Cheptou, P.-O.

    2015-11-01

    Growing human footprint on the environment rapidly modifies the living conditions of natural populations. This could lead to phenotypic changes through both plasticity and evolution. Therefore, distinguishing the role of evolution in the phenotypic response to global change is a major challenge. In this study, we benefited from past and recent seeds from a population of the annual self-compatible weed Adonis annua. Seeds were sampled from the same locality at an 18 years interval and close to a region where reduction of bee pollinators' density has been reported. We used a common garden experiment to investigate evolutionary changes, between the old (1992) and the recent (2010) sample, for some reproductive traits expected to be under selection in the context of climate warming and pollinator decline. Plants of the recent sample flowered earlier, had larger flowers, but also evolved a shorter floral longevity. The capacity of plants to reproduce autonomously (autonomous selfing) was similar in the two samples. These results are consistent with adaptation of flowering phenology to climate warming and in part consistent with the evolution of increased pollinator attraction under pollinator decline. Together with other recent studies, this study provides evidence that short-term evolution is a frequent phenomenon accompanying global change.

  6. Endocervical glandular neoplasia associated with lobular endocervical glandular hyperplasia is HPV-independent and correlates with carbonic anhydrase-IX expression: a Gynaecological Oncology Group Study

    PubMed Central

    Liao, S Y; Rodgers, W H; Kauderer, J; Darcy, K M; Carter, R; Susumu, N; Nagao, S; Walker, J L; Hatae, M; Stanbridge, E J

    2013-01-01

    Background: Lobular endocervical glandular hyperplasia (LEGH) is a rare lesion of the uterine cervix. It has been proposed that LEGH may represent a precursor lesion to a group of mucinous adenocarcinoma with gastric phenotype (GA) that is independent of high-risk human papillomavirus (H-HPV) infection. Carbonic anhydrase-IX (CA-IX) is highly expressed in conventional glandular lesions (CGLs). However, expression of CA-IX in LEGH or GA has not been studied. Methods: In all, 12 CGLs, 7 LEGHs, 6 LEGHs with coexisting adenocarcinoma in situ (AIS, 3) and GA (3) were identified from Japanese women with a cytological diagnosis of atypical glandular cells of undetermined significance. Immunostaining was used to detect CA-IX and p16INK4a (hereafter termed p16) protein expression in the tissues and CA-IX protein expression in the Papanicolaou smears (PSs). Polymerase chain reaction was used to detect H-HPV DNA in liquid-based cytology. Results: Out of 12 (83%) CGLs, 10 were positive with H-HPV and high levels of CA-IX expression were seen in all (100%) cases. P16 protein expression was observed in 11 out of 12 (92%) cases. None of the LEGHs, LEGHs with AIS or GA were positive for H-HPV and only 8 out of 13 (62%) showed focal weak (1+) p16 expression. In contrast, all cases (100%) exhibited strong CA-IX protein expression. Conclusion: Our study suggests that there are different molecular mechanisms of carcinogenesis resulting in CGLs vs LEGHs associated with AIS or GA. There is also a possible link between LEGHs and GAs. Furthermore, CA-IX expression may serve as a useful biomarker for the detection of GAs in the absence of H-HPV infection. PMID:23299542

  7. Mineral nutrient uptake from prey and glandular phosphatase activity as a dual test of carnivory in semi-desert plants with glandular leaves suspected of carnivory

    PubMed Central

    Płachno, Bartosz Jan; Adamec, Lubomír; Huet, Hervé

    2009-01-01

    Background and Aims Ibicella lutea and Proboscidea parviflora are two American semi-desert species of glandular sticky plants that are suspected of carnivory as they can catch small insects. The same characteristics might also hold for two semi-desert plants with glandular sticky leaves from Israel, namely Cleome droserifolia and Hyoscyamus desertorum. The presence of proteases on foliar hairs, either secreted by the plant or commensals, detected using a simple test, has long been considered proof of carnivory. However, this test does not prove whether nutrients are really absorbed from insects by the plant. To determine the extent to which these four species are potentially carnivorous, hair secretion of phosphatases and uptake of N, P, K and Mg from fruit flies as model prey were studied in these species and in Roridula gorgonias and Drosophyllum lusitanicum for comparison. All species examined possess morphological and anatomical adaptations (hairs or emergences secreting sticky substances) to catch and kill small insects. Methods The presence of phosphatases on foliar hairs was tested using the enzyme-labelled fluorescence method. Dead fruit flies were applied to glandular sticky leaves of experimental plants and, after 10–15 d, mineral nutrient content in their spent carcasses was compared with initial values in intact flies after mineralization. Key Results Phosphatase activity was totally absent on Hyoscyamus foliar hairs, a certain level of activity was usually found in Ibicella, Proboscidea and Cleome, and a strong response was found in Drosophyllum. Roridula exhibited only epidermal activity. However, only Roridula and Drosophyllum took up nutrients (N, P, K and Mg) from applied fruit flies. Conclusions Digestion of prey and absorption of their nutrients are the major features of carnivory in plants. Accordingly, Roridula and Drosophyllum appeared to be fully carnivorous; by contrast, all other species examined are non-carnivorous as they did not meet

  8. Multi-Omics of Tomato Glandular Trichomes Reveals Distinct Features of Central Carbon Metabolism Supporting High Productivity of Specialized Metabolites.

    PubMed

    Balcke, Gerd U; Bennewitz, Stefan; Bergau, Nick; Athmer, Benedikt; Henning, Anja; Majovsky, Petra; Jiménez-Gómez, José M; Hoehenwarter, Wolfgang; Tissier, Alain

    2017-05-01

    Glandular trichomes are metabolic cell factories with the capacity to produce large quantities of secondary metabolites. Little is known about the connection between central carbon metabolism and metabolic productivity for secondary metabolites in glandular trichomes. To address this gap in our knowledge, we performed comparative metabolomics, transcriptomics, proteomics, and (13)C-labeling of type VI glandular trichomes and leaves from a cultivated (Solanum lycopersicum LA4024) and a wild (Solanum habrochaites LA1777) tomato accession. Specific features of glandular trichomes that drive the formation of secondary metabolites could be identified. Tomato type VI trichomes are photosynthetic but acquire their carbon essentially from leaf sucrose. The energy and reducing power from photosynthesis are used to support the biosynthesis of secondary metabolites, while the comparatively reduced Calvin-Benson-Bassham cycle activity may be involved in recycling metabolic CO2 Glandular trichomes cope with oxidative stress by producing high levels of polyunsaturated fatty acids, oxylipins, and glutathione. Finally, distinct mechanisms are present in glandular trichomes to increase the supply of precursors for the isoprenoid pathways. Particularly, the citrate-malate shuttle supplies cytosolic acetyl-CoA and plastidic glycolysis and malic enzyme support the formation of plastidic pyruvate. A model is proposed on how glandular trichomes achieve high metabolic productivity. © 2017 American Society of Plant Biologists. All rights reserved.

  9. Clothianidin and Imidacloprid Residues in Poa annua (Poales: Poaceae) and Their Effects on Listronotus maculicollis (Coleoptera: Curculionidae).

    PubMed

    Clavet, Christopher; Requintina, Matthew; Hampton, Emily; Cowles, Richard S; Byrne, Frank J; Alm, Steven R

    2014-12-01

    Competitive enzyme-linked immunosorbent assay was used to quantify the amounts of the neonicotinoids clothianidin and imidacloprid in Poa annua L. clippings from treated golf course fairways. Average clothianidin residues 7 d after application ranged from 674 to 1,550 ng/g tissue in 2012 and 455-2,220 ng/g tissue in 2013. Average clothianidin residues the day of application ranged from 17,100-38,800 ng/g tissue in 2014. Average imidacloprid residues 7 d after treatment ranged from 1,950-3,030 ng/g tissue in 2012 and 7,780-9,230 ng/g tissue in 2013. Average imidacloprid residues the day of application ranged from 31,500-40,400 ng/g tissue in 2014. Neonicotinoid or bifenthrin-neonicotinoid combination products applied in field plots in 2012 did not significantly reduce the numbers of larvae relative to the untreated control. However, in 2013, statistically significant reductions in the numbers of larvae recovered from treated field plots were associated with the presence of bifenthrin alone or when used in combination with neonicotinoid active ingredients. Listronotus maculicollis (Kirby) adults caged on neonicotinoid-, bifenthrin-, and bifenthrin-neonicotinoid-treated P. annua turf plugs fed on P. annua leaves, but mortality was only highly significantly different between treated and untreated foliage when weevils were placed on treated foliage the day after treatment and allowed to feed for 7 d. The modest degree of population suppression with bifenthrin in these experiments may not be adequate to justify the continued use of these products due to the increased risk of insecticide resistance and disruption of biological control.

  10. Artemisia supplementation differentially affects the mucosal and luminal ileal microbiota of diet-induced obese mice

    PubMed Central

    Shawna, Wicks; M., Taylor Christopher; Meng, Luo; Eugene, Blanchard IV; David, Ribnicky; T., Cefalu William; L., Mynatt Randall; A., Welsh David

    2014-01-01

    Objective The gut microbiome has been implicated in obesity and metabolic syndrome; however, most studies have focused on fecal or colonic samples. Several species of Artemisia have been reported to ameliorate insulin signaling both in vitro and in vivo. The aim of this study was to characterize the mucosal and luminal bacterial populations in the terminal ileum with or without supplementation with Artemisia extracts. Materials/Methods Following 4 weeks of supplementation with different Artemisia extracts (PMI 5011, Santa or Scopa), diet-induced obese mice were sacrificed and luminal and mucosal samples of terminal ileum were used to evaluate microbial community composition by pyrosequencing of 16S rDNA hypervariable regions. Results Significant differences in community structure and membership were observed between luminal and mucosal samples, irrespective of diet group. All Artemisia extracts increased the Bacteroidetes:Firmicutes ratio in mucosal samples. This effect was not observed in the luminal compartment. There was high inter-individual variability in the phylogenetic assessments of the ileal microbiota, limiting the statistical power of this pilot investigation. Conclusions Marked differences in bacterial communities exist dependent upon the biogeographic compartment in the terminal ileum. Future studies testing the effects of Artemisia or other botanical supplements require larger sample sizes for adequate statistical power. PMID:24985102

  11. Effects of vegetative and flowering stages on the biosynthesis of artemisinin in Artemisia species.

    PubMed

    Mannan, Abdul; Ahmed, Ibrar; Arshad, Waheed; Hussain, Izhar; Mirza, Bushra

    2011-10-01

    Artemisinin is an endoperoxide sesquiterpene lactone, and has been proven to be very effective in treating drug resistant cases of malaria, cancer, etc. The compound is obtained from Artemisia species. In the current study, the effects of vegetative and flowering stages on artemisinin production were studied, to determine the proper harvesting time of naturally growing Artemisia species with the highest levels of artemisinin. Eight Artemisia species along with two varieties were selected for this analytical work. The results showed that artemisinin content was high in the leaves of Artemisia indica, A. sieversiana, A. roxburghiana var. roxburghiana, A. roxburghiana var. gratae, and A. parviflora at the flowering stage. The highest artemisinin content was measured in the leaves of A. dracunculus var. dracunculus. Upon comparisons of artemisinin content among the individual plant species, the highest amount of artemisinin was again in A. dracunculus var. dracunculus followed by A. sieversiana when harvested at the flowering stage. In overall comparisons, the plants at the flowering stage showed high levels of artemisinin, which is deemed the optimum harvesting time of Artemisia species in Pakistan for maximum artemisinin content.

  12. Artemisia supplementation differentially affects the mucosal and luminal ileal microbiota of diet-induced obese mice.

    PubMed

    Wicks, Shawna; Taylor, Christopher M; Luo, Meng; Blanchard, Eugene; Ribnicky, David M; Cefalu, William T; Mynatt, Randall L; Welsh, David A

    2014-01-01

    The gut microbiome has been implicated in obesity and metabolic syndrome; however, most studies have focused on fecal or colonic samples. Several species of Artemisia have been reported to ameliorate insulin signaling both in vitro and in vivo. The aim of this study was to characterize the mucosal and luminal bacterial populations in the terminal ileum with or without supplementation with Artemisia extracts. Following 4 wk of supplementation with different Artemisia extracts (PMI 5011, Santa or Scopa), diet-induced obese mice were sacrificed and luminal and mucosal samples of terminal ileum were used to evaluate microbial community composition by pyrosequencing of 16 S rDNA hypervariable regions. Significant differences in community structure and membership were observed between luminal and mucosal samples, irrespective of diet group. All Artemisia extracts increased the Bacteroidetes to Firmicutes ratio in mucosal samples. This effect was not observed in the luminal compartment. There was high interindividual variability in the phylogenetic assessments of the ileal microbiota, limiting the statistical power of this pilot investigation. Marked differences in bacterial communities exist depending on the biogeographic compartment in the terminal ileum. Future studies testing the effects of Artemisia or other botanical supplements require larger sample sizes for adequate statistical power. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Fractionation and Characterization of Biologically-active Polysaccharides from Artemisia tripartita

    PubMed Central

    Xie, Gang; Schepetkin, Igor A.; Siemsen, Daniel W.; Kirpotina, Liliya N.; Wiley, James A.; Quinn, Mark T.

    2008-01-01

    The leaves of Artemisia species have been traditionally used for prevention and treatment of a number of diseases. In this study, five polysaccharide fractions (designated A-I to A-V) were isolated from the leaves of Artemisia tripartita Rydb. by the sequential use of hot-water extraction, ethanol precipitation, ultra-filtration, and chromatography. The homogeneity and average molecular weight of each fraction were determined by high performance size-exclusion chromatography. Sugar composition analysis revealed that Artemisia polysaccharides consisted primarily of xylose, glucose, arabinose, galactose, and galactosamine. Moreover, all fractions contained at least 3.4% sulfate, and fractions A-II through A-V contained an arabinogalactan type II structure. All fractions exhibited macrophage-activating activity, enhancing production of intracellular reactive oxygen species and release of nitric oxide, interleukin 6, interleukin 10, tumor necrosis factor α, and monocyte chemotactic protein-1. In addition, all fractions exhibited scavenging activity for reactive oxygen species generated enzymatically or produced extracellularly by human neutrophils. Finally, fractions A-I and A-V exhibited complement-fixing activity. Taken together, our results provide a molecular basis to explain at least part of the beneficial therapeutic effects of Artemisia extracts, and suggest the possibility of using Artemisia polysaccharides as an immunotherapeutic adjuvant. PMID:18325553

  14. Monte Carlo simulation for the estimation of the glandular breast dose for a digital breast tomosynthesis system.

    PubMed

    Rodrigues, Leonardo; Magalhaes, Luis Alexandre Goncalves; Braz, Delson

    2015-12-01

    Digital breast tomosynthesis (DBT) is a screening and diagnostic modality that acquires images of the breast at multiple angles during a short scan. The Selenia Dimensions (Hologic, Bedford, Mass) DBT system can perform both full-field digital mammography and DBT. The system acquires 15 projections over a 15° angular range (from -7.5° to +7.5°). An important factor in determining the optimal imaging technique for breast tomosynthesis is the radiation dose. In breast imaging, the radiation dose of concern is that deposited in the glandular tissue of the breast because this is the tissue that has a risk of developing cancer. The concept of the normalised mean glandular dose (DgN) has been introduced as the metric for the dose in breast imaging. The DgN is difficult to measure. The Monte Carlo techniques offer an alternative method for a realistic estimation of the radiation dose. The purpose of this work was to use the Monte Carlo code MCNPX technique to generate monoenergetic glandular dose data for estimating the breast tissue dose in tomosynthesis for arbitrary spectra as well as to observe the deposited radiation dose by projection on the glandular portion of the breast in a Selenia Dimensions DBT system. A Monte Carlo simulation of the system was developed to compute the DgN in a craniocaudal view. Monoenergetic X-ray beams from 10 to 49 keV in 1-keV increments were used. The simulation utilised the assumption of a homogeneous breast composition and three compositions (0 % glandular, 50 % glandular and 100 % glandular). The glandular and adipose tissue compositions were specified according ICRU Report 44. A skin layer of 4 mm was assumed to encapsulate the breast on all surfaces. The breast size was varied using the chest wall-to-nipple distance (CND) and compressed breast thickness (t). In this work, the authors assumed a CND of 5 cm and the thicknesses ranged from 2 to 8 cm, in steps of 2 cm. The fractional energy absorption increases (up to 44.35 % between

  15. The genus Artemisia L. in the northern region of Saudi Arabia: essential oil variability and antibacterial activities.

    PubMed

    Guetat, Arbi; Al-Ghamdi, Faraj A; Osman, Ahmed K

    2017-03-01

    Four species of the genus Artemisia L. (Artemisia monosperma, Artemisia scoparia, Artemisia judaica and Artemisia sieberi) growing in the northern region of Saudi Arabia were investigated with respect to their volatile oil contents. The yield of oil varied between 0.30 and 0.41%, % (w/w). A. monosperma showed the highest number of compounds with 30 components representing 93.78% of oil composition. However, A. judaica showed the lowest number of compounds with only 16 components representing 87.47% of essential oil. A. scoparia and A. sieberi are both composed of 17 components, representing 97.14 and 94.2% of total oil composition. A. sieberi and A. judaica were dominated by spathulenol (30.42 and 28.41%, respectively). For A. monosperma, butanoic acid (17.87%) was a major component. However, A. scoparia was a chemotype of acenaphthene. (83.23%). Essential oil of studied species showed high antibacterial activities against common human pathogens.

  16. Anticoagulant activity of some Artemisia dracunculus leaf extracts

    PubMed Central

    Duric, Kemal; Kovac-Besovic, Elvira E.; Niksic, Haris; Muratovic, Samija; Sofic, Emin

    2015-01-01

    Platelet hyperactivity and platelet interaction with endothelial cells contribute to the development and progression of many cardiovascular diseases such as atherosclerosis and thrombosis. The impact of platelet activity with different pharmacological agents, such as acetylsalicylic acid and coumarin derivatives, has been shown to be effective in the prevention of cardiovascular disease. Artemisia dracunculus, L. Asteraceae (Tarragon) is used for centuries in the daily diet in many Middle Eastern countries, and it is well known for its anticoagulant activity. The present study investigates the presence of coumarins in tarragon leaves and subsequently determines the extract with a major amount of coumarin derivatives. The solvents of different polarities and different pH values were used for the purpose of purifying the primary extract in order to obtain fractions with the highest coumarin content. Those extracts and fractions were investigated for their anticoagulant activity by determining prothrombin time (PT) and the international normalized ratio (INR), expressed in relation to the coagulation time of the healthy person. Purified extracts and fractions obtained from plant residue after essential oil distillation, concentrated in coumarin derivatives, showed the best anticoagulant activity, using samples of human blood. INR maximum value (2.34) and consequently the best anticoagulant activity showed the methanol extract at concentration of 5%. The INR value of normal plasma in testing this extract was 1.05. PMID:26042507

  17. Regioselective sulfation of Artemisia sphaerocephala polysaccharide: Characterization of chemical structure.

    PubMed

    Wang, Junlong; Yang, Wen; Wang, Jiancheng; Wang, Xia; Wu, Fang; Yao, Jian; Zhang, Ji; Lei, Ziqiang

    2015-11-20

    The biological activities of sulfated polysaccharides are related to the substitution positions of functional groups. In this study, regioselective sulfation of Artemisia sphaerocephala polysaccharides (SRSASP) was prepared by using triphenylchloromethane (TrCl) as protecting precursor. FT-IR spectra and X-ray photoelectron spectroscopy (XPS) showed that SO(3-) group (S(6+), high binding energy of 168.7eV) was widely present in sulfated polysaccharides. (13)C NMR spectroscopy showed that C-2 and C-3 substitution was occurred but not fully sulfation. Meanwhile, C-6 substituted signals near 65ppm were not observed. The degree of substitution varied from 0.44 to 0.63 in SRSASP which could be attributed to the low reactivity at secondary hydroxyl. Monosaccharide composition result showed a decrease in the ratio of mannose/glucose, indicating the change of chemical composition in sulfated polysaccharides. In size-exclusion chromatograph analysis, a decrease in molecular weight and broadening of molecular weight distribution of sulfated polysaccharides was also observed. It could be attributed to the hydrolysis of polysaccharide in the sulfated reaction.

  18. Absolute configuration of the ocimene monoterpenoids from Artemisia absinthium.

    PubMed

    Julio, Luis F; Burgueño-Tapia, Eleuterio; Díaz, Carmen E; Pérez-Hernández, Nury; González-Coloma, Azucena; Joseph-Nathan, Pedro

    2017-11-01

    The absolute configuration (AC) of the naturally occurring ocimenes (-)-(3S,5Z)-2,6-dimethyl-2,3-epoxyocta-5,7-diene (1) and (-)-(3S,5Z)-2,6-dimethylocta-5,7-dien-2,3-diol (2), isolated from the essential oils of domesticated specimens of Artemisia absinthium, followed by vibrational circular dichroism (VCD) studies of 1, as well as from the acetonide 3 and the monoacetate 4, both derived from 2, since secondary alcohols are not the best functional groups to be present during VCD studies in solution due to intermolecular associations. The AC follows from comparison of experimental and calculated VCD spectra that were obtained by Density Functional Theory computation at the B3LYP/DGDZVP level of theory. Careful nuclear magnetic resonance (NMR) measurements were compared with literature values, providing for the first time systematic (1) H and (13) C chemical shift data. Regarding homonuclear (1) H coupling constants, after performing a few irradiation experiments that showed the presence of several small long-range interactions, the complete set of coupling constants for 3, which is representative of the four studied molecules, was determined by iterations using the PERCH software. This procedure even allowed assigning the pro-R and pro-S methyl group signals of the two gem-dimethyl groups present in 3. © 2017 Wiley Periodicals, Inc.

  19. Metabolic profiling of antioxidants constituents in Artemisia selengensis leaves.

    PubMed

    Zhang, Lu; Tu, Zong-cai; Wang, Hui; Fu, Zhi-feng; Wen, Qing-hui; Fan, Dan

    2015-11-01

    This study aimed to evaluate the antioxidant potential of Artemisia selengensis Turcz (AST) leaves, a byproduct when processing AST stalk, and identify the antioxidant constituents by using HPLC-QTOF-MS(2). The total phenolics content (TPC), total flavonoids content (TFC) and antioxidant abilities of fractions resulted from the successively partition of chloroform, ethyl acetate and n-butanol were compared. Ethyl acetate fraction (EAF) exhibited the highest TFC (65.44 mg QuE/g fraction), n-butanol fraction (nBuF) showed the highest TPC (384.78 mg GAE/g fraction) and the best DPPH scavenging ability, ABTS(+) scavenging ability and reducing power. Totally, 57 compounds were identified or tentatively identified in nBuF and EAF, 40 of them were reported in AST for the first time. The major constituents in EAF were flavonoids, and the major constituents in nBuF were phenolic acids and organic acids. Thus, AST leaves might be a potential low-cost resource of natural antioxidants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Protein tyrosine phosphatase 1B inhibitors isolated from Artemisia roxburghiana.

    PubMed

    Shah, Muhammad Raza; Ishtiaq; Hizbullah, Syed Muhammad; Habtemariam, Solomon; Zarrelli, Armando; Muhammad, Akhtar; Collina, Simona; Khan, Inamulllah

    2016-08-01

    Artemisia roxburghiana is used in traditional medicine for treating various diseases including diabetes. The present study was designed to evaluate the antidiabetic potential of active constituents by using protein tyrosine phosphatase 1B (PTP1B) as a validated target for management of diabetes. Various compounds were isolated as active principles from the crude methanolic extract of aerial parts of A. roxburghiana. All compounds were screened for PTP1B inhibitory activity. Molecular docking simulations were performed to investigate the mechanism behind PTP1B inhibition of the isolated compound and positive control, ursolic acid. Betulinic acid, betulin and taraxeryl acetate were the active PTP1B principles with IC50 values 3.49 ± 0.02, 4.17 ± 0.03 and 87.52 ± 0.03 µM, respectively. Molecular docking studies showed significant molecular interactions of the triterpene inhibitors with Gly220, Cys215, Gly218 and Asp48 inside the active site of PTP1B. The antidiabetic activity of A. roxburghiana could be attributed due to PTP1B inhibition by its triterpene constituents, betulin, betulinic acid and taraxeryl acetate. Computational insights of this study revealed that the C-3 and C-17 positions of the compounds needs extensive optimization for the development of new lead compounds.

  1. Anti-cancer properties of a sesquiterpene lactone-bearing fraction from Artemisia khorassanica.

    PubMed

    Rabe, Shahrzad Taghizadeh; Emami, Seyed Ahmad; Iranshahi, Mehrdad; Rastin, Maryam; Tabasi, Nafise; Mahmoudi, Mahmoud

    2015-01-01

    Artemisia species are important medicinal plants throughout the world. The present in vitro study, using a sesquiterpene lactone-bearing fraction prepared from Artemisia khorassanica (SLAK), sought to investigate anti-cancer properties of this plant and elucidate potential underlying mechanisms for the effects. Anti-cancer potential was evaluated by toxicity against human melanoma and fibroblast cell lines. To explore the involved pathways, pattern of any cell death was determined using annexin-V/PI staining and also the expression of Bax and cytochrome c was investigated by Western blotting. The results showed that SLAK selectively caused a concentration-related inhibition of proliferation of melanoma cells that was associated with remarkable increase in early events and over-expression of both Bax and cytochrome c. The current experiment indicates that Artemisia may have anti-cancer activity. We anticipate that the ingredients may be employed as therapeutic candidates for melanoma.

  2. Variation in bioactive principles of Artemisia amygdalina Decne. in wild and tissue culture regenerants.

    PubMed

    Rasool, Rafia; Ganai, Bashir Ahmad; Akbar, Seema; Kamili, Azra Nahaid; Dar, Muhammad Younus; Masood, Akbar

    2013-05-01

    Wild and tissue culture raised regenerants of Artemisia amygdalina, a critically endangered and endemic plant of Kashmir and North West Frontier Provinces of Pakistan were screened for the amount of bioactive principles and in particular antimalarial compound artemesinin. Phytochemical screening of extracts revealed the presence of terpenes, alkaloids, phenolics, tannins (polyphenolics), cardiac glycosides and steroids in wild (aerial, inflorescence) and tissue culture regenerants (in vitro grown plant, callus and green house acclimatized plants). HPLC of Artemisia amygdalina revealed the presence of artemesinin in petroleum ether extracts of wild aerial part, tissue culture raised plant and green house acclimatized plants. Acetonitrile and water in 70:30 ratios at flow rate of 1ml/min was standardised as mobile phase. Retention time for standard chromatogram was 6.7. Wild inflorescences and callus does not produce artemesinin. This is the first report of phytochemical screening and artemesinin estimation of wild and tissue culture raised regenerants of Artemisia amygdalina.

  3. Sex determination in dioecious Mercurialis annua and its close diploid and polyploid relatives

    PubMed Central

    Russell, J R W; Pannell, J R

    2015-01-01

    Separate sexes have evolved on numerous independent occasions from hermaphroditic ancestors in flowering plants. The mechanisms of sex determination is known for only a handful of such species, but, in those that have been investigated, it usually involves alleles segregating at a single locus, sometimes on heteromorphic sex chromosomes. In the genus Mercurialis, transitions between combined (hermaphroditism) and separate sexes (dioecy or androdioecy, where males co-occur with hermaphrodites rather than females) have occurred more than once in association with hybridisation and shifts in ploidy. Previous work has pointed to an unusual 3-locus system of sex determination in dioecious populations. Here, we use crosses and genotyping for a sex-linked marker to reject this model: sex in diploid dioecious M. annua is determined at a single locus with a dominant male-determining allele (an XY system). We also crossed individuals among lineages of Mercurialis that differ in their ploidy and sexual system to ascertain the extent to which the same sex-determination system has been conserved following genome duplication, hybridisation and transitions between dioecy and hermaphroditism. Our results indicate that the male-determining element is fully capable of determining gender in the progeny of hybrids between different lineages. Specifically, males crossed with females or hermaphrodites always generate 1:1 male:female or male:hermaphrodite sex ratios, respectively, regardless of the ploidy levels involved (diploid, tetraploid or hexaploid). Our results throw further light on the genetics of the remarkable variation in sexual systems in the genus Mercurialis. They also illustrate the almost identical expression of sex-determining alleles in terms of sexual phenotypes across multiple divergent backgrounds, including those that have lost separate sexes altogether. PMID:25335556

  4. Adhesion protein VSIG1 is required for the proper differentiation of glandular gastric epithelia.

    PubMed

    Oidovsambuu, Odgerel; Nyamsuren, Gunsmaa; Liu, Shuai; Göring, Wolfgang; Engel, Wolfgang; Adham, Ibrahim M

    2011-01-01

    VSIG1, a cell adhesion protein of the immunoglobulin superfamily, is preferentially expressed in stomach, testis, and certain gastric, esophageal and ovarian cancers. Here, we describe the expression patterns of three alternatively spliced isoforms of mouse Vsig1 during pre- and postnatal development of stomach and potential function of Vsig1 in differentiation of gastric epithelia. We show that isoforms Vsig1A and Vsig1B, which differ in the 3'untranslated region, are expressed in the early stages of stomach development. Immunohistochemical analysis revealed that VSIG1 is restricted to the adherens junction of the glandular epithelium. The shorter transcript Vsig1C is restricted to the testis, encodes an N-terminal truncated protein and is presumably regulated by an internal promoter, which is located upstream of exon 1b. To determine whether the 5' flanking region of exon 1a specifically targets the expression of Vsig1 to stomach epithelia, we generated and analyzed transgenic mice. The 4.8-kb fragment located upstream of exon 1a was sufficient to direct the expression of the reporter gene to the glandular epithelia of transgenic stomach. To determine the role of VSIG1 during the development of stomach epithelia, an X-linked Vsig1 was inactivated in embryonic stem cells (ESCs). Although Vsig1(-/Y) ESCs were only able to generate low coat color chimeric mice, no male chimeras transmitted the targeted allele to their progeny suggesting that the high contribution of Vsig1(-/Y) cells leads to the lethality of chimeric embryos. Analysis of chimeric stomachs revealed the differentiation of VSIG1-null cells into squamous epithelia inside the glandular region. These results suggest that VSIG1 is required for the establishment of glandular versus squamous epithelia in the stomach.

  5. Mayolenes: labile defensive lipids from the glandular hairs of a caterpillar (Pieris rapae).

    PubMed

    Smedley, Scott R; Schroeder, Frank C; Weibel, Douglas B; Meinwald, Jerrold; Lafleur, Katie A; Renwick, J Alan; Rutowski, Ronald; Eisner, Thomas

    2002-05-14

    Larvae of the European cabbage butterfly, Pieris rapae (Pieridae), are beset with glandular hairs, bearing droplets of a clear oily secretion at their tip. The fluid consists primarily of a series of chemically labile, unsaturated lipids, the mayolenes, which are derived from 11-hydroxylinolenic acid. In bioassays with the ant Crematogaster lineolata, the secretion was shown to be potently deterrent, indicating that the fluid plays a defensive role in nature.

  6. Thymomas with prominent glandular differentiation: a clinicopathologic and immunohistochemical study of 12 cases.

    PubMed

    Weissferdt, Annikka; Moran, Cesar A

    2013-08-01

    Twelve cases of thymomas with prominent glandular differentiation are presented. The patients were 7 men and 5 women aged between 45 and 68 years (average, 56.5 years). Clinically, the patients presented with nonspecific symptoms of chest pain, cough, and fatigue. None of the patients had a history of myasthenia gravis or other autoimmune syndrome. Thymectomy was performed in all patients. The tumor size ranged from 4 to 7 cm in greatest diameter. Macroscopically, the tumors were described as firm and light tan without areas of necrosis, hemorrhage, or cystic change. Histologically, 7 tumors were classified as spindle cell (World Health Organization type A), 2 as mixed spindle cell and conventional (A+B1), 2 as conventional (B1), and 1 as atypical thymoma (B3). In 4 cases, the tumors showed invasion into periadipose thymic tissue. All cases showed the typical growth patterns of their particular subtypes. In addition, a distinct glandular component was present in all cases showing mucinous differentiation in 4 of them. Immunohistochemical studies showed tumor cells positive for CAM5.2, cytokeratin 5/6, and Pax8 and negative for carcinoembryonic antigen, thyroid transcription factor 1, and epithelial membrane antigen. Calretinin showed focal weak staining in the nonmucinous glandular components in 3 cases. Follow-up information obtained in 8 patients showed that all were alive and well in a period ranging from 2 to 5 years. The possibility of a glandular component in thymomas should be kept in mind in the assessment of mediastinoscopic biopsies to avoid misdiagnosis for other neoplasms that may require different treatment modalities.

  7. Comparison of mean glandular dose values provided by a digital breast tomosynthesis system in Brazil.

    PubMed

    Beraldo Oliveira, Bruno; Paixão, Lucas; Donato da Silva, Sabrina; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2015-06-01

    Studies are needed to determine the radiation dose of patients that are undergoing Digital breast tomosynthesis (DBT) procedures. Mean glandular dose (DG) values were derived from the incident air kerma (Ki) measurements and tabulated conversion coefficients. Ki values were obtained through an ionization chamber positioned in a Hologic Selenia Dimensions system using appropriate exposure parameters. This work contributes to determine the reliable radiation dose received by the patients and compare DG values provided by this DBT system images.

  8. [Essential oil from Artemisia lavandulaefolia induces apoptosis and necrosis of HeLa cells].

    PubMed

    Zhang, Lu-min; Lv, Xue-wei; Shao, Lin-xiang; Ma, Yan-fang; Cheng, Wen-zhao; Gao, Hai-tao

    2013-12-01

    To investigate the effects of Artemisia lavandulaefolia essential oil on apoptosis and necrosis of HeLa cells. Cell viability was assayed using MTT method. The morphological and structure alterations in HeLa cells were observed by microscopy. Furthermore, cell apoptosis was measured by DNA Ladder and flow cytometry. DNA damage was measured by comet assay, and the protein expression was examined by Western blot analysis. MTT assay displayed essential oil from Artemisia lavandulaefolia could inhibit the proliferation of HeLa cells in a dose-dependent manner. After treated with essential oil of Artemisia lavadulaefolia for 24 h, HeLa cells in 100 and 200 microg/mL experiment groups exhibited the typical morphology changes of undergoing apoptosis, such as cell shrinkage and nucleus chromatin condensed. However, the cells in the 400 microg/mL group showed the necrotic morphology changes including cytomembrane rupture and cytoplasm spillover. In addition, DNA Ladder could be demonstrated by DNA electrophoresis in each experiment group. Apoptosis peak was also evident in flow cytometry in each experiment group. After treating the HeLa cells with essential oil of Artemisia lavadulaefolia for 6 h, comet tail was detected by comet assay. Moreover, western blotting analysis showed that caspase-3 was activated and the cleavage of PARP was inactivated. Essential oil from Artemisia lavadulaefolia can inhibit the proliferation of HeLa cells in vitro. Low concentration of essential oil from Artemisia lavadulaefolia can induce apoptosis, whereas high concentration of the compounds result in necrosis of HeLa cells. And,the mechanism may be related to the caspase-3-mediated-PARP apoptotic signal pathway.

  9. Effect of the glandular composition on digital breast tomosynthesis image quality and dose optimisation.

    PubMed

    Marques, T; Ribeiro, A; Di Maria, S; Belchior, A; Cardoso, J; Matela, N; Oliveira, N; Janeiro, L; Almeida, P; Vaz, P

    2015-07-01

    In the image quality assessment for digital breast tomosynthesis (DBT), a breast phantom with an average percentage of 50 % glandular tissue is seldom used, which may not be representative of the breast tissue composition of the women undergoing such examination. This work aims at studying the effect of the glandular composition of the breast on the image quality taking into consideration different sizes of lesions. Monte Carlo simulations were performed using the state-of-the-art computer program PENELOPE to validate the image acquisition system of the DBT equipment as well as to calculate the mean glandular dose for each projection image and for different breast compositions. The integrated PENELOPE imaging tool (PenEasy) was used to calculate, in mammography, for each clinical detection task the X-ray energy that maximises the figure of merit. All the 2D cranial-caudal projections for DBT were simulated and then underwent the reconstruction process applying the Simultaneous Algebraic Reconstruction Technique. Finally, through signal-to-noise ratio analysis, the image quality in DBT was assessed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. [Estimation of the Average Glandular Dose Using the Mammary Gland Image Analysis in Mammography].

    PubMed

    Otsuka, Tomoko; Teramoto, Atsushi; Asada, Yasuki; Suzuki, Shoichi; Fujita, Hiroshi; Kamiya, Satoru; Anno, Hirofumi

    2016-05-01

    Currently, the glandular dose is evaluated quantitatively on the basis of the measured data using phantom, and not in a dose based on the mammary gland structure of an individual patient. However, mammary gland structures of the patients are different from each other and mammary gland dose of an individual patient cannot be obtained by the existing methods. In this study, we present an automated estimation method of mammary gland dose by means of mammary structure which is measured automatically using mammogram. In this method, mammary gland structure is extracted by Gabor filter; mammary region is segmented by the automated thresholding. For the evaluation, mammograms of 100 patients diagnosed with category 1 were collected. Using these mammograms we compared the mammary gland ratio measured by proposed method and visual evaluation. As a result, 78% of the total cases were matched. Furthermore, the mammary gland ratio and average glandular dose among the patients with same breast thickness was matched well. These results show that the proposed method may be useful for the estimation of average glandular dose for the individual patients.

  11. Glandular Hairs of Sigesbeckia jorullensis Kunth (Asteraceae): Morphology, Histochemistry and Composition of Essential Oil

    PubMed Central

    HEINRICH, G.; PFEIFHOFER, H. W.; STABENTHEINER, E.; SAWIDIS, T.

    2002-01-01

    Long‐stalked glandular hairs of outer and inner involucral bracts of Sigesbeckia jorullensis, which are important for epizoic fruit propagation, were investigated using light and scanning electron microscopy. The essential oil secreted by the hairs was analysed by chromatographic methods including gas chromatography/mass spectrometry and with a laser microprobe mass analyser. The glandular hairs consisted of a large multicellular stalk and a multicellular secreting head. The apical layer of glandular head cells was characterized by leucoplasts and calcium oxalate crystals. Below the apical cells there were up to six layers of cells containing many chloroplasts around the nucleus and surrounded by vacuoles filled with flavonoids and tannins. The essential oil originating in the head cells was secreted into the subcuticular space and may be liberated by rupture of the cuticle. It was mainly composed of sesqui‐ and diterpenes, with the sesquiterpene hydrocarbon germacrene‐d as the main component. Monoterpenes, n‐alkanes and their derivatives as well as flavonoid aglycones were also detected. The stickiness of the essential oil is probably associated with the high content of oxygenated sesqui‐ and diterpenes. In addition to long‐stalked trichomes, small biseriate trichomes occurred, secreting small quantities of essential oil into a subcuticular space. PMID:12096807

  12. Benign müllerian glandular inclusions in men undergoing pelvic lymph node dissection.

    PubMed

    Gallan, Alexander J; Antic, Tatjana

    2016-11-01

    Benign müllerian-type glandular inclusions in lymph nodes are commonly seen in women, but to our knowledge, there have only been 4 reported cases in men. Distinction of these glandular structures from metastatic adenocarcinoma is crucial for proper staging, prognosis, and treatment of the patient. We report 3 cases of benign müllerian-type glandular inclusions in men undergoing either prostatectomy or cystoprostatectomy with lymph node dissection for treatment of prostatic adenocarcinoma and/or urothelial carcinoma. None of the patients were receiving hormonal therapy. All 3 cases showed benign glands with ciliated cuboidal to columnar cells and rare secretory cells, morphologically comparable with endosalpingiosis in women. These glands were diffusely positive for PAX-8, WT-1, estrogen receptor, and progesteron receptor consistent with müllerian origin. Our study is the first to confirm müllerian origin of these glands by PAX-8 and WT-1 positivity. This finding of müllerian glands in men identical to endosalpingiosis in women supports the theory that this entity can result from müllerian metaplasia of the peritoneal mesothelium rather than displacement of tubal-type epithelium. Pathologists should also be aware that müllerian-type glands can rarely occur in men to prevent the incorrect diagnosis of metastatic adenocarcinoma involving a lymph node.

  13. Solitary glandular papilloma of the peripheral lung: a report of two cases

    PubMed Central

    2014-01-01

    Solitary papilloma of the lung is thought to be a rare benign epithelial tumor, and complete surgical resection is currently the standard treatment for this pathology. However, some cases of papilloma have reportedly shown malignant potential. We report two cases of solitary glandular papilloma of the peripheral lung that were treated by thoracoscopic partial resection. The first patient presented with a nodular lesion in the lower lobe of the left lung that was detected on a follow-up chest computed tomography (CT) scan after treatment for laryngeal cancer. Partial lung resection was performed by video-assisted thoracoscopic surgery. In the second patient, a nodular lesion was incidentally identified in the lower lobe of the left lung during a health check-up. Partial lung resection was again performed by video-assisted thoracoscopic surgery. The postoperative course in both cases was uneventful, and no recurrences have been observed as of 44 months and 41 months postoperatively, respectively. To the best of our knowledge, malignant transformation has been reported both with the squamous type and the mixed type of solitary papilloma of the lung. The glandular variant has shown no tendency toward local recurrence after local excision and has no apparent malignant potential. Local excision is thus recommended for solitary glandular papilloma in order to preserve pulmonary function. PMID:24885310

  14. Solitary glandular papilloma of the peripheral lung: a report of two cases.

    PubMed

    Kaseda, Kaoru; Horio, Hirotoshi; Harada, Masahiko; Hishima, Tsunekazu

    2014-05-19

    Solitary papilloma of the lung is thought to be a rare benign epithelial tumor, and complete surgical resection is currently the standard treatment for this pathology. However, some cases of papilloma have reportedly shown malignant potential. We report two cases of solitary glandular papilloma of the peripheral lung that were treated by thoracoscopic partial resection. The first patient presented with a nodular lesion in the lower lobe of the left lung that was detected on a follow-up chest computed tomography (CT) scan after treatment for laryngeal cancer. Partial lung resection was performed by video-assisted thoracoscopic surgery. In the second patient, a nodular lesion was incidentally identified in the lower lobe of the left lung during a health check-up. Partial lung resection was again performed by video-assisted thoracoscopic surgery. The postoperative course in both cases was uneventful, and no recurrences have been observed as of 44 months and 41 months postoperatively, respectively. To the best of our knowledge, malignant transformation has been reported both with the squamous type and the mixed type of solitary papilloma of the lung. The glandular variant has shown no tendency toward local recurrence after local excision and has no apparent malignant potential. Local excision is thus recommended for solitary glandular papilloma in order to preserve pulmonary function.

  15. Combined metabolome and transcriptome profiling provides new insights into diterpene biosynthesis in S. pomifera glandular trichomes.

    PubMed

    Trikka, Fotini A; Nikolaidis, Alexandros; Ignea, Codruta; Tsaballa, Aphrodite; Tziveleka, Leto-Aikaterini; Ioannou, Efstathia; Roussis, Vassilios; Stea, Eleni A; Božić, Dragana; Argiriou, Anagnostis; Kanellis, Angelos K; Kampranis, Sotirios C; Makris, Antonios M

    2015-11-14

    Salvia diterpenes have been found to have health promoting properties. Among them, carnosic acid and carnosol, tanshinones and sclareol are well known for their cardiovascular, antitumor, antiinflammatory and antioxidant activities. However, many of these compounds are not available at a constant supply and developing biotechnological methods for their production could provide a sustainable alternative. The transcriptome of S.pomifera glandular trichomes was analysed aiming to identify genes that could be used in the engineering of synthetic microbial systems. In the present study, a thorough metabolite analysis of S. pomifera leaves led to the isolation and structure elucidation of carnosic acid-family metabolites including one new natural product. These labdane diterpenes seem to be synthesized through miltiradiene and ferruginol. Transcriptomic analysis of the glandular trichomes from the S. pomifera leaves revealed two genes likely involved in miltiradiene synthesis. Their products were identified and the corresponding enzymes were characterized as copalyl diphosphate synthase (SpCDS) and miltiradiene synthase (SpMilS). In addition, several CYP-encoding transcripts were identified providing a valuable resource for the identification of the biosynthetic mechanism responsible for the production of carnosic acid-family metabolites in S. pomifera. Our work has uncovered the key enzymes involved in miltiradiene biosynthesis in S. pomifera leaf glandular trichomes. The transcriptomic dataset obtained provides a valuable tool for the identification of the CYPs involved in the synthesis of carnosic acid-family metabolites.

  16. Identification of glandular (preputial and clitoral) proteins in house rat (Rattus rattus) involved in pheromonal communication.

    PubMed

    Archunan, G; Kamalakkannan, S; Achiraman, S; Rajkumar, R

    2004-10-01

    Proteins (18-20 kDa) belonging to lipocalin family have been reported to act as carriers for ligands binding to pheromones i