Sample records for arterial pressure waveforms

  1. Computer model analysis of the radial artery pressure waveform.

    PubMed

    Schwid, H A; Taylor, L A; Smith, N T

    1987-10-01

    Simultaneous measurements of aortic and radial artery pressures are reviewed, and a model of the cardiovascular system is presented. The model is based on resonant networks for the aorta and axillo-brachial-radial arterial system. The model chosen is a simple one, in order to make interpretation of the observed relationships clear. Despite its simplicity, the model produces realistic aortic and radial artery pressure waveforms. It demonstrates that the resonant properties of the arterial wall significantly alter the pressure waveform as it is propagated from the aorta to the radial artery. Although the mean and end-diastolic radial pressures are usually accurate estimates of the corresponding aortic pressures, the systolic pressure at the radial artery is often much higher than that of the aorta due to overshoot caused by the resonant behavior of the radial artery. The radial artery dicrotic notch is predominantly dependent on the axillo-brachial-radial arterial wall properties, rather than on the aortic valve or peripheral resistance. Hence the use of the radial artery dicrotic notch as an estimate of end systole is unreliable. The rate of systolic upstroke, dP/dt, of the radial artery waveform is a function of many factors, making it difficult to interpret. The radial artery waveform usually provides accurate estimates for mean and diastolic aortic pressures; for all other measurements it is an inadequate substitute for the aortic pressure waveform. In the presence of low forearm peripheral resistance the mean radial artery pressure may significantly underestimate the mean aortic pressure, as explained by a voltage divider model.

  2. Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures

    DTIC Science & Technology

    2014-11-01

    networks were trained to predict an individual’s electrocardiogram (ECG) and arterial blood pressure ( ABP ) waveform data, which can potentially help...various ESN architectures for prediction tasks, and establishes the benefits of using ESN architecture designs for predicting ECG and ABP waveforms...arterial blood pressure ( ABP ) waveforms immediately prior to the machine generated alarms. When tested, the algorithm suppressed approximately 59.7

  3. Characteristics of time-varying intracranial pressure on blood flow through cerebral artery: A fluid-structure interaction approach.

    PubMed

    Syed, Hasson; Unnikrishnan, Vinu U; Olcmen, Semih

    2016-02-01

    Elevated intracranial pressure is a major contributor to morbidity and mortality in severe head injuries. Wall shear stresses in the artery can be affected by increased intracranial pressures and may lead to the formation of cerebral aneurysms. Earlier research on cerebral arteries and aneurysms involves using constant mean intracranial pressure values. Recent advancements in intracranial pressure monitoring techniques have led to measurement of the intracranial pressure waveform. By incorporating a time-varying intracranial pressure waveform in place of constant intracranial pressures in the analysis of cerebral arteries helps in understanding their effects on arterial deformation and wall shear stress. To date, such a robust computational study on the effect of increasing intracranial pressures on the cerebral arterial wall has not been attempted to the best of our knowledge. In this work, fully coupled fluid-structure interaction simulations are carried out to investigate the effect of the variation in intracranial pressure waveforms on the cerebral arterial wall. Three different time-varying intracranial pressure waveforms and three constant intracranial pressure profiles acting on the cerebral arterial wall are analyzed and compared with specified inlet velocity and outlet pressure conditions. It has been found that the arterial wall experiences deformation depending on the time-varying intracranial pressure waveforms, while the wall shear stress changes at peak systole for all the intracranial pressure profiles. © IMechE 2015.

  4. Blood pressure evaluation using sphygmomanometry assisted by arterial pulse waveform detection by fiber Bragg grating pulse device

    NASA Astrophysics Data System (ADS)

    Sharath, Umesh; Sukreet, Raju; Apoorva, Girish; Asokan, Sundarrajan

    2013-06-01

    We report a blood pressure evaluation methodology by recording the radial arterial pulse waveform in real time using a fiber Bragg grating pulse device (FBGPD). Here, the pressure responses of the arterial pulse in the form of beat-to-beat pulse amplitude and arterial diametrical variations are monitored. Particularly, the unique signatures of pulse pressure variations have been recorded in the arterial pulse waveform, which indicate the systolic and diastolic blood pressure while the patient is subjected to the sphygmomanometric blood pressure examination. The proposed method of blood pressure evaluation using FBGPD has been validated with the auscultatory method of detecting the acoustic pulses (Korotkoff sounds) by an electronic stethoscope.

  5. Beat-to-Beat Blood Pressure Monitor

    NASA Technical Reports Server (NTRS)

    Lee, Yong Jin

    2012-01-01

    This device provides non-invasive beat-to-beat blood pressure measurements and can be worn over the upper arm for prolonged durations. Phase and waveform analyses are performed on filtered proximal and distal photoplethysmographic (PPG) waveforms obtained from the brachial artery. The phase analysis is used primarily for the computation of the mean arterial pressure, while the waveform analysis is used primarily to obtain the pulse pressure. Real-time compliance estimate is used to refine both the mean arterial and pulse pressures to provide the beat-to-beat blood pressure measurement. This wearable physiological monitor can be used to continuously observe the beat-to-beat blood pressure (B3P). It can be used to monitor the effect of prolonged exposures to reduced gravitational environments and the effectiveness of various countermeasures. A number of researchers have used pulse wave velocity (PWV) of blood in the arteries to infer the beat-to-beat blood pressure. There has been documentation of relative success, but a device that is able to provide the required accuracy and repeatability has not yet been developed. It has been demonstrated that an accurate and repeatable blood pressure measurement can be obtained by measuring the phase change (e.g., phase velocity), amplitude change, and distortion of the PPG waveforms along the brachial artery. The approach is based on comparing the full PPG waveform between two points along the artery rather than measuring the time-of-flight. Minimizing the measurement separation and confining the measurement area to a single, well-defined artery allows the waveform to retain the general shape between the two measurement points. This allows signal processing of waveforms to determine the phase and amplitude changes.

  6. Beat-to-Beat Blood Pressure Monitor

    NASA Technical Reports Server (NTRS)

    Lee, Yong Jin

    2012-01-01

    This device provides non-invasive beat-to-beat blood pressure measurements and can be worn over the upper arm for prolonged durations. Phase and waveform analyses are performed on filtered proximal and distal photoplethysmographic (PPG) waveforms obtained from the brachial artery. The phase analysis is used primarily for the computation of the mean arterial pressure, while the waveform analysis is used primarily to obtain the pulse pressure. Real-time compliance estimate is used to refine both the mean arterial and pulse pressures to provide the beat-to-beat blood pressure measurement. This wearable physiological monitor can be used to continuously observe the beat-to-beat blood pressure (B3P). It can be used to monitor the effect of prolonged exposures to reduced gravitational environments and the effectiveness of various countermeasures. A number of researchers have used pulse wave velocity (PWV) of blood in the arteries to infer the beat-to-beat blood pressure. There has been documentation of relative success, but a device that is able to provide the required accuracy and repeatability has not yet been developed. It has been demonstrated that an accurate and repeatable blood pressure measurement can be obtained by measuring the phase change (e.g., phase velocity), amplitude change, and distortion of the PPG waveforms along the brachial artery. The approach is based on comparing the full PPG waveform between two points along the artery rather than measuring the time-of-flight. Minimizing the measurement separation and confining the measurement area to a single, well-defined artery allows the waveform to retain the general shape between the two measurement points. This allows signal processing of waveforms to determine the phase and amplitude changes. Photoplethysmography, which measures changes in arterial blood volume, is commonly used to obtain heart rate and blood oxygen saturation. The digitized PPG signals are used as inputs into the beat-to-beat blood pressure measurement algorithm.

  7. Assessing the blood pressure waveform of the carotid artery using an ultrasound image processing method

    PubMed Central

    Fatouraee, Nasser; Saberi, Hazhir

    2017-01-01

    Purpose The aim of this study was to introduce and implement a noninvasive method to derive the carotid artery pressure waveform directly by processing diagnostic sonograms of the carotid artery. Methods Ultrasound image sequences of 20 healthy male subjects (age, 36±9 years) were recorded during three cardiac cycles. The internal diameter and blood velocity waveforms were extracted from consecutive sonograms over the cardiac cycles by using custom analysis programs written in MATLAB. Finally, the application of a mathematical equation resulted in time changes of the arterial pressure. The resulting pressures were calibrated using the mean and the diastolic pressure of the radial artery. Results A good correlation was found between the mean carotid blood pressure obtained from the ultrasound image processing and the mean radial blood pressure obtained using a standard digital sphygmomanometer (R=0.91). The mean absolute difference between the carotid calibrated pulse pressures and those measured clinically was -1.333±6.548 mm Hg. Conclusion The results of this study suggest that consecutive sonograms of the carotid artery can be used for estimating a blood pressure waveform. We believe that our results promote a noninvasive technique for clinical applications that overcomes the reproducibility problems of common carotid artery tonometry with technical and anatomical causes. PMID:27776401

  8. An electronic circuit that detects left ventricular ejection events by processing the arterial pressure waveform

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.; Webb, J. A., Jr.

    1972-01-01

    An electronic circuit for processing arterial blood pressure waveform signals is described. The circuit detects blood pressure as the heart pumps blood through the aortic valve and the pressure distribution caused by aortic valve closure. From these measurements, timing signals for use in measuring the left ventricular ejection time is determined, and signals are provided for computer monitoring of the cardiovascular system. Illustrations are given of the circuit and pressure waveforms.

  9. Use of paravascular admittance waveforms to monitor relative change in arterial blood pressure

    NASA Astrophysics Data System (ADS)

    Zielinski, Todd M.; Hettrick, Doug; Cho, Yong

    2010-04-01

    Non-invasive methods to monitor ambulatory blood pressure often have limitations that can affect measurement accuracy and patient adherence [1]. Minimally invasive measurement of a relative blood pressure surrogate with an implantable device may provide a useful chronic diagnostic and monitoring tool. We assessed a technique that uses electrocardiogram and paravascular admittance waveform morphology analysis to one, measure a time duration (vascular tone index, VTI in milliseconds) change from the electrocardiogram R-wave to admittance waveform peak and two, measure the admittance waveform minimum, maximum and magnitude as indicators of change in arterial compliance/distensibility or pulse pressure secondary to change in afterload. Methods: Five anesthetized domestic pigs (32 ± 4.2 kg) were used to study the effects of phenylephrine (1-5 ug/kg/min) on femoral artery pressure and admittance waveform morphology measured with a quadrapolar electrode array catheter placed next to the femoral artery to assess the relative change in arterial compliance due to change in peripheral vascular tone. Results: Statistical difference was observed (p < 0.05) comparing baseline VTI to phenylephrine VTI (246 ± .05 ms to 320 ± .07 ms) and baseline admittance waveform maximum to phenylephrine admittance waveform maximum (0.0148 ± .002 siemens to 0.0151 ± .002 siemens). Conclusion: Chronic minimally invasive admittance measurement techniques that monitor relative change in blood pressure may be suitable for implantable devices to detect progression of cardiovascular disease such as hypertension.

  10. Circuit for detecting initial systole and dicrotic notch. [for monitoring arterial pressure

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.; Webb, J. A., Jr. (Inventor)

    1974-01-01

    Circuitry is disclosed for processing an arterial pressure waveform to produce during any one cycle a pulse corresponding to the initial systole and a pulse corresponding to the dicrotic notch. In a first channel, an electrical analog of the arterial pressure waveform is filtered and then compared to the original waveform to produce an initial systole signal. In a second channel, the analog is differentiated, filtered, and fed through a gate controlled by pulses from the first channel to produce an electrical pulse corresponding to the dicrotic notch.

  11. Ventilation-Induced Modulation of Pulse Oximeter Waveforms: A Method for the Assessment of Early Changes in Intravascular Volume During Spinal Fusion Surgery in Pediatric Patients.

    PubMed

    Alian, Aymen A; Atteya, Gourg; Gaal, Dorothy; Golembeski, Thomas; Smith, Brian G; Dai, Feng; Silverman, David G; Shelley, Kirk

    2016-08-01

    Scoliosis surgery is often associated with substantial blood loss, requiring fluid resuscitation and blood transfusions. In adults, dynamic preload indices have been shown to be more reliable for guiding fluid resuscitation, but these indices have not been useful in children undergoing surgery. The aim of this study was to introduce frequency-analyzed photoplethysmogram (PPG) and arterial pressure waveform variables and to study the ability of these parameters to detect early bleeding in children during surgery. We studied 20 children undergoing spinal fusion. Electrocardiogram, arterial pressure, finger pulse oximetry (finger PPG), and airway pressure waveforms were analyzed using time domain and frequency domain methods of analysis. Frequency domain analysis consisted of calculating the amplitude density of PPG and arterial pressure waveforms at the respiratory and cardiac frequencies using Fourier analysis. This generated 2 measurements: The first is related to slow mean arterial pressure modulation induced by ventilation (also known as DC modulation when referring to the PPG), and the second corresponds to pulse pressure modulation (AC modulation or changes in the amplitude of pulse oximeter plethysmograph when referring to the PPG). Both PPG and arterial pressure measurements were divided by their respective cardiac pulse amplitude to generate DC% and AC% (normalized values). Standard hemodynamic data were also recorded. Data at baseline and after bleeding (estimated blood loss about 9% of blood volume) were presented as median and interquartile range and compared using Wilcoxon signed-rank tests; a Bonferroni-corrected P value <0.05 was considered statistically significant. There were significant increases in PPG DC% (median [interquartile range] = 359% [210 to 541], P = 0.002), PPG AC% (160% [87 to 251], P = 0.003), and arterial DC% (44% [19 to 84], P = 0.012) modulations, respectively, whereas arterial AC% modulations showed nonsignificant increase (41% [1 to 85], P = 0.12). The change in PPG DC% was significantly higher than that in PPG AC%, arterial DC%, arterial AC%, and systolic blood pressure with P values of 0.008, 0.002, 0.003, and 0.002, respectively. Only systolic blood pressure showed significant changes (11% [4 to 21], P = 0.003) between bleeding phase and baseline. Finger PPG and arterial waveform parameters (using frequency analysis) can track changes in blood volume during the bleeding phase, suggesting the potential for a noninvasive monitor for tracking changes in blood volume in pediatric patients. PPG waveform baseline modulation (PPG DC%) was more sensitive to changes in venous blood volume when compared with respiration-induced modulation seen in the arterial pressure waveform.

  12. Predicting electrocardiogram and arterial blood pressure waveforms with different Echo State Network architectures.

    PubMed

    Fong, Allan; Mittu, Ranjeev; Ratwani, Raj; Reggia, James

    2014-01-01

    Alarm fatigue caused by false alarms and alerts is an extremely important issue for the medical staff in Intensive Care Units. The ability to predict electrocardiogram and arterial blood pressure waveforms can potentially help the staff and hospital systems better classify a patient's waveforms and subsequent alarms. This paper explores the use of Echo State Networks, a specific type of neural network for mining, understanding, and predicting electrocardiogram and arterial blood pressure waveforms. Several network architectures are designed and evaluated. The results show the utility of these echo state networks, particularly ones with larger integrated reservoirs, for predicting electrocardiogram waveforms and the adaptability of such models across individuals. The work presented here offers a unique approach for understanding and predicting a patient's waveforms in order to potentially improve alarm generation. We conclude with a brief discussion of future extensions of this research.

  13. Model-Based, Noninvasive Monitoring of Intracranial Pressure

    DTIC Science & Technology

    2013-07-01

    patients. A physiologically based model relates ICP to simultaneously measured waveforms of arterial blood pressure ( ABP ), obtained via radial... ABP and CBFV are currently measured as the clinical standard of care. The project’s major accomplishments include: assembling a suitable system for...synchronized arterial blood pressure ( ABP ) and cerebral blood flow velocity (CBFV) waveform measurements that can be obtained quite routinely. Our processing

  14. Models of brachial to finger pulse wave distortion and pressure decrement.

    PubMed

    Gizdulich, P; Prentza, A; Wesseling, K H

    1997-03-01

    To model the pulse wave distortion and pressure decrement occurring between brachial and finger arteries. Distortion reversion and decrement correction were also our aims. Brachial artery pressure was recorded intra-arterially and finger pressure was recorded non-invasively by the Finapres technique in 53 adult human subjects. Mean pressure was subtracted from each pressure waveform and Fourier analysis applied to the pulsations. A distortion model was estimated for each subject and averaged over the group. The average inverse model was applied to the full finger pressure waveform. The pressure decrement was modelled by multiple regression on finger systolic and diastolic levels. Waveform distortion could be described by a general, frequency dependent model having a resonance at 7.3 Hz. The general inverse model has an anti-resonance at this frequency. It converts finger to brachial pulsations thereby reducing average waveform distortion from 9.7 (s.d. 3.2) mmHg per sample for the finger pulse to 3.7 (1.7) mmHg for the converted pulse. Systolic and diastolic level differences between finger and brachial arterial pressures changed from -4 (15) and -8 (11) to +8 (14) and +8 (12) mmHg, respectively, after inverse modelling, with pulse pressures correct on average. The pressure decrement model reduced both the mean and the standard deviation of systolic and diastolic level differences to 0 (13) and 0 (8) mmHg. Diastolic differences were thus reduced most. Brachial to finger pulse wave distortion due to wave reflection in arteries is almost identical in all subjects and can be modelled by a single resonance. The pressure decrement due to flow in arteries is greatest for high pulse pressures superimposed on low means.

  15. Pulse transit time differential measurement by fiber Bragg grating pulse recorder.

    PubMed

    Umesh, Sharath; Padma, Srivani; Ambastha, Shikha; Kalegowda, Anand; Asokan, Sundarrajan

    2015-05-01

    The present study reports a noninvasive technique for the measurement of the pulse transit time differential (PTTD) from the pulse pressure waveforms obtained at the carotid artery and radial artery using fiber Bragg grating pulse recorders (FBGPR). PTTD is defined as the time difference between the arrivals of a pulse pressure waveform at the carotid and radial arterial sites. The PTTD is investigated as an indicator of variation in the systolic blood pressure. The results are validated against blood pressure variation obtained from a Mindray Patient Monitor. Furthermore, the pulse wave velocity computed from the obtained PTTD is compared with the pulse wave velocity obtained from the color Doppler ultrasound system and is found to be in good agreement. The major advantage of the PTTD measurement via FBGPRs is that the data acquisition system employed can simultaneously acquire pulse pressure waveforms from both FBGPRs placed at carotid and radial arterial sites with a single time scale, which eliminates time synchronization complexity.

  16. Arterial pulse wave velocity but not augmentation index is associated with coronary artery disease extent and severity: implications for arterial transfer function applicability.

    PubMed

    Hope, Sarah A; Antonis, Paul; Adam, David; Cameron, James D; Meredith, Ian T

    2007-10-01

    The aim of this study was to test the hypothesis that coronary artery disease extent and severity are associated with central aortic pressure waveform characteristics. Although it is thought that central aortic pressure waveform characteristics, particularly augmentation index, may influence cardiovascular disease progression and predict cardiovascular risk, little is known of the relationship between central waveform characteristics and the severity and extent of coronary artery disease. Central aortic waveforms (2F Millar pressure transducer-tipped catheters) were acquired at the time of coronary angiography for suspected native coronary artery disease in 40 patients (24 male). The severity and extent of disease were assessed independently by two observers using two previously described scoring systems (modified Gensini's stenosis and Sullivan's extent scores). Relationships between disease scores, aortic waveform characteristics, aorto-radial pulse wave velocity and subject demographic features were assessed by regression techniques. Both extent and severity scores were associated with increasing age and male sex (P < 0.001), but no other risk factors. Both scores were independently associated with aorto-radial pulse wave velocity (P < 0.001), which entered a multiple regression model prior to age and sex. This association was not dependent upon blood pressure. Neither score was associated with central aortic augmentation index, by either simple or multiple linear regression techniques including heart rate, subject demographic features and cardiovascular risk factors. Aorto-radial pulse wave velocity, but not central aortic augmentation index, is associated with both the extent and severity of coronary artery disease. This has potentially important implications for applicability of a generalized arterial transfer function.

  17. Development of optoelectronic monitoring system for ear arterial pressure waveforms

    NASA Astrophysics Data System (ADS)

    Sasayama, Satoshi; Imachi, Yu; Yagi, Tamotsu; Imachi, Kou; Ono, Toshirou; Man-i, Masando

    1994-02-01

    Invasive intra-arterial blood pressure measurement is the most accurate method but not practical if the subject is in motion. The apparatus developed by Wesseling et al., based on a volume-clamp method of Penaz (Finapres), is able to monitor continuous finger arterial pressure waveforms noninvasively. The limitation of Finapres is the difficulty in measuring the pressure of a subject during work that involves finger or arm action. Because the Finapres detector is attached to subject's finger, the measurements are affected by inertia of blood and hydrostatic effect cause by arm or finger motion. To overcome this problem, the authors made a detector that is attached to subject's ear and developed and optoelectronic monitoring systems for ear arterial pressure waveform (Earpres). An IR LEDs, photodiode, and air cuff comprised the detector. The detector was attached to a subject's ear, and the space adjusted between the air cuff and the rubber plate on which the LED and photodiode were positioned. To evaluate the accuracy of Earpres, the following tests were conducted with participation of 10 healthy male volunteers. The subjects rested for about five minutes, then performed standing and squatting exercises to provide wide ranges of systolic and diastolic arterial pressure. Intra- and inter-individual standard errors were calculated according to the method of van Egmond et al. As a result, average, the averages of intra-individual standard errors for earpres appeared small (3.7 and 2.7 mmHg for systolic and diastolic pressure respectively). The inter-individual standard errors for Earpres were about the same was Finapres for both systolic and diastolic pressure. The results showed the ear monitor was reliable in measuring arterial blood pressure waveforms and might be applicable to various fields such as sports medicine and ergonomics.

  18. Non-invasive determination of instantaneous brachial blood flow using the oscillometric method.

    PubMed

    Liu, Shing-Hong; Wang, Jia-Jung; Cheng, Da-Chuan

    2009-08-01

    The oscillometric method has been widely used to measure arterial systolic and diastolic blood pressures, but its potential for arterial blood flow measurements still remains to be explored. The aim of this study was to non-invasively determine arterial blood flow using an oscillometric blood flow measurement system. The system consists of a pneumatic elastic cuff, an air-pumping motor, a releaser valve, a pressure transducer, and an airflow meter. To build a non-linear cuff model, we measured airflow pumped into the pneumatic cuff and cuff pressure using an airflow meter and pressure transducer during the inflation period, respectively. During the deflation period, only the pressure transducer was used to record cuff pressure. Based on the cuff model, the oscillometric blood flow waveform was obtained by integrating the oscillometric pressure waveform. We compared arterial blood flow derived from the maximum amplitude of the oscillometric blood flow waveform with Doppler-measured blood flow calculated with the diameters and blood velocities of the brachial arteries in 32 subjects who underwent diagnostic evaluations for peripheral arterial embolism. A linear correlation coefficient of r = 0.716 was found between the oscillometry- and Doppler-based blood flow measurements in the 32 subjects. These results suggest that blood flow passing through the brachial artery can be quantified non-invasively using the oscillometric approach after appropriate calibration.

  19. Compressed storage of arterial pressure waveforms by selection of significant points.

    PubMed

    de Graaf, P M; van Goudoever, J; Wesseling, K H

    1997-09-01

    Continuous records of arterial blood pressure can be obtained non-invasively with Finapres, even for periods of 24 hours. Increasingly, storage of such records is done digitally, requiring large disc capacities. It is therefore necessary to find methods to store blood pressure waveforms in compressed form. The method of selection of significant points known from ECG data compression is adapted. Points are selected as significant wherever the first derivative of the pressure wave changes sign. As a second stage recursive partitioning is used to select additional points such that the difference between the selected points, linearly interpolated, and the original curve remains below a maximum. This method is tested on finger arterial pressure waveform epochs of 60 s duration taken from 32 patients with a wide range of blood pressures and heart rates. An average compression factor of 4.6 (SD 1.0) is obtained when accepting a maximum difference of 3 mmHg. The root mean squared error is 1 mmHg averaged over the group of patient waveforms. Clinically relevant parameters such as systolic, diastolic and mean pressure are reproduced with an offset error of less than 0.5 (0.3) mmHg and scatter less than 0.6 (0.1) mmHg. It is concluded that a substantial compression factor can be achieved with a simple and computationally fast algorithm and little deterioration in waveform quality and pressure level accuracy.

  20. Estimation of Individual-specific Progression to Impending Cardiovascular Instability using Arterial Waveforms

    DTIC Science & Technology

    2013-08-08

    pressure; SpO2, oxygen saturation of arterial blood by pulse oximetry. -75-60-45-30-15Baseline 40 50 60 70 80 90 100 HT LT LBNP, mmHg S tr o ke V o...systolic arterial blood pressure (mmHg) generated from the Finometer. R-R intervals (ms) were used to calculate heart rate (beats/min). Oxygen saturation of...The CRI can be integrated into any standard monitor that generates an arterial waveform, including a finger pulse oximeter that is available in the

  1. Computational assessment of model-based wave separation using a database of virtual subjects.

    PubMed

    Hametner, Bernhard; Schneider, Magdalena; Parragh, Stephanie; Wassertheurer, Siegfried

    2017-11-07

    The quantification of arterial wave reflection is an important area of interest in arterial pulse wave analysis. It can be achieved by wave separation analysis (WSA) if both the aortic pressure waveform and the aortic flow waveform are known. For better applicability, several mathematical models have been established to estimate aortic flow solely based on pressure waveforms. The aim of this study is to investigate and verify the model-based wave separation of the ARCSolver method on virtual pulse wave measurements. The study is based on an open access virtual database generated via simulations. Seven cardiac and arterial parameters were varied within physiological healthy ranges, leading to a total of 3325 virtual healthy subjects. For assessing the model-based ARCSolver method computationally, this method was used to perform WSA based on the aortic root pressure waveforms of the virtual patients. Asa reference, the values of WSA using both the pressure and flow waveforms provided by the virtual database were taken. The investigated parameters showed a good overall agreement between the model-based method and the reference. Mean differences and standard deviations were -0.05±0.02AU for characteristic impedance, -3.93±1.79mmHg for forward pressure amplitude, 1.37±1.56mmHg for backward pressure amplitude and 12.42±4.88% for reflection magnitude. The results indicate that the mathematical blood flow model of the ARCSolver method is a feasible surrogate for a measured flow waveform and provides a reasonable way to assess arterial wave reflection non-invasively in healthy subjects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Noninvasive calculation of the aortic blood pressure waveform from the flow velocity waveform: a proof of concept

    PubMed Central

    Vennin, Samuel; Mayer, Alexia; Li, Ye; Fok, Henry; Clapp, Brian; Alastruey, Jordi

    2015-01-01

    Estimation of aortic and left ventricular (LV) pressure usually requires measurements that are difficult to acquire during the imaging required to obtain concurrent LV dimensions essential for determination of LV mechanical properties. We describe a novel method for deriving aortic pressure from the aortic flow velocity. The target pressure waveform is divided into an early systolic upstroke, determined by the water hammer equation, and a diastolic decay equal to that in the peripheral arterial tree, interposed by a late systolic portion described by a second-order polynomial constrained by conditions of continuity and conservation of mean arterial pressure. Pulse wave velocity (PWV, which can be obtained through imaging), mean arterial pressure, diastolic pressure, and diastolic decay are required inputs for the algorithm. The algorithm was tested using 1) pressure data derived theoretically from prespecified flow waveforms and properties of the arterial tree using a single-tube 1-D model of the arterial tree, and 2) experimental data acquired from a pressure/Doppler flow velocity transducer placed in the ascending aorta in 18 patients (mean ± SD: age 63 ± 11 yr, aortic BP 136 ± 23/73 ± 13 mmHg) at the time of cardiac catheterization. For experimental data, PWV was calculated from measured pressures/flows, and mean and diastolic pressures and diastolic decay were taken from measured pressure (i.e., were assumed to be known). Pressure reconstructed from measured flow agreed well with theoretical pressure: mean ± SD root mean square (RMS) error 0.7 ± 0.1 mmHg. Similarly, for experimental data, pressure reconstructed from measured flow agreed well with measured pressure (mean RMS error 2.4 ± 1.0 mmHg). First systolic shoulder and systolic peak pressures were also accurately rendered (mean ± SD difference 1.4 ± 2.0 mmHg for peak systolic pressure). This is the first noninvasive derivation of aortic pressure based on fluid dynamics (flow and wave speed) in the aorta itself. PMID:26163442

  3. Noninvasive arterial blood pressure waveforms in patients with continuous-flow left ventricular assist devices.

    PubMed

    Martina, Jerson R; Westerhof, Berend E; de Jonge, Nicolaas; van Goudoever, Jeroen; Westers, Paul; Chamuleau, Steven; van Dijk, Diederik; Rodermans, Ben F M; de Mol, Bas A J M; Lahpor, Jaap R

    2014-01-01

    Arterial blood pressure and echocardiography may provide useful physiological information regarding cardiac support in patients with continuous-flow left ventricular assist devices (cf-LVADs). We investigated the accuracy and characteristics of noninvasive blood pressure during cf-LVAD support. Noninvasive arterial pressure waveforms were recorded with Nexfin (BMEYE, Amsterdam, The Netherlands). First, these measurements were validated simultaneously with invasive arterial pressures in 29 intensive care unit patients. Next, the association between blood pressure responses and measures derived by echocardiography, including left ventricular end-diastolic dimensions (LVEDDs), left ventricular end-systolic dimensions (LVESDs), and left ventricular shortening fraction (LVSF) were determined during pump speed change procedures in 30 outpatients. Noninvasive arterial blood pressure waveforms by the Nexfin monitor slightly underestimated invasive measures during cf-LVAD support. Differences between noninvasive and invasive measures (mean ± SD) of systolic, diastolic, mean, and pulse pressures were -7.6 ± 5.8, -7.0 ± 5.2, -6.9 ± 5.1, and -0.6 ± 4.5 mm Hg, respectively (all <10%). These blood pressure responses did not correlate with LVEDD, LVESD, or LVSF, while LVSF correlated weakly with both pulse pressure (r = 0.24; p = 0.005) and (dP(art)/dt)max (r = 0.25; p = 0.004). The dicrotic notch in the pressure waveform was a better predictor of aortic valve opening (area under the curve [AUC] = 0.87) than pulse pressure (AUC = 0.64) and (dP(art)/dt)max (AUC = 0.61). Patients with partial support rather than full support at 9,000 rpm had a significant change in systolic pressure, pulse pressure, and (dP(art)/dt)max during ramp studies, while echocardiographic measures did not change. Blood pressure measurements by Nexfin were reliable and may thereby act as a compliment to the assessment of the cf-LVAD patient.

  4. Noninvasive calculation of the aortic blood pressure waveform from the flow velocity waveform: a proof of concept.

    PubMed

    Vennin, Samuel; Mayer, Alexia; Li, Ye; Fok, Henry; Clapp, Brian; Alastruey, Jordi; Chowienczyk, Phil

    2015-09-01

    Estimation of aortic and left ventricular (LV) pressure usually requires measurements that are difficult to acquire during the imaging required to obtain concurrent LV dimensions essential for determination of LV mechanical properties. We describe a novel method for deriving aortic pressure from the aortic flow velocity. The target pressure waveform is divided into an early systolic upstroke, determined by the water hammer equation, and a diastolic decay equal to that in the peripheral arterial tree, interposed by a late systolic portion described by a second-order polynomial constrained by conditions of continuity and conservation of mean arterial pressure. Pulse wave velocity (PWV, which can be obtained through imaging), mean arterial pressure, diastolic pressure, and diastolic decay are required inputs for the algorithm. The algorithm was tested using 1) pressure data derived theoretically from prespecified flow waveforms and properties of the arterial tree using a single-tube 1-D model of the arterial tree, and 2) experimental data acquired from a pressure/Doppler flow velocity transducer placed in the ascending aorta in 18 patients (mean ± SD: age 63 ± 11 yr, aortic BP 136 ± 23/73 ± 13 mmHg) at the time of cardiac catheterization. For experimental data, PWV was calculated from measured pressures/flows, and mean and diastolic pressures and diastolic decay were taken from measured pressure (i.e., were assumed to be known). Pressure reconstructed from measured flow agreed well with theoretical pressure: mean ± SD root mean square (RMS) error 0.7 ± 0.1 mmHg. Similarly, for experimental data, pressure reconstructed from measured flow agreed well with measured pressure (mean RMS error 2.4 ± 1.0 mmHg). First systolic shoulder and systolic peak pressures were also accurately rendered (mean ± SD difference 1.4 ± 2.0 mmHg for peak systolic pressure). This is the first noninvasive derivation of aortic pressure based on fluid dynamics (flow and wave speed) in the aorta itself. Copyright © 2015 the American Physiological Society.

  5. Pulse wave analysis in a 180-degree curved artery model: Implications under physiological and non-physiological inflows

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    Systolic and diastolic blood pressures, pulse pressures, and left ventricular hypertrophy contribute to cardiovascular risks. Increase of arterial stiffness due to aging and hypertension is an important factor in cardiovascular, chronic kidney and end-stage-renal-diseases. Pulse wave analysis (PWA) based on arterial pressure wave characteristics, is well established in clinical practice for evaluation of arterial distensibility and hypertension. The objective of our exploratory study in a rigid 180-degree curved artery model was to evaluate arterial pressure waveforms. Bend upstream conditions were measured using a two-component, two-dimensional, particle image velocimeter (2C-2D PIV). An ultrasonic transit-time flow meter and a catheter with a MEMS-based solid state pressure sensor, capable of measuring up to 20 harmonics of the observed pressure waveform, monitored flow conditions downstream of the bend. Our novel continuous wavelet transform algorithm (PIVlet 1.2), in addition to detecting coherent secondary flow structures is used to evaluate arterial pulse wave characteristics subjected to physiological and non-physiological inflows. Results of this study will elucidate the utility of wavelet transforms in arterial function evaluation and pulse wave speed. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  6. A Fiber Bragg Grating Sensor for Radial Artery Pulse Waveform Measurement.

    PubMed

    Jia, Dagong; Chao, Jing; Li, Shuai; Zhang, Hongxia; Yan, Yingzhan; Liu, Tiegen; Sun, Ye

    2018-04-01

    In this paper, we report the design and experimental validation of a novel optical sensor for radial artery pulse measurement based on fiber Bragg grating (FBG) and lever amplification mechanism. Pulse waveform analysis is a diagnostic tool for clinical examination and disease diagnosis. High fidelity radial artery pulse waveform has been investigated in clinical studies for estimating central aortic pressure, which is proved to be predictors of cardiovascular diseases. As a three-dimensional cylinder, the radial artery needs to be examined from different locations to achieve optimal pulse waveform for estimation and diagnosis. The proposed optical sensing system is featured as high sensitivity and immunity to electromagnetic interference for multilocation radial artery pulse waveform measurement. The FBG sensor can achieve the sensitivity of 8.236 nm/N, which is comparable to a commonly used electrical sensor. This FBG-based system can provide high accurate measurement, and the key characteristic parameters can be then extracted from the raw signals for clinical applications. The detecting performance is validated through experiments guided by physicians. In the experimental validation, we applied this sensor to measure the pulse waveforms at various positions and depths of the radial artery in the wrist according to the diagnostic requirements. The results demonstrate the high feasibility of using optical systems for physiological measurement and using this FBG sensor for radial artery pulse waveform in clinical applications.

  7. Motion Tolerant Unfocused Imaging of Physiological Waveforms for Blood Pressure Waveform Estimation Using Ultrasound.

    PubMed

    Seo, Joohyun; Pietrangelo, Sabino J; Sodini, Charles G; Lee, Hae-Seung

    2018-05-01

    This paper details unfocused imaging using single-element ultrasound transducers for motion tolerant arterial blood pressure (ABP) waveform estimation. The ABP waveform is estimated based on pulse wave velocity and arterial pulsation through Doppler and M-mode ultrasound. This paper discusses approaches to mitigate the effect of increased clutter due to unfocused imaging on blood flow and diameter waveform estimation. An intensity reduction model (IRM) estimator is described to track the change of diameter, which outperforms a complex cross-correlation model (C3M) estimator in low contrast environments. An adaptive clutter filtering approach is also presented, which reduces the increased Doppler angle estimation error due to unfocused imaging. Experimental results in a flow phantom demonstrate that flow velocity and diameter waveforms can be reliably measured with wide lateral offsets of the transducer position. The distension waveform estimated from human carotid M-mode imaging using the IRM estimator shows physiological baseline fluctuations and 0.6-mm pulsatile diameter change on average, which is within the expected physiological range. These results show the feasibility of this low cost and portable ABP waveform estimation device.

  8. Comparison of pulmonary artery and central venous pressure waveform measurements via digital and graphic measurement methods.

    PubMed

    Ahrens, T S; Schallom, L

    2001-01-01

    Techniques to measure pulmonary artery (PA) pressure waveforms include digital measurement, graphic measurement, and freeze-cursor measurement. Previous studies reported the inaccuracy of digital and freeze-cursor measurements. However, many of the previous studies were small and did not thoroughly examine the circumstances of when digital measurements might be inaccurate. To compare digital measurements and graphic measurements of PA and central venous pressure (CVP) waveforms in patients with a variety of respiratory patterns, and to compare digital measurements and graphic measurements of CVPs in patients with abnormal or right ventricular waveforms. A total of 928 patients were enrolled in this study. Waveforms from the PA and CVP were collected from each patient. The monitor pressure value (digital measurement) printed on the recorded waveform was compared with the pressure value obtained by a graphic strip recording and measured by one of the primary investigators (graphic measurement). Digital measurements were found to be inaccurate in measuring waveforms in all respiratory categories and in measuring right ventricular waveforms. PA diastolic values and CVP values were the most inaccurately measured waveforms. Digital errors of more than 4 mm Hg were common. There were instances in which the monitor's digital measurement was substantially different from the graphically measured value. This difference has the potential to mislead interpretation of clinical situations. The monitor's ability to occasionally give digital measurement values similar to the graphic measurements may lead to a false sense of security in clinicians. Because the accuracy of the monitor is inconsistent, the bedside clinician should interpret waveforms through use of a graphic recording rather than rely on the digital measurement on the monitor.

  9. Model-Based, Noninvasive Monitoring of Intracranial Pressure

    DTIC Science & Technology

    2012-10-01

    nICP) estimate requires simultaneous measurement of the waveforms of arterial blood pressure ( ABP ), obtained via radial artery catheter or finger...initial database comprises subarachnoid hemorrhage patients in neuro-intensive care at our partner hospital, for whom ICP, ABP and CBFV are currently

  10. bpshape wk4: a computer program that implements a physiological model for analyzing the shape of blood pressure waveforms

    NASA Technical Reports Server (NTRS)

    Ocasio, W. C.; Rigney, D. R.; Clark, K. P.; Mark, R. G.; Goldberger, A. L. (Principal Investigator)

    1993-01-01

    We describe the theory and computer implementation of a newly-derived mathematical model for analyzing the shape of blood pressure waveforms. Input to the program consists of an ECG signal, plus a single continuous channel of peripheral blood pressure, which is often obtained invasively from an indwelling catheter during intensive-care monitoring or non-invasively from a tonometer. Output from the program includes a set of parameter estimates, made for every heart beat. Parameters of the model can be interpreted in terms of the capacitance of large arteries, the capacitance of peripheral arteries, the inertance of blood flow, the peripheral resistance, and arterial pressure due to basal vascular tone. Aortic flow due to contraction of the left ventricle is represented by a forcing function in the form of a descending ramp, the area under which represents the stroke volume. Differential equations describing the model are solved by the method of Laplace transforms, permitting rapid parameter estimation by the Levenberg-Marquardt algorithm. Parameter estimates and their confidence intervals are given in six examples, which are chosen to represent a variety of pressure waveforms that are observed during intensive-care monitoring. The examples demonstrate that some of the parameters may fluctuate markedly from beat to beat. Our program will find application in projects that are intended to correlate the details of the blood pressure waveform with other physiological variables, pathological conditions, and the effects of interventions.

  11. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M., E-mail: sehgalc@uphs.upenn.edu

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced eachmore » phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.« less

  12. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound.

    PubMed

    Cary, Theodore W; Reamer, Courtney B; Sultan, Laith R; Mohler, Emile R; Sehgal, Chandra M

    2014-02-01

    To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.

  13. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    PubMed Central

    Cary, Theodore W.; Reamer, Courtney B.; Sultan, Laith R.; Mohler, Emile R.; Sehgal, Chandra M.

    2014-01-01

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging. PMID:24506648

  14. Preoperative partitioning of pulmonary vascular resistance correlates with early outcome after thromboendarterectomy for chronic thromboembolic pulmonary hypertension.

    PubMed

    Kim, Nick H S; Fesler, Pierre; Channick, Richard N; Knowlton, Kirk U; Ben-Yehuda, Ori; Lee, Stephen H; Naeije, Robert; Rubin, Lewis J

    2004-01-06

    Pulmonary thromboendarterectomy (PTE) is the preferred treatment for chronic thromboembolic pulmonary hypertension (CTEPH), but persistent pulmonary hypertension after PTE, as a result of either inaccessible distal thrombotic material or coexistent intrinsic small-vessel disease, remains a major determinant of poor outcome. Conventional preoperative evaluation is unreliable in identifying patients at risk for persistent pulmonary hypertension or predicting postoperative hemodynamic outcome. We postulated that pulmonary arterial occlusion pressure waveform analysis, a technique that has been used for partitioning pulmonary vascular resistance, might identify CTEPH patients with significant distal, small-vessel disease. Twenty-six patients underwent preoperative right heart catheterization before PTE. Pulmonary artery occlusion waveform recordings were performed in triplicate. Postoperative hemodynamics after PTE were compared with preoperative partitioning of pulmonary vascular resistance derived from the occlusion data. Preoperative assessment of upstream resistance (Rup) correlated with both postoperative total pulmonary resistance index (R2=0.79, P<0.001) and postoperative mean pulmonary artery pressure (R2=0.75, P<0.001). All 4 postoperative deaths occurred in patients with a preoperative Rup <60%. Pulmonary arterial occlusion pressure waveform analysis may identify CTEPH patients at risk for persistent pulmonary hypertension and poor outcome after PTE. Patients with CTEPH and Rup value <60% appear to be at highest risk.

  15. Arterial waveform parameters in a large, population-based sample of adults: relationships with ethnicity and lifestyle factors.

    PubMed

    Sluyter, J D; Hughes, A D; Thom, S A McG; Lowe, A; Camargo, C A; Hametner, B; Wassertheurer, S; Parker, K H; Scragg, R K R

    2017-05-01

    Little is known about how aortic waveform parameters vary with ethnicity and lifestyle factors. We investigated these issues in a large, population-based sample. We carried out a cross-sectional analysis of 4798 men and women, aged 50-84 years from Auckland, New Zealand. Participants were 3961 European, 321 Pacific, 266 Maori and 250 South Asian people. We assessed modifiable lifestyle factors via questionnaires, and measured body mass index (BMI) and brachial blood pressure (BP). Suprasystolic oscillometry was used to derive aortic pressure, from which several haemodynamic parameters were calculated. Heavy alcohol consumption and BMI were positively related to most waveform parameters. Current smokers had higher levels of aortic augmentation index than non-smokers (difference=3.7%, P<0.0001). Aortic waveform parameters, controlling for demographics, antihypertensives, diabetes and cardiovascular disease (CVD), were higher in non-Europeans than in Europeans. Further adjustment for brachial BP or lifestyle factors (particularly BMI) reduced many differences but several remained. Despite even further adjustment for mean arterial pressure, pulse rate, height and total:high-density lipoprotein cholesterol, compared with Europeans, South Asians had higher levels of all measured aortic waveform parameters (for example, for backward pressure amplitude: β=1.5 mm Hg; P<0.0001), whereas Pacific people had 9% higher log e (excess pressure integral) (P<0.0001). In conclusion, aortic waveform parameters varied with ethnicity in line with the greater prevalence of CVD among non-white populations. Generally, this was true even after accounting for brachial BP, suggesting that waveform parameters may have increased usefulness in capturing ethnic variations in cardiovascular risk. Heavy alcohol consumption, smoking and especially BMI may partially contribute to elevated levels of these parameters.

  16. Arterial waveform parameters in a large, population-based sample of adults: relationships with ethnicity and lifestyle factors

    PubMed Central

    Sluyter, J D; Hughes, A D; Thom, S A McG; Lowe, A; Camargo Jr, C A; Hametner, B; Wassertheurer, S; Parker, K H; Scragg, R K R

    2017-01-01

    Little is known about how aortic waveform parameters vary with ethnicity and lifestyle factors. We investigated these issues in a large, population-based sample. We carried out a cross-sectional analysis of 4798 men and women, aged 50–84 years from Auckland, New Zealand. Participants were 3961 European, 321 Pacific, 266 Maori and 250 South Asian people. We assessed modifiable lifestyle factors via questionnaires, and measured body mass index (BMI) and brachial blood pressure (BP). Suprasystolic oscillometry was used to derive aortic pressure, from which several haemodynamic parameters were calculated. Heavy alcohol consumption and BMI were positively related to most waveform parameters. Current smokers had higher levels of aortic augmentation index than non-smokers (difference=3.7%, P<0.0001). Aortic waveform parameters, controlling for demographics, antihypertensives, diabetes and cardiovascular disease (CVD), were higher in non-Europeans than in Europeans. Further adjustment for brachial BP or lifestyle factors (particularly BMI) reduced many differences but several remained. Despite even further adjustment for mean arterial pressure, pulse rate, height and total:high-density lipoprotein cholesterol, compared with Europeans, South Asians had higher levels of all measured aortic waveform parameters (for example, for backward pressure amplitude: β=1.5 mm Hg; P<0.0001), whereas Pacific people had 9% higher loge (excess pressure integral) (P<0.0001). In conclusion, aortic waveform parameters varied with ethnicity in line with the greater prevalence of CVD among non-white populations. Generally, this was true even after accounting for brachial BP, suggesting that waveform parameters may have increased usefulness in capturing ethnic variations in cardiovascular risk. Heavy alcohol consumption, smoking and especially BMI may partially contribute to elevated levels of these parameters. PMID:28004730

  17. Experimental study on the pressure wave propagation in the artificial arterial tree in brain

    NASA Astrophysics Data System (ADS)

    Shimada, Shinya; Tsurusaki, Ryo; Iwase, Fumiaki; Matsukawa, Mami; Lagrée, Pierre-Yves

    2018-07-01

    A pulse wave measurement is effective for the early detection of arteriosclerosis. The pulse wave consists of incident and reflected waves. The reflected wave of the pulse wave measured at the left common carotid artery seems to originate from the vascular beds in the brain. The aim of this study is to know if the reflected waves from the occlusions in cerebral arteries can affect the pulse waveform. The artificial arterial tree in the brain was therefore fabricated using polyurethane tubes. After investigating the effects of the bifurcation angle on the pulse waveform, we attempted to confirm whether the reflected waves from occlusions in the artificial arterial tree in the brain can be experimentally measured at the left common carotid artery. Results indicate that the bifurcation angle did not affect the pulse waveform, and that the reflected wave from an occlusion with a diameter of more than 1 mm in the brain could be observed.

  18. Estimation of Pulse Transit Time as a Function of Blood Pressure Using a Nonlinear Arterial Tube-Load Model.

    PubMed

    Gao, Mingwu; Cheng, Hao-Min; Sung, Shih-Hsien; Chen, Chen-Huan; Olivier, Nicholas Bari; Mukkamala, Ramakrishna

    2017-07-01

    pulse transit time (PTT) varies with blood pressure (BP) throughout the cardiac cycle, yet, because of wave reflection, only one PTT value at the diastolic BP level is conventionally estimated from proximal and distal BP waveforms. The objective was to establish a technique to estimate multiple PTT values at different BP levels in the cardiac cycle. a technique was developed for estimating PTT as a function of BP (to indicate the PTT value for every BP level) from proximal and distal BP waveforms. First, a mathematical transformation from one waveform to the other is defined in terms of the parameters of a nonlinear arterial tube-load model accounting for BP-dependent arterial compliance and wave reflection. Then, the parameters are estimated by optimally fitting the waveforms to each other via the model-based transformation. Finally, PTT as a function of BP is specified by the parameters. The technique was assessed in animals and patients in several ways including the ability of its estimated PTT-BP function to serve as a subject-specific curve for calibrating PTT to BP. the calibration curve derived by the technique during a baseline period yielded bias and precision errors in mean BP of 5.1 ± 0.9 and 6.6 ± 1.0 mmHg, respectively, during hemodynamic interventions that varied mean BP widely. the new technique may permit, for the first time, estimation of PTT values throughout the cardiac cycle from proximal and distal waveforms. the technique could potentially be applied to improve arterial stiffness monitoring and help realize cuff-less BP monitoring.

  19. Improved Pulse Wave Velocity Estimation Using an Arterial Tube-Load Model

    PubMed Central

    Gao, Mingwu; Zhang, Guanqun; Olivier, N. Bari; Mukkamala, Ramakrishna

    2015-01-01

    Pulse wave velocity (PWV) is the most important index of arterial stiffness. It is conventionally estimated by non-invasively measuring central and peripheral blood pressure (BP) and/or velocity (BV) waveforms and then detecting the foot-to-foot time delay between the waveforms wherein wave reflection is presumed absent. We developed techniques for improved estimation of PWV from the same waveforms. The techniques effectively estimate PWV from the entire waveforms, rather than just their feet, by mathematically eliminating the reflected wave via an arterial tube-load model. In this way, the techniques may be more robust to artifact while revealing the true PWV in absence of wave reflection. We applied the techniques to estimate aortic PWV from simultaneously and sequentially measured central and peripheral BP waveforms and simultaneously measured central BV and peripheral BP waveforms from 17 anesthetized animals during diverse interventions that perturbed BP widely. Since BP is the major acute determinant of aortic PWV, especially under anesthesia wherein vasomotor tone changes are minimal, we evaluated the techniques in terms of the ability of their PWV estimates to track the acute BP changes in each subject. Overall, the PWV estimates of the techniques tracked the BP changes better than those of the conventional technique (e.g., diastolic BP root-mean-squared-errors of 3.4 vs. 5.2 mmHg for the simultaneous BP waveforms and 7.0 vs. 12.2 mmHg for the BV and BP waveforms (p < 0.02)). With further testing, the arterial tube-load model-based PWV estimation techniques may afford more accurate arterial stiffness monitoring in hypertensive and other patients. PMID:24263016

  20. Magnetic plethysmograph transducers for local blood pulse wave velocity measurement.

    PubMed

    Nabeel, P M; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2014-01-01

    We present the design of magnetic plethysmograph (MPG) transducers for detection of blood pulse waveform and evaluation of local pulse wave velocity (PWV), for potential use in cuffless blood pressure (BP) monitoring. The sensors utilize a Hall effect magnetic field sensor to capture the blood pulse waveform. A strap based design is performed to enable reliable capture of large number of cardiac cycles with relative ease. The ability of the transducer to consistently detect the blood pulse is verified by in-vivo trials on few volunteers. A duality of such transducers is utilized to capture the local PWV at the carotid artery. The pulse transit time (PTT) between the two detected pulse waveforms, measured along a small section of the carotid artery, was evaluated using automated algorithms to ensure consistency of measurements. The correlation between the measured values of local PWV and BP was also investigated. The developed transducers provide a reliable, easy modality for detecting pulse waveform on superficial arteries. Such transducers, used for measurement of local PWV, could potentially be utilized for cuffless, continuous evaluation of BP at various superficial arterial sites.

  1. A novel compliance measurement in radial arteries using strain-gauge plethysmography.

    PubMed

    Liu, Shing-Hong; Tyan, Chu-Chang; Chang, Kang-Ming

    2009-09-01

    We propose a novel method for assessing the compliance of the radial artery by using a two-axis mechanism and a standard positioning procedure for detecting the optimal measuring site. A modified sensor was designed to simultaneously measure the arterial diameter change waveform (ADCW) and pressure pulse waveform with a strain gauge and piezoresistor. In the x-axis scanning, the sensor could be placed close to the middle of the radial artery when the ADCW reached the maximum amplitude. In the Z-axis scanning, the contact pressure was continuously increased for data measurement. Upon the deformation of the strain gauge following the change in the vascular cross-section, the ADCW was transferred to the change of the vascular radius. The loaded strain compliance of the radial artery (C(strain)) can be determined by dividing the dynamic changed radius by the pulse pressure. Twenty-three untreated, mild or moderate hypertensive patients aged 29-85 were compared with 14 normotensive patients aged 25-62. The maximum strain compliance between the two groups was significantly different (p < 0.005). Of the hypertensive patients, 14 were at risk of developing hyperlipidemia. There was a significant difference between this and the normotension group (p < 0.005).

  2. Transfer function for vital infrasound pressures between the carotid artery and the tympanic membrane.

    PubMed

    Furihata, Kenji; Yamashita, Masato

    2013-02-01

    While occupational injury is associated with numerous individual and work-related risk factors, including long working hours and short sleep duration, the complex mechanisms causing such injuries are not yet fully understood. The relationship between the infrasound pressures of the tympanic membrane [ear canal pressure (ECP)], detected using an earplug embedded with a low-frequency microphone, and the carotid artery [carotid artery pressure (CAP)], detected using a stethoscope fitted with the same microphone, can be quantitatively characterized using systems analysis. The transfer functions of 40 normal workers (19 to 57 years old) were characterized, involving the analysis of 446 data points. The ECP waveform exhibits a pulsatile character with a slow respiratory component, which is superimposed on a biphasic recording that is synchronous with the cardiac cycle. The respiratory ECP waveform correlates with the instantaneous heart rate. The results also revealed that various fatigue-related risk factors may affect the mean magnitudes of the measured pressures and the delay transfer functions between CAP and ECP in the study population; these factors include systolic blood pressure, salivary amylase activity, age, sleep duration, postural changes, chronic fatigue, and pulse rate.

  3. Gaussian fitting for carotid and radial artery pressure waveforms: comparison between normal subjects and heart failure patients.

    PubMed

    Liu, Chengyu; Zheng, Dingchang; Zhao, Lina; Liu, Changchun

    2014-01-01

    It has been reported that Gaussian functions could accurately and reliably model both carotid and radial artery pressure waveforms (CAPW and RAPW). However, the physiological relevance of the characteristic features from the modeled Gaussian functions has been little investigated. This study thus aimed to determine characteristic features from the Gaussian functions and to make comparisons of them between normal subjects and heart failure patients. Fifty-six normal subjects and 51 patients with heart failure were studied with the CAPW and RAPW signals recorded simultaneously. The two signals were normalized first and then modeled by three positive Gaussian functions, with their peak amplitude, peak time, and half-width determined. Comparisons of these features were finally made between the two groups. Results indicated that the peak amplitude of the first Gaussian curve was significantly decreased in heart failure patients compared with normal subjects (P<0.001). Significantly increased peak amplitude of the second Gaussian curves (P<0.001) and significantly shortened peak times of the second and third Gaussian curves (both P<0.001) were also presented in heart failure patients. These results were true for both CAPW and RAPW signals, indicating the clinical significance of the Gaussian modeling, which should provide essential tools for further understanding the underlying physiological mechanisms of the artery pressure waveform.

  4. Gender-specific association of the plasminogen activator inhibitor-1 4G/5G polymorphism with central arterial blood pressure.

    PubMed

    Björck, Hanna M; Eriksson, Per; Alehagen, Urban; De Basso, Rachel; Ljungberg, Liza U; Persson, Karin; Dahlström, Ulf; Länne, Toste

    2011-07-01

    The functional plasminogen activator inhibitor-1 (PAI-1) 4G/5G polymorphism has previously been associated with hypertension. In recent years, central blood pressure, rather than brachial has been argued a better measure of cardiovascular damage and clinical outcome. The aim of this study was to investigate the possible influence of the 4G/5G polymorphism on central arterial blood pressure in a cohort of elderly individuals. We studied 410 individuals, 216 men and 194 women, aged 70-88. Central pressures and pulse waveforms were calculated from the radial artery pressure waveform by the use of the SphygmoCor system and a generalized transfer function. Brachial pressure was recorded using oscillometric technique (Dinamap, Critikon, Tampa, FL). PAI-1 antigen was determined in plasma. The results showed that central pressures were higher in women carrying the PAI-1 4G/4G genotype compared to female carriers of the 5G/5G genotype, (P = 0.025, P = 0.002, and P = 0.002 for central systolic-, diastolic-, and mean arterial pressure, respectively). The association remained after adjustment for potentially confounding factors related to hypertension. No association of the PAI-1 genotype with blood pressure was found in men. Multiple regression analysis revealed an association between PAI-1 genotype and plasma PAI-1 levels (P = 0.048). Our findings show a gender-specific association of the PAI-1 4G/5G polymorphism with central arterial blood pressure. The genotype effect was independent of other risk factors related to hypertension, suggesting that impaired fibrinolytic potential may play an important role in the development of central hypertension in women.

  5. Longitudinal changes in late systolic cardiac load and serum NT-proBNP levels in healthy middle-aged Japanese men.

    PubMed

    Tomiyama, Hirofumi; Nishikimi, Toshio; Matsumoto, Chisa; Kimura, Kazutaka; Odaira, Mari; Shiina, Kazuki; Yamashina, Akira

    2015-04-01

    We determined whether any significant association exists between change in late systolic cardiac load with time, estimated by radial pressure waveform analysis, and development of cardiac hemodynamic stress in individuals with preserved cardiac function. Brachial-ankle pulse wave velocity, radial augmentation index (rAI), first peak of the radial pressure waveform (SP1), systolic and pulse pressure at the second peak of the radial pressure waveform (SP2 and PP2), and serum levels of N-terminal fragment B-type natriuretic peptide (NT-proBNP) were measured at the start (first examination) and at the end (second examination) of this 3-year study in healthy Japanese men (n = 1,851). A stepwise multivariate linear regression analysis demonstrated that among the parameters of radial pressure waveform analysis and markers of arterial stiffness analyzed, only PP2 was significantly associated with serum NT-proBNP levels in study participants at both the first and second examinations. Furthermore, among the parameters analyzed, only change in PP2 was significantly correlated with the change in serum NT-proBNP levels during the study period (beta = 0.131, P < 0.001). Sustained late systolic cardiac load might be a more significant determinant of the development of cardiac hemodynamic stress than sustained early systolic cardiac load or arterial stiffening in individuals with preserved cardiac function. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Local pulse wave velocity estimated from small vibrations measured ultrasonically at multiple points on the arterial wall

    NASA Astrophysics Data System (ADS)

    Ito, Mika; Arakawa, Mototaka; Kanai, Hiroshi

    2018-07-01

    Pulse wave velocity (PWV) is used as a diagnostic criterion for arteriosclerosis, a major cause of heart disease and cerebrovascular disease. However, there are several problems with conventional PWV measurement techniques. One is that a pulse wave is assumed to only have an incident component propagating at a constant speed from the heart to the femoral artery, and another is that PWV is only determined from a characteristic time such as the rise time of the blood pressure waveform. In this study, we noninvasively measured the velocity waveform of small vibrations at multiple points on the carotid arterial wall using ultrasound. Local PWV was determined by analyzing the phase component of the velocity waveform by the least squares method. This method allowed measurement of the time change of the PWV at approximately the arrival time of the pulse wave, which discriminates the period when the reflected component is not contaminated.

  7. A remote and non-contact method for obtaining the blood-pulse waveform with a laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Desjardins, Candida L.; Antonelli, Lynn T.; Soares, Edward

    2007-02-01

    The use of lasers to remotely and non-invasively detect the blood pressure waveform of humans and animals would provide a powerful diagnostic tool. Current blood pressure measurement tools, such as a cuff, are not useful for burn and trauma victims, and animals require catheterization to acquire accurate blood pressure information. The purpose of our sensor method and apparatus invention is to remotely and non-invasively detect the blood pulse waveform of both animals and humans. This device is used to monitor an animal or human's skin in proximity to an artery using radiation from a laser Doppler vibrometer (LDV). This system measures the velocity (or displacement) of the pulsatile motion of the skin, indicative of physiological parameters of the arterial motion in relation to the cardiac cycle. Tests have been conducted that measures surface velocity with an LDV and a signal-processing unit, with enhanced detection obtained with optional hardware including a retro-reflector dot. The blood pulse waveform is obtained by integrating the velocity signal to get surface displacement using standard signal processing techniques. Continuous recording of the blood pulse waveform yields data containing information on cardiac health and can be analyzed to identify important events in the cardiac cycle, such as heart rate, the timing of peak systole, left ventricular ejection time and aortic valve closure. Experimental results are provided that demonstrates the current capabilities of the optical, non-contact sensor for the continuous, non-contact recording of the blood pulse waveform without causing patient distress.

  8. Use of the Kalman Filter for Aortic Pressure Waveform Noise Reduction

    PubMed Central

    Lu, Hsiang-Wei; Wu, Chung-Che; Aliyazicioglu, Zekeriya; Kang, James S.

    2017-01-01

    Clinical applications that require extraction and interpretation of physiological signals or waveforms are susceptible to corruption by noise or artifacts. Real-time hemodynamic monitoring systems are important for clinicians to assess the hemodynamic stability of surgical or intensive care patients by interpreting hemodynamic parameters generated by an analysis of aortic blood pressure (ABP) waveform measurements. Since hemodynamic parameter estimation algorithms often detect events and features from measured ABP waveforms to generate hemodynamic parameters, noise and artifacts integrated into ABP waveforms can severely distort the interpretation of hemodynamic parameters by hemodynamic algorithms. In this article, we propose the use of the Kalman filter and the 4-element Windkessel model with static parameters, arterial compliance C, peripheral resistance R, aortic impedance r, and the inertia of blood L, to represent aortic circulation for generating accurate estimations of ABP waveforms through noise and artifact reduction. Results show the Kalman filter could very effectively eliminate noise and generate a good estimation from the noisy ABP waveform based on the past state history. The power spectrum of the measured ABP waveform and the synthesized ABP waveform shows two similar harmonic frequencies. PMID:28611850

  9. Doppler indexes of left ventricular systolic and diastolic flow and central pulse pressure in relation to renal resistive index.

    PubMed

    Kuznetsova, Tatiana; Cauwenberghs, Nicholas; Knez, Judita; Thijs, Lutgarde; Liu, Yan-Ping; Gu, Yu-Mei; Staessen, Jan A

    2015-04-01

    The cardio-renal interaction occurs via hemodynamic and humoral factors. Noninvasive assessment of renal hemodynamics is currently possible by assessment of renal resistive index (RRI) derived from intrarenal Doppler arterial waveforms as ((peak systolic velocity - end-diastolic velocity)/peak systolic velocity). Limited information is available regarding the relationship between RRI and cardiac hemodynamics. We investigated these associations in randomly recruited subjects from a general population. In 171 participants (48.5% women; mean age, 52.2 years), using pulsed wave Doppler, we measured RRI (mean, 0.60) and left ventricular outflow tract (LVOT) and transmitral (E and A) blood flow peak velocities and its velocity time integrals (VTI). Using carotid applanation tonometry, we measured central pulse pressure and arterial stiffness indexes such as augmentation pressure and carotid-femoral pulse wave velocity. In stepwise regression analysis, RRI independently and significantly increased with female sex, age, body weight, brachial pulse pressure, and use of β-blockers, whereas it decreased with body height and mean arterial pressure. In multivariable-adjusted models with central pulse pressure and arterial stiffness indexes as the explanatory variables, we observed a significant and positive correlation of RRI only with central pulse pressure (P < 0.0001). Among the Doppler indexes of left ventricular blood flow, RRI was significantly and positively associated with LVOT and E peak velocities (P ≤ 0.012) and VTIs (P ≤ 0.010). We demonstrated that in unselected subjects RRI was significantly associated with central pulse pressure and left ventricular systolic and diastolic Doppler blood flow indexes. Our findings imply that in addition to the anthropometric characteristics, cardiac hemodynamic factors influence the intrarenal arterial Doppler waveform patterns. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Improved Pulse Transit Time Estimation by System Identification Analysis of Proximal and Distal Arterial Waveforms

    DTIC Science & Technology

    2011-10-01

    response; pulse wave velocity ACCORDING TO THE MOENS-KORTEWEG equation, pulse wave ve- locity ( PWV ) increases as the arteries stiffen. Indeed, PWV is the...and mortality in hypertensive patients (2, 4, 12, 14). In addition, because arterial stiffness increases with arterial blood pressure (ABP), PWV and...ABP often show positive correlation, suggesting that PWV could provide a means to achieve continuous, noninvasive, and cuffless ABP monitoring (18

  11. Pulse oximeter as a sensor of fluid responsiveness: do we have our finger on the best solution?

    PubMed Central

    Monnet, Xavier; Lamia, Bouchra; Teboul, Jean-Louis

    2005-01-01

    The pulse oximetry plethysmographic signal resembles the peripheral arterial pressure waveform, and the degree of respiratory variation in the pulse oximetry wave is close to the degree of respiratory arterial pulse pressure variation. Thus, it is tempting to speculate that pulse oximetry can be used to assess preload responsiveness in mechanically ventilated patients. In this commentary we briefly review the complex meaning of the pulse oximetry plethysmographic signal and highlight the advantages, limitations and pitfalls of the pulse oximetry method. Future studies including volume challenge must be performed to test whether the pulse oximetry waveform can really serve as a nonivasive tool for the guidance of fluid therapy in patients receiving mechanical ventilation in intensive care units and in operating rooms. PMID:16277729

  12. Novel wave intensity analysis of arterial pulse wave propagation accounting for peripheral reflections

    PubMed Central

    Alastruey, Jordi; Hunt, Anthony A E; Weinberg, Peter D

    2014-01-01

    We present a novel analysis of arterial pulse wave propagation that combines traditional wave intensity analysis with identification of Windkessel pressures to account for the effect on the pressure waveform of peripheral wave reflections. Using haemodynamic data measured in vivo in the rabbit or generated numerically in models of human compliant vessels, we show that traditional wave intensity analysis identifies the timing, direction and magnitude of the predominant waves that shape aortic pressure and flow waveforms in systole, but fails to identify the effect of peripheral reflections. These reflections persist for several cardiac cycles and make up most of the pressure waveform, especially in diastole and early systole. Ignoring peripheral reflections leads to an erroneous indication of a reflection-free period in early systole and additional error in the estimates of (i) pulse wave velocity at the ascending aorta given by the PU–loop method (9.5% error) and (ii) transit time to a dominant reflection site calculated from the wave intensity profile (27% error). These errors decreased to 1.3% and 10%, respectively, when accounting for peripheral reflections. Using our new analysis, we investigate the effect of vessel compliance and peripheral resistance on wave intensity, peripheral reflections and reflections originating in previous cardiac cycles. PMID:24132888

  13. Radial artery pulse waveform analysis based on curve fitting using discrete Fourier series.

    PubMed

    Jiang, Zhixing; Zhang, David; Lu, Guangming

    2018-04-19

    Radial artery pulse diagnosis has been playing an important role in traditional Chinese medicine (TCM). For its non-invasion and convenience, the pulse diagnosis has great significance in diseases analysis of modern medicine. The practitioners sense the pulse waveforms in patients' wrist to make diagnoses based on their non-objective personal experience. With the researches of pulse acquisition platforms and computerized analysis methods, the objective study on pulse diagnosis can help the TCM to keep up with the development of modern medicine. In this paper, we propose a new method to extract feature from pulse waveform based on discrete Fourier series (DFS). It regards the waveform as one kind of signal that consists of a series of sub-components represented by sine and cosine (SC) signals with different frequencies and amplitudes. After the pulse signals are collected and preprocessed, we fit the average waveform for each sample using discrete Fourier series by least squares. The feature vector is comprised by the coefficients of discrete Fourier series function. Compared with the fitting method using Gaussian mixture function, the fitting errors of proposed method are smaller, which indicate that our method can represent the original signal better. The classification performance of proposed feature is superior to the other features extracted from waveform, liking auto-regression model and Gaussian mixture model. The coefficients of optimized DFS function, who is used to fit the arterial pressure waveforms, can obtain better performance in modeling the waveforms and holds more potential information for distinguishing different psychological states. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Respiratory variation of systolic and diastolic time intervals within radial arterial waveform: a comparison with dynamic preload index.

    PubMed

    Park, Ji Hyun; Hwang, Gyu-Sam

    2016-08-01

    A blood pressure (BP) waveform contains various pieces of information related to respiratory variation. Systolic time interval (STI) reflects myocardial performance, and diastolic time interval (DTI) represents diastolic filling. This study examined whether respiratory variations of STI and DTI within radial arterial waveform are comparable to dynamic indices. During liver transplantation, digitally recorded BP waveform and stroke volume variation (SVV) were retrospectively analyzed. Beat-to-beat STI and DTI were extracted within each BP waveform, which were separated by dicrotic notch. Systolic time variation (STV) was calculated by the average of 3 consecutive respiratory cycles: [(STImax- STImin)/STImean]. Similar formula was used for diastolic time variation (DTV) and pulse pressure variation (PPV). Receiver operating characteristic analysis with area under the curve (AUC) was used to assess thresholds predictive of SVV ≥12% and PPV ≥12%. STV and DTV showed significant correlations with SVV (r= 0.78 and r= 0.67, respectively) and PPV (r= 0.69 and r= 0.69, respectively). Receiver operating characteristic curves demonstrated that STV ≥11% identified to predict SVV ≥12% with 85.7% sensitivity and 89.3% specificity (AUC = 0.935; P< .001). DTV ≥11% identified to predict SVV ≥12% with 71.4% sensitivity and 85.7% specificity (AUC = 0.829; P< .001). STV ≥12% and DTV ≥11% identified to predict PPV ≥12% with an AUC of 0.881 and 0.885, respectively. Respiratory variations of STI and DTI derived from radial arterial contour have a potential to predict hemodynamic response as a surrogate for SVV or PPV. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Noninvasive Intracranial Pressure Determination in Patients with Subarachnoid Hemorrhage.

    PubMed

    Noraky, James; Verghese, George C; Searls, David E; Lioutas, Vasileios A; Sonni, Shruti; Thomas, Ajith; Heldt, Thomas

    2016-01-01

    Intracranial pressure (ICP) should ideally be measured in many conditions affecting the brain. The invasiveness and associated risks of the measurement modalities in current clinical practice restrict ICP monitoring to a small subset of patients whose diagnosis and treatment could benefit from ICP measurement. To expand validation of a previously proposed model-based approach to continuous, noninvasive, calibration-free, and patient-specific estimation of ICP to patients with subarachnoid hemorrhage (SAH), we made waveform recordings of cerebral blood flow velocity in several major cerebral arteries during routine, clinically indicated transcranial Doppler examinations for vasospasm, along with time-locked waveform recordings of radial artery blood pressure (APB), and ICP was measured via an intraventricular drain catheter. We also recorded the locations to which ICP and ABP were calibrated, to account for a possible hydrostatic pressure difference between measured ABP and the ABP value at a major cerebral vessel. We analyzed 21 data records from five patients and were able to identify 28 data windows from the middle cerebral artery that were of sufficient data quality for the ICP estimation approach. Across these windows, we obtained a mean estimation error of -0.7 mmHg and a standard deviation of the error of 4.0 mmHg. Our estimates show a low bias and reduced variability compared with those we have reported before.

  16. Effects of blood pressure and sex on the change of wave reflection: evidence from Gaussian fitting method for radial artery pressure waveform.

    PubMed

    Liu, Chengyu; Zhao, Lina; Liu, Changchun

    2014-01-01

    An early return of the reflected component in the arterial pulse has been recognized as an important indicator of cardiovascular risk. This study aimed to determine the effects of blood pressure and sex factor on the change of wave reflection using Gaussian fitting method. One hundred and ninety subjects were enrolled. They were classified into four blood pressure categories based on the systolic blood pressures (i.e., ≤ 110, 111-120, 121-130 and ≥ 131 mmHg). Each blood pressure category was also stratified for sex factor. Electrocardiogram (ECG) and radial artery pressure waveforms (RAPW) signals were recorded for each subject. Ten consecutive pulse episodes from the RAPW signal were extracted and normalized. Each normalized pulse episode was fitted by three Gaussian functions. Both the peak position and peak height of the first and second Gaussian functions, as well as the peak position interval and peak height ratio, were used as the evaluation indices of wave reflection. Two-way ANOVA results showed that with the increased blood pressure, the peak position of the second Gaussian significantly shorten (P < 0.01), the peak height of the first Gaussian significantly decreased (P < 0.01) and the peak height of the second Gaussian significantly increased (P < 0.01), inducing the significantly decreased peak position interval and significantly increased peak height ratio (both P < 0.01). Sex factor had no significant effect on all evaluation indices (all P > 0.05). Moreover, the interaction between sex and blood pressure factors also had no significant effect on all evaluation indices (all P > 0.05). These results showed that blood pressure has significant effect on the change of wave reflection when using the recently developed Gaussian fitting method, whereas sex has no significant effect. The results also suggested that the Gaussian fitting method could be used as a new approach for assessing the arterial wave reflection.

  17. Novel application of parameters in waveform contour analysis for assessing arterial stiffness in aged and atherosclerotic subjects.

    PubMed

    Wu, Hsien-Tsai; Liu, Cyuan-Cin; Lin, Po-Hsun; Chung, Hui-Ming; Liu, Ming-Chien; Yip, Hon-Kan; Liu, An-Bang; Sun, Cheuk-Kwan

    2010-11-01

    Although contour analysis of pulse waves has been proposed as a non-invasive means in assessing arterial stiffness in atherosclerosis, accurate determination of the conventional parameters is usually precluded by distorted waveforms in the aged and atherosclerotic objects. We aimed at testing reliable indices in these patient populations. Digital volume pulse (DVP) curve was obtained from 428 subjects recruited from a health screening program at a single medical center from January 2007 to July 2008. Demographic data, blood pressure, and conventional parameters for contour analysis including pulse wave velocity (PWV), crest time (CT), stiffness index (SI), and reflection index (RI) were recorded. Two indices including normalized crest time (NCT) and crest time ratio (CTR) were also analysed and compared with the known parameters. Though ambiguity of dicrotic notch precluded an accurate determination of the two key conventional parameters for assessing arterial stiffness (i.e. SI and RI), NCT and CTR were unaffected because the sum of CT and T(DVP) (i.e. the duration between the systolic and diastolic peak) tended to remain constant. NCT and CTR also correlated significantly with age, systolic and diastolic blood pressure, PWV, SI and RI (all P<0.01). NCT and CTR not only showed significant positive correlations with the conventional parameters for assessment of atherosclerosis (i.e. SI, RI, and PWV), but they also are of particular value in assessing degree of arterial stiffness in subjects with indiscernible peak of diastolic wave that precludes the use of conventional parameters in waveform contour analysis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: a stability analysis.

    PubMed

    Sharzehee, Mohammadali; Khalafvand, Seyed Saeid; Han, Hai-Chao

    2018-02-01

    Tortuous aneurysmal arteries are often associated with a higher risk of rupture but the mechanism remains unclear. The goal of this study was to analyze the buckling and post-buckling behaviors of aneurysmal arteries under pulsatile flow. To accomplish this goal, we analyzed the buckling behavior of model carotid and abdominal aorta with aneurysms by utilizing fluid-structure interaction (FSI) method with realistic waveforms boundary conditions. FSI simulations were done under steady-state and pulsatile flow for normal (1.5) and reduced (1.3) axial stretch ratios to investigate the influence of aneurysm, pulsatile lumen pressure and axial tension on stability. Our results indicated that aneurysmal artery buckled at the critical buckling pressure and its deflection nonlinearly increased with increasing lumen pressure. Buckling elevates the peak stress (up to 118%). The maximum aneurysm wall stress at pulsatile FSI flow was (29%) higher than under static pressure at the peak lumen pressure of 130 mmHg. Buckling results show an increase in lumen shear stress at the inner side of the maximum deflection. Vortex flow was dramatically enlarged with increasing lumen pressure and artery diameter. Aneurysmal arteries are more susceptible than normal arteries to mechanical instability which causes high stresses in the aneurysm wall that could lead to aneurysm rupture.

  19. Hemodynamic transition driven by stent porosity in sidewall aneurysms.

    PubMed

    Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Farhat, Mohamed; Pereira, Vitor Mendes

    2015-05-01

    The healing process of intracranial aneurysms (IAs) treated with flow diverter stents (FDSs) depends on the IA flow modifications and on the epithelization process over the neck. In sidewall IA models with straight parent artery, two main hemodynamic regimes with different flow patterns and IA flow magnitude were broadly observed for unstented and high porosity stented IA on one side, and low porosity stented IA on the other side. The hemodynamic transition between these two regimes is potentially involved in thrombosis formation. In the present study, CFD simulations and multi-time lag (MTL) particle imaging velocimetry (PIV) measurements were combined to investigate the physical nature of this transition. Measurable velocity fields and non-measurable shear stress and pressure fields were assessed experimentally and numerically in the aneurysm volume in the presence of stents with various porosities. The two main regimes observed in both PIV and CFD showed typical flow features of shear and pressure driven regimes. In particular, the waveform of the averaged IA velocities was matching both the shear stress waveform at IA neck or the pressure gradient waveform in parent artery. Moreover, the transition between the two regimes was controlled by stent porosity: a decrease of stent porosity leads to an increase (decrease) of pressure differential (shear stress) through IA neck. Finally, a good PIV-CFD agreement was found except in transitional regimes and low motion eddies due to small mismatch of PIV-CFD running conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Peripheral Venous Waveform Analysis for Detecting Hemorrhage and Iatrogenic Volume Overload in a Porcine Model.

    PubMed

    Hocking, Kyle M; Sileshi, Ban; Baudenbacher, Franz J; Boyer, Richard B; Kohorst, Kelly L; Brophy, Colleen M; Eagle, Susan S

    2016-10-01

    Unrecognized hemorrhage and unguided resuscitation is associated with increased perioperative morbidity and mortality. The authors investigated peripheral venous waveform analysis (PIVA) as a method for quantitating hemorrhage as well as iatrogenic fluid overload during resuscitation. The authors conducted a prospective study on Yorkshire Pigs (n = 8) undergoing hemorrhage, autologous blood return, and administration of balanced crystalloid solution beyond euvolemia. Intra-arterial blood pressure, electrocardiogram, and pulse oximetry were applied to each subject. Peripheral venous pressure was measured continuously through an upper extremity standard peripheral IV catheter and analyzed with LabChart. The primary outcome was comparison of change in the first fundamental frequency (f1) of PIVA with standard and invasive monitoring and shock index (SI). Hemorrhage, return to euvolemia, and iatrogenic fluid overload resulted in significantly non-zero slopes of f1 amplitude. There were no significant differences in heart rate or mean arterial pressure, and a late change in SI. For the detection of hypovolemia the PIVA f1 amplitude change generated an receiver operator curves (ROC) curve with an area under the curve (AUC) of 0.93; heart rate AUC = 0.61; mean arterial pressure AUC = 0.48, and SI AUC = 0.72. For hypervolemia the f1 amplitude generated an ROC curve with an AUC of 0.85, heart rate AUC = 0.62, mean arterial pressure AUC = 0.63, and SI AUC = 0.65. In this study, PIVA demonstrated a greater sensitivity for detecting acute hemorrhage, return to euvolemia, and iatrogenic fluid overload compared with standard monitoring and SI. PIVA may provide a low-cost, minimally invasive monitoring solution for monitoring and resuscitating patients with perioperative hemorrhage.

  1. Use of a Doppler pulmonary artery catheter for continuous measurement of right ventricular pump function and contractility during single lung transplantation.

    PubMed

    Heerdt, P M; Pond, C G; Kussman, M K; Triantafillou, A N

    1993-01-01

    Despite numerous technologic advances in intraoperative monitoring, the only methods routinely available for assessment of right ventricular function in lung transplant recipients are continuous measurement of right heart pressures and intermittent thermodilution determination of cardiac output and ejection fraction. Additional data may now be obtained with transesophageal echocardiography, although this technology is expensive and not widely available and requires diverting attention from a potentially unstable patient for data acquisition and analysis. Recently, a Doppler pulmonary artery catheter was introduced that measures beat-to-beat pulmonary artery blood flow-velocity, cross sectional area, and volume flow. Because of data indicating that acceleration of blood in the pulmonary artery (measured as the first derivative of either the velocity or flow waveform) is a sensitive indicator of right ventricular contractility, we have used waveforms obtained with the catheter for assessment of right ventricular pump function (stroke volume and peak pulmonary artery flow rate) and contractility in heart surgery patients. We report here our experience with this method in two patients undergoing left single lung transplantation.

  2. Echocardiographic Assessment of Aortic Pulse-Wave Velocity: Validation against Invasive Pressure Measurements.

    PubMed

    Styczynski, Grzegorz; Rdzanek, Adam; Pietrasik, Arkadiusz; Kochman, Janusz; Huczek, Zenon; Sobieraj, Piotr; Gaciong, Zbigniew; Szmigielski, Cezary

    2016-11-01

    Aortic pulse-wave velocity (PWV) is a measure of aortic stiffness that has a prognostic role in various diseases and in the general population. A number of methods are used to measure PWV, including Doppler ultrasound. Although echocardiography has been used for PWV measurement, to the authors' knowledge, it has never been tested against an invasive reference method at the same time point. Therefore, the aim of this study was to compare prospectively an echocardiographic PWV measurement, called echo-PWV, with an invasive study. Forty-five patients (mean age, 66 years; 60% men) underwent simultaneous intra-arterial pressure recording and echocardiographic Doppler flow evaluation during elective cardiac catheterization. Proximal pressure and Doppler waveforms were acquired in the aortic arch. Distal pressure waveforms were registered in the right and distal Doppler waveforms in the left external iliac artery. Transit time was measured as a delay of the foot of pressure or Doppler waveform in the distal relative to the proximal location. Distance was measured on the catheter for invasive PWV and over the surface for echo-PWV. Echo-PWV was calculated as distance divided by transit time. In the whole group, mean invasive PWV was 9.38 m/sec and mean echo-PWV was 9.51 m/sec (P = .78). The Pearson' correlation coefficient between methods was 0.93 (P < .0001). A Bland-Altman plot revealed a mean difference between invasive PWV and echo-PWV of 0.13 ± 0.79 m/sec. Echo-PWV, based on Doppler echocardiography, is a reliable method of aortic PWV measurement, with a close correlation with invasive assessment. Wider implementation of the echo-PWV method for the evaluation of aortic wall stiffness can further expand the clinical and scientific utility of echocardiography. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  3. Evaluation of nitroglycerin effect on remote photoplethysmogram waveform acquired at green and near infra-red illumination

    NASA Astrophysics Data System (ADS)

    Marcinkevics, Z.; Rubins, U.; Caica, A.; Grabovskis, A.

    2017-12-01

    Assessment of skin microcirculation provides diagnostically valuable information during the early stages of pathologies. The simple, cost-effective and intrusive alternative to existing circulation assessment methods is remote photoplethysmography (rPPG). The objective of the present pilot study was to reveal an effect on sublingual administration of 1 mg nitroglycerin on systemic hemodynamic parameters and rPPG waveforms, at 810 nm and 530nm illumination. The protocol comprised 3 minutes of baseline recording, 15 minutes recording of NTG effect, 2 minutes of arterial occlusion and the following 3 min reactive hyperemia. Two PPG signals were acquired from glabrous skin of the middle finger distal phalange, consecutively at 530 nm and 810nm, 125 fps per channel, and systemic cardiovascular parameters were continuously registered in a beat-to-beat manner with a Finameter-midi system. The NTG effect was observed 0.7- 1.2 minutes post administration, reaching its maximum after 3 minutes. Systemic cardiovascular parameters significantly changed: mean arterial pressure decreased by 7.7+/-3.6%, total peripheral resistance by 10.5+/-9.0%, whereas the heart rate increased by 27.2+/-11.8%. Substantial alterations were observed for rPPG waveforms during NTG effect, decreasing reflection and stiffness indices. It has been concluded that rPPG waveform may provide information related to arterial stiffness, and could be potentially utilized in the clinics.

  4. Waveform shape analysis: extraction of physiologically relevant information from Doppler recordings.

    PubMed

    Ramsay, M M; Broughton Pipkin, F; Rubin, P C; Skidmore, R

    1994-05-01

    1. Doppler recordings were made from the brachial artery of healthy female subjects during a series of manoeuvres which altered the pressure-flow characteristics of the vessel. 2. Changes were induced in the peripheral circulation of the forearm by the application of heat or ice-packs. A sphygmomanometer cuff was used to create graded occlusion of the vessel above and below the point of measurement. Recordings were also made whilst the subjects performed a standardized Valsalva manoeuvre. 3. The Doppler recordings were analysed both with the standard waveform indices (systolic/diastolic ratio, pulsatility index and resistance index) and by the method of Laplace transform analysis. 4. The waveform parameters obtained by Laplace transform analysis distinguished the different changes in flow conditions; they thus had direct physiological relevance, unlike the standard waveform indices.

  5. Electronic circuit detects left ventricular ejection events in cardiovascular system

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.; Webb, J. A., Jr.

    1972-01-01

    Electronic circuit processes arterial blood pressure waveform to produce discrete signals that coincide with beginning and end of left ventricular ejection. Output signals provide timing signals for computers that monitor cardiovascular systems. Circuit operates reliably for heart rates between 50 and 200 beats per minute.

  6. Comparison between transdermal nitroglycerin and sildenafil citrate in intrauterine growth restriction: effects on uterine, umbilical and fetal middle cerebral artery pulsatility indices.

    PubMed

    Trapani, A; Gonçalves, L F; Trapani, T F; Franco, M J; Galluzzo, R N; Pires, M M S

    2016-07-01

    To evaluate the effects of transdermal nitroglycerin (GTN) and sildenafil citrate on Doppler velocity waveforms of the uterine (UtA), umbilical (UA) and fetal middle cerebral (MCA) arteries in pregnancies with intrauterine growth restriction (IUGR). This was a prospective study of 35 singleton pregnancies (gestational age, 24-31 weeks) with IUGR and abnormal UtA and UA Doppler waveforms. We compared maternal arterial blood pressure and Z-scores of the pulsatility index (PI) of UtA, UA and fetal MCA before and after application of a transdermal GTN patch (average dose, 0.4 mg/h), oral sildenafil citrate (50 mg) or placebo. Statistical analysis was performed by ANOVA for paired samples. There was a significant decrease in UtA-PI after application of GTN (21.0%) and sildenafil citrate (20.4%). A significant reduction in UA-PI was also observed for both GTN (19.1%) and sildenafil citrate (18.2%). There was no difference in UtA- and UA-PI when the GTN and sildenafil groups were compared. No changes in Doppler velocimetry were observed in the placebo group and no significant change in MCA-PI was observed in any group. Maternal arterial blood pressure decreased with administration of both GTN and sildenafil citrate in those with pre-eclampsia. The use of transdermal GTN or sildenafil citrate in pregnancies with IUGR is associated with a significant reduction in both UtA and UA Doppler PI, as well as maternal arterial blood pressure. Neither drug affected the MCA-PI. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  7. Aortic pulse wave velocity and reflecting distance estimation from peripheral waveforms in humans: detection of age- and exercise training-related differences.

    PubMed

    Pierce, Gary L; Casey, Darren P; Fiedorowicz, Jess G; Seals, Douglas R; Curry, Timothy B; Barnes, Jill N; Wilson, DeMaris R; Stauss, Harald M

    2013-07-01

    We hypothesized that demographic/anthropometric parameters can be used to estimate effective reflecting distance (EfRD), required to derive aortic pulse wave velocity (APWV), a prognostic marker of cardiovascular risk, from peripheral waveforms and that such estimates can discriminate differences in APWV and EfRD with aging and habitual endurance exercise in healthy adults. Ascending aortic pressure waveforms were derived from peripheral waveforms (brachial artery pressure, n = 25; and finger volume pulse, n = 15) via a transfer function and then used to determine the time delay between forward- and backward-traveling waves (Δtf-b). True EfRDs were computed as directly measured carotid-femoral pulse wave velocity (CFPWV) × 1/2Δtf-b and then used in regression analysis to establish an equation for EfRD based on demographic/anthropometric data (EfRD = 0.173·age + 0.661·BMI + 34.548 cm, where BMI is body mass index). We found good agreement between true and estimated APWV (Pearson's R² = 0.43; intraclass correlation = 0.64; both P < 0.05) and EfRD (R² = 0.24; intraclass correlation = 0.40; both P < 0.05). In young sedentary (22 ± 2 years, n = 6), older sedentary (62 ± 1 years, n = 24), and older endurance-trained (61 ± 2 years, n = 14) subjects, EfRD (from demographic/anthropometric parameters), APWV, and 1/2Δtf-b (from brachial artery pressure waveforms) were 52.0 ± 0.5, 61.8 ± 0.4, and 60.6 ± 0.5 cm; 6.4 ± 0.3, 9.6 ± 0.2, and 8.1 ± 0.2 m/s; and 82 ± 3, 65 ± 1 and 76 ± 2 ms (all P < 0.05), respectively. Our results demonstrate that APWV derived from peripheral waveforms using age and BMI to estimate EfRD correlates with CFPWV in healthy adults. This method can reliably detect the distal shift of the reflecting site with age and the increase in APWV with sedentary aging that is attenuated with habitual endurance exercise.

  8. Central Pulsatile Pressure and Flow Relationship in the Time and Frequency Domain to Characterise Hydraulic Input to the Brain and Cerebral Vascular Impedance.

    PubMed

    Kim, Mi Ok; O'Rourke, Michael F; Adji, Audrey; Avolio, Alberto P

    2016-01-01

    In the time domain, pulsatile flow and pressure can be characterised as the ratio of the late systolic boost of flow or pressure to the pulse amplitude so as to estimate the hydraulic input to the brain. While vascular impedance has been widely used to represent the load presented to the heart by the systemic circulation, it has not been applied to the cerebral circulation.We set out to study the relationship between the pressure and the flow augmentation index (AIx) in the time domain and to determine cerebral vascular impedance using aortic blood pressure and cerebral blood flow waveforms in the frequency domain. Twenty-four young subjects (aged 21-39 years) were recruited; aortic pressure was derived using SphygmoCor from radial pressure. Flow waveforms were recorded from the middle cerebral artery. In three subjects, we performed the Valsalva manoeuvre to investigate their response to physiological intervention. There was a linear relationship between flow and pressure AIx, and cerebral impedance values were similar to those estimated for low resistance vascular beds. Substantial change in pressure and flow wave contour was observed during the Valsalva manoeuvre; however, the relationship in both the time and the frequency domains were unchanged. This confirms that aortic pressure and cerebral flow waveform can be used to study cerebral impedance.

  9. One-dimensional model for the intracranial pulse morphological analysis during hyperventilation and CO2 inhalation tests

    NASA Astrophysics Data System (ADS)

    Ryu, Jaiyoung; Hu, Xiao; Shadden, Shawn C.

    2015-11-01

    The brain's CO2 reactivity mechanism is coupled with cerebral autoregulation and other unique features of cerebral hemodynamics. We developed a one-dimensional nonlinear model of blood flow in the cerebral arteries coupled to lumped parameter (LP) networks. The LP networks incorporate cerebral autoregulation, CO2 reactivity, intracranial pressure, cerebrospinal fluid, and cortical collateral blood flow models. The model was used to evaluate hemodynamic variables (arterial deformation, blood velocity and pressure) in the cerebral vasculature during hyperventilation and CO2 inhalation test. Tests were performed for various arterial blood pressure (ABP) representing normal and hypotensive conditions. The increase of the cerebral blood flow rates agreed well with the published measurements for various ABP measurements taken during clinical CO2 reactivity tests. The changes in distal vasculature affected the reflected pulse wave energy, which caused the waveform morphological changes at the middle cerebral, common and internal carotid arteries. The pulse morphological analysis demonstrated agreement with previous clinical measurements for cerebral vasoconstriction and vasodilation.

  10. Systolic Blood Pressure Accuracy Enhancement in the Electronic Palpation Method Using Pulse Waveform

    DTIC Science & Technology

    2001-10-25

    adrenalin) or vasodilating (Nipride or Nitromex) medicines. Also painkillers and anesthetics (Oxanest, Diprivan, Fentanyl and Rapifen) may have affected...the measurements. It is hard to distinguish the effects of medication and assess their relation to blood pressure errors and pulse shapes...CONCLUSION During this study, 51 cardiac operated patients were measured to define the effects of arterial stiffening on the accuracy of the

  11. Artificial arterial blood pressure artifact models and an evaluation of a robust blood pressure and heart rate estimator

    PubMed Central

    Li, Qiao; Mark, Roger G; Clifford, Gari D

    2009-01-01

    Background Within the intensive care unit (ICU), arterial blood pressure (ABP) is typically recorded at different (and sometimes uneven) sampling frequencies, and from different sensors, and is often corrupted by different artifacts and noise which are often non-Gaussian, nonlinear and nonstationary. Extracting robust parameters from such signals, and providing confidences in the estimates is therefore difficult and requires an adaptive filtering approach which accounts for artifact types. Methods Using a large ICU database, and over 6000 hours of simultaneously acquired electrocardiogram (ECG) and ABP waveforms sampled at 125 Hz from a 437 patient subset, we documented six general types of ABP artifact. We describe a new ABP signal quality index (SQI), based upon the combination of two previously reported signal quality measures weighted together. One index measures morphological normality, and the other degradation due to noise. After extracting a 6084-hour subset of clean data using our SQI, we evaluated a new robust tracking algorithm for estimating blood pressure and heart rate (HR) based upon a Kalman Filter (KF) with an update sequence modified by the KF innovation sequence and the value of the SQI. In order to do this, we have created six novel models of different categories of artifacts that we have identified in our ABP waveform data. These artifact models were then injected into clean ABP waveforms in a controlled manner. Clinical blood pressure (systolic, mean and diastolic) estimates were then made from the ABP waveforms for both clean and corrupted data. The mean absolute error for systolic, mean and diastolic blood pressure was then calculated for different levels of artifact pollution to provide estimates of expected errors given a single value of the SQI. Results Our artifact models demonstrate that artifact types have differing effects on systolic, diastolic and mean ABP estimates. We show that, for most artifact types, diastolic ABP estimates are less noise-sensitive than mean ABP estimates, which in turn are more robust than systolic ABP estimates. We also show that our SQI can provide error bounds for both HR and ABP estimates. Conclusion The KF/SQI-fusion method described in this article was shown to provide an accurate estimate of blood pressure and HR derived from the ABP waveform even in the presence of high levels of persistent noise and artifact, and during extreme bradycardia and tachycardia. Differences in error between artifact types, measurement sensors and the quality of the source signal can be factored into physiological estimation using an unbiased adaptive filter, signal innovation and signal quality measures. PMID:19586547

  12. Complexity of intracranial pressure correlates with outcome after traumatic brain injury

    PubMed Central

    Lu, Cheng-Wei; Czosnyka, Marek; Shieh, Jiann-Shing; Smielewska, Anna; Pickard, John D.

    2012-01-01

    This study applied multiscale entropy analysis to investigate the correlation between the complexity of intracranial pressure waveform and outcome after traumatic brain injury. Intracranial pressure and arterial blood pressure waveforms were low-pass filtered to remove the respiratory and pulse components and then processed using a multiscale entropy algorithm to produce a complexity index. We identified significant differences across groups classified by the Glasgow Outcome Scale in intracranial pressure, pressure-reactivity index and complexity index of intracranial pressure (P < 0.0001; P = 0.001; P < 0.0001, respectively). Outcome was dichotomized as survival/death and also as favourable/unfavourable. The complexity index of intracranial pressure achieved the strongest statistical significance (F = 28.7; P < 0.0001 and F = 17.21; P < 0.0001, respectively) and was identified as a significant independent predictor of mortality and favourable outcome in a multivariable logistic regression model (P < 0.0001). The results of this study suggest that complexity of intracranial pressure assessed by multiscale entropy was significantly associated with outcome in patients with brain injury. PMID:22734128

  13. The Effect of Hemodynamics on Cerebral Aneurysm Morphology

    NASA Astrophysics Data System (ADS)

    Metcalfe, Ralph; Mantha, Aishwarya; Karmonik, Christof; Strother, Charles

    2004-11-01

    One of the difficulties in applying principles of hemodynamics to the study of blood flow in aneurysms are the drastic variations in possible shape of both the aneurysms and the parent arteries in the region of interest. We have taken data from three para-opthalmic internal carotid artery aneurysms using 3D-digital subtraction angiography (3D-DSA) and performed CFD simulations of steady and unsteady flows through the three different cases using the same pressure gradients and pulsatile flow waveforms (based on the Ku model for flow through the Carotid bifurcation). We have found that the total pressure differential within the aneurysms is consistent with the direction of flow, and that the dynamic pressure gradient within the aneurysm is very small compared with the static pressure variations. Wall shear stresses were highest near regions of sharp arterial curvature, but always remained low inside the aneurysm. These results suggest a more complex role for hemodynamics in aneurysm generation, growth and rupture.

  14. The origin of Korotkoff sounds and the accuracy of auscultatory blood pressure measurements.

    PubMed

    Babbs, Charles F

    2015-12-01

    This study explores the hypothesis that the sharper, high frequency Korotkoff sounds come from resonant motion of the arterial wall, which begins after the artery transitions from a buckled state to an expanding state. The motions of one mass, two nonlinear springs, and one damper, driven by transmural pressure under the cuff, are used to model and compute the Korotkoff sounds according to principles of classical Newtonian physics. The natural resonance of this spring-mass-damper system provides a concise, yet rigorous, explanation for the origin of Korotkoff sounds. Fundamentally, wall stretching in expansion requires more force than wall bending in buckling. At cuff pressures between systolic and diastolic arterial pressure, audible vibrations (> 40 Hz) occur during early expansion of the artery wall beyond its zero pressure radius after the outward moving mass of tissue experiences sudden deceleration, caused by the discontinuity in stiffness between bucked and expanded states. The idealized spring-mass-damper model faithfully reproduces the time-domain waveforms of actual Korotkoff sounds in humans. Appearance of arterial sounds occurs at or just above the level of systolic pressure. Disappearance of arterial sounds occurs at or just above the level of diastolic pressure. Muffling of the sounds is explained by increased resistance of the artery to collapse, caused by downstream venous engorgement. A simple analytical model can define the physical origin of Korotkoff sounds, suggesting improved mechanical or electronic filters for their selective detection and confirming the disappearance of the Korotkoff sounds as the optimal diastolic end point. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  15. Flow-independent dynamics in aneurysms: intra-aneurysm pressure measurements following complete flow cessation in internal carotid artery aneurysms.

    PubMed

    Qureshi, Adnan I; Qureshi, Mushtaq H; Mohindroo, Tanya; Khan, Asif A; Dingmann, Kayla; Sherr, Gregory T; Suri, M Fareed K

    2014-12-01

    To determine if complete flow obliteration by covered stents reduces intra-aneurysm pressures in internal carotid artery (ICA) aneurysms. A single lumen microcatheter was placed into the aneurysm sac prior to covered stent deployment in 3 patients and connected to a pressure monitoring system. The intra-aneurysm pressure was continuously monitored, and readings were recorded prior to and immediately after stent deployment and at 5-minute intervals up to 20 minutes after stent placement. Complete occlusion of flow into the aneurysms was confirmed by carotid angiography. There was no change in mean pressure within the aneurysm before and immediately after stent placement (80 mmHg) in any patient, nor was there a change in waveform of the intra-aneurysm pressure recording. The average of intra-aneurysm pressures among the 3 patients was higher (99 mmHg) at 10 and 15 minutes after stent placement. In 2 patients, the microcatheter was retracted into the parent arterial lumen; no difference in pressure was noted. Our observations suggest no change in the pressures within the aneurysm after complete flow cessation (flow-independent). These findings may assist clinicians in better understanding aneurysm hemodynamics and rupture after covered stent deployment.

  16. Pulmonary arterial distension and vagal afferent nerve activity in anaesthetized dogs.

    PubMed

    Moore, Jonathan P; Hainsworth, Roger; Drinkhill, Mark J

    2004-03-16

    Distension of the main pulmonary artery and its bifurcation are known to result in a reflex vasoconstriction and increased respiratory drive; however, these responses are observed at abnormally high distending pressures. In this study we recorded afferent activity from pulmonary arterial baroreceptors to investigate their stimulus-response characteristics and to determine whether they are influenced by physiological changes in intrathoracic pressure. In chloralose-anaesthetized dogs, a cardiopulmonary bypass was established, the pulmonary trunk and its main branches were vascularly isolated and perfused with venous blood at pulsatile pressures designed to simulate the normal pulmonary arterial pressure waveform. Afferent slips of a cervical vagus were dissected and nerve fibres identified that displayed discharge patterns with characteristics expected from pulmonary arterial baroreceptors. Recordings were obtained with (a) chest open (b) chest closed and resealed, and (c) with phasic negative intrathoracic pressures in the resealed chest. Pressure-discharge characteristics obtained in the open-chest animals indicated that the threshold pulmonary pressure (corresponding to 5% of the overall response) was 17.1 +/- 2.9 and the inflexion point of the curve was 29.2 +/- 3.3 mmHg (mean +/-S.E.M). In closed-chest animals the threshold and inflexion pressures were reduced to 12.0 +/- 1.7 and 20.7 +/- 1.8 mmHg. Application of phasic negative intrathoracic pressures further reduced the threshold and inflexion pressures to 9.5 +/- 1.2 mmHg (P < 0.05 vs. open) and 14.7 +/- 0.8 mmHg (P < 0.003 vs. open and P < 0.02 vs. atmospheric). These results indicate that under physiological conditions, with closed-chest and phasic negative intrathoracic pressure changes similar to those associated with normal breathing, activity from pulmonary baroreceptors is obtained at physiological pulmonary arterial pressures in intact animals.

  17. Forward and Backward Pressure Waveform Morphology in Hypertension

    PubMed Central

    Li, Ye; Gu, Haotian; Fok, Henry; Alastruey, Jordi

    2017-01-01

    We tested the hypothesis that increased pulse wave reflection and altered backward waveform morphology contribute to increased pulse pressure in subjects with higher pulse pressure compared with lower pulse pressure and to actions of vasoactive drugs to increase pulse pressure. We examined the relationship of backward to forward wave morphology in 158 subjects who were evaluated for hypertension (including some normotensive subjects) divided into 3 groups by central pulse pressure: group 1, 33±6.5 mm Hg; group 2, 45±4.1 mm Hg; and group 3, 64±12.9 mm Hg (means±SD) and in healthy normotensive subjects during administration of inotropic and vasomotor drugs. Aortic pressure and flow in the aortic root were estimated by carotid tonometry and Doppler sonography, respectively. Morphology of the backward wave relative to the forward wave was similar in subjects in the lowest and highest tertiles of pulse pressure. Similar results were seen with the inotropic, vasopressor and vasodilator drugs, dobutamine, norepinephrine, and phentolamine, with the backward wave maintaining a constant ratio to the forward wave. However, nitroglycerin, a drug with a specific action to dilate muscular conduit arteries, reduced the amplitude of the backward wave relative to the forward wave from 0.26±0.018 at baseline to 0.19±0.019 during nitroglycerin 30 μg/min IV (P<0.01). These results are best explained by an approximately constant amount of reflection of the forward wave from the peripheral vasculature. The amount of reflection can be modified by dilation of peripheral muscular conduit arteries but contributes little to increased pulse pressure in hypertension. PMID:27920128

  18. Tube-Load Model Parameter Estimation for Monitoring Arterial Hemodynamics

    PubMed Central

    Zhang, Guanqun; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2011-01-01

    A useful model of the arterial system is the uniform, lossless tube with parametric load. This tube-load model is able to account for wave propagation and reflection (unlike lumped-parameter models such as the Windkessel) while being defined by only a few parameters (unlike comprehensive distributed-parameter models). As a result, the parameters may be readily estimated by accurate fitting of the model to available arterial pressure and flow waveforms so as to permit improved monitoring of arterial hemodynamics. In this paper, we review tube-load model parameter estimation techniques that have appeared in the literature for monitoring wave reflection, large artery compliance, pulse transit time, and central aortic pressure. We begin by motivating the use of the tube-load model for parameter estimation. We then describe the tube-load model, its assumptions and validity, and approaches for estimating its parameters. We next summarize the various techniques and their experimental results while highlighting their advantages over conventional techniques. We conclude the review by suggesting future research directions and describing potential applications. PMID:22053157

  19. Prediction of wound healing after minor amputations of the diabetic foot.

    PubMed

    Caruana, Luana; Formosa, Cynthia; Cassar, Kevin

    2015-08-01

    To identify any significant differences in physiological test results between healing and non healing amputation sites. A single center prospective non-experimental study design was conducted on fifty subjects living with type 2 diabetes and requiring a forefoot or toe amputation. Subjects underwent non-invasive physiological testing preoperatively. These included assessment of pedal pulses, preoperative arterial spectral waveforms at the ankle, absolute toe pressures, toe-brachial pressure index and ankle-brachial pressure index. After 6 weeks, patients were examined to assess whether the amputation site was completely healed, was healing, had developed complications, or did not heal. There was no significant difference in ABPI between the healed/healing and the non-healing groups. Mean TBI (p=0.031) and toe pressure readings (p=0.014) were significantly higher in the healed/healing group compared to the non healing group. A significant difference was also found in ankle spectral waveforms between the two groups (p=0.028). TBIs, toe pressures and spectral waveforms at the ankle are better predictors of likelihood of healing and non-healing after minor amputation than ABPIs. ABPI alone is a poor indicator of the likelihood of healing of minor amputations and should not be relied on to determine need for revascularization procedures before minor amputation. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. New method for estimating arterial pulse wave velocity at single site.

    PubMed

    Abdessalem, Khaled Ben; Flaud, Patrice; Zobaidi, Samir

    2018-01-01

    The clinical importance of measuring local pulse wave velocity (PWV), has encouraged researchers to develop several local methods to estimate it. In this work, we proposed a new method, the sum-of-squares method [Formula: see text], that allows the estimations of PWV by using simultaneous measurements of blood pressure (P) and arterial diameter (D) at single-location. Pulse waveforms generated by: (1) two-dimensional (2D) fluid-structure interaction simulation (FSI) in a compliant tube, (2) one-dimensional (1D) model of 55 larger human systemic arteries and (3) experimental data were used to validate the new formula and evaluate several classical methods. The performance of the proposed method was assessed by comparing its results to theoretical PWV calculated from the parameters of the model and/or to PWV estimated by several classical methods. It was found that values of PWV obtained by the developed method [Formula: see text] are in good agreement with theoretical ones and with those calculated by PA-loop and D 2 P-loop. The difference between the PWV calculated by [Formula: see text] and PA-loop does not exceed 1% when data from simulations are used, 3% when in vitro data are used and 5% when in vivo data are used. In addition, this study suggests that estimated PWV from arterial pressure and diameter waveforms provide correct values while methods that require flow rate (Q) and velocity (U) overestimate or underestimate PWV.

  1. A Non-Invasive Assessment of Cardiopulmonary Hemodynamics with MRI in Pulmonary Hypertension

    PubMed Central

    Bane, Octavia; Shah, Sanjiv J.; Cuttica, Michael J.; Collins, Jeremy D.; Selvaraj, Senthil; Chatterjee, Neil R.; Guetter, Christoph; Carr, James C.; Carroll, Timothy J.

    2015-01-01

    Purpose We propose a method for non-invasive quantification of hemodynamic changes in the pulmonary arteries resulting from pulmonary hypertension (PH). Methods Using a two-element windkessel model, and input parameters derived from standard MRI evaluation of flow, cardiac function and valvular motion, we derive: pulmonary artery compliance (C), mean pulmonary artery pressure (mPAP), pulmonary vascular resistance (PVR), pulmonary capillary wedge pressure (PCWP), time-averaged intra-pulmonary pressure waveforms and pulmonary artery pressures (systolic (sPAP) and diastolic (dPAP)). MRI results were compared directly to reference standard values from right heart catheterization (RHC) obtained in a series of patients with suspected pulmonary hypertension (PH). Results In 7 patients with suspected PH undergoing RHC, MRI and echocardiography, there was no statistically significant difference (p<0.05) between parameters measured by MRI and RHC. Using standard clinical cutoffs to define PH (mPAP ≥ 25 mmHg), MRI was able to correctly identify all patients as having pulmonary hypertension, and to correctly distinguish between pulmonary arterial (mPAP≥ 25 mmHg, PCWP<15 mmHg) and venous hypertension (mPAP ≥ 25 mmHg, PCWP ≥ 15 mmHg) in 5 of 7 cases. Conclusions We have developed a mathematical model capable of quantifying physiological parameters that reflect the severity of PH. PMID:26283577

  2. Cross-Sectional Elasticity Imaging of Arterial Wall by Comparing Measured Change in Thickness with Model Waveform

    NASA Astrophysics Data System (ADS)

    Tang, Jiang; Hasegawa, Hideyuki; Kanai, Hiroshi

    2005-06-01

    For the assessment of the elasticity of the arterial wall, we have developed the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791] for measuring the minute change in thickness due to heartbeats and the elasticity of the arterial wall with transcutaneous ultrasound. For various reasons, for example, an extremely small deformation of the wall, the minute change in wall thickness during one heartbeat is largely influenced by noise in these cases and the reliability of the elasticity distribution obtained from the maximum change in thickness deteriorates because the maximum value estimation is largely influenced by noise. To obtain a more reliable cross-sectional image of the elasticity of the arterial wall, in this paper, a matching method is proposed to evaluate the waveform of the measured change in wall thickness by comparing the measured waveform with a template waveform. The maximum deformation, which is used in the calculation of elasticity, was determined from the amplitude of the matched model waveform to reduce the influence of noise. The matched model waveform was obtained by minimizing the difference between the measured and template waveforms. Furthermore, a random error, which was obtained from the reproducibility among the heartbeats of the measured waveform, was considered useful for the evaluation of the reliability of the measured waveform.

  3. Non-invasive assessment of peripheral arterial disease: Automated ankle brachial index measurement and pulse volume analysis compared to duplex scan.

    PubMed

    Lewis, Jane Ea; Williams, Paul; Davies, Jane H

    2016-01-01

    This cross-sectional study aimed to individually and cumulatively compare sensitivity and specificity of the (1) ankle brachial index and (2) pulse volume waveform analysis recorded by the same automated device, with the presence or absence of peripheral arterial disease being verified by ultrasound duplex scan. Patients (n=205) referred for lower limb arterial assessment underwent ankle brachial index measurement and pulse volume waveform recording using volume plethysmography, followed by ultrasound duplex scan. The presence of peripheral arterial disease was recorded if ankle brachial index <0.9; pulse volume waveform was graded as 2, 3 or 4; or if haemodynamically significant stenosis >50% was evident with ultrasound duplex scan. Outcome measure was agreement between the measured ankle brachial index and interpretation of pulse volume waveform for peripheral arterial disease diagnosis, using ultrasound duplex scan as the reference standard. Sensitivity of ankle brachial index was 79%, specificity 91% and overall accuracy 88%. Pulse volume waveform sensitivity was 97%, specificity 81% and overall accuracy 85%. The combined sensitivity of ankle brachial index and pulse volume waveform was 100%, specificity 76% and overall accuracy 85%. Combining these two diagnostic modalities within one device provided a highly accurate method of ruling out peripheral arterial disease, which could be utilised in primary care to safely reduce unnecessary secondary care referrals.

  4. Effect of low-sodium diet on uteroplacental circulation.

    PubMed

    Delemarre, F M; van Leest, L A; Jongsma, H W; Steegers, E A

    2000-01-01

    To study the influence of chronic dietary sodium restriction on uteroplacental circulation. In a randomized trial, Doppler flow velocity waveforms of the uterine and umbilical artery were studied at monthly intervals during pregnancy in 59 women on a low-sodium diet and in 68 controls. Pulsatility index (PI), resistance index (RI), and A/B ratio of the uterine artery were significantly lower during sodium restriction, whereas PI, RI, and A/B ratio of the umbilical artery were significantly higher. The lower resistance indices of the uterine artery during sodium restriction might reflect an increase in pulse pressure/impedance ratio as a result of activation of the renin-angiotensin system. The increase in umbilical artery resistance indices supports the hypothesis that fetal circulation might be altered by chronic dietary sodium restriction.

  5. Abnormal arterial flows by a distributed model of the fetal circulation.

    PubMed

    van den Wijngaard, Jeroen P H M; Westerhof, Berend E; Faber, Dirk J; Ramsay, Margaret M; Westerhof, Nico; van Gemert, Martin J C

    2006-11-01

    Modeling the propagation of blood pressure and flow along the fetoplacental arterial tree may improve interpretation of abnormal flow velocity waveforms in fetuses. The current models, however, either do not include a wide range of gestational ages or do not account for variation in anatomical, vascular, or rheological parameters. We developed a mathematical model of the pulsating fetoumbilical arterial circulation using Womersley's oscillatory flow theory and viscoelastic arterial wall properties. Arterial flow waves are calculated at different arterial locations from which the pulsatility index (PI) can be determined. We varied blood viscosity, placental and brain resistances, placental compliance, heart rate, stiffness of the arterial wall, and length of the umbilical arteries. The PI increases in the umbilical artery and decreases in the cerebral arteries, as a result of increasing placental resistance or decreasing brain resistance. Both changes in resistance decrease the flow through the placenta. An increased arterial stiffness increases the PIs in the entire fetoplacental circulation. Blood viscosity and peripheral bed compliance have limited influence on the flow profiles. Bradycardia and tachycardia increase and decrease the PI in all arteries, respectively. Umbilical arterial length has limited influence on the PI but affects the mean arterial pressure at the placental cord insertion. The model may improve the interpretation of arterial flow pulsations and thus may advance both the understanding of pathophysiological processes and clinical management.

  6. Children and Adolescent Obesity Associates with Pressure-Dependent and Age-Related Increase in Carotid and Femoral Arteries' Stiffness and Not in Brachial Artery, Indicative of Nonintrinsic Arterial Wall Alteration

    PubMed Central

    García-Espinosa, Victoria; Curcio, Santiago; Castro, Juan Manuel; Arana, Maite; Giachetto, Gustavo; Chiesa, Pedro; Zócalo, Yanina

    2016-01-01

    Aim. To analyze if childhood obesity associates with changes in elastic, transitional, and/or muscular arteries' stiffness. Methods. 221 subjects (4–15 years, 92 females) were assigned to normal weight (NW, n = 137) or obesity (OB, n = 84) groups, considering their body mass index z-score. Age groups were defined: 4–8; 8–12; 12–15 years old. Carotid, femoral, and brachial artery local stiffness was determined through systodiastolic pressure-diameter and stress-strain relationships. To this end, arterial diameter and peripheral and aortic blood pressure (BP) levels and waveforms were recorded. Carotid-femoral, femoropedal, and carotid-radial pulse wave velocities were determined to evaluate aortic, lower-limb, and upper-limb regional arterial stiffness, respectively. Correlation analysis between stiffness parameters and BP was done. Results. Compared to NW, OB subjects showed higher peripheral and central BP and carotid and femoral stiffness, reaching statistical significance in subjects aged 12 and older. Arterial stiffness differences disappeared when levels were normalized for BP. There were no differences in intrinsic arterial wall stiffness (elastic modulus), BP stiffness relationships, and regional stiffness parameters. Conclusion. OB associates with BP-dependent and age-related increase in carotid and femoral (but not brachial) stiffness. Stiffness changes would not be explained by intrinsic arterial wall alterations but could be associated with the higher BP levels observed in obese children. PMID:27066273

  7. Forward and Backward Pressure Waveform Morphology in Hypertension.

    PubMed

    Li, Ye; Gu, Haotian; Fok, Henry; Alastruey, Jordi; Chowienczyk, Philip

    2017-02-01

    We tested the hypothesis that increased pulse wave reflection and altered backward waveform morphology contribute to increased pulse pressure in subjects with higher pulse pressure compared with lower pulse pressure and to actions of vasoactive drugs to increase pulse pressure. We examined the relationship of backward to forward wave morphology in 158 subjects who were evaluated for hypertension (including some normotensive subjects) divided into 3 groups by central pulse pressure: group 1, 33±6.5 mm Hg; group 2, 45±4.1 mm Hg; and group 3, 64±12.9 mm Hg (means±SD) and in healthy normotensive subjects during administration of inotropic and vasomotor drugs. Aortic pressure and flow in the aortic root were estimated by carotid tonometry and Doppler sonography, respectively. Morphology of the backward wave relative to the forward wave was similar in subjects in the lowest and highest tertiles of pulse pressure. Similar results were seen with the inotropic, vasopressor and vasodilator drugs, dobutamine, norepinephrine, and phentolamine, with the backward wave maintaining a constant ratio to the forward wave. However, nitroglycerin, a drug with a specific action to dilate muscular conduit arteries, reduced the amplitude of the backward wave relative to the forward wave from 0.26±0.018 at baseline to 0.19±0.019 during nitroglycerin 30 μg/min IV (P<0.01). These results are best explained by an approximately constant amount of reflection of the forward wave from the peripheral vasculature. The amount of reflection can be modified by dilation of peripheral muscular conduit arteries but contributes little to increased pulse pressure in hypertension. © 2016 The Authors.

  8. Pulse oximeter plethysmographic waveform changes in awake, spontaneously breathing, hypovolemic volunteers.

    PubMed

    McGrath, Susan P; Ryan, Kathy L; Wendelken, Suzanne M; Rickards, Caroline A; Convertino, Victor A

    2011-02-01

    The primary objective of this study was to determine whether alterations in the pulse oximeter waveform characteristics would track progressive reductions in central blood volume. We also assessed whether changes in the pulse oximeter waveform provide an indication of blood loss in the hemorrhaging patient before changes in standard vital signs. Pulse oximeter data from finger, forehead, and ear pulse oximeter sensors were collected from 18 healthy subjects undergoing progressive reduction in central blood volume induced by lower body negative pressure (LBNP). Stroke volume measurements were simultaneously recorded using impedance cardiography. The study was conducted in a research laboratory setting where no interventions were performed. Pulse amplitude, width, and area under the curve (AUC) features were calculated from each pulse wave recording. Amalgamated correlation coefficients were calculated to determine the relationship between the changes in pulse oximeter waveform features and changes in stroke volume with LBNP. For pulse oximeter sensors on the ear and forehead, reductions in pulse amplitude, width, and area were strongly correlated with progressive reductions in stroke volume during LBNP (R(2) ≥ 0.59 for all features). Changes in pulse oximeter waveform features were observed before profound decreases in arterial blood pressure. The best correlations between pulse features and stroke volume were obtained from the forehead sensor area (R(2) = 0.97). Pulse oximeter waveform features returned to baseline levels when central blood volume was restored. These results support the use of pulse oximeter waveform analysis as a potential diagnostic tool to detect clinically significant hypovolemia before the onset of cardiovascular decompensation in spontaneously breathing patients.

  9. Analysis of cardiovascular regulation.

    PubMed

    Wilhelm, F H; Grossman, P; Roth, W T

    1999-01-01

    Adequate characterization of hemodynamic and autonomic responses to physical and mental stress can elucidate underlying mechanisms of cardiovascular disease or anxiety disorders. We developed a physiological signal processing system for analysis of continuously recorded ECG, arterial blood pressure (BP), and respiratory signals using the programming language Matlab. Data collection devices are a 16-channel digital, physiological recorder (Vitaport), a finger arterial pressure transducer (Finapres), and a respiratory inductance plethysmograph (Respitrace). Besides the conventional analysis of the physiological channels, power spectral density and transfer functions of respiration, heart rate, and blood pressure variability are used to characterize respiratory sinus arrhythmia (RSA), 0.10-Hz BP oscillatory activity (Mayer-waves), and baroreflex sensitivity. The arterial pressure transducer waveforms permit noninvasive estimation of stroke volume, cardiac output, and systemic vascular resistance. Time trends in spectral composition of indices are assessed using complex demodulation. Transient dynamic changes of cardiovascular parameters at the onset of stress and recovery periods are quantified using a regression breakpoint model that optimizes piecewise linear curve fitting. Approximate entropy (ApEn) is computed to quantify the degree of chaos in heartbeat dynamics. Using our signal processing system we found distinct response patterns in subgroups of patients with coronary artery disease or anxiety disorders, which were related to specific pharmacological and behavioral factors.

  10. A Novel Mobile Phone Application for Pulse Pressure Variation Monitoring Based on Feature Extraction Technology: A Method Comparison Study in a Simulated Environment.

    PubMed

    Desebbe, Olivier; Joosten, Alexandre; Suehiro, Koichi; Lahham, Sari; Essiet, Mfonobong; Rinehart, Joseph; Cannesson, Maxime

    2016-07-01

    Pulse pressure variation (PPV) can be used to assess fluid status in the operating room. This measurement, however, is time consuming when done manually and unreliable through visual assessment. Moreover, its continuous monitoring requires the use of expensive devices. Capstesia™ is a novel Android™/iOS™ application, which calculates PPV from a digital picture of the arterial pressure waveform obtained from any monitor. The application identifies the peaks and troughs of the arterial curve, determines maximum and minimum pulse pressures, and computes PPV. In this study, we compared the accuracy of PPV generated with the smartphone application Capstesia (PPVapp) against the reference method that is the manual determination of PPV (PPVman). The Capstesia application was loaded onto a Samsung Galaxy S4 phone. A physiologic simulator including PPV was used to display arterial waveforms on a computer screen. Data were obtained with different sweep speeds (6 and 12 mm/s) and randomly generated PPV values (from 2% to 24%), pulse pressure (30, 45, and 60 mm Hg), heart rates (60-80 bpm), and respiratory rates (10-15 breaths/min) on the simulator. Each metric was recorded 5 times at an arterial height scale X1 (PPV5appX1) and 5 times at an arterial height scale X3 (PPV5appX3). Reproducibility of PPVapp and PPVman was determined from the 5 pictures of the same hemodynamic profile. The effect of sweep speed, arterial waveform scale (X1 or X3), and number of images captured was assessed by a Bland-Altman analysis. The measurement error (ME) was calculated for each pair of data. A receiver operating characteristic curve analysis determined the ability of PPVapp to discriminate a PPVman > 13%. Four hundred eight pairs of PPVapp and PPVman were analyzed. The reproducibility of PPVapp and PPVman was 10% (interquartile range, 7%-14%) and 6% (interquartile range, 3%-10%), respectively, allowing a threshold ME of 12%. The overall mean bias for PPVappX1 was 1.1% within limits of -1.4% (95% confidence interval [CI], -1.7 to -1.1) to +3.5% (95% CI, +3.2 to +3.8). Averaging 5 values of PPVappX1 with a sweep speed of 12 mm/s resulted in the smallest bias (+0.6%) and the best limits of agreement (±1.3%). ME of PPVapp was <12% whenever 3, 4, or 5 pictures were taken to average PPVapp. The best predictive value for PPVapp to detect a PPVman > 13% was obtained for PPVappX1 by averaging 5 pictures showing a PPVapp threshold of 13.5% (95% CI, 12.9-15.2) and a receiver operating characteristic curve area of 0.989 (95% CI, 0.963-0.998) with a sensitivity of 97% and a specificity of 94%. Our findings show that the Capstesia PPV calculation is a dependable substitute for standard manual PPV determination in a highly controlled environment (simulator study). Further studies are warranted to validate this mobile feature extraction technology to predict fluid responsiveness in real conditions.

  11. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature

    NASA Astrophysics Data System (ADS)

    Dai, Guohao; Kaazempur-Mofrad, Mohammad R.; Natarajan, Sripriya; Zhang, Yuzhi; Vaughn, Saran; Blackman, Brett R.; Kamm, Roger D.; García-Cardeña, Guillermo; Gimbrone, Michael A., Jr.

    2004-10-01

    Atherosclerotic lesion localization to regions of disturbed flow within certain arterial geometries, in humans and experimental animals, suggests an important role for local hemodynamic forces in atherogenesis. To explore how endothelial cells (EC) acquire functional/dysfunctional phenotypes in response to vascular region-specific flow patterns, we have used an in vitro dynamic flow system to accurately reproduce arterial shear stress waveforms on cultured human EC and have examined the effects on EC gene expression by using a high-throughput transcriptional profiling approach. The flow patterns in the carotid artery bifurcations of several normal human subjects were characterized by using 3D flow analysis based on actual vascular geometries and blood flow profiles. Two prototypic arterial waveforms, "athero-prone" and "athero-protective," were defined as representative of the wall shear stresses in two distinct regions of the carotid artery (carotid sinus and distal internal carotid artery) that are typically "susceptible" or "resistant," respectively, to atherosclerotic lesion development. These two waveforms were applied to cultured EC, and cDNA microarrays were used to analyze the differential patterns of EC gene expression. In addition, the differential effects of athero-prone vs. athero-protective waveforms were further characterized on several parameters of EC structure and function, including actin cytoskeletal organization, expression and localization of junctional proteins, activation of the NF-B transcriptional pathway, and expression of proinflammatory cytokines and adhesion molecules. These global gene expression patterns and functional data reveal a distinct phenotypic modulation in response to the wall shear stresses present in atherosclerosis-susceptible vs. atherosclerosis-resistant human arterial geometries.

  12. Genesis of the characteristic pulmonary venous pressure waveform as described by the reservoir-wave model

    PubMed Central

    Bouwmeester, J Christopher; Belenkie, Israel; Shrive, Nigel G; Tyberg, John V

    2014-01-01

    Conventional haemodynamic analysis of pulmonary venous and left atrial (LA) pressure waveforms yields substantial forward and backward waves throughout the cardiac cycle; the reservoir wave model provides an alternative analysis with minimal waves during diastole. Pressure and flow in a single pulmonary vein (PV) and the main pulmonary artery (PA) were measured in anaesthetized dogs and the effects of hypoxia and nitric oxide, volume loading, and positive-end expiratory pressure (PEEP) were observed. The reservoir wave model was used to determine the reservoir contribution to PV pressure and flow. Subtracting reservoir pressure and flow resulted in ‘excess’ quantities which were treated as wave-related. Wave intensity analysis of excess pressure and flow quantified the contributions of waves originating upstream (from the PA) and downstream (from the LA and/or left ventricle (LV)). Major features of the characteristic PV waveform are caused by sequential LA and LV contraction and relaxation creating backward compression (i.e. pressure-increasing) waves followed by decompression (i.e. pressure-decreasing) waves. Mitral valve opening is linked to a backwards decompression wave (i.e. diastolic suction). During late systole and early diastole, forward waves originating in the PA are significant. These waves were attenuated less with volume loading and delayed with PEEP. The reservoir wave model shows that the forward and backward waves are negligible during LV diastasis and that the changes in pressure and flow can be accounted for by the discharge of upstream reservoirs. In sharp contrast, conventional analysis posits forward and backward waves such that much of the energy of the forward wave is opposed by the backward wave. PMID:25015922

  13. Spectral analysis of femoral artery blood flow waveforms of conscious domestic cats.

    PubMed

    dos Reis, Gisele F M; Nogueira, Rodrigo B; Silva, Adriana C; Oberlender, Guilherme; Muzzi, Ruthnéa A L; Mantovani, Matheus M

    2014-12-01

    The qualitative and quantitative aspects of femoral artery blood flow waveform spectra were evaluated in 15 male and 15 female Persian and mixed breed domestic cats (Felis catus), which were healthy and not sedated, using duplex Doppler ultrasonography (DDU). Spectral Doppler demonstrated a biphasic characteristic in 16 (53.34%) of the animals evaluated, and a triphasic characteristic in the 14 (46.66%) remaining animals. The systolic blood pressure and heart rate values were within the normal range for the species. The quantitative parameters evaluated, based on the spectral Doppler, were as follows: systolic velocity peak (SVP), recent diastolic velocity peak (RDVP), end diastolic velocity peak (EDVP), mean velocity (MV), integral velocity time (ITV), artery diameter (AD), femoral flow volume (FFV), pulsatility index (PI), resistive index (RI), systolic peak acceleration time (AT) and deceleration time (DT). The respective mean values were: 36.41 ± 7.33 cm/s, 4.69 ± 0.90 cm/s, 10.74 ± 2.74 cm/s, 23.06 ± 4.86 cm/s, 3.91 ± 1.05 cm, 0.17 ± 0.04 cm, 0.11 ± 0.08 cm(3), 3.85 ± 0.19, 1.40 ± 0.20, 39.84 ± 7.38 ms, and 114.0 ± 22.15 ms. No significant differences were found between males and females. The analyses carried out on the femoral artery flow spectrum obtained by DDU showed that it is easy to use and highly tolerated in non-sedated, healthy cats. It appears that DDU may be a useful diagnostic technique, but further studies are needed to evaluate how it compares with invasive telemetric methodology or high-definition oscillometric waveform analytic techniques. © ISFM and AAFP 2014.

  14. A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.

    PubMed

    Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A

    2005-11-01

    While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.

  15. Improved Measurement of Blood Pressure by Extraction of Characteristic Features from the Cuff Oscillometric Waveform

    PubMed Central

    Lim, Pooi Khoon; Ng, Siew-Cheok; Jassim, Wissam A.; Redmond, Stephen J.; Zilany, Mohammad; Avolio, Alberto; Lim, Einly; Tan, Maw Pin; Lovell, Nigel H.

    2015-01-01

    We present a novel approach to improve the estimation of systolic (SBP) and diastolic blood pressure (DBP) from oscillometric waveform data using variable characteristic ratios between SBP and DBP with mean arterial pressure (MAP). This was verified in 25 healthy subjects, aged 28 ± 5 years. The multiple linear regression (MLR) and support vector regression (SVR) models were used to examine the relationship between the SBP and the DBP ratio with ten features extracted from the oscillometric waveform envelope (OWE). An automatic algorithm based on relative changes in the cuff pressure and neighbouring oscillometric pulses was proposed to remove outlier points caused by movement artifacts. Substantial reduction in the mean and standard deviation of the blood pressure estimation errors were obtained upon artifact removal. Using the sequential forward floating selection (SFFS) approach, we were able to achieve a significant reduction in the mean and standard deviation of differences between the estimated SBP values and the reference scoring (MLR: mean ± SD = −0.3 ± 5.8 mmHg; SVR and −0.6 ± 5.4 mmHg) with only two features, i.e., Ratio2 and Area3, as compared to the conventional maximum amplitude algorithm (MAA) method (mean ± SD = −1.6 ± 8.6 mmHg). Comparing the performance of both MLR and SVR models, our results showed that the MLR model was able to achieve comparable performance to that of the SVR model despite its simplicity. PMID:26087370

  16. Unconstrained pulse pressure monitoring for health management using hetero-core fiber optic sensor.

    PubMed

    Nishiyama, Michiko; Sonobe, Masako; Watanabe, Kazuhiro

    2016-09-01

    In this paper, we present a pulse pressure waveform sensor that does not constrain a wearer's daily activity; the sensor uses hetero-core fiber optics. Hetero-core fiber sensors have been found to be sensitive to moderate bending. To detect minute pulse pressure changes from the radial artery at the wrist, we devised a fiber sensor arrangement using three-point bending supports. We analyzed and evaluated the measurement validity using wavelet transformation, which is well-suited for biological signal processing. It was confirmed that the detected pulse waveform had a fundamental mode frequency of around 1.25 Hz over the time-varying waveform. A band-pass filter with a range of frequencies from 0.85 to 1.7 Hz was used to pick up the fundamental mode. In addition, a high-pass filter with 0.85 Hz frequency eliminated arm motion artifacts; consequently, we achieved high signal-to-noise ratio. For unrestricted daily health management, it is desirable that pulse pressure monitoring can be achieved by simply placing a device on the hand without the sensor being noticed. Two types of arrangements were developed and demonstrated in which the pulse sensors were either embedded in a base, such as an armrest, or in a wearable device. A wearable device without cuff pressure using a sensitivity-enhanced fiber sensor was successfully achieved with a sensitivity of 0.07-0.3 dB with a noise floor lower than 0.01 dB for multiple subjects.

  17. Comparison of noninvasive pulse transit time estimates as markers of blood pressure using invasive pulse transit time measurements as a reference.

    PubMed

    Gao, Mingwu; Olivier, N Bari; Mukkamala, Ramakrishna

    2016-05-01

    Pulse transit time (PTT) measured as the time delay between invasive proximal and distal blood pressure (BP) or flow waveforms (invasive PTT [I-PTT]) tightly correlates with BP PTT estimated as the time delay between noninvasive proximal and distal arterial waveforms could therefore permit cuff-less BP monitoring. A popular noninvasive PTT estimate for this application is the time delay between ECG and photoplethysmography (PPG) waveforms (pulse arrival time [PAT]). Another estimate is the time delay between proximal and distal PPG waveforms (PPG-PTT). PAT and PPG-PTT were assessed as markers of BP over a wide physiologic range using I-PTT as a reference. Waveforms for determining I-PTT, PAT, and PPG-PTT through central arteries were measured from swine during baseline conditions and infusions of various hemodynamic drugs. Diastolic, mean, and systolic BP varied widely in each subject (group average (mean ± SE) standard deviation between 25 ± 2 and 36 ± 2 mmHg). I-PTT correlated well with all BP levels (group average R(2) values between 0.86 ± 0.03 and 0.91 ± 0.03). PPG-PTT also correlated well with all BP levels (group average R(2) values between 0.81 ± 0.03 and 0.85 ± 0.02), and its R(2) values were not significantly different from those of I-PTT PAT correlated best with systolic BP (group average R(2) value of 0.70 ± 0.04), but its R(2) values for all BP levels were significantly lower than those of I-PTT (P < 0.005) and PPG-PTT (P < 0.02). The pre-ejection period component of PAT was responsible for its inferior correlation with BP In sum, PPG-PTT was not different from I-PTT and superior to the popular PAT as a marker of BP. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  18. Asynchronous arterial systolic expansion as a marker of vascular aging: assessment of the carotid artery with velocity vector imaging.

    PubMed

    Yang, Woo-In; Shim, Chi Y; Bang, Woo D; Oh, Chang M; Chang, Hyuk J; Chung, Namsik; Ha, Jong-Won

    2011-12-01

    Arterial elastic properties change with aging. Measurements of pulse wave velocity and augmentation index are useful for the evaluation of arterial stiffness. However, they likely represent only global characteristics of the arterial tree rather than local vascular alterations. The aim of this study was to evaluate whether local vascular properties assessed by velocity vector imaging differed with aging. Vascular properties of carotid arteries with ages were assessed in 100 healthy volunteers (52 men) ranging from 20 to 68 years using velocity vector imaging. The peak circumferential strain and strain rate of the six segments in left common carotid arteries were analyzed and the standard deviation of the time to peak circumferential strain and strain rate of the six segments, representing the synchronicity of the arterial expansion, were calculated. Central blood pressure, augmentation index and pulse wave velocity were assessed by commercially available radial artery tonometry, the SphygmoCor system (AtCor Medical, West Ryde, Australia). A validated generalized transfer function was used to acquire the central aortic pressures and pressure waveforms. Pulse wave velocity, augmentation index and velocity vector imaging parameters showed significant changes with age. However, the age-related changes in pulse wave velocity, augmentation index and velocity vector imaging parameters were different. The increase in pulse wave velocity was more prominent in older individuals, whereas the changes in augmentation index and carotid strain and strain rate were evident earlier, at the age of 30 years. Unlike augmentation index, which showed little change in older individuals, the standard deviation of time to peak strain and strain rate showed a steady increase from younger to older individuals. Asynchronous arterial expansion could be a useful discriminative marker of vascular aging independent of individual's age.

  19. Design of a specialized computer for on-line monitoring of cardiac stroke volume

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Gebben, V. D.

    1972-01-01

    The design of a specialized analog computer for on-line determination of cardiac stroke volume by means of a modified version of the pressure pulse contour method is presented. The design consists of an analog circuit for computation and a timing circuit for detecting necessary events on the pressure waveform. Readouts of arterial pressures, systolic duration, heart rate, percent change in stroke volume, and percent change in cardiac output are provided for monitoring cardiac patients. Laboratory results showed that computational accuracy was within 3 percent, while animal experiments verified the operational capability of the computer. Patient safety considerations are also discussed.

  20. Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than pulmonary vascular resistance alone in pediatric patients with pulmonary hypertension.

    PubMed

    Hunter, Kendall S; Lee, Po-Feng; Lanning, Craig J; Ivy, D Dunbar; Kirby, K Scott; Claussen, Lori R; Chan, K Chen; Shandas, Robin

    2008-01-01

    Pulmonary vascular resistance (PVR) is the current standard for evaluating reactivity in children with pulmonary arterial hypertension (PAH). However, PVR measures only the mean component of right ventricular afterload and neglects pulsatile effects. We recently developed and validated a method to measure pulmonary vascular input impedance, which revealed excellent correlation between the zero harmonic impedance value and PVR and suggested a correlation between higher-harmonic impedance values and pulmonary vascular stiffness. Here we show that input impedance can be measured routinely and easily in the catheterization laboratory, that impedance provides PVR and pulmonary vascular stiffness from a single measurement, and that impedance is a better predictor of disease outcomes compared with PVR. Pressure and velocity waveforms within the main pulmonary artery were measured during right heart catheterization of patients with normal pulmonary artery hemodynamics (n = 14) and those with PAH undergoing reactivity evaluation (49 subjects, 95 conditions). A correction factor needed to transform velocity into flow was obtained by calibrating against cardiac output. Input impedance was obtained off-line by dividing Fourier-transformed pressure and flow waveforms. Exceptional correlation was found between the indexed zero harmonic of impedance and indexed PVR (y = 1.095x + 1.381, R2 = 0.9620). In addition, the modulus sum of the first 2 harmonics of impedance was found to best correlate with indexed pulse pressure over stroke volume (y = 13.39x - 0.8058, R2 = 0.7962). Among a subset of patients with PAH (n = 25), cumulative logistic regression between outcomes to total indexed impedance was better (R(L)2 = 0.4012) than between outcomes and indexed PVR (R(L)2 = 0.3131). Input impedance can be consistently and easily obtained from pulse-wave Doppler and a single catheter pressure measurement, provides comprehensive characterization of the main components of RV afterload, and better predicts patient outcomes compared with PVR alone.

  1. Relationships between 24-h blood pressure variability and 24-h central arterial pressure, pulse wave velocity and augmentation index in hypertensive patients.

    PubMed

    Omboni, Stefano; Posokhov, Igor N; Rogoza, Anatoly N

    2017-04-01

    Twenty-four-h blood pressure variability (BPV) predicts cardiovascular complications in hypertension, but its association with pulse wave indices (central arterial pressure, pulse wave velocity (PWV) and augmentation index (AIx)) is poorly understood. In the present study, we assessed the degree of the effect of 24-h BPV on 24-h pulse wave indices. Brachial blood pressure was measured non-invasively over the 24 h with an electronic, oscillometric, automated device (BPLab) in 661 uncomplicated treated or untreated hypertensive patients. Digitalized oscillometric waveforms were analyzed with a validated algorithm to obtain pulse wave indices. Twenty-four-h BPV was calculated as the unweighted (SDu) or weighted s.d. (SDw) of the mean blood pressure or as the average real variability (ARV). Twenty-four-h systolic BPV showed a direct and significant relationship with the central arterial systolic pressure (r=0.28 SDu, r=0.40 SDw, r=0.34 ARV), PWV (r=0.10 SDu, r=0.21 SDw, r=0.19 ARV) and AIx (r=0.17 SDu, r=0.27 SDw, r=0.23 ARV). After adjustment for age, sex, body mass index, antihypertensive treatment and 24-h systolic blood pressure, the relationship lost some power but was still significant for all measures, except for the AIx. Pulse wave indices were higher in patients with high BPV than in those with low BPV: after adjustment, these differences were abolished for the AIx. The diastolic BPV showed a weak association with the pulse wave indices. In conclusion, in hypertensive patients, 24-h systolic BPV is moderately and independently associated with 24-h central arterial pressure and stiffness.

  2. Principles of cerebral hemodynamics when intracranial pressure is raised: lessons from the peripheral circulation

    PubMed Central

    Kim, Mi Ok; Adji, Audrey; O’Rourke, Michael F.; Avolio, Alberto P.; Smielewski, Peter; Pickard, John D.; Czosnyka, Marek

    2015-01-01

    Background: The brain is highly vascular and richly perfused, and dependent on continuous flow for normal function. Although confined within the skull, pressure within the brain is usually less than 15 mmHg, and shows small pulsations related to arterial pulse under normal circumstances. Pulsatile arterial hemodynamics in the brain have been studied before, but are still inadequately understood, especially during changes of intracranial pressure (ICP) after head injury. Method: In seeking cohesive explanations, we measured ICP and radial artery pressure (RAP) invasively with high-fidelity manometer systems, together with middle cerebral artery flow velocity (MCAFV) (transcranial Doppler) and central aortic pressure (CAP) generated from RAP, using a generalized transfer function technique, in eight young unconscious, ventilated adults following closed head trauma. We focused on vascular effects of spontaneous rises of ICP (‘plateau waves’). Results: A rise in mean ICP from 29 to 53 mmHg caused no consistent change in pressure outside the cranium, or in heart rate, but ICP pulsations increased in amplitude from 8 to 20 mmHg, and ICP waveform came to resemble that in the aorta. Cerebral perfusion pressure (=central aortic pressure – ICP), which equates with transmural pressure, fell from 61 to 36 mmHg. Mean MCAFV fell from 53 to 40 cm/s, whereas pulsatile MCAFV increased from 77 to 98 cm/s. These significant changes (all P < 0.01) may be explained using the Monro–Kellie doctrine, because of compression of the brain, as occurs in a limb when external pressure is applied. Conclusion: The findings emphasize importance of reducing ICP, when raised, and on the additional benefits of reducing wave reflection from the lower body. PMID:25764046

  3. Indexing Guidelines: Applications in Use of Pulmonary Artery Catheters and Pressure Ulcer Prevention

    PubMed Central

    Jenders, Robert A.; Estey, Greg; Martin, Martha; Hamilton, Glenys; Ford-Carleton, Penny; Thompson, B. Taylor; Oliver, Diane E.; Eccles, Randy; Barnett, G. Octo; Zielstorff, Rita D.; Fitzmaurice, Joan B.

    1994-01-01

    In a busy clinical environment, access to knowledge must be rapid and specific to the clinical query at hand. This requires indices which support easy navigation within a knowledge source. We have developed a computer-based tool for trouble-shooting pulmonary artery waveforms using a graphical index. Preliminary results of domain knowledge tests for a group of clinicians exposed to the system (N=33) show a mean improvement on a 30-point test of 5.33 (p<0.001) compared to a control group (N=19) improvement of 0.47 (p=0.61). Survey of the experimental group (N=25) showed 84% (p=0.001) found the system easy to use. We discuss lessons learned in indexing this domain area to computer-based indexing of guidelines for pressure ulcer prevention. PMID:7950035

  4. Blood Pressure Monitoring for the Anesthesiologist: A Practical Review.

    PubMed

    Bartels, Karsten; Esper, Stephen A; Thiele, Robert H

    2016-06-01

    Periodic, quantitative measurement of blood pressure (BP) in humans, predating the era of evidence-based medicine by over a century, is a component of the American Society of Anesthesiologists standards for basic anesthetic monitoring and is a staple of anesthetic management worldwide. Adherence to traditional BP parameters complicates the ability of investigators to determine whether particular BP ranges confer any clinical benefits. The BP waveform is a complex amalgamation of both antegrade and retrograde (reflected) pressure waves and is affected by vascular compliance, distance from the left ventricle, and the 3D structure of the vascular tree. Although oscillometry is the standard method of measuring BP semicontinuously in anesthetized patients and is the primary form of measurement in >80% of general anesthetics, major shortcomings of oscillometry are its poor performance at the extremes and its lack of information concerning BP waveform. Although arterial catheterization remains the gold standard for accurate BP measurement, 2 classes of devices have been developed to noninvasively measure the BP waveform continuously, including tonometric and volume clamp devices. Described in terms of a feedback loop, control of BP requires measurement, an algorithm (usually human), and an intervention. This narrative review article discusses the details of BP measurement and the advantages and disadvantages of both noninvasive and invasive monitoring, as well as the principles and algorithms associated with each technique.

  5. Coronary pressure notch: an early non-hyperemic visual indicator of the physiologic significance of a coronary artery stenosis.

    PubMed

    Holmes, David; Velappan, Priya; Kern, Morton J

    2004-11-01

    The disappearance of a dichrotic notch on the peripheral arterial pulse wave has been associated with significant peripheral vascular disease. A similar observation has not been reported in the distal coronary pressure waveform. The purpose of this study was to investigate the significance of a coronary pressure notch distal to a coronary stenosis and its relationship to fractional flow reserve. Ninety-seven patients with 131 angiographically indeterminate lesions (40-80% diameter narrowing) underwent FFR measurements for physiological significance. Hemodynamic tracings were recorded prior to the administration of adenosine and visually analyzed for the presence or absence of a dicrotic notch in the distal coronary artery pressure tracing. The stenoses were then divided into two groups based on the presence or absence of a notch. Of the 54 lesions without a distal coronary pressure notch, 31 had a FFR greater than or equal to 0.75 and of the 77 lesions with a notch, 75 had a FFR greater than or equal to 0.76. The sensitivity and specificity of a pressure notch was 94% and 74%, respectively, with positive and negative predictive values of 57% and 97%, respectively. The presence of a distal coronary pressure notch was predictive of a FFR greater than or equal to 0.76. The distal dicrotic pressure notch may be used as an additional parameter without requiring hyperemia for FFR measurements of uncertain clinical significance.

  6. A model of the instantaneous pressure-velocity relationships of the neonatal cerebral circulation.

    PubMed

    Panerai, R B; Coughtrey, H; Rennie, J M; Evans, D H

    1993-11-01

    The instantaneous relationship between arterial blood pressure (BP) and cerebral blood flow velocity (CBFV), measured with Doppler ultrasound in the anterior cerebral artery, is represented by a vascular waterfall model comprising vascular resistance, compliance, and critical closing pressure. One min recordings obtained from 61 low birth weight newborns were fitted to the model using a least-squares procedures with correction for the time delay between the BP and CBFV signals. A sensitivity analysis was performed to study the effects of low-pass filtering (LPF), cutoff frequency, and noise on the estimated parameters of the model. Results indicate excellent fitting of the model (F-test, p < 0.0001) when the BP and CBFV signals are LPF at 7.5 Hz. Reconstructed CBFV waveforms using the BP signal and the model parameters have a mean correlation coefficient of 0.94 with the measured flow velocity tracing (N = 232 epochs). The model developed can be useful for interpreting clinical findings and as a framework for research into cerebral autoregulation.

  7. Abnormal umbilical cord Doppler sonograms may predict impending demise in fetuses with sacrococcygeal teratoma. A report of two cases.

    PubMed

    Olutoye, Oluyinka O; Johnson, Mark P; Coleman, Beverly G; Crombleholme, Timothy M; Adzick, N Scott; Flake, Alan W

    2004-01-01

    To identify factors predictive of fetal demise in fetuses with sacrococcygeal teratoma (SCT). The recent management of monochorionic twins discordant for a large SCT and a singleton with a large SCT was reviewed. Serial fetal echocardiography and ultrasonography with Doppler flow measurements documented rapid growth of the SCT in both cases with a relatively modest increase in combined cardiac output. No placentomegaly or hydrops was observed at any time. In both fetuses with SCT, evolution of abnormal umbilical artery waveforms was observed with the ultimate development of reversed end-diastolic umbilical arterial flow that was followed by sudden fetal demise. Death in these 2 fetuses with large SCTs in the absence of placentomegaly/hydrops or hemodynamic changes suggestive of evolving high-output failure suggests a previously unrecognized mechanism of death in fetuses with large rapidly growing SCTs. In these cases, fetal demise may only be heralded by abnormal umbilical artery waveforms that progress to the premorbid observation of reversed diastolic umbilical artery blood flow. Umbilical artery waveform analysis should be closely monitored with other hemodynamic parameters in fetuses with large SCTs. In such fetuses, depending on the gestational age, abnormalities in umbilical artery waveform should be considered indications for early delivery or in utero intervention to prevent fetal demise. Copyright 2004 S. Karger AG, Basel

  8. Abnormal umbilical cord Dopplers may predict impending demise in fetuses with sacrococcygeal teratoma. A report of 2 cases.

    PubMed

    Olutoye, Oluyinka O; Johnson, Mark P; Coleman, Beverly G; Crombleholme, Timothy M; Adzick, N Scott; Flake, Alan W

    2003-01-01

    To identify factors predictive of fetal demise in fetuses with sacrococcygeal teratoma (SCT). The recent management of monochorionic twins discordant for a large SCT and a singleton with a large SCT were reviewed. Serial fetal echocardiography and ultrasonography with Doppler flow measurements documented rapid growth of the SCT in both cases with a relatively modest increase in combined cardiac output. No placentomegaly or hydrops was observed at any time. In both fetuses with SCT, evolution of abnormal umbilical artery waveforms was observed with the ultimate development of reversed end-diastolic umbilical arterial flow that was followed by sudden fetal demise. Death in these 2 fetuses with large SCTs in the absence of placentomegaly/hydrops or hemodynamic changes suggestive of evolving high-output failure suggests a previously unrecognized mechanism of death in fetuses with large rapidly growing SCTs. In these cases, fetal demise may only be heralded by abnormal umbilical artery waveforms that progress to the premorbid observation of reversed diastolic umbilical artery blood flow. Umbilical artery waveform analysis should be closely monitored with other hemodynamic parameters in fetuses with large SCTs. In such fetuses, depending on the gestational age, abnormalities in umbilical artery waveform should be considered indications for early delivery or in utero intervention to prevent fetal demise. Copyright 2003 S. Karger AG, Basel

  9. Hemodynamic simulations in coronary aneurysms of children with Kawasaki disease

    NASA Astrophysics Data System (ADS)

    Sengupta, Dibyendu; Burns, Jane; Marsden, Alison

    2009-11-01

    Kawasaki disease (KD) is a serious pediatric illness affecting the cardiovascular system. One of the most serious complications of KD, occurring in about 25% of untreated cases, is the formation of large aneurysms in the coronary arteries, which put patients at risk for myocardial infarction. In this project we performed patient specific computational simulations of blood flow in aneurysmal left and right coronary arteries of a KD patient to gain an understanding about their hemodynamics. Models were constructed from CT data using custom software. Typical pulsatile flow waveforms were applied at the model inlets, while resistance and RCR lumped models were applied and compared at the outlets. Simulated pressure waveforms compared well with typical physiologic data. High wall shear stress values are found in the narrow region at the base of the aneurysm and low shear values occur in regions of recirculation. A Lagrangian approach has been adopted to perform particle tracking and compute particle residence time in the recirculation. Our long-term goal will be to develop links between hemodynamics and the risk for thrombus formation in order to assist in clinical decision-making.

  10. A Waveform Archiving System for the GE Solar 8000i Bedside Monitor.

    PubMed

    Fanelli, Andrea; Jaishankar, Rohan; Filippidis, Aristotelis; Holsapple, James; Heldt, Thomas

    2018-01-01

    Our objective was to develop, deploy, and test a data-acquisition system for the reliable and robust archiving of high-resolution physiological waveform data from a variety of bedside monitoring devices, including the GE Solar 8000i patient monitor, and for the logging of ancillary clinical and demographic information. The data-acquisition system consists of a computer-based archiving unit and a GE Tram Rac 4A that connects to the GE Solar 8000i monitor. Standard physiological front-end sensors connect directly to the Tram Rac, which serves as a port replicator for the GE monitor and provides access to these waveform signals through an analog data interface. Together with the GE monitoring data streams, we simultaneously collect the cerebral blood flow velocity envelope from a transcranial Doppler ultrasound system and a non-invasive arterial blood pressure waveform along a common time axis. All waveform signals are digitized and archived through a LabView-controlled interface that also allows for the logging of relevant meta-data such as clinical and patient demographic information. The acquisition system was certified for hospital use by the clinical engineering team at Boston Medical Center, Boston, MA, USA. Over a 12-month period, we collected 57 datasets from 11 neuro-ICU patients. The system provided reliable and failure-free waveform archiving. We measured an average temporal drift between waveforms from different monitoring devices of 1 ms every 66 min of recorded data. The waveform acquisition system allows for robust real-time data acquisition, processing, and archiving of waveforms. The temporal drift between waveforms archived from different devices is entirely negligible, even for long-term recording.

  11. Differential response of peripheral arterial compliance-related indices to a vasoconstrictive stimulus.

    PubMed

    Guerrisi, Maria; Vannucci, Italo; Toschi, Nicola

    2009-01-01

    Peripheral arterial elastic properties are greatly affected by cardiovascular as well as other pathologies, and their assessment can provide useful diagnostic indicators. The photoplethysmographic technique can provide finger blood volume and pressure waveforms non-invasively, which can then be processed statically or beat-to-beat to characterize parameters of the vessel wall mechanics. We employ an occlusion-deflation protocol in 48 healthy volunteers to study peripheral artery compliance-related indices over positive and negative transmural pressure values as well as under the influence of a valid vasoconstrictor (cigarette smoking). We calculate beat-to-beat indices (compliance index CI, distensibility index DI, three viscoelastic model parameters (compliance C, viscosity R and inertia L), pressure-volume loop areas A and damping factor DF as well as symmetrical (C(max)) and asymmetrical (C(A)(max)) static compliance estimates, and their distributions over transmural pressure. All distributions are bell-shaped and centred on negative transmural pressure values. Distribution heights were significantly lower in the smoking group (w.r.t. the non-smoking group) for C, CI, DI and significantly higher in R and DF. The estimated volume signal time lag was also significantly lower in the smoking group. Left and right distribution widths were significantly different in all parameters/groups but DI (both groups), C(A)(max), A (smoking group) and L (non-smoking group), and positions of maxima/minima were significantly altered in C(A)(max), R and DF. C, DF and CI are seen to be most sensitive under this protocol, while C(max) and C(A)(max) are seen to be insensitive. These quantities provide complementary, time- and transmural pressure-dependent information about arterial wall mechanics, and the choice of index should depend on the physiological conditions at hand as well as relevant time resolution and transmural pressure range.

  12. Development of a Duplex Ultrasound Simulator and Preliminary Validation of Velocity Measurements in Carotid Artery Models.

    PubMed

    Zierler, R Eugene; Leotta, Daniel F; Sansom, Kurt; Aliseda, Alberto; Anderson, Mark D; Sheehan, Florence H

    2016-07-01

    Duplex ultrasound scanning with B-mode imaging and both color Doppler and Doppler spectral waveforms is relied upon for diagnosis of vascular pathology and selection of patients for further evaluation and treatment. In most duplex ultrasound applications, classification of disease severity is based primarily on alterations in blood flow velocities, particularly the peak systolic velocity (PSV) obtained from Doppler spectral waveforms. We developed a duplex ultrasound simulator for training and assessment of scanning skills. Duplex ultrasound cases were prepared from 2-dimensional (2D) images of normal and stenotic carotid arteries by reconstructing the common carotid, internal carotid, and external carotid arteries in 3 dimensions and computationally simulating blood flow velocity fields within the lumen. The simulator displays a 2D B-mode image corresponding to transducer position on a mannequin, overlaid by color coding of velocity data. A spectral waveform is generated according to examiner-defined settings (depth and size of the Doppler sample volume, beam steering, Doppler beam angle, and pulse repetition frequency or scale). The accuracy of the simulator was assessed by comparing the PSV measured from the spectral waveforms with the true PSV which was derived from the computational flow model based on the size and location of the sample volume within the artery. Three expert examiners made a total of 36 carotid artery PSV measurements based on the simulated cases. The PSV measured by the examiners deviated from true PSV by 8% ± 5% (N = 36). The deviation in PSV did not differ significantly between artery segments, normal and stenotic arteries, or examiners. To our knowledge, this is the first simulation of duplex ultrasound that can create and display real-time color Doppler images and Doppler spectral waveforms. The results demonstrate that an examiner can measure PSV from the spectral waveforms using the settings on the simulator with a mean absolute error in the velocity measurement of less than 10%. With the addition of cases with a range of pathologies, this duplex ultrasound simulator will be a useful tool for training health-care providers in vascular ultrasound applications and for assessing their skills in an objective and quantitative manner. © The Author(s) 2016.

  13. Photonic sensing of arterial distension

    PubMed Central

    Ruh, Dominic; Subramanian, Sivaraman; Sherman, Stanislav; Ruhhammer, Johannes; Theodor, Michael; Dirk, Lebrecht; Foerster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Zappe, Hans; Seifert, Andreas

    2016-01-01

    Most cardiovascular diseases, such as arteriosclerosis and hypertension, are directly linked to pathological changes in hemodynamics, i.e. the complex coupling of blood pressure, blood flow and arterial distension. To improve the current understanding of cardiovascular diseases and pave the way for novel cardiovascular diagnostics, innovative tools are required that measure pressure, flow, and distension waveforms with yet unattained spatiotemporal resolution. In this context, miniaturized implantable solutions for continuously measuring these parameters over the long-term are of particular interest. We present here an implantable photonic sensor system capable of sensing arterial wall movements of a few hundred microns in vivo with sub-micron resolution, a precision in the micrometer range and a temporal resolution of 10 kHz. The photonic measurement principle is based on transmission photoplethysmography with stretchable optoelectronic sensors applied directly to large systemic arteries. The presented photonic sensor system expands the toolbox of cardiovascular measurement techniques and makes these key vital parameters continuously accessible over the long-term. In the near term, this new approach offers a tool for clinical research, and as a perspective, a continuous long-term monitoring system that enables novel diagnostic methods in arteriosclerosis and hypertension research that follow the trend in quantifying cardiovascular diseases by measuring arterial stiffness and more generally analyzing pulse contours. PMID:27699095

  14. Two-way FSI modelling of blood flow through CCA accounting on-line medical diagnostics in hypertension

    NASA Astrophysics Data System (ADS)

    Czechowicz, K.; Badur, J.; Narkiewicz, K.

    2014-08-01

    Flow parameters can induce pathological changes in the arteries. We propose a method to asses those parameters using a 3D computer model of the flow in the Common Carotid Artery. Input data was acquired using an automatic 2D ultrasound wall tracking system. This data has been used to generate a 3D geometry of the artery. The diameter and wall thickness have been assessed individually for every patient, but the artery has been taken as a 75mm straight tube. The Young's modulus for the arterial walls was calculated using the pulse pressure, diastolic (minimal) diameter and wall thickness (IMT). Blood flow was derived from the pressure waveform using a 2-parameter Windkessel model. The blood is assumed to be non-Newtonian. The computational models were generated and calculated using commercial code. The coupling method required the use of Arbitrary Lagrangian-Euler formulation to solve Navier-Stokes and Navier-Lame equations in a moving domain. The calculations showed that the distention of the walls in the model is not significantly different from the measurements. Results from the model have been used to locate additional risk factors, such as wall shear stress or circumferential stress, that may predict adverse hypertension complications.

  15. Intratracheal Milrinone Bolus Administration During Acute Right Ventricular Dysfunction After Cardiopulmonary Bypass.

    PubMed

    Gebhard, Caroline Eva; Desjardins, Georges; Gebhard, Cathérine; Gavra, Paul; Denault, André Y

    2017-04-01

    To evaluate intratracheal milrinone (tMil) administration for rapid treatment of right ventricular (RV) dysfunction as a novel route after cardiopulmonary bypass. Retrospective analysis. Single-center study. The study comprised 7 patients undergoing cardiac surgery who exhibited acute RV dysfunction after cardiopulmonary bypass. After difficult weaning caused by cardiopulmonary bypass-induced acute RV dysfunction, milrinone was administered as a 5-mg bolus inside the endotracheal tube. RV function improvement, as indicated by decreasing pulmonary artery pressure and changes of RV waveforms, was observed in all 7 patients. Adverse effects of tMil included dynamic RV outflow tract obstruction (2 patients) and a decrease in systemic mean arterial pressure (1 patient). tMil may be an effective, rapid, and easily applicable therapeutic alternative to inhaled milrinone for the treatment of acute RV failure during cardiac surgery. However, sufficiently powered clinical trials are needed to confirm these findings. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Arterial stiffness estimation based photoplethysmographic pulse wave analysis

    NASA Astrophysics Data System (ADS)

    Huotari, Matti; Maatta, Kari; Kostamovaara, Juha

    2010-11-01

    Arterial stiffness is one of the indices of vascular healthiness. It is based on pulse wave analysis. In the case we decompose the pulse waveform for the estimation and determination of arterial elasticity. Firstly, optically measured with photoplethysmograph and then investigating means by four lognormal pulse waveforms for which we can find very good fit between the original and summed decomposed pulse wave. Several studies have demonstrated that these kinds of measures predict cardiovascular events. While dynamic factors, e.g., arterial stiffness, depend on fixed structural features of the vascular wall. Arterial stiffness is estimated based on pulse wave decomposition analysis in the radial and tibial arteries. Elucidation of the precise relationship between endothelial function and vascular stiffness awaits still further study.

  17. The Effectiveness of Calf Muscle Electrostimulation on Vascular Perfusion and Walking Capacity in Patients Living With Type 2 Diabetes Mellitus and Peripheral Artery Disease.

    PubMed

    Ellul, Christian; Formosa, Cynthia; Gatt, Alfred; Hamadani, Auon Abbas; Armstrong, David G

    2017-06-01

    The aim of the study was to explore calf muscle electrostimulation on arterial inflow and walking capacity in claudicants with peripheral artery disease and diabetes mellitus. A prospective, 1-group, pretest-posttest study design was used on 40 high-risk participants (n = 40) who exhibited bilateral limb ischemia (ankle brachial pressure index [ABPI] <0.90), diabetes mellitus, and calf muscle claudication. A program of calf muscle electrical stimulation with varying frequency (1-250 Hz) was prescribed for 1 hour per day for 12 weeks. Spectral waveforms analysis, ABPI, absolute claudication distance (ACD), and thermographic temperature patterns across 4 specified regions of interest (hallux, medial forefoot, lateral forefoot, heel) at rest and after exercise, were recorded at baseline and following intervention to evaluate for therapeutic outcomes. A significant improvement in ACD and ABPI was registered following the intervention ( P = .000 and P = .001, respectively). Resting foot temperatures increased significantly ( P = .000) while the postexercise temperature drops were halved across all regions at follow-up, with hallux ( P = .005) and lateral forefoot ( P = .038) reaching statistical significance. Spectral Doppler waveforms were comparable ( P = .304) between both serial assessments. Electrical stimulation of varying frequency for 1 hour per day for 12 consecutive weeks registered statistically significant improvement in outcome measures that assess arterial inflow and walking capacity in claudicants with diabetes mellitus. These results favor the use of electrostimulation as a therapeutic measure in this high-risk population.

  18. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".

    PubMed

    Hewlin, Rodward L; Kizito, John P

    2018-03-01

    The ultimate goal of the present work is to aid in the development of tools to assist in the treatment of cardiovascular disease. Gaining an understanding of hemodynamic parameters for medical implants allow clinicians to have some patient-specific proposals for intervention planning. In the present work an experimental and digital computational fluid dynamics (CFD) arterial model consisting of a number of major arteries (aorta, carotid bifurcation, cranial, femoral, jejunal, and subclavian arteries) were fabricated to study: (1) the effects of local hemodynamics (flow parameters) on global hemodynamics (2) the effects of transition from bedrest to upright position (postural change) on hemodynamics, and (3) diffusion of dye (medical drug diffusion simulation) in the arterial system via experimental and numerical techniques. The experimental and digital arterial models used in the present study are the first 3-D systems reported in literature to incorporate the major arterial vessels that deliver blood from the heart to the cranial and femoral arteries. These models are also the first reported in literature to be used for flow parameter assessment via medical drug delivery and orthostatic postural change studies. The present work addresses the design of the experimental and digital arterial model in addition to the design of measuring tools used to measure hemodynamic parameters. The experimental and digital arterial model analyzed in the present study was developed from patient specific computed tomography angiography (CTA) scans and simplified geometric data. Segments such as the aorta (ascending and descending) and carotid bifurcation arteries of the experimental and digital arterial model was created from online available patient-specific CTA scan data provided by Charite' Clinical and Research Hospital. The cranial and coronary arteries were simplified arterial geometries developed from dimensional specification data used in previous work. For the patient specific geometries, a MATLAB code was written to upload the CTA scans of each artery, calculate the centroids, and produce surface splines at each discrete cross section along the lumen centerline to create the patient specific arterial geometries. The MATLAB code worked in conjunction with computer aided software (CAD) Solidworks to produce solid models of the patient specific geometries and united them with the simplified geometries to produce the full arterial model (CAD model). The CAD model was also used as a blueprint to fabricate the experimental model which was used for flow visualization via particle imaging velocimetry (PIV) and postural change studies. A custom pulse duplicator (pulsatile pump) was also designed and developed for the present work. The pulse duplicator is capable of producing patient-specific volumetric waveforms for inlet flow to the experimental arterial model. A simple fluid structure interaction (FSI) study was also conducted via optical techniques to establish the magnitude of vessel diameter change due to the pulsatile flow. A medical drug delivery (dye dispersion and tracing) case was simulated via a dye being dispersed into the pulsatile flow stream to measure the transit time of the dye front. Pressure waveforms for diseased cases (hypertension & stenotic cases) were also obtained from the experimental arterial model during postural changes from bedrest (0°) to upright position (90°). The postural changes were simulated via attaching the experimental model to a tile table the can transition from 0° to 90°. The PIV results obtained from the experimental model provided parametric data such as velocity and wall shear stress data. The medical drug delivery simulations (experimental and numerical) studies produce time dependent data which is useful for predicting flow trajectory and transit time of medical drug dispersion. In the case of postural change studies, pressure waveforms were obtained from the common carotid artery and the femoral sections to yield pressure difference data useful for orthostatic hypotension analysis. Flow parametric data such as vorticity (flow reversal), wall shear stress, normal stress, and medical drug transit data was also obtained from the digital arterial model CFD simulations. Although the present work is preliminary work, the experimental and digital models proves to be useful in providing flow parametric data of interest such as: (1) normal stress which is useful for predicting the magnitude of forces which could promote arterial rupture or dislodging of medical implants, (2) wall shear stress which is useful for analyzing the magnitude of drug transport at the arterial wall, (3) vorticity which is useful for predicting the magnitude of flow reversal, and (4) arterial compliance in the case of the experimental model which could be useful in the efforts of developing FSI numerical simulations that incorporates compliance which realistically models the flow in the arterial system.

  19. Physiological interpretation of Doppler shift waveforms: the femorodistal segment in combined disease.

    PubMed

    Campbell, W B; Baird, R N; Cole, S E; Evans, J M; Skidmore, R; Woodcock, J P

    1983-01-01

    A new method is presented for assessing the femorodistal segment in multisegmental arterial disease, using the Laplace transform technique of Doppler waveform analysis. Blood velocity/time waveforms were obtained at femoral and ankle levels in three groups of limbs--50 without arterial disease, 12 with isolated aortoiliac stenoses, and 32 with femoropopliteal occlusions, with and without proximal disease. The waveforms were analysed for Laplace transform and pulsatility index values. The omega 0 coefficients of the Laplace transform analysis at femoral and ankle levels were compared in each subject, as the omega 0 gradient (femoral/ankle omega 0): and pulsatility index damping factor (femoral/ankle P1) was also calculated. The omega 0 gradient was shown to detect femoropopliteal occlusion in the presence of multisegmental arterial disease and to give some indication of its haemodynamic significance. The diagnostic accuracy of the omega 0 gradient was superior to that of pulsatility index damping factor. When combined with its existing ability to detect aortoiliac stenosis, this new application of the Laplace transform method offers the possibility both of a system for complete localisation of significant arterial lesions, and potential for follow-up of vascular surgical procedures in the lower limb, from two simple Doppler recordings.

  20. Assessment of central haemomodynamics from a brachial cuff in a community setting

    PubMed Central

    2012-01-01

    Background Large artery stiffening and wave reflections are independent predictors of adverse events. To date, their assessment has been limited to specialised techniques and settings. A new, more practical method allowing assessment of central blood pressure from waveforms recorded using a conventional automated oscillometric monitor has recently been validated in laboratory settings. However, the feasibility of this method in a community based setting has not been assessed. Methods One-off peripheral and central haemodynamic (systolic and diastolic blood pressure (BP) and pulse pressure) and wave reflection parameters (augmentation pressure (AP) and index, AIx) were obtained from 1,903 volunteers in an Austrian community setting using a transfer-function like method (ARCSolver algorithm) and from waveforms recorded with a regular oscillometric cuff. We assessed these parameters for known differences and associations according to gender and age deciles from <30 years to >80 years in the whole population and a subset with a systolic BP < 140 mmHg. Results We obtained 1,793 measures of peripheral and central BP, PP and augmentation parameters. Age and gender associations with central haemodynamic and augmentation parameters reflected those previously established from reference standard non-invasive techniques under specialised settings. Findings were the same for patients with a systolic BP below 140 mmHg (i.e. normotensive). Lower values for AIx in the current study are possibly due to differences in sampling rates, detection frequency and/or averaging procedures and to lower numbers of volunteers in younger age groups. Conclusion A novel transfer-function like algorithm, using brachial cuff-based waveform recordings, provides robust and feasible estimates of central systolic pressure and augmentation in community-based settings. PMID:22734820

  1. Feasibility studies of Bragg probe for noninvasive carotid pulse waveform assessment

    NASA Astrophysics Data System (ADS)

    Leitão, Cátia; Bilro, Lúcia; Alberto, Nélia; Antunes, Paulo; Lima, Hugo; André, Paulo S.; Nogueira, Rogério; Pinto, João L.

    2013-01-01

    The arterial stiffness evaluation is largely reported as an independent predictor of cardiovascular diseases. The central pulse waveform can provide important data about arterial health and has been studied in patients with several pathologies, such as diabetes mellitus, coronary artery disease and hypertension. The implementation and feasibility studies of a fiber Bragg grating probe for noninvasive monitoring of the carotid pulse are described based on fiber Bragg grating technology. Assessment tests were carried out in carotids of different volunteers and it was possible to detect the carotid pulse waveform in all subjects. In one of the subjects, the sensor was also tested in terms of repeatability. Although further tests will be required for clinical investigation, the first studies suggest that the developed sensor can be a valid alternative to electromechanical tonometers.

  2. Assessing Intracranial Vascular Compliance Using Dynamic Arterial Spin Labeling

    PubMed Central

    Yan, Lirong; Liu, Collin Y.; Smith, Robert X.; Jog, Mayank; Langham, Michael; Krasileva, Kate; Chen, Yufen; Ringman, John M.; Wang, Danny J.J.

    2015-01-01

    Vascular compliance (VC) is an important marker for a number of cardiovascular diseases and dementia, which is typically assessed in central and peripheral arteries indirectly by quantifying pulse wave velocity (PWV), and/or pulse pressure waveform. To date, very few methods are available for the quantification of intracranial VC. In the present study, a novel MRI technique for in-vivo assessment of intracranial VC was introduced, where dynamic arterial spin labeling (ASL) scans were synchronized with the systolic and diastolic phases of the cardiac cycle. VC is defined as the ratio of change in arterial cerebral blood volume (ΔCBV) and change in arterial pressure (ΔBP). Intracranial VC was assessed in different vascular components using the proposed dynamic ASL method. Our results show that VC mainly occurs in large arteries, gradually decreases in small arteries and arterioles. The comparison of intracranial VC between young and elderly subjects shows that aging is accompanied by a reduction of intracranial VC, in good agreement with the literature. Furthermore, a positive association between intracranial VC and cerebral perfusion measured using pseudo-continuous ASL with 3D GRASE MRI was observed independent of aging effects, suggesting loss of VC is associated with a decline in perfusion. Finally, a significant positive correlation between intracranial and central (aortic arch) VC was observed using an ungated phase-contrast 1D projection PWV technique. The proposed dynamic ASL method offers a promising approach for assessing intracranial VC in a range of cardiovascular diseases and dementia. PMID:26364865

  3. Doppler ultrasound of the maternal uterine arteries: disappearance of abnormal waveforms and relation to birthweight and pregnancy outcome.

    PubMed

    Campbell, S; Black, R S; Lees, C C; Armstrong, V; Peacock, J L

    2000-08-01

    To assess whether the gestation at which abnormal uterine artery waveforms disappear is related to birthweight and complications of pregnancy. A prospective study of outcome of pregnancy after a uterine artery Doppler screening program set in an inner city teaching hospital. One thousand five hundred and twenty-four consecutive women attending the Obstetric Department for a routine anomaly scan at between 19 and 21 weeks gestation had maternal uterine arteries assessed using color wave Doppler. Those women in whom the flow was deemed abnormal were recalled for a further scan at 24-26 weeks gestation. The main outcome measures were birthweight, gestation at delivery and incidence of pre eclampsia. The women in whom the uterine artery blood flow was normal at 20 weeks had babies with significantly higher mean birthweight than those who normalized between 20 and 24-26 weeks gestation ('late normalizers') after adjustment for confounding factors; gestational age, maternal height, parity, ethnic group and smoking (mean difference=173 g, 95% confidence intervals 42 to 303 g). The timing of trophoblast invasion, as reflected by abnormal uterine artery waveforms, may have an effect on birthweight.

  4. Application of computerised penile arterial waveform analysis in the diagnosis of arteriogenic impotence. An initial study in potent and impotent men.

    PubMed

    Desai, K M; Gingell, J C; Skidmore, R; Follett, D H

    1987-11-01

    A new method is described for evaluating arteriogenic impotence by means of noninvasive quantification of penile Doppler arterial waveforms using computerised analysis based on the Laplace Transform model. The haemodynamic changes occurring during a papaverine-induced erection in healthy potent volunteers have been recorded by this technique, which has also been shown to be capable of discriminating between a normal and an abnormal penile arterial supply in an initial study of potent and impotent men.

  5. Gaussian mixture model based identification of arterial wall movement for computation of distension waveform.

    PubMed

    Patil, Ravindra B; Krishnamoorthy, P; Sethuraman, Shriram

    2015-01-01

    This work proposes a novel Gaussian Mixture Model (GMM) based approach for accurate tracking of the arterial wall and subsequent computation of the distension waveform using Radio Frequency (RF) ultrasound signal. The approach was evaluated on ultrasound RF data acquired using a prototype ultrasound system from an artery mimicking flow phantom. The effectiveness of the proposed algorithm is demonstrated by comparing with existing wall tracking algorithms. The experimental results show that the proposed method provides 20% reduction in the error margin compared to the existing approaches in tracking the arterial wall movement. This approach coupled with ultrasound system can be used to estimate the arterial compliance parameters required for screening of cardiovascular related disorders.

  6. Determining arterial wave transit time from a single aortic pressure pulse in rats: vascular impulse response analysis.

    PubMed

    Chang, Ru-Wen; Chang, Chun-Yi; Lai, Liang-Chuan; Wu, Ming-Shiou; Young, Tai-Horng; Chen, Yih-Sharng; Wang, Chih-Hsien; Chang, Kuo-Chu

    2017-01-19

    Arterial wave transit time (τ w ) in the lower body circulation is an effective biomarker of cardiovascular risk that substantially affects systolic workload imposed on the heart. This study evaluated a method for determining τ w from the vascular impulse response on the basis of the measured aortic pressure and an assumed triangular flow (Q tri ). The base of the unknown Q tri was constructed with a duration set equal to ejection time. The timing of the peak triangle was derived using a fourth-order derivative of the pressure waveform. Values of τ w s obtained using Q tri were compared with those obtained from the measure aortic flow wave (Q m ). Healthy rats (n = 27), rats with chronic kidney disease (CKD; n = 22), and rats with type 1 (n = 22) or type 2 (n = 11) diabetes were analyzed. The cardiovascular conditions in the CKD rats and both diabetic groups were characterized by a decrease in τ w s. The following significant relation was observed (P < 0.0001): τ w triQ  = -1.5709 + 1.0604 × τ w mQ (r 2  = 0.9641). Our finding indicates that aortic impulse response can be an effective method for the estimation of arterial τ w by using a single pressure recording together with the assumed Q tri .

  7. Gravitational effects on global hemodynamics in different postures: A closed-loop multiscale mathematical analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Xiancheng; Noda, Shigeho; Himeno, Ryutaro; Liu, Hao

    2017-06-01

    We present a novel methodology and strategy to predict pressures and flow rates in the global cardiovascular network in different postures varying from supine to upright. A closed-loop, multiscale mathematical model of the entire cardiovascular system (CVS) is developed through an integration of one-dimensional (1D) modeling of the large systemic arteries and veins, and zero-dimensional (0D) lumped-parameter modeling of the heart, the cardiac-pulmonary circulation, the cardiac and venous valves, as well as the microcirculation. A versatile junction model is proposed and incorporated into the 1D model to cope with splitting and/or merging flows across a multibranched junction, which is validated to be capable of estimating both subcritical and supercritical flows while ensuring the mass conservation and total pressure continuity. To model gravitational effects on global hemodynamics during postural change, a robust venous valve model is further established for the 1D venous flows and distributed throughout the entire venous network with consideration of its anatomically realistic numbers and locations. The present integrated model is proven to enable reasonable prediction of pressure and flow rate waveforms associated with cardiopulmonary circulation, systemic circulation in arteries and veins, as well as microcirculation within normal physiological ranges, particularly in mean venous pressures, which well match the in vivo measurements. Applications of the cardiovascular model at different postures demonstrate that gravity exerts remarkable influence on arterial and venous pressures, venous returns and cardiac outputs whereas venous pressures below the heart level show a specific correlation between central venous and hydrostatic pressures in right atrium and veins.

  8. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood.

    PubMed

    Scully, Christopher G; Selvaraj, Nandakumar; Romberg, Frederick W; Wardhan, Richa; Ryan, John; Florian, John P; Silverman, David G; Shelley, Kirk H; Chon, Ki H

    2012-07-01

    We designed this study to determine if 900 mL of blood withdrawal during spontaneous breathing in healthy volunteers could be detected by examining the time-varying spectral amplitude of the photoplethysmographic (PPG) waveform in the heart rate frequency band and/or in the breathing rate frequency band before significant changes occurred in heart rate or arterial blood pressure. We also identified the best PPG probe site for early detection of blood volume loss by testing ear, finger, and forehead sites. Eight subjects had 900 mL of blood withdrawn followed by reinfusion of 900 mL of blood. Physiological monitoring included PPG waveforms from ear, finger, and forehead probe sites, standard electrocardiogram, and standard blood pressure cuff measurements. The time-varying amplitude sequences in the heart rate frequency band and breathing rate frequency band present in the PPG waveform were extracted from high-resolution time-frequency spectra. These amplitudes were used as a parameter for blood loss detection. Heart rate and arterial blood pressure did not significantly change during the protocol. Using time-frequency analysis of the PPG waveform from ear, finger, and forehead probe sites, the amplitude signal extracted at the frequency corresponding to the heart rate significantly decreased when 900 mL of blood was withdrawn, relative to baseline (all P < 0.05); for the ear, the corresponding signal decreased when only 300 mL of blood was withdrawn. The mean percent decrease in the amplitude of the heart rate component at 900 mL blood loss relative to baseline was 45.2% (38.2%), 42.0% (29.2%), and 42.3% (30.5%) for ear, finger, and forehead probe sites, respectively, with the lower 95% confidence limit shown in parentheses. After 900 mL blood reinfusion, the amplitude signal at the heart rate frequency showed a recovery towards baseline. There was a clear separation of amplitude values at the heart rate frequency between baseline and 900 mL blood withdrawal. Specificity and sensitivity were both found to be 87.5% with 95% confidence intervals (47.4%, 99.7%) for ear PPG signals for a chosen threshold value that was optimized to separate the 2 clusters of amplitude values (baseline and blood loss) at the heart rate frequency. Meanwhile, no significant changes in the spectral amplitude in the frequency band corresponding to respiration were found. A time-frequency spectral method detected blood loss in spontaneously breathing subjects before the onset of significant changes in heart rate or blood pressure. Spectral amplitudes at the heart rate frequency band were found to significantly decrease during blood loss in spontaneously breathing subjects, whereas those at the breathing rate frequency band did not significantly change. This technique may serve as a valuable tool in intraoperative and trauma settings to detect and monitor hemorrhage.

  9. Cardiac surgery during pregnancy: continuous fetal monitoring using umbilical artery Doppler flow velocity indices.

    PubMed

    Mishra, Manisha; Sawhney, Ravindra; Kumar, Anil; Bapna, Kumar Ramesh; Kohli, Vijay; Wasir, Harpreet; Trehan, Naresh

    2014-01-01

    The fetal death rate associated with cardiac surgery with cardiopulmonary bypass (CPB) is as high as 9.5-29%. We report continuous monitoring of fetal heart rate and umbilical artery flow-velocity waveforms by transvaginal ultrasonography and their analyses in relation to events of the CPB in two cases in second trimester of pregnancy undergoing mitral valve replacement. Our findings suggest that the transition of circulation from corporeal to extracorporeal is the most important event during surgery; the associated decrease in mean arterial pressure (MAP) at this stage potentially has deleterious effects on the fetus, which get aggravated with the use of vasopressors. We suggest careful management of CPB at this stage, which include partial controlled CPB at initiation and gradual transition to full CPB; this strategy maintains high MAP and avoids the use of vasopressors. Maternal and fetal monitoring can timely recognize the potential problems and provide window for the required treatment.

  10. Central and peripheral blood pressures in relation to plasma advanced glycation end products in a Chinese population.

    PubMed

    Huang, Q-F; Sheng, C-S; Kang, Y-Y; Zhang, L; Wang, S; Li, F-K; Cheng, Y-B; Guo, Q-H; Li, Y; Wang, J-G

    2016-07-01

    We investigated the association of plasma AGE (advanced glycation end product) concentration with central and peripheral blood pressures and central-to-brachial blood pressure amplification in a Chinese population. The study subjects were from a newly established residential area in the suburb of Shanghai. Using the SphygmoCor system, we recorded radial arterial waveforms and derived aortic waveforms by a generalized transfer function and central systolic and pulse pressure by calibration for brachial blood pressure measured with an oscillometric device. The central-to-brachial pressure amplification was expressed as the central-to-brachial systolic blood pressure difference and pulse pressure difference and ratio. Plasma AGE concentration was measured by the enzyme-linked immunosorbent assay method and logarithmically transformed for statistical analysis. The 1051 participants (age, 55.1±13.1 years) included 663 women. After adjustment for sex, age and other confounding factors, plasma AGE concentration was associated with central but not peripheral blood pressures and with some of the pressure amplification indexes. Indeed, each 10-fold increase in plasma AGE concentration was associated with 2.94 mm Hg (P=0.04) higher central systolic blood pressure and 2.39% lower central-to-brachial pulse pressure ratio (P=0.03). In further subgroup analyses, the association was more prominent in the presence of hypercholesterolemia (+8.11 mm Hg, P=0.008) for central systolic blood pressure and in the presence of overweight and obesity (-4.89%, P=0.009), diabetes and prediabetes (-6.26%, P=0.10) or current smoking (-6.68%, P=0.045) for central-to-brachial pulse pressure ratio. In conclusion, plasma AGE concentration is independently associated with central systolic blood pressure and pulse pressure amplification, especially in the presence of several modifiable cardiovascular risk factors.

  11. The relationship between weight, height and body mass index with hemodynamic parameters is not same in patients with and without chronic kidney disease.

    PubMed

    Afsar, Baris; Elsurer, Rengin; Soypacaci, Zeki; Kanbay, Mehmet

    2016-02-01

    Although anthropometric measurements are related with clinical outcomes; these relationships are not universal and differ in some disease states such as in chronic kidney disease (CKD). The current study was aimed to analyze the relationship between height, weight and BMI with hemodynamic and arterial stiffness parameters both in normal and CKD patients separately. This cross-sectional study included 381 patients with (N 226) and without CKD (N 155) with hypertension. Routine laboratory and 24-h urine collection were performed. Augmentation index (Aix) which is the ratio of augmentation pressure to pulse pressure was calculated from the blood pressure waveform after adjusted heart rate at 75 [Aix@75 (%)]. Pulse wave velocity (PWV) is a simple measure of the time taken by the pressure wave to travel over a specific distance. Both [Aix@75 (%)] and PWV which are measures of arterial stiffness were measured by validated oscillometric methods using mobil-O-Graph device. In patients without CKD, height is inversely correlated with [Aix@75 (%)]. Additionally, weight and BMI were positively associated with PWV in multivariate analysis. However, in patients with CKD, weight and BMI were inversely and independently related with PWV. In CKD patients, as weight and BMI increased stiffness parameters such as Aix@75 (%) and PWV decreased. While BMI and weight are positively associated with arterial stiffness in normal patients, this association is negative in patients with CKD. In conclusion, height, weight and BMI relationship with hemodynamic and arterial stiffness parameters differs in patients with and without CKD.

  12. Multiresolution Approach for Noncontact Measurements of Arterial Pulse Using Thermal Imaging

    NASA Astrophysics Data System (ADS)

    Chekmenev, Sergey Y.; Farag, Aly A.; Miller, William M.; Essock, Edward A.; Bhatnagar, Aruni

    This chapter presents a novel computer vision methodology for noncontact and nonintrusive measurements of arterial pulse. This is the only investigation that links the knowledge of human physiology and anatomy, advances in thermal infrared (IR) imaging and computer vision to produce noncontact and nonintrusive measurements of the arterial pulse in both time and frequency domains. The proposed approach has a physical and physiological basis and as such is of a fundamental nature. A thermal IR camera was used to capture the heat pattern from superficial arteries, and a blood vessel model was proposed to describe the pulsatile nature of the blood flow. A multiresolution wavelet-based signal analysis approach was applied to extract the arterial pulse waveform, which lends itself to various physiological measurements. We validated our results using a traditional contact vital signs monitor as a ground truth. Eight people of different age, race and gender have been tested in our study consistent with Health Insurance Portability and Accountability Act (HIPAA) regulations and internal review board approval. The resultant arterial pulse waveforms exactly matched the ground truth oximetry readings. The essence of our approach is the automatic detection of region of measurement (ROM) of the arterial pulse, from which the arterial pulse waveform is extracted. To the best of our knowledge, the correspondence between noncontact thermal IR imaging-based measurements of the arterial pulse in the time domain and traditional contact approaches has never been reported in the literature.

  13. Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time

    NASA Astrophysics Data System (ADS)

    Martin, Stephanie L.-O.; Carek, Andrew M.; Kim, Chang-Sei; Ashouri, Hazar; Inan, Omer T.; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2016-12-01

    Pulse transit time (PTT) is being widely pursued for cuff-less blood pressure (BP) monitoring. Most efforts have employed the time delay between ECG and finger photoplethysmography (PPG) waveforms as a convenient surrogate of PTT. However, these conventional pulse arrival time (PAT) measurements include the pre-ejection period (PEP) and the time delay through small, muscular arteries and may thus be an unreliable marker of BP. We assessed a bathroom weighing scale-like system for convenient measurement of ballistocardiography and foot PPG waveforms - and thus PTT through larger, more elastic arteries - in terms of its ability to improve tracking of BP in individual subjects. We measured “scale PTT”, conventional PAT, and cuff BP in humans during interventions that increased BP but changed PEP and smooth muscle contraction differently. Scale PTT tracked the diastolic BP changes well, with correlation coefficient of -0.80 ± 0.02 (mean ± SE) and root-mean-squared-error of 7.6 ± 0.5 mmHg after a best-case calibration. Conventional PAT was significantly inferior in tracking these changes, with correlation coefficient of -0.60 ± 0.04 and root-mean-squared-error of 14.6 ± 1.5 mmHg (p < 0.05). Scale PTT also tracked the systolic BP changes better than conventional PAT but not to an acceptable level. With further development, scale PTT may permit reliable, convenient measurement of BP.

  14. Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time.

    PubMed

    Martin, Stephanie L-O; Carek, Andrew M; Kim, Chang-Sei; Ashouri, Hazar; Inan, Omer T; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2016-12-15

    Pulse transit time (PTT) is being widely pursued for cuff-less blood pressure (BP) monitoring. Most efforts have employed the time delay between ECG and finger photoplethysmography (PPG) waveforms as a convenient surrogate of PTT. However, these conventional pulse arrival time (PAT) measurements include the pre-ejection period (PEP) and the time delay through small, muscular arteries and may thus be an unreliable marker of BP. We assessed a bathroom weighing scale-like system for convenient measurement of ballistocardiography and foot PPG waveforms - and thus PTT through larger, more elastic arteries - in terms of its ability to improve tracking of BP in individual subjects. We measured "scale PTT", conventional PAT, and cuff BP in humans during interventions that increased BP but changed PEP and smooth muscle contraction differently. Scale PTT tracked the diastolic BP changes well, with correlation coefficient of -0.80 ± 0.02 (mean ± SE) and root-mean-squared-error of 7.6 ± 0.5 mmHg after a best-case calibration. Conventional PAT was significantly inferior in tracking these changes, with correlation coefficient of -0.60 ± 0.04 and root-mean-squared-error of 14.6 ± 1.5 mmHg (p < 0.05). Scale PTT also tracked the systolic BP changes better than conventional PAT but not to an acceptable level. With further development, scale PTT may permit reliable, convenient measurement of BP.

  15. Hemodynamic Assessment of Compliance of Pre-Stressed Pulmonary Valve-Vasculature in Patient Specific Geometry Using an Inverse Algorithm

    NASA Astrophysics Data System (ADS)

    Hebbar, Ullhas; Paul, Anup; Banerjee, Rupak

    2016-11-01

    Image based modeling is finding increasing relevance in assisting diagnosis of Pulmonary Valve-Vasculature Dysfunction (PVD) in congenital heart disease patients. This research presents compliant artery - blood interaction in a patient specific Pulmonary Artery (PA) model. This is an improvement over our previous numerical studies which assumed rigid walled arteries. The impedance of the arteries and the energy transfer from the Right Ventricle (RV) to PA is governed by compliance, which in turn is influenced by the level of pre-stress in the arteries. In order to evaluate the pre-stress, an inverse algorithm was developed using an in-house script written in MATLAB and Python, and implemented using the Finite Element Method (FEM). This analysis used a patient specific material model developed by our group, in conjunction with measured pressure (invasive) and velocity (non-invasive) values. The analysis was performed on an FEM solver, and preliminary results indicated that the Main PA (MPA) exhibited higher compliance as well as increased hysteresis over the cardiac cycle when compared with the Left PA (LPA). The computed compliance values for the MPA and LPA were 14% and 34% lesser than the corresponding measured values. Further, the computed pressure drop and flow waveforms were in close agreement with the measured values. In conclusion, compliant artery - blood interaction models of patient specific geometries can play an important role in hemodynamics based diagnosis of PVD.

  16. A Magnetic Plethysmograph Probe for Local Pulse Wave Velocity Measurement.

    PubMed

    P M, Nabeel; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2017-10-01

    We present the design and experimental validation of an arterial compliance probe with dual magnetic plethysmograph (MPG) transducers for local pulse wave velocity (PWV) measurement. The MPG transducers (positioned at 23 mm distance apart) utilizes Hall-effect sensors and permanent magnets for arterial blood pulse detection. The MPG probe was initially validated on an arterial flow phantom using a reference method. Further, 20 normotensive subjects (14 males, age = 24 ± 3.5 years) were studied under two different physical conditions: 1) Physically relaxed condition, 2) Postexercise condition. Local PWV was measured from the left carotid artery using the MPG probe. Brachial blood pressure (BP) was measured to investigate the correlation of BP with local PWV. The proposed MPG arterial compliance probe was capable of detecting high-fidelity blood pulse waveforms. Reliable local pulse transit time estimates were assessed by the developed measurement system. Beat-by-beat local PWV was measured from multiple subjects under different physical conditions. A profound increment was observed in the carotid local PWV for all subjects after exercise (average increment = 0.42 ± 0.22 m/s). Local PWV values and brachial BP parameters were significantly correlated (r ≥ 0.72), except for pulse pressure (r = 0.42). MPG arterial compliance probe for local PWV measurement was validated. Carotid local PWV measurement, its variations due to physical exercise and correlation with BP levels were examined during the in vivo study. A novel dual MPG probe for local PWV measurement and potential use in cuffless BP measurement.

  17. Aortic Blood Flow Reversal Determines Renal Function: Potential Explanation for Renal Dysfunction Caused by Aortic Stiffening in Hypertension.

    PubMed

    Hashimoto, Junichiro; Ito, Sadayoshi

    2015-07-01

    Aortic stiffness determines the glomerular filtration rate (GFR) and predicts the progressive decline of the GFR. However, the underlying pathophysiological mechanism remains obscure. Recent evidence has shown a close link between aortic stiffness and the bidirectional (systolic forward and early diastolic reverse) flow characteristics. We hypothesized that the aortic stiffening-induced renal dysfunction is attributable to altered central flow dynamics. In 222 patients with hypertension, Doppler velocity waveforms were recorded at the proximal descending aorta to calculate the reverse/forward flow ratio. Tonometric waveforms were recorded to measure the carotid-femoral (aortic) and carotid-radial (peripheral) pulse wave velocities, to estimate the aortic pressure from the radial waveforms, and to compute the aortic characteristic impedance. In addition, renal hemodynamics was evaluated by duplex ultrasound. The estimated GFR was inversely correlated with the aortic pulse wave velocity, reverse/forward flow ratio, pulse pressure, and characteristic impedance, whereas it was not correlated with the peripheral pulse wave velocity or mean arterial pressure. The association between aortic pulse wave velocity and estimated GFR was independent of age, diabetes mellitus, hypercholesterolemia, and antihypertensive medication. However, further adjustment for the aortic reverse/forward flow ratio and pulse pressure substantially weakened this association, and instead, the reverse/forward flow ratio emerged as the strongest determinant of estimated GFR (P=0.001). A higher aortic reverse/forward flow ratio was also associated with lower intrarenal forward flow velocities. These results suggest that an increase in aortic flow reversal (ie, retrograde flow from the descending thoracic aorta toward the aortic arch), caused by aortic stiffening and impedance mismatch, reduces antegrade flow into the kidney and thereby deteriorates renal function. © 2015 American Heart Association, Inc.

  18. Central blood pressure in children and adolescents: non-invasive development and testing of novel transfer functions.

    PubMed

    Cai, T Y; Qasem, A; Ayer, J G; Butlin, M; O'Meagher, S; Melki, C; Marks, G B; Avolio, A; Celermajer, D S; Skilton, M R

    2017-12-01

    Central blood pressure can be estimated from peripheral pulses in adults using generalised transfer functions (TF). We sought to create and test age-specific non-invasively developed TFs in children, with comparison to a pre-existing adult TF. We studied healthy children from two sites at two time points, 8 and 14 years of age, split by site into development and validation groups. Radial and carotid pressure waveforms were obtained by applanation tonometry. Central systolic pressure was derived from carotid waveforms calibrated to brachial mean and diastolic pressures. Age-specific TFs created in the development groups (n=50) were tested in the validation groups aged 8 (n=137) and 14 years (n=85). At 8 years of age, the age-specific TF estimated 82, 99 and 100% of central systolic pressure values within 5, 10 and 15 mm Hg of their measured values, respectively. This TF overestimated central systolic pressure by 2.2 (s.d. 3.7) mm Hg, compared to being underestimated by 5.6 (s.d. 3.9) mm Hg with the adult TF. At 14 years of age, the age-specific TF estimated 60, 87 and 95% of values within 5, 10 and 15 mm Hg of their measured values, respectively. This TF underestimated central systolic pressure by 0.5 (s.d. 6.7) mm Hg, while the adult TF underestimated it by 6.8 (s.d. 6.0) mm Hg. In conclusion, age-specific TFs more accurately predict central systolic pressure measured at the carotid artery in children than an existing adult TF.

  19. Modelflow Estimates of Stroke Volume Do Not Correlate With Doppler Ultrasound Estimates During Upright Posture

    NASA Technical Reports Server (NTRS)

    Ferguson, Connor R.; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.; Laurie, Steven S.

    2014-01-01

    Orthostatic intolerance affects 60-80% of astronauts returning from long-duration missions, representing a significant risk to completing mission-critical tasks. While likely multifactorial, a reduction in stroke volume (SV) represents one factor contributing to orthostatic intolerance during stand and head up tilt (HUT) tests. Current measures of SV during stand or HUT tests use Doppler ultrasound and require a trained operator and specialized equipment, restricting its use in the field. BeatScope (Finapres Medical Systems BV, The Netherlands) uses a modelflow algorithm to estimate SV from continuous blood pressure waveforms in supine subjects; however, evidence supporting the use of Modelflow to estimate SV in subjects completing stand or HUT tests remain scarce. Furthermore, because the blood pressure device is held extended at heart level during HUT tests, but allowed to rest at the side during stand tests, changes in the finger arterial pressure waveform resulting from arm positioning could alter modelflow estimated SV. The purpose of this project was to compare Doppler ultrasound and BeatScope estimations of SV to determine if BeatScope can be used during stand or HUT tests. Finger photoplethysmography was used to acquire arterial pressure waveforms corrected for hydrostatic finger-to-heart height using the Finometer (FM) and Portapres (PP) arterial pressure devices in 10 subjects (5 men and 5 women) during a stand test while simultaneous estimates of SV were collected using Doppler ultrasound. Measures were made after 5 minutes of supine rest and while subjects stood for 5 minutes. Next, SV estimates were reacquired while each arm was independently raised to heart level, a position similar to tilt testing. Supine SV estimates were not significantly different between all three devices (FM: 68+/-20, PP: 71+/-21, US: 73+/-21 ml/beat). Upon standing, the change in SV estimated by FM (-18+/-8 ml) was not different from PP (-21+/-12), but both were significantly less than US (-37+/-16 ml, p<.05). Raising finger BP devices to heart level caused no significant change in SV measured with any of the devices (FM: 1.5+/-19, PP: 1.7+/-26, US: 0.5+/-6), although variability was 3-6x greater as assessed by both blood pressure devices compared to US. Retrospective analysis of blood pressure data to assess SV in 11 supine subjects revealed significantly different estimates between methods (FM: 95+/-17, US: 75+/-32, p<.05), but the change in SV resulting from HUT was similar between methods (FM: -37+/-9, US: -40+/-18 ml). However, the correlation coefficient determined from pairs of SV estimated by US and FM was weak (r2=0.03). These data suggest Modelflow cannot be used in lieu of Doppler ultrasound to estimate SV during stand or HUT tests. Further investigation should focus on identifying factors contributing to differences between these measurement techniques in order to make use of a simple method for assessing beat-by-beat changes in SV during postural changes, especially during field testing.

  20. Role of Doppler Sonography in Early Detection of Splenic Steal Syndrome.

    PubMed

    Li, Chaolun; Quintini, Cristiano; Hashimoto, Koji; Fung, John; Obuchowski, Nancy A; Sands, Mark J; Wang, Weiping

    2016-07-01

    To retrospectively investigate the role of Doppler sonography in the early detection of splenic steal syndrome. Fifty cases of splenic steal syndrome after orthotopic liver transplantation were identified. A control group was matched to the splenic steal syndrome group. Information was collected about the clinical presentation, liver enzyme levels, Doppler sonographic results, and follow-up after patients underwent splenic artery embolization. A persistent hepatic arterial diastolic reversal waveform was observed in 25 patients with splenic steal syndrome versus 0 control patients. The mean hepatic arterial resistive index (RI) values ± SD were 0.95 ± 0.09 in patients with splenic steal syndrome and 0.80 ± 0.10 in control patients (P < .0001). One week after orthotopic liver transplantation, the area under the receiver operating characteristic curve for the RI was 0.884 (95% confidence interval, 0.793-0.975; P = .001) for splenic steal syndrome diagnosis. After splenic artery embolization, there was normalization of the reversal waveform, with an average RI of 0.77 ± 0.11 (P < .0001). Dynamic changes in the hepatic arterial waveform and RI are keys to detecting splenic steal syndrome with Doppler sonography.

  1. Pulse Pressure and Carotid Artery Doppler Velocimetry as Indicators of Maternal Volume Status: A Prospective Cohort Study.

    PubMed

    Lappen, Justin R; Myers, Stephen A; Bolden, Norman; Shaman, Ziad; Angirekula, Venkata; Chien, Edward K

    2018-03-01

    Narrow pulse pressure has been demonstrated to indicate low central volume status. In critically ill patients, volume status can be qualitatively evaluated using Doppler velocimetry to assess hemodynamic changes in the carotid artery in response to autotransfusion with passive leg raise (PLR). Neither parameter has been prospectively evaluated in an obstetric population. The objective of this study was to determine if pulse pressure could predict the response to autotransfusion using carotid artery Doppler in healthy intrapartum women. We hypothesized that the carotid artery Doppler response to PLR would be greater in women with a narrow pulse pressure, indicating relative hypovolemia. Intrapartum women with singleton gestations ≥35 weeks without acute or chronic medical conditions were recruited to this prospective cohort study. Participants were grouped by admission pulse pressure as <45 mm Hg(narrow) or ≥50 mm Hg(normal). Maternal carotid artery Doppler assessment was then performed in all patients before and after PLR using a standard technique where carotid blood flow (mL/min) = π × (carotid artery diameter/2) × (velocity time integral) x (60 seconds). The velocity time integral was calculated from the Doppler waveform. The primary outcome was the change in the carotid Doppler parameters (carotid artery diameter, velocity time integral, and carotid blood flow) after PLR. Outcomes were compared between study groups with univariable and multivariable analyses with adjustment for potential confounding factors. Thirty-three women consented to participation, including 18 in the narrow and 15 in the normal pulse pressure groups (mean and standard deviation initial pulse pressure, 38.3 ± 4.4 vs 57.3 ± 4.1 mm Hg). The 2 groups demonstrated similar characteristics except for initial pulse pressure, systolic and diastolic blood pressure, and race. In response to PLR, the narrow pulse pressure group had a significantly greater increase in carotid artery diameter (0.08 vs 0.02 cm; standardized difference, 2.0; 95% confidence interval [CI], 1.16-2.84), carotid blood flow (79.4 vs 16.0 mL/min; standardized difference, 2.23; 95% CI, 1.36-3.10), and percent change in carotid blood flow (47.5% vs 8.7%; standardized difference, 2.52; 95% CI, 1.60-3.43) compared with the normal pulse pressure group. In multivariable analysis with adjustment for potential confounding factors, women with narrow admission pulse pressure had a significantly larger carotid diameter (0.66 vs 0.62 cm; P < .0001) and greater carotid flow (246.7 vs 219.3 cm/s; P = .001) after PLR compared to women with a normal pulse pressure. Initial pulse pressure was strongly correlated with the change in carotid flow after PLR (r2 = 0.60; P < .0001). The hemodynamic response of the carotid artery to autotransfusion after PLR is significantly greater in women with narrow pulse pressure. Pulse pressure correlates with the physiological response to autotransfusion and provides a qualitative indication of intravascular volume in term and near-term pregnant women.

  2. Vascular characteristics in young women-Effect of extensive endurance training or a sedentary lifestyle.

    PubMed

    Bjarnegård, N; Länne, T; Cinthio, M; Ekstrand, J; Hedman, K; Nylander, E; Henriksson, J

    2018-06-01

    To explore whether high-level endurance training in early age has an influence on the arterial wall properties in young women. Forty-seven athletes (ATH) and 52 controls (CTR), all 17-25 years of age, were further divided into runners (RUN), whole-body endurance athletes (WBA), sedentary controls (SC) and normally active controls (AC). Two-dimensional ultrasound scanning of the carotid arteries was conducted to determine local common carotid artery (CCA) geometry and wall distensibility. Pulse waves were recorded with a tonometer to determine regional pulse wave velocity (PWV) and pulse pressure waveform. Carotid-radial PWV was lower in WBA than in RUN (P < .05), indicating higher arterial distensibility along the arm. Mean arterial pressure was lower in ATH than in CTR and in RUN than in WBA (P < .05). Synthesized aortic augmentation index (AI@75) was lower among ATH than among CTR (-12.8 ± 1.6 vs -2.6 ± 1.2%, P < .001) and in WBA than in RUN (-16.4 ± 2.5 vs -10.7 ± 2.0%, P < .05), suggesting a diminished return of reflection waves to the aorta during systole. Carotid-femoral PWV and intima-media thickness (IMT), lumen diameter and radial distensibility of the CCA were similar in ATH and CTR. Elastic artery distensibility and carotid artery IMT are not different in young women with extensive endurance training over several years and in those with sedentary lifestyle. On the other hand, our data suggest that long-term endurance training is associated with potentially favourable peripheral artery adaptation, especially in sports where upper body work is added. This adaptation, if persisting later in life, could contribute to lower cardiovascular risk. © 2018 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  3. Intra-arterial nitroglycerin for intra-operative arterial vasospasm during pediatric renal transplantation.

    PubMed

    Penna, Frank J; Harvey, Elizabeth; John, Philip; Armstrong, Derek; Luginbuehl, Igor; Odeh, Rakan I; Alyami, Fahad; Koyle, Martin A; Lorenzo, Armando J

    2016-05-01

    Intra-operative arterial vasospasm during pediatric renal transplantation is an urgent clinical situation resulting in end-organ ischemia, associated changes in parenchymal turgor and color, diminished flow on ultrasound, and if left untreated, allograft loss. We hypothesized that intra-operative intra-arterial injection of nitroglycerin would reverse vasospasm and improve renal perfusion. A three-yr-old girl with end-stage renal disease due to autosomal recessive polycystic kidney disease on peritoneal dialysis underwent deceased donor renal transplantation. After optimal immediate reperfusion and hemodynamic parameters, the kidney lost turgor and became mottled in appearance despite adequate hilar arterial and venous Doppler waveforms. Two aliquots of 40 μg (0.4 mL of a 100 μg/mL) nitroglycerin solution were injected directly into the renal artery 10 min apart. Nitroglycerin resulted in dramatic change in the consistency and appearance of the allograft. An improvement in renal blood flow was demonstrated by ultrasound after the second intra-arterial nitroglycerin injection with only a transient decrease in systemic arterial blood pressure. The child experienced normal allograft perfusion on serial postoperative ultrasounds, with a prompt decrease in serum creatinine and excellent diuresis. Intra-arterial nitroglycerin is a promising option for intra-operative arterial vasospasm during pediatric renal transplantation with objective improvement in blood flow and perfusion. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Effect of the α(2)-adrenoceptor antagonist yohimbine on vascular regulation of the middle cerebral artery and the ophthalmic artery in healthy subjects.

    PubMed

    Kaya, S; Kolodjaschna, J; Berisha, F; Polska, E; Pemp, B; Garhöfer, G; Schmetterer, L

    2011-01-01

    There is evidence that vascular beds distal to the ophthalmic artery (OA) show vasoconstriction in response to a step decrease in systemic blood pressure (BP). The mediators of this response are mostly unidentified. The aim of the current study was to test the hypothesis that α2-adrenoreceptors may contribute to the regulatory process in response to a decrease in BP. In this randomized, double-masked, placebo-controlled study 14 healthy male volunteers received either 22mg yohimbine hydrochloride or placebo. Beat-to-beat BP was measured by analysis of arterial pressure waveform; blood flow velocities in the middle cerebral artery (MCA) and the OA were measured with Doppler ultrasound. Measurements were done before, during and after a step decrease in BP. The step decrease in BP was induced by bilateral thigh cuffs at a suprasystolic pressure followed by a rapid cuff deflation. After cuff deflation, BP returned to baseline after 7-8 pulse cycles (PC). Blood velocities in the MCA returned to baseline earlier (4 PC) than BP indicating peripheral vasodilatation. Blood velocities in the OA returned to baseline later (15-20 PC) indicating peripheral vasoconstriction. Yohimbine did not affect the blood velocity response in the MCA, but significantly shortened the time of OA blood velocities to return to baseline values (6-7 PC, p<0.05). In conclusion, our results indicate that yohimbine did not alter the regulatory response in the MCA, but modified the response of vascular beds distal to the OA. This suggests that α2-adrenoceptors play a role in the vasoconstrictor response of the vasculatures distal to the OA. 2010 Elsevier Inc. All rights reserved.

  5. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    PubMed

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition. The parallel-plate flow chamber system can well reproduce wall shear stress waveforms acquired from the common carotid artery in resting and immediately after exercise states. Furthermore, it can be used for studying the endothelial cells responses under resting and exercise-induced wall shear stress environments in vitro.

  6. Noninvasive iPhone Measurement of Left Ventricular Ejection Fraction Using Intrinsic Frequency Methodology.

    PubMed

    Pahlevan, Niema M; Rinderknecht, Derek G; Tavallali, Peyman; Razavi, Marianne; Tran, Thao T; Fong, Michael W; Kloner, Robert A; Csete, Marie; Gharib, Morteza

    2017-07-01

    The study is based on previously reported mathematical analysis of arterial waveform that extracts hidden oscillations in the waveform that we called intrinsic frequencies. The goal of this clinical study was to compare the accuracy of left ventricular ejection fraction derived from intrinsic frequencies noninvasively versus left ventricular ejection fraction obtained with cardiac MRI, the most accurate method for left ventricular ejection fraction measurement. After informed consent, in one visit, subjects underwent cardiac MRI examination and noninvasive capture of a carotid waveform using an iPhone camera (The waveform is captured using a custom app that constructs the waveform from skin displacement images during the cardiac cycle.). The waveform was analyzed using intrinsic frequency algorithm. Outpatient MRI facility. Adults able to undergo MRI were referred by local physicians or self-referred in response to local advertisement and included patients with heart failure with reduced ejection fraction diagnosed by a cardiologist. Standard cardiac MRI sequences were used, with periodic breath holding for image stabilization. To minimize motion artifact, the iPhone camera was held in a cradle over the carotid artery during iPhone measurements. Regardless of neck morphology, carotid waveforms were captured in all subjects, within seconds to minutes. Seventy-two patients were studied, ranging in age from 20 to 92 years old. The main endpoint of analysis was left ventricular ejection fraction; overall, the correlation between ejection fraction-iPhone and ejection fraction-MRI was 0.74 (r = 0.74; p < 0.0001; ejection fraction-MRI = 0.93 × [ejection fraction-iPhone] + 1.9). Analysis of carotid waveforms using intrinsic frequency methods can be used to document left ventricular ejection fraction with accuracy comparable with that of MRI. The measurements require no training to perform or interpret, no calibration, and can be repeated at the bedside to generate almost continuous analysis of left ventricular ejection fraction without arterial cannulation.

  7. Single source photoplethysmograph transducer for local pulse wave velocity measurement.

    PubMed

    Nabeel, P M; Joseph, Jayaraj; Awasthi, Vartika; Sivaprakasam, Mohanasankar

    2016-08-01

    Cuffless evaluation of arterial blood pressure (BP) using pulse wave velocity (PWV) has received attraction over the years. Local PWV based techniques for cuffless BP measurement has more potential in accurate estimation of BP parameters. In this work, we present the design and experimental validation of a novel single-source Photoplethysmograph (PPG) transducer for arterial blood pulse detection and cycle-to-cycle local PWV measurement. The ability of the transducer to continuously measure local PWV was verified using arterial flow phantom as well as by conducting an in-vivo study on 17 volunteers. The single-source PPG transducer could reliably acquire dual blood pulse waveforms, along small artery sections of length less than 28 mm. The transducer was able to perform repeatable measurements of carotid local PWV on multiple subjects with maximum beat-to-beat variation less than 12%. The correlation between measured carotid local PWV and brachial BP parameters were also investigated during the in-vivo study. Study results prove the potential use of newly proposed single-source PPG transducers in continuous cuffless BP measurement systems.

  8. Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time

    PubMed Central

    Martin, Stephanie L.-O.; Carek, Andrew M.; Kim, Chang-Sei; Ashouri, Hazar; Inan, Omer T.; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2016-01-01

    Pulse transit time (PTT) is being widely pursued for cuff-less blood pressure (BP) monitoring. Most efforts have employed the time delay between ECG and finger photoplethysmography (PPG) waveforms as a convenient surrogate of PTT. However, these conventional pulse arrival time (PAT) measurements include the pre-ejection period (PEP) and the time delay through small, muscular arteries and may thus be an unreliable marker of BP. We assessed a bathroom weighing scale-like system for convenient measurement of ballistocardiography and foot PPG waveforms – and thus PTT through larger, more elastic arteries – in terms of its ability to improve tracking of BP in individual subjects. We measured “scale PTT”, conventional PAT, and cuff BP in humans during interventions that increased BP but changed PEP and smooth muscle contraction differently. Scale PTT tracked the diastolic BP changes well, with correlation coefficient of −0.80 ± 0.02 (mean ± SE) and root-mean-squared-error of 7.6 ± 0.5 mmHg after a best-case calibration. Conventional PAT was significantly inferior in tracking these changes, with correlation coefficient of −0.60 ± 0.04 and root-mean-squared-error of 14.6 ± 1.5 mmHg (p < 0.05). Scale PTT also tracked the systolic BP changes better than conventional PAT but not to an acceptable level. With further development, scale PTT may permit reliable, convenient measurement of BP. PMID:27976741

  9. Pulsatility of Lenticulostriate Arteries Assessed by 7 Tesla Flow MRI-Measurement, Reproducibility, and Applicability to Aging Effect.

    PubMed

    Schnerr, Roald S; Jansen, Jacobus F A; Uludag, Kamil; Hofman, Paul A M; Wildberger, Joachim E; van Oostenbrugge, Robert J; Backes, Walter H

    2017-01-01

    Characterization of flow properties in cerebral arteries with 1.5 and 3 Tesla MRI is usually limited to large cerebral arteries and difficult to evaluate in the small perforating arteries due to insufficient spatial resolution. In this study, we assessed the feasibility to measure blood flow waveforms in the small lenticulostriate arteries with 7 Tesla velocity-sensitive MRI. The middle cerebral artery was included as reference. Imaging was performed in five young and five old healthy volunteers. Flow was calculated by integrating time-varying velocity values over the vascular cross-section. MRI acquisitions were performed twice in each subject to determine reproducibility. From the flow waveforms, the pulsatility index and damping factor were deduced. Reproducibility values, in terms of the intraclass correlation coefficients, were found to be good to excellent. Measured pulsatility index of the lenticulostriate arteries significantly increased and damping factor significantly decreased with age. In conclusion, we demonstrate that blood flow through the lenticostriate arteries can be precisely measured using 7 Tesla MRI and reveal effects of arterial stiffness due to aging. These findings hold promise to provide relevant insights into the pathologies involving perforating cerebral arteries.

  10. Signal Analysis and Waveform Reconstruction of Shock Waves Generated by Underwater Electrical Wire Explosions with Piezoelectric Pressure Probes.

    PubMed

    Zhou, Haibin; Zhang, Yongmin; Han, Ruoyu; Jing, Yan; Wu, Jiawei; Liu, Qiaojue; Ding, Weidong; Qiu, Aici

    2016-04-22

    Underwater shock waves (SWs) generated by underwater electrical wire explosions (UEWEs) have been widely studied and applied. Precise measurement of this kind of SWs is important, but very difficult to accomplish due to their high peak pressure, steep rising edge and very short pulse width (on the order of tens of μs). This paper aims to analyze the signals obtained by two kinds of commercial piezoelectric pressure probes, and reconstruct the correct pressure waveform from the distorted one measured by the pressure probes. It is found that both PCB138 and Müller-plate probes can be used to measure the relative SW pressure value because of their good uniformities and linearities, but none of them can obtain precise SW waveforms. In order to approach to the real SW signal better, we propose a new multi-exponential pressure waveform model, which has considered the faster pressure decay at the early stage and the slower pressure decay in longer times. Based on this model and the energy conservation law, the pressure waveform obtained by the PCB138 probe has been reconstructed, and the reconstruction accuracy has been verified by the signals obtained by the Müller-plate probe. Reconstruction results show that the measured SW peak pressures are smaller than the real signal. The waveform reconstruction method is both reasonable and reliable.

  11. Signal Analysis and Waveform Reconstruction of Shock Waves Generated by Underwater Electrical Wire Explosions with Piezoelectric Pressure Probes

    PubMed Central

    Zhou, Haibin; Zhang, Yongmin; Han, Ruoyu; Jing, Yan; Wu, Jiawei; Liu, Qiaojue; Ding, Weidong; Qiu, Aici

    2016-01-01

    Underwater shock waves (SWs) generated by underwater electrical wire explosions (UEWEs) have been widely studied and applied. Precise measurement of this kind of SWs is important, but very difficult to accomplish due to their high peak pressure, steep rising edge and very short pulse width (on the order of tens of μs). This paper aims to analyze the signals obtained by two kinds of commercial piezoelectric pressure probes, and reconstruct the correct pressure waveform from the distorted one measured by the pressure probes. It is found that both PCB138 and Müller-plate probes can be used to measure the relative SW pressure value because of their good uniformities and linearities, but none of them can obtain precise SW waveforms. In order to approach to the real SW signal better, we propose a new multi-exponential pressure waveform model, which has considered the faster pressure decay at the early stage and the slower pressure decay in longer times. Based on this model and the energy conservation law, the pressure waveform obtained by the PCB138 probe has been reconstructed, and the reconstruction accuracy has been verified by the signals obtained by the Müller-plate probe. Reconstruction results show that the measured SW peak pressures are smaller than the real signal. The waveform reconstruction method is both reasonable and reliable. PMID:27110789

  12. Alterations of pulsation absorber characteristics in experimental hydrocephalus.

    PubMed

    Park, Eun-Hyoung; Dombrowski, Stephen; Luciano, Mark; Zurakowski, David; Madsen, Joseph R

    2010-08-01

    Analysis of waveform data in previous studies suggests that the pulsatile movement of CSF may play a role in attenuating strong arterial pulsations entering the cranium, and its effectiveness in attenuating these pulsations may be altered by changes in intracranial pressure (ICP). These findings were obtained in studies performed in canines with normal anatomy of the CSF spaces. How then would pulsation absorbance respond to changes in CSF movement under obstructive conditions such as the development of hydrocephalus? In the present study, chronic obstructive hydrocephalus was induced by the injection of cyanoacrylate gel into the fourth ventricle of canines, and pulsation absorbance was compared before and after hydrocephalus induction. Five animals were evaluated with simultaneous recordings of ICP and arterial blood pressure (ABP) before and at 4 and 12 weeks after fourth ventricle obstruction by cyanoacrylate. To assess how the intracranial system responds to the arterial pulsatile component, ABP and ICP waveforms recorded in a time domain had to be analyzed in a frequency domain. In an earlier study the authors introduced a particular technique that allows characterization of the intracranial system in the frequency domain with sufficient accuracy and efficiency. This same method was used to analyze the relationship between ABP and ICP waveforms recorded during several acute states including hyperventilation as well as CSF withdrawal and infusion under conditions before and after inducing chronic obstructive hydrocephalus. Such a relationship is reflected in terms of a gain, which is a function of frequency. The cardiac pulsation absorbance (CPA) index, which is simply derived from a gain evaluated at the cardiac frequency, was used to quantitatively evaluate the changes in pulsation absorber function associated with the development of hydrocephalus within each of the animals, which did become hydrocephalic. To account for normal and hydrocephalic conditions within the same animal and at multiple time points, statistical analysis was performed by repeated-measures ANOVA. The performance of the pulsation absorber as assessed by CPA significantly deteriorated after the development of chronic hydrocephalus. In these animals the decrement in CPA was far more significant than other anticipated changes including those in ICP, compliance, or ICP pulse amplitude. To the extent that the free CSF movement acts as a buffer of arterial pulsation input to flow in microvessels, alterations in the pulsation absorber may play a pathophysiological role. One measure of alterations in the way the brain deals with pulsatile input-the CPA measurement-changes dramatically with the imposition of hydrocephalus. Results in the present study suggest that CPA may serve as a complementary metric to the conventional static measure of intracranial compliance in other experimental and clinical studies.

  13. Inter-device differences in monitoring for goal-directed fluid therapy.

    PubMed

    Thiele, Robert H; Bartels, Karsten; Gan, Tong-Joo

    2015-02-01

    Goal-directed fluid therapy is an integral component of many Enhanced Recovery After Surgery (ERAS) protocols currently in use. The perioperative clinician is faced with a myriad of devices promising to deliver relevant physiologic data to better guide fluid therapy. The goal of this review is to provide concise information to enable the clinician to make an informed decision when choosing a device to guide goal-directed fluid therapy. The focus of many devices used for advanced hemodynamic monitoring is on providing measurements of cardiac output, while other, more recent, devices include estimates of fluid responsiveness based on dynamic indices that better predict an individual's response to a fluid bolus. Currently available technologies include the pulmonary artery catheter, esophageal Doppler, arterial waveform analysis, photoplethysmography, venous oxygen saturation, as well as bioimpedance and bioreactance. The underlying mechanistic principles for each device are presented as well as their performance in clinical trials relevant for goal-directed therapy in ERAS. The ERAS protocols typically involve a multipronged regimen to facilitate early recovery after surgery. Optimizing perioperative fluid therapy is a key component of these efforts. While no technology is without limitations, the majority of the currently available literature suggests esophageal Doppler and arterial waveform analysis to be the most desirable choices to guide fluid administration. Their performance is dependent, in part, on the interpretation of dynamic changes resulting from intrathoracic pressure fluctuations encountered during mechanical ventilation. Evolving practice patterns, such as low tidal volume ventilation as well as the necessity to guide fluid therapy in spontaneously breathing patients, will require further investigation.

  14. Doppler waveform study as indicator of change of portal pressure after administration of octreotide

    PubMed Central

    Haider, Shahbaz; Hussain, Qurban; Tabassum, Sumera; Hussain, Bilal; Durrani, Muhammad Rasheed; Ahmed, Fayyaz

    2016-01-01

    Objective: To estimate the effect of portal pressure lowering drug ‘octreotide’, by observing the Doppler waveform before and after the administration of intravenous bolus of octreotide and thus to assess indirectly its efficacy to lower the portal pressure. Methods: This quassi experimental study was carried out in Medical Department in collaboration with Radiology Department of Jinnah Postgraduate Medical Center Karachi Pakistan from September 10, 2015 to February 5, 2016. Cases were selected from patients admitted in Medical Wards and those attending Medical OPD. Diagnosis of cirrhosis was confirmed by Clinical Examination and Lab & Imaging investigation in Medical Department. Doppler waveform study was done by experienced radiologist in Radiology Department before and after administration of octreotide. Doppler signals were obtained from the right hepatic vein. Waveform tracings were recorded for five seconds and categorized as ‘monophasic’, ‘biphasic’ and ‘triphasic’. Waveform changes from one waveform to other were noted and analyzed. Results: Significant change i.e. from ‘monophasic’ to ‘biphasic’ or ‘biphasic’ to ‘triphasic’ was seen in 56% cases while ‘monophasic’ to ‘triphasic’ was seen in 20% cases. No change was seen in 24% cases. Improvement in waveform reflects lowering of portal vein pressure. Conclusion: Non invasive Hepatic vein Doppler waveform study showed improvement in Doppler waveform after administration of octreotide in 76% cases. Doppler waveform study has the potential of becoming non invasive ‘follow up tool’ of choice for assessing portal pressure in patients having variceal bleed due to portal hypertension. PMID:27648043

  15. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements.

    PubMed

    Alastruey, Jordi; Khir, Ashraf W; Matthys, Koen S; Segers, Patrick; Sherwin, Spencer J; Verdonck, Pascal R; Parker, Kim H; Peiró, Joaquim

    2011-08-11

    The accuracy of the nonlinear one-dimensional (1-D) equations of pressure and flow wave propagation in Voigt-type visco-elastic arteries was tested against measurements in a well-defined experimental 1:1 replica of the 37 largest conduit arteries in the human systemic circulation. The parameters required by the numerical algorithm were directly measured in the in vitro setup and no data fitting was involved. The inclusion of wall visco-elasticity in the numerical model reduced the underdamped high-frequency oscillations obtained using a purely elastic tube law, especially in peripheral vessels, which was previously reported in this paper [Matthys et al., 2007. Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements. J. Biomech. 40, 3476-3486]. In comparison to the purely elastic model, visco-elasticity significantly reduced the average relative root-mean-square errors between numerical and experimental waveforms over the 70 locations measured in the in vitro model: from 3.0% to 2.5% (p<0.012) for pressure and from 15.7% to 10.8% (p<0.002) for the flow rate. In the frequency domain, average relative errors between numerical and experimental amplitudes from the 5th to the 20th harmonic decreased from 0.7% to 0.5% (p<0.107) for pressure and from 7.0% to 3.3% (p<10(-6)) for the flow rate. These results provide additional support for the use of 1-D reduced modelling to accurately simulate clinically relevant problems at a reasonable computational cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. The Vitamin D Assessment (ViDA) Study: design of a randomized controlled trial of vitamin D supplementation for the prevention of cardiovascular disease, acute respiratory infection, falls and non-vertebral fractures.

    PubMed

    Scragg, Robert; Waayer, Debbie; Stewart, Alistair W; Lawes, Carlene M M; Toop, Les; Murphy, Judy; Khaw, Kay-Tee; Camargo, Carlos A

    2016-11-01

    Observational studies have shown that low vitamin D status is associated with an increased risk of cardiovascular disease, acute respiratory infection, falls and non-vertebral fractures. We recruited 5110 Auckland adults, aged 50-84 years, into a randomized, double-blind, placebo-controlled trial to test whether vitamin D supplementation protects against these four major outcomes. The intervention is a monthly cholecalciferol dose of 100,000IU (2.5mg) for an estimated median 3.3 years (range 2.5-4.2) during 2011-2015. Participants were recruited primarily from family practices, plus community groups with a high proportion of Maori, Pacific, or South Asian individuals. The baseline evaluation included medical history, lifestyle, physical measurements (e.g. blood pressure, arterial waveform, lung function, muscle function), and a blood sample (stored at -80°C for later testing). Capsules are being mailed to home addresses with a questionnaire to collect data on non-hospitalized outcomes and to monitor adherence and potential adverse effects. Other data sources include New Zealand Ministry of Health data on mortality, hospitalization, cancer registrations and dispensed pharmaceuticals. A random sample of 438 participants returned for annual collection of blood samples to monitor adherence and safety (hypercalcemia), including repeat physical measurements at 12 months follow-up. The trial will allow testing of a priori hypotheses on several other endpoints including: weight, blood pressure, arterial waveform parameters, heart rate variability, lung function, muscle strength, gait and balance, mood, psoriasis, bone density, and chronic pain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Hemodynamic simulations in coronary aneurysms of a patient with Kawasaki Disease

    NASA Astrophysics Data System (ADS)

    Sengupta, Dibyendu; Marsden, Alison; Burns, Jane

    2010-11-01

    Kawasaki Disease is the leading cause of acquired pediatric heart disease, and can cause large coronary artery aneurysms in untreated cases. A simulation case study has been performed for a 10-year-old male patient with coronary aneurysms. Specialized coronary boundary conditions along with a lumped parameter heart model mimic the interactions between the ventricles and the coronary arteries, achieving physiologic pressure and flow waveforms. Results show persistent low shear stress in the aneurismal regions, and abnormally high shear at the aneurysm neck. Correlation functions have been derived to compare wall shear stress and wall shear stress gradients with recirculation time with the idea of localizing zones of calcification and thrombosis. Results are compared with those of an artificially created normal coronary geometry for the same patient. The long-term goal of this work is to develop links between hemodynamics and thrombotic risk to assist in clinical decision-making.

  18. Beyond HRV: attractor reconstruction using the entire cardiovascular waveform data for novel feature extraction.

    PubMed

    Aston, Philip J; Christie, Mark I; Huang, Ying H; Nandi, Manasi

    2018-03-01

    Advances in monitoring technology allow blood pressure waveforms to be collected at sampling frequencies of 250-1000 Hz for long time periods. However, much of the raw data are under-analysed. Heart rate variability (HRV) methods, in which beat-to-beat interval lengths are extracted and analysed, have been extensively studied. However, this approach discards the majority of the raw data. Our aim is to detect changes in the shape of the waveform in long streams of blood pressure data. Our approach involves extracting key features from large complex data sets by generating a reconstructed attractor in a three-dimensional phase space using delay coordinates from a window of the entire raw waveform data. The naturally occurring baseline variation is removed by projecting the attractor onto a plane from which new quantitative measures are obtained. The time window is moved through the data to give a collection of signals which relate to various aspects of the waveform shape. This approach enables visualisation and quantification of changes in the waveform shape and has been applied to blood pressure data collected from conscious unrestrained mice and to human blood pressure data. The interpretation of the attractor measures is aided by the analysis of simple artificial waveforms. We have developed and analysed a new method for analysing blood pressure data that uses all of the waveform data and hence can detect changes in the waveform shape that HRV methods cannot, which is confirmed with an example, and hence our method goes 'beyond HRV'.

  19. Beyond HRV: attractor reconstruction using the entire cardiovascular waveform data for novel feature extraction

    PubMed Central

    Aston, Philip J; Christie, Mark I; Huang, Ying H; Nandi, Manasi

    2018-01-01

    Abstract Advances in monitoring technology allow blood pressure waveforms to be collected at sampling frequencies of 250–1000 Hz for long time periods. However, much of the raw data are under-analysed. Heart rate variability (HRV) methods, in which beat-to-beat interval lengths are extracted and analysed, have been extensively studied. However, this approach discards the majority of the raw data. Objective: Our aim is to detect changes in the shape of the waveform in long streams of blood pressure data. Approach: Our approach involves extracting key features from large complex data sets by generating a reconstructed attractor in a three-dimensional phase space using delay coordinates from a window of the entire raw waveform data. The naturally occurring baseline variation is removed by projecting the attractor onto a plane from which new quantitative measures are obtained. The time window is moved through the data to give a collection of signals which relate to various aspects of the waveform shape. Main results: This approach enables visualisation and quantification of changes in the waveform shape and has been applied to blood pressure data collected from conscious unrestrained mice and to human blood pressure data. The interpretation of the attractor measures is aided by the analysis of simple artificial waveforms. Significance: We have developed and analysed a new method for analysing blood pressure data that uses all of the waveform data and hence can detect changes in the waveform shape that HRV methods cannot, which is confirmed with an example, and hence our method goes ‘beyond HRV’. PMID:29350622

  20. Advanced life systems hardware development for future missions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An examination of the pulse formation in an externalized vessel suggests that the vessel does not behave as a simple visco-elastic tube. Pressure-pulse waveform transducers are sensitive either to the pressure present at the vessel wall or to the volume of blood filling a region of tissue. Results of comparisons between intra-and extra-vascular pressure recordings suggest that changes in vasomotor tone and transducer-vessel pressures may be the greatest contributors to the divergence of extra-vascular waveforms from intra-vascular waveforms.

  1. Alterations of Blood Flow Through Arteries Following Atherectomy and the Impact on Pressure Variation and Velocity.

    PubMed

    Plourde, Brian D; Vallez, Lauren J; Sun, Biyuan; Nelson-Cheeseman, Brittany B; Abraham, John P; Staniloae, Cezar S

    2016-09-01

    Simulations were made of the pressure and velocity fields throughout an artery before and after removal of plaque using orbital atherectomy plus adjunctive balloon angioplasty or stenting. The calculations were carried out with an unsteady computational fluid dynamic solver that allows the fluid to naturally transition to turbulence. The results of the atherectomy procedure leads to an increased flow through the stenotic zone with a coincident decrease in pressure drop across the stenosis. The measured effect of atherectomy and adjunctive treatment showed decrease the systolic pressure drop by a factor of 2.3. Waveforms obtained from a measurements were input into a numerical simulation of blood flow through geometry obtained from medical imaging. From the numerical simulations, a detailed investigation of the sources of pressure loss was obtained. It is found that the major sources of pressure drop are related to the acceleration of blood through heavily occluded cross sections and the imperfect flow recovery downstream. This finding suggests that targeting only the most occluded parts of a stenosis would benefit the hemodynamics. The calculated change in systolic pressure drop through the lesion was a factor of 2.4, in excellent agreement with the measured improvement. The systolic and cardiac-cycle-average pressure results were compared with measurements made in a multi-patient study treated with orbital atherectomy and adjunctive treatment. The agreements between the measured and calculated systolic pressure drop before and after the treatment were within 3%. This excellent agreement adds further confidence to the results. This research demonstrates the use of orbital atherectomy to facilitate balloon expansion to restore blood flow and how pressure measurements can be utilized to optimize revascularization of occluded peripheral vessels.

  2. The compression and expansion waves of the forward and backward flows: an in-vitro arterial model.

    PubMed

    Feng, J; Khir, A W

    2008-05-01

    Although the propagation of arterial waves of forward flows has been studied before, that of backward flows has not been thoroughly investigated. The aim of this research is to investigate the propagation of the compression and expansion waves of backward flows in terms of wave speed and dissipation, in flexible tubes. The aim is also to compare the propagation of these waves with those of forward flows. A piston pump generated a flow waveform in the shape of approximately half-sinusoid, in flexible tubes (12 mm and 16 mm diameter). The pump produced flow in either the forward or the backward direction by moving the piston forward, in a 'pushing action' or backward, in a 'pulling action', using a graphite brushes d.c. motor. Pressure and flow were measured at intervals of 5 cm along each tube and wave speed was determined using the PU-loop method. The simultaneous measurements of diameter were also taken at the same position of the pressure and flow in the 16 mm tube. Wave intensity analysis was used to determine the magnitude of the pressure and velocity waveforms and wave intensity in the forward and backward directions. Under the same initial experimental conditions, wave speed was higher during the pulling action (backward flow) than during the pushing action (forward flow). The amplitudes of pressure and velocity in the pulling action were significantly higher than those in the pushing action. The tube diameter was approximately 20 per cent smaller in the pulling action than in the pushing action in the 16 mm tube. The compression and expansion waves resulting from the pushing and pulling actions dissipated exponentially along the travelling distance, and their dissipation was greater in the smaller than in the larger tubes. Local wave speed in flexible tubes is flow direction- and wave nature-dependent and is greater with expansion than with compression waves. Wave dissipation has an inverse relationship with the vessel diameter, and dissipation of the expansion wave of the pulling action was greater than that of the pushing action.

  3. A Novel Laboratory Approach for the Demonstration of Hemodynamic Principles: The Arterial Blood Flow Reflection

    ERIC Educational Resources Information Center

    Djelic, Marina; Mazic, Sanja; Zikic, Dejan

    2013-01-01

    In the frame of a laboratory training course for medicine students, a new approach for laboratory exercises has been applied to teach the phenomena of circulation. The exercise program included measurements of radial artery blood flow waveform for different age groups using a noninvasive optical sensor. Arterial wave reflection was identified by…

  4. The effects of aortic coarctation on cerebral hemodynamics and its importance in the etiopathogenesis of intracranial aneurysms.

    PubMed

    Singh, Pankaj K; Marzo, Alberto; Staicu, Cristina; William, Matt G; Wilkinson, Iain; Lawford, Patricia V; Rufenacht, Daniel A; Bijlenga, Philippe; Frangi, Alejandro F; Hose, Rodney; Patel, Umang J; Coley, Stuart C

    2010-01-01

    Hemodynamic changes in the cerebral circulation in presence of coarctation of aorta (CoA) and their significance in the increased intracranial aneurysms (IAs) formation in these patients remain unclear. In the present study, we measured the flow-rate waveforms in the cerebral arteries of a patient with CoA, followed by an analysis of different hemodynamic indices in a coexisting IA. Phase-contrast Magnetic Resonance (pc-MR) volumetric flow-rate (VFR) measurements were performed in cerebral arteries of a 51 years old woman with coexisting CoA, and five healthy volunteers. Numerical predictions of a number of relevant hemodynamic indices were performed in an IA located in sub-clinoid part of left internal carotid artery (ICA) of the patient. Computations were performed using Ansys(®)-CFX(™) solver using the VFR values measured in the patient as boundary conditions (BCs). A second analysis was performed using the average VFR values measured in healthy volunteers. The VFR waveforms measured in the patient and healthy volunteers were compared followed by a comparison of the hemodynamic indices obtained using both approaches. The results are discussed in the background of relevant literature. Mean flow-rates were increased by 27.1% to 54.9% (2.66-5.44 ml/sec) in the cerebral circulation of patients with CoA as compared to healthy volunteers (1.2-3.95 ml/sec). Velocities were increased inside the IA by 35-45%. An exponential rise of 650% was observed in the area affected by high wall shear stress (WSS>15Pa) when flow-rates specific to CoA were used as compared to population average flow-rates. Absolute values of space and time averaged WSS were increased by 65%. Whereas values of maximum pressure on the IA wall were increased by 15% the area of elevated pressure was actually decreased by 50%, reflecting a more focalized jet impingement within the IA of the CoA patient. IAs can develop in patients with CoA several years after the surgical repair. Cerebral flow-rates in CoA patients are significantly higher as compared to average flow-rates in healthy population. The increased supra-physiological WSS (>15Pa), OSI (>0.2) and focalized pressure may play an important role in the etiopathogenesis of IAs in patients with CoA.

  5. The Effects of Aortic Coarctation on Cerebral Hemodynamics and its Importance in the Etiopathogenesis of Intracranial Aneurysms

    PubMed Central

    Singh, Pankaj K; Marzo, Alberto; Staicu, Cristina; William, Matt G; Wilkinson, Iain; Lawford, Patricia V; Rufenacht, Daniel A; Bijlenga, Philippe; Frangi, Alejandro F; Hose, Rodney; Patel, Umang J; Coley, Stuart C

    2010-01-01

    Objectives: Hemodynamic changes in the cerebral circulation in presence of coarctation of aorta (CoA) and their significance in the increased intracranial aneurysms (IAs) formation in these patients remain unclear. In the present study, we measured the flow-rate waveforms in the cerebral arteries of a patient with CoA, followed by an analysis of different hemodynamic indices in a coexisting IA. Materials and Methods: Phase-contrast Magnetic Resonance (pc-MR) volumetric flow-rate (VFR) measurements were performed in cerebral arteries of a 51 years old woman with coexisting CoA, and five healthy volunteers. Numerical predictions of a number of relevant hemodynamic indices were performed in an IA located in sub-clinoid part of left internal carotid artery (ICA) of the patient. Computations were performed using Ansys®-CFX™ solver using the VFR values measured in the patient as boundary conditions (BCs). A second analysis was performed using the average VFR values measured in healthy volunteers. The VFR waveforms measured in the patient and healthy volunteers were compared followed by a comparison of the hemodynamic indices obtained using both approaches. The results are discussed in the background of relevant literature. Results: Mean flow-rates were increased by 27.1% to 54.9% (2.66–5.44 ml/sec) in the cerebral circulation of patients with CoA as compared to healthy volunteers (1.2–3.95 ml/sec). Velocities were increased inside the IA by 35–45%. An exponential rise of 650% was observed in the area affected by high wall shear stress (WSS>15Pa) when flow-rates specific to CoA were used as compared to population average flow-rates. Absolute values of space and time averaged WSS were increased by 65%. Whereas values of maximum pressure on the IA wall were increased by 15% the area of elevated pressure was actually decreased by 50%, reflecting a more focalized jet impingement within the IA of the CoA patient. Conclusions: IAs can develop in patients with CoA several years after the surgical repair. Cerebral flow-rates in CoA patients are significantly higher as compared to average flow-rates in healthy population. The increased supra-physiological WSS (>15Pa), OSI (>0.2) and focalized pressure may play an important role in the etiopathogenesis of IAs in patients with CoA. PMID:22518256

  6. Lower potassium intake is associated with increased wave reflection in young healthy adults

    PubMed Central

    2014-01-01

    Background Increased potassium intake has been shown to lower blood pressure (BP) even in the presence of high sodium consumption however the role of dietary potassium on vascular function has received less attention. The aim of this study was to evaluate the relationship between habitual intake of sodium (Na) and potassium (K) and measures of arterial stiffness and wave reflection. Methods Thirty-six young healthy adults (21 M, 15 F; 24 ± 0.6 yrs; systolic BP 117 ± 2; diastolic BP 63 ± 1 mmHg) recorded their dietary intake for 3 days and collected their urine for 24 hours on the 3rd day. Carotid-femoral pulse wave velocity (PWV) and the synthesis of a central aortic pressure waveform (by radial artery applanation tonometry and generalized transfer function) were performed. Aortic augmentation index (AI), an index of wave reflection, was calculated from the aortic pressure waveform. Results Subjects consumed an average of 2244 kcals, 3763 mg Na, and 2876 mg of K. Average urinary K excretion was 67 ± 5.3 mmol/24 hr, Na excretion was 157 ± 11 mmol/24 hr and the average Na/K excretion ratio was 2.7 ± 0.2. An inverse relationship between AI and K excretion was found (r = -0.323; p < 0.05). A positive relationship between AI and the Na/K excretion ratio was seen (r = 0.318; p < 0.05) while no relationship was noted with Na excretion alone (r = 0.071; p > 0.05). Reflection magnitude, the ratio of reflected and forward waves, was significantly associated with the Na/K excretion ratio (r = 0.365; p <0.05) but not Na or K alone. PWV did not correlate with Na or the Na/K excretion ratio (p > 0.05) but showed an inverse relationship with K excretion (r = -0.308; p < 0.05). Conclusions These data suggest that lower potassium intakes are associated with greater wave reflection and stiffer arteries in young healthy adults. PMID:24775098

  7. Effect of acute high-intensity resistance exercise on optic nerve sheath diameter and ophthalmic artery blood flow pulsatility.

    PubMed

    Lefferts, W K; Hughes, W E; Heffernan, K S

    2015-12-01

    Exertional hypertension associated with acute high-intensity resistance exercise (RE) increases both intravascular and intracranial pressure (ICP), maintaining cerebrovascular transmural pressure. Carotid intravascular pressure pulsatility remains elevated after RE. Whether ICP also remains elevated after acute RE in an attempt to maintain the vessel wall transmural pressure is unknown. Optic nerve sheath diameter (ONSD), a valid proxy of ICP, was measured in 20 participants (6 female; 24 ± 4 yr, 24.2 ± 3.9 kg m(-)(2)) at rest (baseline), following a time-control condition, and following RE (5 sets, 5 repetition maximum bench press, 5 sets 10 repetition maximum biceps curls) using ultrasound. Additionally, intracranial hemodynamic pulsatility index (PI) was assessed in the ophthalmic artery (OA) by using Doppler. Aortic pulse wave velocity (PWV) was obtained from synthesized aortic pressure waveforms obtained via a brachial oscillometric cuff and carotid pulse pressure was measured by using applanation tonometry. Aortic PWV (5.2 ± 0.5-6.0 ± 0.7 m s(-1), P < 0.05) and carotid pulse pressure (45 ± 17-59 ± 19 mm Hg, P < 0.05) were significantly elevated post RE compared with baseline. There were no significant changes in ONSD (5.09 ± 0.7-5.09 ± 0.7 mm, P > 0.05) or OA flow PI (1.35 ± 0.2-1.38 ± 0.3, P > 0.05) following acute RE. In conclusion, during recovery from acute high-intensity RE, there are increases in aortic stiffness and extracranial pressure pulsatility in the absence of changes in ICP and flow pulsatility. These findings may have implications for alterations in cerebral transmural pressure and cerebral aneurysmal wall stress following RE.

  8. A Mock Circulatory System Incorporating a Compliant 3D-Printed Anatomical Model to Investigate Pulmonary Hemodynamics.

    PubMed

    Knoops, Paul G M; Biglino, Giovanni; Hughes, Alun D; Parker, Kim H; Xu, Linzhang; Schievano, Silvia; Torii, Ryo

    2017-07-01

    A realistic mock circulatory system (MCS) could be a valuable in vitro testbed to study human circulatory hemodynamics. The objective of this study was to design a MCS replicating the pulmonary arterial circulation, incorporating an anatomically representative arterial model suitable for testing clinically relevant scenarios. A second objective of the study was to ensure the system's compatibility with magnetic resonance imaging (MRI) for additional measurements. A latex pulmonary arterial model with two generations of bifurcations was manufactured starting from a 3D-printed mold reconstructed from patient data. The model was incorporated into a MCS for in vitro hydrodynamic measurements. The setup was tested under physiological pulsatile flow conditions and results were evaluated using wave intensity analysis (WIA) to investigate waves traveling in the arterial system. Increased pulmonary vascular resistance (IPVR) was simulated as an example of one pathological scenario. Flow split between right and left pulmonary artery was found to be realistic (54 and 46%, respectively). No substantial difference in pressure waveform was observed throughout the various generations of bifurcations. Based on WIA, three main waves were identified in the main pulmonary artery (MPA), that is, forward compression wave, backward compression wave, and forward expansion wave. For IPVR, a rise in mean pressure was recorded in the MPA, within the clinical range of pulmonary arterial hypertension. The feasibility of using the MCS in the MRI scanner was demonstrated with the MCS running 2 h consecutively while acquiring preliminary MRI data. This study shows the development and verification of a pulmonary MCS, including an anatomically correct, compliant latex phantom. The setup can be useful to explore a wide range of hemodynamic questions, including the development of patient- and pathology-specific models, considering the ease and low cost of producing rapid prototyping molds, and the versatility of the setup for invasive and noninvasive (i.e., MRI) measurements. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. A Mock Circulatory System Incorporating a Compliant 3D-Printed Anatomical Model to Investigate Pulmonary Hemodynamics

    PubMed Central

    Knoops, Paul G.M.; Biglino, Giovanni; Hughes, Alun D.; Parker, Kim H.; Xu, Linzhang; Schievano, Silvia; Torii, Ryo

    2017-01-01

    A realistic mock circulatory system (MCS) could be a valuable in vitro testbed to study human circulatory hemodynamics. The objective of this study was to design a MCS replicating the pulmonary arterial circulation, incorporating an anatomically representative arterial model suitable for testing clinically relevant scenarios. A second objective of the study was to ensure the system's compatibility with magnetic resonance imaging (MRI) for additional measurements. A latex pulmonary arterial model with two generations of bifurcations was manufactured starting from a 3D-printed mold reconstructed from patient data. The model was incorporated into a MCS for in vitro hydrodynamic measurements. The setup was tested under physiological pulsatile flow conditions and results were evaluated using wave intensity analysis (WIA) to investigate waves traveling in the arterial system. Increased pulmonary vascular resistance (IPVR) was simulated as an example of one pathological scenario. Flow split between right and left pulmonary artery was found to be realistic (54 and 46%, respectively). No substantial difference in pressure waveform was observed throughout the various generations of bifurcations. Based on WIA, three main waves were identified in the main pulmonary artery (MPA), that is, forward compression wave, backward compression wave, and forward expansion wave. For IPVR, a rise in mean pressure was recorded in the MPA, within the clinical range of pulmonary arterial hypertension. The feasibility of using the MCS in the MRI scanner was demonstrated with the MCS running 2 h consecutively while acquiring preliminary MRI data. This study shows the development and verification of a pulmonary MCS, including an anatomically correct, compliant latex phantom. The setup can be useful to explore a wide range of hemodynamic questions, including the development of patient- and pathology-specific models, considering the ease and low cost of producing rapid prototyping molds, and the versatility of the setup for invasive and noninvasive (i.e., MRI) measurements. PMID:27925228

  10. Maternal Blood Pressure During Pregnancy and Early Childhood Blood Pressures in the Offspring

    PubMed Central

    Lim, Wai-Yee; Lee, Yung-Seng; Yap, Fabian Kok-Peng; Aris, Izzudin Mohd; Ngee, Lek; Meaney, Michael; Gluckman, Peter D.; Godfrey, Keith M.; Kwek, Kenneth; Chong, Yap-Seng; Saw, Seang-Mei; Pan, An

    2015-01-01

    Abstract Although epidemiological studies suggest that offspring of women with preeclampsia are at increased risk to higher blood pressures and cardiovascular disease, little is known about the nature of blood pressures between the mother and her offspring. As blood pressures comprise of both pulsatile (systolic blood pressure [SBP] and pulse pressure [PP]) and stable (diastolic blood pressure [DBP]) components, and they differ between central and peripheral sites, we sought to examine maternal peripheral and central blood pressure components in relation to offspring early childhood blood pressures. A prospective birth cohort of 567 Chinese, Malay, and Indian mother–offspring with complete blood pressure information were studied. Maternal brachial artery SBP, DBP, and PP were measured at 26 to 28 weeks gestation; and central SBP and PP were estimated from radial artery waveforms. Offspring brachial artery SBP, DBP, and PP were measured at 3 years of age. Associations between continuous variables of maternal blood pressures (peripheral SBP, DBP, PP, central SBP, and PP) and offspring blood pressures (peripheral SBP, DBP, and PP) were examined using multiple linear regression with adjustment for maternal characteristics (age, education level, parity, smoking status, alcohol consumption and physical activity during pregnancy, and pre-pregnancy BMI) and offspring characteristics (sex, ethnicity, BMI, and height at 3 years of age). In the multivariate models, offspring peripheral SBP increased by 0.08 (95% confidence interval 0.00–0.17, P = 0.06) mmHg with every 1-mmHg increase in maternal central SBP, and offspring peripheral PP increased by 0.10 (0.01–0.18, P = 0.03) mmHg for every 1-mmHg increase in maternal central PP. The relations of maternal-offspring peripheral blood pressures (SBP, DBP, and PP) were positive but not statistically significant, and the corresponding values were 0.05 (−0.03 to 0.13; P = 0.21), 0.03 (−0.04 to 0.10; P = 0.35), and 0.05 (−0.02 to 0.13; P = 0.14), respectively. Maternal central pulsatile blood pressure components (SBP and PP) during pregnancy are associated with higher blood pressures in the offspring. This positive correlation is already evident at 3-years old. Studies are needed to further evaluate the effects of maternal central pulsatile blood pressure components during pregnancy and long-term cardiovascular health in the offspring. PMID:26559279

  11. Decoding carotid pressure waveforms recorded by laser Doppler vibrometry: Effects of rebreathing

    NASA Astrophysics Data System (ADS)

    Casaccia, Sara; Sirevaag, Erik J.; Richter, Edward; O'Sullivan, Joseph A.; Scalise, Lorenzo; Rohrbaugh, John W.

    2014-05-01

    The principal goal of this study was to assess the capability of the laser Doppler vibrometry (LDV) method for assessing cardiovascular activity. A rebreathing task was used to provoke changes within individuals in cardiac and vascular performance. The rebreathing task is known to produce multiple effects, associated with changes in autonomic drive as well as alterations in blood gases. The rise in CO2 (hypercapnia), in particular, produces changes in the cerebral and systemic circulation. The results from a rebreathing task (involving rebreathing the same air in a rubber bag) are presented for 35 individuals. The LDV pulse was measured from a site overlying the carotid artery. For comparison and validation purposes, several conventional measures of cardiovascular function were also obtained, with an emphasis on the electrocardiogram (ECG), continuous blood pressure (BP) from the radial artery, and measures of myocardial performance using impedance cardiography (ICG). During periods of active rebreathing, ventilation increased. The conventional cardiovascular effects included increased mean arterial BP and systemic vascular resistance, and decreased cardiac stroke volume (SV) and pulse transit time (PTT). These effects were consistent with a pattern of α-adrenergic stimulation. During the immediate post-rebreathing segments, in contrast, mean BP was largely unaffected but pulse BP increased, as did PTT and SV, whereas systemic vascular resistance decreased-a pattern consistent with β-adrenergic effects in combination with the direct effects of hypercapnia on the vascular system. Measures of cardiovascular activity derived from the LDV pulse velocity and displacement waveforms revealed patterns of changes that mirrored the results obtained using conventional measures. In particular, the ratio of the maximum early peak in the LDV velocity pulse to the maximum amplitude of the LDV displacement pulse (in an early systolic interval) closely mirrored the conventional SV effects. Additionally, changes in an augmentation ratio (computed as the maximum amplitude of the LDV displacement pulse during systole / amplitude at the end of the incident wave) were very similar to changes in systemic vascular resistance. Heart rates measured from the ECG and LDV were nearly identical. These preliminary results suggest that measures derived using the non-contact LDV technique can provide surrogate measures for those obtained using impedance cardiography.

  12. Predictive value of uterine Doppler waveform during pregnancies complicated by diabetes.

    PubMed

    Haddad, B; Uzan, M; Tchobroutsky, C; Uzan, S; Papiernik-Berkhauer, E

    1993-01-01

    Diabetes, whether or not it is insulin deficient, is frequently associated with vascular complications during pregnancies. It is accepted nowadays that the uterine artery velocity waveform is predictive concerning pregnancy-induced hypertension (PIH) and its complications. It thus seemed interesting to analyse the predictivity of vascular complications of diabetes by using uterine artery velocity waveforms. We have thus explored 37 diabetic patients [group 1: insulin-deficient diabetes (IDD), n = 10; group 2: gestational IDD, n = 6; and gestational non-IDD, n = 21). We have found vascular complications for 10 patients, divided between all 2 groups: 2 pre-eclampsia, 2 fetal suffering before any labour, 2 cases of intra-uterine growth retardation (including a trisomy 18) and 5 PIH. The uterine artery velocimetry measurement has been found to be pathological 5 times, and always in patients who later developed vascular complications. Among this selected population and excluding the trisomy 18, the sensitivity is of 44.5%, the specificity of 100%, the positive predictive value of 100%, and the negative predictive value of 84.3%. If these results are confirmed, this examination could be an excellent marker of the vascular risk and thus would have its place during systematic survey of pregnancies complicated by diabetes.

  13. A Computational Model for Biomechanical Effects of Arterial Compliance Mismatch

    PubMed Central

    He, Fan; Hua, Lu; Gao, Li-jian

    2015-01-01

    Background. Compliance mismatch is a negative factor and it needs to be considered in arterial bypass grafting. Objective. A computational model was employed to investigate the effects of arterial compliance mismatch on blood flow, wall stress, and deformation. Methods. The unsteady blood flow was assumed to be laminar, Newtonian, viscous, and incompressible. The vessel wall was assumed to be linear elastic, isotropic, and incompressible. The fluid-wall interaction scheme was constructed using the finite element method. Results. The results show that there are identical wall shear stress waveforms, wall stress, and strain waveforms at different locations. The comparison of the results demonstrates that wall shear stresses and wall strains are higher while wall stresses are lower at the more compliant section. The differences promote the probability of intimal thickening at some locations. Conclusions. The model is effective and gives satisfactory results. It could be extended to all kinds of arteries with complicated geometrical and material factors. PMID:27019580

  14. A Compressed Sensing Based Method for Reducing the Sampling Time of A High Resolution Pressure Sensor Array System

    PubMed Central

    Sun, Chenglu; Li, Wei; Chen, Wei

    2017-01-01

    For extracting the pressure distribution image and respiratory waveform unobtrusively and comfortably, we proposed a smart mat which utilized a flexible pressure sensor array, printed electrodes and novel soft seven-layer structure to monitor those physiological information. However, in order to obtain high-resolution pressure distribution and more accurate respiratory waveform, it needs more time to acquire the pressure signal of all the pressure sensors embedded in the smart mat. In order to reduce the sampling time while keeping the same resolution and accuracy, a novel method based on compressed sensing (CS) theory was proposed. By utilizing the CS based method, 40% of the sampling time can be decreased by means of acquiring nearly one-third of original sampling points. Then several experiments were carried out to validate the performance of the CS based method. While less than one-third of original sampling points were measured, the correlation degree coefficient between reconstructed respiratory waveform and original waveform can achieve 0.9078, and the accuracy of the respiratory rate (RR) extracted from the reconstructed respiratory waveform can reach 95.54%. The experimental results demonstrated that the novel method can fit the high resolution smart mat system and be a viable option for reducing the sampling time of the pressure sensor array. PMID:28796188

  15. Spiral blood flows in an idealized 180-degree curved artery model

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Kulkarni, Varun; Plesniak, Michael W.

    2017-11-01

    Understanding of cardiovascular flows has been greatly advanced by the Magnetic Resonance Velocimetry (MRV) technique and its potential for three-dimensional velocity encoding in regions of anatomic interest. The MRV experiments were performed on a 180-degree curved artery model using a Newtonian blood analog fluid at the Richard M. Lucas Center at Stanford University employing a 3 Tesla General Electric (Discovery 750 MRI system) whole body scanner with an eight-channel cardiac coil. Analysis in two regions of the model-artery was performed for flow with Womersley number=4.2. In the entrance region (or straight-inlet pipe) the unsteady pressure drop per unit length, in-plane vorticity and wall shear stress for the pulsatile, carotid artery-based flow rate waveform were calculated. Along the 180-degree curved pipe (curvature ratio =1/7) the near-wall vorticity and the stretching of the particle paths in the vorticity field are visualized. The resultant flow behavior in the idealized curved artery model is associated with parameters such as Dean number and Womersley number. Additionally, using length scales corresponding to the axial and secondary flow we attempt to understand the mechanisms leading to the formation of various structures observed during the pulsatile flow cycle. Supported by GW Center for Biomimetics and Bioinspired Engineering (COBRE), MRV measurements in collaboration with Prof. John K. Eaton and, Dr. Chris Elkins at Stanford University.

  16. Doppler velocity measurements from large and small arteries of mice

    PubMed Central

    Reddy, Anilkumar K.; Madala, Sridhar; Entman, Mark L.; Michael, Lloyd H.; Taffet, George E.

    2011-01-01

    With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans. PMID:21572013

  17. Modeling digital pulse waveforms by solving one-dimensional Navier-stokes equations.

    PubMed

    Fedotov, Aleksandr A; Akulova, Anna S; Akulov, Sergey A

    2016-08-01

    Mathematical modeling for composition distal arterial pulse wave in the blood vessels of the upper limbs was considered. Formation of distal arterial pulse wave is represented as a composition of forward and reflected pulse waves propagating along the arterial vessels. The formal analogy between pulse waves propagation along the human arterial system and the propagation of electrical oscillations in electrical transmission lines with distributed parameters was proposed. Dependencies of pulse wave propagation along the human arterial system were obtained by solving the one-dimensional Navier-Stokes equations for a few special cases.

  18. Pulsatility Index as a Diagnostic Parameter of Reciprocating Wall Shear Stress Parameters in Physiological Pulsating Waveforms

    PubMed Central

    Avrahami, Idit; Kersh, Dikla

    2016-01-01

    Arterial wall shear stress (WSS) parameters are widely used for prediction of the initiation and development of atherosclerosis and arterial pathologies. Traditional clinical evaluation of arterial condition relies on correlations of WSS parameters with average flow rate (Q) and heart rate (HR) measurements. We show that for pulsating flow waveforms in a straight tube with flow reversals that lead to significant reciprocating WSS, the measurements of HR and Q are not sufficient for prediction of WSS parameters. Therefore, we suggest adding a third quantity—known as the pulsatility index (PI)—which is defined as the peak-to-peak flow rate amplitude normalized by Q. We examine several pulsating flow waveforms with and without flow reversals using a simulation of a Womersley model in a straight rigid tube and validate the simulations through experimental study using particle image velocimetry (PIV). The results indicate that clinically relevant WSS parameters such as the percentage of negative WSS (P[%]), oscillating shear index (OSI) and the ratio of minimum to maximum shear stress rates (min/max), are better predicted when the PI is used in conjunction with HR and Q. Therefore, we propose to use PI as an additional and essential diagnostic quantity for improved predictability of the reciprocating WSS. PMID:27893801

  19. Features of the non-contact carotid pressure waveform: Cardiac and vascular dynamics during rebreathing

    NASA Astrophysics Data System (ADS)

    Casaccia, S.; Sirevaag, E. J.; Richter, E. J.; O'Sullivan, J. A.; Scalise, L.; Rohrbaugh, J. W.

    2016-10-01

    This report amplifies and extends prior descriptions of the use of laser Doppler vibrometry (LDV) as a method for assessing cardiovascular activity, on a non-contact basis. A rebreathing task (n = 35 healthy individuals) was used to elicit multiple effects associated with changes in autonomic drive as well as blood gases including hypercapnia. The LDV pulse was obtained from two sites overlying the carotid artery, separated by 40 mm. A robust pulse signal was obtained from both sites, in accord with the well-described changes in carotid diameter over the blood pressure cycle. Emphasis was placed on extracting timing measures from the LDV pulse, which could serve as surrogate measures of pulse wave velocity (PWV) and the associated arterial stiffness. For validation purposes, a standard measure of pulse transit time (PTT) to the radial artery was obtained using a tonometric sensor. Two key measures of timing were extracted from the LDV pulse. One involved the transit time along the 40 mm distance separating the two LDV measurement sites. A second measure involved the timing of a late feature of the LDV pulse contour, which was interpreted as reflection wave latency and thus a measure of round-trip travel time. Both LDV measures agreed with the conventional PTT measure, in disclosing increased PWV during periods of active rebreathing. These results thus provide additional evidence that measures based on the non-contact LDV technique might provide surrogate measures for those obtained using conventional, more obtrusive assessment methods that require attached sensors.

  20. Mathematical Modelling of CSF Pulsatile Flow in Aqueduct Cerebri.

    PubMed

    Czosnyka, Zofia; Kim, Dong-Joo; Balédent, Olivier; Schmidt, Eric A; Smielewski, Peter; Czosnyka, Marek

    2018-01-01

    The phase-contrast MRI technique permits the non-invasive assessment of CSF movements in cerebrospinal fluid cavities of the central nervous system. Of particular interest is pulsatile cerebrospinal fluid (CSF) flow through the aqueduct cerebri. It is allegedly increased in hydrocephalus, having potential diagnostic value, although not all scientific reports contain unequivocally positive conclusions. For the mathematical simulation of CSF flow, we used a computational model of cerebrospinal blood/fluid circulation designed by a former student as his PhD project. With this model, cerebral blood flow and CSF may be simulated in various vessels using a system of non-linear differential equations as time-varying signals. The amplitude of CSF flow seems to be positively related to the amplitude of pulse waveforms of intracranial pressure (ICP) in situations where mean ICP increases, such as during simulated infusion tests and following step increases of resistance to CSF outflow. An additional positive association between the pulse amplitude of ICP and CSF flow can be seen during simulated increases in the amplitude of arterial pulses (without changes in mean arterial pressure, MAP). The opposite effect can be observed during step increases in the resistance of the aqueduct cerebri and with decreasing elasticity of the system, where the CSF flow amplitude and the ICP pulse amplitude are related inversely. Vasodilatation caused by both gradual decreases in MAP and by increases in PaCO2 provokes an elevation in the observed amplitude of pulsatile CSF flow. Preliminary results indicate that the pulsations of CSF flow may carry information about both CSF-circulatory and cerebral vasogenic components. In most cases, the pulsations of CSF flow are positively related to the pulse amplitudes of both arterial pressure and ICP and to a degree of cerebrovascular dilatation.

  1. Goal-Directed Fluid Therapy Guided by Cardiac Monitoring During High-Risk Abdominal Surgery in Adult Patients: Cost-Effectiveness Analysis of Esophageal Doppler and Arterial Pulse Pressure Waveform Analysis.

    PubMed

    Legrand, Guillaume; Ruscio, Laura; Benhamou, Dan; Pelletier-Fleury, Nathalie

    2015-07-01

    Several minimally invasive techniques for cardiac output monitoring such as the esophageal Doppler (ED) and arterial pulse pressure waveform analysis (APPWA) have been shown to improve surgical outcomes compared with conventional clinical assessment (CCA). To evaluate the cost-effectiveness of these techniques in high-risk abdominal surgery from the perspective of the French public health insurance fund. An analytical decision model was constructed to compare the cost-effectiveness of ED, APPWA, and CCA. Effectiveness data were defined from meta-analyses of randomized clinical trials. The clinical end points were avoidance of hospital mortality and avoidance of major complications. Hospital costs were estimated by the cost of corresponding diagnosis-related groups. Both goal-directed therapy strategies evaluated were more effective and less costly than CCA. Perioperative mortality and the rate of major complications were reduced by the use of ED and APPWA. Cost reduction was mainly due to the decrease in the rate of major complications. APPWA was dominant compared with ED in 71.6% and 27.6% and dominated in 23.8% and 20.8% of the cases when the end point considered was "major complications avoided" and "death avoided," respectively. Regarding cost per death avoided, APPWA was more likely to be cost-effective than ED in a wide range of willingness to pay. Cardiac output monitoring during high-risk abdominal surgery is cost-effective and is associated with a reduced rate of hospital mortality and major complications, whatever the device used. The two devices evaluated had negligible costs compared with the observed reduction in hospital costs. Our comparative studies suggest a larger effect with APPWA that needs to be confirmed by further studies. Copyright © 2015 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  2. Cell-free fetal DNA concentration in plasma of patients with abnormal uterine artery Doppler waveform and intrauterine growth restriction--a pilot study.

    PubMed

    Caramelli, Elisabetta; Rizzo, Nicola; Concu, Manuela; Simonazzi, Giuliana; Carinci, Paolo; Bondavalli, Corrado; Bovicelli, Luciano; Farina, Antonio

    2003-05-01

    To evaluate if an increased amount of fetal DNA concentration can be found in women screened positive for intrauterine growth restriction because of abnormal uterine artery Doppler waveforms. We enrolled eight pregnant women (each bearing a male fetus), with the evidence of abnormal uterine artery Doppler waveforms, and 16 control patients for a case-control study matched for gestational age (1 : 2). Uterine artery Doppler was carried out at 20 to 35 weeks' gestation (median 29). The mean uterine artery resistance index (RI) was subsequently calculated, and a value >0.6 was considered positive for the clinical features of pre-eclampsia. The SRY locus was used to determine the amount of male fetal DNA in the maternal plasma at the time of Doppler analysis. Two controls (normal Doppler) were excluded from the final analysis because they had a pre-term delivery. One case (abnormal Doppler) had evidence of intrauterine growth restriction at the time of enrolment. In four out of eight cases (abnormal Doppler), intrauterine growth restriction was subsequently observed. Multiples of median (MoM) conversion of the fetal DNA values showed an increase of 1.81 times in the cases when compared to the controls. An increase of 2.16 times was instead observed for the cases with a growth-restricted fetus (5 cases out of 8) in comparison with the controls (14 cases). In subjects positive to uterine artery Doppler velocimetry analysis (Doppler analysis for pre-eclampsia screening), the fetal DNA concentration is higher than expected, in the absence of any other clinical feature. Since the increase in fetal DNA seems to be related to the presence or to the future development of intrauterine growth restriction, this paper suggests a possible integration between ultrasound and molecular markers for predicting the disease in some cases. Copyright 2003 John Wiley & Sons, Ltd.

  3. Reliability of pulse waveform separation analysis: effects of posture and fasting.

    PubMed

    Stoner, Lee; Credeur, Daniel; Fryer, Simon; Faulkner, James; Lambrick, Danielle; Gibbs, Bethany Barone

    2017-03-01

    Oscillometric pulse wave analysis devices enable, with relative simplicity and objectivity, the measurement of central hemodynamic parameters. The important parameters are central blood pressures and indices of arterial wave reflection, including wave separation analysis (backward pressure component Pb and reflection magnitude). This study sought to determine whether the measurement precision (between-day reliability) of Pb and reflection magnitude: exceeds the criterion for acceptable reliability; and is affected by posture (supine, seated) and fasting state. Twenty healthy adults (50% female, 27.9 years, 24.2 kg/m) were tested on six different mornings: 3 days fasted, 3 days nonfasted condition. On each occasion, participants were tested in supine and seated postures. Oscillometric pressure waveforms were recorded on the left upper arm. The criterion intra-class correlation coefficient value of 0.75 was exceeded for Pb (0.76) and reflection magnitude (0.77) when participants were assessed under the combined supine-fasted condition. The intra-class correlation coefficient was lowest for Pb in seated-nonfasted condition (0.57), and lowest for reflection magnitude in the seated-fasted condition (0.56). For Pb, the smallest detectible change that must be exceeded in order for a significant change to occur in an individual was 2.5 mmHg, and for reflection magnitude, the smallest detectable change was 8.5%. Assessments of Pb and reflection magnitude are as follows: exceed the criterion for acceptable reliability; and are most reliable when participants are fasted in a supine position. The demonstrated reliability suggests sufficient precision to detect clinically meaningful changes in reflection magnitude and Pb.

  4. Rapid Speed Modulation of a Rotary Total Artificial Heart Impeller.

    PubMed

    Kleinheyer, Matthias; Timms, Daniel L; Tansley, Geoffrey D; Nestler, Frank; Greatrex, Nicholas A; Frazier, O Howard; Cohn, William E

    2016-09-01

    Unlike the earlier reciprocating volume displacement-type pumps, rotary blood pumps (RBPs) typically operate at a constant rotational speed and produce continuous outflow. When RBP technology is used in constructing a total artificial heart (TAH), the pressure waveform that the TAH produces is flat, without the rise and fall associated with a normal arterial pulse. Several studies have suggested that pulseless circulation may impair microcirculatory perfusion and the autoregulatory response and may contribute to adverse events such as gastrointestinal bleeding, arteriovenous malformations, and pump thrombosis. It may therefore be beneficial to attempt to reproduce pulsatile output, similar to that generated by the native heart, by rapidly modulating the speed of an RBP impeller. The choice of an appropriate speed profile and control strategy to generate physiologic waveforms while minimizing power consumption and blood trauma becomes a challenge. In this study, pump operation modes with six different speed profiles using the BiVACOR TAH were evaluated in vitro. These modes were compared with respect to: hemodynamic pulsatility, which was quantified as surplus hemodynamic energy (SHE); maximum rate of change of pressure (dP/dt); pulse power index; and motor power consumption as a function of pulse pressure. The results showed that the evaluated variables underwent different trends in response to changes in the speed profile shape. The findings indicated a possible trade-off between SHE levels and flow rate pulsatility related to the relative systolic duration in the speed profile. Furthermore, none of the evaluated measures was sufficient to fully characterize hemodynamic pulsatility. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Weak shock propagation through a turbulent atmosphere

    NASA Technical Reports Server (NTRS)

    Pierce, Allan D.; Sparrow, Victor W.

    1990-01-01

    Consideration is given to the propagation through turbulence of transient pressure waveforms whose initial onset at any given point is an abrupt shock. The work is motivated by the desire to eventually develop a mathematical model for predicting statistical features, such as peak overpressures and spike widths, of sonic booms generated by supersonic aircraft. It is argued that the transient waveform received at points where x greater than 0 will begin with a pressure jump and a formulation is developed for predicting the amount of this jump and the time derivatives of the pressure waveform immediately following the jump.

  6. Hemodynamic effects of innominate artery occlusive disease on anterior cerebral artery.

    PubMed

    Tan, Teng-Yeow; Lien, Li-Ming; Schminke, Ulf; Tesh, Paul; Reynolds, Patrick S; Tegeler, Charles H

    2002-01-01

    Stenoses of the innominate artery (IA) may affect flow conditions in the carotid arteries. However, alternating flow in ipsilateral anterior cerebral artery (ACA) due to IA stenosis is extremely rare. A 49-year-old woman who was evaluated for symptomatic cerebrovascular disease presented with right latent subclavian and right carotid system steal. Transcranial Doppler examination displayed systolic deceleration wave-forms in the right terminal internal carotid artery and alternating flow in the right ACA. Magnetic resonance angiography demonstrated tight stenosis of the right IA. For a thorough study of the hemodynamic effects of IA stenosis, a combination of duplex and transcranial Doppler examination is required.

  7. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure.

    PubMed

    Scholze, Alexandra; Rinder, Christiane; Beige, Joachim; Riezler, Reiner; Zidek, Walter; Tepel, Martin

    2004-01-27

    Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure. We investigated the metabolic and hemodynamic effects of intravenous administration of acetylcysteine, a thiol-containing antioxidant, during a hemodialysis session in a prospective, randomized, placebo-controlled crossover study in 20 patients with end-stage renal failure. Under control conditions, a hemodialysis session reduced plasma homocysteine concentration to 58+/-22% predialysis (mean+/-SD), whereas in the presence of acetylcysteine, the plasma homocysteine concentration was significantly more reduced to 12+/-7% predialysis (P<0.01). The reduction of plasma homocysteine concentration was significantly correlated with a reduction of pulse pressure. A 10% decrease in plasma homocysteine concentration was associated with a decrease of pulse pressure by 2.5 mm Hg. Analysis of the second derivative of photoplethysmogram waveform showed changes of arterial wave reflectance during hemodialysis in the presence of acetylcysteine, indicating improved endothelial function. Acetylcysteine-dependent increase of homocysteine removal during a hemodialysis session improves plasma homocysteine concentration, pulse pressure, and endothelial function in patients with end-stage renal failure.

  8. Control of end-tidal PCO2 reduces middle cerebral artery blood velocity variability: implications for physiological neuroimaging.

    PubMed

    Harris, Ashley D; Ide, Kojiro; Poulin, Marc J; Frayne, Richard

    2006-02-15

    Breath-by-breath variability of the end-tidal partial pressure of CO2 (Pet(CO2)) has been shown to be associated with cerebral blood flow (CBF) fluctuations. These fluctuations can impact neuroimaging techniques that depend on cerebrovascular blood flow. We hypothesized that controlling Pet(CO2) would reduce CBF variability. Dynamic end-tidal forcing was used to control Pet(CO2) at 1.5 mm Hg above the resting level and to hold the end-tidal partial pressure of oxygen (Pet(O2)) at the resting level. Peak blood velocity in the middle cerebral artery (MCA) was measured by transcranial Doppler ultrasound (TCD) as an index of CBF. Blood velocity parameters and timing features were determined on each waveform and the variance of these parameters was compared between Normal (air breathing) and Forcing (end-tidal gas control) sessions. The variability of all velocity parameters was significantly reduced in the Forcing session. In particular, the variability of the average velocity over the cardiac cycle was decreased by 18.2% (P < 0.001). For the most part, the variability of the timing parameters was unchanged. Thus, we conclude that controlling Pet(CO2) is effective in reducing CBF variability, which would have important implications for physiologic neuroimaging.

  9. Design of a cost-effective, hemodynamically adjustable model for resuscitative endovascular balloon occlusion of the aorta (REBOA) simulation.

    PubMed

    Keller, Benjamin A; Salcedo, Edgardo S; Williams, Timothy K; Neff, Lucas P; Carden, Anthony J; Li, Yiran; Gotlib, Oren; Tran, Nam K; Galante, Joseph M

    2016-09-01

    Resuscitative endovascular balloon occlusion of the aorta (REBOA) is an adjunct technique for salvaging patients with noncompressible torso hemorrhage. Current REBOA training paradigms require large animals, virtual reality simulators, or human cadavers for acquisition of skills. These training strategies are expensive and resource intensive, which may prevent widespread dissemination of REBOA. We have developed a low-cost, near-physiologic, pulsatile REBOA simulator by connecting an anatomic vascular circuit constructed out of latex and polyvinyl chloride tubing to a commercially available pump. This pulsatile simulator is capable of generating cardiac outputs ranging from 1.7 to 6.8 L/min with corresponding arterial blood pressures of 54 to 226/14 to 121 mmHg. The simulator accommodates a 12 French introducer sheath and a CODA balloon catheter. Upon balloon inflation, the arterial waveform distal to the occlusion flattens, distal pulsation within the simulator is lost, and systolic blood pressures proximal to the balloon catheter increase by up to 62 mmHg. Further development and validation of this simulator will allow for refinement, reduction, and replacement of large animal models, costly virtual reality simulators, and perfused cadavers for training purposes. This will ultimately facilitate the low-cost, high-fidelity REBOA simulation needed for the widespread dissemination of this life-saving technique.

  10. Placental disease and abnormal umbilical artery Doppler waveforms in trisomy 21 pregnancy: A case-control study.

    PubMed

    Corry, Edward; Mone, Fionnuala; Segurado, Ricardo; Downey, Paul; McParland, Peter; McAuliffe, Fionnuala M; Mooney, Eoghan E

    2016-11-01

    The objectives of this study were firstly to determine the proportion of placental pathology in fetuses affected by trisomy 21 (T21) using current pathological descriptive terminology and secondly to examine if a correlation existed between the finding of an abnormal umbilical artery Doppler (UAD) waveform, the presence of T21 and defined placental pathological categories. This case-control study assessed singleton fetuses with karyotypically confirmed trisomy 21 where placental histopathology had been conducted from 2003 to 2015 inclusive, within a university tertiary obstetric centre. This was compared with unselected normal singleton control pregnancies matched within a week of gestation at delivery. Data included birthweight centiles and placental histopathology. Comparisons of Doppler findings across placental pathological categories were performed using statistical analysis. 104 cases were analysed; 52 cases of trisomy 21 and 52 controls. Fetal vascular malperfusion (48.1% vs. 5.8%, p = 0.001) and maturation defects (39.2% vs. 15.7%, p = 0.023) were more common in trisomy 21 placentas. Compared with controls, trisomy 21 fetuses were more likely to have shorter umbilical cords (p = 0.001) and had more UAD abnormalities. Amongst T21 pregnancies, umbilical artery Doppler abnormalities are associated with the presence of maternal vascular malperfusion. Fetal vascular malperfusion and maturation defects are more common in trisomy 21 placentas. Abnormal umbilical artery Doppler waveforms are more common in T21 and are associated with maternal vascular malperfusion. Placental disease may explain the increased rate of intrauterine death in T21. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Real-time display of flow-pressure-volume loops.

    PubMed

    Morozoff, P E; Evans, R W

    1992-01-01

    Graphic display of respiratory waveforms can be valuable for monitoring the progress of ventilated patients. A system has been developed that can display flow-pressure-volume loops as derived from a patient's respiratory circuit in real time. It can also display, store, print, and retrieve ventilatory waveforms. Five loops can be displayed at once: current, previous, reference, "ideal," and previously saved. Two components, the data-display device (DDD) and the data-collection device (DCD), comprise the system. An IBM 286/386 computer with a graphics card (VGA) and bidirectional parallel port is used for the DDD; an eight-bit microprocessor card and an A/D convertor card make up the DCD. A real-time multitasking operating system was written to control the DDD, while the DCD operates from in-line assembly code. The DCD samples the pressure and flow sensors at 100 Hz and looks for a complete flow waveform pattern based on flow slope. These waveforms are then passed to the DDD via the mutual parallel port. Within the DDD a process integrates the flow to create a volume signal and performs a multilinear regression on the pressure, flow, and volume data to calculate the elastance, resistance, pressure offset, and coefficient of determination. Elastance, resistance, and offset are used to calculate Pr and Pc where: Pr[k] = P[k]-offset-(elastance.V[k]) and Pc[k] = P[k]-offset-(resistance.F[k]). Volume vs. Pc and flow vs. Pr can be displayed in real time. Patient data from previous clinical tests were loaded into the device to verify the software calculations. An analog waveform generator was used to simulate flow and pressure waveforms that validated the system.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Unsteady blade pressures on a propfan at takeoff: Euler analysis and flight data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.

    1991-01-01

    The unsteady blade pressures due to the operation of the propfan at an angle to the direction of the mean flow are obtained by solving the unsteady three dimensional Euler equations. The configuration considered is the eight bladed SR7L propfan at takeoff conditions and the inflow angles considered are 6.3 deg, 8.3 deg, 11.3 deg. The predicted blade pressure waveforms are compared with inflight measurements. At the inboard radial station (r/R = 0.68) the phase of the predicted waveforms show reasonable agreement with the measurements while the amplitudes are over predicted in the leading edge region of the blade. At the outboard radial station (r/R = 0.95), the predicted amplitudes of the waveforms on the pressure surface are in good agreement with flight data for all inflow angles. The measured (installed propfan) waveforms show a relative phase lag compared to the computed (propfan alone) waveforms. The phase lag depends on the axial location of the transducer and the surface of the blade. On the suction surface, in addition to the relative phase lag, the measurements show distortion (widening and steepening) of the waveforms. The extent of distortion increases with increase in inflow angle. This distortion seems to be due to viscous separation effects which depend on the azimuthal location of the blade and the axial location of the transducer.

  13. High Central Aortic Rather than Brachial Blood Pressure is Associated with Carotid Wall Remodeling and Increased Arterial Stiffness in Childhood.

    PubMed

    Peluso, Gonzalo; García-Espinosa, Victoria; Curcio, Santiago; Marota, Marco; Castro, Juan; Chiesa, Pedro; Giachetto, Gustavo; Bia, Daniel; Zócalo, Yanina

    2017-03-01

    In adults, central blood pressure (cBP) is reported to associate target organ damages (TODs) rather than peripheral blood pressure (pBP). However, data regarding the association of pre-clinical TODs with cBP and pBP in pediatric populations are scarce. To evaluate in children and adolescents the importance of cBP and pBP levels, in terms of their association with hemodynamic and vascular changes. 315 subjects [age (mean/range) 12/8-18 years] were included. pBP (oscillometry, Omron-HEM433INT and Mobil-O-Graph), cBP levels and waveforms (oscillometry, Mobil-O-Graph; applanation tonometry, SphygmoCor), aortic wave reflection-related parameters, carotid intima-media thickness (CIMT) and carotid (elastic modulus, stiffness-index) and aortic stiffness (carotid-femoral pulse wave velocity, PWV). Four groups were defined considering pBP and cBP percentiles (th): cBP ≥90th, cBP <90th, pBP ≥90th, pBP <90th. In each group, haemodynamic and vascular parameters were compared for subgroups defined considering the level of the remaining blood pressure (cBP or pBP). Subgroups were matched for anthropometric and cardiovascular risk factors (propensity matching-score). Subjects with high cBP showed a worse cardiovascular risk profile in addition to worse peripheral hemodynamic conditions. The CIMT, carotid and aortic stiffness levels were also higher in those subjects. CIMT and carotid stiffness remained statistically higher when subjects were matched for pBP and other cardiovascular risk factors. There were no differences in arterial properties when subjects were analyzed (compared) considering similar pBP levels, during normal and high cBP conditions. Compared with pBP, the cBP levels show a greater association with vascular alterations (high CIMT and arterial stiffness), in children and adolescents.

  14. Stable fetal hemodynamics measured by Doppler flow after initiation of anti-hypertensive treatment with methyldopa in pregnant women with diabetes.

    PubMed

    Pedersen, Berit Woetmann; Ringholm, Lene; Damm, Peter; Tabor, Ann; Søgaard, Kirsten; Hellmuth, Ellinor; Mathiesen, Elisabeth R

    2016-01-01

    To evaluate whether initiation of anti-hypertensive treatment with methyldopa affects fetal hemodynamics in women with pregestational diabetes. Prospective study of unselected singleton pregnant women with diabetes (seven type 1 and two type 2 diabetes), normal blood pressure and kidney function at pregnancy booking. Methyldopa treatment was initiated at blood pressure >135/85 mmHg and/or urinary albumin excretion (UAE) >300 mg/g creatinine. Pulsatility indices (PI) of the uterine, umbilical, middle cerebral arteries before and 1 week after initiation of methyldopa treatment (250 mg three times daily) was performed and the cerebro-placental ratio (CPR) was calculated. Methyldopa treatment was initiated at median 249 (range 192-260) gestational days, mainly due to gestational hypertension (n = 7). Blood pressure declined from 142 (112-156)/92 (76-103) mmHg before to 129 (108-144)/82 (75-90) mmHg after initiation of methyldopa treatment (p = 0.11 and 0.04 for systolic and diastolic blood pressure, respectively). There were no significant changes in the umbilical artery PI (0.82 (0.72-1.40) versus 0.87 (0.64-0.95), p = 0.62) or CPR (1.94 (0.96-2.33) versus 1.78 (1.44-2.76), (p = 0.73). Gestational age was 265 (240-270) d. Apgar scores were normal. Stable Doppler flow velocity waveforms were documented after initiation of methyldopa treatment for pregnancy-induced hypertensive disorders in this cohort of pregnant women with pregestational diabetes.

  15. Partial discharge detection and analysis in low pressure environments

    NASA Astrophysics Data System (ADS)

    Liu, Xin

    Typical aerospace vehicles (aircraft and spacecraft) experience a wide range of operating pressures during ascending and returning to earth. Compared to the sea-level atmospheric pressure (760 Torr), the pressure at about 60 km altitude is 2 Torr. The performance of the electric power system components of the aerospace vehicles must remain reliable even under such sub-atmospheric operating conditions. It is well known that the dielectric strength of gaseous insulators, while the electrode arrangement remains unchanged, is pressure dependent. Therefore, characterization of the performance and behavior of the electrical insulation in flight vehicles in low-pressure environments is extremely important. Partial discharge testing is one of the practical methods for evaluating the integrity of electrical insulation in aerospace vehicles. This dissertation describes partial discharge (PD) measurements performed mainly with 60 Hz ac energization in air, argon and helium, for pressures between 2 and 760 Torr. Two main electrode arrangements were used. One was a needle-plane electrode arrangement with a Teflon insulating barrier. The other one was a twisted pair of insulated conductors taken from a standard aircraft wiring harness. The measurement results are presented in terms of typical PD current pulse waveforms and waveform analysis for both main electrode arrangements. The evaluation criteria are the waveform polarity, magnitude, shape, rise time, and phase angle (temporal location) relative to the source voltage. Two-variable histograms and statistical averages of the PD parameters are presented. The PD physical mechanisms are analyzed. For PD pattern recognition, both statistical methods (such as discharge parameter dot pattern representation, discharge parameter phase distribution, statistical operator calculations, and PD fingerprint development) and wavelet transform applications are investigated. The main conclusions of the dissertation include: (1) The PD current pulse waveforms are dependent on the pressure. (2) The rise time of the waveform is another effective PD current pulse characteristic indicator. (3) PD fingerprint patterns that are already available for atmospheric pressure (760 Torr) conditions are inadequate for the evaluation of PD pulses at low pressures. (4) Various wavelet transform techniques can be used effectively for PD pulse signal denoising purposes, and for PD pulse waveform transient feature recognition.

  16. Digital auscultation of the uterine artery: a measure of uteroplacental perfusion.

    PubMed

    Riknagel, Diana; Dinesen, Birthe; Zimmermann, Henrik; Farlie, Richard; Schmidt, Samuel; Toft, Egon; Struijk, Johannes Jan

    2016-07-01

    This observational study investigated digital auscultation for the purpose of assessing the clinical feasibility of monitoring vascular sounds in pregnancy. The study was performed at the Regional Hospital Viborg, Denmark, and included 29 pregnant women, 10 non-pregnant women and 10 male participants. Digital auscultation was performed with an electronic stethoscope bilaterally near the uterine arteries and correlated to the clinical diagnosis of preeclampsia (PE), intrauterine growth restriction (IUGR) or normal pregnancy in the group of pregnant participants. In the group of non-pregnant participants, digital auscultation was performed as control measurements in the same anatomical positions. The auscultations displayed pulse waveforms comprising systolic and diastolic periods in 20 of the 29 pregnant participants. However, in the non-pregnant and male participants, the pulse waveforms were absent. The pulsatile patterns are thus likely to originate from the arteries in relation to the pregnant uterus. In the participants displaying pulse waveforms, the presence of a dicrotic notch appeared with a sensitivity of 89% and a specificity of 100% in the discrimination of normal pregnancies (n  =  11) from pregnancies with PE or IUGR (n  =  9), (p  <  0.001). This preliminary study shows the potential of identifying vascular complications during pregnancy such as preeclampsia and intrauterine growth restriction. The morphology of the derived pulse contour should be investigated and could be further developed to identify pathophysiology.

  17. Non-contact hemodynamic imaging reveals the jugular venous pulse waveform

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Hughson, Richard L.; Greaves, Danielle K.; Pfisterer, Kaylen J.; Leung, Jason; Clausi, David A.; Wong, Alexander

    2017-01-01

    Cardiovascular monitoring is important to prevent diseases from progressing. The jugular venous pulse (JVP) waveform offers important clinical information about cardiac health, but is not routinely examined due to its invasive catheterisation procedure. Here, we demonstrate for the first time that the JVP can be consistently observed in a non-contact manner using a photoplethysmographic imaging system. The observed jugular waveform was strongly negatively correlated to the arterial waveform (r = -0.73 ± 0.17), consistent with ultrasound findings. Pulsatile venous flow was observed over a spatially cohesive region of the neck. Critical inflection points (c, x, v, y waves) of the JVP were observed across all participants. The anatomical locations of the strongest pulsatile venous flow were consistent with major venous pathways identified through ultrasound.

  18. Non-contact hemodynamic imaging reveals the jugular venous pulse waveform

    PubMed Central

    Amelard, Robert; Hughson, Richard L.; Greaves, Danielle K.; Pfisterer, Kaylen J.; Leung, Jason; Clausi, David A.; Wong, Alexander

    2017-01-01

    Cardiovascular monitoring is important to prevent diseases from progressing. The jugular venous pulse (JVP) waveform offers important clinical information about cardiac health, but is not routinely examined due to its invasive catheterisation procedure. Here, we demonstrate for the first time that the JVP can be consistently observed in a non-contact manner using a photoplethysmographic imaging system. The observed jugular waveform was strongly negatively correlated to the arterial waveform (r = −0.73 ± 0.17), consistent with ultrasound findings. Pulsatile venous flow was observed over a spatially cohesive region of the neck. Critical inflection points (c, x, v, y waves) of the JVP were observed across all participants. The anatomical locations of the strongest pulsatile venous flow were consistent with major venous pathways identified through ultrasound. PMID:28065933

  19. Computation of acoustic ressure fields produced in feline brain by high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Omidi, Nazanin

    In 1975, Dunn et al. (JASA 58:512-514) showed that a simple relation describes the ultrasonic threshold for cavitation-induced changes in the mammalian brain. The thresholds for tissue damage were estimated for a variety of acoustic parameters in exposed feline brain. The goal of this study was to improve the estimates for acoustic pressures and intensities present in vivo during those experimental exposures by estimating them using nonlinear rather than linear theory. In our current project, the acoustic pressure waveforms produced in the brains of anesthetized felines were numerically simulated for a spherically focused, nominally f1-transducer (focal length = 13 cm) at increasing values of the source pressure at frequencies of 1, 3, and 9 MHz. The corresponding focal intensities were correlated with the experimental data of Dunn et al. The focal pressure waveforms were also computed at the location of the true maximum. For low source pressures, the computed waveforms were the same as those determined using linear theory, and the focal intensities matched experimentally determined values. For higher source pressures, the focal pressure waveforms became increasingly distorted, with the compressional amplitude of the wave becoming greater, and the rarefactional amplitude becoming lower than the values calculated using linear theory. The implications of these results for clinical exposures are discussed.

  20. Non-invasive continuous blood pressure monitoring of tachycardic episodes during interventional electrophysiology.

    PubMed

    Maggi, Roberto; Viscardi, Valentina; Furukawa, Toshiyuki; Brignole, Michele

    2010-11-01

    We thought to evaluate feasibility of continuous non-invasive blood pressure monitoring during procedures of interventional electrophysiology. We evaluated continuous non-invasive finger blood pressure (BP) monitoring by means of the Nexfin device in 22 patients (mean age 70 ± 24 years), undergoing procedures of interventional electrophysiology, in critical situations of hypotension caused by tachyarrhythmias or by intermittent incremental ventricular temporary pacing till to the maximum tolerated systolic BP fall (mean 61 ± 14 mmHg per patient at a rate of 195 ± 37 bpm). In all patients, Nexfin was able to detect immediately, at the onset of tachyarrythmia, the changes in BP and recorded reliable waveforms. The quality of the signal was arbitrarily classified as excellent in 11 cases, good in 10 cases, and sufficient in 1 case. In basal conditions, calibrations of the signal occurred every 49.2 ± 24.3 s and accounted for 4% of total monitoring time; during tachyarrhythmias their frequency increased to one every 12.7 s and accounted for 19% of total recording duration. A linear correlation for a range of BP values from 41 to 190 mmHg was found between non-invasive and intra-arterial BP among a total of 1055 beats from three patients who underwent simultaneous recordings with both methods (coefficient of correlation of 0.81, P < 0.0001). In conclusion, continuous non-invasive BP monitoring is feasible in the clinical practise of an interventional electrophysiology laboratory without the need of utilization of an intra-arterial BP line.

  1. Thickness noise of a propeller and its relation to blade sweep

    NASA Astrophysics Data System (ADS)

    Amiet, R. K.

    1988-07-01

    Linear acoustic theory is used to determine the thickness noise produced by a supersonic propeller with sharp leading and trailing edges. The method reveals details of the calculated waveform. Abrupt changes of slope in the pressure-time waveform which are produced by singular points entering or leaving the tip blade are pointed out. It is found that the behavior of the pressure-time waveform is closely related to changes in the retarded rotor shape. The results indicate that logarithmic singularities in the waveform are produced by regions on the blade edges that move towards the observer at sonic speed, with the edge normal to the line joining the source point and the observer.

  2. Accuracy of continuous noninvasive arterial pressure monitoring in living-liver donors during transplantation.

    PubMed

    Araz, Coskun; Zeyneloglu, Pinar; Pirat, Arash; Veziroglu, Nukhet; Camkiran Firat, Aynur; Arslan, Gulnaz

    2015-04-01

    Hemodynamic monitoring is vital during liver transplant surgeries because distinct hemodynamic changes are expected. The continuous noninvasive arterial pressure (CNAP) monitor is a noninvasive device for continuous arterial pressure measurement by a tonometric method. This study compared continuous noninvasive arterial pressure monitoring with invasive direct arterial pressure monitoring in living-liver donors during transplant. There were 40 patients analyzed while undergoing hepatic lobectomy for liver transplant. Invasive pressure monitoring was established at the radial artery and continuous noninvasive arterial pressure monitoring using a finger sensor was recorded simultaneously from the contralateral arm. Systolic, diastolic, and mean arterial pressures from the 2 methods were compared. Correlation between the 2 methods was calculated. A total of 5433 simultaneous measurements were obtained. For systolic arterial blood pressure, 55% continuous noninvasive arterial pressure measurements were within 10% direct arterial measurement; the correlation was 0.479, continuous noninvasive arterial pressure bias was -0.3 mm Hg, and limits of agreement were 32.0 mm Hg. For diastolic arterial blood pressure, 50% continuous noninvasive arterial pressure measurements were within 10% direct arterial measurement; the correlation was 0.630, continuous noninvasive arterial pressure bias was -0.4 mm Hg, and limits of agreement were 21.1 mm Hg. For mean arterial blood pressure, 60% continuous noninvasive arterial pressure measurements were within 10% direct arterial measurement; the correlation was 0.692, continuous noninvasive arterial pressure bias was +0.4 mm Hg, and limits of agreement were 20.8 mm Hg. The 2 monitoring techniques did not show acceptable agreement. Our results suggest that continuous noninvasive arterial pressure monitoring is not equivalent to invasive arterial pressure monitoring in donors during living-donor liver transplant.

  3. Radial mean arterial pressure reliably reflects femoral mean arterial pressure in uncomplicated pediatric cardiac surgery.

    PubMed

    Cetin, Secil; Pirat, Arash; Kundakci, Aycan; Camkiran, Aynur; Zeyneloglu, Pinar; Ozkan, Murat; Arslan, Gulnaz

    2014-02-01

    To see if radial mean arterial pressure reliably reflects femoral mean arterial pressure in uncomplicated pediatric cardiac surgery. An ethics committee-approved prospective interventional study. Operating room of a tertiary care hospital. Forty-five children aged 3 months to 4 years who underwent pediatric cardiac surgery with hypothermic cardiopulmonary bypass. Simultaneous femoral and radial arterial pressures were recorded at 10-minute intervals intraoperatively. A pressure gradient>5mmHg was considered to be clinically significant. The patients' mean age was 14±11 months and and mean weight was 8.0±3.0kg. A total of 1,816 simultaneous measurements of arterial pressure from the radial and femoral arteries were recorded during the pre-cardiopulmonary bypass, cardiopulmonary bypass, and post-cardiopulmonary bypass periods, including 520 (29%) systolic arterial pressures, 520 (29%) diastolic arterial pressures, and 776 (43%) mean arterial pressures. The paired mean arterial pressure measurements across the 3 periods were significantly and strongly correlated, and this was true for systolic arterial pressures and diastolic arterial pressures as well (r>0.93 and p<0.001 for all). Bland-Altman plots demonstrated good agreement between femoral and radial mean arterial pressures during the pre-cardiopulmonary bypass, cardiopulmonary bypass, and post-cardiopulmonary bypass periods. A significant radial-to-femoral pressure gradient was observed in 150 (8%) of the total 1,816 measurements. These gradients occurred most frequently between pairs of systolic arterial pressure measurements (n = 113, 22% of all systolic arterial pressures), followed by mean arterial pressure measurements (n = 28, 4% of all mean arterial pressures) and diastolic arterial pressures measurements (n = 9, 2% of all diastolic arterial pressures). These significant gradients were not sustained (ie, were not recorded at 2 or more successive time points). The results suggested that radial mean arterial pressure provided an accurate estimate of central mean arterial pressure in uncomplicated pediatric cardiac surgery. There was a significant gradient between radial and femoral mean arterial pressure measurements in only 4% of the mean arterial pressure measurements, and these significant gradients were not sustained. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Airfoil gust response and the sound produced by airifoil-vortex interaction

    NASA Technical Reports Server (NTRS)

    Amiet, R. K.

    1986-01-01

    This paper contributes to the understanding of the noise generation process of an airfoil encountering an unsteady upwash. By using a fast Fourier transform together with accurate airfoil response functions, the lift-time waveform for an airfoil encountering a delta function gust (the indicial function) is calculated for a flat plate airfoil in a compressible flow. This shows the interesting property that the lift is constant until the generated acoustic wave reaches the trailing edge. Expressions are given for the magnitude of this constant and for the pressure distribution on the airfoil during this time interval. The case of an airfoil cutting through a line vortex is also analyzed. The pressure-time waveform in the far field is closely related to the left-time waveform for the above problem of an airfoil entering a delta function gust. The effects of varying the relevant parameters in the problem are studied, including the observed position, the core diameter of the vortex, the vortex orientation and the airfoil span. The far field sound varies significantly with observer position, illustrating the importance of non-compactness effects. Increasing the viscous core diameter tends to smooth the pressure-time waveform. For small viscous core radius and infinite span, changing the vortex orientation changes only the amplitude of the pressure-time waveform, and not the shape.

  5. An improved arterial pulsation measurement system based on optical triangulation and its application in the traditional Chinese medicine

    NASA Astrophysics Data System (ADS)

    Wu, Jih-Huah; Lee, Wen-Li; Lee, Yun-Parn; Lin, Ching-Huang; Chiou, Ji-Yi; Tai, Chuan-Fu; Jiang, Joe-Air

    2011-08-01

    An improved arterial pulsation measurement (APM) system that uses three LED light sources and a CCD image sensor to measure pulse waveforms of artery is presented. The relative variations of the pulses at three measurement points near wrist joints can be determined by the APM system simultaneously. The height of the arterial pulsations measured by the APM system achieves a resolution of better than 2 μm. These pulsations contain useful information that can be used as diagnostic references in the traditional Chinese medicine (TCM) in the future.

  6. Extrapolation of sonic boom pressure signatures by the waveform parameter method

    NASA Technical Reports Server (NTRS)

    Thomas, C. L.

    1972-01-01

    The waveform parameter method of sonic boom extrapolation is derived and shown to be equivalent to the F-function method. A computer program based on the waveform parameter method is presented and discussed, with a sample case demonstrating program input and output.

  7. A pulsatile pressure waveform is a sensitive marker for confirming the location of the thoracic epidural space.

    PubMed

    Lennox, Pamela H; Umedaly, Hamed S; Grant, Raymer P; White, S Adrian; Fitzmaurice, Brett G; Evans, Kenneth G

    2006-10-01

    The purpose of this study was to assess the validity of using a pulsatile, pressure waveform transduced from the epidural space through an epidural needle or catheter to confirm correct placement for maximal analgesia and to compare 3 different types of catheters' ability to transduce a waveform. A single-center, prospective, randomized trial. A tertiary-referral hospital. Eighty-one patients undergoing posterolateral thoracotomy who required a thoracic epidural catheter for postoperative pain management. Each epidural needle and each epidural catheter was transduced to determine if there was a pulsatile waveform exhibited. Sensitivity of the pulsatile waveform transduced through an epidural needle to identify correct placement of the epidural needle and the sensitivity of each catheter type to identify placement were compared. In 79 of 81 cases (97.5%), the waveform transduced directly through the epidural needle had a pulsatile characteristic as determined by blinded observers. In a total of 53 of 81 epidural catheters (65.4%), the transduced waveform displayed pulsations. Twenty-four of 27 catheters in group S-P/Sims Portex (Smiths Medical MD, Inc, St Paul, MN) (88.9%) transduced a pulsatile tracing from the epidural space, a significantly greater percentage than in the other 2 groups (p = 0.02). The technique of transducing the pressure waveform from the epidural needle inserted in the epidural space is a sensitive and reliable alternative to other techniques for confirmation of correct epidural catheter placement. The technique is simple, sensitive, and inexpensive and uses equipment available in any operating room.

  8. Development of a flow feedback pulse duplicator system with rhesus monkey arterial input impedance characteristics

    NASA Technical Reports Server (NTRS)

    Schaub, J. D.; Koenig, S. C.; Schroeder, M. J.; Ewert, D. L.; Drew, G. A.; Swope, R. D.; Convertino, V. A. (Principal Investigator)

    1999-01-01

    An in vitro pulsatile pump flow system that is capable of producing physiologic pressures and flows in a mock circulatory system tuned to reproduce the first nine harmonics of the input impedance of a rhesus monkey was developed and tested. The system was created as a research tool for evaluating cardiovascular function and for the design, testing, and evaluation of electrical-mechanical cardiovascular models and chronically implanted sensors. The system possesses a computerized user interface for controlling a linear displacement pulsatile pump in a controlled flow loop format to emulate in vivo cardiovascular characteristics. Evaluation of the pump system consisted of comparing its aortic pressure and flow profiles with in vivo rhesus hemodynamic waveforms in the time and frequency domains. Comparison of aortic pressure and flow data between the pump system and in vivo data showed good agreement in the time and frequency domains, however, the pump system produced a larger pulse pressure. The pump system can be used for comparing cardiovascular parameters with predicted cardiovascular model values and for evaluating such items as vascular grafts, heart valves, biomaterials, and sensors. This article describes the development and evaluation of this feedback controlled cardiovascular dynamics simulation modeling system.

  9. Performance assessment of Pulse Wave Imaging using conventional ultrasound in canine aortas ex vivo and normal human arteries in vivo

    PubMed Central

    Li, Ronny X.; Qaqish, William; Konofagou, Elisa. E.

    2015-01-01

    The propagation behavior of the arterial pulse wave may provide valuable diagnostic information for cardiovascular pathology. Pulse Wave Imaging (PWI) is a noninvasive, ultrasound imaging-based technique capable of mapping multiple wall motion waveforms along a short arterial segment over a single cardiac cycle, allowing for the regional pulse wave velocity (PWV) and propagation uniformity to be evaluated. The purpose of this study was to improve the clinical utility of PWI using a conventional ultrasound system. The tradeoff between PWI spatial and temporal resolution was evaluated using an ex vivo canine aorta (n = 2) setup to assess the effects of varying image acquisition and signal processing parameters on the measurement of the PWV and the pulse wave propagation uniformity r2. PWI was also performed on the carotid arteries and abdominal aortas of 10 healthy volunteers (24.8 ± 3.3 y.o.) to determine the waveform tracking feature that would yield the most precise PWV measurements and highest r2 values in vivo. The ex vivo results indicated that the highest precision for measuring PWVs ~ 2.5 – 3.5 m/s was achieved using 24–48 scan lines within a 38 mm image plane width (i.e. 0.63 – 1.26 lines/mm). The in vivo results indicated that tracking the 50% upstroke of the waveform would consistently yield the most precise PWV measurements and minimize the error in the propagation uniformity measurement. Such findings may help establish the optimal image acquisition and signal processing parameters that may improve the reliability of PWI as a clinical measurement tool. PMID:26640603

  10. Aortic dilatation in Marfan syndrome: role of arterial stiffness and fibrillin-1 variants.

    PubMed

    Salvi, Paolo; Grillo, Andrea; Marelli, Susan; Gao, Lan; Salvi, Lucia; Viecca, Maurizio; Di Blasio, Anna Maria; Carretta, Renzo; Pini, Alessandro; Parati, Gianfranco

    2018-01-01

    Marfan syndrome (MFS) is an autosomal dominant genetic disorder characterized by aortic root dilation and dissection and an abnormal fibrillin-1 synthesis. In this observational study, we evaluated aortic stiffness in MFS and its association with ascending aorta diameters and fibrillin-1 genotype. A total of 116 Marfan adult patients without history of cardiovascular surgery, and 144 age, sex, blood pressure and heart rate matched controls were enrolled. All patients underwent arterial stiffness evaluation through carotid-femoral pulse wave velocity (PWV) and central blood pressure waveform analysis (PulsePen tonometer). Fibrillin-1 mutations were classified based on the effect on the protein, into 'dominant negative' and 'haploinsufficient' mutations. PWV and central pulse pressure were significantly higher in MFS patients than in controls [respectively 7.31 (6.81-7.44) vs. 6.69 (6.52-6.86) m/s, P = 0.0008; 41.3 (39.1-43.5) vs. 34.0 (32.7-35.3) mmHg, P < 0.0001], with a higher age-related increase of PWV in MFS (β 0.062 vs. 0.036). Pressure amplification was significantly reduced in MFS [18.2 (15.9-20.5) vs. 33.4 (31.6-35.2)%, P < 0.0001]. Central pressure profile was altered even in MFS patients without aortic dilatation. Multiple linear regression models showed that PWV independently predicted aortic diameters at the sinuses of Valsalva (ß = 0.243, P = 0.002) and at the sinotubular junction (ß = 0.186, P = 0.048). PWV was higher in 'dominant negative' than 'haploinsufficient' fibrillin-1 mutations [7.37 (7.04-7.70) vs. 6.60 (5.97-7.23) m/s, P = 0.035], although this difference was not significant after adjustment. Aortic stiffness is increased in MFS, independently from fibrillin-1 genotype and is associated with diameters of ascending aorta. Alterations in central hemodynamics are present even when aortic diameter is within normal limits. Our findings suggest an accelerated arterial aging in MFS.

  11. Numerical analysis of the pressure drop across highly-eccentric coronary stenoses: application to the calculation of the fractional flow reserve.

    PubMed

    Agujetas, R; González-Fernández, M R; Nogales-Asensio, J M; Montanero, J M

    2018-05-30

    Fractional flow reverse (FFR) is the gold standard assessment of the hemodynamic significance of coronary stenoses. However, it requires the catheterization of the coronary artery to determine the pressure waveforms proximal and distal to the stenosis. On the contrary, computational fluid dynamics enables the calculation of the FFR value from relatively non-invasive computed tomography angiography (CTA). We analyze the flow across idealized highly-eccentric coronary stenoses by solving the Navier-Stokes equations. We examine the influence of several aspects (approximations) of the simulation method on the calculation of the FFR value. We study the effects on the FFR value of errors made in the segmentation of clinical images. For this purpose, we compare the FFR value for the nominal geometry with that calculated for other shapes that slightly deviate from that geometry. This analysis is conducted for a range of stenosis severities and different inlet velocity and pressure waveforms. The errors made in assuming a uniform velocity profile in front of the stenosis, as well as those due to the Newtonian and laminar approximations, are negligible for stenosis severities leading to FFR values around the threshold 0.8. The limited resolution of the stenosis geometry reconstruction is the major source of error when predicting the FFR value. Both systematic errors in the contour detection of just 1-pixel size in the CTA images and a low-quality representation of the stenosis surface (coarse faceted geometry) may yield wrong outcomes of the FFR assessment for an important set of eccentric stenoses. On the contrary, the spatial resolution of images acquired with optical coherence tomography may be sufficient to ensure accurate predictions for the FFR value.

  12. Design and implementation of a bluetooth-based band-aid pulse rate sensor

    NASA Astrophysics Data System (ADS)

    Kumar, Prashanth S.; Oh, Sechang; Rai, Pratyush; Kwon, Hyeokjun; Banerjee, Nilanjan; Varadan, Vijay K.

    2011-04-01

    Remote patient monitoring systems capable of collecting vital patient data such as blood pressure readings, Electrocardiograph (ECG) waveforms, and heart rate can obviate the need for repeated visits to the hospital. Moreover, such systems that continuously monitor the human physiology can provide valuable data to prognosticate the onset of critical health problems. The key to such remote health diagnostics is the design of minimally intrusive, low cost sensors that do not impede a patient's quotidian life but at the same time collect reliable noise free data. To this end, in this paper, we design and implement a Bluetooth-based wireless sensor system with a disposable sensor element and a reusable wireless component that can be worn as a "band-aid". The sensor is a piezoelectric polymer film placed on the wrist in proximity to the radial artery. The band-aid sized sensor allows non-intrusive monitoring of the pulsatile flow of blood in the artery. The sensor, using the Bluetooth module, can communicate with any Bluetooth enabled computer, mobile phone, or PDA. The data collected from the patient can be remotely viewed and analyzed by a physician.

  13. Doppler ultrasound evaluation in preeclampsia

    PubMed Central

    2013-01-01

    Background Worldwide preeclampsia (PE) is the leading cause of maternal death and affects 5 to 8% of pregnant women. PE is characterized by elevated blood pressure and proteinuria. Doppler Ultrasound (US) evaluation has been considered a useful method for prediction of PE; however, there is no complete data about the most frequently altered US parameters in the pathology. The aim of this study was to evaluate the uterine, umbilical, and the middle cerebral arteries using Doppler US parameters [resistance index (RI), pulsatility index (PI), notch (N), systolic peak (SP) and their combinations] in pregnant women, in order to make a global evaluation of hemodynamic repercussion caused by the established PE. Results A total of 102 pregnant Mexican women (65 PE women and 37 normotensive women) were recruited in a cases and controls study. Blood velocity waveforms from uterine, umbilical, and middle cerebral arteries, in pregnancies from 24 to 37 weeks of gestation were recorded by trans-abdominal examination with a Toshiba Ultrasound Power Vision 6000 SSA-370A, with a 3.5 MHz convex transducer. Abnormal general Doppler US profile showed a positive association with PE [odds ratio (OR) = 2.93, 95% confidence interval (CI) = 1.2 - 7.3, P = 0.021)], and a specificity and predictive positive value of 89.2% and 88.6%, respectively. Other parameters like N presence, RI and PI of umbilical artery, as well as the PI of middle cerebral artery, showed differences between groups (P values < 0.05). Conclusion General Doppler US result, as well as N from uterine vessel, RI from umbilical artery, and PI from umbilical and middle cerebral arteries in their individual form, may be considered as tools to determine hemodynamic repercussion caused by PE. PMID:24252303

  14. Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars.

    PubMed

    Park, Heun; Jeong, Yu Ra; Yun, Junyeong; Hong, Soo Yeong; Jin, Sangwoo; Lee, Seung-Jung; Zi, Goangseup; Ha, Jeong Sook

    2015-10-27

    We report on the facile fabrication of a stretchable array of highly sensitive pressure sensors. The proposed pressure sensor consists of the top layer of Au-deposited polydimethylsiloxane (PDMS) micropillars and the bottom layer of conductive polyaniline nanofibers on a polyethylene terephthalate substrate. The sensors are operated by the changes in contact resistance between Au-coated micropillars and polyaniline according to the varying pressure. The fabricated pressure sensor exhibits a sensitivity of 2.0 kPa(-1) in the pressure range below 0.22 kPa, a low detection limit of 15 Pa, a fast response time of 50 ms, and high stability over 10000 cycles of pressure loading/unloading with a low operating voltage of 1.0 V. The sensor is also capable of noninvasively detecting human-pulse waveforms from carotid and radial artery. A 5 × 5 array of the pressure sensors on the deformable substrate, which consists of PDMS islands for sensors and the mixed thin film of PDMS and Ecoflex with embedded liquid metal interconnections, shows stable sensing of pressure under biaxial stretching by 15%. The strain distribution obtained by the finite element method confirms that the maximum strain applied to the pressure sensor in the strain-suppressed region is less than 0.04% under a 15% biaxial strain of the unit module. This work demonstrates the potential application of our proposed stretchable pressure sensor array for wearable and artificial electronic skin devices.

  15. Association between Pulse Wave Velocity and Coronary Artery Calcification in Japanese men.

    PubMed

    Torii, Sayuki; Arima, Hisatomi; Ohkubo, Takayoshi; Fujiyoshi, Akira; Kadota, Aya; Takashima, Naoyuki; Kadowaki, Sayaka; Hisamatsu, Takashi; Saito, Yoshino; Miyagawa, Naoko; Zaid, Maryam; Murakami, Yoshitaka; Abbott, Robert D; Horie, Minoru; Miura, Katsuyuki; Ueshima, Hirotsugu

    2015-01-01

    Pulse wave velocity (PWV) is a simple and valid clinical method for assessing arterial stiffness. Coronary artery calcification (CAC) is an intermediate stage in the process leading to overt cardiovascular disease (CVD) and an established determinant of coronary artery disease. This study aimed to examine the association between PWV and CAC in a population-based sample of Japanese men. This is a cross-sectional study of 986 randomly selected men aged 40-79 years from Shiga, Japan. CVD-free participants were examined from 2006 to 2008. Brachial-ankle PWV (baPWV) was measured using an automatic waveform analyzer. CAC was assessed using computed tomography. Agatston scores ≥ 10 were defined as the presence of CAC. Prevalence of CAC progressively increased with rising levels of baPWV: 20.6%, 41.7%, 56.3%, and 66.7% across baPWV quartiles < 1378, 1378-1563, 1564-1849, and > 1849 cm/s (P < 0.001 for trend). Associations remained significant after adjusting for age and other factors, including body mass index, systolic blood pressure, pulse rate, total and high-density lipoprotein cholesterol, hemoglobin A1c, drinking, smoking and exercise status, and the use of medication to treat hypertension, dyslipidemia and diabetes (P=0.042 for trend). The optimal cutoff level of baPWV to detect CAC was 1612 cm/s using receiver operating characteristic curve analysis. Arterial stiffness as defined by an elevated baPWV is associated with an increased prevalence of CAC in a general population-based setting among Japanese men.

  16. Correlation of pressure measurements with angiographic characteristics predisposing to hemorrhage and steal in cerebral arteriovenous malformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norbash, A.M.; Marks, M.P.; Lane, B.

    1994-05-01

    To determine whether there is a physiologic explanation for the predisposition of patients with certain angiographic characteristics to symptoms of hemorrhage and steal. Superselective transcatheter feeding arterial pressure and mean arterial pressure measurements were obtained before embolotherapy in 32 patients with cerebral arteriovenous malformations. Pressures were correlated with previously described angioarchitectural characteristics predisposing to hemorrhage and steal. These included size of the arteriovenous malformation, feeding artery length, venous drainage pattern, and angiomatous change. The feeding arterial pressure and feeding arterial pressure/mean arterial pressure ratios were significantly decreased in patients with angiomatous change. Feeding arterial pressure and feeding arterial pressure/mean arterialmore » pressure ratios progressively decreased as lesions went from peripheral, to mixed, to central venous drainage. A trend for lower feeding arterial pressure was also demonstrated with greater feeding pedicle length. A statistically significant correlation could not be demonstrated between feeding arterial pressure or feeding arterial pressure/mean arterial pressure ratios and size of the arteriovenous malformation, hemorrhage, or symptoms of steal. Feeding arterial pressure measurements help provide a physiologic basis for the relationship between certain angiographic characteristics and hemorrhage and steal symptoms in patients with arteriovenous malformation. 27 refs., 1 fig.« less

  17. The Influence of Blood Pressure on Fetal Aortic Distensibility: An Animal Validation Study.

    PubMed

    Wohlmuth, Christoph; Moise, Kenneth J; Papanna, Ramesha; Gheorghe, Ciprian; Johnson, Anthony; Morales, Yisel; Gardiner, Helena M

    2018-01-01

    Aortic distension waveforms describe the change in diameter or cross-sectional area over the cardiac cycle. We aimed to validate the association of aortic fractional area change (AFAC) with blood pressure (BP) in a fetal lamb model. Four pregnant ewes underwent open fetal surgery under general anesthesia at 107-120 gestational days. A 4-Fr catheter was introduced into the fetal femoral artery and vein, or the carotid artery and jugular vein. The thoracic aorta was imaged using real-time ultrasound; AFAC was calculated using offline speckle tracking software. Measurements of invasive BP and AFAC were obtained simultaneously and averaged over 10 cardiac cycles. BP was increased by norepinephrine infusion and the association of aortic distensibility with BP was assessed. Baseline measurements were obtained from 4 lambs, and changes in aortic distensibility with increasing BP were recorded from 3 of them. A positive correlation was found between AFAC and systolic BP (r = 0.692, p = 0.001), diastolic BP (r = 0.647, p = 0.004), mean BP (r = 0.692, p = 0.001), and BP amplitude (r = 0.558, p = 0.016) controlled for heart rate. No association was found between BP and maximum or minimum aortic area. AFAC provides a quantifiable measure of aortic distensibility and correlates with systolic BP, diastolic BP, mean BP, and BP amplitude in a fetal lamb model. © 2017 S. Karger AG, Basel.

  18. Single pulse analysis of intracranial pressure for a hydrocephalus implant.

    PubMed

    Elixmann, I M; Hansinger, J; Goffin, C; Antes, S; Radermacher, K; Leonhardt, S

    2012-01-01

    The intracranial pressure (ICP) waveform contains important diagnostic information. Changes in ICP are associated with changes of the pulse waveform. This change has explicitly been observed in 13 infusion tests by analyzing 100 Hz ICP data. An algorithm is proposed which automatically extracts the pulse waves and categorizes them into predefined patterns. A developed algorithm determined 88 %±8 % (mean ±SD) of all classified pulse waves correctly on predefined patterns. This algorithm has low computational cost and is independent of a pressure drift in the sensor by using only the relationship between special waveform characteristics. Hence, it could be implemented on a microcontroller of a future electromechanic hydrocephalus shunt system to control the drainage of cerebrospinal fluid (CSF).

  19. High-order numerical simulations of pulsatile flow in a curved artery model

    NASA Astrophysics Data System (ADS)

    Cox, Christopher; Liang, Chunlei; Plesniak, Michael W.

    2016-11-01

    Cardiovascular flows are pulsatile, incompressible and occur in complex geometries with compliant walls. Together, these factors can produce an environment that can affect the progression of cardiovascular disease by altering wall shear stresses. Unstructured high-order CFD methods are well suited for capturing unsteady vortex-dominated viscous flows, and these methods provide high accuracy for similar cost as low-order methods. We use an in-house three-dimensional flux reconstruction Navier-Stokes solver to simulate secondary flows and vortical structures within a rigid 180-degree curved artery model under pulsatile flow of a Newtonian blood-analog fluid. Our simulations use a physiological flowrate waveform taken from the carotid artery. We are particularly interested in the dynamics during the deceleration phase of the waveform, where we observe the deformed-Dean, Dean, Lyne and Wall vortices. Our numerical results reveal the complex nature of these vortices both in space and time and their effect on overall wall shear stress. Numerical results agree with and complement experimental results obtained in our laboratory using particle image velocimetry. Supported by the GW Center for Biomimetics and Bioinspired Engineering.

  20. Characteristics of the umbilical artery velocity waveform as function of measurement site.

    PubMed

    Ruissen, C J; von Drongelen, M M; Hoogland, H J; Jager, W; Hoeks, A P

    1990-01-01

    In 30 uncomplicated singleton pregnancies, varying in duration between 24 and 40 weeks, the variability of the flow velocity waveform (FVW) along the course of the umbilical artery was investigated. Blood flow velocities were recorded at 4 locations in the vessel: within the fetal abdomen, 0-5 cm from the origin of the umbilical cord, in the free-floating part, and 0-5 cm from its insertion in the placenta. From the Doppler signals recorded, the pulsatility index (PI) and a parameter for the frequency distribution index (FDI) were calculated. PI values differed among the locations, but no unequivocal tendency could be demonstrated. Statistical analysis, including multiple regression analysis for maternal and menstrual age and fetal heart rate, showed no significant difference in PI and FDI values for any of the 4 locations. It can be concluded that in uncomplicated pregnancies, possible changes in FVW (quantified by PI) along the course of the umbilical artery have no clinical relevance. Therefore, standardization for the sampling site when measuring PI in this vessel seems to be unnecessary.

  1. Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.

    PubMed

    Gholamhosseini, Hamid; Meintjes, Andries; Baig, Mirza; Linden, Maria

    2016-01-01

    The increasing availability of low cost and easy to use personalized medical monitoring devices has opened the door for new and innovative methods of health monitoring to emerge. Cuff-less and continuous methods of measuring blood pressure are particularly attractive as blood pressure is one of the most important measurements of long term cardiovascular health. Current methods of noninvasive blood pressure measurement are based on inflation and deflation of a cuff with some effects on arteries where blood pressure is being measured. This inflation can also cause patient discomfort and alter the measurement results. In this work, a mobile application was developed to collate the PhotoPlethysmoGramm (PPG) waveform provided by a pulse oximeter and the electrocardiogram (ECG) for calculating the pulse transit time. This information is then indirectly related to the user's systolic blood pressure. The developed application successfully connects to the PPG and ECG monitoring devices using Bluetooth wireless connection and stores the data onto an online server. The pulse transit time is estimated in real time and the user's systolic blood pressure can be estimated after the system has been calibrated. The synchronization between the two devices was found to pose a challenge to this method of continuous blood pressure monitoring. However, the implemented continuous blood pressure monitoring system effectively serves as a proof of concept. This combined with the massive benefits that an accurate and robust continuous blood pressure monitoring system would provide indicates that it is certainly worthwhile to further develop this system.

  2. Power coupling mode transitions induced by tailored voltage waveforms in capacitive oxygen discharges

    NASA Astrophysics Data System (ADS)

    Derzsi, Aranka; Bruneau, Bastien; Gibson, Andrew Robert; Johnson, Erik; O'Connell, Deborah; Gans, Timo; Booth, Jean-Paul; Donkó, Zoltán

    2017-03-01

    Low-pressure capacitively coupled radio frequency discharges operated in O2 and driven by tailored voltage waveforms are investigated experimentally and by means of kinetic simulations. Pulse-type (peaks/valleys) and sawtooth-type voltage waveforms that consist of up to four consecutive harmonics of the fundamental frequency are used to study the amplitude asymmetry effect as well as the slope asymmetry effect at different fundamental frequencies (5, 10, and 15 MHz) and at different pressures (50-700 mTorr). Values of the DC self-bias determined experimentally and spatio-temporal excitation rates derived from phase resolved optical emission spectroscopy measurements are compared with particle-in-cell/Monte Carlo collisions simulations. The spatio-temporal distributions of the excitation rate obtained from experiments are well reproduced by the simulations. Transitions of the discharge electron heating mode from the drift-ambipolar mode to the α-mode are induced by changing the number of consecutive harmonics included in the driving voltage waveform or by changing the gas pressure. Changing the number of harmonics in the waveform has a strong effect on the electronegativity of the discharge, on the generation of the DC self-bias and on the control of ion properties at the electrodes, both for pulse-type, as well as sawtooth-type driving voltage waveforms The effect of the surface quenching rate of oxygen singlet delta metastable molecules on the spatio-temporal excitation patterns is also investigated.

  3. Pulmonary Vascular Input Impedance is a Combined Measure of Pulmonary Vascular Resistance and Stiffness and Predicts Clinical Outcomes Better than PVR Alone in Pediatric Patients with Pulmonary Hypertension

    PubMed Central

    Hunter, Kendall S.; Lee, Po-Feng; Lanning, Craig J.; Ivy, D. Dunbar; Kirby, K. Scott; Claussen, Lori R.; Chan, K. Chen; Shandas, Robin

    2011-01-01

    Background Pulmonary vascular resistance (PVR) is the current standard for evaluating reactivity in children with pulmonary arterial hypertension (PAH). However, PVR measures only the mean component of right ventricular afterload and neglects pulsatile effects. We recently developed and validated an method to measure pulmonary vascular input impedance, which revealed excellent correlation between the zero-harmonic impedance value and PVR, and suggested a correlation between higher harmonic impedance values and pulmonary vascular stiffness (PVS). Here we show that input impedance can be measured routinely and easily in the catheterization laboratory, that impedance provides PVR and PVS from a single measurement, and that impedance is a better predictor of disease outcomes compared to PVR. Methods Pressure and velocity waveforms within the main PA were measured during right-heart catheterization of patients with normal PA hemodynamics (n=14) and those with PAH undergoing reactivity evaluation (49 subjects; 95 conditions). A correction factor needed to transform velocity into flow was obtained by calibrating against cardiac output. Input impedance was obtained off-line by dividing Fourier-transformed pressure and flow waveforms. Results Exceptional correlation was found between the indexed zero harmonic of impedance and indexed PVR (y=1.095·x+1.381, R2=0.9620). Additionally, the modulus sum of the first two harmonics of impedance was found to best correlate with indexed pulse pressure over stroke volume (PP/SV) (y=13.39·x-0.8058, R2=0.7962). Amongst a subset of PAH patients (n=25), cumulative logistic regression between outcomes to total indexed impedance was better (RL2=0.4012) than between outcomes and indexed PVR (RL2=0.3131). Conclusions Input impedance can be consistently and easily obtained from PW Doppler and a single catheter pressure measurement, provides comprehensive characterization of the main components of RV afterload, and better predicts patient outcomes compared to PVR alone. PMID:18082509

  4. Non-invasive continuous blood pressure monitoring of tachycardic episodes during interventional electrophysiology

    PubMed Central

    Maggi, Roberto; Viscardi, Valentina; Furukawa, Toshiyuki; Brignole, Michele

    2010-01-01

    Aims We thought to evaluate feasibility of continuous non-invasive blood pressure monitoring during procedures of interventional electrophysiology. Methods and results We evaluated continuous non-invasive finger blood pressure (BP) monitoring by means of the Nexfin device in 22 patients (mean age 70 ± 24 years), undergoing procedures of interventional electrophysiology, in critical situations of hypotension caused by tachyarrhythmias or by intermittent incremental ventricular temporary pacing till to the maximum tolerated systolic BP fall (mean 61 ± 14 mmHg per patient at a rate of 195 ± 37 bpm). In all patients, Nexfin was able to detect immediately, at the onset of tachyarrythmia, the changes in BP and recorded reliable waveforms. The quality of the signal was arbitrarily classified as excellent in 11 cases, good in 10 cases, and sufficient in 1 case. In basal conditions, calibrations of the signal occurred every 49.2 ± 24.3 s and accounted for 4% of total monitoring time; during tachyarrhythmias their frequency increased to one every 12.7 s and accounted for 19% of total recording duration. A linear correlation for a range of BP values from 41 to 190 mmHg was found between non-invasive and intra-arterial BP among a total of 1055 beats from three patients who underwent simultaneous recordings with both methods (coefficient of correlation of 0.81, P < 0.0001). Conclusion In conclusion, continuous non-invasive BP monitoring is feasible in the clinical practise of an interventional electrophysiology laboratory without the need of utilization of an intra-arterial BP line. PMID:20837572

  5. Method to produce American Thoracic Society flow-time waveforms using a mechanical pump.

    PubMed

    Hankinson, J L; Reynolds, J S; Das, M K; Viola, J O

    1997-03-01

    The American Thoracic Society (ATS) recently adopted a new set of 26 standard flow-time waveforms for use in testing both diagnostic and monitoring devices. Some of these waveforms have a higher frequency content than present in the ATS-24 standard volume-time waveforms, which, when produced by a mechanical pump, may result in a pump flow output that is less than the desired flow due to gas compression losses within the pump. To investigate the effects of gas compression, a mechanical pump was used to generate the necessary flows to test mini-Wright and Assess peak expiratory flow (PEF) meters. Flow output from the pump was measured by two different independent methods, a pneumotachometer and a method based on piston displacement and pressure measured within the pump. Measuring output flow based on piston displacement and pressure has been validated using a pneumotachometer and mini-Wright PEF meter, and found to accurately measure pump output. This method introduces less resistance (lower back-pressure) and dead space volume than using a pneumotachometer in series with the meter under test. Pump output flow was found to be lower than the desired flow both with the mini-Wright and Assess meters (for waveform No. 26, PEFs 7.1 and 10.9% lower, respectively). To compensate for losses due to gas compression, we have developed a method of deriving new input waveforms, which, when used to drive a commercially available mechanical pump, accurately and reliably produces the 26 ATS flow-time waveforms, even those with the fastest rise-times.

  6. Changes in Cerebral Compartmental Compliances during Mild Hypocapnia in Patients with Traumatic Brain Injury

    PubMed Central

    Steiner, Luzius A.; Castellani, Gianluca; Smielewski, Peter; Zweifel, Christian; Haubrich, Christina; Pickard, John D.; Menon, David K.; Czosnyka, Marek

    2011-01-01

    Abstract The benefit of induced hyperventilation for intracranial pressure (ICP) control after severe traumatic brain injury (TBI) is controversial. In this study, we investigated the impact of early and sustained hyperventilation on compliances of the cerebral arteries and of the cerebrospinal (CSF) compartment during mild hyperventilation in severe TBI patients. We included 27 severe TBI patients (mean 39.5 ± 3.4 years, 6 women) in whom an increase in ventilation (20% increase in respiratory minute volume) was performed during 50 min as part of a standard clinical CO2 reactivity test. Using a new mathematical model, cerebral arterial compliance (Ca) and CSF compartment compliance (Ci) were calculated based on the analysis of ICP, arterial blood pressure, and cerebral blood flow velocity waveforms. Hyperventilation initially induced a reduction in ICP (17.5 ± 6.6 vs. 13.9 ± 6.2 mmHg; p < 0.001), which correlated with an increase in Ci (r2 = 0.213; p = 0.015). Concomitantly, the reduction in cerebral blood flow velocities (CBFV, 74.6 ± 27.0 vs. 62.9 ± 22.9 cm/sec; p < 0.001) marginally correlated with the reduction in Ca (r2 = 0.209; p = 0.017). During sustained hyperventilation, ICP increased (13.9 ± 6.2 vs. 15.3 ± 6.4 mmHg; p < 0.001), which correlated with a reduction in Ci (r2 = 0.297; p = 0.003), but no significant changes in Ca were found during that period. The early reduction in Ca persisted irrespective of the duration of hyperventilation, which may contribute to the lack of clinical benefit of hyperventilation after TBI. Further studies are needed to determine whether monitoring of arterial and CSF compartment compliances may detect and prevent an adverse ischemic event during hyperventilation. PMID:21204704

  7. Mechanical Damage of Tympanic Membrane in Relation to Impulse Pressure Waveform – A Study in Chinchillas

    PubMed Central

    Gan, Rong Z.; Nakmali, Don; Ji, Xiao D.; Leckness, Kegan; Yokell, Zachary

    2016-01-01

    Mechanical damage to middle ear components in blast exposure directly causes hearing loss, and the rupture of the tympanic membrane (TM) is the most frequent injury of the ear. However, it is unclear how the severity of injury graded by different patterns of TM rupture is related to the overpressure waveforms induced by blast waves. In the present study, the relationship between the TM rupture threshold and the impulse or overpressure waveform has been investigated in chinchillas. Two groups of animals were exposed to blast overpressure simulated in our lab under two conditions: open field and shielded with a stainless steel cup covering the animal head. Auditory brainstem response (ABR) and wideband tympanometry were measured before and after exposure to check the hearing threshold and middle ear function. Results show that waveforms recorded in the shielded case were different from those in the open field and the TM rupture threshold in the shielded case was lower than that in the open field (3.4±0.7 vs. 9.1±1.7 psi or 181±1.6 vs. 190±1.9 dB SPL). The impulse pressure energy spectra analysis of waveforms demonstrates that the shielded waveforms include greater energy at high frequencies than that of the open field waves. Finally, a 3D finite element (FE) model of the chinchilla ear was used to compute the distributions of stress in the TM and the TM displacement with impulse pressure waves. The FE model-derived change of stress in response to pressure loading in the shielded case was substantially faster than that in the open case. This finding provides the biomechanical mechanisms for blast induced TM damage in relation to overpressure waveforms. The TM rupture threshold difference between the open and shielded cases suggests that an acoustic role of helmets may exist, intensifying ear injury during blast exposure. PMID:26807796

  8. Pulsatile pipe flow transition: Flow waveform effects

    NASA Astrophysics Data System (ADS)

    Brindise, Melissa C.; Vlachos, Pavlos P.

    2018-01-01

    Although transition is known to exist in various hemodynamic environments, the mechanisms that govern this flow regime and their subsequent effects on biological parameters are not well understood. Previous studies have investigated transition in pulsatile pipe flow using non-physiological sinusoidal waveforms at various Womersley numbers but have produced conflicting results, and multiple input waveform shapes have yet to be explored. In this work, we investigate the effect of the input pulsatile waveform shape on the mechanisms that drive the onset and development of transition using particle image velocimetry, three pulsatile waveforms, and six mean Reynolds numbers. The turbulent kinetic energy budget including dissipation rate, production, and pressure diffusion was computed. The results show that the waveform with a longer deceleration phase duration induced the earliest onset of transition, while the waveform with a longer acceleration period delayed the onset of transition. In accord with the findings of prior studies, for all test cases, turbulence was observed to be produced at the wall and either dissipated or redistributed into the core flow by pressure waves, depending on the mean Reynolds number. Turbulent production increased with increasing temporal velocity gradients until an asymptotic limit was reached. The turbulence dissipation rate was shown to be independent of mean Reynolds number, but a relationship between the temporal gradients of the input velocity waveform and the rate of turbulence dissipation was found. In general, these results demonstrated that the shape of the input pulsatile waveform directly affected the onset and development of transition.

  9. Physiologic Waveform Analysis for Early Detection of Hemorrhage during Transport and Higher Echelon Medical Care of Combat Casualties

    DTIC Science & Technology

    2014-03-01

    waveforms that are easier to measure than ABP (e.g., pulse oximeter waveforms); (3) a NIH SBIR Phase I proposal with Retia Medical to develop automated...the training dataset. Integrating the technique with non-invasive pulse transit time (PTT) was most effective. The integrated technique specifically...the peripheral ABP waveforms in the training dataset. These techniques included the rudimentary mean ABP technique, the classic pulse pressure times

  10. A system for rapid analysis of the femoral blood velocity waveform at the bedside.

    PubMed

    Capper, W L; Amoore, J N; Clifford, P C; Immelman, E J; Harries-Jones, E P

    1986-01-01

    The shape of the arterial blood velocity waveform varies with atherosclerotic disease and several methods of quantifying the shape in order to predict the severity of the disease have been described. These methods include pulsatility index, the Laplace transform method, and principal component analysis. This paper describes the development of a system which allows the operator to acquire, display, and store waveforms from each limb and then to quantify the waveforms at the bedside within a few minutes. The system includes a 10 MHz bi-directional Doppler unit, an instantaneous mean frequency processor, and an Apple II microcomputer fitted with an accelerator card. Both the Laplace transform parameters and the pulsatility index are computed and each result is printed in tabular form together with the averaged results of five waveforms from each limb. The printout is suitable for inclusion in the patient's folder. In initial clinical studies Laplace transform analysis exhibited a good correlation with aorto-iliac stenosis as assessed angiographically (R = 0.73 P less than 0.001 t test).

  11. Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate.

    PubMed

    Shelley, Kirk H

    2007-12-01

    In this article, I examine the source of the photoplethysmograph (PPG), as well as methods of investigation, with an emphasize on amplitude, rhythm, and pulse analysis. The PPG waveform was first described in the 1930s. Although considered an interesting ancillary monitor, the "pulse waveform" never underwent intensive investigation. Its importance in clinical medicine was greatly increased with the introduction of the pulse oximeter into routine clinical care in the 1980s. Its waveform is now commonly displayed in the clinical setting. Active research efforts are beginning to demonstrate a utility beyond oxygen saturation and heart rate determination. Future trends are being heavily influenced by modern digital signal processing, which is allowing a re-examination of this ubiquitous waveform. Key to unlocking the potential of this waveform is an unfettered access to the raw signal, combined with standardization of its presentation, and methods of analysis. In the long run, we need to learn how to consistently quantify the characteristics of the PPG in such a way as to allow the results from research efforts be translated into clinically useful devices.

  12. Experimental study of hemodynamics in the Circle of Willis.

    PubMed

    Zhu, Guangyu; Yuan, Qi; Yang, Jian; Yeo, Joon

    2015-01-01

    The Circle of Willis (CoW) is an important collateral pathway of the cerebral blood flow. An experimental study of the cerebral blood flow (CBF) distribution in different anatomical variations may help to a better understanding of the collateral mechanism of the CoW. An in-vitro test rig was developed to simulate the physiological cerebral blood flow in the CoW. Ten anatomical variations were considered in this study, include a set of different degrees of stenosis in L-ICA and L-ICA occlusion coexist with common anatomical variations. Volume flow rates of efferent arteries and pressure signals at the end of communicating arteries of each case were recorded. Physiological pressure waveforms were applied as inlet boundary condition. In the development of L-ICA stenosis, the total CBF decreases with the increase of stenosis degree. The blood supply of ipsilateral middle cerebral artery (MCA) was affected most by the stenosis of L-ICA. Anterior communicating artery (ACoA) and ipsilateral posterior communicating artery (PCoA) function as important collateral pathways of cerebral collateral circulation when unilateral stenosis occurred. The blood supply of anterior cerebral circulation was compensated by the posterior cerebral circulation through ipsilateral PCoA when L-ICA stenosis degree is greater than 40% and the affected side was compensated immediately by the unaffected side through ACoA. Blood flow of the anterior circulation and the total CBF reached the minimum among all cases studied when L-ICA occlusion coexist with the absence of PCoA. The results demonstrated the flow distribution patterns of the CoW under anatomical variations and clarified the collateral mechanism of the CoW. The flow ACoA is the most sensitive indexes to the morphology change of ipsilateral ICA. The relative independence of the circulation in anterior and posterior sections of the CoW is not broken and the function of ipsilateral PCoA is not activated until a severe stenosis of unilateral ICA occurs. PCoA is the most important collateral pathway of the collateral circulation and the missing of PCoA has the highest risk of stroke when the ipsilateral ICA has severe stenosis. These findings may provide the basis for future therapeutic and diagnosis applications.

  13. Measurement of carotid blood pressure and local pulse wave velocity changes during cuff induced hyperemia.

    PubMed

    Nabeel, P M; Karthik, Srinivasa; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2017-07-01

    We present a prototype design of dual element photoplethysmograph (PPG) probe along with associated measurement system for carotid local pulse wave velocity (PWV) evaluation in a non-invasive and continuous manner. The PPG probe consists of two identical sensing modules placed 23 mm apart. Simultaneously measured blood pulse waveforms from these arterial sites were processed and the pulse transit time delay was resolved using the developed application-specific software. The ability of developed PPG probe and associated measurement system to detect acute changes in carotid local PWV due to blood pressure (BP) variations was experimentally validated by an in-vivo study. Intra-subject carotid BP elevation was achieved by an upper arm cuff based occlusion, which offered a controlled way of local PWV escalation. The elevated carotid BP values were also recorded by a calibrated pressure tonometer prior to the study, and was used as a reference. A significant increment (1.0 - 2.6 m/s) in local PWV was observed and was proportional to the BP increment induced by the occlusive reactive hyperemia. Study results demonstrated the feasibility of real-time signal acquisition and reliable local PWV evaluation under normal and elevated BP conditions using the developed measurement system.

  14. Pulse pressure waveform in hydrocephalus: what it is and what it isn't.

    PubMed

    Czosnyka, Marek; Czosnyka, Zofia; Keong, Nicole; Lavinio, Andreas; Smielewski, Piotr; Momjian, Shahan; Schmidt, Eric A; Petrella, Gianpaolo; Owler, Brian; Pickard, John D

    2007-04-15

    Apart from its mean value, the pulse waveform of intracranial pressure (ICP) is an essential element of pressure recording. The authors reviewed their experience with the measurement and interpretation of ICP pulse amplitude by referring to a database of recordings in hydrocephalic patients. The database contained computerized pressure recordings from 2100 infusion studies (either lumbar or intraventricular) or overnight ICP monitoring sessions in patients suffering from hydrocephalus of various types (both communicating and noncommunicating), origins, and stages of management (shunt or no shunt). Amplitude was calculated from ICP waveforms by using a spectral analysis methodology. The appearance of a pulse waveform amplitude is positive evidence of a technically correct recording of ICP and helps to distinguish between postural and vasogenic variations in ICP. Pulse amplitude is significantly correlated with the amplitude of cerebral blood flow velocity (R = 0.4, p = 0.012) as assessed using Doppler ultrasonography. Amplitude is positively correlated with a mean ICP (R = 0.21 in idiopathic normal-pressure hydrocephalus [NPH]; number of cases 131; p < 0.01) and resistance to cerebrospinal fluid outflow (R = 0.22) but does not seem to be correlated with cerebrospinal elasticity, dilation of ventricles, or severity of hydrocephalus (NPH score). Amplitude increases slightly with age (R = 0.39, p < 0.01; number of cases 46). A positive association between pulse amplitude and increased ICP during an infusion study is helpful in distinguishing between hydrocephalus and predominant brain atrophy. A large amplitude is associated with a good outcome after shunting (positive predictive power 0.9), whereas a low amplitude has no predictive power in outcome prognostication (0.5). Pulse amplitude is reduced by a properly functioning shunt. Proper recording, detection, and interpretation of ICP pulse waveforms provide clinically useful information about patients suffering from hydrocephalus.

  15. Design and performance of heart assist or artificial heart control systems

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Gebben, V. D.

    1978-01-01

    The factors leading to the design of a controlled driving system for either a heart assist pump or artificial heart are discussed. The system provides square pressure waveform to drive a pneumatic-type blood pump. For assist usage the system uses an R-wave detector circuit that can detect the R-wave of the electrocardiogram in the presence of electrical disturbances. This circuit provides a signal useful for synchronizing an assist pump with the natural heart. It synchronizes a square wave circuit, the output of which is converted into square waveforms of pneumatic pressure suitable for driving both assist device and artificial heart. The pressure levels of the driving waveforms are controlled by means of feedback channels to maintain physiological regulation of the artificial heart's output flow. A more compact system that could achieve similar regulatory characteristics is also discussed.

  16. Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach

    PubMed Central

    Canney, Michael S.; Bailey, Michael R.; Crum, Lawrence A.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.

    2008-01-01

    Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24 000 W∕cm2. The inputs to a Khokhlov–Zabolotskaya–Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W∕cm2, lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields. PMID:19062878

  17. Some effects of oscillation waveform and amplitude on unsteady turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Agarwal, Naval K.; Simpson, Roger L.; Shivaprasad, B. G.

    1992-01-01

    Some physical features of several unsteady separating turbulent boundary layers are presented for practical Reynolds numbers and reduced frequencies such as for helicopter and turbomachinery flows. The effects of unsteadiness amplitude and waveform are examined for flows along the floor of a converging and diverging wind tunnel test section. At the end of the converging portion, the mean skin friction coefficient normalized on the mean dynamic pressure is independent of the waveform and amplitude within low experimental uncertainties. In the detaching and detached portions of the flow, wall values of the fraction of time that the flow moves downstream of gamma sub pu, which is a separated flow state variable, shows that oscillation waveform and amplitude strongly influence the detached flow behavior. Distributions of gamma sub pu during a cycle indicate hysteresis within the detached flow and the effects of the higher harmonics of pressure gradient and velocity.

  18. A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness.

    PubMed

    Willemet, Marie; Chowienczyk, Phil; Alastruey, Jordi

    2015-08-15

    While central (carotid-femoral) foot-to-foot pulse wave velocity (PWV) is considered to be the gold standard for the estimation of aortic arterial stiffness, peripheral foot-to-foot PWV (brachial-ankle, femoral-ankle, and carotid-radial) are being studied as substitutes of this central measurement. We present a novel methodology to assess theoretically these computed indexes and the hemodynamics mechanisms relating them. We created a database of 3,325 virtual healthy adult subjects using a validated one-dimensional model of the arterial hemodynamics, with cardiac and arterial parameters varied within physiological healthy ranges. For each virtual subject, foot-to-foot PWV was computed from numerical pressure waveforms at the same locations where clinical measurements are commonly taken. Our numerical results confirm clinical observations: 1) carotid-femoral PWV is a good indicator of aortic stiffness and correlates well with aortic PWV; 2) brachial-ankle PWV overestimates aortic PWV and is related to the stiffness and geometry of both elastic and muscular arteries; and 3) muscular PWV (carotid-radial, femoral-ankle) does not capture the stiffening of the aorta and should therefore not be used as a surrogate for aortic stiffness. In addition, our analysis highlights that the foot-to-foot PWV algorithm is sensitive to the presence of reflected waves in late diastole, which introduce errors in the PWV estimates. In this study, we have created a database of virtual healthy subjects, which can be used to assess theoretically the efficiency of physiological indexes based on pulse wave analysis. Copyright © 2015 the American Physiological Society.

  19. A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness

    PubMed Central

    Chowienczyk, Phil; Alastruey, Jordi

    2015-01-01

    While central (carotid-femoral) foot-to-foot pulse wave velocity (PWV) is considered to be the gold standard for the estimation of aortic arterial stiffness, peripheral foot-to-foot PWV (brachial-ankle, femoral-ankle, and carotid-radial) are being studied as substitutes of this central measurement. We present a novel methodology to assess theoretically these computed indexes and the hemodynamics mechanisms relating them. We created a database of 3,325 virtual healthy adult subjects using a validated one-dimensional model of the arterial hemodynamics, with cardiac and arterial parameters varied within physiological healthy ranges. For each virtual subject, foot-to-foot PWV was computed from numerical pressure waveforms at the same locations where clinical measurements are commonly taken. Our numerical results confirm clinical observations: 1) carotid-femoral PWV is a good indicator of aortic stiffness and correlates well with aortic PWV; 2) brachial-ankle PWV overestimates aortic PWV and is related to the stiffness and geometry of both elastic and muscular arteries; and 3) muscular PWV (carotid-radial, femoral-ankle) does not capture the stiffening of the aorta and should therefore not be used as a surrogate for aortic stiffness. In addition, our analysis highlights that the foot-to-foot PWV algorithm is sensitive to the presence of reflected waves in late diastole, which introduce errors in the PWV estimates. In this study, we have created a database of virtual healthy subjects, which can be used to assess theoretically the efficiency of physiological indexes based on pulse wave analysis. PMID:26055792

  20. Validation of a Piezoelectric Sensor Array-Based Device for Measurement of Carotid-Femoral Pulse Wave Velocity: The Philips Prototype.

    PubMed

    Xu, Shao-Kun; Hong, Xiang-Fei; Cheng, Yi-Bang; Liu, Chang-Yuan; Li, Yan; Yin, Bin; Wang, Ji-Guang

    2018-03-01

    Multiple piezoelectric pressure mechanotransducers topologized into an array might improve efficiency and accuracy in collecting arterial pressure waveforms for measurement of pulse wave velocity (PWV). In the present study, we validated a piezoelectric sensor array-based prototype (Philips) against the validated and clinically widely used Complior device (Alam Medical). We recruited 33 subjects with a wide distribution of PWV. For the validation, PWV was measured sequentially with the Complior device (four times) and the Philips prototype (three times). With the 99 paired PWV values, we investigated the agreement between the Philips prototype and the Complior device using Pearson correlation analysis and Bland-Altman plot. We also performed analysis on the determinants and reproducibility of PWV measured with both devices. The correlation coefficient for PWV measured with the two devices was 0.92 ( p < 0.0001). Compared with the Complior device, the Philips prototype slightly overestimated PWV by 0.24 (± 2 standard deviations, ± 1.91) m/s, especially when PWV was high. The correlation coefficient between the difference and the average of the Philips and Complior measurements was 0.21 ( p = 0.035). Nonetheless, they had similar determinants. Age, mean arterial pressure, and sex altogether explained 81.6 and 83.9% of the variance of PWV values measured with the Philips prototype and Complior device, respectively. When the two extremes of the three PWV values measured with the Philips prototype and the Complior device were investigated, the coefficients of variation were 8.26 and 3.26%, respectively. Compared with the Complior device, the Philips prototype had similar accuracy, determinants, and reproducibility in measuring PWV.

  1. Robust detection of heart beats in multimodal records using slope- and peak-sensitive band-pass filters.

    PubMed

    Pangerc, Urška; Jager, Franc

    2015-08-01

    In this work, we present the development, architecture and evaluation of a new and robust heart beat detector in multimodal records. The detector uses electrocardiogram (ECG) signals, and/or pulsatile (P) signals, such as: blood pressure, artery blood pressure and pulmonary artery pressure, if present. The base approach behind the architecture of the detector is collecting signal energy (differentiating and low-pass filtering, squaring, integrating). To calculate the detection and noise functions, simple and fast slope- and peak-sensitive band-pass digital filters were designed. By using morphological smoothing, the detection functions were further improved and noise intervals were estimated. The detector looks for possible pacemaker heart rate patterns and repairs the ECG signals and detection functions. Heart beats are detected in each of the ECG and P signals in two steps: a repetitive learning phase and a follow-up detecting phase. The detected heart beat positions from the ECG signals are merged into a single stream of detected ECG heart beat positions. The merged ECG heart beat positions and detected heart beat positions from the P signals are verified for their regularity regarding the expected heart rate. The detected heart beat positions of a P signal with the best match to the merged ECG heart beat positions are selected for mapping into the noise and no-signal intervals of the record. The overall evaluation scores in terms of average sensitivity and positive predictive values obtained on databases that are freely available on the Physionet website were as follows: the MIT-BIH Arrhythmia database (99.91%), the MGH/MF Waveform database (95.14%), the augmented training set of the follow-up phase of the PhysioNet/Computing in Cardiology Challenge 2014 (97.67%), and the Challenge test set (93.64%).

  2. Effects of treatment with oxytocin, xylazine butorphanol, guaifenesin, acepromazine, and detomidine on esophageal manometric pressure in conscious horses.

    PubMed

    Wooldridge, Anne A; Eades, Susan C; Hosgood, Giselle L; Moore, Rustin M

    2002-12-01

    To compare effects of oxytocin, acepromazine maleate, xylazine hydrochloride-butorphanol tartrate, guaifenesin, and detomidine hydrochloride on esophageal manometric pressure in horses. 8 healthy adult horses. A nasogastric tube, modified with 3 polyethylene tubes that exited at the postpharyngeal area, thoracic inlet, and distal portion of the esophagus, was fitted for each horse. Amplitude, duration, and rate of propagation of pressure waveforms induced by swallows were measured at 5, 10, 20, 30, and 40 minutes after administration of oxytocin, detomidine, acepromazine, xylazine-butorphanol, guaifenesin, or saline (0.9% NaCI) solution. Number of spontaneous swallows, spontaneous events (contractions that occurred in the absence of a swallow stimulus), and high-pressure events (sustained increases in baseline pressure of > 10 mm Hg) were compared before and after drug adminision. At 5 minutes after administration, detomidine increased waveform amplitude and decreased waveform duration at the thoracic inlet. At 10 minutes after administration, detomidine increased waveform duration at the thoracic inlet. Acepromazine administration increased the number of spontaneous events at the thoracic inlet and distal portion of the esophagus. Acepromazine and detomidine administration increased the number of high-pressure events at the thoracic inlet. Guaifenesin administration increased the number of spontaneous events at the thoracic inlet. Xylazine-butorphanol, detomidine, acepromazine, and guaifenesin administration decreased the number of spontaneous swallows. Detomidine, acepromazine, and a combination of xylazine butorphanol had the greatest effect on esophageal motility when evaluated manometrically. Reduction in spontaneous swallowing and changes in normal, coordinated peristaltic activity are the most clinically relevant effects.

  3. Autonomic Impairment in Severe Traumatic Brain Injury: A Multimodal Neuromonitoring Study.

    PubMed

    Sykora, Marek; Czosnyka, Marek; Liu, Xiuyun; Donnelly, Joseph; Nasr, Nathalie; Diedler, Jennifer; Okoroafor, Francois; Hutchinson, Peter; Menon, David; Smielewski, Peter

    2016-06-01

    Autonomic impairment after acute traumatic brain injury has been associated independently with both increased morbidity and mortality. Links between autonomic impairment and increased intracranial pressure or impaired cerebral autoregulation have been described as well. However, relationships between autonomic impairment, intracranial pressure, impaired cerebral autoregulation, and outcome remain poorly explored. Using continuous measurements of heart rate variability and baroreflex sensitivity we aimed to test whether autonomic markers are associated with functional outcome and mortality independently of intracranial variables. Further, we aimed to evaluate the relationships between autonomic functions, intracranial pressure, and cerebral autoregulation. Retrospective analysis of a prospective database. Neurocritical care unit in a university hospital. Sedated patients with severe traumatic brain injury. Waveforms of intracranial pressure and arterial blood pressure, baseline Glasgow Coma Scale and 6 months Glasgow Outcome Scale were recorded. Baroreflex sensitivity was assessed every 10 seconds using a modified cross-correlational method. Frequency domain analyses of heart rate variability were performed automatically every 10 seconds from a moving 300 seconds of the monitoring time window. Mean values of baroreflex sensitivity, heart rate variability, intracranial pressure, arterial blood pressure, cerebral perfusion pressure, and impaired cerebral autoregulation over the entire monitoring period were calculated for each patient. Two hundred and sixty-two patients with a median age of 36 years entered the analysis. The median admission Glasgow Coma Scale was 6, the median Glasgow Outcome Scale was 3, and the mortality at 6 months was 23%. Baroreflex sensitivity (adjusted odds ratio, 0.9; p = 0.02) and relative power of a high frequency band of heart rate variability (adjusted odds ratio, 1.05; p < 0.001) were individually associated with mortality, independently of age, admission Glasgow Coma Scale, intracranial pressure, pressure reactivity index, or cerebral perfusion pressure. Baroreflex sensitivity showed no correlation with intracranial pressure or cerebral perfusion pressure; the correlation with pressure reactivity index was strong in older patients (age, > 60 yr). The relative power of high frequency correlated significantly with intracranial pressure and cerebral perfusion pressure, but not with pressure reactivity index. The relative power of low frequency correlated significantly with pressure reactivity index. Autonomic impairment, as measured by heart rate variability and baroreflex sensitivity, is significantly associated with increased mortality after traumatic brain injury. These effects, though partially interlinked, seem to be independent of age, trauma severity, intracranial pressure, or autoregulatory status, and thus represent a discrete phenomenon in the pathophysiology of traumatic brain injury. Continuous measurements of heart rate variability and baroreflex sensitivity in the neuromonitoring setting of severe traumatic brain injury may carry novel pathophysiological and predictive information.

  4. Mechanical damage of tympanic membrane in relation to impulse pressure waveform - A study in chinchillas.

    PubMed

    Gan, Rong Z; Nakmali, Don; Ji, Xiao D; Leckness, Kegan; Yokell, Zachary

    2016-10-01

    Mechanical damage to middle ear components in blast exposure directly causes hearing loss, and the rupture of the tympanic membrane (TM) is the most frequent injury of the ear. However, it is unclear how the severity of injury graded by different patterns of TM rupture is related to the overpressure waveforms induced by blast waves. In the present study, the relationship between the TM rupture threshold and the impulse or overpressure waveform has been investigated in chinchillas. Two groups of animals were exposed to blast overpressure simulated in our lab under two conditions: open field and shielded with a stainless steel cup covering the animal head. Auditory brainstem response (ABR) and wideband tympanometry were measured before and after exposure to check the hearing threshold and middle ear function. Results show that waveforms recorded in the shielded case were different from those in the open field and the TM rupture threshold in the shielded case was lower than that in the open field (3.4 ± 0.7 vs. 9.1 ± 1.7 psi or 181 ± 1.6 vs. 190 ± 1.9 dB SPL). The impulse pressure energy spectra analysis of waveforms demonstrates that the shielded waveforms include greater energy at high frequencies than that of the open field waves. Finally, a 3D finite element (FE) model of the chinchilla ear was used to compute the distributions of stress in the TM and the TM displacement with impulse pressure waves. The FE model-derived change of stress in response to pressure loading in the shielded case was substantially faster than that in the open case. This finding provides the biomechanical mechanisms for blast induced TM damage in relation to overpressure waveforms. The TM rupture threshold difference between the open and shielded cases suggests that an acoustic role of helmets may exist, intensifying ear injury during blast exposure. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A Review on Atherosclerotic Biology, Wall Stiffness, Physics of Elasticity, and Its Ultrasound-Based Measurement.

    PubMed

    Patel, Anoop K; Suri, Harman S; Singh, Jaskaran; Kumar, Dinesh; Shafique, Shoaib; Nicolaides, Andrew; Jain, Sanjay K; Saba, Luca; Gupta, Ajay; Laird, John R; Giannopoulos, Argiris; Suri, Jasjit S

    2016-12-01

    Functional and structural changes in the common carotid artery are biomarkers for cardiovascular risk. Current methods for measuring functional changes include pulse wave velocity, compliance, distensibility, strain, stress, stiffness, and elasticity derived from arterial waveforms. The review is focused on the ultrasound-based carotid artery elasticity and stiffness measurements covering the physics of elasticity and linking it to biological evolution of arterial stiffness. The paper also presents evolution of plaque with a focus on the pathophysiologic cascade leading to arterial hardening. Using the concept of strain, and image-based elasticity, the paper then reviews the lumen diameter and carotid intima-media thickness measurements in combined temporal and spatial domains. Finally, the review presents the factors which influence the understanding of atherosclerotic disease formation and cardiovascular risk including arterial stiffness, tissue morphological characteristics, and image-based elasticity measurement.

  6. Conversion of umbilical arterial Doppler waveforms to cardiac cycle triggering signals: a preparatory study for online motion-gated three-dimensional fetal echocardiography.

    PubMed

    Deng, J; Birkett, A G; Kalache, K D; Hanson, M A; Peebles, D M; Linney, A D; Lees, W R; Rodeck, C H

    2001-01-01

    To remove motion artefacts, a device was built to convert "noisy" umbilical arterial Doppler waveforms (UADWs) from an ultrasound (US) system into sharp ECG R-wave-like cardiac cycle triggering signals (CCTSs). These CCTSs were then used to gate a simultaneous (online) 3-D acquisition of sectional fetal echocardiograms from another US system. To test the conversion performance, a study was carried out in sheep fetal twins. Pulmonary arterial flow waveforms (PAFWs) from implanted probes were traced, in the meantime, to determine the reference cardiac cycle. Interference caused by running the two nonsynchronised US systems was controlled to three degrees (not-noticeable, moderate, and severe), together with high (> or = 40 cm/s) and low (< 40) flow velocities on UADWs. The conversion efficiency, assessed by the percentage of UADWs converted into CCTSs, was in the range of 83% to 100% for not-noticeable and moderate interference, and 0% to 71% for severe interference. The triggering accuracy, assessed by [(time lag mean between the onsets of PAFWs and corresponding CCTSs) -- (its 99% confidence level)] / the mean, was 90% to 96% for the not-noticeable interference high- and low-flow groups and for the moderate interference high-flow group; 19% to 93% for the moderate interference low-flow group; and from not obtainable up to 90% for the severe interference groups. The results show that UADWs can be used as a satisfactory online motion-gating source even in the presence of moderate interference. The major problems are from severe interference or moderate interference with low-flow velocity, which can be minimised/eliminated by the integration of the individual systems involved.

  7. Blood pressure regulation V: in vivo mechanical properties of precapillary vessels as affected by long-term pressure loading and unloading.

    PubMed

    Eiken, Ola; Mekjavic, Igor B; Kölegård, Roger

    2014-03-01

    Recent studies are reviewed, concerning the in vivo wall stiffness of arteries and arterioles in healthy humans, and how these properties adapt to iterative increments or sustained reductions in local intravascular pressure. A novel technique was used, by which arterial and arteriolar stiffness was determined as changes in arterial diameter and flow, respectively, during graded increments in distending pressure in the blood vessels of an arm or a leg. Pressure-induced increases in diameter and flow were smaller in the lower leg than in the arm, indicating greater stiffness in the arteries/arterioles of the leg. A 5-week period of intermittent intravascular pressure elevations in one arm reduced pressure distension and pressure-induced flow in the brachial artery by about 50%. Conversely, prolonged reduction of arterial/arteriolar pressure in the lower body by 5 weeks of sustained horizontal bedrest, induced threefold increases of the pressure-distension and pressure-flow responses in a tibial artery. Thus, the wall stiffness of arteries and arterioles are plastic properties that readily adapt to changes in the prevailing local intravascular pressure. The discussion concerns mechanisms underlying changes in local arterial/arteriolar stiffness as well as whether stiffness is altered by changes in myogenic tone and/or wall structure. As regards implications, regulation of local arterial/arteriolar stiffness may facilitate control of arterial pressure in erect posture and conditions of exaggerated intravascular pressure gradients. That increased intravascular pressure leads to increased arteriolar wall stiffness also supports the notion that local pressure loading may constitute a prime mover in the development of vascular changes in hypertension.

  8. Modeling of an electrohydraulic lithotripter with the KZK equation.

    PubMed

    Averkiou, M A; Cleveland, R O

    1999-07-01

    The acoustic pressure field of an electrohydraulic extracorporeal shock wave lithotripter is modeled with a nonlinear parabolic wave equation (the KZK equation). The model accounts for diffraction, nonlinearity, and thermoviscous absorption. A numerical algorithm for solving the KZK equation in the time domain is used to model sound propagation from the mouth of the ellipsoidal reflector of the lithotripter. Propagation within the reflector is modeled with geometrical acoustics. It is shown that nonlinear distortion within the ellipsoidal reflector can play an important role for certain parameters. Calculated waveforms are compared with waveforms measured in a clinical lithotripter and good agreement is found. It is shown that the spatial location of the maximum negative pressure occurs pre-focally which suggests that the strongest cavitation activity will also be in front of the focus. Propagation of shock waves from a lithotripter with a pressure release reflector is considered and because of nonlinear propagation the focal waveform is not the inverse of the rigid reflector. Results from propagation through tissue are presented; waveforms are similar to those predicted in water except that the higher absorption in the tissue decreases the peak amplitude and lengthens the rise time of the shock.

  9. [The research in a foot pressure measuring system based on LabVIEW].

    PubMed

    Li, Wei; Qiu, Hong; Xu, Jiang; He, Jiping

    2011-01-01

    This paper presents a system of foot pressure measuring system based on LabVIEW. The designs of hardware and software system are figured out. LabVIEW is used to design the application interface for displaying plantar pressure. The system can realize the plantar pressure data acquisition, data storage, waveform display, and waveform playback. It was also shown that the testing results of the system were in line with the changing trend of normal gait, which conformed to human system engineering theory. It leads to the demonstration of system reliability. The system gives vivid and visual results, and provides a new method of how to measure foot-pressure and some references for the design of Insole System.

  10. Moment-to-moment characteristics of the relationship between arterial pressure and renal interstitial hydrostatic pressure.

    PubMed

    Komolova, Marina; Adams, Michael A

    2010-10-01

    The kidney is a key controller of the long-term level of arterial pressure, in part through pressure-natriuresis. Although direct coupling of changes in renal arterial pressure to renal interstitial hydrostatic pressure (RIHP) and consequent sodium excretion is well established, few studies have characterized the moment-to-moment aspects of this process. These studies characterized the short-term hemodynamic component of pressure-natriuresis in vivo before and after autonomic nervous system and renin-angiotensin system inhibition. Changes in RIHP were determined over a range of renal arterial pressures in Wistar rats receiving no treatment, a ganglionic blocker (hexamethonium; 20 mg/kg per hour IV), or an angiotensin II type 1 receptor blocker (losartan; 10 mg/kg per hour IV). After a series of changes in renal arterial pressure, a delay of only ≈1 second was found for the onset of RIHP responses that was independent of the stimulus magnitude and neurohumoral manipulation; however, completion of the full RIHP response was within ≈15 seconds for renal arterial pressure changes of ≤30 mm Hg. The overall slope of the renal arterial pressure- RIHP relationship (0.09±0.01) was also not affected by autonomic nervous system and renin-angiotensin system inhibition despite decreasing renal arterial pressure (↓40% and ↓28%, respectively). Separate assessment of this relationship above and below the prevailing arterial pressure revealed that the pressor versus the depressor portion was blunted (P<0.001), a difference that was abolished after autonomic nervous system and renin-angiotensin system inhibition. The results suggest that spontaneous changes in arterial pressure are coupled to moment-to-moment changes in RIHP over a wide range of pressures, emphasizing a likely role for the dynamic component of the renal arterial pressure-RIHP relationship in the modulation of sodium excretion and, hence, arterial pressure.

  11. Estimation of coronary wave intensity analysis using noninvasive techniques and its application to exercise physiology

    PubMed Central

    Nijjer, Sukhjinder; Sen, Sayan; Petraco, Ricardo; Jones, Siana; Al-Lamee, Rasha; Foin, Nicolas; Al-Bustami, Mahmud; Sethi, Amarjit; Kaprielian, Raffi; Ramrakha, Punit; Khan, Masood; Malik, Iqbal S.; Francis, Darrel P.; Parker, Kim; Hughes, Alun D.; Mikhail, Ghada W.; Mayet, Jamil; Davies, Justin E.

    2015-01-01

    Wave intensity analysis (WIA) has found particular applicability in the coronary circulation where it can quantify traveling waves that accelerate and decelerate blood flow. The most important wave for the regulation of flow is the backward-traveling decompression wave (BDW). Coronary WIA has hitherto always been calculated from invasive measures of pressure and flow. However, recently it has become feasible to obtain estimates of these waveforms noninvasively. In this study we set out to assess the agreement between invasive and noninvasive coronary WIA at rest and measure the effect of exercise. Twenty-two patients (mean age 60) with unobstructed coronaries underwent invasive WIA in the left anterior descending artery (LAD). Immediately afterwards, noninvasive LAD flow and pressure were recorded and WIA calculated from pulsed-wave Doppler coronary flow velocity and central blood pressure waveforms measured using a cuff-based technique. Nine of these patients underwent noninvasive coronary WIA assessment during exercise. A pattern of six waves were observed in both modalities. The BDW was similar between invasive and noninvasive measures [peak: 14.9 ± 7.8 vs. −13.8 ± 7.1 × 104 W·m−2·s−2, concordance correlation coefficient (CCC): 0.73, P < 0.01; cumulative: −64.4 ± 32.8 vs. −59.4 ± 34.2 × 102 W·m−2·s−1, CCC: 0.66, P < 0.01], but smaller waves were underestimated noninvasively. Increased left ventricular mass correlated with a decreased noninvasive BDW fraction (r = −0.48, P = 0.02). Exercise increased the BDW: at maximum exercise peak BDW was −47.0 ± 29.5 × 104 W·m−2·s−2 (P < 0.01 vs. rest) and cumulative BDW −19.2 ± 12.6 × 103 W·m−2·s−1 (P < 0.01 vs. rest). The BDW can be measured noninvasively with acceptable reliably potentially simplifying assessments and increasing the applicability of coronary WIA. PMID:26683900

  12. Estimation of coronary wave intensity analysis using noninvasive techniques and its application to exercise physiology.

    PubMed

    Broyd, Christopher J; Nijjer, Sukhjinder; Sen, Sayan; Petraco, Ricardo; Jones, Siana; Al-Lamee, Rasha; Foin, Nicolas; Al-Bustami, Mahmud; Sethi, Amarjit; Kaprielian, Raffi; Ramrakha, Punit; Khan, Masood; Malik, Iqbal S; Francis, Darrel P; Parker, Kim; Hughes, Alun D; Mikhail, Ghada W; Mayet, Jamil; Davies, Justin E

    2016-03-01

    Wave intensity analysis (WIA) has found particular applicability in the coronary circulation where it can quantify traveling waves that accelerate and decelerate blood flow. The most important wave for the regulation of flow is the backward-traveling decompression wave (BDW). Coronary WIA has hitherto always been calculated from invasive measures of pressure and flow. However, recently it has become feasible to obtain estimates of these waveforms noninvasively. In this study we set out to assess the agreement between invasive and noninvasive coronary WIA at rest and measure the effect of exercise. Twenty-two patients (mean age 60) with unobstructed coronaries underwent invasive WIA in the left anterior descending artery (LAD). Immediately afterwards, noninvasive LAD flow and pressure were recorded and WIA calculated from pulsed-wave Doppler coronary flow velocity and central blood pressure waveforms measured using a cuff-based technique. Nine of these patients underwent noninvasive coronary WIA assessment during exercise. A pattern of six waves were observed in both modalities. The BDW was similar between invasive and noninvasive measures [peak: 14.9 ± 7.8 vs. -13.8 ± 7.1 × 10(4) W·m(-2)·s(-2), concordance correlation coefficient (CCC): 0.73, P < 0.01; cumulative: -64.4 ± 32.8 vs. -59.4 ± 34.2 × 10(2) W·m(-2)·s(-1), CCC: 0.66, P < 0.01], but smaller waves were underestimated noninvasively. Increased left ventricular mass correlated with a decreased noninvasive BDW fraction (r = -0.48, P = 0.02). Exercise increased the BDW: at maximum exercise peak BDW was -47.0 ± 29.5 × 10(4) W·m(-2)·s(-2) (P < 0.01 vs. rest) and cumulative BDW -19.2 ± 12.6 × 10(3) W·m(-2)·s(-1) (P < 0.01 vs. rest). The BDW can be measured noninvasively with acceptable reliably potentially simplifying assessments and increasing the applicability of coronary WIA. Copyright © 2016 the American Physiological Society.

  13. Determinants of systemic zero-flow arterial pressure.

    PubMed

    Brunner, M J; Greene, A S; Sagawa, K; Shoukas, A A

    1983-09-01

    Thirteen pentobarbital-anesthetized dogs whose carotid sinuses were isolated and perfused at a constant pressure were placed on total cardiac bypass. With systemic venous pressure held at 0 mmHg (condition 1), arterial inflow was stopped for 20 s at intrasinus pressures of 50, 125, and 200 mmHg. Zero-flow arterial pressures under condition 1 were 16.2 +/- 1.3 (SE), 13.8 +/- 1.1, and 12.5 +/- 0.8 mmHg, respectively. In condition 2, the venous outflow tube was clamped at the instant of stopping the inflow, causing venous pressure to rise. The zero-flow arterial pressures were 19.7 +/- 1.3, 18.5 +/- 1.4, and 16.4 +/- 1.2 mmHg for intrasinus pressures of 50, 125, and 200 mmHg, respectively. At all levels of intrasinus pressure, the zero-flow arterial pressure in condition 2 was higher (P less than 0.005) than in condition 1. In seven dogs, at an intrasinus pressure of 125 mmHg, epinephrine increased the zero-flow arterial pressure by 3.0 mmHg, whereas hexamethonium and papaverine decreased the zero-flow arterial pressure by 2 mmHg. Reductions in the hematocrit from 52 to 11% resulted in statistically significant changes (P less than 0.01) in zero-flow arterial pressures. Thus zero-flow arterial pressure was found to be affected by changes in venous pressure, hematocrit, and vasomotor tone. The evidence does not support the literally interpreted concept of the vascular waterfall as the model for the finite arteriovenous pressure difference at zero flow.

  14. Experimental Investigation of Secondary Flow Structures Downstream of a Model Type IV Stent Failure in a 180° Curved Artery Test Section.

    PubMed

    Bulusu, Kartik V; Plesniak, Michael W

    2016-07-19

    The arterial network in the human vasculature comprises of ubiquitously present blood vessels with complex geometries (branches, curvatures and tortuosity). Secondary flow structures are vortical flow patterns that occur in curved arteries due to the combined action of centrifugal forces, adverse pressure gradients and inflow characteristics. Such flow morphologies are greatly affected by pulsatility and multiple harmonics of physiological inflow conditions and vary greatly in size-strength-shape characteristics compared to non-physiological (steady and oscillatory) flows (1 - 7). Secondary flow structures may ultimately influence the wall shear stress and exposure time of blood-borne particles toward progression of atherosclerosis, restenosis, sensitization of platelets and thrombosis (4 - 6, 8 - 13). Therefore, the ability to detect and characterize these structures under laboratory-controlled conditions is precursor to further clinical investigations. A common surgical treatment to atherosclerosis is stent implantation, to open up stenosed arteries for unobstructed blood flow. But the concomitant flow perturbations due to stent installations result in multi-scale secondary flow morphologies (4 - 6). Progressively higher order complexities such as asymmetry and loss in coherence can be induced by ensuing stent failures vis-à-vis those under unperturbed flows (5). These stent failures have been classified as "Types I-to-IV" based on failure considerations and clinical severity (14). This study presents a protocol for the experimental investigation of the complex secondary flow structures due to complete transverse stent fracture and linear displacement of fractured parts ("Type IV") in a curved artery model. The experimental method involves the implementation of particle image velocimetry (2C-2D PIV) techniques with an archetypal carotid artery inflow waveform, a refractive index matched blood-analog working fluid for phase-averaged measurements (15 - 18). Quantitative identification of secondary flow structures was achieved using concepts of flow physics, critical point theory and a novel wavelet transform algorithm applied to experimental PIV data (5, 6, 19 - 26).

  15. Comparison of directly measured arterial blood pressure at various anatomic locations in anesthetized dogs.

    PubMed

    Acierno, Mark J; Domingues, Michelle E; Ramos, Sara J; Shelby, Amanda M; da Cunha, Anderson F

    2015-03-01

    To determine whether directly measured arterial blood pressure differs among anatomic locations and whether arterial blood pressure is influenced by body position. 33 client-owned dogs undergoing anesthesia. Dogs undergoing anesthetic procedures had 20-gauge catheters placed in both the superficial palmar arch and the contralateral dorsal pedal artery (group 1 [n = 20]) or the superficial palmar arch and median sacral artery (group 2 [13]). Dogs were positioned in dorsal recumbency, and mean arterial blood pressure (MAP), systolic arterial blood pressure (SAP), and diastolic arterial blood pressure (DAP) were recorded for both arteries 4 times (2-minute interval between successive measurements). Dogs were positioned in right lateral recumbency, and blood pressure measurements were repeated. Differences were detected between pressures measured at the 2 arterial sites in both groups. This was especially true for SAP measurements in group 1, in which hind limb measurements were a mean of 16.12 mm Hg higher than carpus measurements when dogs were in dorsal recumbency and 14.70 mm Hg higher than carpus measurements when dogs were in lateral recumbency. Also, there was significant dispersion about the mean for all SAP, DAP, and MAP measurements. Results suggested that arterial blood pressures may be dependent on anatomic location and body position. Because this may affect outcomes of studies conducted to validate indirect blood pressure measurement systems, care must be used when developing future studies or interpreting previous results.

  16. Cardiac cycle-synchronized electrical muscle stimulator for lower limb training with the potential to reduce the heart's pumping workload

    PubMed Central

    Matsuse, Hiroo; Akimoto, Ryuji; Kamiya, Shiro; Moritani, Toshio; Sasaki, Motoki; Ishizaki, Yuta; Ohtsuka, Masanori; Nakayoshi, Takaharu; Ueno, Takafumi; Shiba, Naoto; Fukumoto, Yoshihiro

    2017-01-01

    Background The lower limb muscle may play an important role in decreasing the heart’s pumping workload. Aging and inactivity cause atrophy and weakness of the muscle, leading to a loss of the heart-assisting role. An electrical lower limb muscle stimulator can prevent atrophy and weakness more effectively than conventional resistance training; however, it has been reported to increase the heart’s pumping workload in some situations. Therefore, more effective tools should be developed. Methods We newly developed a cardiac cycle-synchronized electrical lower limb muscle stimulator by combining a commercially available electrocardiogram monitor and belt electrode skeletal muscle electrical stimulator, making it possible to achieve strong and wide but not painful muscle contractions. Then, we tested the stimulator in 11 healthy volunteers to determine whether the special equipment enabled lower limb muscle training without harming the hemodynamics using plethysmography and a percutaneous cardiac output analyzer. Results In 9 of 11 subjects, the stimulator generated diastolic augmentation waves on the dicrotic notches and end-diastolic pressure reduction waves on the plethysmogram waveforms of the brachial artery, showing analogous waveforms in the intra-aortic balloon pumping heart-assisting therapy. The heart rate, stroke volume, and cardiac output significantly increased during the stimulation. There was no change in the systolic or diastolic blood pressure during the stimulation. Conclusion Cardiac cycle-synchronized electrical muscle stimulation for the lower limbs may enable muscle training without harmfully influencing the hemodynamics and with a potential to reduce the heart’s pumping workload, suggesting a promising tool for effectively treating both locomotor and cardiovascular disorders. PMID:29117189

  17. Non-Newtonian fluid structure interaction in flexible biomimetic microchannels

    NASA Astrophysics Data System (ADS)

    Kiran, M.; Dasgupta, Sunando; Chakraborty, Suman

    2017-11-01

    To investigate the complex fluid structure interactions in a physiologically relevant microchannel with deformable wall and non-Newtonian fluid that flows within it, we fabricated cylindrical microchannels of various softness out of PDMS. Experiments to measure the transient pressure drop across the channel were carried out with high sampling frequencies to capture the intricate flow physics. In particular, we showed that the waveforms varies greatly for each of the non-Newtonian and Newtonian cases for both non-deformable and deformable microchannels in terms of the peak amplitude, r.m.s amplitude and the crest factor. In addition, we carried out frequency sweep experiments to evaluate the frequency response of the system. We believe that these results will aid in the design of polymer based microfluidic phantoms for arterial FSI studies, and in particular for studying blood analog fluids in cylindrical microchannels as well as developing frequency specific Lab-on-chip systems for medical diagnostics.

  18. Subclavian vein pacing and venous pressure waveform measurement for phrenic nerve monitoring during cryoballoon ablation of atrial fibrillation.

    PubMed

    Ghosh, Justin; Singarayar, Suresh; Kabunga, Peter; McGuire, Mark A

    2015-06-01

    The phrenic nerves may be damaged during catheter ablation of atrial fibrillation. Phrenic nerve function is routinely monitored during ablation by stimulating the right phrenic nerve from a site in the superior vena cava (SVC) and manually assessing the strength of diaphragmatic contraction. However the optimal stimulation site, method of assessing diaphragmatic contraction, and techniques for monitoring the left phrenic nerve have not been established. We assessed novel techniques to monitor phrenic nerve function during cryoablation procedures. Pacing threshold and stability of phrenic nerve capture were assessed when pacing from the SVC, left and right subclavian veins. Femoral venous pressure waveforms were used to monitor the strength of diaphragmatic contraction. Stable capture of the left phrenic nerve by stimulation in the left subclavian vein was achieved in 96 of 100 patients, with a median capture threshold of 2.5 mA [inter-quartile range (IQR) 1.4-5.0 mA]. Stimulation of the right phrenic nerve from the subclavian vein was superior to stimulation from the SVC with lower pacing thresholds (1.8 mA IQR 1.4-3.3 vs. 6.0 mA IQR 3.4-8.0, P < 0.001). Venous pressure waveforms were obtained in all patients and attenuation of the waveform was always observed prior to onset of phrenic nerve palsy. The left phrenic nerve can be stimulated from the left subclavian vein. The subclavian veins are the optimal sites for phrenic nerve stimulation. Monitoring the femoral venous pressure waveform is a novel technique for detecting impending phrenic nerve damage. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  19. Atmospheric pressure ion focusing in a high-field asymmetric waveform ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Guevremont, Roger; Purves, Randy W.

    1999-02-01

    The focusing of ions at atmospheric pressure and room temperature in a high-field asymmetric waveform ion mobility spectrometer (FAIMS) has been investigated. FAIMS operates with the application of a high-voltage, high-frequency asymmetric waveform across parallel plates. This establishes conditions wherein an ion migrates towards one of the plates because of a difference in the ion mobility at the low and high electric field conditions during application of the waveform. The migration can be stopped by applying a dc compensation voltage (CV) which serves to create a "balanced" condition wherein the ion experiences no net transverse motion. This method has also been called "transverse field compensation ion mobility spectrometry" and "field ion spectrometry®." If this experiment is conducted using a device with cylindrical geometry, rather than with flat plates, an ion focusing region can exist in the annular space between the two concentric cylinders. Ion trajectory modeling showed that the behavior of the ions in the cylindrical geometry FAIMS analyzer was unlike any previously described atmospheric pressure ion optics system. The ions appeared to be trapped, or focused by being caught between two opposing forces. Requirements for establishing this focus for a given ion were identified: the applied waveform must be asymmetric, the electric field must be sufficiently high that the mobility of the ion deviates from its low-field value during the high-voltage portion of the asymmetric waveform, and finally, the electric field must be nonuniform in space (e.g., cylindrical or spherical geometry). Experimental observations with a prototype FAIMS device, which was designed to measure the radial distribution of ions in the FAIMS analyzer region, have confirmed the results of ion trajectory modeling.

  20. Defining degree of aortic occlusion for partial-REBOA: A computed tomography study on large animals.

    PubMed

    Reva, Viktor A; Matsumura, Yosuke; Samokhvalov, Igor M; Pochtarnik, Alexander A; Zheleznyak, Igor S; Mikhailovskaya, Ekaterina M; Morrison, Jonathan J

    2018-04-20

    Partial resuscitative endovascular balloon occlusion of the aorta (P-REBOA) is a modified REBOA technique designed to help ameliorate ischemia-reperfusion injury. The balloon is partially deflated, allowing a proportion of aortic flow distal to the balloon. The aim of this study is to use an ovine model of haemorrhagic shock to correlate the degree of occlusion to several hemodynamic indices. Six sheep weighing 35-46 kg underwent a controlled venous haemorrhage inside a CT scanner until the systolic arterial pressure (AP) dropped to <90 mmHg. A balloon positioned in an aortic zone I was incrementally filled with 1 mL of saline, with serial measurement of the proximal (carotid artery) and distal (femoral artery) mean APs (MAP) and intra-balloon pressure (IBP), along with CT imaging, following each inflation, until full occlusion was achieved. A diameter of the aorta at zone I was 16.0 (15.7-17.2) mm, with a cross-sectional area of 212 (194-233) mm 2 . Median volume of saline injected into the balloon until total occlusion was 7.0 (6.3-8.5) mL. During gradual balloon inflation, proximal MAP increased and distal MAP decreased proportionate to the degree of occlusion, in a linear fashion (proximal: r 2  = 0.85, p < 0.001; distal: r 2  = 0.95, p < 0.001). The femoral/carotid (F/C) pressure gradient also demonstrated a linear trend (r 2  = 0.90, p < 0.001). The relationship between percentage occlusion and IBP was sigmoid. MAP values became significantly different at 40-49% occlusion and more (p < 0.01). Furthermore, a drop in the distal pulse pressure from 7.0 (5.5-16.5) to 2.0 (1.5-5.0) mmHg was observed at 80% occlusion. All animals had femoral pulse pressure <5 mmHg at 80% of occlusion and more, which also coincided with the observed loss of pulsatility of the femoral wave-form. Serial CT angiography at an ovine model of haemorrhagic shock demonstrates a correlation between the femoral MAP, F/C pressure gradient and degree of zone I P-REBOA during the staged partial aortic occlusion. These parameters should be considered potential parameters to define the degree of P-REBOA during animal research and clinical practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Effects of dwell time of excitation waveform on meniscus movements for a tubular piezoelectric print-head: experiments and model

    NASA Astrophysics Data System (ADS)

    Chang, Jiaqing; Liu, Yaxin; Huang, Bo

    2017-07-01

    In inkjet applications, it is normal to search for an optimal drive waveform when dispensing a fresh fluid or adjusting a newly fabricated print-head. To test trial waveforms with different dwell times, a camera and a strobe light were used to image the protruding or retracting liquid tongues without ejecting any droplets. An edge detection method was used to calculate the lengths of the liquid tongues to draw the meniscus movement curves. The meniscus movement is determined by the time-domain response of the acoustic pressure at the nozzle of the print-head. Starting at the inverse piezoelectric effect, a mathematical model which considers the liquid viscosity in acoustic propagation is constructed to study the acoustic pressure response at the nozzle of the print-head. The liquid viscosity retards the propagation speed and dampens the harmonic amplitude. The pressure response, which is the combined effect of the acoustic pressures generated during the rising time and the falling time and after their propagations and reflections, explains the meniscus movements well. Finally, the optimal dwell time for droplet ejections is discussed.

  2. Value of Excess Pressure Integral for Predicting 15-Year All-Cause and Cardiovascular Mortalities in End-Stage Renal Disease Patients.

    PubMed

    Huang, Jui-Tzu; Cheng, Hao-Min; Yu, Wen-Chung; Lin, Yao-Ping; Sung, Shih-Hsien; Wang, Jiun-Jr; Wu, Chung-Li; Chen, Chen-Huan

    2017-11-29

    The excess pressure integral (XSPI), derived from analysis of the arterial pressure curve, may be a significant predictor of cardiovascular events in high-risk patients. We comprehensively investigated the prognostic value of XSPI for predicting long-term mortality in end-stage renal disease patients undergoing regular hemodialysis. A total of 267 uremic patients (50.2% female; mean age 54.2±14.9 years) receiving regular hemodialysis for more than 6 months were enrolled. Cardiovascular parameters were obtained by echocardiography and applanation tonometry. Calibrated carotid arterial pressure waveforms were analyzed according to the wave-transmission and reservoir-wave theories. Multivariable Cox proportional hazard models were constructed to account for age, sex, diabetes mellitus, albumin, body mass index, and hemodialysis treatment adequacy. Incremental utility of the parameters to risk stratification was assessed by net reclassification improvement. During a median follow-up of 15.3 years, 124 deaths (46.4%) incurred. Baseline XSPI was significantly predictive of all-cause (hazard ratio per 1 SD 1.4, 95% confidence interval 1.15-1.70, P =0.0006) and cardiovascular mortalities (1.47, 1.18-1.84, P =0.0006) after accounting for the covariates. The addition of XSPI to the base prognostic model significantly improved prediction of both all-cause mortality (net reclassification improvement=0.1549, P =0.0012) and cardiovascular mortality (net reclassification improvement=0.1535, P =0.0033). XSPI was superior to carotid-pulse wave velocity, forward and backward wave amplitudes, and left ventricular ejection fraction in consideration of overall independent and incremental prognostics values. In end-stage renal disease patients undergoing regular hemodialysis, XSPI was significantly predictive of long-term mortality and demonstrated an incremental value to conventional prognostic factors. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  3. Determination of secondary flow morphologies by wavelet analysis in a curved artery model with physiological inflow

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Hussain, Shadman; Plesniak, Michael W.

    2014-11-01

    Secondary flow vortical patterns in arterial curvatures have the potential to affect several cardiovascular phenomena, e.g., progression of atherosclerosis by altering wall shear stresses, carotid atheromatous disease, thoracic aortic aneurysms and Marfan's syndrome. Temporal characteristics of secondary flow structures vis-à-vis physiological (pulsatile) inflow waveform were explored by continuous wavelet transform (CWT) analysis of phase-locked, two-component, two-dimensional particle image velocimeter data. Measurements were made in a 180° curved artery test section upstream of the curvature and at the 90° cross-sectional plane. Streamwise, upstream flow rate measurements were analyzed using a one-dimensional antisymmetric wavelet. Cross-stream measurements at the 90° location of the curved artery revealed interesting multi-scale, multi-strength coherent secondary flow structures. An automated process for coherent structure detection and vortical feature quantification was applied to large ensembles of PIV data. Metrics such as the number of secondary flow structures, their sizes and strengths were generated at every discrete time instance of the physiological inflow waveform. An autonomous data post-processing method incorporating two-dimensional CWT for coherent structure detection was implemented. Loss of coherence in secondary flow structures during the systolic deceleration phase is observed in accordance with previous research. The algorithmic approach presented herein further elucidated the sensitivity and dependence of morphological changes in secondary flow structures on quasiperiodicity and magnitude of temporal gradients in physiological inflow conditions.

  4. Ventilator waveforms on anesthesia machine: a simple tool for intraoperative mapping of phrenic nerve and mid-cervical roots.

    PubMed

    Georgoulis, George; Papagrigoriou, Eirini; Sindou, Marc

    2015-12-01

    A crucial aspect of surgery on the supraclavicular region, lateral neck, and mid-cervical vertebral region is the identification and sparing of the phrenic nerve and cervical (C4) root that are responsible for diaphragmatic innervation. Therefore intraoperative mapping of these nerve structures can be useful for difficult cases. Electrical stimulation with simultaneous observation of the ventilator waveforms of the anesthesia machine provides an effective method for the precise intraoperative mapping of these structures. In the literature, there is only one publication reporting the use of one of the waveforms (capnography) for this purpose. Capnography and pressure-time waveforms, two mandatory curves in anesthesiological monitoring, were studied under electrical stimulation of the phrenic nerve (one patient) and the C4 root (eight patients). The aim was to detect changes that would verify diaphragmatic contraction. No modifications in anesthesia or surgery and no additional maneuvers were required. In all patients, stimulation was followed by identifiable changes in the two waveforms, compatible with diaphragmatic contraction: acute reduction in amplitude on capnography and repetitive saw-like elevations on pressure-time curve. Frequency of patterns on pressure-time curve coincided with the frequency of stimulation; therefore the two recordings were complementary. This simple method proved effective in identifying the neural structures responsible for diaphragmatic function. We therefore suggest that it should be employed in the various types of surgery where these structures are at risk.

  5. Computational Modeling of Blast Wave Transmission Through Human Ear.

    PubMed

    Leckness, Kegan; Nakmali, Don; Gan, Rong Z

    2018-03-01

    Hearing loss has become the most common disability among veterans. Understanding how blast waves propagate through the human ear is a necessary step in the development of effective hearing protection devices (HPDs). This article presents the first 3D finite element (FE) model of the human ear to simulate blast wave transmission through the ear. The 3D FE model of the human ear consisting of the ear canal, tympanic membrane, ossicular chain, and middle ear cavity was imported into ANSYS Workbench for coupled fluid-structure interaction analysis in the time domain. Blast pressure waveforms recorded external to the ear in human cadaver temporal bone tests were applied at the entrance of the ear canal in the model. The pressure waveforms near the tympanic membrane (TM) in the canal (P1) and behind the TM in the middle ear cavity (P2) were calculated. The model-predicted results were then compared with measured P1 and P2 waveforms recorded in human cadaver ears during blast tests. Results show that the model-derived P1 waveforms were in an agreement with the experimentally recorded waveforms with statistic Kurtosis analysis. The FE model will be used for the evaluation of HPDs in future studies.

  6. Defects in Vascular Mechanics Due to Aging in Rats: Studies on Arterial Wave Properties from a Single Aortic Pressure Pulse.

    PubMed

    Chang, Chun-Yi; Chang, Ru-Wen; Hsu, Shu-Hsien; Wu, Ming-Shiou; Cheng, Ya-Jung; Kao, Hsien-Li; Lai, Liang-Chuan; Wang, Chih-Hsien; Chang, Kuo-Chu

    2017-01-01

    Changes in vascular mechanics due to aging include elevated vascular impedance, diminished aorta distensibility, and an accelerated return of pulse wave reflection, which may increase the systolic workload on the heart. Classically, the accurate measurement of vascular mechanics requires the simultaneous recording of aortic pressure and flow signals. In practice, it is feasible to estimate arterial wave properties in terms of wave transit time (τ w ) and wave reflection index (RI) by using aortic pressure signal alone. In this study, we determined the τ w and magnitudes of the forward (∣ P f ∣) and backward (∣ P b ∣) pressure waves in Long-Evans male rats aged 4 ( n = 14), 6 ( n = 17), 12 ( n = 17), and 18 ( n = 24) months, based on the measured aortic pressure and an assumed triangular flow ( Q tri ). The pulsatile pressure wave was the only signal recorded in the ascending aorta by using a high-fidelity pressure sensor. The base of the unknown Q tri was constructed using a duration, which equals to the ejection time. The timing at the peak of the triangle was derived using the fourth-order derivative of the aortic pressure waveform. In the 18-month-old rats, the ratio of τ w to left ventricular ejection time (LVET) decreased, indicating a decline in the distensibility of the aorta. The increased ∣ P b ∣ associated with unaltered ∣ P f ∣ enhanced the RI in the older rats. The augmentation index (AI) also increased significantly with age. A significant negative correlation between the AI and τ w /LVET was observed: AI = -0.7424 - 0.9026 × (τ w /LVET) ( r = 0.4901; P < 0.0001). By contrast, RI was positively linearly correlated with the AI as follows: AI = -0.4844 + 2.3634 × RI ( r = 0.8423; P < 0.0001). Both the decreased τ w /LVET and increased RI suggested that the aging process may increase the AI, thereby increasing the systolic hydraulic load on the heart. The novelty of the study is that Q tri is constructed using the measured aortic pressure wave to approximate its corresponding flow signal, and that calibration of Q tri is not essential in the analysis.

  7. Defects in Vascular Mechanics Due to Aging in Rats: Studies on Arterial Wave Properties from a Single Aortic Pressure Pulse

    PubMed Central

    Chang, Chun-Yi; Chang, Ru-Wen; Hsu, Shu-Hsien; Wu, Ming-Shiou; Cheng, Ya-Jung; Kao, Hsien-Li; Lai, Liang-Chuan; Wang, Chih-Hsien; Chang, Kuo-Chu

    2017-01-01

    Changes in vascular mechanics due to aging include elevated vascular impedance, diminished aorta distensibility, and an accelerated return of pulse wave reflection, which may increase the systolic workload on the heart. Classically, the accurate measurement of vascular mechanics requires the simultaneous recording of aortic pressure and flow signals. In practice, it is feasible to estimate arterial wave properties in terms of wave transit time (τw) and wave reflection index (RI) by using aortic pressure signal alone. In this study, we determined the τw and magnitudes of the forward (∣Pf∣) and backward (∣Pb∣) pressure waves in Long–Evans male rats aged 4 (n = 14), 6 (n = 17), 12 (n = 17), and 18 (n = 24) months, based on the measured aortic pressure and an assumed triangular flow (Qtri). The pulsatile pressure wave was the only signal recorded in the ascending aorta by using a high-fidelity pressure sensor. The base of the unknown Qtri was constructed using a duration, which equals to the ejection time. The timing at the peak of the triangle was derived using the fourth-order derivative of the aortic pressure waveform. In the 18-month-old rats, the ratio of τw to left ventricular ejection time (LVET) decreased, indicating a decline in the distensibility of the aorta. The increased ∣Pb∣ associated with unaltered ∣Pf∣ enhanced the RI in the older rats. The augmentation index (AI) also increased significantly with age. A significant negative correlation between the AI and τw/LVET was observed: AI = −0.7424 − 0.9026 × (τw/LVET) (r = 0.4901; P < 0.0001). By contrast, RI was positively linearly correlated with the AI as follows: AI = −0.4844 + 2.3634 × RI (r = 0.8423; P < 0.0001). Both the decreased τw/LVET and increased RI suggested that the aging process may increase the AI, thereby increasing the systolic hydraulic load on the heart. The novelty of the study is that Qtri is constructed using the measured aortic pressure wave to approximate its corresponding flow signal, and that calibration of Qtri is not essential in the analysis. PMID:28751867

  8. Mean arterial pressure target in patients with septic shock.

    PubMed

    Beloncle, Francois; Radermacher, Peter; Guerin, Claude; Asfar, Pierre

    2016-07-01

    In patients with septic shock, a mean arterial pressure higher than 65 mmHg is recommended by the Surviving Sepsis Campaign Guidelines. However, a precise mean arterial pressure target has not been delineated. The aim of this paper was to review the physiological rationale and clinical evidence for increasing mean arterial pressure in septic shock. A mean arterial pressure level lower than renal autoregulatory threshold may lead to renal dysfunction. However, adjusting macrocirculation objectives in particular after the early phase of septic shock may not correct established microcirculation impairments. Moreover, sympathetic over-stimulation due to high doses of vasopressor (needed to achieve high mean arterial pressure targets) may be associated with numerous harmful effects. Observational and small short term interventional studies did not provide a definitive answer to this question but suggested that a high mean arterial pressure (around 75-85 mmHg) may prevent acute kidney injury in some patients. The SEPSISPAM Trial, a large prospective, randomized, controlled study, compared the targets of High (i.e. 80 to 85 mm Hg) versus Low (i.e. 65 to 70 mm Hg) mean arterial pressure in patients with septic shock. The mortality was not different in the two groups. However in patients with chronic hypertension, there were significantly less renal failure in the high mean arterial pressure group than the low mean arterial pressure group.

  9. Statistics of indicated pressure in combustion engine.

    NASA Astrophysics Data System (ADS)

    Sitnik, L. J.; Andrych-Zalewska, M.

    2016-09-01

    The paper presents the classic form of pressure waveforms in burn chamber of diesel engine but based on strict analytical basis for amending the displacement volume. The pressure measurement results are obtained in the engine running on an engine dynamometer stand. The study was conducted by a 13-phase ESC test (European Stationary Cycle). In each test phase are archived 90 waveforms of pressure. As a result of extensive statistical analysis was found that while the engine is idling distribution of 90 value of pressure at any value of the angle of rotation of the crankshaft can be described uniform distribution. In the each point of characteristic of the engine corresponding to the individual phases of the ESC test, 90 of the pressure for any value of the angle of rotation of the crankshaft can be described as normal distribution. These relationships are verified using tests: Shapiro-Wilk, Jarque-Bera, Lilliefors, Anderson-Darling. In the following part, with each value of the crank angle, are obtain values of descriptive statistics for the pressure data. In its essence, are obtained a new way to approach the issue of pressure waveform analysis in the burn chamber of engine. The new method can be used to further analysis, especially the combustion process in the engine. It was found, e.g. a very large variances of pressure near the transition from compression to expansion stroke. This lack of stationarity of the process can be important both because of the emissions of exhaust gases and fuel consumption of the engine.

  10. Optical Interferometric Measurement of Skin Vibration for the Diagnosis of Cardiovascular Diseases.

    NASA Astrophysics Data System (ADS)

    Hong, Hyundae

    A system has been developed based on the measurement of skin surface vibration which is related to the underlying vascular wall motion for the superficial arteries and coronary movement for the chest wall. Data obtained suggests that the information detected by such measurements can be related to the derivative of the intravascular pressure, an important physiological parameter. These results are in contrast to conventional optical Doppler techniques which have been utilized to measure blood perfusion in the skin layers and blood flow within the superficial arteries. These techniques relied on the interaction between incident photons and moving red blood cells. The present system uses an optical interferometer with a 633 nm HeNe laser to detect μm displacements of the skin surface. A photodiode detects an optical Doppler shift signal of frequency, 2 v/ lambda, where v and lambda are the skin vibration velocity and the wavelength of the laser, respectively. The electronic processing system we developed enhances, cleans and processes the raw Doppler signal to produce two main outputs: Doppler audio, and a time domain profile of the skin velocity. The audio signal changes its tone according to the velocity of skin movement which is related to the first derivative of the intravascular pressure, and the internal structure of the intervening tissue layers between the vessel and the surface. The results obtained demonstrated that the skin velocity waveforms near each artery and the chest signals at the auscultation points for the four heart valve sounds were unique in their profiles. It also proved to be possible to measure the magnitude, harmonics, and the cardiovascular propagation delay for pulse waves. The theoretical and experimental results demonstrated that the system detected the skin velocity, which is related to the time derivative of the pressure. It also reduces the loading effect on the pulsation signals and heart sounds produced by the conventional piezoelectric vibration sensors. The system sensitivity, which could potentially be optimized further was 366.2 mum/sec for the present research. Overall, optical cardiovascular vibrometry has the potential to become a simple non invasive approach to cardiovascular screening.

  11. Fabrication and evaluation of novel rabbit model cardiovascular simulator with 3D printer

    NASA Astrophysics Data System (ADS)

    Jang, Min; Lee, Min-Woo; Seo, See-Yoon; Shin, Sang-Hoon

    2017-03-01

    Simulators allow researchers to study the hemodynamics of the cardiovascular system in a reproducible way without using complicated equations. Previous simulators focused on heart functions. However, a detailed model of the vessels is required to replicate the pulse wave of the arterial system. A computer simulation was used to simplify the arterial branch because producing every small artery is neither possible nor necessary. A 3D-printed zig was used to make a hand-made arterial tree. The simulator that was developed was evaluated by comparing its results to in-vivo data, in terms of the hemodynamic parameters (waveform, augmentation index, impedance, etc.) that were measured at three points: the ascending aorta, the thoracic aorta, and the brachiocephalic artery. The results from the simulator showed good agreement with the in-vivo data. Therefore, this simulator can be used as a research tool for the cardiovascular study of animal models, specifically rabbits.

  12. New parameter of the right gastroepiploic arterial graft using the power spectral analysis device named MemCalc soft.

    PubMed

    Uehara, Mayuko; Takagi, Nobuyuki; Muraki, Satoshi; Yanase, Yosuke; Tabuchi, Masaki; Tachibana, Kazutoshi; Miyaki, Yasuko; Ito, Toshiro; Higami, Tetsuya

    2015-12-01

    Transit-time flow measurement (TTFM) parameters such as mean graft flow (MGF, ml/min), pulsatility index (PI) and diastolic filling (DF, %) have been extensively researched for internal mammary arterial or saphenous vein grafts. In our experience of using the right gastroepiploic arterial (GEA) graft for right coronary artery (RCA) grafting, we observed unique GEA graft flow waveforms. We analysed the GEA graft flow waveforms for their effectiveness in determining GEA graft patency by power spectral analysis. Forty-five patients underwent off-pump coronary artery bypass using the GEA graft for RCA grafting individually. The means of intraoperative MGF, PI and DF were compared between patent and non-patent grafts, postoperatively. Furthermore, the GEA flow data were output and analysed using power spectral analysis. Forty grafts were 'patent' and five were 'non-patent'. There were no significant differences in the mean TTFM parameters between the patent and non-patent grafts (MGF: 22 vs 8 ml/min, respectively, P = 0.068; PI: 3.5 vs 6.5, respectively, P = 0.155; DF: 63 vs 53%, respectively, P = 0.237). Results of the power spectral analysis presented clear differences; the power spectral density (PSD) of patent grafts presented high peaks at frequency levels of 1, 2 and 3 Hz, and the non-patent graft PSD presented high peaks that were not limited to these frequencies. The PSD had a sensitivity and specificity of 80 and 87.5%, respectively. Power spectral analysis of the GEA graft flow is useful to distinguish between non-patent and patent grafts intraoperatively. This should be used as a fourth parameter along with MGF, PI and DF. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  13. Lab-on-a-brane: A novel physiologically relevant planar arterial model to study transendothelial transport

    NASA Astrophysics Data System (ADS)

    Budhwani, Karim Ismail

    The tremendous quality of life impact notwithstanding, cardiovascular diseases and Cancer add up to over US$ 700bn each year in financial costs alone. Aging and population growth are expected to further expand the problem space while drug research and development remain expensive. However, preclinical costs can be substantially mitigated by substituting animal models with in vitro devices that accurately model human cardiovascular transport. Here we present a novel physiologically relevant lab-on-a-brane that simulates in vivo pressure, flow, strain, and shear waveforms associated with normal and pathological conditions in large and small blood vessels for studying molecular transport across the endothelial monolayer. The device builds upon previously demonstrated integrated microfluidic loop design by: (a) introducing nanoscale pores in the substrate membrane to enable transmembrane molecular transport, (b) transforming the substrate membrane into a nanofibrous matrix for 3D smooth muscle cell (SMC) tissue culture, (c) integrating electrospinning fabrication methods, (d) engineering an invertible sandwich cell culture device architecture, and (e) devising a healthy co-culture mechanism for human arterial endothelial cell (HAEC) monolayer and multiple layers of human smooth muscle cells (HSMC) to accurately mimic arterial anatomy. Structural and mechanical characterization was conducted using confocal microscopy, SEM, stress/strain analysis, and infrared spectroscopy. Transport was characterized using FITC-Dextran hydraulic permeability protocol. Structure and transport characterization successfully demonstrate device viability as a physiologically relevant arterial mimic for testing transendothelial transport. Thus, our lab-on-a-brane provides a highly effective and efficient, yet considerably inexpensive, physiologically relevant alternative for pharmacokinetic evaluation; possibly reducing animals used in pre-clinical testing, clinical trials cost from false starts, and time-to-market. Furthermore, this platform can be easily configured for testing targeted therapeutic delivery and in multiple simultaneous arrays for personalized and precision medicine applications.

  14. Simultaneous estimation of arterial and venous oxygen saturation using a camera

    NASA Astrophysics Data System (ADS)

    van Gastel, Mark; Liang, Hangbing; Stuijk, Sander; de Haan, Gerard

    2018-02-01

    Optical monitoring of arterial blood oxygenation, SpO2, using cameras has recently been shown feasible by measuring the relative amplitudes of the remotely sensed PPG waveforms captured at different wavelengths. SvO2 measures the venous blood oxygenation which together with SpO2 provides an indication of tissue oxygen consumption. In contrast to SpO2 it usually still requires a blood sample from a pulmonary artery catheter. In this work we present a method which suggests simultaneous estimation of SpO2 and SvO2 with a camera. Contrary to earlier work, our method does not require external cuffs leading to better usability and improved comfort. Since the arterial blood varies synchronously with the heart rate, all frequencies outside the heart rate band are typically filtered out for SpO2 measurements. For SvO2 estimation, we include intensity variations in the respiratory frequency range since respiration modulates venous blood due to intrathoracic pressure variations in the chest and abdomen. Consequently, under static conditions, the two dominant components in the PPG signals are respiration and pulse. By measuring the amplitude ratios of these components, it seems possible to monitor both SpO2 and SvO2 continuously. We asked healthy subjects to follow an auditory breathing pattern while recording the face and hand. Results show a difference in estimated SpO2 and SvO2 values in the range 5-30 percent for both anatomical locations, which is normal for healthy people. This continuous, non-contact, method shows promise to alert the clinician to a change in patient condition sooner than SpO2 alone.

  15. Relations of arterial stiffness with postural change in mean arterial pressure in middle-aged adults: The Framingham Heart Study

    PubMed Central

    Torjesen, Alyssa; Cooper, Leroy L.; Rong, Jian; Larson, Martin G.; Hamburg, Naomi M.; Levy, Daniel; Benjamin, Emelia J.; Vasan, Ramachandran S.; Mitchell, Gary F.

    2017-01-01

    Impaired regulation of blood pressure upon standing can lead to adverse outcomes, including falls, syncope, and disorientation. Mean arterial pressure typically increases upon standing; however, an insufficient increase or a decline in mean arterial pressure upon standing may result in decreased cerebral perfusion. Orthostatic hypotension has been reported in older people with increased arterial stiffness, whereas the association between orthostatic change in mean arterial pressure and arterial stiffness in young-to-middle aged individuals has not been examined. We analyzed orthostatic blood pressure response and comprehensive hemodynamic data in 3205 participants (1693 [53%] women) in the Framingham Heart Study Third Generation cohort. Participants were predominantly middle-aged (mean age: 46±9 years). Arterial stiffness was assessed using carotid-femoral pulse wave velocity, forward pressure wave amplitude, and characteristic impedance of the aorta. Adjusting for standard cardiovascular disease risk factors, orthostatic change in mean arterial pressure (6.9±7.7 mm Hg) was inversely associated with carotid-femoral pulse wave velocity (partial correlation, rp = −0.084, P<0.0001), forward wave amplitude (rp = −0.129, P<0.0001), and characteristic impedance (rp = −0.094, P<0.0001). The negative relation between forward wave amplitude and change in mean arterial pressure on standing was accentuated in women (P=0.002 for sex interaction). Thus, higher aortic stiffness was associated with a blunted orthostatic increase in mean arterial pressure, even in middle age. The clinical implications of these findings warrant further study. PMID:28264924

  16. Two-dimensional grayscale ultrasound and spectral Doppler waveform evaluation of dogs with chronic enteropathies.

    PubMed

    Gaschen, Lorrie; Kircher, Patrick

    2007-08-01

    Sonography is an important diagnostic tool to examine the gastrointestinal tract of dogs with chronic diarrhea. Two-dimensional grayscale ultrasound parameters to assess for various enteropathies primarily focus on wall thickness and layering. Mild, generalized thickening of the intestinal wall with maintenance of the wall layering is common in inflammatory bowel disease. Quantitative and semi-quantitative spectral Doppler arterial waveform analysis can be utilized for various enteropathies, including inflammatory bowel disease and food allergies. Dogs with inflammatory bowel disease have inadequate hemodynamic responses during digestion of food. Dogs with food allergies have prolonged vasodilation and lower resistive and pulsatility indices after eating allergen-inducing foods.

  17. Experimental study of hemodynamics in the circle of willis

    PubMed Central

    2015-01-01

    Background The Circle of Willis (CoW) is an important collateral pathway of the cerebral blood flow. An experimental study of the cerebral blood flow (CBF) distribution in different anatomical variations may help to a better understanding of the collateral mechanism of the CoW. Methods An in-vitro test rig was developed to simulate the physiological cerebral blood flow in the CoW. Ten anatomical variations were considered in this study, include a set of different degrees of stenosis in L-ICA and L-ICA occlusion coexist with common anatomical variations. Volume flow rates of efferent arteries and pressure signals at the end of communicating arteries of each case were recorded. Physiological pressure waveforms were applied as inlet boundary condition. Results In the development of L-ICA stenosis, the total CBF decreases with the increase of stenosis degree. The blood supply of ipsilateral middle cerebral artery (MCA) was affected most by the stenosis of L-ICA. Anterior communicating artery (ACoA) and ipsilateral posterior communicating artery (PCoA) function as important collateral pathways of cerebral collateral circulation when unilateral stenosis occurred. The blood supply of anterior cerebral circulation was compensated by the posterior cerebral circulation through ipsilateral PCoA when L-ICA stenosis degree is greater than 40% and the affected side was compensated immediately by the unaffected side through ACoA. Blood flow of the anterior circulation and the total CBF reached the minimum among all cases studied when L-ICA occlusion coexist with the absence of PCoA. Conclusion The results demonstrated the flow distribution patterns of the CoW under anatomical variations and clarified the collateral mechanism of the CoW. The flow ACoA is the most sensitive indexes to the morphology change of ipsilateral ICA. The relative independence of the circulation in anterior and posterior sections of the CoW is not broken and the function of ipsilateral PCoA is not activated until a severe stenosis of unilateral ICA occurs. PCoA is the most important collateral pathway of the collateral circulation and the missing of PCoA has the highest risk of stroke when the ipsilateral ICA has severe stenosis. These findings may provide the basis for future therapeutic and diagnosis applications. PMID:25603138

  18. Fundamental relations between short-term RR interval and arterial pressure oscillations in humans

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Eckberg, D. L.

    1996-01-01

    BACKGROUND: One of the principal explanations for respiratory sinus arrhythmia is that it reflects arterial baroreflex buffering of respiration-induced arterial pressure fluctuations. If this explanation is correct, then elimination of RR interval fluctuations should increase respiratory arterial pressure fluctuations. METHODS AND RESULTS: We measured RR interval and arterial pressure fluctuations during normal sinus rhythm and fixed-rate atrial pacing at 17.2+/-1.8 (SEM) beats per minute greater than the sinus rate in 16 healthy men and 4 healthy women, 20 to 34 years of age. Measurements were made during controlled-frequency breathing (15 breaths per minute or 0.25 Hz) with subjects in the supine and 40 degree head-up tilt positions. We characterized RR interval and arterial pressure variabilities in low-frequency (0.05 to 0.15 Hz) and respiratory-frequency (0.20 to 0.30 Hz) ranges with fast Fourier transform power spectra and used cross-spectral analysis to determine the phase relation between the two signals. As expected, cardiac pacing eliminated beat-to-beat RR interval variability. Against expectations, however, cardiac pacing in the supine position significantly reduced arterial pressure oscillations in the respiratory frequency (systolic, 6.8+/-1.8 to 2.9 +/-0.6 mm Hg2/Hz, P=.017). In contrast, cardiac pacing in the 40 degree tilt position increased arterial pressure variability (systolic, 8.0+/-1.8 to 10.8 +/-2.6, P=.027). Cross-spectral analysis showed that 40 degree tilt shifted the phase relation between systolic pressure and RR interval at the respiratory frequency from positive to negative (9 +/-7 degrees versus -17+/-11 degrees, P=.04); that is, in the supine position, RR interval changes appeared to lead arterial pressure changes, and in the upright position, RR interval changes appeared to follow arterial pressure changes. CONCLUSIONS: These results demonstrate that respiratory sinus arrhythmia can actually contribute to respiratory arterial pressure fluctuations. Therefore, respiratory sinus arrhythmia does not represent simple baroreflex buffering of arterial pressure.

  19. Modeling measured glottal volume velocity waveforms.

    PubMed

    Verneuil, Andrew; Berry, David A; Kreiman, Jody; Gerratt, Bruce R; Ye, Ming; Berke, Gerald S

    2003-02-01

    The source-filter theory of speech production describes a glottal energy source (volume velocity waveform) that is filtered by the vocal tract and radiates from the mouth as phonation. The characteristics of the volume velocity waveform, the source that drives phonation, have been estimated, but never directly measured at the glottis. To accomplish this measurement, constant temperature anemometer probes were used in an in vivo canine constant pressure model of phonation. A 3-probe array was positioned supraglottically, and an endoscopic camera was positioned subglottically. Simultaneous recordings of airflow velocity (using anemometry) and glottal area (using stroboscopy) were made in 3 animals. Glottal airflow velocities and areas were combined to produce direct measurements of glottal volume velocity waveforms. The anterior and middle parts of the glottis contributed significantly to the volume velocity waveform, with less contribution from the posterior part of the glottis. The measured volume velocity waveforms were successfully fitted to a well-known laryngeal airflow model. A noninvasive measured volume velocity waveform holds promise for future clinical use.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wackerbarth, David

    Sandia National Laboratories has developed a computer program to review, reduce and manipulate waveform data. PlotData is designed for post-acquisition waveform data analysis. PlotData is both a post-acquisition and an advanced interactive data analysis environment. PlotData requires unidirectional waveform data with both uniform and discrete time-series measurements. PlotData operates on a National Instruments' LabVIEW™ software platform. Using PlotData, the user can capture waveform data from digitizing oscilloscopes over a GPIB, USB and Ethernet interface from Tektronix, Lecroy or Agilent scopes. PlotData can both import and export several types of binary waveform files including, but not limited to, Tektronix .wmf files,more » Lecroy.trc files and xy pair ASCIIfiles. Waveform manipulation includes numerous math functions, integration, differentiation, smoothing, truncation, and other specialized data reduction routines such as VISAR, POV, PVDF (Bauer) piezoelectric gauges, and piezoresistive gauges such as carbon manganin pressure gauges.« less

  1. Comparison of two methods for cardiac output measurement in critically ill patients.

    PubMed

    Saraceni, E; Rossi, S; Persona, P; Dan, M; Rizzi, S; Meroni, M; Ori, C

    2011-05-01

    The aim of recent haemodynamic monitoring has been to obtain continuous and reliable measures of cardiac output (CO) and indices of preload responsiveness. Many of these methods are based on the arterial pressure waveform analysis. The aim of our study was to assess the accuracy of CO measurements obtained by FloTrac/Vigileo, software version 1.07 and the new version 1.10 (Edwards Lifesciences LLC, Irvine, CA, USA), compared with CO measurements obtained by bolus thermodilution by pulmonary artery catheterization (PAC) in the intensive care setting. In 21 critically ill patients (enrolled in two University Hospitals), requiring invasive haemodynamic monitoring, PAC and FloTrac/Vigileo transducers connected to the arterial pressure line were placed. Simultaneous measurements of CO by two methods (FloTrac/Vigileo and thermodilution) were obtained three times a day for 3 consecutive days, when possible. The level of concordance between the two methods was assessed by the procedure suggested by Bland and Altman. One hundred and forty-one pairs of measurements (provided by thermodilution and by both 1.07 and 1.10 FloTrac/Vigileo versions) were obtained in 21 patients (seven of them were trauma patients) with a mean (sd) age of 59 (16) yr. The Pearson product moment coefficient was 0.62 (P<0.001). The bias was -0.18 litre min(-1). The limits of agreement were 4.54 and -4.90 litre min(-1), respectively. Our data show a poor level of concordance between measures provided by the two methods. We found an underestimation of CO values measured with the 1.07 software version of FloTrac for supranormal values of CO. The new software (1.10) has been improved in order to correct this bias; however, its reliability is still poor. On the basis of our data, we can therefore conclude that both software versions of FloTrac/Vigileo did not still provide reliable estimation of CO in our intensive care unit setting.

  2. Computational solution of the velocity and wall shear stress distribution inside a left carotid artery under pulsatile flow conditions

    NASA Astrophysics Data System (ADS)

    Arslan, Nurullah; Turmuş, Hakan

    2014-08-01

    Stroke is still one of the leading causes for death after heart diseases and cancer in all over the world. Strokes happen because an artery that carries blood uphill from the heart to the head is clogged. Most of the time, as with heart attacks, the problem is atherosclerosis, hardening of the arteries, calcified buildup of fatty deposits on the vessel wall. In this study, the fluid dynamic simulations were done in a left carotid bifurcation under the pulsatile flow conditions computationally. Pulsatile flow waveform is given in the paper. In vivo geometry and boundary conditions were obtained from a patient who has stenosis located at external carotid artery (ECA) and internal carotid artery (ICA) of his common carotid artery (CCA). The location of critical flow fields such as low wall shear stress (WSS), stagnation regions and separation regions were detected near the highly stenosed region and at branching region.

  3. Relative contributions from the ventricle and arterial tree to arterial pressure and its amplification: an experimental study

    PubMed Central

    Alastruey, Jordi; Chowienczyk, Phil; Rutten, Marcel C. M.; Segers, Patrick; Schaeffter, Tobias

    2017-01-01

    Arterial pressure is an important diagnostic parameter for cardiovascular disease. However, relative contributions of individual ventricular and arterial parameters in generating and augmenting pressure are not understood. Using a novel experimental arterial model, our aim was to characterize individual parameter contributions to arterial pressure and its amplification. A piston-driven ventricle provided programmable stroke profiles into various silicone arterial trees and a bovine aorta. Inotropy was varied in the ventricle, and arterial parameters modulated included wall thickness, taper and diameter, the presence of bifurcation, and a native aorta (bovine) versus silicone. Wave reflection at bifurcations was measured and compared with theory, varying parent-to-child tube diameter ratios, and branch angles. Intravascular pressure-tip wires and ultrasonic flow probes measured pressure and flow. Increasing ventricular inotropy independently augmented pressure amplification from 17% to 61% between the lower and higher systolic gradient stroke profiles in the silicone arterial network and from 10% to 32% in the bovine aorta. Amplification increased with presence of a bifurcation, decreasing wall thickness and vessel taper. Pulse pressure increased with increasing wall thickness (stiffness) and taper angle and decreasing diameter. Theoretical predictions of wave transmission through bifurcations werre similar to measurements (correlation: 0.91, R2 = 0.94) but underestimated wave reflection (correlation: 0.75, R2 = 0.94), indicating energy losses during mechanical wave reflection. This study offers the first comprehensive investigation of contributors to hypertensive pressure and its propagation throughout the arterial tree. Importantly, ventricular inotropy plays a crucial role in the amplification of peripheral pressure wave, which offers opportunity for noninvasive assessment of ventricular health. NEW & NOTEWORTHY The present study distinguishes contributions from cardiac and arterial parameters to elevated blood pressure and pressure amplification. Most importantly, it offers the first evidence that ventricular inotropy, an indicator of ventricular function, is an independent determinant of pressure amplification and could be measured with such established devices such as the SphygmoCor. PMID:28576835

  4. Relative contributions from the ventricle and arterial tree to arterial pressure and its amplification: an experimental study.

    PubMed

    Gaddum, Nicholas; Alastruey, Jordi; Chowienczyk, Phil; Rutten, Marcel C M; Segers, Patrick; Schaeffter, Tobias

    2017-09-01

    Arterial pressure is an important diagnostic parameter for cardiovascular disease. However, relative contributions of individual ventricular and arterial parameters in generating and augmenting pressure are not understood. Using a novel experimental arterial model, our aim was to characterize individual parameter contributions to arterial pressure and its amplification. A piston-driven ventricle provided programmable stroke profiles into various silicone arterial trees and a bovine aorta. Inotropy was varied in the ventricle, and arterial parameters modulated included wall thickness, taper and diameter, the presence of bifurcation, and a native aorta (bovine) versus silicone. Wave reflection at bifurcations was measured and compared with theory, varying parent-to-child tube diameter ratios, and branch angles. Intravascular pressure-tip wires and ultrasonic flow probes measured pressure and flow. Increasing ventricular inotropy independently augmented pressure amplification from 17% to 61% between the lower and higher systolic gradient stroke profiles in the silicone arterial network and from 10% to 32% in the bovine aorta. Amplification increased with presence of a bifurcation, decreasing wall thickness and vessel taper. Pulse pressure increased with increasing wall thickness (stiffness) and taper angle and decreasing diameter. Theoretical predictions of wave transmission through bifurcations werre similar to measurements (correlation: 0.91, R 2 = 0.94) but underestimated wave reflection (correlation: 0.75, R 2 = 0.94), indicating energy losses during mechanical wave reflection. This study offers the first comprehensive investigation of contributors to hypertensive pressure and its propagation throughout the arterial tree. Importantly, ventricular inotropy plays a crucial role in the amplification of peripheral pressure wave, which offers opportunity for noninvasive assessment of ventricular health. NEW & NOTEWORTHY The present study distinguishes contributions from cardiac and arterial parameters to elevated blood pressure and pressure amplification. Most importantly, it offers the first evidence that ventricular inotropy, an indicator of ventricular function, is an independent determinant of pressure amplification and could be measured with such established devices such as the SphygmoCor. Copyright © 2017 the American Physiological Society.

  5. Rarefaction and blood pressure in systemic and pulmonary arteries

    PubMed Central

    OLUFSEN, METTE S.; HILL, N. A.; VAUGHAN, GARETH D. A.; SAINSBURY, CHRISTOPHER; JOHNSON, MARTIN

    2012-01-01

    The effects of vascular rarefaction (the loss of small arteries) on the circulation of blood are studied using a multiscale mathematical model that can predict blood flow and pressure in the systemic and pulmonary arteries. We augmented a model originally developed for the systemic arteries (Olufsen et al. 1998, 1999, 2000, 2004) to (a) predict flow and pressure in the pulmonary arteries, and (b) predict pressure propagation along the small arteries in the vascular beds. The systemic and pulmonary arteries are modelled as separate, bifurcating trees of compliant and tapering vessels. Each tree is divided into two parts representing the `large' and `small' arteries. Blood flow and pressure in the large arteries are predicted using a nonlinear cross-sectional area-averaged model for a Newtonian fluid in an elastic tube with inflow obtained from magnetic resonance measurements. Each terminal vessel within the network of the large arteries is coupled to a vascular bed of small `resistance' arteries, which are modelled as asymmetric structured trees with specified area and asymmetry ratios between the parent and daughter arteries. For the systemic circulation, each structured tree represents a specific vascular bed corresponding to major organs and limbs. For the pulmonary circulation, there are four vascular beds supplied by the interlobar arteries. This manuscript presents the first theoretical calculations of the propagation of the pressure and flow waves along systemic and pulmonary large and small arteries. Results for all networks were in agreement with published observations. Two studies were done with this model. First, we showed how rarefaction can be modelled by pruning the tree of arteries in the microvascular system. This was done by modulating parameters used for designing the structured trees. Results showed that rarefaction leads to increased mean and decreased pulse pressure in the large arteries. Second, we investigated the impact of decreasing vessel compliance in both large and small arteries. Results showed, that the effects of decreased compliance in the large arteries far outweigh the effects observed when decreasing the compliance of the small arteries. We further showed that a decrease of compliance in the large arteries results in pressure increases consistent with observations of isolated systolic hypertension, as occurs in ageing. PMID:22962497

  6. Right ventricle performances with echocardiography and 99mTc myocardial perfusion imaging in pulmonary arterial hypertension patients.

    PubMed

    Liu, Jie; Fei, Lei; Huang, Guang-Qing; Shang, Xiao-Ke; Liu, Mei; Pei, Zhi-Jun; Zhang, Yong-Xue

    2018-05-01

    Right heart catheterization is commonly used to measure right ventricle hemodynamic parameters and is the gold standard for pulmonary arterial hypertension diagnosis; however, it is not suitable for patients' long-term follow-up. Non-invasive echocardiography and nuclear medicine have been applied to measure right ventricle anatomy and function, but the guidelines for the usefulness of clinical parameters remain to be established. The goal of this study is to identify reliable clinical parameters of right ventricle function in pulmonary arterial hypertension patients and analyze the relationship of these clinical parameters with the disease severity of pulmonary arterial hypertension. In this study, 23 normal subjects and 23 pulmonary arterial hypertension patients were recruited from January 2015 to March 2016. Pulmonary arterial hypertension patients were classified into moderate and severe pulmonary arterial hypertension groups according to their mean pulmonary arterial pressure levels. All the subjects were subjected to physical examination, chest X-ray, 12-lead electrocardiogram, right heart catheterization, two-dimensional echocardiography, and technetium 99m ( 99m Tc) myocardial perfusion imaging. Compared to normal subjects, the right heart catheterization indexes including right ventricle systolic pressure, right ventricle end diastolic pressure, pulmonary artery systolic pressure, pulmonary artery diastolic pressure, pulmonary vascular resistance, and right ventricle end systolic pressure increased in pulmonary arterial hypertension patients and were correlated with mean pulmonary arterial pressure levels. Echocardiography parameters, including tricuspid regurgitation peak velocity, tricuspid regurgitation pressure gradient, tricuspid annular plane systolic excursion and fractional area, right ventricle-myocardial performance index, were significantly associated with the mean pulmonary arterial pressure levels in pulmonary arterial hypertension patients. Furthermore, myocardial perfusion imaging was not observed in the normal subjects but in pulmonary arterial hypertension patients, especially severe pulmonary arterial hypertension subgroup, and showed potential diagnostic properties for pulmonary arterial hypertension. In conclusion, mean pulmonary arterial pressure levels are correlated with several right heart catheterization and echocardiography markers in pulmonary arterial hypertension patients; echocardiography and 99m Tc myocardial perfusion can be used to evaluate right ventricle performance in pulmonary arterial hypertension patients. Impact statement In this study, we analyzed the clinical parameters for evaluating RV function, including right ventricle catheterization (RHC), echocardiography, and technetium 99m ( 99m Tc) myocardial perfusion imaging (MPI) in normal Asian subjects and PAH patients ( n = 23 for each group). Our results demonstrated that six RHC indexes, four echocardiography indexes and MPI index were significantly altered in PAH patients and correlated with the levels of mean pulmonary arterial pressure. Importantly, we evaluated the diagnostic performance of MPI and found that MPI has a strong diagnostic accuracy in PAH patients. The findings from this study will be of interest to clinical investigators who make diagnosis and therapeutic strategies for PAH patients.

  7. Volcano infrasonic signals and magma degassing: First-order experimental insights and application to Stromboli

    NASA Astrophysics Data System (ADS)

    Lane, Stephen J.; James, Mike R.; Corder, Steven B.

    2013-09-01

    We demonstrate the rise and expansion of a gas slug as a fluid dynamic source mechanism for infrasonic signals generated by gas puffing and impulsive explosions at Stromboli. The fluid dynamics behind the rise, expansion and burst of gas slugs in the confines of an experimental tube can be characterised into different regimes. Passive expansion occurs for small gas masses, where negligible dynamic gas over-pressure develops during bubble ascent and, prior to burst, meniscus oscillation forms an important infrasonic source. With increasing gas mass, a transition regime emerges where dynamic gas over-pressure is significant. For larger gas masses, this regime transforms to fully explosive behaviour, where gas over-pressure dominates as an infrasonic source and bubble bursting is not a critical factor. The rate of change of excess pressure in the experimental tube was used to generate synthetic infrasonic waveforms. Qualitatively, the waveforms compare well to infrasonic waveforms measured from a range of eruptions at Stromboli. Assuming pressure continuity during flow through the vent, and applying dimensionless arguments from the first-order experiments, allows estimation of eruption metrics from infrasonic signals measured at Stromboli. Values of bubble length, gas mass and over-pressure calculated from infrasonic signals are in excellent agreement with those derived by independent means for eruptions at Stromboli, therefore providing a method of estimating eruption metrics from infrasonic measurement.

  8. Using wave intensity analysis to determine local reflection coefficient in flexible tubes.

    PubMed

    Li, Ye; Parker, Kim H; Khir, Ashraf W

    2016-09-06

    It has been shown that reflected waves affect the shape and magnitude of the arterial pressure waveform, and that reflected waves have physiological and clinical prognostic values. In general the reflection coefficient is defined as the ratio of the energy of the reflected to the incident wave. Since pressure has the units of energy per unit volume, arterial reflection coefficient are traditionally defined as the ratio of reflected to the incident pressure. We demonstrate that this approach maybe prone to inaccuracies when applied locally. One of the main objectives of this work is to examine the possibility of using wave intensity, which has units of energy flux per unit area, to determine the reflection coefficient. We used an in vitro experimental setting with a single inlet tube joined to a second tube with different properties to form a single reflection site. The second tube was long enough to ensure that reflections from its outlet did not obscure the interactions of the initial wave. We generated an approximately half sinusoidal wave at the inlet of the tube and took measurements of pressure and flow along the tube. We calculated the reflection coefficient using wave intensity (R dI and R dI 0.5 ) and wave energy (R I and R I 0.5 ) as well as the measured pressure (R dP ) and compared these results with the reflection coefficient calculated theoretically based on the mechanical properties of the tubes. The experimental results show that the reflection coefficients determined by all the techniques we studied increased or decreased with distance from the reflection site, depending on the type of reflection. In our experiments, R dP , R dI 0.5 and R I 0.5 are the most reliable parameters to measure the mean reflection coefficient, whilst R dI and R I provide the best measure of the local reflection coefficient, closest to the reflection site. Additional work with bifurcations, tapered tubes and in vivo experiments are needed to further understand, validate the method and assess its potential clinical use. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Nonlinear waveform distortion and shock formation in the near field of a continuous wave piston source

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Cathignol, Dominique

    2004-05-01

    A classical effect of nonlinear acoustics is that a plane sinusoidal acoustic wave propagating in a nonlinear medium transforms to a sawtooth wave with one shock per cycle. However, the waveform evolution can be quite different in the near field of a plane source due to diffraction. Previous numerical simulations of nonlinear acoustic waves in the near field of a circular piston source predict the development of two shocks per wave cycle [Khokhlova et al., J. Acoust. Soc. Am. 110, 95-108 (2001)]. Moreover, at some locations the peak pressure may be up to 4 times the source amplitude. The motivation of this work was to experimentally verify and further explain the phenomena of the nonlinear waveform distortion. Measurements were conducted in water with a 47-mm-diameter unfocused transducer, working at 1-MHz frequency. For pressure amplitudes higher than 0.5 MPa, two shocks per cycle were observed in the waveform beyond the last minimum of the fundamental harmonic amplitude. With the increase of the observation distance, these two shocks collided and formed one shock (per cycle), i.e., the waveform developed into the classical sawtooth wave. The experimental results were in a very good agreement with the modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation.

  10. Mach-Zehnder interferometry method for acoustic shock wave measurements in air and broadband calibration of microphones.

    PubMed

    Yuldashev, Petr; Karzova, Maria; Khokhlova, Vera; Ollivier, Sébastien; Blanc-Benon, Philippe

    2015-06-01

    A Mach-Zehnder interferometer is used to measure spherically diverging N-waves in homogeneous air. An electrical spark source is used to generate high-amplitude (1800 Pa at 15 cm from the source) and short duration (50 μs) N-waves. Pressure waveforms are reconstructed from optical phase signals using an Abel-type inversion. It is shown that the interferometric method allows one to reach 0.4 μs of time resolution, which is 6 times better than the time resolution of a 1/8-in. condenser microphone (2.5 μs). Numerical modeling is used to validate the waveform reconstruction method. The waveform reconstruction method provides an error of less than 2% with respect to amplitude in the given experimental conditions. Optical measurement is used as a reference to calibrate a 1/8-in. condenser microphone. The frequency response function of the microphone is obtained by comparing the spectra of the waveforms resulting from optical and acoustical measurements. The optically measured pressure waveforms filtered with the microphone frequency response are in good agreement with the microphone output voltage. Therefore, an optical measurement method based on the Mach-Zehnder interferometer is a reliable tool to accurately characterize evolution of weak shock waves in air and to calibrate broadband acoustical microphones.

  11. Waveform-preserved unidirectional acoustic transmission based on impedance-matched acoustic metasurface and phononic crystal

    NASA Astrophysics Data System (ADS)

    Song, Ai-Ling; Chen, Tian-Ning; Wang, Xiao-Peng; Wan, Le-Le

    2016-08-01

    The waveform distortion happens in most of the unidirectional acoustic transmission (UAT) devices proposed before. In this paper, a novel type of waveform-preserved UAT device composed of an impedance-matched acoustic metasurface (AMS) and a phononic crystal (PC) structure is proposed and numerically investigated. The acoustic pressure field distributions and transmittance are calculated by using the finite element method. The subwavelength AMS that can modulate the wavefront of the transmitted wave at will is designed and the band structure of the PC structure is calculated and analyzed. The sound pressure field distributions demonstrate that the unidirectional acoustic transmission can be realized by the proposed UAT device without changing the waveforms of the output waves, which is the distinctive feature compared with the previous UAT devices. The physical mechanism of the unidirectional acoustic transmission is discussed by analyzing the refraction angle changes and partial band gap map. The calculated transmission spectra show that the UAT device is valid within a relatively broad frequency range. The simulation results agree well with the theoretical predictions. The proposed UAT device provides a good reference for designing waveform-preserved UAT devices and has potential applications in many fields, such as medical ultrasound, acoustic rectifiers, and noise insulation.

  12. Analysis of flow and LDL concentration polarization in siphon of internal carotid artery: Non-Newtonian effects.

    PubMed

    Sharifi, Alireza; Niazmand, Hamid

    2015-10-01

    Carotid siphon is known as one of the risky sites among the human intracranial arteries, which is prone to formation of atherosclerotic lesions. Indeed, scientists believe that accumulation of low density lipoprotein (LDL) inside the lumen is the major cause of atherosclerosis. To this aim, three types of internal carotid artery (ICA) siphon have been constructed to examine variations of hemodynamic parameters in different regions of the arteries. Providing real physiological conditions, blood considered as non-Newtonian fluid and real velocity and pressure waveforms have been employed as flow boundary conditions. Moreover, to have a better estimation of risky sites, the accumulation of LDL particles has been considered, which has been usually ignored in previous relevant studies. Governing equations have been discretized and solved via open source OpenFOAM software. A new solver has been built to meet essential parameters related to the flow and mass transfer phenomena. In contrast to the common belief regarding negligible effect of blood non-Newtonian behavior inside large arteries, current study suggests that the non-Newtonian blood behavior is notable, especially on the velocity field of the U-type model. In addition, it is concluded that neglecting non-Newtonian effects underestimates the LDL accumulation up to 3% in the U-type model at the inner side of both its bends. However, in the V and C type models, non-Newtonian effects become relatively small. Results also emphasize that the outer part of the second bend at the downstream is also at risk similar to the inner part of the carotid bends. Furthermore, from findings it can be implied that the risky sites strongly depend on the ICA shape since the extension of the risky sites are relatively larger for the V-type model, while the LDL concentrations are higher for the C-type model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Contribution of the Arterial System and the Heart to Blood Pressure during Normal Aging - A Simulation Study.

    PubMed

    Maksuti, Elira; Westerhof, Nico; Westerhof, Berend E; Broomé, Michael; Stergiopulos, Nikos

    2016-01-01

    During aging, systolic blood pressure continuously increases over time, whereas diastolic pressure first increases and then slightly decreases after middle age. These pressure changes are usually explained by changes of the arterial system alone (increase in arterial stiffness and vascular resistance). However, we hypothesise that the heart contributes to the age-related blood pressure progression as well. In the present study we quantified the blood pressure changes in normal aging by using a Windkessel model for the arterial system and the time-varying elastance model for the heart, and compared the simulation results with data from the Framingham Heart Study. Parameters representing arterial changes (resistance and stiffness) during aging were based on literature values, whereas parameters representing cardiac changes were computed through physiological rules (compensated hypertrophy and preservation of end-diastolic volume). When taking into account arterial changes only, the systolic and diastolic pressure did not agree well with the population data. Between 20 and 80 years, systolic pressure increased from 100 to 122 mmHg, and diastolic pressure decreased from 76 to 55 mmHg. When taking cardiac adaptations into account as well, systolic and diastolic pressure increased from 100 to 151 mmHg and decreased from 76 to 69 mmHg, respectively. Our results show that not only the arterial system, but also the heart, contributes to the changes in blood pressure during aging. The changes in arterial properties initiate a systolic pressure increase, which in turn initiates a cardiac remodelling process that further augments systolic pressure and mitigates the decrease in diastolic pressure.

  14. [Biochemical prenatal tests and uterine artery Doppler examination in prediction of PIH and IUGR in the third trimester of pregnancy].

    PubMed

    Słowakiewicz, Katarzyna; Perenc, Małgorzata; Sieroszewski, Piotr

    2010-05-01

    PIH and IUGR are serious complications in the third trimester of pregnancy. Many publications claim a connection between false positive prenatal tests and subsequent occurrence of PIH and IUGR. The aim of the study was to estimate the usefulness of the biochemical markers of fetal defects and uterine Doppler examination in predicting PIH and IUGR in the third trimester of pregnancy. We examined 156 pregnant patients in The Department of the Fetal Medicine and Gynecology Medical University of Lodz, between 2006-2009. In case of each pregnant woman we estimated biochemical markers in the first (PAPP-A + beta-hCG) and second trimester (AFP, beta-hCG, uE3 - triple test). Each patient underwent three ultrasonographic examinations in the first, second and third trimester (between 11-13, 15-20, and 22-27 weeks gestation, respectively) with uterine artery Doppler examination. We monitored these pregnancies for PIH and IUGR and divided them into three groups: 28 patients with PIH (study group 1), 14 patients with IUGR (study group 2), and 114 patients with uncomplicated pregnancies (controls). In both study groups we observed: higher concentration of beta-hCG, higher percentage of the positive biochemical prenatal tests and abnormal uterine artery Doppler waveform. Positive triple test was the strongest predictor of PIH and IUGR (PPV=60.87% for PIH and PPV = 30.77% for IUGR). Biochemical markers and abnormal uterine artery Doppler waveform are associated with PIH and IUGR. These parameters can be the base for the test identifying pregnant patients with high risk of PIH and IUGR.

  15. The leaking mode problem in atmospheric acoustic-gravity wave propagation

    NASA Technical Reports Server (NTRS)

    Kinney, W. A.; Pierce, A. D.

    1976-01-01

    The problem of predicting the transient acoustic pressure pulse at long horizontal distances from large explosions in the atmosphere is examined. Account is taken of poles off the real axis and of branch line integrals in the general integral governing the transient waveform. Perturbation techniques are described for the computation of the imaginary ordinate of the poles and numerical studies are described for a model atmosphere terminated by a halfspace with c = 478 m/sec above 125 km. For frequencies less than 0.0125 rad/sec, the GR sub 1 mode, for example, is found to have a frequency dependent amplitude decay of the order of 0.0001 nepers/km. Examples of numerically synthesized transient waveforms are exhibited with and without the inclusion of leaking modes. The inclusion of leaking modes results in waveforms with a more marked beginning rather than a low frequency oscillating precursor of gradually increasing amplitude. Also, the revised computations indicate that waveforms invariably begin with a pressure rise, a result supported by other theoretical considerations and by experimental data.

  16. Uterine artery velocity waveforms as predictors of pregnancy outcome in patients with antiphospholipid syndrome: a review.

    PubMed

    De Carolis, Sara; Botta, Angela; Garofalo, Serafina; Ferrazzani, Sergio; Martino, Carmelinda; Fatigante, Gabriella; Caforio, Leonardo; Caruso, Alessandro

    2007-06-01

    In pregnant women, antiphospholipid syndrome (APS) is associated with an increased risk for preeclampsia, fetal intrauterine growth restriction, and other complications related to uteroplacental insufficiency. In normal pregnancy, impedance to flow in the uterine arteries decreases with gestation, as the likely consequence of the physiologic change of spiral arteries into low-resistance vessels. The presence of antiphospholipid antibodies can impair this vascular adaptation, resulting in a reduced placental perfusion. Doppler investigation provides a noninvasive method for the study of uteroplacental blood flow. Several studies were performed to detect the predictive role of uterine artery Doppler velocimetry in relation to pregnancy outcome in APS patients. In some studies, a high resistance index in the uterine arteries strongly predicted the subsequent development of obstetric complications. In other studies, persistent bilateral uterine artery notches identified the risk of preeclampsia and fetal intrauterine growth restriction. To date, the uterine artery Doppler velocimetry resulted to be a useful tool for identifying APS pregnancies at risk for adverse pregnancy outcome. These findings might have important implications for the management of these patients.

  17. Critical Buckling Pressure in Mouse Carotid Arteries with Altered Elastic Fibers

    PubMed Central

    Luetkemeyer, Callan M.; James, Rhys H.; Devarakonda, Siva Teja; Le, Victoria P.; Liu, Qin; Han, Hai-Chao; Wagenseil, Jessica E.

    2015-01-01

    Arteries can buckle axially under applied critical buckling pressure due to a mechanical instability. Buckling can cause arterial tortuosity leading to flow irregularities and stroke. Genetic mutations in elastic fiber proteins are associated with arterial tortuosity in humans and mice, and may be the result of alterations in critical buckling pressure. Hence, the objective of this study is to investigate how genetic defects in elastic fibers affect buckling pressure. We use mouse models of human disease with reduced amounts of elastin (Eln+/−) and with defects in elastic fiber assembly due to the absence of fibulin-5 (Fbln5−/−). We find that Eln+/− arteries have reduced buckling pressure compared to their wild-type controls. Fbln5−/− arteries have similar buckling pressure to wild-type at low axial stretch, but increased buckling pressure at high stretch. We fit material parameters to mechanical test data for Eln+/−, Fbln5−/− and wild-type arteries using Fung and four-fiber strain energy functions. Fitted parameters are used to predict theoretical buckling pressure based on equilibrium of an inflated, buckled, thick-walled cylinder. In general, the theoretical predictions underestimate the buckling pressure at low axial stretch and overestimate the buckling pressure at high stretch. The theoretical predictions with both models replicate the increased buckling pressure at high stretch for Fbln5−/− arteries, but the four-fiber model predictions best match the experimental trends in buckling pressure changes with axial stretch. This study provides experimental and theoretical methods for further investigating the influence of genetic mutations in elastic fibers on buckling behavior and the development of arterial tortuosity. PMID:25771258

  18. Prospective clinical study to evaluate an oscillometric blood pressure monitor in pet rabbits.

    PubMed

    Bellini, Luca; Veladiano, Irene A; Schrank, Magdalena; Candaten, Matteo; Mollo, Antonio

    2018-02-27

    Rabbits are particularly sensitive to develop hypotension during sedation or anaesthesia. Values of systolic or mean non-invasive arterial blood pressure below 80 or 60 mmHg respectively are common under anaesthesia despite an ongoing surgery. A reliable method of monitoring arterial blood pressure is extremely important, although invasive technique is not always possible due to the anatomy and dimension of the artery. The aim of this study was to evaluate the agreement between a new oscillometric device for non-invasive arterial blood pressure measurement and the invasive method. Moreover the trending ability of the device, ability to identify changes in the same direction with the invasive methods, was evaluated as well as the sensibility of the device in identifying hypotension arbitrarily defined as invasive arterial blood pressure below 80 or 60 mmHg. Bland-Altman analysis for repeated measurements showed a poor agreement between the two methods; the oscillometric device overestimated the invasive arterial blood pressure, particularly at high arterial pressure values. The same analysis repeated considering oscillometric measurement that match invasive mean pressure lower or equal to 60 mmHg showed a decrease in biases and limits of agreement between methods. The trending ability of the device, evaluated with both the 4-quadrant plot and the polar plot was poor. Concordance rate of mean arterial blood pressure was higher than systolic and diastolic pressure although inferior to 90%. The sensibility of the device in detecting hypotension defined as systolic or mean invasive arterial blood pressure lower than 80 or 60 mmHg was superior for mean oscillometric pressure rather than systolic. A sensitivity of 92% was achieved with an oscillometric measurement for mean pressure below 65 mmHg instead of 60 mmHg. Non-invasive systolic blood pressure is less sensitive as indicator of hypotension regardless of the cutoff limit considered. Although mean invasive arterial blood pressure is overestimated by the device, the sensitivity of this non-invasive oscillometric monitor in detecting invasive mean pressure below 60 mmHg is acceptable but a cutoff value of 65 mmHg needs to be used.

  19. 4C.05: PWV IS AN INDEPENDENT DETERMINANT OF COGNITIVE DYSFUNCTION IN CKD PATIENTS.

    PubMed

    Karasavvidou, D; Pappas, K; Stagikas, D; Makridis, D; Katsinas, C; Kalaitzidis, R

    2015-06-01

    Cognitive dysfunction has long been recognized as a complication of chronic kidney disease (CKD), through several putative mechanisms, including high BP, large and small artery damage. Our study tests the hypothesis that large artery stiffness and microvascular damage are related to brain microcirculation changes as reflected by impaired cognitive function in CKD patients.(Figure is included in full-text article.) : Two hundred seventeen patients (50 with CKD stage 1; 67 stage 2; 53 stage 3; 47 stage 4), with mean age 58.4 years (64.5% males), were enrolled in a cross-sectional study. Cognitive function was assessed using Mini Mental State Examination (MMSE). Full score on the MMSE is 30; cognitive impairment was defined as <26 and cognitive dysfunction as <19. Educational level was categorized as lower versus higher education. Using the Sphygmocor system and an oscillometric device, we directly measured brachial SBP (bSBP) and pulse pressure (bPP), carotid SBP (cSBP) and pulse pressure (cPP) and estimated aortic SBP (aSBP) and pulse pressure (aPP) from the radial pressure waveform. Pulse Pressure Amplification (PPA), augmentation index (AIx) and carotid-femoral pulse wave velocity (cfPWV) were calculated. The risk of cognitive dysfunction increased significantly from CKD stage 3 to 4 (p < 0.01). Table. In univariate analysis, age (p < 0.001), education level (p < 0.001) stages of CKD (p < 0.004), cfPWV (p < 0.029), AIx (p < 0.03), bSBP (p < 0.002), aSBP (p < 0.012), cSBP (p < 0.015) and cPP (p < 0.002) were significantly and negatively associated with MMSE. In multivariate regression analysis, adjusted for CKD stages, the remaining independent factor significantly (p < 0.02) associated with cognitive dysfunction was cfPWV. Carotid-femoral PWV may be a more sensitive marker of cognitive dysfunction than other parameters of central blood pressure. Since high cfPWV is associated with high pressure pulsatility at the cerebrovascular level, these data suggest that the later could play a pathophysiological role in cognitive dysfunction. In clinical practice, measuring aortic stiffness may help predicting the cognitive decline. Whether, the reduction in aortic stiffness following treatment translates into improved cognitive outcomes remains to be determined.

  20. Measurement and Modeling of Acoustic Fields in a Gel Phantom at High Intensities

    NASA Astrophysics Data System (ADS)

    Canney, Michael S.; Bailey, Michael R.; Khokhlova, Vera A.; Crum, Lawrence A.

    2006-05-01

    The goal of this work was to compare measured and numerically predicted HIFU pressure waveforms in water and a tissue-mimicking phantom. Waveforms were measured at the focus of a 2-MHz HIFU transducer with a fiber optic hydrophone. The transducer was operated with acoustic powers ranging from 2W to 300W. A KZK-type equation was used for modeling the experimental conditions. Strongly asymmetric nonlinear waves with peak positive pressure up to 80 MPa and peak negative pressure up to 20 MPa were measured in water, while waves up to 50 MPa peak positive pressure and 15 MPa peak negative pressure were measured in tissue phantoms. The values of peak negative pressure corresponded well with numerical simulations and were significantly smaller than predicted by linear extrapolation from low-level measurements. The values of peak positive pressures differed only at high levels of excitation where bandwidth limitations of the hydrophone failed to fully capture the predicted sharp shock fronts.

  1. LB03.04: SPHYGMOMANOMETER CUFF CONSTRUCTION AND MATERIALS AFFECT TRANSMISSION OF PRESSURE FROM CUFF TO ARTERIAL WALL. FINITE ELEMENT ANALYSIS OF HUMAN PRESSURE MEASUREMENTS AND DICOM DATA.

    PubMed

    Lewis, P; Naqvi, S; Mandal, P; Potluri, P

    2015-06-01

    Sphygmomanometer cuff pressure during deflation is assumed to equal systolic arterial pressure at the point of resumption of flow. Previous studies demonstrated that pressure decreases with increasing depth of soft tissues whilst visco-elastic characteristics of the arm tissue cause spatial and temporal variation in pressure magnitude. These generally used non-anatomical axisymmetrical arm simulations without incorporating arterial pressure variation. We used data from a volunteer's Magnetic Resonance (MR) arm scan and investigated the effect of variations in cuff materials and construction on the simulated transmission of pressure from under the cuff to the arterial wall under sinusoidal flow conditions. Pressure was measured under 8 different cuffs using Oxford Pressure Monitor Sensors placed at 90 degrees around the mid upper arm of a healthy male. Each cuff was inflated 3 times to 155 mmHg and then deflated to zero with 90 seconds between inflations. Young's modulus, flexural rigidity and thickness of each cuff was measured.Using DICOM data from the MR scan of the arm, a 3D model was derived using ScanIP and imported into Abaqus for Finite Element Analysis (FEA). Published mechanical properties of arm tissues and geometric non-linearity were assumed. The measured sub-cuff pressures were applied to the simulated arm and pressure was calculated around the brachial arterial wall. which was loaded with a sinusoidal pressure of 125/85 mmHg. FEA estimates of pressure around the brachial artery cuffs varied by up to 27 mmHg SBP and 17 mmHg DBP with different cuffs. Pressures within the cuffs varied up to 27 mmHg. Pressure transmission from the cuff to the arterial surface achieved a 95% transmission ratio with one rubber-bladdered cuff but varied between 76 and 88% for the others. Non-uniform pressure distribution around the arterial wall was strongly related to cuff fabric elastic modulus. Identical size cuffs with a separate rubber bladder produced peri-arterial pressure 14 mmHg higher than with a fabric bladder.(Figure is included in full-text article.) : Wide variations of pressure within and under cuffs and at the artery wall interface, dependent on differing cuff materials and construction, may critically affect blood pressure measurement.

  2. Valsalva maneuver: Insights into baroreflex modulation of human sympathetic activity

    NASA Technical Reports Server (NTRS)

    Smith, Michael L.; Eckberg, Dwain L.; Fritsch, Janice M.; Beightol, Larry A.; Ellenbogen, Kenneth A.

    1991-01-01

    Valsalva's maneuver, voluntary forced expiration against a closed glottis, is a well-characterized research tool, used to assess the integrity of human autonomic cardiovascular control. Valsalva straining provokes a stereotyped succession of alternating positive and negative arterial pressure and heart rate changes mediated in part by arterial baroreceptors. Arterial pressure changes result primarily from fluctuating levels of venous return to the heart and changes of sympathetic nerve activity. Muscle sympathetic activity was measured directly in nine volunteers to explore quantitatively the relation between arterial pressure and human sympathetic outflow during pressure transients provoked by controlled graded Valsalva maneuvers. Our results underscore several properties of sympathetic regulation during Valsalva straining. First, muscle sympathetic nerve activity changes as a mirror image of changes in arterial pressure. Second, the magnitude of sympathetic augmentation during Valsalva straining predicts phase 4 arterial pressure elevations. Third, post-Valsalva sympathetic inhibition persists beyond the return of arterial and right atrial pressures to baseline levels which reflects an alteration of the normal relation between arterial pressure and muscle sympathetic activity. Therefore, Valsalva straining may have some utility for investigating changes of reflex control of sympathetic activity after space flight; however, measurement of beat-to-beat arterial pressure is essential for this use. The utility of this technique in microgravity can not be determined from these data. Further investigations are necessary to determine whether these relations are affected by the expansion of intrathoracic blood volume associated with microgravity.

  3. Effects of terlipressin on systolic pulmonary artery pressure of patients with liver cirrhosis: An echocardiographic assessment

    PubMed Central

    Altintas, Engin; Akkus, Necdet; Gen, Ramazan; Helvaci, M. Rami; Sezgin, Orhan; Oguz, Dilek

    2004-01-01

    AIM: Portopulmonary hypertension is a serious complication of chronic liver disease. Our aim was to search into the effect of terlipressin on systolic pulmonary artery pressure among cirrhotic patients. METHODS: Twelve patients (6 males and 6 females) with liver cirrhosis were recruited in the study. Arterial blood gas samples were obtained in sitting position at rest. Contrast enhanced echocardiography and measurements of systolic pulmonary artery pressure were performed before and after the intravenous injection of 2 mg terlipressin. RESULTS: Of 12 patients studied, the contrast enhanced echocardiography was positive in 5, and the positive findings in contrast enhanced echocardiography were reversed to normal in two after terlipressin injection. The mean systolic pulmonary artery pressure was 25.5 ± 3.6 mmHg before terlipressin injection, and was 22.5 ± 2.5 mmHg after terlipressin (P = 0.003). The systolic pulmonary artery pressure was above 25 mmHg in seven of these 12 patients. After the terlipressin injection, systolic pulmonary artery pressure was < 25 mmHg in four of these cases (58.3% vs 25%, P = 0.04). CONCLUSION: Terlipressin can decrease the systolic pulmonary artery pressure in patients with liver cirrhosis. PMID:15259082

  4. Interactions between CO2 chemoreflexes and arterial baroreflexes

    NASA Technical Reports Server (NTRS)

    Henry, R. A.; Lu, I. L.; Beightol, L. A.; Eckberg, D. L.

    1998-01-01

    We studied interactions between CO2 chemoreflexes and arterial baroreflexes in 10 supine healthy young men and women. We measured vagal carotid baroreceptor-cardiac reflexes and steady-state fast Fourier transform R-R interval and photoplethysmographic arterial pressure power spectra at three arterial pressure levels (nitroprusside, saline, and phenylephrine infusions) and three end-tidal CO2 levels (3, 4, and 5%, fixed-frequency, large-tidal-volume breathing, CO2 plus O2). Our study supports three principal conclusions. First, although low levels of CO2 chemoreceptor stimulation reduce R-R intervals and R-R interval variability, statistical modeling suggests that this effect is indirect rather than direct and is mediated by reductions of arterial pressure. Second, reductions of R-R intervals during hypocapnia reflect simple shifting of vagally mediated carotid baroreflex responses on the R-R interval axis rather than changes of baroreflex gain, range, or operational point. Third, the influence of CO2 chemoreceptor stimulation on arterial pressure (and, derivatively, on R-R intervals and R-R interval variability) depends critically on baseline arterial pressure levels: chemoreceptor effects are smaller when pressure is low and larger when arterial pressure is high.

  5. Assessment of uterine artery and arcuate artery blood flow by transvaginal color Doppler ultrasound on the day of human chorionic gonadotropin administration as predictors of pregnancy in an in vitro fertilization program.

    PubMed

    Ivanovski, M; Damcevski, N; Radevska, B; Doicev, G

    2012-01-01

    To investigate whether success rates of IVF/ICSI could be predicted by using the Color Doppler technique by measuring the uterine artery and arcuate artery pulsatility (PI), resistance (RI), and velocity (Vs) indices on the day of hCG injection. This was a prospective observational study at the St Lazar Hospital, Skopje; 106 patients with an indication for IVF or ICSI according to departmental protocol underwent controlled ovarian hyperstimulation followed by IVF/ICSI and embryo transfer. Using Color Doppler in the two-dimensional (2D) mode, flow velocity waveforms were obtained from the ascending main branch of the uterine artery on the right and left sides of the cervix in a longitudinal plane and arcuate arteries, before they entered the uterus. The PI, RI and peak systolic velocity (PSV) of the uterine arteries and arcuate arteries were calculated electronically when similar consecutive waveforms of good quality were obtained and results were compared between patients who conceived and those who did not. In total, 106 patients, aged 24-42 years were included in the study. The patients were divided into two groups according to successful outcome, defined as pregnancy and failure of implantation, where no pregnancy was detected. A total of 40 pregnancies resulted; a crude pregnancy rate was 40/106 (37.7%). There were no significant differences between either group in patients' age, type and duration of infertility; basal levels of FSH, LH and E2; number of gonadotropin ampoules used for ovulation induction; number of retrieved oocytes and number of transferred embryos. No cycle was canceled after initiation of gonadotropin stimulation. In our results, there were statistically significant lower mean uterine artery PI and RI in the pregnant group than in the non-pregnant group (P < 0.05). Arcuate artery PI value was lower in the pregnant group than in the non-pregnant group, but this did not reach statistical significance. Peak systolic velocity (Vs) values in both the mean uterine artery and arcuate artery were higher in the pregnant group than in the non-pregnant group; however, the difference was not statistically significant. Vascular impedance was calculated with PI, RI, and Vs values, among which PI was found to be the most important. Optimal uterine receptivity can be accomplished by reduced vascular resistance and increased blood flow, which will improve pregnancy success. We suggest the use of transvaginal color Doppler ultrasonography to measure the blood flow in uterine arteries and arcuate arteries before hCG in IVF cycles.

  6. Effects of high NaCl diet on arterial pressure in Sprague-Dawley rats with hepatic and sinoaortic denervation.

    PubMed

    Gao, Shuang; Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu

    2005-08-01

    The Na(+) receptor that exists in the hepatoportal region plays an important role in postprandial natriuresis and the regulation of Na(+) balance during NaCl load. Thus it would be considered that a dysfunction of the hepatic Na(+) receptor might result in the elevation of arterial pressure under a condition of high NaCl diet. To elucidate this hypothesis, arterial pressure was continuously measured during three weeks of high NaCl diet (8% NaCl) in four groups of rats: (i) intact rats, (ii) rats with hepatic denervation (HD), (iii) rats with sinoaortic denervation (SAD), and (iv) rats with SAD+HD. During a 1-week normal NaCl diet period, there was no difference in arterial pressure among the four groups. A high NaCl diet had no influence on arterial pressure in intact or HD rats; however, it significantly increased by 11 +/- 3 mmHg in SAD rats. The addition of HD to SAD had no synergistic effect on arterial pressure; i.e., in SAD+HD rats, mean arterial pressure increased by 13 +/- 1 mmHg. In conclusion, sinoaortic baroreceptor, but not hepatic Na(+) receptor, has a significant role in the long-term regulation of arterial pressure on a high NaCl diet.

  7. Modeling Nonlinear Acoustic Standing Waves in Resonators: Theory and Experiments

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Li, Xiaofan; Finkbeiner, Joshua

    2004-01-01

    The overall goal of the cooperative research with NASA Glenn is to fundamentally understand, computationally model, and experimentally validate non-linear acoustic waves in enclosures with the ultimate goal of developing a non-contact acoustic seal. The longer term goal is to transition the Glenn acoustic seal innovation to a prototype sealing device. Lucas and coworkers are credited with pioneering work in Resonant Macrosonic Synthesis (RMS). Several Patents and publications have successfully illustrated the concept of Resonant Macrosonic Synthesis. To utilize this concept in practical application one needs to have an understanding of the details of the phenomenon and a predictive tool that can examine the waveforms produced within resonators of complex shapes. With appropriately shaped resonators one can produce un-shocked waveforms of high amplitude that would result in very high pressures in certain regions. Our goal is to control the waveforms and exploit the high pressures to produce an acoustic seal. Note that shock formation critically limits peak-to-peak pressure amplitudes and also causes excessive energy dissipation. Proper shaping of the resonator is thus critical to the use of this innovation.

  8. [Features of diurnal profile of blood pressure in workers having serum aromatic hydrocarbons level].

    PubMed

    Baĭdina, A S; Safonova, M A; Alekseev, V B

    2012-01-01

    Features of diurnal profile of blood pressure in workers having serum level of benzol and ethylbenzene are high systolic and diastolic arterial blood pressure during the day, index of systolic arterial pressure time and index diastolic arterial pressure time was also high. These features should be considered in anti-hypertensives prescription.

  9. Protection against high intravascular pressure in giraffe legs.

    PubMed

    Petersen, Karin K; Hørlyck, Arne; Ostergaard, Kristine H; Andresen, Joergen; Broegger, Torbjoern; Skovgaard, Nini; Telinius, Niklas; Laher, Ismael; Bertelsen, Mads F; Grøndahl, Carsten; Smerup, Morten; Secher, Niels H; Brøndum, Emil; Hasenkam, John M; Wang, Tobias; Baandrup, Ulrik; Aalkjaer, Christian

    2013-11-01

    The high blood pressure in giraffe leg arteries renders giraffes vulnerable to edema. We investigated in 11 giraffes whether large and small arteries in the legs and the tight fascia protect leg capillaries. Ultrasound imaging of foreleg arteries in anesthetized giraffes and ex vivo examination revealed abrupt thickening of the arterial wall and a reduction of its internal diameter just below the elbow. At and distal to this narrowing, the artery constricted spontaneously and in response to norepinephrine and intravascular pressure recordings revealed a dynamic, viscous pressure drop along the artery. Histology of the isolated median artery confirmed dense sympathetic innervation at the narrowing. Structure and contractility of small arteries from muscular beds in the leg and neck were compared. The arteries from the legs demonstrated an increased media thickness-to-lumen diameter ratio, increased media volume, and increased numbers of smooth muscle cells per segment length and furthermore, they contracted more strongly than arteries from the neck (500 ± 49 vs. 318 ± 43 mmHg; n = 6 legs and neck, respectively). Finally, the transient increase in interstitial fluid pressure following injection of saline was 5.5 ± 1.7 times larger (n = 8) in the leg than in the neck. We conclude that 1) tissue compliance in the legs is low; 2) large arteries of the legs function as resistance arteries; and 3) structural adaptation of small muscle arteries allows them to develop an extraordinary tension. All three findings can contribute to protection of the capillaries in giraffe legs from a high arterial pressure.

  10. Effect of mannitol on cerebrovascular pressure reactivity in patients with intracranial hypertension.

    PubMed

    Tang, Sung-Chun; Lin, Ru-Jen; Shieh, Jiann-Shing; Wu, An-Yeu; Lai, Dar-Ming; Huang, Sheng-Jean; Jeng, Jiann-Shing

    2015-09-01

    Mannitol is commonly used in patients with increased intracranial pressure (ICP), but its effect on cerebrovascular pressure reactivity (CVPR) is uncertain. We analyzed the changes of pressure reactivity index (PRx) during the course of mannitol treatment. Twenty-one patients who received mannitol treatment for increased ICP were recruited prospectively. Continuous waveforms of arterial blood pressure (ABP) and ICP were collected simultaneously for 60 minutes (10 minutes at baseline and 50 minutes since mannitol administration) during 37 events of mannitol treatment. The correlation coefficients between the mean ABP and ICP were averaged every 10 minutes and labeled as the PRx. The linear correlation of six time points of PRx in each event was calculated to represent the trend of CVPR changes. The negative slope of correlation was defined as improvement in CVPR under mannitol treatment and vice versa. At baseline, the average of ICP was 26.0 ± 9.1 mmHg and the values of PRx were significantly correlated with ICP (p = 0.0044, r = 0.46). After mannitol administration, the average of ICP decreased significantly to 21.2 ± 11.1 mmHg (p = 0.036), and CVPR improved in 59.4 % of all events. Further analysis showed that low baseline cerebral perfusion pressure was the only hemodynamic parameter significant association with the improvement of CVPR after mannitol treatment (p = 0.039). Despite lowering ICP, mannitol may have diverse effects on CVPR in patients with intracranial hypertension. Our study suggests that mannitol infusion may have a beneficial effect on CVPR, particularly in those with a low cerebral perfusion pressure at baseline. Copyright © 2013. Published by Elsevier B.V.

  11. Laser Doppler vibrometry for assessment of arteriosclerosis: A first step towards validation

    NASA Astrophysics Data System (ADS)

    Campo, Adriaan; Dirckx, Joris

    2014-05-01

    It has been shown that in cardiovascular risk management, stiffness of large arteries has a very good predictive value for cardiovascular disease and mortality. This parameter can be estimated from the pulse wave velocity (PWV) measured between the common carotid artery (CCA) in the neck and femoral artery (FA) in the groin. However PWV can also be measured locally in the CCA, using non-invasive methods such as ultrasound (US) or laser Doppler vibrometry (LDV). Potential of the latter approach was already explored in previous research, and in this work a first step towards clinical validation is made. 50 hypertension II/III patients aged between 30 and 65 participate in the study. Patients were asked to remain sober for 4 hours prior to the measurements. The trajectory of the CCA in the neck was determined by a trained clinician guided by an US probe. 3 laser Doppler vibrometer (LDV) systems were aimed along the CCA. PWV was then calculated from the distance between beams and the time-shift between waveforms. Immediately after LDV measurements, PWV was measured with US. Additionally, carotid-femoral PWV was measured. As a validation, PWV results of the different techniques were compared with each other, and with medical background of the test subjects. Since data acquisition is still ongoing, data from only 20 patients will be discussed. No trends between measurement methods for PWV are apparent. However, a positive trend was detected between PWV as measured with LDV and blood pressure. More data, including additional experiments will be needed to verify this observation.

  12. Laser Doppler vibrometry for assessment of arteriosclerosis: A first step towards validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campo, Adriaan; Dirckx, Joris

    2014-05-27

    It has been shown that in cardiovascular risk management, stiffness of large arteries has a very good predictive value for cardiovascular disease and mortality. This parameter can be estimated from the pulse wave velocity (PWV) measured between the common carotid artery (CCA) in the neck and femoral artery (FA) in the groin. However PWV can also be measured locally in the CCA, using non-invasive methods such as ultrasound (US) or laser Doppler vibrometry (LDV). Potential of the latter approach was already explored in previous research, and in this work a first step towards clinical validation is made. 50 hypertension II/IIImore » patients aged between 30 and 65 participate in the study. Patients were asked to remain sober for 4 hours prior to the measurements. The trajectory of the CCA in the neck was determined by a trained clinician guided by an US probe. 3 laser Doppler vibrometer (LDV) systems were aimed along the CCA. PWV was then calculated from the distance between beams and the time-shift between waveforms. Immediately after LDV measurements, PWV was measured with US. Additionally, carotid-femoral PWV was measured. As a validation, PWV results of the different techniques were compared with each other, and with medical background of the test subjects. Since data acquisition is still ongoing, data from only 20 patients will be discussed. No trends between measurement methods for PWV are apparent. However, a positive trend was detected between PWV as measured with LDV and blood pressure. More data, including additional experiments will be needed to verify this observation.« less

  13. Segmentation of arterial vessel wall motion to sub-pixel resolution using M-mode ultrasound.

    PubMed

    Fancourt, Craig; Azer, Karim; Ramcharan, Sharmilee L; Bunzel, Michelle; Cambell, Barry R; Sachs, Jeffrey R; Walker, Matthew

    2008-01-01

    We describe a method for segmenting arterial vessel wall motion to sub-pixel resolution, using the returns from M-mode ultrasound. The technique involves measuring the spatial offset between all pairs of scans from their cross-correlation, converting the spatial offsets to relative wall motion through a global optimization, and finally translating from relative to absolute wall motion by interpolation over the M-mode image. The resulting detailed wall distension waveform has the potential to enhance existing vascular biomarkers, such as strain and compliance, as well as enable new ones.

  14. Simultaneous encoding of carotid sinus pressure and dP/dt by NTS target neurons of myelinated baroreceptors.

    PubMed

    Rogers, R F; Rose, W C; Schwaber, J S

    1996-10-01

    1. We seek to understand the baroreceptor signal processing that occurs centrally, beginning with the transformation of the signal at the first stage of processing. Because quantitative descriptions of the encoding of mean arterial pressure and its derivative with respect to time by baroreceptive second-order neurons have been unavailable, we characterized the responses of nucleus tractus solitarius (NTS) neurons that receive direct myelinated baroreceptor inputs to combinations of these two stimulus variables. 2. In anesthetized, paralyzed, artificially ventilated rabbits, the carotid sinus was vascularly isolated and the carotid sinus nerve was dissected free from surrounding tissue. Single-unit extracellular recordings were made from NTS neurons that received direct (with the use of physiological criteria) synaptic inputs from carotid sinus baroreceptors with myelinated axons. The vast majority of these neurons did not receive ipsilateral aortic nerve convergent inputs. With the use of a computer-controlled linear motor, a piecewise linear pressure waveform containing 32 combinations of pressure and its rate of change with respect to time (dP/dt) was delivered to the ipsilateral carotid sinus. 3. The average NTS firing frequency during the different stimulus combinations of pressure and dP/dt was a nonlinear and interdependent function of both variables. Most notable was the "extinctive" encoding of carotid sinus pressure by these neurons. This was characterized by an increase in firing frequency going from low to medium mean pressures (analyzed at certain positive dP/dt values) followed by a decrease in activity during high-pressure stimuli. All second-order neurons analyzed had their maximal firing rates when dP/dt was positive. 4. All neurons had their maximal firing frequency locations ("receptive field centers") at just 3 of 32 possible pressure-dP/dt coordinates. The responses of a small population of neurons were used to generate a composite description of the encoding of pressure and dP/dt. When combined as a composite of individually normalized values, the encoding of carotid sinus pressure and dP/dt may be approximated with the use of two-dimensional Gaussian functions. 5. We conclude that the population of NTS neurons recorded most faithfully encodes the rate and direction of (mean) pressure change, as opposed to providing the CNS with an unambiguous encoding of absolute pressure. Instead, the activity of these neurons, individually or as a population, serves as an estimate for the first derivative of the myelinated baroreceptor signal's encoding of mean pressure. We therefore speculate that the output of these individual neurons is useful in dynamic, rather than static, arterial pressure control.

  15. Essential hypertension--is erroneous receptor output to blame?

    PubMed

    Ufnal, Marcin

    2012-04-01

    Hypertension is a chronic medical condition in which systemic arterial blood pressure is elevated. About 80-90% of diagnosed hypertension is considered essential (idiopathic), which means there is no obvious cause of the increase in blood pressure. My hypothesis states that part of idiopathic hypertension results from erroneous information that the brain receives from receptors involved in the regulation of arterial blood pressure, i.e. if, despite high systemic blood pressure, the brain receives false "low-arterial pressure input" from cardiovascular receptors. As a result the brain centres which control blood pressure reset and produce an inappropriate output to the effectors (heart, blood vessels, kidneys and glands). The information errors may result from: (i) structural and/or functional impairment of cardiovascular receptors, (ii) changes in cardiovascular receptors activity, which are caused by other factors than changes in blood pressure, and (iii) impaired transmission in afferent fibres. I assume that in contrast to the lack of input from damaged or denervated cardiovascular receptors, an erroneous input will impair the control of arterial blood pressure. This will apply especially to false input which imitates "low-arterial pressure input". Higher priority of "low-arterial pressure input" over "high-arterial pressure input" or none input may be explained by the evolutionary adaptation, i.e. low blood pressure, mostly due to haemorrhage, used to be a more common condition than high blood pressure and constitute a major threat to humans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Pulsed Phase Lock Loop Device for Monitoring Intracranial Pressure During Space Flight

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.

    2003-01-01

    We have developed an ultrasonic device to monitor ICP waveforms non-invasively from cranial diameter oscillations using a NASA-developed pulsed phase lock loop (PPLL) technique. The purpose of this study was to attempt to validate the PPLL device for reliable recordings of ICP waveforms and analysis of ICP dynamics in vivo. METHODS: PPLL outputs were recorded in patients during invasive ICP monitoring at UCSD Medical Center (n=10). RESULTS: An averaged linear regression coefficient between ICP and PPLL waveform data during one cardiac cycle in all patients is 0.88 +/- 0.02 (mean +/- SE). Coherence function analysis indicated that ICP and PPLL waveforms have high correlation in the lst, 2nd, and 3rd harmonic waves associated with a cardiac cycle. CONCLUSIONS: PPLL outputs represent ICP waveforms in both frequency and time domains. PPLL technology enables in vivo evaluation of ICP dynamics non-invasively, and can acquire continuous ICP waveforms during spaceflight because of compactness and non-invasive nature.

  17. Mechanical support of total cavopulmonary connection with an axial flow pump.

    PubMed

    Riemer, R Kirk; Amir, Gabriel; Reichenbach, Steven H; Reinhartz, Olaf

    2005-08-01

    Even under optimal circumstances, total cavopulmonary connection is associated with a continuous late risk of death. Hemodynamics are distinctly abnormal, with increased systemic venous pressures and frequent low cardiac output. Our study uses a sheep model of total cavopulmonary connection to test the response to axial flow pump (Thoratec HeartMate II; Thoratec Corporation (Pleasanton, Calif)) support of total cavopulmonary connection, which might be suitable to treat patients with failing Fontan circulation. Eight sheep (42-48 kg) were studied. After pilot studies in 3 animals, 5 underwent both pump-supported and nonsupported total cavopulmonary connection in alternating sequence for up to 2 hours. This was achieved with a 12-mm polytetrafluoroethylene graft from the (distally ligated) superior vena cava to the main pulmonary artery and a cannula placed in the inferior vena cava with an attached 16-mm Dacron graft to the main pulmonary artery. Pressures (arterial, inferior vena cava, left atrium, and pulmonary artery) and flows (ascending aorta and inferior vena cava) were recorded over 1 hour both with unsupported total cavopulmonary connection and after placing an axial flow pump (Thoratec HeartMate II) between the inferior vena caval inflow cannula and the main pulmonary artery. Under nonsupported total cavopulmonary connection circulation, inferior vena caval and aortic blood flow decreased by nearly 50%. Inferior vena caval pressure nearly doubled, whereas arterial pressure decreased by one third. Pulmonary artery pressure became nonpulsatile; however, mean pulmonary artery pressure and left atrial pressure did not change significantly. With pump-supported Fontan circulation, cardiac output, inferior vena caval flow, and arterial pressure returned to baseline. Inferior vena caval pressure decreased to below baseline levels. Mean pulmonary artery pressure and left atrial pressure again remained unchanged. Axial flow pump support from the inferior vena cava to the pulmonary artery can prevent the substantial decrease of aortic flow and pressure associated with total cavopulmonary connection and can reverse its poor hemodynamics. This is a simple model that can be used to further evaluate the potential of mechanical support as a treatment option in failing Fontan circulation.

  18. Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses.

    PubMed

    Jin, Cheng; Stein, Gregory J; Hong, Kyung-Han; Lin, C D

    2015-07-24

    We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications.

  19. Effect of arterial baroreceptor denervation on sodium balance.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2002-10-01

    During chronic increased dietary sodium intake, arterial baroreceptors buffer against sustained increases in arterial pressure, and renal sympathoinhibition contributes importantly to the maintenance of sodium balance by decreasing renal tubular sodium reabsorption and increasing urinary sodium excretion. The present study examined the effect of arterial baroreceptor denervation on sodium balance in conscious rats during low, normal, and high dietary sodium intake. Compared with measurements made before arterial baroreceptor denervation, arterial baroreceptor-denervated rats had similar sodium balance during normal dietary sodium intake but significantly more negative sodium balance during low dietary sodium intake and significantly more positive sodium balance during high dietary sodium intake. At the end of the high dietary sodium intake period, arterial pressure (under anesthesia) was 159+/-5 mm Hg after arterial baroreceptor denervation and 115+/-1 mm Hg before arterial baroreceptor denervation. Sham arterial baroreceptor denervation in time control rats had no effect on sodium balance or arterial pressure during the different dietary sodium intakes. These studies indicate that (1) arterial baroreceptor denervation impairs the ability to establish sodium balance during both low and high dietary sodium intake, and (2) arterial baroreceptor denervation leads to the development of increased arterial pressure during high dietary sodium intake in association with increased renal sodium retention.

  20. Unsteady blade-surface pressures on a large-scale advanced propeller: Prediction and data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1990-01-01

    An unsteady 3-D Euler analysis technique is employed to compute the flow field of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (takeoff), the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.

  1. Unsteady blade surface pressures on a large-scale advanced propeller - Prediction and data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1990-01-01

    An unsteady three dimensional Euler analysis technique is employed to compute the flowfield of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (take-off) the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.

  2. Pulmonary artery wave propagation and reservoir function in conscious man: impact of pulmonary vascular disease, respiration and dynamic stress tests.

    PubMed

    Su, Junjing; Manisty, Charlotte; Simonsen, Ulf; Howard, Luke S; Parker, Kim H; Hughes, Alun D

    2017-10-15

    Wave travel plays an important role in cardiovascular physiology. However, many aspects of pulmonary arterial wave behaviour remain unclear. Wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery in subjects with and without pulmonary hypertension during spontaneous respiration and dynamic stress tests. Arterial wave energy decreased during expiration and Valsalva manoeuvre due to decreased ventricular preload. Wave energy also decreased during handgrip exercise due to increased heart rate. In pulmonary hypertension patients, the asymptotic pressure at which the microvascular flow ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by waves increased. The reservoir and excess pressures decreased during Valsalva manoeuvre but remained unchanged during handgrip exercise. This study provides insights into the influence of pulmonary vascular disease, spontaneous respiration and dynamic stress tests on pulmonary artery wave propagation and reservoir function. Detailed haemodynamic analysis may provide novel insights into the pulmonary circulation. Therefore, wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery to characterize changes in wave propagation and reservoir function during spontaneous respiration and dynamic stress tests. Right heart catheterization was performed using a pressure and Doppler flow sensor tipped guidewire to obtain simultaneous pressure and flow velocity measurements in the pulmonary artery in control subjects and patients with pulmonary arterial hypertension (PAH) at rest. In controls, recordings were also obtained during Valsalva manoeuvre and handgrip exercise. The asymptotic pressure at which the flow through the microcirculation ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by arterial waves increased in PAH patients compared to controls. The systolic and diastolic rate constants also increased, while the diastolic time constant decreased. The forward compression wave energy decreased by ∼8% in controls and ∼6% in PAH patients during expiration compared to inspiration, while the wave speed remained unchanged throughout the respiratory cycle. Wave energy decreased during Valsalva manoeuvre (by ∼45%) and handgrip exercise (by ∼27%) with unaffected wave speed. Moreover, the reservoir and excess pressures decreased during Valsalva manoeuvre but remained unaltered during handgrip exercise. In conclusion, reservoir-excess pressure analysis applied to the pulmonary artery revealed distinctive differences between controls and PAH patients. Variations in the ventricular preload and afterload influence pulmonary arterial wave propagation as demonstrated by changes in wave energy during spontaneous respiration and dynamic stress tests. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  3. A Biomechanical Model of Artery Buckling

    PubMed Central

    Han, Hai-Chao

    2010-01-01

    The stability of arteries under blood pressure load is essential to the maintenance of normal arterial function and the loss of stability can lead to tortuosity and kinking that are associated with significant clinical complications. However, mechanical analysis of arterial bent buckling is lacking. To address this issue, this paper presents a biomechanical model of arterial buckling. Using a linear elastic cylindrical arterial model, the mechanical equations for arterial buckling were developed and the critical buckling pressure was found to be a function of the wall stiffness (Young’s modulus), arterial radius, length, wall thickness, and the axial strain. Both the model equations and experimental results demonstrated that the critical pressure is related to the axial strain. Arteries may buckle and become tortuous due to reduced (sub-physiological) axial strain, hypertensive pressure, and a weakened wall. These results are in accordance with, and provide a possible explanation to the clinical observations that these changes are the risk factors for arterial tortuosity and kinking. The current model is also applicable to veins and ureters. PMID:17689541

  4. Epidural Spinal Cord Stimulation of Lumbosacral Networks Modulates Arterial Blood Pressure in Individuals With Spinal Cord Injury-Induced Cardiovascular Deficits.

    PubMed

    Aslan, Sevda C; Legg Ditterline, Bonnie E; Park, Michael C; Angeli, Claudia A; Rejc, Enrico; Chen, Yangsheng; Ovechkin, Alexander V; Krassioukov, Andrei; Harkema, Susan J

    2018-01-01

    Disruption of motor and autonomic pathways induced by spinal cord injury (SCI) often leads to persistent low arterial blood pressure and orthostatic intolerance. Spinal cord epidural stimulation (scES) has been shown to enable independent standing and voluntary movement in individuals with clinically motor complete SCI. In this study, we addressed whether scES configured to activate motor lumbosacral networks can also modulate arterial blood pressure by assessing continuous, beat-by-beat blood pressure and lower extremity electromyography during supine and standing in seven individuals with C5-T4 SCI. In three research participants with arterial hypotension, orthostatic intolerance, and low levels of circulating catecholamines (group 1), scES applied while supine and standing resulted in increased arterial blood pressure. In four research participants without evidence of arterial hypotension or orthostatic intolerance and normative circulating catecholamines (group 2), scES did not induce significant increases in arterial blood pressure. During scES, there were no significant differences in electromyographic (EMG) activity between group 1 and group 2. In group 1, during standing assisted by scES, blood pressure was maintained at 119/72 ± 7/14 mmHg (mean ± SD) compared with 70/45 ± 5/7 mmHg without scES. In group 2 there were no arterial blood pressure changes during standing with or without scES. These findings demonstrate that scES configured to facilitate motor function can acutely increase arterial blood pressure in individuals with SCI-induced cardiovascular deficits.

  5. Muscle Sympathetic Nerve Activity During Intense Lower Body Negative Pressure to Presyncope in Humans

    DTIC Science & Technology

    2009-08-24

    frequency rhythms. Arterial pressure oscillations increase with reductions in central blood volume induced by haemorrhage (Guyton & Harris, 1951), head...a finger cuff to record beat-by-beat finger arterial pressure (Finometer Blood Pressure Monitor, TNO-TPD Biomedical Instrumentation, Amsterdam, The...experienced reductions in arterial pressure at presyncope. The lowest blood pressures recorded for each subject are shown in the upper right of each

  6. Lifelong Cyclic Mechanical Strain Promotes Large Elastic Artery Stiffening: Increased Pulse Pressure and Old Age-Related Organ Failure.

    PubMed

    Thorin-Trescases, Nathalie; Thorin, Eric

    2016-05-01

    The arterial wall is under a huge mechanical constraint imposed by the cardiac cycle that is bound to generate damage with time. Each heartbeat indeed imposes a pulsatile pressure that generates a vascular stretch. Lifetime accumulation of pulsatile stretches will eventually induce fatigue of the elastic large arterial walls, such as aortic and carotid artery walls, promoting their stiffening that will gradually perturb the normal blood flow and local pressure within the organs, and lead to organ failure. The augmented pulse pressure induced by arterial stiffening favours left ventricular hypertrophy because of the repeated extra work against stiff high-pressure arteries, and tissue damage as a result of excessive pulsatile pressure transmitted into the microcirculation, especially in low resistance/high-flow organs such as the brain and kidneys. Vascular aging is therefore characterized by the stiffening of large elastic arteries leading to a gradual increase in pulse pressure with age. In this review we focus on the effect of age-related stiffening of large elastic arteries. We report the clinical evidence linking arterial stiffness and organ failure and discuss the molecular pathways that are activated by the increase of mechanical stress in the wall. We also discuss the possible interventions that could limit arterial stiffening with age, such as regular aerobic exercise training, and some pharmacological approaches. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  7. Chronic antihypertensive treatment improves pulse pressure but not large artery mechanics in a mouse model of congenital vascular stiffness

    PubMed Central

    Halabi, Carmen M.; Broekelmann, Thomas J.; Knutsen, Russell H.; Ye, Li; Mecham, Robert P.

    2015-01-01

    Increased arterial stiffness is a common characteristic of humans with Williams-Beuren syndrome and mouse models of elastin insufficiency. Arterial stiffness is associated with multiple negative cardiovascular outcomes, including myocardial infarction, stroke, and sudden death. Therefore, identifying therapeutic interventions that improve arterial stiffness in response to changes in elastin levels is of vital importance. The goal of this study was to determine the effect of chronic pharmacologic therapy with different classes of antihypertensive medications on arterial stiffness in elastin insufficiency. Elastin-insufficient mice 4–6 wk of age and wild-type littermates were subcutaneously implanted with osmotic micropumps delivering a continuous dose of one of the following: vehicle, losartan, nicardipine, or propranolol for 8 wk. At the end of treatment period, arterial blood pressure and large artery compliance and remodeling were assessed. Our results show that losartan and nicardipine treatment lowered blood pressure and pulse pressure in elastin-insufficient mice. Elastin and collagen content of abdominal aortas as well as ascending aorta and carotid artery biomechanics were not affected by any of the drug treatments in either genotype. By reducing pulse pressure and shifting the working pressure range of an artery to a more compliant region of the pressure-diameter curve, antihypertensive medications may mitigate the consequences of arterial stiffness, an effect that is drug class independent. These data emphasize the importance of early recognition and long-term management of hypertension in Williams-Beuren syndrome and elastin insufficiency. PMID:26232234

  8. An Embedded Device for Real-Time Noninvasive Intracranial Pressure Estimation.

    PubMed

    Matthews, Jonathan M; Fanelli, Andrea; Heldt, Thomas

    2018-01-01

    The monitoring of intracranial pressure (ICP) is indicated for diagnosing and guiding therapy in many neurological conditions. Current monitoring methods, however, are highly invasive, limiting their use to the most critically ill patients only. Our goal is to develop and test an embedded device that performs all necessary mathematical operations in real-time for noninvasive ICP (nICP) estimation based on a previously developed model-based approach that uses cerebral blood flow velocity (CBFV) and arterial blood pressure (ABP) waveforms. The nICP estimation algorithm along with the required preprocessing steps were implemented on an NXP LPC4337 microcontroller unit (MCU). A prototype device using the MCU was also developed, complete with display, recording functionality, and peripheral interfaces for ABP and CBFV monitoring hardware. The device produces an estimate of mean ICP once per minute and performs the necessary computations in 410 ms, on average. Real-time nICP estimates differed from the original batch-mode MATLAB implementation of theestimation algorithm by 0.63 mmHg (root-mean-square error). We have demonstrated that real-time nICP estimation is possible on a microprocessor platform, which offers the advantages of low cost, small size, and product modularity over a general-purpose computer. These attributes take a step toward the goal of real-time nICP estimation at the patient's bedside in a variety of clinical settings.

  9. Increased nocturnal blood pressure in enuretic children with polyuria.

    PubMed

    Kruse, Anne; Mahler, Birgitte; Rittig, Soren; Djurhuus, Jens Christian

    2009-10-01

    We investigated the association between nocturnal blood pressure and urine production in children with enuresis. A total of 39 consecutive children with a mean age of 9.8 years (range 6.2 to 14.9) with monosymptomatic nocturnal enuresis completed a bladder diary, including 2 weeks of basic documentation and 2 with desmopressin titration from 120 to 240 microg sublingually. Arterial blood pressure was measured every 30 minutes during 24 hours and during 4 additional nights using an ambulatory blood pressure monitor. Furthermore, 10 healthy children were recruited into the study who completed a bladder diary for 5 days while measuring arterial blood pressures with documentation of all intake and voided volumes. Patients with nocturnal polyuria had significantly higher nocturnal mean arterial pressure than patients without polyuria and controls (p <0.05). Furthermore, a positive correlation was seen between nocturnal urine output and nocturnal mean arterial pressure (r = 0.32, p <0.001). Nocturnal urine output was significantly higher during wet nights than dry nights (p <0.001). However, no significant difference was found in mean arterial pressure between wet and dry nights. Nocturnal mean arterial pressure was significantly higher in children with enuresis with polyuria than in children without polyuria. There was a significant positive correlation between average nocturnal mean arterial pressure and nocturnal urine volume in the whole study. The association between nocturnal blood pressure and urine volume, and the role of blood pressure should be investigated in a larger group of children with enuresis who have nocturnal polyuria.

  10. Respiratory sinus arrhythmia stabilizes mean arterial blood pressure at high-frequency interval in healthy humans.

    PubMed

    Elstad, Maja; Walløe, Lars; Holme, Nathalie L A; Maes, Elke; Thoresen, Marianne

    2015-03-01

    Arterial blood pressure variations are an independent risk factor for end organ failure. Respiratory sinus arrhythmia (RSA) is a sign of a healthy cardiovascular system. However, whether RSA counteracts arterial blood pressure variations during the respiratory cycle remains controversial. We restricted normal RSA with non-invasive intermittent positive pressure ventilation (IPPV) to test the hypothesis that RSA normally functions to stabilize mean arterial blood pressure. Ten young volunteers were investigated during metronome-paced breathing and IPPV. Heart rate (ECG), mean arterial blood pressure and left stroke volume (finger arterial pressure curve) and right stroke volume (pulsed ultrasound Doppler) were recorded, while systemic and pulmonary blood flow were calculated beat-by-beat. Respiratory variations (high-frequency power, 0.15-0.40 Hz) in cardiovascular variables were estimated by spectral analysis. Phase angles and correlation were calculated by cross-spectral analysis. The magnitude of RSA was reduced from 4.9 bpm(2) (95% CI 3.0, 6.2) during metronome breathing to 2.8 bpm(2) (95% CI 1.1, 5.0) during IPPV (p = 0.03). Variations in mean arterial blood pressure were greater (2.3 mmHg(2) (95% CI 1.4, 3.9) during IPPV than during metronome breathing (1.0 mmHg(2) [95% CI 0.7, 1.3]) (p = 0.014). Respiratory variations in right and left stroke volumes were inversely related in the respiratory cycle during both metronome breathing and IPPV. RSA magnitude is lower and mean arterial blood pressure variability is greater during IPPV than during metronome breathing. We conclude that in healthy humans, RSA stabilizes mean arterial blood pressure at respiratory frequency.

  11. Cardiac output by pulse contour analysis does not match the increase measured by rebreathing during human spaceflight.

    PubMed

    Hughson, Richard L; Peterson, Sean D; Yee, Nicholas J; Greaves, Danielle K

    2017-11-01

    Pulse contour analysis of the noninvasive finger arterial pressure waveform provides a convenient means to estimate cardiac output (Q̇). The method has been compared with standard methods under a range of conditions but never before during spaceflight. We compared pulse contour analysis with the Modelflow algorithm to estimates of Q̇ obtained by rebreathing during preflight baseline testing and during the final month of long-duration spaceflight in nine healthy male astronauts. By Modelflow analysis, stroke volume was greater in supine baseline than seated baseline or inflight. Heart rate was reduced in supine baseline so that there were no differences in Q̇ by Modelflow estimate between the supine (7.02 ± 1.31 l/min, means ± SD), seated (6.60 ± 1.95 l/min), or inflight (5.91 ± 1.15 l/min) conditions. In contrast, rebreathing estimates of Q̇ increased from seated baseline (4.76 ± 0.67 l/min) to inflight (7.00 ± 1.39 l/min, significant interaction effect of method and spaceflight, P < 0.001). Pulse contour analysis utilizes a three-element Windkessel model that incorporates parameters dependent on aortic pressure-area relationships that are assumed to represent the entire circulation. We propose that a large increase in vascular compliance in the splanchnic circulation invalidates the model under conditions of spaceflight. Future spaceflight research measuring cardiac function needs to consider this important limitation for assessing absolute values of Q̇ and stroke volume. NEW & NOTEWORTHY Noninvasive assessment of cardiac function during human spaceflight is an important tool to monitor astronaut health. This study demonstrated that pulse contour analysis of finger arterial blood pressure to estimate cardiac output failed to track the 46% increase measured by a rebreathing method. These results strongly suggest that alternative methods not dependent on pulse contour analysis are required to track cardiac function in spaceflight. Copyright © 2017 the American Physiological Society.

  12. Agreement between invasive blood pressures measured in three peripheral arteries in anaesthetized horses under clinical conditions.

    PubMed

    Wilson, Keely A T; Raisis, Anthea L; Drynan, Eleanor A; Lester, Guy D; Hosgood, Giselle L

    2018-05-01

    To determine agreement between invasive blood pressures measured in three peripheral arteries in anaesthetized horses undergoing elective surgery. Prospective balanced incomplete block design. A total of 18 client-owned horses. Invasive blood pressure (IBP) was measured simultaneously in one of the following three combinations: 1) transverse facial and facial artery; 2) transverse facial and metatarsal artery; and 3) facial and metatarsal artery. The agreement in blood pressure measured for each combination was performed in six horses. At each sample time, systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures were measured concurrently in each artery, and the mean of three consecutive measurements was recorded. The position of horse, heart rate and use of dobutamine were also recorded. Bland-Altman analysis was used to assess agreement between sites. A total of 54 paired measurements were obtained, with 18 paired measurements from each combination. All paired measurements showed poor and haphazard (nonsystematic) agreement. The widest limit of agreement was 51 mmHg for SAP measured in the facial artery and metatarsal artery, with a bias of -11 mmHg. The smallest limit of agreement was 16 mmHg for MAP measured in the transverse facial and metatarsal artery, with a bias of 1 mmHg. There was poor and haphazard agreement for SAP, MAP and DAP measured in each pair of peripheral arteries in this study. These results show that blood pressure measured in different peripheral arteries cannot be used interchangeably. This has implications for studies that use IBP as an outcome variable and studies determining agreement between noninvasive blood pressure and IBP measurements in horses under general anaesthesia. Copyright © 2018 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  13. Arterial Pressure Gradients during Upright Posture and 30 deg Head Down Tilt

    NASA Technical Reports Server (NTRS)

    Sanchez, E. R; William, J. M.; Ueno, T.; Ballard, R. E.; Hargens, A. R.; Holton, Emily M. (Technical Monitor)

    1997-01-01

    Gravity alters local blood pressure within the body so that arterial pressures in the head and foot are lower and higher, respectively, than that at heart level. Furthermore, vascular responses to local alterations of arterial pressure are probably important to maintain orthostatic tolerance upon return to the Earth after space flight. However, it has been difficult to evaluate the body's arterial pressure gradient due to the lack of noninvasive technology. This study was therefore designed to investigate whether finger arterial pressure (FAP), measured noninvasively, follows a normal hydrostatic pressure gradient above and below heart level during upright posture and 30 deg head down tilt (HDT). Seven healthy subjects gave informed consent and were 19 to 52 years old with a height range of 158 to 181 cm. A Finapres device measured arterial pressure at different levels of the body by moving the hand from 36 cm below heart level (BH) to 72 cm above heart level (AH) in upright posture and from 36 cm BH to 48 cm AH during HDT in increments of 12 cm. Mean FAP creased by 85 mmHg transitioning from BH to AH in upright posture, and the pressure gradient calculated from hydrostatic pressure difference (rho(gh)) was 84 mmHg. In HDT, mean FAP decreased by 65 mmHg from BH to AH, and the calculated pressure gradient was also 65 mmHg. There was no significant difference between the measured FAP gradient and the calculated pressure gradient, although a significant (p = 0.023) offset was seen for absolute arterial pressure in upright posture. These results indicate that arterial pressure at various levels can be obtained from the blood pressure at heart level by calculating rho(gh) + an offset. The offset equals the difference between heart level and the site of measurement. In summary, we conclude that local blood pressure gradients can be measured by noninvasive studies of FAP.

  14. Placental morphometry and Doppler flow velocimetry in cases of chronic human fetal hypoxia.

    PubMed

    Kuzmina, Irina Y; Hubina-Vakulik, Galina I; Burton, Graham J

    2005-06-01

    To investigate the structural basis of abnormal Doppler waveforms in the utero-placental circulations in cases of chronic fetal hypoxia. Morphometric analysis was performed on placental samples from 58 pregnancies with abnormal Doppler waveforms in the uterine, placental and umbilical circulations at 32-34 weeks, and 10 pregnancies with normal waveforms. The volume of placental villi reduced from 350.5 cm3 in controls to 286.4 cm3 (P<0.05) in the severest cases. The volume of the fetal capillaries reduced from 59.7 cm3 to 20.5 cm3 (P<0.05). These reductions were associated with increased placental infarction. The myometrial segments of the spiral arteries were severely constricted, demonstrating failure of physiological conversion secondary to deficient trophoblast invasion. The placental vascular bed is greatly reduced in cases of chronic fetal hypoxia. We propose impaired placental perfusion causes oxidative stress and regression of the fetal vasculature, leading to fetal growth retardation and distress.

  15. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.

    PubMed

    Xiang, J; Siddiqui, A H; Meng, H

    2014-12-18

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Valsalva's maneuver revisited: a quantitative method yielding insights into human autonomic control

    NASA Technical Reports Server (NTRS)

    Smith, M. L.; Beightol, L. A.; Fritsch-Yelle, J. M.; Ellenbogen, K. A.; Porter, T. R.; Eckberg, D. L.

    1996-01-01

    Seventeen healthy supine subjects performed graded Valsalva maneuvers. In four subjects, transesophageal echographic aortic cross-sectional areas decreased during and increased after straining. During the first seconds of straining, when aortic cross-sectional area was declining and peripheral arterial pressure was rising, peroneal sympathetic muscle neurons were nearly silent. Then, as aortic cross-sectional area and peripheral pressure both declined, sympathetic muscle nerve activity increased, in proportion to the intensity of straining. Poststraining arterial pressure elevations were proportional to preceding increases of sympathetic activity. Sympathetic inhibition after straining persisted much longer than arterial and right atrial pressure elevations. Similarly, R-R intervals changed in parallel with peripheral arterial pressure, until approximately 45 s after the onset of straining, when R-R intervals were greater and arterial pressures were smaller than prestraining levels. Our conclusions are as follows: opposing changes of carotid and aortic baroreceptor inputs reduce sympathetic muscle and increase vagal cardiac motor neuronal firing; parallel changes of barorsensory inputs provoke reciprocal changes of sympathetic and direct changes of vagal firing; and pressure transients lasting only seconds reset arterial pressure-sympathetic and -vagal response relations.

  17. Evaluation of different diameter arterial tubing and arterial cannulae in simulated neonatal/pediatric cardiopulmonary bypass circuits.

    PubMed

    Wang, Shigang; Rosenthal, Tami; Kunselman, Allen R; Ündar, Akif

    2015-01-01

    The objective of this study is to evaluate three different diameters of arterial tubing and three diameters of arterial cannulae in terms of pressure drop, and hemodynamic energy delivery in simulated neonatal/pediatric cardiopulmonary bypass (CPB) circuits. The CPB circuit consisted of a Terumo Capiox Baby FX05 oxygenator (Terumo Corporation, Tokyo, Japan), arterial tubing (1/4 in, 3/16 in, or 1/8 in × 150 cm), and a Medtronic Bio-Medicus arterial cannula (8, 10, or 12 Fr; Medtronic, Inc., Minneapolis, MN, USA). The pseudo patient's pressure was maintained at 50 mm Hg. The circuit was primed using lactated Ringer's solution and heparinized packed human red blood cells (hematocrit 30%). Trials were conducted at different flow rates and temperatures (35 and 28°C). Flow and pressure data were collected using a custom-based data acquisition system. Using 8 Fr arterial cannula at 500 mL/min, small diameter arterial tubing generated higher circuit pressure (294.6 ± 0.1 mm Hg [1/8 in], 213.5 ± 0.5 mm Hg [3/16 in], 208.4 ± 0.4 mm Hg [1/4 in] at 35°C) and arterial line pressure drop (158.3 ± 0.1 mm Hg [1/8 in], 79.6 ± 0.1 mm Hg [3/16 in], 62.1 ± 0.1 mm Hg [1/4 in] at 35°C). Using 10 Fr arterial cannula at 1000 mL/min, pre-oxygenator pressures were 266.8 ± 0.2 mm Hg (3/16 in) and 248.0 ± 0.3 mm Hg (1/4 in); arterial line pressure drops were 111.6 ± 0.0 mm Hg (3/16 in) and 74.0 ± 0.1 mm Hg (1/4 in) at 35°C. When using 12 Fr arterial cannula at 1500 mL/min, preoxygenator pressures reached 324.4 ± 0.3 mm Hg (3/16 in) and 302.5 ± 0.4 mm Hg (1/4 in); arterial line pressure drops were 154.0 ± 0.1 mm Hg (3/16 in) and 92.0 ± 0.2 mm Hg (1/4 in) at 35°C. Pressure drops across arterial line tubing were main CPB circuit pressure drops. High flow rate, hypothermia, small diameter arterial tubing. and arterial cannula created more hemodynamic energy at the preoxygenator site, but energy loss across CPB circuit also increased. Although small diameter (<1/4 in ID) arterial tubing may decrease total CPB priming volume, it also led to significantly higher circuit pressure, higher pressure drop, and more hemodynamic energy loss across CPB circuit. Larger diameter arterial cannula had less pressure drop and allowed more hemodynamic energy delivery to the patient. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. HEART: an automated beat-to-beat cardiovascular analysis package using Matlab.

    PubMed

    Schroeder, M J Mark J; Perreault, Bill; Ewert, D L Daniel L; Koenig, S C Steven C

    2004-07-01

    A computer program is described for beat-to-beat analysis of cardiovascular parameters from high-fidelity pressure and flow waveforms. The Hemodynamic Estimation and Analysis Research Tool (HEART) is a post-processing analysis software package developed in Matlab that enables scientists and clinicians to document, load, view, calibrate, and analyze experimental data that have been digitally saved in ascii or binary format. Analysis routines include traditional hemodynamic parameter estimates as well as more sophisticated analyses such as lumped arterial model parameter estimation and vascular impedance frequency spectra. Cardiovascular parameter values of all analyzed beats can be viewed and statistically analyzed. An attractive feature of the HEART program is the ability to analyze data with visual quality assurance throughout the process, thus establishing a framework toward which Good Laboratory Practice (GLP) compliance can be obtained. Additionally, the development of HEART on the Matlab platform provides users with the flexibility to adapt or create study specific analysis files according to their specific needs. Copyright 2003 Elsevier Ltd.

  19. Estimated aortic stiffness is independently associated with cardiac baroreflex sensitivity in humans: role of ageing and habitual endurance exercise.

    PubMed

    Pierce, G L; Harris, S A; Seals, D R; Casey, D P; Barlow, P B; Stauss, H M

    2016-09-01

    We hypothesised that differences in cardiac baroreflex sensitivity (BRS) would be independently associated with aortic stiffness and augmentation index (AI), clinical biomarkers of cardiovascular disease risk, among young sedentary and middle-aged/older sedentary and endurance-trained adults. A total of 36 healthy middle-aged/older (age 55-76 years, n=22 sedentary and n=14 endurance-trained) and 5 young sedentary (age 18-31 years) adults were included in a cross-sectional study. A subset of the middle-aged/older sedentary adults (n=12) completed an 8-week-aerobic exercise intervention. Invasive brachial artery blood pressure waveforms were used to compute spontaneous cardiac BRS (via sequence technique), estimated aortic pulse wave velocity (PWV) and AI (AI, via brachial-aortic transfer function and wave separation analysis). In the cross-sectional study, cardiac BRS was 71% lower in older compared with young sedentary adults (P<0.05), but only 40% lower in older adults who performed habitual endurance exercise (P=0.03). In a regression model that included age, sex, resting heart rate, mean arterial pressure (MAP), body mass index and maximal exercise oxygen uptake, estimated aortic PWV (β±s.e.=-5.76±2.01, P=0.01) was the strongest predictor of BRS (model R(2)=0.59, P<0.001). The 8-week-exercise intervention improved BRS by 38% (P=0.04) and this change in BRS was associated with improved aortic PWV (r=-0.65, P=0.044, adjusted for changes in MAP). Age- and endurance-exercise-related differences in cardiac BRS are independently associated with corresponding alterations in aortic PWV among healthy adults, consistent with a mechanistic link between variations in the sensitivity of the baroreflex and aortic stiffness with age and exercise.

  20. Estimated Aortic Stiffness is Independently Associated with Cardiac Baroreflex Sensitivity in Humans: Role of Aging and Habitual Endurance Exercise

    PubMed Central

    Pierce, Gary L.; Harris, Stephen A.; Seals, Douglas R.; Casey, Darren P.; Barlow, Patrick B.; Stauss, Harald M.

    2016-01-01

    We hypothesized that differences in cardiac baroreflex sensitivity (BRS) would be independently associated with aortic stiffness and augmentation index (AI), clinical biomarkers of cardiovascular disease (CVD) risk, among young sedentary and middle-aged/older sedentary and endurance-trained adults. A total of 36 healthy middle-aged/older (age 55-76 years, n=22 sedentary; n=14 endurance-trained) and 5 young sedentary (age 18-31 years) adults were included in a cross-sectional study. A subset of the middle-aged/older sedentary adults (n=12) completed an 8-week aerobic exercise intervention. Invasive brachial artery blood pressure waveforms were used to compute spontaneous cardiac BRS (via sequence technique) and estimated aortic pulse wave velocity (PWV) and AI (AI, via brachial-aortic transfer function and wave separation analysis). In the cross-sectional study, cardiac BRS was 71% lower in older compared with young sedentary adults (P<0.05), but only 40% lower in older adults who performed habitual endurance exercise (P=0.03). In a regression model that included age, sex, resting heart rate, mean arterial pressure (MAP), body mass index and maximal exercise oxygen uptake, estimated aortic PWV (β±SE = −5.76 ± 2.01, P=0.01) was the strongest predictor of BRS (Model R2=0.59, P<0.001). The 8 week exercise intervention improved BRS by 38% (P=0.04) and this change in BRS was associated with improved aortic PWV (r=−0.65, P=0.044, adjusted for changes in MAP). Age- and endurance exercise-related differences in cardiac BRS are independently associated with corresponding alterations in aortic PWV among healthy adults, consistent with a mechanistic link between variations in the sensitivity of the baroreflex and aortic stiffness with age and exercise. PMID:26911535

  1. Acute increases in arterial blood pressure produced by occlusion of the abdominal aorta induces antinociception: peripheral and central substrates.

    PubMed

    Thurston, C L; Randich, A

    1990-06-11

    Occlusion of the abdominal aorta proximal to the renal arteries results in an increase in arterial blood pressure, inhibition of forepaw and hindpaw withdrawal to a noxious mechanical stimulus, and inhibition of the tail-flick reflex to noxious heat. Occlusion of the abdominal aorta distal to the renal arteries does not elevate arterial blood pressure and produces no antinociceptive effects. Occlusion of the vena cava lowers arterial blood pressure and produces no antinociception. The inhibitory effects of occlusion of the abdominal aorta depend upon activation of high pressure baroreceptors since bilateral sinoaortic denervation, but not bilateral vagotomy, eliminates the inhibition with respect to all behavioral measures. The inhibitory effects with respect to the tail-flick reflex also depend upon activation of a descending inhibitory system since reversible cold block of the spinal cord at the level of the second thoracic vertebra eliminates the antinociception. This antinociception is also eliminated following intrathecal administration of the noradrenergic receptor antagonist phentolamine, but not by intrathecal administration of either methysergide or naloxone. These data support the view that activation of high pressure baroreceptors by increases in arterial blood pressure produces antinociception via activation of a spinopetal noradrenergic system.

  2. Comparison between ultrasound-guided compression and para-aneurysmal saline injection in the treatment of postcatheterization femoral artery pseudoaneurysms.

    PubMed

    ElMahdy, Mahmoud Farouk; Kassem, Hussien Heshmat; Ewis, Essam Baligh; Mahdy, Soliman Gharieb

    2014-03-01

    Management of postcatheterization femoral artery pseudoaneurysm (FAP) is problematic. Ultrasound-guided compression (UGC) is painful and cumbersome. Thrombin injection is costly and may cause thromboembolism. Ultrasound-guided para-aneurysmal saline injection (PASI) has been described but was never compared against other treatment methods of FAP. We aimed at comparing the success rate and complications of PASI versus UGC. We randomly assigned 80 patients with postcatheterization FAPs to either UGC (40 patients) or PASI (40 patients). We compared the 2 procedures regarding successful obliteration of the FAP, incidence of vasovagal attacks, procedure time, discontinuation of antiplatelet and/or anticoagulants, and the Doppler waveform in the ipsilateral pedal arteries at the end of the procedure. There was no significant difference between patients in both groups regarding clinical and vascular duplex data. The mean durations of UGC and PASI procedures were 58.14 ± 28.45 and 30.33 ± 8.56 minutes, respectively (p = 0.045). Vasovagal attacks were reported in 10 (25%) and 2 patients (5%) treated with UGC and PASI, respectively (p = 0.05). All patients in both groups had triphasic Doppler waveform in the infrapopliteal arteries before and after the procedure. The primary and final success rates were 75%, 92.5%, 87.5%, and 95% for UGC and PASI, respectively (p = 0.43). In successfully treated patients, there was no reperfusion of the FAP in the follow-up studies (days 1 and 7) in both groups. In conclusion, ultrasound-guided PASI is an effective method for the treatment of FAP. Compared with UGC, PASI is faster, less likely to cause vasovagal reactions, and can be more convenient to patients and physicians. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Persistent Increase in Blood Pressure After Renal Nerve Stimulation in Accessory Renal Arteries After Sympathetic Renal Denervation.

    PubMed

    de Jong, Mark R; Hoogerwaard, Annemiek F; Gal, Pim; Adiyaman, Ahmet; Smit, Jaap Jan J; Delnoy, Peter Paul H M; Ramdat Misier, Anand R; van Hasselt, Boudewijn A A M; Heeg, Jan-Evert; le Polain de Waroux, Jean-Benoit; Lau, Elizabeth O Y; Staessen, Jan A; Persu, Alexandre; Elvan, Arif

    2016-06-01

    Blood pressure response to renal denervation is highly variable, and the proportion of responders is disappointing. This may be partly because of accessory renal arteries too small for denervation, causing incomplete ablation. Renal nerve stimulation before and after renal denervation is a promising approach to assess completeness of renal denervation and may predict blood pressure response to renal denervation. The objective of the current study was to assess renal nerve stimulation-induced blood pressure increase before and after renal sympathetic denervation in main and accessory renal arteries of anaesthetized patients with drug-resistant hypertension. The study included 21 patients. Nine patients had at least 1 accessory renal artery in which renal denervation was not feasible. Renal nerve stimulation was performed in the main arteries of all patients and in accessory renal arteries of 6 of 9 patients with accessory arteries, both before and after renal sympathetic denervation. Renal nerve stimulation before renal denervation elicited a substantial increase in systolic blood pressure, both in main (25.6±2.9 mm Hg; P<0.001) and accessory (24.3±7.4 mm Hg; P=0.047) renal arteries. After renal denervation, renal nerve stimulation-induced systolic blood pressure increase was blunted in the main renal arteries (Δ systolic blood pressure, 8.6±3.7 mm Hg; P=0.020), but not in the nondenervated renal accessory renal arteries (Δ systolic blood pressure, 27.1±7.6 mm Hg; P=0.917). This residual source of renal sympathetic tone may result in persistent hypertension after ablation and partly account for the large response variability. © 2016 American Heart Association, Inc.

  4. Glottal volume velocity waveform characteristics in subjects with and without vocal training, related to gender, sound intensity, fundamental frequency, and age.

    PubMed

    Sulter, A M; Wit, H P

    1996-11-01

    Glottal volume velocity waveform characteristics of 224 subjects, categorized in four groups according to gender and vocal training, were determined, and their relations to sound-pressure level, fundamental frequency, intra-oral pressure, and age were analyzed. Subjects phonated at three intensity conditions. The glottal volume velocity waveforms were obtained by inverse filtering the oral flow. Glottal volume velocity waveforms were parameterized with flow-based (minimum flow, ac flow, average flow, maximum flow declination rate) and time-based parameters (closed quotient, closing quotient, speed quotient), as well as with derived parameters (vocal efficiency and glottal resistance). Higher sound-pressure levels, intra-oral pressures, and flow-parameter values (ac flow, maximum flow declination rate) were observed, when compared with previous investigations. These higher values might be the result of the specific phonation tasks (stressed /ae/ vowel in a word and a sentence) or filtering processes. Few statistically significant (p < 0.01) differences in parameters were found between untrained and trained subjects [the maximum flow declination rate and the closing quotient were higher in trained women (p < 0.001), and the speed quotient was higher in trained men (p < 0.005)]. Several statistically significant parameter differences were found between men and women [minimum flow, ac flow, average flow, maximum flow declination rate, closing quotient, glottal resistance (p < 0.001), and closed quotient (p < 0.005)]. Significant effects of intensity condition were observed on ac flow, maximum flow declination rate, closing quotient, and vocal efficiency in women (p < 0.005), and on minimum flow, ac flow, average flow, maximum flow declination rate, closed quotient, and vocal efficiency in men (p < 0.01).

  5. Modeling of the dolphin's clicking sound source: The influence of the critical parameters

    NASA Astrophysics Data System (ADS)

    Dubrovsky, N. A.; Gladilin, A.; Møhl, B.; Wahlberg, M.

    2004-07-01

    A physical and a mathematical models of the dolphin’s source of echolocation clicks have been recently proposed. The physical model includes a bottle of pressurized air connected to the atmosphere with an underwater rubber tube. A compressing rubber ring is placed on the underwater portion of the tube. The ring blocks the air jet passing through the tube from the bottle. This ring can be brought into self-oscillation by the air jet. In the simplest case, the ring displacement follows a repeated triangular waveform. Because the acoustic pressure gradient is proportional to the second time derivative of the displacement, clicks arise at the bends of the displacement waveform. The mathematical model describes the dipole oscillations of a sphere “frozen” in the ring and calculates the waveform and the sound pressure of the generated clicks. The critical parameters of the mathematical model are the radius of the sphere and the peak value and duration of the triangular displacement curve. This model allows one to solve both the forward (deriving the properties of acoustic clicks from the known source parameters) and the inverse (calculating the source parameters from the acoustic data) problems. Data from click records of Odontocetes were used to derive both the displacement waveforms and the size of the “frozen sphere” or a structure functionally similar to it. The mathematical model predicts a maximum source level of up to 235 dB re 1 μPa at 1-m range when using a 5-cm radius of the “frozen” sphere and a 4-mm maximal displacement. The predicted sound pressure level is similar to that of the clicks produced by Odontocetest.

  6. Acute lead exposure increases arterial pressure: role of the renin-angiotensin system.

    PubMed

    Simões, Maylla Ronacher; Ribeiro Júnior, Rogério F; Vescovi, Marcos Vinícius A; de Jesus, Honério C; Padilha, Alessandra S; Stefanon, Ivanita; Vassallo, Dalton V; Salaices, Mercedes; Fioresi, Mirian

    2011-04-11

    Chronic lead exposure causes hypertension and cardiovascular disease. Our purpose was to evaluate the effects of acute exposure to lead on arterial pressure and elucidate the early mechanisms involved in the development of lead-induced hypertension. Wistar rats were treated with lead acetate (i.v. bolus dose of 320 µg/Kg), and systolic arterial pressure, diastolic arterial pressure and heart rate were measured during 120 min. An increase in arterial pressure was found, and potential roles of the renin-angiotensin system, Na(+),K(+)-ATPase and the autonomic reflexes in this change in the increase of arterial pressure found were evaluated. In anesthetized rats, lead exposure: 1) produced blood lead levels of 37±1.7 µg/dL, which is below the reference blood concentration (60 µg/dL); 2) increased systolic arterial pressure (Ct: 109±3 mmHg vs Pb: 120±4 mmHg); 3) increased ACE activity (27% compared to Ct) and Na(+),K(+)-ATPase activity (125% compared to Ct); and 4) did not change the protein expression of the α1-subunit of Na(+),K(+)-ATPase, AT(1) and AT(2). Pre-treatment with an AT(1) receptor blocker (losartan, 10 mg/Kg) or an ACE inhibitor (enalapril, 5 mg/Kg) blocked the lead-induced increase of arterial pressure. However, a ganglionic blockade (hexamethonium, 20 mg/Kg) did not prevent lead's hypertensive effect. Acute exposure to lead below the reference blood concentration increases systolic arterial pressure by increasing angiotensin II levels due to ACE activation. These findings offer further evidence that acute exposure to lead can trigger early mechanisms of hypertension development and might be an environmental risk factor for cardiovascular disease.

  7. Tourniquet Effectiveness When Placed Over the Joint Service Lightweight Integrated Suit Technology.

    PubMed

    Peponis, Thomas; Ramly, Elie; Roth, Kym A; King, David R

    2016-01-01

    Chemical, biological, radiological, and nuclear threats (CBRNs) are uncommon; however, Special Operations Forces (SOF) are likely at the highest risk for tactical exposure. In the event of exposure, SOF will rely on the Joint Service Lightweight Integrated Suit Technology (JSLIST) for survival. Doctrine dictates that a tourniquet should be applied over the JSLIST after a severe limb injury with hemorrhage. There is no evidence in the literature that the Combat Application Tourniquet (C-A-T), which is currently the most widely available tourniquet on the battlefield, can effectively occlude arterial blood flow when applied over the JSLIST. We hypothesized that C-A-T application over the JSLIST would be ineffective at occluding arterial blood flow in the lower extremity. Following institutional review board approval, 20 healthy volunteers were recruited to participate. All volunteers wore the G3 Combat Pant and they donned the JSLIST. First, an operating room pneumatic tourniquet (gold standard) was applied in the proximal thigh and inflated to 300mmHg. Distal arterial interrogation was performed by examination of distal pulses and noninvasive arterial plethysmography wave-form analysis. After a 1-hour recovery period, the C-A-T was applied and tightened. A double routing technique was used, with three 180° turns of the windlass. The same distal interrogation followed. Half of the volunteers had the pneumatic tourniquet applied first, and the other half had the C-A-T applied first. All volunteers had palpable pulses at baseline despite a wide range in volunteer body mass index. Distal pulses were absent in all volunteers following inflation of the pneumatic tourniquet as well as tightening of the C-A-T. The observed difference between the mean amplitude of plethysmographic waveforms was not different. The C-A-T effectively occludes arterial flow in the lower extremity, even when applied over the JSLIST. This finding supports existing military doctrine for tourniquet application over the JSLIST in the nonpermissive CBRN environment to control extremity exsanguination. 2016.

  8. Comparison of noninvasive blood pressure measurement techniques via the coccygeal artery in anesthetized cheetahs (Acinonyx jubatus).

    PubMed

    Sadler, Ryan A; Hall, Natalie H; Kass, Philip H; Citino, Scott B

    2013-12-01

    Two indirect blood pressure measurement techniques, Doppler (DOP) sphygmomanometry and oscillometry, applied at the ventral coccygeal artery were compared with simultaneous direct blood pressure measurements at the dorsal pedal artery in 10 anesthetized, captive cheetahs (Acinonyx jubatus). The DOP method was moderately accurate, with relatively little bias (mean difference 3.8 mmHg) and 88.6% of the DOP systolic arterial pressure measurements being within 10 mmHg of the direct systolic arterial measurement. With the oscillometric (OM) method, 89.2% of the mean arterial pressure measurements were within 10 mmHg of the direct measurement and had the least bias (mean difference 2.3 mmHg), 80.7% of the systolic measurements were within 10 mmHg of the direct measurement and had the second least bias (mean difference 2.3 mmHg), and 59% of the diastolic measurements were within 10 mmHg of the direct measurement and had significant bias (mean difference 7.3 mmHg). However, DOP showed relatively poor precision (SD 11.2 mmHg) compared with OM systolic (SD 8.0 mmHg), diastolic (SD 8.6 mmHg), and mean (SD 5.7 mmHg). Both techniques showed a linear relationship with the direct technique measurements over a wide range of blood pressures. The DOP method tended to underestimate systolic measurements below 160 mmHg and overestimate systolic measurements above 160 mmHg. The OM method tended to underestimate mean pressures below 160 mm Hg, overestimate mean pressures above 160 mmHg, underestimate systolic pressures below 170 mmHg, overestimate systolic pressures above 170 mmHg, and underestimate diastolic pressures throughout the measured blood pressure range. Indirect blood pressure measurement using the ventral coccygeal artery, particularly when using an OM device for mean and systolic arterial pressure, may be useful in the clinical assessment of cheetahs when monitoring trends over time, but caution should be taken when interpreting individual values.

  9. COMPARISON OF HIGH-DEFINITION OSCILLOMETRIC AND DIRECT ARTERIAL BLOOD PRESSURE MEASUREMENT IN ANESTHETIZED CHEETAHS (ACINONYX JUBATUS).

    PubMed

    Sant Cassia, Emma V; Boswood, Adrian; Tordiffe, Adrian S W

    2015-09-01

    Blood pressure measurement reveals important insights into the health of conscious and anesthetized individuals. This is of particular interest in cheetahs (Acinonyx jubatus), which in captivity are known to suffer from chronic diseases that may be associated with hypertension and which often require immobilization for transport or veterinary treatment. Invasive testing methods are considered the gold standard but are not practical in many settings. Consequently, it is important to evaluate the use of noninvasive methods in this species. Measurements for systolic, diastolic, and mean arterial pressure obtained using high-definition oscillometry (HDO) at the coccygeal artery were compared to simultaneous direct measurements obtained via catheterization of the femoral or dorsal pedal artery in eight anesthetized captive cheetahs during nine anesthetic events. Overall, HDO and direct measurements agreed most closely for mean arterial pressure, and the poorest agreement was observed for systolic pressure. There was a tendency for low diastolic pressures to be underestimated and for high diastolic pressures to be overestimated. Across all three parameters, HDO measurements from the tail overestimated directly measured pressures in the femoral artery and underestimated those in the dorsal pedal artery. HDO agreed most closely with directly measured dorsal pedal pressures. Mean arterial pressure showed the greatest precision (standard deviation of 10.2 mm Hg) and lowest bias (-1.2 mm Hg), with 75.9% of readings within 10 mm Hg of the direct dorsal pedal pressure. Agreement with systolic pressure was hindered by a high bias (-10.4 mm Hg), but if a correction factor of +10 mm Hg was applied to all systolic measurements, agreement was improved and 65.7% of readings were within 10 mm Hg of the direct pressure. When compared to criteria defined by the American College of Veterinary Internal Medicine for validation of blood pressure devices, results were favorable, but a limited sample size prevented formal validation.

  10. Chronic antihypertensive treatment improves pulse pressure but not large artery mechanics in a mouse model of congenital vascular stiffness.

    PubMed

    Halabi, Carmen M; Broekelmann, Thomas J; Knutsen, Russell H; Ye, Li; Mecham, Robert P; Kozel, Beth A

    2015-09-01

    Increased arterial stiffness is a common characteristic of humans with Williams-Beuren syndrome and mouse models of elastin insufficiency. Arterial stiffness is associated with multiple negative cardiovascular outcomes, including myocardial infarction, stroke, and sudden death. Therefore, identifying therapeutic interventions that improve arterial stiffness in response to changes in elastin levels is of vital importance. The goal of this study was to determine the effect of chronic pharmacologic therapy with different classes of antihypertensive medications on arterial stiffness in elastin insufficiency. Elastin-insufficient mice 4-6 wk of age and wild-type littermates were subcutaneously implanted with osmotic micropumps delivering a continuous dose of one of the following: vehicle, losartan, nicardipine, or propranolol for 8 wk. At the end of treatment period, arterial blood pressure and large artery compliance and remodeling were assessed. Our results show that losartan and nicardipine treatment lowered blood pressure and pulse pressure in elastin-insufficient mice. Elastin and collagen content of abdominal aortas as well as ascending aorta and carotid artery biomechanics were not affected by any of the drug treatments in either genotype. By reducing pulse pressure and shifting the working pressure range of an artery to a more compliant region of the pressure-diameter curve, antihypertensive medications may mitigate the consequences of arterial stiffness, an effect that is drug class independent. These data emphasize the importance of early recognition and long-term management of hypertension in Williams-Beuren syndrome and elastin insufficiency. Copyright © 2015 the American Physiological Society.

  11. Estimation of pressure gradients at renal artery stenoses

    NASA Astrophysics Data System (ADS)

    Yim, Peter J.; Cebral, Juan R.; Weaver, Ashley; Lutz, Robert J.; Vasbinder, G. Boudewijn C.

    2003-05-01

    Atherosclerotic disease of the renal artery can reduce the blood flow leading to renovascular hypertension and ischemic nephopathy. The kidney responds to a decrease in blood flow by activation of the renin-angiotensin system that increases blood pressure and can result in severe hypertension. Percutaneous translumenal angioplasty (PTA) may be indicated for treatment of renovascular hypertension (RVH). However, direct measurement of renal artery caliber and degree of stenosis has only moderate specificity for detection of RVH. A confounding factor in assessment of the proximal renal artery is that diffuse atherosclerotic disease of the distal branches of the renal artery can produce the same effect on blood-flow as atherosclerotic disease of the proximal renal artery. A methodology is proposed for estimation of pressure gradients at renal artery stenoses from magnetic resonance imaging that could improve the evaluation of renal artery disease. In the proposed methodology, pressure gradients are estimated using computational fluid dynamics (CFD) modeling. Realistic CFD models are constructed from images of vessel shape and measurements of blood-flow rates which are available from magnetic resonance angiography (MRA) and phase-contrast magnetic resonance (MR) imaging respectively. CFD measurement of renal artery pressure gradients has been validated in a physical flow-through model.

  12. Implanted Blood-Pressure-Measuring Device

    NASA Technical Reports Server (NTRS)

    Fischell, Robert E.

    1988-01-01

    Arterial pressure compared with ambient bodily-fluid pressure. Implanted apparatus, capable of measuring blood pressure of patient, includes differential-pressure transducer connected to pressure sensor positioned in major artery. Electrical signal is function of differential pressure between blood-pressure sensor and reference-pressure sensor transmitted through skin of patient to recorder or indicator.

  13. Reduced Cystathionine γ-Lyase and Increased miR-21 Expression Are Associated with Increased Vascular Resistance in Growth-Restricted Pregnancies

    PubMed Central

    Cindrova-Davies, Tereza; Herrera, Emilio A.; Niu, Youguo; Kingdom, John; Giussani, Dino A.; Burton, Graham J.

    2013-01-01

    Increased vascular impedance in the fetoplacental circulation is associated with fetal hypoxia and growth restriction. We sought to investigate the role of hydrogen sulfide (H2S) in regulating vasomotor tone in the fetoplacental vasculature. H2S is produced endogenously by catalytic activity of cystathionine β-synthase and cystathionine γ-lyase (CSE). Immunohistochemical analysis localized CSE to smooth muscle cells encircling arteries in stem villi. Immunoreactivity was reduced in placentas from pregnancies with severe early-onset growth-restriction and preeclampsia displaying abnormal umbilical artery Doppler waveforms compared with preeclamptic placentas with normal waveforms and controls. These findings were confirmed at the protein and mRNA levels. MicroRNA-21, which negatively regulates CSE expression, was increased in placentas with abnormal Doppler waveforms. Exposure of villus explants to hypoxia-reoxygenation significantly reduced CSE protein and mRNA and increased microRNA-21 expression. No changes were observed in cystathionine β-synthase expression, immunolocalized principally to the trophoblast, in pathologic placentas or in vitro. Finally, perfusion of normal placentas with an H2S donor, after preconstriction with a thromboxane mimetic, resulted in dose-dependent vasorelaxation. Glibenclamide and NG-nitro-l-arginine methyl ester partially blocked the effect, indicating that H2S acts through ATP-sensitive K+ channels and nitric oxide synthesis. These results demonstrate that H2S is a powerful vasodilator of the placental vasculature and that expression of CSE is reduced in placentas associated with increased vascular resistance. PMID:23410520

  14. Noninvasive evaluation of left ventricular elastance according to pressure-volume curves modeling in arterial hypertension.

    PubMed

    Bonnet, Benjamin; Jourdan, Franck; du Cailar, Guilhem; Fesler, Pierre

    2017-08-01

    End-systolic left ventricular (LV) elastance ( E es ) has been previously calculated and validated invasively using LV pressure-volume (P-V) loops. Noninvasive methods have been proposed, but clinical application remains complex. The aims of the present study were to 1 ) estimate E es according to modeling of the LV P-V curve during ejection ("ejection P-V curve" method) and validate our method with existing published LV P-V loop data and 2 ) test the clinical applicability of noninvasively detecting a difference in E es between normotensive and hypertensive subjects. On the basis of the ejection P-V curve and a linear relationship between elastance and time during ejection, we used a nonlinear least-squares method to fit the pressure waveform. We then computed the slope and intercept of time-varying elastance as well as the volume intercept (V 0 ). As a validation, 22 P-V loops obtained from previous invasive studies were digitized and analyzed using the ejection P-V curve method. To test clinical applicability, ejection P-V curves were obtained from 33 hypertensive subjects and 32 normotensive subjects with carotid tonometry and real-time three-dimensional echocardiography during the same procedure. A good univariate relationship ( r 2  = 0.92, P < 0.005) and good limits of agreement were found between the invasive calculation of E es and our new proposed ejection P-V curve method. In hypertensive patients, an increase in arterial elastance ( E a ) was compensated by a parallel increase in E es without change in E a / E es In addition, the clinical reproducibility of our method was similar to that of another noninvasive method. In conclusion, E es and V 0 can be estimated noninvasively from modeling of the P-V curve during ejection. This approach was found to be reproducible and sensitive enough to detect an expected increase in LV contractility in hypertensive patients. Because of its noninvasive nature, this methodology may have clinical implications in various disease states. NEW & NOTEWORTHY The use of real-time three-dimensional echocardiography-derived left ventricular volumes in conjunction with carotid tonometry was found to be reproducible and sensitive enough to detect expected differences in left ventricular elastance in arterial hypertension. Because of its noninvasive nature, this methodology may have clinical implications in various disease states. Copyright © 2017 the American Physiological Society.

  15. Long-term Blood Pressure Measurement in Freely Moving Mice Using Telemetry.

    PubMed

    Alam, Mohammad Afaque; Parks, Cory; Mancarella, Salvatore

    2016-05-17

    During the development of new vasoactive agents, arterial blood pressure monitoring is crucial for evaluating the efficacy of the new proposed drugs. Indeed, research focusing on the discovery of new potential therapeutic targets using genetically altered mice requires a reliable, long-term assessment of the systemic arterial pressure variation. Currently, the gold standard for obtaining long-term measurements of blood pressure in ambulatory mice uses implantable radio-transmitters, which require artery cannulation. This technique eliminates the need for tethering, restraining, or anesthetizing the animals which introduce stress and artifacts during data sampling. However, arterial blood pressure monitoring in mice via catheterization can be rather challenging due to the small size of the arteries. Here we present a step-by-step guide to illustrate the crucial key passages for a successful subcutaneous implantation of radio-transmitters and carotid artery cannulation in mice. We also include examples of long-term blood pressure activity taken from freely moving mice after a period of post-surgery recovery. Following this procedure will allow reliable direct blood pressure recordings from multiple animals simultaneously.

  16. [Arterial sequelae of pregnancy hypertension. Detection by carotid piezogram].

    PubMed

    Meyer-Heine, A; Asquer, J C; Lagrue, G

    1989-01-01

    High blood pressure (HTA) is characterized by elevation of pression, but also by modifications of arterial pulse wave. Carotid piezograms were used to evaluate arterial pulse wave. Diastolic blood pressure is significantly correlated with dicrotic notch pressure. The duration of dicrotic notch is negatively correlated with arterial wall elasticity. Thus by carotid piezogram analysis one can determine the respective participation of arterial wall elasticity, peripheral resistance and cardiac factors in blood pressure elevation. Carotid piezograms were measured in 97 women (mean age 27, 8 y), with previous hypertensive pregnancy and apparently cured (mean blood pressure 122-74 mmHg at time of examination). 25 women only had normal piezogram drawing. Abnormalities similar to that of permanent hypertensive disease were observed in most cases. Dicrotic notch duration was significantly reduced and dicrotic notch pressure enhanced; in 34 women both of these abnormalities were present. In conclusion, among women previously hypertensive during pregnancy, even when blood pressure is returned to normal, abnormalities of arterial pulse wave may be present, suggesting that these women are prone to subsequent permanent hypertension.

  17. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  18. Experimental feasibility study of estimation of the normalized central blood pressure waveform from radial photoplethysmogram.

    PubMed

    Zahedi, Edmond; Sohani, Vahid; Ali, M A Mohd; Chellappan, Kalaivani; Beng, Gan Kok

    2015-01-01

    The feasibility of a novel system to reliably estimate the normalized central blood pressure (CBPN) from the radial photoplethysmogram (PPG) is investigated. Right-wrist radial blood pressure and left-wrist PPG were simultaneously recorded in five different days. An industry-standard applanation tonometer was employed for recording radial blood pressure. The CBP waveform was amplitude-normalized to determine CBPN. A total of fifteen second-order autoregressive models with exogenous input were investigated using system identification techniques. Among these 15 models, the model producing the lowest coefficient of variation (CV) of the fitness during the five days was selected as the reference model. Results show that the proposed model is able to faithfully reproduce CBPN (mean fitness = 85.2% ± 2.5%) from the radial PPG for all 15 segments during the five recording days. The low CV value of 3.35% suggests a stable model valid for different recording days.

  19. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  20. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  1. Graft arterial stenosis in kidney en bloc grafts from very small pediatric donors: incidence, timing, and role of ultrasound in screening.

    PubMed

    Bent, C; Fananapazir, G; Tse, G; Corwin, M T; Vu, C; Santhanakrishnan, C; Perez, R V; Troppmann, C

    2015-11-01

    In previous studies with different donor selection criteria and noncontemporary surgical techniques, graft arterial stenosis (GAS) has been reported to occur more frequently in adult recipients of pediatric en bloc renal allografts (EBKT) as compared to single adult donor allografts. The purpose of our study was to evaluate the incidence of GAS within our EBKT recipient population and to evaluate clinical and imaging features of those cases with GAS. In a retrospective cohort study, we analyzed 182 EBKT performed at a single institution. We identified cases of suspected GAS based on clinical factors, lab results, and noninvasive imaging. Diagnosis of GAS was confirmed by digital subtraction angiography. Two EBKT recipients (1.1% of 182) had angiographically confirmed GAS at 2.5 and 4.5 months after transplant. In both cases, the stenoses were short segment within the proximal (perianastomotic) donor aorta, color Doppler ultrasound demonstrated peak systolic velocities of >400 cm/s, and poststenotic parvus tardus waveforms were present. Both patients underwent angioplasty and demonstrated postintervention improvement in renal function and blood pressure. Restenosis did not occur during follow up. In conclusion, recipients of EBKT have a low incidence of GAS, similar to the lowest reported for adult single allografts. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  2. Cerebral blood flow velocity declines before arterial pressure in patients with orthostatic vasovagal presyncope

    NASA Technical Reports Server (NTRS)

    Dan, Dan; Hoag, Jeffrey B.; Ellenbogen, Kenneth A.; Wood, Mark A.; Eckberg, Dwain L.; Gilligan, David M.

    2002-01-01

    OBJECTIVES: We studied hemodynamic changes leading to orthostatic vasovagal presyncope to determine whether changes of cerebral artery blood flow velocity precede or follow reductions of arterial pressure. BACKGROUND: Some evidence suggests that disordered cerebral autoregulation contributes to the occurrence of orthostatic vasovagal syncope. We studied cerebral hemodynamics with transcranial Doppler recordings, and we closely examined the temporal sequence of changes of cerebral artery blood flow velocity and systemic arterial pressure in 15 patients who did or did not faint during passive 70 degrees head-up tilt. METHODS: We recorded photoplethysmographic arterial pressure, RR intervals (electrocardiogram) and middle cerebral artery blood flow velocities (mean, total, mean/RR interval; Gosling's pulsatility index; and cerebrovascular resistance [mean cerebral velocity/mean arterial pressure, MAP]). RESULTS: Eight men developed presyncope, and six men and one woman did not. Presyncopal patients reported light-headedness, diaphoresis, or a sensation of fatigue 155 s (range: 25 to 414 s) before any cerebral or systemic hemodynamic change. Average cerebral blood flow velocity (CBFV) changes (defined by an iterative linear regression algorithm) began 67 s (range: 9 to 198 s) before reductions of MAP. Cerebral and systemic hemodynamic measurements remained constant in nonsyncopal patients. CONCLUSIONS: Presyncopal symptoms and CBFV changes precede arterial pressure reductions in patients with orthostatic vasovagal syncope. Therefore, changes of cerebrovascular regulation may contribute to the occurrence of vasovagal reactions.

  3. Middle cerebral arterial flow changes on transcranial color and spectral Doppler sonography in patients with increased intracranial pressure.

    PubMed

    Wang, Yu; Duan, Yun-You; Zhou, Hai-Yan; Yuan, Li-Jun; Zhang, Li; Wang, Wei; Li, Li-Hong; Li, Liang

    2014-12-01

    Intracranial pressure usually increases after severe brain injury. However, a method for noninvasive evaluation of intracranial pressure is still lacking. The purpose of this study was to explore the potential role of transcranial color Doppler sonography in assessing intracranial pressure by observing the middle cerebral artery blood flow parameters in patients with increased intracranial pressure of varying etiology. The hemodynamic changes in the middle cerebral artery in patients with varying degrees of increased intracranial pressure were investigated by transcranial color Doppler sonography in 93 patients who had emergency surgery for brain injury. Middle cerebral artery Doppler flow spectra changed regularly as intracranial pressure increased. The pulsatility index (PI) and resistive index (RI) had a significantly positive correlation with intracranial pressure (r = 0.90 and 0.89, respectively; P< .001), whereas the middle cerebral artery diastolic velocity showed a significant negative correlation with intracranial pressure (r = -0.52; P< .01). A receiver operating characteristic curve showed that the RI and PI cutoff values were 0.705 and 1.335, respectively, for predicting increased intracranial pressure, with sensitivity of 0.885 and specificity of 0.970. In addition to the PI and RI, middle cerebral artery diastolic flow velocity measurement by transcranial color Doppler sonography may also be a useful variable for evaluating intracranial pressure in patients with acute brain injury. © 2013 by the American Institute of Ultrasound in Medicine.

  4. Acute renal haemodynamic and renin-angiotensin system responses to graded renal artery stenosis in the dog.

    PubMed Central

    Anderson, W P; Johnston, C I; Korner, P I

    1979-01-01

    1. The acute renal haemodynamic and renin-angiotensin system responses to graded renal artery stenosis were studied in chronically instrumented, unanaesthetized dogs. 2. Stenosis was induced over 30 sec by inflation of a cuff around the renal artery to lower distal pressure to 60, 40 or 20 mmHg, with stenosis maintained for 1 hr. This resulted in an immediate fall in renal vascular resistance, but over the next 5--30 min both resistance and renal artery pressure were restored back towards prestenosis values. Only transient increases in systemic arterial blood pressure and plasma renin and angiotensin levels were seen with the two milder stenoses. Despite restoration of renal artery pressure, renal blood flow remained reduced at all grades of stenosis. 3. Pre-treatment with angiotensin I converting enzyme inhibitor or sarosine1, isoleucone8 angiotensin II greatly attenuated or abolished the restoration of renal artery pressure and renal vascular resistance after stenosis, and plasma renin and angiotensin II levels remained high. Renal dilatation was indefinitely maintained, but the normal restoration of resistance and pressure could be simulated by infusing angiotensin II into the renal artery. 4. The effective resistance to blood flow by the stenosis did not remain constant but varied with changes in the renal vascular resistance. PMID:219182

  5. Near-field shock formation in noise propagation from a high-power jet aircraft.

    PubMed

    Gee, Kent L; Neilsen, Tracianne B; Downing, J Micah; James, Michael M; McKinley, Richard L; McKinley, Robert C; Wall, Alan T

    2013-02-01

    Noise measurements near the F-35A Joint Strike Fighter at military power are analyzed via spatial maps of overall and band pressure levels and skewness. Relative constancy of the pressure waveform skewness reveals that waveform asymmetry, characteristic of supersonic jets, is a source phenomenon originating farther upstream than the maximum overall level. Conversely, growth of the skewness of the time derivative with distance indicates that acoustic shocks largely form through the course of near-field propagation and are not generated explicitly by a source mechanism. These results potentially counter previous arguments that jet "crackle" is a source phenomenon.

  6. Central venous pulse pressure analysis using an R-synchronized pressure measurement system.

    PubMed

    Fujita, Yoshihisa; Hayashi, Daisuke; Wada, Shinya; Yoshioka, Naoki; Yasukawa, Takeshi; Pestel, Gunther

    2006-12-01

    The information derived from central venous catheters is underused. We developed an EKG-R synchronization and averaging system to obtained distinct CVP waveforms and analyzed components of these. Twenty-five paralyzed surgical patients undergoing CVP monitoring under mechanical ventilation were studied. CVP and EKG signals were analyzed employing our system, the mean CVP and CVP at end-diastole during expiration were compared, and CVP waveform components were measured using this system. CVP waveforms were clearly visualized in all patients. They showed the a peak to be 1.8+/- 0.7 mmHg, which was the highest of three peaks, and the x trough to be lower than the y trough (-1.6+/- 0.7 mmHg and -0.9+/- 0.5 mmHg, respectively), with a mean pulse pressure of 3.4 mmHg. The difference between the mean CVP and CVP at end-diastole during expiration was 0.58+/- 0.81 mmHg. The mean CVP can be used as an index of right ventricular preload in patients under mechanical ventilation with regular sinus rhythm. Our newly developed system is useful for clinical monitoring and for education in circulatory physiology.

  7. A common humoral background of intraocular and arterial blood pressure dysregulation.

    PubMed

    Skrzypecki, Janusz; Grabska-Liberek, Iwona; Przybek, Joanna; Ufnal, Marcin

    2018-03-01

    It has been postulated that intraocular pressure, an important glaucoma risk factor, correlates positively with arterial blood pressure (blood pressure). However, results of experimental and clinical studies are often contradictory. It is hypothesized that, in some hypertensive patients, disturbances in intraocular pressure regulation may depend on biological effects of blood borne hormones underlying a particular type of hypertension, rather than on blood pressure level itself. This review compares the effects of hormones on blood pressure and intraocular pressure, in order to identify a hormonal profile of hypertensive patients with an increased risk of intraocular pressure surge. The PUBMED database was searched to identify pre-clinical and clinical studies investigating the role of angiotensin II, vasopressin, adrenaline, noradrenaline, prostaglandins, and gaseous transmitters in the regulation of blood pressure and intraocular pressure. Studies included in the review suggest that intraocular and blood pressures often follow a different pattern of response to the same hormone. For example, vasopressin increases blood pressure, but decreases intraocular pressure. In contrast, high level of nitric oxide decreases blood pressure, but increases intraocular pressure. Arterial hypertension is associated with altered levels of blood borne hormones. Contradicting results of studies on the relationship between arterial hypertension and intraocular pressure might be partially explained by diverse effects of hormones on arterial and intraocular pressures. Further studies are needed to evaluate if hormonal profiling may help to identify glaucoma-prone patients.

  8. Genesis of multipeaked waves of the esophagus: repetitive contractions or motion artifact?

    PubMed

    Sampath, Neha J; Bhargava, Valmik; Mittal, Ravinder K

    2010-06-01

    Multipeaked waves (MPW) in the distal esophagus occur frequently in patients with esophageal spastic motor disorders and diabetes mellitus and are thought to represent repetitive esophageal contractions. We aimed to investigate whether the relative motion between a stationary pressure sensor and contracted peristaltic esophageal segment that moves with respiration leads to the formation of MPW. We mathematically modeled the effect of relative movement between a moving pressure segment and a fixed pressure sensor on the pressure waveform morphology. We conducted retrospective analysis of 100 swallow-induced esophageal contractions in 10 patients, who demonstrated >30% MPW on high-resolution manometry (HRM) during standardized swallows. Finally, using HRM, we determined the effects of suspended breathing and hyperventilation on the waveform morphology in 10 patients prospectively. Modeling revealed that relative movement between a stationary pressure sensor and a moving contracted segment, contraction duration, contraction amplitude, respiratory frequency, and depth of respiration affects the waveform morphology. Retrospective analysis demonstrated a close temporal association with the onset of second and subsequent contractions in MPW with respiratory phase reversals. Numbers of peaks in MPW and respiratory phase reversals were closely related to the duration of contraction. In the prospective study, suspended breathing and hyperventilation resulted in a significant decrease and increase in the MPW frequency as well as the number of peaks within MPW respectively. We conclude that MPW observed during clinical motility studies are not indicative of repetitive esophageal contraction; rather they represent respiration-related movement of the contracted esophageal segment in relation to the stationary pressure sensor.

  9. Leak detection using structure-borne noise

    NASA Technical Reports Server (NTRS)

    Holland, Stephen D. (Inventor); Roberts, Ronald A. (Inventor); Chimenti, Dale E. (Inventor)

    2010-01-01

    A method for detection and location of air leaks in a pressure vessel, such as a spacecraft, includes sensing structure-borne ultrasound waveforms associated with turbulence caused by a leak from a plurality of sensors and cross correlating the waveforms to determine existence and location of the leak. Different configurations of sensors and corresponding methods can be used. An apparatus for performing the methods is also provided.

  10. Bronchial-arterial interdependence in isolated dog lung.

    PubMed

    Lai-Fook, S J; Kallok, M J

    1982-04-01

    The bronchus and artery, embedded in the lung parenchyma, were modeled as adjoining cylindrical tubes in an elastic continuum. Solutions using finite-element analysis of nonuniform stress and strain occurring from an initial uniform state were computed for a reduction in arterial pressure. Maximal nonuniform principal and shear stresses in the parenchyma, equal to 2.5 times the mean periarterial stresses, occurred in the region adjacent to the bronchial-arterial joint. Bronchial cross section became oval and elongated along the line passing through the centers of the tubes, whereas arterial cross section elongated at right angles to this line. These predicted changes in shape of bronchus and artery were verified by radiographic measurements in isolated lobes, held at constant transpulmonary pressures of 4 and 25 cmH2O while arterial pressure was varied. Results suggest that peribronchovascular interstitial fluid pressure may be nonuniform and that the bronchial-arterial joint may be the preferential site for emphysematous perivascular lesions, which may occur on lung hyperinflation.

  11. Radial to femoral arterial blood pressure differences in septic shock patients receiving high-dose norepinephrine therapy.

    PubMed

    Kim, Won Young; Jun, Jong Hun; Huh, Jin Won; Hong, Sang Bum; Lim, Chae-Man; Koh, Younsuck

    2013-12-01

    The accuracy of arterial blood pressure (ABP) monitoring is crucial in treating septic shock patients. Clinically significant differences in central to peripheral ABP could develop into sepsis during vasopressor therapy. The aim of this study was to investigate the difference between radial (peripheral) and femoral (central) ABP in septic shock patients receiving high-dose norepinephrine (NE) therapy. This prospective observational study comparing simultaneous intra-arterial measurements of radial and femoral ABP was performed at a university-affiliated, tertiary referral center between October 2008 and March 2009. Patients with septic shock who needed continuous blood pressure monitoring and high-dose NE therapy 0.1 µg/kg per minute or greater to maintain mean arterial pressure (MAP) of 65 mmHg or greater were included. Statistical analysis was conducted using the Bland-Altman method for comparison of repeated measures. In total, 250 sets of systolic, mean, and diastolic femoral and radial ABP were recorded at baseline and after NE titration. Arterial blood pressure readings from the radial artery were underestimated compared with those from the femoral artery. Overall bias (mean difference between simultaneous measurements) between radial and femoral MAP was +4.9 mmHg; however, during high-dose NE therapy, the bias increased to +6.2 mmHg (95% limits of agreement: -6.0 to +18.3 mmHg). Clinically significant radial-femoral MAP differences (MAP ≥5 mmHg) occurred in up to 62.2% of patients with high-dose NE therapy. Radial artery pressure frequently underestimates central pressure in septic shock patients receiving high-dose NE therapy. Femoral arterial pressure monitoring may be more appropriate when high-dose NE therapy is administered.

  12. A theoretical description of arterial pressure-flow relationships with verification in the isolated hindlimb of the dog.

    PubMed

    Jackman, A P; Green, J F

    1990-01-01

    We developed and tested a new two-compartment serial model of the arterial vasculature which unifies the capacitance (downstream arterial compliance) and waterfall (constant downstream pressure load) theories of blood flow through the arteries. In this model, blood drains from an upstream compliance through a resistance into a downstream compliance which empties into the veins through a downstream resistance which terminates in a constant pressure load. Using transient arterial pressure data obtained from an isolated canine hindlimb preparation, we tested this model, using a stop-flow technique. Numerical parameter estimation techniques were used to estimate the physiologic parameters of the model. The downstream compliance was found to be more than ten times larger than the upstream compliance and the constant pressure load was significantly above venous pressures but decreased in response to vasodilation. Our results support the applicability of both the capacitance and waterfall theories.

  13. A new model of arterial hemodynamics.

    PubMed

    Branzan, M; Sundri, G

    1983-01-01

    The determination of arterial blood flow parameters on the basis of ultrasound investigation requires a new hydrodynamic model of arterial circulation. Unlike previous research (Womersley, Bergel) considering the arterial pressure of its gradients to be known, the present model uses blood flow velocity and arterial radius magnitude easily obtained by ultrasound (Doppler effect). Processing these data requires the thorough analysis of rheological characteristics of blood flow and of arterial wall behaviour (elastic deformability). It has been assumed that: a) blood is a homogeneous and isotropic fluid; b) the artery has a cylindrical symmetry of a circular cross-section at any time moment; c) the pressure in the artery cross-section is constant. Because arterial dynamics has an undulatory character the Fourier analysis of the modified Navier-Stokes equations has been used. Finally, a simplified relation for blood pressure determination has been obtained.

  14. Validation of the pulse decomposition analysis algorithm using central arterial blood pressure

    PubMed Central

    2014-01-01

    Background There is a significant need for continuous noninvasive blood pressure (cNIBP) monitoring, especially for anesthetized surgery and ICU recovery. cNIBP systems could lower costs and expand the use of continuous blood pressure monitoring, lowering risk and improving outcomes. The test system examined here is the CareTaker® and a pulse contour analysis algorithm, Pulse Decomposition Analysis (PDA). PDA’s premise is that the peripheral arterial pressure pulse is a superposition of five individual component pressure pulses that are due to the left ventricular ejection and reflections and re-reflections from only two reflection sites within the central arteries. The hypothesis examined here is that the model’s principal parameters P2P1 and T13 can be correlated with, respectively, systolic and pulse pressures. Methods Central arterial blood pressures of patients (38 m/25 f, mean age: 62.7 y, SD: 11.5 y, mean height: 172.3 cm, SD: 9.7 cm, mean weight: 86.8 kg, SD: 20.1 kg) undergoing cardiac catheterization were monitored using central line catheters while the PDA parameters were extracted from the arterial pulse signal obtained non-invasively using CareTaker system. Results Qualitative validation of the model was achieved with the direct observation of the five component pressure pulses in the central arteries using central line catheters. Statistically significant correlations between P2P1 and systole and T13 and pulse pressure were established (systole: R square: 0.92 (p < 0.0001), diastole: R square: 0.78 (p < 0.0001). Bland-Altman comparisons between blood pressures obtained through the conversion of PDA parameters to blood pressures of non-invasively obtained pulse signatures with catheter-obtained blood pressures fell within the trend guidelines of the Association for the Advancement of Medical Instrumentation SP-10 standard (standard deviation: 8 mmHg(systole: 5.87 mmHg, diastole: 5.69 mmHg)). Conclusions The results indicate that arterial blood pressure can be accurately measured and tracked noninvasively and continuously using the CareTaker system and the PDA algorithm. The results further support the physical model that all of the features of the pressure pulse envelope, whether in the central arteries or in the arterial periphery, can be explained by the interaction of the left ventricular ejection pressure pulse with two centrally located reflection sites. PMID:25005686

  15. Estimation of arterial baroreflex sensitivity in relation to carotid artery stiffness.

    PubMed

    Lipponen, Jukka A; Tarvainen, Mika P; Laitinen, Tomi; Karjalainen, Pasi A; Vanninen, Joonas; Koponen, Timo; Lyyra-Laitinen, Tiina

    2012-01-01

    Arterial baroreflex has a significant role in regulating blood pressure. It is known that increased stiffness of the carotid sinus affects mecanotransduction of baroreceptors and therefore limits baroreceptors capability to detect changes in blood pressure. By using high resolution ultrasound video signal and continuous measurement of electrocardiogram (ECG) and blood pressure, it is possible to define elastic properties of artery simultaneously with baroreflex sensitivity parameters. In this paper dataset which consist 38 subjects, 11 diabetics and 27 healthy controls was analyzed. Use of diabetic and healthy test subjects gives wide scale of arteries with different elasticity properties, which provide opportunity to validate baroreflex and artery stiffness estimation methods.

  16. [Effect of ambulatory supervised cardiac training on arterial hypertension in patients with coronary artery disease and arterial hypertension].

    PubMed

    Kałka, Dariusz; Sobieszczańska, Małgorzata; Marciniak, Wojciech; Popielewicz-Kautz, Aleksandra; Markuszewski, Leszek; Chorebała, Arkadiusz; Korzeniowska, Joanna; Janczak, Jacek; Adamus, Jerzy

    2007-01-01

    Arterial hypertension is one of the most common health problems occurring in highly developed countries. It was proved that long-term and regular physical activity results in hypotensive effect. A goal of the present study was to assess an influence of six-month ambulatory cardiac rehabilitation on arterial pressure level in patients with coronary artery disease and hypertension as well as analysis of correlation between pressure values alterations and intensity of cardiac training. A study group comprised 103 patients (mean age: 61.2 +/- 0.8 years) manifesting coronary artery disease accompanied by arterial hypertension. A control group constituted 39 normotensive patients with coronary artery disease (mean age: 59.4 +/- 1.3 years). The both observed groups differ from each other only with values of left ventricle mass index and drug regimen established at least three months prior to the follow-up onset. During the rehabilitation cycle, no treatment corrections were made and no new preparations were added. The all patients were enrolled to the six-month cardiac rehabilitation program. The program comprised 45-minute training with cycle ergometer, three times a week, and generally improving gym exercises, two times a week. The analyses concerned systolic and diastolic pressure values, measured just before each training (resting pressure) and just after peak exercise interval (peak pressure), at the beginning and at the end of the rehabilitation cycle. At the initial stage, the patient group with hypertension demonstrated the higher pressure values (resting and peak), as compared with the control group. Cardiac rehabilitation performed in the examined patients caused a statistically significant reduction of the mean resting pressure, both systolic (p < 0.01) and diastolic (p < 0.01). As to the mean peak pressure in this group, systolic diminished slightly (NS), but diastolic was reduced significantly (p < 0.01). In the control group, after six-month rehabilitation the values appeared to be lowered insignificantly in relation to systolic and diastolic resting pressure, likewise diastolic peak pressure, and contrarily systolic peak pressure increased slightly. Assessing an interrelation between the final outcome of the rehabilitation program, expressed as delta of arterial pressure, and terminal training workload and delta of training workload, only for delta of systolic pressure and final training workload, a positive correlation of statistical significance was found out, which is considered an implication of physiological reaction against an increase of training workload. Long-term and regular cardiac training induced the larger alterations of pressure values in the patients with hypertension, as compared with the normotensive patients. A positive effect of cardiac rehabilitation on arterial pressure level in the hypertensive patients was found to be independent of the training intensity.

  17. Haemodynamic effects of a selective adenosine A2A receptor agonist, CGS 21680, in chronic heart failure in anaesthetized rats.

    PubMed

    Nekooeian, A A; Tabrizchi, R

    1998-10-01

    1. Recently we demonstrated that the administration of an A2A adenosine receptor agonist, CGS 21680, to anaesthetized rats with acute heart failure (1 h post-coronary artery ligation) resulted in an increase in cardiac output. In the present investigation, the effects of CGS 21680 on cardiac output, vascular resistance, heart rate, blood pressure and mean circulatory filling pressure (Pmcf) were investigated in anaesthetized rats with chronic heart failure (8 weeks post-coronary artery ligation). 2. Experiments were conducted in five groups (n = 6) of animals: sham-operated vehicle-treated (0.9% NaCl; 0.037 mL kg(-1) min(-1)) animals in which the occluder was placed but not pulled to ligate the coronary artery; coronary artery-ligated vehicle-treated animals; and coronary artery-ligated CGS 21680-treated (0.1. 0.3 or 1.0 microg kg(-1) min(-1)) animals. 3. Baseline blood pressure, cardiac output and rate of rise in left ventricular pressure (+dP/dt) were significantly reduced in animals with coronary artery ligation when compared to sham-operated animals. Coronary artery ligation resulted in a significant increase in left ventricular end-diastolic pressure, Pmcf and venous resistance when compared to sham-operated animals. 4. Administration of CGS 21680 at 0.3 and 1.0 microg kg(-1) min(-1) significantly (n = 6; P<0.05) increased cardiac output by 19+/-4% and 39+/-5%, and heart rate by 14+/-2% and 15+/-1%, respectively, when compared to vehicle treatment in coronary artery-ligated animals. Administration of CGS 21680 also significantly reduced blood pressure and arterial resistance when compared to coronary artery-ligated vehicle-treated animals. Infusion of CGS 21680 also significantly reduced venous resistance when compared to vehicle-treated coronary artery-ligated animals. 5. The results show that heart failure is characterized by reduced cardiac output, and increased left ventricular end-diastolic pressure, venous resistance and Pmcf. Acute treatment with CGS 21680 in animals with chronic heart failure decreased left ventricular end-diastolic pressure and increased cardiac output. This increase in cardiac output was the result of reduced arterial and venous resistances and increased heart rate.

  18. Intermittent, moderate-intensity aerobic exercise for only eight weeks reduces arterial stiffness: evaluation by measurement of stiffness parameter and pressure-strain elastic modulus by use of ultrasonic echo tracking.

    PubMed

    Tanaka, Midori; Sugawara, Motoaki; Ogasawara, Yasuo; Izumi, Tadafumi; Niki, Kiyomi; Kajiya, Fumihiko

    2013-04-01

    Aerobic exercise has been reported to be associated with reduced arterial stiffness. However, the intensity, duration, and frequency of aerobic exercise required to improve arterial stiffness have not been established. In addition, most reports base their conclusions on changes in pulse wave velocity, which is an indirect index of arterial stiffness. We studied the effects of short-term, intermittent, moderate-intensity exercise training on arterial stiffness based on measurements of the stiffness parameter (β) and pressure-strain elastic modulus (E p), which are direct indices of regional arterial stiffness. A total of 25 young healthy volunteers (18 men) were recruited. By use of ultrasonic diagnostic equipment we measured β and E p of the carotid artery before and after 8 weeks of exercise training. After exercise training, systolic pressure (P s), diastolic pressure (P d), pulse pressure, systolic arterial diameter (D s), and diastolic arterial diameter (D d) did not change significantly. However, the pulsatile change in diameter ((D s - D d)/D d) increased significantly, and β and E p decreased significantly. For healthy young subjects, β and E p were reduced by intermittent, moderate-intensity exercise training for only 8 weeks.

  19. Determination of fractional flow reserve (FFR) based on scaling laws: a simulation study

    NASA Astrophysics Data System (ADS)

    Wong, Jerry T.; Molloi, Sabee

    2008-07-01

    Fractional flow reserve (FFR) provides an objective physiological evaluation of stenosis severity. A technique that can measure FFR using only angiographic images would be a valuable tool in the cardiac catheterization laboratory. To perform this, the diseased blood flow can be measured with a first pass distribution analysis and the theoretical normal blood flow can be estimated from the total coronary arterial volume based on scaling laws. A computer simulation of the coronary arterial network was used to gain a better understanding of how hemodynamic conditions and coronary artery disease can affect blood flow, arterial volume and FFR estimation. Changes in coronary arterial flow and volume due to coronary stenosis, aortic pressure and venous pressure were examined to evaluate the potential use of flow and volume for FFR determination. This study showed that FFR can be estimated using arterial volume and a scaling coefficient corrected for aortic pressure. However, variations in venous pressure were found to introduce some error in FFR estimation. A relative form of FFR was introduced and was found to cancel out the influence of pressure on coronary flow, arterial volume and FFR estimation. The use of coronary flow and arterial volume for FFR determination appears promising.

  20. [Efficacy of a massage and exercise programme on the ankle-brachial index and blood pressure in patients with diabetes mellitus type 2 and peripheral arterial disease: a randomized clinical trial].

    PubMed

    Castro-Sánchez, Adelaida María; Moreno-Lorenzo, Carmen; Matarán-Peñarrocha, Guillermo A; Feriche-Fernández-Castanys, Belén; Sánchez Labraca, Nuria; Sánchez Joya, María del Mar

    2010-02-06

    Type 2 diabetes mellitus is a highly prevalent disease that can favour the development of peripheral arterial disease. The objective of this study was to analyse the efficacy of a massage and exercise programme on the ankle-brachial index and arterial pressure of patients with diabetes mellitus type 2 and peripheral arterial disease. An experimental study with placebo control group was performed. Sixty-six type 2 diabetes patients with Leriche-Fontaine stage II peripheral arterial disease were randomly assigned to an intervention (exercise and massage) or placebo control (simulated magnetotherapy) group. Study variables were arterial pressure and ankle-brachial index. After 10 weeks of treatment, significant (P<0.05) differences between the intervention and placebo groups were found in right and left ankle-brachial index values and in systolic and diastolic pressures in right and left lower extremities. A combined programme of exercise and massage improves arterial blood pressure and ankle brachial index values in type 2 diabetics with peripheral arterial disease. Copyright 2009 Elsevier España, S.L. All rights reserved.

  1. Normal Doppler velocimetry of renal vasculature in Persian cats.

    PubMed

    Carvalho, Cibele F; Chammas, Maria C

    2011-06-01

    Renal diseases are common in older cats. Decreased renal blood flow may be the first sign of dysfunction and can be evaluated by Doppler ultrasound. But previous studies suggest that the resistive index (RI) has a low sensitivity for detecting renal disease. Doppler waveforms of renal and intrarenal arteries demonstrate decreased blood flow before there are any changes in the RI. The purpose of this study was to evaluate the normal Doppler flowmetrics parameters of renal arteries (RAs), interlobar arteries (IAs) and abdominal aorta (AO) in adult healthy, Persian cats. Twenty-five Persian cats (13 females and 12 males with mean age of 30 months and an age range 12-60 months) with normal clinical examinations and biochemical tests and normal systemic blood pressure were given B-mode ultrasonographies in order to exclude all nephropathies, including polycystic kidney disease. All measurements were performed on both kidneys. Both kidneys (n=50) were examined by color mapping of the renal vasculature. Pulsed Doppler was used to examine both RAs, the IAs at cranial, middle and caudal sites, and the AO. The RI was calculated for all of the vessels. Early systolic acceleration (ESA) of RA and IA was obtained with Doppler spectral analysis. Furthermore, the ratio indices between RA/AO, and IA/RA velocities were calculated. The mean values of peak systolic velocity (PSV) and the diameter for AO were 53.17±13.46 cm/s and 0.38±0.08 cm, respectively. The mean RA diameter for all 50 kidneys was 0.15±0.02 cm. Considering the velocimetric values in both RAs, the mean PSV and RI that were obtained were 41.17±9.40 cm/s and 0.54±0.07. The RA had a mean ESA of 1.12±1.14 m/s(2) and the calculated upper limit of the reference value was 3.40 m/s(2). The mean renal-aortic ratio was 0.828±0.296. The IA showed PSV and RI values of 32.16±9.33 cm/s and 0.52±0.06, respectively. The mean ESA of all IAs was 0.73±0.61 m/s(2). The calculated upper limit of the reference value was 2.0m/s(2). The mean renal-interlobar artery ratio was 1.45±0.57. The RI values obtained in this study were similar to values reported in the literature. Some conditions that lead to a decrease in compliance and to an increase in vascular resistance can affect the Doppler spectral waveforms without changes in RI. To our knowledge, there are no studies that were directed toward to the normal ESA values of the renal vasculature in Persian cats. This study introduced a new ratio between the PSV of the RA and the IA. This index was developed based on the well-known effects of Doppler on the detection of stenosis, regardless of the cause. Further studies are necessary to verify the hemodynamic behavior of this index under pathological conditions in cats as well as the effect of aging, nephropathies and systemic pressure on Doppler velocimetric parameters. Copyright © 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  2. Limitations of Stroke Volume Estimation by Non-Invasive Blood Pressure Monitoring in Hypergravity

    PubMed Central

    2015-01-01

    Background Altitude and gravity changes during aeromedical evacuations induce exacerbated cardiovascular responses in unstable patients. Non-invasive cardiac output monitoring is difficult to perform in this environment with limited access to the patient. We evaluated the feasibility and accuracy of stroke volume estimation by finger photoplethysmography (SVp) in hypergravity. Methods Finger arterial blood pressure (ABP) waveforms were recorded continuously in ten healthy subjects before, during and after exposure to +Gz accelerations in a human centrifuge. The protocol consisted of a 2-min and 8-min exposure up to +4 Gz. SVp was computed from ABP using Liljestrand, systolic area, and Windkessel algorithms, and compared with reference values measured by echocardiography (SVe) before and after the centrifuge runs. Results The ABP signal could be used in 83.3% of cases. After calibration with echocardiography, SVp changes did not differ from SVe and values were linearly correlated (p<0.001). The three algorithms gave comparable SVp. Reproducibility between SVp and SVe was the best with the systolic area algorithm (limits of agreement −20.5 and +38.3 ml). Conclusions Non-invasive ABP photoplethysmographic monitoring is an interesting technique to estimate relative stroke volume changes in moderate and sustained hypergravity. This method may aid physicians for aeronautic patient monitoring. PMID:25798613

  3. Design of a right ventricular mock circulation loop as a test bench for right ventricular assist devices.

    PubMed

    Mueller, Indra; Jansen-Park, So-Hyun; Neidlin, Michael; Steinseifer, Ulrich; Abel, Dirk; Autschbach, Rüdiger; Rossaint, Rolf; Schmitz-Rode, Thomas; Sonntag, Simon Johannes

    2017-04-01

    Right heart failure (RHF), e.g. due to pulmonary hypertension (PH), is a serious health issue with growing occurrence and high mortality rate. Limited efficacy of medication in advanced stages of the disease constitutes the need for mechanical circulatory support of the right ventricle (RV). An essential contribution to the process of developing right ventricular assist devices (RVADs) is the in vitro test bench, which simulates the hemodynamic behavior of the native circulatory system. To model healthy and diseased arterial-pulmonary hemodynamics in adults (mild and severe PH and RHF), a right heart mock circulation loop (MCL) was developed. Incorporating an anatomically shaped silicone RV and a silicone atrium, it not only enables investigations of hemodynamic values but also suction events or the handling of minimal invasive RVADs in an anatomical test environment. Ventricular pressure-volume loops of all simulated conditions as well as pressure and volume waveforms were recorded and compared to literature data. In an exemplary test, an RVAD was connected to the apex to further test the feasibility of studying such devices with the developed MCL. In conclusion, the hemodynamic behavior of the native system was well reproduced by the developed MCL, which is a useful basis for future RVAD tests.

  4. Power consumption of rotary blood pumps: pulsatile versus constant-speed mode.

    PubMed

    Pirbodaghi, Tohid; Cotter, Chris; Bourque, Kevin

    2014-12-01

    We investigated the power consumption of a HeartMate III rotary blood pump based on in vitro experiments performed in a cardiovascular simulator. To create artificial-pulse mode, we modulated the pump speed by decreasing the mean speed by 2000 rpm for 200 ms and then increasing speed by 4000 rpm (mean speeds plus 2000 rpm) for another 200 ms, creating a square waveform shape. The HeartMate III was connected to a cardiovascular simulator consisting of a hydraulic pump system to simulate left ventricle pumping action, arterial and venous compliance chambers, and an adjustable valve for peripheral resistance to facilitate the desired aortic pressure. The simulator operated based on Suga's elastance model to mimic the Starling response of the heart, thereby reproducing physiological blood flow and pressure conditions. We measured the instantaneous total electrical current and voltage of the pump to evaluate its power consumption. The aim was to answer these fundamental questions: (i) How does pump speed modulation affect pump power consumption? (ii) How does the power consumption vary in relation to external pulsatile flow? The results indicate that speed modulation and external pulsatile flow both moderately increase the power consumption. Increasing the pump speed reduces the impact of external pulsatile flow. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Strength training reduces arterial blood pressure but not sympathetic neural activity in young normotensive subjects

    NASA Technical Reports Server (NTRS)

    Carter, Jason R.; Ray, Chester A.; Downs, Emily M.; Cooke, William H.

    2003-01-01

    The effects of resistance training on arterial blood pressure and muscle sympathetic nerve activity (MSNA) at rest have not been established. Although endurance training is commonly recommended to lower arterial blood pressure, it is not known whether similar adaptations occur with resistance training. Therefore, we tested the hypothesis that whole body resistance training reduces arterial blood pressure at rest, with concomitant reductions in MSNA. Twelve young [21 +/- 0.3 (SE) yr] subjects underwent a program of whole body resistance training 3 days/wk for 8 wk. Resting arterial blood pressure (n = 12; automated sphygmomanometer) and MSNA (n = 8; peroneal nerve microneurography) were measured during a 5-min period of supine rest before and after exercise training. Thirteen additional young (21 +/- 0.8 yr) subjects served as controls. Resistance training significantly increased one-repetition maximum values in all trained muscle groups (P < 0.001), and it significantly decreased systolic (130 +/- 3 to 121 +/- 2 mmHg; P = 0.01), diastolic (69 +/- 3 to 61 +/- 2 mmHg; P = 0.04), and mean (89 +/- 2 to 81 +/- 2 mmHg; P = 0.01) arterial blood pressures at rest. Resistance training did not affect MSNA or heart rate. Arterial blood pressures and MSNA were unchanged, but heart rate increased after 8 wk of relative inactivity for subjects in the control group (61 +/- 2 to 67 +/- 3 beats/min; P = 0.01). These results indicate that whole body resistance exercise training might decrease the risk for development of cardiovascular disease by lowering arterial blood pressure but that reductions of pressure are not coupled to resistance exercise-induced decreases of sympathetic tone.

  6. Evaluation of arterial stiffness by finger-toe pulse wave velocity: optimization of signal processing and clinical validation.

    PubMed

    Obeid, Hasan; Khettab, Hakim; Marais, Louise; Hallab, Magid; Laurent, Stéphane; Boutouyrie, Pierre

    2017-08-01

    Carotid-femoral pulse wave velocity (PWV) (cf-PWV) is the gold standard for measuring aortic stiffness. Finger-toe PWV (ft-PWV) is a simpler noninvasive method for measuring arterial stiffness. Although the validity of the method has been previously assessed, its accuracy can be improved. ft-PWV is determined on the basis of a patented height chart for the distance and the pulse transit time (PTT) between the finger and the toe pulpar arteries signals (ft-PTT). The objective of the first study, performed in 66 patients, was to compare different algorithms (intersecting tangents, maximum of the second derivative, 10% threshold and cross-correlation) for determining the foot of the arterial pulse wave, thus the ft-PTT. The objective of the second study, performed in 101 patients, was to investigate different signal processing chains to improve the concordance of ft-PWV with the gold-standard cf-PWV. Finger-toe PWV (ft-PWV) was calculated using the four algorithms. The best correlations relating ft-PWV and cf-PWV, and relating ft-PTT and carotid-femoral PTT were obtained with the maximum of the second derivative algorithm [PWV: r = 0.56, P < 0.0001, root mean square error (RMSE) = 0.9 m/s; PTT: r = 0.61, P < 0.001, RMSE = 12 ms]. The three other algorithms showed lower correlations. The correlation between ft-PTT and carotid-femoral PTT further improved (r = 0.81, P < 0.0001, RMSE = 5.4 ms) when the maximum of the second derivative algorithm was combined with an optimized signal processing chain. Selecting the maximum of the second derivative algorithm for detecting the foot of the pressure waveform, and combining it with an optimized signal processing chain, improved the accuracy of ft-PWV measurement in the current population sample. Thus, it makes ft-PWV very promising for the simple noninvasive determination of aortic stiffness in clinical practice.

  7. Phasic negative intrathoracic pressures enhance the vascular responses to stimulation of pulmonary arterial baroreceptors in closed-chest anaesthetized dogs

    PubMed Central

    Moore, Jonathan P; Hainsworth, Roger; Drinkhill, Mark J

    2004-01-01

    We investigated whether the reflex responses to stimulation of pulmonary arterial baroreceptors were altered by intrathoracic pressure changes similar to those encountered during normal breathing. Dogs were anaesthetized with α-chloralose, a cardiopulmonary bypass was established, and the pulmonary trunk and its main branches as far as the first lobar arteries were vascularly isolated and perfused with venous blood. The chest was closed following connection to the perfusion circuit and pressures distending the aortic arch, carotid sinus and coronary artery baroreceptors were controlled. Changes in the descending aortic (systemic) perfusion pressure (SPP; flow constant) were used to assess changes in systemic vascular resistance. Values of SPP were plotted against mean pulmonary arterial pressure (PAP) and sigmoid functions applied. From these curves we derived the threshold pressures (corresponding to 5% of the overall response of SPP), the maximum slopes (equivalent to peak gain) and the corresponding PAP (equivalent to ‘set point’). Stimulus–response curves were compared between data obtained with intrathoracic pressure at atmospheric and with a phasic intrathoracic pressure ranging from atmospheric to around −10 mmHg (18 cycles min−1). Results were obtained from seven dogs and are given as means ±s.e.m. Compared to the values obtained when intrathoracic pressure was at atmospheric, the phasic intrathoracic pressure decreased the pulmonary arterial threshold pressure in five dogs; average change from 28.4 ± 5.9 to 19.3 ± 5.9 mmHg (P > 0.05). The inflexion pressure was significantly reduced from 37.8 ± 4.8 to 27.4 ± 4.0 mmHg (P < 0.03), but the slopes of the curves were not consistently changed. These results have shown that a phasic intrathoracic pressure, which simulates respiratory oscillations, displaces the stimulus–response curve of the pulmonary arterial baroreceptors to lower pressures so that it lies within a physiological range of pressures. PMID:14724182

  8. Variation of High-Intensity Therapeutic Ultrasound (HITU) Pressure Field Characterization: Effects of Hydrophone Choice, Nonlinearity, Spatial Averaging and Complex Deconvolution.

    PubMed

    Liu, Yunbo; Wear, Keith A; Harris, Gerald R

    2017-10-01

    Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high-intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement variation and signal analysis, still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small polyvinylidene fluoride capsule hydrophone and two fiberoptic hydrophones. The focal waveform and beam distribution of a single-element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveforms. Compressional pressure (p + ), rarefactional pressure (p - ) and focal beam distribution were compared up to 10.6/-6.0 MPa (p + /p - ) (1.05 MHz) and 20.65/-7.20 MPa (3.3 MHz). The effects of spatial averaging, local non-linear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed a variation of no better than 10%-15% among hydrophones during HITU pressure characterization. Published by Elsevier Inc.

  9. Fluid therapy LiDCO controlled trial-optimization of volume resuscitation of extensively burned patients through noninvasive continuous real-time hemodynamic monitoring LiDCO.

    PubMed

    Tokarik, Monika; Sjöberg, Folke; Balik, Martin; Pafcuga, Igor; Broz, Ludomir

    2013-01-01

    This pilot trial aims at gaining support for the optimization of acute burn resuscitation through noninvasive continuous real-time hemodynamic monitoring using arterial pulse contour analysis. A group of 21 burned patients meeting preliminary criteria (age range 18-75 years with second- third- degree burns and TBSA ≥10-75%) was randomized during 2010. A hemodynamic monitoring through lithium dilution cardiac output was used in 10 randomized patients (LiDCO group), whereas those without LiDCO monitoring were defined as the control group. The modified Brooke/Parkland formula as a starting resuscitative formula, balanced crystalloids as the initial solutions, urine output of 0.5 ml/kg/hr as a crucial value of adequate intravascular filling were used in both groups. Additionally, the volume and vasopressor/inotropic support were based on dynamic preload parameters in the LiDCO group in the case of circulatory instability and oligouria. Statistical analysis was done using t-tests. Within the first 24 hours postburn, a significantly lower consumption of crystalloids was registered in LiDCO group (P = .04). The fluid balance under LiDCO control in combination with hourly diuresis contributed to reducing the cumulative fluid balance approximately by 10% compared with fluid management based on standard monitoring parameters. The amount of applied solutions in the LiDCO group got closer to Brooke formula whereas the urine output was at the same level in both groups (0.8 ml/kg/hr). The new finding in this study is that when a fluid resuscitation is based on the arterial waveform analysis, the initial fluid volume provided was significantly lower than that delivered on the basis of physician-directed fluid resuscitation (by urine output and mean arterial pressure).

  10. A comparison of volume clamp method-based continuous noninvasive cardiac output (CNCO) measurement versus intermittent pulmonary artery thermodilution in postoperative cardiothoracic surgery patients.

    PubMed

    Wagner, Julia Y; Körner, Annmarie; Schulte-Uentrop, Leonie; Kubik, Mathias; Reichenspurner, Hermann; Kluge, Stefan; Reuter, Daniel A; Saugel, Bernd

    2018-04-01

    The CNAP technology (CNSystems Medizintechnik AG, Graz, Austria) allows continuous noninvasive arterial pressure waveform recording based on the volume clamp method and estimation of cardiac output (CO) by pulse contour analysis. We compared CNAP-derived CO measurements (CNCO) with intermittent invasive CO measurements (pulmonary artery catheter; PAC-CO) in postoperative cardiothoracic surgery patients. In 51 intensive care unit patients after cardiothoracic surgery, we measured PAC-CO (criterion standard) and CNCO at three different time points. We conducted two separate comparative analyses: (1) CNCO auto-calibrated to biometric patient data (CNCO bio ) versus PAC-CO and (2) CNCO calibrated to the first simultaneously measured PAC-CO value (CNCO cal ) versus PAC-CO. The agreement between the two methods was statistically assessed by Bland-Altman analysis and the percentage error. In a subgroup of patients, a passive leg raising maneuver was performed for clinical indications and we present the changes in PAC-CO and CNCO in four-quadrant plots (exclusion zone 0.5 L/min) in order to evaluate the trending ability of CNCO. The mean difference between CNCO bio and PAC-CO was +0.5 L/min (standard deviation ± 1.3 L/min; 95% limits of agreement -1.9 to +3.0 L/min). The percentage error was 49%. The concordance rate was 100%. For CNCOcal, the mean difference was -0.3 L/min (±0.5 L/min; -1.2 to +0.7 L/min) with a percentage error of 19%. In this clinical study in cardiothoracic surgery patients, CNCO cal showed good agreement when compared with PAC-CO. For CNCO bio , we observed a higher percentage error and good trending ability (concordance rate 100%).

  11. Regulation of Renin Secretion and Arterial Pressure During Prolonged Baroreflex Activation: Influence of Salt Intake

    PubMed Central

    Hildebrandt, Drew A.; Irwin, Eric D.; Cates, Adam W.; Lohmeier, Thomas E.

    2014-01-01

    Chronic electrical activation of the carotid baroreflex produces sustained reductions in sympathetic activity and arterial pressure and is currently being evaluated as antihypertensive therapy for patients with resistant hypertension. However, the influence of variations in salt intake on blood pressure lowering during baroreflex activation has not been determined. As sensitivity of arterial pressure to salt intake is linked to the responsiveness of renin secretion, we determined steady-state levels of arterial pressure and neurohormonal responses in 6 dogs on low, normal, and high salt intakes ( 5, 40, 450 mmol/day, respectively) under control conditions and during a 7-day constant level of baroreflex activation. Under control conditions, there was no difference in mean arterial pressure at low (92±1) and normal (92±2 mmHg) sodium intakes, but pressure increased 9 ±2 mmHg during high salt. Plasma renin activity (2.01±0.23, 0.93±0.20, 0.01±0.01 ng ANGI/mL/hr) and plasma aldosterone (10.3±1.9, 3.5±0.5, 1.7±0.1ng/dL) were inversely related to salt intake, whereas there were no changes in plasma norepinephrine. Although mean arterial pressure (19-22 mmHg) and norepinephrine (20-40%) were lower at all salt intakes during baroreflex activation, neither the changes in pressure nor the absolute values for plasma renin activity or aldosterone in response to salt were different from control conditions. These findings demonstrate that suppression of sympathetic activity by baroreflex activation lowers arterial pressure without increasing renin release and indicate that changes in sympathetic activity are not primary mediators of the effect of salt on renin secretion. Consequently, blood pressure lowering during baroreflex activation is independent of salt intake. PMID:24935941

  12. Evaluation of indirect blood pressure monitoring in awake and anesthetized red-tailed hawks (Buteo jamaicensis): effects of cuff size, cuff placement, and monitoring equipment.

    PubMed

    Zehnder, Ashley M; Hawkins, Michelle G; Pascoe, Peter J; Kass, Philip H

    2009-09-01

    To compare Doppler and oscillometric methods of indirect arterial blood pressure (IBP) with direct arterial measurements in anesthetized and awake red-tailed hawks. Prospective, randomized, blinded study. Six, sex unknown, adult red-tailed hawks. Birds were anesthetized and IBP measurements were obtained by oscillometry (IBP-O) and Doppler (IBP-D) on the pectoral and pelvic limbs using three cuffs of different width based on limb circumference: cuff 1 (20-30% of circumference), cuff 2 (30-40%), and cuff 3 (40-50%). Direct arterial pressure measurements were obtained from the contralateral superficial ulnar artery. Indirect blood pressure measurements were compared to direct systolic arterial pressure (SAP) and mean arterial pressure (MAP) during normotension and induced states of hypotension and hypertension. Measurements were also obtained in awake, restrained birds. Three-way anova, linear regression and Bland-Altman analyses were used to evaluate the IBP-D data. Results are reported as mean bias (95% confidence intervals). The IBP-O monitor reported errors during 54% of the measurements. Indirect blood pressure Doppler measurements were most accurate with cuff 3 and were comparable to MAP with a bias of 2 (-9, 13 mmHg). However, this cuff consistently underestimated SAP with a bias of 33 (19, 48 mmHg). Variability in the readings within and among birds was high. There was no significant difference between sites of cuff placement. Awake birds had SAP, MAP and diastolic arterial pressure that were 56, 43, and 38 mmHg higher than anesthetized birds. Indirect blood pressure (oscillometric) measurements were unreliable in red-tailed hawks. Indirect blood pressure (Doppler) measurements were closer to MAP measurements than SAP measurements. There was slightly better agreement with the use of cuff 3 on either the pectoral or pelvic limbs. Awake, restrained birds have significantly higher arterial pressures than those under sevoflurane anesthesia.

  13. Aortic-Brachial Pulse Wave Velocity Ratio: A Measure of Arterial Stiffness Gradient Not Affected by Mean Arterial Pressure.

    PubMed

    Fortier, Catherine; Desjardins, Marie-Pier; Agharazii, Mohsen

    2018-03-01

    Aortic stiffness, measured by carotid-femoral pulse wave velocity (cf-PWV), is used for the prediction of cardiovascular risk. This mini-review describes the nonlinear relationship between cf-PWV and operational blood pressure, presents the proposed methods to adjust for this relationship, and discusses a potential place for aortic-brachial PWV ratio (a measure of arterial stiffness gradient) as a blood pressure-independent measure of vascular aging. PWV is inherently dependent on the operational blood pressure. In cross-sectional studies, PWV adjustment for mean arterial pressure (MAP) is preferred, but still remains a nonoptimal approach, as the relationship between PWV and blood pressure is nonlinear and varies considerably among individuals due to heterogeneity in genetic background, vascular tone, and vascular remodeling. Extrapolations from the blood pressure-independent stiffness parameter β (β 0 ) have led to the creation of stiffness index β, which can be used for local stiffness. A similar approach has been used for cardio-ankle PWV to generate a blood pressure-independent cardio-ankle vascular index (CAVI). It was recently demonstrated that stiffness index β and CAVI remain slightly blood pressure-dependent, and a more appropriate formula has been proposed to make the proper adjustments. On the other hand, the negative impact of aortic stiffness on clinical outcomes is thought to be mediated through attenuation or reversal of the arterial stiffness gradient, which can also be influenced by a reduction in peripheral medium-sized muscular arteries in conditions that predispose to accelerate vascular aging. Arterial stiffness gradient, assessed by aortic-brachial PWV ratio, is emerging to be at least as good as cf-PWV for risk prediction, but has the advantage of not being affected by operating MAP. The negative impacts of aortic stiffness on clinical outcomes are proposed to be mediated through attenuation or reversal of arterial stiffness gradient. Aortic-brachial PWV ratio, a measure of arterial stiffness gradient, is independent of MAP.

  14. Study of the Characteristics of Pulmonary Trunk in Pulmonary Hypertension Secondary to Left Heart Disease Using Pressure-Velocity Loops (PU-Loops).

    PubMed

    Hanya, Shizuo; Yoshii, Kengo; Sugawara, Motoaki

    2017-09-25

    Objectives : Although pulmonary hypertension (PH) caused by left heart disease (PH-LHD) is more common in PH, little is known about its properties of pulmonary artery (PA) in PH-LHD. The purpose of this study was to measure pulmonary regional pulse wave velocity (PWV) and to quantify the magnitude of reflected waves in patients with PH-LHD by the analysis of the pressure-velocity loops (PU-loop). Methods : High-fidelity PA pressure (Pm) and PA velocity (Vm) were measured in 11 subjects with PH-LHD (mean Pm>25 mmHg), 1 subject with atrial septal defect (ASD) without PH and 12 control subjects, using multisensor catheters. PWV was calculated as the slope of the initial part of the PU-loop in early systole. The similarity in the shapes of the pressure and flow velocity waveforms over one PU-loop was quantified as the magnitude of reflected wave by calculating the standard error of the estimate (Sy/x) from linear regression analysis between Pm and corresponding Vm. PWV and Sy/x during a Valsalva maneuver (VM) were also assessed in nine control subjects. Results : The contour of PU-loop was so characteristic between control and PH-LHD. Max. PWV (349 cm/s) was recorded in PH-LHD and min. PWV (111 cm/s) was recorded in ASD. VM increased Pm (12 [7-15] mmHg vs. 50 [18-110] mmHg; p=0.009) and PWV (200 [148-238] cm/s vs. 260 [192-306] cm/s; p=0.009) significantly without significant increase of Sy/x (19.6 [12.7-28.9]% vs. 28.2 [19.3-40.7]%; p=0.079). Although Sy/x was significantly higher in PH-LHD than in control and ASD (31.0 [14.3-36.3]% vs. 17.5 [8.4-28.9]%; p=0.009, ASD: 18.2%) , no significant difference was found in PWV between PH-LHD and control (269 [159-349] cm/s vs. 203 [154-289] cm/s; p=0.089). Conclusions : 1) The magnitude of wave reflection was elevated in PH-LHD significantly as compared with control and ASD. 2) Despite the significant increase in PA-PWV caused by abrupt elevation in Pm during VM in control, chronic elevation in Pm did not increase PA-PWV in PH-LHD significantly. It was hypothesized that the PA constituted a self-regulating system for maintaining the arterial stiffness stable against the chronic elevation in Pm in PH-LHD by a remodeling of increasing proximal pulmonary arterial crosssectional area gradually, which was compatible with the Moens-Korteweg equation. The PU-loop could provide a new simple and conventional method for assessing the pulmonary arterial properties, clinically. (This is a translation of J Jpn Coll Angiol 2016; 56: 45-53.).

  15. Critical cerebral perfusion pressure at high intracranial pressure measured by induced cerebrovascular and intracranial pressure reactivity.

    PubMed

    Bragin, Denis E; Statom, Gloria L; Yonas, Howard; Dai, Xingping; Nemoto, Edwin M

    2014-12-01

    The lower limit of cerebral blood flow autoregulation is the critical cerebral perfusion pressure at which cerebral blood flow begins to fall. It is important that cerebral perfusion pressure be maintained above this level to ensure adequate cerebral blood flow, especially in patients with high intracranial pressure. However, the critical cerebral perfusion pressure of 50 mm Hg, obtained by decreasing mean arterial pressure, differs from the value of 30 mm Hg, obtained by increasing intracranial pressure, which we previously showed was due to microvascular shunt flow maintenance of a falsely high cerebral blood flow. The present study shows that the critical cerebral perfusion pressure, measured by increasing intracranial pressure to decrease cerebral perfusion pressure, is inaccurate but accurately determined by dopamine-induced dynamic intracranial pressure reactivity and cerebrovascular reactivity. Cerebral perfusion pressure was decreased either by increasing intracranial pressure or decreasing mean arterial pressure and the critical cerebral perfusion pressure by both methods compared. Cortical Doppler flux, intracranial pressure, and mean arterial pressure were monitored throughout the study. At each cerebral perfusion pressure, we measured microvascular RBC flow velocity, blood-brain barrier integrity (transcapillary dye extravasation), and tissue oxygenation (reduced nicotinamide adenine dinucleotide) in the cerebral cortex of rats using in vivo two-photon laser scanning microscopy. University laboratory. Male Sprague-Dawley rats. At each cerebral perfusion pressure, dopamine-induced arterial pressure transients (~10 mm Hg, ~45 s duration) were used to measure induced intracranial pressure reactivity (Δ intracranial pressure/Δ mean arterial pressure) and induced cerebrovascular reactivity (Δ cerebral blood flow/Δ mean arterial pressure). At a normal cerebral perfusion pressure of 70 mm Hg, 10 mm Hg mean arterial pressure pulses had no effect on intracranial pressure or cerebral blood flow (induced intracranial pressure reactivity = -0.03 ± 0.07 and induced cerebrovascular reactivity = -0.02 ± 0.09), reflecting intact autoregulation. Decreasing cerebral perfusion pressure to 50 mm Hg by increasing intracranial pressure increased induced intracranial pressure reactivity and induced cerebrovascular reactivity to 0.24 ± 0.09 and 0.31 ± 0.13, respectively, reflecting impaired autoregulation (p < 0.05). By static cerebral blood flow, the first significant decrease in cerebral blood flow occurred at a cerebral perfusion pressure of 30 mm Hg (0.71 ± 0.08, p < 0.05). Critical cerebral perfusion pressure of 50 mm Hg was accurately determined by induced intracranial pressure reactivity and induced cerebrovascular reactivity, whereas the static method failed.

  16. High resolution wavenumber analysis for investigation of arterial pulse wave propagation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hideyuki; Sato, Masakazu; Irie, Takasuke

    2016-07-01

    The propagation of the pulse wave along the artery is relatively fast (several m/s), and a high-temporal resolution is required to measure pulse wave velocity (PWV) in a regional segment of the artery. High-frame-rate ultrasound enables the measurement of the regional PWV. In analyses of wave propagation phenomena, the direction and propagation speed are generally identified in the frequency-wavenumber space using the two-dimensional Fourier transform. However, the wavelength of the pulse wave is very long (1 m at a propagation velocity of 10 m/s and a temporal frequency of 10 Hz) compared with a typical lateral field of view of 40 mm in ultrasound imaging. Therefore, PWV cannot be identified in the frequency-wavenumber space owing to the low resolution of the two-dimensional Fourier transform. In the present study, PWV was visualized in the wavenumber domain using phases of arterial wall acceleration waveforms measured by high-frame-rate ultrasound.

  17. Isometric handgrip training reduces arterial pressure at rest without changes in sympathetic nerve activity

    NASA Technical Reports Server (NTRS)

    Ray, C. A.; Carrasco, D. I.

    2000-01-01

    The purpose of this study was to determine whether isometric handgrip (IHG) training reduces arterial pressure and whether reductions in muscle sympathetic nerve activity (MSNA) mediate this drop in arterial pressure. Normotensive subjects were assigned to training (n = 9), sham training (n = 7), or control (n = 8) groups. The training protocol consisted of four 3-min bouts of IHG exercise at 30% of maximal voluntary contraction (MVC) separated by 5-min rest periods. Training was performed four times per week for 5 wk. Subjects' resting arterial pressure and heart rate were measured three times on 3 consecutive days before and after training, with resting MSNA (peroneal nerve) recorded on the third day. Additionally, subjects performed IHG exercise at 30% of MVC to fatigue followed by muscle ischemia. In the trained group, resting diastolic (67 +/- 1 to 62 +/- 1 mmHg) and mean arterial pressure (86 +/- 1 to 82 +/- 1 mmHg) significantly decreased, whereas systolic arterial pressure (116 +/- 3 to 113 +/- 2 mmHg), heart rate (67 +/- 4 to 66 +/- 4 beats/min), and MSNA (14 +/- 2 to 15 +/- 2 bursts/min) did not significantly change following training. MSNA and cardiovascular responses to exercise and postexercise muscle ischemia were unchanged by training. There were no significant changes in any variables for the sham training and control groups. The results indicate that IHG training is an effective nonpharmacological intervention in lowering arterial pressure.

  18. Influence of central venous pressure upon sinus node responses to arterial baroreflex stimulation in man

    NASA Technical Reports Server (NTRS)

    Mark, A. L.; Takeshita, A.; Eckberg, D. L.; Abboud, F. M.

    1978-01-01

    Measurements were made of sinus node responses to arterial baroreceptor stimulation with phenylephrine injection or neck suction, before and during changes of central venous pressure provoked by lower body negative pressure or leg and lower truck elevation. Variations of central venous pressure between 1.1 and 9.0 mm Hg did not influence arterial baroreflex mediated bradycardia. Baroreflex sinus node responses were augmented by intravenous propranolol, but the level of responses after propranolol was comparable during the control state, lower body negative pressure, and leg and trunk elevation. Sinus node responses to very brief baroreceptor stimuli applied during the transitions of central venous pressure also were comparable in the three states. The authors conclude that physiological variations of central venous pressure do not influence sinus node responses to arterial baroreceptor stimulation in man.

  19. Determination of Dimensionless Attenuation Coefficient in Shaped Resonators

    NASA Technical Reports Server (NTRS)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2003-01-01

    The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.

  20. The relationship between occupational exposure to lead and manifestation of cardiovascular complications in persons with arterial hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poreba, Rafal, E-mail: sogood@poczta.onet.p; Gac, Pawel; Poreba, Malgorzata

    The chronic exposure to lead represents a risk factor of arterial hypertension development. Ambulatory blood pressure monitoring is the most prognostically reliable method of measuring of arterial blood pressure. The study is aimed at evaluating the relationship between occupational exposure to lead and manifestation of cardiovascular complications in patients with arterial hypertension. The studies included 73 men (mean age, 54.26 {+-} 8.17 years) with arterial hypertension, treated with hypotensive drugs: group I-persons occupationally exposed to lead (n = 35) and group II-individuals not exposed to lead (n = 38). An analysis of results obtained during ambulatory blood pressure monitoring disclosedmore » significantly higher values of mean systolic blood pressure, mean blood pressure, pulse pressure, and variability of systolic blood pressure in the group of hypertensive patients occupationally exposed to lead as compared to patients with arterial hypertension but not exposed to lead. The logistic regression showed that a more advanced age, higher concentration of blood zinc protoporphyrin, and a higher mean value of pulse pressure represented independent risk factors of left ventricular hypertrophy in the group of persons with arterial hypertension and chronically exposed to lead (OR{sub age} = 1.11; OR{sub ZnPP} = 1.32; OR{sub PP} = 1,43; p < 0.05). In view of the above data demonstration that occupational exposure to lead represents an independent risk factor of increased pulse pressure may be of key importance in the process of shaping general social awareness as to harmful effects of lead compounds on human health.« less

  1. Wave reflections in the pulmonary arteries analysed with the reservoir–wave model

    PubMed Central

    Bouwmeester, J Christopher; Belenkie, Israel; Shrive, Nigel G; Tyberg, John V

    2014-01-01

    Conventional haemodynamic analysis of pressure and flow in the pulmonary circulation yields incident and reflected waves throughout the cardiac cycle, even during diastole. The reservoir–wave model provides an alternative haemodynamic analysis consistent with minimal wave activity during diastole. Pressure and flow in the main pulmonary artery were measured in anaesthetized dogs and the effects of hypoxia and nitric oxide, volume loading and positive end-expiratory pressure were observed. The reservoir–wave model was used to determine the reservoir contribution to pressure and flow and once subtracted, resulted in ‘excess’ quantities, which were treated as wave-related. Wave intensity analysis quantified the contributions of waves originating upstream (forward-going waves) and downstream (backward-going waves). In the pulmonary artery, negative reflections of incident waves created by the right ventricle were observed. Overall, the distance from the pulmonary artery valve to this reflection site was calculated to be 5.7 ± 0.2 cm. During 100% O2 ventilation, the strength of these reflections increased 10% with volume loading and decreased 4% with 10 cmH2O positive end-expiratory pressure. In the pulmonary arterial circulation, negative reflections arise from the junction of lobar arteries from the left and right pulmonary arteries. This mechanism serves to reduce peak systolic pressure, while increasing blood flow. PMID:24756638

  2. Comparison of vascular distensibility in the upper and lower extremity.

    PubMed

    Eiken, O; Kölegård, R

    2004-07-01

    Because of the great differences in hydrostatic pressure acting along the blood vessels in the erect posture, leg vessels are exposed to greater transmural pressures than arm vessels. The in vivo pressure-distension relationship of arteries, arterioles and veins in the arm were compared with those of the leg. Experiments were performed with the subject (n = 11) positioned in a pressure chamber with an arm or lower leg (test limb) extended at heart level through a hole in the chamber door. Intravascular pressure in the arm/lower leg was increased by stepwise increasing chamber pressure to +180 and +210 mmHg, respectively. Diameters of blood vessels and arterial flow were measured using ultrasonographic/Doppler techniques. Changes in forearm and lower leg volumes were assessed using an impedance technique. The subject rated perceived pain in the test limb. The brachial and radial arteries were found to be more distensible than the posterior tibial artery (P < 0.001). Likewise, the distension was more pronounced in the cephalic than in the great saphenous vein (P < 0.001). In the brachial artery, but not in the posterior tibial artery, flow increased markedly at the highest levels of distending pressure (P < 0.001). At the highest intravascular pressures, the rate of change in tissue impedance was greater in the forearm than the lower leg (P < 0.01). At any given level of markedly increased pressure, pain was rated higher in the arm than in the leg (P < 0.001). It seems that the wall stiffness of arteries, pre-capillary resistance vessels and veins adapts to meet the long-term demands imposed by the hydrostatic pressure acting locally on the vessel walls.

  3. Beat-to-beat agreement of noninvasive tonometric and intra-radial arterial blood pressure during microgravity and hypergravity generated by parabolic flights.

    PubMed

    Normand, Hervé; Lemarchand, Erick; Arbeille, Philippe; Quarck, Gaëlle; Vaïda, Pierre; Duretete, Arnaud; Denise, Pierre

    2007-12-01

    Accurate measurement of beat-to-beat arterial blood pressure is essential for understanding the cardiovascular adaptation to weightlessness; however, the intra-arterial standard of beat-to-beat blood pressure measurement has never been used during space flight because of its invasive nature. The aim of the present study was to compare noninvasive radial artery tonometry blood pressure measurement with intra-radial pressure measurement during microgravity and hypergravity generated by parabolic flights. Two study participants, equipped with an intra-radial pressure line on the left arm and a Colin CBM-7000 (Colin Corp., Komaki City, Japan) beat-to-beat pressure measurement apparatus on the right arm, were studied in a supine position, during parabolic flights on board of the Airbus A300 OG of the Centre National d'Etudes Spatiales. The mean and standard deviations of the beat-to-beat difference between tonometric and intra-radial blood pressure were calculated for systolic and diastolic arterial pressure in the three gravity conditions (1g, 0 g and 1.8 g) experienced during parabolic flight. The Colin CBM-7000 met the specifications required by the Association for the Advancement of Medical Instrumentation in the 0 g environment. Gravity, however, significantly affected the difference between tonometric and intra-arterial blood pressure, possibly owing to the effect of gravity on the apparent weight of the device and the corresponding calibration factor. We conclude that the Colin CBM-7000 can be used with confidence during space flight.

  4. [Features of arterial blood pressure in elderly persons of different ethnic groups in Yakutsk].

    PubMed

    Nikitin, Iu P; Tatarinova, O V; Neustroeva, V N; Shcherbakova, L V; Sidorov, A S

    2013-01-01

    The differences in arterial blood pressure in the sample of population in the age of 60 and older of different ethnic groups in Yakutsk, as well as its connection with the other cardiovascular diseases risk factors have been analyzed. It was shown that the average values of systolic and diastolic blood pressure in subsample of the Yakuts appeared to be lower than in Caucasoid gerontic persons. The average values of systolic arterial blood pressure both in the Yakuts and in the Caucasoids were detected higher than normal values in all age-dependent subgroups. The average values of diastolic blood pressure in both ethnic groups were within the limits of high normal level. From 60 to 90 years and older the decrease in systolic and diastolic arterial blood pressure was detected; it was more marked in Caucasoid gerontic persons. The average values of pulse pressure in the Yakuts and in the Caucasoids appeared to be higher than the existing standard and didn't have any differences in ethnic groups. In both ethnical subsamples, pulse pressure values increase was observed in persons of 60-89 years old and its decrease after 90. Persons with overweight, obesity, central (abdominal) obesity, dyslypoproteidemias irrespective of belonging to ethnical group were characterized as having higher levels of arterial blood pressure. Statistically significant differences in the levels of arterial blood pressure in the Yakuts and in the Caucasoids depending on hyperglycemia, smoking, the presence of burdened anamnesis, educational level, marital status was not detected.

  5. Human autonomic rhythms: vagal cardiac mechanisms in tetraplegic subjects

    NASA Technical Reports Server (NTRS)

    Koh, J.; Brown, T. E.; Beightol, L. A.; Ha, C. Y.; Eckberg, D. L.

    1994-01-01

    1. We studied eight young men (age range: 20-37 years) with chronic, clinically complete high cervical spinal cord injuries and ten age-matched healthy men to determine how interruption of connections between the central nervous system and spinal sympathetic motoneurones affects autonomic cardiovascular control. 2. Baseline diastolic pressures and R-R intervals (heart periods) were similar in the two groups. Slopes of R-R interval responses to brief neck pressure changes were significantly lower in tetraplegic than in healthy subjects, but slopes of R-R interval responses to steady-state arterial pressure reductions and increases were comparable. Plasma noradrenaline levels did not change significantly during steady-state arterial pressure reductions in tetraplegic patients, but rose sharply in healthy subjects. The range of arterial pressure and R-R interval responses to vasoactive drugs (nitroprusside and phenylephrine) was significantly greater in tetraplegic than healthy subjects. 3. Resting R-R interval spectral power at respiratory and low frequencies was similar in the two groups. During infusions of vasoactive drugs, low-frequency R-R interval spectral power was directly proportional to arterial pressure in tetraplegic patients, but was unrelated to arterial pressure in healthy subjects. Vagolytic doses of atropine nearly abolished both low- and respiratory-frequency R-R interval spectral power in both groups. 4. Our conclusions are as follows. First, since tetraplegic patients have significant levels of low-frequency arterial pressure and R-R interval spectral power, human Mayer arterial pressure waves may result from mechanisms that do not involve stimulation of spinal sympathetic motoneurones by brainstem neurones. Second, since in tetraplegic patients, low-frequency R-R interval spectral power is proportional to arterial pressure, it is likely to be mediated by a baroreflex mechanism. Third, since low-frequency R-R interval rhythms were nearly abolished by atropine in both tetraplegic and healthy subjects, these rhythms reflect in an important way rhythmic firing of vagal cardiac motoneurones.

  6. Telemetric ambulatory arterial stiffness index, a predictor of cardio-cerebro-vascular mortality, is associated with aortic stiffness-determining factors.

    PubMed

    Li, Zhi-Yong; Xu, Tian-Ying; Zhang, Sai-Long; Zhou, Xiao-Ming; Xu, Xue-Wen; Guan, Yun-Feng; Lo, Ming; Miao, Chao-Yu

    2013-09-01

    Ambulatory arterial stiffness index (AASI) has been proposed as a new measure of arterial stiffness for predicting cardio-cerebro-vascular morbidity and mortality. However, there has been no research on the direct relationships between AASI and arterial stiffness-determining factors. We utilized beat-to-beat intra-aortic blood pressure (BP) telemetry to characterize AASI in Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). By determination of aortic structural components and analysis of their correlations with AASI, we provided the first direct evidence for the associations between AASI and arterial stiffness-determining factors including the collagen content and collagen/elastin. Ambulatory arterial stiffness index was positively correlated with pulse pressure in both WKY and SHR, less dependent on BP and BP variability than pulse pressure, and relatively stable, especially the number of BP readings not less than ~36. The correlations between AASI and aortic components were comparable for various AASI values derived from BP readings not less than ~36. Not only AASI but also BP variability and pulse pressure demonstrated a direct relationship with arterial stiffness. These findings indicate AASI may become a routine measure in human arterial stiffness assessment. It is recommended to use a cluster of parameters such as AASI, BP variability, and pulse pressure for evaluating arterial stiffness. © 2013 John Wiley & Sons Ltd.

  7. Function of circle of Willis

    PubMed Central

    Vrselja, Zvonimir; Brkic, Hrvoje; Mrdenovic, Stefan; Radic, Radivoje; Curic, Goran

    2014-01-01

    Nearly 400 years ago, Thomas Willis described the arterial ring at the base of the brain (the circle of Willis, CW) and recognized it as a compensatory system in the case of arterial occlusion. This theory is still accepted. We present several arguments that via negativa should discard the compensatory theory. (1) Current theory is anthropocentric; it ignores other species and their analog structures. (2) Arterial pathologies are diseases of old age, appearing after gene propagation. (3) According to the current theory, evolution has foresight. (4) Its commonness among animals indicates that it is probably a convergent evolutionary structure. (5) It was observed that communicating arteries are too small for effective blood flow, and (6) missing or hypoplastic in the majority of the population. We infer that CW, under physiologic conditions, serves as a passive pressure dissipating system; without considerable blood flow, pressure is transferred from the high to low pressure end, the latter being another arterial component of CW. Pressure gradient exists because pulse wave and blood flow arrive into the skull through different cerebral arteries asynchronously, due to arterial tree asymmetry. Therefore, CW and its communicating arteries protect cerebral artery and blood–brain barrier from hemodynamic stress. PMID:24473483

  8. Resistance within hemodialysis shunts predicts patency.

    PubMed

    Bui, Trung D; Gordon, Ian L; Parashar, Amish; Vo, David; Wilson, Samuel E

    2006-01-01

    The authors examined the relationship between patency after thrombectomy of clotted dialysis grafts and intraoperative measurements of flow (Q), pressure gradient (PGR), and longitudinal resistance (RL). Eighteen thrombosed arteriovenous (AV) grafts underwent 21 thrombectomies. Pressures at arterial (P1) and venous (P2) ends of the AV grafts were determined with 22-gauge catheters and standard transducers; flow was measured with transit-time probes; arithmetic averaging of waveforms was used to compute mean Q, PGR, and RL. Kaplan-Meier patency curves were analyzed by using log rank methods. Mean patency for all grafts was 164 +/-152 days. For each variable, the 21 measurements were split and the patency curve for the grafts with the 11 lowest value grafts was compared to the curve representing the 10 highest value grafts. The difference between high RL versus low RL patency curves was significant with high-resistance grafts having a median patency of 55 days and low-resistance grafts having a median patency greater than 151 days (p = 0.0089). In contrast, the high Q group median patency was 151 days versus 174 days for the low Q group (p = 0.86). Median patency for the low PGR group was 115 days compared to 62 days for the high PGR group (p = 0.162). Longitudinal resistance within AV grafts, but not flow or pressure gradient, showed a significant correlation with patency after thrombectomy. Increased resistance to flow within AV grafts appears to be an important factor affecting the propensity of dialysis grafts to thrombose.

  9. Picosecond High Pressure Gas Switch Experiment

    DTIC Science & Technology

    1993-06-01

    the calculated pulse waveform for a much higher voltage and pressure switch . Also, a discussion of the modifications made on an existing pulse...s 80 8 ~ 60 J 40 .. : ~--~: __ ~’----~-~ 0.1 10 100 1000 Frequency Figure 7. Output switch recovery. Conclusion The high- pressure switch has...effective in matching experimental results, and should thus be useful in the design of high-voltage and pressure switch configurations

  10. Forearm Vascular Reactivity and Arterial Stiffness in Asymptomatic Subjects from the Community

    PubMed Central

    Malik, A. Rauoof; Kondragunta, Venkateswarlu; Kullo, Iftikhar J.

    2010-01-01

    Vascular reactivity may affect the stiffness characteristics of the arterial wall. We investigated the association between forearm microcirculatory and conduit artery function and measures of arterial stiffness in 527 asymptomatic non-Hispanic white adults without known cardiovascular disease. High-resolution ultrasonography of the brachial artery (ba) was performed to assess forearm microcirculatory function (ba blood flow velocity, local shear stress, and forearm vascular resistance at rest and during reactive hyperemia) and conduit artery function (ba flow-mediated dilatation baFMD and ba nitroglycerin-mediated dilatation baNMD). Arterial stiffness was assessed by cuff-derived brachial pulse pressure and aortic pulse wave velocity (aPWV) measured by applanation tonometry. In regression analyses that adjusted for heart rate, mean arterial pressure, height, cardiovascular risk factors, and hypertension medication and statin use, higher baseline ba systolic velocity and systolic shear stress were associated with greater pulse pressure (P=0.0002 and P=0.006, respectively) and higher aPWV (each P<0.0001). During hyperemia, lower ba mean velocity and lower mean shear stress were associated with higher pulse pressure (P=0.045 and P=0.036, respectively) while both systolic and mean velocity (P<0.0001 and P=0.002, respectively) and systolic and mean shear stress (P<0.0001 and P=0.003, respectively) were inversely associated with aPWV. baFMD was not associated with pulse pressure but was inversely associated with aPWV (P=0.011). baNMD was inversely associated with pulse pressure (P=0.0002) and aPWV (P=0.008). Our findings demonstrate that impaired forearm microvascular function (in the form of elevated resting blood flow velocity and impaired flow reserve) and impaired brachial artery reactivity are associated with increased arterial stiffness. PMID:18426995

  11. Resistance training controls arterial blood pressure in rats with L-NAME- induced hypertension.

    PubMed

    Araujo, Ayslan Jorge Santos de; Santos, Anne Carolline Veríssimo dos; Souza, Karine dos Santos; Aires, Marlúcia Bastos; Santana-Filho, Valter Joviniano; Fioretto, Emerson Ticona; Mota, Marcelo Mendonça; Santos, Márcio Roberto Viana

    2013-04-01

    Arterial hypertension is a multifactorial chronic condition caused by either congenital or acquired factors. To evaluate the effects of Resistance Training (RT) on arterial pressure, and on vascular reactivity and morphology, of L-NAME-treated hypertensive rats. Male Wistar rats (200 - 250 g) were allocated into Sedentary Normotensive (SN), Sedentary Hypertensive (SH) and Trained Hypertensive (TH) groups. Hypertension was induced by adding L-NAME (40 mg/Kg) to the drinking water for four weeks. Arterial pressure was evaluated before and after RT. RT was performed using 50% of 1RM, 3 sets of 10 repetitions, 3 times per week for four weeks. Vascular reactivity was measured in rat mesenteric artery rings by concentration-response curves to sodium nitroprusside (SNP); phenylephrine (PHE) was also used for histological and stereological analysis. Resistance training inhibited the increase in mean and diastolic arterial pressures. Significant reduction was observed in Rmax (maximal response) and pD2 (potency) of PHE between SH and TH groups. Arteries demonstrated normal intima, media and adventitia layers in all groups. Stereological analysis demonstrated no significant difference in luminal, tunica media, and total areas of arteries in the SH and TH groups when compared to the SN group. Wall-to-lumen ratio of SH arteries was significantly different compared to SN arteries (p<0.05) but there was no difference when compared to TH arteries. RT was able to prevent an increase in blood pressure under the conditions in this study. This appears to involve a vasoconstrictor regulation mechanism and maintenance of luminal diameter in L-NAME induced hypertensive rats.

  12. Early Evidence of Sepsis-Associated Hyperperfusion-A Study of Cerebral Blood Flow Measured With MRI Arterial Spin Labeling in Critically Ill Septic Patients and Control Subjects.

    PubMed

    Masse, Marie-Hélène; Richard, Marie Anne; D'Aragon, Frédérick; St-Arnaud, Charles; Mayette, Michael; Adhikari, Neill K J; Fraser, William; Carpentier, André; Palanchuck, Steven; Gauthier, David; Lanthier, Luc; Touchette, Matthieu; Lamontagne, Albert; Chénard, Jean; Mehta, Sangeeta; Sansoucy, Yanick; Croteau, Etienne; Lepage, Martin; Lamontagne, François

    2018-04-06

    Mechanisms underlying sepsis-associated encephalopathy remain unclear, but reduced cerebral blood flow, alone or in conjunction with altered autoregulation, is reported as a potential contributor. We compared cerebral blood flow of control subjects and vasopressor-dependent septic patients. Randomized crossover study. MRI with arterial spin labeling. Ten sedated septic patients on mechanical ventilation (four with controlled chronic hypertension) and 12 control subjects (six with controlled chronic hypertension) were enrolled. Mean ± SD ages were 61.4 ± 10.2 and 44.2 ± 12.8 years, respectively (p = 0.003). Mean Acute Physiology and Chronic Health Evaluation II score of septic patients at ICU admission was 27.7 ± 6.6. To assess the potential confounding effects of sedation and mean arterial pressure, we measured cerebral blood flow with and without sedation with propofol in control subjects and at a target mean arterial pressure of 65 mm Hg and greater than or equal to 75 mm Hg in septic patients. The sequence of sedation versus no sedation and mean arterial pressure targets were randomized. In septic patients, cerebral blood flow measured at a mean arterial pressure target of 65 mm Hg (40.4 ± 10.9 mL/100 g/min) was not different from cerebral blood flow measured at a mean arterial pressure target of greater than or equal to 75 mm Hg (41.3 ± 9.8 mL/100 g/min; p = 0.65). In control subjects, we observed no difference in cerebral blood flow measured without and with sedation (24.8 ± 4.2 vs 24.9 ± 5.9 mL/100 g/min; p = 0.93). We found no interaction between chronic hypertension and the effect of sedation or mean arterial pressure targets. Cerebral blood flow measured in sedated septic patients (mean arterial pressure target 65 mm Hg) was 62% higher than in sedated control subjects (p = 0.001). In septic patients, cerebral blood flow was higher than in sedated control subjects and did not vary with mean arterial pressure targets. Further research is required to understand the clinical significance of cerebral hyperperfusion in septic patients on vasopressors and to reassess the neurologic effects of current mean arterial pressure targets in sepsis.

  13. Measuring Time-Averaged Blood Pressure

    NASA Technical Reports Server (NTRS)

    Rothman, Neil S.

    1988-01-01

    Device measures time-averaged component of absolute blood pressure in artery. Includes compliant cuff around artery and external monitoring unit. Ceramic construction in monitoring unit suppresses ebb and flow of pressure-transmitting fluid in sensor chamber. Transducer measures only static component of blood pressure.

  14. Effects of hypoxia on the closing pressure of the canine systemic arterial circulation.

    PubMed

    Sylvester, J T; Gilbert, R D; Traystman, R J; Permutt, S

    1981-10-01

    We studied the relationships among closing pressure (Pc) and indices of systemic arterial resistance (Ra) and compliance (Ca) during hypoxic hypoxia (HH) and carbon monoxide hypoxia (COH) in anesthetized dogs with cardiac bypass and constant ventilation. Closing pressure was measured as the lowest level to which arterial pressure (Pa) fell after inflow to the arterial bed was reduced suddenly to zero. Since the fall of Pa to Pc could be well-described as a single exponential function of time and since Pc was always greater than outflow (venous) pressure. Ra and CA were determined by applying a "vascular waterfall" model to the arterial bed. During HH, Pc increased while Ra and Ca decreased. During COH, Pc and Ra decreased, but Ca did not change. The Pc results indicate that during HH, but not COH, a large portion of the systemic arterial bed experienced a marked increase in vasomotor tone, a qualitative difference that would have been missed if Pc had not been measured. The relationship among Pc, Ra, and Ca during hypoxia suggest these indices may have been determined largely by different portions of the arterial bed in which tone changed independently.

  15. Continuous stroke volume estimation from aortic pressure using zero dimensional cardiovascular model: proof of concept study from porcine experiments.

    PubMed

    Kamoi, Shun; Pretty, Christopher; Docherty, Paul; Squire, Dougie; Revie, James; Chiew, Yeong Shiong; Desaive, Thomas; Shaw, Geoffrey M; Chase, J Geoffrey

    2014-01-01

    Accurate, continuous, left ventricular stroke volume (SV) measurements can convey large amounts of information about patient hemodynamic status and response to therapy. However, direct measurements are highly invasive in clinical practice, and current procedures for estimating SV require specialized devices and significant approximation. This study investigates the accuracy of a three element Windkessel model combined with an aortic pressure waveform to estimate SV. Aortic pressure is separated into two components capturing; 1) resistance and compliance, 2) characteristic impedance. This separation provides model-element relationships enabling SV to be estimated while requiring only one of the three element values to be known or estimated. Beat-to-beat SV estimation was performed using population-representative optimal values for each model element. This method was validated using measured SV data from porcine experiments (N = 3 female Pietrain pigs, 29-37 kg) in which both ventricular volume and aortic pressure waveforms were measured simultaneously. The median difference between measured SV from left ventricle (LV) output and estimated SV was 0.6 ml with a 90% range (5th-95th percentile) -12.4 ml-14.3 ml. During periods when changes in SV were induced, cross correlations in between estimated and measured SV were above R = 0.65 for all cases. The method presented demonstrates that the magnitude and trends of SV can be accurately estimated from pressure waveforms alone, without the need for identification of complex physiological metrics where strength of correlations may vary significantly from patient to patient.

  16. A computational analysis of the long-term regulation of arterial pressure

    PubMed Central

    Beard, Daniel A.

    2013-01-01

    The asserted dominant role of the kidneys in the chronic regulation of blood pressure and in the etiology of hypertension has been debated since the 1970s. At the center of the theory is the observation that the acute relationships between arterial pressure and urine production—the acute pressure-diuresis and pressure-natriuresis curves—physiologically adapt to perturbations in pressure and/or changes in the rate of salt and volume intake. These adaptations, modulated by various interacting neurohumoral mechanisms, result in chronic relationships between water and salt excretion and pressure that are much steeper than the acute relationships. While the view that renal function is the dominant controller of arterial pressure has been supported by computer models of the cardiovascular system known as the “Guyton-Coleman model”, no unambiguous description of a computer model capturing chronic adaptation of acute renal function in blood pressure control has been presented. Here, such a model is developed with the goals of: 1. representing the relevant mechanisms in an identifiable mathematical model; 2. identifying model parameters using appropriate data; 3. validating model predictions in comparison to data; and 4. probing hypotheses regarding the long-term control of arterial pressure and the etiology of primary hypertension. The developed model reveals: long-term control of arterial blood pressure is primarily through the baroreflex arc and the renin-angiotensin system; and arterial stiffening provides a sufficient explanation for the etiology of primary hypertension associated with ageing. Furthermore, the model provides the first consistent explanation of the physiological response to chronic stimulation of the baroreflex. PMID:24555102

  17. A computational analysis of the long-term regulation of arterial pressure.

    PubMed

    Beard, Daniel A; Pettersen, Klas H; Carlson, Brian E; Omholt, Stig W; Bugenhagen, Scott M

    2013-01-01

    The asserted dominant role of the kidneys in the chronic regulation of blood pressure and in the etiology of hypertension has been debated since the 1970s. At the center of the theory is the observation that the acute relationships between arterial pressure and urine production-the acute pressure-diuresis and pressure-natriuresis curves-physiologically adapt to perturbations in pressure and/or changes in the rate of salt and volume intake. These adaptations, modulated by various interacting neurohumoral mechanisms, result in chronic relationships between water and salt excretion and pressure that are much steeper than the acute relationships. While the view that renal function is the dominant controller of arterial pressure has been supported by computer models of the cardiovascular system known as the "Guyton-Coleman model", no unambiguous description of a computer model capturing chronic adaptation of acute renal function in blood pressure control has been presented. Here, such a model is developed with the goals of: 1. representing the relevant mechanisms in an identifiable mathematical model; 2. identifying model parameters using appropriate data; 3. validating model predictions in comparison to data; and 4. probing hypotheses regarding the long-term control of arterial pressure and the etiology of primary hypertension. The developed model reveals: long-term control of arterial blood pressure is primarily through the baroreflex arc and the renin-angiotensin system; and arterial stiffening provides a sufficient explanation for the etiology of primary hypertension associated with ageing. Furthermore, the model provides the first consistent explanation of the physiological response to chronic stimulation of the baroreflex.

  18. Does Flexible Arterial Tubing Retain More Hemodynamic Energy During Pediatric Pulsatile Extracorporeal Life Support?

    PubMed

    Wang, Shigang; Kunselman, Allen R; Ündar, Akif

    2017-01-01

    The objective of this study was to evaluate the hemodynamic performance and energy transmission of flexible arterial tubing as the arterial line in a simulated pediatric pulsatile extracorporeal life support (ECLS) system. The ECLS circuit consisted of a Medos Deltastream DP3 diagonal pump head, Medos Hilite 2400 LT oxygenator, Biomedicus arterial/venous cannula (10 Fr/14 Fr), 3 feet of polyvinyl chloride (PVC) arterial tubing or latex rubber arterial tubing, primed with lactated Ringer's solution and packed red blood cells (hematocrit 40%). Trials were conducted at flow rates of 300 to 1200 mL/min (300 mL/min increments) under nonpulsatile and pulsatile modes at 36°C using either PVC arterial tubing (PVC group) or latex rubber tubing (Latex group). Real-time pressure and flow data were recorded using a custom-based data acquisition system. Mean pressures and energy equivalent pressures (EEP) were the same under nonpulsatile mode between the two groups. Under pulsatile mode, EEPs were significantly great than mean pressure, especially in the Latex group (P < 0.05). There was no difference between the two groups with regards to pressure drops across ECLS circuit, but pulsatile flow created more pressure drops than nonpulsatile flow (P < 0.05). Surplus hemodynamic energy (SHE) levels were always higher in the Latex group than in the PVC group at all sites. Although total hemodynamic energy (THE) losses were higher under pulsatile mode compared to nonpulsatile mode, more THE was delivered to the pseudopatient, particularly in the Latex group (P < 0.05). The results showed that the flexible arterial tubing retained more hemodynamic energy passing through it under pulsatile mode while mean pressures and pressure drops across the ECLS circuit were similar between PVC and latex rubber arterial tubing. Further studies are warranted to verify our findings. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. Haemodynamic effects of a selective adenosine A2A receptor agonist, CGS 21680, in chronic heart failure in anaesthetized rats

    PubMed Central

    Nekooeian, Ali A; Tabrizchi, Reza

    1998-01-01

    Recently we demonstrated that the administration of an A2A adenosine receptor agonist, CGS 21680, to anaesthetized rats with acute heart failure (1 h post-coronary artery ligation) resulted in an increase in cardiac output. In the present investigation, the effects of CGS 21680 on cardiac output, vascular resistance, heart rate, blood pressure and mean circulatory filling pressure (Pmcf) were investigated in anaesthetized rats with chronic heart failure (8 weeks post-coronary artery ligation).Experiments were conducted in five groups (n=6) of animals: sham-operated vehicle-treated (0.9% NaCl; 0.037 mL kg−1 min−1) animals in which the occluder was placed but not pulled to ligate the coronary artery; coronary artery-ligated vehicle-treated animals; and coronary artery-ligated CGS 21680-treated (0.1, 0.3 or 1.0 μg kg−1 min−1) animals.Baseline blood pressure, cardiac output and rate of rise in left ventricular pressure (+dP/dt) were significantly reduced in animals with coronary artery ligation when compared to sham-operated animals. Coronary artery ligation resulted in a significant increase in left ventricular end-diastolic pressure, Pmcf and venous resistance when compared to sham-operated animals.Administration of CGS 21680 at 0.3 and 1.0 μg kg−1 min−1 significantly (n=6; P<0.05) increased cardiac output by 19±4% and 39±5%, and heart rate by 14±2% and 15±1%, respectively, when compared to vehicle treatment in coronary artery-ligated animals. Administration of CGS 21680 also significantly reduced blood pressure and arterial resistance when compared to coronary artery-ligated vehicle-treated animals. Infusion of CGS 21680 also significantly reduced venous resistance when compared to vehicle-treated coronary artery-ligated animals.The results show that heart failure is characterized by reduced cardiac output, and increased left ventricular end-diastolic pressure, venous resistance and Pmcf. Acute treatment with CGS 21680 in animals with chronic heart failure decreased left ventricular end-diastolic pressure and increased cardiac output. This increase in cardiac output was the result of reduced arterial and venous resistances and increased heart rate. PMID:9831898

  20. Sodium thiopental and mean arterial pressure during cardiopulmonary bypass.

    PubMed

    Dabbagh, Ali; Rajaei, Samira; Ahani, Mohammad Reza

    2011-06-01

    Sodium thiopental is known to have a number of cardiovascular effects, but injection into the cardiopulmonary bypass reservoir has not been studied. The effect of sodium thiopental on mean arterial blood pressure during cardiopulmonary bypass was assessed in 150 patients undergoing elective coronary artery bypass grafting. Sodium thiopental 3 mg · kg(-1) was administered via the cardiopulmonary bypass reservoir. Mean arterial pressure was recorded just before drug administration and at 15-sec intervals up to 120 sec afterwards. Compared to the baseline value, mean arterial pressure was significantly higher at 30, 45, 60, and 75 sec after drug administration, and it was significantly lower at 90, 105, and 120 sec. Sodium thiopental, in addition to its effects on myocardial tissue, acts initially as a potent vasopressor, and shortly after, as a potent vasodilator.

  1. Comparison of acoustic fields produced by the original and upgraded HM-3 lithotripter

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Zhu, Songlin; Dreyer, Thomas; Liebler, Marko; Zhong, Pei

    2003-10-01

    To reduce tissue injury in shock wave lithotripsy (SWL) while maintaining satisfactory stone comminution, an original HM-3 lithotripter was upgraded by a reflector insert to suppress large intraluminal bubble expansion, which is a primary mechanism of vascular injury in SWL. The pressure waveforms produced by the original and upgraded HM-3 lithotripter were measured by using a fiber optical probe hydrophone (FOPH), which was scanned both along and transverse to the lithotripter axis at 1-mm step using a computer-controlled 3-D positioning system. At F2, the pressure waveform produced by the upgraded HM-3 lithotripter at 22 kV has a distinct dual-pulse structure, with a leading shock wave of ~45 MPa from the reflector insert and a 4-μs delayed second pulse of ~15 MPa reflected from the uncovered bottom surface of the original HM-3 reflector. The beam sizes of the original and upgraded HM-3 lithotripter are comparable in both axial and lateral directions. The pressure waveforms measured at the reflector aperture will be used as input to the KZK equation to predict the lithotripter shock wave at F2. Furthermore, bubble dynamics predicted by the Gilmore model will be compared with experimental observation by high-speed imaging. [Work supported by NIH.

  2. Integration of a capacitive pressure sensing system into the outer catheter wall for coronary artery FFR measurements

    NASA Astrophysics Data System (ADS)

    Stam, Frank; Kuisma, Heikki; Gao, Feng; Saarilahti, Jaakko; Gomes Martins, David; Kärkkäinen, Anu; Marrinan, Brendan; Pintal, Sebastian

    2017-05-01

    The deadliest disease in the world is coronary artery disease (CAD), which is related to a narrowing (stenosis) of blood vessels due to fatty deposits, plaque, on the arterial walls. The level of stenosis in the coronary arteries can be assessed by Fractional Flow Reserve (FFR) measurements. This involves determining the ratio between the maximum achievable blood flow in a diseased coronary artery and the theoretical maximum flow in a normal coronary artery. The blood flow is represented by a pressure drop, thus a pressure wire or pressure sensor integrated in a catheter can be used to calculate the ratio between the coronary pressure distal to the stenosis and the normal coronary pressure. A 2 Fr (0.67mm) outer diameter catheter was used, which required a high level of microelectronics miniaturisation to fit a pressure sensing system into the outer wall. The catheter has an eccentric guidewire lumen with a diameter of 0.43mm, which implies that the thickest catheter wall section provides less than 210 microns height for flex assembly integration consisting of two dies, a capacitive MEMS pressure sensor and an ASIC. In order to achieve this a very thin circuit flex was used, and the two chips were thinned down to 75 microns and flip chip mounted face down on the flex. Many challenges were involved in obtaining a flex layout that could wrap into a small tube without getting the dies damaged, while still maintaining enough flexibility for the catheter to navigate the arterial system.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Steven C., E-mail: scrose@ucsd.edu; Kikolski, Steven G.; Chomas, James E.

    Purpose: The purpose of this work was to evaluate blood pressure changes caused by deployment of the Surefire antireflux expandable tip. The pressure measurements are relevant because they imply changes in hepatoenteric arterial blood flow within this liver compartment during hepatic artery delivery of cytotoxic agents. Methods: After positioning the Surefire antireflux system in the targeted hepatic artery, blood pressure was obtained initially with the tip collapsed (or through a femoral artery sheath), then again after the tip was expanded before chemoembolization or yttrium 90 ({sup 90}Y) radioembolization. Results: Eighteen patients with liver malignancy underwent 29 procedures in 29 hepaticmore » arteries (3 common hepatic, 22 lobar, 4 segmental). Systolic, diastolic, and mean blood pressure were all decreased by a mean of 29 mm Hg (p = 0.000004), 14 mm Hg (p = 0.0000004), and 22 mm Hg (p = 0.00000001), respectively. Conclusion: When the Surefire expandable tip is deployed to prevent retrograde reflux of agents, it also results in a significant decrease in blood pressure in the antegrade distribution, potentially resulting in hepatopedal blood flow in vessels that are difficult to embolize, such as the supraduodenal arteries.« less

  4. Reflex vascular responses to alterations in abdominal arterial pressure and flow in anaesthetized dogs.

    PubMed

    Drinkhill, M J; Doe, C P; Myers, D S; Self, D A; Hainsworth, R

    1997-11-01

    The existence of abdominal arterial baroreceptors has long been controversial. Previously difficulties have been encountered in localizing a stimulus to abdominal arteries without affecting reflexogenic areas elsewhere. In these experiments, using anaesthetized dogs, the abdomen was vascularly isolated at the level of the diaphragm, perfused through the aorta, and drained from the inferior vena cava to a reservoir. Changes in abdominal arterial pressure were effected by changing the perfusion pump speed. During this procedure the flow back to the animal from the venous outflow reservoir was held constant. Increases and decreases in abdominal arterial pressure resulted, respectively, in decreases and increases in perfusion pressure to a vascularly isolated hind-limb and in some dogs also a forelimb. Responses were significantly larger when carotid sinus pressure was high (120-180 mmHg) than when it was low (60 mmHg). Responses were still obtained after cutting vagus, phrenic and splanchnic nerves, but were abolished by spinal cord lesion at T12. These experiments provide evidence for the existence of abdominal arterial baroreceptors. The afferent pathway for the reflex vasodilatation appears to run in the spinal cord.

  5. Retinal vessel diameter and estimated cerebrospinal fluid pressure in arterial hypertension: the Beijing Eye Study.

    PubMed

    Jonas, Jost B; Wang, Ningli; Wang, Shuang; Wang, Ya Xing; You, Qi Sheng; Yang, Diya; Wei, Wen Bin; Xu, Liang

    2014-09-01

    Hypertensive retinal microvascular abnormalities include an increased retinal vein-to-artery diameter ratio. Because central retinal vein pressure depends on cerebrospinal fluid pressure (CSFP), we examined whether the retinal vein-to-artery diameter ratio and other retinal hypertensive signs are associated with CSFP. Participants of the population-based Beijing Eye Study (n = 1,574 subjects) underwent measurement of the temporal inferior and superior retinal artery and vein diameter. CSFP was calculated as 0.44 × body mass index (kg/m(2)) + 0.16 × diastolic blood pressure (mm Hg) - 0.18 × age (years) - 1.91. Larger retinal vein diameters and higher vein-to-artery diameter ratios were significantly associated with higher estimated CSFP (P = 0.001) in multivariable analysis. In contrast, temporal inferior retinal arterial diameter was marginally associated (P = 0.03) with estimated CSFP, and temporal superior artery diameter was not significantly associated (P = 0.10) with estimated CSFP; other microvascular abnormalities, such as arteriovenous crossing signs, were also not significantly associated with estimated CSFP. In a reverse manner, higher estimated CSFP as a dependent variable in the multivariable analysis was associated with wider retinal veins and higher vein-to-artery diameter ratio. In the same model, estimated CSFP was not significantly correlated with retinal artery diameters or other retinal microvascular abnormalities. Correspondingly, arterial hypertension was associated with retinal microvascular abnormalities such as arteriovenous crossing signs (P = 0.003), thinner temporal retinal arteries (P < 0.001), higher CSFP (P < 0.001), and wider retinal veins (P = 0.001) or, as a corollary, with a higher vein-to-artery diameter ratio in multivariable analysis. Wider retinal vein diameters are associated with higher estimated CSFP and vice versa. In arterial hypertension, an increased retinal vein-to-artery diameter ratio depends on elevated CSFP, which is correlated with blood pressure. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Uncertainty of High Intensity Therapeutic Ultrasound (HITU) Field Characterization with Hydrophones: Effects of Nonlinearity, Spatial Averaging, and Complex Sensitivity

    PubMed Central

    Liu, Yunbo; Wear, Keith A.; Harris, Gerald R.

    2017-01-01

    Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement uncertainty and signal analysis still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small PVDF capsule hydrophone and two different fiber-optic hydrophones. The focal waveform and beam distribution of a single element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveform. Compressional pressure, rarefactional pressure, and focal beam distribution were compared up to 10.6/−6.0 MPa (p+ and p−) (1.05 MHz) and 20.65/−7.20 MPa (3.3 MHz). In particular, the effects of spatial averaging, local nonlinear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed an uncertainty of no better than 10–15% on hydrophone-based HITU pressure characterization. PMID:28735734

  7. Blood pressure variability in man: its relation to high blood pressure, age and baroreflex sensitivity.

    PubMed

    Mancia, G; Ferrari, A; Gregorini, L; Parati, G; Pomidossi, G; Bertinieri, G; Grassi, G; Zanchetti, A

    1980-12-01

    1. Intra-arterial blood pressure and heart rate were recorded for 24 h in ambulant hospitalized patients of variable age who had normal blood pressure or essential hypertension. Mean 24 h values, standard deviations and variation coefficient were obtained as the averages of values separately analysed for 48 consecutive half-hour periods. 2. In older subjects standard deviation and variation coefficient for mean arterial pressure were greater than in younger subjects with similar pressure values, whereas standard deviation and variation coefficient for mean arterial pressure were greater than in younger subjects with similar pressure values, whereas standard deviation aations and variation coefficient were obtained as the averages of values separately analysed for 48 consecurive half-hour periods. 2. In older subjects standard deviation and variation coefficient for mean arterial pressure were greater than in younger subjects with similar pressure values, whereas standard deviation and variation coefficient for heart rate were smaller. 3. In hypertensive subjects standard deviation for mean arterial pressure was greater than in normotensive subjects of similar ages, but this was not the case for variation coefficient, which was slightly smaller in the former than in the latter group. Normotensive and hypertensive subjects showed no difference in standard deviation and variation coefficient for heart rate. 4. In both normotensive and hypertensive subjects standard deviation and even more so variation coefficient were slightly or not related to arterial baroreflex sensitivity as measured by various methods (phenylephrine, neck suction etc.). 5. It is concluded that blood pressure variability increases and heart rate variability decreases with age, but that changes in variability are not so obvious in hypertension. Also, differences in variability among subjects are only marginally explained by differences in baroreflex function.

  8. [Doppler study of gluteal arteries. A useful tool for excluding gluteal arterial pathology snd an important adjunct to lower limb Doppler studies].

    PubMed

    Bruninx, G; Salame, H; Wery, D; Delcour, C

    2002-02-01

    1) To determine the negative predictive value (VPN) of duplex scan in patients complaining of buttock or hip pain and thereby to distinguish vascular claudication from other musculoskeletal or neurological diseases. 2) To show its complementarity in doppler investigation of lower limb arteries. Prospective study by duplex scan and arteriography of 60 gluteal arteries in 30 consecutive patients referred to check up for lower limb arteriopathy or sexual impotence. Duplex scan was performed by posterior approach. Correlation between doppler ultrasound and arteriography was studied. The study of normal arteries was possible in all cases and only one normal gluteal artery could not be detected in a diabetic overweight patient. On 60 arteries, sensitivity of duplex was 100 percent, specificity 96 percent and VPN 100 percent. Significant obstructive lesions were always associated with pathological velocimetric waveform or were not detected. Buttock claudication can appear like a typical vascular claudication or mimic neurological or musculoskeletal diseases. It is very useful to rule out a vascular causality responsible for buttock or hip pain by simple, non-invasive and cheap exploration. A normal doppler ultrasound of gluteal arteries can rule out vascular disease responsible for buttock or hip pain thereby avoiding arteriography. The strategy of diagnostic or therapy can be modified by such additional information as shown in two case reports.

  9. Reliability of Waveform Analysis as an Adjunct to Loss of Resistance for Thoracic Epidural Blocks.

    PubMed

    Leurcharusmee, Prangmalee; Arnuntasupakul, Vanlapa; Chora De La Garza, Daniel; Vijitpavan, Amorn; Ah-Kye, Sonia; Saelao, Abhidej; Tiyaprasertkul, Worakamol; Finlayson, Roderick J; Tran, De Q H

    2015-01-01

    The epidural space is most commonly identified with loss of resistance (LOR). Although sensitive, LOR lacks specificity, as cysts in interspinous ligaments, gaps in ligamentum flavum, paravertebral muscles, thoracic paravertebral spaces, and intermuscular planes can yield nonepidural LOR. Epidural waveform analysis (EWA) provides a simple confirmatory adjunct for LOR. When the needle is correctly positioned inside the epidural space, measurement of the pressure at its tip results in a pulsatile waveform. In this observational study, we set out to assess the sensitivity, specificity, as well as positive and negative predictive values of EWA for thoracic epidural blocks. We enrolled a convenience sample of 160 patients undergoing thoracic epidural blocks for thoracic surgery, abdominal surgery, or rib fractures. The choice of patient position (sitting or lateral decubitus), approach (midline or paramedian), and LOR medium (air or normal saline) was left to the operator (attending anesthesiologist, fellow, or resident). After obtaining a satisfactory LOR, the operator injected 5 mL of normal saline through the epidural needle. A sterile tubing, connected to a pressure transducer, was attached to the needle to measure the pressure at the needle tip. A 4-mL bolus of lidocaine 2% with epinephrine 5 μg/mL was then administered and, after 10 minutes, the patient was assessed for sensory blockade to ice. The failure rate (incorrect identification of the epidural space with LOR) was 23.1%. Of these 37 failed epidural blocks, 27 provided no sensory anesthesia at 10 minutes. In 10 subjects, the operator was unable to thread the catheter through the needle. When compared with the ice test, the sensitivity, specificity, and positive and negative predictive values of EWA were 91.1%, 83.8%, 94.9%, and 73.8%, respectively. Epidural waveform analysis (with pressure transduction through the needle) provides a simple adjunct to LOR for thoracic epidural blocks. Although its use was devoid of complications, further confirmatory studies are required before its routine implementation in clinical practice.

  10. The angiotensin II receptor type 1b is the primary sensor of intraluminal pressure in cerebral artery smooth muscle cells.

    PubMed

    Pires, Paulo W; Ko, Eun-A; Pritchard, Harry A T; Rudokas, Michael; Yamasaki, Evan; Earley, Scott

    2017-07-15

    The angiotensin II receptor type 1b (AT 1 R b ) is the primary sensor of intraluminal pressure in cerebral arteries. Pressure or membrane-stretch induced stimulation of AT 1 R b activates the TRPM4 channel and results in inward transient cation currents that depolarize smooth muscle cells, leading to vasoconstriction. Activation of either AT 1 R a or AT 1 R b with angiotensin II stimulates TRPM4 currents in cerebral artery myocytes and vasoconstriction of cerebral arteries. The expression of AT 1 R b mRNA is ∼30-fold higher than AT 1 R a in whole cerebral arteries and ∼45-fold higher in isolated cerebral artery smooth muscle cells. Higher levels of expression are likely to account for the obligatory role of AT 1 R b for pressure-induced vasoconstriction . ABSTRACT: Myogenic vasoconstriction, which reflects the intrinsic ability of smooth muscle cells to contract in response to increases in intraluminal pressure, is critically important for the autoregulation of blood flow. In smooth muscle cells from cerebral arteries, increasing intraluminal pressure engages a signalling cascade that stimulates cation influx through transient receptor potential (TRP) melastatin 4 (TRPM4) channels to cause membrane depolarization and vasoconstriction. Substantial evidence indicates that the angiotensin II receptor type 1 (AT 1 R) is inherently mechanosensitive and initiates this signalling pathway. Rodents express two types of AT 1 R - AT 1 R a and AT 1 R b - and conflicting studies provide support for either isoform as the primary sensor of intraluminal pressure in peripheral arteries. We hypothesized that mechanical activation of AT 1 R a increases TRPM4 currents to induce myogenic constriction of cerebral arteries. However, we found that development of myogenic tone was greater in arteries from AT 1 R a knockout animals compared with controls. In patch-clamp experiments using native cerebral arterial myocytes, membrane stretch-induced cation currents were blocked by the TRPM4 inhibitor 9-phenanthrol in both groups. Further, the AT 1 R blocker losartan (1 μm) diminished myogenic tone and blocked stretch-induced cation currents in cerebral arteries from both groups. Activation of AT 1 R with angiotensin II (30 nm) also increased TRPM4 currents in smooth muscle cells and constricted cerebral arteries from both groups. Expression of AT 1 R b mRNA was ∼30-fold greater than AT 1 R a in cerebral arteries, and knockdown of AT 1 R b selectively diminished myogenic constriction. We conclude that AT 1 R b , acting upstream of TRPM4 channels, is the primary sensor of intraluminal pressure in cerebral artery smooth muscle cells. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  11. Blast waves from violent explosive activity at Yasur Volcano, Vanuatu

    NASA Astrophysics Data System (ADS)

    Marchetti, E.; Ripepe, M.; Delle Donne, D.; Genco, R.; Finizola, A.; Garaebiti, E.

    2013-11-01

    and seismic waveforms were collected during violent strombolian activity at Yasur Volcano (Vanuatu). Averaging ~3000 seismic events showed stable waveforms, evidencing a low-frequency (0.1-0.3 Hz) signal preceding ~5-6 s the explosion. Infrasonic waveforms were mostly asymmetric with a sharp compressive (5-106 Pa) onset, followed by a small long-lasting rarefaction phase. Regardless of the pressure amplitude, the ratio between the positive and negative phases was constant. These waveform characteristics closely resembled blast waves. Infrared imagery showed an apparent cold spherical front ~20 m thick, which moved between 342 and 405 m/s before the explosive hot gas/fragments cloud. We interpret this cold front as that produced by the vapor condensation induced by the passage of the shock front. We suggest that violent strombolian activity at Yasur was driven by supersonic dynamics with gas expanding at 1.1 Mach number inside the conduit.

  12. Intrathecal pressure monitoring and cerebrospinal fluid drainage in acute spinal cord injury: a prospective randomized trial.

    PubMed

    Kwon, Brian K; Curt, Armin; Belanger, Lise M; Bernardo, Arlene; Chan, Donna; Markez, John A; Gorelik, Stephen; Slobogean, Gerard P; Umedaly, Hamed; Giffin, Mitch; Nikolakis, Michael A; Street, John; Boyd, Michael C; Paquette, Scott; Fisher, Charles G; Dvorak, Marcel F

    2009-03-01

    Ischemia is an important factor in the pathophysiology of secondary damage after traumatic spinal cord injury (SCI) and, in the setting of thoracoabdominal aortic aneurysm repair, can be the primary cause of paralysis. Lowering the intrathecal pressure (ITP) by draining CSF is routinely done in thoracoabdominal aortic aneurysm surgery but has not been evaluated in the setting of acute traumatic SCI. Additionally, while much attention is directed toward maintaining an adequate mean arterial blood pressure (MABP) in the acute postinjury phase, little is known about what is happening to the ITP during this period when spinal cord perfusion pressure (MABP - ITP) is important. The objectives of this study were to: 1) evaluate the safety and feasibility of draining CSF to lower ITP after acute traumatic SCI; 2) evaluate changes in ITP before and after surgical decompression; and 3) measure neurological recovery in relation to the drainage of CSF. Twenty-two patients seen within 48 hours of injury were prospectively randomized to a drainage or no-drainage treatment group. In all cases a lumbar intrathecal catheter was inserted for 72 hours. Acute complications of headache/nausea/vomiting, meningitis, or neurological deterioration were carefully monitored. Acute Spinal Cord Injury motor scores were documented at baseline and at 6 months postinjury. On insertion of the catheter, mean ITP was 13.8 +/- 1.3 mm Hg (+/- SD), and it increased to a mean peak of 21.7 +/- 1.5 mm Hg intraoperatively. The difference between the starting ITP on catheter insertion and the observed peak intrathecal pressure after decompression was, on average, an increase of 7.9 +/- 1.6 mm Hg (p < 0.0001, paired t-test). During the postoperative period, the peak recorded ITP in the patients randomized to the no-drainage group was 30.6 +/- 2.3 mm Hg, which was significantly higher than the peak intraoperative ITP (p = 0.0098). During the same period, the peak recorded ITP in patients randomized to receive drainage was 28.1 +/- 2.8 mm Hg, which was not statistically higher than the peak intraoperative ITP (p = 0.15). The insertion of lumbar intrathecal catheters and the drainage of CSF were not associated with significant adverse events, although the cohort was small and only a limited amount of CSF was drained. Intraoperative decompression of the spinal cord results in an increase in the ITP measured caudal to the injury site. Increases in intrathecal pressure are additionally observed in the postoperative period. These increases in intrathecal pressure result in reduced spinal cord perfusion that will otherwise go undetected when measuring only the MABP. Characteristic changes in the observed intrathecal pressure waveform occur after surgical decompression, reflecting the restoration of CSF flow across the SCI site. As such, the waveform pattern may be used intraoperatively to determine if adequate decompression of the thecal sac has been accomplished.

  13. Measuring high pressure baroreceptor sensitivity in the rat.

    PubMed

    Shiry, L J; Hamlin, R L

    2011-01-01

    The high pressure baroreceptor reflex rapidly buffers changes in systemic arterial pressure in response to postural changes, altered gravitational conditions, diseases, and pharmacological agents. Drug-induced exaggeration of changes in heart rate and in systemic arterial pressure is a leading cause of adverse events and of patients terminating use of drugs, particularly in the aging population. This paper presents a facile method for monitoring the high pressure baroreceptor reflex in rats, and presents an alternative to quantifying the magnitude of this reflex using 2 dependent variables, heart rate and systemic arterial pressure, rather than merely change in heart rate. Twenty-four rats were allocated to 3 groups: group I anesthetized with 100mg/kg thiopental, group II anesthetized with 2% isoflurane given by inhalation, group III anesthetized with thiopental but pretreated for 2weeks with 2μg/kg aldosterone given SQ bid. After induction to anesthesia, hair was clipped from the ventral aspect of the neck, and petrolatum was applied to the skin to permit an air-tight seal with a glass funnel attached to a source of variable and controllable negative pressure. Systemic arterial pressure, ECG, heart rate, and a force of suction applied to the neck were all recorded continuously. After baseline recordings, a force of -20mmHg was applied for 20s over the carotid artery. In rats receiving thiopental, the average changes in heart rate and systemic arterial pressure following the application of -20mmHg neck suction were 30±11bpm and 45±14mmHg, respectively. The ratios of change in heart and change in systemic arterial pressure to application of negative force over the carotid sinus are 1.5±0.6bpm/mmHg and 0.7±04mmHg/mmHg, respectively. Mean values for heart rate and for mean systemic arterial pressure during baseline and after application of neck suction for 20s showed little to no decrease (i.e., blunting) in rats anesthetized with isoflurane or pretreated with aldosterone. Thus this methodology was able to detect, in rats, blunting of baroreceptor function for at least 2 perturbations of this important homeostatic control system. Copyright © 2011. Published by Elsevier Inc.

  14. Methods and apparatus for determining cardiac output

    NASA Technical Reports Server (NTRS)

    Cohen, Richard J. (Inventor); Sherman, Derin A. (Inventor); Mukkamala, Ramakrishna (Inventor)

    2010-01-01

    The present invention provides methods and apparatus for determining a dynamical property of the systemic or pulmonary arterial tree using long time scale information, i.e., information obtained from measurements over time scales greater than a single cardiac cycle. In one aspect, the invention provides a method and apparatus for monitoring cardiac output (CO) from a single blood pressure signal measurement obtained at any site in the systemic or pulmonary arterial tree or from any related measurement including, for example, fingertip photoplethysmography.According to the method the time constant of the arterial tree, defined to be the product of the total peripheral resistance (TPR) and the nearly constant arterial compliance, is determined by analyzing the long time scale variations (greater than a single cardiac cycle) in any of these blood pressure signals. Then, according to Ohm's law, a value proportional to CO may be determined from the ratio of the blood pressure signal to the estimated time constant. The proportional CO values derived from this method may be calibrated to absolute CO, if desired, with a single, absolute measure of CO (e.g., thermodilution). The present invention may be applied to invasive radial arterial blood pressure or pulmonary arterial blood pressure signals which are routinely measured in intensive care units and surgical suites or to noninvasively measured peripheral arterial blood pressure signals or related noninvasively measured signals in order to facilitate the clinical monitoring of CO as well as TPR.

  15. Acoustic Full Waveform Inversion to Characterize Near-surface Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rodgers, A. J.

    2015-12-01

    Recent high-quality, atmospheric overpressure data from chemical high-explosive experiments provide a unique opportunity to characterize near-surface explosions, specifically estimating yield and source time function. Typically, yield is estimated from measured signal features, such as peak pressure, impulse, duration and/or arrival time of acoustic signals. However, the application of full waveform inversion to acoustic signals for yield estimation has not been fully explored. In this study, we apply a full waveform inversion method to local overpressure data to extract accurate pressure-time histories of acoustics sources during chemical explosions. A robust and accurate inversion technique for acoustic source is investigated using numerical Green's functions that take into account atmospheric and topographic propagation effects. The inverted pressure-time history represents the pressure fluctuation at the source region associated with the explosion, and thus, provides a valuable information about acoustic source mechanisms and characteristics in greater detail. We compare acoustic source properties (i.e., peak overpressure, duration, and non-isotropic shape) of a series of explosions having different emplacement conditions and investigate the relationship of the acoustic sources to the yields of explosions. The time histories of acoustic sources may refine our knowledge of sound-generation mechanisms of shallow explosions, and thereby allow for accurate yield estimation based on acoustic measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Human Autonomic and Cerebrovascular Responses to Inspiratory Impedance

    DTIC Science & Technology

    2006-06-01

    recorded the ECG, finger photoplethysmographic arterial pressure , cerebral blood flow velocity, and muscle sympathetic nerve activity (MSNA). In a... pressures and R-R intervals, or between arterial pres- sures and cerebral blood flow velocities at the LF (p > 0.05). Conclusions: Our results demonstrate...that the ITD increases arterial pressure , heart rate, and cerebral blood flow velocity independent of changes in autonomic car- diovascular control or

  17. Numerical modeling of dynamics of heart rate and arterial pressure during passive orthostatic test

    NASA Astrophysics Data System (ADS)

    Ishbulatov, Yu. M.; Kiselev, A. R.; Karavaev, A. S.

    2018-04-01

    A model of human cardiovascular system is proposed to describe the main heart rhythm, influence of autonomous regulation on frequency and strength of heart contractions and resistance of arterial vessels; process of formation of arterial pressure during systolic and diastolic phases; influence of respiration; synchronization between loops of autonomous regulation. The proposed model is used to simulate the dynamics of heart rate and arterial pressure during passive transition from supine to upright position. Results of mathematical modeling are compared to original experimental data.

  18. Simultaneous monitoring of static and dynamic intracranial pressure parameters from two separate sensors in patients with cerebral bleeds: comparison of findings.

    PubMed

    Eide, Per Kristian; Holm, Sverre; Sorteberg, Wilhelm

    2012-09-07

    We recently reported that in an experimental setting the zero pressure level of solid intracranial pressure (ICP) sensors can be altered by electrostatics discharges. Changes in the zero pressure level would alter the ICP level (mean ICP); whether spontaneous changes in mean ICP happen in clinical settings is not known. This can be addressed by comparing the ICP parameters level and waveform of simultaneous ICP signals. To this end, we retrieved our recordings in patients with cerebral bleeds wherein the ICP had been recorded simultaneously from two different sensors. During a time period of 10 years, 17 patients with cerebral bleeds were monitored with two ICP sensors simultaneously; sensor 1 was always a solid sensor while Sensor 2 was a solid -, a fluid - or an air-pouch sensor. The simultaneous signals were analyzed with automatic identification of the cardiac induced ICP waves. The output was determined in consecutive 6-s time windows, both with regard to the static parameter mean ICP and the dynamic parameters (mean wave amplitude, MWA, and mean wave rise time, MWRT). Differences in mean ICP, MWA and MWRT between the two sensors were determined. Transfer functions between the sensors were determined to evaluate how sensors reproduce the ICP waveform. Comparing findings in two solid sensors disclosed major differences in mean ICP in 2 of 5 patients (40%), despite marginal differences in MWA, MWRT, and linear phase magnitude and phase. Qualitative assessment of trend plots of mean ICP and MWA revealed shifts and drifts of mean ICP in the clinical setting. The transfer function analysis comparing the solid sensor with either the fluid or air-pouch sensors revealed more variable transfer function magnitude and greater differences in the ICP waveform derived indices. Simultaneous monitoring of ICP using two solid sensors may show marked differences in static ICP but close to identity in dynamic ICP waveforms. This indicates that shifts in ICP baseline pressure (sensor zero level) occur clinically; trend plots of the ICP parameters also confirm this. Solid sensors are superior to fluid - and air pouch sensors when evaluating the dynamic ICP parameters.

  19. Comparison of Arterial Repair through the Suture, Suture with Fibrin or Cyanoacrylate Adhesive in Ex-Vivo Porcine Aortic Segment

    PubMed Central

    de Carvalho, Marcus Vinicius H.; Marchi, Evaldo; Lourenço, Edmir Américo

    2017-01-01

    Introduction Tissue adhesives can be used as adjacent to sutures to drop or avoid bleeding in cardiovascular operations. Objective To verify the efficiency of fibrin and cyanoacrylate adhesive to seal arterial sutures and if the adhesives penetrate through suture line to the inner of arteries. Methods 20 abdominal aorta segments of pigs were divided into two groups according to the adhesive which would be used as adjacent to the suture. In every arterial segment an arteriotomy was done, followed by a conventional artery closure. Afterwards a colloidal fluid was injected inside the arterial segment with a simultaneous intravascular pressure monitoring up to a fluid leakage through the suture. This procedure was repeated after application of one of the adhesives on the suture in order to check if the bursting pressure increases. The inner aorta segments also were analyzed in order to check if there was intraluminal adhesive penetration. Results In Suture 1 group, the mean arterial pressure sustained by the arterial suture reached 86±5.35 mmHg and after the fibrin adhesive application reached 104±11.96 (P<0.002). In the Suture 2 group, the mean arterial pressure sustained by the suture reached 83±2.67 mmHg and after the cyanoacrylate adhesive application reached 152±14.58 mmHg (P<0.002). Intraluminal adhesive penetration has not been noticed. Conclusion There was a significant rise in the bursting pressure when tissue adhesives were used as adjacent to arterial suture, and this rise was higher if the cyanoacrylate adhesive was used. In addition, the adhesives do not penetrate through the suture line into the arteries. PMID:29267611

  20. 10 CFR 431.282 - Test Procedures [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., metal halide, and high-pressure sodium lamps. Mercury vapor lamp means a high intensity discharge lamp..., current, and waveform) for starting and operating. High intensity discharge lamp means an electric... light is produced by radiation from mercury typically operating at a partial vapor pressure in excess of...

  1. A reusable perforator-preserving gluteal artery-based rotation fasciocutaneous flap for pressure sore reconstruction.

    PubMed

    Lin, Pao-Yuan; Kuo, Yur-Ren; Tsai, Yun-Ta

    2012-03-01

    Perforator-based fasciocutaneous flaps for reconstructing pressure sores can achieve good functional results with acceptable donor site complications in the short-term. Recurrence is a difficult issue and a major concern in plastic surgery. In this study, we introduce a reusable perforator-preserving gluteal artery-based rotation flap for reconstruction of pressure sores, which can be also elevated from the same incision to accommodate pressure sore recurrence. The study included 23 men and 13 women with a mean age of 59.3 (range 24-89) years. There were 24 sacral ulcers, 11 ischial ulcers, and one trochanteric ulcer. The defects ranged in size from 4 × 3 to 12 × 10 cm(2) . Thirty-six consecutive pressure sore patients underwent gluteal artery-based rotation flap reconstruction. An inferior gluteal artery-based rotation fasciocutaneous flap was raised, and the superior gluteal artery perforator was preserved in sacral sores; alternatively, a superior gluteal artery-based rotation fasciocutaneous flap was elevated, and the inferior gluteal artery perforator was identified and dissected in ischial ulcers. The mean follow-up was 20.8 (range 0-30) months in this study. Complications included four cases of tip necrosis, three wound dehiscences, two recurrences reusing the same flap for pressure sore reconstruction, one seroma, and one patient who died on the fourth postoperative day. The complication rate was 20.8% for sacral ulcers, 54.5% for ischial wounds, and none for trochanteric ulcer. After secondary repair and reconstruction of the compromised wounds, all of the wounds healed uneventfully. The perforator-preserving gluteal artery-based rotation fasciocutaneous flap is a reliable, reusable flap that provides rich vascularity facilitating wound healing and accommodating the difficulties of pressure sore reconstruction. Copyright © 2011 Wiley Periodicals, Inc.

  2. Decline in arterial partial pressure of oxygen after exercise: a surrogate marker of pulmonary vascular obstructive disease in patients with atrial septal defect and severe pulmonary hypertension.

    PubMed

    Laksmivenkateshiah, Srinivas; Singhi, Anil K; Vaidyanathan, Balu; Francis, Edwin; Karimassery, Sundaram R; Kumar, Raman K

    2011-06-01

    To examine the utility of decline in arterial partial pressure of oxygen after exercise as a marker of pulmonary vascular obstructive disease in patients with atrial septal defect and pulmonary hypertension. Treadmill exercise was performed in 18 patients with atrial septal defect and pulmonary hypertension. Arterial blood gas samples were obtained before and after peak exercise. A decline in the arterial pressure of oxygen of more than 10 millimetres of mercury after exercise was considered significant based on preliminary tests conducted on the controls. Cardiac catheterisation was performed in all patients and haemodynamic data sets were obtained on room air, oxygen, and a mixture of oxygen and nitric oxide (30-40 parts per million). There were 10 patients who had more than a 10 millimetres of mercury drop in arterial partial pressure of oxygen after exercise and who had a basal pulmonary vascular resistance index of more than 7 Wood units per square metre. Out of eight patients who had less than a 10 millimetres of mercury drop in arterial partial pressure of oxygen after exercise, seven had a basal pulmonary vascular resistance index of less than 7 Wood units per square metre, p equals 0.0001. A decline in arterial partial pressure of oxygen of more than 10 millimetres of mercury predicted a basal pulmonary vascular resistance index of more than 7 Wood units per square metre with a specificity of 100% and a sensitivity of 90%. A decline in arterial partial pressure of oxygen following exercise appears to predict a high pulmonary vascular resistance index in patients with atrial septal defect and pulmonary hypertension. This test is a useful non-invasive marker of pulmonary vascular obstructive disease in this subset.

  3. Characterization of pressure-mediated vascular tone in resistance arteries from bile duct-ligated rats

    PubMed Central

    Jadeja, Ravirajsinh N.; Thounaojam, Menaka C.; Khurana, Sandeep

    2017-01-01

    In cirrhosis, changes in pressure-mediated vascular tone, a key determinant of systemic vascular resistance (SVR), are unknown. To address this gap in knowledge, we assessed ex vivo dynamics of pressurized mesenteric resistance arteries (diameter ~ 260 μm) from bile duct-ligated (BDL) and sham-operated (SHAM) rats and determined the underlying mechanisms. At isobaric intraluminal pressure (70 mmHg) as well as with step-wise increase in pressure (10-110 mmHg), arteries from SHAM-rats constricted more than BDL-rats, and had reduced luminal area. In both groups, incubation with LNAME (a NOS inhibitor) had no effect on pressure-mediated tone, and expression of NOS isoforms were similar. TEA, which enhances Ca2+ influx, augmented arterial tone only in SHAM-rats, with minimal effect in those from BDL-rats that was associated with reduced expression of Ca2+ channel TRPC6. In permeabilized arteries, high-dose Ca2+ and γGTP enhanced the vascular tone, which remained lower in BDL-rats that was associated with reduced ROCK2 and pMLC expression. Further, compared to SHAM-rats, in BDL-rats, arteries had reduced collagen expression which was associated with increased expression and activity of MMP-9. BDL-rats also had increased plasma reactive oxygen species (ROS). In vascular smooth muscle cells in vitro, peroxynitrite enhanced MMP-9 activity and reduced ROCK2 expression. These data provide evidence that in cirrhosis, pressure-mediated tone is reduced in resistance arteries, and suggest that circulating ROS play a role in reducing Ca2+ sensitivity and enhancing elasticity to induce arterial adaptations. These findings provide insights into mechanisms underlying attenuated SVR in cirrhosis. PMID:28430609

  4. Transfer function analysis of dynamic cerebral autoregulation in humans

    NASA Technical Reports Server (NTRS)

    Zhang, R.; Zuckerman, J. H.; Giller, C. A.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    To test the hypothesis that spontaneous changes in cerebral blood flow are primarily induced by changes in arterial pressure and that cerebral autoregulation is a frequency-dependent phenomenon, we measured mean arterial pressure in the finger and mean blood flow velocity in the middle cerebral artery (VMCA) during supine rest and acute hypotension induced by thigh cuff deflation in 10 healthy subjects. Transfer function gain, phase, and coherence function between changes in arterial pressure and VMCA were estimated using the Welch method. The impulse response function, calculated as the inverse Fourier transform of this transfer function, enabled the calculation of transient changes in VMCA during acute hypotension, which was compared with the directly measured change in VMCA during thigh cuff deflation. Beat-to-beat changes in VMCA occurred simultaneously with changes in arterial pressure, and the autospectrum of VMCA showed characteristics similar to arterial pressure. Transfer gain increased substantially with increasing frequency from 0.07 to 0.20 Hz in association with a gradual decrease in phase. The coherence function was > 0.5 in the frequency range of 0.07-0.30 Hz and < 0.5 at < 0.07 Hz. Furthermore, the predicted change in VMCA was similar to the measured VMCA during thigh cuff deflation. These data suggest that spontaneous changes in VMCA that occur at the frequency range of 0.07-0.30 Hz are related strongly to changes in arterial pressure and, furthermore, that short-term regulation of cerebral blood flow in response to changes in arterial pressure can be modeled by a transfer function with the quality of a high-pass filter in the frequency range of 0.07-0.30 Hz.

  5. Patient specific 3-d modeling of blood flow in a multi-stenosed left coronary artery.

    PubMed

    Kamangar, Sarfaraz; Badruddin, Irfan Anjum; Ameer Ahamad, N; Soudagar, Manzoor Elahi M; Govindaraju, Kalimuthu; Nik-Ghazali, N; Salman Ahmed, N J; Yunus Khan, T M

    2017-01-01

    The current study investigates the effect of multi stenosis on the hemodynamic parameters such as wall pressure, velocity and wall shear stress in the realistic left coronary artery. Patients CT scan image data of normal and diseased left coronary artery was chosen for the reconstruction of 3D coronary artery models. The diseased 3D model of left coronary artery shows a narrowing of more than 70% and 80% of area stenosis (AS) at the left main stem (LMS) and left circumflex (LCX) respectively. The results show that the decrease in pressure was found downstream to the stenosis as compared to the coronary artery without stenosis. The maximum pressure drop was noted across the 80% AS at the left circumflex branch. The recirculation zone was also observed immediate to the stenosis and highest wall shear stress was found across the 80% area stenosis. Our analysis provides an insight into the distribution of wall shear stress and pressure drop, thus improving our understanding on the hemodynamics in realistic coronary artery.

  6. The β2 agonist terbutaline specifically decreases pulmonary arterial pressure under normoxia and hypoxia via α adrenoceptor antagonism.

    PubMed

    Neumann, Vanessa; Knies, Ralf; Seidinger, Alexander; Simon, Annika; Lorenz, Kristina; Matthey, Michaela; Breuer, Johannes; Wenzel, Daniela

    2018-05-01

    Pulmonary hypertension is a severe, incurable disease with a poor prognosis. Although treatment regimens have improved during the last 2 decades, current pharmacologic strategies are limited and focus on the modulation of only a few pathways related to endothelin, NO, and prostacyclin signaling. Therefore, the identification of novel molecular targets is urgently needed. We found that the β 2 adrenoceptor (AR) agonists terbutaline (TER) and salbutamol induced a dose-dependent vasorelaxation in large pulmonary arteries but not aortas of mouse. This effect was found to be independent of β ARs and the endothelium but was determined by the type of the preconstrictor. Vasodilation by β 2 AR agonists occurred after pretreatment of pulmonary arteries with phenylephrine and serotonin, both agonists of α 1 ARs, but was absent after preconstriction with the thromboxane analog U46619. These data indicated α-adrenolytic activity of β 2 AR agonists, which was confirmed by a right shift of the phenylephrine dose-response curve by TER. This effect was physiologically relevant because TER also relaxed small intrapulmonary arteries in lung slices and diminished pulmonary arterial pressure in an isolated perfused lung model under normoxia and hypoxia. Finally, TER applied as an aerosol also selectively decreased pulmonary arterial pressure without effects on systemic blood pressure and heart rate in mouse in vivo. Thus, β 2 AR agonists display α-adrenolytic activity in pulmonary arteries ex vivo and in vivo, and may provide a novel option to reduce pulmonary arterial pressure in pulmonary hypertension.-Neumann, V., Knies, R., Seidinger, A., Simon, A., Lorenz, K., Matthey, M., Breuer, J., Wenzel, D. The β 2 agonist terbutaline specifically decreases pulmonary arterial pressure under normoxia and hypoxia via α adrenoceptor antagonism.

  7. Perioperative Hemodynamic Monitoring of Common Hepatic Artery for Endovascular Embolization of a Pancreaticoduodenal Arcade Aneurysm with Celiac Stenosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibata, Eisuke, E-mail: eisuke.shibata1130@gmail.com; Takao, Hidemasa; Amemiya, Shiori

    This report describes perioperative hemodynamic monitoring of the common hepatic artery (CHA) during endovascular treatment of a pancreaticoduodenal arcade aneurysm, in a patient with celiac artery stenosis caused by the median arcuate ligament. Pressure monitoring was performed as a safety measure against critical complications such as liver ischemia. As the aneurysm was located in the anterior pancreaticoduodenal artery (APDA) and the posterior pancreaticoduodenal artery (PPDA) was small in caliber, the patient was considered to be at a high risk of liver ischemia. No significant change in pressure was observed in the CHA on balloon occlusion test in the APDA. Immediatelymore » after embolization, the PPDA enlarged and the pressure in the CHA was well maintained. Pressure monitoring appears to improve patient safety during endovascular treatment of visceral aneurysms.« less

  8. Transducer selection and application in magnetoacoustic tomography with magnetic induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuqi; Wang, Jiawei; Ma, Qingyu, E-mail: maqingyu@njnu.edu.cn

    2016-03-07

    As an acoustic receiver, transducer plays a vital role in signal acquisition and image reconstruction for magnetoacoustic tomography with magnetic induction (MAT-MI). In order to optimize signal acquisition, the expressions of acoustic pressure detection and waveform collection are theoretically studied based on the radiation theory of acoustic dipole and the reception pattern of transducer. Pressure distributions are simulated for a cylindrical phantom model using a planar piston transducer with different radii and bandwidths. The proposed theory is also verified by the experimental measurements of acoustic waveform detection for an aluminum foil cylinder. It is proved that acoustic pressure with sharpmore » and clear boundary peaks can be detected by the large-radius transducer with wide bandwidth, reflecting the differential of the induced Lorentz force accurately, which is helpful for precise conductivity reconstruction. To detect acoustic pressure with acceptable pressure amplitude, peak pressure ratio, amplitude ratio, and improved signal to noise ratio, the scanning radius of 5–10 times the radius of the object should be selected to improve the accuracy of image reconstruction. This study provides a theoretical and experimental basis for transducer selection and application in MAT-MI to obtain reconstructed images with improved resolution and definition.« less

  9. Increased response of diastolic blood pressure to exercise in patients with coronary artery disease: an index of latent ventricular dysfunction?

    PubMed Central

    Paraskevaidis, I A; Kremastinos, D T; Kassimatis, A S; Karavolias, G K; Kordosis, G D; Kyriakides, Z S; Toutouzas, P K

    1993-01-01

    OBJECTIVE--To determine whether an abnormal response of diastolic blood pressure during treadmill exercise stress testing correlated with the number of obstructed vessels and with left ventricular systolic function in patients with coronary artery disease. DESIGN--Diastolic blood pressure was measured invasively during exercise stress testing and coronary angiograms and left ventriculograms were obtained at rest in patients with coronary artery disease. The abnormal (> or = 15 mm Hg) diastolic blood pressure response was compared with the number of obstructed coronary arteries and with left ventricular systolic function. SETTING--Two tertiary referral centres. PATIENTS--50 consecutive patients (mean age 57 years) with coronary artery disease. MAIN OUTCOME MEASURES--The increase in diastolic blood pressure during exercise and its correlation with the appearance and disappearance of ST segment deviation, resting left ventricular systolic function, and the number of obstructed coronary arteries. RESULTS--Group 1: 10 (20%) patients (three with one, four with two, and three with three vessel coronary artery disease) (mean (SD) age 54.7 (12) years) had an abnormal diastolic blood pressure response that appeared 1.2 (0.3) min before ST segment deviation and became normal 0.9 (0.3) min after the ST segment returned to normal. Group 2: 40 (80%) patients (12 with one, 16 with two, and 12 with three vessel coronary arteries disease) (aged 56.8 (8.2) years) had a normal diastolic blood pressure response to stress testing. The ejection fraction (46.3 (5)%) and cardiac index (2.6 (0.1) 1/min/m2) in group 1 were less than in group 2 (61.6 (4.2)% and 3.8 (0.3) 1/min/m2 respectively, p < or = 0.001). The end systolic volume was greater in group 1 than in group 2: 38.7 (0.7 ml/m2 v 28.2 (2.1) ml/m2, p < or = 0.001. CONCLUSION--In patients with coronary artery disease an abnormal increase in diastolic blood pressure during exercise stress testing correlated well with left ventricular systolic function at rest but not with the number of obstructed coronary arteries. The abnormal response of diastolic blood pressure probably reflects deterioration of myocardial function. Images PMID:8343317

  10. Arterial blood pressure estimation using ultrasound: Clinical results on healthy volunteers and a medicated hypertensive volunteer.

    PubMed

    Zakrzewski, Aaron M; Anthony, Brian W

    2017-07-01

    This study presents a non-occlusive and non-invasive ultrasound-based technique to measure blood pressure. Most popular clinically-used arterial blood pressure measurement techniques suffer from important weaknesses including being inaccurate, invasive, or occlusive. In the proposed technique, an ultrasound probe is placed on the patient's carotid artery and the contact force between the probe and the tissue is slowly increased while ultrasound images and contact force data are recorded. From this data, the artery is segmented and the segmentation data is sent into an optimization procedure; after post-processing, blood pressure is displayed to the user. This technique was applied to 24 healthy single-visit volunteers, one multi-visit healthy volunteer, and one multi-visit medicated hypertensive volunteer. Compared to the oscillometric cuff, the accuracy and precision of the algorithm-reported systolic pressure is -2.4 ± 10.2 mmHg, and for diastolic pressure is -0.3 ± 8.2 mmHg. This method has the potential to occupy a clinical middle-ground between the arterial catheter and the oscillometric cuff.

  11. Polyvinylidene fluoride (PVDF) vibration sensor for stethoscope and contact microphones

    NASA Astrophysics Data System (ADS)

    Toda, Minoru; Thompson, Mitchell

    2005-09-01

    This paper describes a new type of contact vibration sensor made by bonding piezoelectric PVDF film to a curved frame structure. The concave surface of the film is bonded to a rubber piece having a front contact face. Vibration is transmitted from this face through the rubber to the surface of the PVDF film. Pressure normal to the surface of the film is converted to circumferential strain, and an electric field is induced by the piezoelectric effect. The frequency response of the device was measured using an accelerometer mounted between the rubber face and a rigid vibration exciter plate. Sensitivity (voltage per unit displacement) was deduced from the device output and measured acceleration. The sensitivity was flat from 16 Hz to 3 kHz, peaking at 6 kHz due to a structural resonance. Calculations predicting performance against human tissue (stethoscope or contact microphone) show results similar to data measured against the metal vibrator. This implies that an accelerometer can be used for calibrating a stethoscope or contact microphone. The observed arterial pulse waveform showed more low-frequency content than a conventional electronic stethoscope.

  12. Arterial Pressure Analog.

    ERIC Educational Resources Information Center

    Heusner, A. A.; Tracy, M. L.

    1980-01-01

    Describes a simple hydraulic analog which allows students to explore some physical aspects of the cardiovascular system and provides them with a means to visualize and conceptualize these basic principles. Simulates the behavior of arterial pressure in response to changes in heart rate, stroke volume, arterial compliance, and peripheral…

  13. Noninvasive intracranial pressure measurement using infrasonic emissions from the tympanic membrane.

    PubMed

    Stettin, Eduard; Paulat, Klaus; Schulz, Chris; Kunz, Ulrich; Mauer, Uwe Max

    2011-06-01

    We investigated whether ICP can be assessed by measuring infrasonic emissions from the tympanic membrane. An increase in ICP was induced in 22 patients with implanted ICP pressure sensors. ICP waveforms that were obtained invasively and continuously were compared with infrasonic emission waveforms. In addition, the noninvasive method was used in a control group of 14 healthy subjects. In a total of 83 measurements, the changes in ICP that were observed in response to different types of stimulation were detected in the waveforms obtained noninvasively as well as in those acquired invasively. Low ICP was associated with an initial high peak and further peaks with smaller amplitudes. High ICP was associated with a marked decrease in the number of peaks and in the difference between the amplitudes of the initial and last peaks. The assessment of infrasonic emissions, however, does not yet enable us to provide exact figures. It is conceivable that the assessment of infrasonic emissions will become suitable both as a screening tool and for the continuous monitoring of ICP in an intensive care environment.

  14. ACCURACY OF NONINVASIVE ANESTHETIC MONITORING IN THE ANESTHETIZED GIRAFFE (GIRAFFA CAMELOPARDALIS).

    PubMed

    Bertelsen, Mads F; Grøndahl, Carsten; Stegmann, George F; Sauer, Cathrine; Secher, Niels H; Hasenkam, J Michael; Damkjær, Mads; Aalkjær, Christian; Wang, Tobias

    2017-09-01

    This study evaluated the accuracy of pulse oximetry, capnography, and oscillometric blood pressure during general anesthesia in giraffes (Giraffa camelopardalis). Thirty-two giraffes anesthetized for physiologic experiments were instrumented with a pulse oximeter transmittance probe positioned on the tongue and a capnograph sampling line placed at the oral end of the endotracheal tube. A human size 10 blood pressure cuff was placed around the base of the tail, and an indwelling arterial catheter in the auricular artery continuously measured blood pressure. Giraffes were intermittently ventilated using a Hudson demand valve throughout the procedures. Arterial blood for blood gas analysis was collected at multiple time points. Relationships between oxygen saturation as determined by pulse oximetry and arterial oxygen saturation, between arterial carbon dioxide partial pressure and end-tidal carbon dioxide, and between oscillometric pressure and invasive arterial blood pressure were assessed, and the accuracy of pulse oximetry, capnography, and oscillometric blood pressure monitoring evaluated using Bland-Altman analysis. All three noninvasive methods provided relatively poor estimates of the reference values. Receiver operating characteristic curve fitting was used to determine cut-off values for hypoxia, hypocapnia, hypercapnia, and hypotension for dichotomous decision-making. Applying these cut-off values, there was reasonable sensitivity for detection of hypocapnia, hypercapnia, and hypotension, but not for hypoxemia. Noninvasive anesthetic monitoring should be interpreted with caution in giraffes and, ideally, invasive monitoring should be employed.

  15. Free-field propagation of high intensity noise

    NASA Technical Reports Server (NTRS)

    Welz, Joseph P.; Mcdaniel, Oliver H.

    1990-01-01

    Observed spectral data from supersonic jet aircraft are known to contain much more high frequency energy than can be explained by linear acoustic propagation theory. It is believed that the high frequency energy is an effect of nonlinear distortion due to the extremely high acoustic levels generated by the jet engines. The objective, to measure acoustic waveform distortion for spherically diverging high intensity noise, was reached by using an electropneumatic acoustic source capable of generating sound pressure levels in the range of 140 to 160 decibels (re 20 micro Pa). The noise spectrum was shaped to represent the spectra generated by jet engines. Two microphones were used to capture the acoustic pressure waveform at different points along the propagation path in order to provide a direct measure of the waveform distortion as well as spectral distortion. A secondary objective was to determine that the observed distortion is an acoustic effect. To do this an existing computer prediction code that deals with nonlinear acoustic propagation was used on data representative of the measured data. The results clearly demonstrate that high intensity jet noise does shift the energy in the spectrum to the higher frequencies along the propagation path. In addition, the data from the computer model are in good agreement with the measurements, thus demonstrating that the waveform distortion can be accounted for with nonlinear acoustic theory.

  16. Redox Signaling via Oxidative Inactivation of PTEN Modulates Pressure-Dependent Myogenic Tone in Rat Middle Cerebral Arteries

    PubMed Central

    Gebremedhin, Debebe; Terashvili, Maia; Wickramasekera, Nadi; Zhang, David X.; Rau, Nicole; Miura, Hiroto; Harder, David R.

    2013-01-01

    The present study examined the level of generation of reactive oxygen species (ROS) and roles of inactivation of the phosphatase PTEN and the PI3K/Akt signaling pathway in response to an increase in intramural pressure-induced myogenic cerebral arterial constriction. Step increases in intraluminal pressure of cannulated cerebral arteries induced myogenic constriction and concomitant formation of superoxide (O2 .−) and its dismutation product hydrogen peroxide (H2O2) as determined by fluorescent HPLC analysis, microscopic analysis of intensity of dihydroethidium fluorescence and attenuation of pressure-induced myogenic constriction by pretreatment with the ROS scavenger 4,hydroxyl-2,2,6,6-tetramethylpiperidine1-oxyl (tempol) or Mito-tempol or MitoQ in the presence or absence of PEG-catalase. An increase in intraluminal pressure induced oxidation of PTEN and activation of Akt. Pharmacological inhibition of endogenous PTEN activity potentiated pressure-dependent myogenic constriction and caused a reduction in NPo of a 238 pS arterial KCa channel current and an increase in [Ca2+]i level in freshly isolated cerebral arterial muscle cells (CAMCs), responses that were attenuated by Inhibition of the PI3K/Akt pathway. These findings demonstrate an increase in intraluminal pressure induced increase in ROS production triggered redox-sensitive signaling mechanism emanating from the cross-talk between oxidative inactivation of PTEN and activation of the PI3K/Akt signaling pathway that involves in the regulation of pressure-dependent myogenic cerebral arterial constriction. PMID:23861911

  17. Redox signaling via oxidative inactivation of PTEN modulates pressure-dependent myogenic tone in rat middle cerebral arteries.

    PubMed

    Gebremedhin, Debebe; Terashvili, Maia; Wickramasekera, Nadi; Zhang, David X; Rau, Nicole; Miura, Hiroto; Harder, David R

    2013-01-01

    The present study examined the level of generation of reactive oxygen species (ROS) and roles of inactivation of the phosphatase PTEN and the PI3K/Akt signaling pathway in response to an increase in intramural pressure-induced myogenic cerebral arterial constriction. Step increases in intraluminal pressure of cannulated cerebral arteries induced myogenic constriction and concomitant formation of superoxide (O2 (.-)) and its dismutation product hydrogen peroxide (H2O2) as determined by fluorescent HPLC analysis, microscopic analysis of intensity of dihydroethidium fluorescence and attenuation of pressure-induced myogenic constriction by pretreatment with the ROS scavenger 4,hydroxyl-2,2,6,6-tetramethylpiperidine1-oxyl (tempol) or Mito-tempol or MitoQ in the presence or absence of PEG-catalase. An increase in intraluminal pressure induced oxidation of PTEN and activation of Akt. Pharmacological inhibition of endogenous PTEN activity potentiated pressure-dependent myogenic constriction and caused a reduction in NPo of a 238 pS arterial KCa channel current and an increase in [Ca(2+)]i level in freshly isolated cerebral arterial muscle cells (CAMCs), responses that were attenuated by Inhibition of the PI3K/Akt pathway. These findings demonstrate an increase in intraluminal pressure induced increase in ROS production triggered redox-sensitive signaling mechanism emanating from the cross-talk between oxidative inactivation of PTEN and activation of the PI3K/Akt signaling pathway that involves in the regulation of pressure-dependent myogenic cerebral arterial constriction.

  18. Effect of upper body position on arterial stiffness: influence of hydrostatic pressure and autonomic function.

    PubMed

    Schroeder, Elizabeth C; Rosenberg, Alexander J; Hilgenkamp, Thessa I M; White, Daniel W; Baynard, Tracy; Fernhall, Bo

    2017-12-01

    To evaluate changes in arterial stiffness with positional change and whether the stiffness changes are due to hydrostatic pressure alone or if physiological changes in vasoconstriction of the conduit arteries play a role in the modulation of arterial stiffness. Thirty participants' (male = 15, 24 ± 4 years) upper bodies were positioned at 0, 45, and 72° angles. Pulse wave velocity (PWV), cardio-ankle vascular index, carotid beta-stiffness index, carotid blood pressure (cBP), and carotid diameters were measured at each position. A gravitational height correction was determined using the vertical fluid column distance (mmHg) between the heart and carotid artery. Carotid beta-stiffness was calibrated using three methods: nonheight corrected cBP of each position, height corrected cBP of each position, and height corrected cBP of the supine position (theoretical model). Low frequency systolic blood pressure variability (LFSAP) was analyzed as a marker of sympathetic activity. PWV and cardio-ankle vascular index increased with position (P < 0.05). Carotid beta-stiffness did not increase if not corrected for hydrostatic pressure. Arterial stiffness indices based on Method 2 were not different from Method 3 (P = 0.65). LFSAP increased in more upright positions (P < 0.05) but diastolic diameter relative to diastolic pressure did not (P > 0.05). Arterial stiffness increases with a more upright body position. Carotid beta-stiffness needs to be calibrated accounting for hydrostatic effects of gravity if measured in a seated position. It is unclear why PWV increased as this increase was independent of blood pressure. No difference between Methods 2 and 3 presumably indicates that the beta-stiffness increases are only pressure dependent, despite the increase in vascular sympathetic modulation.

  19. Swarms of repeating long-period earthquakes at Shishaldin Volcano, Alaska, 2001-2004

    USGS Publications Warehouse

    Petersen, Tanja

    2007-01-01

    During 2001–2004, a series of four periods of elevated long-period seismic activity, each lasting about 1–2 months, occurred at Shishaldin Volcano, Aleutian Islands, Alaska. The time periods are termed swarms of repeating events, reflecting an abundance of earthquakes with highly similar waveforms that indicate stable, non-destructive sources. These swarms are characterized by increased earthquake amplitudes, although the seismicity rate of one event every 0.5–5 min has remained more or less constant since Shishaldin last erupted in 1999. A method based on waveform cross-correlation is used to identify highly repetitive events, suggestive of spatially distinct source locations. The waveform analysis shows that several different families of similar events co-exist during a given swarm day, but generally only one large family dominates. A network of hydrothermal fractures may explain the events that do not belong to a dominant repeating event group, i.e. multiple sources at different locations exist next to a dominant source. The dominant waveforms exhibit systematic changes throughout each swarm, but some of these waveforms do reappear over the course of 4 years indicating repeatedly activated source locations. The choked flow model provides a plausible trigger mechanism for the repeating events observed at Shishaldin, explaining the gradual changes in waveforms over time by changes in pressure gradient across a constriction within the uppermost part of the conduit. The sustained generation of Shishaldin's long-period events may be attributed to complex dynamics of a multi-fractured hydrothermal system: the pressure gradient within the main conduit may be regulated by temporarily sealing and reopening of parallel flow pathways, by the amount of debris within the main conduit and/or by changing gas influx into the hydrothermal system. The observations suggest that Shishaldin's swarms of repeating events represent time periods during which a dominant source is activated.

  20. An Integrative Model of the Cardiovascular System Coupling Heart Cellular Mechanics with Arterial Network Hemodynamics

    PubMed Central

    Kim, Young-Tae; Lee, Jeong Sang; Youn, Chan-Hyun; Choi, Jae-Sung

    2013-01-01

    The current study proposes a model of the cardiovascular system that couples heart cell mechanics with arterial hemodynamics to examine the physiological role of arterial blood pressure (BP) in left ventricular hypertrophy (LVH). We developed a comprehensive multiphysics and multiscale cardiovascular model of the cardiovascular system that simulates physiological events, from membrane excitation and the contraction of a cardiac cell to heart mechanics and arterial blood hemodynamics. Using this model, we delineated the relationship between arterial BP or pulse wave velocity and LVH. Computed results were compared with existing clinical and experimental observations. To investigate the relationship between arterial hemodynamics and LVH, we performed a parametric study based on arterial wall stiffness, which was obtained in the model. Peak cellular stress of the left ventricle and systolic blood pressure (SBP) in the brachial and central arteries also increased; however, further increases were limited for higher arterial stiffness values. Interestingly, when we doubled the value of arterial stiffness from the baseline value, the percentage increase of SBP in the central artery was about 6.7% whereas that of the brachial artery was about 3.4%. It is suggested that SBP in the central artery is more critical for predicting LVH as compared with other blood pressure measurements. PMID:23960442

  1. Increases in intramuscular pressure raise arterial blood pressure during dynamic exercise

    NASA Technical Reports Server (NTRS)

    Gallagher, K. M.; Fadel, P. J.; Smith, S. A.; Norton, K. H.; Querry, R. G.; Olivencia-Yurvati, A.; Raven, P. B.

    2001-01-01

    This investigation was designed to determine the role of intramuscular pressure-sensitive mechanoreceptors and chemically sensitive metaboreceptors in affecting the blood pressure response to dynamic exercise in humans. Sixteen subjects performed incremental (20 W/min) cycle exercise to fatigue under four conditions: control, exercise with thigh cuff occlusion of 90 Torr (Cuff occlusion), exercise with lower body positive pressure (LBPP) of 45 Torr, and a combination of thigh cuff occlusion and LBPP (combination). Indexes of central command (heart rate, oxygen uptake, ratings of perceived exertion, and electromyographic activity), cardiac output, stroke volume, and total peripheral resistance were not significantly different between the four conditions. Mechanical stimulation during LBPP and combination conditions resulted in significant elevations in intramuscular pressure and mean arterial pressure from control at rest and throughout the incremental exercise protocol (P < 0.05). Conversely, there existed no significant changes in mean arterial pressure when the metaboreflex was stimulated by cuff occlusion. These findings suggest that under normal conditions the mechanoreflex is tonically active and is the primary mediator of exercise pressor reflex-induced alterations in arterial blood pressure during submaximal dynamic exercise in humans.

  2. Effect of Citrus paradisi extract and juice on arterial pressure both in vitro and in vivo.

    PubMed

    Díaz-Juárez, J A; Tenorio-López, F A; Zarco-Olvera, G; Valle-Mondragón, L Del; Torres-Narváez, J C; Pastelín-Hernández, G

    2009-07-01

    Citrus paradisi (grapefruit) consumption is considered as beneficial and it is popularly used for the treatment of a vast array of diseases, including hypertension. In the present study, the coronary vasodilator and hypotensive effects of Citrus paradisi peel extract were assessed in the Langendorff isolated and perfused heart model and in the heart and lung dog preparation. In both models, Citrus paradisi peel extract decreased coronary vascular resistance and mean arterial pressure when compared with control values (60 +/- 15 x 10(7) dyn s cm(-5) vs 100 +/- 10 x 10(7) dyn s cm(-5) and 90 mmHg vs 130 +/- 15 mmHg, respectively). These decreases in coronary vascular resistance and mean arterial pressure were blocked when isolated and perfused hearts and mongrel dogs were pre-treated with L-NAME. In humans, Citrus paradisi juice decreased diastolic arterial pressure and systolic arterial pressure both in normotensive and hypertensive subjects. Citrus paradisi juice produced a greater decrease in mean arterial pressure when compared with Citrus sinensis juice, cow milk and a vitamin C-supplemented beverage. However, more detailed studies are required to isolate, purify and evaluate the chemical compounds responsible for this pharmacological effect and to clarify its possible role for treating hypertension. Copyright 2009 John Wiley & Sons, Ltd.

  3. A Randomized Comparison Between Conventional and Waveform-Confirmed Loss of Resistance for Thoracic Epidural Blocks.

    PubMed

    Arnuntasupakul, Vanlapa; Van Zundert, Tom C R V; Vijitpavan, Amorn; Aliste, Julian; Engsusophon, Phatthanaphol; Leurcharusmee, Prangmalee; Ah-Kye, Sonia; Finlayson, Roderick J; Tran, De Q H

    2016-01-01

    Epidural waveform analysis (EWA) provides a simple confirmatory adjunct for loss of resistance (LOR): when the needle tip is correctly positioned inside the epidural space, pressure measurement results in a pulsatile waveform. In this randomized trial, we compared conventional and EWA-confirmed LOR in 2 teaching centers. Our research hypothesis was that EWA-confirmed LOR would decrease the failure rate of thoracic epidural blocks. One hundred patients undergoing thoracic epidural blocks for thoracic surgery, abdominal surgery, or rib fractures were randomized to conventional LOR or EWA-LOR. The operator was allowed as many attempts as necessary to achieve a satisfactory LOR (by feel) in the conventional group. In the EWA-LOR group, LOR was confirmed by connecting the epidural needle to a pressure transducer using a rigid extension tubing. Positive waveforms indicated that the needle tip was positioned inside the epidural space. The operator was allowed a maximum of 3 different intervertebral levels to obtain a positive waveform. If waveforms were still absent at the third level, the operator simply accepted LOR as the technical end point. However, the patient was retained in the EWA-LOR group (intent-to-treat analysis).After achieving a satisfactory tactile LOR (conventional group), positive waveforms (EWA-LOR group), or a third intervertebral level with LOR but no waveform (EWA-LOR group), the operator administered a 4-mL test dose of lidocaine 2% with epinephrine 5 μg/mL. Fifteen minutes after the test dose, a blinded investigator assessed the patient for sensory block to ice. Compared with LOR, EWA-LOR resulted in a lower rate of primary failure (2% vs 24%; P = 0.002). Subgroup analysis based on experience level reveals that EWA-LOR outperformed conventional LOR for novice (P = 0.001) but not expert operators. The performance time was longer in the EWA-LOR group (11.2 ± 6.2 vs 8.0 ± 4.6 minutes; P = 0.006). Both groups were comparable in terms of operator's level of expertise, depth of the epidural space, approach, and LOR medium. In the EWA-LOR group, operators obtained a pulsatile waveform with the first level attempted in 60% of patients. However, 40% of subjects required performance at a second or third level. Compared with its conventional counterpart, EWA-confirmed LOR results in a lower failure rate for thoracic epidural blocks (2% vs 24%) in our teaching centers. Confirmatory EWA provides significant benefits for inexperienced operators.

  4. Remote Blood Pressure Waveform Sensing Method and Apparatus

    DTIC Science & Technology

    2008-06-02

    test the effects of drugs, exercise, or other stimuli, whereby an increase or decrease in the ratio may indicate an improvement or worsening of systolic...even though high blood pressure in animals can be symptomatic of a variety of diseases including chronic renal failure, hyperthyroidism , Cushing’s

  5. Comparison of the cardiovascular effects of meptazinol and naloxone following haemorrhagic shock in rats and cats.

    PubMed Central

    Chance, E.; Paciorek, P. M.; Todd, M. H.; Waterfall, J. F.

    1985-01-01

    The cardiovascular effects of the opioid mixed agonist-antagonist, meptazinol, and the opioid antagonist, naloxone, have been evaluated in conscious rats, anaesthetized rats and anaesthetized cats following the induction of haemorrhagic shock. The mean arterial pressure of conscious rats decreased by 17-29 mmHg following a haemorrhage of 20% of blood volume. Meptazinol (17 mg kg-1, i.m.) administered after haemorrhage evoked a rapid and sustained increase in mean arterial pressure to pre-haemorrhage levels. Naloxone (10 mg kg-1, i.v.) also increased mean arterial pressure to a level significantly higher than post-haemorrhage values. Neither haemorrhage nor subsequent drug treatments evoked significant changes in the heart rates of conscious rats. In anaesthetized rats, 20% haemorrhage evoked decreases in mean arterial pressure, heart rate and cardiac output. Blood flow to the heart, skin, skeletal muscle, kidneys, spleen and liver (arterial) was decreased. Meptazinol and naloxone increased blood pressure and total peripheral resistance, but did not significantly alter heart rate or cardiac output. Hepatic arterial flow decreased further in both drug and vehicle treated groups. In addition meptazinol slightly reduced skeletal muscle flow. In anaesthetized cats 40% haemorrhage decreased mean arterial pressure by 46 +/- 3 mmHg. An intravenous infusion of either meptazinol or naloxone (cumulative 2 mg kg-1, i.v.) partially restored blood pressure. In experimental animal models of haemorrhagic shock, meptazinol has a similar cardiovascular profile to naloxone. The established analgesic activity of meptazinol may confer an advantage in some shock states. PMID:4052729

  6. Comparison of Doppler and oscillometric ankle blood pressure measurement in patients with angiographically documented lower extremity arterial occlusive disease.

    PubMed

    Nukumizu, Yoshihito; Matsushita, Masahiro; Sakurai, Tsunehisa; Kobayashi, Masayoshi; Nishikimi, Naomichi; Komori, Kimihiro

    2007-01-01

    To assess the reliability of the oscillometric method in patients with peripheral vascular disease, ankle blood pressure measurement by Doppler and oscillometry was compared. This study represents a prospective, non-blinded examination of pressure measurements in 168 patients. Twenty-two patients were included who had abdominal aortic aneurysms (AAA) and 146 had peripheral arterial occlusive disease (PAOD). Patients with PAOD were divided into 2 groups according to angiography results: a crural artery occlusion group (CAO, n = 32), and a no crural artery occlusion group (NCAO, n = 114). All subjects underwent pressure measurement by both Doppler and oscillometry. The correlation coefficient was 0.928 in AAA patients and 0.922 in PAOD patients. In CAO patients, there were significantly fewer patients whose oscillometric pressure was equivalent to the Doppler pressure (DP), as compared to NCAO patients, because the oscillometric pressure (OP) was 10% higher than DP in 44% of CAO patients. A high correlation exists between Doppler and oscillometric ankle pressure measurements irrespective of the type of vascular disease. However, the oscillometric method could not be substituted for the Doppler method completely, because there were several patients whose OP was greater than DP especially in those with crural artery occlusive disease.

  7. Gender Difference in Arterial Stiffness in a Multicenter Cross-Sectional Study: The Korean Arterial Aging Study (KAAS)

    PubMed Central

    Kim, Jang-Young; Park, Jeong Bae; Kim, Dong Soo; Kim, Kee Sik; Jeong, Jin Won; Park, Jong Chun; Oh, Byung Hee; Chung, Namsik

    2014-01-01

    Elevated arterial stiffness has emerged as an important risk factor for future cardiovascular (CV) events in men and women. However, gender-related differences in arterial stiffness have not been clearly demonstrated. We thus determine whether gender affects arterial stiffness in subjects with and without CV risk factors. We consecutively enrolled 1,588 subjects aged 17-87 years (mean age: 46.5; 51% women) from the Korean Arterial Aging Study (KAAS), which is a multicenter registry from 13 university hospitals in Korea for the evaluation of arterial stiffness. We compared markers of arterial stiffness – central augmentation index (AIx), aortic pulse wave velocity (PWV), and pulse pressure (PP) amplification – in apparently healthy men and women without risk factors with those in high-risk subjects with a smoking habit, hypertension, diabetes, and dyslipidemia but without drug treatment. Aortic PWV and PP amplification were significantly higher in men than in women (7.78 ± 1.16 vs. 7.64 ± 1.15 m/s, p = 0.015, and 1.39 ± 0.22 vs. 1.30 ± 0.18, p < 0.001, respectively). However, women had a significantly higher central AIx than men (23.5 ± 11.9 vs. 16.1 ± 12.6%, p < 0.001). The central AIx and aortic PWV values were significantly higher in the high-risk group than in the healthy group for both men and women. In men, central AIx and aortic PWV were associated positively with age and blood pressure, and negatively with body mass index. In women, central AIx was positively related to age, diastolic blood pressure, and serum cholesterol levels. Aortic PWV was positively related to age, systolic blood pressure, fasting glucose, and heart rate. PP amplification was associated negatively with age and blood pressure and positively with heart rate in both men and women. In conclusion, arterial stiffness is mainly determined by sex, age, and blood pressure. Markers of arterial stiffness differ between men and women. Dyslipidemia and glucose contribute to a modest increase in arterial stiffness only in women. Therefore, the arteries of women may be more vulnerable to CV risk factors than those of men. PMID:26587439

  8. Evaluation of vascular wall elasticity of human digital arteries using alternating current-signal photoplethysmography

    PubMed Central

    Uangpairoj, Pichitra; Shibata, Masahiro

    2013-01-01

    Purpose A simple method of estimating arterial elasticity in the human finger using a volume-oscillometric technique with photoplethysmography was principally studied under the various effects of age, sex, and cold-stress stimulation for testing the capability of using this technique in arterial elasticity analysis. Methods Amplitude variations in the alternating current signal of the photoplethysmograph during a continuous change in transmural pressure were analyzed to obtain the blood pressure and the transmural pressure–relative volume difference relationship of the arteries. We first tested the effect of the occluding cuff size on the arterial elasticity analysis in eight subjects (ages 20–45 years) to obtain a suitable cuff size, resulting in the selection of a middle cuff with a 22 mm diameter. Blood pressure and arterial elasticity were measured in six groups of subjects separated into three age-groups of women and men (ages 20–25, 32–45, and over 50 years) for testing the effect of age and sex. Twelve subjects (ages 20–25 years) also had their blood pressure and arterial elasticity measured in three conditions under the influence of the cold-stress stimulation. Results Age, sex, and cold-stress stimulation had an impact on mean blood pressure (P < 0.0005, 0.025), whereas pulse pressure and heart rate were statistically unchanged by those factors. Furthermore, an advanced age (over 50 years) was found to induce an increase in relative volume difference values (P < 0.025) and upward shifting of the transmural pressure–relative volume difference relationships, whereas sex, level of mean blood pressure, and cold-stress stimulation had no influence on these forms of the index. Conclusion This study showed the usefulness of the relative volume difference as being a mean blood pressure-independent indicator for changes in arterial elasticity. PMID:23766653

  9. Short-term regular aerobic exercise reduces oxidative stress produced by acute in the adipose microvasculature.

    PubMed

    Robinson, Austin T; Fancher, Ibra S; Sudhahar, Varadarajan; Bian, Jing Tan; Cook, Marc D; Mahmoud, Abeer M; Ali, Mohamed M; Ushio-Fukai, Masuko; Brown, Michael D; Fukai, Tohru; Phillips, Shane A

    2017-05-01

    High blood pressure has been shown to elicit impaired dilation in the vasculature. The purpose of this investigation was to elucidate the mechanisms through which high pressure may elicit vascular dysfunction and determine the mechanisms through which regular aerobic exercise protects arteries against high pressure. Male C57BL/6J mice were subjected to 2 wk of voluntary running (~6 km/day) for comparison with sedentary controls. Hindlimb adipose resistance arteries were dissected from mice for measurements of flow-induced dilation (FID; with or without high intraluminal pressure exposure) or protein expression of NADPH oxidase II (NOX II) and superoxide dismutase (SOD). Microvascular endothelial cells were subjected to high physiological laminar shear stress (20 dyn/cm 2 ) or static condition and treated with ANG II + pharmacological inhibitors. Cells were analyzed for the detection of ROS or collected for Western blot determination of NOX II and SOD. Resistance arteries from exercised mice demonstrated preserved FID after high pressure exposure, whereas FID was impaired in control mouse arteries. Inhibition of ANG II or NOX II restored impaired FID in control mouse arteries. High pressure increased superoxide levels in control mouse arteries but not in exercise mouse arteries, which exhibited greater ability to convert superoxide to H 2 O 2 Arteries from exercised mice exhibited less NOX II protein expression, more SOD isoform expression, and less sensitivity to ANG II. Endothelial cells subjected to laminar shear stress exhibited less NOX II subunit expression. In conclusion, aerobic exercise prevents high pressure-induced vascular dysfunction through an improved redox environment in the adipose microvasculature. NEW & NOTEWORTHY We describe potential mechanisms contributing to aerobic exercise-conferred protection against high intravascular pressure. Subcutaneous adipose microvessels from exercise mice express less NADPH oxidase (NOX) II and more superoxide dismutase (SOD) and demonstrate less sensitivity to ANG II. In microvascular endothelial cells, shear stress reduced NOX II but did not influence SOD expression.

  10. [Integripetal rhodiola herb attenuates high altitude-induced pulmonary arterial remodeling and expression of vascular endothelial growth factor in rats].

    PubMed

    Bai, Ma-Kang-Zhuo; Guo, Yan; Bian, Ba-Dun-Zhu; Dong, Hai; Wang, Tao; Luo, Feng; Wen, Fu-Qiang; Cui, Chao-Ying

    2011-04-25

    The aim of this study was to investigate the effect of integripetal rhodiola herb on pulmonary arterial remodeling and expression of vascular endothelial growth factor (VEGF) in high altitude pulmonary hypertension in rats. Fifty healthy male Wistar rats were divided into five groups randomly: Plain control group (LC group), 10-day plateau group (H(10) group), 30-day plateau group (H(30) group), 10-day rhodiola-treated plateau group (R(10) group), and 30-day rhodiola-treated plateau group (R(30) group). Each group included 10 rats. The rats in LC group were kept in Chengdu (500 meters above sea level), and rats in H and R groups were kept in Lhasa (3 700 meters above sea level). The rats in R group were daily treated with integripetal rhodiola herb extract (24%, 10 mL/kg) intragastrically for 10 d or 30 d, while rats in LC and H groups were treated with the same volume of saline. Mean pulmonary arterial pressure (mPAP) was detected via a catheter in the pulmonary artery by pressure waveform monitoring. The ratio value of right ventricle weight to left ventricle plus septum weight [RV/(LV + S)] was measured. The microstructure of pulmonary arterioles was examined by electron microscopy. The expression of VEGF in the lung was investigated using immunohistochemistry. The results showed that mPAP and [RV/(LV + S)] in H(10) group and H(30) group were higher than those in LC group (P < 0.05); but there was no significant difference between H(10) group and R(10) group (P < 0.05); and mPAP and [RV/(LV + S)] in H(30) group were lower than those in H(30) group (P < 0.05). Electron microscopy showed that compared to LC group, arteriolar endothelial cells were arranged in a columnar or palisading form, protruding into the lumen, accompanied with luminal stenosis, irregular internal elastic membrane, and proliferation of vascular smooth muscle cells in H groups, which was more obvious in H(30) group than in H(10) group; while these pathological changes were attenuated in the R groups compared to H groups. The levels of VEGF protein in H groups were also higher than those in LC group (P < 0.05); while the expression of VEGF in R(30) group was lower than that in H(30) group. In summary, the results show that the integripetal rhodiola herb can attenuate high altitude-induced pulmonary arterial remodeling in rats, and the inhibition of VEGF protein expression by rhodiola may be one of the mechanisms.

  11. Impact of Major Pulmonary Resections on Right Ventricular Function: Early Postoperative Changes.

    PubMed

    Elrakhawy, Hany M; Alassal, Mohamed A; Shaalan, Ayman M; Awad, Ahmed A; Sayed, Sameh; Saffan, Mohammad M

    2018-01-15

    Right ventricular (RV) dysfunction after pulmonary resection in the early postoperative period is documented by reduced RV ejection fraction and increased RV end-diastolic volume index. Supraventricular arrhythmia, particularly atrial fibrillation, is common after pulmonary resection. RV assessment can be done by non-invasive methods and/or invasive approaches such as right cardiac catheterization. Incorporation of a rapid response thermistor to pulmonary artery catheter permits continuous measurements of cardiac output, right ventricular ejection fraction, and right ventricular end-diastolic volume. It can also be used for right atrial and right ventricular pacing, and for measuring right-sided pressures, including pulmonary capillary wedge pressure. This study included 178 patients who underwent major pulmonary resections, 36 who underwent pneumonectomy assigned as group (I) and 142 who underwent lobectomy assigned as group (II). The study was conducted at the cardiothoracic surgery department of Benha University hospital in Egypt; patients enrolled were operated on from February 2012 to February 2016. A rapid response thermistor pulmonary artery catheter was inserted via the right internal jugular vein. Preoperatively the following was recorded: central venous pressure, mean pulmonary artery pressure, pulmonary capillary wedge pressure, cardiac output, right ventricular ejection fraction and volumes. The same parameters were collected in fixed time intervals after 3 hours, 6 hours, 12 hours, 24 hours, and 48 hours postoperatively. For group (I): There were no statistically significant changes between the preoperative and postoperative records in the central venous pressure and mean arterial pressure; there were no statistically significant changes in the preoperative and 12, 24, and 48 hour postoperative records for cardiac index; 3 and 6 hours postoperative showed significant changes. There were statistically significant changes between the preoperative and postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index, in all postoperative records. For group (II): There were no statistically significant changes between the preoperative and all postoperative records for the central venous pressure, mean arterial pressure and cardiac index. There were statistically significant changes between the preoperative and postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index in all postoperative records. There were statistically significant changes between the two groups in all postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index. There is right ventricular dysfunction early after major pulmonary resection caused by increased right ventricular afterload. This dysfunction is more present in pneumonectomy than in lobectomy. Heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction, and right ventricular end diastolic volume index are significantly affected by pulmonary resection.

  12. Pathophysiological effect of fat embolism in a canine model of pulmonary contusion.

    PubMed

    Elmaraghy, A W; Aksenov, S; Byrick, R J; Richards, R R; Schemitsch, E H

    1999-08-01

    The objective of this study was to determine the individual and combined effects of pulmonary contusion and fat embolism on the hemodynamics and pulmonary pathophysiology in a canine model of acute traumatic pulmonary injury. After a thoracotomy, twenty-one skeletally mature dogs were randomly assigned to one of three groups. Unilateral pulmonary contusion alone was produced in Group 1 (seven dogs); pulmonary contusion and fat embolism, in Group 2 (seven dogs); and fat embolism alone, in Group 3 (seven dogs). Pulmonary contusion was produced by standardized compression of the left lung with a piezoelectric force transducer. Fat embolism was produced by femoral and tibial reaming followed by pressurization of the intramedullary canals. Cardiac output, systolic blood pressure, peak airway pressure, pulmonary arterial pressure, pulmonary capillary wedge pressure, partial pressure of arterial oxygen, and partial pressure of carbon dioxide were monitored for all groups. From these data, several outcome parameters were calculated: total thoracic compliance, alveolar-arterial oxygen gradient, and ratio of partial pressure of arterial oxygen to fractional inspired oxygen concentration. All of the dogs were killed after eight hours, and tissue samples were obtained from the brain, kidneys, and lungs for histological analysis. Lung samples were assigned scores for pulmonary edema (the presence of fluid in the alveoli) and inflammation (the presence of neutrophils or hyaline membranes, or both). The percentage of the total area occupied by fat was determined. Pulmonary contusion alone caused a significant increase in the alveolar-arterial oxygen gradient but only after seven hours (p = 0.034). Fat embolism alone caused a significant transient decrease in systolic blood pressure (p = 0.001) and a significant transient increase in pulmonary arterial pressure (p = 0.01) and pulmonary capillary wedge pressure (p = 0.015). Fat embolism alone also caused a significant sustained decrease in the ratio of partial pressure of arterial oxygen to fractional inspired oxygen concentration (p = 0.0001) and a significant increase in the alveolar-arterial oxygen gradient (p = 0.0001). The combination of pulmonary contusion and fat embolism caused a significant transient increase in pulmonary capillary wedge pressure (p = 0.0013) as well as a significant sustained decrease in partial pressure of arterial oxygen (p = 0.0001) and a significant decrease in systolic blood pressure (p = 0.001) that lasted for an hour. Pulmonary contusion followed by fat embolism caused a significant increase in peak airway pressure (p = 0.015), alveolar-arterial oxygen gradient (p = 0.0001), and pulmonary arterial pressure (p = 0.01), and these effects persisted for five hours. Total thoracic compliance was decreased 6.4 percent by pulmonary contusion alone, 4.6 percent by fat embolism alone, and 23.5 percent by pulmonary contusion followed by fat embolism. The ratio of partial pressure of arterial oxygen to fractional inspired oxygen concentration was decreased 23.7 percent by pulmonary contusion alone, 52.3 percent by fat embolism alone, and 65.8 percent by pulmonary contusion followed by fat embolism. The mean pulmonary edema score was significantly higher with the combined injury than with either injury alone (p = 0.0001). None of the samples from the lungs demonstrated inflammation. Fat embolism combined with pulmonary contusion resulted in a significantly greater mean percentage of the area occupied by fat in the noncontused right lung than in the contused left lung (p = 0.001); however, no significant difference between the right and left lungs could be detected with fat embolism alone. The mean percentage of the glomerular and cerebral areas occupied by fat was greater with fat embolism combined with pulmonary contusion than with fat embolism alone (p = 0.0001 and p = 0.01, respectively). (ABSTRACT TRUNCATED)

  13. Effects of acute dietary nitrate supplementation on aortic blood pressure and aortic augmentation index in young and older adults.

    PubMed

    Hughes, William E; Ueda, Kenichi; Treichler, David P; Casey, Darren P

    2016-09-30

    Aging is associated with elevated blood pressure (peripheral and aortic; BP) and aortic augmentation index (AIx) which may contribute to aortic BP. Although inorganic nitrate consumption reduces peripheral BP in both young and older adults, the effects of nitrate consumption on aortic BP and wave reflection in young and older adults is unknown. Therefore, we sought to characterize the effects of nitrate consumption on aortic BP and AIx in young and older adults. Noninvasive aortic pressure waveforms were synthesized from high-fidelity radial pressure waveforms via applanation tonometry before and following (60, 90, 120, 150, and 180 min) consumption of a nitrate-rich beetroot juice in 26 healthy adults (young: 25 ± 4 years, n = 14; older: 64 ± 5 years, n = 12). Aortic BP and indices of aortic wave reflection (AIx and AIx normalized for heart rate; AIx@75bpm) were calculated from the generated aortic pressure waveform. Nitrate consumption increased plasma nitrite in both groups 60-180 min following beetroot consumption (P < 0.001). Nitrate consumption reduced peripheral and aortic BP in both young and older adults (P < 0.05), with the change being similar between age groups. Conversely, indices of aortic wave reflection were reduced only in young adults following nitrate consumption (range of change from baseline over time: AIx@75bpm, -4.3 to -8.8%, P < 0.05), whereas aortic AIx remained unchanged in the older adults. Taken together, our results suggest that acute dietary nitrate supplementation reduces peripheral and aortic BP similarly in young and older adults despite differential effects on aortic AIx between age groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Severity assessment of intracranial large artery stenosis by pressure gradient measurements: A feasibility study.

    PubMed

    Han, Yun-Fei; Liu, Wen-Hua; Chen, Xiang-Liang; Xiong, Yun-Yun; Yin, Qin-; Xu, Ge-Lin; Zhu, Wu-Sheng; Zhang, Ren-Liang; Ma, Min-Min; Li, Min-; Dai, Qi-Liang; Sun, Wen-; Liu, De-Zhi; Duan, Li-Hui; Liu, Xin-Feng

    2016-08-01

    Fractional flow reserve (FFR)-guided revascularization strategy is popular in coronary intervention. However, the feasibility of assessing stenotic severity in intracranial large arteries using pressure gradient measurements still remains unclear. Between March 2013 and May 2014, 12 consecutive patients with intracranial large artery stenosis (including intracranial internal carotid artery, middle cerebral M1 segment, intracranial vertebral artery, and basilar artery) were enrolled in this study. The trans-stenotic pressure gradient was measured before and/or after percutaneous transluminal angioplasty and stenting (PTAS), and was then compared with percent diameter stenosis. A Pd /Pa cut-off of ≤0.70 was used to guide stenting of hemodynamically significant stenoses. The device-related and procedure-related serious adverse events and recurrent cerebral ischemic events were recorded. The target vessel could be reached in all cases. No technical complications occurred due to the specific study protocol. Excellent pressure signals were obtained in all patients. For seven patients who performed PTAS, the mean pre-procedural pressure gradient decreased from 59.0 ± 17.2 to 13.3 ± 13.6 mm Hg after the procedure (P < 0.01). Only one patient who refused stenting experienced a TIA event in the ipsilateral MCA territory. No recurrent ischemic event was observed in other patients. Mean trans-stenotic pressure gradients can be safely and easily measured with a 0.014-inch fluid-filled guide wire in intracranial large arteries. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Impact of Pulmonary Artery Pressure on Exercise Function in Severe COPD

    PubMed Central

    Sims, Michael W.; Margolis, David J.; Localio, A. Russell; Panettieri, Reynold A.; Kawut, Steven M.; Christie, Jason D.

    2009-01-01

    Background: Although pulmonary hypertension commonly complicates COPD, the functional consequences of increased pulmonary artery pressures in patients with this condition remain poorly defined. Methods: We conducted a cross-sectional analysis of a cohort of 362 patients with severe COPD who were evaluated for lung transplantation. Patients with pulmonary hemodynamics measured by cardiac catheterization and available 6-min walk test results were included. The association of mean pulmonary artery pressure (mPAP) with pulmonary function, echocardiographic variables, and 6-min walk distance was assessed. Results: The prevalence of pulmonary hypertension (mPAP, > 25 mm Hg; pulmonary artery occlusion pressure [PAOP], < 16 mm Hg) was 23% (95% confidence interval, 19 to 27%). In bivariate analysis, higher mPAP was associated with lower FVC and FEV1, higher Pco2 and lower Po2 in arterial blood, and more right heart dysfunction. Multivariate analysis demonstrated that higher mPAP was associated with shorter distance walked in 6 min, even after adjustment for age, gender, race, height, weight, FEV1, and PAOP (−11 m for every 5 mm Hg rise in mPAP; 95% confidence interval, −21 to −0.7; p = 0.04). Conclusions: Higher pulmonary artery pressures are associated with reduced exercise function in patients with severe COPD, even after controlling for demographics, anthropomorphics, severity of airflow obstruction, and PAOP. Whether treatments aimed at lowering pulmonary artery pressures may improve clinical outcomes in COPD, however, remains unknown. PMID:19318664

  16. Ex Vivo and in Silico Study of Human Common Carotid Arteries Pressure Response in Physiological and Inverted State

    NASA Astrophysics Data System (ADS)

    Piechna, A.; Cieślicki, K.; Lombarski, L.; Ciszek, B.

    2015-02-01

    Arterial walls are a multilayer structures with nonlinear material characteristics. Furthermore, residual stresses exist in unloaded state (zero-pressure condition) and they affect arterial behavior. To investigate these phenomena a number of theoretical and numerical studies were performed, however no experimental validation was proposed and realized yet. We cannot get rid of residual stresses without damaging the arterial segment. In this paper we propose a novel experiment to validate a numerical model of artery with residual stresses. The inspiration for our study originates from experiments made by Dobrin on dogs' arteries (1999). We applied the idea of turning the artery inside out. After such an operation the sequence of layer is reversed and the residual stresses are re-ordered. We performed several pressure-inflation tests on human Common Carotid Arteries (CCA) in normal and inverted configurations. The nonlinear responses of arterial behavior were obtained and compared to the numerical model. Computer simulations were carried out using the commercial software which applied the finite element method (FEM). Then, these results were discussed.

  17. Cylinder pressure reconstruction based on complex radial basis function networks from vibration and speed signals

    NASA Astrophysics Data System (ADS)

    Johnsson, Roger

    2006-11-01

    Methods to measure and monitor the cylinder pressure in internal combustion engines can contribute to reduced fuel consumption, noise and exhaust emissions. As direct measurements of the cylinder pressure are expensive and not suitable for measurements in vehicles on the road indirect methods which measure cylinder pressure have great potential value. In this paper, a non-linear model based on complex radial basis function (RBF) networks is proposed for the reconstruction of in-cylinder pressure pulse waveforms. Input to the network is the Fourier transforms of both engine structure vibration and crankshaft speed fluctuation. The primary reason for the use of Fourier transforms is that different frequency regions of the signals are used for the reconstruction process. This approach also makes it easier to reduce the amount of information that is used as input to the RBF network. The complex RBF network was applied to measurements from a 6-cylinder ethanol powered diesel engine over a wide range of running conditions. Prediction accuracy was validated by comparing a number of parameters between the measured and predicted cylinder pressure waveform such as maximum pressure, maximum rate of pressure rise and indicated mean effective pressure. The performance of the network was also evaluated for a number of untrained running conditions that differ both in speed and load from the trained ones. The results for the validation set were comparable to the trained conditions.

  18. The pathogenesis of small arterial lesions in nephrectomized rats by the administration of renin.

    PubMed Central

    Kai, M.; Kanaide, H.; Yamamoto, H.; Kurozumi, T.; Tanaka, K.; Nakamura, M.

    1981-01-01

    Intraperitoneal injection of purified hog renal renin produced a marked and sustained elevation of arterial pressure and lesions of the "fibrinoid necrosis" type in the small arteries and arterioles of the pancreas, heart and mesentery, but not of the brain, in bilaterally nephrectomized rats. Both the elevation of arterial pressure and the production of arterial lesions were completely prevented by pretreatment with oral SQ14225. Plasma renin clearance in bilaterally nephrectomized rats was markedly slower than that in sham-nephrectomized rats. Pre-treatment with oral SQ14225 did not affect renin clearance. It is suggested that sustained high blood pressure due to the sustained high plasma renin concentration in bilaterally nephrectomized rat was responsible for the production by renin of lesions of the fibrinoid necrosis type in the arteries. Images Fig. 1 Fig. 4 PMID:7016159

  19. Fault Slip Distribution of the 2016 Fukushima Earthquake Estimated from Tsunami Waveforms

    NASA Astrophysics Data System (ADS)

    Gusman, Aditya Riadi; Satake, Kenji; Shinohara, Masanao; Sakai, Shin'ichi; Tanioka, Yuichiro

    2017-08-01

    The 2016 Fukushima normal-faulting earthquake (Mjma 7.4) occurred 40 km off the coast of Fukushima within the upper crust. The earthquake generated a moderate tsunami which was recorded by coastal tide gauges and offshore pressure gauges. First, the sensitivity of tsunami waveforms to fault dimensions and depths was examined and the best size and depth were determined. Tsunami waveforms computed based on four available focal mechanisms showed that a simple fault striking northeast-southwest and dipping southeast (strike = 45°, dip = 41°, rake = -95°) yielded the best fit to the observed waveforms. This fault geometry was then used in a tsunami waveform inversion to estimate the fault slip distribution. A large slip of 3.5 m was located near the surface and the major slip region covered an area of 20 km × 20 km. The seismic moment, calculated assuming a rigidity of 2.7 × 1010 N/m2 was 3.70 × 1019 Nm, equivalent to Mw = 7.0. This is slightly larger than the moments from the moment tensor solutions (Mw 6.9). Large secondary tsunami peaks arrived approximately an hour after clear initial peaks were recorded by the offshore pressure gauges and the Sendai and Ofunato tide gauges. Our tsunami propagation model suggests that the large secondary tsunami signals were from tsunami waves reflected off the Fukushima coast. A rather large tsunami amplitude of 75 cm at Kuji, about 300 km north of the source, was comparable to those recorded at stations located much closer to the epicenter, such as Soma and Onahama. Tsunami simulations and ray tracing for both real and artificial bathymetry indicate that a significant portion of the tsunami wave was refracted to the coast located around Kuji and Miyako due to bathymetry effects.

  20. Dynamic Cerebral Autoregulation is Preserved During Acute Head-down Tilt

    DTIC Science & Technology

    2003-06-27

    relationship of mean arterial pressure to mean cerebral blood flow velocity transfer function gain at the high and low frequencies, respectively; TCD-PHASE...HF and TCD-PHASE-LF, phase angle between mean arterial pressure and mean cerebral blood flow veloc- ity at high and low frequencies, respectively...arterial pressure and mean ce- rebral blood flow oscillations decrease from low- to high -frequency ranges. Average phase angles were 68° at low frequencies

  1. The Baroreflex as a Long-Term Controller of Arterial Pressure

    PubMed Central

    Iliescu, Radu

    2015-01-01

    Because of resetting, a role for baroreflexes in long-term control of arterial pressure has been commonly dismissed in the past. However, in recent years, this perspective has changed. Novel approaches for determining chronic neurohormonal and cardiovascular responses to natural variations in baroreceptor activity and to electrical stimulation of the carotid baroreflex indicate incomplete resetting and sustained responses that lead to long-term alterations in sympathetic activity and arterial pressure. PMID:25729060

  2. Impact of contrast-enhanced ultrasound in the study of hepatic artery hypoperfusion shortly after liver transplantation: contribution to the diagnosis of artery steal syndrome.

    PubMed

    García-Criado, Angeles; Gilabert, Rosa; Bianchi, Luis; Vilana, Ramón; Burrel, Marta; Barrufet, Marta; Oliveira, Rafael; García-Valdecasas, Juan Carlos; Brú, Concepción

    2015-01-01

    To assess the value of contrast-enhanced ultrasound (CEUS) in the absence of hepatic artery signal on Doppler ultrasound (DUS) in the immediate postoperative period after liver transplant. This prospective study included 675 consecutive liver transplants. Patients without hepatic artery signal by DUS within 8 days post-transplant were studied with CEUS. If it remained undetectable, a thrombosis was suspected. In patent hepatic artery, a DUS was performed immediately after CEUS; if low resistance flow was detected, an arteriography was indicated. Patients with high resistance waveform underwent DUS+/CEUS follow-up. Arteriography was indicated when abnormal flow persisted for more than 5 days or liver dysfunction appeared. Thirty-four patients were studied with CEUS. In 11 patients CEUS correctly diagnosed hepatic artery thrombosis. In two out of 23 non-occluded arteries, a low resistance flow lead to a diagnosis of stenosis/proximal thrombosis. Twenty-one patients had absence of diastolic flow, which normalized in the follow-up in 13 patients. In the remaining eight patients, splenic artery steal syndrome (ASS) was diagnosed. CEUS allows us to avoid invasive tests in the diagnostic work-up shortly after liver transplant. It identifies the hepatic artery thrombosis and points to a diagnosis of ASS. • CEUS is useful in the diagnostic work-up shortly after liver transplant • CEUS identifies the hepatic artery thrombosis with reliability • There is little information about DUS and CEUS findings in the ASS • DUS and CEUS offer functional information useful in the diagnosis of ASS.

  3. Aortic Baroreceptors Display Higher Mechanosensitivity than Carotid Baroreceptors.

    PubMed

    Lau, Eva On-Chai; Lo, Chun-Yin; Yao, Yifei; Mak, Arthur Fuk-Tat; Jiang, Liwen; Huang, Yu; Yao, Xiaoqiang

    2016-01-01

    Arterial baroreceptors are mechanical sensors that detect blood pressure changes. It has long been suggested that the two arterial baroreceptors, aortic and carotid baroreceptors, have different pressure sensitivities. However, there is no consensus as to which of the arterial baroreceptors are more sensitive to changes in blood pressure. In the present study, we employed independent methods to compare the pressure sensitivity of the two arterial baroreceptors. Firstly, pressure-activated action potential firing was measured by whole-cell current clamp with a high-speed pressure clamp system in primary cultured baroreceptor neurons. The results show that aortic depressor neurons possessed a higher percentage of mechano-sensitive neurons. Furthermore, aortic baroreceptor neurons show a lower pressure threshold than that of carotid baroreceptor neurons. Secondly, uniaxial stretching of baroreceptor neurons, that mimics the forces exerted on blood vessels, elicited a larger increase in intracellular Ca(2+) rise in aortic baroreceptor neurons than in carotid baroreceptor neurons. Thirdly, the pressure-induced action potential firing in the aortic depressor nerve recorded in vivo was also higher. The present study therefore provides for a basic physiological understanding on the pressure sensitivity of the two baroreceptor neurons and suggests that aortic baroreceptors have a higher pressure sensitivity than carotid baroreceptors.

  4. [Invasive arterial blood pressure measurement using an aneroid pressure system in cattle].

    PubMed

    Mosing, M; Franz, S; Iff, I; Schwendenwein, I

    2009-06-01

    The aim of this study was to compare the results of invasive arterial blood pressure measurement using an electronic pressure transducer (EPT) or an aneroid pressure system (APS) in cattle. A catheter was placed in the auricular artery of 11 adult cattle and connected to a pressure transducer via pressure line. The aneroid system was connected to the same catheter using a three-way stop-cock in the pressure line. On five occasions three consecutive measurements were performed with the APS. The mean blood pressure values of the EPT were recorded before each individual measurement. Values from each device were compared using Passing and Bablok regression of agreement and a Bland and Altman difference plot. One hundred and forty-seven paired measurements were analysed. The average bias between the two methods (EPT vs. APS) was -1.6 mmHg (95 % confidence interval [CI]: -3.0 to -0.2 mmHg). The coefficient of correlation was 1.0084. The aneroid system showed an almost perfect agreement with the EPT. This study shows that it can be used in a clinical setting as well as under field conditions to measure arterial blood pressure in cattle.

  5. The velocity of the arterial pulse wave: a viscous-fluid shock wave in an elastic tube.

    PubMed

    Painter, Page R

    2008-07-29

    The arterial pulse is a viscous-fluid shock wave that is initiated by blood ejected from the heart. This wave travels away from the heart at a speed termed the pulse wave velocity (PWV). The PWV increases during the course of a number of diseases, and this increase is often attributed to arterial stiffness. As the pulse wave approaches a point in an artery, the pressure rises as does the pressure gradient. This pressure gradient increases the rate of blood flow ahead of the wave. The rate of blood flow ahead of the wave decreases with distance because the pressure gradient also decreases with distance ahead of the wave. Consequently, the amount of blood per unit length in a segment of an artery increases ahead of the wave, and this increase stretches the wall of the artery. As a result, the tension in the wall increases, and this results in an increase in the pressure of blood in the artery. An expression for the PWV is derived from an equation describing the flow-pressure coupling (FPC) for a pulse wave in an incompressible, viscous fluid in an elastic tube. The initial increase in force of the fluid in the tube is described by an increasing exponential function of time. The relationship between force gradient and fluid flow is approximated by an expression known to hold for a rigid tube. For large arteries, the PWV derived by this method agrees with the Korteweg-Moens equation for the PWV in a non-viscous fluid. For small arteries, the PWV is approximately proportional to the Korteweg-Moens velocity divided by the radius of the artery. The PWV in small arteries is also predicted to increase when the specific rate of increase in pressure as a function of time decreases. This rate decreases with increasing myocardial ischemia, suggesting an explanation for the observation that an increase in the PWV is a predictor of future myocardial infarction. The derivation of the equation for the PWV that has been used for more than fifty years is analyzed and shown to yield predictions that do not appear to be correct. Contrary to the theory used for more than fifty years to predict the PWV, it speeds up as arteries become smaller and smaller. Furthermore, an increase in the PWV in some cases may be due to decreasing force of myocardial contraction rather than arterial stiffness.

  6. Off-pump grafting does not reduce postoperative pulmonary dysfunction.

    PubMed

    Izzat, Mohammad Bashar; Almohammad, Farouk; Raslan, Ahmad Fahed

    2017-02-01

    Objectives Pulmonary dysfunction is a recognized postoperative complication that may be linked to use of cardiopulmonary bypass. The off-pump technique of coronary artery bypass aims to avoid some of the complications that may be related to cardiopulmonary bypass. In this study, we compared the influence of on-pump or off-pump coronary artery bypass on pulmonary gas exchange following routine surgery. Methods Fifty patients (mean age 60.4 ± 8.4 years) with no preexisting lung disease and good left ventricular function undergoing primary coronary artery bypass grafting were prospectively randomized to undergo surgery with or without cardiopulmonary bypass. Alveolar/arterial oxygen pressure gradients were calculated prior to induction of anesthesia while the patients were breathing room air, and repeated postoperatively during mechanical ventilation and after extubation while inspiring 3 specific fractions of oxygen. Results Baseline preoperative arterial blood gases and alveolar/arterial oxygen pressure gradients were similar in both groups. At both postoperative stages, the partial pressure of arterial oxygen and alveolar/arterial oxygen pressure gradients increased with increasing fraction of inspired oxygen, but there were no statistically significant differences between patients who underwent surgery with or without cardiopulmonary bypass, either during ventilation or after extubation. Conclusions Off-pump surgery is not associated with superior pulmonary gas exchange in the early postoperative period following routine coronary artery bypass grafting in patients with good left ventricular function and no preexisting lung disease.

  7. Relations of plasma polyunsaturated Fatty acids with blood pressures during the 26th and 28th week of gestation in women of Chinese, Malay, and Indian ethnicity.

    PubMed

    Lim, Wai-Yee; Chong, Mary; Calder, Philip C; Kwek, Kenneth; Chong, Yap-Seng; Gluckman, Peter D; Godfrey, Keith M; Saw, Seang-Mei; Pan, An

    2015-03-01

    Observational and intervention studies have reported inconsistent results of the relationship between polyunsaturated fatty acids (PUFAs) and hypertension during pregnancy. Here, we examined maternal plasma concentrations of n-3 and n-6 PUFAs between the 26th and the 28th week of gestation in relation to blood pressures and pregnancy-associated hypertension.We used data from a birth cohort study of 751 Chinese, Malay, and Indian women. Maternal peripheral systolic blood pressure (SBP) and diastolic blood pressure (DBP) were taken from the brachial arm, and central SBP and pulse pressures (PPs) were derived from radial artery pressure waveforms between the 26th and the 28th week of gestation. Pregnancy-associated hypertension (including gestational hypertension and preeclampsia) was ascertained from medical records. Plasma phosphatidylcholine n-3 and n-6 PUFAs were measured by gas chromatography and expressed as percentage of total fatty acids.Peripheral SBP was inversely associated with total n-3 PUFAs [-0.51 (95% confidence interval, CI, -0.89 to -0.13) mm Hg] and long-chain n-3 PUFAs [-0.52 (CI -0.92 to -0.13) mmHg]. Similar but weaker associations were observed for central SBP and PP. Dihomo-γ-linolenic acid was marginally positively associated with peripheral SBP, central SBP, and PP, whereas linoleic acid and total n-6 PUFAs showed no significant associations with blood pressures. We identified 28 pregnancy-associated hypertension cases, and 1% increase in total n-3 PUFAs was associated with a 24% lower odds of pregnancy-associated hypertension (odds ratio 0.76; 95% CI 0.60 to 0.97). Maternal ethnicity modified the PUFAs-blood pressure relations, with stronger inverse associations with n-3 PUFAs in Chinese women, and stronger positive associations with n-6 PUFAs in Indian women (P values for interaction ranged from 0.02 to 0.07).Higher n-3 PUFAs at midgestation are related to lower maternal blood pressures and pregnancy-associated hypertension in Asian women, and the ethnicity-related variation between PUFAs and blood pressures deserves further investigation.

  8. Relations of Plasma Polyunsaturated Fatty Acids With Blood Pressures During the 26th and 28th Week of Gestation in Women of Chinese, Malay, and Indian Ethnicity

    PubMed Central

    Lim, Wai-Yee; Chong, Mary; Calder, Philip C.; Kwek, Kenneth; Chong, Yap-Seng; Gluckman, Peter D.; Godfrey, Keith M.; Saw, Seang-Mei; Pan, An

    2015-01-01

    Abstract Observational and intervention studies have reported inconsistent results of the relationship between polyunsaturated fatty acids (PUFAs) and hypertension during pregnancy. Here, we examined maternal plasma concentrations of n-3 and n-6 PUFAs between the 26th and the 28th week of gestation in relation to blood pressures and pregnancy-associated hypertension. We used data from a birth cohort study of 751 Chinese, Malay, and Indian women. Maternal peripheral systolic blood pressure (SBP) and diastolic blood pressure (DBP) were taken from the brachial arm, and central SBP and pulse pressures (PPs) were derived from radial artery pressure waveforms between the 26th and the 28th week of gestation. Pregnancy-associated hypertension (including gestational hypertension and preeclampsia) was ascertained from medical records. Plasma phosphatidylcholine n-3 and n-6 PUFAs were measured by gas chromatography and expressed as percentage of total fatty acids. Peripheral SBP was inversely associated with total n-3 PUFAs [−0.51 (95% confidence interval, CI, −0.89 to −0.13) mm Hg] and long-chain n-3 PUFAs [−0.52 (CI −0.92 to −0.13) mmHg]. Similar but weaker associations were observed for central SBP and PP. Dihomo-γ-linolenic acid was marginally positively associated with peripheral SBP, central SBP, and PP, whereas linoleic acid and total n-6 PUFAs showed no significant associations with blood pressures. We identified 28 pregnancy-associated hypertension cases, and 1% increase in total n-3 PUFAs was associated with a 24% lower odds of pregnancy-associated hypertension (odds ratio 0.76; 95% CI 0.60 to 0.97). Maternal ethnicity modified the PUFAs–blood pressure relations, with stronger inverse associations with n-3 PUFAs in Chinese women, and stronger positive associations with n-6 PUFAs in Indian women (P values for interaction ranged from 0.02 to 0.07). Higher n-3 PUFAs at midgestation are related to lower maternal blood pressures and pregnancy-associated hypertension in Asian women, and the ethnicity-related variation between PUFAs and blood pressures deserves further investigation. PMID:25738474

  9. Haemodynamic dose-response effects of intravenous nisoldipine in coronary artery disease.

    PubMed Central

    Silke, B; Frais, M A; Muller, P; Verma, S P; Reynolds, G; Taylor, S H

    1985-01-01

    The circulatory consequences of slow-calcium channel blockade with a new dihydropyridine nisoldipine were evaluated at rest and during exercise-induced angina in 16 patients with angiographically proven coronary artery disease. In 10 patients resting cardiac stroke output (thermodilution) and pulmonary artery occluded pressure were determined following four intravenous nisoldipine injections (cumulative dosage of 1, 2, 4 and 8 micrograms kg-1). The exercise effects of nisoldipine were evaluated by comparing the effects of the 8 micrograms kg-1 cumulative dosage with a control exercise period at the same workload. At rest nisoldipine reduced systemic vascular resistance and mean arterial pressure, and increased heart rate, cardiac and stroke volume indices. During 4 min supine-bicycle exercise nisoldipine reduced systemic mean arterial pressure and vascular resistance; this resulted in augmented cardiac and stroke volume indices at an unchanged pulmonary artery occluded pressure. In six additional patients rest and exercise ejection fractions were measured using a nonimaging nuclear probe. Nisoldipine (4 micrograms kg-1) resulted in a small trend to increase left ventricular rest and exercise ejection fraction. These data demonstrated improved rest and exercise cardiac performance following nisoldipine in patients with severe coronary artery disease. PMID:4091998

  10. Observational study comparing non-invasive blood pressure measurement at the arm and ankle during caesarean section.

    PubMed

    Drake, M J P; Hill, J S

    2013-05-01

    Upper-arm non-invasive blood pressure measurement during caesarean section can be uncomfortable and unreliable because of movement artefact in the conscious parturient. We aimed to determine whether ankle blood pressure measurement could be used instead in this patient group by comparing concurrent arm and ankle blood pressure measured throughout elective caesarean section under regional anaesthesia in 64 term parturients. Bland-Altman analysis of mean difference (95% limits of agreement [range]) between the ankle and arm was 11.2 (-20.3 to +42.7 [-67 to +102]) mmHg for systolic arterial pressure, -0.5 (-21.0 to +19.9 [-44 to +91]) mmHg for mean arterial pressure and -3.8 (-25.3 to +17.8 [-41 to +94]) mmHg for diastolic arterial pressure. Although ankle blood pressure measurement is well tolerated and allows greater mobility of the arms than measurement from the arm, the degree of discrepancy between the two sites is unacceptable to allow routine use of ankle blood pressure measurement, especially for systolic arterial pressure. However, ankle blood pressure measurement may be a useful alternative in situations where arm blood pressure measurement is difficult or impossible. Anaesthesia © 2013 The Association of Anaesthetists of Great Britain and Ireland.

  11. 'Non-hypotensive' hypovolaemia reduces ascending aortic dimensions in humans

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Halliwill, J. R.; Brown, T. E.; Hayano, J.; Eckberg, D. L.

    1995-01-01

    1. The notion that small, 'non-hypotensive' reductions of effective blood volume alter neither arterial pressure nor arterial baroreceptor activity is pervasive in the experimental literature. We tested two hypotheses: (a) that minute arterial pressure and cardiac autonomic outflow changes during hypovolaemia induced by lower body suction in humans are masked by alterations in breathing, and (b) that evidence for arterial baroreflex engagement might be obtained from measurements of thoracic aorta dimensions. 2. In two studies, responses to graded lower body suction at 0 (control), 5, 10, 15, 20 and 40 mmHg were examined in twelve and ten healthy young men, respectively. In the first, arterial pressure (photoplethysmograph), R-R interval, and respiratory sinus arrhythmia amplitude (complex demodulation) were measured during uncontrolled and controlled breathing (constant breathing frequency and tidal volume). In the second, cross-sectional areas of the ascending thoracic aorta were calculated from nuclear magnetic resonance images. 3. Lower body suction with controlled breathing resulted in an increased arterial pulse pressure at mild levels (5-20 mmHg; ANOVA, P < 0.05) and a decreased arterial pulse pressure at moderate levels (40 mmHg; ANOVA, P < 0.05). Both R-R intervals and respiratory sinus arrhythmia were negatively related to lower body suction level, whether group averages (general linear regression, r > 0.92) or individual subjects (orthogonal polynomials, 12 of 12 subjects) were assessed. 4. Aortic pulse area decreased progressively and significantly during mild lower body suction, with 47% of the total decline occurring by 5 mmHg. 5. These results suggest that small reductions of effective blood volume reduce aortic baroreceptive areas and trigger haemodynamic adjustments which are so efficient that alterations in arterial pressure escape detection by conventional means.

  12. Flow characteristics around a deformable stenosis under pulsatile flow condition

    NASA Astrophysics Data System (ADS)

    Choi, Woorak; Park, Jun Hong; Byeon, Hyeokjun; Lee, Sang Joon

    2018-01-01

    A specific portion of a vulnerable stenosis is deformed periodically under a pulsatile blood flow condition. Detailed analysis of such deformable stenosis is important because stenotic deformation can increase the likelihood of rupture, which may lead to sudden cardiac death or stroke. Various diagnostic indices have been developed for a nondeformable stenosis by using flow characteristics and resultant pressure drop across the stenosis. However, the effects of the stenotic deformation on the flow characteristics remain poorly understood. In this study, the flows around a deformable stenosis model and two different rigid stenosis models were investigated under a pulsatile flow condition. Particle image velocimetry was employed to measure flow structures around the three stenosis models. The deformable stenosis model was deformed to achieve high geometrical slope and height when the flow rate was increased. The deformation of the stenotic shape enhanced jet deflection toward the opposite vessel wall of the stenosis. The jet deflection in the deformable model increased the rate of jet velocity and turbulent kinetic energy (TKE) production as compared with those in the rigid models. The effect of stenotic deformation on the pulsating waveform related with the pressure drop was analyzed using the TKE production rate. The deformable stenosis model exhibited a phase delay of the peak point in the waveform. These results revealed the potential use of pressure drop waveform as a diagnostic index for deformable stenosis.

  13. Effects of hyperbaric oxygen on intracranial pressure and cerebral blood flow in experimental cerebral oedema1

    PubMed Central

    Miller, J. D.; Ledingham, I. McA.; Jennett, W. B.

    1970-01-01

    Increased intracranial pressure was induced in anaesthetized dogs by application of liquid nitrogen to the dura mater. Intracranial pressure and cerebral blood flow were measured, together with arterial blood pressure and arterial and cerebral venous blood gases. Carbon dioxide was administered intermittently to test the responsiveness of the cerebral circulation, and hyperbaric oxygen was delivered at intervals in a walk-in hyperbaric chamber, pressurized to two atmospheres absolute. Hyperbaric oxygen caused a 30% reduction of intracranial pressure and a 19% reduction of cerebral blood flow in the absence of changes in arterial PCO2 or blood pressure, but only as long as administration of carbon dioxide caused an increase in both intracranial pressure and cerebral blood flow. When carbon dioxide failed to influence intracranial pressure or cerebral blood flow then hyperbaric oxygen had no effect. This unresponsive state was reached at high levels of intracranial pressure. Images PMID:5497875

  14. Automatic Calculation of Hydrostatic Pressure Gradient in Patients with Head Injury: A Pilot Study.

    PubMed

    Moss, Laura; Shaw, Martin; Piper, Ian; Arvind, D K; Hawthorne, Christopher

    2016-01-01

    The non-surgical management of patients with traumatic brain injury is the treatment and prevention of secondary insults, such as low cerebral perfusion pressure (CPP). Most clinical pressure monitoring systems measure pressure relative to atmospheric pressure. If a patient is managed with their head tilted up, relative to their arterial pressure transducer, then a hydrostatic pressure gradient (HPG) can act against arterial pressure and cause significant errors in calculated CPP.To correct for HPG, the arterial pressure transducer should be placed level with the intracranial pressure transducer. However, this is not always achieved. In this chapter, we describe a pilot study investigating the application of speckled computing (or "specks") for the automatic monitoring of the patient's head tilt and subsequent automatic calculation of HPG. In future applications this will allow us to automatically correct CPP to take into account any HPG.

  15. The arterial blood pressure associated with terminal cardiovascular collapse in critically ill patients: a retrospective cohort study.

    PubMed

    Brunauer, Andreas; Koköfer, Andreas; Bataar, Otgon; Gradwohl-Matis, Ilse; Dankl, Daniel; Dünser, Martin W

    2014-12-19

    Liberal and overaggressive use of vasopressors during the initial period of shock resuscitation may compromise organ perfusion and worsen outcome. When transiently applying the concept of permissive hypotension, it would be helpful to know at which arterial blood pressure terminal cardiovascular collapse occurs. In this retrospective cohort study, we aimed to identify the arterial blood pressure associated with terminal cardiovascular collapse in 140 patients who died in the intensive care unit while being invasively monitored. Demographic data, co-morbid conditions and clinical data at admission and during the 24 hours before and at the time of terminal cardiovascular collapse were collected. The systolic, mean and diastolic arterial blood pressures immediately before terminal cardiovascular collapse were documented. Terminal cardiovascular collapse was defined as an abrupt (<5 minutes) and exponential decrease in heart rate (> 50% compared to preceding values) followed by cardiac arrest. The mean ± standard deviation (SD) values of the systolic, mean and diastolic arterial blood pressures associated with terminal cardiovascular collapse were 47 ± 12 mmHg, 35 ± 11 mmHg and 29 ± 9 mmHg, respectively. Patients with congestive heart failure (39 ± 13 mmHg versus 34 ± 10 mmHg; P = 0.04), left main stem stenosis (39 ± 11 mmHg versus 34 ± 11 mmHg; P = 0.03) or acute right heart failure (39 ± 13 mmHg versus 34 ± 10 mmHg; P = 0.03) had higher arterial blood pressures than patients without these risk factors. Patients with severe valvular aortic stenosis had the highest arterial blood pressures associated with terminal cardiovascular collapse (systolic, 60 ± 20 mmHg; mean, 46 ± 12 mmHg; diastolic, 36 ± 10 mmHg), but this difference was not significant. Patients with sepsis and patients exposed to sedatives or opioids during the terminal phase exhibited lower arterial blood pressures than patients without sepsis or administration of such drugs. The arterial blood pressure associated with terminal cardiovascular collapse in critically ill patients was very low and varied with individual co-morbid conditions (for example, congestive heart failure, left main stem stenosis, severe valvular aortic stenosis, acute right heart failure), drug exposure (for example, sedatives or opioids) and the type of acute illness (for example, sepsis).

  16. Artery buckling analysis using a two-layered wall model with collagen dispersion.

    PubMed

    Mottahedi, Mohammad; Han, Hai-Chao

    2016-07-01

    Artery buckling has been proposed as a possible cause for artery tortuosity associated with various vascular diseases. Since microstructure of arterial wall changes with aging and diseases, it is essential to establish the relationship between microscopic wall structure and artery buckling behavior. The objective of this study was to developed arterial buckling equations to incorporate the two-layered wall structure with dispersed collagen fiber distribution. Seven porcine carotid arteries were tested for buckling to determine their critical buckling pressures at different axial stretch ratios. The mechanical properties of these intact arteries and their intima-media layer were determined via pressurized inflation test. Collagen alignment was measured from histological sections and modeled by a modified von-Mises distribution. Buckling equations were developed accordingly using microstructure-motivated strain energy function. Our results demonstrated that collagen fibers disperse around two mean orientations symmetrically to the circumferential direction (39.02°±3.04°) in the adventitia layer; while aligning closely in the circumferential direction (2.06°±3.88°) in the media layer. The microstructure based two-layered model with collagen fiber dispersion described the buckling behavior of arteries well with the model predicted critical pressures match well with the experimental measurement. Parametric studies showed that with increasing fiber dispersion parameter, the predicted critical buckling pressure increases. These results validate the microstructure-based model equations for artery buckling and set a base for further studies to predict the stability of arteries due to microstructural changes associated with vascular diseases and aging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Viscoelastic dynamic arterial response.

    PubMed

    Charalambous, Haralambia P; Roussis, Panayiotis C; Giannakopoulos, Antonios E

    2017-10-01

    Arteries undergo large deformations under applied intraluminal pressure and may exhibit small hysteresis due to creep or relaxation process. The mechanical response of arteries depends, among others, on their topology along the arterial tree. Viscoelasticity of arterial tissues, which is the topic investigated in this study, is mainly a characteristic mechanical response of arteries that are located away from the heart and have increased smooth muscle cells content. The arterial wall viscosity is simulated by adopting a generalized Maxwell model and the method of internal variables, as proposed by Bonet and Holzapfel et al. The total stresses consist of elastic long-term stresses and viscoelastic stresses, requiring an iterative procedure for their calculation. The cross-section of the artery is modeled as a circular ring, consisting of a single homogenized layer, under a time-varying blood pressure. Two different loading approximations for the aortic pressure vs time are considered. A novel numerical method is developed in order to solve the controlling integro-differential equation. A large number of numerical investigations are performed and typical response time-profiles are presented in pictorial form. Results suggest that the viscoelastic arterial response is mainly affected by the ratio of the relaxation time to the characteristic time of the response and by the pressure-time approximation. Numerical examples, based on data available in the literature, are conducted. The investigation presented in this study reveals the effect of each material parameter on the viscoelastic arterial response. Thus, a better understanding of the behavior of viscoelastic arteries is achieved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Unraveling the relationship between arterial flow and intra-aneurysmal hemodynamics.

    PubMed

    Morales, Hernán G; Bonnefous, Odile

    2015-02-26

    Arterial flow rate affects intra-aneurysmal hemodynamics but it is not clear how their relationship is. This uncertainty hinders the comparison among studies, including clinical evaluations, like a pre- and post-treatment status, since arterial flow rates may differ at each time acquisition. The purposes of this work are as follows: (1) To study how intra-aneurysmal hemodynamics changes within the full physiological range of arterial flow rates. (2) To provide characteristic curves of intra-aneurysmal velocity, wall shear stress (WSS) and pressure as functions of the arterial flow rate. Fifteen image-based aneurysm models were studied using computational fluid dynamics (CFD) simulations. The full range of physiological arterial flow rates reported in the literature was covered by 11 pulsatile simulations. For each aneurysm, the spatiotemporal-averaged blood flow velocity, WSS and pressure were calculated. Spatiotemporal-averaged velocity inside the aneurysm linearly increases as a function of the mean arterial flow (minimum R(2)>0.963). Spatiotemporal-averaged WSS and pressure at the aneurysm wall can be represented by quadratic functions of the arterial flow rate (minimum R(2)>0.996). Quantitative characterizations of spatiotemporal-averaged velocity, WSS and pressure inside cerebral aneurysms can be obtained with respect to the arterial flow rate. These characteristic curves provide more information of the relationship between arterial flow and aneurysm hemodynamics since the full range of arterial flow rates is considered. Having these curves, it is possible to compare experimental studies and clinical evaluations when different flow conditions are used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Spatial probabilistic pulsatility model for enhancing photoplethysmographic imaging systems

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Clausi, David A.; Wong, Alexander

    2016-11-01

    Photoplethysmographic imaging (PPGI) is a widefield noncontact biophotonic technology able to remotely monitor cardiovascular function over anatomical areas. Although spatial context can provide insight into physiologically relevant sampling locations, existing PPGI systems rely on coarse spatial averaging with no anatomical priors for assessing arterial pulsatility. Here, we developed a continuous probabilistic pulsatility model for importance-weighted blood pulse waveform extraction. Using a data-driven approach, the model was constructed using a 23 participant sample with a large demographic variability (11/12 female/male, age 11 to 60 years, BMI 16.4 to 35.1 kg·m-2). Using time-synchronized ground-truth blood pulse waveforms, spatial correlation priors were computed and projected into a coaligned importance-weighted Cartesian space. A modified Parzen-Rosenblatt kernel density estimation method was used to compute the continuous resolution-agnostic probabilistic pulsatility model. The model identified locations that consistently exhibited pulsatility across the sample. Blood pulse waveform signals extracted with the model exhibited significantly stronger temporal correlation (W=35,p<0.01) and spectral SNR (W=31,p<0.01) compared to uniform spatial averaging. Heart rate estimation was in strong agreement with true heart rate [r2=0.9619, error (μ,σ)=(0.52,1.69) bpm].

  20. Impact of tubing length on hemodynamics in a simulated neonatal extracorporeal life support circuit.

    PubMed

    Qiu, Feng; Uluer, Mehmet C; Kunselman, Allen; Clark, J Brian; Myers, John L; Undar, Akif

    2010-11-01

    During extracorporeal life support (ECLS), a large portion of the hemodynamic energy is lost to various components of the circuit. Minimization of this loss in the circuit leads to better vital organ perfusion and decreases the risk of systemic inflammation. In this study, we evaluated the hemodynamic properties of differing lengths of tubing in a simulated neonatal ECLS circuit. The neonatal ECLS circuit used in this study included a Capiox Baby RX05 oxygenator (Terumo Corporation, Tokyo, Japan), a Rotaflow centrifugal pump (MAQUET Cardiopulmonary AG, Hirrlingen, Germany), and a heater and cooler unit. An 8Fr Biomedicus arterial and a 10Fr Biomedicus venous cannula were connected to the pseudopatient. One-fourth inch tubing was used for both the arterial and the venous line. A Hoffman clamp was located upstream from the pseudopatient to maintain a certain patient pressure. Three pressure transducers were placed at different sites: postoxygenator, prearterial cannula, and postarterial cannula. The system was primed with Lactated Ringer's solution; human blood was then added to maintain a hematocrit of 40%. The volume of the pseudopatient was 500mL. We hemodynamically evaluated three circuits with different lengths of tubing: 6, 4, and 2 feet (182.88, 121.92, and 60.96 cm, respectively) for both arterial and venous lines; the priming volumes including all of the components of the circuits were 195, 155, and 115mL, respectively. In each circuit, we measured the pressure drops of the arterial tubing and the arterial cannula, as well as the flow rates at different rpm (1750-3000, 250 intervals) under three patient pressures (40, 60, and 80mm Hg). All the experiments were conducted at 37°C. The pressure drop across the arterial cannula is much larger than that of arterial tubing in all set-ups, especially under high flow rates. Upon cutting the tubing from 6 to 2 feet, the pressure drop of the arterial tubing decreased by half, while the pressure drop of the arterial cannula increased due to the slightly higher flow rates. These results suggest that compared to the arterial tubing, the arterial cannula has a larger impact on the hemodynamics of the circuit. There is a little influence of tubing length on the circuit flow rate. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

Top