Science.gov

Sample records for artery image quality

  1. High-quality 3-D coronary artery imaging on an interventional C-arm x-ray system

    SciTech Connect

    Hansis, Eberhard; Carroll, John D.; Schaefer, Dirk; Doessel, Olaf; Grass, Michael

    2010-04-15

    Purpose: Three-dimensional (3-D) reconstruction of the coronary arteries during a cardiac catheter-based intervention can be performed from a C-arm based rotational x-ray angiography sequence. It can support the diagnosis of coronary artery disease, treatment planning, and intervention guidance. 3-D reconstruction also enables quantitative vessel analysis, including vessel dynamics from a time-series of reconstructions. Methods: The strong angular undersampling and motion effects present in gated cardiac reconstruction necessitate the development of special reconstruction methods. This contribution presents a fully automatic method for creating high-quality coronary artery reconstructions. It employs a sparseness-prior based iterative reconstruction technique in combination with projection-based motion compensation. Results: The method is tested on a dynamic software phantom, assessing reconstruction accuracy with respect to vessel radii and attenuation coefficients. Reconstructions from clinical cases are presented, displaying high contrast, sharpness, and level of detail. Conclusions: The presented method enables high-quality 3-D coronary artery imaging on an interventional C-arm system.

  2. [Ultrasound imaging of coronary artery].

    PubMed

    Fuse, Shigeto

    2014-09-01

    Coronary arterial anatomy and the terminology were reviewed. There is a specific portion of coronary artery aneurysm in Kawasaki disease. To investigate coronary arterial lesion, ultrasound imaging is useful because of non-invasive, high special and time resolu tion method. I explained the patient posture, the approaching method to the coronary arter ies, ultrasound setting, measurement of coronary arterial diameter and diastolic measurement.

  3. Imaging of coronary arteries using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Thompson, A. C.; Zeman, H.; Thomlinson, W.; Rubenstein, E.; Kernoff, R. S.; Hofstadter, R.; Giacomini, J. C.; Gordon, H. J.; Brown, G. S.

    1989-04-01

    Currently the imaging of coronary arteries is dangerous since it requires that a catheter be inserted into a peripheral artery and threaded up to the heart so that contrast agent can be injected directly into the artery being imaged. Using synchrotron radiation it may be possible to use a much safer venous injection of a contrast agent and still have sufficient image contrast to visualize the coronary arteries. A pair of monochromatized X-ray beams are used which have energies that bracket the iodine K absorption edge where the iodine absorption cross section jumps by a factor of six. Therefore, the logarithmic difference image has excellent sensitivity to contrast agent and minimal sensitivity to tissue and bone. Images have been taken of both dogs and humans. Improvements are being made to the imaging system which will substantially improve the image quality.

  4. Peripheral arterial line (image)

    MedlinePlus

    A peripheral arterial line is a small, short plastic catheter placed through the skin into an artery of the arm or leg. The purpose of a peripheral arterial line is to allow continuous monitoring of ...

  5. Relationship between beat to beat coronary artery motion and image quality in prospectively ECG-gated two heart beat 320-detector row coronary CT angiography.

    PubMed

    Tomizawa, Nobuo; Komatsu, Shuhei; Akahane, Masaaki; Torigoe, Rumiko; Kiryu, Shigeru; Ohtomo, Kuni

    2012-01-01

    The objective was to investigate the influence of the beat-to-beat movement of the coronary arteries on image quality of multi-segment reconstruction (MSR) images. Although MSR improves temporal resolution, image quality would be degraded by beat-to-beat movement of the coronary arteries. In a retrospectively review, 18 patients (mean age, 67.0 years) who underwent coronary CT angiography using a 320-detector row CT were included. The displacement and diameter of coronary artery segments for each of the identified nine landmarks was recorded. The motion ratio was calculated as the division of displacement by diameter. Image quality (IQ) was graded by a four-point scale. The correlation between MSR IQ score and the motion ratio showed stronger negative correlation than that between MSR IQ score and the displacement (r = -0.54 vs. r = -0.36). The average motion ratio for segments in which half-scan reconstruction (HSR) IQ was better than MSR IQ (29.1%, group A) was higher than that for segments in which MSR IQ was better than HSR IQ (16.0%, group C). The motion ratio in group C was lower than 25%. Difference in IQ scores of the HSR images was more frequent in group A than in the remaining segments in which the motion ratio was lower than 25% (16.7% vs. 66.0%; P < 0.0002). The motion ratio could be a better index than the displacement to evaluate the influence of the motion of coronary arteries on image quality. MSR images would be impaired by a motion ratio larger than 25%. Image impairment of one of the HSR images might also impair MSR images.

  6. Coronary artery stent (image)

    MedlinePlus

    ... with a balloon catheter and expands when the balloon is inflated. The stent is then left there to help keep the artery open. ... with a balloon catheter and expands when the balloon is inflated. The stent is then left there to help keep the artery open.

  7. Coronary artery disease (image)

    MedlinePlus

    ... through these arteries is critical for the heart. Coronary artery disease usually results from the build-up of fatty material and plaque, a condition called atherosclerosis. As the ... blood to the heart can slow or stop, causing chest pain (stable ...

  8. Renal arteries (image)

    MedlinePlus

    A renal angiogram is a test used to examine the blood vessels of the kidneys. The test is performed ... main vessel of the pelvis, up to the renal artery that leads into the kidney. Contrast medium ...

  9. Ultrasonic Imaging Of Deep Arteries

    NASA Technical Reports Server (NTRS)

    Rooney, James A.; Heyser, Richard C.; Lecroissette, Dennis H.

    1990-01-01

    Swept-frequency sound replaces pulsed sound. Ultrasonic medical instrument produces images of peripheral and coronary arteries with resolutions higher and at depths greater than attainable by previous ultrasonic systems. Time-delay-spectrometry imager includes scanning, image-processing, and displaying equipment. It sweeps in frequency from 0 to 10 MHz in 20 ms, pauses for 5 ms, and repeats sweep. Intended for use in noninvasive detection and measurement of atherosclerotic lesions.

  10. Prospective versus retrospective ECG-gated 64-detector coronary CT angiography for evaluation of coronary artery bypass graft patency: comparison of image quality, radiation dose and diagnostic accuracy.

    PubMed

    Lee, Jae Hwan; Chun, Eun Ju; Choi, Sang Il; Vembar, Mani; Lim, Cheong; Park, Kay-Hyun; Choi, Dong-Ju

    2011-06-01

    We aimed to evaluate image quality, radiation dose and diagnostic accuracy of coronary CT angiography (CCTA) with a prospectively gated transverse-axial scan (PGT) compared with a retrospectively gated helical scan (RGH), using a 64-slice scanner in patients who underwent coronary artery bypass graft (CABG). Of the 131 consecutive patients that underwent CABG using 64-slice multidetector row computed tomography during 2008, patients with heart rate (HR) of <75 beats/minute (bpm), and HR variation <10 bpm were included in the study. PGT was performed on 39 patients with 93 grafts, with RGH performed on 43 patients with 102 grafts. Image quality (1: excellent-4: poor) and estimated radiation dose were compared between the two groups. Of these, a total of 64 segments in 26 patients were subjected to invasive coronary angiography (ICA) for clinical reasons. Diagnostic accuracy of CCTA for evaluation of graft was performed between the two groups with ICA as a reference standard in terms of significant stenosis (≥ 50% of luminal stenosis). The image quality was not statistically different in the two groups. Mean effective radiation dose was 6.5 mSv in PGT-group, which was significantly lower than that in the RGH-group (21.2 mSv; P < 0.001). There was no statistically significant difference in diagnostic accuracy between the two groups (PGT-group versus RGH-group; 93.1% versus 91.4%). PGT can achieve dose reductions of up to 70% compared to RGH while maintaining image quality and high diagnostic accuracy in patients undergoing CABG. PMID:21678128

  11. A Cylindrical, Inner Volume Selecting 2D-T2-Prep Improves GRAPPA-Accelerated Image Quality in MRA of the Right Coronary Artery

    PubMed Central

    Coristine, Andrew J.; Yerly, Jerome; Stuber, Matthias

    2016-01-01

    Background Two-dimensional (2D) spatially selective radiofrequency (RF) pulses may be used to excite restricted volumes. By incorporating a "pencil beam" 2D pulse into a T2-Prep, one may create a "2D-T2-Prep" that combines T2-weighting with an intrinsic outer volume suppression. This may particularly benefit parallel imaging techniques, where artefacts typically originate from residual foldover signal. By suppressing foldover signal with a 2D-T2-Prep, image quality may therefore improve. We present numerical simulations, phantom and in vivo validations to address this hypothesis. Methods A 2D-T2-Prep and a conventional T2-Prep were used with GRAPPA-accelerated MRI (R = 1.6). The techniques were first compared in numerical phantoms, where per pixel maps of SNR (SNRmulti), noise, and g-factor were predicted for idealized sequences. Physical phantoms, with compartments doped to mimic blood, myocardium, fat, and coronary vasculature, were scanned with both T2-Preparation techniques to determine the actual SNRmulti and vessel sharpness. For in vivo experiments, the right coronary artery (RCA) was imaged in 10 healthy adults, using accelerations of R = 1,3, and 6, and vessel sharpness was measured for each. Results In both simulations and phantom experiments, the 2D-T2-Prep improved SNR relative to the conventional T2-Prep, by an amount that depended on both the acceleration factor and the degree of outer volume suppression. For in vivo images of the RCA, vessel sharpness improved most at higher acceleration factors, demonstrating that the 2D-T2-Prep especially benefits accelerated coronary MRA. Conclusion Suppressing outer volume signal with a 2D-T2-Prep improves image quality particularly well in GRAPPA-accelerated acquisitions in simulations, phantoms, and volunteers, demonstrating that it should be considered when performing accelerated coronary MRA. PMID:27736866

  12. Coronary Artery Imaging in Children

    PubMed Central

    2015-01-01

    Coronary artery problems in children usually have a significant impact on both short-term and long-term outcomes. Early and accurate diagnosis, therefore, is crucial but technically challenging due to the small size of the coronary artery, high heart rates, and limited cooperation of children. Coronary artery visibility on CT and MRI in children is considerably improved with recent technical advancements. Consequently, CT and MRI are increasingly used for evaluating various congenital and acquired coronary artery abnormalities in children, such as coronary artery anomalies, aberrant coronary artery anatomy specific to congenital heart disease, Kawasaki disease, Williams syndrome, and cardiac allograft vasculopathy. PMID:25741188

  13. Photoacoustic imaging of carotid artery atherosclerosis

    NASA Astrophysics Data System (ADS)

    Kruizinga, Pieter; van der Steen, Antonius F. W.; de Jong, Nico; Springeling, Geert; Robertus, Jan Lukas; van der Lugt, Aad; van Soest, Gijs

    2014-11-01

    We introduce a method for photoacoustic imaging of the carotid artery, tailored toward detection of lipid-rich atherosclerotic lesions. A common human carotid artery was obtained at autopsy, embedded in a neck mimicking phantom and imaged with a multimodality imaging system using interstitial illumination. Light was delivered through a 1.25-mm-diameter optical probe that can be placed in the pharynx, allowing the carotid artery to be illuminated from within the body. Ultrasound imaging and photoacoustic signal detection is achieved by an external 8-MHz linear array coupled to an ultrasound imaging system. Spectroscopic analysis of photoacoustic images obtained in the wavelength range from 1130 to 1250 nm revealed plaque-specific lipid accumulation in the collagen structure of the artery wall. These spectroscopic findings were confirmed by histology.

  14. Image quality analyzer

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.; Botugina, N. N.; Emaleev, O. N.; Antoshkin, L. V.; Konyaev, P. A.

    2012-07-01

    Image quality analyzer (IQA) which used as device for efficiency analysis of adaptive optics application is described. In analyzer marketed possibility estimations quality of images on three different criterions of quality images: contrast, sharpnesses and the spectral criterion. At present given analyzer is introduced on Big Solar Vacuum Telescope in stale work that allows at observations to conduct the choice of the most contrasting images of Sun. Is it hereinafter planned use the analyzer in composition of the ANGARA adaptive correction system.

  15. Social image quality

    NASA Astrophysics Data System (ADS)

    Qiu, Guoping; Kheiri, Ahmed

    2011-01-01

    Current subjective image quality assessments have been developed in the laboratory environments, under controlledconditions, and are dependent on the participation of limited numbers of observers. In this research, with the help of Web 2.0 and social media technology, a new method for building a subjective image quality metric has been developed where the observers are the Internet users. A website with a simple user interface that enables Internet users from anywhere at any time to vote for a better quality version of a pair of the same image has been constructed. Users' votes are recorded and used to rank the images according to their perceived visual qualities. We have developed three rank aggregation algorithms to process the recorded pair comparison data, the first uses a naive approach, the second employs a Condorcet method, and the third uses the Dykstra's extension of Bradley-Terry method. The website has been collecting data for about three months and has accumulated over 10,000 votes at the time of writing this paper. Results show that the Internet and its allied technologies such as crowdsourcing offer a promising new paradigm for image and video quality assessment where hundreds of thousands of Internet users can contribute to building more robust image quality metrics. We have made Internet user generated social image quality (SIQ) data of a public image database available online (http://www.hdri.cs.nott.ac.uk/siq/) to provide the image quality research community with a new source of ground truth data. The website continues to collect votes and will include more public image databases and will also be extended to include videos to collect social video quality (SVQ) data. All data will be public available on the website in due course.

  16. Update on coronary artery calcium imaging.

    PubMed

    Hergott, Lawrence J

    2005-01-01

    This update of coronary calcium imaging discusses methods of detecting and measuring coronary artery calcium and their correlation to coronary artery disease risk. The value of EBCT to traditional non-invasive cardiovascular tests is compared. A negative EBCT test makes the presence of atherosclerotic plaque, including unstable plaque, very unlikely. Negative EBCT may be consistent with low risk of a cardiovascular event over the next 2-5 years. Conversely, positive EBCT confirms the presence of a coronary plaque. The greater the amount of calcium, the greater the likelihood of occlusive disease, but there is a not a 1:1 relationship and findings may not be site specific. A high calcium score may be consistent with moderate to high risk of cardiovascular event within the next 2-5 years. Limitations and cautions concerning the general use of EBCT for screening are discussed. PMID:16060542

  17. Comprehensive data visualization for high resolution endovascular carotid arterial wall imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Kyle H. Y.; Sun, Cuiru; Cruz, Juan P.; Marotta, Thomas R.; Spears, Julian; Montanera, Walter J.; Thind, Aman; Courtney, Brian; Standish, Beau A.; Yang, Victor X. D.

    2012-05-01

    Carotid angioplasty and stenting is a minimally invasive endovascular procedure that may benefit from in vivo high resolution imaging for monitoring the physical placement of the stent and potential complications. The purpose of this pilot study was to evaluate the ability of optical coherence tomography to construct high resolution 2D and 3D images of stenting in porcine carotid artery. Four Yorkshire pigs were anaesthetized and catheterized. A state-of-the-art optical coherence tomography (OCT) system and an automated injector were used to obtain both healthy and stented porcine carotid artery images. Data obtained were then processed for visualization. The state-of-the-art OCT system was able to capture high resolution images of both healthy and stented carotid arteries. High quality 3D images of healthy and stented carotid arteries were constructed, clearly depicting vessel wall morphological features, stent apposition and thrombus formation over the inserted stent. The results demonstrate that OCT can be used to generate high quality 3D images of carotid arterial stents for accurate diagnosis of stent apposition and complications under appropriate imaging conditions.

  18. Vessel Wall Imaging of the Intracranial and Cervical Carotid Arteries

    PubMed Central

    Choi, Young Jun; Jung, Seung Chai; Lee, Deok Hee

    2015-01-01

    Vessel wall imaging can depict the morphologies of atherosclerotic plaques, arterial walls, and surrounding structures in the intracranial and cervical carotid arteries beyond the simple luminal changes that can be observed with traditional luminal evaluation. Differentiating vulnerable from stable plaques and characterizing atherosclerotic plaques are vital parts of the early diagnosis, prevention, and treatment of stroke and the neurological adverse effects of atherosclerosis. Various techniques for vessel wall imaging have been developed and introduced to differentiate and analyze atherosclerotic plaques in the cervical carotid artery. High-resolution magnetic resonance imaging (HR-MRI) is the most important and popular vessel wall imaging technique for directly evaluating the vascular wall and intracranial artery disease. Intracranial artery atherosclerosis, dissection, moyamoya disease, vasculitis, and reversible cerebral vasoconstriction syndrome can also be diagnosed and differentiated by using HR-MRI. Here, we review the radiologic features of intracranial artery disease and cervical carotid artery atherosclerosis on HR-MRI and various other vessel wall imaging techniques (e.g., ultrasound, computed tomography, magnetic resonance, and positron emission tomography-computed tomography). PMID:26437991

  19. From basilar artery dolichoectasia to basilar artery aneurysm: natural history in images.

    PubMed

    Zis, Panagiotis; Fragkis, Stylianos; Lykouri, Maria; Bageris, Ioannis; Kolovos, Georgios; Angelidakis, Panagiotis; Tavernarakis, Antonios

    2015-05-01

    Dolichoectasia is a medical term used to describe elongated and dilated vessels that follow a tortuous and windy course with frequent loops and curves. We are presenting the natural history in images of a normal basilar artery becoming dolichoectatic, followed by the formation of an aneurysm, over a period of many years, in 60-year-old Caucasian man with a long history of secondary progressive multiple sclerosis and uncontrolled arterial hypertension, who was diagnosed with dolichoectasia of basilar artery in 2008. Although relatively stable at this point, eventually his mobility deteriorated and signs from the cranial nerves, such as trigeminal neuralgia and bilateral palsy of the VI and the VII nerves were added in the clinical picture. In 2014, both computed tomography and magnetic resonance imaging of the brain revealed the formation of an unruptured aneurysm of the basilar artery.

  20. Image Enhancement, Image Quality, and Noise

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Hines, Glenn D.

    2005-01-01

    The Multiscale Retinex With Color Restoration (MSRCR) is a non-linear image enhancement algorithm that provides simultaneous dynamic range compression, color constancy and rendition. The overall impact is to brighten up areas of poor contrast/lightness but not at the expense of saturating areas of good contrast/brightness. The downside is that with the poor signal-to-noise ratio that most image acquisition devices have in dark regions, noise can also be greatly enhanced thus affecting overall image quality. In this paper, we will discuss the impact of the MSRCR on the overall quality of an enhanced image as a function of the strength of shadows in an image, and as a function of the root-mean-square (RMS) signal-to-noise (SNR) ratio of the image.

  1. Severe Pulmonary Arterial Hypertension: Comprehensive Evaluation by Magnetic Resonance Imaging

    PubMed Central

    Ibrahim, El-Sayed H.; Bajwa, Abubakr A.

    2015-01-01

    Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary artery (PA) pressure, which negatively affects the right ventricular (RV) function. This report shows a patient with severe PAH, on whom a comprehensive MRI exam was performed to evaluate both PA and RV. New imaging sequences were implemented for obtaining additional parameters about the patient's condition. The results show the capabilities of the developed exam of providing complete picture of the cardiovascular system in PAH, which helps the physician optimize treatment. PMID:26435871

  2. Retinal Image Quality During Accommodation

    PubMed Central

    López-Gil, N.; Martin, J.; Liu, T.; Bradley, A.; Díaz-Muñoz, D.; Thibos, L.

    2013-01-01

    Purpose We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Methods Subjects viewed a monochromatic (552nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Results Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Conclusions Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye’s higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced

  3. Quality assessment for hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yuheng; Chen, Xinhua; Zhou, Jiankang; Shen, Weimin

    2014-11-01

    Image quality assessment is an essential value judgement approach for many applications. Multi & hyper spectral imaging has more judging essentials than grey scale or RGB imaging and its image quality assessment job has to cover up all-around evaluating factors. This paper presents an integrating spectral imaging quality assessment project, in which spectral-based, radiometric-based and spatial-based statistical behavior for three hyperspectral imagers are jointly executed. Spectral response function is worked out based on discrete illumination images and its spectral performance is deduced according to its FWHM and spectral excursion value. Radiometric response ability of different spectral channel under both on-ground and airborne imaging condition is judged by SNR computing based upon local RMS extraction and statistics method. Spatial response evaluation of the spectral imaging instrument is worked out by MTF computing with slanted edge analysis method. Reported pioneering systemic work in hyperspectral imaging quality assessment is carried out with the help of several domestic dominating work units, which not only has significance in the development of on-ground and in-orbit instrument performance evaluation technique but also takes on reference value for index demonstration and design optimization for instrument development.

  4. Multimodality Imaging in Coronary Artery Disease: Focus on Computed Tomography

    PubMed Central

    Lee, Ji Hyun; Han, Donghee; Danad, Ibrahim; Hartaigh, Bríain ó; Lin, Fay Y.

    2016-01-01

    Coronary artery disease (CAD) is the leading cause of mortality worldwide, and various cardiovascular imaging modalities have been introduced for the purpose of diagnosing and determining the severity of CAD. More recently, advances in computed tomography (CT) technology have contributed to the widespread clinical application of cardiac CT for accurate and noninvasive evaluation of CAD. In this review, we focus on imaging assessment of CAD based upon CT, which includes coronary artery calcium screening, coronary CT angiography, myocardial CT perfusion, and fractional flow reserve CT. Further, we provide a discussion regarding the potential implications, benefits and limitations, as well as the possible future directions according to each modality. PMID:27081438

  5. [ECG-gated bypass CT angiography--application in imaging arterial bypasses].

    PubMed

    Wintersperger, B J; Bastarrika, G; Nikolaou, K; Rist, C; Huber, A; Knez, A; Reiser, M F; Becker, C R; Vicol, C

    2004-02-01

    Nowadays coronary artery bypass grafting is increasingly performed using arterial grafts. Purpose of the study was the evaluation of a appropriate 16 detector-row CT angiography protocol in patients after predominantly arterial bypass grafting. Fourteen patients after bypass grafting were including into the study and CT angiography carried out in the early postoperative period using a 16 detector-row CT system. To reduce cardiac pulsation artifacts data acquisition was implemented using ECG-gating algorithms. Overall 43 grafts (37 arterial, 6 venous) were examined. In 13 patients surgery had been performed using composite grafts with T or TY configuration. The mean heart rate was 74.1 bpm and showed a negative correlation to the image quality (r=-0.65; p=0.01). However, all data sets were diagnostic. Contrast injection protocol allowed for a homogeneous opacification throughout the vessels of interest. All non-delineationable grafts (5) showed a close proximity to the heart (T or Y grafts). Cardiac surgery is increasingly focusing on arterial revascularisation in bypass grafting and therefore leading to new demands for non-invasive bypass graft imaging. 16 detector-row CT allows a reliable visualization of even composite arterial grafts. However, for detection of grafts in the proximity of the heart a reduction of the heart rate (<65-70) still seems to be necessary. PMID:14991132

  6. Quality management in cardiopulmonary imaging.

    PubMed

    Kanne, Jeffrey P

    2011-02-01

    Increased scrutiny of the practice of medicine by government, insurance providers, and individual patients has led to a rapid growth of quality management programs in health care. Radiology is no exception to this trend, and quality management has become an important issue for individual radiologists as well as their respective practices. Quality control has been a mainstay of the practice of radiology for many years, with quality assurance and quality improvement both relative newcomers. This article provides an overview of quality management in the context of cardiopulmonary imaging and describes specific areas of cardiopulmonary radiology in which the components of a quality management program can be integrated. Specific quality components are discussed, and examples of quality initiatives are provided.

  7. Role of radionuclide cardiac imaging in coronary artery bypass surgery

    SciTech Connect

    Iskandrian, A.S.; Heo, J.; Mostel, E.

    1987-01-01

    The main applications of cardiac nuclear imaging in coronary artery bypass surgery include: patient selection, prediction of improvement in resting LV function after revascularization, diagnosis of perioperative myocardial infarction, assessment of the results of revascularization, evaluation of new or recurrent symptoms, and in risk stratification. Proper understanding of which test to be used, when, and why may be important to optimize patient management.

  8. Molecular analysis of arterial remodeling: a novel application of infrared imaging

    NASA Astrophysics Data System (ADS)

    Herman, Brad C.; Kundi, Rishi; Yamanouchi, Dai; Kent, K. Craig; Liu, Bo; Pleshko, Nancy

    2009-02-01

    Arterial remodeling, i.e. changes in size and/or structure of arteries, plays an important role in vascular disease. Conflicting findings have been reported as to whether an abundance of collagen causes inward or outward remodeling, phenomena that result in either a smaller or larger lumen, respectively. We hypothesize that the amount, type and quality of collagen influence the remodeling response. Here, we create mechanical injury to the rat carotid artery using a balloon catheter, and this leads to inward remodeling. Treatment of the artery with Connective Tissue Growth Factor (CTGF) causes outward remodeling. We investigated the arterial composition in injured CTGF-treated and non-CTGF-treated and sham CTGF-treated and non-CTGF treated arteries 14 days post-injury (n = 7-8 per group) using infrared imaging. A Perkin Elmer Spotlight Spectrum 300 FT-IR microscope was used for data collection. Cross-sections of paraffinembedded arteries were scanned at 2 cm-1 spectral resolution with spatial resolution of 6.25 μm/pixel, and data analyzed using Malvern Instruments ISys 5.0. Post-injury, we found a nearly 50% reduction in the average 1338/AM2 area ratio (correlated to collagen helical integrity). The most dramatic change was a 600% increase in the 1660/1690 peak height ratio, which has previously been related to collagen crosslink maturity. In all cases, CTGF treatment resulted in the observed changes in peak parameters normalized back to control values. Overall, these preliminary studies demonstrate that infrared imaging can provide insight into the underlying molecular changes that contribute to arterial disease.

  9. Arterial Perfusion Imaging-Defined Subvolume of Intrahepatic Cancer

    PubMed Central

    Wang, Hesheng; Farjam, Reza; Feng, Mary; Hussain, Hero; Ten Haken, Randall K.; Lawrence, Theodore S.; Cao, Yue

    2014-01-01

    Purpose To assess whether an increase in a subvolume of intrahepatic tumor with elevated arterial perfusion during radiation therapy (RT) predicts tumor progression post RT. Methods and Materials Twenty patients with unresectable intrahepatic cancers undergoing RT were enrolled in a prospective IRB-approved study. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) were performed prior to RT (pre-RT), after delivering ~60% of the planned dose (mid-RT) and one month after completion of RT to quantify hepatic arterial perfusion. The arterial perfusions of the tumors at pre-RT were clustered into low-normal and elevated perfusion by a fuzzy clustering-based method, and the tumor subvolumes with elevated arterial perfusion were extracted from the hepatic arterial perfusion images. The percentage changes in the tumor subvolumes and means of arterial perfusion over the tumors from pre-RT to mid-RT were evaluated for predicting tumor progression post-RT. Results Of the 24 tumors, 6 tumors in 5 patients progressed 5–21 months after RT completion. Neither tumor volumes nor means of tumor arterial perfusion at pre-RT were predictive of treatment outcome. The mean arterial perfusion over the tumors increased significantly at mid-RT in progressive tumors comparing to the responsive ones (p=0.006). From pre-RT to mid-RT, the responsive tumors had a decrease in the tumor subvolumes with elevated arterial perfusion (median: −14%, range: −75% – 65%), while the progressing tumors had an increase of the subvolumes (median: 57%, range: −7% – 165%) (p=0.003). Receiver operating characteristic (ROC) analysis of the percentage change in the subvolume for predicting tumor progression post-RT had an area under the curve (AUC) of 0.90. Conclusion The increase in the subvolume of the intrahepatic tumor with elevated arterial perfusion during RT has the potential to be a predictor for tumor progression post-RT. The tumor subvolume could be a radiation boost candidate

  10. HASTE sequence with parallel acquisition and T2 decay compensation: application to carotid artery imaging.

    PubMed

    Zhang, Ling; Kholmovski, Eugene G; Guo, Junyu; Choi, Seong-Eun Kim; Morrell, Glen R; Parker, Dennis L

    2009-01-01

    T2-weighted carotid artery images acquired using the turbo spin-echo (TSE) sequence frequently suffer from motion artifacts due to respiration and blood pulsation. The possibility of using HASTE sequence to achieve motion-free carotid images was investigated. The HASTE sequence suffers from severe blurring artifacts due to signal loss in later echoes due to T2 decay. Combining HASTE with parallel acquisition (PHASTE) decreases the number of echoes acquired and thus effectively reduces the blurring artifact caused by T2 relaxation. Further improvement in image sharpness can be achieved by performing T2 decay compensation before reconstructing the PHASTE data. Preliminary results have shown successful suppression of motion artifacts with PHASTE imaging. The image quality was enhanced relative to the original HASTE image, but was still less sharp than a non-motion-corrupted TSE image.

  11. Visual Limits To Image Quality

    NASA Astrophysics Data System (ADS)

    Granger, Edward M.

    1985-07-01

    Today's high speed computers, large and inexpensive memory devices and high definition displays have opened up the area of electronic image processing. Computers are being used to compress,enhance,and geometrically correct a wide range of image related data. It is necessary to develop Image Quality Merit Factors (IOW) that can be used to evaluate, compare, and specify imaging systems. A meaningful IQMF will have to include both the effects of the transfer function of the system and the noise introduced by the system. Most of the methods used to date have utilized linear system techniques to describe performance. In our work on the IOMF, we have found that it may be necessary to imitate the eye-brain combination in order to best describe the performance of an imaging system. This paper presents the idea that understanding the organization of and the rivalry between visual mechanisms may lead to new ways of considering photographic and electronic system image quality and the loss in image quality due to grain, halftones, and pixel noise.

  12. High speed intravascular photoacoustic imaging of atherosclerotic arteries (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Piao, Zhonglie; Ma, Teng; Qu, Yueqiao; Li, Jiawen; Yu, Mingyue; He, Youmin; Shung, K. Kirk; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2016-02-01

    Cardiovascular disease is the leading cause of death in the industrialized nations. Accurate quantification of both the morphology and composition of lipid-rich vulnerable atherosclerotic plaque are essential for early detection and optimal treatment in clinics. In previous works, intravascular photoacoustic (IVPA) imaging for detection of lipid-rich plaque within coronary artery walls has been demonstrated in ex vivo, but the imaging speed is still limited. In order to increase the imaging speed, a high repetition rate laser is needed. In this work, we present a high speed integrated IVPA/US imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A miniature catheter with 1.0 mm outer diameter was designed with a 200 μm multimode fiber and an ultrasound transducer with 45 MHz center frequency. The fiber was polished at 38 degree and enclosed in a glass capillary for total internal reflection. An optical/electrical rotary junction and pull-back mechanism was applied for rotating and linearly scanning the catheter to obtain three-dimensional imaging. Atherosclerotic rabbit abdominal aorta was imaged as two frame/second at 1725 nm. Furthermore, by wide tuning range of the laser wavelength from 1680 nm to 1770 nm, spectroscopic photoacoustic analysis of lipid-mimicking phantom and an human atherosclerotic artery was performed ex vivo. The results demonstrated that the developed IVPA/US imaging system is capable for high speed intravascular imaging for plaque detection.

  13. Image quality (IQ) guided multispectral image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  14. Fovea based image quality assessment

    NASA Astrophysics Data System (ADS)

    Guo, Anan; Zhao, Debin; Liu, Shaohui; Cao, Guangyao

    2010-07-01

    Humans are the ultimate receivers of the visual information contained in an image, so the reasonable method of image quality assessment (IQA) should follow the properties of the human visual system (HVS). In recent years, IQA methods based on HVS-models are slowly replacing classical schemes, such as mean squared error (MSE) and Peak Signal-to-Noise Ratio (PSNR). IQA-structural similarity (SSIM) regarded as one of the most popular HVS-based methods of full reference IQA has apparent improvements in performance compared with traditional metrics in nature, however, it performs not very well when the images' structure is destroyed seriously or masked by noise. In this paper, a new efficient fovea based structure similarity image quality assessment (FSSIM) is proposed. It enlarges the distortions in the concerned positions adaptively and changes the importances of the three components in SSIM. FSSIM predicts the quality of an image through three steps. First, it computes the luminance, contrast and structure comparison terms; second, it computes the saliency map by extracting the fovea information from the reference image with the features of HVS; third, it pools the above three terms according to the processed saliency map. Finally, a commonly experimental database LIVE IQA is used for evaluating the performance of the FSSIM. Experimental results indicate that the consistency and relevance between FSSIM and mean opinion score (MOS) are both better than SSIM and PSNR clearly.

  15. Landsat image data quality studies

    NASA Technical Reports Server (NTRS)

    Schueler, C. F.; Salomonson, V. V.

    1985-01-01

    Preliminary results of the Landsat-4 Image Data Quality Analysis (LIDQA) program to characterize the data obtained using the Thematic Mapper (TM) instrument on board the Landsat-4 and Landsat-5 satellites are reported. TM design specifications were compared to the obtained data with respect to four criteria, including spatial resolution; geometric fidelity; information content; and image relativity to Multispectral Scanner (MSS) data. The overall performance of the TM was rated excellent despite minor instabilities and radiometric anomalies in the data. Spatial performance of the TM exceeded design specifications in terms of both image sharpness and geometric accuracy, and the image utility of the TM data was at least twice as high as MSS data. The separability of alfalfa and sugar beet fields in a TM image is demonstrated.

  16. High-resolution Magnetic Resonance Vessel Wall Imaging for Intracranial Arterial Stenosis

    PubMed Central

    Zhu, Xian-Jin; Wang, Wu; Liu, Zun-Jing

    2016-01-01

    Objective: To discuss the feasibility and clinical value of high-resolution magnetic resonance vessel wall imaging (HRMR VWI) for intracranial arterial stenosis. Date Sources: We retrieved information from PubMed database up to December 2015, using various search terms including vessel wall imaging (VWI), high-resolution magnetic resonance imaging, intracranial arterial stenosis, black blood, and intracranial atherosclerosis. Study Selection: We reviewed peer-reviewed articles printed in English on imaging technique of VWI and characteristic findings of various intracranial vasculopathies on VWI. We organized this data to explain the value of VWI in clinical application. Results: VWI with black blood technique could provide high-quality images with submillimeter voxel size, and display both the vessel wall and lumen of intracranial artery simultaneously. Various intracranial vasculopathies (atherosclerotic or nonatherosclerotic) had differentiating features including pattern of wall thickening, enhancement, and vessel remodeling on VWI. This technique could be used for determining causes of stenosis, identification of stroke mechanism, risk-stratifying patients, and directing therapeutic management in clinical practice. In addition, a new morphological classification based on VWI could be established for predicting the efficacy of endovascular therapy. Conclusions: This review highlights the value of HRMR VWI for discrimination of different intracranial vasculopathies and directing therapeutic management. PMID:27231176

  17. Imaging popliteal artery disease in young adults with claudication: self-assessment module.

    PubMed

    Chew, Felix S; Bui-Mansfield, Liem T

    2007-09-01

    The educational objectives of this self-assessment module on imaging popliteal artery disease in young adults with intermittent claudication are for the participant to exercise, self-assess, and improve his or her knowledge of the imaging and clinical features of popliteal artery entrapment syndrome, cystic adventitial disease,and masses associated with popliteal artery obstruction.

  18. Combined vector velocity and spectral Doppler imaging for improved imaging of complex blood flow in the carotid arteries.

    PubMed

    Ekroll, Ingvild Kinn; Dahl, Torbjørn; Torp, Hans; Løvstakken, Lasse

    2014-07-01

    Color flow imaging and pulsed wave (PW) Doppler are important diagnostic tools in the examination of patients with carotid artery disease. However, measurement of the true peak systolic velocity is dependent on sample volume placement and the operator's ability to provide an educated guess of the flow direction. Using plane wave transmissions and a duplex imaging scheme, we present an all-in-one modality that provides both vector velocity and spectral Doppler imaging from one acquisition, in addition to separate B-mode images of sufficient quality. The vector Doppler information was used to provide automatically calibrated (angle-corrected) PW Doppler spectra at every image point. It was demonstrated that the combined information can be used to generate spatial maps of the peak systolic velocity, highlighting regions of high velocity and the extent of the stenotic region, which could be used to automate work flow as well as improve the accuracy of measurement of true peak systolic velocity. The modality was tested in a small group (N = 12) of patients with carotid artery disease. PW Doppler, vector velocity and B-mode images could successfully be obtained from a single recording for all patients with a body mass index ranging from 21 to 31 and a carotid depth ranging from 16 to 28 mm. PMID:24785436

  19. ECG-synchronized DSA exposure control: improved cervicothoracic image quality

    SciTech Connect

    Kelly, W.M.; Gould, R.; Norman, D.; Brant-Zawadzki, M.; Cox, L.

    1984-10-01

    An electrocardiogram (ECG)-synchronized x-ray exposure sequence was used to acquire digital subtraction angiographic (DSA) images during 13 arterial injection studies of the aortic arch or carotid bifurcations. These gated images were compared with matched ungated DSA images acquired using the same technical factors, contrast material volume, and patient positioning. Subjective assessments by five experienced observers of edge definition, vessel conspicuousness, and overall diagnostic quality showed overall preference for one of the two acquisition methods in 69% of cases studied. Of these, the ECG-synchronized exposure series were rated superior in 76%. These results, as well as the relatively simple and inexpensive modifications required, suggest that routine use of ECG exposure control can facilitate improved arterial DSA evaluations of suspected cervicothoracic vascular disease.

  20. A mathematical model for estimating the axial stress of the common carotid artery wall from ultrasound images.

    PubMed

    Soleimani, Effat; Mokhtari-Dizaji, Manijhe; Saberi, Hajir; Sharif-Kashani, Shervin

    2016-08-01

    Clarifying the complex interaction between mechanical and biological processes in healthy and diseased conditions requires constitutive models for arterial walls. In this study, a mathematical model for the displacement of the carotid artery wall in the longitudinal direction is defined providing a satisfactory representation of the axial stress applied to the arterial wall. The proposed model was applied to the carotid artery wall motion estimated from ultrasound image sequences of 10 healthy adults, and the axial stress waveform exerted on the artery wall was extracted. Consecutive ultrasonic images (30 frames per second) of the common carotid artery of 10 healthy subjects (age 44 ± 4 year) were recorded and transferred to a personal computer. Longitudinal displacement and acceleration were extracted from ultrasonic image processing using a block-matching algorithm. Furthermore, images were examined using a maximum gradient algorithm and time rate changes of the internal diameter and intima-media thickness were extracted. Finally, axial stress was estimated using an appropriate constitutive equation for thin-walled tubes. Performance of the proposed model was evaluated using goodness of fit between approximated and measured longitudinal displacement statistics. Values of goodness-of-fit statistics indicated high quality of fit for all investigated subjects with the mean adjusted R-square (0.86 ± 0.08) and root mean squared error (0.08 ± 0.04 mm). According to the results of the present study, maximum and minimum axial stresses exerted on the arterial wall are 1.7 ± 0.6 and -1.5 ± 0.5 kPa, respectively. These results reveal the potential of this technique to provide a new method to assess arterial stress from ultrasound images, overcoming the limitations of the finite element and other simulation techniques.

  1. Arterial Tortuosity Syndrome: An Approach through Imaging Perspective.

    PubMed

    Bhat, Venkatraman

    2014-01-01

    This pictorial illustration demonstrates various aspects of arterial tortuosity syndrome (ATS) obtained predominantly from a multiple detector computed tomography (MDCT) examination of a patient. In addition, a comprehensive review of typical multi-modality imaging observations in patients with ATS is presented along with a description of a few imaging signs. Non-invasively obtained, conclusive information is required in patients with ATS in view of the fragile vascular structures involved. An amazing wealth of information can be obtained by reviewing the volumetric data sets of MDCT examination. In the context of incomplete clinical information or remote reading of radiographic examination with inadequate clinical details, ability to "image data mine" the hidden, unexplored information may be vastly useful. The role of MDCT as a single modality of evaluation in ATS is highlighted. PMID:25250193

  2. Arterial Tortuosity Syndrome: An Approach through Imaging Perspective

    PubMed Central

    Bhat, Venkatraman

    2014-01-01

    This pictorial illustration demonstrates various aspects of arterial tortuosity syndrome (ATS) obtained predominantly from a multiple detector computed tomography (MDCT) examination of a patient. In addition, a comprehensive review of typical multi-modality imaging observations in patients with ATS is presented along with a description of a few imaging signs. Non-invasively obtained, conclusive information is required in patients with ATS in view of the fragile vascular structures involved. An amazing wealth of information can be obtained by reviewing the volumetric data sets of MDCT examination. In the context of incomplete clinical information or remote reading of radiographic examination with inadequate clinical details, ability to “image data mine” the hidden, unexplored information may be vastly useful. The role of MDCT as a single modality of evaluation in ATS is highlighted. PMID:25250193

  3. Characterization of endothelial function in the brachial artery via affine registration of ultrasonographic image sequences

    NASA Astrophysics Data System (ADS)

    Lamata, Pablo; Laclaustra, Martin; Frangi, Alejandro F.

    2003-05-01

    The assessment and characterization of the endothelial function is a current research topic as it may play an important role in the diagnosis of cardiovascular diseases. Flow mediated dilatation may be used to investigate endothelial function, and B-mode ultrasonography is a cheap and non-invasive way to assess the vasodilation response. Computerized analysis techniques are very desirable to give higher accuracy and objectivity to the measurements. A new method is presented that solves some limitations of existing methods, which in general depend on accurate edge detection of the arterial wall. This method is based on a global image analysis strategy. The arterial vasodilation between two frames is modeled by a superposition of a rigid motion model and a stretching perpendicular to the artery. Both transformation models are recovered using an image registration algorithm based on normalized mutual information and a multi-resolution search framework. Temporal continuity of in the variation of the registration parameters is enforced with a Kalman filter, since the dilation process is known to be a gradual and continuous physiological phenomenon. The proposed method presents a negligible bias when compared with manual assessment. It also eliminates artifacts introduced by patient and probe motion, thus improving the accuracy of the measurements. Finally, it is also robust to typical problems of ultrasound, like speckle noise and poor image quality.

  4. [A new approach to arterial rigidity: ultrasonic tissue mode imaging].

    PubMed

    Steinbach, J C; Saboya, M I; Le Bourg, F; Petit, H; Gény, B; Stephan, D

    2003-01-01

    Vascular stiffness is a major contributory factor of cardiovascular morbidity and mortality. Tissue Doppler imaging (TDI) could make it possible to evaluate vascular rigidity in a site by the measurement of the arterial wall velocity. The objective of this work is to validate the use of tissue Doppler imaging in the assessment of carotid rigidity. The following parameters were measured with TDI (ATL HDI 5000 and software HDI Lab): maximum velocity and mean acceleration of parietal motion (VMax and AccMax). These measurements were corrected for the arterial diameter and pulse pressure (VMax cor and AccMax cor). These data have been compared to the calculated parameters of elasticity from a mode M echography. Thirty-one subjects aged of 26 to 77 years (41.6 +/- 10.6 years, m +/- ESM), without atheromatous plaque or high blood pressure, have been included. The VMax is correlated very significantly at the parietal velocity calculated with mode M echography (r = 0.77; p = 0.00002). The VMax cor is correlated significantly with the parameters of stiffness following: distensibility coefficient, compliance coefficient, pulse wave velocity, elasticity modulus of Young, coefficient beta. [table: see text] Tissue Doppler imaging allows an easy evaluation of the carotid stiffness correlated with the parameters of elasticity. Therefore it constitutes a method of evaluation of the cardiovascular risk. Further longitudinal studies will be able to assess the involvement of the carotid stiffness as causal agent of the cardiovascular risk.

  5. Variation in electrosurgical vessel seal quality along the length of a porcine carotid artery.

    PubMed

    Wyatt, Hayley Louise; Richards, Rosie; Pullin, Rhys; Yang, Th Jimmy; Blain, Emma J; Evans, Sam L

    2016-03-01

    Electrosurgical vessel sealing has been demonstrated to have benefits for both patients and practitioners, but significant variation in the strength of the seal continues to be a concern. This study aims to examine the variation in electrosurgical seal quality along the length of a porcine common carotid artery and explore the relationships between seal quality, vessel size and morphology. Additionally, the study aimed to investigate the minimum safety threshold for successful seals and the influence of vessel characteristics on meeting this requirement. A total of 35 porcine carotid arteries were sealed using the PlasmaKinetic Open Seal device (Gyrus). Each seal was burst pressure tested and a sample taken for staining with elastin van Gieson's stain, with morphological quantification using image processing software ImageJ. With increasing distance from the bifurcation, there was an increase in seal strength and a reduction in both elastin content and vessel outer diameter. A significant correlation was found between burst pressure with both outer diameter (p < 0.0001) and elastin content (p = 0.001). When considering the safe limits of operation, vessels of less than 5 mm in outer diameter were shown to consistently produce a seal of a sufficient strength (burst pressure > 360 mmHg) irrespective of vessel morphology.

  6. Myocardial perfusion imaging with technetium-99m sestamibi SPECT in the evaluation of coronary artery disease

    SciTech Connect

    Maddahi, J.; Kiat, H.; Van Train, K.F.; Prigent, F.; Friedman, J.; Garcia, E.V.; Alazraki, N.; DePuey, E.G.; Nichols, K.; Berman, D.S. )

    1990-10-16

    Technetium-99m (Tc-99m) sestamibi is a new myocardial perfusion imaging agent that offers significant advantages over thallium-201 (Tl-201) for myocardial perfusion imaging. The results of the current clinical trials using acquisition and processing parameters similar to those for Tl-201 and a separate (2-day) injection protocol suggest that Tc-99m sestamibi and Tl-201 single photon emission computed tomography (SPECT) provide similar information with respect to detection of myocardial perfusion defects, assessment of the pattern of defect reversibility, overall detection of coronary artery disease (CAD) and detection of disease in individual coronary arteries. Tc-99m sestamibi SPECT appears to be superior to Tc-99m sestamibi planar imaging because the former provides a higher defect contrast and is more accurate for detection of disease in individual coronary arteries. Research is currently under way addressing optimization of acquisition and processing of Tc-99m sestamibi studies and development of quantitative algorithms for detection and localization of CAD and sizing of transmural and nontransmural myocardial perfusion defects. It is expected that with the implementation of the final results of these new developments, further significant improvement in image quality will be attained, which in turn will further increase the confidence in image interpretation. Development of algorithms for analysis of end-diastolic myocardial images may allow better evaluation of small and nontransmural myocardial defects. Furthermore, gated studies may provide valuable information with respect to regional myocardial wall motion and wall thickening. With the implementation of algorithms for attenuation and scatter correction, the overall specificity of Tc-99m sestamibi SPECT should improve significantly. 32 references.

  7. Comparative imaging study in ultrasound, MRI, CT, and DSA using a multimodality renal artery phantom

    SciTech Connect

    King, Deirdre M.; Fagan, Andrew J.; Moran, Carmel M.; Browne, Jacinta E.

    2011-02-15

    Purpose: A range of anatomically realistic multimodality renal artery phantoms consisting of vessels with varying degrees of stenosis was developed and evaluated using four imaging techniques currently used to detect renal artery stenosis (RAS). The spatial resolution required to visualize vascular geometry and the velocity detection performance required to adequately characterize blood flow in patients suffering from RAS are currently ill-defined, with the result that no one imaging modality has emerged as a gold standard technique for screening for this disease. Methods: The phantoms, which contained a range of stenosis values (0%, 30%, 50%, 70%, and 85%), were designed for use with ultrasound, magnetic resonance imaging, x-ray computed tomography, and x-ray digital subtraction angiography. The construction materials used were optimized with respect to their ultrasonic speed of sound and attenuation coefficient, MR relaxometry (T{sub 1},T{sub 2}) properties, and Hounsfield number/x-ray attenuation coefficient, with a design capable of tolerating high-pressure pulsatile flow. Fiducial targets, incorporated into the phantoms to allow for registration of images among modalities, were chosen to minimize geometric distortions. Results: High quality distortion-free images of the phantoms with good contrast between vessel lumen, fiducial markers, and background tissue to visualize all stenoses were obtained with each modality. Quantitative assessments of the grade of stenosis revealed significant discrepancies between modalities, with each underestimating the stenosis severity for the higher-stenosed phantoms (70% and 85%) by up to 14%, with the greatest discrepancy attributable to DSA. Conclusions: The design and construction of a range of anatomically realistic renal artery phantoms containing varying degrees of stenosis is described. Images obtained using the main four diagnostic techniques used to detect RAS were free from artifacts and exhibited adequate contrast

  8. Contrast-enhanced ultrasound imaging of the vasa vasorum of carotid artery plaque

    PubMed Central

    Song, Ze-Zhou; Zhang, Yan-Ming

    2015-01-01

    The vasa vasorum of carotid artery plaque is a novel marker of accurately evaluating the vulnerability of carotid artery plaque, which was associated with symptomatic cerebrovascular and cardiovascular disease. The presence of ultrasound contrast agents in carotid artery plaque represents the presence of the vasa vasorum in carotid artery plaque because the ultrasound contrast agents are strict intravascular tracers. Therefore, contrast-enhanced ultrasound (CEUS) is a novel and safe imaging modality for evaluating the vasa vasorum in carotid artery plaque. However, there are some issues that needs to be assessed to embody fully the clinical utility of the vasa vasorum in carotid artery plaque with CEUS. PMID:26120382

  9. Direct Characterization of Arterial Input Functions by Fluorescence Imaging of Exposed Carotid Artery to Facilitate Kinetic Analysis

    PubMed Central

    Elliott, Jonathan T.; Tichauer, Kenneth M.; Samkoe, Kimberley S.; Gunn, Jason R.; Sexton, Kristian J.; Pogue, Brian W.

    2014-01-01

    Purpose With the goal of facilitating tracer kinetic analysis in small-animal planar fluorescence imaging, an experimental method for characterizing tracer arterial input functions is presented. The proposed method involves exposing the common carotid arteries by surgical dissection, which can then be imaged directly during tracer injection and clearance. Procedures Arterial concentration curves of IRDye-700DX-carboxylate, IRDye-800CW-EGF, and IRDye-800CW conjugated to anti-EGFR Affibody are recovered from athymic female mice (n=12) by directly imaging exposed vessels. Images were acquired with two imaging protocols: a slow-kinetics approach (temporal resolution=45 s) to recover the arterial curves from two tracers simultaneously, and a fast-kinetics approach (temporal resolution=500 ms) to characterize the first-pass peak of a single tracer. Arterial input functions obtained by the carotid imaging technique, as well as plasma curves measured by blood sampling were fit with a biexponential pharmacokinetic model. Results Pharmacological fast- and slow-phase rate constants recovered with the proposed method were 0.37±0.26 and 0.007±0.001 min−1, respectively, for the IRDye700DX-C. For the IRDye800CW-EGF, the rate constants were 0.11±0.13 and 0.003±0.002 min−1. These rate constants did not differ significantly from those calculated previously by blood sampling, as determined by an F test; however, the between-subject variability was four times lower for arterial curves recovered using the proposed technique, compared with blood sampling. Conclusions The proposed technique enables the direct characterization of arterial input functions for kinetic analysis. As this method requires no additional instrumentation, it is immediately deployable in commercially available planar fluorescence imaging systems. PMID:24420443

  10. Assessing product image quality for online shopping

    NASA Astrophysics Data System (ADS)

    Goswami, Anjan; Chung, Sung H.; Chittar, Naren; Islam, Atiq

    2012-01-01

    Assessing product-image quality is important in the context of online shopping. A high quality image that conveys more information about a product can boost the buyer's confidence and can get more attention. However, the notion of image quality for product-images is not the same as that in other domains. The perception of quality of product-images depends not only on various photographic quality features but also on various high level features such as clarity of the foreground or goodness of the background etc. In this paper, we define a notion of product-image quality based on various such features. We conduct a crowd-sourced experiment to collect user judgments on thousands of eBay's images. We formulate a multi-class classification problem for modeling image quality by classifying images into good, fair and poor quality based on the guided perceptual notions from the judges. We also conduct experiments with regression using average crowd-sourced human judgments as target. We compute a pseudo-regression score with expected average of predicted classes and also compute a score from the regression technique. We design many experiments with various sampling and voting schemes with crowd-sourced data and construct various experimental image quality models. Most of our models have reasonable accuracies (greater or equal to 70%) on test data set. We observe that our computed image quality score has a high (0.66) rank correlation with average votes from the crowd sourced human judgments.

  11. High-definition computed tomography for coronary artery stents: image quality and radiation doses for low voltage (100 kVp) and standard voltage (120 kVp) ECG-triggered scanning.

    PubMed

    Lee, Ji Won; Kim, Chang Won; Lee, Han Cheol; Wu, Ming-Ting; Hwangbo, Lee; Choo, Ki Seok; Kim, June Hong; Lee, Ki-Nam; Kim, Jin You; Jeong, Yeon Joo

    2015-06-01

    The noninvasive assessment of coronary stents by coronary CT angiography (CCTA) is an attractive method. However, the radiation dose associated with CCTA remains a concern for patients. The purpose of this study is to compare the radiation doses and image qualities of CCTA performed using tube voltages of 100 or 120 kVp for the evaluation of coronary stents. After receiving institutional review board approval, 53 consecutive patients with previously implanted stents (101 stents) underwent 64-slice CCTA. Patients were divided into three different protocol groups, namely, prospective ECG triggering at 100 kVp, prospective ECG triggering at 120 kVp, or retrospective gating at 100 kVp. Two reviewers qualitatively scored the quality of the resulting images for coronary stents and determined levels of artificial lumen narrowing (ALN), stent lumen attenuation increase ratio (SAIR), image noise, and radiation dose parameters. No significant differences were found between the three protocol groups concerning qualitative image quality or SAIR. Coronary lumen attenuation and in-stent attenuation of 100 kVp prospective CCTA (P-CCTA) were higher than in the 120 kVp P-CCTA protocol (all Ps < 0.001). Mean ALN was significantly lower for 100 kVp P-CCTA than for 100 kVp retrospective CCTA (R-CCTA, P = 0.007). The mean effective radiation dose was significantly lower (P < 0.001) for 100 kVp P-CCTA (3.3 ± 0.4 mSv) than for the other two protocols (100 kVp R-CCTA 6.7 ± 1.0 mSv, 120 kVp P-CCTA 4.6 ± 1.2 mSv). We conclude that the use of 100 kVp P-CCTA can reduce radiation doses for patients while maintaining the imaging quality of 100 kVp R-CCTA and 120 kVp P-CCTA for the evaluation of coronary stents. PMID:26022439

  12. Automatic active contour-based segmentation and classification of carotid artery ultrasound images.

    PubMed

    Chaudhry, Asmatullah; Hassan, Mehdi; Khan, Asifullah; Kim, Jin Young

    2013-12-01

    In this paper, we present automatic image segmentation and classification technique for carotid artery ultrasound images based on active contour approach. For early detection of the plaque in carotid artery to avoid serious brain strokes, active contour-based techniques have been applied successfully to segment out the carotid artery ultrasound images. Further, ultrasound images might be affected due to rotation, scaling, or translational factors during acquisition process. Keeping in view these facts, image alignment is used as a preprocessing step to align the carotid artery ultrasound images. In our experimental study, we exploit intima-media thickness (IMT) measurement to detect the presence of plaque in the artery. Support vector machine (SVM) classification is employed using these segmented images to distinguish the normal and diseased artery images. IMT measurement is used to form the feature vector. Our proposed approach segments the carotid artery images in an automatic way and further classifies them using SVM. Experimental results show the learning capability of SVM classifier and validate the usefulness of our proposed approach. Further, the proposed approach needs minimum interaction from a user for an early detection of plaque in carotid artery. Regarding the usefulness of the proposed approach in healthcare, it can be effectively used in remote areas as a preliminary clinical step even in the absence of highly skilled radiologists.

  13. In-vivo validation of fluorescence lifetime imaging (FLIm) of coronary arteries in swine

    NASA Astrophysics Data System (ADS)

    Bec, Julien; Ma, Dinglong; Yankelevich, Diego R.; Gorpas, Dimitris S.; Ferrier, William T.; Southard, Jeffrey; Marcu, Laura

    2015-02-01

    We report a scanning imaging system that enables high speed multispectral fluorescence lifetime imaging (FLIm) of coronary arteries. This system combines a custom low profile (3 Fr) imaging catheter using a 200 μm core side viewing UV-grade silica fiber optic, an acquisition system able to measure fluorescence decays over four spectral bands at 20 kHz and a fast data analysis and display module. In vivo use of the system has been optimized, with particular emphasis on clearing blood from the optical pathway. A short acquisition time (5 seconds for a 20 mm long coronary segment) enabled data acquisition during a bolus saline solution injection through the 7 Fr catheter guide. The injection parameters were precisely controlled using a power injector and optimized to provide good image quality while limiting the bolus injection duration and volume (12 cc/s, 80 cc total volume). The ability of the system to acquire data in vivo was validated in healthy swine by imaging different sections of the left anterior descending (LAD) coronary. A stent coated with fluorescent markers was placed in the LAD and imaged, demonstrating the ability of the system to discriminate in vivo different fluorescent features and structures from the vessel background fluorescence using spectral and lifetime information. Intensity en face images over the four bands of the instrument were available within seconds whereas lifetime images were computed in 2 minutes, providing efficient feedback during the procedure. This successful demonstration of FLIm in coronaries enables future study of atherosclerotic cardiovascular diseases.

  14. Blood vessel classification into arteries and veins in retinal images

    NASA Astrophysics Data System (ADS)

    Kondermann, Claudia; Kondermann, Daniel; Yan, Michelle

    2007-03-01

    The prevalence of diabetes is expected to increase dramatically in coming years; already today it accounts for a major proportion of the health care budget in many countries. Diabetic Retinopathy (DR), a micro vascular complication very often seen in diabetes patients, is the most common cause of visual loss in working age population of developed countries today. Since the possibility of slowing or even stopping the progress of this disease depends on the early detection of DR, an automatic analysis of fundus images would be of great help to the ophthalmologist due to the small size of the symptoms and the large number of patients. An important symptom for DR are abnormally wide veins leading to an unusually low ratio of the average diameter of arteries to veins (AVR). There are also other diseases like high blood pressure or diseases of the pancreas with one symptom being an abnormal AVR value. To determine it, a classification of vessels as arteries or veins is indispensable. As to our knowledge despite the importance there have only been two approaches to vessel classification yet. Therefore we propose an improved method. We compare two feature extraction methods and two classification methods based on support vector machines and neural networks. Given a hand-segmentation of vessels our approach achieves 95.32% correctly classified vessel pixels. This value decreases by 10% on average, if the result of a segmentation algorithm is used as basis for the classification.

  15. An Underwater Color Image Quality Evaluation Metric.

    PubMed

    Yang, Miao; Sowmya, Arcot

    2015-12-01

    Quality evaluation of underwater images is a key goal of underwater video image retrieval and intelligent processing. To date, no metric has been proposed for underwater color image quality evaluation (UCIQE). The special absorption and scattering characteristics of the water medium do not allow direct application of natural color image quality metrics especially to different underwater environments. In this paper, subjective testing for underwater image quality has been organized. The statistical distribution of the underwater image pixels in the CIELab color space related to subjective evaluation indicates the sharpness and colorful factors correlate well with subjective image quality perception. Based on these, a new UCIQE metric, which is a linear combination of chroma, saturation, and contrast, is proposed to quantify the non-uniform color cast, blurring, and low-contrast that characterize underwater engineering and monitoring images. Experiments are conducted to illustrate the performance of the proposed UCIQE metric and its capability to measure the underwater image enhancement results. They show that the proposed metric has comparable performance to the leading natural color image quality metrics and the underwater grayscale image quality metrics available in the literature, and can predict with higher accuracy the relative amount of degradation with similar image content in underwater environments. Importantly, UCIQE is a simple and fast solution for real-time underwater video processing. The effectiveness of the presented measure is also demonstrated by subjective evaluation. The results show better correlation between the UCIQE and the subjective mean opinion score.

  16. Analysis of the Sensitivity and Specificity of Noninvasive Imaging Tests for the Diagnosis of Renal Artery Stenosis

    PubMed Central

    Borelli, Flavio Antonio de Oliveira; Pinto, Ibraim M. F.; Amodeo, Celso; Smanio, Paola E. P.; Kambara, Antonio M.; Petisco, Ana Claudia G.; Moreira, Samuel M.; Paiva, Ricardo Calil; Lopes, Hugo Belotti; Sousa, Amanda G. M. R.

    2013-01-01

    Background Aging and atherosclerosis are related to renovascular hypertension in elderly individuals. Regardless of comorbidities, renal artery stenosis is itself an important cause of cardiovascular morbidity and mortality. Objective To define the sensitivity, specificity, positive predictive value, and negative predictive value of noninvasive imaging tests used in the diagnosis of renal artery stenosis. Methods In a group of 61 patients recruited, 122 arteries were analized, thus permitting the definition of sensitivity, specificity, and the relative contribution of each imaging study performed (Doppler, scintigraphy and computed tomographic angiography in comparison to renal arteriography). Results The mean age was 65.43 years (standard deviation: 8.7). Of the variables related to the study population that were compared to arteriography, two correlated with renal artery stenosis, renal dysfunction and triglycerides. The median glomerular filtration rate was 52.8 mL/min/m2. Doppler showed sensitivity of 82.90%, specificity of 70%, a positive predictive value of 85% and negative predictive value of 66.70%. For tomography, sensitivity was 66.70%, specificity 80%, positive predictive value 87.50% and negative predictive value 55.20%. With these findings, we could identify the imaging tests that best detected stenosis. Conclusion Tomography and Doppler showed good quality and efficacy in the diagnosis of renal artery stenosis, with Doppler having the advantage of not requiring the use of contrast medium for the assessment of a disease that is common in diabetics and is associated with renal dysfunction and severe left ventricular dysfunction. PMID:24061685

  17. Successful serial imaging of the mouse cerebral arteries using conventional 3-T magnetic resonance imaging

    PubMed Central

    Makino, Hiroshi; Hokamura, Kazuya; Natsume, Takahiro; Kimura, Tetsuro; Kamio, Yoshinobu; Magata, Yasuhiro; Namba, Hiroki; Katoh, Takasumi; Sato, Shigehito; Hashimoto, Tomoki; Umemura, Kazuo

    2015-01-01

    Serial imaging studies can be useful in characterizing the pathologic and physiologic remodeling of cerebral arteries in various mouse models. We tested the feasibility of using a readily available, conventional 3-T magnetic resonance imaging (MRI) to serially image cerebrovascular remodeling in mice. We utilized a mouse model of intracranial aneurysm as a mouse model of the dynamic, pathologic remodeling of cerebral arteries. Aneurysms were induced by hypertension and a single elastase injection into the cerebrospinal fluid. For the mouse cerebrovascular imaging, we used a conventional 3-T MRI system and a 40-mm saddle coil. We used non-enhanced magnetic resonance angiography (MRA) to detect intracranial aneurysm formation and T2-weighted imaging to detect aneurysmal subarachnoid hemorrhage. A serial MRI was conducted every 2 to 3 days. MRI detection of aneurysm formation and subarachnoid hemorrhage was compared against the postmortem inspection of the brain that was perfused with dye. The imaging times for the MRA and T2-weighted imaging were 3.7±0.5 minutes and 4.8±0.0 minutes, respectively. All aneurysms and subarachnoid hemorrhages were correctly identified by two masked observers on MRI. This MRI-based serial imaging technique was useful in detecting intracranial aneurysm formation and subarachnoid hemorrhage in mice. PMID:25920958

  18. Automatic no-reference image quality assessment.

    PubMed

    Li, Hongjun; Hu, Wei; Xu, Zi-Neng

    2016-01-01

    No-reference image quality assessment aims to predict the visual quality of distorted images without examining the original image as a reference. Most no-reference image quality metrics which have been already proposed are designed for one or a set of predefined specific distortion types and are unlikely to generalize for evaluating images degraded with other types of distortion. There is a strong need of no-reference image quality assessment methods which are applicable to various distortions. In this paper, the authors proposed a no-reference image quality assessment method based on a natural image statistic model in the wavelet transform domain. A generalized Gaussian density model is employed to summarize the marginal distribution of wavelet coefficients of the test images, so that correlative parameters are needed for the evaluation of image quality. The proposed algorithm is tested on three large-scale benchmark databases. Experimental results demonstrate that the proposed algorithm is easy to implement and computational efficient. Furthermore, our method can be applied to many well-known types of image distortions, and achieves a good quality of prediction performance. PMID:27468398

  19. JPEG2000 still image coding quality.

    PubMed

    Chen, Tzong-Jer; Lin, Sheng-Chieh; Lin, You-Chen; Cheng, Ren-Gui; Lin, Li-Hui; Wu, Wei

    2013-10-01

    This work demonstrates the image qualities between two popular JPEG2000 programs. Two medical image compression algorithms are both coded using JPEG2000, but they are different regarding the interface, convenience, speed of computation, and their characteristic options influenced by the encoder, quantization, tiling, etc. The differences in image quality and compression ratio are also affected by the modality and compression algorithm implementation. Do they provide the same quality? The qualities of compressed medical images from two image compression programs named Apollo and JJ2000 were evaluated extensively using objective metrics. These algorithms were applied to three medical image modalities at various compression ratios ranging from 10:1 to 100:1. Following that, the quality of the reconstructed images was evaluated using five objective metrics. The Spearman rank correlation coefficients were measured under every metric in the two programs. We found that JJ2000 and Apollo exhibited indistinguishable image quality for all images evaluated using the above five metrics (r > 0.98, p < 0.001). It can be concluded that the image quality of the JJ2000 and Apollo algorithms is statistically equivalent for medical image compression. PMID:23589187

  20. Image quality scaling of electrophotographic prints

    NASA Astrophysics Data System (ADS)

    Johnson, Garrett M.; Patil, Rohit A.; Montag, Ethan D.; Fairchild, Mark D.

    2003-12-01

    Two psychophysical experiments were performed scaling overall image quality of black-and-white electrophotographic (EP) images. Six different printers were used to generate the images. There were six different scenes included in the experiment, representing photographs, business graphics, and test-targets. The two experiments were split into a paired-comparison experiment examining overall image quality, and a triad experiment judging overall similarity and dissimilarity of the printed images. The paired-comparison experiment was analyzed using Thurstone's Law, to generate an interval scale of quality, and with dual scaling, to determine the independent dimensions used for categorical scaling. The triad experiment was analyzed using multidimensional scaling to generate a psychological stimulus space. The psychophysical results indicated that the image quality was judged mainly along one dimension and that the relationships among the images can be described with a single dimension in most cases. Regression of various physical measurements of the images to the paired comparison results showed that a small number of physical attributes of the images could be correlated with the psychophysical scale of image quality. However, global image difference metrics did not correlate well with image quality.

  1. Intravital live cell triggered imaging system reveals monocyte patrolling and macrophage migration in atherosclerotic arteries

    NASA Astrophysics Data System (ADS)

    McArdle, Sara; Chodaczek, Grzegorz; Ray, Nilanjan; Ley, Klaus

    2015-02-01

    Intravital multiphoton imaging of arteries is technically challenging because the artery expands with every heartbeat, causing severe motion artifacts. To study leukocyte activity in atherosclerosis, we developed the intravital live cell triggered imaging system (ILTIS). This system implements cardiac triggered acquisition as well as frame selection and image registration algorithms to produce stable movies of myeloid cell movement in atherosclerotic arteries in live mice. To minimize tissue damage, no mechanical stabilization is used and the artery is allowed to expand freely. ILTIS performs multicolor high frame-rate two-dimensional imaging and full-thickness three-dimensional imaging of beating arteries in live mice. The external carotid artery and its branches (superior thyroid and ascending pharyngeal arteries) were developed as a surgically accessible and reliable model of atherosclerosis. We use ILTIS to demonstrate Cx3cr1GFP monocytes patrolling the lumen of atherosclerotic arteries. Additionally, we developed a new reporter mouse (Apoe-/-Cx3cr1GFP/+Cd11cYFP) to image GFP+ and GFP+YFP+ macrophages "dancing on the spot" and YFP+ macrophages migrating within intimal plaque. ILTIS will be helpful to answer pertinent open questions in the field, including monocyte recruitment and transmigration, macrophage and dendritic cell activity, and motion of other immune cells.

  2. Intravital live cell triggered imaging system reveals monocyte patrolling and macrophage migration in atherosclerotic arteries

    PubMed Central

    McArdle, Sara; Chodaczek, Grzegorz; Ray, Nilanjan; Ley, Klaus

    2015-01-01

    Abstract. Intravital multiphoton imaging of arteries is technically challenging because the artery expands with every heartbeat, causing severe motion artifacts. To study leukocyte activity in atherosclerosis, we developed the intravital live cell triggered imaging system (ILTIS). This system implements cardiac triggered acquisition as well as frame selection and image registration algorithms to produce stable movies of myeloid cell movement in atherosclerotic arteries in live mice. To minimize tissue damage, no mechanical stabilization is used and the artery is allowed to expand freely. ILTIS performs multicolor high frame-rate two-dimensional imaging and full-thickness three-dimensional imaging of beating arteries in live mice. The external carotid artery and its branches (superior thyroid and ascending pharyngeal arteries) were developed as a surgically accessible and reliable model of atherosclerosis. We use ILTIS to demonstrate Cx3cr1GFP monocytes patrolling the lumen of atherosclerotic arteries. Additionally, we developed a new reporter mouse (Apoe−/−Cx3cr1GFP/+Cd11cYFP) to image GFP+ and GFP+YFP+ macrophages “dancing on the spot” and YFP+ macrophages migrating within intimal plaque. ILTIS will be helpful to answer pertinent open questions in the field, including monocyte recruitment and transmigration, macrophage and dendritic cell activity, and motion of other immune cells. PMID:25710308

  3. WFC3 UVIS Image Quality

    NASA Astrophysics Data System (ADS)

    Dressel, Linda

    2009-07-01

    The UVIS imaging performance over the detector will be assessed periodically {every 4 months} in two passbands {F275W and F621M} to check for image stability. The field around star 58 in the open cluster NGC188 is the chosen target because it is sufficiently dense to provide good sampling over the FOV while providing enough isolated stars to permit accurate PSF {point spread function} measurement. It is available year-round and used previously for ACS image quality assessment. The field is astrometric, and astrometric guide stars will be used, so that the plate scale and image orientation may also be determined if necessary {as in SMOV proposals 11436 and 11442}. Full frame images will be obtained at each of 4 POSTARG offset positions designed to improve sampling over the detector.This proposal is a periodic repeat {once every 4 months} of visits similar to those in SMOV proposal 11436 {activity ID WFC3-23}. The data will be analyzed using the code and techniques described in ISR WFC3 2008-40 {Hartig}. Profiles of encircled energy will be monitored and presented in an ISR. If an update to the SIAF is needed, {V2,V3} locations of stars will be obtained from the Flight Ops Sensors and Calibrations group at GSFC, the {V2,V3} of the reference pixel and the orientation of the detector will be determined by the WFC3 group, and the Telescopes group will update and deliver the SIAF to the PRDB branch.The specific PSF metrics to be examined are encircled energy for aperture diameter 0.15, 0.20, 0.25, and 0.35 arcsec, FWHM, and sharpness. {See ISR WFC3 2008-40 tables 2 and 3 and preceding text.} about 20 stars distributed over the detector will be measured in each exposure for each filter. The mean, rms, and rms of the mean will be determined for each metric. The values determined from each of the 4 exposures per filter within a visit will be compared to each other to see to what extent they are affected by "breathing". Values will be compared from visit to visit, starting

  4. WFC3 IR Image Quality

    NASA Astrophysics Data System (ADS)

    Dressel, Linda

    2009-07-01

    The IR imaging performance over the detector will be assessed periodically {every 4 months} in two passbands to check for image stability. The field around star 58 in the open cluster NGC188 is the chosen target because it is sufficiently dense to provide good sampling over the FOV while providing enough isolated stars to permit accurate PSF {point spread function} measurement. It is available year-round and used previously for ACS image quality assessment. The field is astrometric, and astrometric guide stars will be used, so that the plate scale and image orientation may also be determined if necessary {as in SMOV proposals 11437 and 11443}. Full frame images will be obtained at each of 4 POSTARG offset positions designed to improve sampling over the detector in F098M, F105W, and F160W. The PSFs will be sampled at 4 positions with subpixel shifts in filters F164N and F127M.This proposal is a periodic repeat {once every 4 months} of the visits in SMOV proposal 11437 {activity ID WFC3-24}. The data will be analyzed using the code and techniques described in ISR WFC3 2008-41 {Hartig}. Profiles of encircled energy will be monitored and presented in an ISR. If an update to the SIAF is needed, {V2,V3} locations of stars will be obtained from the Flight Ops Sensors and Calibrations group at GSFC, the {V2,V3} of the reference pixel and the orientation of the detector will be determined by the WFC3 group, and the Telescopes group will update and deliver the SIAF to the PRDB branch.The specific PSF metrics to be examined are encircled energy for aperture diameter 0.25, 0.37, and 0.60 arcsec, FWHM, and sharpness. {See ISR WFC3 2008-41 tables 2 and 3 and preceding text.} 20 stars distributed over the detector will be measured in each exposure for each filter. The mean, rms, and rms of the mean will be determined for each metric. The values determined from each of the 4 exposures per filter within a visit will be compared to each other to see to what extent they are affected

  5. Image Quality of Coronary Computed Tomography Angiography with 320-Row Area Detector Computed Tomography in Children with Congenital Heart Disease.

    PubMed

    Tada, Akihiro; Sato, Shuhei; Kanie, Yuichiro; Tanaka, Takashi; Inai, Ryota; Akagi, Noriaki; Morimitsu, Yusuke; Kanazawa, Susumu

    2016-03-01

    The objective of this study was to assess factors affecting image quality of 320-row computed tomography angiography (CTA) of coronary arteries in children with congenital heart disease (CHD). We retrospectively reviewed 28 children up to 3 years of age with CHD who underwent prospective electrocardiography (ECG)-gated 320-row CTA with iterative reconstruction. We assessed image quality of proximal coronary artery segments using a five-point scale. Age, body weight, average heart rate, and heart rate variability were recorded and compared between two groups: patients with good diagnostic image quality in all four coronary artery segments and patients with at least one coronary artery segment with nondiagnostic image quality. Altogether, 96 of 112 segments (85.7 %) had diagnostic-quality images. Patients with nondiagnostic segments were significantly younger (10.0 ± 11.6 months) and had lower body weight (5.9 ± 2.9 kg) (each p < 0.05) than patients with diagnostic image quality of all four segments (20.6 ± 13.8 months and 8.4 ± 2.5 kg, respectively; each p < 0.05). Differences in heart rate and heart rate variability between the two imaging groups were not significant. Receiver operating characteristic analyses for predicting patients with nondiagnostic image quality revealed an optimal body weight cutoff of ≤5.6 kg and an optimal age cutoff of ≤12.5 months. Prospective ECG-gated 320-row CTA with iterative reconstruction provided feasible image quality of coronary arteries in children with CHD. Younger age and lower body weight were factors that led to poorer image quality of coronary arteries.

  6. Optical coherence tomography and hyperspectral imaging of vascular recovery in a model of peripheral arterial disease

    NASA Astrophysics Data System (ADS)

    Poole, Kristin M.; Sit, Wesley W.; Tucker-Schwartz, Jason M.; Duvall, Craig L.; Skala, Melissa C.

    2013-03-01

    Peripheral arterial disease (PAD) leads to an increased risk of myocardial infarction and stroke, increased mortality, and reduced quality of life. The mouse hind limb ischemia (HLI) model is the most commonly used system for studying the mechanisms of collateral vessel formation and for testing new PAD therapies, but there is a lack of techniques for acquiring physiologically-relevant, quantitative data intravitally in this model. In this work, non-invasive, quantitative optical imaging techniques were applied to the mouse HLI model over a time course. Optical coherence tomography (OCT) imaged changes in blood flow (Doppler OCT) and microvessel morphology (speckle variance OCT) through the skin of haired mice with high resolution. Hyperspectral imaging was also used to quantify blood oxygenation. In ischemic limbs, blood oxygenation in the footpad was substantially reduced after induction of ischemia followed by complete recovery by three weeks, consistent with standard measures. Three dimensional images of the vasculature distal to vessel occlusion acquired with speckle variance OCT revealed changes in OCT flow signal and vessel morphology. Taken together, OCT and hyperspectral imaging enable intravital acquisition of both functional and morphological data which fill critical gaps in understanding structure-function relationships that contribute to recovery in the mouse HLI model. Therefore, these optical imaging methods hold promise as tools for studying the mechanisms of vascular recovery and evaluating novel therapeutic treatments in preclinical studies.

  7. Combined terahertz imaging system for enhanced imaging quality

    NASA Astrophysics Data System (ADS)

    Dolganova, Irina N.; Zaytsev, Kirill I.; Metelkina, Anna A.; Yakovlev, Egor V.; Karasik, Valeriy E.; Yurchenko, Stanislav O.

    2016-06-01

    An improved terahertz (THz) imaging system is proposed for enhancing image quality. Imaging scheme includes THz source and detection system operated in active mode as well as in passive one. In order to homogeneously illuminate the object plane the THz reshaper is proposed. The form and internal structure of the reshaper were studied by the numerical simulation. Using different test-objects we compare imaging quality in active and passive THz imaging modes. Imaging contrast and modulation transfer functions in active and passive imaging modes show drawbacks of them in high and low spatial frequencies, respectively. The experimental results confirm the benefit of combining both imaging modes into hybrid one. The proposed algorithm of making hybrid THz image is an effective approach of retrieving maximum information about the remote object.

  8. Signal and image processing for early detection of coronary artery diseases: A review

    NASA Astrophysics Data System (ADS)

    Mobssite, Youness; Samir, B. Belhaouari; Mohamad Hani, Ahmed Fadzil B.

    2012-09-01

    Today biomedical signals and image based detection are a basic step to diagnose heart diseases, in particular, coronary artery diseases. The goal of this work is to provide non-invasive early detection of Coronary Artery Diseases relying on analyzing images and ECG signals as a combined approach to extract features, further classify and quantify the severity of DCAD by using B-splines method. In an aim of creating a prototype of screening biomedical imaging for coronary arteries to help cardiologists to decide the kind of treatment needed to reduce or control the risk of heart attack.

  9. Coronary Artery Imaging with a Computerized Linear Diode Array Radiographic System

    PubMed Central

    Sashin, D.; Sternglass, E.J.; Bron, K.M.; Slasky, B.S.; Herron, J.M.; Kennedy, W.H.; Boyer, J.W.; Girdany, B.R.; Simpson, R.W.; Horton, J.A.; Hoy, R.J.; Feist, J.H.; Uretsky, B.F.

    1983-01-01

    Initial results for a new technique of imaging the small and rapidly moving coronary arteries using linear arrays of self-scanning diodes coupled directly to a computer are described. The technique involves a thin, fanshaped x-ray beam and a phosphor screen fiber-optically coupled to a set of light sensitive self-scanning linear diode arrays that are scanned across the heart to give a scatter-free, high detail digital image. Coronary arteries have been imaged successfully in the rapidly moving heart of 23 kg dogs using both aortic root and intravenous injections. In the aortic root injection, coronary arteries as small as 0.3 mm have been imaged. This is the first step in the development of a noninvasive, low-dose technique for the early detection and quantification of atherosclerotic disease in human coronary arteries presently going on in our laboratory. ImagesFigure 2Figure 3

  10. Quantification of pulmonary arterial wall distensibility using parameters extracted from volumetric micro-CT images

    NASA Astrophysics Data System (ADS)

    Johnson, Roger H.; Karau, Kelly L.; Molthen, Robert C.; Dawson, Christopher A.

    1999-09-01

    Stiffening, or loss of distensibility, of arterial vessel walls is among the manifestations of a number of vascular diseases including pulmonary arterial hypertension. We are attempting to quantify the mechanical properties of vessel walls of the pulmonary arterial tree using parameters derived from high-resolution volumetric x-ray CT images of rat lungs. The pulmonary arterial trees of the excised lungs are filled with a contrast agent. The lungs are imaged with arterial pressures spanning the physiological range. Vessel segment diameters are measured from the inlet to the periphery, and distensibilities calculated from diameters as a function of pressure. The method shows promise as an adjunct to other morphometric techniques such as histology and corrosion casting. It possesses the advantages of being nondestructive, characterizing the vascular structures while the lungs are imaged rapidly and in a near-physiological state, and providing the ability to associate mechanical properties with vessel location in the intact tree hierarchy.

  11. Optimization of synthetic aperture image quality

    NASA Astrophysics Data System (ADS)

    Moshavegh, Ramin; Jensen, Jonas; Villagomez-Hoyos, Carlos A.; Stuart, Matthias B.; Hemmsen, Martin Christian; Jensen, Jørgen Arendt

    2016-04-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameters effecting the image quality of SA is of great importance, and this paper proposes an advanced procedure for optimizing the parameters essential for acquiring an optimal image quality, while generating high resolution SA images. Optimization of the image quality is mainly performed based on measures such as F-number, number of emissions and the aperture size. They are considered to be the most contributing acquisition factors in the quality of the high resolution images in SA. Therefore, the performance of image quality is quantified in terms of full-width at half maximum (FWHM) and the cystic resolution (CTR). The results of the study showed that SA imaging with only 32 emissions and maximum sweep angle of 22 degrees yields a very good image quality compared with using 256 emissions and the full aperture size. Therefore the number of emissions and the maximum sweep angle in the SA can be optimized to reach a reasonably good performance, and to increase the frame rate by lowering the required number of emissions. All the measurements are performed using the experimental SARUS scanner connected to a λ/2-pitch transducer. A wire phantom and a tissue mimicking phantom containing anechoic cysts are scanned using the optimized parameters for the transducer. Measurements coincide with simulations.

  12. In vivo imaging of superficial femoral artery (SFA) stents for deformation analysis

    NASA Astrophysics Data System (ADS)

    Ganguly, A.; Schneider, A.; Keck, B.; Bennett, N. R.; Fahrig, R.

    2008-03-01

    A high-resolution (198 μm) C-arm CT imaging system (Axiom Artis dTA, Siemens Medical Solutions, Forchheim, Germany) was optimized for imaging superficial femoral artery (SFA) stents in humans. The SFA is susceptible to the development of atherosclerotic lesions. These are typically treated with angioplasty and stent deployment. However, these stents can have a fracture rate as high as 35%. Fracture is usually accompanied by restenosis and reocclusion. The exact cause of breakage is unknown and is hypothesized to result from deforming forces due to hip and knee flexion. Imaging was performed with the leg placed in both straight and bent positions. Projection images obtained during 20 s scans with ~200° of rotation of the C-arm were back-projected to obtain 3D volumes. Using a semi-automatic software algorithm developed in-house, the stent centerlines were found and ellipses were fitted to the slice normals. Image quality was adequate for calculations in 11/13 subjects. Bending the leg was found to shorten the stents in 10/11 cases with the maximum change being 9% (12 mm in a 133 mm stent), and extend the stent in one case by 1.6%. The maximum eccentricity change was 36% with a bend angle of 72° in a case where the stent extended behind the knee.

  13. Automatic quality assessment of planetary images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, P.; Muller, J.-P.

    2015-10-01

    A significant fraction of planetary images are corrupted beyond the point that much scientific meaning can be extracted. For example, transmission errors result in missing data which is unrecoverable. The available planetary image datasets include many such "bad data", which both occupy valuable scientific storage resources and create false impressions about planetary image availability for specific planetary objects or target areas. In this work, we demonstrate a pipeline that we have developed to automatically assess the quality of planetary images. Additionally, this method discriminates between different types of image degradation, such as low-quality originating from camera flaws or low-quality triggered by atmospheric conditions, etc. Examples of quality assessment results for Viking Orbiter imagery will be also presented.

  14. Two- and three-dimensional quantitative image analysis of coronary arteries from high-resolution histological sections

    NASA Astrophysics Data System (ADS)

    Holmes, David R., III; Robb, Richard A.

    2000-05-01

    The study of coronary arteries has evolved from examining gross anatomy and morphology to scrutinizing micro-anatomy and cellular composition. Technological advances such as high-powered digital microscopes and high precision cutting devices have allowed clinicians to examine coronary artery morphology and pathology at micron resolution. Our work explores the composition of normal coronary arteries in order to provide the foundation for further study of remodeled tissue. The first of two coronary arteries was sliced into 442 sections with 4 micron inter-slice spacing. Each slice was stained for elastin and collagen. The second coronary artery was sectioned into 283 slices, also with 4 micron resolution. These slices were stained for cellular nuclei and smooth muscle. High sectioned into 283 slices, also with 4 micron resolution. These slices were stained for cellular nuclei and smooth muscle. High resolution light microscopy was used to image the sections. The data was analyzed for collagen/elastin content and nuclei density, respectively. Processing of this type of data is challenging in the areas of segmentation, visualization and quantification. Segmentation was confounded by variation in image quality as well as complexity of the coronary tissue. These problems were overcome by the development of 'smart' thresholding algorithms for segmentation. In addition, morphology and image statistics were used to further refine the result of the segmentation. Specificity/sensitivity analysis suggests that automatic segmentation can be very effective. 3D visualization of coronary arteries is challenging due to multiple tissue layers. Method such as summed voxel projection and maximum intensity projection appear to be effective. Shading methods also provide adequate visualization, however it is important to incorporate combined 2D and 3D displays. Surface rendering techniques are useful tools for visualizing parametric data. Quantification in 3D is simple in practice but

  15. Computer-generated 3D ultrasound images of the carotid artery

    NASA Technical Reports Server (NTRS)

    Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.

    1989-01-01

    A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.

  16. Computer-generated 3D ultrasound images of the carotid artery

    NASA Astrophysics Data System (ADS)

    Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.

    A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.

  17. Image Quality Ranking Method for Microscopy

    PubMed Central

    Koho, Sami; Fazeli, Elnaz; Eriksson, John E.; Hänninen, Pekka E.

    2016-01-01

    Automated analysis of microscope images is necessitated by the increased need for high-resolution follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data analysis are common day-to-day problems in microscopy research today, and the constantly growing size of image datasets does not help the matter. We propose a simple method and a software tool for sorting images within a dataset, according to their relative quality. We demonstrate the applicability of our method in finding good quality images in a STED microscope sample preparation optimization image dataset. The results are validated by comparisons to subjective opinion scores, as well as five state-of-the-art blind image quality assessment methods. We also show how our method can be applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive simulations, and by comparing its performance against previously published, well-established microscopy autofocus metrics. PMID:27364703

  18. Image Quality Ranking Method for Microscopy

    NASA Astrophysics Data System (ADS)

    Koho, Sami; Fazeli, Elnaz; Eriksson, John E.; Hänninen, Pekka E.

    2016-07-01

    Automated analysis of microscope images is necessitated by the increased need for high-resolution follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data analysis are common day-to-day problems in microscopy research today, and the constantly growing size of image datasets does not help the matter. We propose a simple method and a software tool for sorting images within a dataset, according to their relative quality. We demonstrate the applicability of our method in finding good quality images in a STED microscope sample preparation optimization image dataset. The results are validated by comparisons to subjective opinion scores, as well as five state-of-the-art blind image quality assessment methods. We also show how our method can be applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive simulations, and by comparing its performance against previously published, well-established microscopy autofocus metrics.

  19. End-to-end image quality assessment

    NASA Astrophysics Data System (ADS)

    Raventos, Joaquin

    2012-05-01

    An innovative computerized benchmarking approach (US Patent pending Sep 2011) based on extensive application of photometry, geometrical optics, and digital media using a randomized target, for a standard observer to assess the image quality of video imaging systems, at different day time, and low-light luminance levels. It takes into account, the target's contrast and color characteristics, as well as the observer's visual acuity and dynamic response. This includes human vision as part of the "extended video imaging system" (EVIS), and allows image quality assessment by several standard observers simultaneously.

  20. Cartographic quality of ERTS-1 images

    NASA Technical Reports Server (NTRS)

    Welch, R. I.

    1973-01-01

    Analyses of simulated and operational ERTS images have provided initial estimates of resolution, ground resolution, detectability thresholds and other measures of image quality of interest to earth scientists and cartographers. Based on these values, including an approximate ground resolution of 250 meters for both RBV and MSS systems, the ERTS-1 images appear suited to the production and/or revision of planimetric and photo maps of 1:500,000 scale and smaller for which map accuracy standards are compatible with the imaged detail. Thematic mapping, although less constrained by map accuracy standards, will be influenced by measurement thresholds and errors which have yet to be accurately determined for ERTS images. This study also indicates the desirability of establishing a quantitative relationship between image quality values and map products which will permit both engineers and cartographers/earth scientists to contribute to the design requirements of future satellite imaging systems.

  1. Unusual Malignant Coronary Artery Anomaly: Results of Coronary Angiography, MR Imaging, and Multislice CT

    SciTech Connect

    Apitzsch, Jonas; Kuehl, Harald P.; Muehlenbruch, Georg; Mahnken, Andreas H.

    2010-04-15

    We report the case of a man with an uncommon anomaly of the origin and course of the left coronary artery. Clinical, coronary angiography, magnetic resonance imaging, and multislice computed tomography findings of this intermittently symptomatic 49 year-old patient with the rare anomaly of his left coronary artery stemming from the right sinus of Valsalva and taking an interarterial and intraseptal course are presented. The diagnostic value of the different imaging modalities is discussed.

  2. Live 3D image overlay for arterial duct closure with Amplatzer Duct Occluder II additional size.

    PubMed

    Goreczny, Sebstian; Morgan, Gareth J; Dryzek, Pawel

    2016-03-01

    Despite several reports describing echocardiography for the guidance of ductal closure, two-dimensional angiography remains the mainstay imaging tool; three-dimensional rotational angiography has the potential to overcome some of the drawbacks of standard angiography, and reconstructed image overlay provides reliable guidance for device placement. We describe arterial duct closure solely from venous approach guided by live three-dimensional image overlay.

  3. [Usefulness of virtual vessel images in ppi for treatment of complete obstruction of leg arteries].

    PubMed

    Kittaka, Daisuke; Sato, Hisaya; Nakai, Yuichi; Kato, Kyoichi; Nakazawa, Yasuo

    2014-10-01

    Following recent rapid advances in devices and treatment technology, indications for percutaneous peripheral intervention (PPI) have been expanded to include complex lesions (long-segment lesions, completely obstructed chronic lesions, etc.) and even lesions of the superficial femoral artery and arteries distal to the popliteal artery. However, when PPI is used for treatment of complete obstruction, treatment can take a long time or its outcome can be less satisfactory for reasons such as difficulty in assessing the vascular distribution/arrangement or the direction of calcification in the obstructed area or excessively long lesions. In the present study, we conducted three-dimensional image processing of CT data from leg arteries conventionally used for preoperative diagnosis. Using this processing technique, we created virtual images of the blood vessels of the completely obstructed area and mapped these virtual vessel images onto the fluoroscopic monitor image during catheter treatment. The usefulness of this technique for PPI was then evaluated. We succeeded in creating virtual vessel images of the completely obstructed parts of leg arteries with the use of preoperative CT images of leg arteries that we then mapped onto the fluoroscopic monitor images during treatment. We were successful in mapping virtual images onto the abdominal aorta in 96.8% of cases and in 95.7% with the common iliac artery. This technique is thus able to supply reliable information on vascular distribution/arrangement, suggesting that it can enable the surgeon to advance the treatment device precisely along the vessels, making it useful for treatment with PPI. The study additionally showed that differences in the angle of imaging affect the manual mapping of the CT images onto angiograms.

  4. Continuous assessment of perceptual image quality

    NASA Astrophysics Data System (ADS)

    Hamberg, Roelof; de Ridder, Huib

    1995-12-01

    The study addresses whether subjects are able to assess the perceived quality of an image sequence continuously. To this end, a new method for assessing time-varying perceptual image quality is presented by which subjects continuously indicate the perceived strength of image quality by moving a slider along a graphical scale. The slider's position on this scale is sampled every second. In this way, temporal variations in quality can be monitored quantitatively, and a means is provided by which differences between, for example, alternative transmission systems can be analyzed in an informative way. The usability of this method is illustrated by an experiment in which, for a period of 815 s, subjects assessed the quality of still pictures comprising time-varying degrees of sharpness. Copyright (c) 1995 Optical Society of America

  5. Rendered virtual view image objective quality assessment

    NASA Astrophysics Data System (ADS)

    Lu, Gang; Li, Xiangchun; Zhang, Yi; Peng, Kai

    2013-08-01

    The research on rendered virtual view image (RVVI) objective quality assessment is important for integrated imaging system and image quality assessment (IQA). Traditional IQA algorithms cannot be applied directly on the system receiver-side due to interview displacement and the absence of original reference. This study proposed a block-based neighbor reference (NbR) IQA framework for RVVI IQA. Neighbor views used for rendering are employed for quality assessment in the proposed framework. A symphonious factor handling noise and interview displacement is defined and applied to evaluate the contribution of the obtained quality index in each block pair. A three-stage experiment scheme is also presented to testify the proposed framework and evaluate its homogeneity performance when comparing to full reference IQA. Experimental results show the proposed framework is useful in RVVI objective quality assessment at system receiver-side and benchmarking different rendering algorithms.

  6. Pulsatile blood velocity in human arteries displayed by magnetic resonance imaging

    SciTech Connect

    Feinberg, D.A.; Crooks, L.; Hoenninger, J. III.; Arakawa, M.; Watts, J.

    1984-10-01

    The authors describe a new method for magnetic resonance (MR) imaging of flowing protons which can illustrate relative blood velocity in the arteries supplying the brain. The magnetic gradient pulse sequence was synchronized to the cardiac cycle at 100-msec. increments to check pulsatile blood flow perpendicular to the image plane. The magnitude of the signal increased with the velocity of blood in major arteries flowing in the direction of the spatially offset refocusing plane. The blood velocity in the vertebral and internal carotid arteries varied as a function of the phase of the cardiac cycle, and the velocity profiles across the vascular lumina were compatible with laminar flow.

  7. Tradeoffs between image quality and dose.

    PubMed

    Seibert, J Anthony

    2004-10-01

    Image quality takes on different perspectives and meanings when associated with the concept of as low as reasonably achievable (ALARA), which is chiefly focused on radiation dose delivered as a result of a medical imaging procedure. ALARA is important because of the increased radiosensitivity of children to ionizing radiation and the desire to keep the radiation dose low. By the same token, however, image quality is also important because of the need to provide the necessary information in a radiograph in order to make an accurate diagnosis. Thus, there are tradeoffs to be considered between image quality and radiation dose, which is the main topic of this article. ALARA does not necessarily mean the lowest radiation dose, nor, when implemented, does it result in the least desirable radiographic images. With the recent widespread implementation of digital radiographic detectors and displays, a new level of flexibility and complexity confronts the technologist, physicist, and radiologist in optimizing the pediatric radiography exam. This is due to the separation of the acquisition, display, and archiving events that were previously combined by the screen-film detector, which allows for compensation for under- and overexposures, image processing, and on-line image manipulation. As explained in the article, different concepts must be introduced for a better understanding of the tradeoffs encountered when dealing with digital radiography and ALARA. In addition, there are many instances during the image acquisition/display/interpretation process in which image quality and associated dose can be compromised. This requires continuous diligence to quality control and feedback mechanisms to verify that the goals of image quality, dose and ALARA are achieved.

  8. 3DVIEWNIX-AVS: a software package for the separate visualization of arteries and veins in CE-MRA images.

    PubMed

    Lei, Tianhu; Udupa, Jayaram K; Odhner, Dewey; Nyúl, László G; Saha, Punam K

    2003-01-01

    Our earlier study developed a computerized method, based on fuzzy connected object delineation principles and algorithms, for artery and vein separation in contrast enhanced Magnetic Resonance Angiography (CE-MRA) images. This paper reports its current development-a software package-for routine clinical use. The software package, termed 3DVIEWNIX-AVS, consists of the following major operational parts: (1) converting data from DICOM3 to 3DVIEWNIX format, (2) previewing slices and creating VOI and MIP Shell, (3) segmenting vessel, (4) separating artery and vein, (5) shell rendering vascular structures and creating animations. This package has been applied to EPIX Medical Inc's CE-MRA data (AngioMark MS-325). One hundred and thirty-five original CE-MRA data sets (of 52 patients) from 6 hospitals have been processed. In all case studies, unified parameter settings produce correct artery-vein separation. The current package is running on a Pentium PC under Linux and the total computation time per study is about 3 min. The strengths of this software package are (1) minimal user interaction, (2) minimal anatomic knowledge requirements on human vascular system, (3) clinically required speed, (4) free entry to any operational stages, (5) reproducible, reliable, high quality of results, and (6) cost effective computer implementation. To date, it seems to be the only software package (using an image processing approach) available for artery and vein separation of the human vascular system for routine use in a clinical setting. PMID:12821028

  9. Image Acquisition and Quality in Digital Radiography.

    PubMed

    Alexander, Shannon

    2016-09-01

    Medical imaging has undergone dramatic changes and technological breakthroughs since the introduction of digital radiography. This article presents information on the development of digital radiography and types of digital radiography systems. Aspects of image quality and radiation exposure control are highlighted as well. In addition, the article includes related workplace changes and medicolegal considerations in the digital radiography environment. PMID:27601691

  10. Simultaneous automatic arteries-veins separation and cerebral blood flow imaging with single-wavelength laser speckle imaging

    NASA Astrophysics Data System (ADS)

    Feng, Nengyun; Qiu, Jianjun; Li, Pengcheng; Sun, Xiaoli; Yin, Cui; Luo, Weihua; Chen, Shangbin; Luo, Qingming

    2011-08-01

    Automatic separation of arteries and veins in optical cerebral cortex images is important in clinical practice and preclinical study. In this paper, a simple but effective automatic artery-vein separation method which utilizes single-wavelength coherent illumination is presented. This method is based on the relative temporal minimum reflectance analysis of laser speckle images. The validation is demonstrated with both theoretic simulations and experimental results applied to the rat cortex. Moreover, this method can be combined with laser speckle contrast analysis so that the artery-vein separation and blood flow imaging can be simultaneously obtained using the same raw laser speckle images data to enable more accurate analysis of changes of cerebral blood flow within different tissue compartments during functional activation, disease dynamic, and neurosurgery, which may broaden the applications of laser speckle imaging in biology and medicine.

  11. Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope.

    PubMed

    Wang, Han-Wei; Le, Thuc T; Cheng, Ji-Xin

    2008-04-01

    A multimodal nonlinear optical imaging system that integrates coherent anti-Stokes Raman scattering (CARS), sum-frequency generation (SFG), and two-photon excitation fluorescence (TPEF) on the same platform was developed and applied to visualize single cells and extracellular matrix in fresh carotid arteries. CARS signals arising from CH(2)-rich membranes allowed visualization of endothelial cells and smooth muscle cells of the arterial wall. Additionally, CARS microscopy allowed vibrational imaging of elastin and collagen fibrils which are also rich in CH(2) bonds. The extracellular matrix organization were further confirmed by TPEF signals arising from elastin's autofluorescence and SFG signals arising from collagen fibrils' non-centrosymmetric structure. Label-free imaging of significant components of arterial tissues suggests the potential application of multimodal nonlinear optical microscopy to monitor onset and progression of arterial diseases.

  12. Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope

    PubMed Central

    Wang, Han-Wei; Le, Thuc T.; Cheng, Ji-Xin

    2008-01-01

    A multimodal nonlinear optical imaging system that integrates coherent anti-Stokes Raman scattering (CARS), sum-frequency generation (SFG), and two-photon excitation fluorescence (TPEF) on the same platform was developed and applied to visualize single cells and extracellular matrix in fresh carotid arteries. CARS signals arising from CH2-rich membranes allowed visualization of endothelial cells and smooth muscle cells of the arterial wall. Additionally, CARS microscopy allowed vibrational imaging of elastin and collagen fibrils which are also rich in CH2 bonds. The extracellular matrix organization were further confirmed by TPEF signals arising from elastin’s autofluorescence and SFG signals arising from collagen fibrils’ non-centrosymmetric structure. Label-free imaging of significant components of arterial tissues suggests the potential application of multimodal nonlinear optical microscopy to monitor onset and progression of arterial diseases. PMID:19343073

  13. A method to compensate for the underestimation of collagen with polarized picrosirius red imaging in human artery atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Greiner, C. A.; Grainger, S. J.; Su, J. L.; Madden, S. P.; Muller, J. E.

    2016-04-01

    Although picrosirius red (PSR) is known to be in quantifying collagen under polarized light (PL), commonly used linearly PL can result in an underestimation of collagen, as some of the fibers may appear dark if aligned with the transmission axis of the polarizers. To address this, a sample may be imaged with circularly polarized light at the expense of higher background intensity. However, the quality and alignment of the microscope illumination optics, polarizers and waveplates can still produce imaging variability with circular polarization. A simpler technique was tested that minimized variability and background intensity with linear polarization by acquiring images at multiple angles of histology slide rotation to create a composite co-registered image, permitting the optimal semi-quantitative visualization of collagen. Linear polarization imaging was performed on PSR stained artery sections. By rotating the slide at 60° intervals while maintaining illumination, polarization and exposure parameters, 6 images were acquired for each section. A composite image was created from the 6 co-registered images, and comprised of the maximum pixel intensity at each point. Images from any of the 6 rotation positions consistently showed variation in PSR signal. A composite image compensates for this variability, without loss of spatial resolution. Additionally, grayscale analysis showed an increased intensity range of 15 - 50% with a linearly polarized composite image over a circularly polarized image after background correction, indicating better SNR. This proposed technique will be applied in the development of a near infrared spectroscopy algorithm to detect vulnerable atherosclerotic plaques in vivo.

  14. Image quality and automatic color equalization

    NASA Astrophysics Data System (ADS)

    Chambah, M.; Rizzi, A.; Saint Jean, C.

    2007-01-01

    In the professional movie field, image quality is mainly judged visually. In fact, experts and technicians judge and determine the quality of the film images during the calibration (post production) process. As a consequence, the quality of a restored movie is also estimated subjectively by experts [26,27]. On the other hand, objective quality metrics do not necessarily correlate well with perceived quality [28]. Moreover, some measures assume that there exists a reference in the form of an "original" to compare to, which prevents their use in digital restoration field, where often there is no reference to compare to. That is why subjective evaluation is the most used and most efficient approach up to now. But subjective assessment is expensive, time consuming and does not respond, hence, to the economic requirements of the field [29,25]. Thus, reliable automatic methods for visual quality assessment are needed in the field of digital film restoration. Ideally, a quality assessment system would perceive and measure image or video impairments just like a human being. The ACE method, for Automatic Color Equalization [1,2], is an algorithm for digital images unsupervised enhancement. Like our vision system ACE is able to adapt to widely varying lighting conditions, and to extract visual information from the environment efficaciously. We present in this paper is the use of ACE as a basis of a reference free image quality metric. ACE output is an estimate of our visual perception of a scene. The assumption, tested in other papers [3,4], is that ACE enhancing images is in the way our vision system will perceive them, increases their overall perceived quality. The basic idea proposed in this paper, is that ACE output can differ from the input more or less according to the visual quality of the input image In other word, an image appears good if it is near to the visual appearance we (estimate to) have of it. Reversely bad quality images will need "more filtering". Test

  15. Holographic projection with higher image quality.

    PubMed

    Qu, Weidong; Gu, Huarong; Tan, Qiaofeng

    2016-08-22

    The spatial resolution limited by the size of the spatial light modulator (SLM) in the holographic projection can hardly be increased, and speckle noise always appears to induce the degradation of image quality. In this paper, the holographic projection with higher image quality is presented. The spatial resolution of the reconstructed image is 2 times of that of the existing holographic projection, and speckles are suppressed well at the same time. Finally, the effectiveness of the holographic projection is verified in experiments. PMID:27557197

  16. Automated characterization of blood vessels as arteries and veins in retinal images.

    PubMed

    Mirsharif, Qazaleh; Tajeripour, Farshad; Pourreza, Hamidreza

    2013-01-01

    In recent years researchers have found that alternations in arterial or venular tree of the retinal vasculature are associated with several public health problems such as diabetic retinopathy which is also the leading cause of blindness in the world. A prerequisite for automated assessment of subtle changes in arteries and veins, is to accurately separate those vessels from each other. This is a difficult task due to high similarity between arteries and veins in addition to variation of color and non-uniform illumination inter and intra retinal images. In this paper a novel structural and automated method is presented for artery/vein classification of blood vessels in retinal images. The proposed method consists of three main steps. In the first step, several image enhancement techniques are employed to improve the images. Then a specific feature extraction process is applied to separate major arteries from veins. Indeed, vessels are divided to smaller segments and feature extraction and vessel classification are applied to each small vessel segment instead of each vessel point. Finally, a post processing step is added to improve the results obtained from the previous step using structural characteristics of the retinal vascular network. In the last stage, vessel features at intersection and bifurcation points are processed for detection of arterial and venular sub trees. Ultimately vessel labels are revised by publishing the dominant label through each identified connected tree of arteries or veins. Evaluation of the proposed approach against two different datasets of retinal images including DRIVE database demonstrates the good performance and robustness of the method. The proposed method may be used for determination of arteriolar to venular diameter ratio in retinal images. Also the proposed method potentially allows for further investigation of labels of thinner arteries and veins which might be found by tracing them back to the major vessels.

  17. Automated measurement of pulmonary artery in low-dose non-contrast chest CT images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Liang, Mingzhu; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2015-03-01

    A new measurement of the pulmonary artery diameter is obtained where the artery may be robustly segmented between the heart and the artery bifurcation. An automated algorithm is presented that can make this pulmonary artery measurement in low-dose non-contrast chest CT images. The algorithm uses a cylinder matching method following geometric constraints obtained from other adjacent organs that have been previously segmented. This new measurement and the related ratio of pulmonary artery to aortic artery measurement are compared to traditional manual approaches for pulmonary artery characterization. The algorithm was qualitatively evaluated on 124 low-dose and 223 standard-dose non-contrast chest CT scans from two public datasets; 324 out of the 347 cases had good segmentations and in the other 23 cases there was significant boundary inaccuracy. For quantitative evaluation, the comparison was to manually marked pulmonary artery boundary in an axial slice in 45 cases; the resulting average Dice Similarity Coefficient was 0.88 (max 0.95, min 0.74). For the 45 cases with manual markings, the correlation between the automated pulmonary artery to ascending aorta diameter ratio and manual ratio at pulmonary artery bifurcation level was 0.81. Using Bland-Altman analysis, the mean difference of the two ratios was 0.03 and the limits of agreement was (-0.12, 0.18). This automated measurement may have utility as an alternative to the conventional manual measurement of pulmonary artery diameter at the bifurcation level especially in the context of noisy low-dose CT images.

  18. Perceptual image quality and telescope performance ranking

    NASA Astrophysics Data System (ADS)

    Lentz, Joshua K.; Harvey, James E.; Marshall, Kenneth H.; Salg, Joseph; Houston, Joseph B.

    2010-08-01

    Launch Vehicle Imaging Telescopes (LVIT) are expensive, high quality devices intended for improving the safety of vehicle personnel, ground support, civilians, and physical assets during launch activities. If allowed to degrade from the combination of wear, environmental factors, and ineffective or inadequate maintenance, these devices lose their ability to provide adequate quality imagery to analysts to prevent catastrophic events such as the NASA Space Shuttle, Challenger, accident in 1986 and the Columbia disaster of 2003. A software tool incorporating aberrations and diffraction that was developed for maintenance evaluation and modeling of telescope imagery is presented. This tool provides MTF-based image quality metric outputs which are correlated to ascent imagery analysts' perception of image quality, allowing a prediction of usefulness of imagery which would be produced by a telescope under different simulated conditions.

  19. Registration of coronary arteries in computed tomography angiography images using Hidden Markov Model.

    PubMed

    Luo, Yuxuan; Feng, Jianjiang; Xu, Miao; Zhou, Jie; Min, James K; Xiong, Guanglei

    2015-08-01

    Computed tomography angiography (CTA) allows for not only diagnosis of coronary artery disease (CAD) with high spatial resolution but also monitoring the remodeling of vessel walls in the progression of CAD. Alignment of coronary arteries in CTA images acquired at different times (with a 3-7 years interval) is required to visualize and analyze the geometric and structural changes quantitatively. Previous work in image registration primarily focused on large anatomical structures and leads to suboptimal results when applying to registration of coronary arteries. In this paper, we develop a novel method to directly align the straightened coronary arteries in the cylindrical coordinate system guided by the extracted centerlines. By using a Hidden Markov Model (HMM), image intensity information from CTA and geometric information of extracted coronary arteries are combined to align coronary arteries. After registration, the pathological features in two straightened coronary arteries can be directly visualized side by side by synchronizing the corresponding cross-sectional slices and circumferential rotation angles. By evaluating with manually labeled landmarks, the average distance error is 1.6 mm. PMID:26736676

  20. Requirements for imaging vulnerable plaque in the coronary artery using a coded aperture imaging system

    NASA Astrophysics Data System (ADS)

    Tozian, Cynthia

    the SNR, spatial resolution, dynamic range of 4:1 to 6:1, and decreased the MDA required at the site of a plaque by twofold in comparison with other nuclear medicine imaging methods. Recommendations to increase the field of view (FOV) along with a better imaging geometry would enable placement of larger objects (human heart included) within the fully encoded FOV while improving spatial resolution, magnification factors, and efficiency. Further improvements to the algorithm and imaging system may enable novel vulnerable plaque imaging and early detection of coronary artery disease. 1See definitions beginning on page xvii.

  1. Measurement and control of color image quality

    NASA Astrophysics Data System (ADS)

    Schneider, Eric; Johnson, Kate; Wolin, David

    1998-12-01

    Color hardcopy output is subject to many of the same image quality concerns as monochrome hardcopy output. Line and dot quality, uniformity, halftone quality, the presence of bands, spots or deletions are just a few by both color and monochrome output. Although measurement of color requires the use of specialized instrumentation, the techniques used to assess color-dependent image quality attributes on color hardcopy output are based on many of the same techniques as those used in monochrome image quality quantification. In this paper we will be presenting several different aspects of color quality assessment in both R and D and production environments. As well as present several examples of color quality measurements that are similar to those currently being used at Hewlett-Packard to characterize color devices and to verify system performance. We will then discuss some important considerations for choosing appropriate color quality measurement equipment for use in either R and D or production environments. Finally, we will discuss the critical relationship between objective measurements and human perception.

  2. Evaluation of Right Ventricular Myocardial Mechanics using Velocity Vector Imaging of Cardiac MRI Cine Images in Transposition of the Great Arteries Following Atrial and Arterial Switch Operations

    PubMed Central

    Thattaliyath, Bijoy D.; Forsha, Daniel E.; Stewart, Chad; Barker, Piers C.A.; Campbell, Michael J.

    2016-01-01

    Objective The aim of the study was to determine right and left ventricle deformation parameters in patients with transposition of the great arteries who had undergone atrial or arterial switch procedures. Setting Patients with transposition are born with a systemic right ventricle. Historically, the atrial switch operation, in which the right ventricle remains the systemic ventricle, was performed. These patients have increased rates of morbidity and mortality. We used cardiac MRI with Velocity Vector Imaging analysis to characterize and compare ventricular myocardial deformation in patients who had an atrial switch or arterial switch operation. Design Patients with a history of these procedures, who had a clinically ordered cardiac MRI were included in the study. Consecutive 20 patients (75% males, 28.7±1.8 years) who underwent atrial switch operation and 20 patients (60% males, 17.7±1.9 years) who underwent arterial switch operation were included in the study. Four chamber and short-axis cine images were used to determine longitudinal and circumferential strain and strain rate using Vector Velocity Imaging software. Results Compared to the arterial switch group, the atrial switch group had decreased right ventricular ejection fraction and increased end-diastolic and end-systolic volumes; and no difference in left ventricular ejection fraction and volumes. The atrial switch group had decreased longitudinal and circumferential strain and strain rate. When compared to normal controls multiple strain parameters in the atrial switch group were reduced. Conclusions Myocardial deformation analysis of transposition patients reveals a reduction of right ventricular function and decreased longitudinal and circumferential strain parameters in patients with an atrial switch operation compared to those with arterial switch operation. A better understanding of the mechanisms of RV failure in TGA may lead to improved therapies and adaptation. PMID:25655213

  3. A database for spectral image quality

    NASA Astrophysics Data System (ADS)

    Le Moan, Steven; George, Sony; Pedersen, Marius; Blahová, Jana; Hardeberg, Jon Yngve

    2015-01-01

    We introduce a new image database dedicated to multi-/hyperspectral image quality assessment. A total of nine scenes representing pseudo-at surfaces of different materials (textile, wood, skin. . . ) were captured by means of a 160 band hyperspectral system with a spectral range between 410 and 1000nm. Five spectral distortions were designed, applied to the spectral images and subsequently compared in a psychometric experiment, in order to provide a basis for applications such as the evaluation of spectral image difference measures. The database can be downloaded freely from http://www.colourlab.no/cid.

  4. Monotonic correlation analysis of image quality measures for image fusion

    NASA Astrophysics Data System (ADS)

    Kaplan, Lance M.; Burks, Stephen D.; Moore, Richard K.; Nguyen, Quang

    2008-04-01

    The next generation of night vision goggles will fuse image intensified and long wave infra-red to create a hybrid image that will enable soldiers to better interpret their surroundings during nighttime missions. Paramount to the development of such goggles is the exploitation of image quality (IQ) measures to automatically determine the best image fusion algorithm for a particular task. This work introduces a novel monotonic correlation coefficient to investigate how well possible IQ features correlate to actual human performance, which is measured by a perception study. The paper will demonstrate how monotonic correlation can identify worthy features that could be overlooked by traditional correlation values.

  5. Noninvasive ergonovine maleate provocative testing for coronary artery spasm: the need for routine thallium-201 imaging

    SciTech Connect

    Shanes, J.G.; Krone, R.J.; Fisher, K.; Shah, B.; Eisenkramer, G.; Humphrey, J.R.

    1983-01-01

    We administered ergonovine and used both electrocardiographic monitoring and thallium-/sup 201/ (/sup 201/Tl) imaging to detect reversible ischemia in 100 patients. Patients already established as having coronary artery spasm and those with nonbypassed, proximal, high-grade coronary artery stenosis were excluded. No complication occurred in any patient. The use of thallium imaging in addition to electrocardiographic monitoring resulted in a higher degree of sensitivity than did ECG monitoring alone. Fourteen patients demonstrated evidence of coronary artery spasm as documented by /sup 201/Tl imaging but of the 14, significant ECG changes occurred in only 50%, and classic ST segment elevation in 21%. Thus, in carefully selected patients the noninvasive provocation of coronary spasm can be accomplished safely, but ECG monitoring must be combined with thallium-/sup 201/ imaging to achieve an acceptable degree of sensitivity.

  6. Artery-vein separation via MRA--an image processing approach.

    PubMed

    Lei, T; Udupa, J K; Saha, P K; Odhner, D

    2001-08-01

    This paper presents a near-automatic process for separating vessels from background and other clutter as well as for separating arteries and veins in contrast-enhanced magnetic resonance angiographic (CE-MRA) image data, and an optimal method for three-dimensional visualization of vascular structures. The separation process utilizes fuzzy connected object delineation principles and algorithms. The first step of this separation process is the segmentation of the entire vessel structure from the background and other clutter via absolute fuzzy connectedness. The second step is to separate artery from vein within this entire vessel structure via iterative relative fuzzy connectedness. After seed voxels are specified inside artery and vein in the CE-MRA image, the small regions of the bigger aspects of artery and vein are separated in the initial iterations, and further detailed aspects of artery and vein are included in later iterations. At each iteration, the artery and vein compete among themselves to grab membership of each voxel in the vessel structure based on the relative strength of connectedness of the voxel in the artery and vein. This approach has been implemented in a software package for routine use in a clinical setting and tested on 133 CE-MRA studies of the pelvic region and two studies of the carotid system from six different hospitals. In all studies, unified parameter settings produced correct artery-vein separation. When compared with manual segmentation/separation, our algorithms were able to separate higher order branches, and therefore produced vastly more details in the segmented vascular structure. The total operator and computer time taken per study is on the average about 4.5 min. To date, this technique seems to be the only image processing approach that can be routinely applied for artery and vein separation.

  7. 3D reconstruction of coronary arteries using frequency domain optical coherence tomography images and biplane angiography.

    PubMed

    Athanasiou, L S; Bourantas, C V; Siogkas, P K; Sakellarios, A I; Exarchos, T P; Naka, K K; Papafaklis, M I; Michalis, L K; Prati, F; Fotiadis, D I

    2012-01-01

    The aim of this study is to describe a new method for three-dimensional (3D) reconstruction of coronary arteries using Frequency Domain Optical Coherence Tomography (FD-OCT) images. The rationale is to fuse the information about the curvature of the artery, derived from biplane angiographies, with the information regarding the lumen wall, which is produced from the FD-OCT examination. The method is based on a three step approach. In the first step the lumen borders in FD-OCT images are detected. In the second step a 3D curve is produced using the center line of the vessel from the two biplane projections. Finally in the third step the detected lumen borders are placed perpendicularly onto the path based on the centroid of each lumen border. The result is a 3D reconstructed artery produced by all the lumen borders of the FD-OCT pullback representing the 3D arterial geometry of the vessel.

  8. Development of functional in vivo imaging of cerebral lenticulostriate artery using novel synchrotron radiation angiography

    NASA Astrophysics Data System (ADS)

    Lin, Xiaojie; Miao, Peng; Mu, Zhihao; Jiang, Zhen; Lu, Yifan; Guan, Yongjing; Chen, Xiaoyan; Xiao, Tiqiao; Wang, Yongting; Yang, Guo-Yuan

    2015-02-01

    The lenticulostriate artery plays a vital role in the onset and development of cerebral ischemia. However, current imaging techniques cannot assess the in vivo functioning of small arteries such as the lenticulostriate artery in the brain of rats. Here, we report a novel method to achieve a high resolution multi-functional imaging of the cerebrovascular system using synchrotron radiation angiography, which is based on spatio-temporal analysis of contrast density in the arterial cross section. This method provides a unique tool for studying the sub-cortical vascular elasticity after cerebral ischemia in rats. Using this technique, we demonstrated that the vascular elasticity of the lenticulostriate artery decreased from day 1 to day 7 after transient middle cerebral artery occlusion in rats and recovered from day 7 to day 28 compared to the controls (p < 0.001), which paralleled with brain edema formation and inversely correlated with blood flow velocity (p < 0.05). Our results demonstrated that the change of vascular elasticity was related to the levels of brain edema and the velocity of focal blood flow, suggesting that reducing brain edema is important for the improvement of the function of the lenticulostriate artery in the ischemic brain.

  9. Whole-brain perfusion imaging with balanced steady-state free precession arterial spin labeling.

    PubMed

    Han, Paul Kyu; Ye, Jong Chul; Kim, Eung Yeop; Choi, Seung Hong; Park, Sung-Hong

    2016-03-01

    Recently, balanced steady-state free precession (bSSFP) readout has been proposed for arterial spin labeling (ASL) perfusion imaging to reduce susceptibility artifacts at a relatively high spatial resolution and signal-to-noise ratio (SNR). However, the main limitation of bSSFP-ASL is the low spatial coverage. In this work, methods to increase the spatial coverage of bSSFP-ASL are proposed for distortion-free, high-resolution, whole-brain perfusion imaging. Three strategies of (i) segmentation, (ii) compressed sensing (CS) and (iii) a hybrid approach combining the two methods were tested to increase the spatial coverage of pseudo-continuous ASL (pCASL) with three-dimensional bSSFP readout. The spatial coverage was increased by factors of two, four and six using each of the three approaches, whilst maintaining the same total scan time (5.3 min). The number of segments and/or CS acceleration rate (R) correspondingly increased to maintain the same bSSFP readout time (1.2 s). The segmentation approach allowed whole-brain perfusion imaging for pCASL-bSSFP with no penalty in SNR and/or total scan time. The CS approach increased the spatial coverage of pCASL-bSSFP whilst maintaining the temporal resolution, with minimal impact on the image quality. The hybrid approach provided compromised effects between the two methods. Balanced SSFP-based ASL allows the acquisition of perfusion images with wide spatial coverage, high spatial resolution and SNR, and reduced susceptibility artifacts, and thus may become a good choice for clinical and neurological studies. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26676386

  10. Whole-brain perfusion imaging with balanced steady-state free precession arterial spin labeling.

    PubMed

    Han, Paul Kyu; Ye, Jong Chul; Kim, Eung Yeop; Choi, Seung Hong; Park, Sung-Hong

    2016-03-01

    Recently, balanced steady-state free precession (bSSFP) readout has been proposed for arterial spin labeling (ASL) perfusion imaging to reduce susceptibility artifacts at a relatively high spatial resolution and signal-to-noise ratio (SNR). However, the main limitation of bSSFP-ASL is the low spatial coverage. In this work, methods to increase the spatial coverage of bSSFP-ASL are proposed for distortion-free, high-resolution, whole-brain perfusion imaging. Three strategies of (i) segmentation, (ii) compressed sensing (CS) and (iii) a hybrid approach combining the two methods were tested to increase the spatial coverage of pseudo-continuous ASL (pCASL) with three-dimensional bSSFP readout. The spatial coverage was increased by factors of two, four and six using each of the three approaches, whilst maintaining the same total scan time (5.3 min). The number of segments and/or CS acceleration rate (R) correspondingly increased to maintain the same bSSFP readout time (1.2 s). The segmentation approach allowed whole-brain perfusion imaging for pCASL-bSSFP with no penalty in SNR and/or total scan time. The CS approach increased the spatial coverage of pCASL-bSSFP whilst maintaining the temporal resolution, with minimal impact on the image quality. The hybrid approach provided compromised effects between the two methods. Balanced SSFP-based ASL allows the acquisition of perfusion images with wide spatial coverage, high spatial resolution and SNR, and reduced susceptibility artifacts, and thus may become a good choice for clinical and neurological studies. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Imaging findings and cerebral perfusion in arterial ischemic stroke due to transient cerebral arteriopathy in children.

    PubMed

    Barbosa Junior, Alcino Alves; Ellovitch, Saada Resende de Souza; Pincerato, Rita de Cassia Maciel

    2012-01-01

    We report the case of a 4-year-old female child who developed an arterial ischemic stroke in the left middle cerebral artery territory, due to a proximal stenosis of the supraclinoid internal carotid artery, most probably related to transient cerebral arteriopathy of childhood. Computed tomography scan, magnetic resonance imaging, perfusion magnetic resonance and magnetic resonance angiography are presented, as well as follow-up by magnetic resonance and magnetic resonance angiography exams. Changes in cerebral perfusion and diffusion-perfusion mismatch call attention. As far as we know, this is the first report of magnetic resonance perfusion findings in transient cerebral arteriopathy.

  12. Classification algorithm of pulmonary vein and artery based on multi-slice CT image

    NASA Astrophysics Data System (ADS)

    Yonekura, Taihei; Matsuhiro, Mikio; Saita, Shinsuke; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nishitani, Hiromu; Ohmatsu, Hironobu; Kakinuma, Ryutaro; Moriyama, Noriyuki

    2007-03-01

    Recently, multi-slice helical CT technology was developed. Unlike the conventional helical CT, we can obtain CT images of two or more slices with 1 time scan. Therefore, we can get many pictures with a clear contrast images and thin slice images in one time of scanning. The purpose of this presentation is to evaluate the proposed automatic extraction bronchus and pulmonary vein and artery on multi-slice CT images. The bronchus is extracted by application with region growing technique and the morphological filters, 3D distance transformation. These results indicate that the proposed algorithm provides the ability to accurately develop an automatic extraction algorithm of the bronchus on multi-slice CT images. In this report, we used pulmonary vein and artery marked by the doctor, It aims to discover an amount of the feature necessary for classifying the pulmonary vein and artery by using the anatomical feature. The classification of the pulmonary vein and artery is thought necessary information that it is state of tuber benign or malignity judgment. It is very important to separate the contact part of the lung blood vessel in classifying pulmonary vein and artery. Then, it aims to discover the feature of the contact part of the lung blood vessel in this report.

  13. Maximising image quality in small spaces.

    PubMed

    Alford, Arezoo; Brinkworth, Simon

    2015-06-01

    A Medical Illustration Department may need to set up a studio in a space that is not designed for that purpose. This joint paper describes the attempts of two separate trusts, University Hospitals Bristol NHS Foundation Trust (UHB) and Norfolk & Norwich University Hospitals (NNUH), to refurbish unusually small studio spaces of 4m × 2m. Each trust had a substantially different project budget and faced separate obstacles, but both had a shared aim; to maximise the limited studio space and enhance the quality of images produced. The outcome at both Trusts is a significant improvement in image quality.

  14. Subjective matters: from image quality to image psychology

    NASA Astrophysics Data System (ADS)

    Fedorovskaya, Elena A.; De Ridder, Huib

    2013-03-01

    From the advent of digital imaging through several decades of studies, the human vision research community systematically focused on perceived image quality and digital artifacts due to resolution, compression, gamma, dynamic range, capture and reproduction noise, blur, etc., to help overcome existing technological challenges and shortcomings. Technological advances made digital images and digital multimedia nearly flawless in quality, and ubiquitous and pervasive in usage, provide us with the exciting but at the same time demanding possibility to turn to the domain of human experience including higher psychological functions, such as cognition, emotion, awareness, social interaction, consciousness and Self. In this paper we will outline the evolution of human centered multidisciplinary studies related to imaging and propose steps and potential foci of future research.

  15. Quantification of image quality using information theory.

    PubMed

    Niimi, Takanaga; Maeda, Hisatoshi; Ikeda, Mitsuru; Imai, Kuniharu

    2011-12-01

    Aims of present study were to examine usefulness of information theory in visual assessment of image quality. We applied first order approximation of the Shannon's information theory to compute information losses (IL). Images of a contrast-detail mammography (CDMAM) phantom were acquired with computed radiographies for various radiation doses. Information content was defined as the entropy Σp( i )log(1/p ( i )), in which detection probabilities p ( i ) were calculated from distribution of detection rate of the CDMAM. IL was defined as the difference between information content and information obtained. IL decreased with increases in the disk diameters (P < 0.0001, ANOVA) and in the radiation doses (P < 0.002, F-test). Sums of IL, which we call total information losses (TIL), were closely correlated with the image quality figures (r = 0.985). TIL was dependent on the distribution of image reading ability of each examinee, even when average reading ratio was the same in the group. TIL was shown to be sensitive to the observers' distribution of image readings and was expected to improve the evaluation of image quality.

  16. Characteristic functionals in imaging and image-quality assessment: tutorial.

    PubMed

    Clarkson, Eric; Barrett, Harrison H

    2016-08-01

    Characteristic functionals are one of the main analytical tools used to quantify the statistical properties of random fields and generalized random fields. The viewpoint taken here is that a random field is the correct model for the ensemble of objects being imaged by a given imaging system. In modern digital imaging systems, random fields are not used to model the reconstructed images themselves since these are necessarily finite dimensional. After a brief introduction to the general theory of characteristic functionals, many examples relevant to imaging applications are presented. The propagation of characteristic functionals through both a binned and list-mode imaging system is also discussed. Methods for using characteristic functionals and image data to estimate population parameters and classify populations of objects are given. These methods are based on maximum likelihood and maximum a posteriori techniques in spaces generated by sampling the relevant characteristic functionals through the imaging operator. It is also shown how to calculate a Fisher information matrix in this space. These estimators and classifiers, and the Fisher information matrix, can then be used for image quality assessment of imaging systems.

  17. Does resolution really increase image quality?

    NASA Astrophysics Data System (ADS)

    Tisse, Christel-Loïc; Guichard, Frédéric; Cao, Frédéric

    2008-02-01

    A general trend in the CMOS image sensor market is for increasing resolution (by having a larger number of pixels) while keeping a small form factor by shrinking photosite size. This article discusses the impact of this trend on some of the main attributes of image quality. The first example is image sharpness. A smaller pitch theoretically allows a larger limiting resolution which is derived from the Modulation Transfer Function (MTF). But recent sensor technologies (1.75μm, and soon 1.45μm) with typical aperture f/2.8 are clearly reaching the size of the diffraction blur spot. A second example is the impact on pixel light sensitivity and image sensor noise. For photonic noise, the Signal-to-Noise-Ratio (SNR) is typically a decreasing function of the resolution. To evaluate whether shrinking pixel size could be beneficial to the image quality, the tradeoff between spatial resolution and light sensitivity is examined by comparing the image information capacity of sensors with varying pixel size. A theoretical analysis that takes into consideration measured and predictive models of pixel performance degradation and improvement associated with CMOS imager technology scaling, is presented. This analysis is completed by a benchmarking of recent commercial sensors with different pixel technologies.

  18. Triple Arterial Phase MR Imaging with Gadoxetic Acid Using a Combination of Contrast Enhanced Time Robust Angiography, Keyhole, and Viewsharing Techniques and Two-Dimensional Parallel Imaging in Comparison with Conventional Single Arterial Phase

    PubMed Central

    Yoon, Jeong Hee; Yu, Mi Hye; Kim, Eun Ju; Han, Joon Koo

    2016-01-01

    Objective To determine whether triple arterial phase acquisition via a combination of Contrast Enhanced Time Robust Angiography, keyhole, temporal viewsharing and parallel imaging can improve arterial phase acquisition with higher spatial resolution than single arterial phase gadoxetic-acid enhanced magnetic resonance imaging (MRI). Materials and Methods Informed consent was waived for this retrospective study by our Institutional Review Board. In 752 consecutive patients who underwent gadoxetic acid-enhanced liver MRI, either single (n = 587) or triple (n = 165) arterial phases was obtained in a single breath-hold under MR fluoroscopy guidance. Arterial phase timing was assessed, and the degree of motion was rated on a four-point scale. The percentage of patients achieving the late arterial phase without significant motion was compared between the two methods using the χ2 test. Results The late arterial phase was captured at least once in 96.4% (159/165) of the triple arterial phase group and in 84.2% (494/587) of the single arterial phase group (p < 0.001). Significant motion artifacts (score ≤ 2) were observed in 13.3% (22/165), 1.2% (2/165), 4.8% (8/165) on 1st, 2nd, and 3rd scans of triple arterial phase acquisitions and 6.0% (35/587) of single phase acquisitions. Thus, the late arterial phase without significant motion artifacts was captured in 96.4% (159/165) of the triple arterial phase group and in 79.9% (469/587) of the single arterial phase group (p < 0.001). Conclusion Triple arterial phase imaging may reliably provide adequate arterial phase imaging for gadoxetic acid-enhanced liver MRI. PMID:27390543

  19. Automatic segmentation of the lumen of the carotid artery in ultrasound B-mode images

    NASA Astrophysics Data System (ADS)

    Santos, André M. F.; Tavares, Jão. Manuel R. S.; Sousa, Luísa; Santos, Rosa; Castro, Pedro; Azevedo, Elsa

    2013-02-01

    A new algorithm is proposed for the segmentation of the lumen and bifurcation boundaries of the carotid artery in B-mode ultrasound images. It uses the hipoechogenic characteristics of the lumen for the identification of the carotid boundaries and the echogenic characteristics for the identification of the bifurcation boundaries. The image to be segmented is processed with the application of an anisotropic diffusion filter for speckle removal and morphologic operators are employed in the detection of the artery. The obtained information is then used in the definition of two initial contours, one corresponding to the lumen and the other to the bifurcation boundaries, for the posterior application of the Chan-vese level set segmentation model. A set of longitudinal B-mode images of the common carotid artery (CCA) was acquired with a GE Healthcare Vivid-e ultrasound system (GE Healthcare, United Kingdom). All the acquired images include a part of the CCA and of the bifurcation that separates the CCA into the internal and external carotid arteries. In order to achieve the uppermost robustness in the imaging acquisition process, i.e., images with high contrast and low speckle noise, the scanner was adjusted differently for each acquisition and according to the medical exam. The obtained results prove that we were able to successfully apply a carotid segmentation technique based on cervical ultrasonography. The main advantage of the new segmentation method relies on the automatic identification of the carotid lumen, overcoming the limitations of the traditional methods.

  20. Image Quality Indicator for Infrared Inspections

    NASA Technical Reports Server (NTRS)

    Burke, Eric

    2011-01-01

    The quality of images generated during an infrared thermal inspection depends on many system variables, settings, and parameters to include the focal length setting of the IR camera lens. If any relevant parameter is incorrect or sub-optimal, the resulting IR images will usually exhibit inherent unsharpness and lack of resolution. Traditional reference standards and image quality indicators (IQIs) are made of representative hardware samples and contain representative flaws of concern. These standards are used to verify that representative flaws can be detected with the current IR system settings. However, these traditional standards do not enable the operator to quantify the quality limitations of the resulting images, i.e. determine the inherent maximum image sensitivity and image resolution. As a result, the operator does not have the ability to optimize the IR inspection system prior to data acquisition. The innovative IQI described here eliminates this limitation and enables the operator to objectively quantify and optimize the relevant variables of the IR inspection system, resulting in enhanced image quality with consistency and repeatability in the inspection application. The IR IQI consists of various copper foil features of known sizes that are printed on a dielectric non-conductive board. The significant difference in thermal conductivity between the two materials ensures that each appears with a distinct grayscale or brightness in the resulting IR image. Therefore, the IR image of the IQI exhibits high contrast between the copper features and the underlying dielectric board, which is required to detect the edges of the various copper features. The copper features consist of individual elements of various shapes and sizes, or of element-pairs of known shapes and sizes and with known spacing between the elements creating the pair. For example, filled copper circles with various diameters can be used as individual elements to quantify the image sensitivity

  1. Quality evaluation of fruit by hyperspectral imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter presents new applications of hyperspectral imaging for measuring the optical properties of fruits and assessing their quality attributes. A brief overview is given of current techniques for measuring optical properties of turbid and opaque biological materials. Then a detailed descripti...

  2. Scene reduction for subjective image quality assessment

    NASA Astrophysics Data System (ADS)

    Lewandowska (Tomaszewska), Anna

    2016-01-01

    Evaluation of image quality is important for many image processing systems, such as those used for acquisition, compression, restoration, enhancement, or reproduction. Its measurement is often accompanied by user studies, in which a group of observers rank or rate results of several algorithms. Such user studies, known as subjective image quality assessment experiments, can be very time consuming and do not guarantee conclusive results. This paper is intended to help design an efficient and rigorous quality assessment experiment. We propose a method of limiting the number of scenes that need to be tested, which can significantly reduce the experimental effort and still capture relevant scene-dependent effects. To achieve it, we employ a clustering technique and evaluate it on the basis of compactness and separation criteria. The correlation between the results obtained from a set of images in an initial database and the results received from reduced experiment are analyzed. Finally, we propose a procedure for reducing the initial scenes number. Four different assessment techniques were tested: single stimulus, double stimulus, forced choice, and similarity judgments. We conclude that in most cases, 9 to 12 judgments per evaluated algorithm for a large scene collection is sufficient to reduce the initial set of images.

  3. Prediction of Viking lander camera image quality

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Burcher, E. E.; Jobson, D. J.; Wall, S. D.

    1976-01-01

    Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances.

  4. Obesity and the challenges of noninvasive imaging for the detection of coronary artery disease.

    PubMed

    Lim, Siok P; Arasaratnam, Punitha; Chow, Benjamin J; Beanlands, Rob S; Hessian, Renée C

    2015-02-01

    Obesity is a significant health problem that could potentially lead to increased cardiovascular risk. Noninvasive imaging plays an important role in the evaluation of cardiovascular symptoms and risk of these patients. Selection of the appropriate test in the diagnosis of obstructive coronary artery disease in this unique population is important. In this article, we focus on the strengths, limitations, and recommendations of the various noninvasive cardiac imaging modalities available in the detection of obstructive coronary artery disease. We have suggested an algorithm to help direct investigation. Ultimately, patient management should be individualized based on clinical judgement, test availability, and local expertise.

  5. Complimentary use of epicardial echo imaging and Doppler in quantification of coronary artery stenoses

    NASA Astrophysics Data System (ADS)

    Richards, Kent L.; Cannon, Scott R.

    1990-08-01

    As more advanced therapeutic procedures are performed on coronary arteries during open chest surgery more advanced diagnostic procedures will be required to define the location and severity of coronary artery disease. This manuscript describes our preliminary experiences in identifying human coronary artery stenoses using epicardial two-dimensional color flow Doppler. Once the lesions were identified we used standard echo Doppler and imaging techniques to define their severity. The accuracy of stenotic cross sectional area calculated using the continuity equation and pressure gradient calculated using the Bernoulli equation were defined using a pulsatile flow model of the coronary circulation. Suggestions about further hardware development required to allow easy clinical application of this technique are described. 1 - CLINICAL NEED FOR INTRA-OPERATIVE EVAUJATION OFCORONARY ARTERIES The severity of coronary artery disease in adults who require coronary bypass surgery has changed significantly in the last ten years. More effective medications used to control angina pectoris and the wide use of percutaneous y artery angioplasty have delayed the timing of surgery until atherosclerotic involvement is more extensive. In addition patients who have had initial coronary bypass operations are now reaching ages at which atherosclerotic involvement of their bypass grafts and native vessels has progressed and reoperation is required. To meet the challenge of coronary arteries with multiple lesions or diffuse disease intraoperative angioplasty devices are being developed. Whether bypass surgery for advanced lesions or reoperation of

  6. Physical measures of image quality in mammography

    NASA Astrophysics Data System (ADS)

    Chakraborty, Dev P.

    1996-04-01

    A recently introduced method for quantitative analysis of images of the American College of Radiology (ACR) mammography accreditation phantom has been extended to include signal- to-noise-ratio (SNR) measurements, and has been applied to survey the image quality of 54 mammography machines from 17 hospitals. Participants sent us phantom images to be evaluated for each mammography machine at their hospital. Each phantom was loaned to us for obtaining images of the wax insert plate on a reference machine at our institution. The images were digitized and analyzed to yield indices that quantified the image quality of the machines precisely. We have developed methods for normalizing for the variation of the individual speck sizes between different ACR phantoms, for the variation of the speck sizes within a microcalcification group, and for variations in overall speeds of the mammography systems. In terms of the microcalcification SNR, the variability of the x-ray machines was 40.5% when no allowance was made for phantom or mAs variations. This dropped to 17.1% when phantom variability was accounted for, and to 12.7% when mAs variability was also allowed for. Our work shows the feasibility of practical, low-cost, objective and accurate evaluations, as a useful adjunct to the present ACR method.

  7. Evaluation of diseased coronary arterial branches by polar representations of thallium-201 rotational myocardial imaging

    SciTech Connect

    Iino, T.; Toyosaki, N.; Katsuki, T.; Noda, T.; Natsume, T.; Yaginuma, T.; Hosoda, S.; Furuse, M.

    1987-09-01

    The perfusion territories in polar representations of stress Tl-201 rotational myocardial imaging in patients with angina pectoris who had one diseased coronary segment were analyzed. The lesions proximal or distal to the first major septal perforator in left anterior descending arteries were detected by the presence or absence of defects at the base of the anterior septum. Right coronary artery lesions were detected by the presence of defects at the basal posterior septum, in contrast to the preservation of myocardial uptake at this portion in lesions of the left circumflex artery. The specific defect patterns were detected in cases with lesions at the first diagonal, obtuse marginal, and posterolateral branches. Recognition of these defects in the polar maps allows detailed detection of diseased coronary arterial branches.

  8. Medical Imaging Image Quality Assessment with Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Michail, C. M.; Karpetas, G. E.; Fountos, G. P.; Kalyvas, N. I.; Martini, Niki; Koukou, Vaia; Valais, I. G.; Kandarakis, I. S.

    2015-09-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction, with cluster computing. The PET scanner simulated in this study was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the Modulation Transfer Function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL algorithm. OSMAPOSL reconstruction was assessed by using various subsets (3 to 21) and iterations (1 to 20), as well as by using various beta (hyper) parameter values. MTF values were found to increase up to the 12th iteration whereas remain almost constant thereafter. MTF improves by using lower beta values. The simulated PET evaluation method based on the TLC plane source can be also useful in research for the further development of PET and SPECT scanners though GATE simulations.

  9. Detection of image quality metamers based on the metric for unified image quality

    NASA Astrophysics Data System (ADS)

    Miyata, Kimiyoshi; Tsumura, Norimichi

    2012-01-01

    In this paper, we introduce a concept of the image quality metamerism as an expanded version of the metamerism defined in the color science. The concept is used to unify different image quality attributes, and applied to introduce a metric showing the degree of image quality metamerism to analyze a cultural property. Our global goal is to build a metric to evaluate total quality of images acquired by different imaging systems and observed under different viewing conditions. As the basic step to the global goal, the metric is consisted of color, spectral and texture information in this research, and applied to detect image quality metamers to investigate the cultural property. The property investigated is the oldest extant version of folding screen paintings that depict the thriving city of Kyoto designated as a nationally important cultural property in Japan. Gold colored areas painted by using high granularity colorants compared with other color areas in the property are evaluated based on the metric, then the metric is visualized as a map showing the possibility of the image quality metamer to the reference pixel.

  10. Imaging of Small Animal Peripheral Artery Disease Models: Recent Advancements and Translational Potential

    PubMed Central

    Lin, Jenny B.; Phillips, Evan H.; Riggins, Ti’Air E.; Sangha, Gurneet S.; Chakraborty, Sreyashi; Lee, Janice Y.; Lycke, Roy J.; Hernandez, Clarissa L.; Soepriatna, Arvin H.; Thorne, Bradford R. H.; Yrineo, Alexa A.; Goergen, Craig J.

    2015-01-01

    Peripheral artery disease (PAD) is a broad disorder encompassing multiple forms of arterial disease outside of the heart. As such, PAD development is a multifactorial process with a variety of manifestations. For example, aneurysms are pathological expansions of an artery that can lead to rupture, while ischemic atherosclerosis reduces blood flow, increasing the risk of claudication, poor wound healing, limb amputation, and stroke. Current PAD treatment is often ineffective or associated with serious risks, largely because these disorders are commonly undiagnosed or misdiagnosed. Active areas of research are focused on detecting and characterizing deleterious arterial changes at early stages using non-invasive imaging strategies, such as ultrasound, as well as emerging technologies like photoacoustic imaging. Earlier disease detection and characterization could improve interventional strategies, leading to better prognosis in PAD patients. While rodents are being used to investigate PAD pathophysiology, imaging of these animal models has been underutilized. This review focuses on structural and molecular information and disease progression revealed by recent imaging efforts of aortic, cerebral, and peripheral vascular disease models in mice, rats, and rabbits. Effective translation to humans involves better understanding of underlying PAD pathophysiology to develop novel therapeutics and apply non-invasive imaging techniques in the clinic. PMID:25993289

  11. Image-based modeling of the hemodynamics in cerebral arterial trees

    NASA Astrophysics Data System (ADS)

    Mut, Fernando; Wright, Susan; Putman, Christopher; Ascoli, Giorgio; Cebral, Juan

    2009-02-01

    Knowledge of the hemodynamics in normal arterial trees of the brain is important to better understand the mechanisms responsible for the initiation and progression of cerebrovascular diseases. Information about the baseline values of hemodynamic variables such as velocity magnitudes, swirling flows, wall shear stress, pressure drops, vascular resistances, etc. is important for characterization of the normal hemodynamics and comparison with pathological states such as aneurysms and stenoses. This paper presents image-based computational hemodynamics models of cerebral arterial trees constructed from magnetic resonance angiography (MRA) images. The construction of large models of cerebral arterial trees is challenging because of the following main reasons: a) it is necessary to acquire high resolution angiographic images covering the entire brain, b) it is necessary to construct topologically correct and geometrically accurate watertight models of the vasculature, and c) the models typically result in large computational grids which make the calculations computationally demanding. This paper presents a methodology to model the hemodynamics in the brain arterial network that combines high resolution MRA at 3T, a vector representation of the vascular structures based on semi-manual segmentation, and a novel algorithm to solve the incompressible flow equations efficiently in tubular geometries. These techniques make the study of the hemodynamics in the cerebral arterial network practical.

  12. Classification of coronary artery tissues using optical coherence tomography imaging in Kawasaki disease

    NASA Astrophysics Data System (ADS)

    Abdolmanafi, Atefeh; Prasad, Arpan Suravi; Duong, Luc; Dahdah, Nagib

    2016-03-01

    Intravascular imaging modalities, such as Optical Coherence Tomography (OCT) allow nowadays improving diagnosis, treatment, follow-up, and even prevention of coronary artery disease in the adult. OCT has been recently used in children following Kawasaki disease (KD), the most prevalent acquired coronary artery disease during childhood with devastating complications. The assessment of coronary artery layers with OCT and early detection of coronary sequelae secondary to KD is a promising tool for preventing myocardial infarction in this population. More importantly, OCT is promising for tissue quantification of the inner vessel wall, including neo intima luminal myofibroblast proliferation, calcification, and fibrous scar deposits. The goal of this study is to classify the coronary artery layers of OCT imaging obtained from a series of KD patients. Our approach is focused on developing a robust Random Forest classifier built on the idea of randomly selecting a subset of features at each node and based on second- and higher-order statistical texture analysis which estimates the gray-level spatial distribution of images by specifying the local features of each pixel and extracting the statistics from their distribution. The average classification accuracy for intima and media are 76.36% and 73.72% respectively. Random forest classifier with texture analysis promises for classification of coronary artery tissue.

  13. Watertight modeling and segmentation of bifurcated Coronary arteries for blood flow simulation using CT imaging.

    PubMed

    Zhou, Haoyin; Sun, Peng; Ha, Seongmin; Lundine, Devon; Xiong, Guanglei

    2016-10-01

    Image-based simulation of blood flow using computational fluid dynamics has been shown to play an important role in the diagnosis of ischemic coronary artery disease. Accurate extraction of complex coronary artery structures in a watertight geometry is a prerequisite, but manual segmentation is both tedious and subjective. Several semi- and fully automated coronary artery extraction approaches have been developed but have faced several challenges. Conventional voxel-based methods allow for watertight segmentation but are slow and difficult to incorporate expert knowledge. Machine learning based methods are relatively fast and capture rich information embedded in manual annotations. Although sufficient for visualization and analysis of coronary anatomy, these methods cannot be used directly for blood flow simulation if the coronary vasculature is represented as a loose combination of tubular structures and the bifurcation geometry is improperly modeled. In this paper, we propose a novel method to extract branching coronary arteries from CT imaging with a focus on explicit bifurcation modeling and application of machine learning. A bifurcation lumen is firstly modeled by generating the convex hull to join tubular vessel branches. Guided by the pre-determined centerline, machine learning based segmentation is performed to adapt the bifurcation lumen model to target vessel boundaries and smoothed by subdivision surfaces. Our experiments show the constructed coronary artery geometry from CT imaging is accurate by comparing results against the manually annotated ground-truths, and can be directly applied to coronary blood flow simulation. PMID:27490317

  14. Imaging of all three coronary arteries by transthoracic echocardiography. an illustrated guide

    PubMed Central

    Krzanowski, Marek; Bodzoń, Wojciech; Dimitrow, Paweł Petkow

    2003-01-01

    Background Improvements in ultrasound technology has enabled direct, transthoracic visualization of long portions of coronary arteries : the left anterior descending (LAD), circumflex (Cx) and right coronary artery (RCA). Transthoracic measurements of coronary flow velocity were proved to be highly reproducible and correlated with invasive measurements. While clinical applications of transthoracic echocardiography (TTE) of principal coronary arteries are still very limited they will likely grow. The echocardiographers may therefore be interested to know the ultrasonic views, technique of examination and be aware where to look for coronary arteries and how to optimize the images. Methods A step-by-step approach to direct, transthoracic visualization of the LAD, Cx and RCA is presented. The technique of examination is discussed, correlations with basic coronary angiography views and heart anatomy are shown and extensively illustrated with photographs and movie-pictures. Hints concerning optimization of ultrasound images are presented and artifacts of imaging are discussed. Conclusions Direct, transthoracic examination of the LAD, Cx and RCA in adults is possible and may become a useful adjunct to other methods of coronary artery examination but studies are needed to establish its role. PMID:14622441

  15. Radiological Management of Hemoptysis: A Comprehensive Review of Diagnostic Imaging and Bronchial Arterial Embolization

    SciTech Connect

    Chun, Joo-Young Morgan, Robert; Belli, Anna-Maria

    2010-04-15

    Hemoptysis can be a life-threatening respiratory emergency and indicates potentially serious underlying intrathoracic disease. Large-volume hemoptysis carries significant mortality and warrants urgent investigation and intervention. Initial assessment by chest radiography, bronchoscopy, and computed tomography (CT) is useful in localizing the bleeding site and identifying the underlying cause. Multidetector CT angiography is a relatively new imaging technique that allows delineation of abnormal bronchial and nonbronchial arteries using reformatted images in multiple projections, which can be used to guide therapeutic arterial embolization procedures. Bronchial artery embolization (BAE) is now considered to be the most effective procedure for the management of massive and recurrent hemoptysis, either as a first-line therapy or as an adjunct to elective surgery. It is a safe technique in the hands of an experienced operator with knowledge of bronchial artery anatomy and the potential pitfalls of the procedure. Recurrent bleeding is not uncommon, especially if there is progression of the underlying disease process. Prompt repeat embolization is advised in patients with recurrent hemoptysis in order to identify nonbronchial systemic and pulmonary arterial sources of bleeding. This article reviews the pathophysiology and causes of hemoptysis, diagnostic imaging and therapeutic options, and technique and outcomes of BAE.

  16. High Image Quality Laser Color Printer

    NASA Astrophysics Data System (ADS)

    Nagao, Kimitoshi; Morimoto, Yoshinori

    1989-07-01

    A laser color printer has been developed to depict continuous tone color images on a photographic color film or color paper with high resolution and fidelity. We have used three lasers, He-Cd (441.6 nm), Ar4+ (514.5 nm), and He-Ne (632.8 nm) for blue, green, and red exposures. We have employed a drum scanner for two dimensional scanning. The maximum resolution of our system is 40 c/mm (80 lines/mm) and the accuracy of density reproduction is within 1.0 when measured in color difference, where most observers can not distinguish the difference. The scanning artifacts and noise are diminished to a visually negligible level. The image quality of output images compares well to that of actual color photographs, and is suitable for photographic image simulations.

  17. Blind image quality assessment via deep learning.

    PubMed

    Hou, Weilong; Gao, Xinbo; Tao, Dacheng; Li, Xuelong

    2015-06-01

    This paper investigates how to blindly evaluate the visual quality of an image by learning rules from linguistic descriptions. Extensive psychological evidence shows that humans prefer to conduct evaluations qualitatively rather than numerically. The qualitative evaluations are then converted into the numerical scores to fairly benchmark objective image quality assessment (IQA) metrics. Recently, lots of learning-based IQA models are proposed by analyzing the mapping from the images to numerical ratings. However, the learnt mapping can hardly be accurate enough because some information has been lost in such an irreversible conversion from the linguistic descriptions to numerical scores. In this paper, we propose a blind IQA model, which learns qualitative evaluations directly and outputs numerical scores for general utilization and fair comparison. Images are represented by natural scene statistics features. A discriminative deep model is trained to classify the features into five grades, corresponding to five explicit mental concepts, i.e., excellent, good, fair, poor, and bad. A newly designed quality pooling is then applied to convert the qualitative labels into scores. The classification framework is not only much more natural than the regression-based models, but also robust to the small sample size problem. Thorough experiments are conducted on popular databases to verify the model's effectiveness, efficiency, and robustness. PMID:25122842

  18. Blind image quality assessment via deep learning.

    PubMed

    Hou, Weilong; Gao, Xinbo; Tao, Dacheng; Li, Xuelong

    2015-06-01

    This paper investigates how to blindly evaluate the visual quality of an image by learning rules from linguistic descriptions. Extensive psychological evidence shows that humans prefer to conduct evaluations qualitatively rather than numerically. The qualitative evaluations are then converted into the numerical scores to fairly benchmark objective image quality assessment (IQA) metrics. Recently, lots of learning-based IQA models are proposed by analyzing the mapping from the images to numerical ratings. However, the learnt mapping can hardly be accurate enough because some information has been lost in such an irreversible conversion from the linguistic descriptions to numerical scores. In this paper, we propose a blind IQA model, which learns qualitative evaluations directly and outputs numerical scores for general utilization and fair comparison. Images are represented by natural scene statistics features. A discriminative deep model is trained to classify the features into five grades, corresponding to five explicit mental concepts, i.e., excellent, good, fair, poor, and bad. A newly designed quality pooling is then applied to convert the qualitative labels into scores. The classification framework is not only much more natural than the regression-based models, but also robust to the small sample size problem. Thorough experiments are conducted on popular databases to verify the model's effectiveness, efficiency, and robustness.

  19. Molecular histology of arteries: mass spectrometry imaging as a novel ex vivo tool to investigate atherosclerosis.

    PubMed

    Martin-Lorenzo, Marta; Alvarez-Llamas, Gloria; McDonnell, Liam A; Vivanco, Fernando

    2016-01-01

    Atherosclerosis is usually the underlying cause of a fatal event such as myocardial infarction or ictus. The atherome plaque develops silently and asymptomatically within the arterial intima layer. In this context, the possibility to analyze the molecular content of arterial tissue while preserving each molecule's specific localization is of great interest as it may reveal further insights into the physiopathological changes taking place. Mass spectrometry imaging (MSI) enables the spatially resolved molecular analysis of proteins, peptides, metabolites, lipids and drugs directly in tissue, with a resolution sufficient to reveal molecular features specific to distinct arterial structures. MSI represents a novel ex vivo imaging tool still underexplored in cardiovascular diseases. This review focuses on the MSI technique applied to cardiovascular disease and covers the main contributions to date, ongoing efforts, the main challenges and current limitations of MSI.

  20. Regional calcium distribution and ultrasound images of the vessel wall in human carotid arteries

    NASA Astrophysics Data System (ADS)

    Szikszai, Z.; Kertész, Zs.; Uzonyi, I.; Szíki, G. Á.; Magyar, M. T.; Molnár, S.; Ida, Y.; Csiba, L.

    2005-04-01

    Arterial calcification can take place at two sites in the vessel wall: the intima and the media. Intimal calcification occurs exclusively within atherosclerotic plaques, while medial calcification may develop independently. Extensive calcified plaques in the carotid arteries can be easily detected by B-mode ultrasonic imaging. The calcium content might correlate with the ultrasound reflectance of the vessel wall, and could be a surrogate marker for arteriosclerosis. In this study, segments of human carotid arteries collected at autopsy were examined by ultrasonography in vitro and calcium distributional maps of sections from the same segments were determined by particle induced X-ray emission. Our aim was to make a first step towards investigating the relationship between the calcium distributional maps and the respective ultrasound images.

  1. Dried fruits quality assessment by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Gargiulo, Aldo; Bonifazi, Giuseppe

    2012-05-01

    Dried fruits products present different market values according to their quality. Such a quality is usually quantified in terms of freshness of the products, as well as presence of contaminants (pieces of shell, husk, and small stones), defects, mould and decays. The combination of these parameters, in terms of relative presence, represent a fundamental set of attributes conditioning dried fruits humans-senses-detectable-attributes (visual appearance, organolectic properties, etc.) and their overall quality in terms of marketable products. Sorting-selection strategies exist but sometimes they fail when a higher degree of detection is required especially if addressed to discriminate between dried fruits of relatively small dimensions and when aiming to perform an "early detection" of pathogen agents responsible of future moulds and decays development. Surface characteristics of dried fruits can be investigated by hyperspectral imaging (HSI). In this paper, specific and "ad hoc" applications addressed to propose quality detection logics, adopting a hyperspectral imaging (HSI) based approach, are described, compared and critically evaluated. Reflectance spectra of selected dried fruits (hazelnuts) of different quality and characterized by the presence of different contaminants and defects have been acquired by a laboratory device equipped with two HSI systems working in two different spectral ranges: visible-near infrared field (400-1000 nm) and near infrared field (1000-1700 nm). The spectra have been processed and results evaluated adopting both a simple and fast wavelength band ratio approach and a more sophisticated classification logic based on principal component (PCA) analysis.

  2. Objective assessment of image quality VI: imaging in radiation therapy

    NASA Astrophysics Data System (ADS)

    Barrett, Harrison H.; Kupinski, Matthew A.; Müeller, Stefan; Halpern, Howard J.; Morris, John C., III; Dwyer, Roisin

    2013-11-01

    Earlier work on objective assessment of image quality (OAIQ) focused largely on estimation or classification tasks in which the desired outcome of imaging is accurate diagnosis. This paper develops a general framework for assessing imaging quality on the basis of therapeutic outcomes rather than diagnostic performance. By analogy to receiver operating characteristic (ROC) curves and their variants as used in diagnostic OAIQ, the method proposed here utilizes the therapy operating characteristic or TOC curves, which are plots of the probability of tumor control versus the probability of normal-tissue complications as the overall dose level of a radiotherapy treatment is varied. The proposed figure of merit is the area under the TOC curve, denoted AUTOC. This paper reviews an earlier exposition of the theory of TOC and AUTOC, which was specific to the assessment of image-segmentation algorithms, and extends it to other applications of imaging in external-beam radiation treatment as well as in treatment with internal radioactive sources. For each application, a methodology for computing the TOC is presented. A key difference between ROC and TOC is that the latter can be defined for a single patient rather than a population of patients.

  3. Distal Embolization After Stenting of the Vertebral Artery: Diffusion-Weighted Magnetic Resonance Imaging Findings

    SciTech Connect

    Canyigit, Murat; Arat, Anil Cil, Barbaros E.; Turkbey, Baris; Saatci, Isil; Cekirge, Saruhan; Balkanci, Ferhun

    2007-04-15

    Purpose. We retrospectively evaluated our experience with stenting of the vertebral artery in an effort to determine the risk of distal embolization associated with the procedure. Methods. Between June 2000 and May 2005, 35 patients with 38 stenting procedures for atherosclerotic disease of the vertebral origin in our institution were identified. The average age of the patients was 60.3 years (range 32-76 years). Sixteen of these patients (with 18 stents) had MR imaging of the brain with diffusion-weighted imaging and an apparent diffusion coefficient map within 2 days before and after procedure. Results. On seven of the 16 postprocedural diffusion-weighted MR images, a total of 57 new hyperintensities were visible. All these lesions were focal in nature. One patient demonstrated a new diffusion-weighted imaging abnormality in the anterior circulation without MR evidence of posterior circulation ischemia. Six of 16 patients had a total of 25 new lesions in the vertebrobasilar circulation in postprocedural diffusion-weighted MR images. One patient in this group was excluded from the final analysis because the procedure was complicated by basilar rupture during tandem stent deployment in the basilar artery. Hence, new diffusion-weighted imaging abnormalities were noted in the vertebrobasilar territory in 5 of 15 patients after 17 stenting procedures, giving a 29% rate of diffusion-weighted imaging abnormalities per procedure. No patient with bilateral stenting had new diffusion-weighted imaging abnormalities. Conclusion. Stenting of stenoses of the vertebral artery origin may be associated with a significant risk of asymptomatic distal embolization. Angiography, placement of the guiding catheter, inflation of the stent balloon, and crossing the lesion with guidewires or balloon catheters may potentially cause distal embolization. Further studies to evaluate measures to increase the safety of vertebral artery stenting, such as the use of distal protection devices or

  4. Trans-illuminated laser speckle imaging of collateral artery blood flow in ischemic mouse hindlimb

    PubMed Central

    Meisner, Joshua K.; Niu, Jacqueline; Sumer, Suna

    2013-01-01

    Abstract. The mouse ischemic hindlimb model is used widely for studying collateral artery growth (i.e., arteriogenesis) in response to increased shear stress. Nonetheless, precise measurements of regional shear stress changes along individual collateral arteries are lacking. Our goal is to develop and verify trans-illumination laser speckle flowmetry (LSF) for this purpose. Studies of defibrinated bovine blood flow through tubes embedded in tissue-mimicking phantoms indicate that trans-illumination LSF better maintains sensitivity with an increasing tissue depth when compared to epi-illumination, with an ∼50% reduction in the exponential decay of the speckle velocity signal. Applying trans-illuminated LSF to the gracilis muscle collateral artery network in vivo yields both improved sensitivity and reduced noise when compared to epi-illumination. Trans-illuminated LSF images reveal regional differences in collateral artery blood velocity after femoral artery ligation and are used to measure an ∼2-fold increase in the shear stress at the entrance regions to the muscle. We believe these represent the first direct measurements of regional shear stress changes in individual mouse collateral arteries. The ability to capture deeper vascular signals using a trans-illumination configuration for LSF may expand the current applications for LSF, which could have bearing on determining how shear stress magnitude and direction regulate arteriogenesis. PMID:24045691

  5. Coronary artery angiography and myocardial viability imaging: a 3.0-T contrast-enhanced magnetic resonance coronary artery angiography with Gd-BOPTA.

    PubMed

    Yun, Hong; Jin, Hang; Yang, Shan; Huang, Dong; Chen, Zhang-wei; Zeng, Meng-su

    2014-01-01

    With improving MR sequence, phase-array coil and image quality, cardiac magnetic resonance imaging is becoming a promising method for a comprehensive non-invasive evaluation of coronary artery and myocardial viability. The study aimed to evaluate contrast-enhanced whole-heart coronary MR angiography (CE WH-CMRA) at 3.0-Tesla for the diagnosis of significant stenosis (≥50%) and detection of myocardial infarction (MI) in patients with suspected coronary artery disease (CAD). CE WH-CMRA was performed in consecutive 70 patients with suspected CAD by using a 3.0-T MR system. A respiratory-gated, electrocardiography-triggered, inversion-recovery, segmented fast low angle shot sequence (TI = 200 ms) was used. Data acquisition began 60 s after the slow injection of Gd-BOPTA (0.2 mmol/kg body weight, at an injection rate 0.3 ml/s). At last, breath-hold 2D-PSIR-SSFP sequence was performed. Diagnostic accuracy of CE WH-CMRA in detecting significant stenosis (≥50%) was evaluated using invasive coronary angiography as the referenced standard. The MI region appearing as high signal intensity visualized on CEWH-CMRA and 2D-PSIR-SSFP images were compared and analyzed. CE WH-CMRA correctly identified 42 of 44 patients with significant CAD. The overall sensitivity, specificity, negative predictive value, positive predictive value and accuracy for diagnosing significant CAD was 83.6, 95.8, 96.0, 82.8 and 93.4% respectively. The MI region detected by WH-CMRA and 2D-PSIR-SSFP were consistent in 10 patients and these segments manifested with transmural or subendocardial enhancement patterns. Only one MI patient was judged inconsistent between WH-CMRA and 2D-PSIR-SSFP, who was confirmed by clinical and electrocardiogram results. The enhancement pattern in this patient was spotted and focal in 2D-PSIR-SSFP, but was dismissed by WH-CMRA. It is feasible to obtain information about coronary artery stenosis and myocardial viability in a single CE WH-CMRA with administration of Gd-BOPTA.

  6. Improving secondary ion mass spectrometry image quality with image fusion.

    PubMed

    Tarolli, Jay G; Jackson, Lauren M; Winograd, Nicholas

    2014-12-01

    The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images but also by detection sensitivity. As the probe size is reduced to below 1 μm, for example, a low signal in each pixel limits lateral resolution because of counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure.

  7. Improving secondary ion mass spectrometry image quality with image fusion.

    PubMed

    Tarolli, Jay G; Jackson, Lauren M; Winograd, Nicholas

    2014-12-01

    The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images but also by detection sensitivity. As the probe size is reduced to below 1 μm, for example, a low signal in each pixel limits lateral resolution because of counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure. PMID:24912432

  8. Visual pattern degradation based image quality assessment

    NASA Astrophysics Data System (ADS)

    Wu, Jinjian; Li, Leida; Shi, Guangming; Lin, Weisi; Wan, Wenfei

    2015-08-01

    In this paper, we introduce a visual pattern degradation based full-reference (FR) image quality assessment (IQA) method. Researches on visual recognition indicate that the human visual system (HVS) is highly adaptive to extract visual structures for scene understanding. Existing structure degradation based IQA methods mainly take local luminance contrast to represent structure, and measure quality as degradation on luminance contrast. In this paper, we suggest that structure includes not only luminance contrast but also orientation information. Therefore, we analyze the orientation characteristic for structure description. Inspired by the orientation selectivity mechanism in the primary visual cortex, we introduce a novel visual pattern to represent the structure of a local region. Then, the quality is measured as the degradations on both luminance contrast and visual pattern. Experimental results on Five benchmark databases demonstrate that the proposed visual pattern can effectively represent visual structure and the proposed IQA method performs better than the existing IQA metrics.

  9. The role of completion imaging following carotid artery endarterectomy.

    PubMed

    Ricco, Jean-Baptiste; Schneider, Fabrice; Illuminati, Giulio; Samson, Russell H

    2013-05-01

    A variety of completion imaging methods can be used during carotid endarterectomy to recognize technical errors or intrinsic abnormalities such as mural thrombus or platelet aggregation, but none of these methods has achieved wide acceptance, and their ability to improve the outcome of the operation remains a matter of controversy. It is unclear if completion imaging is routinely necessary and which abnormalities require re-exploration. Proponents of routine completion imaging argue that identification of these abnormalities will allow their immediate correction and avoid a perioperative stroke. However, much of the evidence in favor of this argument is incidental, and many experienced vascular surgeons who perform carotid endarterectomy do not use any completion imaging technique and report equally good outcomes using a careful surgical protocol. Furthermore, certain postoperative strokes, including intracerebral hemorrhage and hyperperfusion syndrome, are unrelated to the surgical technique and cannot be prevented by completion imaging. This controversial subject is now open to discussion, and our debaters have been given the task to clarify the evidence to justify their preferred option for completion imaging during carotid endarterectomy.

  10. The role of completion imaging following carotid artery endarterectomy.

    PubMed

    Ricco, Jean-Baptiste; Schneider, Fabrice; Illuminati, Giulio; Samson, Russell H

    2013-05-01

    A variety of completion imaging methods can be used during carotid endarterectomy to recognize technical errors or intrinsic abnormalities such as mural thrombus or platelet aggregation, but none of these methods has achieved wide acceptance, and their ability to improve the outcome of the operation remains a matter of controversy. It is unclear if completion imaging is routinely necessary and which abnormalities require re-exploration. Proponents of routine completion imaging argue that identification of these abnormalities will allow their immediate correction and avoid a perioperative stroke. However, much of the evidence in favor of this argument is incidental, and many experienced vascular surgeons who perform carotid endarterectomy do not use any completion imaging technique and report equally good outcomes using a careful surgical protocol. Furthermore, certain postoperative strokes, including intracerebral hemorrhage and hyperperfusion syndrome, are unrelated to the surgical technique and cannot be prevented by completion imaging. This controversial subject is now open to discussion, and our debaters have been given the task to clarify the evidence to justify their preferred option for completion imaging during carotid endarterectomy. PMID:23601598

  11. Dual-source computed tomographic coronary angiography: image quality and stenosis diagnosis in patients with high heart rates.

    PubMed

    Zheng, Minwen; Li, Jiayi; Xu, Jian; Chen, Kang; Zhao, Hongliang; Huan, Yi

    2009-01-01

    We sought to evaluate prospectively the effects of heart rate and heart-rate variability on dual-source computed tomographic coronary image quality in patients whose heart rates were high, and to determine retrospectively the accuracy of dual-source computed tomographic diagnosis of coronary artery stenosis in the same patients.We compared image quality and diagnostic accuracy in 40 patients whose heart rates exceeded 70 beats/min with the same data in 40 patients whose heart rates were 70 beats/min or slower. In both groups, we analyzed 1,133 coronary arterial segments. Five hundred forty-five segments (97.7%) in low-heart-rate patients and 539 segments (93.7%) in high-heart-rate patients were of diagnostic image quality. We considered P < 0.05 to be statistically significant. No statistically significant differences between the groups were found in diagnostic-image quality scores of total segments or of any coronary artery, nor were any significant differences found between the groups in the accurate diagnosis of angiographically significant stenosis.Calcification was the chief factor that affected diagnostic accuracy. In high-heart-rate patients, heart-rate variability was significantly related to the diagnostic image quality of all segments (P = 0.001) and of the left circumflex coronary artery (P = 0.016). Heart-rate variability of more than 5 beats/min most strongly contributed to an inability to evaluate segments in both groups. When heart rates rose, the optimal reconstruction window shifted from diastole to systole.The image quality of dual-source computed tomographic coronary angiography at high heart rates enables sufficient diagnosis of stenosis, although variability of heart rates significantly deteriorates image quality. PMID:19436804

  12. Carotid artery and aortic arch imaging with ECG gating in DSA

    SciTech Connect

    Francis, D.A.; Sheldon, J.J.; Soila, K.; Tobias, J.

    1985-06-01

    New computer software for gated digital subtraction angiography imaging was used to study 57 patients over 3 months. Better mask registration on isolated sets of systolic and diastolic images improved image quality. Detail of vessel outline and lesion was better than that seen on nongated images.

  13. Model-based quantification of image quality

    NASA Technical Reports Server (NTRS)

    Hazra, Rajeeb; Miller, Keith W.; Park, Stephen K.

    1989-01-01

    In 1982, Park and Schowengerdt published an end-to-end analysis of a digital imaging system quantifying three principal degradation components: (1) image blur - blurring caused by the acquisition system, (2) aliasing - caused by insufficient sampling, and (3) reconstruction blur - blurring caused by the imperfect interpolative reconstruction. This analysis, which measures degradation as the square of the radiometric error, includes the sample-scene phase as an explicit random parameter and characterizes the image degradation caused by imperfect acquisition and reconstruction together with the effects of undersampling and random sample-scene phases. In a recent paper Mitchell and Netravelli displayed the visual effects of the above mentioned degradations and presented subjective analysis about their relative importance in determining image quality. The primary aim of the research is to use the analysis of Park and Schowengerdt to correlate their mathematical criteria for measuring image degradations with subjective visual criteria. Insight gained from this research can be exploited in the end-to-end design of optical systems, so that system parameters (transfer functions of the acquisition and display systems) can be designed relative to each other, to obtain the best possible results using quantitative measurements.

  14. Robust extraction of the aorta and pulmonary artery from 3D MDCT image data

    NASA Astrophysics Data System (ADS)

    Taeprasartsit, Pinyo; Higgins, William E.

    2010-03-01

    Accurate definition of the aorta and pulmonary artery from three-dimensional (3D) multi-detector CT (MDCT) images is important for pulmonary applications. This work presents robust methods for defining the aorta and pulmonary artery in the central chest. The methods work on both contrast enhanced and no-contrast 3D MDCT image data. The automatic methods use a common approach employing model fitting and selection and adaptive refinement. During the occasional event that more precise vascular extraction is desired or the method fails, we also have an alternate semi-automatic fail-safe method. The semi-automatic method extracts the vasculature by extending the medial axes into a user-guided direction. A ground-truth study over a series of 40 human 3D MDCT images demonstrates the efficacy, accuracy, robustness, and efficiency of the methods.

  15. Enhancement and quality control of GOES images

    NASA Astrophysics Data System (ADS)

    Jentoft-Nilsen, Marit; Palaniappan, Kannappan; Hasler, A. Frederick; Chesters, Dennis

    1996-10-01

    The new generation of Geostationary Operational Environmental Satellites (GOES) have an imager instrument with five multispectral bands of high spatial resolution,and very high dynamic range radiance measurements with 10-bit precision. A wide variety of environmental processes can be observed at unprecedented time scales using the new imager instrument. Quality assurance and feedback to the GOES project office is performed using rapid animation at high magnification, examining differences between successive frames, and applying radiometric and geometric correction algorithms. Missing or corrupted scanline data occur unpredictably due to noise in the ground based receiving system. Smooth high resolution noise-free animations can be recovered using automatic techniques even from scanline scratches affecting more than 25 percent of the dataset. Radiometric correction using the local solar zenith angle was applied to the visible channel to compensate for time- of-day illumination variations to produce gain-compensated movies that appear well-lit from dawn to dusk and extend the interval of useful image observations by more than two hours. A time series of brightness histograms displays some subtle quality control problems in the GOES channels related to rebinning of the radiance measurements. The human visual system is sensitive to only about half of the measured 10- bit dynamic range in intensity variations, at a given point in a monochrome image. In order to effectively use the additional bits of precision and handle the high data rate, new enhancement techniques and visualization tools were developed. We have implemented interactive image enhancement techniques to selectively emphasize different subranges of the 10-bits of intensity levels. Improving navigational accuracy using registration techniques and geometric correction of scanline interleaving errors is a more difficult problem that is currently being investigated.

  16. In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Megens, Remco T. A.; Reitsma, Sietze; Prinzen, Lenneke; Oude Egbrink, Mirjam G. A.; Engels, Wim; Leenders, Peter J. A.; Brunenberg, Ellen J. L.; Reesink, Koen D.; Janssen, Ben J. A.; Ter Haar Romeny, Bart M.; Slaaf, Dick W.; van Zandvoort, Marc A. M. J.

    2010-01-01

    In vivo (molecular) imaging of the vessel wall of large arteries at subcellular resolution is crucial for unraveling vascular pathophysiology. We previously showed the applicability of two-photon laser scanning microscopy (TPLSM) in mounted arteries ex vivo. However, in vivo TPLSM has thus far suffered from in-frame and between-frame motion artifacts due to arterial movement with cardiac and respiratory activity. Now, motion artifacts are suppressed by accelerated image acquisition triggered on cardiac and respiratory activity. In vivo TPLSM is performed on rat renal and mouse carotid arteries, both surgically exposed and labeled fluorescently (cell nuclei, elastin, and collagen). The use of short acquisition times consistently limit in-frame motion artifacts. Additionally, triggered imaging reduces between-frame artifacts. Indeed, structures in the vessel wall (cell nuclei, elastic laminae) can be imaged at subcellular resolution. In mechanically damaged carotid arteries, even the subendothelial collagen sheet (~1 μm) is visualized using collagen-targeted quantum dots. We demonstrate stable in vivo imaging of large arteries at subcellular resolution using TPLSM triggered on cardiac and respiratory cycles. This creates great opportunities for studying (diseased) arteries in vivo or immediate validation of in vivo molecular imaging techniques such as magnetic resonance imaging (MRI), ultrasound, and positron emission tomography (PET).

  17. Use of Sonicated Albumin (Infoson) to Enhance Arterial Spectral and Color Doppler Imaging

    SciTech Connect

    Abildgaard, Andreas; Egge, Tor S.; Klow, Nils-Einar; Jakobsen, Jarl A.

    1996-04-15

    Purpose: To examine the effect of an ultrasound contrast medium (UCM), Infoson, on Doppler examination of stenotic arteries. Methods: Stenoses were created in the common carotid artery of six piglets, and examined with spectral Doppler and color Doppler imaging during UCM infusion in the left ventricle. Results: UCM caused a mean increase in recorded maximal systolic and end-diastolic velocities of 5% and 6%, respectively, while blood flow remained constant. Increased spectral intensity with UCM was accompanied by spectral broadening. Reduction of spectral intensity by adjustment of Doppler gain counteracted the velocity effects and the spectral broadening. With color Doppler, UCM caused dose-dependent color artifacts outside the artery. Flow in narrow stenoses could be visualized with UCM. Conclusion: The effects of UCM on velocity measurements were slight, and were related to changes in spectral intensity. With color Doppler, UCM may facilitate flow detection, but color artifacts may interfere.

  18. The value of imaging in subclinical coronary artery disease.

    PubMed

    Zimarino, Marco; Prati, Francesco; Marano, Riccardo; Angeramo, Francesca; Pescetelli, Irene; Gatto, Laura; Marco, Valeria; Bruno, Isabella; De Caterina, Raffaele

    2016-07-01

    Although the treatment of acute coronary syndromes (ACS) has advanced considerably, the ability to detect, predict, and prevent complications of atherosclerotic plaques, considered the main cause of ACS, remains elusive. Several imaging tools have therefore been developed to characterize morphological determinants of plaque vulnerability, defined as the propensity or probability of plaques to complicate with coronary thrombosis, able to predict patients at risk. By utilizing both intravascular and noninvasive imaging tools, indeed prospective longitudinal studies have recently provided considerable knowledge, increasing our understanding of determinants of plaque formation, progression, and instabilization. In the present review we aim at 1) critically analyzing the incremental utility of imaging tools over currently available "traditional" methods of risk stratification; 2) documenting the capacity of such modalities to monitor atherosclerosis progression and regression according to lifestyle modifications and targeted therapy; and 3) evaluating the potential clinical relevance of advanced imaging, testing whether detection of such lesions may guide therapeutic decisions and changes in treatment strategy. The current understanding of modes of progression of atherosclerotic vascular disease and the appropriate use of available diagnostic tools may already now gauge the selection of patients to be enrolled in primary and secondary prevention studies. Appropriate trials should now, however, evaluate the cost-effectiveness of an aggressive search of vulnerable plaques, favoring implementation of such diagnostic tools in daily practice. PMID:26851577

  19. Effect of Bismuth Breast Shielding on Radiation Dose and Image Quality in Coronary CT Angiography

    PubMed Central

    Einstein, Andrew J.; Elliston, Carl D.; Groves, Daniel W.; Cheng, Bin; Wolff, Steven D.; Pearson, Gregory D. N.; Peters, M. Robert; Johnson, Lynne L.; Bokhari, Sabahat; Johnson, Gary W.; Bhatia, Ketan; Pozniakoff, Theodore; Brenner, David J.

    2011-01-01

    Background Coronary computed tomographic angiography (CCTA) is associated with high radiation dose to the female breasts. Bismuth breast shielding offers the potential to significantly reduce dose to the breasts and nearby organs, but the magnitude of this reduction and its impact on image quality and radiation dose have not been evaluated. Methods Radiation doses from CCTA to critical organs were determined using metal-oxide-semiconductor field-effect transistors positioned in a customized anthropomorphic whole-body dosimetry verification phantom. Image noise and signal were measured in regions of interest (ROIs) including the coronary arteries. Results With bismuth shielding, breast radiation dose was reduced 46–57% depending on breast size and scanning technique, with more moderate dose reduction to the heart, lungs, and esophagus. However, shielding significantly decreased image signal (by 14.6 HU) and contrast (by 28.4 HU), modestly but significantly increased image noise in ROIs in locations of coronary arteries, and decreased contrast-to-noise ratio by 20.9%.. Conclusions While bismuth breast shielding can significantly decrease radiation dose to critical organs, it is associated with an increase in image noise, decrease in contrast-to-noise, and changes tissue attenuation characteristics in the location of the coronary arteries. PMID:22068687

  20. Evidence for myocardial CT perfusion imaging in the diagnosis of hemodynamically significant coronary artery disease

    PubMed Central

    2015-01-01

    This editorial discusses a recent paper published in the August issue of Radiology about the diagnostic value of myocardial computer tomography (CT) perfusion imaging in the detection of hemodynamically significant coronary stenosis when compared to single-photon emission CT (SPECT) imaging based on a secondary analysis of CORE320 study. Three aspects including high diagnostic sensitivity of CT perfusion imaging, moderate specificity of SPECT imaging and lack of use of attenuation correction in SPECT imaging have been discussed with reference to the current literature, and some suggestions have been highlighted for future studies to improve the diagnostic performance of CT perfusion and SPECT imaging in the diagnostic evaluation of coronary artery disease. PMID:25774349

  1. On pictures and stuff: image quality and material appearance

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.

    2014-02-01

    Realistic images are a puzzle because they serve as visual representations of objects while also being objects themselves. When we look at an image we are able to perceive both the properties of the image and the properties of the objects represented by the image. Research on image quality has typically focused improving image properties (resolution, dynamic range, frame rate, etc.) while ignoring the issue of whether images are serving their role as visual representations. In this paper we describe a series of experiments that investigate how well images of different quality convey information about the properties of the objects they represent. In the experiments we focus on the effects that two image properties (contrast and sharpness) have on the ability of images to represent the gloss of depicted objects. We found that different experimental methods produced differing results. Specifically, when the stimulus images were presented using simultaneous pair comparison, observers were influenced by the surface properties of the images and conflated changes in image contrast and sharpness with changes in object gloss. On the other hand, when the stimulus images were presented sequentially, observers were able to disregard the image plane properties and more accurately match the gloss of the objects represented by the different quality images. These findings suggest that in understanding image quality it is useful to distinguish between quality of the imaging medium and the quality of the visual information represented by that medium.

  2. Determination of lung segments in computed tomography images using the Euclidean distance to the pulmonary artery

    SciTech Connect

    Stoecker, Christina; Moltz, Jan H.; Lassen, Bianca; Kuhnigk, Jan-Martin; Krass, Stefan; Welter, Stefan; Peitgen, Heinz-Otto

    2013-09-15

    Purpose: Computed tomography (CT) imaging is the modality of choice for lung cancer diagnostics. With the increasing number of lung interventions on sublobar level in recent years, determining and visualizing pulmonary segments in CT images and, in oncological cases, reliable segment-related information about the location of tumors has become increasingly desirable. Computer-assisted identification of lung segments in CT images is subject of this work.Methods: The authors present a new interactive approach for the segmentation of lung segments that uses the Euclidean distance of each point in the lung to the segmental branches of the pulmonary artery. The aim is to analyze the potential of the method. Detailed manual pulmonary artery segmentations are used to achieve the best possible segment approximation results. A detailed description of the method and its evaluation on 11 CT scans from clinical routine are given.Results: An accuracy of 2–3 mm is measured for the segment boundaries computed by the pulmonary artery-based method. On average, maximum deviations of 8 mm are observed. 135 intersegmental pulmonary veins detected in the 11 test CT scans serve as reference data. Furthermore, a comparison of the presented pulmonary artery-based approach to a similar approach that uses the Euclidean distance to the segmental branches of the bronchial tree is presented. It shows a significantly higher accuracy for the pulmonary artery-based approach in lung regions at least 30 mm distal to the lung hilum.Conclusions: A pulmonary artery-based determination of lung segments in CT images is promising. In the tests, the pulmonary artery-based determination has been shown to be superior to the bronchial tree-based determination. The suitability of the segment approximation method for application in the planning of segment resections in clinical practice has already been verified in experimental cases. However, automation of the method accompanied by an evaluation on a larger

  3. Anatomy-based image processing analysis of the running pattern of the perioral artery for minimally invasive surgery.

    PubMed

    Lee, Sang-Hee; Lee, Minho; Kim, Hee-Jin

    2014-10-01

    We aimed to elucidate the tortuous course of the perioral artery with the aid of image processing, and to suggest accurate reference points for minimally invasive surgery. We used 59 hemifaces from 19 Korean and 20 Thai cadavers. A perioral line was defined to connect the point at which the facial artery emerged on the mandibular margin, and the ramification point of the lateral nasal artery and the inferior alar branch. The course of the perioral artery was reproduced as a graph based on the perioral line and analysed by adding the image of the artery using MATLAB. The course of the artery could be classified into 2 according to the course of the alar branch - oblique and vertical. Two distinct inflection points appeared in the course of the artery along the perioral line at the ramification points of the alar branch and the inferior labial artery, respectively, and the course of the artery across the face can be predicted based on the following references: the perioral line, the ramification point of the alar branch (5∼10 mm medial to the perioral line at the level of the lower third of the upper lip) and the inferior labial artery (5∼10 mm medial to the perioral line at the level of the middle of the lower lip).

  4. Image analysis for dental bone quality assessment using CBCT imaging

    NASA Astrophysics Data System (ADS)

    Suprijanto; Epsilawati, L.; Hajarini, M. S.; Juliastuti, E.; Susanti, H.

    2016-03-01

    Cone beam computerized tomography (CBCT) is one of X-ray imaging modalities that are applied in dentistry. Its modality can visualize the oral region in 3D and in a high resolution. CBCT jaw image has potential information for the assessment of bone quality that often used for pre-operative implant planning. We propose comparison method based on normalized histogram (NH) on the region of inter-dental septum and premolar teeth. Furthermore, the NH characteristic from normal and abnormal bone condition are compared and analyzed. Four test parameters are proposed, i.e. the difference between teeth and bone average intensity (s), the ratio between bone and teeth average intensity (n) of NH, the difference between teeth and bone peak value (Δp) of NH, and the ratio between teeth and bone of NH range (r). The results showed that n, s, and Δp have potential to be the classification parameters of dental calcium density.

  5. Intravascular ultrasound imaging of peripheral arteries as an adjunct to balloon angioplasty and atherectomy.

    PubMed

    Korogi, Y; Hirai, T; Takahashi, M

    1996-01-01

    This article reviews many of the applications of intravascular ultrasound (US) imaging for peripheral arterial diseases. In vitro studies demonstrate an excellent correlation between ultrasound measurements of lumen and plaque cross-sectional area compared with histologic sections. In vivo clinical studies reveal the enhanced diagnostic capabilities of this technology compared with angiography. Intravascular US imaging can provide valuable information on the degree, eccentricity, and histologic type of stenosis before intervention, and on the morphological changes in the arterial wall and the extent of excision after intervention. Intravascular US may also serve as a superior index for gauging the diameter of balloon, stent, laser probe, and/or atherectomy catheter appropriate for a proposed intervention. Significant new insights into the mechanisms of balloon angioplasty and atherectomy have been established by intravascular US findings. Intravascular US imaging has been shown to be a more accurate method than angiography for determining the cross-sectional area of the arterial lumen, and for assessing severity of stenosis. Quantitative assessment of the luminal cross-sectional area after the balloon dilatation should be more accurate than angiography as intimal tears or dissections produced by the dilatation may not be accurately evaluated with angiography. At the present time, intravascular US is still a controversial imaging technique. Outcome studies are currently being organized to assess the clinical value and cost effectiveness of intravascular ultrasound in the context of these interventional procedures. PMID:8653738

  6. B-Flow Imaging in Lower Limb Peripheral Arterial Disease and Bypass Graft Ultrasonography.

    PubMed

    D'Abate, Fabrizio; Ramachandran, Veni; Young, Mark A; Farrah, John; Ahmed, Mudasar H; Jones, Keith; Hinchliffe, Robert J

    2016-09-01

    Doppler ultrasonography plays a key role in the diagnosis of peripheral arterial disease, but is often limited by pitfalls that may be overcome by B-flow imaging. Thus far, there is little information on B-flow imaging for the assessment of peripheral arterial disease and bypass grafts in lower limbs. This article describes the authors' early experience with B-flow in the lower extremities. Sixty patients were included among a large cohort of patients routinely referred to the vascular laboratory for peripheral arterial disease and bypass graft assessments. Two experienced vascular sonographers performed all scans, comparing color Doppler ultrasonography with B-flow imaging. All scans were performed using a combination of the 9 L linear and C2-9 curvilinear transducers with the LOGIQ E9 system (GE Healthcare, Waukesha, WI, USA). Our experience indicates that this relatively unexplored technology has the potential to significantly improve peripheral blood flow evaluation. Nevertheless, B-flow imaging is not exempt from limitations and should be considered complementary to color Doppler ultrasonography.

  7. System design and image processing algorithms for frequency domain optical coherence tomography in the coronary arteries

    NASA Astrophysics Data System (ADS)

    Adler, Desmond C.; Xu, Chenyang; Petersen, Christopher; Schmitt, Joseph M.

    2010-02-01

    We report on the design of a frequency domain optical coherence tomography (FD-OCT) system, fiber optic imaging catheter, and image processing algorithms for in vivo clinical use in the human coronary arteries. This technology represents the third generation of commercially-available OCT system developed at LightLab Imaging Inc. over the last ten years, enabling three-dimensional (3D) intravascular imaging at unprecedented speeds and resolutions for a commercial system. The FD-OCT engine is designed around an exclusively licensed micro-cavity swept laser that was co-developed with AXSUN Technologies Ltd. The laser's unique combination of high sweep rates, broad tuning ranges, and narrow linewidth enable imaging at 50,000 axial lines/s with an axial resolution of < 16 μm in tissue. The disposable 2.7 French (0.9 mm) imaging catheter provides a spot size of < 30 μm at a working distance of 2 mm. The catheter is rotated at 100 Hz and pulled back 50 mm at 20 mm/s to conduct a high-density spiral scan in 2.5 s. Image processing algorithms have been developed to provide clinically important measurements of vessel lumen dimensions, stent malapposition, and neointimal thickness. This system has been used in over 2000 procedures since August 2007 at over 40 clinical sites, providing cardiologists with an advanced tool for 3D assessment of the coronary arteries.

  8. Functional assessment of sequential coronary artery fistula and coronary artery stenosis with fractional flow reserve and stress adenosine myocardial perfusion imaging.

    PubMed

    Yew, Kuan Leong; Ooi, Poh Siang; Law, Chiong Soon

    2015-10-01

    Coronary artery fistula is an abnormal connection between one coronary artery to another coronary artery or cardiac chambers. The coronary artery fistula may cause significant shunting of blood and cause "pseudo-stenosis" or "steal phenomenon". This will also accentuate pre-existing mild-moderate de novo coronary lesions with resultant greater pressure gradient difference across the lesions. Thus, fractional flow reserve can be a useful tool to guide intervention decision on the coronary artery fistula. There are very few published reports regarding the use of FFR to assess coronary artery fistula. In fact, there is no outcome data regarding the deferment of coronary artery fistula intervention when the FFR is not physiologically significant. This case highlighted the use of FFR to evaluate the functional significance of coronary fistula in the setting of ischemia evaluation and it was proven to be safe to defer intervention with good 3 year clinical outcome. Stress adenosine myocardial perfusion imaging correlated with the FFR result.

  9. Predictors of quality of life in pediatric survivors of arterial ischemic stroke and cerebral sinovenous thrombosis.

    PubMed

    Friefeld, Sharon J; Westmacott, Robyn; Macgregor, Daune; Deveber, Gabrielle A

    2011-09-01

    Predictors of quality of life can define potentially modifiable factors to increase favorable outcomes after pediatric stroke. Quality of life was measured using the Centre for Health Promotion's Quality of Life Profile (CHP-QOL) in 112 children surviving arterial ischemic stroke or cerebral sinovenous thrombosis at mean 3 years after stroke. Overall quality of life was poor in 17.8% children despite mean scores (3.52) in the "adequate" range. Quality of life related to school and play was most problematic and that related to physical and home environment was least problematic. Female gender, cerebral sinovenous thrombosis stroke, and older age at testing predicted reduced overall and domain-specific quality of life (P < .05), whereas neurological outcome and family socioeconomic status did not. Cognitive/behavioral deficit and low Verbal IQ adversely affected socialization and quality of life, especially among older children and females. Altered cognition/behavior has a major impact on quality of life after pediatric stroke. Implementation of ameliorative strategies warrants further study.

  10. Carotid Artery Segmentation in Ultrasound Images and Measurement of Intima-Media Thickness

    PubMed Central

    Gamad, R. S.; Bansod, P. P.

    2013-01-01

    Background. The segmentation of the common carotid artery (CCA) wall is imperative for the determination of the intima-media thickness (IMT) on B-mode ultrasound (US) images. The IMT is considered an important indicator in the evaluation of the risk for the development of atherosclerosis. In this paper, authors have discussed the relevance of measurements in clinical practices and the challenges that one has to face while approaching the segmentation of carotid artery on ultrasound images. The paper presents an overall review of commonly used methods for the CCA segmentation and IMT measurement along with the different performance metrics that have been proposed and used for performance validation. Summary and future directions are given in the conclusion. PMID:23865066

  11. Multimodal imaging of central retinal artery occlusion with retained cilioretinal perfusion.

    PubMed

    Walkden, Andrew; Kelly, Simon P

    2016-01-01

    A man aged 59 years old presented with sudden, painless, monocular visual loss due to central retinal artery occlusion. Central vision was retained and peripheral vision lost due to retained cilioretinal perfusion. Increased inner retinal thickening and reflectivity followed by subsequent reduction was documented by sequential imaging. This is the first report of such events monitored with spectral-domain optical coherence tomography where central visual acuity was maintained. PMID:27530879

  12. Comparison of exercise electrocardiography and quantitative thallium imaging for one-vessel coronary artery disease

    SciTech Connect

    Kaul, S.; Kiess, M.; Liu, P.; Guiney, T.E.; Pohost, G.M.; Okada, R.D.; Boucher, C.A.

    1985-08-01

    The relative value of exercise electrocardiography and computer analyzed thallium-201 imaging was compared in 124 patients with 1-vessel coronary artery disease (CAD). Of these, 78 had left anterior descending (LAD), 32 right and 14 left circumflex (LC) CAD. In patients with no previous myocardial infarction (MI), thallium imaging was more sensitive than the electrocardiogram (78% vs 64%, p less than 0.01), but in patients with previous MI, sensitivity was similar. Further, thallium imaging was more sensitive only in LAD and LC disease. Redistribution was compared with ST-segment depression as a marker of ischemia. Only in patients with prior MI (76% vs 44%, p less than 0.01) and only in LC and right CAD did redistribution occur more often than ST depression. Thallium imaging was more accurate in localizing stenoses than the electrocardiogram (p less than 0.001), but did not always correctly predict coronary anatomy. Septal thallium defects were associated with LAD disease in 84%, inferior defects with right CAD in 40% and posterolateral lesion defects with LC CAD in 22%. The results indicate the overall superiority of thallium imaging in 1-vessel CAD compared with exercise electrocardiography; however, there is a wide spectrum of extent and location of perfusion defects associated with each coronary artery. Thallium imaging complements coronary angiography by demonstrating the functional impact of CAD on myocardial perfusion.

  13. Image quality characteristics of handheld display devices for medical imaging.

    PubMed

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2 × 10(-5) mm(2) at 1 mm(-1), while handheld displays have values lower than 3.7 × 10(-6) mm(2). Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  14. Image Quality Characteristics of Handheld Display Devices for Medical Imaging

    PubMed Central

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  15. Can selective arterial clamping with fluorescence imaging preserve kidney function during robotic partial nephrectomy?

    PubMed Central

    McClintock, Tyler R.; Bjurlin, Marc A.; Wysock, James S.; Borofsky, Michael S.; Marien, Tracy P.; Okoro, Chinonyerem; Stifelman, Michael D.

    2015-01-01

    Objectives To compare renal functional outcomes in robotic partial nephrectomy (RPN) with selective arterial clamping guided by near infrared fluorescence (NIRF) imaging to a matched cohort of patients who underwent RPN without selective arterial clamping and NIRF imaging. Methods From April 2011 to December 2012, NIRF imaging-enhanced RPN with selective clamping was utilized in 42 cases. Functional outcomes of successful cases were compared with a cohort of patients, matched by tumor size, preoperative eGFR, functional kidney status, age, sex, body mass index, and American Society of Anesthesiologists score, who underwent RPN without selective clamping and NIRF imaging. Results In matched-pair analysis, selective clamping with NIRF was associated with superior kidney function at discharge, as demonstrated by postoperative eGFR (78.2 vs 68.5 ml/min per 1.73m2; P=0.04), absolute reduction of eGFR (−2.5 vs −14.0 ml/min per 1.73m2; P<0.01) and percent change in eGFR (−1.9% vs −16.8%, P<0.01). Similar trends were noted at three month follow up but these differences became non-significant (P[eGFR]=0.07], P[absolute reduction of eGFR]=0.10, and P[percent change in eGFR]=0.07). In the selective clamping group, a total of four perioperative complications occurred in three patients, all of which were Clavien I-III. Conclusion Utilization of NIRF imaging was associated with improved short-term renal functional outcomes when compared to RPN without selective arterial clamping and NIRF imaging. With this effect attenuated at later follow-up, randomized prospective studies and long-term assessment of kidney-specific functional outcomes are needed to further assess the benefits of this technology. PMID:24909960

  16. [Analysis of postoperative quality of life and survival of patients after surgical interventions on carotid arteries].

    PubMed

    Osipenko, D V; Marochkov, A V

    2012-01-01

    The authors analysed the quality of life and survival of patients from 1 to 4 years after operative treatment for stenosmg lesions of internal carotid arteries (Group One) or pathological kinking of internal carotid arteries (Group Two). The highest frequency of the problems in the first group was in the components pain/discomfort (91.7%) and motility (88.9% of the interviewed). In the second group of patients, the most commonly encountered disorders were pain/ discomfort (66.7%) and anxiety/depression (66.7% of the interviewed). Also analysed was the influence of the duration of anaesthesia and the type of an anaesthetic used to maintaining anaesthesia (sodium thiopental or propofol) on the postoperative quality of life. There were no statistically significant differences in the postoperative quality of life by the health index and EQVAS in the groups of the patients having received various anaesthetics in order to maintain anaesthesia (p=0.541 and p=0.148, respectively).

  17. The influence of statistical variations on image quality

    NASA Astrophysics Data System (ADS)

    Hultgren, Bror; Hertel, Dirk; Bullitt, Julian

    2006-01-01

    For more than thirty years imaging scientists have constructed metrics to predict psychovisually perceived image quality. Such metrics are based on a set of objectively measurable basis functions such as Noise Power Spectrum (NPS), Modulation Transfer Function (MTF), and characteristic curves of tone and color reproduction. Although these basis functions constitute a set of primitives that fully describe an imaging system from the standpoint of information theory, we found that in practical imaging systems the basis functions themselves are determined by system-specific primitives, i.e. technology parameters. In the example of a printer, MTF and NPS are largely determined by dot structure. In addition MTF is determined by color registration, and NPS by streaking and banding. Since any given imaging system is only a single representation of a class of more or less identical systems, the family of imaging systems and the single system are not described by a unique set of image primitives. For an image produced by a given imaging system, the set of image primitives describing that particular image will be a singular instantiation of the underlying statistical distribution of that primitive. If we know precisely the set of imaging primitives that describe the given image we should be able to predict its image quality. Since only the distributions are known, we can only predict the distribution in image quality for a given image as produced by the larger class of 'identical systems'. We will demonstrate the combinatorial effect of the underlying statistical variations in the image primitives on the objectively measured image quality of a population of printers as well as on the perceived image quality of a set of test images. We also will discuss the choice of test image sets and impact of scene content on the distribution of perceived image quality.

  18. Sexuality and Body Image After Uterine Artery Embolization and Hysterectomy in the Treatment of Uterine Fibroids: A Randomized Comparison

    SciTech Connect

    Hehenkamp, Wouter J. K. Volkers, Nicole A.; Bartholomeus, Wouter; Blok, Sjoerd de; Birnie, Erwin; Reekers, Jim A.; Ankum, Willem M.

    2007-09-15

    In this paper the effect of uterine artery embolization (UAE) on sexual functioning and body image is investigated in a randomized comparison to hysterectomy for symptomatic uterine fibroids. The EMbolization versus hysterectoMY (EMMY) trial is a randomized controlled study, conducted at 28 Dutch hospitals. Patients were allocated hysterectomy (n = 89) or UAE (n 88). Two validated questionnaires (the Sexual Activity Questionnaire [SAQ] and the Body Image Scale [BIS]) were completed by all patients at baseline, 6 weeks, and 6, 12, 18, and 24 months after treatment. Repeated measurements on SAQ scores revealed no differences between the groups. There was a trend toward improved sexual function in both groups at 2 years, although this failed to reach statistical significance except for the dimensions discomfort and habit in the UAE arm. Overall quality of sexual life deteriorated in a minority of cases at all time points, with no significant differences between the groups (at 24 months: UAE, 29.3%, versus hysterectomy, 23.5%; p = 0.32). At 24 months the BIS score had improved in both groups compared to baseline, but the change was only significant in the UAE group (p = 0.009). In conclusion, at 24 months no differences in sexuality and body image were observed between the UAE and the hysterectomy group. On average, both after UAE and hysterectomy sexual functioning and body image scores improved, but significantly so only after UAE.

  19. Sexuality and Body Image After Uterine Artery Embolization and Hysterectomy in the Treatment of Uterine Fibroids: A Randomized Comparison

    PubMed Central

    Volkers, Nicole A.; Bartholomeus, Wouter; de Blok, Sjoerd; Birnie, Erwin; Reekers, Jim A.; Ankum, Willem M.

    2007-01-01

    In this paper the effect of uterine artery embolization (UAE) on sexual functioning and body image is investigated in a randomized comparison to hysterectomy for symptomatic uterine fibroids. The EMbolization versus hysterectoMY (EMMY) trial is a randomized controlled study, conducted at 28 Dutch hospitals. Patients were allocated hysterectomy (n = 89) or UAE (n = 88). Two validated questionnaires (the Sexual Activity Questionnaire [SAQ] and the Body Image Scale [BIS]) were completed by all patients at baseline, 6 weeks, and 6, 12, 18, and 24 months after treatment. Repeated measurements on SAQ scores revealed no differences between the groups. There was a trend toward improved sexual function in both groups at 2 years, although this failed to reach statistical significance except for the dimensions discomfort and habit in the UAE arm. Overall quality of sexual life deteriorated in a minority of cases at all time points, with no significant differences between the groups (at 24 months: UAE, 29.3%, versus hysterectomy, 23.5%; p = 0.32). At 24 months the BIS score had improved in both groups compared to baseline, but the change was only significant in the UAE group (p = 0.009). In conclusion, at 24 months no differences in sexuality and body image were observed between the UAE and the hysterectomy group. On average, both after UAE and hysterectomy sexual functioning and body image scores improved, but significantly so only after UAE. PMID:17671809

  20. SPY: an innovative intra-operative imaging system to evaluate graft patency during off-pump coronary artery bypass grafting.

    PubMed

    Takahashi, Masao; Ishikawa, Toshihiro; Higashidani, Koichi; Katoh, Hiroki

    2004-09-01

    Off-pump coronary artery bypass grafting (CABG) has been rapidly increased, because of its less invasiveness with low complications. However, graft patency rate highly depends on the operators' capability due to technical difficulties. The SPY system, based on the fluorescence of indocyanine green, is an innovative device that permits validation of graft patency intra-operatively. Real time images of grafts are obtained with no need for catheterization, X-rays or iodine contrast medium. High-quality images could be obtained in all 290 grafts of 72 off-pump CABG cases (mean 4.0 grafts per patient). Four anastomoses (1.4%), including two proximal and two distal, were revised because of defects detected by SPY images. In one case, the SPY system revealed no blood flow in a radial sequential graft, although transit-time flow meter measurements showed a diastolic dominant pattern. SPY images provide critical information to surgeons to detect non-patent grafts, allowing them to be revised while the patient is still on the operating table. Using the SPY system, technical failures could be completely resolved during surgery. The use of the SPY system for intra-operative graft validation during off-pump CABG may become the gold standard for surgical management in the near future.

  1. High-Permittivity Thin Dielectric Padding Improves Fresh Blood Imaging of Femoral Arteries at 3T

    PubMed Central

    Lindley, Marc D; Kim, Daniel; Morrell, Glen; Heilbrun, Marta E; Storey, Pippa; Hanrahan, Christopher J; Lee, Vivian S

    2014-01-01

    Objectives Fresh blood imaging (FBI) is a useful non-contrast magnetic resonance angiography (NC-MRA) method for assessment of peripheral arterial disease (PAD), particularly in patients with poor renal function. Compared with 1.5T, 3T enables higher signal to noise ratio (SNR) and/or spatio-temporal resolution in FBI, as demonstrated successfully for the calf station. However, FBI of the thigh station at 3T has been reported to suffer from signal void in the common femoral artery of one thigh only due to the radial symmetry in transmit radio-frequency field (B1+) variation. We sought to increase the femoral arterial signal attenuated by B1+ variation in FBI at 3T using high permittivity dielectric padding. Materials and Methods We performed FBI of the thigh station in 13 human subjects at 3T to compare the following 3 settings: no padding, commercially available thick (~ 5 cm) dielectric padding, and high-permittivity thin (~2 cm) dielectric padding. B1+ mapping was also performed in the common femoral arteries to characterize the radial symmetry in B1+ variation and quantify the improvement in B1+ excitation. We characterized the impact of radial symmetry in B1+ variation on the FBI signal and FBI MRA of the right common femoral artery using quantitative (i.e., contrast-to-noise ratio (CNR)) and qualitative (i.e., conspicuity) analyses. Results The radial symmetry in B1+ variation attenuates signal in the right common femoral artery, which can be partially improved with commercial padding and improved further with high permittivity padding. Averaging the results over 13 subjects, the B1+, CNR and conspicuity scores in the right common femoral artery were significantly better with high-permittivity padding than with commercial padding and baseline (p<0.001). Conclusions Our study shows that high-permittivity dielectric padding can be used to increase the femoral arterial signal attenuated by B1+ variation in FBI at 3T. PMID:25329606

  2. [Optical coherence tomography of coronary arteries--a novel intravascular imaging modality].

    PubMed

    Mrevlje, B; Legutko, J; Jąkała, J; Noč, M; Dudek, D; Birkemeyer, R; Aboukoura, M; Nienaber, C

    2014-09-01

    Optical coherence tomography (OCT) is the latest intravascular imaging modality for the investigation of coronary arteries. It can be used in patients with stable coronary artery disease as well as in patients with acute coronary syndrome. Its almost microscope-like resolution of 10-20 μm (10-times greater than intravascular ultrasound) gives us the most detailed insight into the coronary artery wall in vivo so far.Optical coherence tomography can be used for accurate qualitative and quantitative assessment of stenoses in stable coronary artery disease and accurate guidance of percutaneous coronary interventions as well as accurate postprocedural control. In patients with acute coronary syndrome it can be used for the detection of culprit of the culprit lesion (vulnerable plaque) which allows the operator to cover not only angiographically tightest stenosis (angiographic culprit lesion, caused in most cases by thrombus only) but most importantly the vulnerable plaque, which led to the acute event, as well. Furthermore, optical coherence tomography allows accurate assessment of thrombotic burden, stent apposition/malapposition, edge dissections and tissue prolaps or thrombus protrusions throught stent struts, etc. PMID:25225864

  3. 2-D arterial wall motion imaging using ultrafast ultrasound and transverse oscillations.

    PubMed

    Salles, Sebastien; Chee, Adrian J Y; Garcia, Damien; Yu, Alfred C H; Vray, Didier; Liebgott, Herve

    2015-06-01

    Ultrafast ultrasound is a promising imaging modality that enabled, inter alia, the development of pulse wave imaging and the local velocity estimation of the so-called pulse wave for a quantitative evaluation of arterial stiffness. However, this technique only focuses on the propagation of the axial displacement of the artery wall, and most techniques are not specific to the intima-media complex and do not take into account the longitudinal motion of this complex. Within this perspective, this paper presents a study of two-dimensional tissue motion estimation in ultrafast imaging combining transverse oscillations, which can improve motion estimation in the transverse direction, i.e., perpendicular to the beam axis, and a phase-based motion estimation. First, the method was validated in simulation. Two-dimensional motion, inspired from a real data set acquired on a human carotid artery, was applied to a numerical phantom to produce a simulation data set. The estimated motion showed axial and lateral mean errors of 4.2 ± 3.4 μm and 9.9 ± 7.9 μm, respectively. Afterward, experimental results were obtained on three artery phantoms with different wall stiffnesses. In this study, the vessel phantoms did not contain a pure longitudinal displacement. The longitudinal displacements were induced by the axial force produced by the wall's axial dilatation. This paper shows that the approach presented is able to perform 2-D tissue motion estimation very accurately even if the displacement values are very small and even in the lateral direction, making it possible to estimate the pulse wave velocity in both the axial and longitudinal directions. This demonstrates the method's potential to estimate the velocity of purely longitudinal waves propagating in the longitudinal direction. Finally, the stiffnesses of the three vessel phantom walls investigated were estimated with an average relative error of 2.2%. PMID:26067039

  4. 2-D arterial wall motion imaging using ultrafast ultrasound and transverse oscillations.

    PubMed

    Salles, Sebastien; Chee, Adrian J Y; Garcia, Damien; Yu, Alfred C H; Vray, Didier; Liebgott, Herve

    2015-06-01

    Ultrafast ultrasound is a promising imaging modality that enabled, inter alia, the development of pulse wave imaging and the local velocity estimation of the so-called pulse wave for a quantitative evaluation of arterial stiffness. However, this technique only focuses on the propagation of the axial displacement of the artery wall, and most techniques are not specific to the intima-media complex and do not take into account the longitudinal motion of this complex. Within this perspective, this paper presents a study of two-dimensional tissue motion estimation in ultrafast imaging combining transverse oscillations, which can improve motion estimation in the transverse direction, i.e., perpendicular to the beam axis, and a phase-based motion estimation. First, the method was validated in simulation. Two-dimensional motion, inspired from a real data set acquired on a human carotid artery, was applied to a numerical phantom to produce a simulation data set. The estimated motion showed axial and lateral mean errors of 4.2 ± 3.4 μm and 9.9 ± 7.9 μm, respectively. Afterward, experimental results were obtained on three artery phantoms with different wall stiffnesses. In this study, the vessel phantoms did not contain a pure longitudinal displacement. The longitudinal displacements were induced by the axial force produced by the wall's axial dilatation. This paper shows that the approach presented is able to perform 2-D tissue motion estimation very accurately even if the displacement values are very small and even in the lateral direction, making it possible to estimate the pulse wave velocity in both the axial and longitudinal directions. This demonstrates the method's potential to estimate the velocity of purely longitudinal waves propagating in the longitudinal direction. Finally, the stiffnesses of the three vessel phantom walls investigated were estimated with an average relative error of 2.2%.

  5. Improving the Blanco Telescope's delivered image quality

    NASA Astrophysics Data System (ADS)

    Abbott, Timothy M. C.; Montane, Andrés; Tighe, Roberto; Walker, Alistair R.; Gregory, Brooke; Smith, R. Christopher; Cisternas, Alfonso

    2010-07-01

    The V. M. Blanco 4-m telescope at Cerro Tololo Inter-American Observatory is undergoing a number of improvements in preparation for the delivery of the Dark Energy Camera. The program includes upgrades having potential to deliver gains in image quality and stability. To this end, we have renovated the support structure of the primary mirror, incorporating innovations to improve both the radial support performance and the registration of the mirror and telescope top end. The resulting opto-mechanical condition of the telescope is described. We also describe some improvements to the environmental control. Upgrades to the telescope control system and measurements of the dome environment are described in separate papers in this conference.

  6. Using short-wave infrared imaging for fruit quality evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Lee, Dah-Jye; Desai, Alok

    2013-12-01

    Quality evaluation of agricultural and food products is important for processing, inventory control, and marketing. Fruit size and surface quality are two important quality factors for high-quality fruit such as Medjool dates. Fruit size is usually measured by length that can be done easily by simple image processing techniques. Surface quality evaluation on the other hand requires more complicated design, both in image acquisition and image processing. Skin delamination is considered a major factor that affects fruit quality and its value. This paper presents an efficient histogram analysis and image processing technique that is designed specifically for real-time surface quality evaluation of Medjool dates. This approach, based on short-wave infrared imaging, provides excellent image contrast between the fruit surface and delaminated skin, which allows significant simplification of image processing algorithm and reduction of computational power requirements. The proposed quality grading method requires very simple training procedure to obtain a gray scale image histogram for each quality level. Using histogram comparison, each date is assigned to one of the four quality levels and an optimal threshold is calculated for segmenting skin delamination areas from the fruit surface. The percentage of the fruit surface that has skin delamination can then be calculated for quality evaluation. This method has been implemented and used for commercial production and proven to be efficient and accurate.

  7. Performance evaluation of an automatic segmentation method of cerebral arteries in MRA images by use of a large image database

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yoshikazu; Asano, Tatsunori; Hara, Takeshi; Fujita, Hiroshi; Kinosada, Yasutomi; Asano, Takahiko; Kato, Hiroki; Kanematsu, Masayuki; Hoshi, Hiroaki; Iwama, Toru

    2009-02-01

    The detection of cerebrovascular diseases such as unruptured aneurysm, stenosis, and occlusion is a major application of magnetic resonance angiography (MRA). However, their accurate detection is often difficult for radiologists. Therefore, several computer-aided diagnosis (CAD) schemes have been developed in order to assist radiologists with image interpretation. The purpose of this study was to develop a computerized method for segmenting cerebral arteries, which is an essential component of CAD schemes. For the segmentation of vessel regions, we first used a gray level transformation to calibrate voxel values. To adjust for variations in the positioning of patients, registration was subsequently employed to maximize the overlapping of the vessel regions in the target image and reference image. The vessel regions were then segmented from the background using gray-level thresholding and region growing techniques. Finally, rule-based schemes with features such as size, shape, and anatomical location were employed to distinguish between vessel regions and false positives. Our method was applied to 854 clinical cases obtained from two different hospitals. The segmentation of cerebral arteries in 97.1%(829/854) of the MRA studies was attained as an acceptable result. Therefore, our computerized method would be useful in CAD schemes for the detection of cerebrovascular diseases in MRA images.

  8. Imaging of acute superior mesenteric artery embolus using spectral CT in a canine model

    PubMed Central

    Wang, Hongzhen; Xiao, Xigang; Zhang, Wei; Ma, Zhiwen; Zhang, Jin ling; Tang, Liang

    2015-01-01

    Objective: To explore the diagnostic value of single-source dual-energy spectral CT (sDECT) imaging in an acute superior mesenteric artery embolus (SMAE) canine model. Methods: Pre-contrast and double-phase contrast-enhanced sDECT were performed before and after embolization in eight SMAE dog models. Monochromatic images of embolized intestine with the best contrast-to-noise ratio (CNR) were obtained and compared with the polychromatic images. CT parameters including attenuation value, iodine content, water content and thickness of the embolized intestinal segments were obtained, and normalized difference in iodine concentration (NDIC) was calculated. Results: The CNR in pre-contrast, arterial phase and portal venous phase at 4 h after embolization was 1.11 ± 1.23, 13.50 ± 1.54 and 10.63 ± 3.75, respectively, significantly higher than those of the polychromatic images (p < 0.05). The iodine-based images clearly revealed the embolized intestinal segments, which were highly consistent with the gross findings. The difference in attenuation values between the embolization area and non-embolization area in the monochromatic images was 105.06 ± 35.35 HU, higher than that in the polychromatic images (p < 0.001). The attenuation values and NDIC were significantly decreased at 2 h after embolization, relatively increased at 4 h and gradually decreased at 6 and 8 h. The changing pattern of thickness was similar to that of NDIC over time after embolization. Conclusion: sDECT can provide the optimal monochromatic images and allow increased detection rates of lesions. sDECT is a very promising tool for quantitative diagnosis of SMAE. Advances in knowledge: Our research provides more quantitative parameters for the assessment of SMAE by sDECT. PMID:26185922

  9. Food quality assessment by NIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Whitworth, Martin B.; Millar, Samuel J.; Chau, Astor

    2010-04-01

    Near infrared reflectance (NIR) spectroscopy is well established in the food industry for rapid compositional analysis of bulk samples. NIR hyperspectral imaging provides new opportunities to measure the spatial distribution of components such as moisture and fat, and to identify and measure specific regions of composite samples. An NIR hyperspectral imaging system has been constructed for food research applications, incorporating a SWIR camera with a cooled 14 bit HgCdTe detector and N25E spectrograph (Specim Ltd, Finland). Samples are scanned in a pushbroom mode using a motorised stage. The system has a spectral resolution of 256 pixels covering a range of 970-2500 nm and a spatial resolution of 320 pixels covering a swathe adjustable from 8 to 300 mm. Images are acquired at a rate of up to 100 lines s-1, enabling samples to be scanned within a few seconds. Data are captured using SpectralCube software (Specim) and analysed using ENVI and IDL (ITT Visual Information Solutions). Several food applications are presented. The strength of individual absorbance bands enables the distribution of particular components to be assessed. Examples are shown for detection of added gluten in wheat flour and to study the effect of processing conditions on fat distribution in chips/French fries. More detailed quantitative calibrations have been developed to study evolution of the moisture distribution in baguettes during storage at different humidities, to assess freshness of fish using measurements of whole cod and fillets, and for prediction of beef quality by identification and separate measurement of lean and fat regions.

  10. Quantification of carotid arteries atherosclerosis using 3D ultrasound images and area-preserving flattened maps

    NASA Astrophysics Data System (ADS)

    Chiu, Bernard; Egger, Micaela; Spence, J. David; Parraga, Grace; Fenster, Aaron

    2008-03-01

    Quantitative measurements of the progression (or regression) of carotid plaque burden are important in monitoring patients and evaluating new treatment options. 3D ultrasound (US) has been used to monitor the progression of carotid artery plaques in symptomatic and asymptomatic patients. Different methods of measuring various ultrasound phenotypes of atherosclerosis have been developed. In this work, we extended concepts used in intima-media thickness (IMT) measurements based on 2D images and introduced a metric called 3D vessel-wall-plus-plaque thickness (3D VWT), which was obtained by computing the distance between the carotid wall and lumen surfaces on a point-by-point basis in a 3D image of the carotid arteries. The VWT measurements were then superimposed on the arterial wall to produce the VWT map. Since the progression of plaque thickness is important in monitoring patients who are at risk for stroke, we also computed the change of VWT by comparing the VWT maps obtained for a patient at two different time points. In order to facilitate the visualization and interpretation of the 3D VWT and VWT-Change maps, we proposed a technique to flatten these maps in an area-preserving manner.

  11. Multimodal Imaging of Nanocomposite Microspheres for Transcatheter Intra-Arterial Drug Delivery to Liver Tumors

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Hyun; Li, Weiguo; Chen, Jeane; Zhang, Zhuoli; Green, Richard M.; Huang, Sui; Larson, Andrew C.

    2016-07-01

    A modern multi-functional drug carrier is critically needed to improve the efficacy of image-guided catheter-directed approaches for the treatment of hepatic malignancies. For this purpose, a nanocomposite microsphere platform was developed for selective intra-arterial transcatheter drug delivery to liver tumors. In our study, continuous microfluidic methods were used to fabricate drug-loaded multimodal MRI/CT visible microspheres that included both gold nanorods and magnetic clusters. The resulting hydrophilic, deformable, and non-aggregated microspheres were mono-disperse and roughly 25 um in size. Sustained drug release and strong MRI T2 and CT contrast effects were achieved with the embedded magnetic nano-clusters and radiopaque gold nanorods. The microspheres were successfully infused through catheters selectively placed within the hepatic artery in rodent models and subsequent distribution in the targeted liver tissues and hepatic tumors confirmed with MRI and CT imaging. These multimodal nanocomposite drug carriers should be ideal for selective intra-arterial catheter-directed administration to liver tumors while permitting MRI/CT visualization for patient-specific confirmation of tumor-targeted delivery.

  12. Non-linear imaging and characterization of atherosclerotic arterial tissue using combined SHG and FLIM microscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Matthäus, Christian; Meyer, Tobias; Lattermann, Annika; Dietzek, Benjamin; Brehm, Bernhard R.; Popp, Jürgen; Pavone, Francesco S.

    2015-03-01

    Atherosclerosis is among the most widespread cardiovascular diseases and one of the leading cause of death in the Western World. Characterization of arterial tissue in atherosclerotic condition is extremely interesting from the diagnostic point of view, especially for what is concerning collagen content and organization because collagen plays a crucial role in plaque vulnerability. Routinely used diagnostic methods, such as histopathological examination, are limited to morphological analysis of the examined tissues, whereas an exhaustive characterization requires immune-histochemical examination and a morpho-functional approach. Non-linear microscopy techniques offer the potential for providing morpho-functional information on the examined tissues in a label-free way. In this study, we employed combined SHG and FLIM microscopy for characterizing collagen organization in both normal arterial wall and within atherosclerotic plaques. Image pattern analysis of SHG images allowed characterizing collagen organization in different tissue regions. In addition, the analysis of collagen fluorescence decay contributed to the characterization of the samples on the basis of collagen fluorescence lifetime. Different values of collagen fiber mean size, collagen distribution, collagen anisotropy and collagen fluorescence lifetime were found in normal arterial wall and within plaque depositions, prospectively allowing for automated classification of atherosclerotic lesions and plaque vulnerability. The presented method represents a promising diagnostic tool for evaluating atherosclerotic tissue and has the potential to find a stable place in clinical setting as well as to be applied in vivo in the near future.

  13. Indocyanine green fluorescence and three-dimensional imaging of right gastroepiploic artery in gastric tube cancer.

    PubMed

    Nakano, Toru; Sakurai, Tadashi; Maruyama, Shota; Ozawa, Yohei; Kamei, Takashi; Miyata, Go; Ohuchi, Noriaki

    2015-01-01

    A 79-year-old male was admitted to our hospital for the treatment of cancer of the gastric tube. Gastrointestinal examination revealed a T1b Union for International Cancer Control (UICC) tumor at the pyloric region of the gastric tube. Laparotomy did not reveal infiltration into the serosa, peritoneal dissemination, regional lymph node swelling, or distant metastasis. We performed a distal gastrectomy preserving the right gastroepiploic artery by referencing the preoperative three-dimensional computed tomoangiography. We also evaluated the blood flow of the right gastroepiploic artery and in the proximal gastric tube by using indocyanine green fluorescence imaging intra-operatively and then followed with a gastrojejunal anastomosis with Roux-en-Y reconstruction. The definitive diagnosis was moderately differentiated adenocarcinoma of the gastric tube, pT1bN0M0, pStage IA (UICC). His postoperative course was uneventful. Three-dimensional computed tomographic imaging is effective for assessing the course of blood vessels and the relationship with the surrounding structures. Intraoperative evaluation of blood flow of the right gastroepiploic artery and of the gastric tube in the anastomotic portion is very valuable information and could contribute to a safe gastrointestinal reconstruction. PMID:25574113

  14. Multimodal Imaging of Nanocomposite Microspheres for Transcatheter Intra-Arterial Drug Delivery to Liver Tumors

    PubMed Central

    Kim, Dong-Hyun; Li, Weiguo; Chen, Jeane; Zhang, Zhuoli; Green, Richard M.; Huang, Sui; Larson, Andrew C.

    2016-01-01

    A modern multi-functional drug carrier is critically needed to improve the efficacy of image-guided catheter-directed approaches for the treatment of hepatic malignancies. For this purpose, a nanocomposite microsphere platform was developed for selective intra-arterial transcatheter drug delivery to liver tumors. In our study, continuous microfluidic methods were used to fabricate drug-loaded multimodal MRI/CT visible microspheres that included both gold nanorods and magnetic clusters. The resulting hydrophilic, deformable, and non-aggregated microspheres were mono-disperse and roughly 25 um in size. Sustained drug release and strong MRI T2 and CT contrast effects were achieved with the embedded magnetic nano-clusters and radiopaque gold nanorods. The microspheres were successfully infused through catheters selectively placed within the hepatic artery in rodent models and subsequent distribution in the targeted liver tissues and hepatic tumors confirmed with MRI and CT imaging. These multimodal nanocomposite drug carriers should be ideal for selective intra-arterial catheter-directed administration to liver tumors while permitting MRI/CT visualization for patient-specific confirmation of tumor-targeted delivery. PMID:27405824

  15. The physical and psychological factors governing sound-image quality

    NASA Astrophysics Data System (ADS)

    Kurozumi, K.; Ohgushi, K.

    1984-03-01

    One of the most important psychological impressions produced by a conventional two-loudspeakers reproduction-system is a localization of the sound image in the horizontal plane. The sound image is localized to some degree by varying the level and the time differences of the two acoustic signals. Even if the sound image was localized in the same direction, different impressions - for example, a feeling of the width of the sound image - are sometimes produced. These different impressions are explained by the phrase sound-image quality. The purpose is to find out the psychological and physical factors governing sound-image quality. To begin with, the effect on sound-image quality of varying the cross-correlation coefficient for white noise is investigated. A number of studies were performed in which the relationship between the cross-correlation coefficient and the sound-image quality were investigated.

  16. Reduced-reference image quality assessment using moment method

    NASA Astrophysics Data System (ADS)

    Yang, Diwei; Shen, Yuantong; Shen, Yongluo; Li, Hongwei

    2016-10-01

    Reduced-reference image quality assessment (RR IQA) aims to evaluate the perceptual quality of a distorted image through partial information of the corresponding reference image. In this paper, a novel RR IQA metric is proposed by using the moment method. We claim that the first and second moments of wavelet coefficients of natural images can have approximate and regular change that are disturbed by different types of distortions, and that this disturbance can be relevant to human perceptions of quality. We measure the difference of these statistical parameters between reference and distorted image to predict the visual quality degradation. The introduced IQA metric is suitable for implementation and has relatively low computational complexity. The experimental results on Laboratory for Image and Video Engineering (LIVE) and Tampere Image Database (TID) image databases indicate that the proposed metric has a good predictive performance.

  17. Does coronary artery bypass grafting improve quality of life in elderly patients?

    PubMed

    Baig, Kamran; Harling, Leanne; Papanikitas, Joseph; Attaran, Saina; Ashrafian, Hutan; Casula, Roberto; Athanasiou, Thanos

    2013-09-01

    Traditional outcome measures such as long-term mortality may be of less value than symptomatic improvement in elderly patients undergoing coronary artery bypass grafting (CABG). In this systematic review, we analyse health-related quality of life (HRQOL) as a marker of outcome after CABG. We aimed to assess the role of HRQOL tools in making recommendations for elderly patients undergoing surgery, where symptomatic and quality-of-life improvement may often be the key indications for intervention. Twenty-three studies, encompassing 4793 patients were included. Overall, elderly patients underwent CABG at reasonably low risk. Our findings, therefore, support the conclusion that performing CABG in the elderly may be associated with significant improvements in HRQOL. In order to overcome previous methodological limitations, future work must clearly define and stringently follow-up this elderly population, to develop a more robust, sensitive and specialty-specific HRQOL tool.

  18. Quantitative image quality evaluation for cardiac CT reconstructions

    NASA Astrophysics Data System (ADS)

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.; Balhorn, William; Okerlund, Darin R.

    2016-03-01

    Maintaining image quality in the presence of motion is always desirable and challenging in clinical Cardiac CT imaging. Different image-reconstruction algorithms are available on current commercial CT systems that attempt to achieve this goal. It is widely accepted that image-quality assessment should be task-based and involve specific tasks, observers, and associated figures of merits. In this work, we developed an observer model that performed the task of estimating the percentage of plaque in a vessel from CT images. We compared task performance of Cardiac CT image data reconstructed using a conventional FBP reconstruction algorithm and the SnapShot Freeze (SSF) algorithm, each at default and optimal reconstruction cardiac phases. The purpose of this work is to design an approach for quantitative image-quality evaluation of temporal resolution for Cardiac CT systems. To simulate heart motion, a moving coronary type phantom synchronized with an ECG signal was used. Three different percentage plaques embedded in a 3 mm vessel phantom were imaged multiple times under motion free, 60 bpm, and 80 bpm heart rates. Static (motion free) images of this phantom were taken as reference images for image template generation. Independent ROIs from the 60 bpm and 80 bpm images were generated by vessel tracking. The observer performed estimation tasks using these ROIs. Ensemble mean square error (EMSE) was used as the figure of merit. Results suggest that the quality of SSF images is superior to the quality of FBP images in higher heart-rate scans.

  19. Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction.

    PubMed

    Zhao, Li; Fielden, Samuel W; Feng, Xue; Wintermark, Max; Mugler, John P; Meyer, Craig H

    2015-11-01

    Dynamic arterial spin labeling (ASL) MRI measures the perfusion bolus at multiple observation times and yields accurate estimates of cerebral blood flow in the presence of variations in arterial transit time. ASL has intrinsically low signal-to-noise ratio (SNR) and is sensitive to motion, so that extensive signal averaging is typically required, leading to long scan times for dynamic ASL. The goal of this study was to develop an accelerated dynamic ASL method with improved SNR and robustness to motion using a model-based image reconstruction that exploits the inherent sparsity of dynamic ASL data. The first component of this method is a single-shot 3D turbo spin echo spiral pulse sequence accelerated using a combination of parallel imaging and compressed sensing. This pulse sequence was then incorporated into a dynamic pseudo continuous ASL acquisition acquired at multiple observation times, and the resulting images were jointly reconstructed enforcing a model of potential perfusion time courses. Performance of the technique was verified using a numerical phantom and it was validated on normal volunteers on a 3-Tesla scanner. In simulation, a spatial sparsity constraint improved SNR and reduced estimation errors. Combined with a model-based sparsity constraint, the proposed method further improved SNR, reduced estimation error and suppressed motion artifacts. Experimentally, the proposed method resulted in significant improvements, with scan times as short as 20s per time point. These results suggest that the model-based image reconstruction enables rapid dynamic ASL with improved accuracy and robustness.

  20. Molecular Imaging of Bone Marrow Mononuclear Cell Survival and Homing in Murine Peripheral Artery Disease

    PubMed Central

    van der Bogt, Koen E.A.; Hellingman, Alwine A.; Lijkwan, Maarten A.; Bos, Ernst-Jan; de Vries, Margreet R.; Fischbein, Michael P.; Quax, Paul H.; Robbins, Robert C.; Hamming, Jaap F.; Wu, Joseph C.

    2013-01-01

    Introduction Bone marrow mononuclear cell (MNC) therapy is a promising treatment for peripheral artery disease (PAD). This study aims to provide insight into cellular kinetics using molecular imaging following different transplantation methods. Methods and Results MNCs were isolated from F6 transgenic mice (FVB background) that express firefly luciferase (Fluc) and green fluorescence protein (GFP). Male FVB and C57Bl6 mice (n=50) underwent femoral artery ligation and were randomized into 4 groups receiving: (1) single intramuscular (i.m.) injection of 2×106 MNC; (2) four weekly i.m. injections of 5×105 MNC; (3) 2×106 MNCs intravenously (i.v.); and (4) PBS. Cellular kinetics, measured by in vivo bioluminescence imaging (BLI), revealed near-complete donor cell death 4 weeks after i.m. transplantation. Following i.v. transplantation, BLI monitored cells homed in on the injured area in the limb, as well as to the liver, spleen, and bone marrow. Ex vivo BLI showed presence of MNCs in the scar tissue and adductor muscle. However, no significant effects on neovascularisation were observed as monitored by Laser-Doppler-Perfusion-Imaging and histology. Conclusion This is one of the first studies to assess kinetics of transplanted MNCs in PAD using in vivo molecular imaging. MNC survival is short lived and MNCs do not significantly stimulate perfusion in this model. PMID:22239892

  1. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling.

    PubMed

    Wong, E C; Buxton, R B; Frank, L R

    1997-01-01

    We describe here experimental considerations in the implementation of quantitative perfusion imaging techniques for functional MRI using pulsed arterial spin labeling. Three tagging techniques: EPISTAR, PICORE, and FAIR are found to give very similar perfusion results despite large differences in static tissue contrast. Two major sources of systematic error in the perfusion measurement are identified: the transit delay from the tagging region to the imaging slice; and the inclusion of intravascular tagged signal. A modified technique called QUIPSS II is described that decreases sensitivity to these effects by explicitly controlling the time width of the tag bolus and imaging after the bolus is entirely deposited into the slice. With appropriate saturation pulses the pulse sequence can be arranged so as to allow for simultaneous collection of perfusion and BOLD data that can be cleanly separated. Such perfusion and BOLD signals reveal differences in spatial location and dynamics that may be useful both for functional brain mapping and for study of the BOLD contrast mechanism. The implementation of multislice perfusion imaging introduces additional complications, primarily in the elimination of signal from static tissue. In pulsed ASL, this appears to be related to the slice profile of the inversion tag pulse in the presence of relaxation, rather than magnetization transfer effects as in continuous arterial spin labeling, and can be alleviated with careful adjustment of inversion pulse parameters. PMID:9430354

  2. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization

    SciTech Connect

    Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl; Flohr, Thomas

    2013-03-15

    Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phase (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum

  3. Assessment of single vessel coronary artery disease: results of exercise electrocardiography, thallium-201 myocardial perfusion imaging and radionuclide angiography

    SciTech Connect

    Port, S.C.; Oshima, M.; Ray, G.; McNamee, P.; Schmidt, D.H.

    1985-07-01

    The sensitivity of the commonly used stress tests for the diagnosis of coronary artery disease was analyzed in 46 patients with significant occlusion (greater than or equal to 70% luminal diameter obstruction) of only one major coronary artery and no prior myocardial infarction. In all patients, thallium-201 perfusion imaging (both planar and seven-pinhole tomographic) and 12 lead electrocardiography were performed during the same graded treadmill exercise test and radionuclide angiography was performed during upright bicycle exercise. Exercise rate-pressure (double) product was 22,307 +/- 6,750 on the treadmill compared with 22,995 +/- 5,622 on the bicycle (p = NS). Exercise electrocardiograms were unequivocally abnormal in 24 patients (52%). Qualitative planar thallium images were abnormal in 42 patients (91%). Quantitative analysis of the tomographic thallium images were abnormal in 41 patients (89%). An exercise ejection fraction of less than 0.56 or a new wall motion abnormality was seen in 30 patients (65%). Results were similar for the right (n = 11) and left anterior descending (n = 28) coronary arteries while all tests but the planar thallium imaging showed a lower sensitivity for isolated circumflex artery disease (n = 7). The specificity of the tests was 72, 83, 89 and 72% for electrocardiography, planar thallium imaging, tomographic thallium imaging and radionuclide angiography, respectively. The results suggest that exercise thallium-201 perfusion imaging is the most sensitive noninvasive stress test for the diagnosis of single vessel coronary artery disease.

  4. A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images.

    PubMed

    Bourantas, Christos V; Kourtis, Iraklis C; Plissiti, Marina E; Fotiadis, Dimitrios I; Katsouras, Christos S; Papafaklis, Michail I; Michalis, Lampros K

    2005-12-01

    The aim of this study is to describe a new method for the three-dimensional reconstruction of coronary arteries and its quantitative validation. Our approach is based on the fusion of the data provided by intravascular ultrasound images (IVUS) and biplane angiographies. A specific segmentation algorithm is used for the detection of the regions of interest in intravascular ultrasound images. A new methodology is also introduced for the accurate extraction of the catheter path. In detail, a cubic B-spline is used for approximating the catheter path in each biplane projection. Each B-spline curve is swept along the normal direction of its X-ray angiographic plane forming a surface. The intersection of the two surfaces is a 3D curve, which represents the reconstructed path. The detected regions of interest in the IVUS images are placed perpendicularly onto the path and their relative axial twist is computed using the sequential triangulation algorithm. Then, an efficient algorithm is applied to estimate the absolute orientation of the first IVUS frame. In order to obtain 3D visualization the commercial package Geomagic Studio 4.0 is used. The performance of the proposed method is assessed using a validation methodology which addresses the separate validation of each step followed for obtaining the coronary reconstruction. The performance of the segmentation algorithm was examined in 80 IVUS images. The reliability of the path extraction method was studied in vitro using a metal wire model and in vivo in a dataset of 11 patients. The performance of the sequential triangulation algorithm was tested in two gutter models and in the coronary arteries (marked with metal clips) of six cadaveric sheep hearts. Finally, the accuracy in the estimation of the first IVUS frame absolute orientation was examined in the same set of cadaveric sheep hearts. The obtained results demonstrate that the proposed reconstruction method is reliable and capable of depicting the morphology of

  5. Automated registration of multispectral MR vessel wall images of the carotid artery

    SciTech Connect

    Klooster, R. van 't; Staring, M.; Reiber, J. H. C.; Lelieveldt, B. P. F.; Geest, R. J. van der; Klein, S.; Kwee, R. M.; Kooi, M. E.

    2013-12-15

    Purpose: Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment of atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using multiple MR sequences with different contrast weightings. These images allow manual or automated classification of plaque components inside the vessel wall. Automated classification requires all sequences to be in alignment, which is hampered by patient motion. In clinical practice, correction of this motion is performed manually. Previous studies applied automated image registration to correct for motion using only nondeformable transformation models and did not perform a detailed quantitative validation. The purpose of this study is to develop an automated accurate 3D registration method, and to extensively validate this method on a large set of patient data. In addition, the authors quantified patient motion during scanning to investigate the need for correction. Methods: MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA/stroke patients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort. Five MR pulse sequences were acquired around the carotid bifurcation, each containing nine transverse slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and pre- and postcontrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually segmented by delineating the lumen contour in each vessel wall sequence and were manually aligned by applying throughplane and inplane translations to the images. To find the optimal automatic image registration method, different masks, choice of the fixed image, different types of the mutual information image similarity metric, and transformation models including 3D deformable transformation models, were evaluated. Evaluation of the automatic registration results was performed by comparing the lumen segmentations of the fixed image and

  6. Three-dimensional segmentation of pulmonary artery volume from thoracic computed tomography imaging

    NASA Astrophysics Data System (ADS)

    Lindenmaier, Tamas J.; Sheikh, Khadija; Bluemke, Emma; Gyacskov, Igor; Mura, Marco; Licskai, Christopher; Mielniczuk, Lisa; Fenster, Aaron; Cunningham, Ian A.; Parraga, Grace

    2015-03-01

    Chronic obstructive pulmonary disease (COPD), is a major contributor to hospitalization and healthcare costs in North America. While the hallmark of COPD is airflow limitation, it is also associated with abnormalities of the cardiovascular system. Enlargement of the pulmonary artery (PA) is a morphological marker of pulmonary hypertension, and was previously shown to predict acute exacerbations using a one-dimensional diameter measurement of the main PA. We hypothesized that a three-dimensional (3D) quantification of PA size would be more sensitive than 1D methods and encompass morphological changes along the entire central pulmonary artery. Hence, we developed a 3D measurement of the main (MPA), left (LPA) and right (RPA) pulmonary arteries as well as total PA volume (TPAV) from thoracic CT images. This approach incorporates segmentation of pulmonary vessels in cross-section for the MPA, LPA and RPA to provide an estimate of their volumes. Three observers performed five repeated measurements for 15 ex-smokers with ≥10 pack-years, and randomly identified from a larger dataset of 199 patients. There was a strong agreement (r2=0.76) for PA volume and PA diameter measurements, which was used as a gold standard. Observer measurements were strongly correlated and coefficients of variation for observer 1 (MPA:2%, LPA:3%, RPA:2%, TPA:2%) were not significantly different from observer 2 and 3 results. In conclusion, we generated manual 3D pulmonary artery volume measurements from thoracic CT images that can be performed with high reproducibility. Future work will involve automation for implementation in clinical workflows.

  7. Volume of myocardium perfused by coronary artery branches as estimated from 3D micro-CT images of rat hearts

    NASA Astrophysics Data System (ADS)

    Lund, Patricia E.; Naessens, Lauren C.; Seaman, Catherine A.; Reyes, Denise A.; Ritman, Erik L.

    2000-04-01

    Average myocardial perfusion is remarkably consistent throughout the heart wall under resting conditions and the velocity of blood flow is fairly reproducible from artery to artery. Based on these observations, and the fact that flow through an artery is the product of arterial cross-sectional area and blood flow velocity, we would expect the volume of myocardium perfused to be proportional to the cross-sectional area of the coronary artery perfusing that volume of myocardium. This relationship has been confirmed by others in pigs, dogs and humans. To test the body size-dependence of this relationship we used the hearts from rats, 3 through 25 weeks of age. The coronary arteries were infused with radiopaque microfil polymer and the hearts scanned in a micro- CT scanner. Using these 3D images we measured the volume of myocardium and the arterial cross-sectional area of the artery that perfused that volume of myocardium. The average constant of proportionality was found to be 0.15 +/- 0.08 cm3/mm2. Our data showed no statistically different estimates of the constant of proportionality in the rat hearts of different ages nor between the left and right coronary arteries. This constant is smaller than that observed in large animals and humans, but this difference is consistent with the body mass-dependence on metabolic rate.

  8. Quality of Life on Arterial Hypertension: Validity of Known Groups of MINICHAL

    PubMed Central

    Soutello, Ana Lúcia Soares; Rodrigues, Roberta Cunha Matheus; Jannuzzi, Fernanda Freire; São-João, Thaís Moreira; Martini, Gabriela Giordano; Nadruz Jr., Wilson; Gallani, Maria-Cecília Bueno Jayme

    2015-01-01

    Introductions In the care of hypertension, it is important that health professionals possess available tools that allow evaluating the impairment of the health-related quality of life, according to the severity of hypertension and the risk for cardiovascular events. Among the instruments developed for the assessment of health-related quality of life, there is the Mini-Cuestionario of Calidad de Vida en la Hipertensión Arterial (MINICHAL) recently adapted to the Brazilian culture. Objective To estimate the validity of known groups of the Brazilian version of the MINICHAL regarding the classification of risk for cardiovascular events, symptoms, severity of dyspnea and target-organ damage. Methods Data of 200 hypertensive outpatients concerning sociodemographic and clinical information and health-related quality of life were gathered by consulting the medical charts and the application of the Brazilian version of MINICHAL. The Mann-Whitney test was used to compare health-related quality of life in relation to symptoms and target-organ damage. The Kruskal-Wallis test and ANOVA with ranks transformation were used to compare health-related quality of life in relation to the classification of risk for cardiovascular events and intensity of dyspnea, respectively. Results The MINICHAL was able to discriminate health-related quality of life in relation to symptoms and kidney damage, but did not discriminate health-related quality of life in relation to the classification of risk for cardiovascular events. Conclusion The Brazilian version of the MINICHAL is a questionnaire capable of discriminating differences on the health‑related quality of life regarding dyspnea, chest pain, palpitation, lipothymy, cephalea and renal damage. PMID:25993593

  9. Research iris serial images quality assessment method based on HVS

    NASA Astrophysics Data System (ADS)

    Li, Zhi-hui; Zhang, Chang-hai; Ming, Xing; Zhao, Yong-hua

    2006-01-01

    Iris recognition can be widely used in security and customs, and it provides superiority security than other human feature recognition such as fingerprint, face and so on. The iris image quality is crucial to recognition effect. Accordingly reliable image quality assessments are necessary for evaluating iris image quality. However, there haven't uniformly criterion to Image quality assessment. Image quality assessment have Objective and Subjective Evaluation methods, In practice, However Subjective Evaluation method is fussy and doesn't effective on iris recognition. Objective Evaluation method should be used in iris recognition. According to human visual system model (HVS) Multi-scale and selectivity characteristic, it presents a new iris Image quality assessment method. In the paper, ROI is found and wavelet transform zero-crossing is used to find Multi-scale edge, and Multi-scale fusion measure is used to assess iris image quality. In experiment, Objective and Subjective Evaluation methods are used to assess iris images. From the results, the method is effectively to iris image quality assessment.

  10. Limitations to adaptive optics image quality in rodent eyes.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2012-08-01

    Adaptive optics (AO) retinal image quality of rodent eyes is inferior to that of human eyes, despite the promise of greater numerical aperture. This paradox challenges several assumptions commonly made in AO imaging, assumptions which may be invalidated by the very high power and dioptric thickness of the rodent retina. We used optical modeling to compare the performance of rat and human eyes under conditions that tested the validity of these assumptions. Results showed that AO image quality in the human eye is robust to positioning errors of the AO corrector and to differences in imaging depth and wavelength compared to the wavefront beacon. In contrast, image quality in the rat eye declines sharply with each of these manipulations, especially when imaging off-axis. However, some latitude does exist to offset these manipulations against each other to produce good image quality.

  11. Adjunctive intra-coronary imaging for the assessment of coronary artery disease

    PubMed Central

    Shah, Nikunj; Ussen, Bassey

    2016-01-01

    Atherosclerotic coronary artery disease remains a leading cause of worldwide morbidity and mortality. Invasive angiography currently remains the gold standard method of diagnosing and treating coronary disease; however, more sophisticated adjunctive interventional technologies have been developed to combat the inter and intra-observer variability frequently encountered in the assessment of lesion severity. Intravascular imaging now plays a key role in optimising percutaneous coronary interventions and provides invaluable information as part of the interventional cardiologist’s diagnostic arsenal. The principles, technical aspects and uses of two modalities of intracoronary imaging, intravascular ultrasound and optical coherence tomography, are discussed. We additionally provide examples of cases where the adjunctive intracoronary imaging was superior to angiography alone in successfully identifying and treating acute coronary syndromes. PMID:27540480

  12. Corrections of arterial input function for dynamic H215O PET to assess perfusion of pelvic tumours: arterial blood sampling versus image extraction

    NASA Astrophysics Data System (ADS)

    Lüdemann, L.; Sreenivasa, G.; Michel, R.; Rosner, C.; Plotkin, M.; Felix, R.; Wust, P.; Amthauer, H.

    2006-06-01

    Assessment of perfusion with 15O-labelled water (H215O) requires measurement of the arterial input function (AIF). The arterial time activity curve (TAC) measured using the peripheral sampling scheme requires corrections for delay and dispersion. In this study, parametrizations with and without arterial spillover correction for fitting of the tissue curve are evaluated. Additionally, a completely noninvasive method for generation of the AIF from a dynamic positron emission tomography (PET) acquisition is applied to assess perfusion of pelvic tumours. This method uses a volume of interest (VOI) to extract the TAC from the femoral artery. The VOI TAC is corrected for spillover using a separate tissue TAC and for recovery by determining the recovery coefficient on a coregistered CT data set. The techniques were applied in five patients with pelvic tumours who underwent a total of 11 examinations. Delay and dispersion correction of the blood TAC without arterial spillover correction yielded in seven examinations solutions inconsistent with physiology. Correction of arterial spillover increased the fitting accuracy and yielded consistent results in all patients. Generation of an AIF from PET image data was investigated as an alternative to arterial blood sampling and was shown to have an intrinsic potential to determine the AIF noninvasively and reproducibly. The AIF extracted from a VOI in a dynamic PET scan was similar in shape to the blood AIF but yielded significantly higher tissue perfusion values (mean of 104.0 ± 52.0%) and lower partition coefficients (-31.6 ± 24.2%). The perfusion values and partition coefficients determined with the VOI technique have to be corrected in order to compare the results with those of studies using a blood AIF.

  13. High-Resolution 3 T MR Microscopy Imaging of Arterial Walls

    SciTech Connect

    Sailer, Johannes Rand, Thomas; Berg, Andreas; Sulzbacher, Irene; Peloschek, P.; Hoelzenbein, Thomas; Lammer, Johannes

    2006-10-15

    Purpose. To achieve a high spatial resolution in MR imaging that allows for clear visualization of anatomy and even histology and documentation of plaque morphology in in vitro samples from patients with advanced atherosclerosis. A further objective of our study was to evaluate whether T2-weighted high-resolution MR imaging can provide accurate classification of atherosclerotic plaque according to a modified American Heart Association classification. Methods. T2-weighted images of arteries were obtained in 13 in vitro specimens using a 3 T MR unit (Medspec 300 Avance/Bruker, Ettlingen, Germany) combined with a dedicated MR microscopy system. Measurement parameters were: T2-weighted sequences with TR 3.5 sec, TE 15-120 msec; field of view (FOV) 1.4 x 1.4; NEX 8; matrix 192; and slice thickness 600 {mu}m. MR measurements were compared with corresponding histologic sections. Results. We achieved excellent spatial and contrast resolution in all specimens. We found high agreement between MR images and histology with regard to the morphology and extent of intimal proliferations in all but 2 specimens. We could differentiate fibrous caps and calcifications from lipid plaque components based on differences in signal intensity in order to differentiate hard and soft atheromatous plaques. Hard plaques with predominantly intimal calcifications were found in 7 specimens, and soft plaques with a cholesterol/lipid content in 5 cases. In all specimens, hemorrhage or thrombus formation, and fibrotic and hyalinized tissue could be detected on both MR imaging and histopathology. Conclusion. High-resolution, high-field MR imaging of arterial walls demonstrates the morphologic features, volume, and extent of intimal proliferations with high spatial and contrast resolution in in vitro specimens and can differentiate hard and soft plaques.

  14. Exercise thallium-201 imaging for risk stratification of elderly patients with coronary artery disease

    SciTech Connect

    Iskandrian, A.S.; Heo, J.; Decoskey, D.; Askenase, A.; Segal, B.L.

    1988-02-01

    Although coronary artery disease (CAD) may be asymptomatic, it is the most common cause of death in elderly patients in the U.S. This study examined the prognosis of 449 patients with a mean age of 65 years using exercise thallium-201 imaging. At a follow-up of 25 months, 45 patients underwent coronary artery revascularization, 8 died of cardiac causes and 10 had nonfatal acute myocardial infarctions (AMIs). Thus, the total of patients with ''hard'' events was 18. The events included 12 of 276 patients with atypical or non-anginal symptoms versus 6 of 128 with typical angina (p = not significant); 7 of 51 patients (14%) with Q-wave AMI versus 11 of 353 (3%) without Q-wave AMI (p less than 0.001); 1 of 183 patients (1%) with normal versus 17 of 221 (8%) with abnormal exercise thallium-201 images (p less than 0.002); 10 of 76 patients (13%) with multi vessel thallium-201 abnormality vs 8 of 328 (2%) with no or 1-vessel thallium-201 abnormality (p less than 0.001) and 10 of 96 patients (10%) with greater than or equal to 3 abnormal segments by thallium-201 imaging (total segments = 9) versus 8 of 308 patients with no or less than 3 abnormal segments (p less than 0.001). The number of segments with thallium-201 defects was 1 +/- 2 patients without and 3 +/- 2 in patients with hard events (p less than 0.002).

  15. The study of surgical image quality evaluation system by subjective quality factor method

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Xuan, Jason R.; Yang, Xirong; Yu, Honggang; Koullick, Edouard

    2016-03-01

    GreenLightTM procedure is an effective and economical way of treatment of benign prostate hyperplasia (BPH); there are almost a million of patients treated with GreenLightTM worldwide. During the surgical procedure, the surgeon or physician will rely on the monitoring video system to survey and confirm the surgical progress. There are a few obstructions that could greatly affect the image quality of the monitoring video, like laser glare by the tissue and body fluid, air bubbles and debris generated by tissue evaporation, and bleeding, just to name a few. In order to improve the physician's visual experience of a laser surgical procedure, the system performance parameter related to image quality needs to be well defined. However, since image quality is the integrated set of perceptions of the overall degree of excellence of an image, or in other words, image quality is the perceptually weighted combination of significant attributes (contrast, graininess …) of an image when considered in its marketplace or application, there is no standard definition on overall image or video quality especially for the no-reference case (without a standard chart as reference). In this study, Subjective Quality Factor (SQF) and acutance are used for no-reference image quality evaluation. Basic image quality parameters, like sharpness, color accuracy, size of obstruction and transmission of obstruction, are used as subparameter to define the rating scale for image quality evaluation or comparison. Sample image groups were evaluated by human observers according to the rating scale. Surveys of physician groups were also conducted with lab generated sample videos. The study shows that human subjective perception is a trustworthy way of image quality evaluation. More systematic investigation on the relationship between video quality and image quality of each frame will be conducted as a future study.

  16. [Quantitative analyses of coronary artery calcification by using clinical cardiovascular imaging].

    PubMed

    Ehara, Shoichi; Yoshiyama, Minoru

    2010-11-01

    Coronary artery calcification (CAC) is a common phenomenon, but the clinical relevance of this phenomenon, for instance as a risk factor for plaque vulnerability, is still controversial. After the introduction of electron-beam computed tomography (EBCT), multislice computed tomography (MSCT), and intravascular ultrasound (IVUS), which enables quantitative assessment of CAC, the number of clinical studies concerning CAC has rapidly increased. In this review, we focus on the quantitative analyses of CAC by using clinical cardiovascular imaging and the clinical significance of CAC. PMID:21037389

  17. Case report: aneurysm of an aberrant right subclavian artery diagnosed with MR imaging.

    PubMed

    Turkenburg, J L; Versteegh, M I; Shaw, P C

    1994-11-01

    An aberrant right subclavian artery (ARSCA), also known as arteria lusoria, is the most common congenital anomaly of the aortic arch, with a reported prevalence ranging from 0.4 to 2%. The ARSCA arises as the last branch of the aortic arch and crosses the mediastinum from left to right indenting the oesophagus posteriorly. Aneurysms of this aberrant vessel, whether or not arising from a Kommerell's diverticulum, are rare. A 79-year-old woman is presented, in whom a partly thrombosed aneurysm of an ARSCA was diagnosed with magnetic resonance (MR) imaging.

  18. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    NASA Astrophysics Data System (ADS)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  19. Arm exercise-thallium imaging testing for the detection of coronary artery disease

    SciTech Connect

    Balady, G.J.; Weiner, D.A.; Rothendler, J.A.; Ryan, T.J.

    1987-01-01

    Patients with lower limb impairment are often unable to undergo a standard bicycle or treadmill test for the evaluation of coronary artery disease. To establish an alternative method of testing, 50 subjects (aged 56 +/- 10 years) performed arm ergometry testing in conjunction with myocardial thallium scintigraphy. All underwent coronary angiography; significant coronary artery disease (greater than or equal to 70% stenosis) in at least one vessel was present in 41 (82%) of the 50 patients. Thallium scintigraphy was found to have an 83% sensitivity and 78% specificity for detecting coronary disease, compared with a sensitivity and specificity of 54% (p less than 0.01) and 67% (p = NS), respectively, for exercise electrocardiography. In the subgroup of 23 patients who had no prior myocardial infarction or left bundle branch block and were not taking digitalis, thallium scintigraphy had a sensitivity of 80% versus 50% for exercise electrocardiography. Scintigraphy yielded a sensitivity of 84, 74 and 90% for one, two and three vessel disease, respectively. Noninvasive arm ergometry exercise-thallium imaging testing appears to be reliable and useful and should be considered in the evaluation of coronary artery disease in patients with lower limb impairment.

  20. Single-breath-hold venous or arterial flow-suppressed pulmonary vascular MR imaging with phased-array coils.

    PubMed

    Foo, T K; MacFall, J R; Sostman, H D; Hayes, C E

    1993-01-01

    A method for acquiring pulmonary vascular magnetic resonance (MR) images with either venous or arterial flow suppression is described. The proposed method only marginally increases the overall imaging time compared with conventional flow-suppression techniques. This enables an acquisition to be completed within a single breath hold with some selectivity as to flow direction. Instead of applying a spatially selective presaturation pulse before each radio-frequency (RF) excitation pulse, the flow presaturation pulse is applied once every 16-20 RF excitation pulses. To avoid image artifacts and to maintain a steady state, each presaturation pulse interval is followed by a normal imaging segment but with data acquisition turned off. Overall imaging time is increased by two TR intervals for each presaturation segment. For a 256 x 128 matrix acquisition, venous flow presaturation increases overall imaging time by approximately 14 TR intervals, while arterial flow suppression increases imaging time by 10 TR intervals.

  1. Pulmonary arterial hypertension: the burden of disease and impact on quality of life.

    PubMed

    Delcroix, Marion; Howard, Luke

    2015-12-01

    Pulmonary arterial hypertension (PAH) is a debilitating disease that pervades all aspects of a patient's daily life. It is also increasingly acknowledged that the burden of PAH extends to older patients and carers. Until recently, the adverse effect of disease symptoms on the physical, emotional and social factors governing patient health-related quality of life (HRQoL) remained largely unrecognised. With a shift in therapeutic objectives to longer term improvements and HRQoL benefits, clinical trials now frequently include HRQoL measures as study end-points. Most HRQoL instruments used in patients with PAH are generic or non-disease-specific questionnaires and therefore may not accurately capture PAH disease burden. New PAH-specific HRQoL instruments currently undergoing validation include emPHasis-10 and Pulmonary Arterial Hypertension-Symptoms and Impact (PAH-SYMPACT; Actelion Pharmaceuticals Ltd, Allschwil, Switzerland). Using various HRQoL measures, pharmacological therapies have been shown to improve HRQoL in patients with PAH. Patients also derive HRQoL benefits from nonpharmacological strategies, which include the emotional support provided by multidisciplinary care and support groups that is fundamental to patient wellbeing. Looking to the future, validated PAH-specific HRQoL instruments together with dedicated guidelines and procedures are essential to support the translation of HRQoL scores to the clinic, thus enabling a holistic treatment approach to the management of patients with PAH.

  2. Can pictorial images communicate the quality of pain successfully?

    PubMed Central

    Knapp, Peter; Morley, Stephen; Stones, Catherine

    2015-01-01

    Chronic pain is common and difficult for patients to communicate to health professionals. It may include neuropathic elements which require specialised treatment. A little used approach to communicating the quality of pain is through the use of images. This study aimed to test the ability of a set of 12 images depicting different sensory pain qualities to successfully communicate those qualities. Images were presented to 25 student nurses and 38 design students. Students were asked to write down words or phrases describing the quality of pain they felt was being communicated by each image. They were asked to provide as many or as few as occurred to them. The images were extremely heterogeneous in their ability to convey qualities of pain accurately. Only 2 of the 12 images were correctly interpreted by more than 70% of the sample. There was a significant difference between the two student groups, with nurses being significantly better at interpreting the images than the design students. Clearly, attention needs to be given not only to the content of images designed to depict the sensory qualities of pain but also to the differing audiences who may use them. Education, verbal ability, ethnicity and a multiplicity of other factors may influence the understanding and use of such images. Considerable work is needed to develop a set of images which is sufficiently culturally appropriate and effective for general use. PMID:26516574

  3. The coronary artery disease quality dashboard: a chronic care disease management tool in an electronic health record.

    PubMed

    Jung, Eunice; Schnipper, Jeffrey L; Li, Qi; Linder, Jeffrey A; Rose, Alan F; Li, Ruzhuo; Eskin, Michael S; Housman, Dan; Middleton, Blackford; Einbinder, Jonathan S

    2007-10-11

    Quality reporting tools, integrated with ambulatory electronic health records (EHRs), may help clinicians understand performance, manage populations, and improve quality. The Coronary Artery Disease Quality Dash board (CAD QD) is a secure web report for performance measurement of a chronic care condition delivered through a central data warehouse and custom-built reporting tool. Pilot evaluation of the CAD Quality Dash board indicates that clinicians prefer a quality report that combines not only structured data from EHRs but one that facilitates actions to be taken on individual patients or on a population, i.e., for case management.

  4. Machine vision image quality measurement in cardiac x-ray imaging

    NASA Astrophysics Data System (ADS)

    Kengyelics, Stephen M.; Gislason-Lee, Amber; Keeble, Claire; Magee, Derek; Davies, Andrew G.

    2015-03-01

    The purpose of this work is to report on a machine vision approach for the automated measurement of x-ray image contrast of coronary arteries filled with iodine contrast media during interventional cardiac procedures. A machine vision algorithm was developed that creates a binary mask of the principal vessels of the coronary artery tree by thresholding a standard deviation map of the direction image of the cardiac scene derived using a Frangi filter. Using the mask, average contrast is calculated by fitting a Gaussian model to the greyscale profile orthogonal to the vessel centre line at a number of points along the vessel. The algorithm was applied to sections of single image frames from 30 left and 30 right coronary artery image sequences from different patients. Manual measurements of average contrast were also performed on the same images. A Bland-Altman analysis indicates good agreement between the two methods with 95% confidence intervals -0.046 to +0.048 with a mean bias of 0.001. The machine vision algorithm has the potential of providing real-time context sensitive information so that radiographic imaging control parameters could be adjusted on the basis of clinically relevant image content.

  5. Image quality assessment for CT used on small animals

    NASA Astrophysics Data System (ADS)

    Cisneros, Isabela Paredes; Agulles-Pedrós, Luis

    2016-07-01

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MatLab, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  6. Sectioned images and surface models of a cadaver for understanding the deep circumflex iliac artery flap.

    PubMed

    Kim, Bong Chul; Chung, Min Suk; Kim, Hyung Jun; Park, Jin Seo; Shin, Dong Sun

    2014-03-01

    The aim of this study was to describe the deep circumflex iliac artery (DCIA) flap from sectioned images and stereoscopic anatomic models using Visible Korean, for the benefit of medical education and clinical training in the field of oromandibular reconstructive surgery. Serially sectioned images of the pelvic area were obtained from a cadaver. Outlines of significant structures in the sectioned images were drawn and stacked to build surface models. The PDF (portable document format) file (size, 30 MB) of the constructed models is available for free download on the Web site of the Department of Anatomy at Ajou University School of Medicine (http://anatomy.co.kr). In the PDF file, the relevant structures of the DCIA flap can be seen in the sectioned images. All surface models and stereoscopic structures associated with the DCIA flap are displayed in real time. We hope that these state-of-the-art sectioned images, outlined images, and surface models will help students and trainees better understand the anatomy associated with DCIA flap.

  7. Improving the Quality of Imaging in the Emergency Department.

    PubMed

    Blackmore, C Craig; Castro, Alexandra

    2015-12-01

    Imaging is critical for the care of emergency department (ED) patients. However, much of the imaging performed for acute care today is overutilization, creating substantial cost without significant benefit. Further, the value of imaging is not easily defined, as imaging only affects outcomes indirectly, through interaction with treatment. Improving the quality, including appropriateness, of emergency imaging requires understanding of how imaging contributes to patient care. The six-tier efficacy hierarchy of Fryback and Thornbury enables understanding of the value of imaging on multiple levels, ranging from technical efficacy to medical decision-making and higher-level patient and societal outcomes. The imaging efficacy hierarchy also allows definition of imaging quality through the Institute of Medicine (IOM)'s quality domains of safety, effectiveness, patient-centeredness, timeliness, efficiency, and equitability and provides a foundation for quality improvement. In this article, the authors elucidate the Fryback and Thornbury framework to define the value of imaging in the ED and to relate emergency imaging to the IOM quality domains.

  8. Quaternion structural similarity: a new quality index for color images.

    PubMed

    Kolaman, Amir; Yadid-Pecht, Orly

    2012-04-01

    One of the most important issues for researchers developing image processing algorithms is image quality. Methodical quality evaluation, by showing images to several human observers, is slow, expensive, and highly subjective. On the other hand, a visual quality matrix (VQM) is a fast, cheap, and objective tool for evaluating image quality. Although most VQMs are good in predicting the quality of an image degraded by a single degradation, they poorly perform for a combination of two degradations. An example for such degradation is the color crosstalk (CTK) effect, which introduces blur with desaturation. CTK is expected to become a bigger issue in image quality as the industry moves toward smaller sensors. In this paper, we will develop a VQM that will be able to better evaluate the quality of an image degraded by a combined blur/desaturation degradation and perform as well as other VQMs on single degradations such as blur, compression, and noise. We show why standard scalar techniques are insufficient to measure a combined blur/desaturation degradation and explain why a vectorial approach is better suited. We introduce quaternion image processing (QIP), which is a true vectorial approach and has many uses in the fields of physics and engineering. Our new VQM is a vectorial expansion of structure similarity using QIP, which gave it its name-Quaternion Structural SIMilarity (QSSIM). We built a new database of a combined blur/desaturation degradation and conducted a quality survey with human subjects. An extensive comparison between QSSIM and other VQMs on several image quality databases-including our new database-shows the superiority of this new approach in predicting visual quality of color images.

  9. Effect of image quality on calcification detection in digital mammography

    PubMed Central

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Chakraborty, Dev P.; Dance, David R.; Bosmans, Hilde; Young, Kenneth C.

    2012-01-01

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC

  10. Effect of image quality on calcification detection in digital mammography

    SciTech Connect

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Chakraborty, Dev P.; Dance, David R.; Bosmans, Hilde; Young, Kenneth C.

    2012-06-15

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC

  11. A new assessment method for image fusion quality

    NASA Astrophysics Data System (ADS)

    Li, Liu; Jiang, Wanying; Li, Jing; Yuchi, Ming; Ding, Mingyue; Zhang, Xuming

    2013-03-01

    Image fusion quality assessment plays a critically important role in the field of medical imaging. To evaluate image fusion quality effectively, a lot of assessment methods have been proposed. Examples include mutual information (MI), root mean square error (RMSE), and universal image quality index (UIQI). These image fusion assessment methods could not reflect the human visual inspection effectively. To address this problem, we have proposed a novel image fusion assessment method which combines the nonsubsampled contourlet transform (NSCT) with the regional mutual information in this paper. In this proposed method, the source medical images are firstly decomposed into different levels by the NSCT. Then the maximum NSCT coefficients of the decomposed directional images at each level are obtained to compute the regional mutual information (RMI). Finally, multi-channel RMI is computed by the weighted sum of the obtained RMI values at the various levels of NSCT. The advantage of the proposed method lies in the fact that the NSCT can represent image information using multidirections and multi-scales and therefore it conforms to the multi-channel characteristic of human visual system, leading to its outstanding image assessment performance. The experimental results using CT and MRI images demonstrate that the proposed assessment method outperforms such assessment methods as MI and UIQI based measure in evaluating image fusion quality and it can provide consistent results with human visual assessment.

  12. Analysis of the Quality of Information Obtained About Uterine Artery Embolization From the Internet

    SciTech Connect

    Tavare, Aniket N.; Alsafi, Ali Hamady, Mohamad S.

    2012-12-15

    Purpose: The Internet is widely used by patients to source health care-related information. We sought to analyse the quality of information available on the Internet about uterine artery embolization (UAE). Materials and Methods: We searched three major search engines for the phrase 'uterine artery embolization' and compiled the top 50 results from each engine. After excluding repeated sites, scientific articles, and links to documents, the remaining 50 sites were assessed using the LIDA instrument, which scores sites across the domains of accessibility, usability, and reliability. The Fleisch reading ease score (FRES) was calculated for each of the sites. Finally, we checked the country of origin and the presence of certification by the Health On the Net Foundation (HONcode) as well as their effect on LIDA and FRES scores.ResultsThe following mean scores were obtained: accessibility 48/60 (80%), usability 42/54 (77%), reliability 20/51 (39%), total LIDA 110/165 (67%), and FRES 42/100 (42%). Nine sites had HONcode certification, and this was associated with significantly greater (p < 0.05) reliability and total LIDA and FRES scores. When comparing sites between United Kingdom and United States, there was marked variation in the quality of results obtained when searching for information on UAE (p < 0.05). Conclusion: In general, sites were well designed and easy to use. However, many scored poorly on the reliability of their information either because they were produced in a non-evidence-based way or because they lacking currency. It is important that patients are guided to reputable, location-specific sources of information online, especially because prominent search engine rank does not guarantee reliability of information.

  13. The effect of image sharpness on quantitative eye movement data and on image quality evaluation while viewing natural images

    NASA Astrophysics Data System (ADS)

    Vuori, Tero; Olkkonen, Maria

    2006-01-01

    The aim of the study is to test both customer image quality rating (subjective image quality) and physical measurement of user behavior (eye movements tracking) to find customer satisfaction differences in imaging technologies. Methodological aim is to find out whether eye movements could be quantitatively used in image quality preference studies. In general, we want to map objective or physically measurable image quality to subjective evaluations and eye movement data. We conducted a series of image quality tests, in which the test subjects evaluated image quality while we recorded their eye movements. Results show that eye movement parameters consistently change according to the instructions given to the user, and according to physical image quality, e.g. saccade duration increased with increasing blur. Results indicate that eye movement tracking could be used to differentiate image quality evaluation strategies that the users have. Results also show that eye movements would help mapping between technological and subjective image quality. Furthermore, these results give some empirical emphasis to top-down perception processes in image quality perception and evaluation by showing differences between perceptual processes in situations when cognitive task varies.

  14. Image processing system performance prediction and product quality evaluation

    NASA Technical Reports Server (NTRS)

    Stein, E. K.; Hammill, H. B. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. A new technique for image processing system performance prediction and product quality evaluation was developed. It was entirely objective, quantitative, and general, and should prove useful in system design and quality control. The technique and its application to determination of quality control procedures for the Earth Resources Technology Satellite NASA Data Processing Facility are described.

  15. Imaging of carotid artery vessel wall edema using T2-weighted cardiovascular magnetic resonance

    PubMed Central

    2014-01-01

    Background Atherothrombosis remains a major health problem in the western world, and carotid atherosclerosis is an important contributor to embolic ischemic strokes. It remains a clinical challenge to identify rupture-prone atherosclerotic plaques before clinical events occur. Inflammation, endothelial injury and angiogenesis are features of vulnerable plaques and may all be associated with plaque edema. Therefore, vessel wall edema, which can be detected by 2D T2-weighted cardiovascular magnetic resonance (CMR), may be used as a dynamic marker of disease activity in the atherosclerotic plaque. However, 2D imaging is limited by low spatial resolution in the slice-select direction compared to 3D imaging techniques. We sought to investigate the ability of novel 3D techniques to detect edema induced in porcine carotid arteries by acute balloon injury compared to conventional 2D T2-weighted black-blood CMR. Methods Edema was induced unilaterally by balloon overstretch injury in the carotid artery of nine pigs. Between one to seven hours (average four hours) post injury, CMR was performed using 2D T2-weighted short-tau inversion recovery (T2-STIR), 3D volumetric isotropic turbo spin echo acquisition (VISTA) and 3D T2 prepared gradient-echo (T2prep-GE). The CMR images were compared in terms of signal-to-noise ratio (SNR) and contrast-to-noise (CNR) ratio. Furthermore, the presence of vessel wall injury was validated macroscopically by means of Evans Blue dye that only enters the injured vessel wall. Results All three imaging sequences classified the carotid arteries correctly compared to Evans Blue and all sequences demonstrated a significant increase in SNR of the injured compared to the non-injured carotid vessel wall (T2-STIR, p = 0.002; VISTA, p = 0.004; and T2prep-GE, p = 0.003). There was no significant difference between sequences regarding SNR and CNR. Conclusion The novel 3D imaging sequences VISTA and T2prep-GE perform comparably to conventional 2D

  16. A SPECT study in internal carotid artery occlusion: Discrepancies between flow image and neurologic deficits

    SciTech Connect

    Moriwaki, H.; Hougaku, H.; Matsuda, I.; Kusunoki, M.; Shirai, J. )

    1989-08-01

    A SPECT (single photon emission computed tomography) study in internal carotid artery (ICA) occlusion was performed in 6 patients. The validity of iodoamphetamine (IMP) SPECT study in the evaluation of cerebral blood flow (CBF) or neurologic function is still controversial. In this study, the authors showed several cases in whom SPECT images of brain were not compatible with their neurologic deficits. In 2 typical cases, a large low-density area was observed in the non-dominant hemisphere in computed tomography (CT) scan, but no apparent motor-sensory deficits in left limbs were present. In these patients, SPECT study also revealed flow reduction in the affected side of the brain. So there was a possibility that an IMP brain image could not always reflect CBF, which maintains neurologic function of the brain.

  17. Automated quality assessment in three-dimensional breast ultrasound images.

    PubMed

    Schwaab, Julia; Diez, Yago; Oliver, Arnau; Martí, Robert; van Zelst, Jan; Gubern-Mérida, Albert; Mourri, Ahmed Bensouda; Gregori, Johannes; Günther, Matthias

    2016-04-01

    Automated three-dimensional breast ultrasound (ABUS) is a valuable adjunct to x-ray mammography for breast cancer screening of women with dense breasts. High image quality is essential for proper diagnostics and computer-aided detection. We propose an automated image quality assessment system for ABUS images that detects artifacts at the time of acquisition. Therefore, we study three aspects that can corrupt ABUS images: the nipple position relative to the rest of the breast, the shadow caused by the nipple, and the shape of the breast contour on the image. Image processing and machine learning algorithms are combined to detect these artifacts based on 368 clinical ABUS images that have been rated manually by two experienced clinicians. At a specificity of 0.99, 55% of the images that were rated as low quality are detected by the proposed algorithms. The areas under the ROC curves of the single classifiers are 0.99 for the nipple position, 0.84 for the nipple shadow, and 0.89 for the breast contour shape. The proposed algorithms work fast and reliably, which makes them adequate for online evaluation of image quality during acquisition. The presented concept may be extended to further image modalities and quality aspects. PMID:27158633

  18. Screen-imaging guidance using a modified portable video macroscope for middle cerebral artery occlusion.

    PubMed

    Zhu, Xingbao; Luo, Junli; Liu, Yun; Chen, Guolong; Liu, Song; Ruan, Qiangjin; Deng, Xunding; Wang, Dianchun; Fan, Quanshui; Pan, Xinghua

    2012-04-25

    The use of operating microscopes is limited by the focal length. Surgeons using these instruments cannot simultaneously view and access the surgical field and must choose one or the other. The longer focal length (more than 1 000 mm) of an operating telescope permits a position away from the operating field, above the surgeon and out of the field of view. This gives the telescope an advantage over an operating microscope. We developed a telescopic system using screen-imaging guidance and a modified portable video macroscope constructed from a Computar MLH-10 × macro lens, a DFK-21AU04 USB CCD Camera and a Dell laptop computer as monitor screen. This system was used to establish a middle cerebral artery occlusion model in rats. Results showed that magnification of the modified portable video macroscope was appropriate (5-20 ×) even though the Computar MLH-10 × macro lens was placed 800 mm away from the operating field rather than at the specified working distance of 152.4 mm with a zoom of 1-40 ×. The screen-imaging telescopic technique was clear, life-like, stereoscopic and matched the actual operation. Screen-imaging guidance led to an accurate, smooth, minimally invasive and comparatively easy surgical procedure. Success rate of the model establishment evaluated by neurological function using the modified neurological score system was 74.07%. There was no significant difference in model establishment time, sensorimotor deficit and infarct volume percentage. Our findings indicate that the telescopic lens is effective in the screen surgical operation mode referred to as "long distance observation and short distance operation" and that screen-imaging guidance using an modified portable video macroscope can be utilized for the establishment of a middle cerebral artery occlusion model and micro-neurosurgery. PMID:25722675

  19. Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images.

    PubMed

    Adame, I M; van der Geest, R J; Wasserman, B A; Mohamed, M A; Reiber, J H C; Lelieveldt, B P F

    2004-04-01

    In vivo MRI provides a means to non-invasively image and assess the morphological features of atherosclerotic carotid arteries. To assess quantitatively the degree of vulnerability and the type of plaque, the contours of the lumen, outer boundary of the vessel wall and plaque components, need to be traced. Currently this is done manually, which is time-consuming and sensitive to inter- and intra-observer variability. The goal of this work was to develop an automated contour detection technique for tracing the lumen, outer boundary and plaque contours in carotid MR short-axis black-blood images. Seventeen patients with carotid atherosclerosis were imaged using high-resolution in vivo MRI, generating a total of 50 PD- and T1-weighted MR images. These images were automatically segmented using the algorithm presented in this work, which combines model-based segmentation and fuzzy clustering to detect the vessel wall, lumen and lipid core boundaries. The results demonstrate excellent correspondence between automatic and manual area measurements for lumen (r = 0.92) and outer (r = 0.91), and acceptable correspondence for fibrous cap thickness (r = 0.71). Though further optimization is required, our algorithm is a powerful tool for automatic detection of lumen and outer boundaries, and characterization of plaque in atherosclerotic vessels. PMID:15029508

  20. Indium-111 platelet imaging for detection of platelet deposition in abdominal aneurysms and prosthetic arterial grafts

    SciTech Connect

    Ritchie, J.L.; Stratton, J.R.; Thiele, B.; Haminton, G.W.; Warrick, L.N.; Huang, T.W.; Harker, L.A.

    1981-04-01

    Thirty-four platelet imaging studies were performed in 23 patients to determine whether platelet deposition could be detected in patients with vascular aneurysms (18 patients) or in patients in whom Dacron prosthetic grafts had been placed (5 patients). In patients in whom abnormal platelet deposition was detected, the effect of administration of platelet-active drugs on platelet deposition was examined. Of the 18 patients with an aneurysm, 12 had equivocally positive studies on initial imaging and 2 had equivocally positive images. Of five patients with Dacron arterial grafts in place, four had diffuse platelet deposition in the grafts; the fifth patient had a platelet deposition only in a pseudoaneurysm. Eight patients with an abdominal aneurysm and positive or equivocally positive baseline images were restudied during platelet-active drug therapy either with aspirin plus dipyridamole (seven patients) or with sulfinpyrazone (four patients). No patient studied during treatment with aspirin plus dipyridamole had detectably decreased platelet deposition compared with baseline determinations. In contrast, two of four patients studied while receiving sulfinpyrazone showed decreased platelet deposition. Thus, platelet imaging may be of value for studying platelet physiology in vivo and for assessing platelet-active drugs and the thrombogenicity of prosthetic graft materials in human beings.

  1. Testing scanners for the quality of output images

    NASA Astrophysics Data System (ADS)

    Concepcion, Vicente P.; Nadel, Lawrence D.; D'Amato, Donald P.

    1995-01-01

    Document scanning is the means through which documents are converted to their digital image representation for electronic storage or distribution. Among the types of documents being scanned by government agencies are tax forms, patent documents, office correspondence, mail pieces, engineering drawings, microfilm, archived historical papers, and fingerprint cards. Increasingly, the resulting digital images are used as the input for further automated processing including: conversion to a full-text-searchable representation via machine printed or handwritten (optical) character recognition (OCR), postal zone identification, raster-to-vector conversion, and fingerprint matching. These diverse document images may be bi-tonal, gray scale, or color. Spatial sampling frequencies range from about 200 pixels per inch to over 1,000. The quality of the digital images can have a major effect on the accuracy and speed of any subsequent automated processing, as well as on any human-based processing which may be required. During imaging system design, there is, therefore, a need to specify the criteria by which image quality will be judged and, prior to system acceptance, to measure the quality of images produced. Unfortunately, there are few, if any, agreed-upon techniques for measuring document image quality objectively. In the output images, it is difficult to distinguish image degradation caused by the poor quality of the input paper or microfilm from that caused by the scanning system. We propose several document image quality criteria and have developed techniques for their measurement. These criteria include spatial resolution, geometric image accuracy, (distortion), gray scale resolution and linearity, and temporal and spatial uniformity. The measurement of these criteria requires scanning one or more test targets along with computer-based analyses of the test target images.

  2. No-reference visual quality assessment for image inpainting

    NASA Astrophysics Data System (ADS)

    Voronin, V. V.; Frantc, V. A.; Marchuk, V. I.; Sherstobitov, A. I.; Egiazarian, K.

    2015-03-01

    Inpainting has received a lot of attention in recent years and quality assessment is an important task to evaluate different image reconstruction approaches. In many cases inpainting methods introduce a blur in sharp transitions in image and image contours in the recovery of large areas with missing pixels and often fail to recover curvy boundary edges. Quantitative metrics of inpainting results currently do not exist and researchers use human comparisons to evaluate their methodologies and techniques. Most objective quality assessment methods rely on a reference image, which is often not available in inpainting applications. Usually researchers use subjective quality assessment by human observers. It is difficult and time consuming procedure. This paper focuses on a machine learning approach for no-reference visual quality assessment for image inpainting based on the human visual property. Our method is based on observation that Local Binary Patterns well describe local structural information of the image. We use a support vector regression learned on assessed by human images to predict perceived quality of inpainted images. We demonstrate how our predicted quality value correlates with qualitative opinion in a human observer study. Results are shown on a human-scored dataset for different inpainting methods.

  3. Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT)

    SciTech Connect

    Pai, Vinay M.; Kozlowski, Megan; Donahue, Danielle; Miller, Elishiah; Xiao, Xianghui; Chen, Marcus Y.; Yu, Zu-Xi; Connelly, Patricia; Jeffries, Kenneth; Wen, Han

    2012-05-10

    The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO{sub 4}) solution. As a tissue-staining contrast agent, OsO{sub 4} is retained in the vessel wall and surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO{sub 4} preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE{sup -/-}) mice at 10 {mu}m resolution. The results show that walls of coronary arteries as small as 45 {mu}m in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO{sub 4} and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts.

  4. Association of Hospital Prices for Coronary Artery Bypass Grafting With Hospital Quality and Reimbursement.

    PubMed

    Giacomino, Bria D; Cram, Peter; Vaughan-Sarrazin, Mary; Zhou, Yunshu; Girotra, Saket

    2016-04-01

    Although prices for medical services are known to vary markedly between hospitals, it remains unknown whether variation in hospital prices is explained by differences in hospital quality or reimbursement from major insurers. We obtained "out-of-pocket" price estimates for coronary artery bypass grafting (CABG) from a random sample of US hospitals for a hypothetical patient without medical insurance. We compared hospital CABG price to (1) "fair price" estimate from Healthcare Bluebook data using each hospital's zip code and (2) Society of Thoracic Surgeons composite CABG quality score and risk-adjusted mortality rate. Of 101 study hospitals, 53 (52.5%) were able to provide a complete price estimate for CABG. The mean price for CABG was $151,271 and ranged from $44,824 to $448,038. Except for geographic census region, which was weakly associated with price, hospital CABG price was not associated with other structural characteristics or CABG volume (p >0.10 for all). Likewise, there was no association between a hospital's price for CABG with average reimbursement from major insurers within the same zip code (ρ = 0.07, p value = 0.6), Society of Thoracic Surgeoncomposite quality score (ρ = 0.08, p value = 0.71), or risk-adjusted CABG mortality (ρ = -0.03 p value = 0.89). In conclusion, the price of CABG varied more than 10-fold across US hospitals. There was no correlation between price information obtained from hospitals and the average reimbursement from major insurers in the same market. We also found no evidence to suggest that hospitals that charge higher prices provide better quality of care.

  5. Image quality assessment by preprocessing and full reference model combination

    NASA Astrophysics Data System (ADS)

    Bianco, S.; Ciocca, G.; Marini, F.; Schettini, R.

    2009-01-01

    This paper focuses on full-reference image quality assessment and presents different computational strategies aimed to improve the robustness and accuracy of some well known and widely used state of the art models, namely the Structural Similarity approach (SSIM) by Wang and Bovik and the S-CIELAB spatial-color model by Zhang and Wandell. We investigate the hypothesis that combining error images with a visual attention model could allow a better fit of the psycho-visual data of the LIVE Image Quality assessment Database Release 2. We show that the proposed quality assessment metric better correlates with the experimental data.

  6. Separation of arteries and veins in the cerebral cortex using physiological oscillations by optical imaging of intrinsic signal

    NASA Astrophysics Data System (ADS)

    Hu, Dewen; Wang, Yucheng; Liu, Yadong; Li, Ming; Liu, Fayi

    2010-05-01

    An automated method is presented for artery-vein separation in cerebral cortical images recorded with optical imaging of the intrinsic signal. The vessel-type separation method is based on the fact that the spectral distribution of intrinsic physiological oscillations varies from arterial regions to venous regions. In arterial regions, the spectral power is higher in the heartbeat frequency (HF), whereas in venous regions, the spectral power is higher in the respiration frequency (RF). The separation method was begun by extracting the vascular network and its centerline. Then the spectra of the optical intrinsic signals were estimated by the multitaper method. A standard F-test was performed on each discrete frequency point to test the statistical significance at the given level. Four periodic physiological oscillations were examined: HF, RF, and two other eigenfrequencies termed F1 and F2. The separation of arteries and veins was implemented with the fuzzy c-means clustering method and the region-growing approach by utilizing the spectral amplitudes and power-ratio values of the four eigenfrequencies on the vasculature. Subsequently, independent spectral distributions in the arteries, veins, and capillary bed were estimated for comparison, which showed that the spectral distributions of the intrinsic signals were very distinct between the arterial and venous regions.

  7. Characterization of Hemodynamics in Great Arteries of Wild-Type Mouse Using Computational Fluid Dynamics Based on Ultrasound Images.

    PubMed

    Chen, Zhuo; Zhou, Yue; Ma, Youcai; Wang, Jingying; He, Yihua; Li, Zhian

    2016-03-01

    Hemodynamic factors in cardiovascular system are hypothesized to play a significant role in causing structural heart development. It is thus important to improve our understanding of velocity characteristics and parameters. We present such a study on wild-type mouse to characterize the vessel geometry, flow pattern, and wall shear stress in great arteries. Microultrasound imaging for small animals was used to measure blood boundary and velocity of the great arteries. Subsequently, specimens' flow boundary conditions were used for 3-dimensional reconstructions of the great artery and aortic arch dimensions, and blood flow velocity data were input into subject-specific computational fluid dynamics for modeling hemodynamics. Measurement by microultrasound imaging showed that blood velocities in the great artery and aortic arch had strong correlations with vascular sizes, whereas blood pressure had a weak trend in relation to vascular size. Wall shear stress magnitude increased when closer to arterial branches and reduced proximally in the aortic root and distally in the descending aorta, and the parameters were related to the fluid mechanics in branches in some degree. We developed a method to investigate fluid mechanics in mouse arteries, using a combination of microultrasound and computational fluid dynamics, and demonstrated its ability to reveal detailed geometric, kinematic, and fluid mechanics parameters.

  8. Method and tool for generating and managing image quality allocations through the design and development process

    NASA Astrophysics Data System (ADS)

    Sparks, Andrew W.; Olson, Craig; Theisen, Michael J.; Addiego, Chris J.; Hutchins, Tiffany G.; Goodman, Timothy D.

    2016-05-01

    Performance models for infrared imaging systems require image quality parameters; optical design engineers need image quality design goals; systems engineers develop image quality allocations to test imaging systems against. It is a challenge to maintain consistency and traceability amongst the various expressions of image quality. We present a method and parametric tool for generating and managing expressions of image quality during the system modeling, requirements specification, design, and testing phases of an imaging system design and development project.

  9. Feature maps driven no-reference image quality prediction of authentically distorted images

    NASA Astrophysics Data System (ADS)

    Ghadiyaram, Deepti; Bovik, Alan C.

    2015-03-01

    Current blind image quality prediction models rely on benchmark databases comprised of singly and synthetically distorted images, thereby learning image features that are only adequate to predict human perceived visual quality on such inauthentic distortions. However, real world images often contain complex mixtures of multiple distortions. Rather than a) discounting the effect of these mixtures of distortions on an image's perceptual quality and considering only the dominant distortion or b) using features that are only proven to be efficient for singly distorted images, we deeply study the natural scene statistics of authentically distorted images, in different color spaces and transform domains. We propose a feature-maps-driven statistical approach which avoids any latent assumptions about the type of distortion(s) contained in an image, and focuses instead on modeling the remarkable consistencies in the scene statistics of real world images in the absence of distortions. We design a deep belief network that takes model-based statistical image features derived from a very large database of authentically distorted images as input and discovers good feature representations by generalizing over different distortion types, mixtures, and severities, which are later used to learn a regressor for quality prediction. We demonstrate the remarkable competence of our features for improving automatic perceptual quality prediction on a benchmark database and on the newly designed LIVE Authentic Image Quality Challenge Database and show that our approach of combining robust statistical features and the deep belief network dramatically outperforms the state-of-the-art.

  10. Functional Real-Time Optoacoustic Imaging of Middle Cerebral Artery Occlusion in Mice

    PubMed Central

    Krieg, Sandro M.; Lehmberg, Jens; Lindauer, Ute; Razansky, Daniel

    2014-01-01

    Background and Purpose Longitudinal functional imaging studies of stroke are key in identifying the disease progression and possible therapeutic interventions. Here we investigate the applicability of real-time functional optoacoustic imaging for monitoring of stroke progression in the whole brain of living animals. Materials and Methods The middle cerebral artery occlusion (MCAO) was used to model stroke in mice, which were imaged preoperatively and the occlusion was kept in place for 60 minutes, after which optoacoustic scans were taken at several time points. Results Post ischemia an asymmetry of deoxygenated hemoglobin in the brain was observed as a region of hypoxia in the hemisphere affected by the ischemic event. Furthermore, we were able to visualize the penumbra in-vivo as a localized hemodynamically-compromised area adjacent to the region of stroke-induced perfusion deficit. Conclusion The intrinsic sensitivity of the new imaging approach to functional blood parameters, in combination with real time operation and high spatial resolution in deep living tissues, may see it become a valuable and unique tool in the development and monitoring of treatments aimed at suspending the spread of an infarct area. PMID:24776997

  11. Interplay between JPEG-2000 image coding and quality estimation

    NASA Astrophysics Data System (ADS)

    Pinto, Guilherme O.; Hemami, Sheila S.

    2013-03-01

    Image quality and utility estimators aspire to quantify the perceptual resemblance and the usefulness of a distorted image when compared to a reference natural image, respectively. Image-coders, such as JPEG-2000, traditionally aspire to allocate the available bits to maximize the perceptual resemblance of the compressed image when compared to a reference uncompressed natural image. Specifically, this can be accomplished by allocating the available bits to minimize the overall distortion, as computed by a given quality estimator. This paper applies five image quality and utility estimators, SSIM, VIF, MSE, NICE and GMSE, within a JPEG-2000 encoder for rate-distortion optimization to obtain new insights on how to improve JPEG-2000 image coding for quality and utility applications, as well as to improve the understanding about the quality and utility estimators used in this work. This work develops a rate-allocation algorithm for arbitrary quality and utility estimators within the Post- Compression Rate-Distortion Optimization (PCRD-opt) framework in JPEG-2000 image coding. Performance of the JPEG-2000 image coder when used with a variety of utility and quality estimators is then assessed. The estimators fall into two broad classes, magnitude-dependent (MSE, GMSE and NICE) and magnitudeindependent (SSIM and VIF). They further differ on their use of the low-frequency image content in computing their estimates. The impact of these computational differences is analyzed across a range of images and bit rates. In general, performance of the JPEG-2000 coder below 1.6 bits/pixel with any of these estimators is highly content dependent, with the most relevant content being the amount of texture in an image and whether the strongest gradients in an image correspond to the main contours of the scene. Above 1.6 bits/pixel, all estimators produce visually equivalent images. As a result, the MSE estimator provides the most consistent performance across all images, while specific

  12. Review of Source Images is Necessary for the Evaluation of Gadolinium-Enhanced MR Angiography for Renal Artery Stenosis

    SciTech Connect

    Wehrschuetz, M. Aschauer, M.; Portugaller, H.; Stix, A.; Wehrschuetz-Sigl, E.; Hausegger, K.; Ebner, F.

    2004-09-15

    The purpose of this study was to assess interobserver variability and accuracy in the evaluation of renal artery stenosis (RAS) with gadolinium-enhanced MR angiography (MRA) and digital subtraction angiography (DSA) in patients with hypertension. The authors found that source images are more accurate than maximum intensity projection (MIP) for depicting renal artery stenosis. Two independent radiologists reviewed MRA and DSA from 38 patients with hypertension. Studies were postprocessed to display images in MIP and source images. DSA was the standard for comparison in each patient. For each main renal artery, percentage stenosis was estimated for any stenosis detected by the two radiologists. To calculate sensitivity, specificity and accuracy, MRA studies and stenoses were categorized as normal, mild (1-39%), moderate (40-69%) or severe ({>=}70%), or occluded. DSA stenosis estimates of 70% or greater were considered hemodynamically significant. Analysis of variance demonstrated that MIP estimates of stenosis were greater than source image estimates for both readers. Differences in estimates for MIP versus DSA reached significance in one reader. The interobserver variance for MIP, source images and DSA was excellent (0.80< {kappa}{<=} 0.90). The specificity of source images was high (97%) but less for MIP (87%); average accuracy was 92% for MIP and 98% for source images. In this study, source images are significantly more accurate than MIP images in one reader with a similar trend was observed in the second reader. The interobserver variability was excellent. When renal artery stenosis is a consideration, high accuracy can only be obtained when source images are examined.

  13. A quantitative method for visual phantom image quality evaluation

    NASA Astrophysics Data System (ADS)

    Chakraborty, Dev P.; Liu, Xiong; O'Shea, Michael; Toto, Lawrence C.

    2000-04-01

    This work presents an image quality evaluation technique for uniform-background target-object phantom images. The Degradation-Comparison-Threshold (DCT) method involves degrading the image quality of a target-containing region with a blocking processing and comparing the resulting image to a similarly degraded target-free region. The threshold degradation needed for 92% correct detection of the target region is the image quality measure of the target. Images of American College of Radiology (ACR) mammography accreditation program phantom were acquired under varying x-ray conditions on a digital mammography machine. Five observers performed ACR and DCT evaluations of the images. A figure-of-merit (FOM) of an evaluation method was defined which takes into account measurement noise and the change of the measure as a function of x-ray exposure to the phantom. The FOM of the DCT method was 4.1 times that of the ACR method for the specks, 2.7 times better for the fibers and 1.4 times better for the masses. For the specks, inter-reader correlations on the same image set increased significantly from 87% for the ACR method to 97% for the DCT method. The viewing time per target for the DCT method was 3 - 5 minutes. The observed greater sensitivity of the DCT method could lead to more precise Quality Control (QC) testing of digital images, which should improve the sensitivity of the QC process to genuine image quality variations. Another benefit of the method is that it can measure the image quality of high detectability target objects, which is impractical by existing methods.

  14. Imaging of vascular dynamics within the foot using dynamic diffuse optical tomography to diagnose peripheral arterial disease

    NASA Astrophysics Data System (ADS)

    Khalil, M. A.; Kim, H. K.; Hoi, J. W.; Kim, I.; Dayal, R.; Shrikande, G.; Hielscher, A. H.

    2013-03-01

    Peripheral Arterial Disease (PAD) is the narrowing of the functional area of the artery generally due to atherosclerosis. It affects between 8-12 million people in the United States and if untreated this can lead to ulceration, gangrene and ultimately amputation. The current diagnostic method for PAD is the ankle-brachial index (ABI). The ABI is a ratio of the patient's systolic blood pressure in the foot to that of the brachial artery in the arm, a ratio below 0.9 is indicative of affected vasculature. However, this method is ineffective in patients with calcified arteries (diabetic and end-stage renal failure patients), which falsely elevates the ABI recording resulting in a false negative reading. In this paper we present our results in a pilot study to deduce optical tomography's ability to detect poor blood perfusion in the foot. We performed an IRB approved 30 patient study, where we imaged the feet of the enrolled patients during a five stage dynamic imaging sequence. The patients were split up into three groups: 10 healthy subjects, 10 PAD patients and 10 PAD patients with diabetes and they were imaged while applying a pressure cuff to their thigh. Differences in the magnitude of blood pooling in the foot and rate at which the blood pools in the foot are all indicative of arterial disease.

  15. [Coronary artery bypass surgery: methods of performance monitoring and quality control].

    PubMed

    Albert, A; Sergeant, P; Ennker, J

    2009-10-01

    The strength of coronary bypass operations depends on the preservation of their benefits regarding freedom of symptoms, quality of life and survival, over decades. Significant variability of the results of an operative intervention according to the hospital or the operating surgeon is considered a weakness in the procedure. The external quality insurance tries to reach a transparent service providing market through hospital ranking comparability. Widely available information and competition will promote the improvement of the whole quality. The structured dialog acts as a control instrument for the BQS (Federal Quality Insurance). It is launched in case of deviations from the standard references or statistically significant differences between the results of the operations in any hospital and the average notational results. In comparison to the external control the hospital internal control has greater ability to reach a medically useful statement regarding the results of the treatment and to correct the mistakes in time. An online information portal based on a departmental databank (DataWarehouse, DataMart) is an attractive solution for the physician in order to get transparently and timely informed about the variability in the performance.The individual surgeon significantly influences the short- and long-term treatment results. Accordingly, selection, targeted training and performance measurements are necessary.Strict risk management and failure analysis of individual cases are included in the methods of internal quality control aiming to identify and correct the inadequacies in the system and the course of treatment. According to the international as well as our own experience, at least 30% of the mortalities after bypass operations are avoidable. A functioning quality control is especially important in minimally invasive interventions because they are often technically more demanding in comparison to the conventional procedures. In the field of OPCAB surgery

  16. Perceived no reference image quality measurement for chromatic aberration

    NASA Astrophysics Data System (ADS)

    Lamb, Anupama B.; Khambete, Madhuri

    2016-03-01

    Today there is need for no reference (NR) objective perceived image quality measurement techniques as conducting subjective experiments and making reference image available is a very difficult task. Very few NR perceived image quality measurement algorithms are available for color distortions like chromatic aberration (CA), color quantization with dither, and color saturation. We proposed NR image quality assessment (NR-IQA) algorithms for images distorted with CA. CA is mostly observed in images taken with digital cameras, having higher sensor resolution with inexpensive lenses. We compared our metric performance with two state-of-the-art NR blur techniques, one full reference IQA technique and three general-purpose NR-IQA techniques, although they are not tailored for CA. We used a CA dataset in the TID-2013 color image database to evaluate performance. Proposed algorithms give comparable performance with state-of-the-art techniques in terms of performance parameters and outperform them in terms of monotonicity and computational complexity. We have also discovered that the proposed CA algorithm best predicts perceived image quality of images distorted with realistic CA.

  17. Figure of Image Quality and Information Capacity in Digital Mammography

    PubMed Central

    Michail, Christos M.; Kalyvas, Nektarios E.; Valais, Ioannis G.; Fudos, Ioannis P.; Fountos, George P.; Dimitropoulos, Nikos; Kandarakis, Ioannis S.

    2014-01-01

    Objectives. In this work, a simple technique to assess the image quality characteristics of the postprocessed image is developed and an easy to use figure of image quality (FIQ) is introduced. This FIQ characterizes images in terms of resolution and noise. In addition information capacity, defined within the context of Shannon's information theory, was used as an overall image quality index. Materials and Methods. A digital mammographic image was postprocessed with three digital filters. Resolution and noise were calculated via the Modulation Transfer Function (MTF), the coefficient of variation, and the figure of image quality. In addition, frequency dependent parameters such as the noise power spectrum (NPS) and noise equivalent quanta (NEQ) were estimated and used to assess information capacity. Results. FIQs for the “raw image” data and the image processed with the “sharpen edges” filter were found 907.3 and 1906.1, correspondingly. The information capacity values were 60.86 × 103 and 78.96 × 103 bits/mm2. Conclusion. It was found that, after the application of the postprocessing techniques (even commercial nondedicated software) on the raw digital mammograms, MTF, NPS, and NEQ are improved for medium to high spatial frequencies leading to resolving smaller structures in the final image. PMID:24895593

  18. Association between extra- and intracranial calcifications of the internal carotid artery: a CBCT imaging study

    PubMed Central

    Aartman, I H A; Tsiklakis, K; van der Stelt, P; Berkhout, W E R

    2015-01-01

    Objectives: This study aimed to evaluate the association between the extracranial and intracranial calcification depiction of the internal carotid artery (ICA), incidentally found in CBCT examinations in adults, and to discuss the conspicuous clinical implications. Methods: Out of a series of 1085 CBCT examinations, 705 CBCT scans were selected according to pre-defined criteria. The extra- and intracranial calcifications depicted along the course of the ICA were documented according to a comprehensive set of descriptive criteria. Results: In total, 799 findings were detected, 60.1% (n = 480) were intracranially and 39.9% (n = 319) were extracranially allocated. The χ2 test showed associations between all variables (p < 0.001). Also, most of the combinations of variables showed statistically significant results in the McNemar's test (p < 0.001). Conclusions: We found that a significant correlation exists between extra- and intracranial calcifications of the ICA. It is clear that in cases of the presence of a calcification in the ICA extracranially, the artery's intracranial portion has an increased risk of showing the same findings. CBCT imaging is widely used as a diagnostic tool, thus, our results contribute to the identification of a subgroup of patients who should undergo further medical evaluation of the atherosclerosis of the ICAs. PMID:25690425

  19. An efficient two-stage approach for image-based FSI analysis of atherosclerotic arteries

    PubMed Central

    Rayz, Vitaliy L.; Mofrad, Mohammad R. K.; Saloner, David

    2010-01-01

    Patient-specific biomechanical modeling of atherosclerotic arteries has the potential to aid clinicians in characterizing lesions and determining optimal treatment plans. To attain high levels of accuracy, recent models use medical imaging data to determine plaque component boundaries in three dimensions, and fluid–structure interaction is used to capture mechanical loading of the diseased vessel. As the plaque components and vessel wall are often highly complex in shape, constructing a suitable structured computational mesh is very challenging and can require a great deal of time. Models based on unstructured computational meshes require relatively less time to construct and are capable of accurately representing plaque components in three dimensions. These models unfortunately require additional computational resources and computing time for accurate and meaningful results. A two-stage modeling strategy based on unstructured computational meshes is proposed to achieve a reasonable balance between meshing difficulty and computational resource and time demand. In this method, a coarsegrained simulation of the full arterial domain is used to guide and constrain a fine-scale simulation of a smaller region of interest within the full domain. Results for a patient-specific carotid bifurcation model demonstrate that the two-stage approach can afford a large savings in both time for mesh generation and time and resources needed for computation. The effects of solid and fluid domain truncation were explored, and were shown to minimally affect accuracy of the stress fields predicted with the two-stage approach. PMID:19756798

  20. A Distinguishing Arterial Pulse Waves Approach by Using Image Processing and Feature Extraction Technique.

    PubMed

    Chen, Hsing-Chung; Kuo, Shyi-Shiun; Sun, Shen-Ching; Chang, Chia-Hui

    2016-10-01

    Traditional Chinese Medicine (TCM) is based on five main types of diagnoses methods consisting of inspection, auscultation, olfaction, inquiry, and palpation. The most important one is palpation also called pulse diagnosis which is to measure wrist artery pulse by doctor's fingers for detecting patient's health state. In this paper, it is carried out by using a specialized pulse measuring instrument to classify one's pulse type. The measured pulse waves (MPWs) were segmented into the arterial pulse wave curve (APWC) by image proposing method. The slopes and periods among four specific points on the APWC were taken to be the pulse features. Three algorithms are proposed in this paper, which could extract these features from the APWCs and compared their differences between each of them to the average feature matrix, individually. These results show that the method proposed in this study is superior and more accurate than the previous studies. The proposed method could significantly save doctors a large amount of time, increase accuracy and decrease data volume. PMID:27562483

  1. Digital image correlation for full-field time-resolved assessment of arterial stiffness

    NASA Astrophysics Data System (ADS)

    Campo, Adriaan; Soons, Joris; Heuten, Hilde; Ennekens, Guy; Goovaerts, Inge; Vrints, Christiaan; Lava, Pascal; Dirckx, Joris

    2014-01-01

    Pulse wave velocity (PWV) of the arterial system is a very important parameter to evaluate cardiovascular health. Currently, however, there is no golden standard for PWV measurement. Digital image correlation (DIC) was used for full-field time-resolved assessment of displacement, velocity, acceleration, and strains of the skin in the neck directly above the common carotid artery. By assessing these parameters, propagation of the pulse wave could be tracked, leading to a new method for PWV detection based on DIC. The method was tested on five healthy subjects. As a means of validation, PWV was measured with ultrasound (US) as well. Measured PWV values were between 3.68 and 5.19 m/s as measured with DIC and between 5.14 and 6.58 m/s as measured with US, with a maximum absolute difference of 2.78 m/s between the two methods. DIC measurements of the neck region can serve as a test base for determining a robust strategy for PWV detection, they can serve as reference for three-dimensional fluid-structure interaction models, or they may even evolve into a screening method of their own. Moreover, full-field, time-resolved DIC can be adapted for other applications in biomechanics.

  2. Beamformed nearfield imaging of a simulated coronary artery containing a stenosis.

    PubMed

    Owsley, N L; Hull, A J

    1998-12-01

    This paper is concerned with the potential for the detection and location of an artery containing a partial blockage by exploiting the space-time properties of the shear wave field in the surrounding elastic soft tissue. As a demonstration of feasibility, an array of piezoelectric film vibration sensors is placed on the free surface of a urethane mold that contains a surgical tube. Inside the surgical tube is a nylon constriction that inhibits the water flowing through the tube. A turbulent field develops in and downstream from the blockage, creating a randomly fluctuating pressure on the inner wall of the tube. This force produces shear and compressional wave energy in the urethane. After the array is used to sample the dominant shear wave space-time energy field at low frequencies, a nearfield (i.e., focused) beamforming process then images the energy distribution in the three-dimensional solid. Experiments and numerical simulations are included to demonstrate the potential of this noninvasive procedure for the early identification of vascular blockages-the typical precursor of serious arterial disease in the human heart.

  3. Dosimetry and image quality assessment in a direct radiography system

    PubMed Central

    Oliveira, Bruno Beraldo; de Oliveira, Marcio Alves; Paixão, Lucas; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2014-01-01

    Objective To evaluate the mean glandular dose with a solid state detector and the image quality in a direct radiography system, utilizing phantoms. Materials and Methods Irradiations were performed with automatic exposure control and polymethyl methacrylate slabs with different thicknesses to calculate glandular dose values. The image quality was evaluated by means of the structures visualized on the images of the phantoms. Results Considering the uncertainty of the measurements, the mean glandular dose results are in agreement with the values provided by the equipment and with internationally adopted reference levels. Results obtained from images of the phantoms were in agreement with the reference values. Conclusion The present study contributes to verify the equipment conformity as regards dose values and image quality. PMID:25741119

  4. Image quality evaluation and control of computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Hiroshi; Yamaguchi, Takeshi; Uetake, Hiroki

    2016-03-01

    Image quality of the computer-generated holograms are usually evaluated subjectively. For example, the re- constructed image from the hologram is compared with other holograms, or evaluated by the double-stimulus impairment scale method to compare with the original image. This paper proposes an objective image quality evaluation of a computer-generated hologram by evaluating both diffraction efficiency and peak signal-to-noise ratio. Theory and numerical experimental results are shown on Fourier transform transmission hologram of both amplitude and phase modulation. Results without the optimized random phase show that the amplitude transmission hologram gives better peak signal-to noise ratio, but the phase transmission hologram provides about 10 times higher diffraction efficiency to the amplitude type. As an optimized phase hologram, Kinoform is evaluated. In addition, we investigate to control image quality by non-linear operation.

  5. Imaging Quality Evaluation of Low Tube Voltage Coronary CT Angiography Using Low Concentration Contrast Medium

    PubMed Central

    Zhang, Zaixian; Wang, Qingguo; Zheng, Linfeng; Feng, Yan; Zhou, Zhiguo; Zhang, Guixiang; Li, Kangan

    2015-01-01

    Purpose To compare the image quality of prospectively ECG-gated low voltage coronary computed tomography angiography (CTA) with an administration of low concentration contrast medium. Method and Materials A total of 101 patients, each with a heart rate below 65 beats per minute (BPM), underwent a prospectively ECG-gated axial scan in CT coronary angiography on a 64-slice CT scanner. All patients were allocated in three groups (group A: n=31, 80kVp, 300 mgI/ml; group B: n=34, 100kVp, 300 mgI/ml; group C: n=36, 120kVp, 370 mgI/ml). The CT attenuation values of aortic root (AR), left main coronary artery (LMA), right main coronary artery (RMA) and chest subcutaneous fat tissue were measured. The contrast-to-noise ratio (CNR) of AR, LMA and RMA were calculated according to the formulas below. The values of computed tomography dose index (CTDI) and dose-length product (DLP) were recorded. Image quality was assessed on a 5-point scale. The results were compared using the one-way ANOVA and rank sum tests. Results The values of CNR and SNR for vessels in group A and group B were not significantly different from group C (each p > 0.05). The effective radiation dose in group A (1.51±0.70 mSv) and group B (2.59±1.24 mSv) were both lower than group C (4.92±2.82 mSv) (each p < 0.05). There was no significant difference among the image quality scores of group A (4.10±0.41), group B (3.90±0.48) and group C (4.04±0.36) (each P > 0.05). Conclusion Low tube voltage coronary CT angiography using low concentration contrast medium does not affect the imaging quality for assessing the coronary arteries compared with high voltage coronary CT angiography using high concentration contrast medium. Meanwhile low concentration contrast medium allowed 47-69% of radiation dose reduction. PMID:25811785

  6. Applying image quality in cell phone cameras: lens distortion

    NASA Astrophysics Data System (ADS)

    Baxter, Donald; Goma, Sergio R.; Aleksic, Milivoje

    2009-01-01

    This paper describes the framework used in one of the pilot studies run under the I3A CPIQ initiative to quantify overall image quality in cell-phone cameras. The framework is based on a multivariate formalism which tries to predict overall image quality from individual image quality attributes and was validated in a CPIQ pilot program. The pilot study focuses on image quality distortions introduced in the optical path of a cell-phone camera, which may or may not be corrected in the image processing path. The assumption is that the captured image used is JPEG compressed and the cellphone camera is set to 'auto' mode. As the used framework requires that the individual attributes to be relatively perceptually orthogonal, in the pilot study, the attributes used are lens geometric distortion (LGD) and lateral chromatic aberrations (LCA). The goal of this paper is to present the framework of this pilot project starting with the definition of the individual attributes, up to their quantification in JNDs of quality, a requirement of the multivariate formalism, therefore both objective and subjective evaluations were used. A major distinction in the objective part from the 'DSC imaging world' is that the LCA/LGD distortions found in cell-phone cameras, rarely exhibit radial behavior, therefore a radial mapping/modeling cannot be used in this case.

  7. Nonrigid 2D registration of fluoroscopic coronary artery image sequence with layered motion

    NASA Astrophysics Data System (ADS)

    Park, Taewoo; Jung, Hoyup; Yun, Il Dong

    2016-03-01

    We present a new method for nonrigid registration of coronary artery models with layered motion information. 2D nonrigid registration method is proposed that brings layered motion information into correspondence with fluoroscopic angiograms. The registered model is overlaid on top of interventional angiograms to provide surgical assistance during image-guided chronic total occlusion procedures. The proposed methodology is divided into two parts: layered structures alignments and local nonrigid registration. In the first part, inpainting method is used to estimate a layered rigid transformation that aligns layered motion information. In the second part, a nonrigid registration method is implemented and used to compensate for any local shape discrepancy. Experimental evaluation conducted on a set of 7 fluoroscopic angiograms results in a reduced target registration error, which showed the effectiveness of the proposed method over single layered approach.

  8. Molecular Order of Arterial Collagen Using Circular Polarization Second-Harmonic Generation Imaging.

    PubMed

    Turcotte, Raphaël; Mattson, Jeffrey M; Wu, Juwell W; Zhang, Yanhang; Lin, Charles P

    2016-02-01

    Second-harmonic generation (SHG) originates from the interaction between upconverted fields from individual scatterers. This renders SHG microscopy highly sensitive to molecular distribution. Here, we aim to take advantage of the difference in SHG between aligned and partially aligned molecules to probe the degree of molecular order during biomechanical testing, independently of the absolute orientation of the scattering molecules. Toward this goal, we implemented a circular polarization SHG imaging approach and used it to quantify the intensity change associated with collagen fibers straightening in the arterial wall during mechanical stretching. We were able to observe the delayed alignment of collagen fibers during mechanical loading, thus demonstrating a simple method to characterize molecular distribution using intensity information alone. PMID:26806883

  9. Intraoperative laser speckle contrast imaging improves the stability of rodent middle cerebral artery occlusion model

    NASA Astrophysics Data System (ADS)

    Yuan, Lu; Li, Yao; Li, Hangdao; Lu, Hongyang; Tong, Shanbao

    2015-09-01

    Rodent middle cerebral artery occlusion (MCAO) model is commonly used in stroke research. Creating a stable infarct volume has always been challenging for technicians due to the variances of animal anatomy and surgical operations. The depth of filament suture advancement strongly influences the infarct volume as well. We investigated the cerebral blood flow (CBF) changes in the affected cortex using laser speckle contrast imaging when advancing suture during MCAO surgery. The relative CBF drop area (CBF50, i.e., the percentage area with CBF less than 50% of the baseline) showed an increase from 20.9% to 69.1% when the insertion depth increased from 1.6 to 1.8 cm. Using the real-time CBF50 marker to guide suture insertion during the surgery, our animal experiments showed that intraoperative CBF-guided surgery could significantly improve the stability of MCAO with a more consistent infarct volume and less mortality.

  10. Arterial elasticity imaging: comparison of finite-element analysis models with high-resolution ultrasound speckle tracking

    PubMed Central

    2010-01-01

    Background The nonlinear mechanical properties of internal organs and tissues may be measured with unparalleled precision using ultrasound imaging with phase-sensitive speckle tracking. The many potential applications of this important noninvasive diagnostic approach include measurement of arterial stiffness, which is associated with numerous major disease processes. The accuracy of previous ultrasound measurements of arterial stiffness and vascular elasticity has been limited by the relatively low strain of nonlinear structures under normal physiologic pressure and the measurement assumption that the effect of the surrounding tissue modulus might be ignored in both physiologic and pressure equalized conditions. Methods This study performed high-resolution ultrasound imaging of the brachial artery in a healthy adult subject under normal physiologic pressure and the use of external pressure (pressure equalization) to increase strain. These ultrasound results were compared to measurements of arterial strain as determined by finite-element analysis models with and without a surrounding tissue, which was represented by homogenous material with fixed elastic modulus. Results Use of the pressure equalization technique during imaging resulted in average strain values of 26% and 18% at the top and sides, respectively, compared to 5% and 2%, at the top and sides, respectively, under physiologic pressure. In the artery model that included surrounding tissue, strain was 19% and 16% under pressure equalization versus 9% and 13% at the top and sides, respectively, under physiologic pressure. The model without surrounding tissue had slightly higher levels of strain under physiologic pressure compared to the other model, but the resulting strain values under pressure equalization were > 60% and did not correspond to experimental values. Conclusions Since pressure equalization may increase the dynamic range of strain imaging, the effect of the surrounding tissue on strain should

  11. Segmentation of the common carotid artery with active shape models from 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Jin, Jiaoying; He, Wanji; Yuchi, Ming; Ding, Mingyue

    2012-03-01

    Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, we develop and evaluate a new segmentation method for outlining both lumen and adventitia (inner and outer walls) of common carotid artery (CCA) from three-dimensional ultrasound (3D US) images for carotid atherosclerosis diagnosis and evaluation. The data set consists of sixty-eight, 17× 2× 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80mg atorvastain and nine with placebo), who had carotid stenosis of 60% or more, at baseline and after three months of treatment. We investigate the use of Active Shape Models (ASMs) to segment CCA inner and outer walls after statin therapy. The proposed method was evaluated with respect to expert manually outlined boundaries as a surrogate for ground truth. For the lumen and adventitia segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 93.6%+/- 2.6%, 91.8%+/- 3.5%, mean absolute distances (MAD) of 0.28+/- 0.17mm and 0.34 +/- 0.19mm, maximum absolute distances (MAXD) of 0.87 +/- 0.37mm and 0.74 +/- 0.49mm. The proposed algorithm took 4.4 +/- 0.6min to segment a single 3D US images, compared to 11.7+/-1.2min for manual segmentation. Therefore, the method would promote the translation of carotid 3D US to clinical care for the fast, safety and economical monitoring of the atherosclerotic disease progression and regression during therapy.

  12. Segmentation of common carotid artery with active appearance models from ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Xin; He, Wanji; Fenster, Aaron; Yuchi, Ming; Ding, Mingyue

    2013-02-01

    Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, a new segmentation method is proposed and evaluated for outlining the common carotid artery (CCA) from transverse view images, which were sliced from three-dimensional ultrasound (3D US) of 1mm inter-slice distance (ISD), to support the monitoring and assessment of carotid atherosclerosis. The data set consists of forty-eight 3D US images acquired from both left and right carotid arteries of twelve patients in two time points who had carotid stenosis of 60% or more at the baseline. The 3D US data were collected at baseline and three-month follow-up, where seven treated with 80mg atorvastatin and five with placebo. The baseline manual boundaries were used for Active Appearance Models (AAM) training; while the treatment data for segmentation testing and evaluation. The segmentation results were compared with experts manually outlined boundaries, as a surrogate for ground truth, for further evaluation. For the adventitia and lumen segmentations, the algorithm yielded Dice Coefficients (DC) of 92.06%+/-2.73% and 89.67%+/-3.66%, mean absolute distances (MAD) of 0.28+/-0.18 mm and 0.22+/-0.16 mm, maximum absolute distances (MAXD) of 0.71+/-0.28 mm and 0.59+/-0.21 mm, respectively. The segmentation results were also evaluated via Pratt's figure of merit (FOM) with the value of 0.61+/-0.06 and 0.66+/-0.05, which provides a quantitative measure for judging the similarity. Experimental results indicate that the proposed method can promote the carotid 3D US usage for a fast, safe and economical monitoring of the atherosclerotic disease progression and regression during therapy.

  13. SPY Imaging Assessment Correlates With Transesophageal Echocardiogram Assessment of Ventricular Function During Off-Pump Coronary Artery Bypass Grafting.

    PubMed

    Anderson, Curtis A; Kypson, Alan P; Hudson, Wes; Ferguson, Bruce; Rodriguez, Evelio

    2008-05-01

    Intraoperative assessment of graft anastomoses is commonly performed after off-pump coronary artery bypass grafting (OPCAB). The SPY imaging system allows intraoperative graft assessment. We document correlation between intraoperative SPY images and wall motion abnormality by transesophageal echocardiogram (TEE) during OPCAB. A 79-year-old female underwent OPCAB. Intraoperative graft patency assessment was performed with the SPY and left ventricular wall motion was assessed by TEE. SPY imaging demonstrated poor flow trough the distal vein graft anastomosis to the posterior descending artery, which correlated with a new posterior wall motion hypokinesis. After graft revision, SPY imaging demonstrated good distal flow and the TEE demonstrated normalization of the left ventricular posterior wall motion. SPY technology allows the surgeon to accurately assess graft patency intraoperatively and allows immediate correction of a technical problem.

  14. The detection of coronary artery disease: a comparison of exercise thallium imaging and exercise equilibrium radionuclide ventriculography.

    PubMed

    McGhie, I; Martin, W; Tweddel, A; Hutton, I

    1987-01-01

    This study compared the accuracy of rest and exercise gated equilibrium technetium ventriculography with exercise thallium imaging in 50 consecutive male patients undergoing routine coronary angiography for the evaluation of chest pain. No patients were excluded on the basis of prior myocardial infarction, nature of angiographically defined coronary disease or symptoms. Antianginal therapy was continued in all patients. Eight patients had normal coronary arteries, 9 had single vessel, disease, 20 had double vessel disease and 13 had triple vessel disease. Sixteen patients had previously documented myocardial infarction. Using exercise radionuclide ventriculography, 34 patients with coronary disease were detected resulting in a sensitivity of 81%; 6 patients with normal coronary arteries had normal scans, a specificity of 75%, with a predictive accuracy of 80%. In comparison, thallium imaging detected 42 patients with coronary disease resulting in a sensitivity of 100%. Six patients with normal coronary arteries had normal thallium images resulting in a specificity of 75% and a predictive accuracy of 96%. These results suggest that exercise thallium imaging is a more accurate investigation than exercise equilibrium radio-nuclide ventriculography and is the investigation of choice in the noninvasive detection of coronary artery disease. PMID:3036530

  15. Perceived quality of wood images influenced by the skewness of image histogram

    NASA Astrophysics Data System (ADS)

    Katsura, Shigehito; Mizokami, Yoko; Yaguchi, Hirohisa

    2015-08-01

    The shape of image luminance histograms is related to material perception. We investigated how the luminance histogram contributed to improvements in the perceived quality of wood images by examining various natural wood and adhesive vinyl sheets with printed wood grain. In the first experiment, we visually evaluated the perceived quality of wood samples. In addition, we measured the colorimetric parameters of the wood samples and calculated statistics of image luminance. The relationship between visual evaluation scores and image statistics suggested that skewness and kurtosis affected the perceived quality of wood. In the second experiment, we evaluated the perceived quality of wood images with altered luminance skewness and kurtosis using a paired comparison method. Our result suggests that wood images are more realistic if the skewness of the luminance histogram is slightly negative.

  16. A feature-enriched completely blind image quality evaluator.

    PubMed

    Lin Zhang; Lei Zhang; Bovik, Alan C

    2015-08-01

    Existing blind image quality assessment (BIQA) methods are mostly opinion-aware. They learn regression models from training images with associated human subjective scores to predict the perceptual quality of test images. Such opinion-aware methods, however, require a large amount of training samples with associated human subjective scores and of a variety of distortion types. The BIQA models learned by opinion-aware methods often have weak generalization capability, hereby limiting their usability in practice. By comparison, opinion-unaware methods do not need human subjective scores for training, and thus have greater potential for good generalization capability. Unfortunately, thus far no opinion-unaware BIQA method has shown consistently better quality prediction accuracy than the opinion-aware methods. Here, we aim to develop an opinion-unaware BIQA method that can compete with, and perhaps outperform, the existing opinion-aware methods. By integrating the features of natural image statistics derived from multiple cues, we learn a multivariate Gaussian model of image patches from a collection of pristine natural images. Using the learned multivariate Gaussian model, a Bhattacharyya-like distance is used to measure the quality of each image patch, and then an overall quality score is obtained by average pooling. The proposed BIQA method does not need any distorted sample images nor subjective quality scores for training, yet extensive experiments demonstrate its superior quality-prediction performance to the state-of-the-art opinion-aware BIQA methods. The MATLAB source code of our algorithm is publicly available at www.comp.polyu.edu.hk/~cslzhang/IQA/ILNIQE/ILNIQE.htm.

  17. A feature-enriched completely blind image quality evaluator.

    PubMed

    Lin Zhang; Lei Zhang; Bovik, Alan C

    2015-08-01

    Existing blind image quality assessment (BIQA) methods are mostly opinion-aware. They learn regression models from training images with associated human subjective scores to predict the perceptual quality of test images. Such opinion-aware methods, however, require a large amount of training samples with associated human subjective scores and of a variety of distortion types. The BIQA models learned by opinion-aware methods often have weak generalization capability, hereby limiting their usability in practice. By comparison, opinion-unaware methods do not need human subjective scores for training, and thus have greater potential for good generalization capability. Unfortunately, thus far no opinion-unaware BIQA method has shown consistently better quality prediction accuracy than the opinion-aware methods. Here, we aim to develop an opinion-unaware BIQA method that can compete with, and perhaps outperform, the existing opinion-aware methods. By integrating the features of natural image statistics derived from multiple cues, we learn a multivariate Gaussian model of image patches from a collection of pristine natural images. Using the learned multivariate Gaussian model, a Bhattacharyya-like distance is used to measure the quality of each image patch, and then an overall quality score is obtained by average pooling. The proposed BIQA method does not need any distorted sample images nor subjective quality scores for training, yet extensive experiments demonstrate its superior quality-prediction performance to the state-of-the-art opinion-aware BIQA methods. The MATLAB source code of our algorithm is publicly available at www.comp.polyu.edu.hk/~cslzhang/IQA/ILNIQE/ILNIQE.htm. PMID:25915960

  18. Optimization and image quality assessment of the alpha-image reconstruction algorithm: iterative reconstruction with well-defined image quality metrics

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergej; Sawall, Stefan; Kuchenbecker, Stefan; Faby, Sebastian; Knaup, Michael; Kachelrieß, Marc

    2015-03-01

    The reconstruction of CT images with low noise and highest spatial resolution is a challenging task. Usually, a trade-off between at least these two demands has to be found or several reconstructions with mutually exclusive properties, i.e. either low noise or high spatial resolution, have to be performed. Iterative reconstruction methods might be suitable tools to overcome these limitations and provide images of highest diagnostic quality with formerly mutually exclusive image properties. While image quality metrics like the modulation transfer function (MTF) or the point spread function (PSF) are well-defined in case of standard reconstructions, e.g. filtered backprojection, the iterative algorithms lack these metrics. To overcome this issue alternate methodologies like the model observers have been proposed recently to allow a quantification of a usually task-dependent image quality metric.1 As an alternative we recently proposed an iterative reconstruction method, the alpha-image reconstruction (AIR), providing well-defined image quality metrics on a per-voxel basis.2 In particular, the AIR algorithm seeks to find weighting images, the alpha-images, that are used to blend between basis images with mutually exclusive image properties. The result is an image with highest diagnostic quality that provides a high spatial resolution and a low noise level. As the estimation of the alpha-images is computationally demanding we herein aim at optimizing this process and highlight the favorable properties of AIR using patient measurements.

  19. Off-pump coronary artery bypass grafting in patients with mirror-imaging dextrocardia.

    PubMed

    Yuan, Xin; Sun, Hansong; Wang, Xianqiang

    2015-08-01

    Dextrocardia requires alterations in techniques during coronary artery bypass graft (CABG) surgery. We report two cases undergoing off-pump coronary artery bypass graft (OPCAB) surgery and discuss techniques for the operative management of these patients.

  20. Pre-analytic process control: projecting a quality image.

    PubMed

    Serafin, Mark D

    2006-01-01

    Within the health-care system, the term "ancillary department" often describes the laboratory. Thus, laboratories may find it difficult to define their image and with it, customer perception of department quality. Regulatory requirements give laboratories who so desire an elegant way to address image and perception issues--a comprehensive pre-analytic system solution. Since large laboratories use such systems--laboratory service manuals--I describe and illustrate the process for the benefit of smaller facilities. There exist resources to help even small laboratories produce a professional service manual--an elegant solution to image and customer perception of quality. PMID:17005095

  1. The effect of image quality and forensic expertise in facial image comparisons.

    PubMed

    Norell, Kristin; Läthén, Klas Brorsson; Bergström, Peter; Rice, Allyson; Natu, Vaidehi; O'Toole, Alice

    2015-03-01

    Images of perpetrators in surveillance video footage are often used as evidence in court. In this study, identification accuracy was compared for forensic experts and untrained persons in facial image comparisons as well as the impact of image quality. Participants viewed thirty image pairs and were asked to rate the level of support garnered from their observations for concluding whether or not the two images showed the same person. Forensic experts reached their conclusions with significantly fewer errors than did untrained participants. They were also better than novices at determining when two high-quality images depicted the same person. Notably, lower image quality led to more careful conclusions by experts, but not for untrained participants. In summary, the untrained participants had more false negatives and false positives than experts, which in the latter case could lead to a higher risk of an innocent person being convicted for an untrained witness. PMID:25537273

  2. Improving high resolution retinal image quality using speckle illumination HiLo imaging

    PubMed Central

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-01-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis. PMID:25136486

  3. Influence of segmented vessel size due to limited imaging resolution on coronary hyperemic flow prediction from arterial crown volume.

    PubMed

    van Horssen, P; van Lier, M G J T B; van den Wijngaard, J P H M; VanBavel, E; Hoefer, I E; Spaan, J A E; Siebes, M

    2016-04-01

    Computational predictions of the functional stenosis severity from coronary imaging data use an allometric scaling law to derive hyperemic blood flow (Q) from coronary arterial volume (V), Q = αV(β) Reliable estimates of α and β are essential for meaningful flow estimations. We hypothesize that the relation between Q and V depends on imaging resolution. In five canine hearts, fluorescent microspheres were injected into the left anterior descending coronary artery during maximal hyperemia. The coronary arteries of the excised heart were filled with fluorescent cast material, frozen, and processed with an imaging cryomicrotome to yield a three-dimensional representation of the coronary arterial network. The effect of limited image resolution was simulated by assessing scaling law parameters from the virtual arterial network at 11 truncation levels ranging from 50 to 1,000 μm segment radius. Mapped microsphere locations were used to derive the corresponding relative Q using a reference truncation level of 200 μm. The scaling law factor α did not change with truncation level, despite considerable intersubject variability. In contrast, the scaling law exponent β decreased from 0.79 to 0.55 with increasing truncation radius and was significantly lower for truncation radii above 500 μm vs. 50 μm (P< 0.05). Hyperemic Q was underestimated for vessel truncation above the reference level. In conclusion, flow-crown volume relations confirmed overall power law behavior; however, this relation depends on the terminal vessel radius that can be visualized. The scaling law exponent β should therefore be adapted to the resolution of the imaging modality. PMID:26825519

  4. Influence of segmented vessel size due to limited imaging resolution on coronary hyperemic flow prediction from arterial crown volume.

    PubMed

    van Horssen, P; van Lier, M G J T B; van den Wijngaard, J P H M; VanBavel, E; Hoefer, I E; Spaan, J A E; Siebes, M

    2016-04-01

    Computational predictions of the functional stenosis severity from coronary imaging data use an allometric scaling law to derive hyperemic blood flow (Q) from coronary arterial volume (V), Q = αV(β) Reliable estimates of α and β are essential for meaningful flow estimations. We hypothesize that the relation between Q and V depends on imaging resolution. In five canine hearts, fluorescent microspheres were injected into the left anterior descending coronary artery during maximal hyperemia. The coronary arteries of the excised heart were filled with fluorescent cast material, frozen, and processed with an imaging cryomicrotome to yield a three-dimensional representation of the coronary arterial network. The effect of limited image resolution was simulated by assessing scaling law parameters from the virtual arterial network at 11 truncation levels ranging from 50 to 1,000 μm segment radius. Mapped microsphere locations were used to derive the corresponding relative Q using a reference truncation level of 200 μm. The scaling law factor α did not change with truncation level, despite considerable intersubject variability. In contrast, the scaling law exponent β decreased from 0.79 to 0.55 with increasing truncation radius and was significantly lower for truncation radii above 500 μm vs. 50 μm (P< 0.05). Hyperemic Q was underestimated for vessel truncation above the reference level. In conclusion, flow-crown volume relations confirmed overall power law behavior; however, this relation depends on the terminal vessel radius that can be visualized. The scaling law exponent β should therefore be adapted to the resolution of the imaging modality.

  5. APQ-102 imaging radar digital image quality study

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1982-01-01

    A modified APQ-102 sidelooking radar collected synthetic aperture radar (SAR) data which was digitized and recorded on wideband magnetic tape. These tapes were then ground processed into computer compatible tapes (CCT's). The CCT's may then be processed into high resolution radar images by software on the CYBER computer.

  6. Comparison of Intravoxel Incoherent Motion Diffusion-Weighted MR Imaging and Arterial Spin Labeling MR Imaging in Gliomas

    PubMed Central

    Zhang, Zhiqiang; Zhou, Zhenyu; Zhang, Zhongping; Zhang, Yong; Zhang, Zongjun

    2015-01-01

    Gliomas grading is important for treatment plan; we aimed to investigate the application of intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) in gliomas grading, by comparing with the three-dimensional pseudocontinuous arterial spin labeling (3D pCASL). 24 patients (13 high grade gliomas and 11 low grade gliomas) underwent IVIM DWI and 3D pCASL imaging before operation; maps of fast diffusion coefficient (D∗), slow diffusion coefficient (D), fractional perfusion-related volume (f), and apparent diffusion coefficient (ADC) as well as cerebral blood flow (CBF) were calculated and then coregistered to generate the corresponding parameter values. We found CBF and D∗ were higher in the high grade gliomas, whereas ADC, D, and f were lower (all P < 0.05). In differentiating the high from low grade gliomas, the maximum areas under the curves (AUC) of D∗, CBF, and ADC were 0.857, 0.85, and 0.902, respectively. CBF was negatively correlated with f in tumor (r = −0.619, P = 0.001). ADC was positively correlated with D in both tumor and white matter (r = 0.887, P = 0.000 and r = 0.824, P = 0.000, resp.). There was no correlation between CBF and D∗ in both tumor and white matter (P > 0.05). IVIM DWI showed more efficiency than 3D pCASL but less validity than conventional DWI in differentiating the high from low grade gliomas. PMID:25945328

  7. Adolescents with d-Transposition of the Great Arteries Corrected with the Arterial Switch Procedure: Neuropsychological Assessment and Structural Brain Imaging

    PubMed Central

    Bellinger, David C.; Wypij, David; Rivkin, Michael J.; DeMaso, David R.; Robertson, Richard L.; Dunbar-Masterson, Carolyn; Rappaport, Leonard A.; Wernovsky, Gil; Jonas, Richard A.; Newburger, Jane W.

    2011-01-01

    Background We report on neuropsychological and structural brain imaging assessments at age 16 years in children with d-transposition of the great arteries (d-TGA) who underwent the arterial switch operation (ASO) as infants. Children were randomly assigned to a vital organ support method, deep hypothermia with either total circulatory arrest or continuous low-flow cardiopulmonary bypass. Methods and Results Of 159 eligible adolescents, 139 (87%) participated. Academic achievement, memory, executive functions, visual-spatial skills, attention, and social cognition were assessed. Few significant treatment group differences were found. The occurrence of seizures in the post-operative period was the medical variable most consistently related to worse outcomes. The scores of both treatment groups tended to be lower than those of the test normative populations, with substantial proportions scoring 1 or more standard deviations below the expected mean. Although the test scores of most adolescents in this trial cohort are in the average range, a substantial proportion has received remedial academic or behavioral services (65%). MRI abnormalities were more frequent in the d-TGA group (33%) than in a referent group (4%). Conclusions Adolescents with d-TGA who have undergone the arterial switch operation are at increased neurodevelopmental risk. These data suggest that children with congenital heart disease may benefit from ongoing surveillance to identify emerging difficulties. Clinical Trial Registration NCT00000470, http://clinicaltrials.gov PMID:21875911

  8. Peripheral Aberrations and Image Quality for Contact Lens Correction

    PubMed Central

    Shen, Jie; Thibos, Larry N.

    2011-01-01

    Purpose Contact lenses reduced the degree of hyperopic field curvature present in myopic eyes and rigid contact lenses reduced sphero-cylindrical image blur on the peripheral retina, but their effect on higher order aberrations and overall optical quality of the eye in the peripheral visual field is still unknown. The purpose of our study was to evaluate peripheral wavefront aberrations and image quality across the visual field before and after contact lens correction. Methods A commercial Hartmann-Shack aberrometer was used to measure ocular wavefront errors in 5° steps out to 30° of eccentricity along the horizontal meridian in uncorrected eyes and when the same eyes are corrected with soft or rigid contact lenses. Wavefront aberrations and image quality were determined for the full elliptical pupil encountered in off-axis measurements. Results Ocular higher-order aberrations increase away from fovea in the uncorrected eye. Third-order aberrations are larger and increase faster with eccentricity compared to the other higher-order aberrations. Contact lenses increase all higher-order aberrations except 3rd-order Zernike terms. Nevertheless, a net increase in image quality across the horizontal visual field for objects located at the foveal far point is achieved with rigid lenses, whereas soft contact lenses reduce image quality. Conclusions Second order aberrations limit image quality more than higher-order aberrations in the periphery. Although second-order aberrations are reduced by contact lenses, the resulting gain in image quality is partially offset by increased amounts of higher-order aberrations. To fully realize the benefits of correcting higher-order aberrations in the peripheral field requires improved correction of second-order aberrations as well. PMID:21873925

  9. The influence of software filtering in digital mammography image quality

    NASA Astrophysics Data System (ADS)

    Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.

    2009-05-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  10. Clinical Decision Making With Myocardial Perfusion Imaging in Patients With Known or Suspected Coronary Artery Disease

    PubMed Central

    Cremer, Paul; Hachamovitch, Rory; Tamarappoo, Balaji

    2015-01-01

    Myocardial perfusion imaging (MPI) to diagnose coronary artery disease (CAD) is best performed in patients with intermediate pretest likelihood of disease; unfortunately, pretest likelihood is often overestimated, resulting in the inappropriate use of perfusion imaging. A good functional capacity often predicts low risk, and MPI for diagnosing CAD should be reserved for individuals with poor exercise capacity, abnormal resting electrocardiography, or an intermediate or high probability of CAD. With respect to anatomy-based testing, coronary CT angiography has a good negative predictive value, but stenosis severity correlates poorly with ischemia. Therefore decision making with respect to revascularization may be limited when a purely noninvasive anatomical test is used. Regarding perfusion imaging, the diagnostic accuracies of SPECT, PET, and cardiac magnetic resonance are similar, though fewer studies are available with cardiac magnetic resonance. PET coronary flow reserve may offer a negative predictive value sufficiently high to exclude severe CAD such that patients with mild to moderate reversible perfusion defects can forego invasive angiography. In addition, combined anatomical and perfusion-based imaging may eventually offer a definitive evaluation for diagnosing CAD, even in higher risk patients. Any remarkable findings on single-photon emission computed tomography and PET MPI studies are valuable for prognostication. Furthermore, assessment of myocardial blood flow with PET is particularly powerful for prognostication as it reflects the end result of many processes that lead to atherosclerosis. Decision making with respect to revascularization is limited for cardiac MRI and PET MPI. In contrast, retrospective radionuclide studies have identified an ischemic threshold, but randomized trials are needed. In patients with at least moderately reduced left ventricular systolic function, viable myocardium as assessed by PET or MRI, appears to identify patients

  11. Thematic Mapper image quality: Preliminary results

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Card, D. H.; Hlavka, C. A.; Likens, W. C.; Mertz, F. C.; Hall, J. R.

    1983-01-01

    Based on images analyzed so far, the band to band registration accuracy of the thematic mapper is very good. For bands within the same focal plane, the mean misregistrations are well within the specification, 0.2 pixels. For bands between the cooled and uncooled focal planes, there is a consistent mean misregistration of 0.5 pixels along-scan and 0.2-0.3 pixels across-scan. It exceeds the permitted 0.3 pixels for registration of bands between focal planes. If the mean misregistrations were removed by the data processing software, an analysis of the standard deviation of the misregistration indicates all band combinations would meet the registration specifications except for those including the thermal band. Analysis of the periodic noise in one image indicates a noise component in band 1 with a spatial frequency equivalent to 3.2 pixels in the along-scan direction.

  12. Validation of no-reference image quality index for the assessment of digital mammographic images

    NASA Astrophysics Data System (ADS)

    de Oliveira, Helder C. R.; Barufaldi, Bruno; Borges, Lucas R.; Gabarda, Salvador; Bakic, Predrag R.; Maidment, Andrew D. A.; Schiabel, Homero; Vieira, Marcelo A. C.

    2016-03-01

    To ensure optimal clinical performance of digital mammography, it is necessary to obtain images with high spatial resolution and low noise, keeping radiation exposure as low as possible. These requirements directly affect the interpretation of radiologists. The quality of a digital image should be assessed using objective measurements. In general, these methods measure the similarity between a degraded image and an ideal image without degradation (ground-truth), used as a reference. These methods are called Full-Reference Image Quality Assessment (FR-IQA). However, for digital mammography, an image without degradation is not available in clinical practice; thus, an objective method to assess the quality of mammograms must be performed without reference. The purpose of this study is to present a Normalized Anisotropic Quality Index (NAQI), based on the Rényi entropy in the pseudo-Wigner domain, to assess mammography images in terms of spatial resolution and noise without any reference. The method was validated using synthetic images acquired through an anthropomorphic breast software phantom, and the clinical exposures on anthropomorphic breast physical phantoms and patient's mammograms. The results reported by this noreference index follow the same behavior as other well-established full-reference metrics, e.g., the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Reductions of 50% on the radiation dose in phantom images were translated as a decrease of 4dB on the PSNR, 25% on the SSIM and 33% on the NAQI, evidencing that the proposed metric is sensitive to the noise resulted from dose reduction. The clinical results showed that images reduced to 53% and 30% of the standard radiation dose reported reductions of 15% and 25% on the NAQI, respectively. Thus, this index may be used in clinical practice as an image quality indicator to improve the quality assurance programs in mammography; hence, the proposed method reduces the subjectivity

  13. Characterization of the image quality in neutron radioscopy

    NASA Astrophysics Data System (ADS)

    Brunner, J.; Engelhardt, M.; Frei, G.; Gildemeister, A.; Lehmann, E.; Hillenbach, A.; Schillinger, B.

    2005-04-01

    Neutron radioscopy, or dynamic neutron radiography, is a non-destructive testing method, which has made big steps in the last years. Depending on the neutron flux, the object and the detector, for single events a time resolution down to a few milliseconds is possible. In the case of repetitive processes the object can be synchronized with the detector and better statistics in the image can be reached by adding radiographies of the same phase with a time resolution down to 100 μs. By stepwise delaying the trigger signal a radiography movie can be composed. Radiography images of a combustion engine and an injection nozzle were evaluated quantitatively by different methods trying to characterize the image quality of an imaging system. The main factors which influence the image quality are listed and discussed.

  14. Method for image quality monitoring on digital television networks

    NASA Astrophysics Data System (ADS)

    Bretillon, Pierre; Baina, Jamal; Jourlin, Michel; Goudezeune, Gabriel

    1999-11-01

    This paper presents a method designed to monitor image quality. The emphasis is given here to the monitoring in digital television broadcasting networks, in order for the providers to ensure a 'user-oriented' Quality of Service. Most objective image quality assessment methods are technically very difficult to apply in this context because of bandwidth limitations. We propose a parametric, reduced reference method that relies on the evaluation of characteristic coding and transmission impairments with a set of features. We show that quality can be predicted with a satisfying correlation to a subjective evaluation by the combination of several impairment features in an appropriate model. The method has been implemented and tested in a range of situations on simulated and real DVB networks. This allows to conclude on the usefulness of the approach and our future developments for quality of service monitoring in digital television.

  15. Micro-CT image-derived metrics quantify arterial wall distensibility reduction in a rat model of pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Johnson, Roger H.; Karau, Kelly L.; Molthen, Robert C.; Haworth, Steven T.; Dawson, Christopher A.

    2000-04-01

    We developed methods to quantify arterial structural and mechanical properties in excised rat lungs and applied them to investigate the distensibility decrease accompanying chronic hypoxia-induced pulmonary hypertension. Lungs of control and hypertensive (three weeks 11% O2) animals were excised and a contrast agent introduced before micro-CT imaging with a special purpose scanner. For each lung, four 3D image data sets were obtained, each at a different intra-arterial contrast agent pressure. Vessel segment diameters and lengths were measured at all levels in the arterial tree hierarchy, and these data used to generate features sensitive to distensibility changes. Results indicate that measurements obtained from 3D micro-CT images can be used to quantify vessel biomechanical properties in this rat model of pulmonary hypertension and that distensibility is reduced by exposure to chronic hypoxia. Mechanical properties can be assessed in a localized fashion and quantified in a spatially-resolved way or as a single parameter describing the tree as a whole. Micro-CT is a nondestructive way to rapidly assess structural and mechanical properties of arteries in small animal organs maintained in a physiological state. Quantitative features measured by this method may provide valuable insights into the mechanisms causing the elevated pressures in pulmonary hypertension of differing etiologies and should become increasingly valuable tools in the study of complex phenotypes in small-animal models of important diseases such as hypertension.

  16. Magnetic Resonance Imaging (MRI) Analysis of Fibroid Location in Women Achieving Pregnancy After Uterine Artery Embolization

    SciTech Connect

    Walker, Woodruff J.; Bratby, Mark John

    2007-09-15

    The purpose of this study was to evaluate the fibroid morphology in a cohort of women achieving pregnancy following treatment with uterine artery embolization (UAE) for symptomatic uterine fibroids. A retrospective review of magnetic resonance imaging (MRI) of the uterus was performed to assess pre-embolization fibroid morphology. Data were collected on fibroid size, type, and number and included analysis of follow-up imaging to assess response. There have been 67 pregnancies in 51 women, with 40 live births. Intramural fibroids were seen in 62.7% of the women (32/48). Of these the fibroids were multiple in 16. A further 12 women had submucosal fibroids, with equal numbers of types 1 and 2. Two of these women had coexistent intramural fibroids. In six women the fibroids could not be individually delineated and formed a complex mass. All subtypes of fibroid were represented in those subgroups of women achieving a live birth versus those who did not. These results demonstrate that the location of uterine fibroids did not adversely affect subsequent pregnancy in the patient population investigated. Although this is only a small qualitative study, it does suggest that all types of fibroids treated with UAE have the potential for future fertility.

  17. Human brain: reliability and reproducibility of pulsed arterial spin-labeling perfusion MR imaging.

    PubMed

    Jahng, Geon-Ho; Song, Enmin; Zhu, Xiao-Ping; Matson, Gerald B; Weiner, Michael W; Schuff, Norbert

    2005-03-01

    The Committee of Human Research of the University of California San Francisco approved this study, and all volunteers provided written informed consent. The goal of this study was to prospectively determine the global and regional reliability and reproducibility of noninvasive brain perfusion measurements obtained with different pulsed arterial spin-labeling (ASL) magnetic resonance (MR) imaging methods and to determine the extent to which within-subject variability and random noise limit reliability and reproducibility. Thirteen healthy volunteers were examined twice within 2 hours. The pulsed ASL methods compared in this study differ mainly with regard to magnetization transfer and eddy current effects. There were two main results: (a) Pulsed ASL MR imaging consistently had high measurement reliability (intraclass correlation coefficients greater than 0.75) and reproducibility (coefficients of variation less than 8.5%), and (b) random noise rather than within-subject variability limited reliability and reproducibility. It was concluded that low signal-to-noise ratios substantially limit the reliability and reproducibility of perfusion measurements.

  18. Coronary arteries motion modeling on 2D x-ray images

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Sundar, Hari

    2012-02-01

    During interventional procedures, 3D imaging modalities like CT and MRI are not commonly used due to interference with the surgery and radiation exposure concerns. Therefore, real-time information is usually limited and building models of cardiac motion are difficult. In such case, vessel motion modeling based on 2-D angiography images become indispensable. Due to issues with existing vessel segmentation algorithms and the lack of contrast in occluded vessels, manual segmentation of certain branches is usually necessary. In addition, such occluded branches are the most important vessels during coronary interventions and obtaining motion models for these can greatly help in reducing the procedure time and radiation exposure. Segmenting different cardiac phases independently does not guarantee temporal consistency and is not efficient for occluded branches required manual segmentation. In this paper, we propose a coronary motion modeling system which extracts the coronary tree for every cardiac phase, maintaining the segmentation by tracking the coronary tree during the cardiac cycle. It is able to map every frame to the specific cardiac phase, thereby inferring the shape information of the coronary arteries using the model corresponding to its phase. Our experiments show that our motion modeling system can achieve promising results with real-time performance.

  19. Average glandular dose and phantom image quality in mammography

    NASA Astrophysics Data System (ADS)

    Oliveira, M.; Nogueira, M. S.; Guedes, E.; Andrade, M. C.; Peixoto, J. E.; Joana, G. S.; Castro, J. G.

    2007-09-01

    Doses in mammography should be maintained as low as possible without reducing the high image quality needed for early detection of the breast cancer. The breast is composed of tissues with very close composition and densities. It increases the difficulty to detect small changes in the normal anatomical structures which may be associated with breast cancer. To achieve the standards of definition and contrast for mammography, the quality and intensity of the X-ray beam, the breast positioning and compression, the film-screen system, and the film processing have to be in optimal operational conditions. This study sought to evaluate average glandular dose (AGD) and image quality on a standard phantom in 134 mammography units in the state of Minas Gerais, Brazil, between December 2004 and May 2006. AGDs were obtained by means of entrance kerma measured with TL LiF100 dosimeters on phantom surface. Phantom images were obtained with automatic exposure technique, fixed 28 kV and molybdenum anode-filter combination. The phantom used contained structures simulating tumoral masses, microcalcifications, fibers and low contrast areas. High-resolution metallic meshes to assess image definition and a stepwedge to measure image contrast index were also inserted in the phantom. The visualization of simulated structures, the mean optical density and the contrast index allowed to classify the phantom image quality in a seven-point scale. The results showed that 54.5% of the facilities did not achieve the minimum performance level for image quality. It is mainly due to insufficient film processing observed in 61.2% of the units. AGD varied from 0.41 to 2.73 mGy with a mean value of 1.32±0.44 mGy. In all optimal quality phantom images, AGDs were in this range. Additionally, in 7.3% of the mammography units, the AGD constraint of 2 mGy was exceeded. One may conclude that dose level to patient and image quality are not in conformity to regulations in most of the facilities. This

  20. Hepatic arterial-phase dynamic gadolinium-enhanced MR imaging: optimization with a test examination and a power injector.

    PubMed

    Earls, J P; Rofsky, N M; DeCorato, D R; Krinsky, G A; Weinreb, J C

    1997-01-01

    To optimize findings at dynamic gadolinium-enhanced hepatic magnetic resonance imaging in the hepatic arterial phase, a timing examination was performed after injection of a 0.5-mL timing bolus of gadopentetate dimeglumine. In the experimental group (n = 28), power injection was used and the imaging delay was determined in each patient on the basis of the results of the timing examination. In the control group (n = 28), hand injection and a fixed 20-second imaging delay were used. Arterial-phase examinations (defined as relative liver enhancement of not more than 30% of peak parenchymal enhancement) were successful in 26 (93%) experimental group patients and in 17 (61%) control group patients.

  1. Intravascular near-infrared fluorescence molecular imaging of atherosclerosis: toward coronary arterial visualization of biologically high-risk plaques

    NASA Astrophysics Data System (ADS)

    Calfon, Marcella A.; Vinegoni, Claudio; Ntziachristos, Vasilis; Jaffer, Farouc A.

    2010-01-01

    New imaging methods are urgently needed to identify high-risk atherosclerotic lesions prior to the onset of myocardial infarction, stroke, and ischemic limbs. Molecular imaging offers a new approach to visualize key biological features that characterize high-risk plaques associated with cardiovascular events. While substantial progress has been realized in clinical molecular imaging of plaques in larger arterial vessels (carotid, aorta, iliac), there remains a compelling, unmet need to develop molecular imaging strategies targeted to high-risk plaques in human coronary arteries. We present recent developments in intravascular near-IR fluorescence catheter-based strategies for in vivo detection of plaque inflammation in coronary-sized arteries. In particular, the biological, light transmission, imaging agent, and engineering principles that underlie a new intravascular near-IR fluorescence sensing method are discussed. Intravascular near-IR fluorescence catheters appear highly translatable to the cardiac catheterization laboratory, and thus may offer a new in vivo method to detect high-risk coronary plaques and to assess novel atherosclerosis biologics.

  2. Automated coronary artery calcification detection on low-dose chest CT images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Cham, Matthew D.; Henschke, Claudia; Yankelevitz, David; Reeves, Anthony P.

    2014-03-01

    Coronary artery calcification (CAC) measurement from low-dose CT images can be used to assess the risk of coronary artery disease. A fully automatic algorithm to detect and measure CAC from low-dose non-contrast, non-ECG-gated chest CT scans is presented. Based on the automatically detected CAC, the Agatston score (AS), mass score and volume score were computed. These were compared with scores obtained manually from standard-dose ECG-gated scans and low-dose un-gated scans of the same patient. The automatic algorithm segments the heart region based on other pre-segmented organs to provide a coronary region mask. The mitral valve and aortic valve calcification is identified and excluded. All remaining voxels greater than 180HU within the mask region are considered as CAC candidates. The heart segmentation algorithm was evaluated on 400 non-contrast cases with both low-dose and regular dose CT scans. By visual inspection, 371 (92.8%) of the segmentations were acceptable. The automated CAC detection algorithm was evaluated on 41 low-dose non-contrast CT scans. Manual markings were performed on both low-dose and standard-dose scans for these cases. Using linear regression, the correlation of the automatic AS with the standard-dose manual scores was 0.86; with the low-dose manual scores the correlation was 0.91. Standard risk categories were also computed. The automated method risk category agreed with manual markings of gated scans for 24 cases while 15 cases were 1 category off. For low-dose scans, the automatic method agreed with 33 cases while 7 cases were 1 category off.

  3. Toward the development of an image quality tool for active millimeter wave imaging systems

    NASA Astrophysics Data System (ADS)

    Barber, Jeffrey; Weatherall, James C.; Greca, Joseph; Smith, Barry T.

    2015-05-01

    Preliminary design considerations for an image quality tool to complement millimeter wave imaging systems are presented. The tool is planned for use in confirming operating parameters; confirmation of continuity for imaging component design changes, and analysis of new components and detection algorithms. Potential embodiments of an image quality tool may contain materials that mimic human skin in order to provide a realistic signal return for testing, which may also help reduce or eliminate the need for mock passengers for developmental testing. Two candidate materials, a dielectric liquid and an iron-loaded epoxy, have been identified and reflection measurements have been performed using laboratory systems in the range 18 - 40 GHz. Results show good agreement with both laboratory and literature data on human skin, particularly in the range of operation of two commercially available millimeter wave imaging systems. Issues related to the practical use of liquids and magnetic materials for image quality tools are discussed.

  4. Body image and quality of life in a Spanish population

    PubMed Central

    Lobera, Ignacio Jáuregui; Ríos, Patricia Bolaños

    2011-01-01

    Purpose The aim of the current study was to analyze the psychometric properties, factor structure, and internal consistency of the Spanish version of the Body Image Quality of Life Inventory (BIQLI-SP) as well as its test–retest reliability. Further objectives were to analyze different relationships with key dimensions of psychosocial functioning (ie, self-esteem, presence of psychopathological symptoms, eating and body image-related problems, and perceived stress) and to evaluate differences in body image quality of life due to gender. Patients and methods The sample comprised 417 students without any psychiatric history, recruited from the Pablo de Olavide University and the University of Seville. There were 140 men (33.57%) and 277 women (66.43%), and the mean age was 21.62 years (standard deviation = 5.12). After obtaining informed consent from all participants, the following questionnaires were administered: BIQLI, Eating Disorder Inventory-2 (EDI-2), Perceived Stress Questionnaire (PSQ), Self-Esteem Scale (SES), and Symptom Checklist-90-Revised (SCL-90-R). Results The BIQLI-SP shows adequate psychometric properties, and it may be useful to determine the body image quality of life in different physical conditions. A more positive body image quality of life is associated with better self-esteem, better psychological wellbeing, and fewer eating-related dysfunctional attitudes, this being more evident among women. Conclusion The BIQLI-SP may be useful to determine the body image quality of life in different contexts with regard to dermatology, cosmetic and reconstructive surgery, and endocrinology, among others. In these fields of study, a new trend has emerged to assess body image-related quality of life. PMID:21403794

  5. Evaluation of image quality in computed radiography based mammography systems

    NASA Astrophysics Data System (ADS)

    Singh, Abhinav; Bhwaria, Vipin; Valentino, Daniel J.

    2011-03-01

    Mammography is the most widely accepted procedure for the early detection of breast cancer and Computed Radiography (CR) is a cost-effective technology for digital mammography. We have demonstrated that CR mammography image quality is viable for Digital Mammography. The image quality of mammograms acquired using Computed Radiography technology was evaluated using the Modulation Transfer Function (MTF), Noise Power Spectrum (NPS) and Detective Quantum Efficiency (DQE). The measurements were made using a 28 kVp beam (RQA M-II) using 2 mm of Al as a filter and a target/filter combination of Mo/Mo. The acquired image bit depth was 16 bits and the pixel pitch for scanning was 50 microns. A Step-Wedge phantom (to measure the Contrast-to-noise ratio (CNR)) and the CDMAM 3.4 Contrast Detail phantom were also used to assess the image quality. The CNR values were observed at varying thickness of PMMA. The CDMAM 3.4 phantom results were plotted and compared to the EUREF acceptable and achievable values. The effect on image quality was measured using the physics metrics. A lower DQE was observed even with a higher MTF. This could be possibly due to a higher noise component present due to the way the scanner was configured. The CDMAM phantom scores demonstrated a contrast-detail comparable to the EUREF values. A cost-effective CR machine was optimized for high-resolution and high-contrast imaging.

  6. Analysis of image quality for laser display scanner test

    NASA Astrophysics Data System (ADS)

    Specht, H.; Kurth, S.; Billep, D.; Gessner, T.

    2009-02-01

    The scanning laser display technology is one of the most promising technologies for highly integrated projection display applications (e. g. in PDAs, mobile phones or head mounted displays) due to its advantages regarding image quality, miniaturization level and low cost potential. As a couple of research teams found during their investigations on laser scanning projections systems, the image quality of such systems is - beside from laser source and video signal processing - crucially determined by the scan engine, including MEMS scanner, driving electronics, scanning regime and synchronization. Even though a number of technical parameters can be measured with high accuracy, the test procedure is challenging because the influence of these parameters on image quality is often insufficiently understood. Thus, in many cases it is not clear how to define limiting values for characteristic parameters. In this paper the relationship between parameters characterizing the scan engine and their influence on image quality will be discussed. Those include scanner topography, geometry of the path of light as well as trajectory parameters. Understanding this enables a new methodology for testing and characterization of the scan engine, based on evaluation of one or a series of projected test images. Due to the fact that the evaluation process can be easily automated by digital image processing this methodology has the potential to become integrated into the production process of laser displays.

  7. Faster, higher quality volume visualization for 3D medical imaging

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Laine, Andrew F.; Song, Ting

    2008-03-01

    The two major volume visualization methods used in biomedical applications are Maximum Intensity Projection (MIP) and Volume Rendering (VR), both of which involve the process of creating sets of 2D projections from 3D images. We have developed a new method for very fast, high-quality volume visualization of 3D biomedical images, based on the fact that the inverse of this process (transforming 2D projections into a 3D image) is essentially equivalent to tomographic image reconstruction. This new method uses the 2D projections acquired by the scanner, thereby obviating the need for the two computationally expensive steps currently required in the complete process of biomedical visualization, that is, (i) reconstructing the 3D image from 2D projection data, and (ii) computing the set of 2D projections from the reconstructed 3D image As well as improvements in computation speed, this method also results in improvements in visualization quality, and in the case of x-ray CT we can exploit this quality improvement to reduce radiation dosage. In this paper, demonstrate the benefits of developing biomedical visualization techniques by directly processing the sensor data acquired by body scanners, rather than by processing the image data reconstructed from the sensor data. We show results of using this approach for volume visualization for tomographic modalities, like x-ray CT, and as well as for MRI.

  8. An approach for quantitative image quality analysis for CT

    NASA Astrophysics Data System (ADS)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  9. Real-time computer treatment of THz passive device images with the high image quality

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  10. Construction of Realistic Liver Phantoms from Patient Images using 3D Printer and Its Application in CT Image Quality Assessment

    PubMed Central

    Leng, Shuai; Yu, Lifeng; Vrieze, Thomas; Kuhlmann, Joel; Chen, Baiyu; McCollough, Cynthia H.

    2016-01-01

    The purpose of this study is to use 3D printing techniques to construct a realistic liver phantom with heterogeneous background and anatomic structures from patient CT images, and to use the phantom to assess image quality with filtered backprojection and iterative reconstruction algorithms. Patient CT images were segmented into liver tissues, contrast-enhanced vessels, and liver lesions using commercial software, based on which stereolithography (STL) files were created and sent to a commercial 3D printer. A 3D liver phantom was printed after assigning different printing materials to each object to simulate appropriate attenuation of each segmented object. As high opacity materials are not available for the printer, we printed hollow vessels and filled them with iodine solutions of adjusted concentration to represent enhance levels in contrast-enhanced liver scans. The printed phantom was then placed in a 35×26 cm oblong-shaped water phantom and scanned repeatedly at 4 dose levels. Images were reconstructed using standard filtered backprojection and an iterative reconstruction algorithm with 3 different strength settings. Heterogeneous liver background were observed from the CT images and the difference in CT numbers between lesions and background were representative for low contrast lesions in liver CT studies. CT numbers in vessels filled with iodine solutions represented the enhancement of liver arteries and veins. Images were run through a Channelized Hotelling model observer with Garbor channels and ROC analysis was performed. The AUC values showed performance improvement using the iterative reconstruction algorithm and the amount of improvement increased with strength setting.

  11. Construction of realistic liver phantoms from patient images using 3D printer and its application in CT image quality assessment

    NASA Astrophysics Data System (ADS)

    Leng, Shuai; Yu, Lifeng; Vrieze, Thomas; Kuhlmann, Joel; Chen, Baiyu; McCollough, Cynthia H.

    2015-03-01

    The purpose of this study is to use 3D printing techniques to construct a realistic liver phantom with heterogeneous background and anatomic structures from patient CT images, and to use the phantom to assess image quality with filtered back-projection and iterative reconstruction algorithms. Patient CT images were segmented into liver tissues, contrast-enhanced vessels, and liver lesions using commercial software, based on which stereolithography (STL) files were created and sent to a commercial 3D printer. A 3D liver phantom was printed after assigning different printing materials to each object to simulate appropriate attenuation of each segmented object. As high opacity materials are not available for the printer, we printed hollow vessels and filled them with iodine solutions of adjusted concentration to represent enhance levels in contrast-enhanced liver scans. The printed phantom was then placed in a 35×26 cm oblong-shaped water phantom and scanned repeatedly at 4 dose levels. Images were reconstructed using standard filtered back-projection and an iterative reconstruction algorithm with 3 different strength settings. Heterogeneous liver background were observed from the CT images and the difference in CT numbers between lesions and background were representative for low contrast lesions in liver CT studies. CT numbers in vessels filled with iodine solutions represented the enhancement of liver arteries and veins. Images were run through a Channelized Hotelling model observer with Garbor channels and ROC analysis was performed. The AUC values showed performance improvement using the iterative reconstruction algorithm and the amount of improvement increased with strength setting.

  12. The influence of noise on image quality in phase-diverse coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Wittler, H. P. A.; van Riessen, G. A.; Jones, M. W. M.

    2016-02-01

    Phase-diverse coherent diffraction imaging provides a route to high sensitivity and resolution with low radiation dose. To take full advantage of this, the characteristics and tolerable limits of measurement noise for high quality images must be understood. In this work we show the artefacts that manifest in images recovered from simulated data with noise of various characteristics in the illumination and diffraction pattern. We explore the limits at which images of acceptable quality can be obtained and suggest qualitative guidelines that would allow for faster data acquisition and minimize radiation dose.

  13. Automatic plaque characterization and vessel wall segmentation in magnetic resonance images of atherosclerotic carotid arteries

    NASA Astrophysics Data System (ADS)

    Adame, Isabel M.; van der Geest, Rob J.; Wasserman, Bruce A.; Mohamed, Mona; Reiber, Johan H. C.; Lelieveldt, Boudewijn P. F.

    2004-05-01

    Composition and structure of atherosclerotic plaque is a primary focus of cardiovascular research. In vivo MRI provides a meanse to non-invasively image and assess the morphological features of athersclerotic and normal human carotid arteries. To quantitatively assess the vulnerability and the type of plaque, the contours of the lumen, outer boundary of the vessel wall and plaque components, need to be traced. To achieve this goal, we have developed an automated contou detection technique, which consists of three consecutive steps: firstly, the outer boundary of the vessel wall is detected by means of an ellipse-fitting procedure in order to obtain smoothed shapes; secondly, the lumen is segnented using fuzzy clustering. Thre region to be classified is that within the outer vessel wall boundary obtained from the previous step; finally, for plaque detection we follow the same approach as for lumen segmentation: fuzzy clustering. However, plaque is more difficult to segment, as the pixel gray value can differ considerably from one region to another, even when it corresponds to the same type of tissue. That makes further processing necessary. All these three steps might be carried out combining information from different sequences (PD-, T2-, T1-weighted images, pre- and post-contrast), to improve the contour detection. The algorithm has been validated in vivo on 58 high-resolution PD and T1 weighted MR images (19 patients). The results demonstrate excellent correspondence between automatic and manual area measurements: lumen (r=0.94), outer (r=0.92), and acceptable for fibrous cap thickness (r=0.76).

  14. Coronary artery calcium quantification from contrast enhanced CT using gemstone spectral imaging and material decomposition.

    PubMed

    Fuchs, Tobias A; Stehli, Julia; Dougoud, Svetlana; Sah, Bert-Ram; Bull, Sacha; Clerc, Olivier F; Possner, Mathias; Buechel, Ronny R; Gaemperli, Oliver; Kaufmann, Philipp A

    2014-10-01

    To explore the feasibility of coronary artery calcium (CAC) measurement from low-dose contrast enhanced coronary CT angiography (CCTA) as this may obviate the need for an unenhanced CT scan. 52 patients underwent unenhanced cardiac CT and prospectively ECG triggered contrast enhanced CCTA (Discovery HD 750, GE Healthcare, Milwaukee, WI, USA). The latter was acquired in single-source dual-energy mode [gemstone spectral imaging (GSI)]. Virtual unenhanced images were generated from GSI CCTA by monochromatic image reconstruction of 70 keV allowing selective iodine material suppression. CAC scores from virtual unenhanced CT were compared to standard unenhanced CT including a linear regression model. After iodine subtraction from the contrast enhanced CCTA the attenuation in the ascending aorta decreased significantly from 359 ± 61 to 54 ± 8 HU (P < 0.001), the latter comparing well to the value of 64 ± 55 HU found in the standard unenhanced CT (P = ns) confirming successful iodine subtraction. After introducing linear regression formula the mean values for Agatston, Volume and Mass scores of virtual unenhanced CT were 187 ± 321, 72 ± 114 mm(3), and 27 ± 46 mg/cm(3), comparing well to the values from standard unenhanced CT (187 ± 309, 72 ± 110 mm(3), and 27 ± 45 mg/cm(3)) yielding an excellent correlation (r = 0.96, r = 0.96, r = 0.92; P < 0.001). Mean estimated radiation dose revealed 0.83 ± 0.02 mSv from the unenhanced CT and 1.70 ± 0.53 mSv from the contrast enhanced CCTA. Single-source dual-energy scanning with GSI allows CAC quantification from low dose contrast enhanced CCTA by virtual iodine contrast subtraction.

  15. Dyspnea, depression and health related quality of life in pulmonary arterial hypertension patients

    PubMed Central

    Talwar, Arunabh; Sahni, Sonu; Kim, Eun Ji; Verma, Sameer; Kohn, Nina

    2015-01-01

    Pulmonary arterial hypertension (PAH) is a rare and devastating disease which is characterized by worsening dyspnea and exercise tolerance. These patients are often found to have concomitant, depression, anxiety and impaired health-related quality of life (HRQOL). The interrelationship of dyspnea, depression and HRQOL in these patients is not well studied. Retrospective analysis was performed on 46 PAH patients (mean age 51.73). Patients completed Medical Outcomes Study Short - Form 36 V2 (SF-36) to measure HRQOL, Modified Medical Research Council (mMRC) Dyspnea Scale and Zung Depression Scale (ZDS). Physical Health Composite Scores (PCS) and Mental Health Composite Scores (MCS) were derived from SF-36. Spearman’s correlation was computed to determine degree of correlation between pairs of scales. 46 patients (12 males, 34 females; median age 51.4 yr) with confirmed PAH were considered for the study of which 36 patients (9 males, 27 females, median age 50.1 yr), were eligible for further analysis. MMRC Dyspnea Scale Score was 1.0 (Q1 to Q3:1.0 to 2.0). Median MCS was 52.1 (Q1 to Q3:41.7 to 57.1) and PCS was 37.9 (Q1 to Q3: 30.7 to 49.6). There was a significant negative correlation between dyspnea and PCS (r =−0.660, P<0.0001) and MCS (r =−0.342, P<0.0411). The ZDS was available for 17 of these patients; their median score was 42.0 (Q1 to Q3: 33.0 to 46.0). There was a significant correlation between the ZDS and PCS (r =−0.578, P<0.0150,) MCS (r =−0.752, P<0.0005). Patients with PAH suffer from diminished HRQOL correlating with their dyspnea and underlying depression. PMID:26535216

  16. Exploratory survey of image quality on CR digital mammography imaging systems in Mexico.

    PubMed

    Gaona, E; Rivera, T; Arreola, M; Franco, J; Molina, N; Alvarez, B; Azorín, C G; Casian, G

    2014-01-01

    The purpose of this study was to assess the current status of image quality and dose in computed radiographic digital mammography (CRDM) systems. Studies included CRDM systems of various models and manufacturers which dose and image quality comparisons were performed. Due to the recent rise in the use of digital radiographic systems in Mexico, CRDM systems are rapidly replacing conventional film-screen systems without any regard to quality control or image quality standards. Study was conducted in 65 mammography facilities which use CRDM systems in the Mexico City and surrounding States. The systems were tested as used clinically. This means that the dose and beam qualities were selected using the automatic beam selection and photo-timed features. All systems surveyed generate laser film hardcopies for the radiologist to read on a scope or mammographic high luminance light box. It was found that 51 of CRDM systems presented a variety of image artefacts and non-uniformities arising from inadequate acquisition and processing, as well as from the laser printer itself. Undisciplined alteration of image processing settings by the technologist was found to be a serious prevalent problem in 42 facilities. Only four of them showed an image QC program which is periodically monitored by a medical physicist. The Average Glandular Dose (AGD) in the surveyed systems was estimated to have a mean value of 2.4 mGy. To improve image quality in mammography and make more efficient screening mammographic in early detection of breast cancer is required new legislation.

  17. Exploratory survey of image quality on CR digital mammography imaging systems in Mexico.

    PubMed

    Gaona, E; Rivera, T; Arreola, M; Franco, J; Molina, N; Alvarez, B; Azorín, C G; Casian, G

    2014-01-01

    The purpose of this study was to assess the current status of image quality and dose in computed radiographic digital mammography (CRDM) systems. Studies included CRDM systems of various models and manufacturers which dose and image quality comparisons were performed. Due to the recent rise in the use of digital radiographic systems in Mexico, CRDM systems are rapidly replacing conventional film-screen systems without any regard to quality control or image quality standards. Study was conducted in 65 mammography facilities which use CRDM systems in the Mexico City and surrounding States. The systems were tested as used clinically. This means that the dose and beam qualities were selected using the automatic beam selection and photo-timed features. All systems surveyed generate laser film hardcopies for the radiologist to read on a scope or mammographic high luminance light box. It was found that 51 of CRDM systems presented a variety of image artefacts and non-uniformities arising from inadequate acquisition and processing, as well as from the laser printer itself. Undisciplined alteration of image processing settings by the technologist was found to be a serious prevalent problem in 42 facilities. Only four of them showed an image QC program which is periodically monitored by a medical physicist. The Average Glandular Dose (AGD) in the surveyed systems was estimated to have a mean value of 2.4 mGy. To improve image quality in mammography and make more efficient screening mammographic in early detection of breast cancer is required new legislation. PMID:23938078

  18. No-reference image quality assessment for horizontal-path imaging scenarios

    NASA Astrophysics Data System (ADS)

    Rios, Carlos; Gladysz, Szymon

    2013-05-01

    There exist several image-enhancement algorithms and tasks associated with imaging through turbulence that depend on defining the quality of an image. Examples include: "lucky imaging", choosing the width of the inverse filter for image reconstruction, or stopping iterative deconvolution. We collected a number of image quality metrics found in the literature. Particularly interesting are the blind, "no-reference" metrics. We discuss ways of evaluating the usefulness of these metrics, even when a fully objective comparison is impossible because of the lack of a reference image. Metrics are tested on simulated and real data. Field data comes from experiments performed by the NATO SET 165 research group over a 7 km distance in Dayton, Ohio.

  19. Perceived Image Quality Improvements from the Application of Image Deconvolution to Retinal Images from an Adaptive Optics Fundus Imager

    NASA Astrophysics Data System (ADS)

    Soliz, P.; Nemeth, S. C.; Erry, G. R. G.; Otten, L. J.; Yang, S. Y.

    Aim: The objective of this project was to apply an image restoration methodology based on wavefront measurements obtained with a Shack-Hartmann sensor and evaluating the restored image quality based on medical criteria.Methods: Implementing an adaptive optics (AO) technique, a fundus imager was used to achieve low-order correction to images of the retina. The high-order correction was provided by deconvolution. A Shack-Hartmann wavefront sensor measures aberrations. The wavefront measurement is the basis for activating a deformable mirror. Image restoration to remove remaining aberrations is achieved by direct deconvolution using the point spread function (PSF) or a blind deconvolution. The PSF is estimated using measured wavefront aberrations. Direct application of classical deconvolution methods such as inverse filtering, Wiener filtering or iterative blind deconvolution (IBD) to the AO retinal images obtained from the adaptive optical imaging system is not satisfactory because of the very large image size, dificulty in modeling the system noise, and inaccuracy in PSF estimation. Our approach combines direct and blind deconvolution to exploit available system information, avoid non-convergence, and time-consuming iterative processes. Results: The deconvolution was applied to human subject data and resulting restored images compared by a trained ophthalmic researcher. Qualitative analysis showed significant improvements. Neovascularization can be visualized with the adaptive optics device that cannot be resolved with the standard fundus camera. The individual nerve fiber bundles are easily resolved as are melanin structures in the choroid. Conclusion: This project demonstrated that computer-enhanced, adaptive optic images have greater detail of anatomical and pathological structures.

  20. Multidetector CT of hepatic artery pathologies.

    PubMed

    Karaosmanoglu, D; Erol, B; Karcaaltincaba, M

    2012-01-01

    The hepatic artery can be involved by a variety of pathology and diseases.Today MDCT enables high quality imaging of the hepatic artery using axial, MIP and volume rendered images. We illustrate MDCT findings of anatomical variations, aneurysm, dilatation, dissection, arteriovenous fistula, thrombosis and stenosis. Aneurysms can be saccular, fusiform and multiple and may develop due to atherosclerosis, vasculitis, trauma and biopsy. Dilatation of hepatic artery can be seen in portal hypertension, Osler-Weber-Rendu disease and hemangiomatosis. Hepatic artery can be occluded after trauma and transplantation. Dissection develops due to atherosclerosis, Marfan and Ehler Danlos syndromes and during pregnancy. Arteriovenous fistula can be congenital and acquired. We conclude that various hepatic artery pathologies can be confidently diagnosed by MDCT.

  1. Radiation dose and image quality for paediatric interventional cardiology

    NASA Astrophysics Data System (ADS)

    Vano, E.; Ubeda, C.; Leyton, F.; Miranda, P.

    2008-08-01

    Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 µGy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 µGy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.

  2. Determination of pasture quality using airborne hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Pullanagari, R. R.; Kereszturi, G.; Yule, Ian J.; Irwin, M. E.

    2015-10-01

    Pasture quality is a critical determinant which influences animal performance (live weight gain, milk and meat production) and animal health. Assessment of pasture quality is therefore required to assist farmers with grazing planning and management, benchmarking between seasons and years. Traditionally, pasture quality is determined by field sampling which is laborious, expensive and time consuming, and the information is not available in real-time. Hyperspectral remote sensing has potential to accurately quantify biochemical composition of pasture over wide areas in great spatial detail. In this study an airborne imaging spectrometer (AisaFENIX, Specim) was used with a spectral range of 380-2500 nm with 448 spectral bands. A case study of a 600 ha hill country farm in New Zealand is used to illustrate the use of the system. Radiometric and atmospheric corrections, along with automatized georectification of the imagery using Digital Elevation Model (DEM), were applied to the raw images to convert into geocoded reflectance images. Then a multivariate statistical method, partial least squares (PLS), was applied to estimate pasture quality such as crude protein (CP) and metabolisable energy (ME) from canopy reflectance. The results from this study revealed that estimates of CP and ME had a R2 of 0.77 and 0.79, and RMSECV of 2.97 and 0.81 respectively. By utilizing these regression models, spatial maps were created over the imaged area. These pasture quality maps can be used for adopting precision agriculture practices which improves farm profitability and environmental sustainability.

  3. Achieving quality in cardiovascular imaging: proceedings from the American College of Cardiology-Duke University Medical Center Think Tank on Quality in Cardiovascular Imaging.

    PubMed

    Douglas, Pamela; Iskandrian, Ami E; Krumholz, Harlan M; Gillam, Linda; Hendel, Robert; Jollis, James; Peterson, Eric; Chen, Jersey; Masoudi, Frederick; Mohler, Emile; McNamara, Robert L; Patel, Manesh R; Spertus, John

    2006-11-21

    Cardiovascular imaging has enjoyed both rapid technological advances and sustained growth, yet less attention has been focused on quality than in other areas of cardiovascular medicine. To address this deficit, representatives from cardiovascular imaging societies, private payers, government agencies, the medical imaging industry, and experts in quality measurement met, and this report provides an overview of the discussions. A consensus definition of quality in imaging and a convergence of opinion on quality measures across imaging modalities was achieved and are intended to be the start of a process culminating in the development, dissemination, and adoption of quality measures for all cardiovascular imaging modalities.

  4. Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics

    NASA Astrophysics Data System (ADS)

    King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.

    2011-03-01

    The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.

  5. Presence capture cameras - a new challenge to the image quality

    NASA Astrophysics Data System (ADS)

    Peltoketo, Veli-Tapani

    2016-04-01

    Commercial presence capture cameras are coming to the markets and a new era of visual entertainment starts to get its shape. Since the true presence capturing is still a very new technology, the real technical solutions are just passed a prototyping phase and they vary a lot. Presence capture cameras have still the same quality issues to tackle as previous phases of digital imaging but also numerous new ones. This work concentrates to the quality challenges of presence capture cameras. A camera system which can record 3D audio-visual reality as it is has to have several camera modules, several microphones and especially technology which can synchronize output of several sources to a seamless and smooth virtual reality experience. Several traditional quality features are still valid in presence capture cameras. Features like color fidelity, noise removal, resolution and dynamic range create the base of virtual reality stream quality. However, co-operation of several cameras brings a new dimension for these quality factors. Also new quality features can be validated. For example, how the camera streams should be stitched together with 3D experience without noticeable errors and how to validate the stitching? The work describes quality factors which are still valid in the presence capture cameras and defines the importance of those. Moreover, new challenges of presence capture cameras are investigated in image and video quality point of view. The work contains considerations how well current measurement methods can be used in presence capture cameras.

  6. Compressed image quality metric based on perceptually weighted distortion.

    PubMed

    Hu, Sudeng; Jin, Lina; Wang, Hanli; Zhang, Yun; Kwong, Sam; Kuo, C-C Jay

    2015-12-01

    Objective quality assessment for compressed images is critical to various image compression systems that are essential in image delivery and storage. Although the mean squared error (MSE) is computationally simple, it may not be accurate to reflect the perceptual quality of compressed images, which is also affected dramatically by the characteristics of human visual system (HVS), such as masking effect. In this paper, an image quality metric (IQM) is proposed based on perceptually weighted distortion in terms of the MSE. To capture the characteristics of HVS, a randomness map is proposed to measure the masking effect and a preprocessing scheme is proposed to simulate the processing that occurs in the initial part of HVS. Since the masking effect highly depends on the structural randomness, the prediction error from neighborhood with a statistical model is used to measure the significance of masking. Meanwhile, the imperceptible signal with high frequency could be removed by preprocessing with low-pass filters. The relation is investigated between the distortions before and after masking effect, and a masking modulation model is proposed to simulate the masking effect after preprocessing. The performance of the proposed IQM is validated on six image databases with various compression distortions. The experimental results show that the proposed algorithm outperforms other benchmark IQMs. PMID:26415170

  7. Flattening filter removal for improved image quality of megavoltage fluoroscopy

    SciTech Connect

    Christensen, James D.; Kirichenko, Alexander; Gayou, Olivier

    2013-08-15

    Purpose: Removal of the linear accelerator (linac) flattening filter enables a high rate of dose deposition with reduced treatment time. When used for megavoltage imaging, an unflat beam has reduced primary beam scatter resulting in sharper images. In fluoroscopic imaging mode, the unflat beam has higher photon count per image frame yielding higher contrast-to-noise ratio. The authors’ goal was to quantify the effects of an unflat beam on the image quality of megavoltage portal and fluoroscopic images.Methods: 6 MV projection images were acquired in fluoroscopic and portal modes using an electronic flat-panel imager. The effects of the flattening filter on the relative modulation transfer function (MTF) and contrast-to-noise ratio were quantified using the QC3 phantom. The impact of FF removal on the contrast-to-noise ratio of gold fiducial markers also was studied under various scatter conditions.Results: The unflat beam had improved contrast resolution, up to 40% increase in MTF contrast at the highest frequency measured (0.75 line pairs/mm). The contrast-to-noise ratio was increased as expected from the increased photon flux. The visualization of fiducial markers was markedly better using the unflat beam under all scatter conditions, enabling visualization of thin gold fiducial markers, the thinnest of which was not visible using the unflat beam.Conclusions: The removal of the flattening filter from a clinical linac leads to quantifiable improvements in the image quality of megavoltage projection images. These gains enable observers to more easily visualize thin fiducial markers and track their motion on fluoroscopic images.

  8. Image-Processing Techniques for the Creation of Presentation-Quality Astronomical Images

    NASA Astrophysics Data System (ADS)

    Rector, Travis A.; Levay, Zoltan G.; Frattare, Lisa M.; English, Jayanne; Pu'uohau-Pummill, Kirk

    2007-02-01

    The quality of modern astronomical data and the agility of current image-processing software enable the visualization of data in a way that exceeds the traditional definition of an astronomical image. Two developments in particular have led to a fundamental change in how astronomical images can be assembled. First, the availability of high-quality multiwavelength and narrowband data allow for images that do not correspond to the wavelength sensitivity of the human eye, thereby introducing ambiguity in the usage and interpretation of color. Second, many image-processing software packages now use a layering metaphor that allows for any number of astronomical data sets to be combined into a color image. With this technique, images with as many as eight data sets have been produced. Each data set is intensity-scaled and colorized independently, creating an immense parameter space that can be used to assemble the image. Since such images are intended for data visualization, scaling and color schemes must be chosen that best illustrate the science. A practical guide is presented on how to use the layering metaphor to generate publication-ready astronomical images from as many data sets as desired. A methodology is also given on how to use intensity scaling, color, and composition to create contrasts in an image that highlight the scientific detail. Examples of image creation are discussed.

  9. Quality of life of coronary artery disease patients after the implementation of planning strategies for medication adherence 1

    PubMed Central

    Lourenço, Laura Bacelar de Araujo; Rodrigues, Roberta Cunha Matheus; São-João, Thaís Moreira; Gallani, Maria Cecilia; Cornélio, Marilia Estevam

    2015-01-01

    OBJECTIVE: to compare the general and specific health-related quality of life (HRQoL) between the Intervention (IG) and Control (CG) groups of coronary artery disease patients after the implementation of Action Planning and Coping Planning strategies for medication adherence and to verify the relationship between adherence and HRQoL. METHOD: this was a controlled and randomized study. RESULTS: the sample (n=115) was randomized into two groups, IG (n=59) and CG (n=56). Measures of medication adherence and general and specific HRQoL were obtained in the baseline and after two months of monitoring. CONCLUSION: the findings showed that the combination of intervention strategies - Action Planning and Coping Planning for medication adherence did not affect the HRQoL of coronary artery disease patients in outpatient monitoring. PMID:25806626

  10. Body image quality of life in eating disorders

    PubMed Central

    Jáuregui Lobera, Ignacio; Bolaños Ríos, Patricia

    2011-01-01

    Purpose: The objective was to examine how body image affects quality of life in an eating-disorder (ED) clinical sample, a non-ED clinical sample, and a nonclinical sample. We hypothesized that ED patients would show the worst body image quality of life. We also hypothesized that body image quality of life would have a stronger negative association with specific ED-related variables than with other psychological and psychopathological variables, mainly among ED patients. On the basis of previous studies, the influence of gender on the results was explored, too. Patients and methods: The final sample comprised 70 ED patients (mean age 22.65 ± 7.76 years; 59 women and 11 men); 106 were patients with other psychiatric disorders (mean age 28.20 ± 6.52; 67 women and 39 men), and 135 were university students (mean age 21.57 ± 2.58; 81 women and 54 men), with no psychiatric history. After having obtained informed consent, the following questionnaires were administered: Body Image Quality of Life Inventory-Spanish version (BIQLI-SP), Eating Disorders Inventory-2 (EDI-2), Perceived Stress Questionnaire (PSQ), Self-Esteem Scale (SES), and Symptom Checklist-90-Revised (SCL-90-R). Results: The ED patients’ ratings on the BIQLI-SP were the lowest and negatively scored (BIQLI-SP means: +20.18, +5.14, and −6.18, in the student group, the non-ED patient group, and the ED group, respectively). The effect of body image on quality of life was more negative in the ED group in all items of the BIQLI-SP. Body image quality of life was negatively associated with specific ED-related variables, more than with other psychological and psychopathological variables, but not especially among ED patients. Conclusion: Body image quality of life was affected not only by specific pathologies related to body image disturbances, but also by other psychopathological syndromes. Nevertheless, the greatest effect was related to ED, and seemed to be more negative among men. This finding is the

  11. Image quality testing of assembled IR camera modules

    NASA Astrophysics Data System (ADS)

    Winters, Daniel; Erichsen, Patrik

    2013-10-01

    Infrared (IR) camera modules for the LWIR (8-12_m) that combine IR imaging optics with microbolometer focal plane array (FPA) sensors with readout electronics are becoming more and more a mass market product. At the same time, steady improvements in sensor resolution in the higher priced markets raise the requirement for imaging performance of objectives and the proper alignment between objective and FPA. This puts pressure on camera manufacturers and system integrators to assess the image quality of finished camera modules in a cost-efficient and automated way for quality control or during end-of-line testing. In this paper we present recent development work done in the field of image quality testing of IR camera modules. This technology provides a wealth of additional information in contrast to the more traditional test methods like minimum resolvable temperature difference (MRTD) which give only a subjective overall test result. Parameters that can be measured are image quality via the modulation transfer function (MTF) for broadband or with various bandpass filters on- and off-axis and optical parameters like e.g. effective focal length (EFL) and distortion. If the camera module allows for refocusing the optics, additional parameters like best focus plane, image plane tilt, auto-focus quality, chief ray angle etc. can be characterized. Additionally, the homogeneity and response of the sensor with the optics can be characterized in order to calculate the appropriate tables for non-uniformity correction (NUC). The technology can also be used to control active alignment methods during mechanical assembly of optics to high resolution sensors. Other important points that are discussed are the flexibility of the technology to test IR modules with different form factors, electrical interfaces and last but not least the suitability for fully automated measurements in mass production.

  12. Combined Diffusion Tensor Imaging and Arterial Spin Labeling as Markers of Early Parkinson's disease.

    PubMed

    Wei, Xiaobo; Yan, Ronghua; Chen, Zhaoyu; Weng, Ruihui; Liu, Xu; Gao, Huimin; Xu, Xiaofeng; Kang, Zhuang; Liu, Zhexing; Guo, Yan; Liu, Zhenhua; Larsen, Jan Petter; Wang, Jin; Tang, Beisha; Hallett, Mark; Wang, Qing

    2016-09-20

    This study aimed to identify a PD-specific MRI pattern using combined diffusion tensor imaging (DTI) and arterial spin labeling (ASL) to discriminate patients with early PD from healthy subjects and evaluate disease status. Twenty-one early and 22 mid-late PD patients, and 22 healthy, age/gender-matched controls underwent 3-T MRI with apparent diffusion coefficient (ADC), fractional anisotropy (FA), fiber number (FN) and cerebral blood flow (CBF) measurements. We found that compared with healthy subjects, there was a profound reduction in FN passing through the SN in PD. FA in the SN and CBF in the caudate nucleus were inversely correlated with motor dysfunction. A negative correlation was observed between FA in the hippocampus (Hip) and the NMSS-Mood score, whereas CBF in the Hip and the prefrontal cortex(PFC) correlated with declined cognition. Stratified five-fold cross-validation identified FA in the SN(FA-SNAv), CBF in the PFC(CBF-PFCAv) and FA in the parietal white matter(FA-PWMAv), and the combination of these measurements offered relatively high accuracy (AUC 0.975, 90% sensitivity and 100% specificity) in distinguishing those with early PD from healthy subjects. We demonstrate that the decreased FNs through SN in combination with changes in FA-SNAv, CBF-PFCAv and FA-PWMAv values might serve as potential markers of early-stage PD.

  13. Combined Diffusion Tensor Imaging and Arterial Spin Labeling as Markers of Early Parkinson’s disease

    PubMed Central

    Wei, Xiaobo; Yan, Ronghua; Chen, Zhaoyu; Weng, Ruihui; Liu, Xu; Gao, Huimin; Xu, Xiaofeng; Kang, Zhuang; Liu, Zhexing; Guo, Yan; Liu, Zhenhua; Larsen, Jan Petter; Wang, Jin; Tang, Beisha; Hallett, Mark; Wang, Qing

    2016-01-01

    This study aimed to identify a PD-specific MRI pattern using combined diffusion tensor imaging (DTI) and arterial spin labeling (ASL) to discriminate patients with early PD from healthy subjects and evaluate disease status. Twenty-one early and 22 mid-late PD patients, and 22 healthy, age/gender-matched controls underwent 3-T MRI with apparent diffusion coefficient (ADC), fractional anisotropy (FA), fiber number (FN) and cerebral blood flow (CBF) measurements. We found that compared with healthy subjects, there was a profound reduction in FN passing through the SN in PD. FA in the SN and CBF in the caudate nucleus were inversely correlated with motor dysfunction. A negative correlation was observed between FA in the hippocampus (Hip) and the NMSS-Mood score, whereas CBF in the Hip and the prefrontal cortex(PFC) correlated with declined cognition. Stratified five-fold cross-validation identified FA in the SN(FA-SNAv), CBF in the PFC(CBF-PFCAv) and FA in the parietal white matter(FA-PWMAv), and the combination of these measurements offered relatively high accuracy (AUC 0.975, 90% sensitivity and 100% specificity) in distinguishing those with early PD from healthy subjects. We demonstrate that the decreased FNs through SN in combination with changes in FA-SNAv, CBF-PFCAv and FA-PWMAv values might serve as potential markers of early-stage PD. PMID:27646647

  14. Combined Diffusion Tensor Imaging and Arterial Spin Labeling as Markers of Early Parkinson's disease.

    PubMed

    Wei, Xiaobo; Yan, Ronghua; Chen, Zhaoyu; Weng, Ruihui; Liu, Xu; Gao, Huimin; Xu, Xiaofeng; Kang, Zhuang; Liu, Zhexing; Guo, Yan; Liu, Zhenhua; Larsen, Jan Petter; Wang, Jin; Tang, Beisha; Hallett, Mark; Wang, Qing

    2016-01-01

    This study aimed to identify a PD-specific MRI pattern using combined diffusion tensor imaging (DTI) and arterial spin labeling (ASL) to discriminate patients with early PD from healthy subjects and evaluate disease status. Twenty-one early and 22 mid-late PD patients, and 22 healthy, age/gender-matched controls underwent 3-T MRI with apparent diffusion coefficient (ADC), fractional anisotropy (FA), fiber number (FN) and cerebral blood flow (CBF) measurements. We found that compared with healthy subjects, there was a profound reduction in FN passing through the SN in PD. FA in the SN and CBF in the caudate nucleus were inversely correlated with motor dysfunction. A negative correlation was observed between FA in the hippocampus (Hip) and the NMSS-Mood score, whereas CBF in the Hip and the prefrontal cortex(PFC) correlated with declined cognition. Stratified five-fold cross-validation identified FA in the SN(FA-SNAv), CBF in the PFC(CBF-PFCAv) and FA in the parietal white matter(FA-PWMAv), and the combination of these measurements offered relatively high accuracy (AUC 0.975, 90% sensitivity and 100% specificity) in distinguishing those with early PD from healthy subjects. We demonstrate that the decreased FNs through SN in combination with changes in FA-SNAv, CBF-PFCAv and FA-PWMAv values might serve as potential markers of early-stage PD. PMID:27646647

  15. Biological Atomic Force Microscopy for Imaging Gold-Labeled Liposomes on Human Coronary Artery Endothelial Cells

    PubMed Central

    Zaske, Ana-María; Danila, Delia; Queen, Michael C.; Golunski, Eva; Conyers, Jodie L.

    2013-01-01

    Although atomic force microscopy (AFM) has been used extensively to characterize cell membrane structure and cellular processes such as endocytosis and exocytosis, the corrugated surface of the cell membrane hinders the visualization of extracellular entities, such as liposomes, that may interact with the cell. To overcome this barrier, we used 90 nm nanogold particles to label FITC liposomes and monitor their endocytosis on human coronary artery endothelial cells (HCAECs) in vitro. We were able to study the internalization process of gold-coupled liposomes on endothelial cells, by using AFM. We found that the gold-liposomes attached to the HCAEC cell membrane during the first 15–30 min of incubation, liposome cell internalization occurred from 30 to 60 min, and most of the gold-labeled liposomes had invaginated after 2 hr of incubation. Liposomal uptake took place most commonly at the periphery of the nuclear zone. Dynasore monohydrate, an inhibitor of endocytosis, obstructed the internalization of the gold-liposomes. This study showed the versatility of the AFM technique, combined with fluorescent microscopy, for investigating liposome uptake by endothelial cells. The 90 nm colloidal gold nanoparticles proved to be a noninvasive contrast agent that efficiently improves AFM imaging during the investigation of biological nanoprocesses. PMID:26555999

  16. Effect of Arterial Deprivation on Growing Femoral Epiphysis: Quantitative Magnetic Resonance Imaging Using a Piglet Model

    PubMed Central

    Cheon, Jung-Eun; Kim, In-One; Kim, Woo Sun; Choi, Young Hun

    2015-01-01

    Objective To investigate the usefulness of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion MRI for the evaluation of femoral head ischemia. Materials and Methods Unilateral femoral head ischemia was induced by selective embolization of the medial circumflex femoral artery in 10 piglets. All MRIs were performed immediately (1 hour) and after embolization (1, 2, and 4 weeks). Apparent diffusion coefficients (ADCs) were calculated for the femoral head. The estimated pharmacokinetic parameters (Kep and Ve from two-compartment model) and semi-quantitative parameters including peak enhancement, time-to-peak (TTP), and contrast washout were evaluated. Results The epiphyseal ADC values of the ischemic hip decreased immediately (1 hour) after embolization. However, they increased rapidly at 1 week after embolization and remained elevated until 4 weeks after embolization. Perfusion MRI of ischemic hips showed decreased epiphyseal perfusion with decreased Kep immediately after embolization. Signal intensity-time curves showed delayed TTP with limited contrast washout immediately post-embolization. At 1-2 weeks after embolization, spontaneous reperfusion was observed in ischemic epiphyses. The change of ADC (p = 0.043) and Kep (p = 0.043) were significantly different between immediate (1 hour) after embolization and 1 week post-embolization. Conclusion Diffusion MRI and pharmacokinetic model obtained from the DCE-MRI are useful in depicting early changes of perfusion and tissue damage using the model of femoral head ischemia in skeletally immature piglets. PMID:25995692

  17. Assessment of tissue Doppler imaging measurements of arterial wall motion using a tissue mimicking test rig.

    PubMed

    Thrush, Abigail J; Brewin, Mark P; Birch, Malcolm J

    2008-03-01

    The aim of this in vitro study is to assess the accuracy of the tissue Doppler imaging arterial wall motion (TDI AWM) technique in measuring dilation over a range of distances and velocities. A test rig, consisting of two parallel blocks of tissue mimicking material (TMM), has been developed to generate known wall motion. One block remains stationary while the other moves in a cyclical motion. A calibrated laser range finder was used to measure the TMM motion. The TDI AWM measurements were found to underestimate the dilation by 21% +/- 4.7% when using the recommended scanner parameters. The size of the error was found to increase with a decrease in ultrasound output power. Results suggested that errors in the TDI AWM dilation measurements relate to underestimates in the velocity measured by the TDI technique. The error demonstrated in this study indicates a limitation in the value of TDI AWM result obtained in vivo. (E-mail: abigail.thrush@bartsandthelondon.nhs.uk). PMID:17964065

  18. Image quality-based adaptive illumination normalisation for face recognition

    NASA Astrophysics Data System (ADS)

    Sellahewa, Harin; Jassim, Sabah A.

    2009-05-01

    Automatic face recognition is a challenging task due to intra-class variations. Changes in lighting conditions during enrolment and identification stages contribute significantly to these intra-class variations. A common approach to address the effects such of varying conditions is to pre-process the biometric samples in order normalise intra-class variations. Histogram equalisation is a widely used illumination normalisation technique in face recognition. However, a recent study has shown that applying histogram equalisation on well-lit face images could lead to a decrease in recognition accuracy. This paper presents a dynamic approach to illumination normalisation, based on face image quality. The quality of a given face image is measured in terms of its luminance distortion by comparing this image against a known reference face image. Histogram equalisation is applied to a probe image if its luminance distortion is higher than a predefined threshold. We tested the proposed adaptive illumination normalisation method on the widely used Extended Yale Face Database B. Identification results demonstrate that our adaptive normalisation produces better identification accuracy compared to the conventional approach where every image is normalised, irrespective of the lighting condition they were acquired.

  19. An inverse approach to determining spatially varying arterial compliance using ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Mcgarry, Matthew; Li, Ronny; Apostolakis, Iason; Nauleau, Pierre; Konofagou, Elisa E.

    2016-08-01

    The mechanical properties of arteries are implicated in a wide variety of cardiovascular diseases, many of which are expected to involve a strong spatial variation in properties that can be depicted by diagnostic imaging. A pulse wave inverse problem (PWIP) is presented, which can produce spatially resolved estimates of vessel compliance from ultrasound measurements of the vessel wall displacements. The 1D equations governing pulse wave propagation in a flexible tube are parameterized by the spatially varying properties, discrete cosine transform components of the inlet pressure boundary conditions, viscous loss constant and a resistance outlet boundary condition. Gradient descent optimization is used to fit displacements from the model to the measured data by updating the model parameters. Inversion of simulated data showed that the PWIP can accurately recover the correct compliance distribution and inlet pressure under realistic conditions, even under high simulated measurement noise conditions. Silicone phantoms with known compliance contrast were imaged with a clinical ultrasound system. The PWIP produced spatially and quantitatively accurate maps of the phantom compliance compared to independent static property estimates, and the known locations of stiff inclusions (which were as small as 7 mm). The PWIP is necessary for these phantom experiments as the spatiotemporal resolution, measurement noise and compliance contrast does not allow accurate tracking of the pulse wave velocity using traditional approaches (e.g. 50% upstroke markers). Results from simulations indicate reflections generated from material interfaces may negatively affect wave velocity estimates, whereas these reflections are accounted for in the PWIP and do not cause problems.

  20. Arterial Spin Labeling Imaging for the Parotid Glands of Patients with Sjögren's Syndrome.

    PubMed

    Kami, Yukiko N; Sumi, Misa; Takagi, Yukinori; Sasaki, Miho; Uetani, Masataka; Nakamura, Takashi

    2016-01-01

    Sjögren's syndrome (SS) is characterized by hypofunction of the salivary and lacrimal glands. The salivary function is largely dependent upon the blood supply in the glands. However, the diseased states of the gland perfusion are not well understood. The arterial spin labeling (ASL) technique allows noninvasive quantitative assessment of tissue perfusion without the need for contrast agent. Here, we prospectively compared the perfusion properties of the parotid glands between patients with SS and those with healthy glands using ASL MR imaging. We analyzed salivary blood flow (SBF) kinetics of 22 healthy parotid glands from 11 volunteers and 28 parotid glands from 14 SS patients using 3T pseudo-continuous ASL imaging. SBF was determined in resting state (base SBF) and at 3 sequential segments after gustatory stimulation. SBF kinetic profiles were characterized by base SBF level, increment ratio at the SBF peak, and the differences in segments where the peak appeared (SBF types). Base SBFs of the SS glands were significantly higher than those of healthy glands (59.2 ± 22.8 vs. 46.3 ± 9.0 mL/min/100 g, p = 0.01). SBF kinetic profiles of the SS glands also exhibited significantly later SBF peaks (p < 0.001) and higher SBF increment ratios (74 ± 49% vs. 47 ± 39%, p = 0.04) than the healthy glands. The best SBF criterion (= 51.2 mL/min/100 mg) differentiated between control subjects and SS patients with 71% sensitivity and 82% specificity. Taken together, these results showed that the SS parotid glands were mostly hyperemic and the SS gland responses to gustatory stimulation were stronger and more prolonged than those of the healthy glands. The ASL may be a promising technique for assessing the diseased salivary gland vascularization of SS patients. PMID:26959680

  1. Automatic detection of local arterial input functions through Independent Component Analysis on Dynamic Contrast enhanced Magnetic Resonance Imaging.

    PubMed

    Narvaez, Mario; Ruiz-Espana, Silvia; Arana, Estanislao; Moratal, David

    2015-08-01

    Arterial Input Function (AIF) is obtained from perfusion studies as a basic parameter for the calculus of hemodynamic variables used as surrogate markers of the vascular status of tissues. However, at present, its identification is made manually leading to high subjectivity, low repeatability and considerable time consumption. We propose an alternative method to automatically identify local AIF in perfusion images using Independent Component Analysis. PMID:26737244

  2. Quality assurance methodology and applications to abdominal imaging PQI.

    PubMed

    Paushter, David M; Thomas, Stephen

    2016-03-01

    Quality assurance has increasingly become an integral part of medicine, with tandem goals of increasing patient safety and procedural quality, improving efficiency, lowering cost, and ultimately improving patient outcomes. This article reviews quality assurance methodology, ranging from the PDSA cycle to the application of lean techniques, aimed at operational efficiency, to continually evaluate and revise the health care environment. Alignment of goals for practices, hospitals, and healthcare organizations is critical, requiring clear objectives, adequate resources, and transparent reporting. In addition, there is a significant role played by regulatory bodies and oversight organizations in determining external benchmarks of quality, practice, and individual certification and reimbursement. Finally, practical application of quality principles to practice improvement projects in abdominal imaging will be presented.

  3. Optimization of exposure parameters in digital tomosynthesis considering effective dose and image quality

    NASA Astrophysics Data System (ADS)

    Choi, Seungyeon; Choi, Sunghoon; Kim, Ye-seul; Lee, Haenghwa; Lee, Donghoon; Jeon, Pil-Hyun; Jang, Dong-Hyuk; Kim, Hee-Joung

    2016-03-01

    Digital tomosynthesis system (DTS), which scans an object in a limited angle, has been considered as an innovative imaging modality which can present lower patient dose than computed tomography and solve the problem of poor depth resolution in conventional digital radiography. Although it has many powerful advantages, only breast tomosynthesis system has been adopted in many hospitals. In order to reduce the patient dose while maintaining image quality, the acquisition conditions need to be studied. In this study, we analyzed effective dose and image qualities of chest phantom using commercialized universal chest digital tomosynthesis (CDT) R/F system to study the optimized exposure parameters. We set 10 different acquisition conditions including the default acquisition condition by user manual of Shimadzu (100 kVp with 0.5 mAs). The effective dose was calculated from PCXMC software version 1.5.1 by utilizing the total X-ray exposure measured by ion chamber. The image quality was evaluated by signal difference to noise ratio (SDNR) in the regions of interest (ROIs) pulmonary arteries at different axial in-plane. We analyzed a figure of merit (FOM) which considers both the effective dose and the SDNR in order to determine the optimal acquisition condition. The results indicated that the most suitable acquisition parameters among 10 conditions were condition 7 and 8 (120 kVp with 0.04 mAs and 0.1 mAs, respectively), which indicated lower effective dose while maintaining reasonable SDNRs and FOMs for three specified regions. Further studies are needed to be conducted for detailed outcomes in CDT acquisition conditions.

  4. Diagnosis of Intracranial Artery Dissection

    PubMed Central

    KANOTO, Masafumi; HOSOYA, Takaaki

    2016-01-01

    Cerebral arterial dissection is defined as a hematoma in the wall of a cervical or an intracranial artery. Cerebral arterial dissection causes arterial stenosis, occlusion, and aneurysm, resulting in acute infarction and hemorrhage. Image analysis by such methods as conventional angiography, computed tomography, magnetic resonance imaging, and so on plays an important role in diagnosing cerebral arterial dissection. In this study, we explore the methods and findings involved in the diagnosis of cerebral arterial dissection. PMID:27180630

  5. Mammography in New Zealand: radiation dose and image quality.

    PubMed

    Poletti, J L; Williamson, B D; Mitchell, A W

    1991-06-01

    The mean glandular doses to the breast, image quality and machine performance have been determined for all mammographic x-ray facilities in New Zealand, during 1988-89. For 30 mm and 45 mm phantoms the mean doses per film were 1.03 +/- 0.56 mGy and 1.97 +/- 1.06 mGy. These doses are within international guide-lines. Image quality (detection of simulated microcalcifications, and contrast-detail performance) was found to depend on focal spot size/FFD combination, breast thickness, and film processing. The best machines could resolve 0.2 mm aluminium oxide specks with the contact technique. The use of a grid improved image quality as did magnification. Extended cycle film processing reduced doses, but the claimed improvement in image quality was not apparent from our data. The machine calibration parameters kVp, HVL and timer accuracy were in general within accepted tolerances. Automatic exposure controls in some cases gave poor control of film density with changing breast thickness. PMID:1747087

  6. SCID: full reference spatial color image quality metric

    NASA Astrophysics Data System (ADS)

    Ouni, S.; Chambah, M.; Herbin, M.; Zagrouba, E.

    2009-01-01

    The most used full reference image quality assessments are error-based methods. Thus, these measures are performed by pixel based difference metrics like Delta E ( E), MSE, PSNR, etc. Therefore, a local fidelity of the color is defined. However, these metrics does not correlate well with the perceived image quality. Indeed, they omit the properties of the HVS. Thus, they cannot be a reliable predictor of the perceived visual quality. All this metrics compute the differences pixel to pixel. Therefore, a local fidelity of the color is defined. However, the human visual system is rather sensitive to a global quality. In this paper, we present a novel full reference color metric that is based on characteristics of the human visual system by considering the notion of adjacency. This metric called SCID for Spatial Color Image Difference, is more perceptually correlated than other color differences such as Delta E. The suggested full reference metric is generic and independent of image distortion type. It can be used in different application such as: compression, restoration, etc.

  7. Image quality, space-qualified UV interference filters

    NASA Technical Reports Server (NTRS)

    Mooney, Thomas A.

    1992-01-01

    The progress during the contract period is described. The project involved fabrication of image quality, space-qualified bandpass filters in the 200-350 nm spectral region. Ion-assisted deposition (IAD) was applied to produce stable, reasonably durable filter coatings on space compatible UV substrates. Thin film materials and UV transmitting substrates were tested for resistance to simulated space effects.

  8. Visual relevance of display image quality testing by photometric methods

    NASA Astrophysics Data System (ADS)

    Andren, Boerje; Breidne, Magnus; Hansson, L. A.; Persson, Bo

    1993-09-01

    The two major international test methods for evaluation of the image quality of video display terminals are the ISO 9241-3 international standard and the MPR test. In this paper we make an attempt to compare the visual relevance of these two test methods.

  9. Simultaneous Analysis and Quality Assurance for Diffusion Tensor Imaging

    PubMed Central

    Lauzon, Carolyn B.; Asman, Andrew J.; Esparza, Michael L.; Burns, Scott S.; Fan, Qiuyun; Gao, Yurui; Anderson, Adam W.; Davis, Nicole; Cutting, Laurie E.; Landman, Bennett A.

    2013-01-01

    Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI) acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio). However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA) report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70%) while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA metrics to a low

  10. Imaging through turbid media via sparse representation: imaging quality comparison of three projection matrices

    NASA Astrophysics Data System (ADS)

    Shao, Xiaopeng; Li, Huijuan; Wu, Tengfei; Dai, Weijia; Bi, Xiangli

    2015-05-01

    The incident light will be scattered away due to the inhomogeneity of the refractive index in many materials which will greatly reduce the imaging depth and degrade the imaging quality. Many exciting methods have been presented in recent years for solving this problem and realizing imaging through a highly scattering medium, such as the wavefront modulation technique and reconstruction technique. The imaging method based on compressed sensing (CS) theory can decrease the computational complexity because it doesn't require the whole speckle pattern to realize reconstruction. One of the key premises of this method is that the object is sparse or can be sparse representation. However, choosing a proper projection matrix is very important to the imaging quality. In this paper, we analyzed that the transmission matrix (TM) of a scattering medium obeys circular Gaussian distribution, which makes it possible that a scattering medium can be used as the measurement matrix in the CS theory. In order to verify the performance of this method, a whole optical system is simulated. Various projection matrices are introduced to make the object sparse, including the fast Fourier transform (FFT) basis, the discrete cosine transform (DCT) basis and the discrete wavelet transform (DWT) basis, the imaging performances of each of which are compared comprehensively. Simulation results show that for most targets, applying the discrete wavelet transform basis will obtain an image in good quality. This work can be applied to biomedical imaging and used to develop real-time imaging through highly scattering media.

  11. Integration of multi-modality imaging for accurate 3D reconstruction of human coronary arteries in vivo

    NASA Astrophysics Data System (ADS)

    Giannoglou, George D.; Chatzizisis, Yiannis S.; Sianos, George; Tsikaderis, Dimitrios; Matakos, Antonis; Koutkias, Vassilios; Diamantopoulos, Panagiotis; Maglaveras, Nicos; Parcharidis, George E.; Louridas, George E.

    2006-12-01

    In conventional intravascular ultrasound (IVUS)-based three-dimensional (3D) reconstruction of human coronary arteries, IVUS images are arranged linearly generating a straight vessel volume. However, with this approach real vessel curvature is neglected. To overcome this limitation an imaging method was developed based on integration of IVUS and biplane coronary angiography (BCA). In 17 coronary arteries from nine patients, IVUS and BCA were performed. From each angiographic projection, a single end-diastolic frame was selected and in each frame the IVUS catheter was interactively detected for the extraction of 3D catheter path. Ultrasound data was obtained with a sheath-based catheter and recorded on S-VHS videotape. S-VHS data was digitized and lumen and media-adventitia contours were semi-automatically detected in end-diastolic IVUS images. Each pair of contours was aligned perpendicularly to the catheter path and rotated in space by implementing an algorithm based on Frenet-Serret rules. Lumen and media-adventitia contours were interpolated through generation of intermediate contours creating a real 3D lumen and vessel volume, respectively. The absolute orientation of the reconstructed lumen was determined by back-projecting it onto both angiographic planes and comparing the projected lumen with the actual angiographic lumen. In conclusion, our method is capable of performing rapid and accurate 3D reconstruction of human coronary arteries in vivo. This technique can be utilized for reliable plaque morphometric, geometrical and hemodynamic analyses.

  12. A study of image quality for radar image processing. [synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    King, R. W.; Kaupp, V. H.; Waite, W. P.; Macdonald, H. C.

    1982-01-01

    Methods developed for image quality metrics are reviewed with focus on basic interpretation or recognition elements including: tone or color; shape; pattern; size; shadow; texture; site; association or context; and resolution. Seven metrics are believed to show promise as a way of characterizing the quality of an image: (1) the dynamic range of intensities in the displayed image; (2) the system signal-to-noise ratio; (3) the system spatial bandwidth or bandpass; (4) the system resolution or acutance; (5) the normalized-mean-square-error as a measure of geometric fidelity; (6) the perceptual mean square error; and (7) the radar threshold quality factor. Selective levels of degradation are being applied to simulated synthetic radar images to test the validity of these metrics.

  13. Full-Reference Image Quality Assessment with Linear Combination of Genetically Selected Quality Measures

    PubMed Central

    2016-01-01

    Information carried by an image can be distorted due to different image processing steps introduced by different electronic means of storage and communication. Therefore, development of algorithms which can automatically assess a quality of the image in a way that is consistent with human evaluation is important. In this paper, an approach to image quality assessment (IQA) is proposed in which the quality of a given image is evaluated jointly by several IQA approaches. At first, in order to obtain such joint models, an optimisation problem of IQA measures aggregation is defined, where a weighted sum of their outputs, i.e., objective scores, is used as the aggregation operator. Then, the weight of each measure is considered as a decision variable in a problem of minimisation of root mean square error between obtained objective scores and subjective scores. Subjective scores reflect ground-truth and involve evaluation of images by human observers. The optimisation problem is solved using a genetic algorithm, which also selects suitable measures used in aggregation. Obtained multimeasures are evaluated on four largest widely used image benchmarks and compared against state-of-the-art full-reference IQA approaches. Results of comparison reveal that the proposed approach outperforms other competing measures. PMID:27341493

  14. Full-Reference Image Quality Assessment with Linear Combination of Genetically Selected Quality Measures.

    PubMed

    Oszust, Mariusz

    2016-01-01

    Information carried by an image can be distorted due to different image processing steps introduced by different electronic means of storage and communication. Therefore, development of algorithms which can automatically assess a quality of the image in a way that is consistent with human evaluation is important. In this paper, an approach to image quality assessment (IQA) is proposed in which the quality of a given image is evaluated jointly by several IQA approaches. At first, in order to obtain such joint models, an optimisation problem of IQA measures aggregation is defined, where a weighted sum of their outputs, i.e., objective scores, is used as the aggregation operator. Then, the weight of each measure is considered as a decision variable in a problem of minimisation of root mean square error between obtained objective scores and subjective scores. Subjective scores reflect ground-truth and involve evaluation of images by human observers. The optimisation problem is solved using a genetic algorithm, which also selects suitable measures used in aggregation. Obtained multimeasures are evaluated on four largest widely used image benchmarks and compared against state-of-the-art full-reference IQA approaches. Results of comparison reveal that the proposed approach outperforms other competing measures. PMID:27341493

  15. Image quality specification and maintenance for airborne SAR

    NASA Astrophysics Data System (ADS)

    Clinard, Mark S.

    2004-08-01

    Specification, verification, and maintenance of image quality over the lifecycle of an operational airborne SAR begin with the specification for the system itself. Verification of image quality-oriented specification compliance can be enhanced by including a specification requirement that a vendor provide appropriate imagery at the various phases of the system life cycle. The nature and content of the imagery appropriate for each stage of the process depends on the nature of the test, the economics of collection, and the availability of techniques to extract the desired information from the data. At the earliest lifecycle stages, Concept and Technology Development (CTD) and System Development and Demonstration (SDD), the test set could include simulated imagery to demonstrate the mathematical and engineering concepts being implemented thus allowing demonstration of compliance, in part, through simulation. For Initial Operational Test and Evaluation (IOT&E), imagery collected from precisely instrumented test ranges and targets of opportunity consisting of a priori or a posteriori ground-truthed cultural and natural features are of value to the analysis of product quality compliance. Regular monitoring of image quality is possible using operational imagery and automated metrics; more precise measurements can be performed with imagery of instrumented scenes, when available. A survey of image quality measurement techniques is presented along with a discussion of the challenges of managing an airborne SAR program with the scarce resources of time, money, and ground-truthed data. Recommendations are provided that should allow an improvement in the product quality specification and maintenance process with a minimal increase in resource demands on the customer, the vendor, the operational personnel, and the asset itself.

  16. Evaluation of image quality of a new CCD-based system for chest imaging

    NASA Astrophysics Data System (ADS)

    Sund, Patrik; Kheddache, Susanne; Mansson, Lars G.; Bath, Magnus; Tylen, Ulf

    2000-04-01

    The Imix radiography system (Qy Imix Ab, Finland)consists of an intensifying screen, optics, and a CCD camera. An upgrade of this system (Imix 2000) with a red-emitting screen and new optics has recently been released. The image quality of Imix (original version), Imix 200, and two storage-phosphor systems, Fuji FCR 9501 and Agfa ADC70 was evaluated in physical terms (DQE) and with visual grading of the visibility of anatomical structures in clinical images (141 kV). PA chest images of 50 healthy volunteers were evaluated by experienced radiologists. All images were evaluated on Siemens Simomed monitors, using the European Quality Criteria. The maximum DQE values for Imix, Imix 2000, Agfa and Fuji were 11%, 14%, 17% and 19%, respectively (141kV, 5μGy). Using the visual grading, the observers rated the systems in the following descending order. Fuji, Imix 2000, Agfa, and Imix. Thus, the upgrade to Imix 2000 resulted in higher DQE values and a significant improvement in clinical image quality. The visual grading agrees reasonably well with the DQE results; however, Imix 2000 received a better score than what could be expected from the DQE measurements. Keywords: CCD Technique, Chest Imaging, Digital Radiography, DQE, Image Quality, Visual Grading Analysis

  17. Comprehensive quality assurance phantom for cardiovascular imaging systems

    NASA Astrophysics Data System (ADS)

    Lin, Pei-Jan P.

    1998-07-01

    With the advent of high heat loading capacity x-ray tubes, high frequency inverter type generators, and the use of spectral shaping filters, the automatic brightness/exposure control (ABC) circuit logic employed in the new generation of angiographic imaging equipment has been significantly reprogrammed. These new angiographic imaging systems are designed to take advantage of the power train capabilities to yield higher contrast images while maintaining, or lower, the patient exposure. Since the emphasis of the imaging system design has been significantly altered, the system performance parameters one is interested and the phantoms employed for the quality assurance must also change in order to properly evaluate the imaging capability of the cardiovascular imaging systems. A quality assurance (QA) phantom has been under development in this institution and was submitted to various interested organizations such as American Association of Physicists in Medicine (AAPM), Society for Cardiac Angiography & Interventions (SCA&I), and National Electrical Manufacturers Association (NEMA) for their review and input. At the same time, in an effort to establish a unified standard phantom design for the cardiac catheterization laboratories (CCL), SCA&I and NEMA have formed a joint work group in early 1997 to develop a suitable phantom. The initial QA phantom design has since been accepted to serve as the base phantom by the SCA&I- NEMA Joint Work Group (JWG) from which a comprehensive QA Phantom is being developed.

  18. Image-quality metrics for characterizing adaptive optics system performance.

    PubMed

    Brigantic, R T; Roggemann, M C; Bauer, K W; Welsh, B M

    1997-09-10

    Adaptive optics system (AOS) performance is a function of the system design, seeing conditions, and light level of the wave-front beacon. It is desirable to optimize the controllable parameters in an AOS to maximize some measure of performance. For this optimization to be useful, it is necessary that a set of image-quality metrics be developed that vary monotonically with the AOS performance under a wide variety of imaging environments. Accordingly, as conditions change, one can be confident that the computed metrics dictate appropriate system settings that will optimize performance. Three such candidate metrics are presented. The first is the Strehl ratio; the second is a novel metric that modifies the Strehl ratio by integration of the modulus of the average system optical transfer function to a noise-effective cutoff frequency at which some specified image spectrum signal-to-noise ratio level is attained; and the third is simply the cutoff frequency just mentioned. It is shown that all three metrics are correlated with the rms error (RMSE) between the measured image and the associated diffraction-limited image. Of these, the Strehl ratio and the modified Strehl ratio exhibit consistently high correlations with the RMSE across a broad range of conditions and system settings. Furthermore, under conditions that yield a constant average system optical transfer function, the modified Strehl ratio can still be used to delineate image quality, whereas the Strehl ratio cannot.

  19. Underwater image quality enhancement through composition of dual-intensity images and Rayleigh-stretching.

    PubMed

    Abdul Ghani, Ahmad Shahrizan; Mat Isa, Nor Ashidi

    2014-01-01

    The quality of underwater image is poor due to the properties of water and its impurities. The properties of water cause attenuation of light travels through the water medium, resulting in low contrast, blur, inhomogeneous lighting, and color diminishing of the underwater images. This paper proposes a method of enhancing the quality of underwater image. The proposed method consists of two stages. At the first stage, the contrast correction technique is applied to the image, where the image is applied with the modified Von Kries hypothesis and stretching the image into two different intensity images at the average value with respects to Rayleigh distribution. At the second stage, the color correction technique is applied to the image where the image is first converted into hue-saturation-value (HSV) color model. The modification of the color component increases the image color performance. Qualitative and quantitative analyses indicate that the proposed method outperforms other state-of-the-art methods in terms of contrast, details, and noise reduction.

  20. Underwater image quality enhancement through composition of dual-intensity images and Rayleigh-stretching.

    PubMed

    Abdul Ghani, Ahmad Shahrizan; Mat Isa, Nor Ashidi

    2014-01-01

    The quality of underwater image is poor due to the properties of water and its impurities. The properties of water cause attenuation of light travels through the water medium, resulting in low contrast, blur, inhomogeneous lighting, and color diminishing of the underwater images. This paper proposes a method of enhancing the quality of underwater image. The proposed method consists of two stages. At the first stage, the contrast correction technique is applied to the image, where the image is applied with the modified Von Kries hypothesis and stretching the image into two different intensity images at the average value with respects to Rayleigh distribution. At the second stage, the color correction technique is applied to the image where the image is first converted into hue-saturation-value (HSV) color model. The modification of the color component increases the image color performance. Qualitative and quantitative analyses indicate that the proposed method outperforms other state-of-the-art methods in terms of contrast, details, and noise reduction. PMID:25674483

  1. MRA Images Identification of the Artery Blood Vessel of the Knee with SOM LVQ Neural Networks as Auxiliary.

    PubMed

    Huang, Hung-Chun; Chien, Chia-Hung; Shih, Ting-Fang; Chong, Fok-Ching

    2005-01-01

    The ways of angiography are divided into two kinds at present: the invasive type and the non invasive type. Because the magnetic resonance angiography (MRA) has advantages of the non invasive type, thus people can accept MRA more easily. Presently, to diagnoses for the initial stage triage of the blood vessel on clinic by MRA mostly. We to be allowed to see clearly that the shape of lower limb artery which like the dendrite and the blood vessel is thick from the trunk to the thin branch, also we can see the narrow embolism and the blocked place through MRA. This study is aiming at the image of artery of blood vessel by MRA assay, and is attempting to use two-dimensional structure of SOM and LVQ to make out topologies for the shape of artery of blood vessel. We expect that MRA could be useful tools for earlier on the quick triage and auxiliary diagnosis of doctors. By actual examples truly prove that patients after peripheral arterial occlusive disease (PAOD) treatment can diagnose effectively, shorten the time of patients waiting for reports and improve the whole efficiency of the medical treatment system.

  2. Effects of task and image properties on visual-attention deployment in image-quality assessment

    NASA Astrophysics Data System (ADS)

    Alers, Hani; Redi, Judith; Liu, Hantao; Heynderickx, Ingrid

    2015-03-01

    It is important to understand how humans view images and how their behavior is affected by changes in the properties of the viewed images and the task they are given, particularly the task of scoring the image quality (IQ). This is a complex behavior that holds great importance for the field of image-quality research. This work builds upon 4 years of research work spanning three databases studying image-viewing behavior. Using eye-tracking equipment, it was possible to collect information on human viewing behavior of different kinds of stimuli and under different experimental settings. This work performs a cross-analysis on the results from all these databases using state-of-the-art similarity measures. The results strongly show that asking the viewers to score the IQ significantly changes their viewing behavior. Also muting the color saturation seems to affect the saliency of the images. However, a change in IQ was not consistently found to modify visual attention deployment, neither under free looking nor during scoring. These results are helpful in gaining a better understanding of image viewing behavior under different conditions. They also have important implications on work that collects subjective image-quality scores from human observers.

  3. How much image noise can be added in cardiac x-ray imaging without loss in perceived image quality?

    NASA Astrophysics Data System (ADS)

    Gislason-Lee, Amber J.; Kumcu, Asli; Kengyelics, Stephen M.; Rhodes, Laura A.; Davies, Andrew G.

    2015-03-01

    Dynamic X-ray imaging systems are used for interventional cardiac procedures to treat coronary heart disease. X-ray settings are controlled automatically by specially-designed X-ray dose control mechanisms whose role is to ensure an adequate level of image quality is maintained with an acceptable radiation dose to the patient. Current commonplace dose control designs quantify image quality by performing a simple technical measurement directly from the image. However, the utility of cardiac X-ray images is in their interpretation by a cardiologist during an interventional procedure, rather than in a technical measurement. With the long term goal of devising a clinically-relevant image quality metric for an intelligent dose control system, we aim to investigate the relationship of image noise with clinical professionals' perception of dynamic image sequences. Computer-generated noise was added, in incremental amounts, to angiograms of five different patients selected to represent the range of adult cardiac patient sizes. A two alternative forced choice staircase experiment was used to determine the amount of noise which can be added to a patient image sequences without changing image quality as perceived by clinical professionals. Twenty-five viewing sessions (five for each patient) were completed by thirteen observers. Results demonstrated scope to increase the noise of cardiac X-ray images by up to 21% +/- 8% before it is noticeable by clinical professionals. This indicates a potential for 21% radiation dose reduction since X-ray image noise and radiation dose are directly related; this would be beneficial to both patients and personnel.

  4. In-situ characterization of the uncrimping process of arterial collagen fibers using two-photon confocal microscopy and digital image correlation.

    PubMed

    Wang, Ruoya; Brewster, Luke P; Gleason, Rudolph L

    2013-10-18

    Uncrimping of collagen fibers in the arterial wall is an integral process in regulating the macro-level mechanical response of arteries. Uncrimping of collagen fibers leads to a gradual, but significant strain-stiffening response of the artery at physiological pressures and prevents overdistention at elevated pressures. In this study, we imaged adventitial collagen fibers from fresh primate arteries using two-photon excitation microscopy while subjecting the arteries to physiological inflation pressures and axial stretches. The imaging focal plane was fixed at a constant radial location in the adventitial wall by adjusting the focal distance as the arteries inflated, allowing for the continuously monitoring of the uncrimping process of a single region of collagen fibers. Digital image correlation was then applied to the sequential images to assess and correlate the local displacements to manual traces of selected reference fibers and their engagements. We found that the collagen fibers of interest became fully engaged at a luminal pressure of 20mmHg, this was then followed by rotation of these fibers as the bulk artery continued to dilate. This technique helps to further the understanding of the uncrimping process of collagen fibers under physiological loads, which can aid in the development of more accurate microstructural constitutive models.

  5. Improvement of material decomposition and image quality in dual-energy radiography by reducing image noise

    NASA Astrophysics Data System (ADS)

    Lee, D.; Kim, Y.-s.; Choi, S.; Lee, H.; Choi, S.; Jo, B. D.; Jeon, P.-H.; Kim, H.; Kim, D.; Kim, H.; Kim, H.-J.

    2016-08-01

    Although digital radiography has been widely used for screening human anatomical structures in clinical situations, it has several limitations due to anatomical overlapping. To resolve this problem, dual-energy imaging techniques, which provide a method for decomposing overlying anatomical structures, have been suggested as alternative imaging techniques. Previous studies have reported several dual-energy techniques, each resulting in different image qualities. In this study, we compared three dual-energy techniques: simple log subtraction (SLS), simple smoothing of a high-energy image (SSH), and anti-correlated noise reduction (ACNR) with respect to material thickness quantification and image quality. To evaluate dual-energy radiography, we conducted Monte Carlo simulation and experimental phantom studies. The Geant 4 Application for Tomographic Emission (GATE) v 6.0 and tungsten anode spectral model using interpolation polynomials (TASMIP) codes were used for simulation studies and digital radiography, and human chest phantoms were used for experimental studies. The results of the simulation study showed improved image contrast-to-noise ratio (CNR) and coefficient of variation (COV) values and bone thickness estimation accuracy by applying the ACNR and SSH methods. Furthermore, the chest phantom images showed better image quality with the SSH and ACNR methods compared to the SLS method. In particular, the bone texture characteristics were well-described by applying the SSH and ACNR methods. In conclusion, the SSH and ACNR methods improved the accuracy of material quantification and image quality in dual-energy radiography compared to SLS. Our results can contribute to better diagnostic capabilities of dual-energy images and accurate material quantification in various clinical situations.

  6. Performance assessment of Pulse Wave Imaging using conventional ultrasound in canine aortas ex vivo and normal human arteries in vivo

    PubMed Central

    Li, Ronny X.; Qaqish, William; Konofagou, Elisa. E.

    2015-01-01

    The propagation behavior of the arterial pulse wave may provide valuable diagnostic information for cardiovascular pathology. Pulse Wave Imaging (PWI) is a noninvasive, ultrasound imaging-based technique capable of mapping multiple wall motion waveforms along a short arterial segment over a single cardiac cycle, allowing for the regional pulse wave velocity (PWV) and propagation uniformity to be evaluated. The purpose of this study was to improve the clinical utility of PWI using a conventional ultrasound system. The tradeoff between PWI spatial and temporal resolution was evaluated using an ex vivo canine aorta (n = 2) setup to assess the effects of varying image acquisition and signal processing parameters on the measurement of the PWV and the pulse wave propagation uniformity r2. PWI was also performed on the carotid arteries and abdominal aortas of 10 healthy volunteers (24.8 ± 3.3 y.o.) to determine the waveform tracking feature that would yield the most precise PWV measurements and highest r2 values in vivo. The ex vivo results indicated that the highest precision for measuring PWVs ~ 2.5 – 3.5 m/s was achieved using 24–48 scan lines within a 38 mm image plane width (i.e. 0.63 – 1.26 lines/mm). The in vivo results indicated that tracking the 50% upstroke of the waveform would consistently yield the most precise PWV measurements and minimize the error in the propagation uniformity measurement. Such findings may help establish the optimal image acquisition and signal processing parameters that may improve the reliability of PWI as a clinical measurement tool. PMID:26640603

  7. Effect of exercise supplementation on dipyridamole thallium-201 image quality

    SciTech Connect

    Stern, S.; Greenberg, I.D.; Corne, R. )

    1991-08-01

    To determine the effect of different types of exercise supplementation on dipyridamole thallium image quality, 78 patients were prospectively randomized to one of three protocols: dipyridamole infusion alone, dipyridamole supplemented with isometric handgrip, and dipyridamole with low-level treadmill exercise. Heart-to-lung, heart-to-liver, and heart-to-adjacent infradiaphragmatic activity ratios were generated from anterior images acquired immediately following the test. Additionally, heart-to-total infradiaphragmatic activity was graded semiquantitatively. Results showed a significantly higher ratio of heart to subdiaphragmatic activity in the treadmill group as compared with dipyridamole alone (p less than 0.001) and dipyridamole supplemented with isometric handgrip exercise (p less than 0.001). No significant difference was observed between patients receiving the dipyridamole infusion, and dipyridamole supplemented with isometric handgrip exercise. The authors conclude that low-level treadmill exercise supplementation of dipyridamole infusion is an effective means of improving image quality. Supplementation with isometric handgrip does not improve image quality over dipyridamole alone.

  8. Metal artifact reduction and image quality evaluation of lumbar spine CT images using metal sinogram segmentation.

    PubMed

    Kaewlek, Titipong; Koolpiruck, Diew; Thongvigitmanee, Saowapak; Mongkolsuk, Manus; Thammakittiphan, Sastrawut; Tritrakarn, Siri-on; Chiewvit, Pipat

    2015-01-01

    Metal artifacts often appear in the images of computed tomography (CT) imaging. In the case of lumbar spine CT images, artifacts disturb the images of critical organs. These artifacts can affect the diagnosis, treatment, and follow up care of the patient. One approach to metal artifact reduction is the sinogram completion method. A mixed-variable thresholding (MixVT) technique to identify the suitable metal sinogram is proposed. This technique consists of four steps: 1) identify the metal objects in the image by using k-mean clustering with the soft cluster assignment, 2) transform the image by separating it into two sinograms, one of which is the sinogram of the metal object, with the surrounding tissue shown in the second sinogram. The boundary of the metal sinogram is then found by the MixVT technique, 3) estimate the new value of the missing data in the metal sinogram by linear interpolation from the surrounding tissue sinogram, 4) reconstruct a modified sinogram by using filtered back-projection and complete the image by adding back the image of the metal object into the reconstructed image to form the complete image. The quantitative and clinical image quality evaluation of our proposed technique demonstrated a significant improvement in image clarity and detail, which enhances the effectiveness of diagnosis and treatment.

  9. Iatrogenic hemobilia: imaging features and management with transcatheter arterial embolization in 30 patients

    PubMed Central

    Feng, Wen; Yue, Dong; ZaiMing, Lu; ZhaoYu, Liu; XiangXuan, Zhao; Wei, Li; QiYong, Guo

    2016-01-01

    PURPOSE We aimed to evaluate the imaging features of computed tomography (CT) and angiography and the efficacy of transcatheter arterial embolization (TAE) in patients with hemobilia of different iatrogenic causes. METHODS Thirty patients with hemobilia were divided into two groups according to their iatrogenic causes, i.e., group 1, 11 patients (36.7%) with transhepatic intervention and group 2, 19 patients (63.3%) with surgical procedures in the hilar area. Seventeen patients (56.7%) underwent abdominal contrast-enhanced CT before selective angiography. Polyvinyl alcohol particles, gelatin sponges, and coils were used for TAE. Data from the two groups were compared using Fisher’s exact test and the Mann-Whitney U test. RESULTS Contrast-enhanced CT showed a hematoma, extravasation of contrast material, and pseudoaneurysm. The bleeding source was determined by angiographic features in all patients, which were not significantly different between the two groups (P = 0.127), and pseudoaneurysm was the most common. The embolic material and number of coils used for TAE were significantly different between the two groups (P < 0.001), but the embolization was technically successful in all patients. The clinical success rate of the first embolization was 100% in group 1 vs. 84.2% in group 2. The overall clinical success rate of TAE was 100% in all patients. The complication rate was 63.6% in group 1 vs. 68.4% in group 2 (P = 1.000). CONCLUSION CT was useful in diagnosing hemobilia, and angiograms enabled determination of the bleeding source. Pseudoaneurysm was one of the most common angiographic features. TAE was successfully performed with different embolic materials on the basis of the iatrogenic cause and bleeding location. PMID:27328719

  10. Image Quality Analysis of Various Gastrointestinal Endoscopes: Why Image Quality Is a Prerequisite for Proper Diagnostic and Therapeutic Endoscopy.

    PubMed

    Ko, Weon Jin; An, Pyeong; Ko, Kwang Hyun; Hahm, Ki Baik; Hong, Sung Pyo; Cho, Joo Young

    2015-09-01

    Arising from human curiosity in terms of the desire to look within the human body, endoscopy has undergone significant advances in modern medicine. Direct visualization of the gastrointestinal (GI) tract by traditional endoscopy was first introduced over 50 years ago, after which fairly rapid advancement from rigid esophagogastric scopes to flexible scopes and high definition videoscopes has occurred. In an effort towards early detection of precancerous lesions in the GI tract, several high-technology imaging scopes have been developed, including narrow band imaging, autofocus imaging, magnified endoscopy, and confocal microendoscopy. However, these modern developments have resulted in fundamental imaging technology being skewed towards red-green-blue and this technology has obscured the advantages of other endoscope techniques. In this review article, we have described the importance of image quality analysis using a survey to consider the diversity of endoscope system selection in order to better achieve diagnostic and therapeutic goals. The ultimate aims can be achieved through the adoption of modern endoscopy systems that obtain high image quality.

  11. Image Quality Analysis of Various Gastrointestinal Endoscopes: Why Image Quality Is a Prerequisite for Proper Diagnostic and Therapeutic Endoscopy

    PubMed Central

    Ko, Weon Jin; An, Pyeong; Ko, Kwang Hyun; Hahm, Ki Baik; Hong, Sung Pyo

    2015-01-01

    Arising from human curiosity in terms of the desire to look within the human body, endoscopy has undergone significant advances in modern medicine. Direct visualization of the gastrointestinal (GI) tract by traditional endoscopy was first introduced over 50 years ago, after which fairly rapid advancement from rigid esophagogastric scopes to flexible scopes and high definition videoscopes has occurred. In an effort towards early detection of precancerous lesions in the GI tract, several high-technology imaging scopes have been developed, including narrow band imaging, autofocus imaging, magnified endoscopy, and confocal microendoscopy. However, these modern developments have resulted in fundamental imaging technology being skewed towards red-green-blue and this technology has obscured the advantages of other endoscope techniques. In this review article, we have described the importance of image quality analysis using a survey to consider the diversity of endoscope system selection in order to better achieve diagnostic and therapeutic goals. The ultimate aims can be achieved through the adoption of modern endoscopy systems that obtain high image quality. PMID:26473119

  12. Spread spectrum image watermarking based on perceptual quality metric.

    PubMed

    Zhang, Fan; Liu, Wenyu; Lin, Weisi; Ngan, King Ngi

    2011-11-01

    Efficient image watermarking calls for full exploitation of the perceptual distortion constraint. Second-order statistics of visual stimuli are regarded as critical features for perception. This paper proposes a second-order statistics (SOS)-based image quality metric, which considers the texture masking effect and the contrast sensitivity in Karhunen-Loève transform domain. Compared with the state-of-the-art metrics, the quality prediction by SOS better correlates with several subjectively rated image databases, in which the images are impaired by the typical coding and watermarking artifacts. With the explicit metric definition, spread spectrum watermarking is posed as an optimization problem: we search for a watermark to minimize the distortion of the watermarked image and to maximize the correlation between the watermark pattern and the spread spectrum carrier. The simple metric guarantees the optimal watermark a closed-form solution and a fast implementation. The experiments show that the proposed watermarking scheme can take full advantage of the distortion constraint and improve the robustness in return.

  13. Quality assessment of butter cookies applying multispectral imaging.

    PubMed

    Andresen, Mette S; Dissing, Bjørn S; Løje, Hanne

    2013-07-01

    A method for characterization of butter cookie quality by assessing the surface browning and water content using multispectral images is presented. Based on evaluations of the browning of butter cookies, cookies were manually divided into groups. From this categorization, reference values were calculated for a statistical prediction model correlating multispectral images with a browning score. The browning score is calculated as a function of oven temperature and baking time. It is presented as a quadratic response surface. The investigated process window was the intervals 4-16 min and 160-200°C in a forced convection electrically heated oven. In addition to the browning score, a model for predicting the average water content based on the same images is presented. This shows how multispectral images of butter cookies may be used for the assessment of different quality parameters. Statistical analysis showed that the most significant wavelengths for browning predictions were in the interval 400-700 nm and the wavelengths significant for water prediction were primarily located in the near-infrared spectrum. The water prediction model was found to correctly estimate the average water content with an absolute error of 0.22%. From the images it was also possible to follow the browning and drying propagation from the cookie edge toward the center.

  14. Study on classification of pork quality using hyperspectral imaging technique

    NASA Astrophysics Data System (ADS)

    Zeng, Shan; Bai, Jun; Wang, Haibin

    2015-12-01

    The relative problems' research of chilled meat, thawed meat and spoiled meat discrimination by hyperspectral image technique were proposed, such the section of feature wavelengths, et al. First, based on 400 ~ 1000nm range hyperspectral image data of testing pork samples, by K-medoids clustering algorithm based on manifold distance, we select 30 important wavelengths from 753 wavelengths, and thus select 8 feature wavelengths (454.4, 477.5, 529.3, 546.8, 568.4, 580.3, 589.9 and 781.2nm) based on the discrimination value. Then 8 texture features of each image under 8 feature wavelengths were respectively extracted by two-dimensional Gabor wavelets transform as pork quality feature. Finally, we build a pork quality classification model using the fuzzy C-mean clustering algorithm. Through the experiment of extracting feature wavelengths, we found that although the hyperspectral images between adjacent bands have a strong linear correlation, they show a significant non-linear manifold relationship from the entire band. K-medoids clustering algorithm based on manifold distance used in this paper for selecting the characteristic wavelengths, which is more reasonable than traditional principal component analysis (PCA). Through the classification result, we conclude that hyperspectral imaging technology can distinguish among chilled meat, thawed meat and spoiled meat accurately.

  15. Characterization of image quality and image-guidance performance of a preclinical microirradiator

    SciTech Connect

    Clarkson, R.; Lindsay, P. E.; Ansell, S.; Wilson, G.; Jelveh, S.; Hill, R. P.; Jaffray, D. A.

    2011-02-15

    Purpose: To assess image quality and image-guidance capabilities of a cone-beam CT based small-animal image-guided irradiation unit (micro-IGRT). Methods: A micro-IGRT system has been developed in collaboration with the authors' laboratory as a means to study the radiobiological effects of conformal radiation dose distributions in small animals. The system, the X-Rad 225Cx, consists of a 225 kVp x-ray tube and a flat-panel amorphous silicon detector mounted on a rotational C-arm gantry and is capable of both fluoroscopic x-ray and cone-beam CT imaging, as well as image-guided placement of the radiation beams. Image quality (voxel noise, modulation transfer, CT number accuracy, and geometric accuracy characteristics) was assessed using water cylinder and micro-CT test phantoms. Image guidance was tested by analyzing the dose delivered to radiochromic films fixed to BB's through the end-to-end process of imaging, targeting the center of the BB, and irradiation of the film/BB in order to compare the offset between the center of the field and the center of the BB. Image quality and geometric studies were repeated over a 5-7 month period to assess stability. Results: CT numbers reported were found to be linear (R{sup 2}{>=}0.998) and the noise for images of homogeneous water phantom was 30 HU at imaging doses of approximately 1 cGy (to water). The presampled MTF at 50% and 10% reached 0.64 and 1.35 mm{sup -1}, respectively. Targeting accuracy by means of film irradiations was shown to have a mean displacement error of [{Delta}x,{Delta}y,{Delta}z]=[-0.12,-0.05,-0.02] mm, with standard deviations of [0.02, 0.20, 0.17] mm. The system has proven to be stable over time, with both the image quality and image-guidance performance being reproducible for the duration of the studies. Conclusions: The micro-IGRT unit provides soft-tissue imaging of small-animal anatomy at acceptable imaging doses ({<=}1 cGy). The geometric accuracy and targeting systems permit dose placement with

  16. Characterization of image quality and image-guidance performance of a preclinical microirradiator

    PubMed Central

    Clarkson, R.; Lindsay, P. E.; Ansell, S.; Wilson, G.; Jelveh, S.; Hill, R. P.; Jaffray, D. A.

    2011-01-01

    Purpose: To assess image quality and image-guidance capabilities of a cone-beam CT based small-animal image-guided irradiation unit (micro-IGRT). Methods: A micro-IGRT system has been developed in collaboration with the authors’ laboratory as a means to study the radiobiological effects of conformal radiation dose distributions in small animals. The system, the X-Rad 225Cx, consists of a 225 kVp x-ray tube and a flat-panel amorphous silicon detector mounted on a rotational C-arm gantry and is capable of both fluoroscopic x-ray and cone-beam CT imaging, as well as image-guided placement of the radiation beams. Image quality (voxel noise, modulation transfer, CT number accuracy, and geometric accuracy characteristics) was assessed using water cylinder and micro-CT test phantoms. Image guidance was tested by analyzing the dose delivered to radiochromic films fixed to BB’s through the end-to-end process of imaging, targeting the center of the BB, and irradiation of the film∕BB in order to compare the offset between the center of the field and the center of the BB. Image quality and geometric studies were repeated over a 5–7 month period to assess stability. Results: CT numbers reported were found to be linear (R2≥0.998) and the noise for images of homogeneous water phantom was 30 HU at imaging doses of approximately 1 cGy (to water). The presampled MTF at 50% and 10% reached 0.64 and 1.35 mm−1, respectively. Targeting accuracy by means of film irradiations was shown to have a mean displacement error of [Δx,Δy,Δz]=[−0.12,−0.05,−0.02] mm, with standard deviations of [0.02, 0.20, 0.17] mm. The system has proven to be stable over time, with both the image quality and image-guidance performance being reproducible for the duration of the studies. Conclusions: The micro-IGRT unit provides soft-tissue imaging of small-animal anatomy at acceptable imaging doses (≤1 cGy). The geometric accuracy and targeting systems permit dose placement with submillimeter

  17. Optimizing 3D image quality and performance for stereoscopic gaming

    NASA Astrophysics Data System (ADS)

    Flack, Julien; Sanderson, Hugh; Pegg, Steven; Kwok, Simon; Paterson, Daniel

    2009-02-01

    The successful introduction of stereoscopic TV systems, such as Samsung's 3D Ready Plasma, requires high quality 3D content to be commercially available to the consumer. Console and PC games provide the most readily accessible source of high quality 3D content. This paper describes innovative developments in a generic, PC-based game driver architecture that addresses the two key issues affecting 3D gaming: quality and speed. At the heart of the quality issue are the same considerations that studios face producing stereoscopic renders from CG movies: how best to perform the mapping from a geometric CG environment into the stereoscopic display volume. The major difference being that for game drivers this mapping cannot be choreographed by hand but must be automatically calculated in real-time without significant impact on performance. Performance is a critical issue when dealing with gaming. Stereoscopic gaming has traditionally meant rendering the scene twice with the associated performance overhead. An alternative approach is to render the scene from one virtual camera position and use information from the z-buffer to generate a stereo pair using Depth-Image-Based Rendering (DIBR). We analyze this trade-off in more detail and provide some results relating to both 3D image quality and render performance.

  18. DES exposure checker: Dark Energy Survey image quality control crowdsourcer

    NASA Astrophysics Data System (ADS)

    Melchior, Peter; Sheldon, Erin; Drlica-Wagner, Alex; Rykoff, Eli S.

    2015-11-01

    DES exposure checker renders science-grade images directly to a web browser and allows users to mark problematic features from a set of predefined classes, thus allowing image quality control for the Dark Energy Survey to be crowdsourced through its web application. Users can also generate custom labels to help identify previously unknown problem classes; generated reports are fed back to hardware and software experts to help mitigate and eliminate recognized issues. These problem reports allow rapid correction of artifacts that otherwise may be too subtle or infrequent to be recognized.

  19. A semi-automatic framework of measuring pulmonary arterial metrics at anatomic airway locations using CT imaging

    NASA Astrophysics Data System (ADS)

    Jin, Dakai; Guo, Junfeng; Dougherty, Timothy M.; Iyer, Krishna S.; Hoffman, Eric A.; Saha, Punam K.

    2016-03-01

    Pulmonary vascular dysfunction has been implicated in smoking-related susceptibility to emphysema. With the growing interest in characterizing arterial morphology for early evaluation of the vascular role in pulmonary diseases, there is an increasing need for the standardization of a framework for arterial morphological assessment at airway segmental levels. In this paper, we present an effective and robust semi-automatic framework to segment pulmonary arteries at different anatomic airway branches and measure their cross-sectional area (CSA). The method starts with user-specified endpoints of a target arterial segment through a custom-built graphical user interface. It then automatically detect the centerline joining the endpoints, determines the local structure orientation and computes the CSA along the centerline after filtering out the adjacent pulmonary structures, such as veins or airway walls. Several new techniques are presented, including collision-impact based cost function for centerline detection, radial sample-line based CSA computation, and outlier analysis of radial distance to subtract adjacent neighboring structures in the CSA measurement. The method was applied to repeat-scan pulmonary multirow detector CT (MDCT) images from ten healthy subjects (age: 21-48 Yrs, mean: 28.5 Yrs; 7 female) at functional residual capacity (FRC). The reproducibility of computed arterial CSA from four airway segmental regions in middle and lower lobes was analyzed. The overall repeat-scan intra-class correlation (ICC) of the computed CSA from all four airway regions in ten subjects was 96% with maximum ICC found at LB10 and RB4 regions.

  20. Comparison of dobutamine and exercise using technetium-99m sestamibi imaging for the evaluation of coronary artery disease.

    PubMed

    Herman, S D; LaBresh, K A; Santos-Ocampo, C D; Garber, C E; Barbour, M M; Messinger, D E; Cloutier, D J; Ahlberg, A W; Heller, G V

    1994-01-15

    Studies using dobutamine thallium-201 myocardial perfusion imaging have suggested a high sensitivity and specificity for the detection of coronary artery disease. However, few data are available comparing dobutamine with exercise stress for the detection and localization of perfusion defects. This study compared the effects of dobutamine and exercise stress using technetium-99m sestamibi single-photon emission computed tomographic imaging in the same patients in a prospective crossover trial. Twenty-four patients with a high likelihood of coronary artery disease underwent tomographic myocardial imaging at rest, after symptom-limited treadmill exercise, and after intravenous dobutamine (maximum 30 micrograms/kg/min). Tomograms of the left ventricle were divided into 20 segments and were interpreted without knowledge of patient identity or stress protocol. Dobutamine was well tolerated by all patients. Segment-by-segment concordance between exercise and dobutamine images was highly significant (kappa = 0.56, p < 0.0001). Global first-order agreement (normal vs abnormal) between exercise and dobutamine studies was 96% (kappa = 0.65, p = 0.02); global second-order agreement (normal vs fixed vs ischemic defect) was 88% (kappa = 0.45, p = 0.02). Regional first- and second-order agreement were 96 and 93%, respectively (p < 0.001 for both). Twenty patients underwent coronary angiography. Comparisons between exercise and angiography and between dobutamine and angiography were similar for both global agreement (95 vs 100%, p = NS) and regional agreement (77 vs 72%, p = NS).(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Reproducibility of Mammography Units, Film Processing and Quality Imaging

    NASA Astrophysics Data System (ADS)

    Gaona, Enrique

    2003-09-01

    The purpose of this study was to carry out an exploratory survey of the problems of quality control in mammography and processors units as a diagnosis of the current situation of mammography facilities. Measurements of reproducibility, optical density, optical difference and gamma index are included. Breast cancer is the most frequently diagnosed cancer and is the second leading cause of cancer death among women in the Mexican Republic. Mammography is a radiographic examination specially designed for detecting breast pathology. We found that the problems of reproducibility of AEC are smaller than the problems of processors units because almost all processors fall outside of the acceptable variation limits and they can affect the mammography quality image and the dose to breast. Only four mammography units agree with the minimum score established by ACR and FDA for the phantom image.

  2. Exploring V1 by modeling the perceptual quality of images.

    PubMed

    Zhang, Fan; Jiang, Wenfei; Autrusseau, Florent; Lin, Weisi

    2014-01-24

    We propose an image quality model based on phase and amplitude differences between a reference and a distorted image. The proposed model is motivated by the fact that polar representations can separate visual information in a more independent and efficient manner than Cartesian representations in the primary visual cortex (V1). We subsequently estimate the model parameters from a large subjective data set using maximum likelihood methods. By comparing the various model hypotheses on the functional form about the phase and amplitude, we find that: (a) discrimination of visual orientation is important for quality assessment and yet a coarse level of such discrimination seems sufficient; and (b) a product-based amplitude-phase combination before pooling is effective, suggesting an interesting viewpoint about the functional structure of the simple cells and complex cells in V1.

  3. A virtual image chain for perceived image quality of medical display

    NASA Astrophysics Data System (ADS)

    Marchessoux, Cédric; Jung, Jürgen

    2006-03-01

    This paper describes a virtual image chain for medical display (project VICTOR: granted in the 5th framework program by European commission). The chain starts from raw data of an image digitizer (CR, DR) or synthetic patterns and covers image enhancement (MUSICA by Agfa) and both display possibilities, hardcopy (film on viewing box) and softcopy (monitor). Key feature of the chain is a complete image wise approach. A first prototype is implemented in an object-oriented software platform. The display chain consists of several modules. Raw images are either taken from scanners (CR-DR) or from a pattern generator, in which characteristics of DR- CR systems are introduced by their MTF and their dose-dependent Poisson noise. The image undergoes image enhancement and comes to display. For soft display, color and monochrome monitors are used in the simulation. The image is down-sampled. The non-linear response of a color monitor is taken into account by the GOG or S-curve model, whereas the Standard Gray-Scale-Display-Function (DICOM) is used for monochrome display. The MTF of the monitor is applied on the image in intensity levels. For hardcopy display, the combination of film, printer, lightbox and viewing condition is modeled. The image is up-sampled and the DICOM-GSDF or a Kanamori Look-Up-Table is applied. An anisotropic model for the MTF of the printer is applied on the image in intensity levels. The density-dependent color (XYZ) of the hardcopy film is introduced by Look-Up-tables. Finally a Human Visual System Model is applied to the intensity images (XYZ in terms of cd/m2) in order to eliminate nonvisible differences. Comparison leads to visible differences, which are quantified by higher order image quality metrics. A specific image viewer is used for the visualization of the intensity image and the visual difference maps.

  4. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease

    SciTech Connect

    Stewart, R.E.; Schwaiger, M.; Molina, E.; Popma, J.; Gacioch, G.M.; Kalus, M.; Squicciarini, S.; al-Aouar, Z.R.; Schork, A.; Kuhl, D.E. )

    1991-06-15

    The diagnostic performance of rubidium-82 (Rb-82) positron emission tomography (PET) and thallium-201 (Tl-201) single-photon emission-computed tomography (SPECT) for detecting coronary artery disease was investigated in 81 patients (52 men, 29 women). PET studies using 60 mCi of Rb-82 were performed at baseline and after intravenous infusion of 0.56 mg/kg dipyridamole in conjunction with handgrip stress. Tl-201 SPECT was performed after dipyridamole-handgrip stress and, in a subset of patients, after treadmill exercise. Sensitivity, specificity and overall diagnostic accuracy were assessed using both visually and quantitatively interpreted coronary angiograms. The overall sensitivity, specificity and accuracy of PET for detection of coronary artery disease (greater than 50% diameter stenosis) were 84, 88 and 85%, respectively. In comparison, the performance of SPECT revealed a sensitivity of 84%, specificity of 53% (p less than 0.05 vs PET) and accuracy of 79%. Similar results were obtained using either visual or quantitative angiographic criteria for severity of coronary artery disease. In 43 patients without prior myocardial infarction, the sensitivity for detection of disease was 71 and 73%, respectively, similar for both PET and SPECT. There was no significant difference in diagnostic performance between imaging modalities when 2 different modes of stress (exercise treadmill vs intravenous dipyridamole plus handgrip) were used with SPECT imaging. Thus, Rb-82 PET provides improved specificity compared with Tl-201 SPECT for identifying coronary artery disease, most likely due to the higher photon energy of Rb-82 and attenuation correction provided by PET. However, post-test referral cannot be entirely excluded as a potential explanation for the lower specificity of Tl-201 SPECT.

  5. A quality assurance program for image quality of cone-beam CT guidance in radiation therapy

    SciTech Connect

    Bissonnette, Jean-Pierre; Moseley, Douglas J.; Jaffray, David A.

    2008-05-15

    The clinical introduction of volumetric x-ray image-guided radiotherapy systems necessitates formal commissioning of the hardware and image-guided processes to be used and drafts quality assurance (QA) for both hardware and processes. Satisfying both requirements provides confidence on the system's ability to manage geometric variations in patient setup and internal organ motion. As these systems become a routine clinical modality, the authors present data from their QA program tracking the image quality performance of ten volumetric systems over a period of 3 years. These data are subsequently used to establish evidence-based tolerances for a QA program. The volumetric imaging systems used in this work combines a linear accelerator with conventional x-ray tube and an amorphous silicon flat-panel detector mounted orthogonally from the accelerator central beam axis, in a cone-beam computed tomography (CBCT) configuration. In the spirit of the AAPM Report No. 74, the present work presents the image quality portion of their QA program; the aspects of the QA protocol addressing imaging geometry have been presented elsewhere. Specifically, the authors are presenting data demonstrating the high linearity of CT numbers, the uniformity of axial reconstructions, and the high contrast spatial resolution of ten CBCT systems (1-2 mm) from two commercial vendors. They are also presenting data accumulated over the period of several months demonstrating the long-term stability of the flat-panel detector and of the distances measured on reconstructed volumetric images. Their tests demonstrate that each specific CBCT system has unique performance. In addition, scattered x rays are shown to influence the imaging performance in terms of spatial resolution, axial reconstruction uniformity, and the linearity of CT numbers.

  6. Digital TV image quality improvement considering distributions of edge characteristic

    NASA Astrophysics Data System (ADS)

    Hong, Sang-Gi; Kim, Jae-Chul; Park, Jong-Hyun

    2003-12-01

    Sharpness enhancement is widely used technique for improving the perceptual quality of an image by emphasizing its high-frequency component. In this paper, a psychophysical experiment is conducted by the 20 observers with simple linear unsharp masking for sharpness enhancement. The experimental result is extracted using z-score analysis and linear regression. Finally using this result we suggest observer preferable sharpness enhancement method for digital television.

  7. Image quality and attenuation values of multi detector CT coronary angiography using high iodine-concentration contrast material: A comparison of the use of iopromide 370 and iomeprol 400

    PubMed Central

    Kim, Eun Young; Yeh, Dae Wook; Choe, Yeon Hyeon; Lee, Won Jae; Lim, Hyo Keun

    2010-01-01

    Background: Effects of high iodine-concentration contrast material on the image quality of coronary CT angiography (CCTA) have not been well evaluated. Purpose: To compare the image quality and attenuation values of CCTA between patients administered iopromide 370 and iomeprol 400 with the use of 64-slice multidetector CT. Material and Methods: Patients were prospectively enrolled and were randomized into two groups (group A, 151 patients received iopromide 370, iodine flux = 1.48 g I/s; group B, 146 patients received iomeprol 400, iodine flux = 1.60 g I/s). CT attenuation was measured in the coronary arteries and great arteries and measurements were standardized based on an iodine flux of 1.5 0 g I/s. The image quality of 15 coronary artery segments was graded by two radiologists in consensus with the use of a four-point scale (1 = excellent to 4 = poor enhancement). Non-parametric statistical approaches were used to compare the two groups. Results: The median attenuation values in the coronary arteries were 454 HU and 464 HU for iopromide 370 and iomeprol 400, respectively, and they did not differ (P = 0.26). When standardizing for an iodine flux, significantly higher attenuation values were found for iopromide 370 (median = 460 HU, range = 216-791 HU) compared with iomeprol 400 (median = 435 HU, range = 195—758 HU) (P = 0.006). The median image quality score of coronary arterial segments was 1 (range 1—2) for both groups (P = 0.84). Conclusion: The attenuation values in the coronary arteries after injection of the same amount of two high iodine-concentration contrast materials at the same flow rate with different iodine fluxes are similar with no difference in image quality. With standardization for an iodine flux, the attenuation is significantly higher when using iopromide 370. PMID:20849317

  8. Factors Affecting Image Quality in Near-field Ultra-wideband Radar Imaging for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Curtis, Charlotte

    Near-field ultra-wideband radar imaging has potential as a new breast imaging modality. While a number of reconstruction algorithms have been published with the goal of reducing undesired responses or clutter, an in-depth analysis of the dominant sources of clutter has not been conducted. In this thesis, time domain radar image reconstruction is demonstrated to be equivalent to frequency domain synthetic aperture radar. This reveals several assumptions inherent to the reconstruction algorithm related to radial spreading, point source antennas, and the independent summation of point scatterers. Each of these assumptions is examined in turn to determine which has the greatest impact on the resulting image quality and interpretation. In addition, issues related to heterogeneous and dispersive media are addressed. Variations in imaging parameters are tested by observing their influence on the system point spread function. Results are then confirmed by testing on simple and detailed simulation models, followed by data acquired from human volunteers. Recommended parameters are combined into a new imaging operator that is demonstrated to generate results comparable to a more accurate signal model, but with a 50 fold improvement in computational efficiency. Finally, the most significant factor affecting image quality is determined to be the estimate of tissue properties used to form the image.

  9. Incorporating detection tasks into the assessment of CT image quality

    NASA Astrophysics Data System (ADS)

    Scalzetti, E. M.; Huda, W.; Ogden, K. M.; Khan, M.; Roskopf, M. L.; Ogden, D.

    2006-03-01

    The purpose of this study was to compare traditional and task dependent assessments of CT image quality. Chest CT examinations were obtained with a standard protocol for subjects participating in a lung cancer-screening project. Images were selected for patients whose weight ranged from 45 kg to 159 kg. Six ABR certified radiologists subjectively ranked these images using a traditional six-point ranking scheme that ranged from 1 (inadequate) to 6 (excellent). Three subtle diagnostic tasks were identified: (1) a lung section containing a sub-centimeter nodule of ground-glass opacity in an upper lung (2) a mediastinal section with a lymph node of soft tissue density in the mediastinum; (3) a liver section with a rounded low attenuation lesion in the liver periphery. Each observer was asked to estimate the probability of detecting each type of lesion in the appropriate CT section using a six-point scale ranging from 1 (< 10%) to 6 (> 90%). Traditional and task dependent measures of image quality were plotted as a function of patient weight. For the lung section, task dependent evaluations were very similar to those obtained using the traditional scoring scheme, but with larger inter-observer differences. Task dependent evaluations for the mediastinal section showed no obvious trend with subject weight, whereas there the traditional score decreased from ~4.9 for smaller subjects to ~3.3 for the larger subjects. Task dependent evaluations for the liver section showed a decreasing trend from ~4.1 for the smaller subjects to ~1.9 for the larger subjects, whereas the traditional evaluation had a markedly narrower range of scores. A task-dependent method of assessing CT image quality can be implemented with relative ease, and is likely to be more meaningful in the clinical setting.

  10. Image quality criteria for wide-field x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Thompson, Patrick L.; Harvey, James E.

    1999-10-01

    For staring, wide-field applications, such as a solar x-ray imager, the severe off-axis aberrations of the classical Wolter Type-I grazing incidence x-ray telescope design drastically limits the 'resolution' near the solar limb. A specification upon on-axis fractional encircled energy is thus not an appropriate image quality criterion for such wide-angle applications. A more meaningful image quality criterion would be a field-weighted-average measure of 'resolution.' Since surface scattering effects from residual optical fabrication errors are always substantial at these very short wavelengths, the field-weighted-average half- power radius is a far more appropriate measure of aerial resolution. If an ideal mosaic detector array is being used in the focal plane, the finite pixel size provides a practical limit to this system performance. Thus, the total number of aerial resolution elements enclosed by the operational field-of-view, expressed as a percentage of the n umber of ideal detector pixels, is a further improved image quality criterion. In this paper we describe the development of an image quality criterion for wide-field applications of grazing incidence x-ray telescopes which leads to a new class of grazing incidence designs described in a following companion paper.

  11. Beef quality parameters estimation using ultrasound and color images

    PubMed Central

    2015-01-01

    Background Beef quality measurement is a complex task with high economic impact. There is high interest in obtaining an automatic quality parameters estimation in live cattle or post mortem. In this paper we set out to obtain beef quality estimates from the analysis of ultrasound (in vivo) and color images (post mortem), with the measurement of various parameters related to tenderness and amount of meat: rib eye area, percentage of intramuscular fat and backfat thickness or subcutaneous fat. Proposal An algorithm based on curve evolution is implemented to calculate the rib eye area. The backfat thickness is estimated from the profile of distances between two curves that limit the steak and the rib eye, previously detected. A model base in Support Vector Regression (SVR) is trained to estimate the intramuscular fat percentage. A series of features extracted on a region of interest, previously detected in both ultrasound and color images, were proposed. In all cases, a complete evaluation was performed with different databases including: color and ultrasound images acquired by a beef industry expert, intramuscular fat estimation obtained by an expert using a commercial software, and chemical analysis. Conclusions The proposed algorithms show good results to calculate the rib eye area and the backfat thickness measure and profile. They are also promising in predicting the percentage of intramuscular fat. PMID:25734452

  12. [Quality of life in patients with essential arterial hypertension. Part I: The effect o socio-demographic factors ].

    PubMed

    Klocek, Marek; Kawecka-Jaszcz, Kalina

    2003-01-01

    Currently, one of the methods of comprehensive evaluation of patient health status is quality of life assessment. In the management of hypertension, evaluation of quality of life helps in individualization of therapy and improves its efficiency. The aim of the study was to compare the general quality of life between patients with essential hypertension and normal blood pressure values, and to analyse the effect of socio-demographic factors on the quality of life. An open questionnaire was distributed among 1539 patients (775 men and 764 women), aged from 18 to 88 years (x = 51.7 +/- 14.6 years) with essential hypertension detected at least 3 months earlier, referring to treatment for the first time or already treated by general practitioners and the Outpatient Department on Hypertension of the I Cardiac Department. Hypotensive treatment was given to 82.6% of the subjects, whereas 17.4% were untreated. A group of 995 subjects (459 men and 536 women) aged from 18 to 82 years (x = 48.6 +/- 11.2 years) with normal blood pressure values served as controls. All subjects provided data on education employment, body mass index, duration of arterial hypertension, family history, target organ damage, co-morbidity, blood pressure value, heart rate and pharmacological treatment. All subjects filled out a standardised questionnaire--Psychological General Well-Being (PGWB), which evaluated the general quality of life and its sin dimensions: Anxiety, Depressive mood, Subjective Well-being, Self-control, General health and Vitality. Statistical analysis included descriptive statistics, analysis of variance and multiple regression. The general quality of life in patients with essential hypertension was significantly lower than that in age-matched normotensives. The quality of life in women was lower than that in men irrespective of arterial hypertension presence. The quality of life was decreasing with age both in hypertensive and normotensives; however in hypertensive men there was

  13. Objective assessment of image quality. IV. Application to adaptive optics

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, Christopher

    2008-01-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed. PMID:17106464

  14. Effects of characteristics of image quality in an immersive environment

    NASA Technical Reports Server (NTRS)

    Duh, Henry Been-Lirn; Lin, James J W.; Kenyon, Robert V.; Parker, Donald E.; Furness, Thomas A.

    2002-01-01

    Image quality issues such as field of view (FOV) and resolution are important for evaluating "presence" and simulator sickness (SS) in virtual environments (VEs). This research examined effects on postural stability of varying FOV, image resolution, and scene content in an immersive visual display. Two different scenes (a photograph of a fountain and a simple radial pattern) at two different resolutions were tested using six FOVs (30, 60, 90, 120, 150, and 180 deg.). Both postural stability, recorded by force plates, and subjective difficulty ratings varied as a function of FOV, scene content, and image resolution. Subjects exhibited more balance disturbance and reported more difficulty in maintaining posture in the wide-FOV, high-resolution, and natural scene conditions.

  15. Objective assessment of image quality. IV. Application to adaptive optics.

    PubMed

    Barrett, Harrison H; Myers, Kyle J; Devaney, Nicholas; Dainty, Christopher

    2006-12-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed.

  16. Objective assessment of image quality. IV. Application to adaptive optics.

    PubMed

    Barrett, Harrison H; Myers, Kyle J; Devaney, Nicholas; Dainty, Christopher

    2006-12-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed. PMID:17106464

  17. Image gathering and digital restoration for fidelity and visual quality

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1991-01-01

    The fidelity and resolution of the traditional Wiener restorations given in the prevalent digital processing literature can be significantly improved when the transformations between the continuous and discrete representations in image gathering and display are accounted for. However, the visual quality of these improved restorations also is more sensitive to the defects caused by aliasing artifacts, colored noise, and ringing near sharp edges. In this paper, these visual defects are characterized, and methods for suppressing them are presented. It is demonstrated how the visual quality of fidelity-maximized images can be improved when (1) the image-gathering system is specifically designed to enhance the performance of the image-restoration algorithm, and (2) the Wiener filter is combined with interactive Gaussian smoothing, synthetic high edge enhancement, and nonlinear tone-scale transformation. The nonlinear transformation is used primarily to enhance the spatial details that are often obscurred when the normally wide dynamic range of natural radiance fields is compressed into the relatively narrow dynamic range of film and other displays.

  18. Characterization of image quality for 3D scatter-corrected breast CT images

    NASA Astrophysics Data System (ADS)

    Pachon, Jan H.; Shah, Jainil; Tornai, Martin P.

    2011-03-01

    The goal of this study was to characterize the image quality of our dedicated, quasi-monochromatic spectrum, cone beam breast imaging system under scatter corrected and non-scatter corrected conditions for a variety of breast compositions. CT projections were acquired of a breast phantom containing two concentric sets of acrylic spheres that varied in size (1-8mm) based on their polar position. The breast phantom was filled with 3 different concentrations of methanol and water, simulating a range of breast densities (0.79-1.0g/cc); acrylic yarn was sometimes included to simulate connective tissue of a breast. For each phantom condition, 2D scatter was measured for all projection angles. Scatter-corrected and uncorrected projections were then reconstructed with an iterative ordered subsets convex algorithm. Reconstructed image quality was characterized using SNR and contrast analysis, and followed by a human observer detection task for the spheres in the different concentric rings. Results show that scatter correction effectively reduces the cupping artifact and improves image contrast and SNR. Results from the observer study indicate that there was no statistical difference in the number or sizes of lesions observed in the scatter versus non-scatter corrected images for all densities. Nonetheless, applying scatter correction for differing breast conditions improves overall image quality.

  19. Evaluation of scatter effects on image quality for breast tomosynthesis

    SciTech Connect

    Wu Gang; Mainprize, James G.; Boone, John M.; Yaffe, Martin J.

    2009-10-15

    Digital breast tomosynthesis uses a limited number (typically 10-20) of low-dose x-ray projections to produce a pseudo-three-dimensional volume tomographic reconstruction of the breast. The purpose of this investigation was to characterize and evaluate the effect of scattered radiation on the image quality for breast tomosynthesis. In a simulation, scatter point spread functions generated by a Monte Carlo simulation method were convolved over the breast projection to estimate the distribution of scatter for each angle of tomosynthesis projection. The results demonstrate that in the absence of scatter reduction techniques, images will be affected by cupping artifacts, and there will be reduced accuracy of attenuation values inferred from the reconstructed images. The effect of x-ray scatter on the contrast, noise, and lesion signal-difference-to-noise ratio (SDNR) in tomosynthesis reconstruction was measured as a function of the tumor size. When a with-scatter reconstruction was compared to one without scatter for a 5 cm compressed breast, the following results were observed. The contrast in the reconstructed central slice image of a tumorlike mass (14 mm in diameter) was reduced by 30%, the voxel value (inferred attenuation coefficient) was reduced by 28%, and the SDNR fell by 60%. The authors have quantified the degree to which scatter degrades the image quality over a wide range of parameters relevant to breast tomosynthesis, including x-ray beam energy, breast thickness, breast diameter, and breast composition. They also demonstrate, though, that even without a scatter rejection device, the contrast and SDNR in the reconstructed tomosynthesis slice are higher than those of conventional mammographic projection images acquired with a grid at an equivalent total exposure.

  20. TU-B-19A-01: Image Registration II: TG132-Quality Assurance for Image Registration

    SciTech Connect

    Brock, K; Mutic, S

    2014-06-15

    AAPM Task Group 132 was charged with a review of the current approaches and solutions for image registration in radiotherapy and to provide recommendations for quality assurance and quality control of these clinical processes. As the results of image registration are always used as the input of another process for planning or delivery, it is important for the user to understand and document the uncertainty associate with the algorithm in general and the Result of a specific registration. The recommendations of this task group, which at the time of abstract submission are currently being reviewed by the AAPM, include the following components. The user should understand the basic image registration techniques and methods of visualizing image fusion. The disclosure of basic components of the image registration by commercial vendors is critical in this respect. The physicists should perform end-to-end tests of imaging, registration, and planning/treatment systems if image registration is performed on a stand-alone system. A comprehensive commissioning process should be performed and documented by the physicist prior to clinical use of the system. As documentation is important to the safe implementation of this process, a request and report system should be integrated into the clinical workflow. Finally, a patient specific QA practice should be established for efficient evaluation of image registration results. The implementation of these recommendations will be described and illustrated during this educational session. Learning Objectives: Highlight the importance of understanding the image registration techniques used in their clinic. Describe the end-to-end tests needed for stand-alone registration systems. Illustrate a comprehensive commissioning program using both phantom data and clinical images. Describe a request and report system to ensure communication and documentation. Demonstrate an clinically-efficient patient QA practice for efficient evaluation of image

  1. SU-E-J-36: Comparison of CBCT Image Quality for Manufacturer Default Imaging Modes

    SciTech Connect

    Nelson, G

    2015-06-15

    Purpose CBCT is being increasingly used in patient setup for radiotherapy. Often the manufacturer default scan modes are used for performing these CBCT scans with the assumption that they are the best options. To quantitatively assess the image quality of these scan modes, all of the scan modes were tested as well as options with the reconstruction algorithm. Methods A CatPhan 504 phantom was scanned on a TrueBeam Linear Accelerator using the manufacturer scan modes (FSRT Head, Head, Image Gently, Pelvis, Pelvis Obese, Spotlight, & Thorax). The Head mode scan was then reconstructed multiple times with all filter options (Smooth, Standard, Sharp, & Ultra Sharp) and all Ring Suppression options (Disabled, Weak, Medium, & Strong). An open source ImageJ tool was created for analyzing the CatPhan 504 images. Results The MTF curve was primarily dictated by the voxel size and the filter used in the reconstruction algorithm. The filters also impact the image noise. The CNR was worst for the Image Gently mode, followed by FSRT Head and Head. The sharper the filter, the worse the CNR. HU varied significantly between scan modes. Pelvis Obese had lower than expected HU values than most while the Image Gently mode had higher than expected HU values. If a therapist tried to use preset window and level settings, they would not show the desired tissue for some scan modes. Conclusion Knowing the image quality of the set scan modes, will enable users to better optimize their setup CBCT. Evaluation of the scan mode image quality could improve setup efficiency and lead to better treatment outcomes.

  2. User-guided automated segmentation of time-series ultrasound images for measuring vasoreactivity of the brachial artery induced by flow mediation

    NASA Astrophysics Data System (ADS)

    Sehgal, Chandra M.; Kao, Yen H.; Cary, Ted W.; Arger, Peter H.; Mohler, Emile R.

    2005-04-01

    Endothelial dysfunction in response to vasoactive stimuli is closely associated with diseases such as atherosclerosis, hypertension and congestive heart failure. The current method of using ultrasound to image the brachial artery along the longitudinal axis is insensitive for measuring the small vasodilatation that occurs in response to flow mediation. The goal of this study is to overcome this limitation by using cross-sectional imaging of the brachial artery in conjunction with the User-Guided Automated Boundary Detection (UGABD) algorithm for extracting arterial boundaries. High-resolution ultrasound imaging was performed on rigid plastic tubing, on elastic rubber tubing phantoms with steady and pulsatile flow, and on the brachial artery of a healthy volunteer undergoing reactive hyperemia. The area of cross section of time-series images was analyzed by UGABD by propagating the boundary from one frame to the next. The UGABD results were compared by linear correlation with those obtained by manual tracing. UGABD measured the cross-sectional area of the phantom tubing to within 5% of the true area. The algorithm correctly detected pulsatile vasomotion in phantoms and in the brachial artery. A comparison of area measurements made using UGABD with those made by manual tracings yielded a correlation of 0.9 and 0.8 for phantoms and arteries, respectively. The peak vasodilatation due to reactive hyperemia was two orders of magnitude greater in pixel count than that measured by longitudinal imaging. Cross-sectional imaging is more sensitive than longitudinal imaging for measuring flow-mediated dilatation of brachial artery, and thus may be more suitable for evaluating endothelial dysfunction.

  3. Comparison of MDCT protocols in trauma patients with suspected splenic injury: superior results with protocol that includes arterial and portal venous phase imaging

    PubMed Central

    Melikian, Raymond; Goldberg, Stephanie; Strife, Brian James; Halvorsen, Robert A.

    2016-01-01

    PURPOSE We aimed to determine which intravenous contrast-enhanced multidetector computed tomography (MDCT) protocol produced the most accurate results for the detection of splenic vascular injury in hemodynamically stable patients who had sustained blunt abdominal trauma. METHODS We retrospectively reviewed 88 patients from 2003 to 2011 who sustained blunt splenic trauma and underwent contrast-enhanced MDCT and subsequent angiography. Results of MDCT scans utilizing single phase (portal venous only, n=8), dual phase (arterial + portal venous or portal venous + delayed, n=42), or triple phase (arterial + portal venous + delayed, n=38) were compared with results of subsequent splenic angiograms for the detection of splenic vascular injury. RESULTS Dual phase imaging was more sensitive and accurate than single phase imaging (P = 0.016 and P = 0.029, respectively). When the subsets of dual phase imaging were compared, arterial + portal venous phase imaging was more sensitive and accurate than portal venous + delayed phase imaging (P = 0.005 and P = 0.002, respectively). Triple phase imaging was more accurate (P = 0.015) than dual phase; however, when compared with the dual phase subset of arterial + portal venous, there was no statistical difference in either sensitivity or accuracy. CONCLUSION Our results support the use of dual phase contrast-enhanced MDCT, which includes the arterial phase, in patients with suspected splenic injury and question the utility of obtaining a delayed sequence. PMID:27334296

  4. Image Quality of the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Wachter, R.; Schou, Jesper; Rabello-Soares, M. C.; Miles, J. W.; Duvall, T. L., Jr.; Bush, R. I.

    2011-01-01

    We describe the imaging quality of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) as measured during the ground calibration of the instrument. We describe the calibration techniques and report our results for the final configuration of HMI. We present the distortion, modulation transfer function, stray light,image shifts introduced by moving parts of the instrument, best focus, field curvature, and the relative alignment of the two cameras. We investigate the gain and linearity of the cameras, and present the measured flat field.

  5. Chondroitin sulfate iron colloid-enhanced MR imaging in patients with hepatocellular carcinoma. Comparison with CT during arterial portography.

    PubMed

    Kamba, M; Suto, Y; Kato, T

    1994-11-01

    Chondroitin sulfate iron colloid (CSIC) was used as an MR contrast agent for the detection of hepatocellular carcinoma (HCC). The findings of 25 surgically confirmed HCCs in 19 patients were retrospectively analyzed. T1-, T2- and proton density-weighted spin echo MR images were obtained before and after i.v. injection of 23.6 microM Fe/kg of CSIC. Unenhanced and CSIC-enhanced MR images and images obtained by CT during arterial portography (CT-AP) were correlated with surgical pathology findings. The sensitivities of CSIC-enhanced and unenhanced MR imaging, and CT-AP were 92%, 80%, and 88%, respectively. No significant differences were noted. Portal flow abnormalities demonstrated by CT-AP did not affect the detection of HCC by CSIC-enhanced MR imaging. CSIC-enhancement at MR imaging was a disadvantage in the detection of lesions less than 1 cm in diameter. CSIC-enhanced MR imaging is a supplemental method for the detection of HCC.

  6. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality

    SciTech Connect

    Flohr, Thomas G.; Leng Shuai; Yu Lifeng; Allmendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D.; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H.

    2009-12-15

    Purpose: To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. Methods: With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. Results: No significant differences in quantitative measures of image quality were found between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6{<=}pitch{<=}3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch=3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving

  7. Restoration of images degraded by underwater turbulence using structure tensor oriented image quality (STOIQ) metric.

    PubMed

    Kanaev, A V; Hou, W; Restaino, S R; Matt, S; Gładysz, S

    2015-06-29

    Recent advances in image processing for atmospheric propagation have provided a foundation for tackling the similar but perhaps more complex problem of underwater imaging, which is impaired by scattering and optical turbulence. As a result of these impairments underwater imagery suffers from excessive noise, blur, and distortion. Underwater turbulence impact on light propagation becomes critical at longer distances as well as near thermocline and mixing layers. In this work, we demonstrate a method for restoration of underwater images that are severely degraded by underwater turbulence. The key element of the approach is derivation of a structure tensor oriented image quality metric, which is subsequently incorporated into a lucky patch image processing framework. The utility of the proposed image quality measure guided by local edge strength and orientation is emphasized by comparing the restoration results to an unsuccessful restoration obtained with equivalent processing utilizing a standard isotropic metric. Advantages of the proposed approach versus three other state-of-the-art image restoration techniques are demonstrated using the data obtained in the laboratory water tank and in a natural environment underwater experiment. Quantitative comparison of the restoration results is performed via structural similarity index measure and normalized mutual information metric.

  8. Restoration of images degraded by underwater turbulence using structure tensor oriented image quality (STOIQ) metric.

    PubMed

    Kanaev, A V; Hou, W; Restaino, S R; Matt, S; Gładysz, S

    2015-06-29

    Recent advances in image processing for atmospheric propagation have provided a foundation for tackling the similar but perhaps more complex problem of underwater imaging, which is impaired by scattering and optical turbulence. As a result of these impairments underwater imagery suffers from excessive noise, blur, and distortion. Underwater turbulence impact on light propagation becomes critical at longer distances as well as near thermocline and mixing layers. In this work, we demonstrate a method for restoration of underwater images that are severely degraded by underwater turbulence. The key element of the approach is derivation of a structure tensor oriented image quality metric, which is subsequently incorporated into a lucky patch image processing framework. The utility of the proposed image quality measure guided by local edge strength and orientation is emphasized by comparing the restoration results to an unsuccessful restoration obtained with equivalent processing utilizing a standard isotropic metric. Advantages of the proposed approach versus three other state-of-the-art image restoration techniques are demonstrated using the data obtained in the laboratory water tank and in a natural environment underwater experiment. Quantitative comparison of the restoration results is performed via structural similarity index measure and normalized mutual information metric. PMID:26191716

  9. Automatic detection of the intima-media thickness in ultrasound images of the common carotid artery using neural networks.

    PubMed

    Menchón-Lara, Rosa-María; Bastida-Jumilla, María-Consuelo; Morales-Sánchez, Juan; Sancho-Gómez, José-Luis

    2014-02-01

    Atherosclerosis is the leading underlying pathologic process that results in cardiovascular diseases, which represents the main cause of death and disability in the world. The atherosclerotic process is a complex degenerative condition mainly affecting the medium- and large-size arteries, which begins in childhood and may remain unnoticed during decades. The intima-media thickness (IMT) of the common carotid artery (CCA) has emerged as one of the most powerful tool for the evaluation of preclinical atherosclerosis. IMT is measured by means of B-mode ultrasound images, which is a non-invasive and relatively low-cost technique. This paper proposes an effective image segmentation method for the IMT measurement in an automatic way. With this purpose, segmentation is posed as a pattern recognition problem, and a combination of artificial neural networks has been trained to solve this task. In particular, multi-layer perceptrons trained under the scaled conjugate gradient algorithm have been used. The suggested approach is tested on a set of 60 longitudinal ultrasound images of the CCA by comparing the automatic segmentation with four manual tracings. Moreover, the intra- and inter-observer errors have also been assessed. Despite of the simplicity of our approach, several quantitative statistical evaluations have shown its accuracy and robustness. PMID:24281725

  10. Color image quality in projection displays: a case study

    NASA Astrophysics Data System (ADS)

    Strand, Monica; Hardeberg, Jon Y.; Nussbaum, Peter

    2005-01-01

    Recently the use of projection displays has increased dramatically in different applications such as digital cinema, home theatre, and business and educational presentations. Even if the color image quality of these devices has improved significantly over the years, it is still a common situation for users of projection displays that the projected colors differ significantly from the intended ones. This study presented in this paper attempts to analyze the color image quality of a large set of projection display devices, particularly investigating the variations in color reproduction. As a case study, a set of 14 projectors (LCD and DLP technology) at Gjovik University College have been tested under four different conditions: dark and light room, with and without using an ICC-profile. To find out more about the importance of the illumination conditions in a room, and the degree of improvement when using an ICC-profile, the results from the measurements was processed and analyzed. Eye-One Beamer from GretagMacbeth was used to make the profiles. The color image quality was evaluated both visually and by color difference calculations. The results from the analysis indicated large visual and colorimetric differences between the projectors. Our DLP projectors have generally smaller color gamut than LCD projectors. The color gamuts of older projectors are significantly smaller than that of newer ones. The amount of ambient light reaching the screen is of great importance for the visual impression. If too much reflections and other ambient light reaches the screen, the projected image gets pale and has low contrast. When using a profile, the differences in colors between the projectors gets smaller and the colors appears more correct. For one device, the average ΔE*ab color difference when compared to a relative white reference was reduced from 22 to 11, for another from 13 to 6. Blue colors have the largest variations among the projection displays and makes them

  11. Color image quality in projection displays: a case study

    NASA Astrophysics Data System (ADS)

    Strand, Monica; Hardeberg, Jon Y.; Nussbaum, Peter

    2004-10-01

    Recently the use of projection displays has increased dramatically in different applications such as digital cinema, home theatre, and business and educational presentations. Even if the color image quality of these devices has improved significantly over the years, it is still a common situation for users of projection displays that the projected colors differ significantly from the intended ones. This study presented in this paper attempts to analyze the color image quality of a large set of projection display devices, particularly investigating the variations in color reproduction. As a case study, a set of 14 projectors (LCD and DLP technology) at Gjøvik University College have been tested under four different conditions: dark and light room, with and without using an ICC-profile. To find out more about the importance of the illumination conditions in a room, and the degree of improvement when using an ICC-profile, the results from the measurements was processed and analyzed. Eye-One Beamer from GretagMacbeth was used to make the profiles. The color image quality was evaluated both visually and by color difference calculations. The results from the analysis indicated large visual and colorimetric differences between the projectors. Our DLP projectors have generally smaller color gamut than LCD projectors. The color gamuts of older projectors are significantly smaller than that of newer ones. The amount of ambient light reaching the screen is of great importance for the visual impression. If too much reflections and other ambient light reaches the screen, the projected image gets pale and has low contrast. When using a profile, the differences in colors between the projectors gets smaller and the colors appears more correct. For one device, the average ΔE*ab color difference when compared to a relative white reference was reduced from 22 to 11, for another from 13 to 6. Blue colors have the largest variations among the projection displays and makes them

  12. Patient dose and image quality from mega-voltage cone beam computed tomography imaging.

    PubMed

    Gayou, Olivier; Parda, David S; Johnson, Mark; Miften, Moyed

    2007-02-01

    The evolution of ever more conformal radiation delivery techniques makes the subject of accurate localization of increasing importance in radiotherapy. Several systems can be utilized including kilo-voltage and mega-voltage cone-beam computed tomography (MV-CBCT), CT on rail or helical tomography. One of the attractive aspects of mega-voltage cone-beam CT is that it uses the therapy beam along with an electronic portal imaging device to image the patient prior to the delivery of treatment. However, the use of a photon beam energy in the mega-voltage range for volumetric imaging degrades the image quality and increases the patient radiation dose. To optimize image quality and patient dose in MV-CBCT imaging procedures, a series of dose measurements in cylindrical and anthropomorphic phantoms using an ionization chamber, radiographic films, and thermoluminescent dosimeters was performed. Furthermore, the dependence of the contrast to noise ratio and spatial resolution of the image upon the dose delivered for a 20-cm-diam cylindrical phantom was evaluated. Depending on the anatomical site and patient thickness, we found that the minimum dose deposited in the irradiated volume was 5-9 cGy and the maximum dose was between 9 and 17 cGy for our clinical MV-CBCT imaging protocols. Results also demonstrated that for high contrast areas such as bony anatomy, low doses are sufficient for image registration and visualization of the three-dimensional boundaries between soft tissue and bony structures. However, as the difference in tissue density decreased, the dose required to identify soft tissue boundaries increased. Finally, the dose delivered by MV-CBCT was simulated using a treatment planning system (TPS), thereby allowing the incorporation of MV-CBCT dose in the treatment planning process. The TPS-calculated doses agreed well with measurements for a wide range of imaging protocols.

  13. An investigation of flat panel equipment variables on image quality with a dedicated cardiac phantom

    NASA Astrophysics Data System (ADS)

    Dragusin, O.; Bosmans, H.; Pappas, C.; Desmet, W.

    2008-09-01

    Image quality (IQ) evaluation plays a key role in the process of optimization of new x-ray systems. Ideally, this process should be supported by real clinical images, but ethical issues and differences in anatomy and pathology of patients make it impossible. Phantom studies might overcome these issues. This paper presents the IQ evaluation of 30 cineangiographic films acquired with a cardiac flat panel system. The phantom used simulates the anatomy of the heart and allows the circulation of contrast agent boluses through coronary arteries. Variables investigated with influence on IQ and radiation dose are: tube potential, detector dose, added Copper filters, dynamic density optimization (DDO) and viewing angle. The IQ evaluation consisted of scoring 4 simulated calcified lesions located on different coronary artery segments in terms of degree of visualization. Eight cardiologists rated the lesions using a five-point scale ((1) lesion not visible to (5) very good visibility). Radiation doses associated to the angiograms are expressed in terms of incident air kerma (IAK) and effective dose that has been calculated with PCXMX software (STUK, Finland) from the exposure settings assuming a standard sized patient of 70 Kg. Mean IQ scores ranged from 1.68 to 4.88. The highest IQ scores were obtained for the angiograms acquired with tube potential 80 kVp, no added Cu filters, DDO 60%, RAO and LAO views and the highest entrance detector dose that has been used in the present study, namely 0.17 μGy/im. Radiation doses (IAK ~40 mGy and effective dose of 1 mSv) were estimated for angiograms acquired at 15 frames s-1, detector field-of-view 20 cm, and a length of 5 s. The following parameters improved the IQ factor significantly: a change in tube potential from 96 to 80 kVp, detector dose from 0.10 μGy/im to 0.17 μGy/im, the absence of Copper filtration. DDO variable which is a post-processing parameter should be carefully evaluated because it alters the quality of the

  14. Using full-reference image quality metrics for automatic image sharpening

    NASA Astrophysics Data System (ADS)

    Krasula, Lukas; Fliegel, Karel; Le Callet, Patrick; Klíma, Miloš

    2014-05-01

    Image sharpening is a post-processing technique employed for the artificial enhancement of the perceived sharpness by shortening the transitions between luminance levels or increasing the contrast on the edges. The greatest challenge in this area is to determine the level of perceived sharpness which is optimal for human observers. This task is complex because the enhancement is gained only until the certain threshold. After reaching it, the quality of the resulting image drops due to the presence of annoying artifacts. Despite the effort dedicated to the automatic sharpness estimation, none of the existing metrics is designed for localization of this threshold. Nevertheless, it is a very important step towards the automatic image sharpening. In this work, possible usage of full-reference image quality metrics for finding the optimal amount of sharpening is proposed and investigated. The intentionally over-sharpened "anchor image" was included to the calculation as the "anti-reference" and the final metric score was computed from the differences between reference, processed, and anchor versions of the scene. Quality scores obtained from the subjective experiment were used to determine the optimal combination of partial metric values. Five popular fidelity metrics - SSIM, MS-SSIM, IW-SSIM, VIF, and FSIM - were tested. The performance of the proposed approach was then verified in the subjective experiment.

  15. Value of thallium-201 reinjection after delayed SPECT imaging for predicting reversible ischemia after coronary artery bypass grafting

    SciTech Connect

    Ohtani, H.; Tamaki, N.; Yonekura, Y.; Mohiuddin, I.H.; Hirata, K.; Ban, T.; Konishi, J. )

    1990-08-15

    The reinjection of a small dose (40 MBq) of thallium-201 after stress and delayed imaging often shows new redistribution in the regions with persistent defect. To assess whether these segments may represent reversible ischemia, reinjection thallium-201 single-photon emission computed tomography (SPECT) was performed after stress and 3-hour delayed imaging in 24 patients before coronary artery bypass grafting (CABG). The left ventricular myocardium was divided into 5 myocardial segments and regional wall motion was scored on a scale from 0 (normal) to 4 (dyskinesia). Thallium-201 findings were compared with improvement in regional perfusion and wall motion 1 to 2 months after CABG. The reinjection imaging identified new redistribution in 15 of 32 persistent defects (47%) on the 3-hour delayed images. In the study of stress and delayed SPECT imaging, the improvement in perfusion was observed in 34 of 43 segments (79%) exhibiting redistribution and 15 of 32 (47%) segments without redistribution (p less than 0.01). The reinjection SPECT identified new redistribution in 12 of the 15 improved segments that were not detected on the delayed images. Similarly, the improvement in wall motion was observed in 23 of 31 segments (74%) exhibiting redistribution and 14 of 30 segments (47%) without redistribution on the delayed images (p less than 0.05). The reinjection identified new redistribution in 10 of the 14 improved segments that were undetected on the delayed images. The predictive values for improvement in perfusion and wall motion by the reinjection imaging were significantly higher (92 and 89%) than those by the delayed imaging (69 and 62%, respectively, p less than 0.05 each).

  16. Image quality evaluation of breast tomosynthesis with synchrotron radiation

    SciTech Connect

    Malliori, A.; Bliznakova, K.; Speller, R. D.; Horrocks, J. A.; Rigon, L.; Tromba, G.; Pallikarakis, N.

    2012-09-15

    Purpose: This study investigates the image quality of tomosynthesis slices obtained from several acquisition sets with synchrotron radiation using a breast phantom incorporating details that mimic various breast lesions, in a heterogeneous background. Methods: A complex Breast phantom (MAMMAX) with a heterogeneous background and thickness that corresponds to 4.5 cm compressed breast with an average composition of 50% adipose and 50% glandular tissue was assembled using two commercial phantoms. Projection images using acquisition arcs of 24 Degree-Sign , 32 Degree-Sign , 40 Degree-Sign , 48 Degree-Sign , and 56 Degree-Sign at incident energy of 17 keV were obtained from the phantom with the synchrotron radiation for medical physics beamline at ELETTRA Synchrotron Light Laboratory. The total mean glandular dose was set equal to 2.5 mGy. Tomograms were reconstructed with simple multiple projection algorithm (MPA) and filtered MPA. In the latter case, a median filter, a sinc filter, and a combination of those two filters were applied on the experimental data prior to MPA reconstruction. Visual inspection, contrast to noise ratio, contrast, and artifact spread function were the figures of merit used in the evaluation of the visualisation and detection of low- and high-contrast breast features, as a function of the reconstruction algorithm and acquisition arc. To study the benefits of using monochromatic beams, single projection images at incident energies ranging from 14 to 27 keV were acquired with the same phantom and weighted to synthesize polychromatic images at a typical incident x-ray spectrum with W target. Results: Filters were optimised to reconstruct features with different attenuation characteristics and dimensions. In the case of 6 mm low-contrast details, improved visual appearance as well as higher contrast to noise ratio and contrast values were observed for the two filtered MPA algorithms that exploit the sinc filter. These features are better visualized

  17. A hyperspectral imaging prototype for online quality evaluation of pickling cucumbers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hyperspectral imaging prototype was developed for online evaluation of external and internal quality of pickling cucumbers. The prototype had several new, unique features including simultaneous reflectance and transmittance imaging and inline, real time calibration of hyperspectral images of each ...

  18. Image Fusion of Preprocedural CTA with Real-time Fluoroscopy to Guide Proper Hepatic Artery Catheterization During Transarterial Chemoembolization of Hepatocellular Carcinoma: A Feasibility Study

    SciTech Connect

    Bargellini, Irene Turini, Francesca; Bozzi, Elena; Lauretti, Dario; Cicorelli, Antonio; Lunardi, Alessandro; Cioni, Roberto; Bartolozzi, Carlo

    2013-04-15

    To assess feasibility of proper hepatic artery catheterization using a 3D model obtained from preprocedural computed tomographic angiography (CTA), fused with real-time fluoroscopy, during transarterial chemoembolization of hepatocellular carcinoma. Twenty consecutive cirrhotic patients with hepatocellular carcinoma undergoing transarterial chemoembolization were prospectively enrolled onto the study. The early arterial phase axial images of the preprocedural CTA were postprocessed on an independent workstation connected to the angiographic system (Innova 4100; GE Healthcare, Milwaukee, WI), obtaining a 3D volume rendering image (VR) that included abdominal aorta, splanchnic arteries, and first and second lumbar vertebrae. The VR image was manually registered to the real-time X-ray fluoroscopy, with the lumbar spine used as the reference. The VR image was then used as guidance to selectively catheterize the proper hepatic artery. The procedure was considered successful when performed with no need for intraarterial contrast injections or angiographic acquisitions. The procedure was successful in 19 (95 %) of 20 patients. In one patient, celiac trunk angiography was required for the presence of a significant ostial stenosis that was underestimated at computed tomography. Time for image reconstruction and registration was <10 min in all cases. The use of preprocedural CTA model with fluoroscopy enables confident and direct catheterization of the proper hepatic artery with no need for preliminary celiac trunk angiography, thus reducing radiation exposure and contrast media administration.

  19. Effectiveness of Using Dual-source CT and the Upshot it creates on Both Heart Rate and Image Quality

    PubMed Central

    Selçuk, Tuba; Otçu, Hafize; Yüceler, Zeyneb; Bilgili, Çiğdem; Bulakçı, Mesut; Savaş, Yıldıray; Çelik, Ömer

    2016-01-01

    Background: Early detection of coronary artery disease (CAD) is important because of the high morbidity and mortality rates. As invasive coronary angiography (ICA) is an invasive procedure, an alternative diagnostic method; coronary computed tomography angiography (CTA), has become more widely used by the improvements in detector technology. Aims: In this study, we aimed to examine the accuracy and image quality of high-pitch 128-slice dual-source CTA taking the ICA as reference technique. We also aimed to compare the accuracy and image quality between different heart rate groups of >70 beates per minute (bpm) and ≤70 bpm. Study Design: Retrospective cross-sectional study. Methods: Among 450 patients who underwent coronary CTA with the FLASH spiral technique, performed with a second generation dual-source computed tomography device with a pitch value of 3.2, 102 patients without stent and/or bypass surgery history and clinically suspected coronary artery disease who underwent ICA within 15 days were enrolled. Image quality was assessed by two independent radiologists using a 4-point scale (1=absence of any artifacts- 4=non-evaluable). A stenosis >50% was considered significant on a per-segment, per-vessel, and per-patient basis and ICA was considered the reference method. Radiation doses were determined using dose length product (DLP) values detected by the computed tomography (CT) device. In addition, patients were classified into two groups according to their heart rates as ≤70 bpm (73 patients) and >70 bpm (29 patients). The relation between the diagnostic accuracy and heart rate groups were evaluated. Results: Overall, 1495 (98%) coronary segments were diagnostic in 102 patients (32 male, 70 female, mean heart rate: 65 bpm). There was a significant correlation between image quality and mean heart rate in the right coronary artery (RCA) segments. The effective radiation dose was 0.98±0.09 mili Sievert (mSv). On a per-patient basis, sensitivity, specificity

  20. Image quality of a cone beam O-arm 3D imaging system

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Weir, Victor; Lin, Jingying; Hsiung, Hsiang; Ritenour, E. Russell

    2009-02-01

    The O-arm is a cone beam imaging system designed primarily to support orthopedic surgery and is also used for image-guided and vascular surgery. Using a gantry that can be opened or closed, the O-arm can function as a 2-dimensional (2D) fluoroscopy device or collect 3-dimensional (3D) volumetric imaging data like a CT system. Clinical applications of the O-arm in spine surgical procedures, assessment of pedicle screw position, and kyphoplasty procedures show that the O-arm 3D mode provides enhanced imaging information compared to radiographs or fluoroscopy alone. In this study, the image quality of an O-arm system was quantitatively evaluated. A 20 cm diameter CATPHAN 424 phantom was scanned using the pre-programmed head protocols: small/medium (120 kVp, 100 mAs), large (120 kVp, 128 mAs), and extra-large (120 kVp, 160 mAs) in 3D mode. High resolution reconstruction mode (512×512×0.83 mm) was used to reconstruct images for the analysis of low and high contrast resolution, and noise power spectrum. MTF was measured using the point spread function. The results show that the O-arm image is uniform but with a noise pattern which cannot be removed by simply increasing the mAs. The high contrast resolution of the O-arm system was approximately 9 lp/cm. The system has a 10% MTF at 0.45 mm. The low-contrast resolution cannot be decided due to the noise pattern. For surgery where locations of a structure are emphasized over a survey of all image details, the image quality of the O-arm is well accepted clinically.

  1. Assessment of image quality in x-ray radiography imaging using a small plasma focus device

    NASA Astrophysics Data System (ADS)

    Kanani, A.; Shirani, B.; Jabbari, I.; Mokhtari, J.

    2014-08-01

    This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm.

  2. Quality-of-Life Outcomes in Surgical Treatment of Ischemic Heart Failure Quality-of-Life Outcomes With Coronary Artery Bypass Graft Surgery in Ischemic Left Ventricular Dysfunction

    PubMed Central

    Mark, Daniel B.; Knight, J. David; Velazquez, Eric J.; Wasilewski, Jaroslaw; Howlett, Jonathan G.; Smith, Peter K.; Spertus, John A.; Rajda, Miroslaw; Yadav, Rakesh; Hamman, Baron L.; Malinowski, Marcin; Naik, Ajay; Rankin, Gena; Harding, Tina M.; Drew, Laura A.; Desvigne-Nickens, Patrice; Anstrom, Kevin J.

    2014-01-01

    Background: The STICH (Surgical Treatment for Ischemic Heart Failure) trial compared a strategy of routine coronary artery bypass grafting (CABG) with guideline-based medical therapy for patients with ischemic left ventricular dysfunction. Objective: To describe treatment-related quality-of-life (QOL) outcomes, a major prespecified secondary end point in the STICH trial. Design: Randomized trial. (ClinicalTrials.gov: NCT00023595) Setting: 99 clinical sites in 22 countries. Patients: 1212 patients with a left ventricular ejection fraction of 0.35 or less and coronary artery disease. Intervention: Random assignment to medical therapy alone (602 patients) or medical therapy plus CABG (610 patients). Measurements: A battery of QOL instruments at baseline (98.9% complete) and 4, 12, 24, and 36 months after randomization (collection rates were 80% to 89% of those eligible). The principal prespecified QOL measure was the Kansas City Cardiomyopathy Questionnaire, which assesses the effect of heart failure on patients’ symptoms, physical function, social limitations, and QOL. Results: The Kansas City Cardiomyopathy Questionnaire overall summary score was consistently higher (more favorable) in the CABG group than in the medical therapy group by 4.4 points (95% CI, 1.8 to 7.0 points) at 4 months, 5.8 points (CI, 3.1 to 8.6 points) at 12 months, 4.1 points (CI, 1.2 to 7.1 points) at 24 months, and 3.2 points (CI, 0.2 to 6.3 points) at 36 months. Sensitivity analyses to account for the effect of mortality on follow-up QOL measurement were consistent with the primary findings. Limitation: Therapy was not masked. Conclusion: In this cohort of symptomatic high-risk patients with ischemic left ventricular dysfunction and multivessel coronary artery disease, CABG plus medical therapy produced clinically important improvements in several health status domains compared with medical therapy alone over 36 months. Primary Funding Source: National Heart, Lung, and Blood Institute. PMID

  3. Optimising the scan delay for arterial phase imaging of the liver using the bolus tracking technique

    PubMed Central

    Chan, RS; Kumar, G; Abdullah, BJJ; Ng, KH; Vijayananthan, A; Mohd. Nor, H; Liew, YW

    2011-01-01

    Objective: To optimize the delay time before the initiation of arterial phase scan in the detection of focal liver lesions in contrast enhanced 5 phase liver CT using the bolus tracking technique. Patients and Methods: Delay - the interval between threshold enhancement of 100 hounsfield unit (HU) in the abdominal aorta and commencement of the first arterial phase scan. Using a 16 slice CT scanner, a plain CT of the liver was done followed by an intravenous bolus of 120 ml nonionic iodinated contrast media (370 mg I/ml) at the rate of 4 mL/s. The second phase scan started immediately after the first phase scan. The portal venous and delay phases were obtained at a fixed delay of 60 s and 90 s from the beginning of contrast injection. Contrast enhancement index (CEI) and subjective visual conspicuity scores for each lesion were compared among the three groups. Results: 84 lesions (11 hepatocellular carcinomas, 17 hemangiomas, 39 other hypervascular lesions and 45 cysts) were evaluated. CEI for hepatocellular carcinomas appears to be higher during the first arterial phase in the 6 seconds delay group. No significant difference in CEI and mean conspicuity scores among the three groups for hemangioma, other hypervascular lesions and cysts. Conclusion: The conspicuity of hepatocellular carcinomas appeared better during the early arterial phase using a bolus tracking technique with a scan delay of 6 seconds from the 100 HU threshold in the abdominal aorta. PMID:22287986

  4. Coronary artery bypass grafts and MDCT imaging: what to know and what to look for.

    PubMed

    Marano, Riccardo; Liguori, Carlo; Rinaldi, Pierluigi; Storto, Maria Luigia; Politi, Marco Angelo; Savino, Giancarlo; Bonomo, Lorenzo

    2007-12-01

    Multi-detector row CT (MDCT) scanners with high spatial and temporal resolutions are now available and are increasingly used for non-invasive assessment of vascular disease, including coronary arteries and coronary artery bypass grafts (CABG). Follow-up of patients who have previously undergone surgical revascularization for coronary artery disease is nowadays one of the main applications of MDCT. Thanks to the continuous technical evolution of the CT scanners, it is now possible to scan the heart and the full anatomic extent of grafts with sub-millimeter slice-thickness within a single breath-hold. In the evaluation of these patients, it is important for the radiologist to be familiar with the different types of grafts and surgical techniques to know the main characteristics of each graft type and what to look for in the assessment of a patient who has undergone coronary artery surgical revascularization. This review summarizes some surgical aspects, the biological characteristics of conduits, and the main technical MDCT features, and describes the CABG anatomy together with some typical CT findings. PMID:17874112

  5. Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Torii, Ryo; Takagi, Hirokazu; Tezduyar, Tayfun E.; Xu, Xiao Y.

    2014-10-01

    We propose a method for coronary arterial dynamics computation with medical-image-based time-dependent anatomical models. The objective is to improve the computational analysis of coronary arteries for better understanding of the links between the atherosclerosis development and mechanical stimuli such as endothelial wall shear stress and structural stress in the arterial wall. The method has two components. The first one is element-based zero-stress (ZS) state estimation, which is an alternative to prestress calculation. The second one is a "mixed ZS state" approach, where the ZS states for different elements in the structural mechanics mesh are estimated with reference configurations based on medical images coming from different instants within the cardiac cycle. We demonstrate the robustness of the method in a patient-specific coronary arterial dynamics computation where the motion of a thin strip along the arterial surface and two cut surfaces at the arterial ends is specified to match the motion extracted from the medical images.

  6. Positron emission tomography/magnetic resonance hybrid scanner imaging of cerebral blood flow using 15O-water positron emission tomography and arterial spin labeling magnetic resonance imaging in newborn piglets

    PubMed Central

    Andersen, Julie B; Henning, William S; Lindberg, Ulrich; Ladefoged, Claes N; Højgaard, Liselotte; Greisen, Gorm; Law, Ian

    2015-01-01

    Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic–ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous 15O-water positron emission tomography (PET) and single TI pulsed arterial spin labeling (ASL) magnetic resonance imaging (MR) on a hybrid PET/MR in seven newborn piglets. Positron emission tomography was performed with IV injections of 20 MBq and 100 MBq 15O-water to confirm CBF reliability at low activity. Cerebral blood flow was quantified using a one-tissue-compartment-model using two input functions: an arterial input function (AIF) or an image-derived input function (IDIF). The mean global CBF (95% CI) PET-AIF, PET-IDIF, and ASL at baseline were 27 (23; 32), 34 (31; 37), and 27 (22; 32) mL/100 g per minute, respectively. At acetazolamide stimulus, PET-AIF, PET-IDIF, and ASL were 64 (55; 74), 76 (70; 83) and 79 (67; 92) mL/100 g per minute, respectively. At baseline, differences between PET-AIF, PET-IDIF, and ASL were 22% (P<0.0001) and −0.7% (P=0.9). At acetazolamide, differences between PET-AIF, PET-IDIF, and ASL were 19% (P=0.001) and 24% (P=0.0003). In conclusion, PET-IDIF overestimated CBF. Injected activity of 20 MBq 15O-water had acceptable concordance with 100 MBq, without compromising image quality. Single TI ASL was questionable for regional CBF measurements. Global ASL CBF and PET CBF were congruent during baseline but not during hyperperfusion. PMID:26058699

  7. Image quality in CT: From physical measurements to model observers.

    PubMed

    Verdun, F R; Racine, D; Ott, J G; Tapiovaara, M J; Toroi, P; Bochud, F O; Veldkamp, W J H; Schegerer, A; Bouwman, R W; Giron, I Hernandez; Marshall, N W; Edyvean, S

    2015-12-01

    Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment.

  8. Image quality in CT: From physical measurements to model observers.

    PubMed

    Verdun, F R; Racine, D; Ott, J G; Tapiovaara, M J; Toroi, P; Bochud, F O; Veldkamp, W J H; Schegerer, A; Bouwman, R W; Giron, I Hernandez; Marshall, N W; Edyvean, S

    2015-12-01

    Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment. PMID:26459319

  9. Spectral CT imaging in patients with Budd-Chiari syndrome: investigation of image quality.

    PubMed

    Su, Lei; Dong, Junqiang; Sun, Qiang; Liu, Jie; Lv, Peijie; Hu, Lili; Yan, Liangliang; Gao, Jianbo

    2014-11-01

    To assess the image quality of monochromatic imaging from spectral CT in patients with Budd-Chiari syndrome (BCS), fifty patients with BCS underwent spectral CT to generate conventional 140 kVp polychromatic images (group A) and monochromatic images, with energy levels from 40 to 80, 40 + 70, and 50 + 70 keV fusion images (group B) during the portal venous phase (PVP) and the hepatic venous phase (HVP). Two-sample t tests compared vessel-to-liver contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) for the portal vein (PV), hepatic vein (HV), inferior vena cava. Readers' subjective evaluations of the image quality were recorded. The highest SNR values in group B were distributed at 50 keV; the highest CNR values in group B were distributed at 40 keV. The higher CNR values and SNR values were obtained though PVP of PV (SNR 18.39 ± 6.13 vs. 10.56 ± 3.31, CNR 7.81 ± 3.40 vs. 3.58 ± 1.31) and HVP of HV (3.89 ± 2.08 vs. 1.27 ± 1.55) in the group B; the lower image noise for group B was at 70 keV and 50 + 70 keV (15.54 ± 8.39 vs. 18.40 ± 4.97, P = 0.0004 and 18.97 ± 7.61 vs. 18.40 ± 4.97, P = 0.0691); the results show that the 50 + 70 keV fusion image quality was better than that in group A. Monochromatic energy levels of 40-70, 40 + 70, and 50 + 70 keV fusion image can increase vascular contrast and that will be helpful for the diagnosis of BCS, we select the 50 + 70 keV fusion image to acquire the best BCS images.

  10. Automated techniques for quality assurance of radiological image modalities

    NASA Astrophysics Data System (ADS)

    Goodenough, David J.; Atkins, Frank B.; Dyer, Stephen M.

    1991-05-01

    This paper will attempt to identify many of the important issues for quality assurance (QA) of radiological modalities. It is of course to be realized that QA can span many aspects of the diagnostic decision making process. These issues range from physical image performance levels to and through the diagnostic decision of the radiologist. We will use as a model for automated approaches a program we have developed to work with computed tomography (CT) images. In an attempt to unburden the user, and in an effort to facilitate the performance of QA, we have been studying automated approaches. The ultimate utility of the system is its ability to render in a safe and efficacious manner, decisions that are accurate, sensitive, specific and which are possible within the economic constraints of modern health care delivery.

  11. Evaluation of symptomatic uterine fibroids in candidates for uterine artery embolization: comparison between ultrasonographic and MR imaging findings in 68 consecutive patients.

    PubMed

    Malartic, Cécile; Morel, Olivier; Rivain, Anne-Laure; Placé, Vinciane; Le Dref, Olivier; Dohan, Anthony; Gayat, Etienne; Barranger, Emmanuel; Soyer, Philippe

    2013-01-01

    Ultrasonographic and magnetic resonance (MR) imaging examinations of 68 women with uterine fibroids were reviewed to determine whether MR imaging may alter the therapeutic approach based on ultrasonography alone before uterine embolization. Therapeutic decisions based on ultrasonography alone were compared to those obtained after MR imaging. Discordant findings between both examinations involved 51 women (75%), and 19 (28%) had their therapeutic approaches based on ultrasonography alone altered by MR imaging. Ultrasonography and MR imaging showed concordant findings in 17 women (25%) for whom no changes in therapeutic option were made. MR imaging alters the therapeutic approach based on ultrasonography alone in 28% of candidates for uterine artery embolization. PMID:23206612

  12. SPOT4 HRVIR first in-flight image quality results

    NASA Astrophysics Data System (ADS)

    Kubik, Philippe; Breton, Eric; Meygret, Aime; Cabrieres, Bernard; Hazane, Philippe; Leger, Dominique

    1998-12-01

    The SPOT4 remote sensing satellite was successfully launched at the end of March 1998. It was designed first of all to guarantee continuity of SPOT services beyond the year 2000 but also to improve the mission. Its two cameras are now called HRVIR since a short-wave infrared (SWIR) spectral band has been added. Like their predecessor HRV cameras, they provide 20-meter multispectral and 10-meter monospectral images with a 60 km swath for nadir viewing. SPOT4's first two months of life in orbit were dedicated to the evaluation of its image quality performances. During this period of time, the CNES team used specific target programming in order to compute image correction parameters and estimate the performance, at system level, of the image processing chain. After a description of SPOT4 system requirements and new features of the HRVIR cameras, this paper focuses on the performance deduced from in-flight measurements, methods used and their accuracy: MTF measurements, refocusing, absolute calibration, signal-to-noise Ratio, location, focal plane cartography, dynamic disturbances.

  13. New strategy for image and video quality assessment

    NASA Astrophysics Data System (ADS)

    Ma, Qi; Zhang, Liming; Wang, Bin

    2010-01-01

    Image and video quality assessment (QA) is a critical issue in image and video processing applications. General full-reference (FR) QA criteria such as peak signal-to-noise ratio (PSNR) and mean squared error (MSE) do not accord well with human subjective assessment. Some QA indices that consider human visual sensitivity, such as mean structural similarity (MSSIM) with structural sensitivity, visual information fidelity (VIF) with statistical sensitivity, etc., were proposed in view of the differences between reference and distortion frames on a pixel or local level. However, they ignore the role of human visual attention (HVA). Recently, some new strategies with HVA have been proposed, but the methods extracting the visual attention are too complex for real-time realization. We take advantage of the phase spectrum of quaternion Fourier transform (PQFT), a very fast algorithm we previously proposed, to extract saliency maps of color images or videos. Then we propose saliency-based methods for both image QA (IQA) and video QA (VQA) by adding weights related to saliency features to these original IQA or VQA criteria. Experimental results show that our saliency-based strategy can approach more closely to human subjective assessment compared with these original IQA or VQA methods and does not take more time because of the fast PQFT algorithm.

  14. An automated system for numerically rating document image quality

    SciTech Connect

    Cannon, M.; Kelly, P.; Iyengar, S.S.; Brener, N.

    1997-04-01

    As part of the Department of Energy document declassification program, the authors have developed a numerical rating system to predict the OCR error rate that they expect to encounter when processing a particular document. The rating algorithm produces a vector containing scores for different document image attributes such as speckle and touching characters. The OCR error rate for a document is computed from a weighted sum of the elements of the corresponding quality vector. The predicted OCR error rate will be used to screen documents that would not be handled properly with existing document processing products.

  15. Virtual monochromatic imaging in dual-source dual-energy CT: Radiation dose and image quality

    SciTech Connect

    Yu Lifeng; Christner, Jodie A.; Leng Shuai; Wang Jia; Fletcher, Joel G.; McCollough, Cynthia H.

    2011-12-15

    Purpose: To evaluate the image quality of virtual monochromatic images synthesized from dual-source dual-energy computed tomography (CT) in comparison with conventional polychromatic single-energy CT for the same radiation dose. Methods: In dual-energy CT, besides the material-specific information, one may also synthesize monochromatic images at different energies, which can be used for routine diagnosis similar to conventional polychromatic single-energy images. In this work, the authors assessed whether virtual monochromatic images generated from dual-source CT scanners had an image quality similar to that of polychromatic single-energy images for the same radiation dose. First, the authors provided a theoretical analysis of the optimal monochromatic energy for either the minimum noise level or the highest iodine contrast to noise ratio (CNR) for a given patient size and dose partitioning between the low- and high-energy scans. Second, the authors performed an experimental study on a dual-source CT scanner to evaluate the noise and iodine CNR in monochromatic images. A thoracic phantom with three sizes of attenuating rings was used to represent four adult sizes. For each phantom size, three dose partitionings between the low-energy (80 kV) and the high-energy (140 kV) scans were used in the dual-energy scan. Monochromatic images at eight energies (40 to 110 keV) were generated for each scan. Phantoms were also scanned at each of the four polychromatic single energy (80, 100, 120, and 140 kV) with the same radiation dose. Results: The optimal virtual monochromatic energy depends on several factors: phantom size, partitioning of the radiation dose between low- and high-energy scans, and the image quality metrics to be optimized. With the increase of phantom size, the optimal monochromatic energy increased. With the increased percentage of radiation dose on the low energy scan, the optimal monochromatic energy decreased. When maximizing the iodine CNR in

  16. Image quality degradation and retrieval errors introduced by registration and interpolation of multispectral digital images

    SciTech Connect

    Henderson, B.G.; Borel, C.C.; Theiler, J.P.; Smith, B.W.

    1996-04-01

    Full utilization of multispectral data acquired by whiskbroom and pushbroom imagers requires that the individual channels be registered accurately. Poor registration introduces errors which can be significant, especially in high contrast areas such as boundaries between regions. We simulate the acquisition of multispectral imagery in order to estimate the errors that are introduced by co-registration of different channels and interpolation within the images. We compute the Modulation Transfer Function (MTF) and image quality degradation brought about by fractional pixel shifting and calculate errors in retrieved quantities (surface temperature and water vapor) that occur as a result of interpolation. We also present a method which might be used to estimate sensor platform motion for accurate registration of images acquired by a pushbroom scanner.

  17. Influence of slice overlap on positron emission tomography image quality

    NASA Astrophysics Data System (ADS)

    McKeown, Clare; Gillen, Gerry; Dempsey, Mary Frances; Findlay, Caroline

    2016-02-01

    PET scans use overlapping acquisition beds to correct for reduced sensitivity at bed edges. The optimum overlap size for the General Electric (GE) Discovery 690 has not been established. This study assesses how image quality is affected by slice overlap. Efficacy of 23% overlaps (recommended by GE) and 49% overlaps (maximum possible overlap) were specifically assessed. European Association of Nuclear Medicine (EANM) guidelines for calculating minimum injected activities based on overlap size were also reviewed. A uniform flood phantom was used to assess noise (coefficient of variation, (COV)) and voxel accuracy (activity concentrations, Bq ml-1). A NEMA (National Electrical Manufacturers Association) body phantom with hot/cold spheres in a background activity was used to assess contrast recovery coefficients (CRCs) and signal to noise ratios (SNR). Different overlap sizes and sphere-to-background ratios were assessed. COVs for 49% and 23% overlaps were 9% and 13% respectively. This increased noise was difficult to visualise on the 23% overlap images. Mean voxel activity concentrations were not affected by overlap size. No clinically significant differences in CRCs were observed. However, visibility and SNR of small, low contrast spheres (⩽13 mm diameter, 2:1 sphere to background ratio) may be affected by overlap size in low count studies if they are located in the overlap area. There was minimal detectable influence on image quality in terms of noise, mean activity concentrations or mean CRCs when comparing 23% overlap with 49% overlap. Detectability of small, low contrast lesions may be affected in low count studies—however, this is a worst-case scenario. The marginal benefits of increasing overlap from 23% to 49% are likely to be offset by increased patient scan times. A 23% overlap is therefore appropriate for clinical use. An amendment to EANM guidelines for calculating injected activities is also proposed which better reflects the effect overlap size has

  18. Processing window for femtosecond laser microsurgery and fluorescence imaging of an arterial tissue hosted in a microfluidic chip

    NASA Astrophysics Data System (ADS)

    Karimelahi, Samira; Li, Jianzhao; Herman, Peter R.

    2016-02-01

    We study the exposure limitations of femtosecond laser microsurgery and multiphoton imaging in a microfluidic chip environment, assessing damage thresholds at various interfaces as well as interference from bubble formation in the hosting solution. Both heat accumulation and incubation effects from multipulse laser exposures at 1-MHz repetition rate were evaluated. For demonstration, three microsurgery approaches of laser scribing, percussion drilling and trepanning were applied to arterial walls loaded in vitro in a lab-on-a-chip device. We report that deleterious effects from interface damage and microbubble formation can be avoided to offer laser processing windows for damage-free fluorescence imaging and precise microsurgery of live tissue hosted inside small microfluidic chambers.

  19. Retinal Image Quality Assessment for Spaceflight-Induced Vision Impairment Study

    NASA Technical Reports Server (NTRS)

    Vu, Amanda Cadao; Raghunandan, Sneha; Vyas, Ruchi; Radhakrishnan, Krishnan; Taibbi, Giovanni; Vizzeri, Gianmarco; Grant, Maria; Chalam, Kakarla; Parsons-Wingerter, Patricia

    2015-01-01

    Long-term exposure to space microgravity poses significant risks for visual impairment. Evidence suggests such vision changes are linked to cephalad fluid shifts, prompting a need to directly quantify microgravity-induced retinal vascular changes. The quality of retinal images used for such vascular remodeling analysis, however, is dependent on imaging methodology. For our exploratory study, we hypothesized that retinal images captured using fluorescein imaging methodologies would be of higher quality in comparison to images captured without fluorescein. A semi-automated image quality assessment was developed using Vessel Generation Analysis (VESGEN) software and MATLAB® image analysis toolboxes. An analysis of ten images found that the fluorescein imaging modality provided a 36% increase in overall image quality (two-tailed p=0.089) in comparison to nonfluorescein imaging techniques.

  20. Digital processing to improve image quality in real-time neutron radiography

    NASA Astrophysics Data System (ADS)

    Fujine, Shigenori; Yoneda, Kenji; Kanda, Keiji

    1985-01-01

    Real-time neutron radiography (NTV) has been used for practical applications at the Kyoto University Reactor (KUR). At present, however, the direct image from the TV system is still poor in resolution and low in contrast. In this paper several image improvements are demonstrated, such as a frame summing technique, which are effective in increasing image quality in neutron radiography. Image integration before the A/D converter has a beneficial effect on image quality and the high quality image reveals details invisible in direct images, such as: small holes by a reversed image, defects in a neutron converter screen through a high quality image, a moving object in a contoured image, a slight difference between two low-contrast images by a subtraction technique, and so on. For the real-time application a contouring operation and an averaging approach can also be utilized effectively.

  1. Prospective study of health related quality of life before and after coronary artery bypass grafting: outcome at five years

    PubMed Central

    Caine, N; Sharples, L; Wallwork, J

    1999-01-01

    OBJECTIVE—To determine the long term health related quality of life of coronary artery bypass graft patients, to look at changes between one and five years after surgery, and to examine the ability of preoperative variables to predict longer term outcome.
DESIGN—Nottingham health profile (NHP) was used to assess patients at five years compared to results obtained at one year.
PATIENTS—100 male patients aged < 60 years at time of surgery; 77 had three vessel disease and 84 received three or more saphenous vein grafts.
RESULTS—In comparing the five year results with those at one year, lower mean scores, indicating slight improvements, were seen in the NHP dimensions of pain, sleep, social isolation, and emotional reactions, whereas signs of deterioration were noted in the physical mobility and energy scores. Chest pain was experienced by 34 of 84 patients at five years compared with 17 of 89 patients at one year. The proportion of patients who were unrestricted in their activities ranged from 61-70% at five years compared with 82-88% at one year. Absence of dyspnoea before surgery, indicating relatively good left ventricular function, was a predictor of good outcome at both one and five years.
CONCLUSIONS—Evidence of deterioration in physical function is compatible with expected decline in graft patency; specific rather than generic measures were most sensitive to this change.

 Keywords: quality of life; coronary artery bypass graft; Nottingham health profile PMID:10092558

  2. A widefield fluorescence microscope with a linear image sensor for image cytometry of biospecimens: Considerations for image quality optimization

    NASA Astrophysics Data System (ADS)

    Hutcheson, Joshua A.; Majid, Aneeka A.; Powless, Amy J.; Muldoon, Timothy J.

    2015-09-01

    Linear image sensors have been widely used in numerous research and industry applications to provide continuous imaging of moving objects. Here, we present a widefield fluorescence microscope with a linear image sensor used to image translating objects for image cytometry. First, a calibration curve was characterized for a custom microfluidic chamber over a span of volumetric pump rates. Image data were also acquired using 15 μm fluorescent polystyrene spheres on a slide with a motorized translation stage in order to match linear translation speed with line exposure periods to preserve the image aspect ratio. Aspect ratios were then calculated after imaging to ensure quality control of image data. Fluorescent beads were imaged in suspension flowing through the microfluidics chamber being pumped by a mechanical syringe pump at 16 μl min-1 with a line exposure period of 150 μs. The line period was selected to acquire images of fluorescent beads with a 40 dB signal-to-background ratio. A motorized translation stage was then used to transport conventional glass slides of stained cellular biospecimens. Whole blood collected from healthy volunteers was stained with 0.02% (w/v) proflavine hemisulfate was imaged to highlight leukocyte morphology with a 1.56 mm × 1.28 mm field of view (1540 ms total acquisition time). Oral squamous cells were also collected from healthy volunteers and stained with 0.01% (w/v) proflavine hemisulfate to demonstrate quantifiable subcellular features and an average nuclear to cytoplasmic ratio of 0.03 (n = 75), with a resolution of 0.31 μm pixels-1.

  3. A widefield fluorescence microscope with a linear image sensor for image cytometry of biospecimens: Considerations for image quality optimization

    SciTech Connect

    Hutcheson, Joshua A.; Majid, Aneeka A.; Powless, Amy J.; Muldoon, Timothy J.

    2015-09-15

    Linear image sensors have been widely used in numerous research and industry applications to provide continuous imaging of moving objects. Here, we present a widefield fluorescence microscope with a linear image sensor used to image translating objects for image cytometry. First, a calibration curve was characterized for a custom microfluidic chamber over a span of volumetric pump rates. Image data were also acquired using 15 μm fluorescent polystyrene spheres on a slide with a motorized translation stage in order to match linear translation speed with line exposure periods to preserve the image aspect ratio. Aspect ratios were then calculated after imaging to ensure quality control of image data. Fluorescent beads were imaged in suspension flowing through the microfluidics chamber being pumped by a mechanical syringe pump at 16 μl min{sup −1} with a line exposure period of 150 μs. The line period was selected to acquire images of fluorescent beads with a 40 dB signal-to-background ratio. A motorized translation stage was then used to transport conventional glass slides of stained cellular biospecimens. Whole blood collected from healthy volunteers was stained with 0.02% (w/v) proflavine hemisulfate was imaged to highlight leukocyte morphology with a 1.56 mm × 1.28 mm field of view (1540 ms total acquisition time). Oral squamous cells were also collected from healthy volunteers and stained with 0.01% (w/v) proflavine hemisulfate to demonstrate quantifiable subcellular features and an average nuclear to cytoplasmic ratio of 0.03 (n = 75), with a resolution of 0.31 μm pixels{sup −1}.

  4. Automated detection of the carotid artery wall in longitudinal B-mode images using active contours initialized by the Hough transform.

    PubMed

    Matsakou, A I; Golemati, S; Stoitsis, J S; Nikita, K S

    2011-01-01

    In this paper, a fully automatic active-contour-based segmentation method is presented, for detecting the carotid artery wall in longitudinal B-mode ultrasound images. A Hough-transform-based methodology is used for the definition of the initial snake, followed by a gradient vector flow (GVF) snake deformation for the final contour detection. The GVF snake is based on the calculation of the image edge map and the calculation of GVF field which guides its deformation for the estimation of the real arterial wall boundaries. In twenty cases there was no significant difference between the automated segmentation and the manual diameter measurements. The sensitivity, specificity and accuracy were 0.97, 0.99 and 0.98, respectively, for both diastolic and systolic cases. In conclusion, the proposed methodology provides an accurate and reliable way to segment ultrasound images of the carotid artery.

  5. Automated identification of best-quality coronary artery segments from multiple-phase coronary CT angiography (cCTA) for vessel analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Chughtai, Aamer; Wei, Jun; Kazerooni, Ella A.

    2016-03-01

    We are developing an automated method to identify the best quality segment among the corresponding segments in multiple-phase cCTA. The coronary artery trees are automatically extracted from different cCTA phases using our multi-scale vessel segmentation and tracking method. An automated registration method is then used to align the multiple-phase artery trees. The corresponding coronary artery segments are identified in the registered vessel trees and are straightened by curved planar reformation (CPR). Four features are extracted from each segment in each phase as quality indicators in the original CT volume and the straightened CPR volume. Each quality indicator is used as a voting classifier to vote the corresponding segments. A newly designed weighted voting ensemble (WVE) classifier is finally used to determine the best-quality coronary segment. An observer preference study is conducted with three readers to visually rate the quality of the vessels in 1 to 6 rankings. Six and 10 cCTA cases are used as training and test set in this preliminary study. For the 10 test cases, the agreement between automatically identified best-quality (AI-BQ) segments and radiologist's top 2 rankings is 79.7%, and between AI-BQ and the other two readers are 74.8% and 83.7%, respectively. The results demonstrated that the performance of our automated method was comparable to those of experienced readers for identification of the best-quality coronary segments.

  6. Quality Enhancement and Nerve Fibre Layer Artefacts Removal in Retina Fundus Images by Off Axis Imaging

    SciTech Connect

    Giancardo, Luca; Meriaudeau, Fabrice; Karnowski, Thomas Paul; Li, Yaquin; Tobin Jr, Kenneth William; Chaum, Edward

    2011-01-01

    Retinal fundus images acquired with non-mydriatic digital fundus cameras are a versatile tool for the diagnosis of various retinal diseases. Because of the ease of use of newer camera models and their relative low cost, these cameras are employed worldwide by retina specialists to diagnose diabetic retinopathy and other degenerative diseases. Even with relative ease of use, the images produced by these systems sometimes suffer from reflectance artefacts mainly due to the nerve fibre layer (NFL) or other camera lens related reflections. We propose a technique that employs multiple fundus images acquired from the same patient to obtain a single higher quality image without these reflectance artefacts. The removal of bright artefacts, and particularly of NFL reflectance, can have great benefits for the reduction of false positives in the detection of retinal lesions such as exudate, drusens and cotton wool spots by automatic systems or manual inspection. If enough redundant information is provided by the multiple images, this technique also compensates for a suboptimal illumination. The fundus images are acquired in straightforward but unorthodox manner, i.e. the stare point of the patient is changed between each shot but the camera is kept fixed. Between each shot, the apparent shape and position of all the retinal structures that do not exhibit isotropic reflectance (e.g. bright artefacts) change. This physical effect is exploited by our algorithm in order to extract the pixels belonging to the inner layers of the retina, hence obtaining a single artefacts-free image.

  7. Open source database of images DEIMOS: extension for large-scale subjective image quality assessment

    NASA Astrophysics Data System (ADS)

    Vítek, Stanislav

    2014-09-01

    DEIMOS (Database of Images: Open Source) is an open-source database of images and video sequences for testing, verification and comparison of various image and/or video processing techniques such as compression, reconstruction and enhancement. This paper deals with extension of the database allowing performing large-scale web-based subjective image quality assessment. Extension implements both administrative and client interface. The proposed system is aimed mainly at mobile communication devices, taking into account advantages of HTML5 technology; it means that participants don't need to install any application and assessment could be performed using web browser. The assessment campaign administrator can select images from the large database and then apply rules defined by various test procedure recommendations. The standard test procedures may be fully customized and saved as a template. Alternatively the administrator can define a custom test, using images from the pool and other components, such as evaluating forms and ongoing questionnaires. Image sequence is delivered to the online client, e.g. smartphone or tablet, as a fully automated assessment sequence or viewer can decide on timing of the assessment if required. Environmental data and viewing conditions (e.g. illumination, vibrations, GPS coordinates, etc.), may be collected and subsequently analyzed.

  8. Human vision model for the objective evaluation of perceived image quality applied to MRI and image restoration

    NASA Astrophysics Data System (ADS)

    Salem, Kyle A.; Wilson, David L.

    2002-12-01

    We are developing a method to objectively quantify image quality and applying it to the optimization of interventional magnetic resonance imaging (iMRI). In iMRI, images are used for live-time guidance of interventional procedures such as the minimally invasive treatment of cancer. Hence, not only does one desire high quality images, but they must also be acquired quickly. In iMRI, images are acquired in the Fourier domain, or k-space, and this allows many creative ways to image quickly such as keyhole imaging where k-space is preferentially subsampled, yielding suboptimal images at very high frame rates. Other techniques include spiral, radial, and the combined acquisition technique. We have built a perceptual difference model (PDM) that incorporates various components of the human visual system. The PDM was validated using subjective image quality ratings by naive observers and task-based measures defined by interventional radiologists. Using the PDM, we investigated the effects of various imaging parameters on image quality and quantified the degradation due to novel imaging techniques. Results have provided significant information about imaging time versus quality tradeoffs aiding the MR sequence engineer. The PDM has also been used to evaluate other applications such as Dixon fat suppressed MRI and image restoration. In image restoration, the PDM has been used to evaluate the Generalized Minimal Residual (GMRES) image restoration method and to examine the ability to appropriately determine a stopping condition for such iterative methods. The PDM has been shown to be an objective tool for measuring image quality and can be used to determine the optimal methodology for various imaging applications.

  9. No-reference remote sensing image quality assessment using a comprehensive evaluation factor

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Wang, Xu; Li, Xiao; Shao, Xiaopeng

    2014-05-01

    The conventional image quality assessment algorithm, such as Peak Signal to Noise Ratio (PSNR), Mean Square Error(MSE) and structural similarity (SSIM), needs the original image as a reference. It's not applicable to the remote sensing image for which the original image cannot be assumed to be available. In this paper, a No-reference Image Quality Assessment (NRIQA) algorithm is presented to evaluate the quality of remote sensing image. Since blur and noise (including the stripe noise) are the common distortion factors affecting remote sensing image quality, a comprehensive evaluation factor is modeled to assess the blur and noise by analyzing the image visual properties for different incentives combined with SSIM based on human visual system (HVS), and also to assess the stripe noise by using Phase Congruency (PC). The experiment results show this algorithm is an accurate and reliable method for Remote Sensing Image Quality Assessment.

  10. Image-based modeling of hemodynamics in coronary artery aneurysms caused by Kawasaki disease.

    PubMed

    Sengupta, Dibyendu; Kahn, Andrew M; Burns, Jane C; Sankaran, Sethuraman; Shadden, Shawn C; Marsden, Alison L

    2012-07-01

    Kawasaki Disease (KD) is the leading cause of acquired pediatric heart disease. A subset of KD patients develops aneurysms in the coronary arteries, leading to increased risk of thrombosis and myocardial infarction. Currently, there are limited clinical data to guide the management of these patients, and the hemodynamic effects of these aneurysms are unknown. We applied patient-specific modeling to systematically quantify hemodynamics and wall shear stress in coronary arteries with aneurysms caused by KD. We modeled the hemodynamics in the aneurysms using anatomic data obtained by multi-detector computed tomography (CT) in a 10-year-old male subject who suffered KD at age 3 years. The altered hemodynamics were compared to that of a reconstructed normal coronary anatomy using our subject as the model. Computer simulations using a robust finite element framework were used to quantify time-varying shear stresses and particle trajectories in the coronary arteries. We accounted for the cardiac contractility and the microcirculation using physiologic downstream boundary conditions. The presence of aneurysms in the proximal coronary artery leads to flow recirculation, reduced wall shear stress within the aneurysm, and high wall shear stress gradients at the neck of the aneurysm. The wall shear stress in the KD subject (2.95-3.81 dynes/sq cm) was an order of magnitude lower than the normal control model (17.10-27.15 dynes/sq cm). Particle residence times were significantly higher, taking 5 cardiac cycles to fully clear from the aneurysmal regions in the KD subject compared to only 1.3 cardiac cycles from the corresponding regions of the normal model. In this novel quantitative study of hemodynamics in coronary aneurysms caused by KD, we documented markedly abnormal flow patterns that are associated with increased risk of thrombosis. This methodology has the potential to provide further insights into the effects of aneurysms in KD and to help risk stratify patients for

  11. Interrupted Aortic Arch Associated with Absence of Left Common Carotid Artery: Imaging with MDCT

    SciTech Connect

    Onbas, Omer Olgun, Hasim; Ceviz, Naci; Ors, Rahmi; Okur, Adnan

    2006-06-15

    Interrupted aortic arch (IAA) is a rare severe congenital heart defect defined as complete luminal and anatomic discontinuity between ascending and descending aorta. Although its association with various congenital heart defects has been reported, absence of left common carotid artery (CCA) in patients with IAA has not been reported previously. We report a case of IAA associated with the absence of left CCA which was clearly shown on multidetector-row spiral CT.

  12. Transitional flow analysis in the carotid artery bifurcation by proper orthogonal decomposition and particle image velocimetry.

    PubMed

    Kefayati, Sarah; Poepping, Tamie L

    2013-07-01

    Blood flow instabilities in the carotid artery bifurcation have been highly correlated to clot formation and mobilization resulting in ischemic stroke. In this work, PIV-measured flow velocities in normal and stenosed carotid artery bifurcation models were analyzed by means of proper orthogonal decomposition (POD). Through POD analysis, transition to more complex flow was visualized and quantified for increasing stenosis severity. While no evidence of transitional flow was seen in the normal model, the 50%-stenosed model started to show characteristics of transitional flow, which became highly evident in the 70% model, with greatest manifestation during the systolic phase of the cardiac cycle. By means of a model comparison, we demonstrate two quantitative measures of the flow complexity through the power-law decay slope of the energy spectrum and the global entropy. The more complex flow in the 70%-stenosed model showed a flatter slope of energy decay (-0.91 compared to -1.34 for 50% stenosis) and higher entropy values (0.26 compared to 0.17). Finally, the minimum temporal resolution required for POD analysis of carotid artery flow was found to be 100 Hz when determined through a more typical energy-mode convergence test, as compared to 400 Hz based on global entropy values.

  13. Optimization of exposure in panoramic radiography while maintaining image quality using adaptive filtering.

    PubMed

    Svenson, Björn; Larsson, Lars; Båth, Magnus

    2016-01-01

    Objective The purpose of the present study was to investigate the potential of using advanced external adaptive image processing for maintaining image quality while reducing exposure in dental panoramic storage phosphor plate (SPP) radiography. Materials and methods Thirty-seven SPP radiographs of a skull phantom were acquired using a Scanora panoramic X-ray machine with various tube load, tube voltage, SPP sensitivity and filtration settings. The radiographs were processed using General Operator Processor (GOP) technology. Fifteen dentists, all within the dental radiology field, compared the structural image quality of each radiograph with a reference image on a 5-point rating scale in a visual grading characteristics (VGC) study. The reference image was acquired with the acquisition parameters commonly used in daily operation (70 kVp, 150 mAs and sensitivity class 200) and processed using the standard process parameters supplied by the modality vendor. Results All GOP-processed images with similar (or higher) dose as the reference image resulted in higher image quality than the reference. All GOP-processed images with similar image quality as the reference image were acquired at a lower dose than the reference. This indicates that the external image processing improved the image quality compared with the standard processing. Regarding acquisition parameters, no strong dependency of the image quality on the radiation quality was seen and the image quality was mainly affected by the dose. Conclusions The present study indicates that advanced external adaptive image processing may be beneficial in panoramic radiography for increasing the image quality of SPP radiographs or for reducing the exposure while maintaining image quality. PMID:26478956

  14. Myocardial Blood Flow Quantification for Evaluation of Coronary Artery Disease by Positron Emission Tomography, Cardiac Magnetic Resonance Imaging, and Computed Tomography

    PubMed Central

    Waller, Alfonso H.; Blankstein, Ron; Kwong, Raymond Y.; Di Carli, Marcelo F.

    2014-01-01

    The noninvasive detection of the presence and functional significance of coronary artery stenosis is important in the diagnosis, risk assessment, and management of patients with known or suspected coronary artery disease. Quantitative assessment of myocardial perfusion can provide an objective and reproducible estimate of myocardial ischemia and risk prediction. Positron emission tomography, cardiac magnetic resonance, and cardiac computed tomography perfusion are modalities capable of measuring myocardial blood flow and coronary flow reserve. In this review, we will discuss the technical aspects of quantitative myocardial perfusion imaging with positron emission tomography, cardiac magnetic resonance imaging and computed tomography, and its emerging clinical applications. PMID:24718671

  15. Comparison of no-reference image quality assessment machine learning-based algorithms on compressed images

    NASA Astrophysics Data System (ADS)

    Charrier, Christophe; Saadane, AbdelHakim; Fernandez-Maloigne, Christine

    2015-01-01

    No-reference image quality metrics are of fundamental interest as they can be embedded in practical applications. The main goal of this paper is to perform a comparative study of seven well known no-reference learning-based image quality algorithms. To test the performance of these algorithms, three public databases are used. As a first step, the trial algorithms are compared when no new learning is performed. The second step investigates how the training set influences the results. The Spearman Rank Ordered Correlation Coefficient (SROCC) is utilized to measure and compare the performance. In addition, an hypothesis test is conducted to evaluate the statistical significance of performance of each tested algorithm.

  16. Evaluation of scatter effects on image quality for breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Wu, Gang; Mainprize, James G.; Boone, John M.; Yaffe, Martin J.

    2007-03-01

    Digital breast tomosynthesis uses a limited number of low-dose x-ray projections to produce a three-dimensional (3D) tomographic reconstruction of the breast. The purpose of this investigation was to characterize and evaluate the effect of scatter radiation on image quality for breast tomosynthesis. Generated by a Monte Carlo simulation method, scatter point spread functions (PSF) were convolved over the field of view (FOV) to estimate the distribution of scatter for each angle of tomosynthesis projection. The results demonstrated that in the absence of scatter reduction techniques, the scatter-to-primary ratio (SPR) levels for the average breast are quite high (~0.4 at the centre of mass), and increased with increased breast thickness and with larger FOV. Associated with such levels of x-ray scatter are cupping artifacts, as well as reduced accuracy in reconstruction values. The effect of x-ray scatter on the contrast, noise, and signal-difference-to-noise ratio (SDNR) in tomosynthesis reconstruction was measured as a function of tumour size. For example, the contrast in the reconstructed central slice of a tumour-like mass (14 mm in diameter) was degraded by 30% while the inaccuracy of the voxel value was 28%, and the reduction of SDNR was 60%. We have quantified the degree to which scatter degrades the image quality over a wide range of parameters, including x-ray beam energy, breast thickness, breast diameter, and breast composition. However, even without a scatter rejection device, the contrast and SDNR in the reconstructed tomosynthesis slice is higher than that of conventional mammographic projection images acquired with a grid at an equivalent total exposure.

  17. Digital Image Processing Applied To Quality Assurance In Mineral Industry

    NASA Astrophysics Data System (ADS)

    Hamrouni, Zouheir; Ayache, Alain; Krey, Charlie J.

    1989-03-01

    In this paper , we bring forward an application of vision in the domain of quality assurance in mineral industry of talc. By using image processing and computer vision means, the proposed real time whiteness captor system intends: - to inspect the whiteness of grinded product, - to manage the mixing of primary talcs before grinding, in order to obtain a final product with predetermined whiteness. The system uses the robotic CCD microcamera MICAM (designed by our laboratory and presently manufactured), a micro computer system based on Motorola 68020 and real time image processing boards. It has the industrial following specifications: - High reliability - Whiteness is determined with a 0.3% precision on a scale of 25 levels. Because of the expected precision, we had to study carefully the lighting system, the type of image captor and associated electronics. The first developped softwares are able to process the withness of talcum powder; then we have conceived original algorithms to control withness of rough talc taking into account texture and shadows. The processing times of these algorithms are completely compatible with industrial rates. This system can be applied to other domains where high precision reflectance captor is needed: industry of paper, paints, ...

  18. Damage and quality assessment in wheat by NIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Delwiche, Stephen R.; Kim, Moon S.; Dong, Yanhong

    2010-04-01

    Fusarium head blight is a fungal disease that affects the world's small grains, such as wheat and barley. Attacking the spikelets during development, the fungus causes a reduction of yield and grain of poorer processing quality. It also is a health concern because of the secondary metabolite, deoxynivalenol, which often accompanies the fungus. While chemical methods exist to measure the concentration of the mycotoxin and manual visual inspection is used to ascertain the level of Fusarium damage, research has been active in developing fast, optically based techniques that can assess this form of damage. In the current study a near-infrared (1000-1700 nm) hyperspectral image system was assembled and applied to Fusarium-damaged kernel recognition. With anticipation of an eventual multispectral imaging system design, 5 wavelengths were manually selected from a pool of 146 images as the most promising, such that when combined in pairs or triplets, Fusarium damage could be identified. We present the results of two pairs of wavelengths [(1199, 1474 nm) and (1315, 1474 nm)] whose reflectance values produced adequate separation of kernels of healthy appearance (i.e., asymptomatic condition) from kernels possessing Fusarium damage.

  19. Beyond image quality: designing engaging interactions with digital products

    NASA Astrophysics Data System (ADS)

    de Ridder, Huib; Rozendaal, Marco C.

    2008-02-01

    Ubiquitous computing (or Ambient Intelligence) promises a world in which information is available anytime anywhere and with which humans can interact in a natural, multimodal way. In such world, perceptual image quality remains an important criterion since most information will be displayed visually, but other criteria such as enjoyment, fun, engagement and hedonic quality are emerging. This paper deals with engagement, the intrinsically enjoyable readiness to put more effort into exploring and/or using a product than strictly required, thus attracting and keeping user's attention for a longer period of time. The impact of the experienced richness of an interface, both visually and degree of possible manipulations, was in