Science.gov

Sample records for artery image quality

  1. Total bolus extraction method improves arterial image quality in dynamic CTAs derived from whole-brain CTP data.

    PubMed

    Ghariq, Elyas; Mendrik, Adriënne M; Willems, Peter W A; Joemai, Raoul M S; Ghariq, Eidrees; Vonken, Evert-jan; van Osch, Matthias J P; van Walderveen, Marianne A A

    2014-01-01

    Background and Purposes. The 320-detector row CT scanner enables visualization of whole-brain hemodynamic information (dynamic CT angiography (CTA) derived from CT perfusion scans). However, arterial image quality in dynamic CTA (dCTA) is inferior to arterial image quality in standard CTA. This study evaluates whether the arterial image quality can be improved by using a total bolus extraction (ToBE) method. Materials and Methods. DCTAs of 15 patients, who presented with signs of acute cerebral ischemia, were derived from 320-slice CT perfusion scans using both the standard subtraction method and the proposed ToBE method. Two neurointerventionalists blinded to the scan type scored the arterial image quality on a 5-point scale in the 4D dCTAs in consensus. Arteries were divided into four categories: (I) large extradural, (II) intradural (large, medium, and small), (III) communicating arteries, and (IV) cerebellar and ophthalmic arteries. Results. Quality of extradural and intradural arteries was significantly higher in the ToBE dCTAs than in the standard dCTAs (extradural P = 0.001, large intradural P < 0.001, medium intradural P < 0.001, and small intradural P < 0.001). Conclusion. The 4D dCTAs derived with the total bolus extraction (ToBE) method provide hemodynamic information combined with improved arterial image quality as compared to standard 4D dCTAs.

  2. High-quality 3-D coronary artery imaging on an interventional C-arm x-ray system

    SciTech Connect

    Hansis, Eberhard; Carroll, John D.; Schaefer, Dirk; Doessel, Olaf; Grass, Michael

    2010-04-15

    Purpose: Three-dimensional (3-D) reconstruction of the coronary arteries during a cardiac catheter-based intervention can be performed from a C-arm based rotational x-ray angiography sequence. It can support the diagnosis of coronary artery disease, treatment planning, and intervention guidance. 3-D reconstruction also enables quantitative vessel analysis, including vessel dynamics from a time-series of reconstructions. Methods: The strong angular undersampling and motion effects present in gated cardiac reconstruction necessitate the development of special reconstruction methods. This contribution presents a fully automatic method for creating high-quality coronary artery reconstructions. It employs a sparseness-prior based iterative reconstruction technique in combination with projection-based motion compensation. Results: The method is tested on a dynamic software phantom, assessing reconstruction accuracy with respect to vessel radii and attenuation coefficients. Reconstructions from clinical cases are presented, displaying high contrast, sharpness, and level of detail. Conclusions: The presented method enables high-quality 3-D coronary artery imaging on an interventional C-arm system.

  3. Evaluation of image quality of coronary artery plaque with rapid kVp-switching dual-energy CT.

    PubMed

    Ohta, Yasutoshi; Kitao, Shinichiro; Watanabe, Tomomi; Kishimoto, Junichi; Yamamoto, Kazuhiro; Ogawa, Toshihide

    2017-02-01

    We evaluated the virtual monochromatic imaging (VMI) energy levels that maximize image quality of each coronary plaque component in dual-energy computed tomography angiography in 495 coronary segments (45 for each energy level). Maximal signal-to-noise ratios were different for plaque, lumen, fat, and surrounding tissue (p<0.05). Maximal contrast-to-noise ratios were observed at 70keV for calcified plaque (CP), non-calcified plaque (NCP), and fat in comparison with the lumen (p<0.05), and 70keV and 120keV for NCP in comparison with fat (p=0.144). VMI demonstrated maximal image quality at different energy levels for each component of coronary artery plaque.

  4. Imaging of coronary arteries using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Thompson, A. C.; Zeman, H.; Thomlinson, W.; Rubenstein, E.; Kernoff, R. S.; Hofstadter, R.; Giacomini, J. C.; Gordon, H. J.; Brown, G. S.

    1989-04-01

    Currently the imaging of coronary arteries is dangerous since it requires that a catheter be inserted into a peripheral artery and threaded up to the heart so that contrast agent can be injected directly into the artery being imaged. Using synchrotron radiation it may be possible to use a much safer venous injection of a contrast agent and still have sufficient image contrast to visualize the coronary arteries. A pair of monochromatized X-ray beams are used which have energies that bracket the iodine K absorption edge where the iodine absorption cross section jumps by a factor of six. Therefore, the logarithmic difference image has excellent sensitivity to contrast agent and minimal sensitivity to tissue and bone. Images have been taken of both dogs and humans. Improvements are being made to the imaging system which will substantially improve the image quality.

  5. Impact on Image Quality and Radiation Dose of Third-Generation Dual-Source Computed Tomography of the Coronary Arteries.

    PubMed

    Apfaltrer, Georg; Szolar, Dieter H; Wurzinger, Eric; Takx, Richard A P; Nance, John W; Dutschke, Anja; Tschauner, Sebastian; Loewe, Christian; Ringl, Helmut; Sorantin, Erich; Apfaltrer, Paul

    2017-04-15

    The aim of this study was to assess the image quality (IQ) and radiation dose of third-generation dual-source computed tomography (CT) coronary angiography (cCTA) in comparison with 64-slice single-source CT. This retrospective study included 140 patients (73 men, mean age 62 ± 11 years) with low-to-intermediate probability of coronary artery disease who underwent either third-generation dual-source cCTA using prospectively electrocardiography-triggered high-pitch spiral acquisition (n = 70) (group 1) or retrospective electrocardiography-gated cCTA on a 64-slice CT system (n = 70) (group 2). Contrast-to-noise and signal-to-noise ratios were measured within the aorta and coronary arteries. Subjective IQ was assessed using a 5-point Likert scale. Effective dose was estimated using specific conversion factors. The contrast-to-noise ratio of group 1 was significantly higher than group 2 at all levels (all p <0.001). Signal-to-noise ratio of group 1 was also significantly higher than group 2 (p <0.05), except for the distal left circumflex artery. Subjective IQ for group 1 was rated significantly better than for group 2 (median score [25th to 75th percentile]: 1 [1 to 2] vs 2 [2 to 3]; p <0.001). The median effective dose was 1.55 mSv (1.09 to 1.88) in group 1 versus 12.29 mSv (11.63 to 14.36) in group 2 (p <0.001) which corresponds to a mean radiation dose reduction of 87.4%. In conclusion, implementation of third-generation dual-source CT system for cCTA leads to improved IQ with significant radiation dose savings.

  6. Carotid artery anatomy (image)

    MedlinePlus

    There are four carotid arteries, two on each side of the neck: right and left internal carotid arteries, and right and left external carotid arteries. The carotid arteries deliver oxygen-rich blood from the heart to the head and brain.

  7. Whole-Chest 64-MDCT of Emergency Department Patients with Nonspecific Chest Pain: Radiation Dose and Coronary Artery Image Quality with Prospective ECG Triggering Versus Retrospective ECG Gating

    PubMed Central

    Shuman, William P.; Branch, Kelley R.; May, Janet M.; Mitsumori, Lee M.; Strote, Jared N.; Warren, Bill H.; Dubinsky, Theodore J.; Lockhart, David W.; Caldwell, James H.

    2012-01-01

    Objective The purpose of this study was to compare the patient radiation dose and coronary artery image quality of long-z-axis whole-chest 64-MDCT performed with retrospective ECG gating with those of CT performed with prospective ECG triggering in the evaluation of emergency department patients with nonspecific chest pain. Subjects and Methods Consecutively registered emergency department patients with nonspecific low-to-moderate-risk chest pain underwent whole-chest CT with retrospective gating (n = 41) or prospective triggering (n = 31). Effective patient radiation doses were estimated and compared by use of unpaired Student's t tests. Two reviewers independently scored the quality of images of the coronary arteries, and the scores were compared by use of ordinal logistic regression. Results Age, heart rate, body mass index, and z-axis coverage were not statistically different between the two groups. For retrospective gating, the mean effective radiation dose was 31.8 ± 5.1 mSv; for prospective triggering, the mean effective radiation dose was 9.2 ± 2.2 mSv (prospective triggering 71% lower, p < 0.001). Two of 512 segments imaged with retrospective gating were nonevaluable (0.4%), and two of 394 segments imaged with prospective triggering were nonevaluable (0.5%). Prospectively triggered images were 2.2 (95% CI, 1.1–4.5) times as likely as retrospectively gated images to receive a high image quality score for each segment after adjustment for segment differences (p < 0.05). Conclusion For long-z-axis whole-chest 64-MDCT of emergency department patients with nonspecific chest pain, use of prospective ECG triggering may result in substantially lower patient radiation doses and better coronary artery image quality than is achieved with retrospective ECG gating. PMID:19457832

  8. Coronary artery stent (image)

    MedlinePlus

    ... with a balloon catheter and expands when the balloon is inflated. The stent is then left there to help keep the artery open. ... with a balloon catheter and expands when the balloon is inflated. The stent is then left there to help keep the artery open.

  9. Coronary artery disease (image)

    MedlinePlus

    ... through these arteries is critical for the heart. Coronary artery disease usually results from the build-up of fatty material and plaque, a condition called atherosclerosis. As the ... blood to the heart can slow or stop, causing chest pain (stable ...

  10. Renal arteries (image)

    MedlinePlus

    A renal angiogram is a test used to examine the blood vessels of the kidneys. The test is performed ... main vessel of the pelvis, up to the renal artery that leads into the kidney. Contrast medium ...

  11. Ultrasonic Imaging Of Deep Arteries

    NASA Technical Reports Server (NTRS)

    Rooney, James A.; Heyser, Richard C.; Lecroissette, Dennis H.

    1990-01-01

    Swept-frequency sound replaces pulsed sound. Ultrasonic medical instrument produces images of peripheral and coronary arteries with resolutions higher and at depths greater than attainable by previous ultrasonic systems. Time-delay-spectrometry imager includes scanning, image-processing, and displaying equipment. It sweeps in frequency from 0 to 10 MHz in 20 ms, pauses for 5 ms, and repeats sweep. Intended for use in noninvasive detection and measurement of atherosclerotic lesions.

  12. Prospectively versus Retrospectively ECG-Gated 256-Slice CT Angiography to Assess Coronary Artery Bypass Grafts — Comparison of Image Quality and Radiation Dose

    PubMed Central

    Lee, Yi-Wei; Yang, Ching-Ching; Mok, Greta S. P.; Law, Wei-Yip; Su, Cheng-Tau; Wu, Tung-Hsin

    2012-01-01

    Objective In this retrospective non-randomized cohort study, the image quality and radiation dose were compared between prospectively electrocardiogram (ECG)-gated axial (PGA) and retrospectively ECG-gated helical (RGH) techniques for the assessment of coronary artery bypass grafts using 256-slice CT. Methods We studied 124 grafts with 577 segments in 64 patients with a heart rate (HR) <85 bpm who underwent CT coronary angiography (CTCA); 34 patients with RGH-CTCA and 30 patients with PGA-CTCA. The image quality of the bypass grafts was assessed by a 5-point scale (1 = excellent to 5 = non-diagnostic) for each segment (proximal anastomosis, proximal, middle, distal course of graft body, and distal anastomosis). Other objective image quality indices such as noise, signal-to-noise ratio (SNR) and contrast-to-noise ratios (CNR) were assessed. Radiation doses were also compared. Results Patient characteristics of the two groups were well matched except HR. The HR of the PGA group was lower than that of the RGH group (62.0±5.0 vs. 65.7±7.4). For both groups, over 90% of segments received excellent or good image quality scores and none was non-evaluative. The image quality generally degraded as graft segment approached to distal anastomosis regardless of techniques and graft types. Image quality scores of the PGA group were better than those of the RGH group (1.51±0.53 vs. 1.73±0.62; p<0.001). There was no significantly difference of objective image quality between two techniques, and the effective radiation dose was significantly lower in the PGA group (7.0±1.2 mSv) than that of the RGH group (20.0±4.6 mSv) (p<0.001), with a 65.0% dose reduction. Conclusions Following bypass surgery, 256-slice PGA-CTCA is superior to RGH-CTCA in limiting the radiation dose and obtaining better image quality for bypass grafts. PMID:23145126

  13. Noninvasive Imaging in Coronary Artery Disease

    PubMed Central

    Heo, Ran; Nakazato, Ryo; Kalra, Dan; Min, James K.

    2014-01-01

    Noninvasive cardiac imaging is widely used to evaluate the presence of coronary artery disease. Recently, with improvements in imaging technology, noninvasive imaging has also been used for evaluation of the presence, severity, and prognosis of coronary artery disease. Coronary CT angiography and MRI of coronary arteries provide an anatomical assessment of coronary stenosis, whereas the hemodynamic significance of a coronary artery stenosis can be assessed by stress myocardial perfusion imaging, such as SPECT/PET and stress MRI. For appropriate use of multiple imaging modalities, the strengths and limitations of each modality are discussed in this review. PMID:25234083

  14. A Cylindrical, Inner Volume Selecting 2D-T2-Prep Improves GRAPPA-Accelerated Image Quality in MRA of the Right Coronary Artery

    PubMed Central

    Coristine, Andrew J.; Yerly, Jerome; Stuber, Matthias

    2016-01-01

    Background Two-dimensional (2D) spatially selective radiofrequency (RF) pulses may be used to excite restricted volumes. By incorporating a "pencil beam" 2D pulse into a T2-Prep, one may create a "2D-T2-Prep" that combines T2-weighting with an intrinsic outer volume suppression. This may particularly benefit parallel imaging techniques, where artefacts typically originate from residual foldover signal. By suppressing foldover signal with a 2D-T2-Prep, image quality may therefore improve. We present numerical simulations, phantom and in vivo validations to address this hypothesis. Methods A 2D-T2-Prep and a conventional T2-Prep were used with GRAPPA-accelerated MRI (R = 1.6). The techniques were first compared in numerical phantoms, where per pixel maps of SNR (SNRmulti), noise, and g-factor were predicted for idealized sequences. Physical phantoms, with compartments doped to mimic blood, myocardium, fat, and coronary vasculature, were scanned with both T2-Preparation techniques to determine the actual SNRmulti and vessel sharpness. For in vivo experiments, the right coronary artery (RCA) was imaged in 10 healthy adults, using accelerations of R = 1,3, and 6, and vessel sharpness was measured for each. Results In both simulations and phantom experiments, the 2D-T2-Prep improved SNR relative to the conventional T2-Prep, by an amount that depended on both the acceleration factor and the degree of outer volume suppression. For in vivo images of the RCA, vessel sharpness improved most at higher acceleration factors, demonstrating that the 2D-T2-Prep especially benefits accelerated coronary MRA. Conclusion Suppressing outer volume signal with a 2D-T2-Prep improves image quality particularly well in GRAPPA-accelerated acquisitions in simulations, phantoms, and volunteers, demonstrating that it should be considered when performing accelerated coronary MRA. PMID:27736866

  15. Location of foot arteries using infrared images

    NASA Astrophysics Data System (ADS)

    Villasenor-Mora, Carlos; González-Vega, Arturo; Martín Osmany Falcón, Antonio; Benítez Ferro, Jesús Francisco Guillemo; Córdova Fraga, Teodoro

    2014-11-01

    In this work are presented the results of localization of foot arteries, in a young group of participants by using infrared thermal images, these are the dorsal, posterior tibial and anterior tibial arteries. No inclusion criteria were considered, that causes that no strong statistical data about the influence of the age in the arterial localization. It was achieved to solve the confusion when veins present a heat distribution similar to the artery and in the position of this. it contributes to enhance the rate of location of arteries. In general it is possible to say that the use of infrared thermal images is a good technique to find the foot arteries and can be applied in its characterization in a future. The procedure proposed is a non-invasive technique, and in certain fashion does not requires specialized personnel to achieve locate the arteries. It is portable, safe, and relatively economical.

  16. Photoacoustic imaging of carotid artery atherosclerosis

    NASA Astrophysics Data System (ADS)

    Kruizinga, Pieter; van der Steen, Antonius F. W.; de Jong, Nico; Springeling, Geert; Robertus, Jan Lukas; van der Lugt, Aad; van Soest, Gijs

    2014-11-01

    We introduce a method for photoacoustic imaging of the carotid artery, tailored toward detection of lipid-rich atherosclerotic lesions. A common human carotid artery was obtained at autopsy, embedded in a neck mimicking phantom and imaged with a multimodality imaging system using interstitial illumination. Light was delivered through a 1.25-mm-diameter optical probe that can be placed in the pharynx, allowing the carotid artery to be illuminated from within the body. Ultrasound imaging and photoacoustic signal detection is achieved by an external 8-MHz linear array coupled to an ultrasound imaging system. Spectroscopic analysis of photoacoustic images obtained in the wavelength range from 1130 to 1250 nm revealed plaque-specific lipid accumulation in the collagen structure of the artery wall. These spectroscopic findings were confirmed by histology.

  17. Pulmonary Artery Sarcoma - Multimodality Imaging.

    PubMed

    Jeong, Nari; Seol, Sang-Hoon; Kim, Il Hwan; Kim, Ji Yeon

    2016-01-01

    Pulmonary artery sarcoma (PAS) is a rare and fatal disease. PAS can often be misdiagnosed as pulmonary thromboembolism. Moreover, the correct diagnosis is frequently delayed due to nonspecific signs and symptoms. The prognosis of patients with PAS is poor. We report a case of a woman with a primary PAS who was initially diagnosed with pulmonary thromboembolism.

  18. Pulmonary Artery Sarcoma - Multimodality Imaging

    PubMed Central

    Jeong, Nari; Seol, Sang-Hoon; Kim, Il Hwan; Kim, Ji Yeon

    2016-01-01

    Pulmonary artery sarcoma (PAS) is a rare and fatal disease. PAS can often be misdiagnosed as pulmonary thromboembolism. Moreover, the correct diagnosis is frequently delayed due to nonspecific signs and symptoms. The prognosis of patients with PAS is poor. We report a case of a woman with a primary PAS who was initially diagnosed with pulmonary thromboembolism. PMID:27833785

  19. Quantitative Amyloid Imaging Using Image-Derived Arterial Input Function

    PubMed Central

    Su, Yi; Blazey, Tyler M.; Snyder, Abraham Z.; Raichle, Marcus E.; Hornbeck, Russ C.; Aldea, Patricia; Morris, John C.; Benzinger, Tammie L. S.

    2015-01-01

    Amyloid PET imaging is an indispensable tool widely used in the investigation, diagnosis and monitoring of Alzheimer’s disease (AD). Currently, a reference region based approach is used as the mainstream quantification technique for amyloid imaging. This approach assumes the reference region is amyloid free and has the same tracer influx and washout kinetics as the regions of interest. However, this assumption may not always be valid. The goal of this work is to evaluate an amyloid imaging quantification technique that uses arterial region of interest as the reference to avoid potential bias caused by specific binding in the reference region. 21 participants, age 58 and up, underwent Pittsburgh compound B (PiB) PET imaging and MR imaging including a time-of-flight (TOF) MR angiography (MRA) scan and a structural scan. FreeSurfer based regional analysis was performed to quantify PiB PET data. Arterial input function was estimated based on coregistered TOF MRA using a modeling based technique. Regional distribution volume (VT) was calculated using Logan graphical analysis with estimated arterial input function. Kinetic modeling was also performed using the estimated arterial input function as a way to evaluate PiB binding (DVRkinetic) without a reference region. As a comparison, Logan graphical analysis was also performed with cerebellar cortex as reference to obtain DVRREF. Excellent agreement was observed between the two distribution volume ratio measurements (r>0.89, ICC>0.80). The estimated cerebellum VT was in line with literature reported values and the variability of cerebellum VT in the control group was comparable to reported variability using arterial sampling data. This study suggests that image-based arterial input function is a viable approach to quantify amyloid imaging data, without the need of arterial sampling or a reference region. This technique can be a valuable tool for amyloid imaging, particularly in population where reference normalization

  20. Quantitative amyloid imaging using image-derived arterial input function.

    PubMed

    Su, Yi; Blazey, Tyler M; Snyder, Abraham Z; Raichle, Marcus E; Hornbeck, Russ C; Aldea, Patricia; Morris, John C; Benzinger, Tammie L S

    2015-01-01

    Amyloid PET imaging is an indispensable tool widely used in the investigation, diagnosis and monitoring of Alzheimer's disease (AD). Currently, a reference region based approach is used as the mainstream quantification technique for amyloid imaging. This approach assumes the reference region is amyloid free and has the same tracer influx and washout kinetics as the regions of interest. However, this assumption may not always be valid. The goal of this work is to evaluate an amyloid imaging quantification technique that uses arterial region of interest as the reference to avoid potential bias caused by specific binding in the reference region. 21 participants, age 58 and up, underwent Pittsburgh compound B (PiB) PET imaging and MR imaging including a time-of-flight (TOF) MR angiography (MRA) scan and a structural scan. FreeSurfer based regional analysis was performed to quantify PiB PET data. Arterial input function was estimated based on coregistered TOF MRA using a modeling based technique. Regional distribution volume (VT) was calculated using Logan graphical analysis with estimated arterial input function. Kinetic modeling was also performed using the estimated arterial input function as a way to evaluate PiB binding (DVRkinetic) without a reference region. As a comparison, Logan graphical analysis was also performed with cerebellar cortex as reference to obtain DVRREF. Excellent agreement was observed between the two distribution volume ratio measurements (r>0.89, ICC>0.80). The estimated cerebellum VT was in line with literature reported values and the variability of cerebellum VT in the control group was comparable to reported variability using arterial sampling data. This study suggests that image-based arterial input function is a viable approach to quantify amyloid imaging data, without the need of arterial sampling or a reference region. This technique can be a valuable tool for amyloid imaging, particularly in population where reference normalization may

  1. Flow imaging and computing: large artery hemodynamics.

    PubMed

    Steinman, David A; Taylor, Charles A

    2005-12-01

    The objective of our session at the International Bio-Fluid Mechanics Symposium and Workshop was at the International Bio-Fluid Mechanics Symposium and Workshop to review the state-of-the-art in, and identify future directions for, imaging and computational modeling of blood flow in the large arteries and the microcirculation. Naturally, talks in other sessions of the workshop overlapped this broad topic, and so here we summarize progress within the last decade in terms of the technical development and application of flow imaging and computing, rather than the knowledge derived from specific studies. We then briefly discuss ways in these tools may be extended, and their application broadened, in the next decade. Furthermore, owing to the conceptual division between the hemodynamics of large arteries, and those within the microcirculation, we review these regimes separately: The former here by Steinman and Taylor; and the latter in a separate paper by Cristini.

  2. Basilar artery migraine and reversible imaging abnormalities.

    PubMed

    Maytal, J; Libman, R B; Lustrin, E S

    1998-01-01

    We report a case of a basilar artery migraine in a 17-year-old boy with transient CT and MR abnormalities after each of two migraine episodes. A repeat MR study 6 months after the last event showed complete resolution of the lesion. Transient abnormalities on brain images similar to those shown in our case have been reported in patients with migraine and other neurologic conditions and are most likely related to cerebral vasogenic edema.

  3. Evaluation of temporal windows for coronary artery bypass graft imaging with 64-slice CT.

    PubMed

    Desbiolles, Lotus; Leschka, Sebastian; Plass, André; Scheffel, Hans; Husmann, Lars; Gaemperli, Oliver; Garzoli, Elisabeth; Marincek, Borut; Kaufmann, Philipp A; Alkadhi, Hatem

    2007-11-01

    Temporal windows providing the best image quality of different segments and types of coronary artery bypass grafts (CABGs) with 64-slice computed tomography (CT) were evaluated in an experimental set-up. Sixty-four-slice CT with a rotation time of 330 ms was performed in 25 patients (four female; mean age 59.9 years). A total of 84 CABGs (62 individual and 22 sequential grafts) were evaluated, including 28 internal mammary artery (33.3%), one radial artery with sequential grafting (2.4%), and 54 saphenous vein grafts (64.3%). Ten data sets were reconstructed in 10% increments of the RR-interval. Each graft was separated into segments (proximal and distal anastomosis, and body), and CABG types were grouped according to target arteries. Two readers independently assessed image quality of each CABG segment in each temporal window. Diagnostic image quality was found with good inter-observer agreement (kappa=0.62) in 98.5% (202/205) of all graft segments. Image quality was significantly better for saphenous vein grafts versus arterial grafts (P<0.001) and for distal anastomosis to the right coronary compared with other target coronary arteries (P<0.05). Overall, best image quality was found at 60%. Image quality of proximal segments did not significantly vary with the temporal window, whereas for all other segments image quality was significantly better at 60% compared with other temporal windows (P<0.05). Sixty-four-slice CT provides best image quality of various segments and types of CABG at 60% of the RR-interval.

  4. Intravascular Optical Imaging Technology for Investigating the Coronary Artery

    PubMed Central

    Suter, Melissa J.; Nadkarni, Seemantini K.; Weisz, Giora; Tanaka, Atsushi; Jaffer, Farouc A.; Bouma, Brett E.; Tearney, Guillermo J.

    2012-01-01

    There is an ever-increasing demand for new imaging methods that can provide additional information about the coronary wall to better characterize and stratify high-risk plaques, and to guide interventional and pharmacologic management of patients with coronary artery disease. While there are a number of imaging modalities that facilitate the assessment of coronary artery pathology, this review paper focuses on intravascular optical imaging modalities that provide information on the microstructural, compositional, biochemical, biomechanical, and molecular features of coronary lesions and stents. The optical imaging modalities discussed include angioscopy, optical coherence tomography, polarization sensitive-optical coherence tomography, laser speckle imaging, near-infrared spectroscopy, time-resolved laser induced fluorescence spectroscopy, Raman spectroscopy, and near-infrared fluorescence molecular imaging. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in the evaluation of the coronary artery in the future. PMID:21920342

  5. Image Enhancement, Image Quality, and Noise

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Hines, Glenn D.

    2005-01-01

    The Multiscale Retinex With Color Restoration (MSRCR) is a non-linear image enhancement algorithm that provides simultaneous dynamic range compression, color constancy and rendition. The overall impact is to brighten up areas of poor contrast/lightness but not at the expense of saturating areas of good contrast/brightness. The downside is that with the poor signal-to-noise ratio that most image acquisition devices have in dark regions, noise can also be greatly enhanced thus affecting overall image quality. In this paper, we will discuss the impact of the MSRCR on the overall quality of an enhanced image as a function of the strength of shadows in an image, and as a function of the root-mean-square (RMS) signal-to-noise (SNR) ratio of the image.

  6. Retinal Image Quality During Accommodation

    PubMed Central

    López-Gil, N.; Martin, J.; Liu, T.; Bradley, A.; Díaz-Muñoz, D.; Thibos, L.

    2013-01-01

    Purpose We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Methods Subjects viewed a monochromatic (552nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Results Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Conclusions Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye’s higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced

  7. Dynamic diffuse optical tomography imaging of peripheral arterial disease.

    PubMed

    Khalil, Michael A; Kim, Hyun K; Kim, In-Kyong; Flexman, Molly; Dayal, Rajeev; Shrikhande, Gautam; Hielscher, Andreas H

    2012-09-01

    Peripheral arterial disease (PAD) is the narrowing of arteries due to plaque accumulation in the vascular walls. This leads to insufficient blood supply to the extremities and can ultimately cause cell death. Currently available methods are ineffective in diagnosing PAD in patients with calcified arteries, such as those with diabetes. In this paper we investigate the potential of dynamic diffuse optical tomography (DDOT) as an alternative way to assess PAD in the lower extremities. DDOT is a non-invasive, non-ionizing imaging modality that uses near-infrared light to create spatio-temporal maps of oxy- and deoxy-hemoglobin in tissue. We present three case studies in which we used DDOT to visualize vascular perfusion of a healthy volunteer, a PAD patient and a diabetic PAD patient with calcified arteries. These preliminary results show significant differences in DDOT time-traces and images between all three cases, underscoring the potential of DDOT as a new diagnostic tool.

  8. Multimodality Imaging in Coronary Artery Disease: Focus on Computed Tomography

    PubMed Central

    Lee, Ji Hyun; Han, Donghee; Danad, Ibrahim; Hartaigh, Bríain ó; Lin, Fay Y.

    2016-01-01

    Coronary artery disease (CAD) is the leading cause of mortality worldwide, and various cardiovascular imaging modalities have been introduced for the purpose of diagnosing and determining the severity of CAD. More recently, advances in computed tomography (CT) technology have contributed to the widespread clinical application of cardiac CT for accurate and noninvasive evaluation of CAD. In this review, we focus on imaging assessment of CAD based upon CT, which includes coronary artery calcium screening, coronary CT angiography, myocardial CT perfusion, and fractional flow reserve CT. Further, we provide a discussion regarding the potential implications, benefits and limitations, as well as the possible future directions according to each modality. PMID:27081438

  9. Imaging and clinical findings in segmental arterial mediolysis (SAM).

    PubMed

    Alhalabi, Kinan; Menias, Christine; Hines, Robert; Mamoun, Ihsan; Naidu, Sailendra

    2017-02-01

    Segmental arterial mediolysis (SAM) is an uncommon, non-atherosclerotic, non-inflammatory arteriopathy that tends to affect the medium-sized splanchnic branches of the aorta along with renal, carotid, cerebral, and coronary arteries. The clinical presentation ranges from asymptomatic to severe, life-threatening intra-abdominal hemorrhage and shock. SAM overlaps clinically and radiologically with other inflammatory vasculitides. This article describes the pathologic-radiologic correlation, imaging findings, and the management of the disease. Radiologists should be familiar with this disease entity as imaging plays a crucial role in the diagnosis.

  10. Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery.

    PubMed

    Loizou, Christos P; Theofanous, Charoula; Pantziaris, Marios; Kasparis, Takis

    2014-04-01

    Ultrasound imaging of the common carotid artery (CCA) is a non-invasive tool used in medicine to assess the severity of atherosclerosis and monitor its progression through time. It is also used in border detection and texture characterization of the atherosclerotic carotid plaque in the CCA, the identification and measurement of the intima-media thickness (IMT) and the lumen diameter that all are very important in the assessment of cardiovascular disease (CVD). Visual perception, however, is hindered by speckle, a multiplicative noise, that degrades the quality of ultrasound B-mode imaging. Noise reduction is therefore essential for improving the visual observation quality or as a pre-processing step for further automated analysis, such as image segmentation of the IMT and the atherosclerotic carotid plaque in ultrasound images. In order to facilitate this preprocessing step, we have developed in MATLAB(®) a unified toolbox that integrates image despeckle filtering (IDF), texture analysis and image quality evaluation techniques to automate the pre-processing and complement the disease evaluation in ultrasound CCA images. The proposed software, is based on a graphical user interface (GUI) and incorporates image normalization, 10 different despeckle filtering techniques (DsFlsmv, DsFwiener, DsFlsminsc, DsFkuwahara, DsFgf, DsFmedian, DsFhmedian, DsFad, DsFnldif, DsFsrad), image intensity normalization, 65 texture features, 15 quantitative image quality metrics and objective image quality evaluation. The software is publicly available in an executable form, which can be downloaded from http://www.cs.ucy.ac.cy/medinfo/. It was validated on 100 ultrasound images of the CCA, by comparing its results with quantitative visual analysis performed by a medical expert. It was observed that the despeckle filters DsFlsmv, and DsFhmedian improved image quality perception (based on the expert's assessment and the image texture and quality metrics). It is anticipated that the

  11. [Dolichoectatic intracranial arteries. Advances in images and therapeutics].

    PubMed

    Casas Parera, I; Abruzzi, M; Lehkuniec, E; Schuster, G; Muchnik, S

    1995-01-01

    Dolichoectasia of intracranial arteries is an infrequent disease with an incidence less than 0.05% in general population. It represents 7% of all intracranial aneurysms. Commonly seen in middle age patients with severe atherosclerosis and hypertension, the affected arteries include the basilar artery, supraclinoid segment of the internal carotid artery, middle, anterior and posterior cerebral arteries; males are more frequently affected. The clinical features of these fusiform aneurysms are divided in three categories: ische-mic, cranial nerve compression and signs from mass effect. Hemorrhage may also occur. Nine patients with symptomatic cerebral blood vessel dolichoectasias are presented. Six of them were males with moderate or severe hypertension. Lesions were confined to the basilar artery in 3 cases, carotid arteries and the middle cerebral artery in 1 case, and both systems were affected in 4 patients. Middle cerebral arteries were affected in 5 cases and the anterior cerebral artery in one. An isolated fusiform aneurysm of the posterior cerebral artery is also presented (case 8) (Table 3). Motor or sensory deficits, ataxia, dementia, hemifacial spasm and parkinsonism were observed. One patient died from cerebro-meningeal hemorrhage (Table 2). All patients were studied with computerized axial tomography of the brain, 5 cases with four vessel cerebral angiography, 4 cases with magnetic resonance imaging (MRI) and case 5 with MRI angiography. Clinical symptoms depend on the affected vascular territory, size of the aneurysm and compression of adjacent structures. The histopathologic findings are atheromatous lesions, disruption of the internal elastic membrane and fibrosis of the muscular wall. The resultant is a diffuse deficiency of the muscular wall and the internal elastic membrane. Recent advances in neuroimaging such as better resolution of CT scan, magnetic resonance images (MRI) and MRI angiography increased the diagnosis of this pathology showing

  12. Video and image quality

    NASA Astrophysics Data System (ADS)

    Aldridge, Jim

    1995-09-01

    This paper presents some of the results of a UK government research program into methods of improving the effectiveness of CCTV surveillance systems. The paper identifies the major components of video security systems and primary causes of unsatisfactory images. A method is outline for relating the picture detail limitations imposed by each system component on overall system performance. The paper also points out some possible difficulties arising from the use of emerging new technology.

  13. Additive global cerebral blood flow normalization in arterial spin labeling perfusion imaging.

    PubMed

    Stewart, Stephanie B; Koller, Jonathan M; Campbell, Meghan C; Perlmutter, Joel S; Black, Kevin J

    2015-01-01

    To determine how different methods of normalizing for global cerebral blood flow (gCBF) affect image quality and sensitivity to cortical activation, pulsed arterial spin labeling (pASL) scans obtained during a visual task were normalized by either additive or multiplicative normalization of modal gCBF. Normalization by either method increased the statistical significance of cortical activation by a visual stimulus. However, image quality was superior with additive normalization, whether judged by intensity histograms or by reduced variability within gray and white matter.

  14. Image quality (IQ) guided multispectral image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  15. Arterial Perfusion Imaging-Defined Subvolume of Intrahepatic Cancer

    PubMed Central

    Wang, Hesheng; Farjam, Reza; Feng, Mary; Hussain, Hero; Ten Haken, Randall K.; Lawrence, Theodore S.; Cao, Yue

    2014-01-01

    Purpose To assess whether an increase in a subvolume of intrahepatic tumor with elevated arterial perfusion during radiation therapy (RT) predicts tumor progression post RT. Methods and Materials Twenty patients with unresectable intrahepatic cancers undergoing RT were enrolled in a prospective IRB-approved study. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) were performed prior to RT (pre-RT), after delivering ~60% of the planned dose (mid-RT) and one month after completion of RT to quantify hepatic arterial perfusion. The arterial perfusions of the tumors at pre-RT were clustered into low-normal and elevated perfusion by a fuzzy clustering-based method, and the tumor subvolumes with elevated arterial perfusion were extracted from the hepatic arterial perfusion images. The percentage changes in the tumor subvolumes and means of arterial perfusion over the tumors from pre-RT to mid-RT were evaluated for predicting tumor progression post-RT. Results Of the 24 tumors, 6 tumors in 5 patients progressed 5–21 months after RT completion. Neither tumor volumes nor means of tumor arterial perfusion at pre-RT were predictive of treatment outcome. The mean arterial perfusion over the tumors increased significantly at mid-RT in progressive tumors comparing to the responsive ones (p=0.006). From pre-RT to mid-RT, the responsive tumors had a decrease in the tumor subvolumes with elevated arterial perfusion (median: −14%, range: −75% – 65%), while the progressing tumors had an increase of the subvolumes (median: 57%, range: −7% – 165%) (p=0.003). Receiver operating characteristic (ROC) analysis of the percentage change in the subvolume for predicting tumor progression post-RT had an area under the curve (AUC) of 0.90. Conclusion The increase in the subvolume of the intrahepatic tumor with elevated arterial perfusion during RT has the potential to be a predictor for tumor progression post-RT. The tumor subvolume could be a radiation boost candidate

  16. Landsat image data quality studies

    NASA Technical Reports Server (NTRS)

    Schueler, C. F.; Salomonson, V. V.

    1985-01-01

    Preliminary results of the Landsat-4 Image Data Quality Analysis (LIDQA) program to characterize the data obtained using the Thematic Mapper (TM) instrument on board the Landsat-4 and Landsat-5 satellites are reported. TM design specifications were compared to the obtained data with respect to four criteria, including spatial resolution; geometric fidelity; information content; and image relativity to Multispectral Scanner (MSS) data. The overall performance of the TM was rated excellent despite minor instabilities and radiometric anomalies in the data. Spatial performance of the TM exceeded design specifications in terms of both image sharpness and geometric accuracy, and the image utility of the TM data was at least twice as high as MSS data. The separability of alfalfa and sugar beet fields in a TM image is demonstrated.

  17. High speed intravascular photoacoustic imaging of atherosclerotic arteries (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Piao, Zhonglie; Ma, Teng; Qu, Yueqiao; Li, Jiawen; Yu, Mingyue; He, Youmin; Shung, K. Kirk; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2016-02-01

    Cardiovascular disease is the leading cause of death in the industrialized nations. Accurate quantification of both the morphology and composition of lipid-rich vulnerable atherosclerotic plaque are essential for early detection and optimal treatment in clinics. In previous works, intravascular photoacoustic (IVPA) imaging for detection of lipid-rich plaque within coronary artery walls has been demonstrated in ex vivo, but the imaging speed is still limited. In order to increase the imaging speed, a high repetition rate laser is needed. In this work, we present a high speed integrated IVPA/US imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A miniature catheter with 1.0 mm outer diameter was designed with a 200 μm multimode fiber and an ultrasound transducer with 45 MHz center frequency. The fiber was polished at 38 degree and enclosed in a glass capillary for total internal reflection. An optical/electrical rotary junction and pull-back mechanism was applied for rotating and linearly scanning the catheter to obtain three-dimensional imaging. Atherosclerotic rabbit abdominal aorta was imaged as two frame/second at 1725 nm. Furthermore, by wide tuning range of the laser wavelength from 1680 nm to 1770 nm, spectroscopic photoacoustic analysis of lipid-mimicking phantom and an human atherosclerotic artery was performed ex vivo. The results demonstrated that the developed IVPA/US imaging system is capable for high speed intravascular imaging for plaque detection.

  18. Pocket-size imaging devices allow for reliable bedside screening for femoral artery access site complications.

    PubMed

    Filipiak-Strzecka, Dominika; Michalski, Błażej; Kasprzak, Jarosław D; Lipiec, Piotr

    2014-12-01

    The aim of this study was to validate pocket-size imaging devices (PSIDs) as a fast screening tool for detecting complications after femoral artery puncture. Forty patients undergoing femoral artery puncture for arterial access related to percutaneous coronary intervention were enrolled. Twenty-four hours after percutaneous coronary intervention, the involved inguinal region was assessed with PSIDs enabling 2-D gray-scale and color Doppler imaging. Subsequently, examination with a stationary high-end ultrasound system was performed to verify the findings of bedside examination in all patients. In 37 patients, PSID imaging had good diagnostic quality. False aneurysms (one asymptomatic) occurred in four patients, and all were recognized during bedside screening with PSID. One case of femoral artery thrombosis was confirmed with PSID and during standard ultrasonographic examination. Physical examination augmented with the quick bedside PSID examination had a sensitivity of 100% and specificity of 91%. PSID facilitated rapid bedside detection of serious access site complications in the vast majority of patients, including asymptomatic cases.

  19. High-resolution Magnetic Resonance Vessel Wall Imaging for Intracranial Arterial Stenosis

    PubMed Central

    Zhu, Xian-Jin; Wang, Wu; Liu, Zun-Jing

    2016-01-01

    Objective: To discuss the feasibility and clinical value of high-resolution magnetic resonance vessel wall imaging (HRMR VWI) for intracranial arterial stenosis. Date Sources: We retrieved information from PubMed database up to December 2015, using various search terms including vessel wall imaging (VWI), high-resolution magnetic resonance imaging, intracranial arterial stenosis, black blood, and intracranial atherosclerosis. Study Selection: We reviewed peer-reviewed articles printed in English on imaging technique of VWI and characteristic findings of various intracranial vasculopathies on VWI. We organized this data to explain the value of VWI in clinical application. Results: VWI with black blood technique could provide high-quality images with submillimeter voxel size, and display both the vessel wall and lumen of intracranial artery simultaneously. Various intracranial vasculopathies (atherosclerotic or nonatherosclerotic) had differentiating features including pattern of wall thickening, enhancement, and vessel remodeling on VWI. This technique could be used for determining causes of stenosis, identification of stroke mechanism, risk-stratifying patients, and directing therapeutic management in clinical practice. In addition, a new morphological classification based on VWI could be established for predicting the efficacy of endovascular therapy. Conclusions: This review highlights the value of HRMR VWI for discrimination of different intracranial vasculopathies and directing therapeutic management. PMID:27231176

  20. Imaging popliteal artery disease in young adults with claudication: self-assessment module.

    PubMed

    Chew, Felix S; Bui-Mansfield, Liem T

    2007-09-01

    The educational objectives of this self-assessment module on imaging popliteal artery disease in young adults with intermittent claudication are for the participant to exercise, self-assess, and improve his or her knowledge of the imaging and clinical features of popliteal artery entrapment syndrome, cystic adventitial disease,and masses associated with popliteal artery obstruction.

  1. Perceived image quality assessment for color images on mobile displays

    NASA Astrophysics Data System (ADS)

    Jang, Hyesung; Kim, Choon-Woo

    2015-01-01

    With increase in size and resolution of mobile displays and advances in embedded processors for image enhancement, perceived quality of images on mobile displays has been drastically improved. This paper presents a quantitative method to evaluate perceived image quality of color images on mobile displays. Three image quality attributes, colorfulness, contrast and brightness, are chosen to represent perceived image quality. Image quality assessment models are constructed based on results of human visual experiments. In this paper, three phase human visual experiments are designed to achieve credible outcomes while reducing time and resources needed for visual experiments. Values of parameters of image quality assessment models are estimated based on results from human visual experiments. Performances of different image quality assessment models are compared.

  2. [A method of iris image quality evaluation].

    PubMed

    Murat, Hamit; Mao, Dawei; Tong, Qinye

    2006-04-01

    Iris image quality evaluation plays a very important part in iris computer recognition. An iris image quality evaluation method was introduced into this study to distinguish good image from bad image caused by pupil distortion, blurred boundary, two circles appearing not concentric, and severe occlusion by eyelids and eyelashes. The tests based on this method gave good results.

  3. Quantitative assessment on coronary computed tomography angiography (CCTA) image quality: comparisons between genders and different tube voltage settings

    PubMed Central

    Chian, Teo Chee; Nassir, Norziana Mat; Ibrahim, Mohd Izuan; Yusof, Ahmad Khairuddin Md

    2017-01-01

    Background This study was carried out to quantify and compare the quantitative image quality of coronary computed tomography angiography (CCTA) between genders as well as between different tube voltages scan protocols. Methods Fifty-five cases of CCTA were collected retrospectively and all images including reformatted axial images at systolic and diastolic phases as well as images with curved multi planar reformation (cMPR) were obtained. Quantitative image quality including signal intensity, image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of right coronary artery (RCA), left anterior descending artery (LAD), left circumflex artery (LCx) and left main artery (LM) were quantified using Analyze 12.0 software. Results Six hundred and fifty-seven coronary arteries were evaluated. There were no significant differences in any quantitative image quality parameters between genders. 100 kilovoltage peak (kVp) scanning protocol produced images with significantly higher signal intensity compared to 120 kVp scanning protocol (P<0.001) in all coronary arteries in all types of images. Higher SNR was also observed in 100 kVp scan protocol in all coronary arteries except in LCx where 120 kVp showed better SNR than 100 kVp. Conclusions There were no significant differences in image quality of CCTA between genders and different tube voltages. Lower tube voltage (100 kVp) scanning protocol is recommended in clinical practice to reduce the radiation dose to patient. PMID:28275559

  4. A mathematical model for estimating the axial stress of the common carotid artery wall from ultrasound images.

    PubMed

    Soleimani, Effat; Mokhtari-Dizaji, Manijhe; Saberi, Hajir; Sharif-Kashani, Shervin

    2016-08-01

    Clarifying the complex interaction between mechanical and biological processes in healthy and diseased conditions requires constitutive models for arterial walls. In this study, a mathematical model for the displacement of the carotid artery wall in the longitudinal direction is defined providing a satisfactory representation of the axial stress applied to the arterial wall. The proposed model was applied to the carotid artery wall motion estimated from ultrasound image sequences of 10 healthy adults, and the axial stress waveform exerted on the artery wall was extracted. Consecutive ultrasonic images (30 frames per second) of the common carotid artery of 10 healthy subjects (age 44 ± 4 year) were recorded and transferred to a personal computer. Longitudinal displacement and acceleration were extracted from ultrasonic image processing using a block-matching algorithm. Furthermore, images were examined using a maximum gradient algorithm and time rate changes of the internal diameter and intima-media thickness were extracted. Finally, axial stress was estimated using an appropriate constitutive equation for thin-walled tubes. Performance of the proposed model was evaluated using goodness of fit between approximated and measured longitudinal displacement statistics. Values of goodness-of-fit statistics indicated high quality of fit for all investigated subjects with the mean adjusted R-square (0.86 ± 0.08) and root mean squared error (0.08 ± 0.04 mm). According to the results of the present study, maximum and minimum axial stresses exerted on the arterial wall are 1.7 ± 0.6 and -1.5 ± 0.5 kPa, respectively. These results reveal the potential of this technique to provide a new method to assess arterial stress from ultrasound images, overcoming the limitations of the finite element and other simulation techniques.

  5. Characterization of endothelial function in the brachial artery via affine registration of ultrasonographic image sequences

    NASA Astrophysics Data System (ADS)

    Lamata, Pablo; Laclaustra, Martin; Frangi, Alejandro F.

    2003-05-01

    The assessment and characterization of the endothelial function is a current research topic as it may play an important role in the diagnosis of cardiovascular diseases. Flow mediated dilatation may be used to investigate endothelial function, and B-mode ultrasonography is a cheap and non-invasive way to assess the vasodilation response. Computerized analysis techniques are very desirable to give higher accuracy and objectivity to the measurements. A new method is presented that solves some limitations of existing methods, which in general depend on accurate edge detection of the arterial wall. This method is based on a global image analysis strategy. The arterial vasodilation between two frames is modeled by a superposition of a rigid motion model and a stretching perpendicular to the artery. Both transformation models are recovered using an image registration algorithm based on normalized mutual information and a multi-resolution search framework. Temporal continuity of in the variation of the registration parameters is enforced with a Kalman filter, since the dilation process is known to be a gradual and continuous physiological phenomenon. The proposed method presents a negligible bias when compared with manual assessment. It also eliminates artifacts introduced by patient and probe motion, thus improving the accuracy of the measurements. Finally, it is also robust to typical problems of ultrasound, like speckle noise and poor image quality.

  6. Infrared image quality evaluation method without reference image

    NASA Astrophysics Data System (ADS)

    Yue, Song; Ren, Tingting; Wang, Chengsheng; Lei, Bo; Zhang, Zhijie

    2013-09-01

    Since infrared image quality depends on many factors such as optical performance and electrical noise of thermal imager, image quality evaluation becomes an important issue which can conduce to both image processing afterward and capability improving of thermal imager. There are two ways of infrared image quality evaluation, with or without reference image. For real-time thermal image, the method without reference image is preferred because it is difficult to get a standard image. Although there are various kinds of methods for evaluation, there is no general metric for image quality evaluation. This paper introduces a novel method to evaluate infrared image without reference image from five aspects: noise, clarity, information volume and levels, information in frequency domain and the capability of automatic target recognition. Generally, the basic image quality is obtained from the first four aspects, and the quality of target is acquired from the last aspect. The proposed method is tested on several infrared images captured by different thermal imagers. Calculate the indicators and compare with human vision results. The evaluation shows that this method successfully describes the characteristics of infrared image and the result is consistent with human vision system.

  7. Assessing product image quality for online shopping

    NASA Astrophysics Data System (ADS)

    Goswami, Anjan; Chung, Sung H.; Chittar, Naren; Islam, Atiq

    2012-01-01

    Assessing product-image quality is important in the context of online shopping. A high quality image that conveys more information about a product can boost the buyer's confidence and can get more attention. However, the notion of image quality for product-images is not the same as that in other domains. The perception of quality of product-images depends not only on various photographic quality features but also on various high level features such as clarity of the foreground or goodness of the background etc. In this paper, we define a notion of product-image quality based on various such features. We conduct a crowd-sourced experiment to collect user judgments on thousands of eBay's images. We formulate a multi-class classification problem for modeling image quality by classifying images into good, fair and poor quality based on the guided perceptual notions from the judges. We also conduct experiments with regression using average crowd-sourced human judgments as target. We compute a pseudo-regression score with expected average of predicted classes and also compute a score from the regression technique. We design many experiments with various sampling and voting schemes with crowd-sourced data and construct various experimental image quality models. Most of our models have reasonable accuracies (greater or equal to 70%) on test data set. We observe that our computed image quality score has a high (0.66) rank correlation with average votes from the crowd sourced human judgments.

  8. Augmented reality image guidance for minimally invasive coronary artery bypass

    NASA Astrophysics Data System (ADS)

    Figl, Michael; Rueckert, Daniel; Hawkes, David; Casula, Roberto; Hu, Mingxing; Pedro, Ose; Zhang, Dong Ping; Penney, Graeme; Bello, Fernando; Edwards, Philip

    2008-03-01

    We propose a novel system for image guidance in totally endoscopic coronary artery bypass (TECAB). A key requirement is the availability of 2D-3D registration techniques that can deal with non-rigid motion and deformation. Image guidance for TECAB is mainly required before the mechanical stabilization of the heart, thus the most dominant source of non-rigid deformation is the motion of the beating heart. To augment the images in the endoscope of the da Vinci robot, we have to find the transformation from the coordinate system of the preoperative imaging modality to the system of the endoscopic cameras. In a first step we build a 4D motion model of the beating heart. Intraoperatively we can use the ECG or video processing to determine the phase of the cardiac cycle. We can then take the heart surface from the motion model and register it to the stereo-endoscopic images of the da Vinci robot using 2D-3D registration methods. We are investigating robust feature tracking and intensity-based methods for this purpose. Images of the vessels available in the preoperative coordinate system can then be transformed to the camera system and projected into the calibrated endoscope view using two video mixers with chroma keying. It is hoped that the augmented view can improve the efficiency of TECAB surgery and reduce the conversion rate to more conventional procedures.

  9. Referenceless image quality evaluation for whole slide imaging

    PubMed Central

    Hashimoto, Noriaki; Bautista, Pinky A.; Yamaguchi, Masahiro; Ohyama, Nagaaki; Yagi, Yukako

    2012-01-01

    Objective: The image quality in whole slide imaging (WSI) is one of the most important issues for the practical use of WSI scanners. In this paper, we proposed an image quality evaluation method for scanned slide images in which no reference image is required. Methods: While most of the conventional methods for no-reference evaluation only deal with one image degradation at a time, the proposed method is capable of assessing both blur and noise by using an evaluation index which is calculated using the sharpness and noise information of the images in a given training data set by linear regression analysis. The linear regression coefficients can be determined in two ways depending on the purpose of the evaluation. For objective quality evaluation, the coefficients are determined using a reference image with mean square error as the objective value in the analysis. On the other hand, for subjective quality evaluation, the subjective scores given by human observers are used as the objective values in the analysis. The predictive linear regression models for the objective and subjective image quality evaluations, which were constructed using training images, were then used on test data wherein the calculated objective values are construed as the evaluation indices. Results: The results of our experiments confirmed the effectiveness of the proposed image quality evaluation method in both objective and subjective image quality measurements. Finally, we demonstrated the application of the proposed evaluation method to the WSI image quality assessment and automatic rescanning in the WSI scanner. PMID:22530177

  10. Artery and vein diameter ratio measurement based on improvement of arteries and veins segmentation on retinal images.

    PubMed

    Hatanaka, Yuji; Tachiki, Hirokazu; Ogohara, Kazunori; Muramatsu, Chisako; Okumura, Susumu; Fujita, Hiroshi

    2016-08-01

    Retinal arteriolar narrowing is decided based on the artery and vein diameter ratio (AVR). Previous methods segmented blood vessels and classified arteries and veins by color pixels in the centerlines of blood vessels. AVR was definitively determined through measurement of artery and vein diameters. However, this approach was not sufficient for cases with close contact between the artery of interest and an imposing vein. Here, an algorithm for AVR measurement via new classification of arteries and veins is proposed. In this algorithm, additional steps for an accurate segmentation of arteries and veins, which were not identified using the previous method, have been added to better identify major veins in the red channel of a color image. To identify major arteries, a decision tree with three features was used. As a result, all major veins and 90.9% of major arteries were correctly identified, and the absolute mean error in AVRs was 0.12. The proposed method will require further testing with a greater number of images of arteriolar narrowing before clinical application.

  11. Automatic determination of the artery vein ratio in retinal images

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; van Ginneken, Bram; Abràmoff, Michael D.

    2010-03-01

    A lower ratio between the width of the arteries and veins (Arteriolar-to-Venular diameter Ratio, AVR) on the retina, is well established to be predictive of stroke and other cardiovascular events in adults, as well as an increased risk of retinopathy of prematurity in premature infants. This work presents an automatic method that detects the location of the optic disc, determines the appropriate region of interest (ROI), classifies the vessels in the ROI into arteries and veins, measures their widths and calculates the AVR. After vessel segmentation and vessel width determination the optic disc is located and the system eliminates all vessels outside the AVR measurement ROI. The remaining vessels are thinned, vessel crossing and bifurcation points are removed leaving a set of vessel segments containing centerline pixels. Features are extracted from each centerline pixel that are used to assign them a soft label indicating the likelihood the pixel is part of a vein. As all centerline pixels in a connected segment should be the same type, the median soft label is assigned to each centerline pixel in the segment. Next artery vein pairs are matched using an iterative algorithm and the widths of the vessels is used to calculate the AVR. We train and test the algorithm using a set of 25 high resolution digital color fundus photographs a reference standard that indicates for the major vessels in the images whether they are an artery or a vein. We compared the AVR values produced by our system with those determined using a computer assisted method in 15 high resolution digital color fundus photographs and obtained a correlation coefficient of 0.881.

  12. Comparative imaging study in ultrasound, MRI, CT, and DSA using a multimodality renal artery phantom

    SciTech Connect

    King, Deirdre M.; Fagan, Andrew J.; Moran, Carmel M.; Browne, Jacinta E.

    2011-02-15

    Purpose: A range of anatomically realistic multimodality renal artery phantoms consisting of vessels with varying degrees of stenosis was developed and evaluated using four imaging techniques currently used to detect renal artery stenosis (RAS). The spatial resolution required to visualize vascular geometry and the velocity detection performance required to adequately characterize blood flow in patients suffering from RAS are currently ill-defined, with the result that no one imaging modality has emerged as a gold standard technique for screening for this disease. Methods: The phantoms, which contained a range of stenosis values (0%, 30%, 50%, 70%, and 85%), were designed for use with ultrasound, magnetic resonance imaging, x-ray computed tomography, and x-ray digital subtraction angiography. The construction materials used were optimized with respect to their ultrasonic speed of sound and attenuation coefficient, MR relaxometry (T{sub 1},T{sub 2}) properties, and Hounsfield number/x-ray attenuation coefficient, with a design capable of tolerating high-pressure pulsatile flow. Fiducial targets, incorporated into the phantoms to allow for registration of images among modalities, were chosen to minimize geometric distortions. Results: High quality distortion-free images of the phantoms with good contrast between vessel lumen, fiducial markers, and background tissue to visualize all stenoses were obtained with each modality. Quantitative assessments of the grade of stenosis revealed significant discrepancies between modalities, with each underestimating the stenosis severity for the higher-stenosed phantoms (70% and 85%) by up to 14%, with the greatest discrepancy attributable to DSA. Conclusions: The design and construction of a range of anatomically realistic renal artery phantoms containing varying degrees of stenosis is described. Images obtained using the main four diagnostic techniques used to detect RAS were free from artifacts and exhibited adequate contrast

  13. Process perspective on image quality evaluation

    NASA Astrophysics Data System (ADS)

    Leisti, Tuomas; Halonen, Raisa; Kokkonen, Anna; Weckman, Hanna; Mettänen, Marja; Lensu, Lasse; Ritala, Risto; Oittinen, Pirkko; Nyman, Göte

    2008-01-01

    The psychological complexity of multivariate image quality evaluation makes it difficult to develop general image quality metrics. Quality evaluation includes several mental processes and ignoring these processes and the use of a few test images can lead to biased results. By using a qualitative/quantitative (Interpretation Based Quality, IBQ) methodology, we examined the process of pair-wise comparison in a setting, where the quality of the images printed by laser printer on different paper grades was evaluated. Test image consisted of a picture of a table covered with several objects. Three other images were also used, photographs of a woman, cityscape and countryside. In addition to the pair-wise comparisons, observers (N=10) were interviewed about the subjective quality attributes they used in making their quality decisions. An examination of the individual pair-wise comparisons revealed serious inconsistencies in observers' evaluations on the test image content, but not on other contexts. The qualitative analysis showed that this inconsistency was due to the observers' focus of attention. The lack of easily recognizable context in the test image may have contributed to this inconsistency. To obtain reliable knowledge of the effect of image context or attention on subjective image quality, a qualitative methodology is needed.

  14. Automatic no-reference image quality assessment.

    PubMed

    Li, Hongjun; Hu, Wei; Xu, Zi-Neng

    2016-01-01

    No-reference image quality assessment aims to predict the visual quality of distorted images without examining the original image as a reference. Most no-reference image quality metrics which have been already proposed are designed for one or a set of predefined specific distortion types and are unlikely to generalize for evaluating images degraded with other types of distortion. There is a strong need of no-reference image quality assessment methods which are applicable to various distortions. In this paper, the authors proposed a no-reference image quality assessment method based on a natural image statistic model in the wavelet transform domain. A generalized Gaussian density model is employed to summarize the marginal distribution of wavelet coefficients of the test images, so that correlative parameters are needed for the evaluation of image quality. The proposed algorithm is tested on three large-scale benchmark databases. Experimental results demonstrate that the proposed algorithm is easy to implement and computational efficient. Furthermore, our method can be applied to many well-known types of image distortions, and achieves a good quality of prediction performance.

  15. Recent developments of imaging modalities of carotid artery stenting.

    PubMed

    Umemoto, Tomoyuki; Pacchioni, Andrea; Nikas, Dimitrios; Reimers, Bernhard

    2017-02-01

    Compared with conventional angiogram-guided procedure, intravascular imaging modalities give us a lot of useful information to make the procedure better. Intravascular imaging modalities give us the information about lesion characters, reference vessel diameter and the interaction between the stent strut and the plaque such as stent strut malapposition or plaque prolapse in real time during the procedure. We can change our strategy according to this information. Intravascular ultrasound (IVUS) is a most common intravascular imaging modality during carotid artery stenting (CAS) in these days. Its advantage is easy to use compared with optical coherence tomograpy (OCT) which has been reported recently in some case reports or case series. However, due to its high resolution, OCT provides more detailed information especially about plaque prolapse and strut malapposition. IVUS and OCT have a potential to improve acute result and reduce the procedural complication by providing the data of lesion character, reference vessel diameter and the interaction of stent strut and vessel wall. Interventionalists who perform CAS procedure should acquire proficiency in imaging modalities during CAS procedure.

  16. Thrombotic and nonthrombotic pulmonary arterial embolism: spectrum of imaging findings.

    PubMed

    Han, Daehee; Lee, Kyung Soo; Franquet, Tomas; Müller, Nestor L; Kim, Tae Sung; Kim, Hojoong; Kwon, O Jung; Byun, Hong Sik

    2003-01-01

    Along with clinical examination and laboratory tests, imaging plays a key role in the diagnosis of pulmonary embolism. Multi-detector row helical computed tomography (CT) is particularly helpful in the diagnosis of acute pulmonary thromboembolism (PTE) owing to its capacity to directly show emboli as intravascular filling defects. Although parenchymal abnormalities at CT are nonspecific for acute PTE, they may contribute to a correct diagnosis of chronic PTE, the characteristic helical CT features of which are similar to its angiographic features and include webs or bands, intimal irregularities, abrupt narrowing or complete obstruction of the pulmonary arteries, and "pouching defect." Nonthrombotic pulmonary embolism is an uncommon condition but is sometimes associated with specific imaging findings, including discrete nodules with cavitation (septic embolism), widespread homogeneous and heterogeneous areas of increased opacity or attenuation that typically appear 12-24 hours after trauma (fat embolism), and fine miliary nodules that subsequently coalesce into large areas of increased opacity or attenuation (talcosis). Knowledge of appropriate imaging methods and familiarity with the specific imaging features of pulmonary embolism should facilitate prompt, effective diagnosis.

  17. In-vivo validation of fluorescence lifetime imaging (FLIm) of coronary arteries in swine

    NASA Astrophysics Data System (ADS)

    Bec, Julien; Ma, Dinglong; Yankelevich, Diego R.; Gorpas, Dimitris S.; Ferrier, William T.; Southard, Jeffrey; Marcu, Laura

    2015-02-01

    We report a scanning imaging system that enables high speed multispectral fluorescence lifetime imaging (FLIm) of coronary arteries. This system combines a custom low profile (3 Fr) imaging catheter using a 200 μm core side viewing UV-grade silica fiber optic, an acquisition system able to measure fluorescence decays over four spectral bands at 20 kHz and a fast data analysis and display module. In vivo use of the system has been optimized, with particular emphasis on clearing blood from the optical pathway. A short acquisition time (5 seconds for a 20 mm long coronary segment) enabled data acquisition during a bolus saline solution injection through the 7 Fr catheter guide. The injection parameters were precisely controlled using a power injector and optimized to provide good image quality while limiting the bolus injection duration and volume (12 cc/s, 80 cc total volume). The ability of the system to acquire data in vivo was validated in healthy swine by imaging different sections of the left anterior descending (LAD) coronary. A stent coated with fluorescent markers was placed in the LAD and imaged, demonstrating the ability of the system to discriminate in vivo different fluorescent features and structures from the vessel background fluorescence using spectral and lifetime information. Intensity en face images over the four bands of the instrument were available within seconds whereas lifetime images were computed in 2 minutes, providing efficient feedback during the procedure. This successful demonstration of FLIm in coronaries enables future study of atherosclerotic cardiovascular diseases.

  18. Image quality, compression and segmentation in medicine.

    PubMed

    Morgan, Pam; Frankish, Clive

    2002-12-01

    This review considers image quality in the context of the evolving technology of image compression, and the effects image compression has on perceived quality. The concepts of lossless, perceptually lossless, and diagnostically lossless but lossy compression are described, as well as the possibility of segmented images, combining lossy compression with perceptually lossless regions of interest. The different requirements for diagnostic and training images are also discussed. The lack of established methods for image quality evaluation is highlighted and available methods discussed in the light of the information that may be inferred from them. Confounding variables are also identified. Areas requiring further research are illustrated, including differences in perceptual quality requirements for different image modalities, image regions, diagnostic subtleties, and tasks. It is argued that existing tools for measuring image quality need to be refined and new methods developed. The ultimate aim should be the development of standards for image quality evaluation which take into consideration both the task requirements of the images and the acceptability of the images to the users.

  19. Automated construction of arterial and venous trees in retinal images

    PubMed Central

    Hu, Qiao; Abràmoff, Michael D.; Garvin, Mona K.

    2015-01-01

    Abstract. While many approaches exist to segment retinal vessels in fundus photographs, only a limited number focus on the construction and disambiguation of arterial and venous trees. Previous approaches are local and/or greedy in nature, making them susceptible to errors or limiting their applicability to large vessels. We propose a more global framework to generate arteriovenous trees in retinal images, given a vessel segmentation. In particular, our approach consists of three stages. The first stage is to generate an overconnected vessel network, named the vessel potential connectivity map (VPCM), consisting of vessel segments and the potential connectivity between them. The second stage is to disambiguate the VPCM into multiple anatomical trees, using a graph-based metaheuristic algorithm. The third stage is to classify these trees into arterial or venous (A/V) trees. We evaluated our approach with a ground truth built based on a public database, showing a pixel-wise classification accuracy of 88.15% using a manual vessel segmentation as input, and 86.11% using an automatic vessel segmentation as input. PMID:26636114

  20. Blood vessel classification into arteries and veins in retinal images

    NASA Astrophysics Data System (ADS)

    Kondermann, Claudia; Kondermann, Daniel; Yan, Michelle

    2007-03-01

    The prevalence of diabetes is expected to increase dramatically in coming years; already today it accounts for a major proportion of the health care budget in many countries. Diabetic Retinopathy (DR), a micro vascular complication very often seen in diabetes patients, is the most common cause of visual loss in working age population of developed countries today. Since the possibility of slowing or even stopping the progress of this disease depends on the early detection of DR, an automatic analysis of fundus images would be of great help to the ophthalmologist due to the small size of the symptoms and the large number of patients. An important symptom for DR are abnormally wide veins leading to an unusually low ratio of the average diameter of arteries to veins (AVR). There are also other diseases like high blood pressure or diseases of the pancreas with one symptom being an abnormal AVR value. To determine it, a classification of vessels as arteries or veins is indispensable. As to our knowledge despite the importance there have only been two approaches to vessel classification yet. Therefore we propose an improved method. We compare two feature extraction methods and two classification methods based on support vector machines and neural networks. Given a hand-segmentation of vessels our approach achieves 95.32% correctly classified vessel pixels. This value decreases by 10% on average, if the result of a segmentation algorithm is used as basis for the classification.

  1. Analysis of the Sensitivity and Specificity of Noninvasive Imaging Tests for the Diagnosis of Renal Artery Stenosis

    PubMed Central

    Borelli, Flavio Antonio de Oliveira; Pinto, Ibraim M. F.; Amodeo, Celso; Smanio, Paola E. P.; Kambara, Antonio M.; Petisco, Ana Claudia G.; Moreira, Samuel M.; Paiva, Ricardo Calil; Lopes, Hugo Belotti; Sousa, Amanda G. M. R.

    2013-01-01

    Background Aging and atherosclerosis are related to renovascular hypertension in elderly individuals. Regardless of comorbidities, renal artery stenosis is itself an important cause of cardiovascular morbidity and mortality. Objective To define the sensitivity, specificity, positive predictive value, and negative predictive value of noninvasive imaging tests used in the diagnosis of renal artery stenosis. Methods In a group of 61 patients recruited, 122 arteries were analized, thus permitting the definition of sensitivity, specificity, and the relative contribution of each imaging study performed (Doppler, scintigraphy and computed tomographic angiography in comparison to renal arteriography). Results The mean age was 65.43 years (standard deviation: 8.7). Of the variables related to the study population that were compared to arteriography, two correlated with renal artery stenosis, renal dysfunction and triglycerides. The median glomerular filtration rate was 52.8 mL/min/m2. Doppler showed sensitivity of 82.90%, specificity of 70%, a positive predictive value of 85% and negative predictive value of 66.70%. For tomography, sensitivity was 66.70%, specificity 80%, positive predictive value 87.50% and negative predictive value 55.20%. With these findings, we could identify the imaging tests that best detected stenosis. Conclusion Tomography and Doppler showed good quality and efficacy in the diagnosis of renal artery stenosis, with Doppler having the advantage of not requiring the use of contrast medium for the assessment of a disease that is common in diabetics and is associated with renal dysfunction and severe left ventricular dysfunction. PMID:24061685

  2. Tissue Doppler Imaging in Coronary Artery Diseases and Heart Failure

    PubMed Central

    Correale, Michele; Totaro, Antonio; Ieva, Riccardo; Ferraretti, Armando; Musaico, Francesco; Biase, Matteo Di

    2012-01-01

    Recent studies have explored the prognostic role of TDI-derived parameters in major cardiac diseases, such as coronary artery disease (CAD) and heart failure (HF). In these conditions, myocardial mitral annular systolic (S’) and early diastolic (E’) velocities have been shown to predict mortality or cardiovascular events. In heart failure non invasive assessment of LV diastolic pressure by transmitral to mitral annular early diastolic velocity ratio (E/E’) is a strong prognosticator, especially when E/E’ is > or =15. Moreover, other parameters derived by TDI, as cardiac time intervals and Myocardial Performance Index, might play a role in the prognostic stratification in CAD and HF. Recently, a three-dimensional (3-D) TDI imaging modality, triplane TDI, has become available, and this allows calculation of 3-Dvolumes and LV ejection fraction. We present a brief update of TDI. PMID:22845815

  3. Cardiac catheterization laboratory imaging quality assurance program.

    PubMed

    Wondrow, M A; Laskey, W K; Hildner, F J; Cusma, J; Holmes, D R

    2001-01-01

    With the recent approval of the National Electrical Manufacturers Association (NEMA) standard for "Characteristics of and Test Procedures for a Phantom to Benchmark Cardiac Fluoroscopic and Photographic Performance," comprehensive cardiac image assurance control programs are now possible. This standard was developed by a joint NEMA/Society for Cardiac Angiography and Interventions (SCA&I) working group of imaging manufacturers and cardiology society professionals over the past 4 years. This article details a cardiac catheterization laboratory image quality assurance and control program that includes the new standard along with current regulatory requirements for cardiac imaging. Because of the recent proliferation of digital imaging equipment, quality assurance for cardiac imaging fluoroscopy and digital imaging are critical. Included are the previous works recommended by the American College of Cardiology (ACC) and American Heart Association (AHA), Society for Cardiac Angiographers and Interventions (SCA&I), and authors of previous image quality subjects.

  4. Retinal image quality assessment using generic features

    NASA Astrophysics Data System (ADS)

    Fasih, Mahnaz; Langlois, J. M. Pierre; Ben Tahar, Houssem; Cheriet, Farida

    2014-03-01

    Retinal image quality assessment is an important step in automated eye disease diagnosis. Diagnosis accuracy is highly dependent on the quality of retinal images, because poor image quality might prevent the observation of significant eye features and disease manifestations. A robust algorithm is therefore required in order to evaluate the quality of images in a large database. We developed an algorithm for retinal image quality assessment based on generic features that is independent from segmentation methods. It exploits the local sharpness and texture features by applying the cumulative probability of blur detection metric and run-length encoding algorithm, respectively. The quality features are combined to evaluate the image's suitability for diagnosis purposes. Based on the recommendations of medical experts and our experience, we compared a global and a local approach. A support vector machine with radial basis functions was used as a nonlinear classifier in order to classify images to gradable and ungradable groups. We applied our methodology to 65 images of size 2592×1944 pixels that had been graded by a medical expert. The expert evaluated 38 images as gradable and 27 as ungradable. The results indicate very good agreement between the proposed algorithm's predictions and the medical expert's judgment: the sensitivity and specificity for the local approach are respectively 92% and 94%. The algorithm demonstrates sufficient robustness to identify relevant images for automated diagnosis.

  5. Image Quality of Coronary Computed Tomography Angiography with 320-Row Area Detector Computed Tomography in Children with Congenital Heart Disease.

    PubMed

    Tada, Akihiro; Sato, Shuhei; Kanie, Yuichiro; Tanaka, Takashi; Inai, Ryota; Akagi, Noriaki; Morimitsu, Yusuke; Kanazawa, Susumu

    2016-03-01

    The objective of this study was to assess factors affecting image quality of 320-row computed tomography angiography (CTA) of coronary arteries in children with congenital heart disease (CHD). We retrospectively reviewed 28 children up to 3 years of age with CHD who underwent prospective electrocardiography (ECG)-gated 320-row CTA with iterative reconstruction. We assessed image quality of proximal coronary artery segments using a five-point scale. Age, body weight, average heart rate, and heart rate variability were recorded and compared between two groups: patients with good diagnostic image quality in all four coronary artery segments and patients with at least one coronary artery segment with nondiagnostic image quality. Altogether, 96 of 112 segments (85.7 %) had diagnostic-quality images. Patients with nondiagnostic segments were significantly younger (10.0 ± 11.6 months) and had lower body weight (5.9 ± 2.9 kg) (each p < 0.05) than patients with diagnostic image quality of all four segments (20.6 ± 13.8 months and 8.4 ± 2.5 kg, respectively; each p < 0.05). Differences in heart rate and heart rate variability between the two imaging groups were not significant. Receiver operating characteristic analyses for predicting patients with nondiagnostic image quality revealed an optimal body weight cutoff of ≤5.6 kg and an optimal age cutoff of ≤12.5 months. Prospective ECG-gated 320-row CTA with iterative reconstruction provided feasible image quality of coronary arteries in children with CHD. Younger age and lower body weight were factors that led to poorer image quality of coronary arteries.

  6. Local motion-compensated method for high-quality 3D coronary artery reconstruction

    PubMed Central

    Liu, Bo; Bai, Xiangzhi; Zhou, Fugen

    2016-01-01

    The 3D reconstruction of coronary artery from X-ray angiograms rotationally acquired on C-arm has great clinical value. While cardiac-gated reconstruction has shown promising results, it suffers from the problem of residual motion. This work proposed a new local motion-compensated reconstruction method to handle this issue. An initial image was firstly reconstructed using a regularized iterative reconstruction method. Then a 3D/2D registration method was proposed to estimate the residual vessel motion. Finally, the residual motion was compensated in the final reconstruction using the extended iterative reconstruction method. Through quantitative evaluation, it was found that high-quality 3D reconstruction could be obtained and the result was comparable to state-of-the-art method. PMID:28018741

  7. Local motion-compensated method for high-quality 3D coronary artery reconstruction.

    PubMed

    Liu, Bo; Bai, Xiangzhi; Zhou, Fugen

    2016-12-01

    The 3D reconstruction of coronary artery from X-ray angiograms rotationally acquired on C-arm has great clinical value. While cardiac-gated reconstruction has shown promising results, it suffers from the problem of residual motion. This work proposed a new local motion-compensated reconstruction method to handle this issue. An initial image was firstly reconstructed using a regularized iterative reconstruction method. Then a 3D/2D registration method was proposed to estimate the residual vessel motion. Finally, the residual motion was compensated in the final reconstruction using the extended iterative reconstruction method. Through quantitative evaluation, it was found that high-quality 3D reconstruction could be obtained and the result was comparable to state-of-the-art method.

  8. Intravital live cell triggered imaging system reveals monocyte patrolling and macrophage migration in atherosclerotic arteries

    NASA Astrophysics Data System (ADS)

    McArdle, Sara; Chodaczek, Grzegorz; Ray, Nilanjan; Ley, Klaus

    2015-02-01

    Intravital multiphoton imaging of arteries is technically challenging because the artery expands with every heartbeat, causing severe motion artifacts. To study leukocyte activity in atherosclerosis, we developed the intravital live cell triggered imaging system (ILTIS). This system implements cardiac triggered acquisition as well as frame selection and image registration algorithms to produce stable movies of myeloid cell movement in atherosclerotic arteries in live mice. To minimize tissue damage, no mechanical stabilization is used and the artery is allowed to expand freely. ILTIS performs multicolor high frame-rate two-dimensional imaging and full-thickness three-dimensional imaging of beating arteries in live mice. The external carotid artery and its branches (superior thyroid and ascending pharyngeal arteries) were developed as a surgically accessible and reliable model of atherosclerosis. We use ILTIS to demonstrate Cx3cr1GFP monocytes patrolling the lumen of atherosclerotic arteries. Additionally, we developed a new reporter mouse (Apoe-/-Cx3cr1GFP/+Cd11cYFP) to image GFP+ and GFP+YFP+ macrophages "dancing on the spot" and YFP+ macrophages migrating within intimal plaque. ILTIS will be helpful to answer pertinent open questions in the field, including monocyte recruitment and transmigration, macrophage and dendritic cell activity, and motion of other immune cells.

  9. Optimization of synthetic aperture image quality

    NASA Astrophysics Data System (ADS)

    Moshavegh, Ramin; Jensen, Jonas; Villagomez-Hoyos, Carlos A.; Stuart, Matthias B.; Hemmsen, Martin Christian; Jensen, Jørgen Arendt

    2016-04-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameters effecting the image quality of SA is of great importance, and this paper proposes an advanced procedure for optimizing the parameters essential for acquiring an optimal image quality, while generating high resolution SA images. Optimization of the image quality is mainly performed based on measures such as F-number, number of emissions and the aperture size. They are considered to be the most contributing acquisition factors in the quality of the high resolution images in SA. Therefore, the performance of image quality is quantified in terms of full-width at half maximum (FWHM) and the cystic resolution (CTR). The results of the study showed that SA imaging with only 32 emissions and maximum sweep angle of 22 degrees yields a very good image quality compared with using 256 emissions and the full aperture size. Therefore the number of emissions and the maximum sweep angle in the SA can be optimized to reach a reasonably good performance, and to increase the frame rate by lowering the required number of emissions. All the measurements are performed using the experimental SARUS scanner connected to a λ/2-pitch transducer. A wire phantom and a tissue mimicking phantom containing anechoic cysts are scanned using the optimized parameters for the transducer. Measurements coincide with simulations.

  10. Optical coherence tomography and hyperspectral imaging of vascular recovery in a model of peripheral arterial disease

    NASA Astrophysics Data System (ADS)

    Poole, Kristin M.; Sit, Wesley W.; Tucker-Schwartz, Jason M.; Duvall, Craig L.; Skala, Melissa C.

    2013-03-01

    Peripheral arterial disease (PAD) leads to an increased risk of myocardial infarction and stroke, increased mortality, and reduced quality of life. The mouse hind limb ischemia (HLI) model is the most commonly used system for studying the mechanisms of collateral vessel formation and for testing new PAD therapies, but there is a lack of techniques for acquiring physiologically-relevant, quantitative data intravitally in this model. In this work, non-invasive, quantitative optical imaging techniques were applied to the mouse HLI model over a time course. Optical coherence tomography (OCT) imaged changes in blood flow (Doppler OCT) and microvessel morphology (speckle variance OCT) through the skin of haired mice with high resolution. Hyperspectral imaging was also used to quantify blood oxygenation. In ischemic limbs, blood oxygenation in the footpad was substantially reduced after induction of ischemia followed by complete recovery by three weeks, consistent with standard measures. Three dimensional images of the vasculature distal to vessel occlusion acquired with speckle variance OCT revealed changes in OCT flow signal and vessel morphology. Taken together, OCT and hyperspectral imaging enable intravital acquisition of both functional and morphological data which fill critical gaps in understanding structure-function relationships that contribute to recovery in the mouse HLI model. Therefore, these optical imaging methods hold promise as tools for studying the mechanisms of vascular recovery and evaluating novel therapeutic treatments in preclinical studies.

  11. Paediatric cerebrovascular CT angiography—towards better image quality

    PubMed Central

    Thust, Stefanie C.; Chong, Wui Khean Kling; Gunny, Roxana; Mazumder, Asif; Poitelea, Marius; Welsh, Anna; Ederies, Ash

    2014-01-01

    Background Paediatric cerebrovascular CT angiography (CTA) can be challenging to perform due to variable cardiovascular physiology between different age groups and the risk of movement artefact. This analysis aimed to determine what proportion of CTA at our institution was of diagnostic quality and identify technical factors which could be improved. Materials and methods a retrospective analysis of 20 cases was performed at a national paediatric neurovascular centre assessing image quality with a subjective scoring system and Hounsfield Unit (HU) measurements. Demographic data, contrast dose, flow rate and triggering times were recorded for each patient. Results Using a qualitative scoring system, 75% of studies were found to be of diagnostic quality (n=9 ‘good’, n=6 ‘satisfactory’) and 25% (n=5) were ‘poor’. Those judged subjectively to be poor had arterial contrast density measured at less than 250 HU. Increased arterial opacification was achieved for cases performed with an increased flow rate (2.5-4 mL/s) and higher intravenous contrast dose (2 mL/kg). Triggering was found to be well timed in nine cases, early in four cases and late in seven cases. Of the scans triggered early, 75% were poor. Of the scans triggered late, less (29%) were poor. Conclusions High flow rates (>2.5 mL/s) were a key factor for achieving high quality paediatric cerebrovascular CTA imaging. However, appropriate triggering by starting the scan immediately on contrast opacification of the monitoring vessel plays an important role and could maintain image quality when flow rates were lower. Early triggering appeared more detrimental than late. PMID:25525579

  12. Daily Marital Interaction Quality and Carotid Artery Intima Medial Thickness in Healthy Middle Aged Adults

    PubMed Central

    Joseph, Nataria T.; Kamarck, Thomas W.; Muldoon, Matthew F.; Manuck, Stephen B.

    2014-01-01

    Objective To examine the association between marital interaction quality during daily life and subclinical cardiovascular disease (CVD). Studies have shown that marital status and quality of marriage are associated with cardiovascular health. However, little is known about the role of marital interaction quality during daily life in contributing to these effects. Methods The sample consisted of 281 healthy, employed middle-aged adults who were married or living with a partner in a marital-like relationship (mean age = 42.0 years, 88% white, 52% men). Marital interaction quality was assessed using hourly real-time Ecological Momentary Assessments (EMAs) for 4 days, with participants rating their current or recent partner interactions on positive and negative characteristics (e.g., agreeableness and conflict). Carotid artery intima medial thickness (IMT) was assessed using ultrasound imaging. Results Adjusting for demographics, positive marital interaction was inversely associated with IMT, [b = −.02 F(1, 275) = 9.18, p = .002], and negative marital interaction was positively associated with IMT, [b = .02 F(1, 275) = 10.29, p = .001]. These associations were not accounted for by behavioral and biological cardiovascular disease (CVD) risk factors and were consistent across age, sex, race, and education. The associations were also independent of marital interaction frequency, nonmarital social interaction quality, and personality factors. Global reports of marital quality, in contrast, were not associated with IMT. Conclusions Marital quality as measured during real-time interactions between partners was associated with subclinical cardiovascular disease in healthy middle-aged adults. This study supports the utility of real-time social interaction assessment for characterizing links between social relationships and cardiovascular health. PMID:24915293

  13. Health-related quality of life in patients with pulmonary arterial hypertension

    PubMed Central

    Taichman, Darren B; Shin, Jennifer; Hud, Laryssa; Archer-Chicko, Christine; Kaplan, Sandra; Sager, Jeffery S; Gallop, Robert; Christie, Jason; Hansen-Flaschen, John; Palevsky, Harold

    2005-01-01

    Background Improved outcomes with expanding treatment options for patients with pulmonary arterial hypertension present the opportunity to consider additional end-points in approaching therapy, including factors that influence health-related quality of life. However, comparatively little is known about health-related quality of life and its determinants in patients with pulmonary arterial hypertension. Methods Health-related quality of life was evaluated in a cross sectional study of 155 outpatients with pulmonary arterial hypertension using generic and respiratory-disease specific measurement tools. Most patients had either World Health Organization functional Class II or III symptoms. Demographic, hemodynamic and treatment variables were assessed for association with health-related quality of life scores. Results Patients with pulmonary arterial hypertension suffered severe impairments in both physical and emotional domains of health-related quality of life. Patients with idiopathic ("primary") pulmonary arterial hypertension had the best, and those with systemic sclerosis the worst health-related quality of life. Greater six-minute walk distance correlated with better health-related quality of life scores, as did functional Class II versus Class III symptoms. Hemodynamic measurements, however, did not correlate with health-related quality of life scores. No differences in health-related quality of life were found between patients who were being treated with calcium channel antagonists, bosentan or continuously infused epoprostenol at the time of quality of life assessment. Conclusion Health-related quality of life is severely impaired in patients with pulmonary arterial hypertension and is associated with measures of functional status. Specific associations with impaired health-related quality of life suggest potential areas for targeted intervention. PMID:16092961

  14. Electrical Inspection Oriented Thermal Image Quality Assessment

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Wang, Menglin; Gong, Xiaojin; Guo, Zhihong; Geng, Yujie; Bai, Demeng

    2017-01-01

    This paper presents an approach to access the quality of thermal images that are specially used in electrical inspection. In this application, no reference images are given for quality assessment. Therefore, we first analyze the characteristics for these thermal images. Then, four quantitative measurements, which are one-dimensional (1D) entropy, two-dimensional (2D) entropy, centrality, and No-Reference Structural Sharpness (NRSS), are investigated to measure the information content, the centrality for objects of interest, and the sharpness of images. Moreover, in order to provide a more intuitive measure for human operators, we assign each image with a discrete rate based on these quantitative measurements via the k-nearest neighbor (KNN) method. The proposed approach has been validated in a dataset composed of 2,336 images. Experiments show that our quality assessment results are consistent with subjective assessment.

  15. Image Quality Ranking Method for Microscopy

    PubMed Central

    Koho, Sami; Fazeli, Elnaz; Eriksson, John E.; Hänninen, Pekka E.

    2016-01-01

    Automated analysis of microscope images is necessitated by the increased need for high-resolution follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data analysis are common day-to-day problems in microscopy research today, and the constantly growing size of image datasets does not help the matter. We propose a simple method and a software tool for sorting images within a dataset, according to their relative quality. We demonstrate the applicability of our method in finding good quality images in a STED microscope sample preparation optimization image dataset. The results are validated by comparisons to subjective opinion scores, as well as five state-of-the-art blind image quality assessment methods. We also show how our method can be applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive simulations, and by comparing its performance against previously published, well-established microscopy autofocus metrics. PMID:27364703

  16. Image Quality Ranking Method for Microscopy

    NASA Astrophysics Data System (ADS)

    Koho, Sami; Fazeli, Elnaz; Eriksson, John E.; Hänninen, Pekka E.

    2016-07-01

    Automated analysis of microscope images is necessitated by the increased need for high-resolution follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data analysis are common day-to-day problems in microscopy research today, and the constantly growing size of image datasets does not help the matter. We propose a simple method and a software tool for sorting images within a dataset, according to their relative quality. We demonstrate the applicability of our method in finding good quality images in a STED microscope sample preparation optimization image dataset. The results are validated by comparisons to subjective opinion scores, as well as five state-of-the-art blind image quality assessment methods. We also show how our method can be applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive simulations, and by comparing its performance against previously published, well-established microscopy autofocus metrics.

  17. Signal and image processing for early detection of coronary artery diseases: A review

    NASA Astrophysics Data System (ADS)

    Mobssite, Youness; Samir, B. Belhaouari; Mohamad Hani, Ahmed Fadzil B.

    2012-09-01

    Today biomedical signals and image based detection are a basic step to diagnose heart diseases, in particular, coronary artery diseases. The goal of this work is to provide non-invasive early detection of Coronary Artery Diseases relying on analyzing images and ECG signals as a combined approach to extract features, further classify and quantify the severity of DCAD by using B-splines method. In an aim of creating a prototype of screening biomedical imaging for coronary arteries to help cardiologists to decide the kind of treatment needed to reduce or control the risk of heart attack.

  18. Quantification of pulmonary arterial wall distensibility using parameters extracted from volumetric micro-CT images

    NASA Astrophysics Data System (ADS)

    Johnson, Roger H.; Karau, Kelly L.; Molthen, Robert C.; Dawson, Christopher A.

    1999-09-01

    Stiffening, or loss of distensibility, of arterial vessel walls is among the manifestations of a number of vascular diseases including pulmonary arterial hypertension. We are attempting to quantify the mechanical properties of vessel walls of the pulmonary arterial tree using parameters derived from high-resolution volumetric x-ray CT images of rat lungs. The pulmonary arterial trees of the excised lungs are filled with a contrast agent. The lungs are imaged with arterial pressures spanning the physiological range. Vessel segment diameters are measured from the inlet to the periphery, and distensibilities calculated from diameters as a function of pressure. The method shows promise as an adjunct to other morphometric techniques such as histology and corrosion casting. It possesses the advantages of being nondestructive, characterizing the vascular structures while the lungs are imaged rapidly and in a near-physiological state, and providing the ability to associate mechanical properties with vessel location in the intact tree hierarchy.

  19. In vivo imaging of superficial femoral artery (SFA) stents for deformation analysis

    NASA Astrophysics Data System (ADS)

    Ganguly, A.; Schneider, A.; Keck, B.; Bennett, N. R.; Fahrig, R.

    2008-03-01

    A high-resolution (198 μm) C-arm CT imaging system (Axiom Artis dTA, Siemens Medical Solutions, Forchheim, Germany) was optimized for imaging superficial femoral artery (SFA) stents in humans. The SFA is susceptible to the development of atherosclerotic lesions. These are typically treated with angioplasty and stent deployment. However, these stents can have a fracture rate as high as 35%. Fracture is usually accompanied by restenosis and reocclusion. The exact cause of breakage is unknown and is hypothesized to result from deforming forces due to hip and knee flexion. Imaging was performed with the leg placed in both straight and bent positions. Projection images obtained during 20 s scans with ~200° of rotation of the C-arm were back-projected to obtain 3D volumes. Using a semi-automatic software algorithm developed in-house, the stent centerlines were found and ellipses were fitted to the slice normals. Image quality was adequate for calculations in 11/13 subjects. Bending the leg was found to shorten the stents in 10/11 cases with the maximum change being 9% (12 mm in a 133 mm stent), and extend the stent in one case by 1.6%. The maximum eccentricity change was 36% with a bend angle of 72° in a case where the stent extended behind the knee.

  20. Exercise thallium-201 myocardial imaging in left main coronary artery disease: sensitive but not specific

    SciTech Connect

    Rehn, T.; Griffith, L.S.; Achuff, S.C.; Bailey, I.K.; Bulkley, B.H.; Burow, R.; Pitt, B.; Becker, L.C.

    1981-08-01

    To determine the usefulness of thallium-201 scintigraphy for identifying left main coronary artery disease, the results of scintigraphy at rest and during exercise were compared in 24 patients with 50 percent or greater narrowing of the left main coronary artery and 80 patients with 50 percent or greater narrowing of one or more of the major coronary arteries but without left main coronary involvement. By segmental analysis of the scintigrams, perfusion defects were assigned to the left anterior descending, left circumflex or right coronary artery, singly or in combination, and the pattern of simultaneous left anterior descending and circumflex arterial defects was used to identify left main coronary artery disease. Of the 24 patients with left main coronary artery disease, 22 (92 percent) had abnormal exercise scintigrams. Despite this high sensitivity, the pattern of perfusion defects was not specific; the ''left main pattern'' was found in 3 patients (13 percent) with left main coronary artery disease but also in 3 (33 percent) of 9 patients with combined left anterior descending and left circumflex arterial disease, 4 (19 percent) of 21 patients with three vessel disease and 3 (6 percent) of 50 patients with one or two vessel disease but excluding the group with left anterior descending plus left circumflex arterial disease. The pattern of perfusion defects in the patients with left main coronary artery disease was determined by the location and severity of narrowings in the coronary arteries downstream from the left main arterial lesion. Concomitant lesions in other arteries were found in all patients with left main coronary disease (one vessel in 1 patient, two vessels in 7 patients and three vessels in 16). For this reason, it is unlikely that even with improvements in radiopharmaceutical agents and imaging techniques, myocardial perfusion scintigraphy will be sufficiently specific for definitive identification of left main coronary artery disease.

  1. Profiling Sensitivity to Image Quality.

    DTIC Science & Technology

    1981-10-01

    results were used to derive minimum resolution thresholds for photogram- metric compilation. DEVELOPGROUND CONTROL DFTB BJISE ...... ’- XPCR1M FN7 FORM...fusion or electronic correlation of the images. Referring to Table 1, it is apparent that those occurrences were stereomodels whose photos contained... electronic /video equipment to correlate stereo images. The data indicates that below a threshold level, fusion/ electronic correlation is not possible

  2. Using Anatomic Magnetic Resonance Image Information to Enhance Visualization and Interpretation of Functional Images: A Comparison of Methods Applied to Clinical Arterial Spin Labeling Images.

    PubMed

    Zhao, Li; Dai, Weiying; Soman, Salil; Hackney, David B; Wong, Eric T; Robson, Philip M; Alsop, David C

    2017-02-01

    Functional imaging provides hemodynamic and metabolic information and is increasingly being incorporated into clinical diagnostic and research studies. Typically functional images have reduced signal-to-noise ratio and spatial resolution compared to other non-functional cross sectional images obtained as part of a routine clinical protocol. We hypothesized that enhancing visualization and interpretation of functional images with anatomic information could provide preferable quality and superior diagnostic value. In this work, we implemented five methods (frequency addition, frequency multiplication, wavelet transform, nonsubsampled contourlet transform and intensity-hue-saturation) and a newly proposed ShArpening by Local Similarity with Anatomic images (SALSA) method to enhance the visualization of functional images, while preserving the original functional contrast and quantitative signal intensity characteristics over larger spatial scales. Arterial spin labeling blood flow MR images of the brain were visualization enhanced using anatomic images with multiple contrasts. The algorithms were validated on a numerical phantom and their performance on images of brain tumor patients were assessed by quantitative metrics and neuroradiologist subjective ratings. The frequency multiplication method had the lowest residual error for preserving the original functional image contrast at larger spatial scales (55%-98% of the other methods with simulated data and 64%-86% with experimental data). It was also significantly more highly graded by the radiologists (p<0.005 for clear brain anatomy around the tumor). Compared to other methods, the SALSA provided 11%-133% higher similarity with ground truth images in the simulation and showed just slightly lower neuroradiologist grading score. Most of these monochrome methods do not require any prior knowledge about the functional and anatomic image characteristics, except the acquired resolution. Hence, automatic implementation on

  3. No training blind image quality assessment

    NASA Astrophysics Data System (ADS)

    Chu, Ying; Mou, Xuanqin; Ji, Zhen

    2014-03-01

    State of the art blind image quality assessment (IQA) methods generally extract perceptual features from the training images, and send them into support vector machine (SVM) to learn the regression model, which could be used to further predict the quality scores of the testing images. However, these methods need complicated training and learning, and the evaluation results are sensitive to image contents and learning strategies. In this paper, two novel blind IQA metrics without training and learning are firstly proposed. The new methods extract perceptual features, i.e., the shape consistency of conditional histograms, from the joint histograms of neighboring divisive normalization transform coefficients of distorted images, and then compare the length attribute of the extracted features with that of the reference images and degraded images in the LIVE database. For the first method, a cluster center is found in the feature attribute space of the natural reference images, and the distance between the feature attribute of the distorted image and the cluster center is adopted as the quality label. The second method utilizes the feature attributes and subjective scores of all the images in the LIVE database to construct a dictionary, and the final quality score is calculated by interpolating the subjective scores of nearby words in the dictionary. Unlike the traditional SVM based blind IQA methods, the proposed metrics have explicit expressions, which reflect the relationships of the perceptual features and the image quality well. Experiment results in the publicly available databases such as LIVE, CSIQ and TID2008 had shown the effectiveness of the proposed methods, and the performances are fairly acceptable.

  4. Computer-generated 3D ultrasound images of the carotid artery

    NASA Astrophysics Data System (ADS)

    Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.

    A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.

  5. Computer-generated 3D ultrasound images of the carotid artery

    NASA Technical Reports Server (NTRS)

    Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.

    1989-01-01

    A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.

  6. Unusual Malignant Coronary Artery Anomaly: Results of Coronary Angiography, MR Imaging, and Multislice CT

    SciTech Connect

    Apitzsch, Jonas; Kuehl, Harald P.; Muehlenbruch, Georg; Mahnken, Andreas H.

    2010-04-15

    We report the case of a man with an uncommon anomaly of the origin and course of the left coronary artery. Clinical, coronary angiography, magnetic resonance imaging, and multislice computed tomography findings of this intermittently symptomatic 49 year-old patient with the rare anomaly of his left coronary artery stemming from the right sinus of Valsalva and taking an interarterial and intraseptal course are presented. The diagnostic value of the different imaging modalities is discussed.

  7. Doppler colour flow imaging of fetal intracerebral arteries relative to fetal behavioural states in normal pregnancy.

    PubMed

    Noordam, M J; Hoekstra, F M; Hop, W C; Wladimiroff, J W

    1994-09-30

    In 14 normally developing term fetuses, the relationship between the blood flow velocity waveforms at cerebral arterial level (internal carotid artery, anterior, middle and posterior cerebral artery) and fetal behavioural states was studied using Doppler colour flow imaging. Behavioural state dependent changes in absolute flow velocities occurred in all vessels, except for the middle cerebral artery. These changes suggest preferential blood flow to the left heart resulting in increased flow to the cerebrum during fetal behavioural state 2F (active sleep) when compared with fetal behavioural state 1F (quiet sleep). The middle cerebral artery supplies the neocerebrum. This developing part of the cerebrum does not seem to take part in the regulation of fetal behaviour. In the internal carotid artery, an inverse relationship between peak systolic velocity and fetal heart rate could be established, which can be explained by a shorter rapid filling phase at raised fetal heart rate according to the Frank-Starling Law.

  8. Segmental arterial mediolysis: angioplasty of bilateral renal artery stenoses with 2-year imaging follow-up.

    PubMed

    Soulen, Michael C; Cohen, Debbie L; Itkin, Maxim; Townsend, Raymond R; Roberts, David A

    2004-07-01

    Segmental arterial mediolysis (SAM) is a rare condition caused by loss of muscular elements in the walls of medium-sized, usually visceral, arteries. This causes dissection, occlusion, aneurysm formation, and rupture. The clinical presentation is usually catastrophic as a result of vascular occlusion or rupture. Herein an unusual case of renovascular hypertension resulting from SAM is reported, which was successfully treated with balloon angioplasty.

  9. [Usefulness of virtual vessel images in ppi for treatment of complete obstruction of leg arteries].

    PubMed

    Kittaka, Daisuke; Sato, Hisaya; Nakai, Yuichi; Kato, Kyoichi; Nakazawa, Yasuo

    2014-10-01

    Following recent rapid advances in devices and treatment technology, indications for percutaneous peripheral intervention (PPI) have been expanded to include complex lesions (long-segment lesions, completely obstructed chronic lesions, etc.) and even lesions of the superficial femoral artery and arteries distal to the popliteal artery. However, when PPI is used for treatment of complete obstruction, treatment can take a long time or its outcome can be less satisfactory for reasons such as difficulty in assessing the vascular distribution/arrangement or the direction of calcification in the obstructed area or excessively long lesions. In the present study, we conducted three-dimensional image processing of CT data from leg arteries conventionally used for preoperative diagnosis. Using this processing technique, we created virtual images of the blood vessels of the completely obstructed area and mapped these virtual vessel images onto the fluoroscopic monitor image during catheter treatment. The usefulness of this technique for PPI was then evaluated. We succeeded in creating virtual vessel images of the completely obstructed parts of leg arteries with the use of preoperative CT images of leg arteries that we then mapped onto the fluoroscopic monitor images during treatment. We were successful in mapping virtual images onto the abdominal aorta in 96.8% of cases and in 95.7% with the common iliac artery. This technique is thus able to supply reliable information on vascular distribution/arrangement, suggesting that it can enable the surgeon to advance the treatment device precisely along the vessels, making it useful for treatment with PPI. The study additionally showed that differences in the angle of imaging affect the manual mapping of the CT images onto angiograms.

  10. Retinal image quality assessment based on image clarity and content

    NASA Astrophysics Data System (ADS)

    Abdel-Hamid, Lamiaa; El-Rafei, Ahmed; El-Ramly, Salwa; Michelson, Georg; Hornegger, Joachim

    2016-09-01

    Retinal image quality assessment (RIQA) is an essential step in automated screening systems to avoid misdiagnosis caused by processing poor quality retinal images. A no-reference transform-based RIQA algorithm is introduced that assesses images based on five clarity and content quality issues: sharpness, illumination, homogeneity, field definition, and content. Transform-based RIQA algorithms have the advantage of considering retinal structures while being computationally inexpensive. Wavelet-based features are proposed to evaluate the sharpness and overall illumination of the images. A retinal saturation channel is designed and used along with wavelet-based features for homogeneity assessment. The presented sharpness and illumination features are utilized to assure adequate field definition, whereas color information is used to exclude nonretinal images. Several publicly available datasets of varying quality grades are utilized to evaluate the feature sets resulting in area under the receiver operating characteristic curve above 0.99 for each of the individual feature sets. The overall quality is assessed by a classifier that uses the collective features as an input vector. The classification results show superior performance of the algorithm in comparison to other methods from literature. Moreover, the algorithm addresses efficiently and comprehensively various quality issues and is suitable for automatic screening systems.

  11. Arterial insufficiency

    MedlinePlus

    ... the most common causes of arterial insufficiency is atherosclerosis or "hardening of the arteries." Fatty material (called ... Images Arteries of the brain Developmental process of atherosclerosis References Hansson GK, Hamsten A. Atherosclerosis, thrombosis, and ...

  12. Multimodality Imaging of Left Circumflex Artery to Coronary Sinus Fistula

    PubMed Central

    Sze, Tan Ling; Abdul Aziz, Yang Faridah; Abu Bakar, Norzailin; Mohd Sani, Fadhli; Oemar, Hamid

    2015-01-01

    Coronary artery fistula (CAF) is a rare anomaly of the coronary artery. Patients with this condition are usually asymptomatic. However, cardiac failure may occur later in life due to progressive enlargement of the fistula. Diagnosis is traditionally made by echocardiogram and conventional angiogram. However with the advantage of new technologies such as computed tomography (CT) coronary angiography, the course and communications of these fistulae can be delineated non-invasively and with greater accuracy. We report a case of a left circumflex artery fistula to the coronary sinus which was suspected on echocardiogram and the diagnosis was clinched on ECG-gated CT. PMID:25793089

  13. Simultaneous automatic arteries-veins separation and cerebral blood flow imaging with single-wavelength laser speckle imaging.

    PubMed

    Feng, Nengyun; Qiu, Jianjun; Li, Pengcheng; Sun, Xiaoli; Yin, Cui; Luo, Weihua; Chen, Shangbin; Luo, Qingming

    2011-08-15

    Automatic separation of arteries and veins in optical cerebral cortex images is important in clinical practice and preclinical study. In this paper, a simple but effective automatic artery-vein separation method which utilizes single-wavelength coherent illumination is presented. This method is based on the relative temporal minimum reflectance analysis of laser speckle images. The validation is demonstrated with both theoretic simulations and experimental results applied to the rat cortex. Moreover, this method can be combined with laser speckle contrast analysis so that the artery-vein separation and blood flow imaging can be simultaneously obtained using the same raw laser speckle images data to enable more accurate analysis of changes of cerebral blood flow within different tissue compartments during functional activation, disease dynamic, and neurosurgery, which may broaden the applications of laser speckle imaging in biology and medicine.

  14. A method to compensate for the underestimation of collagen with polarized picrosirius red imaging in human artery atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Greiner, C. A.; Grainger, S. J.; Su, J. L.; Madden, S. P.; Muller, J. E.

    2016-04-01

    Although picrosirius red (PSR) is known to be in quantifying collagen under polarized light (PL), commonly used linearly PL can result in an underestimation of collagen, as some of the fibers may appear dark if aligned with the transmission axis of the polarizers. To address this, a sample may be imaged with circularly polarized light at the expense of higher background intensity. However, the quality and alignment of the microscope illumination optics, polarizers and waveplates can still produce imaging variability with circular polarization. A simpler technique was tested that minimized variability and background intensity with linear polarization by acquiring images at multiple angles of histology slide rotation to create a composite co-registered image, permitting the optimal semi-quantitative visualization of collagen. Linear polarization imaging was performed on PSR stained artery sections. By rotating the slide at 60° intervals while maintaining illumination, polarization and exposure parameters, 6 images were acquired for each section. A composite image was created from the 6 co-registered images, and comprised of the maximum pixel intensity at each point. Images from any of the 6 rotation positions consistently showed variation in PSR signal. A composite image compensates for this variability, without loss of spatial resolution. Additionally, grayscale analysis showed an increased intensity range of 15 - 50% with a linearly polarized composite image over a circularly polarized image after background correction, indicating better SNR. This proposed technique will be applied in the development of a near infrared spectroscopy algorithm to detect vulnerable atherosclerotic plaques in vivo.

  15. Monotonic correlation analysis of image quality measures for image fusion

    NASA Astrophysics Data System (ADS)

    Kaplan, Lance M.; Burks, Stephen D.; Moore, Richard K.; Nguyen, Quang

    2008-04-01

    The next generation of night vision goggles will fuse image intensified and long wave infra-red to create a hybrid image that will enable soldiers to better interpret their surroundings during nighttime missions. Paramount to the development of such goggles is the exploitation of image quality (IQ) measures to automatically determine the best image fusion algorithm for a particular task. This work introduces a novel monotonic correlation coefficient to investigate how well possible IQ features correlate to actual human performance, which is measured by a perception study. The paper will demonstrate how monotonic correlation can identify worthy features that could be overlooked by traditional correlation values.

  16. [Pulmonary artery aneurysms in Behçet's disease: contribution of imaging in 5 cases].

    PubMed

    Hassine, Elyès; Bousnina, Sophia; Marniche, Kamel; Fennira, Hammouda; Ben Khelil, Jalila; Ben Mustapha, Mohamed Ali; Megdiche, Mohamed Lamine; Chabbou, Abdellatif

    2002-05-01

    Pulmonary involvement in Behçet's disease is an uncommon condition (12%). Thromboembolism of the superior vena cava and/or other mediastinal veins, aneurysms of the aorta and pulmonary arteries are the main vascular manifestations in addition to pulmonary infarct and intrathoracic hemorrhage. Despite their scarcity, respiratory symptoms may be life-threatening. The aim of this study was to assess the contribution of thoracic imaging for one of the most serious aspects of the disease: pulmonary artery aneurysm. We report five patients with pulmonary artery aneurysms (mean age: 39.5 years). Hemoptysia revealed Behçet's disease in three. Initially explored by conventional radiography, computed tomography and angiography, pulmonary artery aneurysms are currently investigated well with helicoidal computed tomography, digital angiography, magnetic resonance imaging (MRI) and angio-MRI. These imaging techniques provide helpful information for the diagnosis of Behçet's disease.

  17. Cerebral Arterial Calcification Is an Imaging Prognostic Marker for Revascularization Treatment of Acute Middle Cerebral Arterial Occlusion

    PubMed Central

    Lee, Seong-Joon; Hong, Ji Man; Lee, Manyong; Huh, Kyoon; Choi, Jin Wook

    2015-01-01

    Background and Purpose To study the significance of intracranial artery calcification as a prognostic marker for acute ischemic stroke patients undergoing revascularization treatment after middle cerebral artery (MCA) trunk occlusion. Methods Patients with acute MCA trunk occlusion, who underwent intravenous and/or intra-arterial revascularization treatment, were enrolled. Intracranial artery calcification scores were calculated by counting calcified intracranial arteries among major seven arteries on computed tomographic angiography. Patients were divided into high (HCB; score ≥3) or low calcification burden (LCB; score <3) groups. Demographic, imaging, and outcome data were compared, and whether HCB is a prognostic factor was evaluated. Grave prognosis was defined as modified Rankin Scale 5-6 for this study. Results Of 80 enrolled patients, the HCB group comprised 15 patients, who were older, and more commonly had diabetes than patients in the LCB group. Initial National Institutes of Health Stroke Scale (NIHSS) scores did not differ (HCB 13.3±2.7 vs. LCB 14.6±3.8) between groups. The final good reperfusion after revascularization treatment (thrombolysis in cerebral infarction score 2b-3, HCB 66.7% vs. LCB 69.2%) was similarly achieved in both groups. However, the HCB group had significantly higher NIHSS scores at discharge (16.0±12.3 vs. 7.9±8.3), and more frequent grave outcome at 3 months (57.1% vs. 22.0%) than the LCB group. HCB was proven as an independent predictor for grave outcome at 3 months when several confounding factors were adjusted (odds ratio 4.135, 95% confidence interval, 1.045-16.359, P=0.043). Conclusions Intracranial HCB was associated with grave prognosis in patients who have undergone revascularization for acute MCA trunk occlusion. PMID:25692109

  18. Multiresolution Approach for Noncontact Measurements of Arterial Pulse Using Thermal Imaging

    NASA Astrophysics Data System (ADS)

    Chekmenev, Sergey Y.; Farag, Aly A.; Miller, William M.; Essock, Edward A.; Bhatnagar, Aruni

    This chapter presents a novel computer vision methodology for noncontact and nonintrusive measurements of arterial pulse. This is the only investigation that links the knowledge of human physiology and anatomy, advances in thermal infrared (IR) imaging and computer vision to produce noncontact and nonintrusive measurements of the arterial pulse in both time and frequency domains. The proposed approach has a physical and physiological basis and as such is of a fundamental nature. A thermal IR camera was used to capture the heat pattern from superficial arteries, and a blood vessel model was proposed to describe the pulsatile nature of the blood flow. A multiresolution wavelet-based signal analysis approach was applied to extract the arterial pulse waveform, which lends itself to various physiological measurements. We validated our results using a traditional contact vital signs monitor as a ground truth. Eight people of different age, race and gender have been tested in our study consistent with Health Insurance Portability and Accountability Act (HIPAA) regulations and internal review board approval. The resultant arterial pulse waveforms exactly matched the ground truth oximetry readings. The essence of our approach is the automatic detection of region of measurement (ROM) of the arterial pulse, from which the arterial pulse waveform is extracted. To the best of our knowledge, the correspondence between noncontact thermal IR imaging-based measurements of the arterial pulse in the time domain and traditional contact approaches has never been reported in the literature.

  19. MR and CT imaging of the structural and functional changes of pulmonary arterial hypertension

    PubMed Central

    Schiebler, Mark L.; Bhalla, Sanjeev; Runo, James; Jarjour, Nizar; Roldan, Alejandro; Chesler, Naomi; François, Christopher J.

    2013-01-01

    The current Dana Point classification system (2009) divides elevation of pulmonary artery pressure into Pulmonary Arterial Hypertension (PAH) and Pulmonary Hypertension (PH). Fortunately, pulmonary arterial hypertension (PAH) is not a common disease. However, with the aging of the first world’s population, heart failure is now an important cause of pulmonary hypertension with up to 9% of the population involved. PAH is usually asymptomatic until late in the disease process. While there are indirect features of PAH found on noninvasive imaging studies, the diagnosis and management still requires right heart catheterization. Imaging features of PAH include: 1. Enlargement of the pulmonary trunk and main pulmonary arteries, 2. Decreased pulmonary arterial compliance, 3. Tapering of the peripheral pulmonary arteries, 4. Enlargement of the inferior vena cava, and 5. Increased mean transit time. The chronic requirement to generate high pulmonary arterial pressures measurably affects the right heart and main pulmonary artery. This change in physiology causes the following structural and functional alterations that have been shown to have prognostic significance: Relative area change of the pulmonary trunk, RVSVindex, RVSV, RVEDVindex, LVEDVindex, and baseline RVEF <35%. All of these variables can be quantified non-invasively and followed longitudinally in each patient using MRI to modify the treatment regimen. Untreated PAH frequently results in a rapid clinical decline and death within 3 years of diagnosis. Unfortunately, even with treatment, less than 1/2 of these patients are alive at four years. PMID:23612440

  20. Automated characterization of blood vessels as arteries and veins in retinal images.

    PubMed

    Mirsharif, Qazaleh; Tajeripour, Farshad; Pourreza, Hamidreza

    2013-01-01

    In recent years researchers have found that alternations in arterial or venular tree of the retinal vasculature are associated with several public health problems such as diabetic retinopathy which is also the leading cause of blindness in the world. A prerequisite for automated assessment of subtle changes in arteries and veins, is to accurately separate those vessels from each other. This is a difficult task due to high similarity between arteries and veins in addition to variation of color and non-uniform illumination inter and intra retinal images. In this paper a novel structural and automated method is presented for artery/vein classification of blood vessels in retinal images. The proposed method consists of three main steps. In the first step, several image enhancement techniques are employed to improve the images. Then a specific feature extraction process is applied to separate major arteries from veins. Indeed, vessels are divided to smaller segments and feature extraction and vessel classification are applied to each small vessel segment instead of each vessel point. Finally, a post processing step is added to improve the results obtained from the previous step using structural characteristics of the retinal vascular network. In the last stage, vessel features at intersection and bifurcation points are processed for detection of arterial and venular sub trees. Ultimately vessel labels are revised by publishing the dominant label through each identified connected tree of arteries or veins. Evaluation of the proposed approach against two different datasets of retinal images including DRIVE database demonstrates the good performance and robustness of the method. The proposed method may be used for determination of arteriolar to venular diameter ratio in retinal images. Also the proposed method potentially allows for further investigation of labels of thinner arteries and veins which might be found by tracing them back to the major vessels.

  1. Requirements for imaging vulnerable plaque in the coronary artery using a coded aperture imaging system

    NASA Astrophysics Data System (ADS)

    Tozian, Cynthia

    the SNR, spatial resolution, dynamic range of 4:1 to 6:1, and decreased the MDA required at the site of a plaque by twofold in comparison with other nuclear medicine imaging methods. Recommendations to increase the field of view (FOV) along with a better imaging geometry would enable placement of larger objects (human heart included) within the fully encoded FOV while improving spatial resolution, magnification factors, and efficiency. Further improvements to the algorithm and imaging system may enable novel vulnerable plaque imaging and early detection of coronary artery disease. 1See definitions beginning on page xvii.

  2. Automated measurement of pulmonary artery in low-dose non-contrast chest CT images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Liang, Mingzhu; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2015-03-01

    A new measurement of the pulmonary artery diameter is obtained where the artery may be robustly segmented between the heart and the artery bifurcation. An automated algorithm is presented that can make this pulmonary artery measurement in low-dose non-contrast chest CT images. The algorithm uses a cylinder matching method following geometric constraints obtained from other adjacent organs that have been previously segmented. This new measurement and the related ratio of pulmonary artery to aortic artery measurement are compared to traditional manual approaches for pulmonary artery characterization. The algorithm was qualitatively evaluated on 124 low-dose and 223 standard-dose non-contrast chest CT scans from two public datasets; 324 out of the 347 cases had good segmentations and in the other 23 cases there was significant boundary inaccuracy. For quantitative evaluation, the comparison was to manually marked pulmonary artery boundary in an axial slice in 45 cases; the resulting average Dice Similarity Coefficient was 0.88 (max 0.95, min 0.74). For the 45 cases with manual markings, the correlation between the automated pulmonary artery to ascending aorta diameter ratio and manual ratio at pulmonary artery bifurcation level was 0.81. Using Bland-Altman analysis, the mean difference of the two ratios was 0.03 and the limits of agreement was (-0.12, 0.18). This automated measurement may have utility as an alternative to the conventional manual measurement of pulmonary artery diameter at the bifurcation level especially in the context of noisy low-dose CT images.

  3. Perceptual Quality Assessment of Screen Content Images.

    PubMed

    Yang, Huan; Fang, Yuming; Lin, Weisi

    2015-11-01

    Research on screen content images (SCIs) becomes important as they are increasingly used in multi-device communication applications. In this paper, we present a study on perceptual quality assessment of distorted SCIs subjectively and objectively. We construct a large-scale screen image quality assessment database (SIQAD) consisting of 20 source and 980 distorted SCIs. In order to get the subjective quality scores and investigate, which part (text or picture) contributes more to the overall visual quality, the single stimulus methodology with 11 point numerical scale is employed to obtain three kinds of subjective scores corresponding to the entire, textual, and pictorial regions, respectively. According to the analysis of subjective data, we propose a weighting strategy to account for the correlation among these three kinds of subjective scores. Furthermore, we design an objective metric to measure the visual quality of distorted SCIs by considering the visual difference of textual and pictorial regions. The experimental results demonstrate that the proposed SCI perceptual quality assessment scheme, consisting of the objective metric and the weighting strategy, can achieve better performance than 11 state-of-the-art IQA methods. To the best of our knowledge, the SIQAD is the first large-scale database published for quality evaluation of SCIs, and this research is the first attempt to explore the perceptual quality assessment of distorted SCIs.

  4. FFDM image quality assessment using computerized image texture analysis

    NASA Astrophysics Data System (ADS)

    Berger, Rachelle; Carton, Ann-Katherine; Maidment, Andrew D. A.; Kontos, Despina

    2010-04-01

    Quantitative measures of image quality (IQ) are routinely obtained during the evaluation of imaging systems. These measures, however, do not necessarily correlate with the IQ of the actual clinical images, which can also be affected by factors such as patient positioning. No quantitative method currently exists to evaluate clinical IQ. Therefore, we investigated the potential of using computerized image texture analysis to quantitatively assess IQ. Our hypothesis is that image texture features can be used to assess IQ as a measure of the image signal-to-noise ratio (SNR). To test feasibility, the "Rachel" anthropomorphic breast phantom (Model 169, Gammex RMI) was imaged with a Senographe 2000D FFDM system (GE Healthcare) using 220 unique exposure settings (target/filter, kVs, and mAs combinations). The mAs were varied from 10%-300% of that required for an average glandular dose (AGD) of 1.8 mGy. A 2.5cm2 retroareolar region of interest (ROI) was segmented from each image. The SNR was computed from the ROIs segmented from images linear with dose (i.e., raw images) after flat-field and off-set correction. Image texture features of skewness, coarseness, contrast, energy, homogeneity, and fractal dimension were computed from the Premium ViewTM postprocessed image ROIs. Multiple linear regression demonstrated a strong association between the computed image texture features and SNR (R2=0.92, p<=0.001). When including kV, target and filter as additional predictor variables, a stronger association with SNR was observed (R2=0.95, p<=0.001). The strong associations indicate that computerized image texture analysis can be used to measure image SNR and potentially aid in automating IQ assessment as a component of the clinical workflow. Further work is underway to validate our findings in larger clinical datasets.

  5. Subjective matters: from image quality to image psychology

    NASA Astrophysics Data System (ADS)

    Fedorovskaya, Elena A.; De Ridder, Huib

    2013-03-01

    From the advent of digital imaging through several decades of studies, the human vision research community systematically focused on perceived image quality and digital artifacts due to resolution, compression, gamma, dynamic range, capture and reproduction noise, blur, etc., to help overcome existing technological challenges and shortcomings. Technological advances made digital images and digital multimedia nearly flawless in quality, and ubiquitous and pervasive in usage, provide us with the exciting but at the same time demanding possibility to turn to the domain of human experience including higher psychological functions, such as cognition, emotion, awareness, social interaction, consciousness and Self. In this paper we will outline the evolution of human centered multidisciplinary studies related to imaging and propose steps and potential foci of future research.

  6. Evaluation of Right Ventricular Myocardial Mechanics using Velocity Vector Imaging of Cardiac MRI Cine Images in Transposition of the Great Arteries Following Atrial and Arterial Switch Operations

    PubMed Central

    Thattaliyath, Bijoy D.; Forsha, Daniel E.; Stewart, Chad; Barker, Piers C.A.; Campbell, Michael J.

    2016-01-01

    Objective The aim of the study was to determine right and left ventricle deformation parameters in patients with transposition of the great arteries who had undergone atrial or arterial switch procedures. Setting Patients with transposition are born with a systemic right ventricle. Historically, the atrial switch operation, in which the right ventricle remains the systemic ventricle, was performed. These patients have increased rates of morbidity and mortality. We used cardiac MRI with Velocity Vector Imaging analysis to characterize and compare ventricular myocardial deformation in patients who had an atrial switch or arterial switch operation. Design Patients with a history of these procedures, who had a clinically ordered cardiac MRI were included in the study. Consecutive 20 patients (75% males, 28.7±1.8 years) who underwent atrial switch operation and 20 patients (60% males, 17.7±1.9 years) who underwent arterial switch operation were included in the study. Four chamber and short-axis cine images were used to determine longitudinal and circumferential strain and strain rate using Vector Velocity Imaging software. Results Compared to the arterial switch group, the atrial switch group had decreased right ventricular ejection fraction and increased end-diastolic and end-systolic volumes; and no difference in left ventricular ejection fraction and volumes. The atrial switch group had decreased longitudinal and circumferential strain and strain rate. When compared to normal controls multiple strain parameters in the atrial switch group were reduced. Conclusions Myocardial deformation analysis of transposition patients reveals a reduction of right ventricular function and decreased longitudinal and circumferential strain parameters in patients with an atrial switch operation compared to those with arterial switch operation. A better understanding of the mechanisms of RV failure in TGA may lead to improved therapies and adaptation. PMID:25655213

  7. Quantification of image quality using information theory.

    PubMed

    Niimi, Takanaga; Maeda, Hisatoshi; Ikeda, Mitsuru; Imai, Kuniharu

    2011-12-01

    Aims of present study were to examine usefulness of information theory in visual assessment of image quality. We applied first order approximation of the Shannon's information theory to compute information losses (IL). Images of a contrast-detail mammography (CDMAM) phantom were acquired with computed radiographies for various radiation doses. Information content was defined as the entropy Σp( i )log(1/p ( i )), in which detection probabilities p ( i ) were calculated from distribution of detection rate of the CDMAM. IL was defined as the difference between information content and information obtained. IL decreased with increases in the disk diameters (P < 0.0001, ANOVA) and in the radiation doses (P < 0.002, F-test). Sums of IL, which we call total information losses (TIL), were closely correlated with the image quality figures (r = 0.985). TIL was dependent on the distribution of image reading ability of each examinee, even when average reading ratio was the same in the group. TIL was shown to be sensitive to the observers' distribution of image readings and was expected to improve the evaluation of image quality.

  8. Geometric assessment of image quality using digital image registration techniques

    NASA Technical Reports Server (NTRS)

    Tisdale, G. E.

    1976-01-01

    Image registration techniques were developed to perform a geometric quality assessment of multispectral and multitemporal image pairs. Based upon LANDSAT tapes, accuracies to a small fraction of a pixel were demonstrated. Because it is insensitive to the choice of registration areas, the technique is well suited to performance in an automatic system. It may be implemented at megapixel-per-second rates using a commercial minicomputer in combination with a special purpose digital preprocessor.

  9. Image quality measures and their performance

    NASA Technical Reports Server (NTRS)

    Eskicioglu, Ahmet M.; Fisher, Paul S.; Chen, Si-Yuan

    1994-01-01

    A number of quality measures are evaluated for gray scale image compression. They are all bivariate exploiting the differences between corresponding pixels in the original and degraded images. It is shown that although some numerical measures correlate well with the observers' response for a given compression technique, they are not reliable for an evaluation across different techniques. The two graphical measures (histograms and Hosaka plots), however, can be used to appropriately specify not only the amount, but also the type of degradation in reconstructed images.

  10. Does resolution really increase image quality?

    NASA Astrophysics Data System (ADS)

    Tisse, Christel-Loïc; Guichard, Frédéric; Cao, Frédéric

    2008-02-01

    A general trend in the CMOS image sensor market is for increasing resolution (by having a larger number of pixels) while keeping a small form factor by shrinking photosite size. This article discusses the impact of this trend on some of the main attributes of image quality. The first example is image sharpness. A smaller pitch theoretically allows a larger limiting resolution which is derived from the Modulation Transfer Function (MTF). But recent sensor technologies (1.75μm, and soon 1.45μm) with typical aperture f/2.8 are clearly reaching the size of the diffraction blur spot. A second example is the impact on pixel light sensitivity and image sensor noise. For photonic noise, the Signal-to-Noise-Ratio (SNR) is typically a decreasing function of the resolution. To evaluate whether shrinking pixel size could be beneficial to the image quality, the tradeoff between spatial resolution and light sensitivity is examined by comparing the image information capacity of sensors with varying pixel size. A theoretical analysis that takes into consideration measured and predictive models of pixel performance degradation and improvement associated with CMOS imager technology scaling, is presented. This analysis is completed by a benchmarking of recent commercial sensors with different pixel technologies.

  11. Importance of a arteriography for intraoperative quality control during carotid artery surgery.

    PubMed

    Sala, Florent; Hassen-Khodja, Reda; Bouillanne, Pierre Jean; Hussein, Hassan; Semlali, Chakir; Planchard, Pierre; Declemy, Serge; Batt, Michel

    2002-11-01

    The purpose of this study was to determine the impact of intraoperative quality control using arteriography on the conduct and immediate outcome of carotid artery surgery. This retrospective study included 623 carotid artery repair procedures performed between January 1993 and January 2000. There were 427 men and 159 women (37 bilateral procedures) with a mean age of 71.6 years. The repair technique consisted of conventional endarterectomy alone in 353 cases, conventional endarterectomy with patch closure in 95 cases, eversion in 44 cases, and vein (n = 105) or prosthetic (n = 26) grafting in 131 cases. Findings of intraoperative arteriography, which is used routinely in our department, were reviewed and analyzed in all cases. Our findings indicate that intraoperative quality control with arteriography is an important part of carotid artery surgery. In 11.7% of cases in this study, intraoperative arteriography revealed significant defects that are the main cause of postoperative neurological complications.

  12. Image Quality in Analog and Digital Microtechniques.

    ERIC Educational Resources Information Center

    White, William

    1991-01-01

    Discusses the basic principles of the application of microfilm (analog) and electronic (digital) technologies for data storage. Image quality is examined, searching and retrieval capabilities are considered, and hardcopy output resolution is described. It is concluded that microfilm is still the preferred archival medium. (5 references) (LRW)

  13. Image Quality Indicator for Infrared Inspections

    NASA Technical Reports Server (NTRS)

    Burke, Eric

    2011-01-01

    The quality of images generated during an infrared thermal inspection depends on many system variables, settings, and parameters to include the focal length setting of the IR camera lens. If any relevant parameter is incorrect or sub-optimal, the resulting IR images will usually exhibit inherent unsharpness and lack of resolution. Traditional reference standards and image quality indicators (IQIs) are made of representative hardware samples and contain representative flaws of concern. These standards are used to verify that representative flaws can be detected with the current IR system settings. However, these traditional standards do not enable the operator to quantify the quality limitations of the resulting images, i.e. determine the inherent maximum image sensitivity and image resolution. As a result, the operator does not have the ability to optimize the IR inspection system prior to data acquisition. The innovative IQI described here eliminates this limitation and enables the operator to objectively quantify and optimize the relevant variables of the IR inspection system, resulting in enhanced image quality with consistency and repeatability in the inspection application. The IR IQI consists of various copper foil features of known sizes that are printed on a dielectric non-conductive board. The significant difference in thermal conductivity between the two materials ensures that each appears with a distinct grayscale or brightness in the resulting IR image. Therefore, the IR image of the IQI exhibits high contrast between the copper features and the underlying dielectric board, which is required to detect the edges of the various copper features. The copper features consist of individual elements of various shapes and sizes, or of element-pairs of known shapes and sizes and with known spacing between the elements creating the pair. For example, filled copper circles with various diameters can be used as individual elements to quantify the image sensitivity

  14. Development of functional in vivo imaging of cerebral lenticulostriate artery using novel synchrotron radiation angiography

    NASA Astrophysics Data System (ADS)

    Lin, Xiaojie; Miao, Peng; Mu, Zhihao; Jiang, Zhen; Lu, Yifan; Guan, Yongjing; Chen, Xiaoyan; Xiao, Tiqiao; Wang, Yongting; Yang, Guo-Yuan

    2015-02-01

    The lenticulostriate artery plays a vital role in the onset and development of cerebral ischemia. However, current imaging techniques cannot assess the in vivo functioning of small arteries such as the lenticulostriate artery in the brain of rats. Here, we report a novel method to achieve a high resolution multi-functional imaging of the cerebrovascular system using synchrotron radiation angiography, which is based on spatio-temporal analysis of contrast density in the arterial cross section. This method provides a unique tool for studying the sub-cortical vascular elasticity after cerebral ischemia in rats. Using this technique, we demonstrated that the vascular elasticity of the lenticulostriate artery decreased from day 1 to day 7 after transient middle cerebral artery occlusion in rats and recovered from day 7 to day 28 compared to the controls (p < 0.001), which paralleled with brain edema formation and inversely correlated with blood flow velocity (p < 0.05). Our results demonstrated that the change of vascular elasticity was related to the levels of brain edema and the velocity of focal blood flow, suggesting that reducing brain edema is important for the improvement of the function of the lenticulostriate artery in the ischemic brain.

  15. Primary Pulmonary Artery Sarcoma on Dual-Time Point FDG PET/CT Imaging.

    PubMed

    Li, Juan; Zhao, Qian; He, Lirong; Zhuang, Xiaoqing; Li, Fang

    2016-08-01

    A 59-year-old man presented cough, chest pain, and shortness of breath for 2 weeks and fever for 4 days. A contrast chest CT revealed a large right pulmonary artery filling defect, suggestive of pulmonary embolism that failed to respond to anticoagulation therapy. FDG PET/CT was performed to evaluate possible malignancy, which revealed intense activity in the right main pulmonary artery without any extrathoracic abnormality. The ratio of the SUVmax of this lesion to the liver was significantly increased in the delayed PET images. The pathological examination demonstrated primary pulmonary artery sarcoma.

  16. Imaging arterial cells, atherosclerosis, and restenosis by multimodal nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Han-Wei; Simianu, Vlad; Locker, Matthew J.; Sturek, Michael; Cheng, Ji-Xin

    2008-02-01

    By integrating sum-frequency generation (SFG), and two-photon excitation fluorescence (TPEF) on a coherent anti-Stokes Raman scattering (CARS) microscope platform, multimodal nonlinear optical (NLO) imaging of arteries and atherosclerotic lesions was demonstrated. CARS signals arising from CH II-rich membranes allowed visualization of endothelial cells and smooth muscle cells in a carotid artery. Additionally, CARS microscopy allowed vibrational imaging of elastin and collagen fibrils which are rich in CH II bonds in their cross-linking residues. The extracellular matrix organization was further confirmed by TPEF signals arising from elastin's autofluorescence and SFG signals arising from collagen fibrils' non-centrosymmetric structure. The system is capable of identifying different atherosclerotic lesion stages with sub-cellular resolution. The stages of atherosclerosis, such as macrophage infiltration, lipid-laden foam cell accumulation, extracellular lipid distribution, fibrous tissue deposition, plaque establishment, and formation of other complicated lesions could be viewed by our multimodal CARS microscope. Collagen percentages in the region adjacent to coronary artery stents were resolved. High correlation between NLO and histology imaging evidenced the validity of the NLO imaging. The capability of imaging significant components of an arterial wall and distinctive stages of atherosclerosis in a label-free manner suggests the potential application of multimodal nonlinear optical microscopy to monitor the onset and progression of arterial diseases.

  17. Prediction of Viking lander camera image quality

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Burcher, E. E.; Jobson, D. J.; Wall, S. D.

    1976-01-01

    Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances.

  18. A framework for automated coronary artery tracking of low axial resolution multi slice CT images

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Ferns, Gordon; Giles, John; Lewis, Emma

    2011-03-01

    Low axial resolution data such as multi-slice CT(MSCT) used for coronary artery disease screening must balance the potential loss in image clarity, detail and partial volume effects with the benefits to the patient such as faster acquisition time leading to lower dose exposure. In addition, tracking of the coronary arteries can aid the location of objects contained within, thus helping to differentiate them from similar in appearance, difficult to discern neighbouring regions. A fully automated system has been developed to segment and track the main coronary arteries and visualize the results. Automated heart isolation is carried out for each slice of an MSCT image using active contour methods. Ascending aorta and artery root segmentation is performed using a combination of active contours, morphological operators and geometric analysis of coronary anatomy to identify a starting point for vessel tracking. Artery tracking and backtracking employs analysis of vessel position combined with segmented region shape analysis to obtain artery paths. Robust, accurate threshold parameters are calculated for segmentation utilizing Gaussian Mixture Model fitting and analysis. The low axial resolution of our MSCT data sets, in combination with poor image clarity and noise presented the greatest challenge. Classification techniques such as shape analysis have been utilized to good effect and our results to date have shown that such deficiencies in the data can be overcome, further promoting the positive benefits to patients.

  19. Naturalness and interestingness of test images for visual quality evaluation

    NASA Astrophysics Data System (ADS)

    Halonen, Raisa; Westman, Stina; Oittinen, Pirkko

    2011-01-01

    Balanced and representative test images are needed to study perceived visual quality in various application domains. This study investigates naturalness and interestingness as image quality attributes in the context of test images. Taking a top-down approach we aim to find the dimensions which constitute naturalness and interestingness in test images and the relationship between these high-level quality attributes. We compare existing collections of test images (e.g. Sony sRGB images, ISO 12640 images, Kodak images, Nokia images and test images developed within our group) in an experiment combining quality sorting and structured interviews. Based on the data gathered we analyze the viewer-supplied criteria for naturalness and interestingness across image types, quality levels and judges. This study advances our understanding of subjective image quality criteria and enables the validation of current test images, furthering their development.

  20. Physical measures of image quality in mammography

    NASA Astrophysics Data System (ADS)

    Chakraborty, Dev P.

    1996-04-01

    A recently introduced method for quantitative analysis of images of the American College of Radiology (ACR) mammography accreditation phantom has been extended to include signal- to-noise-ratio (SNR) measurements, and has been applied to survey the image quality of 54 mammography machines from 17 hospitals. Participants sent us phantom images to be evaluated for each mammography machine at their hospital. Each phantom was loaned to us for obtaining images of the wax insert plate on a reference machine at our institution. The images were digitized and analyzed to yield indices that quantified the image quality of the machines precisely. We have developed methods for normalizing for the variation of the individual speck sizes between different ACR phantoms, for the variation of the speck sizes within a microcalcification group, and for variations in overall speeds of the mammography systems. In terms of the microcalcification SNR, the variability of the x-ray machines was 40.5% when no allowance was made for phantom or mAs variations. This dropped to 17.1% when phantom variability was accounted for, and to 12.7% when mAs variability was also allowed for. Our work shows the feasibility of practical, low-cost, objective and accurate evaluations, as a useful adjunct to the present ACR method.

  1. Noninvasive imaging of coronary arteries: current and future role of multi-detector row CT.

    PubMed

    Schoenhagen, Paul; Halliburton, Sandra S; Stillman, Arthur E; Kuzmiak, Stacie A; Nissen, Steven E; Tuzcu, E Murat; White, Richard D

    2004-07-01

    While invasive imaging techniques, especially selective conventional coronary angiography, will remain vital to planning and guiding catheter-based and surgical treatment of significantly stenotic coronary lesions, the comprehensive and serial assessment of asymptomatic or minimally symptomatic stages of coronary artery disease (CAD) for preventive purposes will eventually need to rely on noninvasive imaging techniques. Cardiovascular imaging with tomographic modalities, including computed tomography (CT) and magnetic resonance imaging, has great potential for providing valuable information. This review article will describe the current and future role of cardiac CT, and in particular that of multi-detector row CT, for imaging of atherosclerotic and other pathologic changes of the coronary arteries. It will describe how tomographic coronary imaging may eventually supplement traditional angiographic techniques in understanding the patterns of atherosclerotic CAD development.

  2. Speckle noise removal applied to ultrasound image of carotid artery based on total least squares model.

    PubMed

    Yang, Lei; Lu, Jun; Dai, Ming; Ren, Li-Jie; Liu, Wei-Zong; Li, Zhen-Zhou; Gong, Xue-Hao

    2016-10-06

    An ultrasonic image speckle noise removal method by using total least squares model is proposed and applied onto images of cardiovascular structures such as the carotid artery. On the basis of the least squares principle, the related principle of minimum square method is applied to cardiac ultrasound image speckle noise removal process to establish the model of total least squares, orthogonal projection transformation processing is utilized for the output of the model, and the denoising processing for the cardiac ultrasound image speckle noise is realized. Experimental results show that the improved algorithm can greatly improve the resolution of the image, and meet the needs of clinical medical diagnosis and treatment of the cardiovascular system for the head and neck. Furthermore, the success in imaging of carotid arteries has strong implications in neurological complications such as stroke.

  3. Medical Imaging Image Quality Assessment with Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Michail, C. M.; Karpetas, G. E.; Fountos, G. P.; Kalyvas, N. I.; Martini, Niki; Koukou, Vaia; Valais, I. G.; Kandarakis, I. S.

    2015-09-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction, with cluster computing. The PET scanner simulated in this study was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the Modulation Transfer Function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL algorithm. OSMAPOSL reconstruction was assessed by using various subsets (3 to 21) and iterations (1 to 20), as well as by using various beta (hyper) parameter values. MTF values were found to increase up to the 12th iteration whereas remain almost constant thereafter. MTF improves by using lower beta values. The simulated PET evaluation method based on the TLC plane source can be also useful in research for the further development of PET and SPECT scanners though GATE simulations.

  4. Image registration for DSA quality enhancement.

    PubMed

    Buzug, T M; Weese, J

    1998-01-01

    A generalized framework for histogram-based similarity measures is presented and applied to the image-enhancement task in digital subtraction angiography (DSA). The class of differentiable, strictly convex weighting functions is identified as suitable weightings of histograms for measuring the degree of clustering that goes along with registration. With respect to computation time, the energy similarity measure is the function of choice for the registration of mask and contrast image prior to subtraction. The robustness of the energy measure is studied for geometrical image distortions like rotation and scaling. Additionally, it is investigated how the histogram binning and inhomogeneous motion inside the templates influence the quality of the similarity measure. Finally, the registration success for the automated procedure is compared with the manually shift-corrected image pair of the head.

  5. Blind image quality assessment via deep learning.

    PubMed

    Hou, Weilong; Gao, Xinbo; Tao, Dacheng; Li, Xuelong

    2015-06-01

    This paper investigates how to blindly evaluate the visual quality of an image by learning rules from linguistic descriptions. Extensive psychological evidence shows that humans prefer to conduct evaluations qualitatively rather than numerically. The qualitative evaluations are then converted into the numerical scores to fairly benchmark objective image quality assessment (IQA) metrics. Recently, lots of learning-based IQA models are proposed by analyzing the mapping from the images to numerical ratings. However, the learnt mapping can hardly be accurate enough because some information has been lost in such an irreversible conversion from the linguistic descriptions to numerical scores. In this paper, we propose a blind IQA model, which learns qualitative evaluations directly and outputs numerical scores for general utilization and fair comparison. Images are represented by natural scene statistics features. A discriminative deep model is trained to classify the features into five grades, corresponding to five explicit mental concepts, i.e., excellent, good, fair, poor, and bad. A newly designed quality pooling is then applied to convert the qualitative labels into scores. The classification framework is not only much more natural than the regression-based models, but also robust to the small sample size problem. Thorough experiments are conducted on popular databases to verify the model's effectiveness, efficiency, and robustness.

  6. Automatic segmentation of the lumen of the carotid artery in ultrasound B-mode images

    NASA Astrophysics Data System (ADS)

    Santos, André M. F.; Tavares, Jão. Manuel R. S.; Sousa, Luísa; Santos, Rosa; Castro, Pedro; Azevedo, Elsa

    2013-02-01

    A new algorithm is proposed for the segmentation of the lumen and bifurcation boundaries of the carotid artery in B-mode ultrasound images. It uses the hipoechogenic characteristics of the lumen for the identification of the carotid boundaries and the echogenic characteristics for the identification of the bifurcation boundaries. The image to be segmented is processed with the application of an anisotropic diffusion filter for speckle removal and morphologic operators are employed in the detection of the artery. The obtained information is then used in the definition of two initial contours, one corresponding to the lumen and the other to the bifurcation boundaries, for the posterior application of the Chan-vese level set segmentation model. A set of longitudinal B-mode images of the common carotid artery (CCA) was acquired with a GE Healthcare Vivid-e ultrasound system (GE Healthcare, United Kingdom). All the acquired images include a part of the CCA and of the bifurcation that separates the CCA into the internal and external carotid arteries. In order to achieve the uppermost robustness in the imaging acquisition process, i.e., images with high contrast and low speckle noise, the scanner was adjusted differently for each acquisition and according to the medical exam. The obtained results prove that we were able to successfully apply a carotid segmentation technique based on cervical ultrasonography. The main advantage of the new segmentation method relies on the automatic identification of the carotid lumen, overcoming the limitations of the traditional methods.

  7. Retinal image quality in the rodent eye.

    PubMed

    Artal, P; Herreros de Tejada, P; Muñoz Tedó, C; Green, D G

    1998-01-01

    Many rodents do not see well. For a target to be resolved by a rat or a mouse, it must subtend a visual angle of a degree or more. It is commonly assumed that this poor spatial resolving capacity is due to neural rather than optical limitations, but the quality of the retinal image has not been well characterized in these animals. We have modified a double-pass apparatus, initially designed for the human eye, so it could be used with rodents to measure the modulation transfer function (MTF) of the eye's optics. That is, the double-pass retinal image of a monochromatic (lambda = 632.8 nm) point source was digitized with a CCD camera. From these double-pass measurements, the single-pass MTF was computed under a variety of conditions of focus and with different pupil sizes. Even with the eye in best focus, the image quality in both rats and mice is exceedingly poor. With a 1-mm pupil, for example, the MTF in the rat had an upper limit of about 2.5 cycles/deg, rather than the 28 cycles/deg one would obtain if the eye were a diffraction-limited system. These images are about 10 times worse than the comparable retinal images in the human eye. Using our measurements of the optics and the published behavioral and electrophysiological contrast sensitivity functions (CSFs) of rats, we have calculated the CSF that the rat would have if it had perfect rather than poor optics. We find, interestingly, that diffraction-limited optics would produce only slight improvement overall. That is, in spite of retinal images which are of very low quality, the upper limit of visual resolution in rodents is neurally determined. Rats and mice seem to have eyes in which the optics and retina/brain are well matched.

  8. Dried fruits quality assessment by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Gargiulo, Aldo; Bonifazi, Giuseppe

    2012-05-01

    Dried fruits products present different market values according to their quality. Such a quality is usually quantified in terms of freshness of the products, as well as presence of contaminants (pieces of shell, husk, and small stones), defects, mould and decays. The combination of these parameters, in terms of relative presence, represent a fundamental set of attributes conditioning dried fruits humans-senses-detectable-attributes (visual appearance, organolectic properties, etc.) and their overall quality in terms of marketable products. Sorting-selection strategies exist but sometimes they fail when a higher degree of detection is required especially if addressed to discriminate between dried fruits of relatively small dimensions and when aiming to perform an "early detection" of pathogen agents responsible of future moulds and decays development. Surface characteristics of dried fruits can be investigated by hyperspectral imaging (HSI). In this paper, specific and "ad hoc" applications addressed to propose quality detection logics, adopting a hyperspectral imaging (HSI) based approach, are described, compared and critically evaluated. Reflectance spectra of selected dried fruits (hazelnuts) of different quality and characterized by the presence of different contaminants and defects have been acquired by a laboratory device equipped with two HSI systems working in two different spectral ranges: visible-near infrared field (400-1000 nm) and near infrared field (1000-1700 nm). The spectra have been processed and results evaluated adopting both a simple and fast wavelength band ratio approach and a more sophisticated classification logic based on principal component (PCA) analysis.

  9. Assessing the blood pressure waveform of the carotid artery using an ultrasound image processing method

    PubMed Central

    Fatouraee, Nasser; Saberi, Hazhir

    2017-01-01

    Purpose The aim of this study was to introduce and implement a noninvasive method to derive the carotid artery pressure waveform directly by processing diagnostic sonograms of the carotid artery. Methods Ultrasound image sequences of 20 healthy male subjects (age, 36±9 years) were recorded during three cardiac cycles. The internal diameter and blood velocity waveforms were extracted from consecutive sonograms over the cardiac cycles by using custom analysis programs written in MATLAB. Finally, the application of a mathematical equation resulted in time changes of the arterial pressure. The resulting pressures were calibrated using the mean and the diastolic pressure of the radial artery. Results A good correlation was found between the mean carotid blood pressure obtained from the ultrasound image processing and the mean radial blood pressure obtained using a standard digital sphygmomanometer (R=0.91). The mean absolute difference between the carotid calibrated pulse pressures and those measured clinically was -1.333±6.548 mm Hg. Conclusion The results of this study suggest that consecutive sonograms of the carotid artery can be used for estimating a blood pressure waveform. We believe that our results promote a noninvasive technique for clinical applications that overcomes the reproducibility problems of common carotid artery tonometry with technical and anatomical causes. PMID:27776401

  10. Complimentary use of epicardial echo imaging and Doppler in quantification of coronary artery stenoses

    NASA Astrophysics Data System (ADS)

    Richards, Kent L.; Cannon, Scott R.

    1990-08-01

    As more advanced therapeutic procedures are performed on coronary arteries during open chest surgery more advanced diagnostic procedures will be required to define the location and severity of coronary artery disease. This manuscript describes our preliminary experiences in identifying human coronary artery stenoses using epicardial two-dimensional color flow Doppler. Once the lesions were identified we used standard echo Doppler and imaging techniques to define their severity. The accuracy of stenotic cross sectional area calculated using the continuity equation and pressure gradient calculated using the Bernoulli equation were defined using a pulsatile flow model of the coronary circulation. Suggestions about further hardware development required to allow easy clinical application of this technique are described. 1 - CLINICAL NEED FOR INTRA-OPERATIVE EVAUJATION OFCORONARY ARTERIES The severity of coronary artery disease in adults who require coronary bypass surgery has changed significantly in the last ten years. More effective medications used to control angina pectoris and the wide use of percutaneous y artery angioplasty have delayed the timing of surgery until atherosclerotic involvement is more extensive. In addition patients who have had initial coronary bypass operations are now reaching ages at which atherosclerotic involvement of their bypass grafts and native vessels has progressed and reoperation is required. To meet the challenge of coronary arteries with multiple lesions or diffuse disease intraoperative angioplasty devices are being developed. Whether bypass surgery for advanced lesions or reoperation of

  11. Evaluation of diseased coronary arterial branches by polar representations of thallium-201 rotational myocardial imaging

    SciTech Connect

    Iino, T.; Toyosaki, N.; Katsuki, T.; Noda, T.; Natsume, T.; Yaginuma, T.; Hosoda, S.; Furuse, M.

    1987-09-01

    The perfusion territories in polar representations of stress Tl-201 rotational myocardial imaging in patients with angina pectoris who had one diseased coronary segment were analyzed. The lesions proximal or distal to the first major septal perforator in left anterior descending arteries were detected by the presence or absence of defects at the base of the anterior septum. Right coronary artery lesions were detected by the presence of defects at the basal posterior septum, in contrast to the preservation of myocardial uptake at this portion in lesions of the left circumflex artery. The specific defect patterns were detected in cases with lesions at the first diagonal, obtuse marginal, and posterolateral branches. Recognition of these defects in the polar maps allows detailed detection of diseased coronary arterial branches.

  12. Imaging of Small Animal Peripheral Artery Disease Models: Recent Advancements and Translational Potential

    PubMed Central

    Lin, Jenny B.; Phillips, Evan H.; Riggins, Ti’Air E.; Sangha, Gurneet S.; Chakraborty, Sreyashi; Lee, Janice Y.; Lycke, Roy J.; Hernandez, Clarissa L.; Soepriatna, Arvin H.; Thorne, Bradford R. H.; Yrineo, Alexa A.; Goergen, Craig J.

    2015-01-01

    Peripheral artery disease (PAD) is a broad disorder encompassing multiple forms of arterial disease outside of the heart. As such, PAD development is a multifactorial process with a variety of manifestations. For example, aneurysms are pathological expansions of an artery that can lead to rupture, while ischemic atherosclerosis reduces blood flow, increasing the risk of claudication, poor wound healing, limb amputation, and stroke. Current PAD treatment is often ineffective or associated with serious risks, largely because these disorders are commonly undiagnosed or misdiagnosed. Active areas of research are focused on detecting and characterizing deleterious arterial changes at early stages using non-invasive imaging strategies, such as ultrasound, as well as emerging technologies like photoacoustic imaging. Earlier disease detection and characterization could improve interventional strategies, leading to better prognosis in PAD patients. While rodents are being used to investigate PAD pathophysiology, imaging of these animal models has been underutilized. This review focuses on structural and molecular information and disease progression revealed by recent imaging efforts of aortic, cerebral, and peripheral vascular disease models in mice, rats, and rabbits. Effective translation to humans involves better understanding of underlying PAD pathophysiology to develop novel therapeutics and apply non-invasive imaging techniques in the clinic. PMID:25993289

  13. Watertight modeling and segmentation of bifurcated Coronary arteries for blood flow simulation using CT imaging.

    PubMed

    Zhou, Haoyin; Sun, Peng; Ha, Seongmin; Lundine, Devon; Xiong, Guanglei

    2016-10-01

    Image-based simulation of blood flow using computational fluid dynamics has been shown to play an important role in the diagnosis of ischemic coronary artery disease. Accurate extraction of complex coronary artery structures in a watertight geometry is a prerequisite, but manual segmentation is both tedious and subjective. Several semi- and fully automated coronary artery extraction approaches have been developed but have faced several challenges. Conventional voxel-based methods allow for watertight segmentation but are slow and difficult to incorporate expert knowledge. Machine learning based methods are relatively fast and capture rich information embedded in manual annotations. Although sufficient for visualization and analysis of coronary anatomy, these methods cannot be used directly for blood flow simulation if the coronary vasculature is represented as a loose combination of tubular structures and the bifurcation geometry is improperly modeled. In this paper, we propose a novel method to extract branching coronary arteries from CT imaging with a focus on explicit bifurcation modeling and application of machine learning. A bifurcation lumen is firstly modeled by generating the convex hull to join tubular vessel branches. Guided by the pre-determined centerline, machine learning based segmentation is performed to adapt the bifurcation lumen model to target vessel boundaries and smoothed by subdivision surfaces. Our experiments show the constructed coronary artery geometry from CT imaging is accurate by comparing results against the manually annotated ground-truths, and can be directly applied to coronary blood flow simulation.

  14. Radiological Management of Hemoptysis: A Comprehensive Review of Diagnostic Imaging and Bronchial Arterial Embolization

    SciTech Connect

    Chun, Joo-Young Morgan, Robert; Belli, Anna-Maria

    2010-04-15

    Hemoptysis can be a life-threatening respiratory emergency and indicates potentially serious underlying intrathoracic disease. Large-volume hemoptysis carries significant mortality and warrants urgent investigation and intervention. Initial assessment by chest radiography, bronchoscopy, and computed tomography (CT) is useful in localizing the bleeding site and identifying the underlying cause. Multidetector CT angiography is a relatively new imaging technique that allows delineation of abnormal bronchial and nonbronchial arteries using reformatted images in multiple projections, which can be used to guide therapeutic arterial embolization procedures. Bronchial artery embolization (BAE) is now considered to be the most effective procedure for the management of massive and recurrent hemoptysis, either as a first-line therapy or as an adjunct to elective surgery. It is a safe technique in the hands of an experienced operator with knowledge of bronchial artery anatomy and the potential pitfalls of the procedure. Recurrent bleeding is not uncommon, especially if there is progression of the underlying disease process. Prompt repeat embolization is advised in patients with recurrent hemoptysis in order to identify nonbronchial systemic and pulmonary arterial sources of bleeding. This article reviews the pathophysiology and causes of hemoptysis, diagnostic imaging and therapeutic options, and technique and outcomes of BAE.

  15. Classification of coronary artery tissues using optical coherence tomography imaging in Kawasaki disease

    NASA Astrophysics Data System (ADS)

    Abdolmanafi, Atefeh; Prasad, Arpan Suravi; Duong, Luc; Dahdah, Nagib

    2016-03-01

    Intravascular imaging modalities, such as Optical Coherence Tomography (OCT) allow nowadays improving diagnosis, treatment, follow-up, and even prevention of coronary artery disease in the adult. OCT has been recently used in children following Kawasaki disease (KD), the most prevalent acquired coronary artery disease during childhood with devastating complications. The assessment of coronary artery layers with OCT and early detection of coronary sequelae secondary to KD is a promising tool for preventing myocardial infarction in this population. More importantly, OCT is promising for tissue quantification of the inner vessel wall, including neo intima luminal myofibroblast proliferation, calcification, and fibrous scar deposits. The goal of this study is to classify the coronary artery layers of OCT imaging obtained from a series of KD patients. Our approach is focused on developing a robust Random Forest classifier built on the idea of randomly selecting a subset of features at each node and based on second- and higher-order statistical texture analysis which estimates the gray-level spatial distribution of images by specifying the local features of each pixel and extracting the statistics from their distribution. The average classification accuracy for intima and media are 76.36% and 73.72% respectively. Random forest classifier with texture analysis promises for classification of coronary artery tissue.

  16. Subjective experience of image quality: attributes, definitions, and decision making of subjective image quality

    NASA Astrophysics Data System (ADS)

    Leisti, Tuomas; Radun, Jenni; Virtanen, Toni; Halonen, Raisa; Nyman, Göte

    2009-01-01

    Subjective quality rating does not reflect the properties of the image directly, but it is the outcome of a quality decision making process, which includes quantification of subjective quality experience. Such a rich subjective content is often ignored. We conducted two experiments (with 28 and 20 observers), in order to study the effect of paper grade on image quality experience of the ink-jet prints. Image quality experience was studied using a grouping task and a quality rating task. Both tasks included an interview, but in the latter task we examined the relations of different subjective attributes in this experience. We found out that the observers use an attribute hierarchy, where the high-level attributes are more experiential, general and abstract, while low-level attributes are more detailed and concrete. This may reflect the hierarchy of the human visual system. We also noticed that while the observers show variable subjective criteria for IQ, the reliability of average subjective estimates is high: when two different observer groups estimated the same images in the two experiments, correlations between the mean ratings were between .986 and .994, depending on the image content.

  17. Visual pattern degradation based image quality assessment

    NASA Astrophysics Data System (ADS)

    Wu, Jinjian; Li, Leida; Shi, Guangming; Lin, Weisi; Wan, Wenfei

    2015-08-01

    In this paper, we introduce a visual pattern degradation based full-reference (FR) image quality assessment (IQA) method. Researches on visual recognition indicate that the human visual system (HVS) is highly adaptive to extract visual structures for scene understanding. Existing structure degradation based IQA methods mainly take local luminance contrast to represent structure, and measure quality as degradation on luminance contrast. In this paper, we suggest that structure includes not only luminance contrast but also orientation information. Therefore, we analyze the orientation characteristic for structure description. Inspired by the orientation selectivity mechanism in the primary visual cortex, we introduce a novel visual pattern to represent the structure of a local region. Then, the quality is measured as the degradations on both luminance contrast and visual pattern. Experimental results on Five benchmark databases demonstrate that the proposed visual pattern can effectively represent visual structure and the proposed IQA method performs better than the existing IQA metrics.

  18. A novel multiscale topo-morphometric approach for separating arteries and veins via pulmonary CT imaging

    NASA Astrophysics Data System (ADS)

    Saha, Punam K.; Gao, Zhiyun; Alford, Sara; Sonka, Milan; Hoffman, Eric

    2009-02-01

    Distinguishing arterial and venous trees in pulmonary multiple-detector X-ray computed tomography (MDCT) images (contrast-enhanced or unenhanced) is a critical first step in the quantification of vascular geometry for purposes of determining, for instance, pulmonary hypertension, using vascular dimensions as a comparator for assessment of airway size, detection of pulmonary emboli and more. Here, a novel method is reported for separating arteries and veins in MDCT pulmonary images. Arteries and veins are modeled as two iso-intensity objects closely entwined with each other at different locations at various scales. The method starts with two sets of seeds -- one for arteries and another for veins. Initialized with seeds, arteries and veins grow iteratively while maintaining their spatial separation and eventually forming two disjoint objects at convergence. The method combines fuzzy distance transform, a morphologic feature, with a topologic connectivity property to iteratively separate finer and finer details starting at a large scale and progressing towards smaller scales. The method has been validated in mathematically generated tubular objects with different levels of fuzziness, scale and noise. Also, it has been successfully applied to clinical CT pulmonary data. The accuracy of the method has been quantitatively evaluated by comparing its results with manual outlining. For arteries, the method has yielded correctness of 81.7% at the cost of 6.7% false positives and 11.6% false negatives. Our method is very promising for automated separation of arteries and veins in MDCT pulmonary images even when there is no mark of intensity variation at conjoining locations.

  19. Improving Secondary Ion Mass Spectrometry Image Quality with Image Fusion

    NASA Astrophysics Data System (ADS)

    Tarolli, Jay G.; Jackson, Lauren M.; Winograd, Nicholas

    2014-12-01

    The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images but also by detection sensitivity. As the probe size is reduced to below 1 μm, for example, a low signal in each pixel limits lateral resolution because of counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure.

  20. Improving Secondary Ion Mass Spectrometry Image Quality with Image Fusion

    PubMed Central

    Tarolli, Jay G.; Jackson, Lauren M.; Winograd, Nicholas

    2014-01-01

    The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images, but also by detection sensitivity. As the probe size is reduced to below 1 µm, for example, a low signal in each pixel limits lateral resolution due to counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure. PMID:24912432

  1. Regional calcium distribution and ultrasound images of the vessel wall in human carotid arteries

    NASA Astrophysics Data System (ADS)

    Szikszai, Z.; Kertész, Zs.; Uzonyi, I.; Szíki, G. Á.; Magyar, M. T.; Molnár, S.; Ida, Y.; Csiba, L.

    2005-04-01

    Arterial calcification can take place at two sites in the vessel wall: the intima and the media. Intimal calcification occurs exclusively within atherosclerotic plaques, while medial calcification may develop independently. Extensive calcified plaques in the carotid arteries can be easily detected by B-mode ultrasonic imaging. The calcium content might correlate with the ultrasound reflectance of the vessel wall, and could be a surrogate marker for arteriosclerosis. In this study, segments of human carotid arteries collected at autopsy were examined by ultrasonography in vitro and calcium distributional maps of sections from the same segments were determined by particle induced X-ray emission. Our aim was to make a first step towards investigating the relationship between the calcium distributional maps and the respective ultrasound images.

  2. Dynamic feature extraction of coronary artery motion using DSA image sequences.

    PubMed

    Puentes, J; Roux, C; Garreau, M; Coatrieux, J L

    1998-12-01

    This paper aims to define and describe features of the motion of coronary arteries in two and three dimensions, presented as geometrical parameters that identify motion patterns. The main left coronary artery centerlines, obtained from digital subtraction angiography (DSA) image sequences, are first reconstructed. Thereafter, global and local motion features are evaluated along the sequence. The global attributes are centerline and point trajectory lengths, displacement amplitude, and virtual reference point, while local attributes are displacement direction, perpendicular/radial components, rotation direction, and curvature and torsion. These kinetic features allow us to obtain a detailed quantitative description of the displacements of arteries' centerlines, as well as associated epicardium deformations. Our modeling of local attributes as quasi-homogeneous on a segment analysis, enables us to propose a novel numeric to symbolic image transformation, which provides the required facts for knowledge-based motion interpretation. Experimental results using real data are consistent with cardiac dynamic behavior.

  3. A rare case of primary pulmonary artery myofibroblastic sarcoma--imaging and pathologic features.

    PubMed

    Jing, Ran; Tang, Hao; Shen, Kangjun; Luo, Junming; Zhou, Xinmin

    2014-02-01

    Primary myofibroblastic sarcomas of the pulmonary artery are very uncommon, but early detection is critical. Common clinical symptoms include shortness of breath, chest discomfort, and syncope. Patients diagnosed with a pulmonary tumor have a high risk of fatal pulmonary embolism. In this case study, we identified and diagnosed pulmonary artery myofibroblastic sarcoma in a young man by its imaging and pathologic characters. Surgery to excise the tumor was successfully performed and the operation was considered to have improved his prognosis. Postoperative examinations did not show any evidence of residual tumor, recurrence, or metastasis in the lungs or cardiac tissue. Based on the results of this case study, we concluded that the imaging and pathologic features of primary pulmonary artery myofibroblastic sarcoma can assist physicians in making a prompt diagnosis and an immediate surgical and treatment plan to greatly improve prognosis.

  4. Detection of crossed cerebellar diaschisis in hyperacute ischemic stroke using arterial spin-labeled MR imaging

    PubMed Central

    Kang, Koung Mi; Sohn, Chul-Ho

    2017-01-01

    Background and purpose Arterial spin-labeling (ASL) was recently introduced as a noninvasive method to evaluate cerebral hemodynamics. The purposes of this study were to assess the ability of ASL imaging to detect crossed cerebellar diaschisis (CCD) in patients with their first unilateral supratentorial hyperacute stroke and to identify imaging or clinical factors significantly associated with CCD. Materials and methods We reviewed 204 consecutive patients who underwent MRI less than 8 hours after the onset of stroke symptoms. The inclusion criteria were supratentorial abnormality in diffusion-weighted images in the absence of a cerebellar or brain stem lesion, bilateral supratentorial infarction, subacute or chronic infarction, and MR angiography showing vertebrobasilar system disease. For qualitative analysis, asymmetric cerebellar hypoperfusion in ASL images was categorized into 3 grades. Quantitative analysis was performed to calculate the asymmetric index (AI). The patients’ demographic and clinical features and outcomes were recorded. Univariate and multivariate analyses were also performed. Results A total of 32 patients met the inclusion criteria, and 24 (75%) presented CCD. Univariate analyses revealed more frequent arterial occlusions, higher diffusion-weighted imaging (DWI) lesion volumes and higher initial NIHSS and mRS scores in the CCD-positive group compared with the CCD-negative group (all p < .05). The presence of arterial occlusion and the initial mRS scores were related with the AI (all p < .05). Multivariate analyses revealed that arterial occlusion and the initial mRS scores were significantly associated with CCD and AI. Conclusion ASL imaging could detect CCD in 75% of patients with hyperacute infarction. We found that CCD was more prevalent in patients with arterial occlusion, larger ischemic brain volumes, and higher initial NIHSS and mRS scores. In particular, vessel occlusion and initial mRS score appeared to be significantly related

  5. Evaluation of measures of technical image quality for intracranial magnetic resonance angiography.

    PubMed

    Chapman, B E; Goodrich, C K; Alexander, A L; Blatter, D D; Parker, D L

    1999-12-01

    We evaluate three measures of technical image quality for intracranial magnetic resonance angiography (MRA): (1) a two-alternative forced choice (2AFC) evaluation of vessel visibility, (2) vessel-to-background signal-difference-to-noise ratio (SDNR), and (3) observer ranking of the fidelity of vessel morphology compared to that in a gold standard image. The gold standard used for both the 2AFC and ranking measures is intraarterial catheter angiography. These measures are applied to healthy arterial segments. The 2AFC and SDNR measures directly evaluate the visibility of artery segments for which the existence is known from the gold standard images. We argue that (1) 2AFC evaluates the carrier signals on which any vascular disease process is modulated and provides an upper bound on the detectibility of vascular lesions, (2) SDNR is a predictor of 2AFC, and (3) ranking may be used to predict the relative performance of techniques in the detection of vascular lesions.

  6. Reconstruction algorithm for improved ultrasound image quality.

    PubMed

    Madore, Bruno; Meral, F Can

    2012-02-01

    A new algorithm is proposed for reconstructing raw RF data into ultrasound images. Previous delay-and-sum beamforming reconstruction algorithms are essentially one-dimensional, because a sum is performed across all receiving elements. In contrast, the present approach is two-dimensional, potentially allowing any time point from any receiving element to contribute to any pixel location. Computer-intensive matrix inversions are performed once, in advance, to create a reconstruction matrix that can be reused indefinitely for a given probe and imaging geometry. Individual images are generated through a single matrix multiplication with the raw RF data, without any need for separate envelope detection or gridding steps. Raw RF data sets were acquired using a commercially available digital ultrasound engine for three imaging geometries: a 64-element array with a rectangular field-of- view (FOV), the same probe with a sector-shaped FOV, and a 128-element array with rectangular FOV. The acquired data were reconstructed using our proposed method and a delay- and-sum beamforming algorithm for comparison purposes. Point spread function (PSF) measurements from metal wires in a water bath showed that the proposed method was able to reduce the size of the PSF and its spatial integral by about 20 to 38%. Images from a commercially available quality-assurance phantom had greater spatial resolution and contrast when reconstructed with the proposed approach.

  7. Model-based quantification of image quality

    NASA Technical Reports Server (NTRS)

    Hazra, Rajeeb; Miller, Keith W.; Park, Stephen K.

    1989-01-01

    In 1982, Park and Schowengerdt published an end-to-end analysis of a digital imaging system quantifying three principal degradation components: (1) image blur - blurring caused by the acquisition system, (2) aliasing - caused by insufficient sampling, and (3) reconstruction blur - blurring caused by the imperfect interpolative reconstruction. This analysis, which measures degradation as the square of the radiometric error, includes the sample-scene phase as an explicit random parameter and characterizes the image degradation caused by imperfect acquisition and reconstruction together with the effects of undersampling and random sample-scene phases. In a recent paper Mitchell and Netravelli displayed the visual effects of the above mentioned degradations and presented subjective analysis about their relative importance in determining image quality. The primary aim of the research is to use the analysis of Park and Schowengerdt to correlate their mathematical criteria for measuring image degradations with subjective visual criteria. Insight gained from this research can be exploited in the end-to-end design of optical systems, so that system parameters (transfer functions of the acquisition and display systems) can be designed relative to each other, to obtain the best possible results using quantitative measurements.

  8. Coronary artery angiography and myocardial viability imaging: a 3.0-T contrast-enhanced magnetic resonance coronary artery angiography with Gd-BOPTA.

    PubMed

    Yun, Hong; Jin, Hang; Yang, Shan; Huang, Dong; Chen, Zhang-wei; Zeng, Meng-su

    2014-01-01

    With improving MR sequence, phase-array coil and image quality, cardiac magnetic resonance imaging is becoming a promising method for a comprehensive non-invasive evaluation of coronary artery and myocardial viability. The study aimed to evaluate contrast-enhanced whole-heart coronary MR angiography (CE WH-CMRA) at 3.0-Tesla for the diagnosis of significant stenosis (≥50%) and detection of myocardial infarction (MI) in patients with suspected coronary artery disease (CAD). CE WH-CMRA was performed in consecutive 70 patients with suspected CAD by using a 3.0-T MR system. A respiratory-gated, electrocardiography-triggered, inversion-recovery, segmented fast low angle shot sequence (TI = 200 ms) was used. Data acquisition began 60 s after the slow injection of Gd-BOPTA (0.2 mmol/kg body weight, at an injection rate 0.3 ml/s). At last, breath-hold 2D-PSIR-SSFP sequence was performed. Diagnostic accuracy of CE WH-CMRA in detecting significant stenosis (≥50%) was evaluated using invasive coronary angiography as the referenced standard. The MI region appearing as high signal intensity visualized on CEWH-CMRA and 2D-PSIR-SSFP images were compared and analyzed. CE WH-CMRA correctly identified 42 of 44 patients with significant CAD. The overall sensitivity, specificity, negative predictive value, positive predictive value and accuracy for diagnosing significant CAD was 83.6, 95.8, 96.0, 82.8 and 93.4% respectively. The MI region detected by WH-CMRA and 2D-PSIR-SSFP were consistent in 10 patients and these segments manifested with transmural or subendocardial enhancement patterns. Only one MI patient was judged inconsistent between WH-CMRA and 2D-PSIR-SSFP, who was confirmed by clinical and electrocardiogram results. The enhancement pattern in this patient was spotted and focal in 2D-PSIR-SSFP, but was dismissed by WH-CMRA. It is feasible to obtain information about coronary artery stenosis and myocardial viability in a single CE WH-CMRA with administration of Gd-BOPTA.

  9. Trans-illuminated laser speckle imaging of collateral artery blood flow in ischemic mouse hindlimb.

    PubMed

    Meisner, Joshua K; Niu, Jacqueline; Sumer, Suna; Price, Richard J

    2013-09-01

    The mouse ischemic hindlimb model is used widely for studying collateral artery growth (i.e., arteriogenesis) in response to increased shear stress. Nonetheless, precise measurements of regional shear stress changes along individual collateral arteries are lacking. Our goal is to develop and verify trans-illumination laser speckle flowmetry (LSF) for this purpose. Studies of defibrinated bovine blood flow through tubes embedded in tissue-mimicking phantoms indicate that trans-illumination LSF better maintains sensitivity with an increasing tissue depth when compared to epi-illumination, with an ∼50% reduction in the exponential decay of the speckle velocity signal. Applying trans-illuminated LSF to the gracilis muscle collateral artery network in vivo yields both improved sensitivity and reduced noise when compared to epi-illumination. Trans-illuminated LSF images reveal regional differences in collateral artery blood velocity after femoral artery ligation and are used to measure an ∼2-fold increase in the shear stress at the entrance regions to the muscle. We believe these represent the first direct measurements of regional shear stress changes in individual mouse collateral arteries. The ability to capture deeper vascular signals using a trans-illumination configuration for LSF may expand the current applications for LSF, which could have bearing on determining how shear stress magnitude and direction regulate arteriogenesis.

  10. [Capacities of angiography in the imaging of abnormal changes in the cerebral arteries].

    PubMed

    Mikhaĭlov, A N; Gonchar, A A; Karpovich, D I

    2011-01-01

    The study was based on the angiographic examination of 233 patients with prior subarachnoidal hemorrhage. Angiographic study was performed using the Seldinger technique by contrasting both carotid and vertebral arteries. Twenty-three patients in whom arterial aneurysm had been detected by digital subtraction angiography underwent 3D angiography. The authors improved a procedure during which a contrast agent was manually injected into the internal carotid or vertebral artery, by using a 20-ml disposal syringe with controlled maximum developed pressure and flow increase rate up to 2.0 ml/sec for 4-5 sec during rotary scanning and the administration of the radiocontrast medium was stopped when an image appeared on the monitor at 190 degrees (190.0, 200.0) C-arm rotation. This procedure could decrease significantly the volume of the administered contrast agent from 18 to 8 (8.0, 10.0) ml and reduce the time of radiation exposure from 6 to 4 (4.0, 5.0) sec. The improved angiographic modes for the right vertebral and right carotid artery could visualize pathological changes in these arteries and establish a relationship, namely: due to degenerative dystrophic processes of the cervical spine there is a tendency for higher pathological changes in the vertebral arteries with an increased stage of osteochondrosis in the cervical spine (R = 0.95; p = 0.014).

  11. Hyperspectral and multispectral imaging for evaluating food safety and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spectral imaging technologies have been developed rapidly during the past decade. This paper presents hyperspectral and multispectral imaging technologies in the area of food safety and quality evaluation, with an introduction, demonstration, and summarization of the spectral imaging techniques avai...

  12. IMAGING DIAGNOSIS-MULTIMODALITY FINDINGS IN AN ADULT DOG WITH PRIMARY SARCOMA OF THE PULMONARY ARTERY AND MYOCARDIAL METASTASES.

    PubMed

    Stieger-Vanegas, Susanne M; Bottorff, Bryan; Sisson, David; Löhr, Christiane V

    2016-07-01

    Intravascular pulmonary artery sarcomas in combination with myocardial metastasis are rare in dogs. We describe the radiographic, echocardiographic, and electrocardiographic-gated (ECG-gated) computed tomographic angiography (CTA) findings in a dog with pulmonary artery sarcoma. All imaging studies demonstrated severe main pulmonary artery enlargement. Echocardiography and ECG-gated CTA revealed a mass occluding the lumen of the right pulmonary artery. In addition, CTA revealed focal left ventricular myocardial contrast enhancement and parenchymal lung changes. Postmortem examination confirmed the presence of a large thrombus associated with arteriosclerosis and an intravascular sarcoma in the right pulmonary artery with metastases to the myocardium, lungs and brain.

  13. Late presentation of an anomalous left coronary artery from the pulmonary artery treated with conservative surgical management with long-term cardiac magnetic resonance imaging follow-up.

    PubMed

    Gouda, Pishoy; Gouda, John; Butler, Craig; Welsh, Robert C

    2017-01-01

    Anomalous origin of the left coronary artery from the pulmonary artery is rare congenital abnormality that most commonly presents in childhood and is associated with a high mortality. In the elderly, patients may present acutely with arrhythmias or signs of ischemia or with vague chronic presentations of shortness of breath and fatigue. In the high-risk elderly population, it is unclear as to whether conservative surgical management by means of suture ligation of the left coronary artery is associated with positive long-term outcomes. We present a case of a 69-year-old patient diagnosed with anomalous origin of the left coronary artery from the pulmonary artery, which was treated with conservative surgical management and followed up for 15 years with cardiovascular magnetic resonance imaging, with positive outcomes.

  14. Late presentation of an anomalous left coronary artery from the pulmonary artery treated with conservative surgical management with long-term cardiac magnetic resonance imaging follow-up

    PubMed Central

    Gouda, Pishoy; Gouda, John; Butler, Craig; Welsh, Robert C

    2017-01-01

    Anomalous origin of the left coronary artery from the pulmonary artery is rare congenital abnormality that most commonly presents in childhood and is associated with a high mortality. In the elderly, patients may present acutely with arrhythmias or signs of ischemia or with vague chronic presentations of shortness of breath and fatigue. In the high-risk elderly population, it is unclear as to whether conservative surgical management by means of suture ligation of the left coronary artery is associated with positive long-term outcomes. We present a case of a 69-year-old patient diagnosed with anomalous origin of the left coronary artery from the pulmonary artery, which was treated with conservative surgical management and followed up for 15 years with cardiovascular magnetic resonance imaging, with positive outcomes. PMID:28321308

  15. The role of completion imaging following carotid artery endarterectomy.

    PubMed

    Ricco, Jean-Baptiste; Schneider, Fabrice; Illuminati, Giulio; Samson, Russell H

    2013-05-01

    A variety of completion imaging methods can be used during carotid endarterectomy to recognize technical errors or intrinsic abnormalities such as mural thrombus or platelet aggregation, but none of these methods has achieved wide acceptance, and their ability to improve the outcome of the operation remains a matter of controversy. It is unclear if completion imaging is routinely necessary and which abnormalities require re-exploration. Proponents of routine completion imaging argue that identification of these abnormalities will allow their immediate correction and avoid a perioperative stroke. However, much of the evidence in favor of this argument is incidental, and many experienced vascular surgeons who perform carotid endarterectomy do not use any completion imaging technique and report equally good outcomes using a careful surgical protocol. Furthermore, certain postoperative strokes, including intracerebral hemorrhage and hyperperfusion syndrome, are unrelated to the surgical technique and cannot be prevented by completion imaging. This controversial subject is now open to discussion, and our debaters have been given the task to clarify the evidence to justify their preferred option for completion imaging during carotid endarterectomy.

  16. Automated integer programming based separation of arteries and veins from thoracic CT images.

    PubMed

    Payer, Christian; Pienn, Michael; Bálint, Zoltán; Shekhovtsov, Alexander; Talakic, Emina; Nagy, Eszter; Olschewski, Andrea; Olschewski, Horst; Urschler, Martin

    2016-12-01

    Automated computer-aided analysis of lung vessels has shown to yield promising results for non-invasive diagnosis of lung diseases. To detect vascular changes which affect pulmonary arteries and veins differently, both compartments need to be identified. We present a novel, fully automatic method that separates arteries and veins in thoracic computed tomography images, by combining local as well as global properties of pulmonary vessels. We split the problem into two parts: the extraction of multiple distinct vessel subtrees, and their subsequent labeling into arteries and veins. Subtree extraction is performed with an integer program (IP), based on local vessel geometry. As naively solving this IP is time-consuming, we show how to drastically reduce computational effort by reformulating it as a Markov Random Field. Afterwards, each subtree is labeled as either arterial or venous by a second IP, using two anatomical properties of pulmonary vessels: the uniform distribution of arteries and veins, and the parallel configuration and close proximity of arteries and bronchi. We evaluate algorithm performance by comparing the results with 25 voxel-based manual reference segmentations. On this dataset, we show good performance of the subtree extraction, consisting of very few non-vascular structures (median value: 0.9%) and merged subtrees (median value: 0.6%). The resulting separation of arteries and veins achieves a median voxel-based overlap of 96.3% with the manual reference segmentations, outperforming a state-of-the-art interactive method. In conclusion, our novel approach provides an opportunity to become an integral part of computer aided pulmonary diagnosis, where artery/vein separation is important.

  17. A relationship between slide quality and image quality in whole slide imaging (WSI).

    PubMed

    Yagi, Yukako; Gilbertson, John R

    2008-07-15

    This study examined the effect of tissue section thickness and consistency--parameters outside the direct control of the imaging devices themselves--on WSI capture speed and image quality. Preliminary data indicates that thinner, more consistent tissue sectioning (such as those produced by automated tissue sectioning robots) results in significantly faster WSI capture times and better image quality. A variety of tissue types (including human breast, mouse embryo, mouse brain, etc.) were sectioned using an (AS-200) Automated Tissue Sectioning System (Kurabo Industries, Osaka Japan) at thicknesses from 2 - 9 microm (at one microm intervals) and stained with H&E by a standard method. The resulting slides were imaged with 5 different WSI devices (ScanScope CS, Aperio, CA; iScan, BioImagene, CA; DX40, DMetrix, AZ; NanoZoomer, Hamamatsu Photonics K.K., Japan; Mirax Scan, Carl Zeiss Inc., Germany) with sampling periods of 0.43 - 0.69 microm/pixel. Slides with different tissue thicknesses were compared for image quality, appropriate number of focus points, and overall scanning speed. Thinner sections (i.e. 3 microm sections versus 7 microm) required significantly fewer focus points and had significantly lower (10-15%) capture times. Improvement was seen with all devices and tissues tested. Furthermore, a panel of experienced pathologist judged image quality to be significantly better (for example, with better apparent resolution of nucleoli) with the thinner sections. Automated tissue sectioning is a very new technology; however, the AS-200 seems to be able to produce thinner, more consistent, flatter sections than manual methods at reasonably high throughput. The resulting tissue sections seem to be easier for a WSI system's focusing systems to deal with (compared to manually cut slides). Teaming an automated tissue-sectioning device with a WSI device shows promise in producing faster WSI throughput with better image quality.

  18. Detection of coronary artery disease using MR imaging with dipyridamole infusion

    SciTech Connect

    Pennell, D.J.; Underwood, S.R.; Longmore, D.B. )

    1990-03-01

    Exercise testing in the magnetic resonance (MR) scanner is difficult because of space restriction and movement artefact, which limit its use in the investigation of patients with suspected coronary artery disease. Pharmacological stress, however, can be used as a substitute for exercise. Therefore, a patient with angina underwent MR ventricular wall motion studies before and after intravenous dipyridamole. Reversible abnormal regional contraction of the myocardium was demonstrated and correlated with a reversible perfusion defect on subsequent thallium myocardial perfusion imaging and a blocked artery at coronary angiography. A clinically useful investigative procedure may be developed.

  19. Arterial cross-section measurements from dual energy transvenous coronary angiography images

    SciTech Connect

    Chapman, D.; Schulze, C.

    1994-05-01

    The synchrotron based coronary angiography project at the National Synchrotron Light Source obtains images of coronary arteries using the digital subtraction technique after a distal venous injection of an iodine contrast agent. It allows two areal mass densities to be calculated from these images; one of the iodine and one of the water. Analysis procedures have been developed to arrive at these areal mass densities with corrections to the values being made for detector cross-talk and beam harmonics. From the iodine mass density distribution the relative arterial cross-section area is determined by a line integration across the arterial feature. Results will be given for an iodine tube phantom showing that the relative area of a feature whose lateral dimensions are smaller than the detector pixel resolution can be determined to a few percent. Also, results will be shown from a human image, showing the relative area of the right coronary artery mapped through a region of a previous stenosis subsequently treated by balloon angioplasty. Finally, limitation of the technique and plans to validate and improve the analysis will be discussed.

  20. Using High-Field Magnetic Resonance Imaging to Estimate Distensibility of the Middle Cerebral Artery

    PubMed Central

    Warnert, Esther A.H.; Verbree, Jasper; Wise, Richard G.; van Osch, Matthias J.P.

    2016-01-01

    Background Although cerebral arterial stiffness may be an important marker for cerebrovascular health, there is not yet a measurement that accurately reflects the distensibility of major intracranial arteries. Herein, we aim to noninvasively measure distension of the human middle cerebral artery (MCA). Methods Ten healthy volunteers (age: 30.3 ± 10.8 years) underwent ultra-high-field (7-tesla) MRI scanning. Time-of-flight angiography and phase-contrast flow imaging were used to locate the M1 segment of the MCA and to determine the occurrence of systole and diastole. High-resolution cross-sectional cardiac triggered T2-weighted images of the M1 segment of the MCA were acquired in systole and diastole. Results The average distension of the MCA area from diastole to systole was 2.58% (range: 0.08%-6.48%). There was no significant correlation between MCA distension and the pulsatility index, calculated from the phase-contrast flow velocity profiles. Conclusion These results lead to the first noninvasive image-based estimation of distensibility of the MCA (approx. 5.8 × 10-4 mm Hg-1) and demonstrate that ultra-high-field MRI could be a promising tool for investigating distensibility of intracranial arteries in relation to cerebrovascular pathology. PMID:27449212

  1. Image analysis for dental bone quality assessment using CBCT imaging

    NASA Astrophysics Data System (ADS)

    Suprijanto; Epsilawati, L.; Hajarini, M. S.; Juliastuti, E.; Susanti, H.

    2016-03-01

    Cone beam computerized tomography (CBCT) is one of X-ray imaging modalities that are applied in dentistry. Its modality can visualize the oral region in 3D and in a high resolution. CBCT jaw image has potential information for the assessment of bone quality that often used for pre-operative implant planning. We propose comparison method based on normalized histogram (NH) on the region of inter-dental septum and premolar teeth. Furthermore, the NH characteristic from normal and abnormal bone condition are compared and analyzed. Four test parameters are proposed, i.e. the difference between teeth and bone average intensity (s), the ratio between bone and teeth average intensity (n) of NH, the difference between teeth and bone peak value (Δp) of NH, and the ratio between teeth and bone of NH range (r). The results showed that n, s, and Δp have potential to be the classification parameters of dental calcium density.

  2. Robust extraction of the aorta and pulmonary artery from 3D MDCT image data

    NASA Astrophysics Data System (ADS)

    Taeprasartsit, Pinyo; Higgins, William E.

    2010-03-01

    Accurate definition of the aorta and pulmonary artery from three-dimensional (3D) multi-detector CT (MDCT) images is important for pulmonary applications. This work presents robust methods for defining the aorta and pulmonary artery in the central chest. The methods work on both contrast enhanced and no-contrast 3D MDCT image data. The automatic methods use a common approach employing model fitting and selection and adaptive refinement. During the occasional event that more precise vascular extraction is desired or the method fails, we also have an alternate semi-automatic fail-safe method. The semi-automatic method extracts the vasculature by extending the medial axes into a user-guided direction. A ground-truth study over a series of 40 human 3D MDCT images demonstrates the efficacy, accuracy, robustness, and efficiency of the methods.

  3. Assessment of stable coronary artery disease by cardiovascular magnetic resonance imaging: Current and emerging techniques

    PubMed Central

    Foley, James R J; Plein, Sven; Greenwood, John P

    2017-01-01

    Coronary artery disease (CAD) is a leading cause of death and disability worldwide. Cardiovascular magnetic resonance (CMR) is established in clinical practice guidelines with a growing evidence base supporting its use to aid the diagnosis and management of patients with suspected or established CAD. CMR is a multi-parametric imaging modality that yields high spatial resolution images that can be acquired in any plane for the assessment of global and regional cardiac function, myocardial perfusion and viability, tissue characterisation and coronary artery anatomy, all within a single study protocol and without exposure to ionising radiation. Advances in technology and acquisition techniques continue to progress the utility of CMR across a wide spectrum of cardiovascular disease, and the publication of large scale clinical trials continues to strengthen the role of CMR in daily cardiology practice. This article aims to review current practice and explore the future directions of multi-parametric CMR imaging in the investigation of stable CAD. PMID:28289524

  4. Finger vein image quality evaluation using support vector machines

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2013-02-01

    In an automatic finger-vein recognition system, finger-vein image quality is significant for segmentation, enhancement, and matching processes. In this paper, we propose a finger-vein image quality evaluation method using support vector machines (SVMs). We extract three features including the gradient, image contrast, and information capacity from the input image. An SVM model is built on the training images with annotated quality labels (i.e., high/low) and then applied to unseen images for quality evaluation. To resolve the class-imbalance problem in the training data, we perform oversampling for the minority class with random-synthetic minority oversampling technique. Cross-validation is also employed to verify the reliability and stability of the learned model. Our experimental results show the effectiveness of our method in evaluating the quality of finger-vein images, and by discarding low-quality images detected by our method, the overall finger-vein recognition performance is considerably improved.

  5. Blind image quality assessment using a general regression neural network.

    PubMed

    Li, Chaofeng; Bovik, Alan Conrad; Wu, Xiaojun

    2011-05-01

    We develop a no-reference image quality assessment (QA) algorithm that deploys a general regression neural network (GRNN). The new algorithm is trained on and successfully assesses image quality, relative to human subjectivity, across a range of distortion types. The features deployed for QA include the mean value of phase congruency image, the entropy of phase congruency image, the entropy of the distorted image, and the gradient of the distorted image. Image quality estimation is accomplished by approximating the functional relationship between these features and subjective mean opinion scores using a GRNN. Our experimental results show that the new method accords closely with human subjective judgment.

  6. Image quality metrics for optical coherence angiography

    PubMed Central

    Lozzi, Andrea; Agrawal, Anant; Boretsky, Adam; Welle, Cristin G.; Hammer, Daniel X.

    2015-01-01

    We characterized image quality in optical coherence angiography (OCA) en face planes of mouse cortical capillary network in terms of signal-to-noise ratio (SNR) and Weber contrast (Wc) through a novel mask-based segmentation method. The method was used to compare two adjacent B-scan processing algorithms, (1) average absolute difference (AAD) and (2) standard deviation (SD), while varying the number of lateral cross-sections acquired (also known as the gate length, N). AAD and SD are identical at N = 2 and exhibited similar image quality for N<10. However, AAD is relatively less susceptible to bulk tissue motion artifact than SD. SNR and Wc were 15% and 35% higher for AAD from N = 25 to 100. In addition data sets were acquired with two objective lenses with different magnifications to quantify the effect of lateral resolution on fine capillary detection. The lower power objective yielded a significant mean broadening of 17% in Full Width Half Maximum (FWHM) diameter. These results may guide study and device designs for OCA capillary and blood flow quantification. PMID:26203372

  7. Mapping cerebral pulse pressure and arterial compliance over the adult lifespan with optical imaging

    PubMed Central

    Tan, Chin Hong; Low, Kathy A.; Kong, Tania; Fletcher, Mark A.; Zimmerman, Benjamin; Maclin, Edward L.; Chiarelli, Antonio M.; Gratton, Gabriele

    2017-01-01

    Cerebrovascular health is important for maintaining a high level of cognitive performance, not only in old age, but also throughout the lifespan. Recently, it was first demonstrated that diffuse optical imaging measures of pulse amplitude and arterial compliance can provide estimates of cerebral arterial health throughout the cortex, and were associated with age, estimated cardiorespiratory fitness (eCRF), neuroanatomy and cognitive function in older adults (aged 55–87). The current study replicates and extends the original findings using a broader age range (a new adult sample aged 18–75), longer recording periods (360 s), and a more extensive optical montage (1536 channels). These methodological improvements represent a 5-fold increase in recording time and a 4-fold increase in coverage compared to the initial study. Results show that reliability for both pulse amplitude and compliance measures across recording blocks was very high (r(45) = .99 and .75, respectively). Pulse amplitude and pulse pressure were shown to correlate with age across the broader age range. We also found correlations between arterial health and both cortical and subcortical gray matter volumes. Additionally, we replicated the correlations between arterial compliance and age, eCRF, global brain atrophy, and cognitive flexibility. New regional analyses revealed that higher performance on the operation span (OSPAN) working memory task was associated with greater localized arterial compliance in frontoparietal cortex, but not with global arterial compliance. Further, greater arterial compliance in frontoparietal regions was associated with younger age and higher eCRF. These associations were not present in the visual cortex. The current study not only replicates the initial one in a sample including a much wider age range, but also provides new evidence showing that frontoparietal regions may be especially vulnerable to vascular degeneration during brain aging, with potential functional

  8. Mapping cerebral pulse pressure and arterial compliance over the adult lifespan with optical imaging.

    PubMed

    Tan, Chin Hong; Low, Kathy A; Kong, Tania; Fletcher, Mark A; Zimmerman, Benjamin; Maclin, Edward L; Chiarelli, Antonio M; Gratton, Gabriele; Fabiani, Monica

    2017-01-01

    Cerebrovascular health is important for maintaining a high level of cognitive performance, not only in old age, but also throughout the lifespan. Recently, it was first demonstrated that diffuse optical imaging measures of pulse amplitude and arterial compliance can provide estimates of cerebral arterial health throughout the cortex, and were associated with age, estimated cardiorespiratory fitness (eCRF), neuroanatomy and cognitive function in older adults (aged 55-87). The current study replicates and extends the original findings using a broader age range (a new adult sample aged 18-75), longer recording periods (360 s), and a more extensive optical montage (1536 channels). These methodological improvements represent a 5-fold increase in recording time and a 4-fold increase in coverage compared to the initial study. Results show that reliability for both pulse amplitude and compliance measures across recording blocks was very high (r(45) = .99 and .75, respectively). Pulse amplitude and pulse pressure were shown to correlate with age across the broader age range. We also found correlations between arterial health and both cortical and subcortical gray matter volumes. Additionally, we replicated the correlations between arterial compliance and age, eCRF, global brain atrophy, and cognitive flexibility. New regional analyses revealed that higher performance on the operation span (OSPAN) working memory task was associated with greater localized arterial compliance in frontoparietal cortex, but not with global arterial compliance. Further, greater arterial compliance in frontoparietal regions was associated with younger age and higher eCRF. These associations were not present in the visual cortex. The current study not only replicates the initial one in a sample including a much wider age range, but also provides new evidence showing that frontoparietal regions may be especially vulnerable to vascular degeneration during brain aging, with potential functional

  9. Determination of lung segments in computed tomography images using the Euclidean distance to the pulmonary artery

    SciTech Connect

    Stoecker, Christina; Moltz, Jan H.; Lassen, Bianca; Kuhnigk, Jan-Martin; Krass, Stefan; Welter, Stefan; Peitgen, Heinz-Otto

    2013-09-15

    Purpose: Computed tomography (CT) imaging is the modality of choice for lung cancer diagnostics. With the increasing number of lung interventions on sublobar level in recent years, determining and visualizing pulmonary segments in CT images and, in oncological cases, reliable segment-related information about the location of tumors has become increasingly desirable. Computer-assisted identification of lung segments in CT images is subject of this work.Methods: The authors present a new interactive approach for the segmentation of lung segments that uses the Euclidean distance of each point in the lung to the segmental branches of the pulmonary artery. The aim is to analyze the potential of the method. Detailed manual pulmonary artery segmentations are used to achieve the best possible segment approximation results. A detailed description of the method and its evaluation on 11 CT scans from clinical routine are given.Results: An accuracy of 2–3 mm is measured for the segment boundaries computed by the pulmonary artery-based method. On average, maximum deviations of 8 mm are observed. 135 intersegmental pulmonary veins detected in the 11 test CT scans serve as reference data. Furthermore, a comparison of the presented pulmonary artery-based approach to a similar approach that uses the Euclidean distance to the segmental branches of the bronchial tree is presented. It shows a significantly higher accuracy for the pulmonary artery-based approach in lung regions at least 30 mm distal to the lung hilum.Conclusions: A pulmonary artery-based determination of lung segments in CT images is promising. In the tests, the pulmonary artery-based determination has been shown to be superior to the bronchial tree-based determination. The suitability of the segment approximation method for application in the planning of segment resections in clinical practice has already been verified in experimental cases. However, automation of the method accompanied by an evaluation on a larger

  10. Intravascular Ultrasound Imaging of Peripheral Arteries as an Adjunct to Balloon Angioplasty and Atherectomy

    SciTech Connect

    Korogi, Yukunori; Hirai, Toshinori; Takahashi, Mutsumasa

    1996-11-15

    This article reviews many of the applications of intravascular ultrasound (US) imaging for peripheral arterial diseases. In vitro studies demonstrate an excellent correlation between ultrasound measurements of lumen and plaque crossectional area compared with histologic sections. In vivo clinical studies reveal the enhanced diagnostic capabilities of this technology compared with angiography. Intravascular US imaging can provide valuable information on the degree, eccentricity, and histologic type of stenosis before intervention, and on the morphological changes in the arterial wall and the extent of excision after intervention. Intravascular US may also serve as a superior index for gauging the diameter of balloon, stent, laser probe, and/or atherectomy catheter appropriate for a proposed intervention. Significant new insights into the mechanisms of balloon angioplasty and atherectomy have been established by intravascular US findings. Intravascular US imaging has been shown to be a more accurate method than angiography for determining the cross-sectional area of the arterial lumen, and for assessing severity of stenosis. Quantitative assessment of the luminal cross-sectional area after the balloon dilatation should be more accurate than angiography as intimal tears or dissections produced by the dilatation may not be accurately evaluated with angiography. At the present time, intravascular US is still a controversial imaging technique. Outcome studies are currently being organized to assess the clinical value and cost effectiveness of intravascular ultrasound in the context of these interventional procedures.

  11. Intra-Arterial MR Perfusion Imaging of Meningiomas: Comparison to Digital Subtraction Angiography and Intravenous MR Perfusion Imaging

    PubMed Central

    Martin, Alastair J.; Alexander, Matthew D.; McCoy, David B.; Cooke, Daniel L.; Lillaney, Prasheel; Moftakhar, Parham; Amans, Matthew R.; Settecase, Fabio; Nicholson, Andrew; Dowd, Christopher F.; Halbach, Van V.; Higashida, Randall T.; McDermott, Michael W.; Saloner, David; Hetts, Steven W.

    2016-01-01

    Background and Purpose To evaluate the ability of IA MR perfusion to characterize meningioma blood supply. Methods Studies were performed in a suite comprised of an x-ray angiography unit and 1.5T MR scanner that permitted intraprocedural patient movement between the imaging modalities. Patients underwent intra-arterial (IA) and intravenous (IV) T2* dynamic susceptibility MR perfusion immediately prior to meningioma embolization. Regional tumor arterial supply was characterized by digital subtraction angiography and classified as external carotid artery (ECA) dural, internal carotid artery (ICA) dural, or pial. MR perfusion data regions of interest (ROIs) were analyzed in regions with different vascular supply to extract peak height, full-width at half-maximum (FWHM), relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), and mean transit time (MTT). Linear mixed modeling was used to identify perfusion curve parameter differences for each ROI for IA and IV MR imaging techniques. IA vs. IV perfusion parameters were also directly compared for each ROI using linear mixed modeling. Results 18 ROIs were analyzed in 12 patients. Arterial supply was identified as ECA dural (n = 11), ICA dural (n = 4), or pial (n = 3). FWHM, rCBV, and rCBF showed statistically significant differences between ROIs for IA MR perfusion. Peak Height and FWHM showed statistically significant differences between ROIs for IV MR perfusion. RCBV and MTT were significantly lower for IA perfusion in the Dural ECA compared to IV perfusion. Relative CBF in IA MR was found to be significantly higher in the Dural ICA region and MTT significantly lower compared to IV perfusion. PMID:27802268

  12. Coronary artery imaging with multidetector computed tomography: a call for an evidence-based, multidisciplinary approach.

    PubMed

    Schoenhagen, Paul; Stillman, Arthur E; Garcia, Mario J; Halliburton, Sandra S; Tuzcu, E Murat; Nissen, Steven E; Modic, Michael T; Lytle, Bruce W; Topol, Eric J; White, Richard D

    2006-05-01

    Modern multidetector computed tomography systems are capable of a comprehensive assessment of the cardiovascular system, including noninvasive assessment of coronary anatomy. Multidetector computed tomography is expected to advance the role of noninvasive imaging for coronary artery disease, but clinical experience is still limited. Clinical guidelines are necessary to standardize scanner technology and appropriate clinical applications for coronary computed tomographic angiography. Further evaluation of this evolving technology will benefit from cooperation between different medical specialties, imaging scientists, and manufacturers of multidetector computed tomography systems, supporting multidisciplinary teams focused on the diagnosis and treatment of early and advanced stages of coronary artery disease. This cooperation will provide the necessary education, training, and guidelines for physicians and technologists assuring standard of care for their patients.

  13. Arterial Spin Label Imaging of Acute Ischemic Stroke and Transient Ischemic Attack

    PubMed Central

    Zaharchuk, Greg

    2011-01-01

    Since acute ischemic stroke and transient ischemic attack (TIA) are fundamentally disruptions of brain hemodynamics, neuroimaging of brain perfusion might be expected to be of clinical utility. Recently, a noncontrast method of measuring CBF using arterial spin labeling (ASL) has become feasible in the clinical setting. It has advantages when compared to dynamic susceptibility contrast (DSC) bolus contrast perfusion-weighted imaging (PWI) that include lack of exposure to gadolinium-based contrast materials, improved quantitation, and decreased sensitivity to susceptibility artifacts and motion. Drawbacks of ASL include reduced signal-to-noise (SNR) and high sensitivity to arterial transit delays. While deleterious for quantitative perfusion measurements, the sensitivity of ASL to late arriving blood can be beneficial to visualize collateral flow. This chapter will discuss ASL imaging findings in patients presenting with acute ischemic stroke and TIA, focusing on typical appearances, common artifacts, and comparisons with bolus contrast PWI. PMID:21640300

  14. Duplication of the superficial femoral artery: comprehensive review of imaging literature and insight into embryology

    PubMed Central

    Hapugoda, Sachintha; Kwan, Gigi Nga Chi; Watkins, Trevor William; Rophael, John A

    2016-01-01

    An extremely rare case of duplicated superficial femoral artery (SFA) was incidentally observed on computed tomography angiogram (CTA) of the lower limbs for presurgical planning for an osteomyocutaneous fibula flap in a patient with T4a oropharyngeal squamous cell carcinoma (SCC). To our knowledge, this is the sixth reported case in the imaging literature. We performed a comprehensive review of the English literature and discuss the underlying embryological origin underpinning this rare anatomical variant. PMID:27504194

  15. Using short-wave infrared imaging for fruit quality evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Lee, Dah-Jye; Desai, Alok

    2013-12-01

    Quality evaluation of agricultural and food products is important for processing, inventory control, and marketing. Fruit size and surface quality are two important quality factors for high-quality fruit such as Medjool dates. Fruit size is usually measured by length that can be done easily by simple image processing techniques. Surface quality evaluation on the other hand requires more complicated design, both in image acquisition and image processing. Skin delamination is considered a major factor that affects fruit quality and its value. This paper presents an efficient histogram analysis and image processing technique that is designed specifically for real-time surface quality evaluation of Medjool dates. This approach, based on short-wave infrared imaging, provides excellent image contrast between the fruit surface and delaminated skin, which allows significant simplification of image processing algorithm and reduction of computational power requirements. The proposed quality grading method requires very simple training procedure to obtain a gray scale image histogram for each quality level. Using histogram comparison, each date is assigned to one of the four quality levels and an optimal threshold is calculated for segmenting skin delamination areas from the fruit surface. The percentage of the fruit surface that has skin delamination can then be calculated for quality evaluation. This method has been implemented and used for commercial production and proven to be efficient and accurate.

  16. Signal quality quantification and waveform reconstruction of arterial blood pressure recordings.

    PubMed

    Fanelli, A; Heldt, T

    2014-01-01

    Arterial blood pressure (ABP) is an important vital sign of the cardiovascular system. As with other physiological signals, its measurement can be corrupted by different sources of noise, interference, and artifact. Here, we present an algorithm for the quantification of signal quality and for the reconstruction of the ABP waveform in noise-corrupted segments of the measurement. The algorithm quantifies the quality of the ABP signal on a beat-by-beat basis by computing the normalized mean of successive differences of the ABP amplitude over each beat. In segments of poor signal quality, the ABP wavelets are then reconstructed on the basis of the expected cycle duration and envelope information derived from neighboring ABP wavelet segments. The algorithm was tested on two datasets of ABP waveform signals containing both invasive radial artery ABP and noninvasive ABP waveforms. Our results show that the approach is efficient in identifying the noisy segments (accuracy, sensitivity and specificity over 95%) and reliable in reconstructing beats that were artificially corrupted.

  17. Practical guidelines for radiographers to improve computed radiography image quality.

    PubMed

    Pongnapang, N

    2005-10-01

    Computed Radiography (CR) has become a major digital imaging modality in a modern radiological department. CR system changes workflow from the conventional way of using film/screen by employing photostimulable phosphor plate technology. This results in the changing perspectives of technical, artefacts and quality control issues in radiology departments. Guidelines for better image quality in digital medical enterprise include professional guidelines for users and the quality control programme specifically designed to serve the best quality of clinical images. Radiographers who understand technological shift of the CR from conventional method can employ optimization of CR images. Proper anatomic collimation and exposure techniques for each radiographic projection are crucial steps in producing quality digital images. Matching image processing with specific anatomy is also important factor that radiographers should realise. Successful shift from conventional to fully digitised radiology department requires skilful radiographers who utilise the technology and a successful quality control program from teamwork in the department.

  18. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques

    PubMed Central

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-01-01

    Background: Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. Methods: In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. Results: With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Conclusion: Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications. PMID:28077898

  19. Non-invasive imaging in coronary artery disease including anatomical and functional evaluation of ischaemia and viability assessment

    PubMed Central

    Pakkal, M; Raj, V; Mccann, G P

    2011-01-01

    Coronary artery disease has an important impact on the morbidity and mortality statistics and health economics worldwide. Diagnosis of coronary artery disease is important in risk stratification and guides further management. Invasive coronary angiography is the traditional method of imaging the coronary arteries and remains the gold standard. It detects luminal stenosis but provides little information about the vessel wall or plaques. Besides, not all anatomical lesions are functionally significant. This has lent itself to a wide variety of imaging techniques to identify and assess a flow-limiting stenosis. The approach to diagnosis of coronary artery disease is broadly based on anatomical and functional imaging. Coronary CT and MRI of coronary arteries provide an anatomical assessment of coronary stenosis. Coronary calcium score and coronary CT assess subclinical atherosclerosis by assessing the atherosclerotic plaque burden. The haemodynamic significance of a coronary artery stenosis can be assessed by stress radioisotope studies, stress echocardiography and stress MRI. The more recent literature also focuses on plaque assessment and identification of plaques that are likely to give rise to an acute coronary syndrome. There is an explosion of literature on the merits and limitations of the different imaging modalities. This review article will provide an overview of all the imaging modalities in the diagnosis of coronary artery disease. PMID:22723535

  20. Study of digital mammographic equipments by phantom image quality.

    PubMed

    Mayo, P; Rodenas, F; Verdú, G; Campayo, J M; Villaescusa, J I

    2006-01-01

    Nowadays, the digital radiographic equipments are replacing the traditional film-screen equipments and it is necessary to update the parameters to guarantee the quality of the process. Contrast-detail phantoms are applied to digital radiography to study the threshold contrast-detail sensitivity at operation conditions of the equipment. The phantom that is studied in this work is CDMAM 3.4. One of the most extended indexes to measure the image quality in an objective way is the image quality figure (IQF). The aim of this work is to study the image quality of different images contrast-detail phantom CDMAM 3.4, carrying out the automatic detection of the contrast-detail combination and to establish a parameter which characterize in an objective way the mammographic image quality. This is useful to compare images obtained at different digital mammographic equipments to study the functioning of the equipments that facilitates the evaluation of image contrast and detail resolution.

  1. LANDSAT-4 image data quality analysis

    NASA Technical Reports Server (NTRS)

    Anuta, P. E. (Principal Investigator)

    1982-01-01

    Work done on evaluating the geometric and radiometric quality of early LANDSAT-4 sensor data is described. Band to band and channel to channel registration evaluations were carried out using a line correlator. Visual blink comparisons were run on an image display to observe band to band registration over 512 x 512 pixel blocks. The results indicate a .5 pixel line misregistration between the 1.55 to 1.75, 2.08 to 2.35 micrometer bands and the first four bands. Also a four 30M line and column misregistration of the thermal IR band was observed. Radiometric evaluation included mean and variance analysis of individual detectors and principal components analysis. Results indicate that detector bias for all bands is very close or within tolerance. Bright spots were observed in the thermal IR band on an 18 line by 128 pixel grid. No explanation for this was pursued. The general overall quality of the TM was judged to be very high.

  2. A Comparison between Compounding Techniques using Large Beam-Steered Plane Wave Imaging for Blood Vector Velocity Imaging in a Carotid Artery Model.

    PubMed

    Saris, Anne; Hansen, Hendrik; Fekkes, Stein; Nillesen, Maartje; Rutten, Marcel; de Korte, Chris

    2016-09-07

    Conventional color Doppler imaging is limited, since it only provides velocity estimates along the ultrasound beam direction for a restricted field of view at a limited frame rate. High frame rate speckle tracking, using plane wave transmits, has shown potential for 2D blood velocity estimation. However, due to the lack of focusing in transmit, image quality gets reduced, which hampers speckle tracking. Although ultrafast imaging facilitates improved clutter filtering, it still remains a major challenge in blood velocity estimation. Signal drop-outs and poor velocity estimates are still present for high beam-to-flow angles and low blood flow velocities. In this work, ultrafast plane wave imaging was combined with multi-scale speckle tracking to assess the 2D blood velocity vector in a common carotid artery (CCA) flow field. A multi-angled plane wave imaging sequence was used to compare the performance of displacement compounding, coherent compounding and compound speckle tracking. Zero-degree plane wave imaging was also evaluated. The performance of the methods was evaluated before and after clutter filtering for the large range of velocities (0 to 1.5 m/s) that are normally present in a healthy CCA during the cardiac cycle. An extensive simulation study was performed, based on a sophisticated model of the CCA, to investigate and evaluate the performance of the methods at different pulse repetition frequencies and signal-to-noise levels. In vivo data were acquired of a healthy carotid artery bifurcation to support the simulation results. In general, methods utilizing compounding after speckle tracking, i.e., displacement compounding and compound speckle tracking, were least affected by clutter filtering and provided the most robust and accurate estimates for the entire velocity range. Displacement compounding, which uses solely axial information to estimate the velocity vector, provided most accurate velocity estimates, although it required sufficiently high pulse

  3. A Comparison Between Compounding Techniques Using Large Beam-Steered Plane Wave Imaging for Blood Vector Velocity Imaging in a Carotid Artery Model.

    PubMed

    Saris, Anne E C M; Hansen, Hendrik H G; Fekkes, Stein; Nillesen, Maartje M; Rutten, Marcel C M; de Korte, Chris L

    2016-11-01

    Conventional color Doppler imaging is limited, since it only provides velocity estimates along the ultrasound beam direction for a restricted field of view at a limited frame rate. High-frame-rate speckle tracking, using plane wave transmits, has shown potential for 2-D blood velocity estimation. However, due to the lack of focusing in transmit, image quality gets reduced, which hampers speckle tracking. Although ultrafast imaging facilitates improved clutter filtering, it still remains a major challenge in blood velocity estimation. Signal dropouts and poor velocity estimates are still present for high beam-to-flow angles and low blood flow velocities. In this paper, ultrafast plane wave imaging was combined with multiscale speckle tracking to assess the 2-D blood velocity vector in a common carotid artery (CCA) flow field. A multiangled plane wave imaging sequence was used to compare the performance of displacement compounding, coherent compounding, and compound speckle tracking. Zero-degree plane wave imaging was also evaluated. The performance of the methods was evaluated before and after clutter filtering for the large range of velocities (0-1.5 m/s) that are normally present in a healthy CCA during the cardiac cycle. An extensive simulation study was performed, based on a sophisticated model of the CCA, to investigate and evaluate the performance of the methods at different pulse repetition frequencies and signal-to-noise levels. In vivo data were acquired of a healthy carotid artery bifurcation to support the simulation results. In general, methods utilizing compounding after speckle tracking, i.e., displacement compounding and compound speckle tracking, were least affected by clutter filtering and provided the most robust and accurate estimates for the entire velocity range. Displacement compounding, which uses solely axial information to estimate the velocity vector, provided most accurate velocity estimates, although it required sufficiently high pulse

  4. Food quality assessment by NIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Whitworth, Martin B.; Millar, Samuel J.; Chau, Astor

    2010-04-01

    Near infrared reflectance (NIR) spectroscopy is well established in the food industry for rapid compositional analysis of bulk samples. NIR hyperspectral imaging provides new opportunities to measure the spatial distribution of components such as moisture and fat, and to identify and measure specific regions of composite samples. An NIR hyperspectral imaging system has been constructed for food research applications, incorporating a SWIR camera with a cooled 14 bit HgCdTe detector and N25E spectrograph (Specim Ltd, Finland). Samples are scanned in a pushbroom mode using a motorised stage. The system has a spectral resolution of 256 pixels covering a range of 970-2500 nm and a spatial resolution of 320 pixels covering a swathe adjustable from 8 to 300 mm. Images are acquired at a rate of up to 100 lines s-1, enabling samples to be scanned within a few seconds. Data are captured using SpectralCube software (Specim) and analysed using ENVI and IDL (ITT Visual Information Solutions). Several food applications are presented. The strength of individual absorbance bands enables the distribution of particular components to be assessed. Examples are shown for detection of added gluten in wheat flour and to study the effect of processing conditions on fat distribution in chips/French fries. More detailed quantitative calibrations have been developed to study evolution of the moisture distribution in baguettes during storage at different humidities, to assess freshness of fish using measurements of whole cod and fillets, and for prediction of beef quality by identification and separate measurement of lean and fat regions.

  5. Reduced-reference image quality assessment using moment method

    NASA Astrophysics Data System (ADS)

    Yang, Diwei; Shen, Yuantong; Shen, Yongluo; Li, Hongwei

    2016-10-01

    Reduced-reference image quality assessment (RR IQA) aims to evaluate the perceptual quality of a distorted image through partial information of the corresponding reference image. In this paper, a novel RR IQA metric is proposed by using the moment method. We claim that the first and second moments of wavelet coefficients of natural images can have approximate and regular change that are disturbed by different types of distortions, and that this disturbance can be relevant to human perceptions of quality. We measure the difference of these statistical parameters between reference and distorted image to predict the visual quality degradation. The introduced IQA metric is suitable for implementation and has relatively low computational complexity. The experimental results on Laboratory for Image and Video Engineering (LIVE) and Tampere Image Database (TID) image databases indicate that the proposed metric has a good predictive performance.

  6. Mission-driven evaluation of imaging system quality

    NASA Astrophysics Data System (ADS)

    Kattnig, Alain Philippe; Ferhani, Ouamar; Primot, Jéro‸Me

    2001-12-01

    Image-quality criteria are usually intended to achieve the best possible image at a given sampling rate, which is ill-suited to applications where the detection of well-defined geometric and radiometric properties of scenes or objects are paramount. The quality criterion developed here for designing observation systems is based on properties of the objects to be viewed. It is thus an object-oriented imaging quality criterion rather than an image-oriented one. We also propose to go beyond optimization and calibrate a numerical scale that can be used to rate the quality of the service delivered by any observation system.

  7. Quality Assessment of Sharpened Images: Challenges, Methodology, and Objective Metrics.

    PubMed

    Krasula, Lukas; Le Callet, Patrick; Fliegel, Karel; Klima, Milos

    2017-01-10

    Most of the effort in image quality assessment (QA) has been so far dedicated to the degradation of the image. However, there are also many algorithms in the image processing chain that can enhance the quality of an input image. These include procedures for contrast enhancement, deblurring, sharpening, up-sampling, denoising, transfer function compensation, etc. In this work, possible strategies for the quality assessment of sharpened images are investigated. This task is not trivial because the sharpening techniques can increase the perceived quality, as well as introduce artifacts leading to the quality drop (over-sharpening). Here, the framework specifically adapted for the quality assessment of sharpened images and objective metrics comparison in this context is introduced. However, the framework can be adopted in other quality assessment areas as well. The problem of selecting the correct procedure for subjective evaluation was addressed and a subjective test on blurred, sharpened, and over-sharpened images was performed in order to demonstrate the use of the framework. The obtained ground-truth data were used for testing the suitability of state-ofthe- art objective quality metrics for the assessment of sharpened images. The comparison was performed by novel procedure using ROC analyses which is found more appropriate for the task than standard methods. Furthermore, seven possible augmentations of the no-reference S3 metric adapted for sharpened images are proposed. The performance of the metric is significantly improved and also superior over the rest of the tested quality criteria with respect to the subjective data.

  8. Quantitative image quality evaluation for cardiac CT reconstructions

    NASA Astrophysics Data System (ADS)

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.; Balhorn, William; Okerlund, Darin R.

    2016-03-01

    Maintaining image quality in the presence of motion is always desirable and challenging in clinical Cardiac CT imaging. Different image-reconstruction algorithms are available on current commercial CT systems that attempt to achieve this goal. It is widely accepted that image-quality assessment should be task-based and involve specific tasks, observers, and associated figures of merits. In this work, we developed an observer model that performed the task of estimating the percentage of plaque in a vessel from CT images. We compared task performance of Cardiac CT image data reconstructed using a conventional FBP reconstruction algorithm and the SnapShot Freeze (SSF) algorithm, each at default and optimal reconstruction cardiac phases. The purpose of this work is to design an approach for quantitative image-quality evaluation of temporal resolution for Cardiac CT systems. To simulate heart motion, a moving coronary type phantom synchronized with an ECG signal was used. Three different percentage plaques embedded in a 3 mm vessel phantom were imaged multiple times under motion free, 60 bpm, and 80 bpm heart rates. Static (motion free) images of this phantom were taken as reference images for image template generation. Independent ROIs from the 60 bpm and 80 bpm images were generated by vessel tracking. The observer performed estimation tasks using these ROIs. Ensemble mean square error (EMSE) was used as the figure of merit. Results suggest that the quality of SSF images is superior to the quality of FBP images in higher heart-rate scans.

  9. Sexuality and Body Image After Uterine Artery Embolization and Hysterectomy in the Treatment of Uterine Fibroids: A Randomized Comparison

    SciTech Connect

    Hehenkamp, Wouter J. K. Volkers, Nicole A.; Bartholomeus, Wouter; Blok, Sjoerd de; Birnie, Erwin; Reekers, Jim A.; Ankum, Willem M.

    2007-09-15

    In this paper the effect of uterine artery embolization (UAE) on sexual functioning and body image is investigated in a randomized comparison to hysterectomy for symptomatic uterine fibroids. The EMbolization versus hysterectoMY (EMMY) trial is a randomized controlled study, conducted at 28 Dutch hospitals. Patients were allocated hysterectomy (n = 89) or UAE (n 88). Two validated questionnaires (the Sexual Activity Questionnaire [SAQ] and the Body Image Scale [BIS]) were completed by all patients at baseline, 6 weeks, and 6, 12, 18, and 24 months after treatment. Repeated measurements on SAQ scores revealed no differences between the groups. There was a trend toward improved sexual function in both groups at 2 years, although this failed to reach statistical significance except for the dimensions discomfort and habit in the UAE arm. Overall quality of sexual life deteriorated in a minority of cases at all time points, with no significant differences between the groups (at 24 months: UAE, 29.3%, versus hysterectomy, 23.5%; p = 0.32). At 24 months the BIS score had improved in both groups compared to baseline, but the change was only significant in the UAE group (p = 0.009). In conclusion, at 24 months no differences in sexuality and body image were observed between the UAE and the hysterectomy group. On average, both after UAE and hysterectomy sexual functioning and body image scores improved, but significantly so only after UAE.

  10. Feasibility of angle independent Doppler color imaging for in vivo application: preliminary study on carotid arteries.

    PubMed

    Fei, D Y; Liu, D D; Fu, C T; Makhoul, R G; Fisher, M R

    1997-01-01

    An experimental system has been used to acquire Doppler color images using a linear transducer from an ultrasound scanner to reconstruct angle independent Doppler color (AIDC) images in normal carotid arteries in 21 volunteers. Images were first taken from relatively straight segments in the common carotid artery, and comparisons were made in a small area at the center stream. At peak systole, the correlation coefficient of the velocity amplitudes between AIDC imaging (AIDCI) and duplex scanning was 0.94; the correlation coefficient between the flow angles measured from AIDCI and the angles of the vessel wall was 0.99. Periodic variations of the flow angle over the cardiac cycle were always observed by AIDCI, whereas the changes in the geometric angle of the vessel itself were insignificant. This observation suggests that the AIDCI technique is sensitive to alterations of flow direction. On the other hand, the deviation of the flow angle from a fixed correction angle in duplex scanning may cause a certain degree of error in velocity determination. AIDC images were also obtained at the carotid bifurcation. The results show that the AIDCI technique is able to depict major flow features, such as velocity skewing, flow separation, flow reversal and vortical flow, in a complex flow field.

  11. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization

    SciTech Connect

    Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl; Flohr, Thomas

    2013-03-15

    Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phase (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum

  12. High-Permittivity Thin Dielectric Padding Improves Fresh Blood Imaging of Femoral Arteries at 3T

    PubMed Central

    Lindley, Marc D; Kim, Daniel; Morrell, Glen; Heilbrun, Marta E; Storey, Pippa; Hanrahan, Christopher J; Lee, Vivian S

    2014-01-01

    Objectives Fresh blood imaging (FBI) is a useful non-contrast magnetic resonance angiography (NC-MRA) method for assessment of peripheral arterial disease (PAD), particularly in patients with poor renal function. Compared with 1.5T, 3T enables higher signal to noise ratio (SNR) and/or spatio-temporal resolution in FBI, as demonstrated successfully for the calf station. However, FBI of the thigh station at 3T has been reported to suffer from signal void in the common femoral artery of one thigh only due to the radial symmetry in transmit radio-frequency field (B1+) variation. We sought to increase the femoral arterial signal attenuated by B1+ variation in FBI at 3T using high permittivity dielectric padding. Materials and Methods We performed FBI of the thigh station in 13 human subjects at 3T to compare the following 3 settings: no padding, commercially available thick (~ 5 cm) dielectric padding, and high-permittivity thin (~2 cm) dielectric padding. B1+ mapping was also performed in the common femoral arteries to characterize the radial symmetry in B1+ variation and quantify the improvement in B1+ excitation. We characterized the impact of radial symmetry in B1+ variation on the FBI signal and FBI MRA of the right common femoral artery using quantitative (i.e., contrast-to-noise ratio (CNR)) and qualitative (i.e., conspicuity) analyses. Results The radial symmetry in B1+ variation attenuates signal in the right common femoral artery, which can be partially improved with commercial padding and improved further with high permittivity padding. Averaging the results over 13 subjects, the B1+, CNR and conspicuity scores in the right common femoral artery were significantly better with high-permittivity padding than with commercial padding and baseline (p<0.001). Conclusions Our study shows that high-permittivity dielectric padding can be used to increase the femoral arterial signal attenuated by B1+ variation in FBI at 3T. PMID:25329606

  13. Sub-piexl methods for improving vector quality in echo PIV flow, imaging technology.

    PubMed

    Niu, Lili; Wang, Jing; Qian, Ming; Zheng, Hairong

    2009-01-01

    Developments of many cardiovascular problems have been shown to have a close relationship with arterial flow conditions. An ultrasound-based particle image velocimetry technique(Echo PIV) was recently developed to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. To improve the measurement accuracy, sub-pixel calculation method was adopted in this paper to maximize the ultrasound RF signal and B mode image correlation accuracy and increase the image spatial resolution. This algorithm is employed in processing both computer-generated particle image patterns and the B-mode images of microbubbles in rotating flows obtained by a high frame rate (up to 1000 frames per second) ultrasound imaging system. The results show the correlation of particle patterns and individual flow vector quality are improved and the overall flow mappings are also improved significantly. This would help the Echo PIV system to provide better multi-component velocity accuracy.

  14. Searching for the limit of image quality in film radiography

    SciTech Connect

    Vaessen, B.; Perdieus, P.; Florens, R.

    1993-12-31

    Radiographic film image quality in general was, and in most cases still is, considered as a very subjective and rather vague parameter. Yet it is of vital importance to the NDT and related quality control and quality assurance industry. Therefore, lately Agfa has put a major effort into quantifying image quality in an objective, measurable way. It was in the framework of this optimization project, that the authors, based on these new insights in imaging of industrial film systems, strived to search for the limit of the highest achievable image quality. In this paper they report these results. They not only report these results in an academic way, meaning how this highest image quality can be achieved under lab conditions, but also how these same results can be obtained under practical e.g. field-conditions.

  15. Performance evaluation of an automatic segmentation method of cerebral arteries in MRA images by use of a large image database

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yoshikazu; Asano, Tatsunori; Hara, Takeshi; Fujita, Hiroshi; Kinosada, Yasutomi; Asano, Takahiko; Kato, Hiroki; Kanematsu, Masayuki; Hoshi, Hiroaki; Iwama, Toru

    2009-02-01

    The detection of cerebrovascular diseases such as unruptured aneurysm, stenosis, and occlusion is a major application of magnetic resonance angiography (MRA). However, their accurate detection is often difficult for radiologists. Therefore, several computer-aided diagnosis (CAD) schemes have been developed in order to assist radiologists with image interpretation. The purpose of this study was to develop a computerized method for segmenting cerebral arteries, which is an essential component of CAD schemes. For the segmentation of vessel regions, we first used a gray level transformation to calibrate voxel values. To adjust for variations in the positioning of patients, registration was subsequently employed to maximize the overlapping of the vessel regions in the target image and reference image. The vessel regions were then segmented from the background using gray-level thresholding and region growing techniques. Finally, rule-based schemes with features such as size, shape, and anatomical location were employed to distinguish between vessel regions and false positives. Our method was applied to 854 clinical cases obtained from two different hospitals. The segmentation of cerebral arteries in 97.1%(829/854) of the MRA studies was attained as an acceptable result. Therefore, our computerized method would be useful in CAD schemes for the detection of cerebrovascular diseases in MRA images.

  16. Evaluation of Coronary Artery Disease Using Myocardial Elastography with Diverging Wave Imaging: Validation against Myocardial Perfusion Imaging and Coronary Angiography.

    PubMed

    Grondin, Julien; Waase, Marc; Gambhir, Alok; Bunting, Ethan; Sayseng, Vincent; Konofagou, Elisa E

    2017-02-28

    Myocardial elastography (ME) is an ultrasound-based technique that can image 2-D myocardial strains. The objectives of this study were to illustrate that 2-D myocardial strains can be imaged with diverging wave imaging and differ, on average, between normal and coronary artery disease (CAD) patients. In this study, 66 patients with symptoms of CAD were imaged with myocardial elastography before a nuclear stress test or an invasive coronary angiography. Radial cumulative strains were estimated in all patients. The end-systolic radial strain in the total cross section of the myocardium was significantly higher in normal patients (17.9 ± 8.7%) than in patients with reversible perfusion defect (6.2 ± 9.3%, p < 0.001) and patients with significant (-0.9 ± 7.4%, p < 0.001) and non-significant (3.7 ± 5.7%, p < 0.01) lesions. End-systolic radial strain in the left anterior descending, left circumflex and right coronary artery territory was found to be significantly higher in normal patients than in CAD patients. These preliminary findings indicate that end-systolic radial strain measured with ME is higher on average in healthy persons than in CAD patients and that ME has the potential to be used for non-invasive, radiation-free early detection of CAD.

  17. Comparison of gradient echo with spin echo magnetic resonance imaging and echocardiography in the evaluation of major aortopulmonary collateral arteries.

    PubMed

    Vick, G W; Wendt, R E; Rokey, R

    1994-05-01

    This study compared gradient echo magnetic resonance imaging, spin echo magnetic resonance imaging, echocardiography, and echocardiography with x-ray cineangiography in the evaluation of major aortopulmonary collateral arteries. Twelve patients (ages 9 months to 35 years, mean 11 +/- 11 years) with known or suspected major aortopulmonary collateral arteries were studied. The aortic insertion and proximal course of 29 major aortopulmonary collateral arteries demonstrated by x-ray contrast angiography were shown in all 29 cases by gradient echo magnetic resonance imaging but in only 23 of the 29 cases by spin echo magnetic resonance imaging. Color Doppler-echocardiography detected aortopulmonary collateral arteries in four patients but did not define the proximal course or distal anatomy. Gradient echo images of distal aortopulmonary collateral anatomy were qualitatively superior to spin echo images. The contrast-to-noise ratio between the vessel lumen and adjacent lung was greater for gradient echo (6.06 +/- 2.91) than for spin echo (1.45 +/- 1.13)(p < 0.05). Gradient echo magnetic resonance imaging is a useful method for identification and characterization of aortopulmonary collateral arteries in patients of all ages and is superior to spin echo magnetic resonance imaging and echocardiography.

  18. What do users really perceive: probing the subjective image quality

    NASA Astrophysics Data System (ADS)

    Nyman, Göte; Radun, Jenni; Leisti, Tuomas; Oja, Joni; Ojanen, Harri; Olives, Jean-Luc; Vuori, Tero; Häkkinen, Jukka

    2006-01-01

    Image evaluation schemes must fulfill both objective and subjective requirements. Objective image quality evaluation models are often preferred over subjective quality evaluation, because of their fastness and cost-effectiveness. However, the correlation between subjective and objective estimations is often poor. One of the key reasons for this is that it is not known what image features subjects use when they evaluate image quality. We have studied subjective image quality evaluation in the case of image sharpness. We used an Interpretation-based Quality (IBQ) approach, which combines both qualitative and quantitative approaches to probe the observer's quality experience. Here we examine how naive subjects experienced and classified natural images, whose sharpness was changing. Together the psychometric and qualitative information obtained allows the correlation of quantitative evaluation data with its underlying subjective attribute sets. This offers guidelines to product designers and developers who are responsible for image quality. Combining these methods makes the end-user experience approachable and offers new ways to improve objective image quality evaluation schemes.

  19. Imaging of acute superior mesenteric artery embolus using spectral CT in a canine model

    PubMed Central

    Wang, Hongzhen; Xiao, Xigang; Zhang, Wei; Ma, Zhiwen; Zhang, Jin ling; Tang, Liang

    2015-01-01

    Objective: To explore the diagnostic value of single-source dual-energy spectral CT (sDECT) imaging in an acute superior mesenteric artery embolus (SMAE) canine model. Methods: Pre-contrast and double-phase contrast-enhanced sDECT were performed before and after embolization in eight SMAE dog models. Monochromatic images of embolized intestine with the best contrast-to-noise ratio (CNR) were obtained and compared with the polychromatic images. CT parameters including attenuation value, iodine content, water content and thickness of the embolized intestinal segments were obtained, and normalized difference in iodine concentration (NDIC) was calculated. Results: The CNR in pre-contrast, arterial phase and portal venous phase at 4 h after embolization was 1.11 ± 1.23, 13.50 ± 1.54 and 10.63 ± 3.75, respectively, significantly higher than those of the polychromatic images (p < 0.05). The iodine-based images clearly revealed the embolized intestinal segments, which were highly consistent with the gross findings. The difference in attenuation values between the embolization area and non-embolization area in the monochromatic images was 105.06 ± 35.35 HU, higher than that in the polychromatic images (p < 0.001). The attenuation values and NDIC were significantly decreased at 2 h after embolization, relatively increased at 4 h and gradually decreased at 6 and 8 h. The changing pattern of thickness was similar to that of NDIC over time after embolization. Conclusion: sDECT can provide the optimal monochromatic images and allow increased detection rates of lesions. sDECT is a very promising tool for quantitative diagnosis of SMAE. Advances in knowledge: Our research provides more quantitative parameters for the assessment of SMAE by sDECT. PMID:26185922

  20. Effects on MR images compression in tissue classification quality

    NASA Astrophysics Data System (ADS)

    Santalla, H.; Meschino, G.; Ballarin, V.

    2007-11-01

    It is known that image compression is required to optimize the storage in memory. Moreover, transmission speed can be significantly improved. Lossless compression is used without controversy in medicine, though benefits are limited. If we compress images lossy, where image can not be totally recovered; we can only recover an approximation. In this point definition of "quality" is essential. What we understand for "quality"? How can we evaluate a compressed image? Quality in images is an attribute whit several definitions and interpretations, which actually depend on the posterior use we want to give them. This work proposes a quantitative analysis of quality for lossy compressed Magnetic Resonance (MR) images, and their influence in automatic tissue classification, accomplished with these images.

  1. Multimodal Imaging of Nanocomposite Microspheres for Transcatheter Intra-Arterial Drug Delivery to Liver Tumors

    PubMed Central

    Kim, Dong-Hyun; Li, Weiguo; Chen, Jeane; Zhang, Zhuoli; Green, Richard M.; Huang, Sui; Larson, Andrew C.

    2016-01-01

    A modern multi-functional drug carrier is critically needed to improve the efficacy of image-guided catheter-directed approaches for the treatment of hepatic malignancies. For this purpose, a nanocomposite microsphere platform was developed for selective intra-arterial transcatheter drug delivery to liver tumors. In our study, continuous microfluidic methods were used to fabricate drug-loaded multimodal MRI/CT visible microspheres that included both gold nanorods and magnetic clusters. The resulting hydrophilic, deformable, and non-aggregated microspheres were mono-disperse and roughly 25 um in size. Sustained drug release and strong MRI T2 and CT contrast effects were achieved with the embedded magnetic nano-clusters and radiopaque gold nanorods. The microspheres were successfully infused through catheters selectively placed within the hepatic artery in rodent models and subsequent distribution in the targeted liver tissues and hepatic tumors confirmed with MRI and CT imaging. These multimodal nanocomposite drug carriers should be ideal for selective intra-arterial catheter-directed administration to liver tumors while permitting MRI/CT visualization for patient-specific confirmation of tumor-targeted delivery. PMID:27405824

  2. Multimodal Imaging of Nanocomposite Microspheres for Transcatheter Intra-Arterial Drug Delivery to Liver Tumors

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Hyun; Li, Weiguo; Chen, Jeane; Zhang, Zhuoli; Green, Richard M.; Huang, Sui; Larson, Andrew C.

    2016-07-01

    A modern multi-functional drug carrier is critically needed to improve the efficacy of image-guided catheter-directed approaches for the treatment of hepatic malignancies. For this purpose, a nanocomposite microsphere platform was developed for selective intra-arterial transcatheter drug delivery to liver tumors. In our study, continuous microfluidic methods were used to fabricate drug-loaded multimodal MRI/CT visible microspheres that included both gold nanorods and magnetic clusters. The resulting hydrophilic, deformable, and non-aggregated microspheres were mono-disperse and roughly 25 um in size. Sustained drug release and strong MRI T2 and CT contrast effects were achieved with the embedded magnetic nano-clusters and radiopaque gold nanorods. The microspheres were successfully infused through catheters selectively placed within the hepatic artery in rodent models and subsequent distribution in the targeted liver tissues and hepatic tumors confirmed with MRI and CT imaging. These multimodal nanocomposite drug carriers should be ideal for selective intra-arterial catheter-directed administration to liver tumors while permitting MRI/CT visualization for patient-specific confirmation of tumor-targeted delivery.

  3. Indocyanine green fluorescence and three-dimensional imaging of right gastroepiploic artery in gastric tube cancer.

    PubMed

    Nakano, Toru; Sakurai, Tadashi; Maruyama, Shota; Ozawa, Yohei; Kamei, Takashi; Miyata, Go; Ohuchi, Noriaki

    2015-01-07

    A 79-year-old male was admitted to our hospital for the treatment of cancer of the gastric tube. Gastrointestinal examination revealed a T1b Union for International Cancer Control (UICC) tumor at the pyloric region of the gastric tube. Laparotomy did not reveal infiltration into the serosa, peritoneal dissemination, regional lymph node swelling, or distant metastasis. We performed a distal gastrectomy preserving the right gastroepiploic artery by referencing the preoperative three-dimensional computed tomoangiography. We also evaluated the blood flow of the right gastroepiploic artery and in the proximal gastric tube by using indocyanine green fluorescence imaging intra-operatively and then followed with a gastrojejunal anastomosis with Roux-en-Y reconstruction. The definitive diagnosis was moderately differentiated adenocarcinoma of the gastric tube, pT1bN0M0, pStage IA (UICC). His postoperative course was uneventful. Three-dimensional computed tomographic imaging is effective for assessing the course of blood vessels and the relationship with the surrounding structures. Intraoperative evaluation of blood flow of the right gastroepiploic artery and of the gastric tube in the anastomotic portion is very valuable information and could contribute to a safe gastrointestinal reconstruction.

  4. Non-linear imaging and characterization of atherosclerotic arterial tissue using combined SHG and FLIM microscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Matthäus, Christian; Meyer, Tobias; Lattermann, Annika; Dietzek, Benjamin; Brehm, Bernhard R.; Popp, Jürgen; Pavone, Francesco S.

    2015-03-01

    Atherosclerosis is among the most widespread cardiovascular diseases and one of the leading cause of death in the Western World. Characterization of arterial tissue in atherosclerotic condition is extremely interesting from the diagnostic point of view, especially for what is concerning collagen content and organization because collagen plays a crucial role in plaque vulnerability. Routinely used diagnostic methods, such as histopathological examination, are limited to morphological analysis of the examined tissues, whereas an exhaustive characterization requires immune-histochemical examination and a morpho-functional approach. Non-linear microscopy techniques offer the potential for providing morpho-functional information on the examined tissues in a label-free way. In this study, we employed combined SHG and FLIM microscopy for characterizing collagen organization in both normal arterial wall and within atherosclerotic plaques. Image pattern analysis of SHG images allowed characterizing collagen organization in different tissue regions. In addition, the analysis of collagen fluorescence decay contributed to the characterization of the samples on the basis of collagen fluorescence lifetime. Different values of collagen fiber mean size, collagen distribution, collagen anisotropy and collagen fluorescence lifetime were found in normal arterial wall and within plaque depositions, prospectively allowing for automated classification of atherosclerotic lesions and plaque vulnerability. The presented method represents a promising diagnostic tool for evaluating atherosclerotic tissue and has the potential to find a stable place in clinical setting as well as to be applied in vivo in the near future.

  5. Multimodal Imaging of Nanocomposite Microspheres for Transcatheter Intra-Arterial Drug Delivery to Liver Tumors.

    PubMed

    Kim, Dong-Hyun; Li, Weiguo; Chen, Jeane; Zhang, Zhuoli; Green, Richard M; Huang, Sui; Larson, Andrew C

    2016-07-13

    A modern multi-functional drug carrier is critically needed to improve the efficacy of image-guided catheter-directed approaches for the treatment of hepatic malignancies. For this purpose, a nanocomposite microsphere platform was developed for selective intra-arterial transcatheter drug delivery to liver tumors. In our study, continuous microfluidic methods were used to fabricate drug-loaded multimodal MRI/CT visible microspheres that included both gold nanorods and magnetic clusters. The resulting hydrophilic, deformable, and non-aggregated microspheres were mono-disperse and roughly 25 um in size. Sustained drug release and strong MRI T2 and CT contrast effects were achieved with the embedded magnetic nano-clusters and radiopaque gold nanorods. The microspheres were successfully infused through catheters selectively placed within the hepatic artery in rodent models and subsequent distribution in the targeted liver tissues and hepatic tumors confirmed with MRI and CT imaging. These multimodal nanocomposite drug carriers should be ideal for selective intra-arterial catheter-directed administration to liver tumors while permitting MRI/CT visualization for patient-specific confirmation of tumor-targeted delivery.

  6. Automated FMV image quality assessment based on power spectrum statistics

    NASA Astrophysics Data System (ADS)

    Kalukin, Andrew

    2015-05-01

    Factors that degrade image quality in video and other sensor collections, such as noise, blurring, and poor resolution, also affect the spatial power spectrum of imagery. Prior research in human vision and image science from the last few decades has shown that the image power spectrum can be useful for assessing the quality of static images. The research in this article explores the possibility of using the image power spectrum to automatically evaluate full-motion video (FMV) imagery frame by frame. This procedure makes it possible to identify anomalous images and scene changes, and to keep track of gradual changes in quality as collection progresses. This article will describe a method to apply power spectral image quality metrics for images subjected to simulated blurring, blocking, and noise. As a preliminary test on videos from multiple sources, image quality measurements for image frames from 185 videos are compared to analyst ratings based on ground sampling distance. The goal of the research is to develop an automated system for tracking image quality during real-time collection, and to assign ratings to video clips for long-term storage, calibrated to standards such as the National Imagery Interpretability Rating System (NIIRS).

  7. Quality of Life on Arterial Hypertension: Validity of Known Groups of MINICHAL

    PubMed Central

    Soutello, Ana Lúcia Soares; Rodrigues, Roberta Cunha Matheus; Jannuzzi, Fernanda Freire; São-João, Thaís Moreira; Martini, Gabriela Giordano; Nadruz Jr., Wilson; Gallani, Maria-Cecília Bueno Jayme

    2015-01-01

    Introductions In the care of hypertension, it is important that health professionals possess available tools that allow evaluating the impairment of the health-related quality of life, according to the severity of hypertension and the risk for cardiovascular events. Among the instruments developed for the assessment of health-related quality of life, there is the Mini-Cuestionario of Calidad de Vida en la Hipertensión Arterial (MINICHAL) recently adapted to the Brazilian culture. Objective To estimate the validity of known groups of the Brazilian version of the MINICHAL regarding the classification of risk for cardiovascular events, symptoms, severity of dyspnea and target-organ damage. Methods Data of 200 hypertensive outpatients concerning sociodemographic and clinical information and health-related quality of life were gathered by consulting the medical charts and the application of the Brazilian version of MINICHAL. The Mann-Whitney test was used to compare health-related quality of life in relation to symptoms and target-organ damage. The Kruskal-Wallis test and ANOVA with ranks transformation were used to compare health-related quality of life in relation to the classification of risk for cardiovascular events and intensity of dyspnea, respectively. Results The MINICHAL was able to discriminate health-related quality of life in relation to symptoms and kidney damage, but did not discriminate health-related quality of life in relation to the classification of risk for cardiovascular events. Conclusion The Brazilian version of the MINICHAL is a questionnaire capable of discriminating differences on the health‑related quality of life regarding dyspnea, chest pain, palpitation, lipothymy, cephalea and renal damage. PMID:25993593

  8. Influence of adaptive statistical iterative reconstruction algorithm on image quality in coronary computed tomography angiography

    PubMed Central

    Thygesen, Jesper; Gerke, Oke; Egstrup, Kenneth; Waaler, Dag; Lambrechtsen, Jess

    2016-01-01

    Background Coronary computed tomography angiography (CCTA) requires high spatial and temporal resolution, increased low contrast resolution for the assessment of coronary artery stenosis, plaque detection, and/or non-coronary pathology. Therefore, new reconstruction algorithms, particularly iterative reconstruction (IR) techniques, have been developed in an attempt to improve image quality with no cost in radiation exposure. Purpose To evaluate whether adaptive statistical iterative reconstruction (ASIR) enhances perceived image quality in CCTA compared to filtered back projection (FBP). Material and Methods Thirty patients underwent CCTA due to suspected coronary artery disease. Images were reconstructed using FBP, 30% ASIR, and 60% ASIR. Ninety image sets were evaluated by five observers using the subjective visual grading analysis (VGA) and assessed by proportional odds modeling. Objective quality assessment (contrast, noise, and the contrast-to-noise ratio [CNR]) was analyzed with linear mixed effects modeling on log-transformed data. The need for ethical approval was waived by the local ethics committee as the study only involved anonymously collected clinical data. Results VGA showed significant improvements in sharpness by comparing FBP with ASIR, resulting in odds ratios of 1.54 for 30% ASIR and 1.89 for 60% ASIR (P = 0.004). The objective measures showed significant differences between FBP and 60% ASIR (P < 0.0001) for noise, with an estimated ratio of 0.82, and for CNR, with an estimated ratio of 1.26. Conclusion ASIR improved the subjective image quality of parameter sharpness and, objectively, reduced noise and increased CNR.

  9. Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction.

    PubMed

    Zhao, Li; Fielden, Samuel W; Feng, Xue; Wintermark, Max; Mugler, John P; Meyer, Craig H

    2015-11-01

    Dynamic arterial spin labeling (ASL) MRI measures the perfusion bolus at multiple observation times and yields accurate estimates of cerebral blood flow in the presence of variations in arterial transit time. ASL has intrinsically low signal-to-noise ratio (SNR) and is sensitive to motion, so that extensive signal averaging is typically required, leading to long scan times for dynamic ASL. The goal of this study was to develop an accelerated dynamic ASL method with improved SNR and robustness to motion using a model-based image reconstruction that exploits the inherent sparsity of dynamic ASL data. The first component of this method is a single-shot 3D turbo spin echo spiral pulse sequence accelerated using a combination of parallel imaging and compressed sensing. This pulse sequence was then incorporated into a dynamic pseudo continuous ASL acquisition acquired at multiple observation times, and the resulting images were jointly reconstructed enforcing a model of potential perfusion time courses. Performance of the technique was verified using a numerical phantom and it was validated on normal volunteers on a 3-Tesla scanner. In simulation, a spatial sparsity constraint improved SNR and reduced estimation errors. Combined with a model-based sparsity constraint, the proposed method further improved SNR, reduced estimation error and suppressed motion artifacts. Experimentally, the proposed method resulted in significant improvements, with scan times as short as 20s per time point. These results suggest that the model-based image reconstruction enables rapid dynamic ASL with improved accuracy and robustness.

  10. Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images.

    PubMed

    Acharya, U Rajendra; Sree, S Vinitha; Muthu Rama Krishnan, M; Krishnananda, N; Ranjan, Shetty; Umesh, Pai; Suri, Jasjit S

    2013-12-01

    Coronary Artery Disease (CAD), caused by the buildup of plaque on the inside of the coronary arteries, has a high mortality rate. To efficiently detect this condition from echocardiography images, with lesser inter-observer variability and visual interpretation errors, computer based data mining techniques may be exploited. We have developed and presented one such technique in this paper for the classification of normal and CAD affected cases. A multitude of grayscale features (fractal dimension, entropies based on the higher order spectra, features based on image texture and local binary patterns, and wavelet based features) were extracted from echocardiography images belonging to a huge database of 400 normal cases and 400 CAD patients. Only the features that had good discriminating capability were selected using t-test. Several combinations of the resultant significant features were used to evaluate many supervised classifiers to find the combination that presents a good accuracy. We observed that the Gaussian Mixture Model (GMM) classifier trained with a feature subset made up of nine significant features presented the highest accuracy, sensitivity, specificity, and positive predictive value of 100%. We have also developed a novel, highly discriminative HeartIndex, which is a single number that is calculated from the combination of the features, in order to objectively classify the images from either of the two classes. Such an index allows for an easier implementation of the technique for automated CAD detection in the computers in hospitals and clinics.

  11. Molecular Imaging of Bone Marrow Mononuclear Cell Survival and Homing in Murine Peripheral Artery Disease

    PubMed Central

    van der Bogt, Koen E.A.; Hellingman, Alwine A.; Lijkwan, Maarten A.; Bos, Ernst-Jan; de Vries, Margreet R.; Fischbein, Michael P.; Quax, Paul H.; Robbins, Robert C.; Hamming, Jaap F.; Wu, Joseph C.

    2013-01-01

    Introduction Bone marrow mononuclear cell (MNC) therapy is a promising treatment for peripheral artery disease (PAD). This study aims to provide insight into cellular kinetics using molecular imaging following different transplantation methods. Methods and Results MNCs were isolated from F6 transgenic mice (FVB background) that express firefly luciferase (Fluc) and green fluorescence protein (GFP). Male FVB and C57Bl6 mice (n=50) underwent femoral artery ligation and were randomized into 4 groups receiving: (1) single intramuscular (i.m.) injection of 2×106 MNC; (2) four weekly i.m. injections of 5×105 MNC; (3) 2×106 MNCs intravenously (i.v.); and (4) PBS. Cellular kinetics, measured by in vivo bioluminescence imaging (BLI), revealed near-complete donor cell death 4 weeks after i.m. transplantation. Following i.v. transplantation, BLI monitored cells homed in on the injured area in the limb, as well as to the liver, spleen, and bone marrow. Ex vivo BLI showed presence of MNCs in the scar tissue and adductor muscle. However, no significant effects on neovascularisation were observed as monitored by Laser-Doppler-Perfusion-Imaging and histology. Conclusion This is one of the first studies to assess kinetics of transplanted MNCs in PAD using in vivo molecular imaging. MNC survival is short lived and MNCs do not significantly stimulate perfusion in this model. PMID:22239892

  12. The study of surgical image quality evaluation system by subjective quality factor method

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Xuan, Jason R.; Yang, Xirong; Yu, Honggang; Koullick, Edouard

    2016-03-01

    GreenLightTM procedure is an effective and economical way of treatment of benign prostate hyperplasia (BPH); there are almost a million of patients treated with GreenLightTM worldwide. During the surgical procedure, the surgeon or physician will rely on the monitoring video system to survey and confirm the surgical progress. There are a few obstructions that could greatly affect the image quality of the monitoring video, like laser glare by the tissue and body fluid, air bubbles and debris generated by tissue evaporation, and bleeding, just to name a few. In order to improve the physician's visual experience of a laser surgical procedure, the system performance parameter related to image quality needs to be well defined. However, since image quality is the integrated set of perceptions of the overall degree of excellence of an image, or in other words, image quality is the perceptually weighted combination of significant attributes (contrast, graininess …) of an image when considered in its marketplace or application, there is no standard definition on overall image or video quality especially for the no-reference case (without a standard chart as reference). In this study, Subjective Quality Factor (SQF) and acutance are used for no-reference image quality evaluation. Basic image quality parameters, like sharpness, color accuracy, size of obstruction and transmission of obstruction, are used as subparameter to define the rating scale for image quality evaluation or comparison. Sample image groups were evaluated by human observers according to the rating scale. Surveys of physician groups were also conducted with lab generated sample videos. The study shows that human subjective perception is a trustworthy way of image quality evaluation. More systematic investigation on the relationship between video quality and image quality of each frame will be conducted as a future study.

  13. Optical imaging of resting-state functional connectivity in a novel arterial stiffness model.

    PubMed

    Guevara, Edgar; Sadekova, Nataliya; Girouard, Hélène; Lesage, Frédéric

    2013-01-01

    This study aims to assess the impact of unilateral increases in carotid stiffness on cortical functional connectivity measures in the resting state. Using a novel animal model of induced arterial stiffness combined with optical intrinsic signals and laser speckle imaging, resting state functional networks derived from hemodynamic signals are investigated for their modulation by isolated changes in stiffness of the right common carotid artery. By means of seed-based analysis, results showed a decreasing trend of homologous correlation in the motor and cingulate cortices. Furthermore, a graph analysis indicated a randomization of the cortex functional networks, suggesting a loss of connectivity, more specifically in the motor cortex lateral to the treated carotid, which however did not translate in differentiated metabolic activity.

  14. Automated registration of multispectral MR vessel wall images of the carotid artery

    SciTech Connect

    Klooster, R. van 't; Staring, M.; Reiber, J. H. C.; Lelieveldt, B. P. F.; Geest, R. J. van der; Klein, S.; Kwee, R. M.; Kooi, M. E.

    2013-12-15

    Purpose: Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment of atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using multiple MR sequences with different contrast weightings. These images allow manual or automated classification of plaque components inside the vessel wall. Automated classification requires all sequences to be in alignment, which is hampered by patient motion. In clinical practice, correction of this motion is performed manually. Previous studies applied automated image registration to correct for motion using only nondeformable transformation models and did not perform a detailed quantitative validation. The purpose of this study is to develop an automated accurate 3D registration method, and to extensively validate this method on a large set of patient data. In addition, the authors quantified patient motion during scanning to investigate the need for correction. Methods: MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA/stroke patients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort. Five MR pulse sequences were acquired around the carotid bifurcation, each containing nine transverse slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and pre- and postcontrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually segmented by delineating the lumen contour in each vessel wall sequence and were manually aligned by applying throughplane and inplane translations to the images. To find the optimal automatic image registration method, different masks, choice of the fixed image, different types of the mutual information image similarity metric, and transformation models including 3D deformable transformation models, were evaluated. Evaluation of the automatic registration results was performed by comparing the lumen segmentations of the fixed image and

  15. Three-dimensional segmentation of pulmonary artery volume from thoracic computed tomography imaging

    NASA Astrophysics Data System (ADS)

    Lindenmaier, Tamas J.; Sheikh, Khadija; Bluemke, Emma; Gyacskov, Igor; Mura, Marco; Licskai, Christopher; Mielniczuk, Lisa; Fenster, Aaron; Cunningham, Ian A.; Parraga, Grace

    2015-03-01

    Chronic obstructive pulmonary disease (COPD), is a major contributor to hospitalization and healthcare costs in North America. While the hallmark of COPD is airflow limitation, it is also associated with abnormalities of the cardiovascular system. Enlargement of the pulmonary artery (PA) is a morphological marker of pulmonary hypertension, and was previously shown to predict acute exacerbations using a one-dimensional diameter measurement of the main PA. We hypothesized that a three-dimensional (3D) quantification of PA size would be more sensitive than 1D methods and encompass morphological changes along the entire central pulmonary artery. Hence, we developed a 3D measurement of the main (MPA), left (LPA) and right (RPA) pulmonary arteries as well as total PA volume (TPAV) from thoracic CT images. This approach incorporates segmentation of pulmonary vessels in cross-section for the MPA, LPA and RPA to provide an estimate of their volumes. Three observers performed five repeated measurements for 15 ex-smokers with ≥10 pack-years, and randomly identified from a larger dataset of 199 patients. There was a strong agreement (r2=0.76) for PA volume and PA diameter measurements, which was used as a gold standard. Observer measurements were strongly correlated and coefficients of variation for observer 1 (MPA:2%, LPA:3%, RPA:2%, TPA:2%) were not significantly different from observer 2 and 3 results. In conclusion, we generated manual 3D pulmonary artery volume measurements from thoracic CT images that can be performed with high reproducibility. Future work will involve automation for implementation in clinical workflows.

  16. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality.

    PubMed

    Vano, E; Geiger, B; Schreiner, A; Back, C; Beissel, J

    2005-12-07

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 microGy/frame (cine) and 5 and 95 mGy min(-1) (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  17. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    NASA Astrophysics Data System (ADS)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  18. Can pictorial images communicate the quality of pain successfully?

    PubMed Central

    Knapp, Peter; Morley, Stephen; Stones, Catherine

    2015-01-01

    Chronic pain is common and difficult for patients to communicate to health professionals. It may include neuropathic elements which require specialised treatment. A little used approach to communicating the quality of pain is through the use of images. This study aimed to test the ability of a set of 12 images depicting different sensory pain qualities to successfully communicate those qualities. Images were presented to 25 student nurses and 38 design students. Students were asked to write down words or phrases describing the quality of pain they felt was being communicated by each image. They were asked to provide as many or as few as occurred to them. The images were extremely heterogeneous in their ability to convey qualities of pain accurately. Only 2 of the 12 images were correctly interpreted by more than 70% of the sample. There was a significant difference between the two student groups, with nurses being significantly better at interpreting the images than the design students. Clearly, attention needs to be given not only to the content of images designed to depict the sensory qualities of pain but also to the differing audiences who may use them. Education, verbal ability, ethnicity and a multiplicity of other factors may influence the understanding and use of such images. Considerable work is needed to develop a set of images which is sufficiently culturally appropriate and effective for general use. PMID:26516574

  19. Can pictorial images communicate the quality of pain successfully?

    PubMed

    Closs, S José; Knapp, Peter; Morley, Stephen; Stones, Catherine

    2015-08-01

    Chronic pain is common and difficult for patients to communicate to health professionals. It may include neuropathic elements which require specialised treatment. A little used approach to communicating the quality of pain is through the use of images. This study aimed to test the ability of a set of 12 images depicting different sensory pain qualities to successfully communicate those qualities. Images were presented to 25 student nurses and 38 design students. Students were asked to write down words or phrases describing the quality of pain they felt was being communicated by each image. They were asked to provide as many or as few as occurred to them. The images were extremely heterogeneous in their ability to convey qualities of pain accurately. Only 2 of the 12 images were correctly interpreted by more than 70% of the sample. There was a significant difference between the two student groups, with nurses being significantly better at interpreting the images than the design students. Clearly, attention needs to be given not only to the content of images designed to depict the sensory qualities of pain but also to the differing audiences who may use them. Education, verbal ability, ethnicity and a multiplicity of other factors may influence the understanding and use of such images. Considerable work is needed to develop a set of images which is sufficiently culturally appropriate and effective for general use.

  20. Cerebral artery-vein separation using 0.1-Hz oscillation in dual-wavelength optical imaging.

    PubMed

    Wang, Yucheng; Hu, Dewen; Liu, Yadong; Li, Ming

    2011-12-01

    We present a novel artery-vein separation method using 0.1-Hz oscillation at two wavelengths with optical imaging of intrinsic signals (OIS). The 0.1-Hz oscillation at a green light wavelength of 546 nm exhibits greater amplitude in arteries than in veins and is primarily caused by vasomotion, whereas the 0.1-Hz oscillation at a red light wavelength of 630 nm exhibits greater amplitude in veins than in arteries and is primarily caused by changes of deoxyhemoglobin concentration. This spectral feature enables cortical arteries and veins to be segmented independently. The arteries can be segmented on the 0.1-Hz amplitude image at 546 nm using matched filters of a modified dual Gaussian model combining with a single Gaussian model. The veins are a combination of vessels segmented on both amplitude images at the two wavelengths using multiscale matched filters of single Gaussian model. Our method can separate most of the thin arteries and veins from each other, especially the thin arteries with low contrast in raw gray images. In vivo OIS experiments demonstrate the separation ability of the 0.1-Hz based segmentation method in cerebral cortex of eight rats. Two validation studies were undertaken to evaluate the performance of the method by quantifying the arterial and venous length based on a reference standard. The results indicate that our 0.1-Hz method is very effective in separating both large and thin arteries and veins regardless of vessel crossover or overlapping to great extent in comparison with previous methods.

  1. Image quality assessment for CT used on small animals

    NASA Astrophysics Data System (ADS)

    Cisneros, Isabela Paredes; Agulles-Pedrós, Luis

    2016-07-01

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MatLab, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  2. Adjunctive intra-coronary imaging for the assessment of coronary artery disease

    PubMed Central

    Shah, Nikunj; Ussen, Bassey

    2016-01-01

    Atherosclerotic coronary artery disease remains a leading cause of worldwide morbidity and mortality. Invasive angiography currently remains the gold standard method of diagnosing and treating coronary disease; however, more sophisticated adjunctive interventional technologies have been developed to combat the inter and intra-observer variability frequently encountered in the assessment of lesion severity. Intravascular imaging now plays a key role in optimising percutaneous coronary interventions and provides invaluable information as part of the interventional cardiologist’s diagnostic arsenal. The principles, technical aspects and uses of two modalities of intracoronary imaging, intravascular ultrasound and optical coherence tomography, are discussed. We additionally provide examples of cases where the adjunctive intracoronary imaging was superior to angiography alone in successfully identifying and treating acute coronary syndromes. PMID:27540480

  3. Effect of image quality on calcification detection in digital mammography

    PubMed Central

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Chakraborty, Dev P.; Dance, David R.; Bosmans, Hilde; Young, Kenneth C.

    2012-01-01

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC

  4. Effect of image quality on calcification detection in digital mammography

    SciTech Connect

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Chakraborty, Dev P.; Dance, David R.; Bosmans, Hilde; Young, Kenneth C.

    2012-06-15

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC

  5. High-Resolution 3 T MR Microscopy Imaging of Arterial Walls

    SciTech Connect

    Sailer, Johannes Rand, Thomas; Berg, Andreas; Sulzbacher, Irene; Peloschek, P.; Hoelzenbein, Thomas; Lammer, Johannes

    2006-10-15

    Purpose. To achieve a high spatial resolution in MR imaging that allows for clear visualization of anatomy and even histology and documentation of plaque morphology in in vitro samples from patients with advanced atherosclerosis. A further objective of our study was to evaluate whether T2-weighted high-resolution MR imaging can provide accurate classification of atherosclerotic plaque according to a modified American Heart Association classification. Methods. T2-weighted images of arteries were obtained in 13 in vitro specimens using a 3 T MR unit (Medspec 300 Avance/Bruker, Ettlingen, Germany) combined with a dedicated MR microscopy system. Measurement parameters were: T2-weighted sequences with TR 3.5 sec, TE 15-120 msec; field of view (FOV) 1.4 x 1.4; NEX 8; matrix 192; and slice thickness 600 {mu}m. MR measurements were compared with corresponding histologic sections. Results. We achieved excellent spatial and contrast resolution in all specimens. We found high agreement between MR images and histology with regard to the morphology and extent of intimal proliferations in all but 2 specimens. We could differentiate fibrous caps and calcifications from lipid plaque components based on differences in signal intensity in order to differentiate hard and soft atheromatous plaques. Hard plaques with predominantly intimal calcifications were found in 7 specimens, and soft plaques with a cholesterol/lipid content in 5 cases. In all specimens, hemorrhage or thrombus formation, and fibrotic and hyalinized tissue could be detected on both MR imaging and histopathology. Conclusion. High-resolution, high-field MR imaging of arterial walls demonstrates the morphologic features, volume, and extent of intimal proliferations with high spatial and contrast resolution in in vitro specimens and can differentiate hard and soft plaques.

  6. Fractal analysis for reduced reference image quality assessment.

    PubMed

    Xu, Yong; Liu, Delei; Quan, Yuhui; Le Callet, Patrick

    2015-07-01

    In this paper, multifractal analysis is adapted to reduced-reference image quality assessment (RR-IQA). A novel RR-QA approach is proposed, which measures the difference of spatial arrangement between the reference image and the distorted image in terms of spatial regularity measured by fractal dimension. An image is first expressed in Log-Gabor domain. Then, fractal dimensions are computed on each Log-Gabor subband and concatenated as a feature vector. Finally, the extracted features are pooled as the quality score of the distorted image using l1 distance. Compared with existing approaches, the proposed method measures image quality from the perspective of the spatial distribution of image patterns. The proposed method was evaluated on seven public benchmark data sets. Experimental results have demonstrated the excellent performance of the proposed method in comparison with state-of-the-art approaches.

  7. Raman chemical imaging system for food safety and quality inspection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raman chemical imaging technique combines Raman spectroscopy and digital imaging to visualize composition and structure of a target, and it offers great potential for food safety and quality research. In this study, a laboratory-based Raman chemical imaging platform was designed and developed. The i...

  8. The simulation of adaptive optical image even and pulse noise and research of image quality evaluation

    NASA Astrophysics Data System (ADS)

    Wen, Changli; Xu, Yuannan; Xu, Rong; Liu, Changhai; Men, Tao; Niu, Wei

    2013-09-01

    As optical image becomes more and more important in adaptive optics area, and adaptive optical telescopes play a more and more important role in the detection system on the ground, and the images we get are so many that we need find a suitable method to choose good quality images automatically in order to save human power, people pay more and more attention in image's evaluation methods and their characteristics. According to different image degradation model, the applicability of different image's quality evaluation method will be different. Researchers have paid most attention in how to improve or build new method to evaluate degraded images. Now we should change our way to take some research in the models of degradation of images, the reasons of image degradation, and the relations among different degraded images and different image quality evaluation methods. In this paper, we build models of even noise and pulse noise based on their definition and get degraded images using these models, and we take research in six kinds of usual image quality evaluation methods such as square error method, sum of multi-power of grey scale method, entropy method, Fisher function method, Sobel method, and sum of grads method, and we make computer software for these methods to use easily to evaluate all kinds of images input. Then we evaluate the images' qualities with different evaluation methods and analyze the results of six kinds of methods, and finally we get many important results. Such as the characteristics of every method for evaluating qualities of degraded images of even noise, the characteristics of every method for evaluating qualities of degraded images of pulse noise, and the best method to evaluate images which affected by tow kinds of noise both and the characteristics of this method. These results are important to image's choosing automatically, and this will help we to manage the images we get through adaptive optical telescopes base on the ground.

  9. Image processing system performance prediction and product quality evaluation

    NASA Technical Reports Server (NTRS)

    Stein, E. K.; Hammill, H. B. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. A new technique for image processing system performance prediction and product quality evaluation was developed. It was entirely objective, quantitative, and general, and should prove useful in system design and quality control. The technique and its application to determination of quality control procedures for the Earth Resources Technology Satellite NASA Data Processing Facility are described.

  10. Improved factor analysis of dynamic PET images to estimate arterial input function and tissue curves

    NASA Astrophysics Data System (ADS)

    Boutchko, Rostyslav; Mitra, Debasis; Pan, Hui; Jagust, William; Gullberg, Grant T.

    2015-03-01

    Factor analysis of dynamic structures (FADS) is a methodology of extracting time-activity curves (TACs) for corresponding different tissue types from noisy dynamic images. The challenges of FADS include long computation time and sensitivity to the initial guess, resulting in convergence to local minima far from the true solution. We propose a method of accelerating and stabilizing FADS application to sequences of dynamic PET images by adding preliminary cluster analysis of the time activity curves for individual voxels. We treat the temporal variation of individual voxel concentrations as a set of time-series and use a partial clustering analysis to identify the types of voxel TACs that are most functionally distinct from each other. These TACs provide a good initial guess for the temporal factors for subsequent FADS processing. Applying this approach to a set of single slices of dynamic 11C-PIB images of the brain allows identification of the arterial input function and two different tissue TACs that are likely to correspond to the specific and non-specific tracer binding-tissue types. These results enable us to perform direct classification of tissues based on their pharmacokinetic properties in dynamic PET without relying on a compartment-based kinetic model, without identification of the reference region, or without using any external methods of estimating the arterial input function, as needed in some techniques.

  11. The coronary artery disease quality dashboard: a chronic care disease management tool in an electronic health record.

    PubMed

    Jung, Eunice; Schnipper, Jeffrey L; Li, Qi; Linder, Jeffrey A; Rose, Alan F; Li, Ruzhuo; Eskin, Michael S; Housman, Dan; Middleton, Blackford; Einbinder, Jonathan S

    2007-10-11

    Quality reporting tools, integrated with ambulatory electronic health records (EHRs), may help clinicians understand performance, manage populations, and improve quality. The Coronary Artery Disease Quality Dash board (CAD QD) is a secure web report for performance measurement of a chronic care condition delivered through a central data warehouse and custom-built reporting tool. Pilot evaluation of the CAD Quality Dash board indicates that clinicians prefer a quality report that combines not only structured data from EHRs but one that facilitates actions to be taken on individual patients or on a population, i.e., for case management.

  12. Symptom Interference Severity and Health-Related Quality of Life in Pulmonary Arterial Hypertension

    PubMed Central

    Matura, Lea Ann; McDonough, Annette; Carroll, Diane L.

    2015-01-01

    Context While assessing symptom severity is an important component of evaluating symptoms, understanding those symptoms that interfere with patients’ lives is also key. Pulmonary arterial hypertension (PAH) is a chronic disease resulting in right heart failure and increased mortality. Patients with PAH experience multiple symptoms but we do not know which symptoms and to what extent their symptoms interfere with daily life. Objectives To: 1) describe the prevalence of those symptoms that interfere with life; 2) describe the severity of symptom interference; and 3) determine those sociodemographic and clinical characteristics, and interfering symptoms associated with health-related quality of life (HRQOL) in patients with PAH. Methods A convenience sample of 191 patients with PAH completed a sociodemographic form; the Pulmonary Arterial Hypertension Symptom Interference Scale (PAHSIS) and the Medical Outcomes Survey Short Form-36 (SF-36) to measure HRQOL. Hierarchical multiple linear regression was used to analyze demographic and medical characteristics along with symptom interference from the PAHSIS as predictors of HRQOL from the composite mental and physical health summary scores of the SF-36. Results The most interfering symptoms reported were fatigue, shortness of breath with exertion and difficulty sleeping. Age, gender, functional class, oxygen use, fatigue, dizziness and Raynaud’s phenomenon were associated with the HRQOL physical health summary scores. The symptoms fatigue and SOB while lying down were associated with the HRQOL mental health summary scores. Conclusion Patients with PAH are experiencing multiple symptoms that are interfering with their HRQOL and ability to function. PMID:26300023

  13. Automated quality assessment in three-dimensional breast ultrasound images.

    PubMed

    Schwaab, Julia; Diez, Yago; Oliver, Arnau; Martí, Robert; van Zelst, Jan; Gubern-Mérida, Albert; Mourri, Ahmed Bensouda; Gregori, Johannes; Günther, Matthias

    2016-04-01

    Automated three-dimensional breast ultrasound (ABUS) is a valuable adjunct to x-ray mammography for breast cancer screening of women with dense breasts. High image quality is essential for proper diagnostics and computer-aided detection. We propose an automated image quality assessment system for ABUS images that detects artifacts at the time of acquisition. Therefore, we study three aspects that can corrupt ABUS images: the nipple position relative to the rest of the breast, the shadow caused by the nipple, and the shape of the breast contour on the image. Image processing and machine learning algorithms are combined to detect these artifacts based on 368 clinical ABUS images that have been rated manually by two experienced clinicians. At a specificity of 0.99, 55% of the images that were rated as low quality are detected by the proposed algorithms. The areas under the ROC curves of the single classifiers are 0.99 for the nipple position, 0.84 for the nipple shadow, and 0.89 for the breast contour shape. The proposed algorithms work fast and reliably, which makes them adequate for online evaluation of image quality during acquisition. The presented concept may be extended to further image modalities and quality aspects.

  14. Imaging diagnosis--celiac artery pseudoaneurysm associated with a migrating grass awn.

    PubMed

    Llabrés-Díaz, Francisco J; Brissot, Hervé; Ibarrola, Patricia

    2010-01-01

    The ultrasound and computed tomography findings of a retroperitoneal pseudoaneurysm associated with a grass awn are described in a 10-month-old dog. Ultrasound was used to localize the lesion and surrounding reaction as well as to determine its relationship with the celiac artery, but inadequate Doppler settings hindered the diagnosis of its vascular nature. Dual phase CT enabled further characterization, particularly its close relationship with the major retroperitoneal vessels. The imaging examination was fundamental in recommending nonsurgical therapy. The dog died as a consequence of the rupture of this pseudoaneurysm. A grass awn was confirmed.

  15. Analyzing and Improving Image Quality in Reflective Ghost Imaging

    DTIC Science & Technology

    2011-02-01

    imaging." Phys. Rev. A 79, 023833 (2009). [7] R . E . Meyers , K. S. Deacon. and Y. Shih, "Ghost-imaging experiment by measuring reflected photons," Phys...Rev. A 77, 041801 (2008). [8] R . E . Meyers and K. S. Deacon, "Quantum ghost imaging experiments at ARL," Proc. SPIE 7815. 781501 (2010). [9] J. H

  16. Image reconstruction and image quality evaluation for a dual source CT scanner

    PubMed Central

    Flohr, T. G.; Bruder, H.; Stierstorfer, K.; Petersilka, M.; Schmidt, B.; McCollough, C. H.

    2008-01-01

    The authors present and evaluate concepts for image reconstruction in dual source CT (DSCT). They describe both standard spiral (helical) DSCT image reconstruction and electrocardiogram (ECG)-synchronized image reconstruction. For a compact mechanical design of the DSCT, one detector (A) can cover the full scan field of view, while the other detector (B) has to be restricted to a smaller, central field of view. The authors develop an algorithm for scan data completion, extrapolating truncated data of detector (B) by using data of detector (A). They propose a unified framework for convolution and simultaneous 3D backprojection of both (A) and (B) data, with similar treatment of standard spiral, ECG-gated spiral, and sequential (axial) scan data. In ECG-synchronized image reconstruction, a flexible scan data range per measurement system can be used to trade off temporal resolution for reduced image noise. Both data extrapolation and image reconstruction are evaluated by means of computer simulated data of anthropomorphic phantoms, by phantom measurements and patient studies. The authors show that a consistent filter direction along the spiral tangent on both detectors is essential to reduce cone-beam artifacts, requiring truncation of the extrapolated (B) data after convolution in standard spiral scans. Reconstructions of an anthropomorphic thorax phantom demonstrate good image quality and dose accumulation as theoretically expected for simultaneous 3D backprojection of the filtered (A) data and the truncated filtered (B) data into the same 3D image volume. In ECG-gated spiral modes, spiral slice sensitivity profiles (SSPs) show only minor dependence on the patient’s heart rate if the spiral pitch is properly adapted. Measurements with a thin gold plate phantom result in effective slice widths (full width at half maximum of the SSP) of 0.63–0.69mm for the nominal 0.6mm slice and 0.82–0.87mm for the nominal 0.75mm slice. The visually determined through-plane (z

  17. Arm exercise-thallium imaging testing for the detection of coronary artery disease

    SciTech Connect

    Balady, G.J.; Weiner, D.A.; Rothendler, J.A.; Ryan, T.J.

    1987-01-01

    Patients with lower limb impairment are often unable to undergo a standard bicycle or treadmill test for the evaluation of coronary artery disease. To establish an alternative method of testing, 50 subjects (aged 56 +/- 10 years) performed arm ergometry testing in conjunction with myocardial thallium scintigraphy. All underwent coronary angiography; significant coronary artery disease (greater than or equal to 70% stenosis) in at least one vessel was present in 41 (82%) of the 50 patients. Thallium scintigraphy was found to have an 83% sensitivity and 78% specificity for detecting coronary disease, compared with a sensitivity and specificity of 54% (p less than 0.01) and 67% (p = NS), respectively, for exercise electrocardiography. In the subgroup of 23 patients who had no prior myocardial infarction or left bundle branch block and were not taking digitalis, thallium scintigraphy had a sensitivity of 80% versus 50% for exercise electrocardiography. Scintigraphy yielded a sensitivity of 84, 74 and 90% for one, two and three vessel disease, respectively. Noninvasive arm ergometry exercise-thallium imaging testing appears to be reliable and useful and should be considered in the evaluation of coronary artery disease in patients with lower limb impairment.

  18. Prospective study of quality of life before and after coronary artery bypass grafting.

    PubMed Central

    Caine, N; Harrison, S C; Sharples, L D; Wallwork, J

    1991-01-01

    than 0.001). CONCLUSIONS--Improvements were evident in general health state, symptoms, and activity at three months and one year after coronary artery bypass graft surgery. Interventions likely to influence outcomes included reduction in waiting times for operation; rehabilitation initiatives; and more attention to the quality of information given to patients, their relatives, and the community. PMID:2012849

  19. Arterial vulnerable plaque characterization using ultrasound-induced thermal strain imaging (TSI).

    PubMed

    Kim, Kang; Huang, Sheng-Wen; Hall, Timothy L; Witte, Russell S; Chenevert, Thomas L; O'Donnell, Matthew

    2008-01-01

    Thermal strain imaging (TSI) is demonstrated in two model systems mimicking two potential clinical applications. First, a custom ultrasound (US) microscope produced high-resolution TSI images of an excised porcine coronary artery. Samples were placed in a temperature-controlled water chamber and scanned transversely and longitudinally. Phase-sensitive, correlation-based speckle tracking was applied to map the spatial distribution of temporal strain across the sample. TSI differentiated fatty tissue from water-based arterial wall and muscle with high contrast and a spatial resolution of 60 microm for a 50-MHz transducer. Both transverse and longitudinal TSI images compared well with B-scans of arterial wall structures, including intima, media, adventitia, and overlying fatty tissue. A second model system was used to test the hypothesis that US can produce the heating pattern required for TSI of internal structures. A 2-D phased array with independent drive electronics was combined with a conventional US scanner (iU22, Philips, Bothell, WA) for these studies. This 513-element array, originally designed for the US therapy, acted as the US heat source. To quantify the temporal strain induced by this system, TSI was performed on a homogeneous rubber phantom. TSI temperature estimates were within 3% error for a 3.2 degrees C temperature rise produced within 2 s using a specially designed beamformer and pulse sequencer. The system was then used to produce TSI scanning of an excised kidney containing an intact piece of fat below the collecting system. These images were validated using an magnetic resonance imaging (MRI) pulse sequence designed for lipid quantification. TSI scans matched well MRI scans and histology both anatomically and quantitatively. Finally, to test the potential of US-induced TSI for a significant clinical problem, images were obtained on an excised canine aorta with fatty tissue inside the lumen. Both longitudinal and transversal TSI agreed well with

  20. Sectioned images and surface models of a cadaver for understanding the deep circumflex iliac artery flap.

    PubMed

    Kim, Bong Chul; Chung, Min Suk; Kim, Hyung Jun; Park, Jin Seo; Shin, Dong Sun

    2014-03-01

    The aim of this study was to describe the deep circumflex iliac artery (DCIA) flap from sectioned images and stereoscopic anatomic models using Visible Korean, for the benefit of medical education and clinical training in the field of oromandibular reconstructive surgery. Serially sectioned images of the pelvic area were obtained from a cadaver. Outlines of significant structures in the sectioned images were drawn and stacked to build surface models. The PDF (portable document format) file (size, 30 MB) of the constructed models is available for free download on the Web site of the Department of Anatomy at Ajou University School of Medicine (http://anatomy.co.kr). In the PDF file, the relevant structures of the DCIA flap can be seen in the sectioned images. All surface models and stereoscopic structures associated with the DCIA flap are displayed in real time. We hope that these state-of-the-art sectioned images, outlined images, and surface models will help students and trainees better understand the anatomy associated with DCIA flap.

  1. No-reference visual quality assessment for image inpainting

    NASA Astrophysics Data System (ADS)

    Voronin, V. V.; Frantc, V. A.; Marchuk, V. I.; Sherstobitov, A. I.; Egiazarian, K.

    2015-03-01

    Inpainting has received a lot of attention in recent years and quality assessment is an important task to evaluate different image reconstruction approaches. In many cases inpainting methods introduce a blur in sharp transitions in image and image contours in the recovery of large areas with missing pixels and often fail to recover curvy boundary edges. Quantitative metrics of inpainting results currently do not exist and researchers use human comparisons to evaluate their methodologies and techniques. Most objective quality assessment methods rely on a reference image, which is often not available in inpainting applications. Usually researchers use subjective quality assessment by human observers. It is difficult and time consuming procedure. This paper focuses on a machine learning approach for no-reference visual quality assessment for image inpainting based on the human visual property. Our method is based on observation that Local Binary Patterns well describe local structural information of the image. We use a support vector regression learned on assessed by human images to predict perceived quality of inpainted images. We demonstrate how our predicted quality value correlates with qualitative opinion in a human observer study. Results are shown on a human-scored dataset for different inpainting methods.

  2. Transoral carotid ultrasonography using a micro convex probe with B-flow imaging for extracranial internal carotid artery dissection.

    PubMed

    Sakima, Hirokuni; Isa, Katsunori; Anegawa, Takahiro; Kokuba, Kazuhito; Nakachi, Koh; Goya, Yoshino; Tokashiki, Takashi; Ishiuchi, Shogo; Ohya, Yusuke

    2012-11-01

    We report on transoral carotid ultrasonography using a micro convex probe with B-flow imaging for determining spontaneous extracranial internal carotid artery dissection just below the petrous portion. A 49-year-old man suffered cortical and subcortical infarction in the region of the right middle cerebral artery. Magnetic resonance angiography on the third day of admission revealed spontaneous recanalization of the right internal carotid artery associated with an intimal flap-like structure at the petrous portion. Transoral carotid ultrasonography using a micro convex probe revealed right extracranial internal carotid artery dissection, showing an increased diameter of the right extracranial internal carotid artery with double lumen formation, stenosis of the true lumen, and a mobile intimal flap in B-flow imaging. Transoral carotid ultrasonography using a micro convex probe was helpful to attempt a self-expanding stent for recanalizing right extracranial internal carotid artery dissection. The patient recovered and was discharged ambulatory. The size of the micro convex probe was optimum for transoral carotid ultrasonography in our patient. Micro convex probe is more commonly used than the standard transoral carotid ultrasonography probe, which lacks versatility. We consider that transoral carotid ultrasonography using a micro convex probe could be routinely used for ultrasonographic evaluation of extracranial internal carotid artery dissection.

  3. Serial right ventricle /sup 201/Tl imaging after exercise: relation to anatomy of the right coronary artery

    SciTech Connect

    Brown, K.A.; Boucher, C.A.; Okada, R.D.; Strauss, H.W.; McKusick, K.A.; Pohost, G.M.

    1982-12-01

    The relation of the appearance of the right ventricle on serium /sup 201/Tl myocardial imaging to coronary artery anatomy was examined in 88 consecutive patients undergoing exercise /sup 201/Tl testing and coronary angiography for the evaluation of chest pain. Transient defects in the right ventricle were found in 8 patients. All had high grade (greater than or equal to 90%) stenosis of the proximal right coronary artery. Nonvisualization of right ventricular (RV) activity occurred in 10 patients. Nine of the 10 (90%) had significant (greater than or equal to 50% stenosis) disease of the proximal right coronary artery and 7 (70%) had high grade stenosis. The right ventricle appeared normal in 70 patients. Twenty-nine (41%) of these patients had significant proximal right coronary artery disease. Right ventricular appearance was not affected by the presence or absence of disease of the left anterior descending or left circumflex artery or by the appearance of the left ventricle. Thus, with serial RV thallium-201 myocardial imaging after exercise, we found that (1) RV transient defects suggest the presence of high grade proximal right coronary artery stenosis, (2) non-visualization of RV activity also predicts significant proximal right coronary disease, and (3) the right ventricle frequently appears normal despite proximal right coronary artery disease and therefore this finding does not exclude such disease.

  4. Analysis of the Quality of Information Obtained About Uterine Artery Embolization From the Internet

    SciTech Connect

    Tavare, Aniket N.; Alsafi, Ali Hamady, Mohamad S.

    2012-12-15

    Purpose: The Internet is widely used by patients to source health care-related information. We sought to analyse the quality of information available on the Internet about uterine artery embolization (UAE). Materials and Methods: We searched three major search engines for the phrase 'uterine artery embolization' and compiled the top 50 results from each engine. After excluding repeated sites, scientific articles, and links to documents, the remaining 50 sites were assessed using the LIDA instrument, which scores sites across the domains of accessibility, usability, and reliability. The Fleisch reading ease score (FRES) was calculated for each of the sites. Finally, we checked the country of origin and the presence of certification by the Health On the Net Foundation (HONcode) as well as their effect on LIDA and FRES scores.ResultsThe following mean scores were obtained: accessibility 48/60 (80%), usability 42/54 (77%), reliability 20/51 (39%), total LIDA 110/165 (67%), and FRES 42/100 (42%). Nine sites had HONcode certification, and this was associated with significantly greater (p < 0.05) reliability and total LIDA and FRES scores. When comparing sites between United Kingdom and United States, there was marked variation in the quality of results obtained when searching for information on UAE (p < 0.05). Conclusion: In general, sites were well designed and easy to use. However, many scored poorly on the reliability of their information either because they were produced in a non-evidence-based way or because they lacking currency. It is important that patients are guided to reputable, location-specific sources of information online, especially because prominent search engine rank does not guarantee reliability of information.

  5. Image quality transfer and applications in diffusion MRI.

    PubMed

    Alexander, Daniel C; Zikic, Darko; Ghosh, Aurobrata; Tanno, Ryutaro; Wottschel, Viktor; Zhang, Jiaying; Kaden, Enrico; Dyrby, Tim B; Sotiropoulos, Stamatios N; Zhang, Hui; Criminisi, Antonio

    2017-03-03

    This paper introduces a new computational imaging technique called image quality transfer (IQT). IQT uses machine learning to transfer the rich information available from one-off experimental medical imaging devices to the abundant but lower-quality data from routine acquisitions. The procedure uses matched pairs to learn mappings from low-quality to corresponding high-quality images. Once learned, these mappings then augment unseen low quality images, for example by enhancing image resolution or information content. Here, we demonstrate IQT using a simple patch-regression implementation and the uniquely rich diffusion MRI data set from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard data sets, thin connection pathways that tractography normally requires specialised data to reconstruct. In microstructure imaging, IQT shows potential in estimating, from standard "single-shell" data (one non-zero b-value), maps of microstructural parameters that normally require specialised multi-shell data. Further experiments show strong generalisability, highlighting IQT's benefits even when the training set does not directly represent the application domain. The concept extends naturally to many other imaging modalities and reconstruction problems.

  6. Meat quality evaluation by hyperspectral imaging technique: an overview.

    PubMed

    Elmasry, Gamal; Barbin, Douglas F; Sun, Da-Wen; Allen, Paul

    2012-01-01

    During the last two decades, a number of methods have been developed to objectively measure meat quality attributes. Hyperspectral imaging technique as one of these methods has been regarded as a smart and promising analytical tool for analyses conducted in research and industries. Recently there has been a renewed interest in using hyperspectral imaging in quality evaluation of different food products. The main inducement for developing the hyperspectral imaging system is to integrate both spectroscopy and imaging techniques in one system to make direct identification of different components and their spatial distribution in the tested product. By combining spatial and spectral details together, hyperspectral imaging has proved to be a promising technology for objective meat quality evaluation. The literature presented in this paper clearly reveals that hyperspectral imaging approaches have a huge potential for gaining rapid information about the chemical structure and related physical properties of all types of meat. In addition to its ability for effectively quantifying and characterizing quality attributes of some important visual features of meat such as color, quality grade, marbling, maturity, and texture, it is able to measure multiple chemical constituents simultaneously without monotonous sample preparation. Although this technology has not yet been sufficiently exploited in meat process and quality assessment, its potential is promising. Developing a quality evaluation system based on hyperspectral imaging technology to assess the meat quality parameters and to ensure its authentication would bring economical benefits to the meat industry by increasing consumer confidence in the quality of the meat products. This paper provides a detailed overview of the recently developed approaches and latest research efforts exerted in hyperspectral imaging technology developed for evaluating the quality of different meat products and the possibility of its widespread

  7. Image quality assessment by preprocessing and full reference model combination

    NASA Astrophysics Data System (ADS)

    Bianco, S.; Ciocca, G.; Marini, F.; Schettini, R.

    2009-01-01

    This paper focuses on full-reference image quality assessment and presents different computational strategies aimed to improve the robustness and accuracy of some well known and widely used state of the art models, namely the Structural Similarity approach (SSIM) by Wang and Bovik and the S-CIELAB spatial-color model by Zhang and Wandell. We investigate the hypothesis that combining error images with a visual attention model could allow a better fit of the psycho-visual data of the LIVE Image Quality assessment Database Release 2. We show that the proposed quality assessment metric better correlates with the experimental data.

  8. Improvement of image quality in holographic microscopy.

    PubMed

    Budhiraja, C J; Som, S C

    1981-05-15

    A novel technique of noise reduction in holographic microscopy has been experimentally studied. It has been shown that significant improvement in the holomicroscopic images of actual low-contrast continuous tone biological objects can be achieved without trade off in image resolution. The technique makes use of holographically produced multidirectional phase gratings used as diffusers and the continuous addition of subchannel holograms. It has been shown that the self-imaging property of this type of diffuser makes the use of these diffusers ideal for microscopic objects. Experimental results have also been presented to demonstrate real-time image processing capability of this technique.

  9. Impact of varying transmission bandwidth on image quality.

    PubMed

    Broderick, T J; Harnett, B M; Merriam, N R; Kapoor, V; Doarn, C R; Merrell, R C

    2001-01-01

    The objective of this paper is to determine the effect of varying transmission bandwidth on image quality in laparoscopic surgery. Surgeons located in remote operating rooms connected through a telemedicine link must be able to transmit medical images for interaction. Image clarity and color fidelity are of critical importance in telementoring laparoscopic procedures. The clarity of laparoscopic images was measured by assessing visual acuity using a video image of a Snellen eye chart obtained with standard diameter laparoscopes (2, 5, and 10 mm). The clarity of the local image was then compared to that of remote images transmitted using various bandwidths and connection protocols [33.6 Kbps POTS (IP), 128 Kbps ISDN, 384 Kbps ISDN, 10 Mbps LAN (IP)]. The laparoscopes were subsequently used to view standard color placards. These color images were sent via similar transmission bandwidths and connection protocols. The local and remote images of the color placards were compared to determine the effect of the transmission protocols on color fidelity. Use of laparoscopes of different diameter does not significantly affect image clarity or color fidelity as long as the laparoscopes are positioned at their optimal working distance. Decreasing transmission bandwidth does not significantly affect image clarity or color fidelity when sufficient time is allowed for the algorithms to redraw the remote image. Remote telementoring of laparoscopic procedures is feasible. However, low bandwidth connections require slow and/or temporarily stopped camera movements for the quality of the remote video image to approximate that of the local video image.

  10. Feature maps driven no-reference image quality prediction of authentically distorted images

    NASA Astrophysics Data System (ADS)

    Ghadiyaram, Deepti; Bovik, Alan C.

    2015-03-01

    Current blind image quality prediction models rely on benchmark databases comprised of singly and synthetically distorted images, thereby learning image features that are only adequate to predict human perceived visual quality on such inauthentic distortions. However, real world images often contain complex mixtures of multiple distortions. Rather than a) discounting the effect of these mixtures of distortions on an image's perceptual quality and considering only the dominant distortion or b) using features that are only proven to be efficient for singly distorted images, we deeply study the natural scene statistics of authentically distorted images, in different color spaces and transform domains. We propose a feature-maps-driven statistical approach which avoids any latent assumptions about the type of distortion(s) contained in an image, and focuses instead on modeling the remarkable consistencies in the scene statistics of real world images in the absence of distortions. We design a deep belief network that takes model-based statistical image features derived from a very large database of authentically distorted images as input and discovers good feature representations by generalizing over different distortion types, mixtures, and severities, which are later used to learn a regressor for quality prediction. We demonstrate the remarkable competence of our features for improving automatic perceptual quality prediction on a benchmark database and on the newly designed LIVE Authentic Image Quality Challenge Database and show that our approach of combining robust statistical features and the deep belief network dramatically outperforms the state-of-the-art.

  11. A SPECT study in internal carotid artery occlusion: Discrepancies between flow image and neurologic deficits

    SciTech Connect

    Moriwaki, H.; Hougaku, H.; Matsuda, I.; Kusunoki, M.; Shirai, J. )

    1989-08-01

    A SPECT (single photon emission computed tomography) study in internal carotid artery (ICA) occlusion was performed in 6 patients. The validity of iodoamphetamine (IMP) SPECT study in the evaluation of cerebral blood flow (CBF) or neurologic function is still controversial. In this study, the authors showed several cases in whom SPECT images of brain were not compatible with their neurologic deficits. In 2 typical cases, a large low-density area was observed in the non-dominant hemisphere in computed tomography (CT) scan, but no apparent motor-sensory deficits in left limbs were present. In these patients, SPECT study also revealed flow reduction in the affected side of the brain. So there was a possibility that an IMP brain image could not always reflect CBF, which maintains neurologic function of the brain.

  12. 3D Reconstruction of the Retinal Arterial Tree Using Subject-Specific Fundus Images

    NASA Astrophysics Data System (ADS)

    Liu, D.; Wood, N. B.; Xu, X. Y.; Witt, N.; Hughes, A. D.; Samcg, Thom

    Systemic diseases, such as hypertension and diabetes, are associated with changes in the retinal microvasculature. Although a number of studies have been performed on the quantitative assessment of the geometrical patterns of the retinal vasculature, previous work has been confined to 2 dimensional (2D) analyses. In this paper, we present an approach to obtain a 3D reconstruction of the retinal arteries from a pair of 2D retinal images acquired in vivo. A simple essential matrix based self-calibration approach was employed for the "fundus camera-eye" system. Vessel segmentation was performed using a semi-automatic approach and correspondence between points from different images was calculated. The results of 3D reconstruction show the centreline of retinal vessels and their 3D curvature clearly. Three-dimensional reconstruction of the retinal vessels is feasible and may be useful in future studies of the retinal vasculature in disease.

  13. Photoreceptor waveguides and effective retinal image quality

    NASA Astrophysics Data System (ADS)

    Vohnsen, Brian

    2007-03-01

    Individual photoreceptor waveguiding suggests that the entire retina can be considered as a composite fiber-optic element relating a retinal image to a corresponding waveguided image. In such a scheme, a visual sensation is produced only when the latter interacts with the pigments of the outer photoreceptor segments. Here the possible consequences of photoreceptor waveguiding on vision are studied with important implications for the pupil-apodization method commonly used to incorporate directional effects of the retina. In the absence of aberrations, it is found that the two approaches give identical predictions for an effective retinal image only when the pupil apodization is chosen twice as narrow as suggested by the traditional Stiles-Crawford effect. In addition, phase variations in the retinal field due to ocular aberrations can delicately alter a waveguided image, and this may provide plausible justification for an improved visual sensation as compared with what should be expected on the grounds of a retinal image only.

  14. Screen-imaging guidance using a modified portable video macroscope for middle cerebral artery occlusion.

    PubMed

    Zhu, Xingbao; Luo, Junli; Liu, Yun; Chen, Guolong; Liu, Song; Ruan, Qiangjin; Deng, Xunding; Wang, Dianchun; Fan, Quanshui; Pan, Xinghua

    2012-04-25

    The use of operating microscopes is limited by the focal length. Surgeons using these instruments cannot simultaneously view and access the surgical field and must choose one or the other. The longer focal length (more than 1 000 mm) of an operating telescope permits a position away from the operating field, above the surgeon and out of the field of view. This gives the telescope an advantage over an operating microscope. We developed a telescopic system using screen-imaging guidance and a modified portable video macroscope constructed from a Computar MLH-10 × macro lens, a DFK-21AU04 USB CCD Camera and a Dell laptop computer as monitor screen. This system was used to establish a middle cerebral artery occlusion model in rats. Results showed that magnification of the modified portable video macroscope was appropriate (5-20 ×) even though the Computar MLH-10 × macro lens was placed 800 mm away from the operating field rather than at the specified working distance of 152.4 mm with a zoom of 1-40 ×. The screen-imaging telescopic technique was clear, life-like, stereoscopic and matched the actual operation. Screen-imaging guidance led to an accurate, smooth, minimally invasive and comparatively easy surgical procedure. Success rate of the model establishment evaluated by neurological function using the modified neurological score system was 74.07%. There was no significant difference in model establishment time, sensorimotor deficit and infarct volume percentage. Our findings indicate that the telescopic lens is effective in the screen surgical operation mode referred to as "long distance observation and short distance operation" and that screen-imaging guidance using an modified portable video macroscope can be utilized for the establishment of a middle cerebral artery occlusion model and micro-neurosurgery.

  15. Imaging diagnoses and outcome in patients presenting for primary angioplasty but no obstructive coronary artery disease

    PubMed Central

    Mittal, Tarun K; Reichmuth, Luise; Ariff, Ben; Rao, Praveen P G; Baltabaeva, Aigul; Rahman-Haley, Shelley; Kabir, Tito; Wong, Joyce; Dalby, Miles

    2016-01-01

    Objective A proportion of patients with suspected ST-elevation myocardial infarction (STEMI) presenting for primary percutaneous coronary intervention (PPCI) do not have obstructive coronary disease and other conditions may be responsible for their symptoms and ECG changes. In this study, we set out to determine the prevalence and aetiology of alternative diagnoses in a large PPCI cohort as determined with multimodality imaging and their outcome. Methods From 2009 to 2012, 5238 patients with suspected STEMI were referred for consideration of PPCI. Patients who underwent angiography but had no culprit artery for revascularisation and no previous history of coronary artery disease were included in the study. Troponin values, imaging findings and all-cause mortality were obtained from hospital and national databases. Results A total of 575 (13.0%) patients with a mean age of 58±15 years (69% men) fulfilled the inclusion criteria. A specific diagnosis based on imaging was made in 237 patients (41.2%) including cardiomyopathies (n=104, 18%), myopericarditis (n=48, 8.4%), myocardial infarction/other coronary abnormality (n=27, 4.9%) and severe valve disease (n=23, 4%). Pulmonary embolism and type A aortic dissection were identified in seven (1.2%) and four (0.7%) cases respectively. A total of 40 (7.0%) patients died over a mean follow-up of 42.6 months. Conclusions A variety of cardiac and non-cardiac conditions are prevalent in patients presenting with suspected STEMI but culprit-free angiogram, some of which may have adverse outcomes. Further imaging of such patients could thus be useful to help in appropriate management and follow-up. PMID:27368743

  16. Indium-111 platelet imaging for detection of platelet deposition in abdominal aneurysms and prosthetic arterial grafts

    SciTech Connect

    Ritchie, J.L.; Stratton, J.R.; Thiele, B.; Haminton, G.W.; Warrick, L.N.; Huang, T.W.; Harker, L.A.

    1981-04-01

    Thirty-four platelet imaging studies were performed in 23 patients to determine whether platelet deposition could be detected in patients with vascular aneurysms (18 patients) or in patients in whom Dacron prosthetic grafts had been placed (5 patients). In patients in whom abnormal platelet deposition was detected, the effect of administration of platelet-active drugs on platelet deposition was examined. Of the 18 patients with an aneurysm, 12 had equivocally positive studies on initial imaging and 2 had equivocally positive images. Of five patients with Dacron arterial grafts in place, four had diffuse platelet deposition in the grafts; the fifth patient had a platelet deposition only in a pseudoaneurysm. Eight patients with an abdominal aneurysm and positive or equivocally positive baseline images were restudied during platelet-active drug therapy either with aspirin plus dipyridamole (seven patients) or with sulfinpyrazone (four patients). No patient studied during treatment with aspirin plus dipyridamole had detectably decreased platelet deposition compared with baseline determinations. In contrast, two of four patients studied while receiving sulfinpyrazone showed decreased platelet deposition. Thus, platelet imaging may be of value for studying platelet physiology in vivo and for assessing platelet-active drugs and the thrombogenicity of prosthetic graft materials in human beings.

  17. Perceived no reference image quality measurement for chromatic aberration

    NASA Astrophysics Data System (ADS)

    Lamb, Anupama B.; Khambete, Madhuri

    2016-03-01

    Today there is need for no reference (NR) objective perceived image quality measurement techniques as conducting subjective experiments and making reference image available is a very difficult task. Very few NR perceived image quality measurement algorithms are available for color distortions like chromatic aberration (CA), color quantization with dither, and color saturation. We proposed NR image quality assessment (NR-IQA) algorithms for images distorted with CA. CA is mostly observed in images taken with digital cameras, having higher sensor resolution with inexpensive lenses. We compared our metric performance with two state-of-the-art NR blur techniques, one full reference IQA technique and three general-purpose NR-IQA techniques, although they are not tailored for CA. We used a CA dataset in the TID-2013 color image database to evaluate performance. Proposed algorithms give comparable performance with state-of-the-art techniques in terms of performance parameters and outperform them in terms of monotonicity and computational complexity. We have also discovered that the proposed CA algorithm best predicts perceived image quality of images distorted with realistic CA.

  18. Dosimetry and image quality assessment in a direct radiography system

    PubMed Central

    Oliveira, Bruno Beraldo; de Oliveira, Marcio Alves; Paixão, Lucas; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2014-01-01

    Objective To evaluate the mean glandular dose with a solid state detector and the image quality in a direct radiography system, utilizing phantoms. Materials and Methods Irradiations were performed with automatic exposure control and polymethyl methacrylate slabs with different thicknesses to calculate glandular dose values. The image quality was evaluated by means of the structures visualized on the images of the phantoms. Results Considering the uncertainty of the measurements, the mean glandular dose results are in agreement with the values provided by the equipment and with internationally adopted reference levels. Results obtained from images of the phantoms were in agreement with the reference values. Conclusion The present study contributes to verify the equipment conformity as regards dose values and image quality. PMID:25741119

  19. Web-based psychometric evaluation of image quality

    NASA Astrophysics Data System (ADS)

    Sprow, Iris; Baranczuk, Zofia; Stamm, Tobias; Zolliker, Peter

    2009-01-01

    The measurement of image quality requires the judgement by the human visual system. This paper describes a psycho-visual test technique that uses the internet as a test platform to identify image quality in a more time-effective manner, comparing the visual response data with the results from the same test in a lab-based environment and estimate the usefulness of the internet as a platform for scaling studies.

  20. Added Value of 3D Proton-Density Weighted Images in Diagnosis of Intracranial Arterial Dissection

    PubMed Central

    Kim, Jin Woo; Kim, Young Dae; Lee, Seung-Koo; Lim, Soo Mee; Oh, Se Won

    2016-01-01

    Background An early and reliable diagnosis of intracranial arterial dissection is important to reduce the risk of neurological complication. The purpose of this study was to assess the clinical usefulness of three-dimensional high-resolution MRI (3D-HR-MRI) including pre- and post-contrast T1-weighted volumetric isotropic turbo spin echo acquisition with improved motion-sensitized driven equilibrium preparation (3D-iMSDE-T1) and proton-density weighted image (3D-PD) in detecting dissection and to evaluate the added value of 3D-PD in diagnosing intracranial arterial dissection. Methods We retrospectively recruited patients who underwent 3D-HR-MRI with clinical suspicion of arterial dissection. Among them, we selected patients who were diagnosed with definite dissection according to the Spontaneous Cervicocephalic Arterial Dissections Study criteria. For each patient, the presence of intimal flap, intramural hematoma, and vessel dilatation were evaluated independently by two neuroradiologists on each sequence. Interobserver agreement was assessed. Results Seventeen patients (mean age: 41 ± 10 [SD] years; 13 men) were diagnosed with definite dissection. The intimal flaps were more frequently detected on 3D-PD (88.2%, 15/17) than on 3D-iMSDE-T1 (29.4%, 5/17), and post-contrast 3D-iMSDE-T1 (35.3%, 6/17; P = 0.006 and P = 0.004, respectively). No significant difference was found in the detection rate of intramural hematomas (59–71%) and vascular dilatations (47%) on each sequence. Interobserver agreement for detection of dissection findings showed almost perfect agreement (k = 0.84–1.00), except for detection of intimal flaps on pre-contrast 3D-iMSDE-T1 (k = 0.62). After addition of 3D-PD to pre- and post-contrast 3D-iMSDE-T1, more patients were diagnosed with definite dissection with the initial MRI (88.2% vs. 47.1%; P = 0.039). Conclusions The intimal flap might be better visualized on the 3D-PD sequence than the 3D-iMSDE-T1 sequences, allowing diagnosis of

  1. Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT)

    SciTech Connect

    Pai, Vinay M.; Kozlowski, Megan; Donahue, Danielle; Miller, Elishiah; Xiao, Xianghui; Chen, Marcus Y.; Yu, Zu-Xi; Connelly, Patricia; Jeffries, Kenneth; Wen, Han

    2012-05-10

    The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO{sub 4}) solution. As a tissue-staining contrast agent, OsO{sub 4} is retained in the vessel wall and surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO{sub 4} preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE{sup -/-}) mice at 10 {mu}m resolution. The results show that walls of coronary arteries as small as 45 {mu}m in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO{sub 4} and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts.

  2. Assessment of dimensions and image quality of coronary contrast catheters from cineangiograms.

    PubMed

    Reiber, J H; Kooijman, C J; den Boer, A; Serruys, P W

    1985-01-01

    In the quantitative assessment of coronary arterial dimensions from coronary cineangiograms, the contrast catheter is usually used as a scaling device, requiring the definition of the catheter contours by semi- or fully automated contour detection procedures. The image quality of the x-ray radiated catheter is dependent on the catheter material, concentration of the contrast agent in the catheter, and kilovoltage of the x-ray source. The effects of these variables on the image quality and accuracy of the size-measurement of the filmed catheters were studied for four different catheter materials: woven dacron (wd), polyvinylchloride (pv), polyurethane (pu), and nylon. The following parameters were studied: measured size, image contrast, and average brightness gradient along the edges of the displayed catheters. The average differences of the angiographically measured size with the true size for the wd, pv, pu, and nylon catheters were +0.2, -3.2, -3.5, and +9.8%, respectively. The image contrast at various fillings of the catheters was roughly identical for the wd, pv, and pu catheters, and significantly lower for the nylon catheter. Image gradient was highest for the wd catheter, followed by the pv and pu catheters, and lowest for the nylon catheter. From these data it may be concluded that the woven dacron catheter is most suitable for quantitative coronary angiographic studies. The polyvinylchloride and polyurethane catheters perform about equally well but slightly less than the woven dacron catheter. The nylon catheter should not be used for such quantitative studies.

  3. A quantitative approach to evaluate image quality of whole slide imaging scanners

    PubMed Central

    Shrestha, Prarthana; Kneepkens, R.; Vrijnsen, J.; Vossen, D.; Abels, E.; Hulsken, B.

    2016-01-01

    Context: The quality of images produced by whole slide imaging (WSI) scanners has a direct influence on the readers’ performance and reliability of the clinical diagnosis. Therefore, WSI scanners should produce not only high quality but also consistent quality images. Aim: We aim to evaluate reproducibility of WSI scanners based on the quality of images produced over time and among multiple scanners. The evaluation is independent of content or context of test specimen. Methods: The ultimate judge of image quality is a pathologist, however, subjective evaluations are heavily influenced by the complexity of a case and subtle variations introduced by a scanner can be easily overlooked. Therefore, we employed a quantitative image quality assessment method based on clinically relevant parameters, such as sharpness and brightness, acquired in a survey of pathologists. The acceptable level of quality per parameter was determined in a subjective study. The evaluation of scanner reproducibility was conducted with Philips Ultra-Fast Scanners. A set of 36 HercepTest™ slides were used in three sub-studies addressing variations due to systems and time, producing 8640 test images for evaluation. Results: The results showed that the majority of images in all the sub-studies are within the acceptable quality level; however, some scanners produce higher quality images more often than others. The results are independent of case types, and they match our perception of quality. Conclusion: The quantitative image quality assessment method was successfully applied in the HercepTest™ slides to evaluate WSI scanner reproducibility. The proposed method is generic and applicable to any other types of slide stains and scanners. PMID:28197359

  4. Applying image quality in cell phone cameras: lens distortion

    NASA Astrophysics Data System (ADS)

    Baxter, Donald; Goma, Sergio R.; Aleksic, Milivoje

    2009-01-01

    This paper describes the framework used in one of the pilot studies run under the I3A CPIQ initiative to quantify overall image quality in cell-phone cameras. The framework is based on a multivariate formalism which tries to predict overall image quality from individual image quality attributes and was validated in a CPIQ pilot program. The pilot study focuses on image quality distortions introduced in the optical path of a cell-phone camera, which may or may not be corrected in the image processing path. The assumption is that the captured image used is JPEG compressed and the cellphone camera is set to 'auto' mode. As the used framework requires that the individual attributes to be relatively perceptually orthogonal, in the pilot study, the attributes used are lens geometric distortion (LGD) and lateral chromatic aberrations (LCA). The goal of this paper is to present the framework of this pilot project starting with the definition of the individual attributes, up to their quantification in JNDs of quality, a requirement of the multivariate formalism, therefore both objective and subjective evaluations were used. A major distinction in the objective part from the 'DSC imaging world' is that the LCA/LGD distortions found in cell-phone cameras, rarely exhibit radial behavior, therefore a radial mapping/modeling cannot be used in this case.

  5. Characterization of Hemodynamics in Great Arteries of Wild-Type Mouse Using Computational Fluid Dynamics Based on Ultrasound Images.

    PubMed

    Chen, Zhuo; Zhou, Yue; Ma, Youcai; Wang, Jingying; He, Yihua; Li, Zhian

    2016-03-01

    Hemodynamic factors in cardiovascular system are hypothesized to play a significant role in causing structural heart development. It is thus important to improve our understanding of velocity characteristics and parameters. We present such a study on wild-type mouse to characterize the vessel geometry, flow pattern, and wall shear stress in great arteries. Microultrasound imaging for small animals was used to measure blood boundary and velocity of the great arteries. Subsequently, specimens' flow boundary conditions were used for 3-dimensional reconstructions of the great artery and aortic arch dimensions, and blood flow velocity data were input into subject-specific computational fluid dynamics for modeling hemodynamics. Measurement by microultrasound imaging showed that blood velocities in the great artery and aortic arch had strong correlations with vascular sizes, whereas blood pressure had a weak trend in relation to vascular size. Wall shear stress magnitude increased when closer to arterial branches and reduced proximally in the aortic root and distally in the descending aorta, and the parameters were related to the fluid mechanics in branches in some degree. We developed a method to investigate fluid mechanics in mouse arteries, using a combination of microultrasound and computational fluid dynamics, and demonstrated its ability to reveal detailed geometric, kinematic, and fluid mechanics parameters.

  6. The cost-effectiveness of diagnostic cardiac imaging for stable coronary artery disease.

    PubMed

    Turchetti, Giuseppe; Kroes, M A; Lorenzoni, Valentina; Trieste, Leopoldo; Chapman, Ann-Marie; Sweet, Alison C; Wilson, Geoff I; Neglia, Danilo

    2015-01-01

    Early and accurate diagnosis of stable coronary artery disease (CAD) is crucial to reduce morbidity, mortality and healthcare costs. This critical appraisal of health-economic literature concerning non-invasive diagnostic cardiac imaging aims to summarize current approaches to economic evaluation of diagnostic cardiac imaging and associated procedural risks, inform cardiologists how to use economic analyses for decision-making, highlight areas where new information could strengthen the economic evaluation and shed light on cost-effective approaches to diagnose stable CAD. Economic analysis can support cardiologists' decision-making. Current economic evidence in the field does not provide sufficient information to guide the choice among different imaging modalities or strategies for each patient. Available economic analyses suggest that computed tomography coronary angiography (CTCA) is a cost-effective approach to rule out CAD prior to invasive coronary angiography in patients with low to intermediate pre-test probability of disease and that stress imaging modalities may be cost-effective at variable pre-test probabilities.

  7. Raman chemical imaging technology for food safety and quality evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raman chemical imaging combines Raman spectroscopy and digital imaging to visualize composition and morphology of a target. This technique offers great potential for food safety and quality research. Most commercial Raman instruments perform measurement at microscopic level, and the spatial range ca...

  8. Evaluation of long-term quality of life after reoperative coronary artery surgery: preliminary results

    PubMed Central

    Noyez, L.; Schultz, A.; van der Heide, S.M.; van Eck, F.M.; Brouwer, R.M.H.J.

    2003-01-01

    Objective The risks of reoperative coronary artery bypass surgery (RECABG) still exceed those of a primary revascularisation and late results are not very favourable either. The subject of the present study is an evaluation of the long-term quality of life after RECABG. Methods We studied the outcome of 541 patients who underwent a RECABG from January 1987 to December 1998. The endpoint of the study was December 2002, or the patient's death. Quality of life, using the EuroQol registration, was evaluated. Results Hospital mortality was 6.7%. Follow-up was 95.6% complete, mean 7.7 years. There were 177 late deaths. The cumulative survival rates were 83.8, 76.9, and 60.6%, and cardiac survival rates were 84.8, 78.5, and 66.5%, at the one-year, five-year and ten-year follow-up, respectively. For 255 patients (89%), NYHA and EuroQol information was complete. In total 23% of the patients were in NYHA class I, 51% in class II, 21% in class III and 5% were in class IV. In the EuroQol registration, 54% of the patients declared they had no mobility problems, 85% no problems with self-care, and 65% no problems with usual activities. However, 60% suffered from moderate pain or discomfort, and 33% from anxiety or depression. On the visual analogue scale (mean 63.5), 13% of the patients scored >90, 68% between 50 and 90, and 19% of the patients <50. Conclusion The long-term results of cumulative survival and cardiac survival, and NYHA class in our patient population who underwent RECABG are comparable with other studies. Quality of life is acceptable regarding the high risk of a RECABG. PMID:25696170

  9. Assessment of Arterial Wall Enhancement for Differentiation of Parent Artery Disease from Small Artery Disease: Comparison between Histogram Analysis and Visual Analysis on 3-Dimensional Contrast-Enhanced T1-Weighted Turbo Spin Echo MR Images at 3T

    PubMed Central

    Jang, Jinhee; Kim, Tae-Won; Hwang, Eo-Jin; Koo, Jaseong; Shin, Yong Sam; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-soo

    2017-01-01

    Objective The purpose of this study was to compare the histogram analysis and visual scores in 3T MRI assessment of middle cerebral arterial wall enhancement in patients with acute stroke, for the differentiation of parent artery disease (PAD) from small artery disease (SAD). Materials and Methods Among the 82 consecutive patients in a tertiary hospital for one year, 25 patients with acute infarcts in middle cerebral artery (MCA) territory were included in this study including 15 patients with PAD and 10 patients with SAD. Three-dimensional contrast-enhanced T1-weighted turbo spin echo MR images with black-blood preparation at 3T were analyzed both qualitatively and quantitatively. The degree of MCA stenosis, and visual and histogram assessments on MCA wall enhancement were evaluated. A statistical analysis was performed to compare diagnostic accuracy between qualitative and quantitative metrics. Results The degree of stenosis, visual enhancement score, geometric mean (GM), and the 90th percentile (90P) value from the histogram analysis were significantly higher in PAD than in SAD (p = 0.006 for stenosis, < 0.001 for others). The receiver operating characteristic curve area of GM and 90P were 1 (95% confidence interval [CI], 0.86–1.00). Conclusion A histogram analysis of a relevant arterial wall enhancement allows differentiation between PAD and SAD in patients with acute stroke within the MCA territory. PMID:28246519

  10. Review of Source Images is Necessary for the Evaluation of Gadolinium-Enhanced MR Angiography for Renal Artery Stenosis

    SciTech Connect

    Wehrschuetz, M. Aschauer, M.; Portugaller, H.; Stix, A.; Wehrschuetz-Sigl, E.; Hausegger, K.; Ebner, F.

    2004-09-15

    The purpose of this study was to assess interobserver variability and accuracy in the evaluation of renal artery stenosis (RAS) with gadolinium-enhanced MR angiography (MRA) and digital subtraction angiography (DSA) in patients with hypertension. The authors found that source images are more accurate than maximum intensity projection (MIP) for depicting renal artery stenosis. Two independent radiologists reviewed MRA and DSA from 38 patients with hypertension. Studies were postprocessed to display images in MIP and source images. DSA was the standard for comparison in each patient. For each main renal artery, percentage stenosis was estimated for any stenosis detected by the two radiologists. To calculate sensitivity, specificity and accuracy, MRA studies and stenoses were categorized as normal, mild (1-39%), moderate (40-69%) or severe ({>=}70%), or occluded. DSA stenosis estimates of 70% or greater were considered hemodynamically significant. Analysis of variance demonstrated that MIP estimates of stenosis were greater than source image estimates for both readers. Differences in estimates for MIP versus DSA reached significance in one reader. The interobserver variance for MIP, source images and DSA was excellent (0.80< {kappa}{<=} 0.90). The specificity of source images was high (97%) but less for MIP (87%); average accuracy was 92% for MIP and 98% for source images. In this study, source images are significantly more accurate than MIP images in one reader with a similar trend was observed in the second reader. The interobserver variability was excellent. When renal artery stenosis is a consideration, high accuracy can only be obtained when source images are examined.

  11. Digital image quality measurements by objective and subjective methods from series of parametrically degraded images

    NASA Astrophysics Data System (ADS)

    Tachó, Aura; Mitjà, Carles; Martínez, Bea; Escofet, Jaume; Ralló, Miquel

    2013-11-01

    Many digital image applications like digitization of cultural heritage for preservation purposes operate with compressed files in one or more image observing steps. For this kind of applications JPEG compression is one of the most widely used. Compression level, final file size and quality loss are parameters that must be managed optimally. Although this loss can be monitored by means of objective image quality measurements, the real challenge is to know how it can be related with the perceived image quality by observers. A pictorial image has been degraded by two different procedures. The first, applying different levels of low pass filtering by convolving the image with progressively broad Gauss kernels. The second, saving the original file to a series of JPEG compression levels. In both cases, the objective image quality measurement is done by analysis of the image power spectrum. In order to obtain a measure of the perceived image quality, both series of degraded images are displayed on a computer screen organized in random pairs. The observers are compelled to choose the best image of each pair. Finally, a ranking is established applying Thurstone scaling method. Results obtained by both measurements are compared between them and with other objective measurement method as the Slanted Edge Test.

  12. 4D motion modeling of the coronary arteries from CT images for robotic assisted minimally invasive surgery

    NASA Astrophysics Data System (ADS)

    Zhang, Dong Ping; Edwards, Eddie; Mei, Lin; Rueckert, Daniel

    2009-02-01

    In this paper, we present a novel approach for coronary artery motion modeling from cardiac Computed Tomography( CT) images. The aim of this work is to develop a 4D motion model of the coronaries for image guidance in robotic-assisted totally endoscopic coronary artery bypass (TECAB) surgery. To utilize the pre-operative cardiac images to guide the minimally invasive surgery, it is essential to have a 4D cardiac motion model to be registered with the stereo endoscopic images acquired intraoperatively using the da Vinci robotic system. In this paper, we are investigating the extraction of the coronary arteries and the modelling of their motion from a dynamic sequence of cardiac CT. We use a multi-scale vesselness filter to enhance vessels in the cardiac CT images. The centerlines of the arteries are extracted using a ridge traversal algorithm. Using this method the coronaries can be extracted in near real-time as only local information is used in vessel tracking. To compute the deformation of the coronaries due to cardiac motion, the motion is extracted from a dynamic sequence of cardiac CT. Each timeframe in this sequence is registered to the end-diastole timeframe of the sequence using a non-rigid registration algorithm based on free-form deformations. Once the images have been registered a dynamic motion model of the coronaries can be obtained by applying the computed free-form deformations to the extracted coronary arteries. To validate the accuracy of the motion model we compare the actual position of the coronaries in each time frame with the predicted position of the coronaries as estimated from the non-rigid registration. We expect that this motion model of coronaries can facilitate the planning of TECAB surgery, and through the registration with real-time endoscopic video images it can reduce the conversion rate from TECAB to conventional procedures.

  13. Imaging of vascular dynamics within the foot using dynamic diffuse optical tomography to diagnose peripheral arterial disease

    NASA Astrophysics Data System (ADS)

    Khalil, M. A.; Kim, H. K.; Hoi, J. W.; Kim, I.; Dayal, R.; Shrikande, G.; Hielscher, A. H.

    2013-03-01

    Peripheral Arterial Disease (PAD) is the narrowing of the functional area of the artery generally due to atherosclerosis. It affects between 8-12 million people in the United States and if untreated this can lead to ulceration, gangrene and ultimately amputation. The current diagnostic method for PAD is the ankle-brachial index (ABI). The ABI is a ratio of the patient's systolic blood pressure in the foot to that of the brachial artery in the arm, a ratio below 0.9 is indicative of affected vasculature. However, this method is ineffective in patients with calcified arteries (diabetic and end-stage renal failure patients), which falsely elevates the ABI recording resulting in a false negative reading. In this paper we present our results in a pilot study to deduce optical tomography's ability to detect poor blood perfusion in the foot. We performed an IRB approved 30 patient study, where we imaged the feet of the enrolled patients during a five stage dynamic imaging sequence. The patients were split up into three groups: 10 healthy subjects, 10 PAD patients and 10 PAD patients with diabetes and they were imaged while applying a pressure cuff to their thigh. Differences in the magnitude of blood pooling in the foot and rate at which the blood pools in the foot are all indicative of arterial disease.

  14. Multiple-image encryption based on triple interferences for flexibly decrypting high-quality images.

    PubMed

    Li, Wei-Na; Phan, Anh-Hoang; Piao, Mei-Lan; Kim, Nam

    2015-04-10

    We propose a multiple-image encryption (MIE) scheme based on triple interferences for flexibly decrypting high-quality images. Each image is discretionarily deciphered without decrypting a series of other images earlier. Since it does not involve any cascaded encryption orders, the image can be decrypted flexibly by using the novel method. Computer simulation demonstrated that the proposed method's running time is less than approximately 1/4 that of the previous similar MIE method. Moreover, the decrypted image is perfectly correlated with the original image, and due to many phase functions serving as decryption keys, this method is more secure and robust.

  15. Image science and image-quality research in the Optical Sciences Center

    NASA Astrophysics Data System (ADS)

    Barrett, Harrison H.; Myers, Kyle J.

    2014-09-01

    This paper reviews the history of research into imaging and image quality at the Optical Sciences Center (OSC), with emphasis on the period 1970-1990. The work of various students in the areas of psychophysical studies of human observers of images; mathematical model observers; image simulation and analysis, and the application of these methods to radiology and nuclear medicine is summarized. The rapid progress in computational power, at OSC and elsewhere, which enabled the steady advances in imaging and the emergence of a science of imaging, is also traced. The implications of these advances to ongoing research and the current Image Science curriculum at the College of Optical Sciences are discussed.

  16. A Distinguishing Arterial Pulse Waves Approach by Using Image Processing and Feature Extraction Technique.

    PubMed

    Chen, Hsing-Chung; Kuo, Shyi-Shiun; Sun, Shen-Ching; Chang, Chia-Hui

    2016-10-01

    Traditional Chinese Medicine (TCM) is based on five main types of diagnoses methods consisting of inspection, auscultation, olfaction, inquiry, and palpation. The most important one is palpation also called pulse diagnosis which is to measure wrist artery pulse by doctor's fingers for detecting patient's health state. In this paper, it is carried out by using a specialized pulse measuring instrument to classify one's pulse type. The measured pulse waves (MPWs) were segmented into the arterial pulse wave curve (APWC) by image proposing method. The slopes and periods among four specific points on the APWC were taken to be the pulse features. Three algorithms are proposed in this paper, which could extract these features from the APWCs and compared their differences between each of them to the average feature matrix, individually. These results show that the method proposed in this study is superior and more accurate than the previous studies. The proposed method could significantly save doctors a large amount of time, increase accuracy and decrease data volume.

  17. Digital image correlation for full-field time-resolved assessment of arterial stiffness

    NASA Astrophysics Data System (ADS)

    Campo, Adriaan; Soons, Joris; Heuten, Hilde; Ennekens, Guy; Goovaerts, Inge; Vrints, Christiaan; Lava, Pascal; Dirckx, Joris

    2014-01-01

    Pulse wave velocity (PWV) of the arterial system is a very important parameter to evaluate cardiovascular health. Currently, however, there is no golden standard for PWV measurement. Digital image correlation (DIC) was used for full-field time-resolved assessment of displacement, velocity, acceleration, and strains of the skin in the neck directly above the common carotid artery. By assessing these parameters, propagation of the pulse wave could be tracked, leading to a new method for PWV detection based on DIC. The method was tested on five healthy subjects. As a means of validation, PWV was measured with ultrasound (US) as well. Measured PWV values were between 3.68 and 5.19 m/s as measured with DIC and between 5.14 and 6.58 m/s as measured with US, with a maximum absolute difference of 2.78 m/s between the two methods. DIC measurements of the neck region can serve as a test base for determining a robust strategy for PWV detection, they can serve as reference for three-dimensional fluid-structure interaction models, or they may even evolve into a screening method of their own. Moreover, full-field, time-resolved DIC can be adapted for other applications in biomechanics.

  18. Association between extra- and intracranial calcifications of the internal carotid artery: a CBCT imaging study

    PubMed Central

    Aartman, I H A; Tsiklakis, K; van der Stelt, P; Berkhout, W E R

    2015-01-01

    Objectives: This study aimed to evaluate the association between the extracranial and intracranial calcification depiction of the internal carotid artery (ICA), incidentally found in CBCT examinations in adults, and to discuss the conspicuous clinical implications. Methods: Out of a series of 1085 CBCT examinations, 705 CBCT scans were selected according to pre-defined criteria. The extra- and intracranial calcifications depicted along the course of the ICA were documented according to a comprehensive set of descriptive criteria. Results: In total, 799 findings were detected, 60.1% (n = 480) were intracranially and 39.9% (n = 319) were extracranially allocated. The χ2 test showed associations between all variables (p < 0.001). Also, most of the combinations of variables showed statistically significant results in the McNemar's test (p < 0.001). Conclusions: We found that a significant correlation exists between extra- and intracranial calcifications of the ICA. It is clear that in cases of the presence of a calcification in the ICA extracranially, the artery's intracranial portion has an increased risk of showing the same findings. CBCT imaging is widely used as a diagnostic tool, thus, our results contribute to the identification of a subgroup of patients who should undergo further medical evaluation of the atherosclerosis of the ICAs. PMID:25690425

  19. The effect of image quality and forensic expertise in facial image comparisons.

    PubMed

    Norell, Kristin; Läthén, Klas Brorsson; Bergström, Peter; Rice, Allyson; Natu, Vaidehi; O'Toole, Alice

    2015-03-01

    Images of perpetrators in surveillance video footage are often used as evidence in court. In this study, identification accuracy was compared for forensic experts and untrained persons in facial image comparisons as well as the impact of image quality. Participants viewed thirty image pairs and were asked to rate the level of support garnered from their observations for concluding whether or not the two images showed the same person. Forensic experts reached their conclusions with significantly fewer errors than did untrained participants. They were also better than novices at determining when two high-quality images depicted the same person. Notably, lower image quality led to more careful conclusions by experts, but not for untrained participants. In summary, the untrained participants had more false negatives and false positives than experts, which in the latter case could lead to a higher risk of an innocent person being convicted for an untrained witness.

  20. LANDSAT-4 image data quality analysis

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.

    1984-01-01

    Methods were developed for estimating point spread functions from image data. Roads and bridges in dark backgrounds are being examined as well as other smoothing methods for reducing noise in the estimated point spread function. Tomographic techniques were used to estimate two dimensional point spread functions. Reformatting software changes were implemented to handle formats for LANDSAT-5 data.

  1. Toward optimal color image quality of television display

    NASA Astrophysics Data System (ADS)

    MacDonald, Lindsay W.; Endrikhovski, Sergej N.; Bech, Soren; Jensen, Kaj

    1999-12-01

    A general framework and first experimental results are presented for the `OPTimal IMage Appearance' (OPTIMA) project, which aims to develop a computational model for achieving optimal color appearance of natural images on adaptive CRT television displays. To achieve this goal we considered the perceptual constraints determining quality of displayed images and how they could be quantified. The practical value of the notion of optimal image appearance was translated from the high level of the perceptual constraints into a method for setting the display's parameters at the physical level. In general, the whole framework of quality determination includes: (1) evaluation of perceived quality; (2) evaluation of the individual perceptual attributes; and (3) correlation between the physical measurements, psychometric parameters and the subjective responses. We performed a series of psychophysical experiments, with observers viewing a series of color images on a high-end consumer television display, to investigate the relationships between Overall Image Quality and four quality-related attributes: Brightness Rendering, Chromatic Rendering, Visibility of Details and Overall Naturalness. The results of the experiments presented in this paper suggest that these attributes are highly inter-correlated.

  2. A Dynamic Image Quality Evaluation of Videofluoroscopy Images: Considerations for Telepractice Applications.

    PubMed

    Burns, Clare L; Keir, Benjamin; Ward, Elizabeth C; Hill, Anne J; Farrell, Anna; Phillips, Nick; Porter, Linda

    2015-08-01

    High-quality fluoroscopy images are required for accurate interpretation of videofluoroscopic swallow studies (VFSS) by speech pathologists and radiologists. Consequently, integral to developing any system to conduct VFSS remotely via telepractice is ensuring that the quality of the VFSS images transferred via the telepractice system is optimized. This study evaluates the extent of change observed in image quality when videofluoroscopic images are transmitted from a digital fluoroscopy system to (a) current clinical equipment (KayPentax Digital Swallowing Workstation, and b) four different telepractice system configurations. The telepractice system configurations consisted of either a local C20 or C60 Cisco TelePresence System (codec unit) connected to the digital fluoroscopy system and linked to a second remote C20 or C60 Cisco TelePresence System via a network running at speeds of either 2, 4 or 6 megabits per second (Mbit/s). Image quality was tested using the NEMA XR 21 Phantom, and results demonstrated some loss in spatial resolution, low contrast detectability and temporal resolution for all transferred images when compared to the fluoroscopy source. When using higher capacity codec units and/or the highest bandwidths to support data transmission, image quality transmitted through the telepractice system was found to be comparable if not better than the current clinical system. This study confirms that telepractice systems can be designed to support fluoroscopy image transfer and highlights important considerations when developing telepractice systems for VFSS analysis to ensure high-quality radiological image reproduction.

  3. Image quality improvement of polygon computer generated holography.

    PubMed

    Pang, Xiao-Ning; Chen, Ding-Chen; Ding, Yi-Cong; Chen, Yi-Gui; Jiang, Shao-Ji; Dong, Jian-Wen

    2015-07-27

    Quality of holographic reconstruction image is seriously affected by undesirable messy fringes in polygon-based computer generated holography. Here, several methods have been proposed to improve the image quality, including a modified encoding method based on spatial-domain Fraunhofer diffraction and a specific LED light source. Fast Fourier transform is applied to the basic element of polygon and fringe-invisible reconstruction is achieved after introducing initial random phase. Furthermore, we find that the image with satisfactory fidelity and sharp edge can be reconstructed by either a LED with moderate coherence level or a modulator with small pixel pitch. Satisfactory image quality without obvious speckle noise is observed under the illumination of bandpass-filter-aided LED. The experimental results are consistent well with the correlation analysis on the acceptable viewing angle and the coherence length of the light source.

  4. Vascular loops in the anterior inferior cerebellar artery, as identified by magnetic resonance imaging, and their relationship with otologic symptoms*

    PubMed Central

    de Abreu Junior, Luiz; Kuniyoshi, Cristina Hiromi; Wolosker, Angela Borri; Borri, Maria Lúcia; Antunes, Augusto; Ota, Vanessa Kiyomi Arashiro; Uchida, Daniela

    2016-01-01

    Objective To use magnetic resonance imaging to identify vascular loops in the anterior inferior cerebellar artery and to evaluate their relationship with otologic symptoms. Materials and Methods We selected 33 adults with otologic complaints who underwent magnetic resonance imaging at our institution between June and November 2013. Three experienced independent observers evaluated the trajectory of the anterior inferior cerebellar artery in relation to the internal auditory meatus and graded the anterior inferior cerebellar artery vascular loops according to the Chavda classification. Kappa and chi-square tests were used. Values of p < 0.05 were considered significant. Results The interobserver agreement was moderate. Comparing ears that presented vascular loops with those that did not, we found no association with tinnitus, hearing loss, or vertigo. Similarly, we found no association between the Chavda grade and any otological symptom. Conclusion Vascular loops do not appear to be associated with otoneurological manifestations. PMID:27818543

  5. APQ-102 imaging radar digital image quality study

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1982-01-01

    A modified APQ-102 sidelooking radar collected synthetic aperture radar (SAR) data which was digitized and recorded on wideband magnetic tape. These tapes were then ground processed into computer compatible tapes (CCT's). The CCT's may then be processed into high resolution radar images by software on the CYBER computer.

  6. Peripheral Aberrations and Image Quality for Contact Lens Correction

    PubMed Central

    Shen, Jie; Thibos, Larry N.

    2011-01-01

    Purpose Contact lenses reduced the degree of hyperopic field curvature present in myopic eyes and rigid contact lenses reduced sphero-cylindrical image blur on the peripheral retina, but their effect on higher order aberrations and overall optical quality of the eye in the peripheral visual field is still unknown. The purpose of our study was to evaluate peripheral wavefront aberrations and image quality across the visual field before and after contact lens correction. Methods A commercial Hartmann-Shack aberrometer was used to measure ocular wavefront errors in 5° steps out to 30° of eccentricity along the horizontal meridian in uncorrected eyes and when the same eyes are corrected with soft or rigid contact lenses. Wavefront aberrations and image quality were determined for the full elliptical pupil encountered in off-axis measurements. Results Ocular higher-order aberrations increase away from fovea in the uncorrected eye. Third-order aberrations are larger and increase faster with eccentricity compared to the other higher-order aberrations. Contact lenses increase all higher-order aberrations except 3rd-order Zernike terms. Nevertheless, a net increase in image quality across the horizontal visual field for objects located at the foveal far point is achieved with rigid lenses, whereas soft contact lenses reduce image quality. Conclusions Second order aberrations limit image quality more than higher-order aberrations in the periphery. Although second-order aberrations are reduced by contact lenses, the resulting gain in image quality is partially offset by increased amounts of higher-order aberrations. To fully realize the benefits of correcting higher-order aberrations in the peripheral field requires improved correction of second-order aberrations as well. PMID:21873925

  7. Molecular Order of Arterial Collagen Using Circular Polarization Second-Harmonic Generation Imaging

    PubMed Central

    Turcotte, Raphaël; Mattson, Jeffrey M.; Wu, Juwell W.; Zhang, Yanhang; Lin, Charles P.

    2016-01-01

    Second-harmonic generation (SHG) originates from the interaction between upconverted fields from individual scatterers. This renders SHG microscopy highly sensitive to molecular distribution. Here, we aim to take advantage of the difference in SHG between aligned and partially aligned molecules to probe the degree of molecular order during biomechanical testing, independently of the absolute orientation of the scattering molecules. Toward this goal, we implemented a circular polarization SHG imaging approach and used it to quantify the intensity change associated with collagen fibers straightening in the arterial wall during mechanical stretching. We were able to observe the delayed alignment of collagen fibers during mechanical loading, thus demonstrating a simple method to characterize molecular distribution using intensity information alone. PMID:26806883

  8. Intraoperative laser speckle contrast imaging improves the stability of rodent middle cerebral artery occlusion model

    NASA Astrophysics Data System (ADS)

    Yuan, Lu; Li, Yao; Li, Hangdao; Lu, Hongyang; Tong, Shanbao

    2015-09-01

    Rodent middle cerebral artery occlusion (MCAO) model is commonly used in stroke research. Creating a stable infarct volume has always been challenging for technicians due to the variances of animal anatomy and surgical operations. The depth of filament suture advancement strongly influences the infarct volume as well. We investigated the cerebral blood flow (CBF) changes in the affected cortex using laser speckle contrast imaging when advancing suture during MCAO surgery. The relative CBF drop area (CBF50, i.e., the percentage area with CBF less than 50% of the baseline) showed an increase from 20.9% to 69.1% when the insertion depth increased from 1.6 to 1.8 cm. Using the real-time CBF50 marker to guide suture insertion during the surgery, our animal experiments showed that intraoperative CBF-guided surgery could significantly improve the stability of MCAO with a more consistent infarct volume and less mortality.

  9. The influence of software filtering in digital mammography image quality

    NASA Astrophysics Data System (ADS)

    Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.

    2009-05-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  10. Learning Receptive Fields and Quality Lookups for Blind Quality Assessment of Stereoscopic Images.

    PubMed

    Shao, Feng; Lin, Weisi; Wang, Shanshan; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2016-03-01

    Blind quality assessment of 3D images encounters more new challenges than its 2D counterparts. In this paper, we propose a blind quality assessment for stereoscopic images by learning the characteristics of receptive fields (RFs) from perspective of dictionary learning, and constructing quality lookups to replace human opinion scores without performance loss. The important feature of the proposed method is that we do not need a large set of samples of distorted stereoscopic images and the corresponding human opinion scores to learn a regression model. To be more specific, in the training phase, we learn local RFs (LRFs) and global RFs (GRFs) from the reference and distorted stereoscopic images, respectively, and construct their corresponding local quality lookups (LQLs) and global quality lookups (GQLs). In the testing phase, blind quality pooling can be easily achieved by searching optimal GRF and LRF indexes from the learnt LQLs and GQLs, and the quality score is obtained by combining the LRF and GRF indexes together. Experimental results on three publicly 3D image quality assessment databases demonstrate that in comparison with the existing methods, the devised algorithm achieves high consistent alignment with subjective assessment.

  11. Coronary artery atherectomy reduces plaque shear strains: an endovascular elastography imaging study.

    PubMed

    Keshavarz-Motamed, Zahra; Saijo, Yoshifumi; Majdouline, Younes; Riou, Laurent; Ohayon, Jacques; Cloutier, Guy

    2014-07-01

    Mechanical response and properties of the arterial wall can be used to identify the biomechanical instability of plaques and predict their vulnerability to rupture. Shear strain elastography (SSE) is proposed to identify vulnerable plaque features attributed to mechanical structural heterogeneities. The aims of this study were: 1) to report on the potential of SSE to identify atherosclerotic plaques; and 2) to use SSE maps to highlight biomechanical changes in lesion characteristics after directional coronary atherectomy (DCA) interventions. For this purpose, SSE was imaged using in vivo intravascular ultrasound (IVUS) radio-frequency data collected from 12 atherosclerotic patients before and after DCA intervention. Coronary atherosclerotic plaques (pre-DCA) showed high SSE magnitudes with large affected areas. There were good correlations between SSE levels and soft plaque content (i.e., cellular fibrosis, thrombosis and fibrin) (mean |SSE| vs. soft plaque content: r = 0.82, p < 0.01). Significant differences were noticed between SSE images before and after DCA. Stable arteries (post-DCA) exhibited lower values than pre-DCA vessels (e.g., pre-DCA: mean |SSE| = 3.9 ± 0.2% vs. 1.1 ± 0.2% post-DCA, p < 0.001). Furthermore, SSE magnitude was statistically higher in plaques with a high level of inflammation (e.g., mean |SSE| had values of 4.8 ± 0.4% in plaques with high inflammation, whereas it was reduced to 1.8 ± 0.2% with no inflammation, p < 0.01). This study demonstrates the potential of the IVUS-based SSE technique to detect vulnerable plaques in vivo.

  12. Imaging anatomy and variation of vertebral artery and bone structure at craniocervical junction.

    PubMed

    Duan, Shaoyin; Lv, Shaomao; Ye, Feng; Lin, Qingchi

    2009-08-01

    The objective of this article is to display the vertebral artery and bone structure at the craniocervical junction (CJVA and C(0-1-2)) with three-dimensional CT angiography (3DCTA) and identify their anatomic features and variations. Eighty-eight subjects without pathology of vertebral artery (VA) and C(0-1-2) were selected from head-neck CTA examination. 3D images were formed with volume rendering (VR) and multiplanar reconstruction (MPR). On the 3D images, CJVA and C(0-1-2) were measured, and their variations were observed. CJVA goes along C(0-1-2) with five curves, of which three curves are visibly away from C(0-1-2), one is 0.0-8.3 mm away at the second curve with 0.0-11.2 mm in width, another is 0.0-9.2 mm away at the fourth with 2.8-14.8 mm and the other is 0.0-6.2 mm away at the fifth. Statistical comparisons show that there is no significant difference in the measurements between left and right, and that the curves become smaller and farther away from C(0-1-2) with the increase of age. CJVA is not equal in size, with the biggest in the fourth curve and the smallest in the fifth. Statistical comparison shows the left CJVA is larger than the right in the fifth curve. Variations were found on CJVA in 16 cases and on C(1) in 12 cases. The anatomy and variations of CJVA and C(0-1-2) are complicated. It is of vital significance to identify their anatomic features in clinical practice.

  13. Segmentation of the common carotid artery with active shape models from 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Jin, Jiaoying; He, Wanji; Yuchi, Ming; Ding, Mingyue

    2012-03-01

    Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, we develop and evaluate a new segmentation method for outlining both lumen and adventitia (inner and outer walls) of common carotid artery (CCA) from three-dimensional ultrasound (3D US) images for carotid atherosclerosis diagnosis and evaluation. The data set consists of sixty-eight, 17× 2× 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80mg atorvastain and nine with placebo), who had carotid stenosis of 60% or more, at baseline and after three months of treatment. We investigate the use of Active Shape Models (ASMs) to segment CCA inner and outer walls after statin therapy. The proposed method was evaluated with respect to expert manually outlined boundaries as a surrogate for ground truth. For the lumen and adventitia segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 93.6%+/- 2.6%, 91.8%+/- 3.5%, mean absolute distances (MAD) of 0.28+/- 0.17mm and 0.34 +/- 0.19mm, maximum absolute distances (MAXD) of 0.87 +/- 0.37mm and 0.74 +/- 0.49mm. The proposed algorithm took 4.4 +/- 0.6min to segment a single 3D US images, compared to 11.7+/-1.2min for manual segmentation. Therefore, the method would promote the translation of carotid 3D US to clinical care for the fast, safety and economical monitoring of the atherosclerotic disease progression and regression during therapy.

  14. Segmentation of common carotid artery with active appearance models from ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Xin; He, Wanji; Fenster, Aaron; Yuchi, Ming; Ding, Mingyue

    2013-02-01

    Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, a new segmentation method is proposed and evaluated for outlining the common carotid artery (CCA) from transverse view images, which were sliced from three-dimensional ultrasound (3D US) of 1mm inter-slice distance (ISD), to support the monitoring and assessment of carotid atherosclerosis. The data set consists of forty-eight 3D US images acquired from both left and right carotid arteries of twelve patients in two time points who had carotid stenosis of 60% or more at the baseline. The 3D US data were collected at baseline and three-month follow-up, where seven treated with 80mg atorvastatin and five with placebo. The baseline manual boundaries were used for Active Appearance Models (AAM) training; while the treatment data for segmentation testing and evaluation. The segmentation results were compared with experts manually outlined boundaries, as a surrogate for ground truth, for further evaluation. For the adventitia and lumen segmentations, the algorithm yielded Dice Coefficients (DC) of 92.06%+/-2.73% and 89.67%+/-3.66%, mean absolute distances (MAD) of 0.28+/-0.18 mm and 0.22+/-0.16 mm, maximum absolute distances (MAXD) of 0.71+/-0.28 mm and 0.59+/-0.21 mm, respectively. The segmentation results were also evaluated via Pratt's figure of merit (FOM) with the value of 0.61+/-0.06 and 0.66+/-0.05, which provides a quantitative measure for judging the similarity. Experimental results indicate that the proposed method can promote the carotid 3D US usage for a fast, safe and economical monitoring of the atherosclerotic disease progression and regression during therapy.

  15. Arterial elasticity imaging: comparison of finite-element analysis models with high-resolution ultrasound speckle tracking

    PubMed Central

    2010-01-01

    Background The nonlinear mechanical properties of internal organs and tissues may be measured with unparalleled precision using ultrasound imaging with phase-sensitive speckle tracking. The many potential applications of this important noninvasive diagnostic approach include measurement of arterial stiffness, which is associated with numerous major disease processes. The accuracy of previous ultrasound measurements of arterial stiffness and vascular elasticity has been limited by the relatively low strain of nonlinear structures under normal physiologic pressure and the measurement assumption that the effect of the surrounding tissue modulus might be ignored in both physiologic and pressure equalized conditions. Methods This study performed high-resolution ultrasound imaging of the brachial artery in a healthy adult subject under normal physiologic pressure and the use of external pressure (pressure equalization) to increase strain. These ultrasound results were compared to measurements of arterial strain as determined by finite-element analysis models with and without a surrounding tissue, which was represented by homogenous material with fixed elastic modulus. Results Use of the pressure equalization technique during imaging resulted in average strain values of 26% and 18% at the top and sides, respectively, compared to 5% and 2%, at the top and sides, respectively, under physiologic pressure. In the artery model that included surrounding tissue, strain was 19% and 16% under pressure equalization versus 9% and 13% at the top and sides, respectively, under physiologic pressure. The model without surrounding tissue had slightly higher levels of strain under physiologic pressure compared to the other model, but the resulting strain values under pressure equalization were > 60% and did not correspond to experimental values. Conclusions Since pressure equalization may increase the dynamic range of strain imaging, the effect of the surrounding tissue on strain should

  16. Validation of no-reference image quality index for the assessment of digital mammographic images

    NASA Astrophysics Data System (ADS)

    de Oliveira, Helder C. R.; Barufaldi, Bruno; Borges, Lucas R.; Gabarda, Salvador; Bakic, Predrag R.; Maidment, Andrew D. A.; Schiabel, Homero; Vieira, Marcelo A. C.

    2016-03-01

    To ensure optimal clinical performance of digital mammography, it is necessary to obtain images with high spatial resolution and low noise, keeping radiation exposure as low as possible. These requirements directly affect the interpretation of radiologists. The quality of a digital image should be assessed using objective measurements. In general, these methods measure the similarity between a degraded image and an ideal image without degradation (ground-truth), used as a reference. These methods are called Full-Reference Image Quality Assessment (FR-IQA). However, for digital mammography, an image without degradation is not available in clinical practice; thus, an objective method to assess the quality of mammograms must be performed without reference. The purpose of this study is to present a Normalized Anisotropic Quality Index (NAQI), based on the Rényi entropy in the pseudo-Wigner domain, to assess mammography images in terms of spatial resolution and noise without any reference. The method was validated using synthetic images acquired through an anthropomorphic breast software phantom, and the clinical exposures on anthropomorphic breast physical phantoms and patient's mammograms. The results reported by this noreference index follow the same behavior as other well-established full-reference metrics, e.g., the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Reductions of 50% on the radiation dose in phantom images were translated as a decrease of 4dB on the PSNR, 25% on the SSIM and 33% on the NAQI, evidencing that the proposed metric is sensitive to the noise resulted from dose reduction. The clinical results showed that images reduced to 53% and 30% of the standard radiation dose reported reductions of 15% and 25% on the NAQI, respectively. Thus, this index may be used in clinical practice as an image quality indicator to improve the quality assurance programs in mammography; hence, the proposed method reduces the subjectivity

  17. Principles of CT: radiation dose and image quality.

    PubMed

    Goldman, Lee W

    2007-12-01

    This article discusses CT radiation dose, the measurement of CT dose, and CT image quality. The most commonly used dose descriptor is CT dose index, which represents the dose to a location (e.g., depth) in a scanned volume from a complete series of slices. A weighted average of the CT dose index measured at the center and periphery of dose phantoms provides a convenient single-number estimate of patient dose for a procedure, and this value (or a related indicator that includes the scanned length) is often displayed on the operator's console. CT image quality, as in most imaging, is described in terms of contrast, spatial resolution, image noise, and artifacts. A strength of CT is its ability to visualize structures of low contrast in a subject, a task that is limited primarily by noise and is therefore closely associated with radiation dose: The higher the dose contributing to the image, the less apparent is image noise and the easier it is to perceive low-contrast structures. Spatial resolution is ultimately limited by sampling, but both image noise and resolution are strongly affected by the reconstruction filter. As a result, diagnostically acceptable image quality at acceptable doses of radiation requires appropriately designed clinical protocols, including appropriate kilovolt peaks, amperages, slice thicknesses, and reconstruction filters.

  18. High dynamic range image compression by optimizing tone mapped image quality index.

    PubMed

    Ma, Kede; Yeganeh, Hojatollah; Zeng, Kai; Wang, Zhou

    2015-10-01

    Tone mapping operators (TMOs) aim to compress high dynamic range (HDR) images to low dynamic range (LDR) ones so as to visualize HDR images on standard displays. Most existing TMOs were demonstrated on specific examples without being thoroughly evaluated using well-designed and subject-validated image quality assessment models. A recently proposed tone mapped image quality index (TMQI) made one of the first attempts on objective quality assessment of tone mapped images. Here, we propose a substantially different approach to design TMO. Instead of using any predefined systematic computational structure for tone mapping (such as analytic image transformations and/or explicit contrast/edge enhancement), we directly navigate in the space of all images, searching for the image that optimizes an improved TMQI. In particular, we first improve the two building blocks in TMQI—structural fidelity and statistical naturalness components—leading to a TMQI-II metric. We then propose an iterative algorithm that alternatively improves the structural fidelity and statistical naturalness of the resulting image. Numerical and subjective experiments demonstrate that the proposed algorithm consistently produces better quality tone mapped images even when the initial images of the iteration are created by the most competitive TMOs. Meanwhile, these results also validate the superiority of TMQI-II over TMQI.

  19. Visualization of Deformable Image Registration Quality using Local Image Dissimilarity.

    PubMed

    Schlachter, Matthias; Fechter, Tobias; Jurisic, Miro; Schimek-Jasch, Tanja; Oehlke, Oliver; Adebahr, Sonja; Birkfellner, Wolfgang; Nestle, Ursula; Buhler, Katja

    2016-04-29

    Deformable image registration (DIR) has the potential to improve modern radiotherapy in many aspects, including volume definition, treatment planning and image-guided adaptive radiotherapy. Studies have shown its possible clinical benefits. However, measuring DIR accuracy is difficult without known ground truth, but necessary before integration in the radiotherapy workflow. Visual assessment is an important step towards clinical acceptance. We propose a visualization framework which supports the exploration and the assessment of DIR accuracy. It offers different interaction and visualization features for exploration of candidate regions to simplify the process of visual assessment. The visualization is based on voxel-wise comparison of local image patches for which dissimilarity measures are computed and visualized to indicate locally the registration results. We performed an evaluation with three radiation oncologists to demonstrate the viability of our approach. In the evaluation, lung regions were rated by the participants with regards to their visual accuracy and compared to the registration error measured with expert defined landmarks. Regions rated as "accepted" had an average registration error of 1.8 mm, with the highest single landmark error being 3.3 mm. Additionally, survey results show that the proposed visualizations support a fast and intuitive investigation of DIR accuracy, and are suitable for finding even small errors.

  20. Visualization of Deformable Image Registration Quality Using Local Image Dissimilarity.

    PubMed

    Schlachter, Matthias; Fechter, Tobias; Jurisic, Miro; Schimek-Jasch, Tanja; Oehlke, Oliver; Adebahr, Sonja; Birkfellner, Wolfgang; Nestle, Ursula; Bu Hler, Katja

    2016-10-01

    Deformable image registration (DIR) has the potential to improve modern radiotherapy in many aspects, including volume definition, treatment planning and image-guided adaptive radiotherapy. Studies have shown its possible clinical benefits. However, measuring DIR accuracy is difficult without known ground truth, but necessary before integration in the radiotherapy workflow. Visual assessment is an important step towards clinical acceptance. We propose a visualization framework which supports the exploration and the assessment of DIR accuracy. It offers different interaction and visualization features for exploration of candidate regions to simplify the process of visual assessment. The visualization is based on voxel-wise comparison of local image patches for which dissimilarity measures are computed and visualized to indicate locally the registration results. We performed an evaluation with three radiation oncologists to demonstrate the viability of our approach. In the evaluation, lung regions were rated by the participants with regards to their visual accuracy and compared to the registration error measured with expert defined landmarks. Regions rated as "accepted" had an average registration error of 1.8 mm, with the highest single landmark error being 3.3 mm. Additionally, survey results show that the proposed visualizations support a fast and intuitive investigation of DIR accuracy, and are suitable for finding even small errors.

  1. Improvement in the quality of the cardiac vein images by optimizing the scan protocol of multidetector-row computed tomography.

    PubMed

    Hara, Tetsuya; Yamashiro, Kohei; Okajima, Katsunori; Hayashi, Takatoshi; Kajiya, Teishi

    2009-11-01

    The present study aimed at optimizing the scan protocol for multidetector-row computed tomography (MDCT) to adequately visualize coronary veins. Circulation time (Cir.T) was defined as the time period from the injection of contrast media into the coronary artery to the pervasion of the contrast media into the coronary sinus as observed by coronary angiography. We investigated the relation between the Cir.T and echocardiographic parameters in 64 patients. The left ventricular end-diastolic diameter (LVDd) and left ventricular end-systolic diameter (LVDs) were correlated with the Cir.T (r = 0.58, P < 0.0001, and r = 0.60, P < 0.0001 respectively). In addition, the left ventricular ejection fraction (LVEF) was negatively correlated with the Cir.T (r = 0.48, P < 0.0001). The average Cir. T was longer in patients with LVEF < 35% (8.0 s vs 6.7 s; P < 0.05) or LVDd > 55 mm (7.9 s vs 6.2 s; P < 0.05) than in the other patients. The quality of the MDCT images of the coronary veins obtained at different scan timings (coronary artery phase and 10 s or 15 s after the coronary artery phase) were graded and classified into four categories (0 = worst, 3 = best) in 25 patients with LVEF < 35%. The delays of 10 and 15 s after the coronary artery phase significantly improved the mean image quality (P < 0.05). The Cir.T was prolonged in patients with low LVEF and LV dilation. An appropriate delay improved the quality of the MDCT images of the coronary veins in patients with LV dysfunction.

  2. Body image and quality of life in a Spanish population

    PubMed Central

    Lobera, Ignacio Jáuregui; Ríos, Patricia Bolaños

    2011-01-01

    Purpose The aim of the current study was to analyze the psychometric properties, factor structure, and internal consistency of the Spanish version of the Body Image Quality of Life Inventory (BIQLI-SP) as well as its test–retest reliability. Further objectives were to analyze different relationships with key dimensions of psychosocial functioning (ie, self-esteem, presence of psychopathological symptoms, eating and body image-related problems, and perceived stress) and to evaluate differences in body image quality of life due to gender. Patients and methods The sample comprised 417 students without any psychiatric history, recruited from the Pablo de Olavide University and the University of Seville. There were 140 men (33.57%) and 277 women (66.43%), and the mean age was 21.62 years (standard deviation = 5.12). After obtaining informed consent from all participants, the following questionnaires were administered: BIQLI, Eating Disorder Inventory-2 (EDI-2), Perceived Stress Questionnaire (PSQ), Self-Esteem Scale (SES), and Symptom Checklist-90-Revised (SCL-90-R). Results The BIQLI-SP shows adequate psychometric properties, and it may be useful to determine the body image quality of life in different physical conditions. A more positive body image quality of life is associated with better self-esteem, better psychological wellbeing, and fewer eating-related dysfunctional attitudes, this being more evident among women. Conclusion The BIQLI-SP may be useful to determine the body image quality of life in different contexts with regard to dermatology, cosmetic and reconstructive surgery, and endocrinology, among others. In these fields of study, a new trend has emerged to assess body image-related quality of life. PMID:21403794

  3. Sparse feature fidelity for perceptual image quality assessment.

    PubMed

    Chang, Hua-Wen; Yang, Hua; Gan, Yong; Wang, Ming-Hui

    2013-10-01

    The prediction of an image quality metric (IQM) should be consistent with subjective human evaluation. As the human visual system (HVS) is critical to visual perception, modeling of the HVS is regarded as the most suitable way to achieve perceptual quality predictions. Sparse coding that is equivalent to independent component analysis (ICA) can provide a very good description of the receptive fields of simple cells in the primary visual cortex, which is the most important part of the HVS. With this inspiration, a quality metric called sparse feature fidelity (SFF) is proposed for full-reference image quality assessment (IQA) on the basis of transformation of images into sparse representations in the primary visual cortex. The proposed method is based on the sparse features that are acquired by a feature detector, which is trained on samples of natural images by an ICA algorithm. In addition, two strategies are designed to simulate the properties of the visual perception: 1) visual attention and 2) visual threshold. The computation of SFF has two stages: training and fidelity computation, in addition, the fidelity computation consists of two components: feature similarity and luminance correlation. The feature similarity measures the structure differences between the two images, whereas the luminance correlation evaluates brightness distortions. SFF also reflects the chromatic properties of the HVS, and it is very effective for color IQA. The experimental results on five image databases show that SFF has a better performance in matching subjective ratings compared with the leading IQMs.

  4. Slider-adjusted softcopy ruler for calibrated image quality assessment

    NASA Astrophysics Data System (ADS)

    Jin, Elaine W.; Keelan, Brian W.

    2010-01-01

    ISO 20462 part 3 standardized the hardcopy quality ruler and a softcopy quality ruler based on a binary sort approach involving paired comparisons. The new softcopy ruler method described here utilizes a slider bar to match the quality of the ruler to that of the test image, which is found to substantially reduce the time required per assessment (30 to 15.5 s), with only a modest loss of precision (standard deviations of 2.5 to 2.9 just noticeable differences). In combination, these metrics implied a 20% improvement in the standard error of the mean achievable in a fixed amount of judging time. Ruler images calibrated against the standard quality scale of ISO 20462 are generated for 21 scenes, at 31 quality levels each, achieved through variation of sharpness, while other attributes are held near their preferred positions. The images are bundled with documentation and a MATLAB source code for a graphical user interface that administers softcopy ruler experiments, and these materials are donated to the International Imaging Industry Association for distribution. In conjunction with a specified large flat panel display, these materials should enable users to conduct softcopy quality ruler experiments with minimum effort, and should reduce the barriers to performing calibrated psychophysical measurements.

  5. Deriving the Intrahepatic Arteriovenous Shunt Rate from CT Images and Biochemical Data Instead of from Arterial Perfusion Scintigraphy in Hepatic Arterial Infusion Chemotherapy

    SciTech Connect

    Ozaki, Toshiro Seki, Hiroshi; Shiina, Makoto

    2009-09-15

    The purpose of the present study was to elucidate a method for predicting the intrahepatic arteriovenous shunt rate from computed tomography (CT) images and biochemical data, instead of from arterial perfusion scintigraphy, because adverse exacerbated systemic effects may be induced in cases where a high shunt rate exists. CT and arterial perfusion scintigraphy were performed in patients with liver metastases from gastric or colorectal cancer. Biochemical data and tumor marker levels of 33 enrolled patients were measured. The results were statistically verified by multiple regression analysis. The total metastatic hepatic tumor volume (V{sub metastasized}), residual hepatic parenchyma volume (V{sub residual}; calculated from CT images), and biochemical data were treated as independent variables; the intrahepatic arteriovenous (IHAV) shunt rate (calculated from scintigraphy) was treated as a dependent variable. The IHAV shunt rate was 15.1 {+-} 11.9%. Based on the correlation matrixes, the best correlation coefficient of 0.84 was established between the IHAV shunt rate and V{sub metastasized} (p < 0.01). In the multiple regression analysis with the IHAV shunt rate as the dependent variable, the coefficient of determination (R{sup 2}) was 0.75, which was significant at the 0.1% level with two significant independent variables (V{sub metastasized} and V{sub residual}). The standardized regression coefficients ({beta}) of V{sub metastasized} and V{sub residual} were significant at the 0.1 and 5% levels, respectively. Based on this result, we can obtain a predicted value of IHAV shunt rate (p < 0.001) using CT images. When a high shunt rate was predicted, beneficial and consistent clinical monitoring can be initiated in, for example, hepatic arterial infusion chemotherapy.

  6. An approach for quantitative image quality analysis for CT

    NASA Astrophysics Data System (ADS)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  7. Real-time computer treatment of THz passive device images with the high image quality

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  8. Quality of Life on Arterial Hypertension: Validity of Known Groups of MINICHAL.

    PubMed

    Soutello, Ana Lúcia Soares; Rodrigues, Roberta Cunha Matheus; Jannuzzi, Fernanda Freire; São-João, Thaís Moreira; Martinix, Gabriela Giordano; Nadruz Jr, Wilson; Gallani, Maria-Cecília Bueno Jayme

    2015-02-27

    Introductions: In the care of hypertension, it is important that health professionals possess available tools that allow evaluating the impairment of the health-related quality of life, according to the severity of hypertension and the risk for cardiovascular events. Among the instruments developed for the assessment of health-related quality of life, there is the Mini-Cuestionario of Calidad de Vida en la Hipertensión Arterial (MINICHAL) recently adapted to the Brazilian culture. Objective: To estimate the validity of known groups of the Brazilian version of the MINICHAL regarding the classification of risk for cardiovascular events, symptoms, severity of dyspnea and target-organ damage. Methods: Data of 200 hypertensive outpatients concerning sociodemographic and clinical information and health-related quality of life were gathered by consulting the medical charts and the application of the Brazilian version of MINICHAL. The Mann-Whitney test was used to compare health-related quality of life in relation to symptoms and target-organ damage. The Kruskal-Wallis test and ANOVA with ranks transformation were used to compare health-related quality of life in relation to the classification of risk for cardiovascular events and intensity of dyspnea, respectively. Results: The MINICHAL was able to discriminate health-related quality of life in relation to symptoms and kidney damage, but did not discriminate health-related quality of life in relation to the classification of risk for cardiovascular events. Conclusion: The Brazilian version of the MINICHAL is a questionnaire capable of discriminating differences on the health‑related quality of life regarding dyspnea, chest pain, palpitation, lipothymy, cephalea and renal damage.Fundamento: No cuidado ao hipertenso, é importante que o profissional de saúde disponha de ferramentas que possibilitem avaliar o comprometimento da qualidade de vida relacionada à saúde, de acordo com a gravidade da hipertensão e o risco

  9. Asymmetric radial expansion and contraction of rat carotid artery observed using a high-resolution ultrasound imaging system.

    PubMed

    Nam, Kweon-Ho; Bok, Tae-Hoon; Jin, Changzhu; Paeng, Dong-Guk

    2014-01-01

    The geometry of carotid artery bifurcation is of high clinical interest because it determines the characteristics of blood flow that is closely related to the formation and development of atherosclerotic plaque. However, information on the dynamic changes in the vessel wall of carotid artery bifurcation during a pulsatile cycle is limited. This pilot study investigated the cyclic changes in carotid artery geometry caused by blood flow pulsation in rats. A high-resolution ultrasound imaging system with a broadband scanhead centered at 40 MHz was used to obtain longitudinal images of the rat carotid artery. A high frame rate retrospective B-scan imaging technique based on the use of electrocardiogram to trigger signal acquisition was used to examine precisely the fast arterial wall motion. Two-dimensional geometry data obtained from nine rats showed that the rat carotid artery asymmetrically contracts and dilates during each cardiac cycle. Systolic/diastolic vessel diameters near the upstream and downstream regions from the bifurcation were 0.976 ± 0.011/0.825 ± 0.015 mm and 0.766 ± 0.015/0.650 ± 0.016 mm, respectively. Their posterior/anterior wall displacement ratios in the radial direction were 41.0 ± 14.9% and 2.9 ± 1.6%, respectively. These results indicate that in the vicinity of bifurcation, the carotid artery favorably expands to the anterior side during the systolic phase. This phenomenon was observed to be more prominent in the downstream region near the bifurcation. The cyclic variation pattern in wall movement varies depending on the measurement site, which shows different patterns at far upstream and downstream of the bifurcation. The asymmetric radial expansion and contraction of the rat carotid artery observed in this study may be useful in studying the hemodynamic etiology of cardiovascular diseases because the pulsatile changes in vessel geometry may affect the local hemodynamics that determines the spatial distribution of wall shear stress

  10. Investigation of perceptual attributes for mobile display image quality

    NASA Astrophysics Data System (ADS)

    Gong, Rui; Xu, Haisong; Wang, Qing; Wang, Zhehong; Li, Haifeng

    2013-08-01

    Large-scale psychophysical experiments are carried out on two types of mobile displays to evaluate the perceived image quality (IQ). Eight perceptual attributes, i.e., naturalness, colorfulness, brightness, contrast, sharpness, clearness, preference, and overall IQ, are visually assessed via categorical judgment method for various application types of test images, which were manipulated by different methods. Their correlations are deeply discussed, and further factor analysis revealed the two essential components to describe the overall IQ, i.e., the component of image detail aspect and the component of color information aspect. Clearness and naturalness are regarded as two principal factors for natural scene images, whereas clearness and colorfulness were selected as key attributes affecting the overall IQ for other application types of images. Accordingly, based on these selected attributes, two kinds of empirical models are built to predict the overall IQ of mobile displays for different application types of images.

  11. Exploratory survey of image quality on CR digital mammography imaging systems in Mexico.

    PubMed

    Gaona, E; Rivera, T; Arreola, M; Franco, J; Molina, N; Alvarez, B; Azorín, C G; Casian, G

    2014-01-01

    The purpose of this study was to assess the current status of image quality and dose in computed radiographic digital mammography (CRDM) systems. Studies included CRDM systems of various models and manufacturers which dose and image quality comparisons were performed. Due to the recent rise in the use of digital radiographic systems in Mexico, CRDM systems are rapidly replacing conventional film-screen systems without any regard to quality control or image quality standards. Study was conducted in 65 mammography facilities which use CRDM systems in the Mexico City and surrounding States. The systems were tested as used clinically. This means that the dose and beam qualities were selected using the automatic beam selection and photo-timed features. All systems surveyed generate laser film hardcopies for the radiologist to read on a scope or mammographic high luminance light box. It was found that 51 of CRDM systems presented a variety of image artefacts and non-uniformities arising from inadequate acquisition and processing, as well as from the laser printer itself. Undisciplined alteration of image processing settings by the technologist was found to be a serious prevalent problem in 42 facilities. Only four of them showed an image QC program which is periodically monitored by a medical physicist. The Average Glandular Dose (AGD) in the surveyed systems was estimated to have a mean value of 2.4 mGy. To improve image quality in mammography and make more efficient screening mammographic in early detection of breast cancer is required new legislation.

  12. Advanced imaging assessment of bone quality.

    PubMed

    Genant, Harry K; Jiang, Yebin

    2006-04-01

    Noninvasive and/or nondestructive techniques can provide structural information about bone, beyond simple bone densitometry. While the latter provides important information about osteoporotic fracture risk, many studies indicate that bone mineral density (BMD) only partly explains bone strength. Quantitative assessment of macrostructural characteristics, such as geometry, and microstructural features, such as relative trabecular volume, trabecular spacing, and connectivity, may improve our ability to estimate bone strength. Methods for quantitatively assessing macrostructure include (besides conventional radiographs) dual X ray absorptiometry (DXA) and computed tomography (CT), particularly volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), microcomputed tomography (micro-CT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (micro-MR). vQCT, hrCT, and hrMR are generally applicable in vivo; micro-CT and micro-MR are principally applicable in vitro. Despite progress, problems remain. The important balances between spatial resolution and sampling size, or between signal-to-noise and radiation dose or acquisition time, need further consideration, as do the complexity and expense of the methods versus their availability and accessibility. Clinically, the challenges for bone imaging include balancing the advantages of simple bone densitometry versus the more complex architectural features of bone, or the deeper research requirements versus the broader clinical needs. The biological differences between the peripheral appendicular skeleton and the central axial skeleton must be further addressed. Finally, the relative merits of these sophisticated imaging techniques must be weighed with respect to their applications as diagnostic procedures, requiring high accuracy or reliability, versus their monitoring

  13. LANDSAT 4 image data quality analysis

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.

    1983-01-01

    A comparative analysis of TM and MSS data was completed and the results indicate that there are half as many separable spectral classes in the MSS data than in TM. In addition, the minimum separability between classes was also much less in MSS data. Radiometric data quality was also investigated for the TM by computing power spectrum estimates for dark-level data from Lake Michigan. Two significant coherent noise frequencies were observed, one with a wavelength of 3.12 pixels and the other with a 17 pixel wavelength. The amplitude was small (nominally .6 digital count standard deviation) and the noise appears primarily in Bands 3 and 4. No significant levels were observed in other bands. Scan angle dependent brightness effects were also evaluated.

  14. Image quality of mixed convolution kernel in thoracic computed tomography.

    PubMed

    Neubauer, Jakob; Spira, Eva Maria; Strube, Juliane; Langer, Mathias; Voss, Christian; Kotter, Elmar

    2016-11-01

    The mixed convolution kernel alters his properties geographically according to the depicted organ structure, especially for the lung. Therefore, we compared the image quality of the mixed convolution kernel to standard soft and hard kernel reconstructions for different organ structures in thoracic computed tomography (CT) images.Our Ethics Committee approved this prospective study. In total, 31 patients who underwent contrast-enhanced thoracic CT studies were included after informed consent. Axial reconstructions were performed with hard, soft, and mixed convolution kernel. Three independent and blinded observers rated the image quality according to the European Guidelines for Quality Criteria of Thoracic CT for 13 organ structures. The observers rated the depiction of the structures in all reconstructions on a 5-point Likert scale. Statistical analysis was performed with the Friedman Test and post hoc analysis with the Wilcoxon rank-sum test.Compared to the soft convolution kernel, the mixed convolution kernel was rated with a higher image quality for lung parenchyma, segmental bronchi, and the border between the pleura and the thoracic wall (P < 0.03). Compared to the hard convolution kernel, the mixed convolution kernel was rated with a higher image quality for aorta, anterior mediastinal structures, paratracheal soft tissue, hilar lymph nodes, esophagus, pleuromediastinal border, large and medium sized pulmonary vessels and abdomen (P < 0.004) but a lower image quality for trachea, segmental bronchi, lung parenchyma, and skeleton (P < 0.001).The mixed convolution kernel cannot fully substitute the standard CT reconstructions. Hard and soft convolution kernel reconstructions still seem to be mandatory for thoracic CT.

  15. Construction of Realistic Liver Phantoms from Patient Images using 3D Printer and Its Application in CT Image Quality Assessment.

    PubMed

    Leng, Shuai; Yu, Lifeng; Vrieze, Thomas; Kuhlmann, Joel; Chen, Baiyu; McCollough, Cynthia H

    2015-01-01

    The purpose of this study is to use 3D printing techniques to construct a realistic liver phantom with heterogeneous background and anatomic structures from patient CT images, and to use the phantom to assess image quality with filtered backprojection and iterative reconstruction algorithms. Patient CT images were segmented into liver tissues, contrast-enhanced vessels, and liver lesions using commercial software, based on which stereolithography (STL) files were created and sent to a commercial 3D printer. A 3D liver phantom was printed after assigning different printing materials to each object to simulate appropriate attenuation of each segmented object. As high opacity materials are not available for the printer, we printed hollow vessels and filled them with iodine solutions of adjusted concentration to represent enhance levels in contrast-enhanced liver scans. The printed phantom was then placed in a 35×26 cm oblong-shaped water phantom and scanned repeatedly at 4 dose levels. Images were reconstructed using standard filtered backprojection and an iterative reconstruction algorithm with 3 different strength settings. Heterogeneous liver background were observed from the CT images and the difference in CT numbers between lesions and background were representative for low contrast lesions in liver CT studies. CT numbers in vessels filled with iodine solutions represented the enhancement of liver arteries and veins. Images were run through a Channelized Hotelling model observer with Garbor channels and ROC analysis was performed. The AUC values showed performance improvement using the iterative reconstruction algorithm and the amount of improvement increased with strength setting.

  16. Construction of realistic liver phantoms from patient images using 3D printer and its application in CT image quality assessment

    NASA Astrophysics Data System (ADS)

    Leng, Shuai; Yu, Lifeng; Vrieze, Thomas; Kuhlmann, Joel; Chen, Baiyu; McCollough, Cynthia H.

    2015-03-01

    The purpose of this study is to use 3D printing techniques to construct a realistic liver phantom with heterogeneous background and anatomic structures from patient CT images, and to use the phantom to assess image quality with filtered back-projection and iterative reconstruction algorithms. Patient CT images were segmented into liver tissues, contrast-enhanced vessels, and liver lesions using commercial software, based on which stereolithography (STL) files were created and sent to a commercial 3D printer. A 3D liver phantom was printed after assigning different printing materials to each object to simulate appropriate attenuation of each segmented object. As high opacity materials are not available for the printer, we printed hollow vessels and filled them with iodine solutions of adjusted concentration to represent enhance levels in contrast-enhanced liver scans. The printed phantom was then placed in a 35×26 cm oblong-shaped water phantom and scanned repeatedly at 4 dose levels. Images were reconstructed using standard filtered back-projection and an iterative reconstruction algorithm with 3 different strength settings. Heterogeneous liver background were observed from the CT images and the difference in CT numbers between lesions and background were representative for low contrast lesions in liver CT studies. CT numbers in vessels filled with iodine solutions represented the enhancement of liver arteries and veins. Images were run through a Channelized Hotelling model observer with Garbor channels and ROC analysis was performed. The AUC values showed performance improvement using the iterative reconstruction algorithm and the amount of improvement increased with strength setting.

  17. Association of arterial blood pressure and CPR quality in a child using three different compression techniques, a case report

    PubMed Central

    2013-01-01

    A 2-year-old boy found in cardiac arrest secondary to drowning received standard CPR for 35 minutes and was transported to a tertiary hospital for rewarming from hypothermia. Chest compressions in hospital were started using two-thumb encircling hands technique. Subsequently two-thumbs direct sternal compression technique and after sternal force/depth sensor placement, chest compression with classic one-hand technique were done. By using CPR recording/feedback defibrillator, quantitative CPR quality data and invasive arterial pressures were available for analyses for 5 hours and 35 minutes. 316 compressions with the two-thumb encircling hands technique provided a mean (SD) systolic arterial pressure (SAP) of 24 (4) mmHg, mean arterial pressure (MAP) 18 (3) and diastolic arterial pressure (DAP) of 15 (3) mmHg. ~6000 compressions with the two thumbs direct compression technique created a mean SAP of 45 (7) mmHg, MAP 35 (4) mmHg and DAP of 30 (3) mmHg. ~20,000 compressions with the sternal accelerometer in place produced SAP 50 (10) mmHg, MAP 32 (5) mmHg and DAP 24 (4) mmHg. Restoration of spontaneous circulation (ROSC) was achieved at the point when the child achieved normothermia by using peritoneal dialysis. Unfortunately, the child died ten hours after ROSC without any signs of neurological recovery. This case demonstrates improved hemodynamic parameters with classic one-handed technique with real-time quantitative quality of CPR feedback compared to either the two-thumbs encircling hands or two-thumbs direct sternal compression techniques. We speculate that the improved arterial pressures were related to improved chest compression depth when a real-time CPR recording/feedback device was deployed. Trial registration ClinicalTrials.gov: NCT00951704. PMID:23819769

  18. Magnetic Resonance Imaging (MRI) Analysis of Fibroid Location in Women Achieving Pregnancy After Uterine Artery Embolization

    SciTech Connect

    Walker, Woodruff J.; Bratby, Mark John

    2007-09-15

    The purpose of this study was to evaluate the fibroid morphology in a cohort of women achieving pregnancy following treatment with uterine artery embolization (UAE) for symptomatic uterine fibroids. A retrospective review of magnetic resonance imaging (MRI) of the uterus was performed to assess pre-embolization fibroid morphology. Data were collected on fibroid size, type, and number and included analysis of follow-up imaging to assess response. There have been 67 pregnancies in 51 women, with 40 live births. Intramural fibroids were seen in 62.7% of the women (32/48). Of these the fibroids were multiple in 16. A further 12 women had submucosal fibroids, with equal numbers of types 1 and 2. Two of these women had coexistent intramural fibroids. In six women the fibroids could not be individually delineated and formed a complex mass. All subtypes of fibroid were represented in those subgroups of women achieving a live birth versus those who did not. These results demonstrate that the location of uterine fibroids did not adversely affect subsequent pregnancy in the patient population investigated. Although this is only a small qualitative study, it does suggest that all types of fibroids treated with UAE have the potential for future fertility.

  19. Coronary arteries motion modeling on 2D x-ray images

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Sundar, Hari

    2012-02-01

    During interventional procedures, 3D imaging modalities like CT and MRI are not commonly used due to interference with the surgery and radiation exposure concerns. Therefore, real-time information is usually limited and building models of cardiac motion are difficult. In such case, vessel motion modeling based on 2-D angiography images become indispensable. Due to issues with existing vessel segmentation algorithms and the lack of contrast in occluded vessels, manual segmentation of certain branches is usually necessary. In addition, such occluded branches are the most important vessels during coronary interventions and obtaining motion models for these can greatly help in reducing the procedure time and radiation exposure. Segmenting different cardiac phases independently does not guarantee temporal consistency and is not efficient for occluded branches required manual segmentation. In this paper, we propose a coronary motion modeling system which extracts the coronary tree for every cardiac phase, maintaining the segmentation by tracking the coronary tree during the cardiac cycle. It is able to map every frame to the specific cardiac phase, thereby inferring the shape information of the coronary arteries using the model corresponding to its phase. Our experiments show that our motion modeling system can achieve promising results with real-time performance.

  20. Micro-CT image-derived metrics quantify arterial wall distensibility reduction in a rat model of pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Johnson, Roger H.; Karau, Kelly L.; Molthen, Robert C.; Haworth, Steven T.; Dawson, Christopher A.

    2000-04-01

    We developed methods to quantify arterial structural and mechanical properties in excised rat lungs and applied them to investigate the distensibility decrease accompanying chronic hypoxia-induced pulmonary hypertension. Lungs of control and hypertensive (three weeks 11% O2) animals were excised and a contrast agent introduced before micro-CT imaging with a special purpose scanner. For each lung, four 3D image data sets were obtained, each at a different intra-arterial contrast agent pressure. Vessel segment diameters and lengths were measured at all levels in the arterial tree hierarchy, and these data used to generate features sensitive to distensibility changes. Results indicate that measurements obtained from 3D micro-CT images can be used to quantify vessel biomechanical properties in this rat model of pulmonary hypertension and that distensibility is reduced by exposure to chronic hypoxia. Mechanical properties can be assessed in a localized fashion and quantified in a spatially-resolved way or as a single parameter describing the tree as a whole. Micro-CT is a nondestructive way to rapidly assess structural and mechanical properties of arteries in small animal organs maintained in a physiological state. Quantitative features measured by this method may provide valuable insights into the mechanisms causing the elevated pressures in pulmonary hypertension of differing etiologies and should become increasingly valuable tools in the study of complex phenotypes in small-animal models of important diseases such as hypertension.

  1. Determination of pasture quality using airborne hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Pullanagari, R. R.; Kereszturi, G.; Yule, Ian J.; Irwin, M. E.

    2015-10-01

    Pasture quality is a critical determinant which influences animal performance (live weight gain, milk and meat production) and animal health. Assessment of pasture quality is therefore required to assist farmers with grazing planning and management, benchmarking between seasons and years. Traditionally, pasture quality is determined by field sampling which is laborious, expensive and time consuming, and the information is not available in real-time. Hyperspectral remote sensing has potential to accurately quantify biochemical composition of pasture over wide areas in great spatial detail. In this study an airborne imaging spectrometer (AisaFENIX, Specim) was used with a spectral range of 380-2500 nm with 448 spectral bands. A case study of a 600 ha hill country farm in New Zealand is used to illustrate the use of the system. Radiometric and atmospheric corrections, along with automatized georectification of the imagery using Digital Elevation Model (DEM), were applied to the raw images to convert into geocoded reflectance images. Then a multivariate statistical method, partial least squares (PLS), was applied to estimate pasture quality such as crude protein (CP) and metabolisable energy (ME) from canopy reflectance. The results from this study revealed that estimates of CP and ME had a R2 of 0.77 and 0.79, and RMSECV of 2.97 and 0.81 respectively. By utilizing these regression models, spatial maps were created over the imaged area. These pasture quality maps can be used for adopting precision agriculture practices which improves farm profitability and environmental sustainability.

  2. Presence capture cameras - a new challenge to the image quality

    NASA Astrophysics Data System (ADS)

    Peltoketo, Veli-Tapani

    2016-04-01

    Commercial presence capture cameras are coming to the markets and a new era of visual entertainment starts to get its shape. Since the true presence capturing is still a very new technology, the real technical solutions are just passed a prototyping phase and they vary a lot. Presence capture cameras have still the same quality issues to tackle as previous phases of digital imaging but also numerous new ones. This work concentrates to the quality challenges of presence capture cameras. A camera system which can record 3D audio-visual reality as it is has to have several camera modules, several microphones and especially technology which can synchronize output of several sources to a seamless and smooth virtual reality experience. Several traditional quality features are still valid in presence capture cameras. Features like color fidelity, noise removal, resolution and dynamic range create the base of virtual reality stream quality. However, co-operation of several cameras brings a new dimension for these quality factors. Also new quality features can be validated. For example, how the camera streams should be stitched together with 3D experience without noticeable errors and how to validate the stitching? The work describes quality factors which are still valid in the presence capture cameras and defines the importance of those. Moreover, new challenges of presence capture cameras are investigated in image and video quality point of view. The work contains considerations how well current measurement methods can be used in presence capture cameras.

  3. Quality assurance in dental radiography: intra-oral image quality analysis.

    PubMed

    Bolas, Andrew; Fitzgerald, Maurice

    With the introduction of criteria for clinical audit by the Irish Dental Council, and the statutory requirement on dentists to introduce this into their practice, this article will introduce the basic concepts of quality standards in intra-oral radiography and the subsequent application of these standards in an image quality audit cycle. Subjective image quality analysis is not a new concept, but its application can prove beneficial to both patient and dental practitioner. The ALARA (as low as reasonably achievable) principle is fundamental in radiation protection, and therefore the prevention of repeat exposures demonstrates one facet of this that the dental practitioner can employ within daily practice.

  4. Radiation dose and image quality for paediatric interventional cardiology.

    PubMed

    Vano, E; Ubeda, C; Leyton, F; Miranda, P

    2008-08-07

    Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 microGy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 microGy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.

  5. Radiation dose and image quality for paediatric interventional cardiology

    NASA Astrophysics Data System (ADS)

    Vano, E.; Ubeda, C.; Leyton, F.; Miranda, P.

    2008-08-01

    Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 µGy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 µGy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.

  6. Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics

    NASA Astrophysics Data System (ADS)

    King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.

    2011-03-01

    The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.

  7. Signal changes on magnetic resonance perfusion images with arterial spin labeling after carotid endarterectomy

    PubMed Central

    Shimogawa, Takafumi; Morioka, Takato; Sayama, Tetsuro; Haga, Sei; Akiyama, Tomoaki; Murao, Kei; Kanazawa, Yuka; Furuta, Yoshihiko; Sakata, Ayumi; Arakawa, Shuji

    2016-01-01

    Background: Cerebral hyperperfusion after carotid endarterectomy (CEA) is defined as an increase in ipsilateral cerebral blood flow (CBF). Practically, however, prompt and precise assessment of cerebral hyperperfusion is difficult because of limitations in the methodology of CBF measurement during the perioperative period. Arterial spin labeling (ASL) is a completely noninvasive and repeatable magnetic resonance perfusion imaging technique that uses magnetically-labelled blood water as an endogenous tracer. To clarify the usefulness of ASL in the management of cerebral hyperperfusion, we investigated signal changes by ASL with a single 1.5-s post-labeling delay on visual inspection. Methods: Thirty-two consecutive patients who underwent CEA were enrolled in this retrospective study. Results: On postoperative day 1, 22 (68.8%) and 4 (12.5%) patients exhibited increased ASL signals bilaterally (Group A) and on the operated side (Group B), respectively. Follow-up ASL showed improvement in these findings. Six (18.8%) patients showed no change (Group C). There was no apparent correlation between ASL signals on postoperative day 1 and the preoperative hemodynamic state, including the cerebrovascular reserve (P = 0.2062). Three (9.4%) patients developed cerebral hyperperfusion syndrome (two in Group A and one in Group B). Coincidence in the localization of increased ASL signals and electroencephalographic abnormalities was noted in these patients. Conclusion: Visual analysis of ASL with a single post-labeling delay overestimates CBF and cannot identify patients at risk of cerebral hyperperfusion syndrome probably because of the strong effect of the shortened arterial transit time immediately after CEA. However, ASL may be used as for screening. PMID:28144479

  8. Automated coronary artery calcification detection on low-dose chest CT images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Cham, Matthew D.; Henschke, Claudia; Yankelevitz, David; Reeves, Anthony P.

    2014-03-01

    Coronary artery calcification (CAC) measurement from low-dose CT images can be used to assess the risk of coronary artery disease. A fully automatic algorithm to detect and measure CAC from low-dose non-contrast, non-ECG-gated chest CT scans is presented. Based on the automatically detected CAC, the Agatston score (AS), mass score and volume score were computed. These were compared with scores obtained manually from standard-dose ECG-gated scans and low-dose un-gated scans of the same patient. The automatic algorithm segments the heart region based on other pre-segmented organs to provide a coronary region mask. The mitral valve and aortic valve calcification is identified and excluded. All remaining voxels greater than 180HU within the mask region are considered as CAC candidates. The heart segmentation algorithm was evaluated on 400 non-contrast cases with both low-dose and regular dose CT scans. By visual inspection, 371 (92.8%) of the segmentations were acceptable. The automated CAC detection algorithm was evaluated on 41 low-dose non-contrast CT scans. Manual markings were performed on both low-dose and standard-dose scans for these cases. Using linear regression, the correlation of the automatic AS with the standard-dose manual scores was 0.86; with the low-dose manual scores the correlation was 0.91. Standard risk categories were also computed. The automated method risk category agreed with manual markings of gated scans for 24 cases while 15 cases were 1 category off. For low-dose scans, the automatic method agreed with 33 cases while 7 cases were 1 category off.

  9. Intravascular near-infrared fluorescence molecular imaging of atherosclerosis: toward coronary arterial visualization of biologically high-risk plaques

    NASA Astrophysics Data System (ADS)

    Calfon, Marcella A.; Vinegoni, Claudio; Ntziachristos, Vasilis; Jaffer, Farouc A.

    2010-01-01

    New imaging methods are urgently needed to identify high-risk atherosclerotic lesions prior to the onset of myocardial infarction, stroke, and ischemic limbs. Molecular imaging offers a new approach to visualize key biological features that characterize high-risk plaques associated with cardiovascular events. While substantial progress has been realized in clinical molecular imaging of plaques in larger arterial vessels (carotid, aorta, iliac), there remains a compelling, unmet need to develop molecular imaging strategies targeted to high-risk plaques in human coronary arteries. We present recent developments in intravascular near-IR fluorescence catheter-based strategies for in vivo detection of plaque inflammation in coronary-sized arteries. In particular, the biological, light transmission, imaging agent, and engineering principles that underlie a new intravascular near-IR fluorescence sensing method are discussed. Intravascular near-IR fluorescence catheters appear highly translatable to the cardiac catheterization laboratory, and thus may offer a new in vivo method to detect high-risk coronary plaques and to assess novel atherosclerosis biologics.

  10. Are image quality metrics adequate to evaluate the quality of geometric objects?

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.; Rushmeier, Holly E.

    2001-06-01

    Geometric objects are often represented by many millions of triangles or polygons, which limits the ease with which they can be transmitted and displayed electronically. This has lead to the development of many algorithms for simplifying geometric models, and to the recognition that metrics are required to evaluate their success. The goal is to create computer graphic renderings of the object that do not appear to be degraded to a human observer. The perceptual evaluation of simplified objects is a new topic. One approach has been to sue image-based metrics to predict the perceived degradation of simplified 3D models. Since that 2D images of 3D objects can have significantly different perceived quality, depending on the direction of the illumination, 2D measures of image quality may not adequately capture the perceived quality of 3D objects. To address this question, we conducted experiments in which we explicitly compared the perceived quality of animated 3D objects and their corresponding 2D still image projections. Our results suggest that 2D judgements do not provide a good predictor of 3D image quality, and identify a need to develop 'object quality metrics.'

  11. Patient doses and image quality in digital chest radiology.

    PubMed

    Salát, D; Nikodemová, D

    2008-01-01

    Chest X-ray examination is one of the most frequently required procedures used in clinical practice. For studying the image quality of different X-ray digital systems and for the control of patient doses during chest radiological examinations, the standard anthropomorphic lung/chest phantom RSD 330 has been used and exposed in different digital modalities available in Slovakia. To compare different techniques of chest examination, a special software has been developed that enables researchers to compare digital imaging and communications in medicine header images from different digital modalities, using a special viewer. In this paper, this special software has been used for an anonymous correspondent audit for testing image quality evaluation by comparing various parameters of chest imaging, evaluated by 84 Slovak radiologists. The results of the comparison have shown that the majority of the participating radiologists felt that the highest image quality is reached with a flat panel, assessed by the entrance surface dose value, which is approximately 75% lower than the diagnostic reference level of chest examination given in the Slovak legislation. Besides the results of the audit, the possibilities of using the software for optimisation, education and training of medical students, radiological assistants, physicists and radiologists in the field of digital radiology will be described.

  12. Quality assessment for multitemporal and multisensor image fusion

    NASA Astrophysics Data System (ADS)

    Ehlers, Manfred; Klonus, Sascha

    2008-10-01

    Generally, image fusion methods are classified into three levels: pixel level (iconic), feature level (symbolic) and knowledge or decision level. In this paper we focus on iconic techniques for image fusion. There exist a number of established fusion techniques that can be used to merge high spatial resolution panchromatic and lower spatial resolution multispectral images that are simultaneously recorded by one sensor. This is done to create high resolution multispectral image datasets (pansharpening). In most cases, these techniques provide very good results, i.e. they retain the high spatial resolution of the panchromatic image and the spectral information from the multispectral image. These techniques, when applied to multitemporal and/or multisensoral image data, still create spatially enhanced datasets but usually at the expense of the spectral consistency. In this study, a series of nine multitemporal multispectral remote sensing images (seven SPOT scenes and one FORMOSAT scene) is fused with one panchromatic Ikonos image. A number of techniques are employed to analyze the quality of the fusion process. The images are visually and quantitatively evaluated for spectral characteristics preservation and for spatial resolution improvement. Overall, the Ehlers fusion which was developed for spectral characteristics preservation for multi-date and multi-sensor fusion showed the best results. It could not only be proven that the Ehlers fusion is superior to all other tested algorithms but also the only one that guarantees an excellent color preservation for all dates and sensors.

  13. New algorithm for the passive THz image quality enhancement

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2016-04-01

    We propose a new approach for THz image quality enhancing using correlation function between the image under consideration and a standard image. The standard image moves in two directions along a image under analysis. As a result, 2 D correlation function is obtained. Multiplying this function by color number belonging to a grey scale, we restore the image under the analysis. This allows to suppress a noise on a new image. This method allows to see the person clothes details that it means multi-times increasing of the passive THz camera temperature resolution. We discuss a choice of standard image characteristics for an achievement of correlation function for high contrast. Other feature of our approach arises from a possibility of a person image coming to the THz camera by using a computer processing of the image only. It means that we can "decrease" a distance between a person and the passive THz camera. This algorithm is very convenient for using and has a high performance.

  14. Body image quality of life in eating disorders

    PubMed Central

    Jáuregui Lobera, Ignacio; Bolaños Ríos, Patricia

    2011-01-01

    Purpose: The objective was to examine how body image affects quality of life in an eating-disorder (ED) clinical sample, a non-ED clinical sample, and a nonclinical sample. We hypothesized that ED patients would show the worst body image quality of life. We also hypothesized that body image quality of life would have a stronger negative association with specific ED-related variables than with other psychological and psychopathological variables, mainly among ED patients. On the basis of previous studies, the influence of gender on the results was explored, too. Patients and methods: The final sample comprised 70 ED patients (mean age 22.65 ± 7.76 years; 59 women and 11 men); 106 were patients with other psychiatric disorders (mean age 28.20 ± 6.52; 67 women and 39 men), and 135 were university students (mean age 21.57 ± 2.58; 81 women and 54 men), with no psychiatric history. After having obtained informed consent, the following questionnaires were administered: Body Image Quality of Life Inventory-Spanish version (BIQLI-SP), Eating Disorders Inventory-2 (EDI-2), Perceived Stress Questionnaire (PSQ), Self-Esteem Scale (SES), and Symptom Checklist-90-Revised (SCL-90-R). Results: The ED patients’ ratings on the BIQLI-SP were the lowest and negatively scored (BIQLI-SP means: +20.18, +5.14, and −6.18, in the student group, the non-ED patient group, and the ED group, respectively). The effect of body image on quality of life was more negative in the ED group in all items of the BIQLI-SP. Body image quality of life was negatively associated with specific ED-related variables, more than with other psychological and psychopathological variables, but not especially among ED patients. Conclusion: Body image quality of life was affected not only by specific pathologies related to body image disturbances, but also by other psychopathological syndromes. Nevertheless, the greatest effect was related to ED, and seemed to be more negative among men. This finding is the

  15. Differentiation of Glioblastoma from Brain Metastasis: Qualitative and Quantitative Analysis Using Arterial Spin Labeling MR Imaging

    PubMed Central

    Sunwoo, Leonard; You, Sung-Hye; Yoo, Roh-Eul; Kang, Koung Mi; Choi, Seung Hong; Kim, Ji-hoon; Sohn, Chul-Ho; Park, Sun-Won; Jung, Cheolkyu; Park, Chul-Kee

    2016-01-01

    Purpose To evaluate the diagnostic performance of cerebral blood flow (CBF) by using arterial spin labeling (ASL) perfusion magnetic resonance (MR) imaging to differentiate glioblastoma (GBM) from brain metastasis. Materials and Methods The institutional review board of our hospital approved this retrospective study. The study population consisted of 128 consecutive patients who underwent surgical resection and were diagnosed as either GBM (n = 89) or brain metastasis (n = 39). All participants underwent preoperative MR imaging including ASL. For qualitative analysis, the tumors were visually graded into five categories based on ASL-CBF maps by two blinded reviewers. For quantitative analysis, the reviewers drew regions of interest (ROIs) on ASL-CBF maps upon the most hyperperfused portion within the tumor and upon peritumoral T2 hyperintensity area. Signal intensities of intratumoral and peritumoral ROIs for each subject were normalized by dividing the values by those of contralateral normal gray matter (nCBFintratumoral and nCBFperitumoral, respectively). Visual grading scales and quantitative parameters between GBM and brain metastasis were compared. In addition, the area under the receiver-operating characteristic curve was used to evaluate the diagnostic performance of ASL-driven CBF to differentiate GBM from brain metastasis. Results For qualitative analysis, GBM group showed significantly higher grade compared to metastasis group (p = 0.001). For quantitative analysis, both nCBFintratumoral and nCBFperitumoral in GBM were significantly higher than those in metastasis (both p < 0.001). The areas under the curve were 0.677, 0.714, and 0.835 for visual grading, nCBFintratumoral, and nCBFperitumoral, respectively (all p < 0.001). Conclusion ASL perfusion MR imaging can aid in the differentiation of GBM from brain metastasis. PMID:27861605

  16. Image quality testing of assembled IR camera modules

    NASA Astrophysics Data System (ADS)

    Winters, Daniel; Erichsen, Patrik

    2013-10-01

    Infrared (IR) camera modules for the LWIR (8-12_m) that combine IR imaging optics with microbolometer focal plane array (FPA) sensors with readout electronics are becoming more and more a mass market product. At the same time, steady improvements in sensor resolution in the higher priced markets raise the requirement for imaging performance of objectives and the proper alignment between objective and FPA. This puts pressure on camera manufacturers and system integrators to assess the image quality of finished camera modules in a cost-efficient and automated way for quality control or during end-of-line testing. In this paper we present recent development work done in the field of image quality testing of IR camera modules. This technology provides a wealth of additional information in contrast to the more traditional test methods like minimum resolvable temperature difference (MRTD) which give only a subjective overall test result. Parameters that can be measured are image quality via the modulation transfer function (MTF) for broadband or with various bandpass filters on- and off-axis and optical parameters like e.g. effective focal length (EFL) and distortion. If the camera module allows for refocusing the optics, additional parameters like best focus plane, image plane tilt, auto-focus quality, chief ray angle etc. can be characterized. Additionally, the homogeneity and response of the sensor with the optics can be characterized in order to calculate the appropriate tables for non-uniformity correction (NUC). The technology can also be used to control active alignment methods during mechanical assembly of optics to high resolution sensors. Other important points that are discussed are the flexibility of the technology to test IR modules with different form factors, electrical interfaces and last but not least the suitability for fully automated measurements in mass production.

  17. A Methodology for Anatomic Ultrasound Image Diagnostic Quality Assessment.

    PubMed

    Hemmsen, Martin Christian; Lange, Theis; Brandt, Andreas Hjelm; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt

    2017-01-01

    This paper discusses the methods for the assessment of ultrasound image quality based on our experiences with evaluating new methods for anatomic imaging. It presents a methodology to ensure a fair assessment between competing imaging methods using clinically relevant evaluations. The methodology is valuable in the continuing process of method optimization and guided development of new imaging methods. It includes a three phased study plan covering from initial prototype development to clinical assessment. Recommendations to the clinical assessment protocol, software, and statistical analysis are presented. Earlier uses of the methodology has shown that it ensures validity of the assessment, as it separates the influences between developer, investigator, and assessor once a research protocol has been established. This separation reduces confounding influences on the result from the developer to properly reveal the clinical value. This paper exemplifies the methodology using recent studies of synthetic aperture sequential beamforming tissue harmonic imaging.

  18. Quality criteria for simulator images - A literature review

    NASA Astrophysics Data System (ADS)

    Padmos, Pieter; Milders, Maarten V.

    1992-12-01

    Quality criteria are presented for each of about 30 different outside-world image features of computer-generated image systems on vehicle simulators (e.g., airplane, tank, ship). Criteria derived are based on a literature review. In addition to purely physical properties related to image presentation (e.g., field size, contrast ratio, update frequency), attention is paid to image content (e.g., number of polygons, surface treatments, moving objects) and various other features (e.g., electro-optical aids, vehicle-terrain interactions, modeling tools, instruction tools). Included in this paper are an introduction on visual perception, separate discussions of each image feature including terminology definitions, and suggestions for further research.

  19. Quality assurance methodology and applications to abdominal imaging PQI.

    PubMed

    Paushter, David M; Thomas, Stephen

    2016-03-01

    Quality assurance has increasingly become an integral part of medicine, with tandem goals of increasing patient safety and procedural quality, improving efficiency, lowering cost, and ultimately improving patient outcomes. This article reviews quality assurance methodology, ranging from the PDSA cycle to the application of lean techniques, aimed at operational efficiency, to continually evaluate and revise the health care environment. Alignment of goals for practices, hospitals, and healthcare organizations is critical, requiring clear objectives, adequate resources, and transparent reporting. In addition, there is a significant role played by regulatory bodies and oversight organizations in determining external benchmarks of quality, practice, and individual certification and reimbursement. Finally, practical application of quality principles to practice improvement projects in abdominal imaging will be presented.

  20. Venous and Arterial Flow Quantification, are Equally Accurate and Precise with Parallel Imaging Compressed Sensing 4D Phase Contrast MRI

    PubMed Central

    Tariq, Umar; Hsiao, Albert; Alley, Marcus; Zhang, Tao; Lustig, Michael; Vasanawala, Shreyas S.

    2012-01-01

    Purpose To evaluate precision and accuracy of parallel-imaging compressed-sensing 4D phase contrast (PICS-4DPC) MRI venous flow quantification in children with patients referred for cardiac MRI at our children’s hospital. Materials and Methods With IRB approval and HIPAA compliance, 22 consecutive patients without shunts underwent 4DPC as part of clinical cardiac MRI examinations. Flow measurements were obtained in the superior and inferior vena cava, ascending and descending aorta and the pulmonary trunk. Conservation of flow to the upper, lower and whole body was used as an internal physiologic control. The arterial and venous flow rates at each location were compared with paired t-tests and F-tests to assess relative accuracy and precision. RESULTS Arterial and venous flow measurements were strongly correlated for the upper (ρ=0.89), lower (ρ=0.96) and whole body (ρ=0.97); net aortic and pulmonary trunk flow rates were also tightly correlated (ρ=0.97). There was no significant difference in the value or precision of arterial and venous flow measurements in upper, lower or whole body, though there was a trend toward improved precision with lower velocity-encoding settings. Conclusion With PICS-4DPC MRI, the accuracy and precision of venous flow quantification are comparable to that of arterial flow quantification at velocity-encodings appropriate for arterial vessels. PMID:23172846

  1. Automated image analysis for diameters and branching points of cerebral penetrating arteries and veins captured with two-photon microscopy.

    PubMed

    Sugashi, Takuma; Yoshihara, Kouichi; Kawaguchi, Hiroshi; Takuwa, Hiroyuki; Ito, Hiroshi; Kanno, Iwao; Yamada, Yukio; Masamoto, Kazuto

    2014-01-01

    The present study was aimed to characterize 3-dimensional (3D) morphology of the cortical microvasculature (e.g., penetrating artery and emerging vein), using two-photon microscopy and automated analysis for their cross-sectional diameters and branching positions in the mouse cortex. We observed that both artery and vein had variable cross-sectional diameters across cortical depths. The mean diameter was similar for both artery (17 ± 5 μm) and vein (15 ± 5 μm), and there were no detectable differences over depths of 50-400 μm. On the other hand, the number of branches was slightly increased up to 400-μm depth for both the artery and vein. The mean number of branches per 0.1 mm vessel length was 1.7 ± 1.2 and 3.8 ± 1.6 for the artery and vein, respectively. This method allows for quantification of the large volume data of microvascular images captured with two-photon microscopy. This will contribute to the morphometric analysis of the cortical microvasculature in functioning brains.

  2. Image quality, space-qualified UV interference filters

    NASA Technical Reports Server (NTRS)

    Mooney, Thomas A.

    1992-01-01

    The progress during the contract period is described. The project involved fabrication of image quality, space-qualified bandpass filters in the 200-350 nm spectral region. Ion-assisted deposition (IAD) was applied to produce stable, reasonably durable filter coatings on space compatible UV substrates. Thin film materials and UV transmitting substrates were tested for resistance to simulated space effects.

  3. Simultaneous analysis and quality assurance for diffusion tensor imaging.

    PubMed

    Lauzon, Carolyn B; Asman, Andrew J; Esparza, Michael L; Burns, Scott S; Fan, Qiuyun; Gao, Yurui; Anderson, Adam W; Davis, Nicole; Cutting, Laurie E; Landman, Bennett A

    2013-01-01

    Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI) acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio). However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA) report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70%) while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA metrics to a low

  4. Simultaneous Analysis and Quality Assurance for Diffusion Tensor Imaging

    PubMed Central

    Lauzon, Carolyn B.; Asman, Andrew J.; Esparza, Michael L.; Burns, Scott S.; Fan, Qiuyun; Gao, Yurui; Anderson, Adam W.; Davis, Nicole; Cutting, Laurie E.; Landman, Bennett A.

    2013-01-01

    Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI) acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio). However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA) report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70%) while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA metrics to a low

  5. Induced renal artery stenosis in rabbits: magnetic resonance imaging, angiography, and radionuclide determination of blood volume and blood flow

    SciTech Connect

    Mitchell, D.G.; Tobin, M.; LeVeen, R.; Tomaczewski, J.; Alavi, A.; Staum, M.; Kundel, H.

    1988-03-01

    To investigate the ability of MRI to detect alterations due to renal ischemia, a rabbit renal artery stenosis (RAS) model was developed. Seven rabbits had RAS induced by surgically encircling the artery with a polyethylene band which had a lumen of 1 mm, 1 to 2 weeks prior to imaging. The stenosis was confirmed by angiography, and the rabbits were then imaged in a 1.4 T research MRI unit. T1 was calculated using four inversion recovery sequences with different inversion times. Renal blood flow, using /sup 113/Sn-microspheres, and regional water content by drying were then measured. The average T1 of the inner medulla was shorter for the ischemia (1574 msec) than for the contralateral kidney (1849 msec), while no change ws noted in the cortex. Ischemic kidneys had less distinct outer medullary zones on IR images with TI = 600 msec than did contralateral or control kidneys. Blood flow to both the cortex and medulla were markedly reduced in ischemic kidneys compared with contralateral kidneys (119.5 vs. 391 ml/min/100 gm for cortex and 19.8 vs. 50.8 ml/min/100 gm for medulla). Renal water and blood content were less affected. Our rabbit model of renal artery stenosis with MRI, radionuclide, and angiographic correlation has the potential to increase our understanding of MR imaging of the rabbit kidney.

  6. Multidetector CT of hepatic artery pathologies.

    PubMed

    Karaosmanoglu, D; Erol, B; Karcaaltincaba, M

    2012-01-01

    The hepatic artery can be involved by a variety of pathology and diseases.Today MDCT enables high quality imaging of the hepatic artery using axial, MIP and volume rendered images. We illustrate MDCT findings of anatomical variations, aneurysm, dilatation, dissection, arteriovenous fistula, thrombosis and stenosis. Aneurysms can be saccular, fusiform and multiple and may develop due to atherosclerosis, vasculitis, trauma and biopsy. Dilatation of hepatic artery can be seen in portal hypertension, Osler-Weber-Rendu disease and hemangiomatosis. Hepatic artery can be occluded after trauma and transplantation. Dissection develops due to atherosclerosis, Marfan and Ehler Danlos syndromes and during pregnancy. Arteriovenous fistula can be congenital and acquired. We conclude that various hepatic artery pathologies can be confidently diagnosed by MDCT.

  7. A Novel Image Quality Assessment with Globally and Locally Consilient Visual Quality Perception.

    PubMed

    Bae, Sung-Ho; Kim, Munchurl

    2016-03-25

    Computational models for image quality assessment (IQA) have been developed by exploring effective features that are consistent with the characteristics of human visual system (HVS) for visual quality perception. In this paper, we firstly reveal that many existing features used in computational IQA methods can hardly characterize visual quality perception for local image characteristics and various distortion types. To solve this problem, we propose a new IQA method, called Structural Contrast-Quality Index (SC-QI) by adopting a structural contrast index (SCI) which can well characterize local and global visual quality perceptions for various image characteristics with structural-distortion types. In addition to SCI, we devise some other perceptually important features for our SC-QI that can effectively reflect the characteristics of HVS for contrast sensitivity and chrominance component variation. Furthermore, we develop a modified SC-QI, called structural contrast distortion metric (SC-DM) which inherits desirable mathematical properties of valid distance metricability and quasi-convexity. So, it can effectively be used as a distance metric for image quality optimization problems. Extensive experimental results show that both SC-QI and SC-DM can very well characterize the HVS's properties of visual quality perception for local image characteristics and various distortion types, which is a distinctive merit of our methods compared to other IQA methods. As a result, both SC-QI and SC-DM have better performances with a strong consilience of global and local visual quality perception as well as with much lower computation complexity, compared to state-of-the-art IQA methods. The MATLAB source codes of the proposed SC-QI and SC-DM are publicly available online at https://sites.google.com/site/sunghobaecv/iqa.

  8. A Novel Image Quality Assessment With Globally and Locally Consilient Visual Quality Perception.

    PubMed

    Bae, Sung-Ho; Kim, Munchurl

    2016-05-01

    Computational models for image quality assessment (IQA) have been developed by exploring effective features that are consistent with the characteristics of a human visual system (HVS) for visual quality perception. In this paper, we first reveal that many existing features used in computational IQA methods can hardly characterize visual quality perception for local image characteristics and various distortion types. To solve this problem, we propose a new IQA method, called the structural contrast-quality index (SC-QI), by adopting a structural contrast index (SCI), which can well characterize local and global visual quality perceptions for various image characteristics with structural-distortion types. In addition to SCI, we devise some other perceptually important features for our SC-QI that can effectively reflect the characteristics of HVS for contrast sensitivity and chrominance component variation. Furthermore, we develop a modified SC-QI, called structural contrast distortion metric (SC-DM), which inherits desirable mathematical properties of valid distance metricability and quasi-convexity. So, it can effectively be used as a distance metric for image quality optimization problems. Extensive experimental results show that both SC-QI and SC-DM can very well characterize the HVS's properties of visual quality perception for local image characteristics and various distortion types, which is a distinctive merit of our methods compared with other IQA methods. As a result, both SC-QI and SC-DM have better performances with a strong consilience of global and local visual quality perception as well as with much lower computation complexity, compared with the state-of-the-art IQA methods. The MATLAB source codes of the proposed SC-QI and SC-DM are publicly available online at https://sites.google.com/site/sunghobaecv/iqa.

  9. Optimization of exposure parameters in digital tomosynthesis considering effective dose and image quality

    NASA Astrophysics Data System (ADS)

    Choi, Seungyeon; Choi, Sunghoon; Kim, Ye-seul; Lee, Haenghwa; Lee, Donghoon; Jeon, Pil-Hyun; Jang, Dong-Hyuk; Kim, Hee-Joung

    2016-03-01

    Digital tomosynthesis system (DTS), which scans an object in a limited angle, has been considered as an innovative imaging modality which can present lower patient dose than computed tomography and solve the problem of poor depth resolution in conventional digital radiography. Although it has many powerful advantages, only breast tomosynthesis system has been adopted in many hospitals. In order to reduce the patient dose while maintaining image quality, the acquisition conditions need to be studied. In this study, we analyzed effective dose and image qualities of chest phantom using commercialized universal chest digital tomosynthesis (CDT) R/F system to study the optimized exposure parameters. We set 10 different acquisition conditions including the default acquisition condition by user manual of Shimadzu (100 kVp with 0.5 mAs). The effective dose was calculated from PCXMC software version 1.5.1 by utilizing the total X-ray exposure measured by ion chamber. The image quality was evaluated by signal difference to noise ratio (SDNR) in the regions of interest (ROIs) pulmonary arteries at different axial in-plane. We analyzed a figure of merit (FOM) which considers both the effective dose and the SDNR in order to determine the optimal acquisition condition. The results indicated that the most suitable acquisition parameters among 10 conditions were condition 7 and 8 (120 kVp with 0.04 mAs and 0.1 mAs, respectively), which indicated lower effective dose while maintaining reasonable SDNRs and FOMs for three specified regions. Further studies are needed to be conducted for detailed outcomes in CDT acquisition conditions.

  10. LATIN AMERICAN IMAGE QUALITY SURVEY IN DIGITAL MAMMOGRAPHY STUDIES.

    PubMed

    Mora, Patricia; Khoury, Helen; Bitelli, Regina; Quintero, Ana Rosa; Garay, Fernando; Aguilar, Juan García; Gamarra, Mirtha; Ubeda, Carlos

    2016-03-23

    Under International Atomic Energy Agency regional programmeTSA3 Radiological Protection of Patients in Medical Exposures, Latin American countries evaluated the image quality and glandular doses for digital mammography equipment with the purpose of seeing the performance and compliance with international recommendations. Totally, 24 institutions participated from Brazil, Chile, Costa Rica, El Salvador, Mexico, Paraguay and Venezuela. Signal difference noise ratio results showed for CR poor compliance with tolerances; better results were obtained for full-field digital mammography equipment. Mean glandular dose results showed that the majority of units have values below the acceptable dose levels. This joint Latin American project identified common problems: difficulty in working with digital images and lack of specific training by medical physicists from the region. Image quality is a main issue not being satisfied in accordance with international recommendations; optimisation processes in which the doses are increased should be very carefully done in order to improve early detection of any cancer signs.

  11. Techniques to evaluate the quality of medical images

    NASA Astrophysics Data System (ADS)

    Perez-Diaz, Marlen

    2014-11-01

    There is not a perfect agree in the definition of medical image quality from the physician and physicist point of view. The present conference analyzes the standard techniques used to grade image quality. In the first place, an analysis about how viewing conditions related to environment, monitor used or physician experience determines the subjective evaluation is done. After that, the physics point of view is analyzed including the advantage and disadvantage of the main published methods like: Quality Control Tests, Mathematical metrics, Modulation Transfer Function, Noise Power Spectrum, System Response Curve and Mathematical observers. Each method is exemplified with the results of updated papers. We concluded that the most successful methods up to the present have been those which include simulations of the Human Visual System. They have good correlation between the results of the objective metrics and the subjective evaluation made by the observers.

  12. Automatic image quality assessment for uterine cervical imagery

    NASA Astrophysics Data System (ADS)

    Gu, Jia; Li, Wenjing

    2006-03-01

    Uterine cervical cancer is the second most common cancer among women worldwide. However, its death rate can be dramatically reduced by appropriate treatment, if early detection is available. We are developing a Computer-Aided-Diagnosis (CAD) system to facilitate colposcopic examinations for cervical cancer screening and diagnosis. Unfortunately, the effort to develop fully automated cervical cancer diagnostic algorithms is hindered by the paucity of high quality, standardized imaging data. The limited quality of cervical imagery can be attributed to several factors, including: incorrect instrumental settings or positioning, glint (specular reflection), blur due to poor focus, and physical contaminants. Glint eliminates the color information in affected pixels and can therefore introduce artifacts in feature extraction algorithms. Instrumental settings that result in an inadequate dynamic range or an overly constrained region of interest can reduce or eliminate pixel information and thus make image analysis algorithms unreliable. Poor focus causes image blur with a consequent loss of texture information. In addition, a variety of physical contaminants, such as blood, can obscure the desired scene and reduce or eliminate diagnostic information from affected areas. Thus, automated feedback should be provided to the colposcopist as a means to promote corrective actions. In this paper, we describe automated image quality assessment techniques, which include region of interest detection and assessment, contrast dynamic range assessment, blur detection, and contaminant detection. We have tested these algorithms using clinical colposcopic imagery, and plan to implement these algorithms in a CAD system designed to simplify high quality data acquisition. Moreover, these algorithms may also be suitable for image quality assessment in telemedicine applications.

  13. Quality of life of coronary artery disease patients after the implementation of planning strategies for medication adherence 1

    PubMed Central

    Lourenço, Laura Bacelar de Araujo; Rodrigues, Roberta Cunha Matheus; São-João, Thaís Moreira; Gallani, Maria Cecilia; Cornélio, Marilia Estevam

    2015-01-01

    OBJECTIVE: to compare the general and specific health-related quality of life (HRQoL) between the Intervention (IG) and Control (CG) groups of coronary artery disease patients after the implementation of Action Planning and Coping Planning strategies for medication adherence and to verify the relationship between adherence and HRQoL. METHOD: this was a controlled and randomized study. RESULTS: the sample (n=115) was randomized into two groups, IG (n=59) and CG (n=56). Measures of medication adherence and general and specific HRQoL were obtained in the baseline and after two months of monitoring. CONCLUSION: the findings showed that the combination of intervention strategies - Action Planning and Coping Planning for medication adherence did not affect the HRQoL of coronary artery disease patients in outpatient monitoring. PMID:25806626

  14. Full-Reference Image Quality Assessment with Linear Combination of Genetically Selected Quality Measures

    PubMed Central

    2016-01-01

    Information carried by an image can be distorted due to different image processing steps introduced by different electronic means of storage and communication. Therefore, development of algorithms which can automatically assess a quality of the image in a way that is consistent with human evaluation is important. In this paper, an approach to image quality assessment (IQA) is proposed in which the quality of a given image is evaluated jointly by several IQA approaches. At first, in order to obtain such joint models, an optimisation problem of IQA measures aggregation is defined, where a weighted sum of their outputs, i.e., objective scores, is used as the aggregation operator. Then, the weight of each measure is considered as a decision variable in a problem of minimisation of root mean square error between obtained objective scores and subjective scores. Subjective scores reflect ground-truth and involve evaluation of images by human observers. The optimisation problem is solved using a genetic algorithm, which also selects suitable measures used in aggregation. Obtained multimeasures are evaluated on four largest widely used image benchmarks and compared against state-of-the-art full-reference IQA approaches. Results of comparison reveal that the proposed approach outperforms other competing measures. PMID:27341493

  15. A study of image quality for radar image processing. [synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    King, R. W.; Kaupp, V. H.; Waite, W. P.; Macdonald, H. C.

    1982-01-01

    Methods developed for image quality metrics are reviewed with focus on basic interpretation or recognition elements including: tone or color; shape; pattern; size; shadow; texture; site; association or context; and resolution. Seven metrics are believed to show promise as a way of characterizing the quality of an image: (1) the dynamic range of intensities in the displayed image; (2) the system signal-to-noise ratio; (3) the system spatial bandwidth or bandpass; (4) the system resolution or acutance; (5) the normalized-mean-square-error as a measure of geometric fidelity; (6) the perceptual mean square error; and (7) the radar threshold quality factor. Selective levels of degradation are being applied to simulated synthetic radar images to test the validity of these metrics.

  16. Evaluation of image quality of a new CCD-based system for chest imaging

    NASA Astrophysics Data System (ADS)

    Sund, Patrik; Kheddache, Susanne; Mansson, Lars G.; Bath, Magnus; Tylen, Ulf

    2000-04-01

    The Imix radiography system (Qy Imix Ab, Finland)consists of an intensifying screen, optics, and a CCD camera. An upgrade of this system (Imix 2000) with a red-emitting screen and new optics has recently been released. The image quality of Imix (original version), Imix 200, and two storage-phosphor systems, Fuji FCR 9501 and Agfa ADC70 was evaluated in physical terms (DQE) and with visual grading of the visibility of anatomical structures in clinical images (141 kV). PA chest images of 50 healthy volunteers were evaluated by experienced radiologists. All images were evaluated on Siemens Simomed monitors, using the European Quality Criteria. The maximum DQE values for Imix, Imix 2000, Agfa and Fuji were 11%, 14%, 17% and 19%, respectively (141kV, 5μGy). Using the visual grading, the observers rated the systems in the following descending order. Fuji, Imix 2000, Agfa, and Imix. Thus, the upgrade to Imix 2000 resulted in higher DQE values and a significant improvement in clinical image quality. The visual grading agrees reasonably well with the DQE results; however, Imix 2000 received a better score than what could be expected from the DQE measurements. Keywords: CCD Technique, Chest Imaging, Digital Radiography, DQE, Image Quality, Visual Grading Analysis

  17. Objective Quality Assessment and Perceptual Compression of Screen Content Images.

    PubMed

    Wang, Shiqi; Gu, Ke; Zeng, Kai; Wang, Zhou; Lin, Weisi

    2016-05-25

    Screen content image (SCI) has recently emerged as an active topic due to the rapidly increasing demand in many graphically rich services such as wireless displays and virtual desktops. Image quality models play an important role in measuring and optimizing user experience of SCI compression and transmission systems, but are currently lacking. SCIs are often composed of pictorial regions and computer generated textual/graphical content, which exhibit different statistical properties that often lead to different viewer behaviors. Inspired by this, we propose an objective quality assessment approach for SCIs that incorporates both visual field adaptation and information content weighting into structural similarity based local quality assessment. Furthermore, we develop a perceptual screen content coding scheme based on the newly proposed quality assessment measure, targeting at further improving the SCI compression performance. Experimental results show that the proposed quality assessment method not only better predicts the perceptual quality of SCIs, but also demonstrates great potentials in the design of perceptually optimal SCI compression schemes.

  18. Arterial calcifications

    PubMed Central

    Rennenberg, Roger J M W; Schurgers, Leon J; Kroon, Abraham A; Stehouwer, Coen D A

    2010-01-01

    Abstract Arterial calcifications as found with various imaging techniques, like plain X-ray, computed tomography or ultrasound are associated with increased cardiovascular risk. The prevalence of arterial calcification increases with age and is stimulated by several common cardiovascular risk factors. In this review, the clinical importance of arterial calcification and the currently known proteins involved are discussed. Arterial calcification is the result of a complex interplay between stimulating (bone morphogenetic protein type 2 [BMP-2], RANKL) and inhibitory (matrix Gla protein, BMP-7, osteoprotegerin, fetuin-A, osteopontin) proteins. Vascular calcification is especially prevalent and related to adverse outcome in patients with renal insufficiency and diabetes mellitus. We address the special circumstances and mechanisms in these patient groups. Treatment and prevention of arterial calcification is possible by the use of specific drugs. However, it remains to be proven that reduction of vascular calcification in itself leads to a reduced cardiovascular risk. PMID:20716128

  19. Effect of Arterial Deprivation on Growing Femoral Epiphysis: Quantitative Magnetic Resonance Imaging Using a Piglet Model

    PubMed Central

    Cheon, Jung-Eun; Kim, In-One; Kim, Woo Sun; Choi, Young Hun

    2015-01-01

    Objective To investigate the usefulness of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion MRI for the evaluation of femoral head ischemia. Materials and Methods Unilateral femoral head ischemia was induced by selective embolization of the medial circumflex femoral artery in 10 piglets. All MRIs were performed immediately (1 hour) and after embolization (1, 2, and 4 weeks). Apparent diffusion coefficients (ADCs) were calculated for the femoral head. The estimated pharmacokinetic parameters (Kep and Ve from two-compartment model) and semi-quantitative parameters including peak enhancement, time-to-peak (TTP), and contrast washout were evaluated. Results The epiphyseal ADC values of the ischemic hip decreased immediately (1 hour) after embolization. However, they increased rapidly at 1 week after embolization and remained elevated until 4 weeks after embolization. Perfusion MRI of ischemic hips showed decreased epiphyseal perfusion with decreased Kep immediately after embolization. Signal intensity-time curves showed delayed TTP with limited contrast washout immediately post-embolization. At 1-2 weeks after embolization, spontaneous reperfusion was observed in ischemic epiphyses. The change of ADC (p = 0.043) and Kep (p = 0.043) were significantly different between immediate (1 hour) after embolization and 1 week post-embolization. Conclusion Diffusion MRI and pharmacokinetic model obtained from the DCE-MRI are useful in depicting early changes of perfusion and tissue damage using the model of femoral head ischemia in skeletally immature piglets. PMID:25995692

  20. Combined Diffusion Tensor Imaging and Arterial Spin Labeling as Markers of Early Parkinson’s disease

    PubMed Central

    Wei, Xiaobo; Yan, Ronghua; Chen, Zhaoyu; Weng, Ruihui; Liu, Xu; Gao, Huimin; Xu, Xiaofeng; Kang, Zhuang; Liu, Zhexing; Guo, Yan; Liu, Zhenhua; Larsen, Jan Petter; Wang, Jin; Tang, Beisha; Hallett, Mark; Wang, Qing

    2016-01-01

    This study aimed to identify a PD-specific MRI pattern using combined diffusion tensor imaging (DTI) and arterial spin labeling (ASL) to discriminate patients with early PD from healthy subjects and evaluate disease status. Twenty-one early and 22 mid-late PD patients, and 22 healthy, age/gender-matched controls underwent 3-T MRI with apparent diffusion coefficient (ADC), fractional anisotropy (FA), fiber number (FN) and cerebral blood flow (CBF) measurements. We found that compared with healthy subjects, there was a profound reduction in FN passing through the SN in PD. FA in the SN and CBF in the caudate nucleus were inversely correlated with motor dysfunction. A negative correlation was observed between FA in the hippocampus (Hip) and the NMSS-Mood score, whereas CBF in the Hip and the prefrontal cortex(PFC) correlated with declined cognition. Stratified five-fold cross-validation identified FA in the SN(FA-SNAv), CBF in the PFC(CBF-PFCAv) and FA in the parietal white matter(FA-PWMAv), and the combination of these measurements offered relatively high accuracy (AUC 0.975, 90% sensitivity and 100% specificity) in distinguishing those with early PD from healthy subjects. We demonstrate that the decreased FNs through SN in combination with changes in FA-SNAv, CBF-PFCAv and FA-PWMAv values might serve as potential markers of early-stage PD. PMID:27646647

  1. An inverse approach to determining spatially varying arterial compliance using ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Mcgarry, Matthew; Li, Ronny; Apostolakis, Iason; Nauleau, Pierre; Konofagou, Elisa E.

    2016-08-01

    The mechanical properties of arteries are implicated in a wide variety of cardiovascular diseases, many of which are expected to involve a strong spatial variation in properties that can be depicted by diagnostic imaging. A pulse wave inverse problem (PWIP) is presented, which can produce spatially resolved estimates of vessel compliance from ultrasound measurements of the vessel wall displacements. The 1D equations governing pulse wave propagation in a flexible tube are parameterized by the spatially varying properties, discrete cosine transform components of the inlet pressure boundary conditions, viscous loss constant and a resistance outlet boundary condition. Gradient descent optimization is used to fit displacements from the model to the measured data by updating the model parameters. Inversion of simulated data showed that the PWIP can accurately recover the correct compliance distribution and inlet pressure under realistic conditions, even under high simulated measurement noise conditions. Silicone phantoms with known compliance contrast were imaged with a clinical ultrasound system. The PWIP produced spatially and quantitatively accurate maps of the phantom compliance compared to independent static property estimates, and the known locations of stiff inclusions (which were as small as 7 mm). The PWIP is necessary for these phantom experiments as the spatiotemporal resolution, measurement noise and compliance contrast does not allow accurate tracking of the pulse wave velocity using traditional approaches (e.g. 50% upstroke markers). Results from simulations indicate reflections generated from material interfaces may negatively affect wave velocity estimates, whereas these reflections are accounted for in the PWIP and do not cause problems.

  2. CT image quality over time: comparison of image quality for six different CT scanners over a six-year period.

    PubMed

    Roa, Ana Maria A; Andersen, Hilde K; Martinsen, Anne Catrine T

    2015-03-08

    UNSCEAR concluded that increased use of CT scanning caused dramatic changes in population dose. Therefore, international radiation protection authorities demand: 1) periodical quality assurance tests with respect to image quality and radiation dose, and 2) optimization of all examination protocols with respect to image quality and radiation dose. This study aimed to evaluate and analyze multiple image quality parameters and variability measured throughout time for six different CT scanners from four different vendors, in order to evaluate the current methodology for QA controls of CT systems. The results from this study indicate that there is minor drifting in the image noise and uniformity and in the spatial resolution over time for CT scanners, independent of vendors. The HU for different object densities vary between different CT scanner models from different vendors, and over time for one specific CT scanner. Future tests of interphantom and intraphantom variations, along with inclusion of more CT scanners, are necessary to establish robust baselines and recommendations of methodology for QA controls of CT systems, independent of model and vendor.

  3. Achieving Quality in Cardiovascular Imaging II: proceedings from the Second American College of Cardiology -- Duke University Medical Center Think Tank on Quality in Cardiovascular Imaging.

    PubMed

    Douglas, Pamela S; Chen, Jersey; Gillam, Linda; Hendel, Robert; Hundley, W Gregory; Masoudi, Frederick; Patel, Manesh R; Peterson, Eric

    2009-02-01

    Despite rapid technologic advances and sustained growth, less attention has been focused on quality in imaging than in other areas of cardiovascular medicine. To address this deficit, representatives from cardiovascular imaging societies, private payers, government agencies, the medical imaging industry, and experts in quality measurement met in the second Quality in Cardiovascular Imaging Think Tank. The participants endorsed the previous consensus definition of quality in imaging and proposed quality measures. Additional areas of needed effort included data standardization and structured reporting, appropriateness criteria, imaging registries, laboratory accreditation, partnership development, and imaging research. The second American College of Cardiology-Duke University Think Tank continued the process of the development, dissemination, and adoption of quality improvement initiatives for all cardiovascular imaging modalities.

  4. A quality assurance program for the on-board imagers.

    PubMed

    Yoo, Sua; Kim, Gwe-Ya; Hammoud, Rabih; Elder, Eric; Pawlicki, Todd; Guan, Huaiqun; Fox, Timothy; Luxton, Gary; Yin, Fang-Fang; Munro, Peter

    2006-11-01

    To develop a quality assurance (QA) program for the On-Board Imager (OBI) system and to summarize the results of these QA tests over extended periods from multiple institutions. Both the radiographic and cone-beam computed tomography (CBCT) mode of operation have been evaluated. The QA programs from four institutions have been combined to generate a series of tests for evaluating the performance of the On-Board Imager. The combined QA program consists of three parts: (1) safety and functionality, (2) geometry, and (3) image quality. Safety and functionality tests evaluate the functionality of safety features and the clinical operation of the entire system during the tube warm-up. Geometry QA verifies the geometric accuracy and stability of the OBI/CBCT hardware/software. Image quality QA monitors spatial resolution and contrast sensitivity of the radiographic images. Image quality QA for CBCT includes tests for Hounsfield Unit (HU) linearity, HU uniformity, spatial linearity, and scan slice geometry, in addition. All safety and functionality tests passed on a daily basis. The average accuracy of the OBI isocenter was better than 1.5 mm with a range of variation of less than 1 mm over 8 months. The average accuracy of arm positions in the mechanical geometry QA was better than 1 mm, with a range of variation of less than 1 mm over 8 months. Measurements of other geometry QA tests showed stable results within tolerance throughout the test periods. Radiographic contrast sensitivity ranged between 2.2% and 3.2% and spatial resolution ranged between 1.25 and 1.6 lp/mm. Over four months the CBCT images showed stable spatial linearity, scan slice geometry, contrast resolution (1%; <7 mm disk) and spatial resolution (>6 lp/cm). The HU linearity was within +/-40 HU for all measurements. By combining test methods from multiple institutions, we have developed a comprehensive, yet practical, set of QA tests for the OBI system. Use of the tests over extended periods show that

  5. Impact of hypertension on the accuracy of exercise stress myocardial perfusion imaging for the diagnosis of coronary artery disease

    PubMed Central

    Elhendy, A; van Domburg, R T; Sozzi, F; Poldermans, D; Bax, J; Roelandt, J

    2001-01-01

    AIM—To compare the accuracy of exercise stress myocardial perfusion single photon emission computed tomography (SPECT) imaging for the diagnosis of coronary artery disease in patients with and without hypertension.
METHODS—A symptom limited bicycle exercise stress test in conjunction with 99m technetium sestamibi or tetrofosmin SPECT imaging was performed in 332 patients (mean (SD) age, 57 (10) years; 257 men, 75 women) without previous myocardial infarction who underwent coronary angiography. Of these, 137 (41%) had hypertension. Rest SPECT images were acquired 24 hours after the stress test. An abnormal scan was defined as one with reversible or fixed perfusion defects.
RESULTS—In hypertensive patients, myocardial perfusion abnormalities were detected in 79 of 102 patients with significant coronary artery disease and in nine of 35 patients without. In normotensive patients, myocardial perfusion abnormalities were detected in 104 of 138 patients with significant coronary artery disease and in 16 of 57 patients without. There were no differences between normotensive and hypertensive patients in sensitivity (77% (95% confidence interval (CI) 69% to 86%) v 75% (95% CI 68% to 83%)), specificity (74% (95% CI 60% to 89%) v 72% (95% CI 60% to 84%)), and accuracy (77% (95% CI 70% to 84%) v 74% (95% CI 68% to 80%)) of exercise SPECT for diagnosing coronary artery disease. The accuracy of SPECT was greater than electrocardiography, both in hypertensive patients (p = 0.005) and in normotensive patients (p = 0.0001). For the detection of coronary artery disease in individual vessels, sensitivity was 58% (95% CI 51% to 65%) v 57% (95% CI 51% to 64%), specificity was 86% (95% CI 82% to 90%) v 85% (95% CI 81% to 89%), and accuracy was 74% (95% CI 70% to 78%) v 74% (95% CI 70% to 78%) in patients with and without hypertension (NS).
CONCLUSIONS—In the usual clinical setting, the value of exercise myocardial perfusion scintigraphy for diagnosing

  6. Effects of task and image properties on visual-attention deployment in image-quality assessment

    NASA Astrophysics Data System (ADS)

    Alers, Hani; Redi, Judith; Liu, Hantao; Heynderickx, Ingrid

    2015-03-01

    It is important to understand how humans view images and how their behavior is affected by changes in the properties of the viewed images and the task they are given, particularly the task of scoring the image quality (IQ). This is a complex behavior that holds great importance for the field of image-quality research. This work builds upon 4 years of research work spanning three databases studying image-viewing behavior. Using eye-tracking equipment, it was possible to collect information on human viewing behavior of different kinds of stimuli and under different experimental settings. This work performs a cross-analysis on the results from all these databases using state-of-the-art similarity measures. The results strongly show that asking the viewers to score the IQ significantly changes their viewing behavior. Also muting the color saturation seems to affect the saliency of the images. However, a change in IQ was not consistently found to modify visual attention deployment, neither under free looking nor during scoring. These results are helpful in gaining a better understanding of image viewing behavior under different conditions. They also have important implications on work that collects subjective image-quality scores from human observers.

  7. Reduced reference image quality assessment via sub-image similarity based redundancy measurement

    NASA Astrophysics Data System (ADS)

    Mou, Xuanqin; Xue, Wufeng; Zhang, Lei

    2012-03-01

    The reduced reference (RR) image quality assessment (IQA) has been attracting much attention from researchers for its loyalty to human perception and flexibility in practice. A promising RR metric should be able to predict the perceptual quality of an image accurately while using as few features as possible. In this paper, a novel RR metric is presented, whose novelty lies in two aspects. Firstly, it measures the image redundancy by calculating the so-called Sub-image Similarity (SIS), and the image quality is measured by comparing the SIS between the reference image and the test image. Secondly, the SIS is computed by the ratios of NSE (Non-shift Edge) between pairs of sub-images. Experiments on two IQA databases (i.e. LIVE and CSIQ databases) show that by using only 6 features, the proposed metric can work very well with high correlations between the subjective and objective scores. In particular, it works consistently well across all the distortion types.

  8. Quality of Life in Patients with Coronary Artery Disease and Panic Disorder: A Comparative Study

    PubMed Central

    Srivastava, Shruti; Shekhar, Skand; Bhatia, Manjeet Singh; Dwivedi, Shridhar

    2017-01-01

    Objectives The quality of life (QOL) of patients with coronary artery disease (CAD) is known to be impaired. Non-cardiac chest pain referrals are often under-diagnosed and untreated, and there are hardly any studies comparing the QOL of CAD and panic disorder related (non-cardiac) chest pain referrals (PDRC). Methods We assessed the psychiatric morbidity and QOL of patients newly diagnosed with CAD (n = 40) at baseline and six weeks post-treatment and compared their QOL with patients with PDRC (n = 40) and age- and gender-matched healthy controls (n = 57). Psychiatric morbidity in the CAD group was assessed using the General Health Questionnaire (GHQ12) item, Hamilton Anxiety Scores (HAM-A), and Hamilton Depression Scores (HAMD). QOL measures were determined by the World Health Organization QOL questionnaire (brief) and Seattle Angina Questionnaire. The CAD group was treated with anti-ischemic drugs (nitrates, betablockers), antiplatelet drugs (acetylsalicylsalicylic acid), anticoagulants (low molecular weight heparin, clopidogrel), and managed for risk factors. The PDRC group was treated with selective serotonin reuptake inhibitors and anxiolytics. Results Patients with panic disorder had a worse QOL than those with CAD and healthy controls in the physical domain and psychological domain (PDRC vs. CAD vs. healthy controls, p < 0.001). In the CAD group, smoking was associated with change in angina stability (p = 0.049) whereas other tobacco products were associated with change in angina frequency (p = 0.044). Psychiatric morbidity was present in 40.0% of patients with CAD. In the PDRC group, a significant correlation of HAM-A scores was noted in the physical (p = 0.000), psychological (p = 0.001), social (p = 0.006), and environment (p = 0.001) domains of QOL. Patients with panic disorder had a significant improvement in anxiety scores after treatment compared to baseline (HAM-A scores difference 21.0 [16.5−25.6]; p < 0.001). Conclusions Patients in the PDRC

  9. Health related quality of life trajectories and predictors following coronary artery bypass surgery

    PubMed Central

    Le Grande, Michael R; Elliott, Peter C; Murphy, Barbara M; Worcester, Marian UC; Higgins, Rosemary O; Ernest, Christine S; Goble, Alan J

    2006-01-01

    Background Many studies have demonstrated that health related quality of life (HRQoL) improves, on average, after coronary artery bypass graft surgery (CABGS). However, this average improvement may not be realized for all patients, and it is possible that there are two or more distinctive groups with different, possibly non-linear, trajectories of change over time. Furthermore, little is known about the predictors that are associated with these possible HRQoL trajectories after CABGS. Methods 182 patients listed for elective CABGS at The Royal Melbourne Hospital completed a postal battery of questionnaires which included the Short-Form-36 (SF-36), Profile of Mood States (POMS) and the Everyday Functioning Questionnaire (EFQ). These data were collected on average a month before surgery, and at two months and six months after surgery. Socio-demographic and medical characteristics prior to surgery, as well as surgical and post-surgical complications and symptoms were also assessed. Growth curve and growth mixture modelling were used to identify trajectories of HRQoL. Results For both the physical component summary scale (PCS) and the mental component summary scale (MCS) of the SF-36, two groups of patients with distinct trajectories of HRQoL following surgery could be identified (improvers and non-improvers). A series of logistic regression analyses identified different predictors of group membership for PCS and MCS trajectories. For the PCS the most significant predictors of non-improver membership were lower scores on POMS vigor-activity and higher New York Heart Association dyspnoea class; for the MCS the most significant predictors of non-improver membership were higher scores on POMS depression-dejection and manual occupation. Conclusion It is incorrect to assume that HRQoL will improve in a linear fashion for all patients following CABGS. Nor was there support for a single response trajectory. It is important to identify characteristics of each patient, and

  10. Flurpiridaz F 18 PET: Phase II Safety and Clinical Comparison with SPECT Myocardial Perfusion Imaging for Detection of Coronary Artery Disease

    PubMed Central

    Berman, Daniel S.; Maddahi, Jamshid; Tamarappoo, B. K.; Czernin, Johannes; Taillefer, Raymond; Udelson, James E.; Gibson, C. Michael; Devine, Marybeth; Lazewatsky, Joel; Bhat, Gajanan; Washburn, Dana

    2015-01-01

    Objectives Phase II trial to assess flurpiridaz F 18 for safety and compare its diagnostic performance for PET myocardial perfusion imaging (MPI) to Tc-99m SPECT-MPI regarding image quality, interpretative certainty, defect magnitude and detection of coronary artery disease (CAD)(≥ 50% stenosis) on invasive coronary angiography (ICA). Background In preclinical and phase I studies, flurpiridaz F 18 has shown characteristics of an essentially ideal MPI tracer. Methods 143 patients from 21 centers underwent rest-stress PET and Tc-99m SPECT-MPI. Eighty-six patients underwent ICA, and 39 had low-likelihood of CAD. Images were scored by 3 independent, blinded readers. Results A higher % of images were rated as excellent/good on PET vs. SPECT on stress (99.2% vs. 88.5%, p<0.01) and rest (96.9% vs. 66.4, p<0.01) images. Diagnostic certainty of interpretation (% cases with definitely abnormal/normal interpretation) was higher for PET vs. SPECT (90.8% vs. 70.9%, p<0.01). In 86 patients who underwent ICA, sensitivity of PET was higher than SPECT [78.8% vs. 61.5%, respectively (p=0.02)]. Specificity was not significantly different (PET:76.5% vs. SPECT:73.5%). Receiver operating characteristic curve area was 0.82±0.05 for PET and 0.70±0.06 for SPECT (p=0.04). Normalcy rate was 89.7% with PET and 97.4% with SPECT (p=NS). In patients with CAD on ICA, the magnitude of reversible defects was greater with PET than SPECT (p=0.008). Extensive safety assessment revealed that flurpiridaz F 18 was safe in this cohort. Conclusions In this Phase 2 trial, PET MPI using flurpiridaz F 18 was safe and superior to SPECT MPI for image quality, interpretative certainty, and overall CAD diagnosis. PMID:23265345

  11. How much image noise can be added in cardiac x-ray imaging without loss in perceived image quality?

    NASA Astrophysics Data System (ADS)

    Gislason-Lee, Amber J.; Kumcu, Asli; Kengyelics, Stephen M.; Rhodes, Laura A.; Davies, Andrew G.

    2015-03-01

    Dynamic X-ray imaging systems are used for interventional cardiac procedures to treat coronary heart disease. X-ray settings are controlled automatically by specially-designed X-ray dose control mechanisms whose role is to ensure an adequate level of image quality is maintained with an acceptable radiation dose to the patient. Current commonplace dose control designs quantify image quality by performing a simple technical measurement directly from the image. However, the utility of cardiac X-ray images is in their interpretation by a cardiologist during an interventional procedure, rather than in a technical measurement. With the long term goal of devising a clinically-relevant image quality metric for an intelligent dose control system, we aim to investigate the relationship of image noise with clinical professionals' perception of dynamic image sequences. Computer-generated noise was added, in incremental amounts, to angiograms of five different patients selected to represent the range of adult cardiac patient sizes. A two alternative forced choice staircase experiment was used to determine the amount of noise which can be added to a patient image sequences without changing image quality as perceived by clinical professionals. Twenty-five viewing sessions (five for each patient) were completed by thirteen observers. Results demonstrated scope to increase the noise of cardiac X-ray images by up to 21% +/- 8% before it is noticeable by clinical professionals. This indicates a potential for 21% radiation dose reduction since X-ray image noise and radiation dose are directly related; this would be beneficial to both patients and personnel.

  12. Improvement of material decomposition and image quality in dual-energy radiography by reducing image noise

    NASA Astrophysics Data System (ADS)

    Lee, D.; Kim, Y.-s.; Choi, S.; Lee, H.; Choi, S.; Jo, B. D.; Jeon, P.-H.; Kim, H.; Kim, D.; Kim, H.; Kim, H.-J.

    2016-08-01

    Although digital radiography has been widely used for screening human anatomical structures in clinical situations, it has several limitations due to anatomical overlapping. To resolve this problem, dual-energy imaging techniques, which provide a method for decomposing overlying anatomical structures, have been suggested as alternative imaging techniques. Previous studies have reported several dual-energy techniques, each resulting in different image qualities. In this study, we compared three dual-energy techniques: simple log subtraction (SLS), simple smoothing of a high-energy image (SSH), and anti-correlated noise reduction (ACNR) with respect to material thickness quantification and image quality. To evaluate dual-energy radiography, we conducted Monte Carlo simulation and experimental phantom studies. The Geant 4 Application for Tomographic Emission (GATE) v 6.0 and tungsten anode spectral model using interpolation polynomials (TASMIP) codes were used for simulation studies and digital radiography, and human chest phantoms were used for experimental studies. The results of the simulation study showed improved image contrast-to-noise ratio (CNR) and coefficient of variation (COV) values and bone thickness estimation accuracy by applying the ACNR and SSH methods. Furthermore, the chest phantom images showed better image quality with the SSH and ACNR methods compared to the SLS method. In particular, the bone texture characteristics were well-described by applying the SSH and ACNR methods. In conclusion, the SSH and ACNR methods improved the accuracy of material quantification and image quality in dual-energy radiography compared to SLS. Our results can contribute to better diagnostic capabilities of dual-energy images and accurate material quantification in various clinical situations.

  13. COATLI: an all-sky robotic optical imager with 0.3 arcsec image quality

    NASA Astrophysics Data System (ADS)

    Watson, Alan M.; Cuevas Cardona, Salvador; Alvarez Nuñez, Luis C.; Ángeles, Fernando; Becerra-Godínez, Rosa L.; Chapa, Oscar; Farah, Alejandro S.; Fuentes-Fernández, Jorge; Figueroa, Liliana; Langarica Lebre, Rosalía.; Quiróz, Fernando; Román-Zúñiga, Carlos G.; Ruíz-Diáz-Soto, Jaime; Tejada, Carlos; Tinoco, Silvio J.

    2016-08-01

    COATLI will provide 0.3 arcsec FWHM images from 550 to 900 nm over a large fraction of the sky. It consists of a robotic 50-cm telescope with a diffraction-limited fast-guiding imager. Since the telescope is small, fast guiding will provide diffraction-limited image quality over a field of at least 1 arcmin and with coverage of a large fraction of the sky, even in relatively poor seeing. The COATLI telescope will be installed at the at the Observatorio Astronómico Nacional in Sierra San Pedro Mártir, México, during 2016 and the diffraction-limited imager will follow in 2017.

  14. No-reference image quality assessment in the spatial domain.

    PubMed

    Mittal, Anish; Moorthy, Anush Krishna; Bovik, Alan Conrad

    2012-12-01

    We propose a natural scene statistic-based distortion-generic blind/no-reference (NR) image quality assessment (IQA) model that operates in the spatial domain. The new model, dubbed blind/referenceless image spatial quality evaluator (BRISQUE) does not compute distortion-specific features, such as ringing, blur, or blocking, but instead uses scene statistics of locally normalized luminance coefficients to quantify possible losses of "naturalness" in the image due to the presence of distortions, thereby leading to a holistic measure of quality. The underlying features used derive from the empirical distribution of locally normalized luminances and products of locally normalized luminances under a spatial natural scene statistic model. No transformation to another coordinate frame (DCT, wavelet, etc.) is required, distinguishing it from prior NR IQA approaches. Despite its simplicity, we are able to show that BRISQUE is statistically better than the full-reference peak signal-to-noise ratio and the structural similarity index, and is highly competitive with respect to all present-day distortion-generic NR IQA algorithms. BRISQUE has very low computational complexity, making it well suited for real time applications. BRISQUE features may be used for distortion-identification as well. To illustrate a new practical application of BRISQUE, we describe how a nonblind image denoising algorithm can be augmented with BRISQUE in order to perform blind image denoising. Results show that BRISQUE augmentation leads to performance improvements over state-of-the-art methods. A software release of BRISQUE is available online: http://live.ece.utexas.edu/research/quality/BRISQUE_release.zip for public use and evaluation.

  15. Magnetic Resonance Imaging of Coronary Arteries and Heart Valves in a Living Mouse: Techniques and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Ruff, Jan; Wiesmann, Frank; Lanz, Titus; Haase, Axel

    2000-10-01

    New investigations in MRI of a mouse heart showed high-contrast cardiac images and thereby the possibility of doing functional cardiac studies of in vivo mice. But is MRI, in addition, capable of visualizing microstructures such as the coronary arteries and the heart valves of a living mouse? To answer this question, 2D and 3D gradient echo sequences with and without flow compensation were used to image the coronary arteries. To increase signal-to-noise ratio, a birdcage resonator was optimized for mouse heart imaging. Contrast between blood and myocardium was achieved through the inflow effect. A segmented three-dimensional FLASH sequence acquired with a multiple overlap thin slab technique showed the best results. With this technique an isotropic resolution of 100 μm was achieved. The left coronary artery could be visualized up to the apex of the heart. This is demonstrated with short axis views and 3D surface reconstructions of the mouse heart. The four cardiac valves were also visible with the 3D method.

  16. Magnetic resonance imaging of coronary arteries and heart valves in a living mouse: techniques and preliminary results.

    PubMed

    Ruff, J; Wiesmann, F; Lanz, T; Haase, A

    2000-10-01

    New investigations in MRI of a mouse heart showed high-contrast cardiac images and thereby the possibility of doing functional cardiac studies of in vivo mice. But is MRI, in addition, capable of visualizing microstructures such as the coronary arteries and the heart valves of a living mouse? To answer this question, 2D and 3D gradient echo sequences with and without flow compensation were used to image the coronary arteries. To increase signal-to-noise ratio, a birdcage resonator was optimized for mouse heart imaging. Contrast between blood and myocardium was achieved through the inflow effect. A segmented three-dimensional FLASH sequence acquired with a multiple overlap thin slab technique showed the best results. With this technique an isotropic resolution of 100 microm was achieved. The left coronary artery could be visualized up to the apex of the heart. This is demonstrated with short axis views and 3D surface reconstructions of the mouse heart. The four cardiac valves were also visible with the 3D method.

  17. Metal artifact reduction and image quality evaluation of lumbar spine CT images using metal sinogram segmentation.

    PubMed

    Kaewlek, Titipong; Koolpiruck, Diew; Thongvigitmanee, Saowapak; Mongkolsuk, Manus; Thammakittiphan, Sastrawut; Tritrakarn, Siri-on; Chiewvit, Pipat

    2015-01-01

    Metal artifacts often appear in the images of computed tomography (CT) imaging. In the case of lumbar spine CT images, artifacts disturb the images of critical organs. These artifacts can affect the diagnosis, treatment, and follow up care of the patient. One approach to metal artifact reduction is the sinogram completion method. A mixed-variable thresholding (MixVT) technique to identify the suitable metal sinogram is proposed. This technique consists of four steps: 1) identify the metal objects in the image by using k-mean clustering with the soft cluster assignment, 2) transform the image by separating it into two sinograms, one of which is the sinogram of the metal object, with the surrounding tissue shown in the second sinogram. The boundary of the metal sinogram is then found by the MixVT technique, 3) estimate the new value of the missing data in the metal sinogram by linear interpolation from the surrounding tissue sinogram, 4) reconstruct a modified sinogram by using filtered back-projection and complete the image by adding back the image of the metal object into the reconstructed image to form the complete image. The quantitative and clinical image quality evaluation of our proposed technique demonstrated a significant improvement in image clarity and detail, which enhances the effectiveness of diagnosis and treatment.

  18. Predicting Cerebral Hyperperfusion Syndrome Following Superficial Temporal Artery to Middle Cerebral Artery Bypass based on Intraoperative Perfusion-Weighted Magnetic Resonance Imaging.

    PubMed

    Wang, Defeng; Zhu, Fengping; Fung, Ka Ming; Zhu, Wei; Luo, Yishan; Chu, Winnie Chiu Wing; Mok, Vincent Chung Tong; Wu, Jinsong; Shi, Lin; Ahuja, Anil T; Mao, Ying

    2015-09-14

    Moyamoya disease leads to the formation of stenosis in the cerebrovasculature. A superficial temporal artery to middle cerebral artery (STA-MCA) bypass is an effective treatment for the disease, yet it is usually associated with postoperative cerebral hyperperfusion syndrome (CHS). This study aimed to evaluate cerebral hemodynamic changes immediately after surgery and assess whether a semiquantitative analysis of an intraoperative magnetic resonance perfusion-weighted image (PWI) is useful for predicting postoperative CHS. Fourteen patients who underwent the STA-MCA bypass surgery were included in this study. An atlas-based registration method was employed for studying hemodynamics in different cerebral regions. Pre- versus intraoperative and group-wise comparisons were conducted to evaluate the hemodynamic changes. A postoperative increase in relative cerebral blood flow (CBF) at the terminal MCA territory (P = 0.035) and drop in relative mean-time-transit at the central MCA territory (P = 0.012) were observed in all patients. However, a significant raise in the increasing ratio of relative-CBF at the terminal MCA territory was only found in CHS patients (P = 0.023). The cerebrovascular changes of the patients after revascularization treatment were confirmed. Intraoperative PWI might be helpful in predicting the change in relative-CBF at MCA terminal territory which might indicate a risk of CHS.

  19. Image Quality Analysis of Various Gastrointestinal Endoscopes: Why Image Quality Is a Prerequisite for Proper Diagnostic and Therapeutic Endoscopy

    PubMed Central

    Ko, Weon Jin; An, Pyeong; Ko, Kwang Hyun; Hahm, Ki Baik; Hong, Sung Pyo

    2015-01-01

    Arising from human curiosity in terms of the desire to look within the human body, endoscopy has undergone significant advances in modern medicine. Direct visualization of the gastrointestinal (GI) tract by traditional endoscopy was first introduced over 50 years ago, after which fairly rapid advancement from rigid esophagogastric scopes to flexible scopes and high definition videoscopes has occurred. In an effort towards early detection of precancerous lesions in the GI tract, several high-technology imaging scopes have been developed, including narrow band imaging, autofocus imaging, magnified endoscopy, and confocal microendoscopy. However, these modern developments have resulted in fundamental imaging technology being skewed towards red-green-blue and this technology has obscured the advantages of other endoscope techniques. In this review article, we have described the importance of image quality analysis using a survey to consider the diversity of endoscope system selection in order to better achieve diagnostic and therapeutic goals. The ultimate aims can be achieved through the adoption of modern endoscopy systems that obtain high image quality. PMID:26473119

  20. Clinical study in phase- contrast mammography: image-quality analysis.

    PubMed

    Longo, Renata; Tonutti, Maura; Rigon, Luigi; Arfelli, Fulvia; Dreossi, Diego; Quai, Elisa; Zanconati, Fabrizio; Castelli, Edoardo; Tromba, Giuliana; Cova, Maria A

    2014-03-06

    The first clinical study of phase-contrast mammography (PCM) with synchrotron radiation was carried out at the Synchrotron Radiation for Medical Physics beamline of the Elettra synchrotron radiation facility in Trieste (Italy) in 2006-2009. The study involved 71 patients with unresolved breast abnormalities after conventional digital mammography and ultrasonography exams carried out at the Radiology Department of Trieste University Hospital. These cases were referred for mammography at the synchrotron radiation facility, with images acquired using a propagation-based phase-contrast imaging technique. To investigate the contribution of phase-contrast effects to the image quality, two experienced radiologists specialized in mammography assessed the visibility of breast abnormalities and of breast glandular structures. The images acquired at the hospital and at the synchrotron radiation facility were compared and graded according to a relative seven-grade visual scoring system. The statistical analysis highlighted that PCM with synchrotron radiation depicts normal structures and abnormal findings with higher image quality with respect to conventional digital mammography.

  1. Quality assessment of butter cookies applying multispectral imaging.

    PubMed

    Andresen, Mette S; Dissing, Bjørn S; Løje, Hanne

    2013-07-01

    A method for characterization of butter cookie quality by assessing the surface browning and water content using multispectral images is presented. Based on evaluations of the browning of butter cookies, cookies were manually divided into groups. From this categorization, reference values were calculated for a statistical prediction model correlating multispectral images with a browning score. The browning score is calculated as a function of oven temperature and baking time. It is presented as a quadratic response surface. The investigated process window was the intervals 4-16 min and 160-200°C in a forced convection electrically heated oven. In addition to the browning score, a model for predicting the average water content based on the same images is presented. This shows how multispectral images of butter cookies may be used for the assessment of different quality parameters. Statistical analysis showed that the most significant wavelengths for browning predictions were in the interval 400-700 nm and the wavelengths significant for water prediction were primarily located in the near-infrared spectrum. The water prediction model was found to correctly estimate the average water content with an absolute error of 0.22%. From the images it was also possible to follow the browning and drying propagation from the cookie edge toward the center.

  2. Study on classification of pork quality using hyperspectral imaging technique

    NASA Astrophysics Data System (ADS)

    Zeng, Shan; Bai, Jun; Wang, Haibin

    2015-12-01

    The relative problems' research of chilled meat, thawed meat and spoiled meat discrimination by hyperspectral image technique were proposed, such the section of feature wavelengths, et al. First, based on 400 ~ 1000nm range hyperspectral image data of testing pork samples, by K-medoids clustering algorithm based on manifold distance, we select 30 important wavelengths from 753 wavelengths, and thus select 8 feature wavelengths (454.4, 477.5, 529.3, 546.8, 568.4, 580.3, 589.9 and 781.2nm) based on the discrimination value. Then 8 texture features of each image under 8 feature wavelengths were respectively extracted by two-dimensional Gabor wavelets transform as pork quality feature. Finally, we build a pork quality classification model using the fuzzy C-mean clustering algorithm. Through the experiment of extracting feature wavelengths, we found that although the hyperspectral images between adjacent bands have a strong linear correlation, they show a significant non-linear manifold relationship from the entire band. K-medoids clustering algorithm based on manifold distance used in this paper for selecting the characteristic wavelengths, which is more reasonable than traditional principal component analysis (PCA). Through the classification result, we conclude that hyperspectral imaging technology can distinguish among chilled meat, thawed meat and spoiled meat accurately.

  3. Optimizing 3D image quality and performance for stereoscopic gaming

    NASA Astrophysics Data System (ADS)

    Flack, Julien; Sanderson, Hugh; Pegg, Steven; Kwok, Simon; Paterson, Daniel

    2009-02-01

    The successful introduction of stereoscopic TV systems, such as Samsung's 3D Ready Plasma, requires high quality 3D content to be commercially available to the consumer. Console and PC games provide the most readily accessible source of high quality 3D content. This paper describes innovative developments in a generic, PC-based game driver architecture that addresses the two key issues affecting 3D gaming: quality and speed. At the heart of the quality issue are the same considerations that studios face producing stereoscopic renders from CG movies: how best to perform the mapping from a geometric CG environment into the stereoscopic display volume. The major difference being that for game drivers this mapping cannot be choreographed by hand but must be automatically calculated in real-time without significant impact on performance. Performance is a critical issue when dealing with gaming. Stereoscopic gaming has traditionally meant rendering the scene twice with the associated performance overhead. An alternative approach is to render the scene from one virtual camera position and use information from the z-buffer to generate a stereo pair using Depth-Image-Based Rendering (DIBR). We analyze this trade-off in more detail and provide some results relating to both 3D image quality and render performance.

  4. Comparison-based Image Quality Assessment for Selecting Image Restoration Parameters.

    PubMed

    Liang, Haoyi; Weller, Daniel

    2016-08-19

    Image quality assessment (IQA) is traditionally classified into full-reference (FR) IQA, reduced-reference (RR) IQA, and no-reference (NR) IQA according to the amount of information required from the original image. Although NRIQA and RR-IQA are widely used in practical applications, room for improvement still remains because of the lack of the reference image. Inspired by the fact that in many applications, such as parameter selection for image restoration algorithms, a series of distorted images are available, the authors propose a novel comparison-based image quality assessment (C-IQA) framework. The new comparison-based framework parallels FRIQA by requiring two input images, and resembles NR-IQA by not using the original image. As a result, the new comparisonbased approach has more application scenarios than FR-IQA does, and takes greater advantage of the accessible information than the traditional single-input NR-IQA does. Further, C-IQA is compared with other state-of-the-art NR-IQA methods and another RR-IQA method on two widely used IQA databases. Experimental results show that C-IQA outperforms the other methods for parameter selection, and the parameter trimming framework combined with C-IQA saves the computation of iterative image reconstruction up to 80%.

  5. Characterization of image quality and image-guidance performance of a preclinical microirradiator

    SciTech Connect

    Clarkson, R.; Lindsay, P. E.; Ansell, S.; Wilson, G.; Jelveh, S.; Hill, R. P.; Jaffray, D. A.

    2011-02-15

    Purpose: To assess image quality and image-guidance capabilities of a cone-beam CT based small-animal image-guided irradiation unit (micro-IGRT). Methods: A micro-IGRT system has been developed in collaboration with the authors' laboratory as a means to study the radiobiological effects of conformal radiation dose distributions in small animals. The system, the X-Rad 225Cx, consists of a 225 kVp x-ray tube and a flat-panel amorphous silicon detector mounted on a rotational C-arm gantry and is capable of both fluoroscopic x-ray and cone-beam CT imaging, as well as image-guided placement of the radiation beams. Image quality (voxel noise, modulation transfer, CT number accuracy, and geometric accuracy characteristics) was assessed using water cylinder and micro-CT test phantoms. Image guidance was tested by analyzing the dose delivered to radiochromic films fixed to BB's through the end-to-end process of imaging, targeting the center of the BB, and irradiation of the film/BB in order to compare the offset between the center of the field and the center of the BB. Image quality and geometric studies were repeated over a 5-7 month period to assess stability. Results: CT numbers reported were found to be linear (R{sup 2}{>=}0.998) and the noise for images of homogeneous water phantom was 30 HU at imaging doses of approximately 1 cGy (to water). The presampled MTF at 50% and 10% reached 0.64 and 1.35 mm{sup -1}, respectively. Targeting accuracy by means of film irradiations was shown to have a mean displacement error of [{Delta}x,{Delta}y,{Delta}z]=[-0.12,-0.05,-0.02] mm, with standard deviations of [0.02, 0.20, 0.17] mm. The system has proven to be stable over time, with both the image quality and image-guidance performance being reproducible for the duration of the studies. Conclusions: The micro-IGRT unit provides soft-tissue imaging of small-animal anatomy at acceptable imaging doses ({<=}1 cGy). The geometric accuracy and targeting systems permit dose placement with

  6. DES exposure checker: Dark Energy Survey image quality control crowdsourcer

    NASA Astrophysics Data System (ADS)

    Melchior, Peter; Sheldon, Erin; Drlica-Wagner, Alex; Rykoff, Eli S.

    2015-11-01

    DES exposure checker renders science-grade images directly to a web browser and allows users to mark problematic features from a set of predefined classes, thus allowing image quality control for the Dark Energy Survey to be crowdsourced through its web application. Users can also generate custom labels to help identify previously unknown problem classes; generated reports are fed back to hardware and software experts to help mitigate and eliminate recognized issues. These problem reports allow rapid correction of artifacts that otherwise may be too subtle or infrequent to be recognized.

  7. A monthly quality assurance procedure for 3D surface imaging.

    PubMed

    Wooten, H Omar; Klein, Eric E; Gokhroo, Garima; Santanam, Lakshmi

    2010-12-21

    A procedure for periodic quality assurance of a video surface imaging system is introduced. AlignRT is a video camera-based patient localization system that captures and compares images of a patient's topography to a DICOM-formatted external contour, then calculates shifts required to accurately reposition the patient. This technical note describes the tools and methods implemented in our department to verify correct and accurate operation of the AlignRT hardware and software components. The procedure described is performed monthly and complements a daily calibration of the system.

  8. Video Snapshots: Creating High-Quality Images from Video Clips.

    PubMed

    Sunkavalli, Kalyan; Joshi, Neel; Kang, Sing Bing; Cohen, Michael F; Pfister, Hanspeter

    2012-11-01

    We describe a unified framework for generating a single high-quality still image ("snapshot") from a short video clip. Our system allows the user to specify the desired operations for creating the output image, such as super resolution, noise and blur reduction, and selection of best focus. It also provides a visual summary of activity in the video by incorporating saliency-based objectives in the snapshot formation process. We show examples on a number of different video clips to illustrate the utility and flexibility of our system.

  9. Use of Three-Dimensional Curved-Multiplanar Reconstruction Images for Sylvian Dissection in Microsurgery of Middle Cerebral Artery Aneurysms

    PubMed Central

    Nam, Taek-Kyun; Byun, Jun-Soo; Park, Seung-Won; Kwon, Jeong-Taik

    2017-01-01

    Purpose The purpose of this study was to introduce a method of using three-dimensional (3D) curved-multiplanar reconstruction (MPR) images for sylvian dissection during microsurgical treatment of middle cerebral artery (MCA) aneurysms. Materials and Methods Forty-nine patients who had undergone surgery for MCA aneurysms were enrolled. We obtained the 3D curved-MPR images along the sphenoid ridge using OsiriX MD™ imaging software, compared sylvian dissection time according to several 3D MPR image factors, and investigated the correlations between these images and intraoperative findings. Results Utilizing preoperative information of the sylvian fissure (SF) and peri-aneurysmal space on 3D curved-MPR images, we could predict the feasibility of sylvian dissection for a safe surgery. 3D curved-MPR images showed several features: first, perpendicular images to the sylvian surface in the same orientation as the surgeon's view; second, simultaneous visualization of the brain cortex, vessels, and cisternal space; and third, more accurate measurement of various parameters, such as depth of the MCA from the sylvian surface and the location and width of the SFs. Conclusion In addition to conventional image studies, 3D curved-MPR images seem to provide useful information for Sylvian dissection in the microsurgical treatment of MCA aneurysms. PMID:27873519

  10. Computed tomography evaluation for transcatheter aortic valve implantation (TAVI): imaging of the aortic root and iliac arteries.

    PubMed

    Schoenhagen, Paul; Kapadia, Samir R; Halliburton, Sandra S; Svensson, Lars G; Tuzcu, E Murat

    2011-01-01

    For patients with severe aortic stenosis, open-heart surgical valve replacement remains the current clinical standard with documented, excellent long-term outcome. Over the past few years, transcatheter aortic valve implantation (TAVI) has developed into a treatment alternative for high-risk patients with severe aortic stenosis. Because transcatheter valvular procedures are characterized by lack of exposure of the operative field, image guidance is critical. This Pictorial Essay describes the role of 3-dimensional imaging with multidetector row computed tomography for detailed reconstructions of the aortic valve, aortic root, and iliac arteries in the context of TAVI.

  11. Magnetic resonance imaging demonstration of anomalous origin of the right coronary artery from the left coronary sinus associated with acute myocardial infarction.

    PubMed

    Lee, Jongmee; Choe, Yeon Hyeon; Kim, Hyun-Joong; Park, Jeong Euy

    2003-01-01

    Coronary MR angiography can be useful for noninvasive diagnosis of potentially life-threatening coronary artery anomalies. However, there has been no report to date on MR demonstration of acute myocardial infarction associated with right coronary artery anomaly. A 55-year-old man was admitted with chest pain. Catheter coronary angiography revealed an anomalous origin with compression in the proximal segment of right coronary artery. Breath-hold MR angiography using spiral acquisition technique showed that the right coronary artery originated from the left coronary sinus with a separate os. The proximal segment of the artery was compressed by right ventricle outflow tract during the diastolic phase of cine MR imaging. Contrast-enhanced MR imaging 5 minutes after Gd-DTPA injection showed hyperenhancement suggestive of acute myocardial infarction in the posteroinferior wall of the left ventricle.

  12. Reproducibility of Mammography Units, Film Processing and Quality Imaging

    NASA Astrophysics Data System (ADS)

    Gaona, Enrique

    2003-09-01

    The purpose of this study was to carry out an exploratory survey of the problems of quality control in mammography and processors units as a diagnosis of the current situation of mammography facilities. Measurements of reproducibility, optical density, optical difference and gamma index are included. Breast cancer is the most frequently diagnosed cancer and is the second leading cause of cancer death among women in the Mexican Republic. Mammography is a radiographic examination specially designed for detecting breast pathology. We found that the problems of reproducibility of AEC are smaller than the problems of processors units because almost all processors fall outside of the acceptable variation limits and they can affect the mammography quality image and the dose to breast. Only four mammography units agree with the minimum score established by ACR and FDA for the phantom image.

  13. Image quality vs. sensitivity: fundamental sensor system engineering

    NASA Astrophysics Data System (ADS)

    Schueler, Carl F.

    2008-08-01

    This paper focuses on the fundamental system engineering tradeoff driving almost all remote sensing design efforts, affecting complexity, cost, performance, schedule, and risk: image quality vs. sensitivity. This single trade encompasses every aspect of performance, including radiometric accuracy, dynamic range and precision, as well as spatial, spectral, and temporal coverage and resolution. This single trade also encompasses every aspect of design, including mass, dimensions, power, orbit selection, spacecraft interface, sensor and spacecraft functional trades, pointing or scanning architecture, sensor architecture (e.g., field-of-view, optical form, aperture, f/#, material properties), electronics, mechanical and thermal properties. The relationship between image quality and sensitivity is introduced based on the concepts of modulation transfer function (MTF) and signal-to-noise ratio (SNR) with examples to illustrate the balance to be achieved by the system architect to optimize cost, complexity, performance and risk relative to end-user requirements.

  14. Estimation of an image derived input function with MR-defined carotid arteries in FDG-PET human studies using a novel partial volume correction method.

    PubMed

    Sari, Hasan; Erlandsson, Kjell; Law, Ian; Larsson, Henrik Bw; Ourselin, Sebastien; Arridge, Simon; Atkinson, David; Hutton, Brian F

    2017-04-01

    Kinetic analysis of (18)F-fluorodeoxyglucose positron emission tomography data requires an accurate knowledge the arterial input function. The gold standard method to measure the arterial input function requires collection of arterial blood samples and is an invasive method. Measuring an image derived input function is a non-invasive alternative but is challenging due to partial volume effects caused by the limited spatial resolution of the positron emission tomography scanners. In this work, a practical image derived input function extraction method is presented, which only requires segmentation of the carotid arteries from MR images. The simulation study results showed that at least 92% of the true intensity could be recovered after the partial volume correction. Results from 19 subjects showed that the mean cerebral metabolic rate of glucose calculated using arterial samples and partial volume corrected image derived input function were 26.9 and 25.4 mg/min/100 g, respectively, for the grey matter and 7.2 and 6.7 mg/min/100 g for the white matter. No significant difference in the estimated cerebral metabolic rate of glucose values was observed between arterial samples and corrected image derived input function (p > 0.12 for grey matter and white matter). Hence, the presented image derived input function extraction method can be a practical alternative to noninvasively analyze dynamic (18)F-fluorodeoxyglucose data without the need for blood sampling.

  15. A quality assurance program for image quality of cone-beam CT guidance in radiation therapy

    SciTech Connect

    Bissonnette, Jean-Pierre; Moseley, Douglas J.; Jaffray, David A.

    2008-05-15

    The clinical introduction of volumetric x-ray image-guided radiotherapy systems necessitates formal commissioning of the hardware and image-guided processes to be used and drafts quality assurance (QA) for both hardware and processes. Satisfying both requirements provides confidence on the system's ability to manage geometric variations in patient setup and internal organ motion. As these systems become a routine clinical modality, the authors present data from their QA program tracking the image quality performance of ten volumetric systems over a period of 3 years. These data are subsequently used to establish evidence-based tolerances for a QA program. The volumetric imaging systems used in this work combines a linear accelerator with conventional x-ray tube and an amorphous silicon flat-panel detector mounted orthogonally from the accelerator central beam axis, in a cone-beam computed tomography (CBCT) configuration. In the spirit of the AAPM Report No. 74, the present work presents the image quality portion of their QA program; the aspects of the QA protocol addressing imaging geometry have been presented elsewhere. Specifically, the authors are presenting data demonstrating the high linearity of CT numbers, the uniformity of axial reconstructions, and the high contrast spatial resolution of ten CBCT systems (1-2 mm) from two commercial vendors. They are also presenting data accumulated over the period of several months demonstrating the long-term stability of the flat-panel detector and of the distances measured on reconstructed volumetric images. Their tests demonstrate that each specific CBCT system has unique performance. In addition, scattered x rays are shown to influence the imaging performance in terms of spatial resolution, axial reconstruction uniformity, and the linearity of CT numbers.

  16. Value of tomographic thallium-201 imaging in patients with chest pain following coronary artery bypass grafting

    SciTech Connect

    Starling, M.R.; Walsh, R.A.; Dehmer, G.J.; Lasher, J.C.; Blumhardt, R.

    1987-02-01

    To determine whether thallium-201 washout profile analysis can detect regional myocardial ischemia caused by coronary artery bypass graft occlusion or progression of disease in nonbypassed coronary arteries, 19 consecutive patients with chest pain following bypass grafting were evaluated with coronary arteriography and thallium-201 scintigraphy. Twenty of the 55 coronary artery regions were perfused by an occluded bypass graft or a significantly stenosed (greater than or equal to 70% diameter narrowing) nonbypassed coronary artery, while 35 coronary regions were perfused by patent bypass grafts or insignificantly diseased coronary arteries. The tomographic thallium-201 washout profile results correlated with the bypass graft and coronary arteriographic findings. The sensitivity of tomographic thallium-201 washout profile abnormalities for arteriographic abnormalities was 75%, while the specificity was 86%. The authors conclude that tomographic thallium-201 washout profile analysis may be very useful in the evaluation of patients with chest pain following coronary artery bypass grafting by detecting regional myocardial ischemia caused by occlusion of specific bypass grafts or progression of disease in nonbypassed coronary arteries.

  17. A virtual image chain for perceived image quality of medical display

    NASA Astrophysics Data System (ADS)

    Marchessoux, Cédric; Jung, Jürgen

    2006-03-01

    This paper describes a virtual image chain for medical display (project VICTOR: granted in the 5th framework program by European commission). The chain starts from raw data of an image digitizer (CR, DR) or synthetic patterns and covers image enhancement (MUSICA by Agfa) and both display possibilities, hardcopy (film on viewing box) and softcopy (monitor). Key feature of the chain is a complete image wise approach. A first prototype is implemented in an object-oriented software platform. The display chain consists of several modules. Raw images are either taken from scanners (CR-DR) or from a pattern generator, in which characteristics of DR- CR systems are introduced by their MTF and their dose-dependent Poisson noise. The image undergoes image enhancement and comes to display. For soft display, color and monochrome monitors are used in the simulation. The image is down-sampled. The non-linear response of a color monitor is taken into account by the GOG or S-curve model, whereas the Standard Gray-Scale-Display-Function (DICOM) is used for monochrome display. The MTF of the monitor is applied on the image in intensity levels. For hardcopy display, the combination of film, printer, lightbox and viewing condition is modeled. The image is up-sampled and the DICOM-GSDF or a Kanamori Look-Up-Table is applied. An anisotropic model for the MTF of the printer is applied on the image in intensity levels. The density-dependent color (XYZ) of the hardcopy film is introduced by Look-Up-tables. Finally a Human Visual System Model is applied to the intensity images (XYZ in terms of cd/m2) in order to eliminate nonvisible differences. Comparison leads to visible differences, which are quantified by higher order image quality metrics. A specific image viewer is used for the visualization of the intensity image and the visual difference maps.

  18. Simultaneous Imaging of Radiation-Induced Cerebral Microbleeds, Arteries and Veins, Using a Multiple Gradient Echo Sequence at 7 Tesla

    PubMed Central

    Bian, Wei; Banerjee, Suchandrima; Kelly, Douglas A.C.; Hess, Christopher P.; Larson, Peder E.Z.; Chang, Susan M.; Nelson, Sarah J.; Lupo, Janine M.

    2016-01-01

    Background The purpose of this study was to implement and evaluate the utility of a multi-echo sequence at 7 Tesla (T) for simultaneous time-of-flight (TOF) MR-angiography (MRA) and susceptibility-weighted imaging (SWI) of radiation-induced cerebral microbleeds (CMBs), intracranial arteries, and veins. Methods A four-echo gradient-echo sequence was implemented on a 7T scanner. The first echo was used to create TOF-MRA images, while the remaining echoes were combined to visualize CMBs and veins on SWI images. The sequence was evaluated on eight brain tumor patients with known radiation-induced CMBs. Single-echo images were also acquired to visually and quantitatively compare the contrast-to-noise ratio (CNR) of small- and intermediate-vessels between acquisitions. The number of CMBs detected with each acquisition was also quantified. Statistical significance was determined using a Wilcoxon signed-rank test. Results Compared with the single-echo sequences, the CNR of small and intermediate arteries increased 7.6% (P < 0.03) and 9.5% (P = 0.06), respectively, while the CNR of small and intermediate veins were not statistically different between sequences (P = 0.95 and P = 0.46, respectively). However, these differences were not discernible by visual inspection. Also the multi-echo sequence detected 18.3% more CMBs (P < 0.008) due to higher slice resolution. Conclusion The proposed 7T multi-echo sequence depicts arteries, veins, and CMBs on a single image to facilitate quantitative evaluation of radiation-induced vascular injury. PMID:25471321

  19. Beef quality parameters estimation using ultrasound and color images

    PubMed Central

    2015-01-01

    Background Beef quality measurement is a complex task with high economic impact. There is high interest in obtaining an automatic quality parameters estimation in live cattle or post mortem. In this paper we set out to obtain beef quality estimates from the analysis of ultrasound (in vivo) and color images (post mortem), with the measurement of various parameters related to tenderness and amount of meat: rib eye area, percentage of intramuscular fat and backfat thickness or subcutaneous fat. Proposal An algorithm based on curve evolution is implemented to calculate the rib eye area. The backfat thickness is estimated from the profile of distances between two curves that limit the steak and the rib eye, previously detected. A model base in Support Vector Regression (SVR) is trained to estimate the intramuscular fat percentage. A series of features extracted on a region of interest, previously detected in both ultrasound and color images, were proposed. In all cases, a complete evaluation was performed with different databases including: color and ultrasound images acquired by a beef industry expert, intramuscular fat estimation obtained by an expert using a commercial software, and chemical analysis. Conclusions The proposed algorithms show good results to calculate the rib eye area and the backfat thickness measure and profile. They are also promising in predicting the percentage of intramuscular fat. PMID:25734452

  20. Propofol allows precise quantitative arterial spin labelling functional magnetic resonance imaging in the rat.

    PubMed

    Griffin, Karen M; Blau, Christoph W; Kelly, Michael E; O'Herlihy, Colm; O'Connell, P R; Jones, James F X; Kerskens, Christian M

    2010-07-15

    Functional magnetic resonance imaging (fMRI) techniques highlight cerebral vascular responses which are coupled to changes in neural activation. However, two major difficulties arise when employing these techniques in animal studies. First is the disturbance of cerebral blood flow due to anaesthesia and second is the difficulty of precise reproducible quantitative measurements. These difficulties were surmounted in the current study by using propofol and quantitative arterial spin labelling (QASL) to measure relative cerebral blood volume of labelled water (rCBV(lw),) mean transit time (MTT) and capillary transit time (CTT). The ASL method was applied to measure the haemodynamic response in the primary somatosensory cortex following forepaw stimulation in the rat. Following stimulation an increase in signal intensity and rCBV(lw) was recorded, this was accompanied by a significant decrease in MTT (1.97+/-0.06s to 1.44+/-0.04s) and CTT (1.76+/-0.06s to 1.39+/-0.07s). Two animals were scanned repeatedly on two different experimental days. Stimulation in the first animal was applied to the same forepaw during the initial and repeat scan. In the second animal stimulation was applied to different forepaws on the first and second days. The control and activated ASL signal intensities, rCBVlw on both days were almost identical in both animals. The basal MTT and CTT during the second scan were also very similar to the values obtained during the first scan. The MTT recorded from the animal that underwent stimulation to the same paw during both scanning sessions was very similar on the first and second days. In conclusion, propofol induces little physiological disturbance and holds potential for longitudinal QASL fMRI studies.

  1. Effects of characteristics of image quality in an immersive environment

    NASA Technical Reports Server (NTRS)

    Duh, Henry Been-Lirn; Lin, James J W.; Kenyon, Robert V.; Parker, Donald E.; Furness, Thomas A.

    2002-01-01

    Image quality issues such as field of view (FOV) and resolution are important for evaluating "presence" and simulator sickness (SS) in virtual environments (VEs). This research examined effects on postural stability of varying FOV, image resolution, and scene content in an immersive visual display. Two different scenes (a photograph of a fountain and a simple radial pattern) at two different resolutions were tested using six FOVs (30, 60, 90, 120, 150, and 180 deg.). Both postural stability, recorded by force plates, and subjective difficulty ratings varied as a function of FOV, scene content, and image resolution. Subjects exhibited more balance disturbance and reported more difficulty in maintaining posture in the wide-FOV, high-resolution, and natural scene conditions.

  2. Objective assessment of image quality. IV. Application to adaptive optics

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, Christopher

    2008-01-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed. PMID:17106464

  3. Objective assessment of image quality. IV. Application to adaptive optics.

    PubMed

    Barrett, Harrison H; Myers, Kyle J; Devaney, Nicholas; Dainty, Christopher

    2006-12-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed.

  4. Objective assessment of image quality. IV. Application to adaptive optics

    NASA Astrophysics Data System (ADS)

    Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, Christopher

    2006-12-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed.

  5. Adaptive photoacoustic imaging quality optimization with EMD and reconstruction

    NASA Astrophysics Data System (ADS)

    Guo, Chengwen; Ding, Yao; Yuan, Jie; Xu, Guan; Wang, Xueding; Carson, Paul L.

    2016-10-01

    Biomedical photoacoustic (PA) signal is characterized with extremely low signal to noise ratio which will yield significant artifacts in photoacoustic tomography (PAT) images. Since PA signals acquired by ultrasound transducers are non-linear and non-stationary, traditional data analysis methods such as Fourier and wavelet method cannot give useful information for further research. In this paper, we introduce an adaptive method to improve the quality of PA imaging based on empirical mode decomposition (EMD) and reconstruction. Data acquired by ultrasound transducers are adaptively decomposed into several intrinsic mode functions (IMFs) after a sifting pre-process. Since noise is randomly distributed in different IMFs, depressing IMFs with more noise while enhancing IMFs with less noise can effectively enhance the quality of reconstructed PAT images. However, searching optimal parameters by means of brute force searching algorithms will cost too much time, which prevent this method from practical use. To find parameters within reasonable time, heuristic algorithms, which are designed for finding good solutions more efficiently when traditional methods are too slow, are adopted in our method. Two of the heuristic algorithms, Simulated Annealing Algorithm, a probabilistic method to approximate the global optimal solution, and Artificial Bee Colony Algorithm, an optimization method inspired by the foraging behavior of bee swarm, are selected to search optimal parameters of IMFs in this paper. The effectiveness of our proposed method is proved both on simulated data and PA signals from real biomedical tissue, which might bear the potential for future clinical PA imaging de-noising.

  6. Image gathering and digital restoration for fidelity and visual quality

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1991-01-01

    The fidelity and resolution of the traditional Wiener restorations given in the prevalent digital processing literature can be significantly improved when the transformations between the continuous and discrete representations in image gathering and display are accounted for. However, the visual quality of these improved restorations also is more sensitive to the defects caused by aliasing artifacts, colored noise, and ringing near sharp edges. In this paper, these visual defects are characterized, and methods for suppressing them are presented. It is demonstrated how the visual quality of fidelity-maximized images can be improved when (1) the image-gathering system is specifically designed to enhance the performance of the image-restoration algorithm, and (2) the Wiener filter is combined with interactive Gaussian smoothing, synthetic high edge enhancement, and nonlinear tone-scale transformation. The nonlinear transformation is used primarily to enhance the spatial details that are often obscurred when the normally wide dynamic range of natural radiance fields is compressed into the relatively narrow dynamic range of film and other displays.

  7. NMF-Based Image Quality Assessment Using Extreme Learning Machine.

    PubMed

    Wang, Shuigen; Deng, Chenwei; Lin, Weisi; Huang, Guang-Bin; Zhao, Baojun

    2017-01-01

    Numerous state-of-the-art perceptual image quality assessment (IQA) algorithms share a common two-stage process: distortion description followed by distortion effects pooling. As for the first stage, the distortion descriptors or measurements are expected to be effective representatives of human visual variations, while the second stage should well express the relationship among quality descriptors and the perceptual visual quality. However, most of the existing quality descriptors (e.g., luminance, contrast, and gradient) do not seem to be consistent with human perception, and the effects pooling is often done in ad-hoc ways. In this paper, we propose a novel full-reference IQA metric. It applies non-negative matrix factorization (NMF) to measure image degradations by making use of the parts-based representation of NMF. On the other hand, a new machine learning technique [extreme learning machine (ELM)] is employed to address the limitations of the existing pooling techniques. Compared with neural networks and support vector regression, ELM can achieve higher learning accuracy with faster learning speed. Extensive experimental results demonstrate that the proposed metric has better performance and lower computational complexity in comparison with the relevant state-of-the-art approaches.

  8. Image Quality Improvement in Adaptive Optics Scanning Laser Ophthalmoscopy Assisted Capillary Visualization Using B-spline-based Elastic Image Registration

    PubMed Central

    Uji, Akihito; Ooto, Sotaro; Hangai, Masanori; Arichika, Shigeta; Yoshimura, Nagahisa

    2013-01-01

    Purpose To investigate the effect of B-spline-based elastic image registration on adaptive optics scanning laser ophthalmoscopy (AO-SLO)-assisted capillary visualization. Methods AO-SLO videos were acquired from parafoveal areas in the eyes of healthy subjects and patients with various diseases. After nonlinear image registration, the image quality of capillary images constructed from AO-SLO videos using motion contrast enhancement was compared before and after B-spline-based elastic (nonlinear) image registration performed using ImageJ. For objective comparison of image quality, contrast-to-noise ratios (CNRS) for vessel images were calculated. For subjective comparison, experienced ophthalmologists ranked images on a 5-point scale. Results All AO-SLO videos were successfully stabilized by elastic image registration. CNR was significantly higher in capillary images stabilized by elastic image registration than in those stabilized without registration. The average ratio of CNR in images with elastic image registration to CNR in images without elastic image registration was 2.10 ± 1.73, with no significant difference in the ratio between patients and healthy subjects. Improvement of image quality was also supported by expert comparison. Conclusions Use of B-spline-based elastic image registration in AO-SLO-assisted capillary visualization was effective for enhancing image quality both objectively and subjectively. PMID:24265796

  9. Elasticity imaging of arterial wall with transcutaneous ultrasound both in longitudinal-axis and short-axis planes

    NASA Astrophysics Data System (ADS)

    Kanai, Hiroshi; Hasegawa, Hideyuki

    2001-05-01

    A method for measuring regional elasticity of tissue surrounding atherosclerotic plaque is described. An ultrasonic beam was scanned with a conventional linear-type probe, and multiple layers were preset from luminal surface to adventitia of the common carotid artery (CCA) with intervals of 375 μm. By applying the method [IEEE Trans. UFFC 46, 1229-1241 (1999)], a minute decrease of several tenths of a micrometer in thickness of each layer resulting from arrival of the pressure wave was determined. By assuming that the arterial wall is incompressible and that the blood pressure is applied normal to each layer, the elastic modulus in the circumferential direction of each layer was estimated at intervals of 75 μm in the radial direction and 150-300 μm in longitudinal direction. On the other hand, by designing the directions of ultrasonic beams so that each beam always passes through the center of the artery, the cross-sectional elasticity image in the short-axis plane was also obtained. Based on the elasticity library determined by comparing the elasticity distribution and their pathological images, each point was statistically categorized as lipid, a mixture of smooth muscle and collagen fiber, or other. By applying the method to the CCAs, soft inclusion of lipid was found for plaques.

  10. TU-B-19A-01: Image Registration II: TG132-Quality Assurance for Image Registration

    SciTech Connect

    Brock, K; Mutic, S

    2014-06-15

    AAPM Task Group 132 was charged with a review of the current approaches and solutions for image registration in radiotherapy and to provide recommendations for quality assurance and quality control of these clinical processes. As the results of image registration are always used as the input of another process for planning or delivery, it is important for the user to understand and document the uncertainty associate with the algorithm in general and the Result of a specific registration. The recommendations of this task group, which at the time of abstract submission are currently being reviewed by the AAPM, include the following components. The user should understand the basic image registration techniques and methods of visualizing image fusion. The disclosure of basic components of the image registration by commercial vendors is critical in this respect. The physicists should perform end-to-end tests of imaging, registration, and planning/treatment systems if image registration is performed on a stand-alone system. A comprehensive commissioning process should be performed and documented by the physicist prior to clinical use of the system. As documentation is important to the safe implementation of this process, a request and report system should be integrated into the clinical workflow. Finally, a patient specific QA practice should be established for efficient evaluation of image registration results. The implementation of these recommendations will be described and illustrated during this educational session. Learning Objectives: Highlight the importance of understanding the image registration techniques used in their clinic. Describe the end-to-end tests needed for stand-alone registration systems. Illustrate a comprehensive commissioning program using both phantom data and clinical images. Describe a request and report system to ensure communication and documentation. Demonstrate an clinically-efficient patient QA practice for efficient evaluation of image

  11. SU-E-J-36: Comparison of CBCT Image Quality for Manufacturer Default Imaging Modes

    SciTech Connect

    Nelson, G

    2015-06-15

    Purpose CBCT is being increasingly used in patient setup for radiotherapy. Often the manufacturer default scan modes are used for performing these CBCT scans with the assumption that they are the best options. To quantitatively assess the image quality of these scan modes, all of the scan modes were tested as well as options with the reconstruction algorithm. Methods A CatPhan 504 phantom was scanned on a TrueBeam Linear Accelerator using the manufacturer scan modes (FSRT Head, Head, Image Gently, Pelvis, Pelvis Obese, Spotlight, & Thorax). The Head mode scan was then reconstructed multiple times with all filter options (Smooth, Standard, Sharp, & Ultra Sharp) and all Ring Suppression options (Disabled, Weak, Medium, & Strong). An open source ImageJ tool was created for analyzing the CatPhan 504 images. Results The MTF curve was primarily dictated by the voxel size and the filter used in the reconstruction algorithm. The filters also impact the image noise. The CNR was worst for the Image Gently mode, followed by FSRT Head and Head. The sharper the filter, the worse the CNR. HU varied significantly between scan modes. Pelvis Obese had lower than expected HU values than most while the Image Gently mode had higher than expected HU values. If a therapist tried to use preset window and level settings, they would not show the desired tissue for some scan modes. Conclusion Knowing the image quality of the set scan modes, will enable users to better optimize their setup CBCT. Evaluation of the scan mode image quality could improve setup efficiency and lead to better treatment outcomes.

  12. Image Quality of the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Wachter, R.; Schou, Jesper; Rabello-Soares, M. C.; Miles, J. W.; Duvall, T. L., Jr.; Bush, R. I.

    2011-01-01

    We describe the imaging quality of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) as measured during the ground calibration of the instrument. We describe the calibration techniques and report our results for the final configuration of HMI. We present the distortion, modulation transfer function, stray light,image shifts introduced by moving parts of the instrument, best focus, field curvature, and the relative alignment of the two cameras. We investigate the gain and linearity of the cameras, and present the measured flat field.

  13. Detection of the intima and media layer thickness of ultrasound common carotid artery image using efficient active contour segmentation technique.

    PubMed

    Santhiyakumari, N; Rajendran, P; Madheswaran, M; Suresh, S

    2011-11-01

    An active contour segmentation technique for extracting the intima-media layer of the common carotid artery (CCA) ultrasound images employing semiautomatic region of interest identification and speckle reduction techniques is presented in this paper. An attempt has been made to test the ultrasound images of the carotid artery of different subjects with this contour segmentation based on improved dynamic programming method. It is found that the preprocessing of ultrasound images of the CCA with region identification and despeckleing followed by active contour segmentation algorithm can be successfully used in evaluating the intima-media thickness (IMT) of the normal and abnormal subjects. It is also estimated that the segmentation used in this paper results an intermethod error of 0.09 mm and a coefficient of variation of 18.9%, for the despeckled images. The magnitudes of the IMT values have been used to explore the rate of prediction of blockage existing in the cerebrovascular and cardiovascular pathologies and also hypertension and atherosclerosis.

  14. Transient left ventricular cavitary dilation during dipyridamole-thallium imaging as an indicator of severe coronary artery disease

    SciTech Connect

    Lette, J.; Lapointe, J.; Waters, D.; Cerino, M.; Picard, M.; Gagnon, A. )

    1990-11-15

    Transient left ventricular (LV) cavitary dilation during dipyridamole-thallium imaging was reported in 45 of 510 (9%) consecutive patients referred for dipyridamole-thallium imaging. Clinical and hemodynamic effects observed during dipyridamole infusion were not predictive of transient cavitary dilation on the thallium images. Coronary angiography was performed in 32 of the 45 patients: 75% had either left main, 3-vessel or high-risk 2-vessel coronary artery disease. Although 25 of 45 patients (56%) with transient cavitary dilation were either asymptomatic or had only grade 1/4 effort angina, 16 of 25 patients (64%) not referred for coronary revascularization sustained a cardiac event during a mean follow-up of 12 months. Most events were cardiac deaths (75%) and 87% of events occurred within 4 months of the test. Noncardiac surgery was performed in 187 of the 510 patients. The postoperative cardiac event rate was 2% in the 101 patients with normal scans or fixed defects, 19% in 75 patients with reversible perfusion defects and 58% in 12 patients with reversible cavitary dilation (p less than 0.0001). Thus, transient LV dilation during dipyridamole-thallium imaging is a marker of severe underlying coronary artery disease, denotes a poor prognosis and predicts a high risk of postoperative cardiac complications in patients who undergo noncardiac surgery.

  15. Comparison of dobutamine and exercise using technetium-99m sestamibi imaging for the evaluation of coronary artery disease.

    PubMed

    Herman, S D; LaBresh, K A; Santos-Ocampo, C D; Garber, C E; Barbour, M M; Messinger, D E; Cloutier, D J; Ahlberg, A W; Heller, G V

    1994-01-15

    Studies using dobutamine thallium-201 myocardial perfusion imaging have suggested a high sensitivity and specificity for the detection of coronary artery disease. However, few data are available comparing dobutamine with exercise stress for the detection and localization of perfusion defects. This study compared the effects of dobutamine and exercise stress using technetium-99m sestamibi single-photon emission computed tomographic imaging in the same patients in a prospective crossover trial. Twenty-four patients with a high likelihood of coronary artery disease underwent tomographic myocardial imaging at rest, after symptom-limited treadmill exercise, and after intravenous dobutamine (maximum 30 micrograms/kg/min). Tomograms of the left ventricle were divided into 20 segments and were interpreted without knowledge of patient identity or stress protocol. Dobutamine was well tolerated by all patients. Segment-by-segment concordance between exercise and dobutamine images was highly significant (kappa = 0.56, p < 0.0001). Global first-order agreement (normal vs abnormal) between exercise and dobutamine studies was 96% (kappa = 0.65, p = 0.02); global second-order agreement (normal vs fixed vs ischemic defect) was 88% (kappa = 0.45, p = 0.02). Regional first- and second-order agreement were 96 and 93%, respectively (p < 0.001 for both). Twenty patients underwent coronary angiography. Comparisons between exercise and angiography and between dobutamine and angiography were similar for both global agreement (95 vs 100%, p = NS) and regional agreement (77 vs 72%, p = NS).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. A semi-automatic framework of measuring pulmonary arterial metrics at anatomic airway locations using CT imaging

    NASA Astrophysics Data System (ADS)

    Jin, Dakai; Guo, Junfeng; Dougherty, Timothy M.; Iyer, Krishna S.; Hoffman, Eric A.; Saha, Punam K.

    2016-03-01

    Pulmonary vascular dysfunction has been implicated in smoking-related susceptibility to emphysema. With the growing interest in characterizing arterial morphology for early evaluation of the vascular role in pulmonary diseases, there is an increasing need for the standardization of a framework for arterial morphological assessment at airway segmental levels. In this paper, we present an effective and robust semi-automatic framework to segment pulmonary arteries at different anatomic airway branches and measure their cross-sectional area (CSA). The method starts with user-specified endpoints of a target arterial segment through a custom-built graphical user interface. It then automatically detect the centerline joining the endpoints, determines the local structure orientation and computes the CSA along the centerline after filtering out the adjacent pulmonary structures, such as veins or airway walls. Several new techniques are presented, including collision-impact based cost function for centerline detection, radial sample-line based CSA computation, and outlier analysis of radial distance to subtract adjacent neighboring structures in the CSA measurement. The method was applied to repeat-scan pulmonary multirow detector CT (MDCT) images from ten healthy subjects (age: 21-48 Yrs, mean: 28.5 Yrs; 7 female) at functional residual capacity (FRC). The reproducibility of computed arterial CSA from four airway segmental regions in middle and lower lobes was analyzed. The overall repeat-scan intra-class correlation (ICC) of the computed CSA from all four airway regions in ten subjects was 96% with maximum ICC found at LB10 and RB4 regions.

  17. A semi-automatic framework of measuring pulmonary arterial metrics at anatomic airway locations using CT imaging

    PubMed Central

    Jin, Dakai; Guo, Junfeng; Dougherty, Timothy M.; Iyer, Krishna S.; Hoffman, Eric A.; Saha, Punam K.

    2017-01-01

    Pulmonary vascular dysfunction has been implicated in smoking-related susceptibility to emphysema. With the growing interest in characterizing arterial morphology for early evaluation of the vascular role in pulmonary diseases, there is an increasing need for the standardization of a framework for arterial morphological assessment at airway segmental levels. In this paper, we present an effective and robust semi-automatic framework to segment pulmonary arteries at different anatomic airway branches and measure their cross-sectional area (CSA). The method starts with user-specified endpoints of a target arterial segment through a custom-built graphical user interface. It then automatically detect the centerline joining the endpoints, determines the local structure orientation and computes the CSA along the centerline after filtering out the adjacent pulmonary structures, such as veins or airway walls. Several new techniques are presented, including collision-impact based cost function for centerline detection, radial sample-line based CSA computation, and outlier analysis of radial distance to subtract adjacent neighboring structures in the CSA measurement. The method was applied to repeat-scan pulmonary multirow detector CT (MDCT) images from ten healthy subjects (age: 21–48 Yrs, mean: 28.5 Yrs; 7 female) at functional residual capacity (FRC). The reproducibility of computed arterial CSA from four airway segmental regions in middle and lower lobes was analyzed. The overall repeat-scan intra-class correlation (ICC) of the computed CSA from all four airway regions in ten subjects was 96% with maximum ICC found at LB10 and RB4 regions. PMID:28250572

  18. A Quality Assurance Model of Operative Mortality in Coronary Artery Surgery

    DTIC Science & Technology

    1989-01-01

    Surgery ’.,?a Iter Reed Army Itstitute -)I Re:fearci ’h, hin-ton, D.C. 20307-5103 C JTROLLING OFFICE NAME AND ADCRESS 12. RF.POR- DATE US Army...Assurance Model of Operative Mortality in Coronary Artery Surgery Fred H. Edwards, MD, Robert A. Albus, MD, Rostik Zajtchuk, MD, Geoffrey M. Graeber, MD, and...Michael Barry, MD Department of Cardiothoracic Surgery , Walter Reed Army, Medical Center, Washington, DC; Walter Reed Institute of Research

  19. Does a "continuous care model" affect the quality of life of patients undergoing coronary artery bypass grafting?

    PubMed

    Razmjoee, Nasrin; Ebadi, Abbas; Asadi-Lari, Mohsen; Hosseini, Marziyeh

    2017-03-01

    The physical and mental needs of patients with coronary heart disease are affected by both the disease and the heart surgery in different ways. Such diverse needs require different approaches. A continuous care model, which involves orientation, sensitization, control, and evaluation, may favorably influence patient outcomes following coronary artery bypass grafting (CABG). We were interested to ascertain whether a continuous care model might lead to improved quality of life, compared with a routine care model, in patients undergoing CABG. A total of 66 patients scheduled for CABG were identified and randomized to receive either continuous care (based on the continuous care model) or routine postoperative management for 2 months. The subjects' quality of life and its physical and mental dimensions were measured by the 12-item Short-Form Health Survey. Each dimension was scored between 0 and 100, and higher scores indicated better quality of life. One and 2 months after the intervention, the scores of quality of life and its two dimensions were significantly higher in the intervention group than in the control group (P < .001). The application of the continuous care model can promote health-related quality of life in patients after CABG.

  20. Quality of traffic flow on urban arterial streets and its relationship with safety.

    PubMed

    Dixit, Vinayak V; Pande, Anurag; Abdel-Aty, Mohamed; Das, Abhishek; Radwan, Essam

    2011-09-01

    The two-fluid model for vehicular traffic flow explains the traffic on arterials as a mix of stopped and running vehicles. It describes the relationship between the vehicles' running speed and the fraction of running vehicles. The two parameters of the model essentially represent 'free flow' travel time and level of interaction among vehicles, and may be used to evaluate urban roadway networks and urban corridors with partially limited access. These parameters are influenced by not only the roadway characteristics but also by behavioral aspects of driver population, e.g., aggressiveness. Two-fluid models are estimated for eight arterial corridors in Orlando, FL for this study. The parameters of the two-fluid model were used to evaluate corridor level operations and the correlations of these parameters' with rates of crashes having different types/severity. Significant correlations were found between two-fluid parameters and rear-end and angle crash rates. Rate of severe crashes was also found to be significantly correlated with the model parameter signifying inter-vehicle interactions. While there is need for further analysis, the findings suggest that the two-fluid model parameters may have potential as surrogate measures for traffic safety on urban arterial streets.

  1. Color image quality in projection displays: a case study

    NASA Astrophysics Data System (ADS)

    Strand, Monica; Hardeberg, Jon Y.; Nussbaum, Peter

    2005-01-01

    Recently the use of projection displays has increased dramatically in different applications such as digital cinema, home theatre, and business and educational presentations. Even if the color image quality of these devices has improved significantly over the years, it is still a common situation for users of projection displays that the projected colors differ significantly from the intended ones. This study presented in this paper attempts to analyze the color image quality of a large set of projection display devices, particularly investigating the variations in color reproduction. As a case study, a set of 14 projectors (LCD and DLP technology) at Gjovik University College have been tested under four different conditions: dark and light room, with and without using an ICC-profile. To find out more about the importance of the illumination conditions in a room, and the degree of improvement when using an ICC-profile, the results from the measurements was processed and analyzed. Eye-One Beamer from GretagMacbeth was used to make the profiles. The color image quality was evaluated both visually and by color difference calculations. The results from the analysis indicated large visual and colorimetric differences between the projectors. Our DLP projectors have generally smaller color gamut than LCD projectors. The color gamuts of older projectors are significantly smaller than that of newer ones. The amount of ambient light reaching the screen is of great importance for the visual impression. If too much reflections and other ambient light reaches the screen, the projected image gets pale and has low contrast. When using a profile, the differences in colors between the projectors gets smaller and the colors appears more correct. For one device, the average ΔE*ab color difference when compared to a relative white reference was reduced from 22 to 11, for another from 13 to 6. Blue colors have the largest variations among the projection displays and makes them

  2. Image quality and high contrast improvements on VLT/NACO

    NASA Astrophysics Data System (ADS)

    Girard, Julien H. V.; O'Neal, Jared; Mawet, Dimitri; Kasper, Markus; Zins, Gérard; Neichel, Benoît; Kolb, Johann; Christiaens, Valentin; Tourneboeuf, Martin

    2012-07-01

    NACO is the famous and versatile diffraction limited NIR imager and spectrograph at the VLT with which ESO celebrated 10 years of Adaptive Optics. Since two years a substantial effort has been put in understanding and fixing issues that directly affect the image quality and the high contrast performances of the instrument. Experiments to compensate the non-common-path aberrations and recover the highest possible Strehl ratios have been carried out successfully and a plan is hereafter described to perform such measurements regularly. The drift associated to pupil tracking since 2007 was fixed in october 2011. NACO is therefore even more suited for high contrast imaging and can be used with coronagraphic masks in the image plane. Some contrast measurements are shown and discussed. The work accomplished on NACO will serve as reference for the next generation instruments on the VLT, especially the ones working at the diffraction limit and making use of angular differential imaging (i.e. SPHERE, VISIR, and possibly ERIS).

  3. Arterial blood flow characteristics in central retinal vein occlusion and effects of panretinal photocoagulation treatment: an investigation by colour Doppler imaging

    PubMed Central

    Avunduk, A. M.; Dinc, H.; Kapicioglu, Z.; Ugurlu, S.; Dayanir, V.; Korkmaz, E.

    1999-01-01

    AIMS—To determine whether an increase in vascular resistance in the central retinal and ophthalmic arterial circulations contributes to the development of central retinal vein occlusion (CRVO), or haemodynamic alterations in central retinal and ophthalmic arteries occur secondary to the vein occlusion as increased intravascular pressure is transferred through the capillary bed to the arterial side and the effect of panretinal photocoagulation treatment on these circulations in ischaemic cases.
METHODS—The ophthalmic and central retinal arteries of the affected and non-affected eyes of 20 patients with non-ischaemic CRVO, 13 patients with ischaemic CRVO, and 22 control subjects were investigated by colour Doppler imaging. Panretinal photocoagulation (PRP) treatment was applied to the eyes with ischaemic CRVO. Maximum and minimum blood flow velocities, and resistivity indexes were calculated in the affected and healthy eyes of patients and in the control eyes.
RESULTS—Average blood flow velocity in the central retinal and ophthalmic arteries of patients with non-ischaemic CRVO did not differ from their fellow eyes, but a significantly lower average blood flow velocity was found in the ophthalmic and central retinal arteries of the patients with ischaemic CRVO compared with their fellow eyes. Patients with ischaemic CRVO had significantly lower blood flow velocities in their ophthalmic and central retinal arteries than non-ischaemic cases that were further reduced following PRP treatment.
CONCLUSION—This study suggests that impaired arterial blood flow observed in patients with CRVO may be partly related to secondary changes in the retrobulbar arterial circulation as a result of enhanced arterial resistance following CRVO. These data also demonstrate that PRP treatment decreases retinal and ophthalmic blood flow velocities in patients with ischaemic CRVO.

 Keywords: central retinal vein occlusion; panretinal photocoagulation; arterial circulation

  4. Analysis of filtering techniques and image quality in pixel duplicated images

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; McLauchlan, Lifford

    2009-08-01

    When images undergo filtering operations, valuable information can be lost besides the intended noise or frequencies due to averaging of neighboring pixels. When the image is enlarged by duplicating pixels, such filtering effects can be reduced and more information retained, which could be critical when analyzing image content automatically. Analysis of retinal images could reveal many diseases at early stage as long as minor changes that depart from a normal retinal scan can be identified and enhanced. In this paper, typical filtering techniques are applied to an early stage diabetic retinopathy image which has undergone digital pixel duplication. The same techniques are applied to the original images for comparison. The effects of filtering are then demonstrated for both pixel duplicated and original images to show the information retention capability of pixel duplication. Image quality is computed based on published metrics. Our analysis shows that pixel duplication is effective in retaining information on smoothing operations such as mean filtering in the spatial domain, as well as lowpass and highpass filtering in the frequency domain, based on the filter window size. Blocking effects due to image compression and pixel duplication become apparent in frequency analysis.

  5. The role of modern imaging techniques in the diagnosis of malposition of the branch pulmonary arteries and possible association with microdeletion 22q11.2.

    PubMed

    Cuturilo, Goran; Drakulic, Danijela; Krstic, Aleksandar; Gradinac, Marija; Ilisic, Tamara; Parezanovic, Vojislav; Milivojevic, Milena; Stevanovic, Milena; Jovanovic, Ida

    2013-04-01

    Malposition of the branch pulmonary arteries is a rare malformation with two forms. In the typical form, pulmonary arteries cross each other as they proceed to their respective lungs. The “lesser form” is characterised by the left pulmonary artery ostium lying directly superior to the ostium of the right pulmonary artery, without crossing of the branch pulmonary arteries. Malposition of the branch pulmonary arteries is often associated with other congenital heart defects and extracardiac anomalies, as well as with 22q11.2 microdeletion. We report three infants with crossed pulmonary arteries and one adolescent with “lesser form” of the malformation. The results suggest that diagnosis of malposition of the branch pulmonary arteries could be challenging if based solely on echocardiography, whereas modern imaging technologies such as contrast computed tomography and magnetic resonance angiography provide reliable establishment of diagnosis. In addition, we performed the first molecular characterisation of the 22q11.2 region among patients with malposition of the branch pulmonary arteries and revealed a 3-megabase deletion in two out of four patients

  6. An investigation of flat panel equipment variables on image quality with a dedicated cardiac phantom

    NASA Astrophysics Data System (ADS)

    Dragusin, O.; Bosmans, H.; Pappas, C.; Desmet, W.

    2008-09-01

    Image quality (IQ) evaluation plays a key role in the process of optimization of new x-ray systems. Ideally, this process should be supported by real clinical images, but ethical issues and differences in anatomy and pathology of patients make it impossible. Phantom studies might overcome these issues. This paper presents the IQ evaluation of 30 cineangiographic films acquired with a cardiac flat panel system. The phantom used simulates the anatomy of the heart and allows the circulation of contrast agent boluses through coronary arteries. Variables investigated with influence on IQ and radiation dose are: tube potential, detector dose, added Copper filters, dynamic density optimization (DDO) and viewing angle. The IQ evaluation consisted of scoring 4 simulated calcified lesions located on different coronary artery segments in terms of degree of visualization. Eight cardiologists rated the lesions using a five-point scale ((1) lesion not visible to (5) very good visibility). Radiation doses associated to the angiograms are expressed in terms of incident air kerma (IAK) and effective dose that has been calculated with PCXMX software (STUK, Finland) from the exposure settings assuming a standard sized patient of 70 Kg. Mean IQ scores ranged from 1.68 to 4.88. The highest IQ scores were obtained for the angiograms acquired with tube potential 80 kVp, no added Cu filters, DDO 60%, RAO and LAO views and the highest entrance detector dose that has been used in the present study, namely 0.17 μGy/im. Radiation doses (IAK ~40 mGy and effective dose of 1 mSv) were estimated for angiograms acquired at 15 frames s-1, detector field-of-view 20 cm, and a length of 5 s. The following parameters improved the IQ factor significantly: a change in tube potential from 96 to 80 kVp, detector dose from 0.10 μGy/im to 0.17 μGy/im, the absence of Copper filtration. DDO variable which is a post-processing parameter should be carefully evaluated because it alters the quality of the

  7. An investigation of flat panel equipment variables on image quality with a dedicated cardiac phantom.

    PubMed

    Dragusin, O; Bosmans, H; Pappas, C; Desmet, W

    2008-09-21

    Image quality (IQ) evaluation plays a key role in the process of optimization of new x-ray systems. Ideally, this process should be supported by real clinical images, but ethical issues and differences in anatomy and pathology of patients make it impossible. Phantom studies might overcome these issues. This paper presents the IQ evaluation of 30 cineangiographic films acquired with a cardiac flat panel system. The phantom used simulates the anatomy of the heart and allows the circulation of contrast agent boluses through coronary arteries. Variables investigated with influence on IQ and radiation dose are: tube potential, detector dose, added Copper filters, dynamic density optimization (DDO) and viewing angle. The IQ evaluation consisted of scoring 4 simulated calcified lesions located on different coronary artery segments in terms of degree of visualization. Eight cardiologists rated the lesions using a five-point scale ((1) lesion not visible to (5) very good visibility). Radiation doses associated to the angiograms are expressed in terms of incident air kerma (IAK) and effective dose that has been calculated with PCXMX software (STUK, Finland) from the exposure settings assuming a standard sized patient of 70 Kg. Mean IQ scores ranged from 1.68 to 4.88. The highest IQ scores were obtained for the angiograms acquired with tube potential 80 kVp, no added Cu filters, DDO 60%, RAO and LAO views and the highest entrance detector dose that has been used in the present study, namely 0.17 microGy/im. Radiation doses (IAK approximately 40 mGy and effective dose of 1 mSv) were estimated for angiograms acquired at 15 frames s(-1), detector field-of-view 20 cm, and a length of 5 s. The following parameters improved the IQ factor significantly: a change in tube potential from 96 to 80 kVp, detector dose from 0.10 microGy/im to 0.17 microGy/im, the absence of Copper filtration. DDO variable which is a post-processing parameter should be carefully evaluated because it alters

  8. Image fusion quality assessment based on discrete cosine transform and human visual system

    NASA Astrophysics Data System (ADS)

    Dou, Jianfang; Li, Jianxun

    2012-09-01

    With the rapid development of image fusion technology, image fusion quality evaluation plays a very important guiding role in selecting or designing image fusion algorithms. Objective image quality assessment is an interesting research subject in the field of image quality assessment. The ideal objective evaluation method is consistent with human perceptual evaluation. A new fusion image quality assessment method according with human vision system and discrete cosine transform (DCT) is introduced. Firstly, using the Sobel operator to calculate to gradient images for the source images and fused image, the gradient images are divided into 8×8 blocks and calculating the DCT coefficients for each block, and then based on the characteristics of human visual system, calculates the luminance masking, contrast masking to form the perceptual error matrix between input images and fused images. Finally, weighs the perceptual error matrix using the structural similarity. Experiments demonstrate that the new assessment maintains better consistency with human subjective perception.

  9. Optimization of Image Quality and Dose in Digital Mammography.

    PubMed

    Fausto, Agnes M F; Lopes, M C; de Sousa, M C; Furquim, Tânia A C; Mol, Anderson W; Velasco, Fermin G

    2017-04-01

    Nowadays, the optimization in digital mammography is one of the most important challenges in diagnostic radiology. The new digital technology has introduced additional elements to be considered in this scenario. A major goal of mammography is related to the detection of structures on the order of micrometers (μm) and the need to distinguish the different types of tissues, with very close density values. The diagnosis in mammography faces the difficulty that the breast tissues and pathological findings have very close linear attenuation coefficients within the energy range used in mammography. The aim of this study was to develop a methodology for optimizing exposure parameters of digital mammography based on a new Figure of Merit: FOM ≡ (IQFinv)(2)/AGD, considering the image quality and dose. The study was conducted using the digital mammography Senographe DS/GE, and CDMAM and TORMAM phantoms. The characterization of clinical practice, carried out in the mammography system under study, was performed considering different breast thicknesses, the technical parameters of exposure, and processing options of images used by the equipment's automatic exposure system. The results showed a difference between the values of the optimized parameters and those ones chosen by the automatic system of the mammography unit, specifically for small breast. The optimized exposure parameters showed better results than those obtained by the automatic system of the mammography, for the image quality parameters and its impact on detection of breast structures when analyzed by radiologists.

  10. Systematic infrared image quality improvement using deep learning based techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Huaizhong; Casaseca-de-la-Higuera, Pablo; Luo, Chunbo; Wang, Qi; Kitchin, Matthew; Parmley, Andrew; Monge-Alvarez, Jesus

    2016-10-01

    Infrared thermography (IRT, or thermal video) uses thermographic cameras to detect and record radiation in the longwavelength infrared range of the electromagnetic spectrum. It allows sensing environments beyond the visual perception limitations, and thus has been widely used in many civilian and military applications. Even though current thermal cameras are able to provide high resolution and bit-depth images, there are significant challenges to be addressed in specific applications such as poor contrast, low target signature resolution, etc. This paper addresses quality improvement in IRT images for object recognition. A systematic approach based on image bias correction and deep learning is proposed to increase target signature resolution and optimise the baseline quality of inputs for object recognition. Our main objective is to maximise the useful information on the object to be detected even when the number of pixels on target is adversely small. The experimental results show that our approach can significantly improve target resolution and thus helps making object recognition more efficient in automatic target detection/recognition systems (ATD/R).

  11. Quantitative phase imaging for cell culture quality control.

    PubMed

    Kastl, Lena; Isbach, Michael; Dirksen, Dieter; Schnekenburger, Jürgen; Kemper, Björn

    2017-03-06

    The potential of quantitative phase imaging (QPI) with digital holographic microscopy (DHM) for quantification of cell culture quality was explored. Label-free QPI of detached single cells in suspension was performed by Michelson interferometer-based self-interference DHM. Two pancreatic tumor cell lines were chosen as cellular model and analyzed for refractive index, volume, and dry mass under varying culture conditions. Firstly, adequate cell numbers for reliable statistics were identified. Then, to characterize the performance and reproducibility of the method, we compared results from independently repeated measurements and quantified the cellular response to osmolality changes of the cell culture medium. Finally, it was demonstrated that the evaluation of QPI images allows the extraction of absolute cell parameters which are related to cell layer confluence states. In summary, the results show that QPI enables label-free imaging cytometry, which provides novel complementary integral biophysical data sets for sophisticated quantification of cell culture quality with minimized sample preparation. © 2017 International Society for Advancement of Cytometry.

  12. Multispectral fluorescence lifetime imaging system for intravascular diagnostics with ultrasound guidance: in vivo validation in swine arteries.

    PubMed

    Bec, Julien; Ma, Dinglong M; Yankelevich, Diego R; Liu, Jing; Ferrier, William T; Southard, Jeffrey; Marcu, Laura

    2014-05-01

    Fluorescence lifetime technique has demonstrated potential for analysis of atherosclerotic lesions and for complementing existing intravascular imaging modalities such as intravascular ultrasound (IVUS) in identifying lesions at high risk of rupture. This study presents a multimodal catheter system integrating a 40 MHz commercial IVUS and fluorescence lifetime imaging (FLIm) using fast helical motion scanning (400 rpm, 0.75 mm/s), able to acquire in vivo in pulsatile blood flow the autofluorescence emission of arterial vessels with high precision (5.08 ± 0.26 ns mean average lifetime over 13 scans). Co-registered FLIm and IVUS data allowed 3D visualization of both biochemical and morphological vessel properties. Current study supports the development of clinically compatible intravascular diagnostic system integrating FLIm and demonstrates, to our knowledge, the first in vivo intravascular application of a fluorescence lifetime imaging technique.

  13. [Assessment of generic and disease-specific health-related quality of life instruments in peripheral arterial disease].

    PubMed

    Knipfer, E; Reeps, C; Dolezal, C; Zimmermann, A; Pelisek, J; Behrens, J; Eckstein, H-H

    2008-05-01

    As chronic diseases are continuously increasing in our aging society, the description and improvement of quality of medical care needs critical examination of the multidimensional subject of "quality of life". Health-related quality of life is currently used as an outcome-criterion in modern medicine. As there is no generally accepted definition of quality of life, various components of the state of health and the patient's behaviour are recorded by questionnaires. The level of subjective well- being is determined by several dimensions such as physical constitution of the patient, state of mind, functional competency in everyday life and the form of interpersonal relationships. Based on these principles various instruments for measuring quality of life are developed. The assessment of the subjective quality of life reflects the increased acceptance of the patient's view. In addition to the common generic instruments such as SF-36, FLZ(M), MLDL, EQ-5D, WHOQOL-100, NHP, SIP, also disease-specific instruments e.g. for peripheral arterial disease are currently used (PAVK-86, CLAU-S, VASCUQOL, SIP(IC), and WIQ). At the moment SF-36 is the best established questionnaire as generic QOL instrument. FLZ(M) takes the individual weighting of items into account, by correlating the importance and the contentment for life. For evaluating the effectivity of medical outcome and the success of therapeutic treatment for patients with vascular disease, the VASCUQOL instrument seems to be the best choice. Simultaneous application of a generic instrument and disease-specific questionnaires displays as well the subjective quality of health as the individual impairment of the patient in a good way. As a consequence using both instruments is superior to the exclusive use of a generic questionnaire.

  14. User-guided automated segmentation of time-series ultrasound images for measuring vasoreactivity of the brachial artery induced by flow mediation

    NASA Astrophysics Data System (ADS)

    Sehgal, Chandra M.; Kao, Yen H.; Cary, Ted W.; Arger, Peter H.; Mohler, Emile R.

    2005-04-01

    Endothelial dysfunction in response to vasoactive stimuli is closely associated with diseases such as atherosclerosis, hypertension and congestive heart failure. The current method of using ultrasound to image the brachial artery along the longitudinal axis is insensitive for measuring the small vasodilatation that occurs in response to flow mediation. The goal of this study is to overcome this limitation by using cross-sectional imaging of the brachial artery in conjunction with the User-Guided Automated Boundary Detection (UGABD) algorithm for extracting arterial boundaries. High-resolution ultrasound imaging was performed on rigid plastic tubing, on elastic rubber tubing phantoms with steady and pulsatile flow, and on the brachial artery of a healthy volunteer undergoing reactive hyperemia. The area of cross section of time-series images was analyzed by UGABD by propagating the boundary from one frame to the next. The UGABD results were compared by linear correlation with those obtained by manual tracing. UGABD measured the cross-sectional area of the phantom tubing to within 5% of the true area. The algorithm correctly detected pulsatile vasomotion in phantoms and in the brachial artery. A comparison of area measurements made using UGABD with those made by manual tracings yielded a correlation of 0.9 and 0.8 for phantoms and arteries, respectively. The peak vasodilatation due to reactive hyperemia was two orders of magnitude greater in pixel count than that measured by longitudinal imaging. Cross-sectional imaging is more sensitive than longitudinal imaging for measuring flow-mediated dilatation of brachial artery, and thus may be more suitable for evaluating endothelial dysfunction.

  15. Image quality of a cone beam O-arm 3D imaging system

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Weir, Victor; Lin, Jingying; Hsiung, Hsiang; Ritenour, E. Russell

    2009-02-01

    The O-arm is a cone beam imaging system designed primarily to support orthopedic surgery and is also used for image-guided and vascular surgery. Using a gantry that can be opened or closed, the O-arm can function as a 2-dimensional (2D) fluoroscopy device or collect 3-dimensional (3D) volumetric imaging data like a CT system. Clinical applications of the O-arm in spine surgical procedures, assessment of pedicle screw position, and kyphoplasty procedures show that the O-arm 3D mode provides enhanced imaging information compared to radiographs or fluoroscopy alone. In this study, the image quality of an O-arm system was quantitatively evaluated. A 20 cm diameter CATPHAN 424 phantom was scanned using the pre-programmed head protocols: small/medium (120 kVp, 100 mAs), large (120 kVp, 128 mAs), and extra-large (120 kVp, 160 mAs) in 3D mode. High resolution reconstruction mode (512×512×0.83 mm) was used to reconstruct images for the analysis of low and high contrast resolution, and noise power spectrum. MTF was measured using the point spread function. The results show that the O-arm image is uniform but with a noise pattern which cannot be removed by simply increasing the mAs. The high contrast resolution of the O-arm system was approximately 9 lp/cm. The system has a 10% MTF at 0.45 mm. The low-contrast resolution cannot be decided due to the noise pattern. For surgery where locations of a structure are emphasized over a survey of all image details, the image quality of the O-arm is well accepted clinically.

  16. Assessment of image quality in x-ray radiography imaging using a small plasma focus device

    NASA Astrophysics Data System (ADS)

    Kanani, A.; Shirani, B.; Jabbari, I.; Mokhtari, J.

    2014-08-01

    This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm.

  17. 256-slice CT coronary angiography in atrial fibrillation: The impact of mean heart rate and heart rate variability on image quality

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Kuang; Hsu, Shih-Ming; Mok, Greta S. P.; Law, Wei-Yip; Lu, Kun-Mu; Yang, Ching-Ching; Wu, Tung-Hsin

    2011-08-01

    The aim of this study was to evaluate the image quality of 256-MDCT in atrial fibrillation and to compare the findings with those among patients in sinus rhythm.MaterialsAll reconstructed images were evaluated by two independent experienced readers blinded to patient information, heart rate, and ECG results to assess the diagnostic quality of images of the coronary artery segments using axial images, multi-planar reformations, maximum intensity projections, and volume rendering technique.ResultsNo statistical significance was detected in terms of the overall image quality between patients in sinus rhythm and with atrial fibrillation. Pearson's correlation analysis showed no significant association between image quality and mean heart rate no matter for patients in sinus rhythm or with atrial fibrillation. Similarly, there was no correlation between image quality and heart rate variability for either patients in sinus rhythm or with atrial fibrillation. Our results showed that the optimal reconstruction window depends on patient's HR, and the pattern for patients in atrial fibrillation is similar to that obtained from non-atrial fibrillation patients.ConclusionThis study shows the potential of using 256-MDCT coronary angiography in patients with atrial fibrillation. Our results suggest that when appropriate reconstruction timing window is applied, patients with atrial fibrillation do not have to be excluded from MDCT coronary angiographic examinations.

  18. Automated quality assessment of autonomously acquired microscopic images of fluorescently stained bacteria.

    PubMed

    Zeder, M; Kohler, E; Pernthaler, J

    2010-01-01

    Quality assessment of autonomously acquired microscopic images is an important issue in high-throughput imaging systems. For example, the presence of low quality images (>or=10%) in a dataset significantly influences the counting precision of fluorescently stained bacterial cells. We present an approach based on an artificial neural network (ANN) to assess the quality of such images. Spatially invariant estimators were extracted as ANN input data from subdivided images by low level image processing. Different ANN designs were compared and >400 ANNs were trained and tested on a set of 25,000 manually classified images. The optimal ANN featured a correct identification rate of 94% (3% false positives, 3% false negatives) and could process about 10 images per second. We compared its performance with the image quality assessment by different humans and discuss the difficulties in assigning images to the correct quality class. The computer program and the documented source code (VB.NET) are provided under General Public Licence.

  19. Underwater image quality enhancement through Rayleigh-stretching and averaging image planes

    NASA Astrophysics Data System (ADS)

    Ghani, Ahmad Shahrizan Abdul; Isa, Nor Ashidi Mat

    2014-12-01

    Visibility in underwater images is usually poor because of the attenuation of light in the water that causes low contrast and color variation. In this paper, a new approach for underwater image quality improvement is presented. The proposed method aims to improve underwater image contrast, increase image details, and reduce noise by applying a new method of using contrast stretching to produce two different images with different contrasts. The proposed method integrates the modification of the image histogram in two main color models, RGB and HSV. The histograms of the color channel in the RGB color model are modified and remapped to follow the Rayleigh distribution within certain ranges. The image is then converted to the HSV color model, and the S and V components are modified within a certain limit. Qualitative and quantitative analyses indicate that the proposed method outperforms other state-of- the-art methods in terms of contrast, details, and noise reduction. The image color also shows much improvement.

  20. Noninvasive in vivo magnetic resonance imaging of injury-induced neointima formation in the carotid artery of the apolipoprotein-E null mouse.

    PubMed

    Manka, D R; Gilson, W; Sarembock, I; Ley, K; Berr, S S

    2000-11-01

    Mice deficient in apolipoprotein-E (apoE) experience severe hypercholesterolemia, are prone to atherosclerosis, and recently have emerged as a powerful tool in the study of plaque formation. In this study, we developed magnetic resonance (MR) imaging methods to detect the progression of atherosclerosis noninvasively in a mouse model of arterial injury. Four 14-week-old apoE-deficient mice were imaged 5 weeks after beginning an atherogenic Western diet and 4 weeks after wire denudation injury of the left common carotid artery (LCCA). Information from several images was combined into high-information content images using methods previously developed. The image resolution was 47 x 47 x 750 microm(3). We acquired T1-, T2-, and proton density (PD)-weighted images (TR/TE 650/14, 2000/60, and 2000/14 msec, respectively). Each 8-bit image was placed in a separate color channel to produce a 24-bit color image (red = T1, green = PD, and blue = T2). The composite image created contrast between different tissue types that was superior to that of any single image and revealed significant luminal narrowing of the LCCA, but not the uninjured RCCA. MR images were compared with corresponding histopathology cross sections and luminal area measurements from each method correlated(r2= 0.61). Atherosclerotic luminal narrowing was successfully detected through MR imaging in a mouse model of arterial injury that is small, reproduces quickly, and lends itself to genetic analysis and manipulation.

  1. Automatic detection of the intima-media thickness in ultrasound images of the common carotid artery using neural networks.

    PubMed

    Menchón-Lara, Rosa-María; Bastida-Jumilla, María-Consuelo; Morales-Sánchez, Juan; Sancho-Gómez, José-Luis

    2014-02-01

    Atherosclerosis is the leading underlying pathologic process that results in cardiovascular diseases, which represents the main cause of death and disability in the world. The atherosclerotic process is a complex degenerative condition mainly affecting the medium- and large-size arteries, which begins in childhood and may remain unnoticed during decades. The intima-media thickness (IMT) of the common carotid artery (CCA) has emerged as one of the most powerful tool for the evaluation of preclinical atherosclerosis. IMT is measured by means of B-mode ultrasound images, which is a non-invasive and relatively low-cost technique. This paper proposes an effective image segmentation method for the IMT measurement in an automatic way. With this purpose, segmentation is posed as a pattern recognition problem, and a combination of artificial neural networks has been trained to solve this task. In particular, multi-layer perceptrons trained under the scaled conjugate gradient algorithm have been used. The suggested approach is tested on a set of 60 longitudinal ultrasound images of the CCA by comparing the automatic segmentation with four manual tracings. Moreover, the intra- and inter-observer errors have also been assessed. Despite of the simplicity of our approach, several quantitative statistical evaluations have shown its accuracy and robustness.

  2. Three dimensional level set based semiautomatic segmentation of atherosclerotic carotid artery wall volume using 3D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Murad; AlMuhanna, Khalid; Zhao, Limin; Lal, Brajesh K.; Sikdar, Siddhartha

    2014-03-01

    3D segmentation of carotid plaque from ultrasound (US) images is challenging due to image artifacts and poor boundary definition. Semiautomatic segmentation algorithms for calculating vessel wall volume (VWV) have been proposed for the common carotid artery (CCA) but they have not been applied on plaques in the internal carotid artery (ICA). In this work, we describe a 3D segmentation algorithm that is robust to shadowing and missing boundaries. Our algorithm uses distance regularized level set method with edge and region based energy to segment the adventitial wall boundary (AWB) and lumen-intima boundary (LIB) of plaques in the CCA, ICA and external carotid artery (ECA). The algorithm is initialized by manually placing points on the boundary of a subset of transverse slices with an interslice distance of 4mm. We propose a novel user defined stopping surface based energy to prevent leaking of evolving surface across poorly defined boundaries. Validation was performed against manual segmentation using 3D US volumes acquired from five asymptomatic patients with carotid stenosis using a linear 4D probe. A pseudo gold-standard boundary was formed from manual segmentation by three observers. The Dice similarity coefficient (DSC), Hausdor distance (HD) and modified HD (MHD) were used to compare the algorithm results against the pseudo gold-standard on 1205 cross sectional slices of 5 3D US image sets. The algorithm showed good agreement with the pseudo gold standard boundary with mean DSC of 93.3% (AWB) and 89.82% (LIB); mean MHD of 0.34 mm (AWB) and 0.24 mm (LIB); mean HD of 1.27 mm (AWB) and 0.72 mm (LIB). The proposed 3D semiautomatic segmentation is the first step towards full characterization of 3D plaque progression and longitudinal monitoring.

  3. Image quality in CT: From physical measurements to model observers.

    PubMed

    Verdun, F R; Racine, D; Ott, J G; Tapiovaara, M J; Toroi, P; Bochud, F O; Veldkamp, W J H; Schegerer, A; Bouwman, R W; Giron, I Hernandez; Marshall, N W; Edyvean, S

    2015-12-01

    Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment.

  4. Effectiveness of Using Dual-source CT and the Upshot it creates on Both Heart Rate and Image Quality

    PubMed Central

    Selçuk, Tuba; Otçu, Hafize; Yüceler, Zeyneb; Bilgili, Çiğdem; Bulakçı, Mesut; Savaş, Yıldıray; Çelik, Ömer

    2016-01-01

    Background: Early detection of coronary artery disease (CAD) is important because of the high morbidity and mortality rates. As invasive coronary angiography (ICA) is an invasive procedure, an alternative diagnostic method; coronary computed tomography angiography (CTA), has become more widely used by the improvements in detec