Sample records for artery vascular smooth

  1. Notch Signaling in Vascular Smooth Muscle Cells

    PubMed Central

    Baeten, J.T.; Lilly, B.

    2018-01-01

    The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease. PMID:28212801

  2. Notch3 is required for arterial identity and maturation of vascular smooth muscle cells

    PubMed Central

    Domenga, Valérie; Fardoux, Peggy; Lacombe, Pierre; Monet, Marie; Maciazek, Jacqueline; Krebs, Luke T.; Klonjkowski, Bernard; Berrou, Eliane; Mericskay, Matthias; Li, Zhen; Tournier-Lasserve, Elisabeth; Gridley, Thomas; Joutel, Anne

    2004-01-01

    Formation of a fully functional artery proceeds through a multistep process. Here we show that Notch3 is required to generate functional arteries in mice by regulating arterial differentiation and maturation of vascular smooth muscle cells (vSMC). In adult Notch3–/– mice distal arteries exhibit structural defects and arterial myogenic responses are defective. The postnatal maturation stage of vSMC is deficient in Notch3–/– mice. We further show that Notch3 is required for arterial specification of vSMC but not of endothelial cells. Our data reveal Notch3 to be the first cell-autonomous regulator of arterial differentiation and maturation of vSMC. PMID:15545631

  3. Sivelestat relaxes vascular smooth muscle contraction in human gastric arteries.

    PubMed

    Amemori, Hiroko; Maeda, Yoshinori; Torikai, Arisu; Nakashima, Mikio

    2011-12-01

    Sivelestat sodium hydrate (sivelestat) is a novel synthetic drug and specific inhibitor of neutrophil elastase that has been approved in Japan as a treatment for acute lung injury associated with systemic inflammatory response syndrome. It is important to determine how sivelestat affects hemodynamics and the regulatory mechanisms of vascular smooth muscle (VSM). We recently found that sivelestat relaxes porcine coronary artery VSM via selective inhibition of Ca(2+) sensitization induced by a receptor agonist without affecting the normal Ca(2+)-induced contraction. Although sivelestat relaxes porcine artery, its effects on human artery are unknown; therefore, the purpose of the present study was to assess the effects of sivelestat on human artery. In the present study, sivelestat induced concentration-dependent (1 × 10(-6) to 3 × 10(-4) M) vasorelaxation in U46619 (1 nM) and sphingosylphosphorylcholine (SPC) (30 mM)-precontracted human gastric artery with or without endothelium, but sivelestat did not induce vasorelaxation in conditions of high K(+) (40 mM) depolarization. Sivelestat inhibited VSM contraction by an agonist and SPC, and it did not affect Ca(2+)-induced normal physiologic contraction.

  4. Mitochondrial motility and vascular smooth muscle proliferation.

    PubMed

    Chalmers, Susan; Saunter, Christopher; Wilson, Calum; Coats, Paul; Girkin, John M; McCarron, John G

    2012-12-01

    Mitochondria are widely described as being highly dynamic and adaptable organelles, and their movement is thought to be vital for cell function. Yet, in various native cells, including those of heart and smooth muscle, mitochondria are stationary and rigidly structured. The significance of the differences in mitochondrial behavior to the physiological function of cells is unclear and was studied in single myocytes and intact resistance-sized cerebral arteries. We hypothesized that mitochondrial dynamics is controlled by the proliferative status of the cells. High-speed fluorescence imaging of mitochondria in live vascular smooth muscle cells shows that the organelle undergoes significant reorganization as cells become proliferative. In nonproliferative cells, mitochondria are individual (≈ 2 μm by 0.5 μm), stationary, randomly dispersed, fixed structures. However, on entering the proliferative state, mitochondria take on a more diverse architecture and become small spheres, short rod-shaped structures, long filamentous entities, and networks. When cells proliferate, mitochondria also continuously move and change shape. In the intact pressurized resistance artery, mitochondria are largely immobile structures, except in a small number of cells in which motility occurred. When proliferation of smooth muscle was encouraged in the intact resistance artery, in organ culture, the majority of mitochondria became motile and the majority of smooth muscle cells contained moving mitochondria. Significantly, restriction of mitochondrial motility using the fission blocker mitochondrial division inhibitor prevented vascular smooth muscle proliferation in both single cells and the intact resistance artery. These results show that mitochondria are adaptable and exist in intact tissue as both stationary and highly dynamic entities. This mitochondrial plasticity is an essential mechanism for the development of smooth muscle proliferation and therefore presents a novel therapeutic

  5. Endoplasmic Reticulum Stress in Arterial Smooth Muscle Cells: A Novel Regulator of Vascular Disease

    PubMed Central

    Furmanik, Malgorzata; Shanahan, Catherine M.

    2017-01-01

    Cardiovascular disease continues to be the leading cause of death in industrialised societies. The idea that the arterial smooth muscle cell (ASMC) plays a key role in regulating many vascular pathologies has been gaining importance, as has the realisation that not enough is known about the pathological cellular mechanisms regulating ASMC function in vascular remodelling. In the past decade endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) have been recognised as a stress response underlying many physiological and pathological processes in various vascular cell types. Here we summarise what is known about how ER stress signalling regulates phenotypic switching, trans/dedifferentiation and apoptosis of ASMCs and contributes to atherosclerosis, hypertension, aneurysms and vascular calcification.

  6. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles

    PubMed Central

    Tykocki, Nathan R.; Boerman, Erika M.; Jackson, William F.

    2017-01-01

    Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body’s tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. PMID:28333380

  7. NMDA-Type Glutamate Receptor Activation Promotes Vascular Remodeling and Pulmonary Arterial Hypertension.

    PubMed

    Dumas, Sébastien J; Bru-Mercier, Gilles; Courboulin, Audrey; Quatredeniers, Marceau; Rücker-Martin, Catherine; Antigny, Fabrice; Nakhleh, Morad K; Ranchoux, Benoit; Gouadon, Elodie; Vinhas, Maria-Candida; Vocelle, Matthieu; Raymond, Nicolas; Dorfmüller, Peter; Fadel, Elie; Perros, Frédéric; Humbert, Marc; Cohen-Kaminsky, Sylvia

    2018-05-29

    Excessive proliferation and apoptosis resistance in pulmonary vascular cells underlie vascular remodeling in pulmonary arterial hypertension (PAH). Specific treatments for PAH exist, mostly targeting endothelial dysfunction, but high pulmonary arterial pressure still causes heart failure and death. Pulmonary vascular remodeling may be driven by metabolic reprogramming of vascular cells to increase glutaminolysis and glutamate production. The N -methyl-d-aspartate receptor (NMDAR), a major neuronal glutamate receptor, is also expressed on vascular cells, but its role in PAH is unknown. We assessed the status of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and controls through mass spectrometry imaging, Western blotting, and immunohistochemistry. We measured the glutamate release from cultured pulmonary vascular cells using enzymatic assays and analyzed NMDAR regulation/phosphorylation through Western blot experiments. The effect of NMDAR blockade on human pulmonary arterial smooth muscle cell proliferation was determined using a BrdU incorporation assay. We assessed the role of NMDARs in vascular remodeling associated to pulmonary hypertension, in both smooth muscle-specific NMDAR knockout mice exposed to chronic hypoxia and the monocrotaline rat model of pulmonary hypertension using NMDAR blockers. We report glutamate accumulation, upregulation of the NMDAR, and NMDAR engagement reflected by increases in GluN1-subunit phosphorylation in the pulmonary arteries of human patients with PAH. K v channel inhibition and type A-selective endothelin receptor activation amplified calcium-dependent glutamate release from human pulmonary arterial smooth muscle cell, and type A-selective endothelin receptor and platelet-derived growth factor receptor activation led to NMDAR engagement, highlighting crosstalk between the glutamate-NMDAR axis and major PAH-associated pathways. The platelet-derived growth factor-BB-induced proliferation of human

  8. Assays for in vitro monitoring of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cell migration.

    PubMed

    Goncharova, Elena A; Goncharov, Dmitry A; Krymskaya, Vera P

    2006-01-01

    Migration of human pulmonary vascular smooth muscle (VSM) cells contributes to vascular remodeling in pulmonary arterial hypertension and atherosclerosis. Evidence also indicates that, in part, migration of airway smooth muscle (ASM) cells may contribute to airway remodeling associated with asthma. Here we describe migration of VSM and ASM cells in vitro using Transwell or Boyden chamber assays. Because dissecting signaling mechanisms regulating cell migration requires molecular approaches, our protocol also describes how to assess migration of transfected VSM and ASM cells. Transwell or Boyden chamber assays can be completed in approximately 8 h and include plating of serum-deprived VSM or ASM cell suspension on membrane precoated with collagen, migration of cells toward chemotactic gradient and visual (Transwell) or digital (Boyden chamber) analysis of membrane. Although the Transwell assay is easy, the Boyden chamber assay requires hands-on experience; however, both assays are reliable cell-based approaches providing valuable information on how chemotactic and inflammatory factors modulate VSM and ASM migration.

  9. D-series resolvin attenuates vascular smooth muscle cell activation and neointimal hyperplasia following vascular injury

    PubMed Central

    Miyahara, Takuya; Runge, Sara; Chatterjee, Anuran; Chen, Mian; Mottola, Giorgio; Fitzgerald, Jonathan M.; Serhan, Charles N.; Conte, Michael S.

    2013-01-01

    Recent evidence suggests that specialized lipid mediators derived from polyunsaturated fatty acids control resolution of inflammation, but little is known about resolution pathways in vascular injury. We sought to determine the actions of D-series resolvin (RvD) on vascular smooth muscle cell (VSMC) phenotype and vascular injury. Human VSMCs were treated with RvD1 and RvD2, and phenotype was assessed by proliferation, migration, monocyte adhesion, superoxide production, and gene expression assays. A rabbit model of arterial angioplasty with local delivery of RvD2 (10 nM vs. vehicle control) was employed to examine effects on vascular injury in vivo. Local generation of proresolving lipid mediators (LC-MS/MS) and expression of RvD receptors in the vessel wall were assessed. RvD1 and RvD2 produced dose-dependent inhibition of VSMC proliferation, migration, monocyte adhesion, superoxide production, and proinflammatory gene expression (IC50≈0.1–1 nM). In balloon-injured rabbit arteries, cell proliferation (51%) and leukocyte recruitment (41%) were reduced at 3 d, and neointimal hyperplasia was attenuated (29%) at 28 d by RvD2. We demonstrate endogenous biosynthesis of proresolving lipid mediators and expression of receptors for RvD1 in the artery wall. RvDs broadly reduce VSMC responses and modulate vascular injury, suggesting that local activation of resolution mechanisms expedites vascular homeostasis.—Miyahara, T., Runge, S., Chatterjee, A., Chen, M., Mottola, G., Fitzgerald, J. M., Serhan, C. N., Conte, M. S. D-series resolvin attenuates vascular smooth muscle cell activation and neointimal hyperplasia following vascular injury. PMID:23407709

  10. Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells

    PubMed Central

    Bradley, Karri K; Jaggar, Jonathan H; Bonev, Adrian D; Heppner, Thomas J; Flynn, Elaine RM; Nelson, Mark T; Horowitz, Burton

    1999-01-01

    The molecular nature of the strong inward rectifier K+ channel in vascular smooth muscle was explored by using isolated cell RT-PCR, cDNA cloning and expression techniques.RT-PCR of RNA from single smooth muscle cells of rat cerebral (basilar), coronary and mesenteric arteries revealed transcripts for Kir2.1. Transcripts for Kir2.2 and Kir2.3 were not found.Quantitative PCR analysis revealed significant differences in transcript levels of Kir2.1 between the different vascular preparations (n = 3; P < 0.05). A two-fold difference was detected between Kir2.1 mRNA and β-actin mRNA in coronary arteries when compared with relative levels measured in mesenteric and basilar preparations.Kir2.1 was cloned from rat mesenteric vascular smooth muscle cells and expressed in Xenopus oocytes. Currents were strongly inwardly rectifying and selective for K+.The effect of extracellular Ba2+, Ca2+, Mg2+ and Cs2+ ions on cloned Kir2.1 channels expressed in Xenopus oocytes was examined. Ba2+ and Cs+ block were steeply voltage dependent, whereas block by external Ca2+ and Mg2+ exhibited little voltage dependence. The apparent half-block constants and voltage dependences for Ba2+, Cs+, Ca2+ and Mg2+ were very similar for inward rectifier K+ currents from native cells and cloned Kir2.1 channels expressed in oocytes.Molecular studies demonstrate that Kir2.1 is the only member of the Kir2 channel subfamily present in vascular arterial smooth muscle cells. Expression of cloned Kir2.1 in Xenopus oocytes resulted in inward rectifier K+ currents that strongly resemble those that are observed in native vascular arterial smooth muscle cells. We conclude that Kir2.1 encodes for inward rectifier K+ channels in arterial smooth muscle. PMID:10066894

  11. Endothelial and Smooth Muscle Cell Ion Channels in Pulmonary Vasoconstriction and Vascular Remodeling

    PubMed Central

    Makino, Ayako; Firth, Amy L.; Yuan, Jason X.-J.

    2017-01-01

    The pulmonary circulation is a low resistance and low pressure system. Sustained pulmonary vasoconstriction and excessive vascular remodeling often occur under pathophysiological conditions such as in patients with pulmonary hypertension. Pulmonary vasoconstriction is a consequence of smooth muscle contraction. Many factors released from the endothelium contribute to regulating pulmonary vascular tone, while the extracellular matrix in the adventitia is the major determinant of vascular wall compliance. Pulmonary vascular remodeling is characterized by adventitial and medial hypertrophy due to fibroblast and smooth muscle cell proliferation, neointimal proliferation, intimal, and plexiform lesions that obliterate the lumen, muscularization of precapillary arterioles, and in situ thrombosis. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction, while increased release of mitogenic factors, upregulation (or downregulation) of ion channels and transporters, and abnormalities in intracellular signaling cascades are key to the remodeling of the pulmonary vasculature. Changes in the expression, function, and regulation of ion channels in PASMC and pulmonary arterial endothelial cells play an important role in the regulation of vascular tone and development of vascular remodeling. This article will focus on describing the ion channels and transporters that are involved in the regulation of pulmonary vascular function and structure and illustrating the potential pathogenic role of ion channels and transporters in the development of pulmonary vascular disease. PMID:23733654

  12. Arterial ageing: from endothelial dysfunction to vascular calcification.

    PubMed

    Tesauro, M; Mauriello, A; Rovella, V; Annicchiarico-Petruzzelli, M; Cardillo, C; Melino, G; Di Daniele, N

    2017-05-01

    Complex structural and functional changes occur in the arterial system with advancing age. The aged artery is characterized by changes in microRNA expression patterns, autophagy, smooth muscle cell migration and proliferation, and arterial calcification with progressively increased mechanical vessel rigidity and stiffness. With age the vascular smooth muscle cells modify their phenotype from contractile to 'synthetic' determining the development of intimal thickening as early as the second decade of life as an adaptive response to forces acting on the arterial wall. The increased permeability observed in intimal thickening could represent the substrate on which low-level atherosclerotic stimuli can promote the development of advanced atherosclerotic lesions. In elderly patients the atherosclerotic plaques tend to be larger with increased vascular stenosis. In these plaques there is a progressive accumulation of both lipids and collagen and a decrease of inflammation. Similarly the plaques from elderly patients show more calcification as compared with those from younger patients. The coronary artery calcium score is a well-established marker of adverse cardiovascular outcomes. The presence of diffuse calcification in a severely stenotic segment probably induces changes in mechanical properties and shear stress of the arterial wall favouring the rupture of a vulnerable lesion in a less stenotic adjacent segment. Oxidative stress and inflammation appear to be the two primary pathological mechanisms of ageing-related endothelial dysfunction even in the absence of clinical disease. Arterial ageing is no longer considered an inexorable process. Only a better understanding of the link between ageing and vascular dysfunction can lead to significant advances in both preventative and therapeutic treatments with the aim that in the future vascular ageing may be halted or even reversed. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  13. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization

    PubMed Central

    Hixon, Mary L.; Muro-Cacho, Carlos; Wagner, Mark W.; Obejero-Paz, Carlos; Millie, Elise; Fujio, Yasushi; Kureishi, Yasuko; Hassold, Terry; Walsh, Kenneth; Gualberto, Antonio

    2000-01-01

    Vascular smooth muscle cells (VSMCs) at capacitance arteries of hypertensive individuals and animals undergo marked age- and blood pressure–dependent polyploidization and hypertrophy. We show here that VSMCs at capacitance arteries of rat models of hypertension display high levels of Akt1/PKB protein and activity. Gene transfer of Akt1 to VSMCs isolated from a normotensive rat strain was sufficient to abrogate the activity of the mitotic spindle cell–cycle checkpoint, promoting polyploidization and hypertrophy. Furthermore, the hypertrophic agent angiotensin II induced VSMC polyploidization in an Akt1-dependent manner. These results demonstrate that Akt1 regulates ploidy levels in VSMCs and contributes to vascular smooth muscle polyploidization and hypertrophy during hypertension. PMID:11032861

  14. [Vascular Calcification - Pathological Mechanism and Clinical Application - . Role of vascular smooth muscle cells in vascular calcification].

    PubMed

    Kurabayashi, Masahiko

    2015-05-01

    Vascular calcification is commonly seen with aging, chronic kidney disese (CKD), diabetes, and atherosclerosis, and is closely associated with cardiovascular morbidity and mortality. Vascular calcification has long been regarded as the final stage of degeneration and necrosis of arterial wall and a passive, unregulated process. However, it is now known to be an active and tightly regulated process involved with phenotypic transition of vascular smooth muscle cells (VSMC) that resembles bone mineralization. Briefly, calcium deposits of atherosclerotic plaque consist of hydroxyapatite and may appear identical to fully formed lamellar bone. By using a genetic fate mapping strategy, VSMC of the vascular media give rise to the majority of the osteochondrogenic precursor- and chondrocyte-like cells observed in the calcified arterial media of MGP (- / -) mice. Osteogenic differentiation of VSMC is characterized by the expression of bone-related molecules including bone morphogenetic protein (BMP) -2, Msx2 and osteopontin, which are produced by osteoblasts and chondrocytes. Our recent findings are that (i) Runx2 and Notch1 induce osteogenic differentiation, and (ii) advanced glycation end-product (AGE) /receptor for AGE (RAGE) and palmitic acid promote osteogenic differentiation of VSMC. To understand of the molecular mechanisms of vascular calcification is now under intensive research area.

  15. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fu; Chambon, Pierre; Tellides, George

    Highlights: • TGF-β signaling in SMC contributes to the flow-induced vascular remodeling. • Disruption of TGF-β signaling in SMC can prevent this process. • Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our studymore » was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.« less

  16. PPARδ agonist GW501516 inhibits PDGF-stimulated pulmonary arterial smooth muscle cell function related to pathological vascular remodeling.

    PubMed

    Liu, Guangjie; Li, Xuan; Li, Yan; Tang, Xin; Xu, Jie; Li, Ran; Hao, Peng; Sun, Yongchang

    2013-01-01

    Pulmonary arterial hypertension (PAH) is a severe and progressive disease, a key feature of which is pulmonary vascular remodeling. Growth factors, cytokines, and lipid mediators are involved in this remodeling process. Recent reports suggest that the peroxisome proliferator-activated receptors (PPARs) play important roles in the regulation of cell growth and differentiation as well as tissue wounding and repair. In this study, we examined the role of PPAR δ in the regulation of proliferation, migration, collagen synthesis, and chemokine production in human pulmonary arterial smooth muscle cells (HPASMCs). The data showed that PPAR δ was the most abundant isoform in HPASMCs. PPAR δ was upregulated in HPASMCs treated with PDGF, which is the major mediator in pulmonary vascular remodeling. Activation of PPAR δ by GW501516, a specific PPAR δ ligand, significantly inhibited PDGF-induced proliferation in HPASMCs. The inhibitory effect of GW501516 on HPASMCs was associated with decreased expression of cyclin D1, cyclin D3, CDK2, and CDK4 as well as increased expression of the cell cycle inhibitory genes G0S2 and P27(kip1). Pretreatment of HPASMCs with GW501516 significantly inhibited PDGF-induced cell migration and collagen synthesis. GW501516 also significantly attenuated TNF-mediated expression of MCP-1. These results suggest that PPAR δ may be a potential therapeutic target against the progression of vascular remodeling in PAH.

  17. PPARδ Agonist GW501516 Inhibits PDGF-Stimulated Pulmonary Arterial Smooth Muscle Cell Function Related to Pathological Vascular Remodeling

    PubMed Central

    Liu, Guangjie; Li, Xuan; Li, Yan; Tang, Xin; Xu, Jie; Li, Ran; Hao, Peng; Sun, Yongchang

    2013-01-01

    Pulmonary arterial hypertension (PAH) is a severe and progressive disease, a key feature of which is pulmonary vascular remodeling. Growth factors, cytokines, and lipid mediators are involved in this remodeling process. Recent reports suggest that the peroxisome proliferator-activated receptors (PPARs) play important roles in the regulation of cell growth and differentiation as well as tissue wounding and repair. In this study, we examined the role of PPARδ in the regulation of proliferation, migration, collagen synthesis, and chemokine production in human pulmonary arterial smooth muscle cells (HPASMCs). The data showed that PPARδ was the most abundant isoform in HPASMCs. PPARδ was upregulated in HPASMCs treated with PDGF, which is the major mediator in pulmonary vascular remodeling. Activation of PPARδ by GW501516, a specific PPARδ ligand, significantly inhibited PDGF-induced proliferation in HPASMCs. The inhibitory effect of GW501516 on HPASMCs was associated with decreased expression of cyclin D1, cyclin D3, CDK2, and CDK4 as well as increased expression of the cell cycle inhibitory genes G0S2 and P27kip1. Pretreatment of HPASMCs with GW501516 significantly inhibited PDGF-induced cell migration and collagen synthesis. GW501516 also significantly attenuated TNF-mediated expression of MCP-1. These results suggest that PPARδ may be a potential therapeutic target against the progression of vascular remodeling in PAH. PMID:23607100

  18. Piezo1 in Smooth Muscle Cells Is Involved in Hypertension-Dependent Arterial Remodeling.

    PubMed

    Retailleau, Kevin; Duprat, Fabrice; Arhatte, Malika; Ranade, Sanjeev Sumant; Peyronnet, Rémi; Martins, Joana Raquel; Jodar, Martine; Moro, Céline; Offermanns, Stefan; Feng, Yuanyi; Demolombe, Sophie; Patel, Amanda; Honoré, Eric

    2015-11-10

    The mechanically activated non-selective cation channel Piezo1 is a determinant of vascular architecture during early development. Piezo1-deficient embryos die at midgestation with disorganized blood vessels. However, the role of stretch-activated ion channels (SACs) in arterial smooth muscle cells in the adult remains unknown. Here, we show that Piezo1 is highly expressed in myocytes of small-diameter arteries and that smooth-muscle-specific Piezo1 deletion fully impairs SAC activity. While Piezo1 is dispensable for the arterial myogenic tone, it is involved in the structural remodeling of small arteries. Increased Piezo1 opening has a trophic effect on resistance arteries, influencing both diameter and wall thickness in hypertension. Piezo1 mediates a rise in cytosolic calcium and stimulates activity of transglutaminases, cross-linking enzymes required for the remodeling of small arteries. In conclusion, we have established the connection between an early mechanosensitive process, involving Piezo1 in smooth muscle cells, and a clinically relevant arterial remodeling. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    PubMed Central

    da Silva, Tharciano Luiz Teixeira Braga; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim dos Santos; Carvalho, Vitor Oliveira; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana

    2015-01-01

    Background Hypertension is a public health problem and increases the incidence of cardiovascular diseases. Objective To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Methods Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Results Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. Conclusion One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats. PMID:26107814

  20. Effects of one resistance exercise session on vascular smooth muscle of hypertensive rats.

    PubMed

    Silva, Tharciano Luiz Teixeira Braga da; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim Dos Santos; Oliveira Carvalho, Vitor; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana

    2015-08-01

    Hypertension is a public health problem and increases the incidence of cardiovascular diseases. To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.

  1. Notch signal reception is required in vascular smooth muscle cells for ductus arteriosus closure

    PubMed Central

    Krebs, Luke T.; Norton, Christine R.; Gridley, Thomas

    2017-01-01

    Summary The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice. PMID:26742650

  2. Hypotension Due to Kir6.1 Gain‐of‐Function in Vascular Smooth Muscle

    PubMed Central

    Li, Anlong; Knutsen, Russell H.; Zhang, Haixia; Osei‐Owusu, Patrick; Moreno‐Dominguez, Alex; Harter, Theresa M.; Uchida, Keita; Remedi, Maria S.; Dietrich, Hans H.; Bernal‐Mizrachi, Carlos; Blumer, Kendall J.; Mecham, Robert P.; Koster, Joseph C.; Nichols, Colin G.

    2013-01-01

    Background KATP channels, assembled from pore‐forming (Kir6.1 or Kir6.2) and regulatory (SUR1 or SUR2) subunits, link metabolism to excitability. Loss of Kir6.2 results in hypoglycemia and hyperinsulinemia, whereas loss of Kir6.1 causes Prinzmetal angina–like symptoms in mice. Conversely, overactivity of Kir6.2 induces neonatal diabetes in mice and humans, but consequences of Kir6.1 overactivity are unknown. Methods and Results We generated transgenic mice expressing wild‐type (WT), ATP‐insensitive Kir6.1 [Gly343Asp] (GD), and ATP‐insensitive Kir6.1 [Gly343Asp,Gln53Arg] (GD‐QR) subunits, under Cre‐recombinase control. Expression was induced in smooth muscle cells by crossing with smooth muscle myosin heavy chain promoter–driven tamoxifen‐inducible Cre‐recombinase (SMMHC‐Cre‐ER) mice. Three weeks after tamoxifen induction, we assessed blood pressure in anesthetized and conscious animals, as well as contractility of mesenteric artery smooth muscle and KATP currents in isolated mesenteric artery myocytes. Both systolic and diastolic blood pressures were significantly reduced in GD and GD‐QR mice but normal in mice expressing the WT transgene and elevated in Kir6.1 knockout mice as well as in mice expressing dominant‐negative Kir6.1 [AAA] in smooth muscle. Contractile response of isolated GD‐QR mesenteric arteries was blunted relative to WT controls, but nitroprusside relaxation was unaffected. Basal KATP conductance and pinacidil‐activated conductance were elevated in GD but not in WT myocytes. Conclusions KATP overactivity in vascular muscle can lead directly to reduced vascular contractility and lower blood pressure. We predict that gain of vascular KATP function in humans would lead to a chronic vasodilatory phenotype, as indeed has recently been demonstrated in Cantu syndrome. PMID:23974906

  3. Sorcin modulation of Ca2+ sparks in rat vascular smooth muscle cells

    PubMed Central

    Rueda, Angélica; Song, Ming; Toro, Ligia; Stefani, Enrico; Valdivia, Héctor H

    2006-01-01

    Spontaneous, local Ca2+ release events or Ca2+ sparks by ryanodine receptors (RyRs) are important determinants of vascular tone and arteriolar resistance, but the mechanisms that modulate their properties in smooth muscle are poorly understood. Sorcin, a Ca2+-binding protein that associates with cardiac RyRs and quickly stops Ca2+ release in the heart, provides a potential mechanism to modulate Ca2+ sparks in vascular smooth muscle, but little is known about the functional role of sorcin in this tissue. In this work, we characterized the expression and intracellular location of sorcin in aorta and cerebral artery and gained mechanistic insights into its functional role as a modulator of Ca2+ sparks. Sorcin is present in endothelial and smooth muscle cells, as assessed by immunocytochemical and Western blot analyses. Smooth muscle sorcin translocates from cytosolic to membranous compartments in a Ca2+-dependent manner and associates with RyRs, as shown by coimmunoprecipitation and immunostaining experiments. Ca2+ sparks recorded in saponin-permeabilized vascular myocytes have increased frequency, duration and spatial spread but reduced amplitude with respect to Ca2+ sparks in intact cells, suggesting that permeabilization disrupts the normal organization of RyRs and releases diffusible substances that control Ca2+ spark properties. Perfusion of 2 μm sorcin onto permeabilized myocytes reduced the amplitude, duration and spatial spread of Ca2+ sparks, demonstrating that sorcin effectively regulates Ca2+ signalling in vascular smooth muscle. Together with a dense distribution in the perimeter of the cell along a pool of RyRs, these properties make sorcin a viable candidate to modulate vascular tone in smooth muscle. PMID:16931553

  4. 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells

    PubMed Central

    Luo, Tong; Chen, Huan; Kassab, Ghassan S.

    2016-01-01

    Aims The 3D geometry of individual vascular smooth muscle cells (VSMCs), which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation. Methods and Results A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI) selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell’s initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations) was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9μm, 4.6±0.6μm and 6.2±1.8μm (mean±SD). In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle) was found to be 8±7.6° with median as 5.7°. Conclusions A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function. PMID:26882342

  5. Coronary endothelial function and vascular smooth muscle proliferation are programmed by early-gestation dexamethasone exposure in sheep

    PubMed Central

    Volk, Kenneth A.; Roghair, Robert D.; Jung, Felicia; Scholz, Thomas D.; Lamb, Fred S.

    2010-01-01

    Exposure of the early-gestation ovine fetus to exogenous glucocorticoids induces changes in postnatal cardiovascular physiology. We sought to characterize coronary artery vascular function in this model by elucidating the contribution of nitric oxide and reactive oxygen species to altered coronary vascular reactivity and examining the proliferative potential of coronary artery vascular smooth muscle cells. Dexamethasone (dex, 0.28 mg·kg−1·day−1 for 48 h) was administered to pregnant ewes at 27–28-day gestation (term 145 days). Coronary arteries were isolated from 1- to 2-wk-old dex-exposed offspring and aged-matched controls. Compared with controls, coronary arteries from dex-exposed lambs demonstrated enhanced vasoconstriction to endothelin-1 and ACh that was abolished by endothelial removal or preincubation with the nitric oxide synthase inhibitor l-NNA, membrane-permeable superoxide dismutase + catalase, or apamin + charybdotoxin, but not indomethacin. The rate of coronary vascular smooth muscle cell (VSMC) proliferation was also significantly greater in dex-exposed lambs. Protein levels of the proliferating cell nuclear antigen were increased and α-smooth muscle actin decreased in dex-exposed coronary VSMC, consistent with a proliferative state. Finally, expression of the NADPH oxidase Nox 4, but not Nox 1, mRNA was also decreased in coronary VSMC from dex-exposed lambs. These findings suggest an important interaction exists between early-gestation glucocorticoid exposure and reactive oxygen species that is associated with alterations in endothelial function and coronary VSMC proliferation. These changes in coronary physiology are consistent with those associated with the development of atherosclerosis and may provide an important link between an adverse intrauterine environment and increased risk for coronary artery disease. PMID:20335378

  6. Smoking and Female Sex: Independent Predictors of Human Vascular Smooth Muscle Cells Stiffening

    PubMed Central

    Dinardo, Carla Luana; Santos, Hadassa Campos; Vaquero, André Ramos; Martelini, André Ricardo; Dallan, Luis Alberto Oliveira; Alencar, Adriano Mesquita; Krieger, José Eduardo; Pereira, Alexandre Costa

    2015-01-01

    Aims Recent evidence shows the rigidity of vascular smooth muscle cells (VSMC) contributes to vascular mechanics. Arterial rigidity is an independent cardiovascular risk factor whose associated modifications in VSMC viscoelasticity have never been investigated. This study’s objective was to evaluate if the arterial rigidity risk factors aging, African ancestry, female sex, smoking and diabetes mellitus are associated with VMSC stiffening in an experimental model using a human derived vascular smooth muscle primary cell line repository. Methods Eighty patients subjected to coronary artery bypass surgery were enrolled. VSMCs were extracted from internal thoracic artery fragments and mechanically evaluated using Optical Magnetic Twisting Cytometry assay. The obtained mechanical variables were correlated with the clinical variables: age, gender, African ancestry, smoking and diabetes mellitus. Results The mechanical variables Gr, G’r and G”r had a normal distribution, demonstrating an inter-individual variability of VSMC viscoelasticity, which has never been reported before. Female sex and smoking were independently associated with VSMC stiffening: Gr (apparent cell stiffness) p = 0.022 and p = 0.018, R2 0.164; G’r (elastic modulus) p = 0.019 and p = 0.009, R2 0.184 and G”r (dissipative modulus) p = 0.011 and p = 0.66, R2 0.141. Conclusion Female sex and smoking are independent predictors of VSMC stiffening. This pro-rigidity effect represents an important element for understanding the vascular rigidity observed in post-menopausal females and smokers, as well as a potential therapeutic target to be explored in the future. There is a significant inter-individual variation of VSMC viscoelasticity, which is slightly modulated by clinical variables and probably relies on molecular factors. PMID:26661469

  7. A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics.

    PubMed

    Coccarelli, Alberto; Edwards, David Hughes; Aggarwal, Ankush; Nithiarasu, Perumal; Parthimos, Dimitris

    2018-02-01

    Arterial wall dynamics arise from the synergy of passive mechano-elastic properties of the vascular tissue and the active contractile behaviour of smooth muscle cells (SMCs) that form the media layer of vessels. We have developed a computational framework that incorporates both these components to account for vascular responses to mechanical and pharmacological stimuli. To validate the proposed framework and demonstrate its potential for testing hypotheses on the pathogenesis of vascular disease, we have employed a number of pharmacological probes that modulate the arterial wall contractile machinery by selectively inhibiting a range of intracellular signalling pathways. Experimental probes used on ring segments from the rabbit central ear artery are: phenylephrine, a selective α 1-adrenergic receptor agonist that induces vasoconstriction; cyclopiazonic acid (CPA), a specific inhibitor of sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase; and ryanodine, a diterpenoid that modulates Ca 2+ release from the sarcoplasmic reticulum. These interventions were able to delineate the role of membrane versus intracellular signalling, previously identified as main factors in smooth muscle contraction and the generation of vessel tone. Each SMC was modelled by a system of nonlinear differential equations that account for intracellular ionic signalling, and in particular Ca 2+ dynamics. Cytosolic Ca 2+ concentrations formed the catalytic input to a cross-bridge kinetics model. Contractile output from these cellular components forms the input to the finite-element model of the arterial rings under isometric conditions that reproduces the experimental conditions. The model does not account for the role of the endothelium, as the nitric oxide production was suppressed by the action of L-NAME, and also due to the absence of shear stress on the arterial ring, as the experimental set-up did not involve flow. Simulations generated by the integrated model closely matched experimental

  8. Dietary potassium regulates vascular calcification and arterial stiffness.

    PubMed

    Sun, Yong; Byon, Chang Hyun; Yang, Youfeng; Bradley, Wayne E; Dell'Italia, Louis J; Sanders, Paul W; Agarwal, Anupam; Wu, Hui; Chen, Yabing

    2017-10-05

    Vascular calcification is a risk factor that predicts adverse cardiovascular complications of several diseases including atherosclerosis. Reduced dietary potassium intake has been linked to cardiovascular diseases such as hypertension and incidental stroke, although the underlying molecular mechanisms remain largely unknown. Using the ApoE-deficient mouse model, we demonstrated for the first time to our knowledge that reduced dietary potassium (0.3%) promoted atherosclerotic vascular calcification and increased aortic stiffness, compared with normal (0.7%) potassium-fed mice. In contrast, increased dietary potassium (2.1%) attenuated vascular calcification and aortic stiffness. Mechanistically, reduction in the potassium concentration to the lower limit of the physiological range increased intracellular calcium, which activated a cAMP response element-binding protein (CREB) signal that subsequently enhanced autophagy and promoted vascular smooth muscle cell (VSMC) calcification. Inhibition of calcium signals and knockdown of either CREB or ATG7, an autophagy regulator, attenuated VSMC calcification induced by low potassium. Consistently, elevated autophagy and CREB signaling were demonstrated in the calcified arteries from low potassium diet-fed mice as well as aortic arteries exposed to low potassium ex vivo. These studies established a potentially novel causative role of dietary potassium intake in regulating atherosclerotic vascular calcification and stiffness, and uncovered mechanisms that offer opportunities to develop therapeutic strategies to control vascular disease.

  9. Dietary potassium regulates vascular calcification and arterial stiffness

    PubMed Central

    Sun, Yong; Byon, Chang Hyun; Yang, Youfeng; Bradley, Wayne E.; Dell’Italia, Louis J.; Agarwal, Anupam; Wu, Hui

    2017-01-01

    Vascular calcification is a risk factor that predicts adverse cardiovascular complications of several diseases including atherosclerosis. Reduced dietary potassium intake has been linked to cardiovascular diseases such as hypertension and incidental stroke, although the underlying molecular mechanisms remain largely unknown. Using the ApoE-deficient mouse model, we demonstrated for the first time to our knowledge that reduced dietary potassium (0.3%) promoted atherosclerotic vascular calcification and increased aortic stiffness, compared with normal (0.7%) potassium–fed mice. In contrast, increased dietary potassium (2.1%) attenuated vascular calcification and aortic stiffness. Mechanistically, reduction in the potassium concentration to the lower limit of the physiological range increased intracellular calcium, which activated a cAMP response element–binding protein (CREB) signal that subsequently enhanced autophagy and promoted vascular smooth muscle cell (VSMC) calcification. Inhibition of calcium signals and knockdown of either CREB or ATG7, an autophagy regulator, attenuated VSMC calcification induced by low potassium. Consistently, elevated autophagy and CREB signaling were demonstrated in the calcified arteries from low potassium diet–fed mice as well as aortic arteries exposed to low potassium ex vivo. These studies established a potentially novel causative role of dietary potassium intake in regulating atherosclerotic vascular calcification and stiffness, and uncovered mechanisms that offer opportunities to develop therapeutic strategies to control vascular disease. PMID:28978809

  10. Chronic stimulation of farnesoid X receptor impairs nitric oxide sensitivity of vascular smooth muscle.

    PubMed

    Kida, Taiki; Murata, Takahisa; Hori, Masatoshi; Ozaki, Hiroshi

    2009-01-01

    Farnesoid X receptor (FXR), a member of the nuclear receptor superfamily that is highly expressed in enterohepatic tissue, is implicated in bile acid, lipid, and glucose metabolisms. Although recent studies showed that FXR is also expressed in vascular endothelial cells and smooth muscle cells, its physiological and/or pathological roles in vasculature tissue remain unknown. The aim of this study is to examine the chronic effect of synthetic FXR agonist GW4064 on vascular contraction and endothelium-dependent relaxation using tissue culture procedure. In cultured rabbit mesenteric arteries, the treatment with 0.1-10 microM GW4064 for 7 days did not influence vascular contractility induced by high K(+) (15-65 mM), norepinephrine (0.1-100 microM), and endothelin-1 (0.1-100 nM). However, the chronic treatment with GW4064 (1-10 microM for 7 days) dose dependently impaired endothelium-dependent relaxation induced by substance P (0.1-30 nM). In hematoxylin-eosin cross sectioning and en face immunostaining, GW4064 had no effects on the morphology of endothelial and smooth muscle cells. In endothelium-denuded arteries treated with GW4064 (1-10 microM) for 7 days, 3 nM-100 microM sodium nitroprusside-induced vasorelaxation, but not membrane-permeable cGMP analog 8-bromoguanosine-cGMP (8-Br-cGMP; 1-100 microM)-induced vasorelaxation, was significantly impaired. In these GW4064-treated arteries, 1 muM sodium nitroprusside-induced intracellular cGMP elevations were impaired. In RT-PCR, any changes were detected in mRNA expression level of alpha(1)- and beta(1)-subunit of soluble guanylyl cyclase. These results suggest that chronic stimulation of FXR impairs endothelium-dependent relaxation, which is due to decreased sensitivity of smooth muscle cells to nitric oxide.

  11. Seeding arterial prostheses with vascular endothelium. The nature of the lining.

    PubMed Central

    Herring, M B; Dilley, R; Jersild, R A; Boxer, L; Gardner, A; Glover, J

    1979-01-01

    Arterial prostheses seeded with autogenous vascular endothelium demonstrate a well-organized, cellular, inner lining. To determine the nature of the lining cells, six animals underwent replacement of the infrarenal aorta with Dacron prostheses. During the preparation of three such grafts, endothelium was scraped from the saphenous vein with a steel wool pledget, suspended in chilled Sack's solution, and mixed with blood used to preclot the graft. This suspension was omitted from the three control grafts. After six weeks, the grafts were removed, rinsed and examined. Fluorescent Factor VIII related antigen (F VIII-RA) strongly stained the lining cells. Silver nitrate Haütchen and electron microscopy preparations revealed a lining pattern characteristic of vascular endothelium. Endothelial cell-specific Weibel-Palade bodies were identified in the lining cell cytoplasm. Masson's trichrome staining revealed a relatively collagen-poor connective tissue within the seeded fabric. Transmission electron microscopy disclosed vascular smooth muscle cells between the seeded graft fabric and the lining cells. Vasa vasorum, arising from the outer capsule, penetrated the fabric to supply the inner capsules of the seeded grafts. It is concluded that the cells lining seeded canine arterial prostheses are true vascular endothelium supported by vascular smooth muscle cells, that the lining contains minimal connective tissue, and that vasa vasorum develop. Unseeded control grafts lacked these features. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10. PMID:464684

  12. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells

    PubMed Central

    Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification. PMID:27589055

  13. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    PubMed

    Ma, Yun-Yun; Sun, Lin; Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification.

  14. Arterial territory-specific phosphorylated retinoblastoma protein species and CDK2 promote differences in the vascular smooth muscle cell response to mitogens

    PubMed Central

    Lange, Martin; Fujikawa, Tatsuya; Koulova, Anna; Kang, Sona; Griffin, Michael J; Lassaletta, Antonio D; Erat, Anna; Tobiasch, Edda; Bianchi, Cesario; Elmadhun, Nassrene; Sellke, Frank W; Usheva, Anny

    2014-01-01

    Despite recent advances in medical procedures, cardiovascular disease remains a clinical challenge and the leading cause of mortality in the western world. The condition causes progressive smooth muscle cell (SMC) dedifferentiation, proliferation, and migration that contribute to vascular restenosis. The incidence of disease of the internal mammary artery (IMA), however, is much lower than in nearly all other arteries. The etiology of this IMA disease resistance is not well understood. Here, using paired primary IMA and coronary artery SMCs, serum stimulation, siRNA knockdowns, and verifications in porcine vessels in vivo, we investigate the molecular mechanisms that could account for this increased disease resistance of internal mammary SMCs. We show that the residue-specific phosphorylation profile of the retinoblastoma tumor suppressor protein (Rb) appears to differ significantly between IMA and coronary artery SMCs in cultured human cells. We also report that the differential profile of Rb phosphorylation may follow as a consequence of differences in the content of cyclin-dependent kinase 2 (CDK2) and the CDK4 phosphorylation inhibitor p15. Finally, we present evidence that siRNA-mediated CDK2 knockdown alters the profile of Rb phosphorylation in coronary artery SMCs, as well as the proliferative response of these cells to mitogenic stimulation. The intrinsic functional and protein composition specificity of the SMCs population in the coronary artery may contribute to the increased prevalence of restenosis and atherosclerosis in the coronary arteries as compared with the internal mammary arteries. PMID:24240190

  15. Statin therapy exacerbates alcohol-induced constriction of cerebral arteries via modulation of ethanol-induced BK channel inhibition in vascular smooth muscle.

    PubMed

    Simakova, Maria N; Bisen, Shivantika; Dopico, Alex M; Bukiya, Anna N

    2017-12-01

    Statins constitute the most commonly prescribed drugs to decrease cholesterol (CLR). CLR is an important modulator of alcohol-induced cerebral artery constriction (AICAC). Using rats on a high CLR diet (2% CLR) we set to determine whether atorvastatin administration (10mg/kg daily for 18-23weeks) modified AICAC. Middle cerebral arteries were pressurized in vitro at 60mmHg and AICAC was evoked by 50mM ethanol, that is within the range of blood alcohol detected in humans following moderate-to-heavy drinking. AICAC was evident in high CLR+atorvastatin group but not in high CLR diet+placebo. Statin exacerbation of AICAC persisted in de-endothelialized arteries, and was blunted by CLR enrichment in vitro. Fluorescence imaging of filipin-stained arteries showed that atorvastatin decreased vascular smooth muscle (VSM) CLR when compared to placebo, this difference being reduced by CLR enrichment in vitro. Voltage- and calcium-gated potassium channels of large conductance (BK) are known VSM targets of ethanol, with their beta1 subunit being necessary for ethanol-induced channel inhibition and resulting AICAC. Ethanol-induced BK inhibition in excised membrane patches from freshly isolated myocytes was exacerbated in the high CLR diet+atorvastatin group when compared to high CLR diet+placebo. Unexpectedly, atorvastatin decreased the amount and function of BK beta1 subunit as documented by immunofluorescence imaging and functional patch-clamp studies. Atorvastatin exacerbation of ethanol-induced BK inhibition disappeared upon artery CLR enrichment in vitro. Our study demonstrates for the first time statin's ability to exacerbate the vascular effect of a widely consumed drug of abuse, this exacerbation being driven by statin modulation of ethanol-induced BK channel inhibition in the VSM via CLR-mediated mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Profiling the role of mammalian target of rapamycin in the vascular smooth muscle metabolome in pulmonary arterial hypertension

    PubMed Central

    Kudryashova, Tatiana V.; Goncharov, Dmitry A.; Pena, Andressa; Ihida-Stansbury, Kaori; DeLisser, Horace; Kawut, Steven M.

    2015-01-01

    Abstract Increased proliferation and resistance to apoptosis of pulmonary arterial vascular smooth muscle cells (PAVSMCs), coupled with metabolic reprogramming, are key components of pulmonary vascular remodeling, a major and currently irreversible pathophysiological feature of pulmonary arterial hypertension (PAH). We recently reported that activation of mammalian target of rapamycin (mTOR) plays a key role in increased energy generation and maintenance of the proliferative, apoptosis-resistant PAVSMC phenotype in human PAH, but the downstream effects of mTOR activation on PAH PAVSMC metabolism are not clear. Using liquid and gas chromatography–based mass spectrometry, we performed pilot metabolomic profiling of human microvascular PAVSMCs from idiopathic-PAH subjects before and after treatment with the selective adenosine triphosphate–competitive mTOR inhibitor PP242 and from nondiseased lungs. We have shown that PAH PAVSMCs have a distinct metabolomic signature of altered metabolites—components of fatty acid synthesis, deficiency of sugars, amino sugars, and nucleotide sugars—intermediates of protein and lipid glycosylation, and downregulation of key biochemicals involved in glutathione and nicotinamide adenine dinucleotide (NAD) metabolism. We also report that mTOR inhibition attenuated or reversed the majority of the PAH-specific abnormalities in lipogenesis, glycosylation, glutathione, and NAD metabolism without affecting altered polyunsaturated fatty acid metabolism. Collectively, our data demonstrate a critical role of mTOR in major PAH PAVSMC metabolic abnormalities and suggest the existence of de novo lipid synthesis in PAVSMCs in human PAH that may represent a new, important component of disease pathogenesis worthy of future investigation. PMID:26697174

  17. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches

    PubMed Central

    Joseph, Biny K.; Thakali, Keshari M.; Moore, Christopher L.; Rhee, Sung W.

    2013-01-01

    Ion channels are multimeric, transmembrane proteins that selectively mediate ion flux across the plasma membrane in a variety of cells including vascular smooth muscle cells (VSMCs). The dynamic interplay of Ca2+ and K+ channels on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of Ca2+ and K+ channels in the VSMCs. In this short review, we focus on the three well-studied ion channels in VSMCs, namely the L-type Ca2+ (CaV1.2) channels, the voltage-gated K+ (KV) channels, and the large-conductance Ca2+-activated K+ (BK) channels. First, we provide a brief overview on the physiological role of vascular CaV1.2, KV and BK channels in regulating arterial tone. Second, we discuss the current understanding of the expression changes and regulation of CaV1.2, KV and BK channels in the vasculature during hypertension. Third, based on available proof-of-concept studies, we describe the potential therapeutic approaches targeting these vascular ion channels in order to restore blood pressure to normotensive levels. PMID:23376354

  18. Interleukin-18 Enhances Vascular Calcification and Osteogenic Differentiation of Vascular Smooth Muscle Cells Through TRPM7 Activation.

    PubMed

    Zhang, Kun; Zhang, Yinyin; Feng, Weijing; Chen, Renhua; Chen, Jie; Touyz, Rhian M; Wang, Jingfeng; Huang, Hui

    2017-10-01

    Vascular calcification (VC) is an important predictor of cardiovascular morbidity and mortality. Osteogenic differentiation of vascular smooth muscle cells (VSMCs) is a key mechanism of VC. Recent studies show that IL-18 (interleukin-18) favors VC while TRPM7 (transient receptor potential melastatin 7) channel upregulation inhibits VC. However, the relationship between IL-18 and TRPM7 is unclear. We questioned whether IL-18 enhances VC and osteogenic differentiation of VSMCs through TRPM7 channel activation. Coronary artery calcification and serum IL-18 were measured in patients by computed tomographic scanning and enzyme-linked immunosorbent assay, respectively. Primary rat VSMCs calcification were induced by high inorganic phosphate and exposed to IL-18. VSMCs were also treated with TRPM7 antagonist 2-aminoethoxy-diphenylborate or TRPM7 small interfering RNA to block TRPM7 channel activity and expression. TRPM7 currents were recorded by patch-clamp. Human studies showed that serum IL-18 levels were positively associated with coronary artery calcium scores ( r =0.91; P <0.001). In VSMCs, IL-18 significantly decreased expression of contractile markers α-smooth muscle actin, smooth muscle 22 α, and increased calcium deposition, alkaline phosphatase activity, and expression of osteogenic differentiation markers bone morphogenetic protein-2, Runx2 (runt-related transcription factor 2), and osteocalcin ( P <0.05). IL-18 increased TRPM7 expression through ERK1/2 (extracellular signal-regulated kinase 1/2) signaling activation, and TRPM7 currents were augmented by IL-18 treatment. Inhibition of TRPM7 channel by 2-aminoethoxy-diphenylborate or TRPM7 small interfering RNA prevented IL-18-enhanced osteogenic differentiation and VSMCs calcification. These findings suggest that coronary artery calcification is associated with increased IL-18 levels. IL-18 enhances VSMCs osteogenic differentiation and subsequent VC induced by β-glycerophosphate via TRPM7 channel activation

  19. Nestin upregulation characterizes vascular remodeling secondary to hypertension in the rat.

    PubMed

    Tardif, Kim; Hertig, Vanessa; Duquette, Natacha; Villeneuve, Louis; El-Hamamsy, Ismail; Tanguay, Jean-François; Calderone, Angelino

    2015-05-15

    Proliferation and hypertrophy of vascular smooth muscle cells represent hallmark features of vessel remodeling secondary to hypertension. The intermediate filament protein nestin was recently identified in vascular smooth muscle cells and in other cell types directly participated in proliferation. The present study tested the hypothesis that vessel remodeling secondary to hypertension was characterized by nestin upregulation in vascular smooth muscle cells. Two weeks after suprarenal abdominal aorta constriction of adult male Sprague-Dawley rats, elevated mean arterial pressure increased the media area and thickness of the carotid artery and aorta and concomitantly upregulated nestin protein levels. In the normal adult rat carotid artery, nestin immunoreactivity was observed in a subpopulation of vascular smooth muscle cells, and the density significantly increased following suprarenal abdominal aorta constriction. Filamentous nestin was detected in cultured rat carotid artery- and aorta-derived vascular smooth muscle cells and an analogous paradigm observed in human aorta-derived vascular smooth muscle cells. ANG II and EGF treatment of vascular smooth muscle cells stimulated DNA and protein synthesis and increased nestin protein levels. Lentiviral short-hairpin RNA-mediated nestin depletion of carotid artery-derived vascular smooth muscle cells inhibited peptide growth factor-stimulated DNA synthesis, whereas protein synthesis remained intact. These data have demonstrated that vessel remodeling secondary to hypertension was characterized in part by nestin upregulation in vascular smooth muscle cells. The selective role of nestin in peptide growth factor-stimulated DNA synthesis has revealed that the proliferative and hypertrophic responses of vascular smooth muscle cells were mediated by divergent signaling events. Copyright © 2015 the American Physiological Society.

  20. Differentiation of vascular smooth muscle cells from local precursors during embryonic and adult arteriogenesis requires Notch signaling

    PubMed Central

    Chang, Linda; Noseda, Michela; Higginson, Michelle; Ly, Michelle; Patenaude, Alexandre; Fuller, Megan; Kyle, Alastair H.; Minchinton, Andrew I.; Puri, Mira C.; Dumont, Daniel J.; Karsan, Aly

    2012-01-01

    Vascular smooth muscle cells (VSMC) have been suggested to arise from various developmental sources during embryogenesis, depending on the vascular bed. However, evidence also points to a common subpopulation of vascular progenitor cells predisposed to VSMC fate in the embryo. In the present study, we use binary transgenic reporter mice to identify a Tie1+CD31dimvascular endothelial (VE)-cadherin−CD45− precursor that gives rise to VSMC in vivo in all vascular beds examined. This precursor does not represent a mature endothelial cell, because a VE-cadherin promoter-driven reporter shows no expression in VSMC during murine development. Blockade of Notch signaling in the Tie1+ precursor cell, but not the VE-cadherin+ endothelial cell, decreases VSMC investment of developing arteries, leading to localized hemorrhage in the embryo at the time of vascular maturation. However, Notch signaling is not required in the Tie1+ precursor after establishment of a stable artery. Thus, Notch activity is required in the differentiation of a Tie1+ local precursor to VSMC in a spatiotemporal fashion across all vascular beds. PMID:22509029

  1. Raf-1 kinase regulates smooth muscle contraction in the rat mesenteric arteries.

    PubMed

    Sathishkumar, Kunju; Yallampalli, Uma; Elkins, Rebekah; Yallampalli, Chandra

    2010-01-01

    We investigated the potential role of Raf-1 kinase in mesenteric arterial contraction. Inhibitors of Raf-1 kinase, GW5074, L779450 and ZM 336372 reversed phenylephrine (PE)-induced mesenteric vascular contraction. Studies in vivo in rats showed that GW5074 inhibited PE-induced increase in mean arterial pressure in adult female Sprague-Dawley rats. Isometric tension studies in mesenteric arteries of rats showed that GW5074 did not change the KCl-evoked contraction but significantly inhibited the contractions to PE, 5-HT, U46619, endothelin 1, angiotensin II and phorbol 12, 13-dibutyrate (PDBu). In mesenteric vascular smooth muscle cells (VSMCs), PE stimulated increase in Raf-1 phosphorylation which was inhibited by GW5074. Measurement of [Ca(2+)](i) with Fura-2 showed that GW5074-mediated inhibition of PE-induced contraction was not associated with decreases in [Ca(2+)](i). VSMCs treated with PE exhibited higher levels of the contractile proteins, p-MYPT1 and p-MLC(20), which was inhibited by GW5074. Similarly, PDBu induced increases in phosphorylation of Raf-1, MLC(20) and MYPT1 and this was inhibited by GW5074. However, GW5074 did not have any significant effect on PE/PDBu-induced MEK/ERK activation. The results indicate that Raf-1 kinase plays an important role in the regulation of vascular contractility through regulation of calcium sensitization.

  2. Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury

    PubMed Central

    Ashino, Takashi; Yamamoto, Masayuki; Numazawa, Satoshi

    2016-01-01

    Abnormal increases in vascular smooth muscle cells (VSMCs) in the intimal region after a vascular injury is a key event in developing neointimal hyperplasia. To maintain vascular function, proliferation and apoptosis of VSMCs is tightly controlled during vascular remodeling. NF-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) system, a key component of the oxidative stress response that acts in maintaining homeostasis, plays an important role in neointimal hyperplasia after a vascular injury; however, the role of Nrf2/Keap1 in VSMC apoptosis has not been clarified. Here we report that 14 days after arterial injury in mice, TUNEL-positive VSMCs are detected in both the neointimal and medial layers. These layers contain cells expressing high levels of Nrf2 but low Keap1 expression. In VSMCs, Keap1 depletion induces features of apoptosis, such as positive TUNEL staining and annexin V binding. These changes are associated with an increased expression of nuclear Nrf2. Simultaneous Nrf2 depletion inhibits Keap1 depletion-induced apoptosis. At 14 days after the vascular injury, Nrf2-deficient mice demonstrated fewer TUNEL-positive cells and increased neointimal formation in the neointimal and medial areas. The results suggest that the Nrf2/Keap1 system regulates VSMC apoptosis during neointimal formation, thereby inhibiting neointimal hyperplasia after a vascular injury. PMID:27198574

  3. Role of blood and vascular smooth muscle in the vasoactivity of nitrite.

    PubMed

    Liu, Taiming; Schroeder, Hobe J; Barcelo, Lisa; Bragg, Shannon L; Terry, Michael H; Wilson, Sean M; Power, Gordon G; Blood, Arlin B

    2014-10-01

    Recent evidence from humans and rats indicates that nitrite is a vasodilator under hypoxic conditions by reacting with metal-containing proteins to produce nitric oxide (NO). We tested the hypothesis that near-physiological concentrations of nitrite would produce vasodilation in a hypoxia- and concentration-dependent manner in the hind limb of sheep. Anesthetized sheep were instrumented to measure arterial blood pressure and femoral blood flows continuously in both hind limbs. Nitrite was infused into one femoral artery to raise the nitrite concentration in the femoral vein by 10 to 15-fold while the sheep breathed 50%, 14% or 12% oxygen in inspired air. In contrast to reports in humans and rats, the nitrite infusion had no measurable effect on mean femoral blood flows or vascular conductances, regardless of inspired O2 levels. In vitro experiments showed no significant difference in the release of NO from nitrite in sheep and human red blood cells. Further experiments demonstrated nitrite is converted to NO in rat artery homogenates faster than sheep arteries, and that this source of NO production is attenuated in the presence of a heme oxidizer. Finally, western blots indicate that concentrations of the heme-containing protein cytoglobin, but not myoglobin, are markedly lower in sheep arteries compared with rats. Overall, the results demonstrate that nitrite is not a physiological vasodilator in sheep. This is likely due to a lack of conversion of nitrite to NO within the vascular smooth muscle, perhaps due to deficient amounts of the heme-containing protein cytoglobin. Copyright © 2014 the American Physiological Society.

  4. Role of blood and vascular smooth muscle in the vasoactivity of nitrite

    PubMed Central

    Liu, Taiming; Schroeder, Hobe J.; Barcelo, Lisa; Bragg, Shannon L.; Terry, Michael H.; Wilson, Sean M.; Power, Gordon G.

    2014-01-01

    Recent evidence from humans and rats indicates that nitrite is a vasodilator under hypoxic conditions by reacting with metal-containing proteins to produce nitric oxide (NO). We tested the hypothesis that near-physiological concentrations of nitrite would produce vasodilation in a hypoxia- and concentration-dependent manner in the hind limb of sheep. Anesthetized sheep were instrumented to measure arterial blood pressure and femoral blood flows continuously in both hind limbs. Nitrite was infused into one femoral artery to raise the nitrite concentration in the femoral vein by 10 to 15-fold while the sheep breathed 50%, 14% or 12% oxygen in inspired air. In contrast to reports in humans and rats, the nitrite infusion had no measurable effect on mean femoral blood flows or vascular conductances, regardless of inspired O2 levels. In vitro experiments showed no significant difference in the release of NO from nitrite in sheep and human red blood cells. Further experiments demonstrated nitrite is converted to NO in rat artery homogenates faster than sheep arteries, and that this source of NO production is attenuated in the presence of a heme oxidizer. Finally, western blots indicate that concentrations of the heme-containing protein cytoglobin, but not myoglobin, are markedly lower in sheep arteries compared with rats. Overall, the results demonstrate that nitrite is not a physiological vasodilator in sheep. This is likely due to a lack of conversion of nitrite to NO within the vascular smooth muscle, perhaps due to deficient amounts of the heme-containing protein cytoglobin. PMID:25108012

  5. [Mechanism of losartan suppressing vascular calcification in rat aortic artery].

    PubMed

    Shao, Juan; Wu, Panfeng; Wu, Jiliang; Li, Mincai

    2016-08-01

    Objective To investigate the effect of the angiotensin II receptor 1 (AT1R) blocker losartan on vascular calcification in rat aortic artery and explore the underlying mechanisms. Methods SD rats were divided randomly into control group, vascular calcification model group and treatment group. Vascular calcification models were made by subcutaneous injection of warfarin plus vitamin K1 for two weeks. Rats in the treatment group were subcutaneously injected with losartan (10 mg/kg) at the end of the first week and consecutively for one week. We observed the morphological changes by HE staining and the calcium deposition by Alizarin red staining in the artery vascular wall. The mRNA expressions of bone morphogenetic protein 2 (BMP2) and Runt-related transcription factor 2 (RUNX2) were analyzed by reverse transcription PCR. The BMP2 and RUNX2 protein expressions were determined by Western blotting. The apoptosis of smooth muscle cells (SMCs) were detected by TUNEL. The AT1R expression was tested by fluorescent immunohistochemistry. Results The aortic vascular calcification was induced by warfarin and vitamin K1. Compared with the vascular calcification model group, the mRNA and protein expressions of BMP2 and RUNX2 were significantly downregulated in the aorta in the losartan treatment group. Furthermore, the apoptosis of SMCs and the AT1R expression obviously decreased. Conclusion AT1R blocker losartan inhibits the apoptosis of SMCs and reduces AT1R expression; it downregulates the BMP2 and RUNX2 expressions in the vascular calcification process.

  6. MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells.

    PubMed

    Liao, Xiao-Bo; Zhang, Zhi-Yuan; Yuan, Ke; Liu, Yuan; Feng, Xiang; Cui, Rong-Rong; Hu, Ye-Rong; Yuan, Zhao-Shun; Gu, Lu; Li, Shi-Jun; Mao, Ding-An; Lu, Qiong; Zhou, Xin-Ming; de Jesus Perez, Vinicio A; Yuan, Ling-Qing

    2013-09-01

    Arterial calcification is a key pathologic component of vascular diseases such as atherosclerosis, coronary artery disease, and peripheral vascular disease. A hallmark of this pathological process is the phenotypic transition of vascular smooth muscle cells (VSMCs) to osteoblast-like cells. Several studies have demonstrated that microRNAs (miRNAs) regulate osteoblast differentiation, but it is unclear whether miRNAs also regulate VSMC-mediated arterial calcification. In the present study, we sought to characterize the role of miR-133a in regulating VSMC-mediated arterial calcification. Northern blotting analysis of VSMCs treated with β-glycerophosphate demonstrated that miR-133a was significantly decreased during osteogenic differentiation. Overexpression of miR-133a inhibited VSMC transdifferentiation into osteoblast-like cells as evidenced by a decrease in alkaline phosphatase activity, osteocalcin secretion, Runx2 expression, and mineralized nodule formation. Conversely, the knockdown of miR-133a using an miR-133a inhibitor promoted osteogenic differentiation of VSMCs by increasing alkaline phosphatase activity, osteocalcin secretion, and Runx2 expression. Runx2 was identified as a direct target of miR-133a by a cotransfection experiment in VSMCs with luciferase reporter plasmids containing wild-type or mutant 3'-untranslated region sequences of Runx2. Furthermore, the pro-osteogenic effects of miR-133a inhibitor were abrogated in Runx2-knockdown cells, and the inhibition of osteogenic differentiation by pre-miR-133a was reversed by overexpression of Runx2, providing functional evidence that the effects of miR-133a in osteogenic differentiation were mediated by targeting Runx2. These results demonstrate that miR-133a is a key negative regulator of the osteogenic differentiation of VSMCs.

  7. Characterization of pressure-mediated vascular tone in resistance arteries from bile duct-ligated rats

    PubMed Central

    Jadeja, Ravirajsinh N.; Thounaojam, Menaka C.; Khurana, Sandeep

    2017-01-01

    In cirrhosis, changes in pressure-mediated vascular tone, a key determinant of systemic vascular resistance (SVR), are unknown. To address this gap in knowledge, we assessed ex vivo dynamics of pressurized mesenteric resistance arteries (diameter ~ 260 μm) from bile duct-ligated (BDL) and sham-operated (SHAM) rats and determined the underlying mechanisms. At isobaric intraluminal pressure (70 mmHg) as well as with step-wise increase in pressure (10-110 mmHg), arteries from SHAM-rats constricted more than BDL-rats, and had reduced luminal area. In both groups, incubation with LNAME (a NOS inhibitor) had no effect on pressure-mediated tone, and expression of NOS isoforms were similar. TEA, which enhances Ca2+ influx, augmented arterial tone only in SHAM-rats, with minimal effect in those from BDL-rats that was associated with reduced expression of Ca2+ channel TRPC6. In permeabilized arteries, high-dose Ca2+ and γGTP enhanced the vascular tone, which remained lower in BDL-rats that was associated with reduced ROCK2 and pMLC expression. Further, compared to SHAM-rats, in BDL-rats, arteries had reduced collagen expression which was associated with increased expression and activity of MMP-9. BDL-rats also had increased plasma reactive oxygen species (ROS). In vascular smooth muscle cells in vitro, peroxynitrite enhanced MMP-9 activity and reduced ROCK2 expression. These data provide evidence that in cirrhosis, pressure-mediated tone is reduced in resistance arteries, and suggest that circulating ROS play a role in reducing Ca2+ sensitivity and enhancing elasticity to induce arterial adaptations. These findings provide insights into mechanisms underlying attenuated SVR in cirrhosis. PMID:28430609

  8. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.

    PubMed

    Backman, Daniel E; LeSavage, Bauer L; Shah, Shivem B; Wong, Joyce Y

    2017-06-01

    In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Msx1 and Msx2 are expressed in sub-populations of vascular smooth muscle cells.

    PubMed

    Goupille, Olivier; Saint Cloment, Cécile; Lopes, Miguel; Montarras, Didier; Robert, Benoît

    2008-08-01

    Using an nlacZ reporter gene inserted at the Msx1 and Msx2 loci, we could analyze the expression of these homeogenes in the adult mouse. We observed that Msx genes are prominently expressed in a subset of blood vessels. The Msx2nlacZ allele is mainly expressed in a restricted population of mural cells in peripheral arteries and veins. Msx1nlacZ is expressed to a lesser extent by vascular smooth muscle cells of peripheral arteries, but is highly expressed in arterioles and capillaries, making Msx1 a novel marker for a subpopulation of pericytes. Expression is set up early in developing vessels and maintained throughout life. In addition, expression of both genes is observed in a few endothelial cells of the aorta at fetal stages, and only Msx2 continues to be expressed in this layer at the adult stage. These results suggest major functions for Msx genes in vascular mural cell formation and remodeling. Copyright (c) 2008 Wiley-Liss, Inc.

  10. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders

    PubMed Central

    Brozovich, F.V.; Nicholson, C.J.; Degen, C.V.; Gao, Yuan Z.; Aggarwal, M.

    2016-01-01

    The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function. PMID:27037223

  11. Heterogeneous histomorphology, yet homogeneous vascular smooth muscle cell dedifferentiation, characterize human aneurysm disease.

    PubMed

    Busch, Albert; Hartmann, Elena; Grimm, Caroline; Ergün, Süleyman; Kickuth, Ralph; Otto, Christoph; Kellersmann, Richard; Lorenz, Udo

    2017-11-01

    Abdominal aortic aneurysm (AAA) is a frequent, potentially life-threatening, disease that can only be treated by surgical means such as open surgery or endovascular repair. No alternative treatment is currently available, and despite expanding knowledge about the pathomechanism, clinical trials on medical aneurysm abrogation have led to inconclusive results. The heterogeneity of human AAA based on histologic examination is thereby generally neglected. In this study we aimed to further elucidate the role of these differences in aneurysm disease. Tissue samples from AAA and popliteal artery aneurysm patients were examined by histomorphologic analysis, immunohistochemistry, Western blot, and polymerase chain reaction. The results were correlated with clinical data such as aneurysm diameter and laboratory results. The morphology of human AAA vessel wall probes varies tremendously based on the grade of inflammation. This correlates with increasing intima/media thickness and upregulation of the vascular endothelial growth factor cascade but not with any clinical parameter or the aneurysm diameter. The phenotypic switch of vascular smooth muscle cells occurred regardless of the inflammatory state and expressional changes of the transcription factors Kruppel-like factor-4 and transforming growth factor-β lead to differential protein localization in aneurysmal compared with control arteries. These changes were in similar manner also observed in samples from popliteal artery aneurysms, which, however, showed a more homogenous phenotype. Heterogeneity of AAA vessel walls based on inflammatory morphology does not correlate with AAA diameter yet harbors specific implications for basic research and possible aneurysm detection. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  12. Hair Follicle-Derived Smooth Muscle Cells and Small Intestinal Submucosa for Engineering Mechanically Robust and Vasoreactive Vascular Media

    PubMed Central

    Peng, Hao-Fan; Liu, Jin Yu

    2011-01-01

    Our laboratory recently reported a new source of smooth muscle cells (SMCs) derived from hair follicle (HF) mesenchymal stem cells. HF-SMCs demonstrated high proliferation and clonogenic potential as well as contractile function. In this study, we aimed at engineering the vascular media using HF-SMCs and a natural biomaterial, namely small intestinal submucosa (SIS). Engineering functional vascular constructs required application of mechanical force, resulting in actin reorganization and cellular alignment. In turn, cell alignment was necessary for development of receptor- and nonreceptor-mediated contractility as soon as 24 h after cell seeding. Within 2 weeks in culture, the cells migrated into SIS and secreted collagen and elastin, the two major extracellular matrix components of the vessel wall. At 2 weeks, vascular reactivity increased significantly up to three- to fivefold and mechanical properties were similar to those of native ovine arteries. Taken together, our data demonstrate that the combination of HF-SMCs with SIS resulted in mechanically strong, biologically functional vascular media with potential for arterial implantation. PMID:21083418

  13. Vinpocetine suppresses pathological vascular remodeling by inhibiting vascular smooth muscle cell proliferation and migration.

    PubMed

    Cai, Yujun; Knight, Walter E; Guo, Shujie; Li, Jian-Dong; Knight, Peter A; Yan, Chen

    2012-11-01

    Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders.

  14. Vinpocetine Suppresses Pathological Vascular Remodeling by Inhibiting Vascular Smooth Muscle Cell Proliferation and Migration

    PubMed Central

    Cai, Yujun; Knight, Walter E.; Guo, Shujie; Li, Jian-Dong; Knight, Peter A.

    2012-01-01

    Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders. PMID:22915768

  15. Hydraulic Conductivity of Smooth Muscle Cell-Initiated Arterial Cocultures

    PubMed Central

    Mathura, Rishi A.; Russell-Puleri, Sparkle; Cancel, Limary M.; Tarbell, John M.

    2015-01-01

    The purpose of the study was to examine the effects of arterial coculture conditions on the transport properties of several in vitro endothelial cell (EC) – smooth muscle cell (SMC) – porous filter constructs in which SMC were grown to confluence first and then EC were inoculated. This order of culturing simulates the environment of a blood vessel wall after endothelial layer damage due to stenting, vascular grafting or other vascular wall insult. For all coculture configurations examined, we observed that hydraulic conductivity (Lp) values were significantly higher than predicted by a resistances-in-series (RIS) model accounting for the Lp of EC and SMC measured separately. The greatest increases were observed when EC were plated directly on top of a confluent SMC layer without an intervening filter, presumably mediated by direct EC – SMC contacts that were observed under confocal microscopy. The results are the opposite of a previous study that showed Lp was significantly reduced compared to an RIS model when EC were grown to confluency first. The physiological, pathophysiological and tissue engineering implications of these results are discussed. PMID:26265460

  16. Hydraulic Conductivity of Smooth Muscle Cell-Initiated Arterial Cocultures.

    PubMed

    Mathura, Rishi A; Russell-Puleri, Sparkle; Cancel, Limary M; Tarbell, John M

    2016-05-01

    The purpose of the study was to examine the effects of arterial coculture conditions on the transport properties of several in vitro endothelial cell (EC)-smooth muscle cell (SMC)-porous filter constructs in which SMC were grown to confluence first and then EC were inoculated. This order of culturing simulates the environment of a blood vessel wall after endothelial layer damage due to stenting, vascular grafting or other vascular wall insult. For all coculture configurations examined, we observed that hydraulic conductivity (L(p)) values were significantly higher than predicted by a resistances-in-series (RIS) model accounting for the L(p) of EC and SMC measured separately. The greatest increases were observed when EC were plated directly on top of a confluent SMC layer without an intervening filter, presumably mediated by direct EC-SMC contacts that were observed under confocal microscopy. The results are the opposite of a previous study that showed L(p) was significantly reduced compared to an RIS model when EC were grown to confluency first. The physiological, pathophysiological and tissue engineering implications of these results are discussed.

  17. Artery Tertiary Lymphoid Organs Control Aorta Immunity and Protect against Atherosclerosis via Vascular Smooth Muscle Cell Lymphotoxin β Receptors

    PubMed Central

    Hu, Desheng; Mohanta, Sarajo K.; Yin, Changjun; Peng, Li; Ma, Zhe; Srikakulapu, Prasad; Grassia, Gianluca; MacRitchie, Neil; Dever, Gary; Gordon, Peter; Burton, Francis L.; Ialenti, Armando; Sabir, Suleman R.; McInnes, Iain B.; Brewer, James M.; Garside, Paul; Weber, Christian; Lehmann, Thomas; Teupser, Daniel; Habenicht, Livia; Beer, Michael; Grabner, Rolf; Maffia, Pasquale; Weih, Falk; Habenicht, Andreas J.R.

    2015-01-01

    Summary Tertiary lymphoid organs (TLOs) emerge during nonresolving peripheral inflammation, but their impact on disease progression remains unknown. We have found in aged Apoe−/− mice that artery TLOs (ATLOs) controlled highly territorialized aorta T cell responses. ATLOs promoted T cell recruitment, primed CD4+ T cells, generated CD4+, CD8+, T regulatory (Treg) effector and central memory cells, converted naive CD4+ T cells into induced Treg cells, and presented antigen by an unusual set of dendritic cells and B cells. Meanwhile, vascular smooth muscle cell lymphotoxin β receptors (VSMC-LTβRs) protected against atherosclerosis by maintaining structure, cellularity, and size of ATLOs though VSMC-LTβRs did not affect secondary lymphoid organs: Atherosclerosis was markedly exacerbated in Apoe−/−Ltbr−/− and to a similar extent in aged Apoe−/−Ltbrfl/flTagln-cre mice. These data support the conclusion that the immune system employs ATLOs to organize aorta T cell homeostasis during aging and that VSMC-LTβRs participate in atherosclerosis protection via ATLOs. PMID:26084025

  18. ACPA and JWH-133 modulate the vascular tone of superior mesenteric arteries through cannabinoid receptors, BKCa channels, and nitric oxide dependent mechanisms.

    PubMed

    López-Dyck, Evelyn; Andrade-Urzúa, Felipa; Elizalde, Alejandro; Ferrer-Villada, Tania; Dagnino-Acosta, Adan; Huerta, Miguel; Osuna-Calleros, Zyanya; Rangel-Sandoval, Cinthia; Sánchez-Pastor, Enrique

    2017-12-01

    Some cannabinoids, a family of compounds derived from Cannabis sativa (marijuana), have previously shown vasodilator effects in several studies, a feature that makes them suitable for the generation of a potential treatment for hypertension. The mechanism underlying this vasodilator effect in arteries is still controversial. In this report, we explored how the synthetic cannabinoids ACPA (CB 1 -selective agonist) and JWH-133 (CB 2 -selective agonist) regulate the vascular tone of rat superior mesenteric arteries. To screen the expression of CB 1 (Cannabinoid receptor 1) and CB 2 (Cannabinoid receptor 2) receptors in arterial rings or isolated smooth muscle cells obtained from the artery, immunocytochemistry, immunohistochemistry, and confocal microscopy were performed. In addition, the effects on vascular tone induced by the two cannabinoids were tested in isometric tension experiments in rings obtained from superior mesenteric arteries. The participation of voltage and calcium-activated potassium channel of big conductance (BK Ca ) and the role of nitric oxide (NO) release on the vascular effects induced by ACPA and JWH-133 were tested. CB 1 and CB 2 receptors were highly expressed in the rat superior mesenteric artery, in both smooth muscle and endothelium. The vasodilation effect shown by ACPA was endothelium-dependent through a mechanism involving CB 1 receptors, BK Ca channel activation, and NO release; meanwhile, the vasodilator effect of JWH-133 was induced by the activation of CB 2 receptors located in smooth muscle and by a CB 2 receptor-independent mechanism inducing NO release. CB 1 and CB 2 receptor activation in superior mesenteric artery causes vasorelaxation by mechanisms involving BK Ca channels and NO release. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. Bilirubin Inhibits Neointima Formation and Vascular Smooth Muscle Cell Proliferation and Migration

    PubMed Central

    Peyton, Kelly J.; Shebib, Ahmad R.; Azam, Mohammad A.; Liu, Xiao-ming; Tulis, David A.; Durante, William

    2012-01-01

    Bilirubin is a heme metabolite generated by the concerted action of the enzymes heme oxygenase and biliverdin reductase. Although long considered a toxic byproduct of heme catabolism, recent preclinical, and clinical studies indicate the bilirubin exerts beneficial effects in the circulation. In the present study, we determined whether local administration of bilirubin attenuates neointima formation following injury of rat carotid arteries. In addition, the ability of bilirubin to regulate the proliferation and migration of human arterial smooth muscle cells (SMCs) was investigated. Local perivascular administration of bilirubin immediately following balloon injury of rat carotid arteries significantly attenuated neointima formation. Bilirubin-mediated inhibition of neointimal thickening was associated with a significant decrease in ERK activity and cyclin D1 and A protein expression, and an increase in p21 and p53 protein expression in injured blood vessels. Treatment of human aortic SMCs with bilirubin inhibited proliferation and migration in a concentration-dependent manner without affecting cell viability. In addition, bilirubin resulted in a concentration-dependent increase in the percentage of cells in the G0/G1 phase of the cell cycle and this was paralleled by a decrease in the fraction of cells in the S and G2M phases of the cell cycle. Finally, bilirubin had no effect on mitochondrial function and ATP content of vascular SMCs. In conclusion, these studies demonstrate that bilirubin inhibits neointima formation after arterial injury and this is associated with alterations in the expression of cell cycle regulatory proteins. Furthermore, bilirubin blocks proliferation and migration of human arterial SMCs and arrests SMCs in the G0/G1 phase of the cell cycle. Bilirubin represents an attractive therapeutic agent in treating occlusive vascular disease. PMID:22470341

  20. Vascular smooth muscle cells exhibit a progressive loss of rigidity with serial culture passaging.

    PubMed

    Dinardo, Carla Luana; Venturini, Gabriela; Omae, Samantha Vieira; Zhou, Enhua H; da Motta-Leal-Filho, Joaquim Maurício; Dariolli, Rafael; Krieger, José Eduardo; Alencar, Adriano Mesquita; Costa Pereira, Alexandre

    2012-01-01

    One drawback of in vitro cell culturing is the dedifferentiation process that cells experience. Smooth muscle cells (SMC) also change molecularly and morphologically with long term culture. The main objective of this study was to evaluate if culture passages interfere in vascular SMC mechanical behavior. SMC were obtained from five different porcine arterial beds. Optical magnetic twisting cytometry (OMTC) was used to characterize mechanically vascular SMC from different cultures in distinct passages and confocal microscopy/western blotting, to evaluate cytoskeleton and extracellular matrix proteins. We found that vascular SMC rigidity or viscoelastic complex modulus (G) decreases with progression of passages. A statistically significant negative correlation between G and passage was found in four of our five cultures studied. Phalloidin-stained SMC from higher passages exhibited lower mean signal intensity per cell (confocal microscopy) and quantitative western blotting analysis showed a decrease in collagen I content throughout passages. We concluded that vascular SMC progressively lose their stiffness with serial culture passaging. Thus, limiting the number of passages is essential for any experiment measuring viscoelastic properties of SMC in culture.

  1. Neurogenic vasoreactive response of human internal thoracic artery smooth muscle.

    PubMed

    Canver, C C; Cooler, S D; Saban, R

    1997-09-01

    The interaction between primary afferent neurons containing neuropeptides and the vascular smooth muscle is incompletely understood. To explore the function of perivascular afferent neurons and to determine whether they produce local effects on vascular smooth muscle cells, we investigated the effects of acute capsaicin and substance P administration in vitro on human internal thoracic arteries (ITA). Vessels were obtained from patients undergoing coronary bypass or from multiorgan transplant donors. Fourteen ITA segments (5 mm wide) were suspended as rings between two stainless-steel stirrups in water-jacketed (37 degrees C) tissue baths under 2.5 to 3 g of basal tension. The tissue baths contained 10 mL physiological salt solution (PSS) of the following composition (mM): NaCl, 119; KCl, 4.7; NaH2PO4, 1.0; MgCl2, 0.5; CaCl2, 2.5; NaHCO3, 25; and glucose, 11; aerated continuously with 95% O2 and 5% CO2. Peptidase inhibitors (phosphoramidon and captopril) were added to PSS to decrease peptide degradation. Mechanical responses were measured isometrically and recorded on a polygraph via isotonic force transducers. Vessels were preconstricted with submaximal concentrations of norepinephrine. After the tension had stabilized, substance P or capsaicin was added cumulatively to the tissue bath. At the end of the experiments, the viability of ITA was verified by its responses to endothelial-dependent (acetylcholine) and endothelial-independent (sodium nitroprusside) vasodilators. In the endothelium-intact ITA segments, substance P produced relaxation of ITA smooth muscle while it induced slight contraction when the ITA was devoid of its endothelium (P = 0.0585). The addition of capsaicin to human ITA primarily produced contractile effects on the developed smooth muscle force. The capsaicin-induced contraction of the ITA smooth muscle was independent of endothelial cell integrity, although contraction was greater in the endothelium-intact ITA segments (P = 0.0165). The

  2. Phenotypic modulation of smooth muscle cells during formation of neointimal thickenings following vascular injury.

    PubMed

    Thyberg, J

    1998-07-01

    Smooth muscle cells build up the media of mammalian arteries and constitute one of the principal cell types in atherosclerotic and restenotic lesions. Accordingly, they show a high degree of plasticity and are able to shift from a differentiated, contractile phenotype to a less differentiated, synthetic phenotype, and then back again. This modulation occurs as a response to vascular injury and includes a prominent structural reorganization with loss of myofilaments and formation of an extensive endoplasmic reticulum and a large Golgi complex. At the same time, the expression of cytoskeletal proteins and other gene products is altered. As a result, the cells lose their contractility and become able to migrate from the media to the intima, proliferate, and secrete extracellular matrix components, thereby contributing to the formation of intimal thickenings. The mechanisms behind this change in morphology and function of the smooth muscle cells are still incompletely understood. A crucial role has been ascribed to basement membrane proteins such as laminin and collagen type IV and adhesive proteins such as fibronectin. A significant role is also played by mitogenic proteins such as platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF). An improved knowledge of the regulation of smooth muscle differentiated properties represents an important part in the search for new methods of prevention and treatment of vascular disease.

  3. Loss of Notch3 Signaling in Vascular Smooth Muscle Cells Promotes Severe Heart Failure Upon Hypertension.

    PubMed

    Ragot, Hélène; Monfort, Astrid; Baudet, Mathilde; Azibani, Fériel; Fazal, Loubina; Merval, Régine; Polidano, Evelyne; Cohen-Solal, Alain; Delcayre, Claude; Vodovar, Nicolas; Chatziantoniou, Christos; Samuel, Jane-Lise

    2016-08-01

    Hypertension, which is a risk factor of heart failure, provokes adaptive changes at the vasculature and cardiac levels. Notch3 signaling plays an important role in resistance arteries by controlling the maturation of vascular smooth muscle cells. Notch3 deletion is protective in pulmonary hypertension while deleterious in arterial hypertension. Although this latter phenotype was attributed to renal and cardiac alterations, the underlying mechanisms remained unknown. To investigate the role of Notch3 signaling in the cardiac adaptation to hypertension, we used mice with either constitutive Notch3 or smooth muscle cell-specific conditional RBPJκ knockout. At baseline, both genotypes exhibited a cardiac arteriolar rarefaction associated with oxidative stress. In response to angiotensin II-induced hypertension, the heart of Notch3 knockout and SM-RBPJκ knockout mice did not adapt to pressure overload and developed heart failure, which could lead to an early and fatal acute decompensation of heart failure. This cardiac maladaptation was characterized by an absence of media hypertrophy of the media arteries, the transition of smooth muscle cells toward a synthetic phenotype, and an alteration of angiogenic pathways. A subset of mice exhibited an early fatal acute decompensated heart failure, in which the same alterations were observed, although in a more rapid timeframe. Altogether, these observations indicate that Notch3 plays a major role in coronary adaptation to pressure overload. These data also show that the hypertrophy of coronary arterial media on pressure overload is mandatory to initially maintain a normal cardiac function and is regulated by the Notch3/RBPJκ pathway. © 2016 American Heart Association, Inc.

  4. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders.

    PubMed

    Ringvold, H C; Khalil, R A

    2017-01-01

    Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca 2+ -dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca 2+ -dependent α, β, and γ, novel Ca 2+ -independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease. © 2017 Elsevier Inc. All rights reserved.

  5. [Vascular aging, arterial hypertension and physical activity].

    PubMed

    Schmidt-Trucksäss, A; Weisser, B

    2011-11-01

    The present review delineates the significance of intima-media-thickness, arterial stiffness and endothelial function for vascular aging. There is profound evidence for an increase in intima-media-thickness and vascular stiffness not only during healthy aging but induced also by cardiovascular risk factors. There is a central role of arterial hypertension for this progression in both structural factors. In addition, both parameters are strongly associated with cardiovascular risk. Endothelial function measured as postischemic flow-mediated vasodilatation is a functional parameter which is decreased both in healthy aging and by cardiovascular risk factors. Physical activity modifies the influence of aging and risk factors on endothelial function. A positive influence of endurance exercise on vascular stiffness and endothelial function has been demonstrated in numerous studies. In long-term studies, regular physical activity has been shown to reduce the progression of intima-media-thickness. Thus, arterial hypertension accelerates vascular aging, while physical activity has a positive influence on a variety of vascular parameters associated with vascular aging. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petri, Marcelo H.; Tellier, Céline; Michiels, Carine

    2013-11-15

    Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A{sub 2} is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels ofmore » different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.« less

  7. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahni, Abha; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555; Wang, Nadan

    2013-02-15

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reportedmore » that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease.« less

  8. Induction of apoptosis by pyrrolidinedithiocarbamate and N-acetylcysteine in vascular smooth muscle cells.

    PubMed

    Tsai, J C; Jain, M; Hsieh, C M; Lee, W S; Yoshizumi, M; Patterson, C; Perrella, M A; Cooke, C; Wang, H; Haber, E; Schlegel, R; Lee, M E

    1996-02-16

    Pyrrolidinedithiocarbamate (PDTC) and N-acetylcysteine (NAC) have been used as antioxidants to prevent apoptosis in lymphocytes, neurons, and vascular endothelial cells. We report here that PDTC and NAC induce apoptosis in rat and human smooth muscle cells. In rat aortic smooth muscle cells, PDTC induced cell shrinkage, chromatin condensation, and DNA strand breaks consistent with apoptosis. In addition, overexpression of Bcl-2 suppressed vascular smooth muscle cell death caused by PDTC and NAC. The viability of rat aortic smooth muscle cells decreased within 3 h of treatment with PDTC and was reduced to 30% at 12 h. The effect of PDTC and NAC on smooth muscle cells was not species specific because PDTC and NAC both caused dose-dependent reductions in viability in rat and human aortic smooth muscle cells. In contrast, neither PDTC nor NAC reduced viability in human aortic endothelial cells. The use of antioxidants to induce apoptosis in vascular smooth muscle cells may help prevent their proliferation in arteriosclerotic lesions.

  9. Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.

    PubMed

    Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W

    2014-12-01

    The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.

  10. Aryl Hydrocarbon Receptor Nuclear Translocator in Vascular Smooth Muscle Cells Is Required for Optimal Peripheral Perfusion Recovery.

    PubMed

    Borton, Anna Henry; Benson, Bryan L; Neilson, Lee E; Saunders, Ashley; Alaiti, M Amer; Huang, Alex Y; Jain, Mukesh K; Proweller, Aaron; Ramirez-Bergeron, Diana L

    2018-06-01

    Limb ischemia resulting from peripheral vascular disease is a common cause of morbidity. Vessel occlusion limits blood flow, creating a hypoxic environment that damages distal tissue, requiring therapeutic revascularization. Hypoxia-inducible factors (HIFs) are key transcriptional regulators of hypoxic vascular responses, including angiogenesis and arteriogenesis. Despite vascular smooth muscle cells' (VSMCs') importance in vessel integrity, little is known about their functional responses to hypoxia in peripheral vascular disease. This study investigated the role of VSMC HIF in mediating peripheral ischemic responses. We used Arnt SMKO mice with smooth muscle-specific deletion of aryl hydrocarbon receptor nuclear translocator (ARNT, HIF-1β), required for HIF transcriptional activity, in a femoral artery ligation model of peripheral vascular disease. Arnt SMKO mice exhibit impaired perfusion recovery despite normal collateral vessel dilation and angiogenic capillary responses. Decreased blood flow manifests in extensive tissue damage and hypoxia in ligated limbs of Arnt SMKO mice. Furthermore, loss of aryl hydrocarbon receptor nuclear translocator changes the proliferation, migration, and transcriptional profile of cultured VSMCs. Arnt SMKO mice display disrupted VSMC morphologic features and wrapping around arterioles and increased vascular permeability linked to decreased local blood flow. Our data demonstrate that traditional vascular remodeling responses are insufficient to provide robust peripheral tissue reperfusion in Arnt SMKO mice. In all, this study highlights HIF responses to hypoxia in arteriole VSMCs critical for the phenotypic and functional stability of vessels that aid in the recovery of blood flow in ischemic peripheral tissues. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  11. Brain Arterial Diameters as a Risk Factor for Vascular Events.

    PubMed

    Gutierrez, Jose; Cheung, Ken; Bagci, Ahmet; Rundek, Tatjana; Alperin, Noam; Sacco, Ralph L; Wright, Clinton B; Elkind, Mitchell S V

    2015-08-06

    Arterial luminal diameters are routinely used to assess for vascular disease. Although small diameters are typically considered pathological, arterial dilatation has also been associated with disease. We hypothesize that extreme arterial diameters are biomarkers of the risk of vascular events. Participants in the Northern Manhattan Study who had a time-of-flight magnetic resonance angiography were included in this analysis (N=1034). A global arterial Z-score, called the brain arterial remodeling (BAR) score, was obtained by averaging the measured diameters within each individual. Individuals with a BAR score <-2 SDs were considered to have the smallest diameters, individuals with a BAR score >-2 and <2 SDs had average diameters, and individuals with a BAR score >2 SDs had the largest diameters. All vascular events were recorded prospectively after the brain magnetic resonance imaging. Spline curves and incidence rates were used to test our hypothesis. The association of the BAR score with death (P=0.001), vascular death (P=0.02), any vascular event (P=0.05), and myocardial infarction (P=0.10) was U-shaped except for ischemic stroke (P=0.74). Consequently, incidence rates for death, vascular death, myocardial infarction, and any vascular event were higher in individuals with the largest diameters, whereas individuals with the smallest diameters had a higher incidence of death, vascular death, any vascular event, and ischemic stroke compared with individuals with average diameters. The risk of death, vascular death, and any vascular event increased at both extremes of brain arterial diameters. The pathophysiology linking brain arterial remodeling to systemic vascular events needs further research. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  12. Isolation of pulmonary artery smooth muscle cells from neonatal mice.

    PubMed

    Lee, Keng Jin; Czech, Lyubov; Waypa, Gregory B; Farrow, Kathryn N

    2013-10-19

    Pulmonary hypertension is a significant cause of morbidity and mortality in infants. Historically, there has been significant study of the signaling pathways involved in vascular smooth muscle contraction in PASMC from fetal sheep. While sheep make an excellent model of term pulmonary hypertension, they are very expensive and lack the advantage of genetic manipulation found in mice. Conversely, the inability to isolate PASMC from mice was a significant limitation of that system. Here we described the isolation of primary cultures of mouse PASMC from P7, P14, and P21 mice using a variation of the previously described technique of Marshall et al. that was previously used to isolate rat PASMC. These murine PASMC represent a novel tool for the study of signaling pathways in the neonatal period. Briefly, a slurry of 0.5% (w/v) agarose + 0.5% iron particles in M199 media is infused into the pulmonary vascular bed via the right ventricle (RV). The iron particles are 0.2 μM in diameter and cannot pass through the pulmonary capillary bed. Thus, the iron lodges in the small pulmonary arteries (PA). The lungs are inflated with agarose, removed and dissociated. The iron-containing vessels are pulled down with a magnet. After collagenase (80 U/ml) treatment and further dissociation, the vessels are put into a tissue culture dish in M199 media containing 20% fetal bovine serum (FBS), and antibiotics (M199 complete media) to allow cell migration onto the culture dish. This initial plate of cells is a 50-50 mixture of fibroblasts and PASMC. Thus, the pull down procedure is repeated multiple times to achieve a more pure PASMC population and remove any residual iron. Smooth muscle cell identity is confirmed by immunostaining for smooth muscle myosin and desmin.

  13. Single Nisoldipine-Sensitive Calcium Channels in Smooth Muscle Cells Isolated from Rabbit Mesenteric Artery

    NASA Astrophysics Data System (ADS)

    Worley, Jennings F.; Deitmer, Joachim W.; Nelson, Mark T.

    1986-08-01

    Single smooth muscle cells were enzymatically isolated from the rabbit mesenteric artery. At physiological levels of external Ca, these cells were relaxed and contracted on exposure to norepinephrine, caffeine, or high levels of potassium. The patch-clamp technique was used to measure unitary currents through single channels in the isolated cells. Single channels were selective for divalent cations and exhibited two conductance levels, 8 pS and 15 pS. Both types of channels were voltage-dependent, and channel activity occurred at potentials positive to -40 mV. The activity of both channel types was almost completely inhibited by 50 nM nisoldipine. These channels appear to be the pathways for voltage-dependent Ca influx in vascular smooth muscle and may be the targets of the clinically used dihydropyridines.

  14. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo.

    PubMed

    Torella, Daniele; Iaconetti, Claudio; Catalucci, Daniele; Ellison, Georgina M; Leone, Angelo; Waring, Cheryl D; Bochicchio, Angela; Vicinanza, Carla; Aquila, Iolanda; Curcio, Antonio; Condorelli, Gianluigi; Indolfi, Ciro

    2011-09-30

    MicroRNA (miR)-1 and -133 play a crucial role in skeletal and cardiac muscle biology and pathophysiology. However, their expression and regulation in vascular cell physiology and disease is currently unknown. The aim of the present study was to evaluate the role, if any, of miR-1 and miR-133 in vascular smooth muscle cell (VSMC) phenotypic switch in vitro and in vivo. We demonstrate here that miR-133 is robustly expressed in vascular smooth muscle cells (VSMCs) in vitro and in vivo, whereas miR-1 vascular levels are negligible. miR-133 has a potent inhibitory role on VSMC phenotypic switch in vitro and in vivo, whereas miR-1 does not have any relevant effect per se. miR-133 expression is regulated by extracellular signal-regulated kinase 1/2 activation and is inversely correlated with VSMC growth. Indeed, miR-133 decreases when VSMCs are primed to proliferate in vitro and following vascular injury in vivo, whereas it increases when VSMCs are coaxed back to quiescence in vitro and in vivo. miR-133 loss- and gain-of-function experiments show that miR-133 plays a mechanistic role in VSMC growth. Accordingly, adeno-miR-133 reduces but anti-miR-133 exacerbates VSMC proliferation and migration in vitro and in vivo. miR-133 specifically suppresses the transcription factor Sp-1 expression in vitro and in vivo and through Sp-1 repression regulates smooth muscle gene expression. Our data show that miR-133 is a key regulator of vascular smooth muscle cell phenotypic switch in vitro and in vivo, suggesting its potential therapeutic application for vascular diseases.

  15. Liver graft vascular variant with 3 extra-hepatic arteries.

    PubMed

    Martins, Paulo N

    2010-06-01

    Vascular anatomy of the liver is varied, and the "standard" anatomy is seen in 55%-80% of cases. It is very important that extrahepatic arteries are identified precisely at the time of graft procurement to avoid injuries that might compromise the liver function. In the present case the liver donor had the vascular anatomy of Michels type VII, e.g. a hepatic artery originating from the celiac trunk and going to the left lobe, an accessory left hepatic artery coming from the left gastric artery, and a replaced right hepatic artery coming from the superior mesenteric artery. This pattern of vascular supply is uncommon, representing less than 5% of cases. The replaced hepatic artery was reconstructed in the back-table with polypropylene suture 7.0 by connecting it to the stump of the splenic artery, and the celiac trunk of the graft was anastomosed to the recipient common hepatic artery.

  16. Role of vascular smooth muscle PPARγ in regulating AT1 receptor signaling and angiotensin II-dependent hypertension.

    PubMed

    Carrillo-Sepulveda, Maria Alicia; Keen, Henry L; Davis, Deborah R; Grobe, Justin L; Sigmund, Curt D

    2014-01-01

    Peroxisome proliferator activated receptor γ (PPARγ) has been reported to play a protective role in the vasculature; however, the underlying mechanisms involved are not entirely known. We previously showed that vascular smooth muscle-specific overexpression of a dominant negative human PPARγ mutation in mice (S-P467L) leads to enhanced myogenic tone and increased angiotensin-II-dependent vasoconstriction. S-P467L mice also exhibit increased arterial blood pressure. Here we tested the hypotheses that a) mesenteric smooth muscle cells isolated from S-P467L mice exhibit enhanced angiotensin-II AT1 receptor signaling, and b) the increased arterial pressure of S-P467L mice is angiotensin-II AT1 receptor dependent. Phosphorylation of mitogen-activated protein/extracellular signal-regulated kinase (ERK1/2) was robustly increased in mesenteric artery smooth muscle cell cultures from S-P467L in response to angiotensin-II. The increase in ERK1/2 activation by angiotensin-II was blocked by losartan, a blocker of AT1 receptors. Angiotensin-II-induced ERK1/2 activation was also blocked by Tempol, a scavenger of reactive oxygen species, and correlated with increased Nox4 protein expression. To investigate whether endogenous renin-angiotensin system activity contributes to the elevated arterial pressure in S-P467L, non-transgenic and S-P467L mice were treated with the AT1 receptor blocker, losartan (30 mg/kg per day), for 14-days and arterial pressure was assessed by radiotelemetry. At baseline S-P467L mice showed a significant increase of systolic arterial pressure (142.0 ± 10.2 vs 129.1 ± 3.0 mmHg, p<0.05). Treatment with losartan lowered systolic arterial pressure in S-P467L (132.2 ± 6.9 mmHg) to a level similar to untreated non-transgenic mice. Losartan also lowered arterial pressure in non-transgenic (113.0 ± 3.9 mmHg) mice, such that there was no difference in the losartan-induced depressor response between groups (-13.53 ± 1.39 in S-P467L vs -16.16 ± 3.14 mmHg in

  17. A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions.

    PubMed

    van Engeland, Nicole C A; Pollet, Andreas M A O; den Toonder, Jaap M J; Bouten, Carlijn V C; Stassen, Oscar M J A; Sahlgren, Cecilia M

    2018-05-29

    Cell signalling and mechanics influence vascular pathophysiology and there is an increasing demand for in vitro model systems that enable examination of signalling between vascular cells under hemodynamic conditions. Current 3D vessel wall constructs do not recapitulate the mechanical conditions of the native tissue nor do they allow examination of cell-cell interactions under relevant hemodynamic conditions. Here, we describe a 3D microfluidic chip model of arterial endothelial and smooth muscle cells where cellular organization, composition and interactions, as well as the mechanical environment of the arterial wall are mimicked. The hemodynamic EC-VSMC-signalling-on-a-chip consists of two parallel polydimethylsiloxane (PDMS) cell culture channels, separated by a flexible, porous PDMS membrane, mimicking the porosity of the internal elastic lamina. The hemodynamic EC-VSMC-signalling-on-a-chip allows co-culturing of human aortic endothelial cells (ECs) and human aortic vascular smooth muscle cells (VSMCs), separated by a porous membrane, which enables EC-VSMC interaction and signalling, crucial for the development and homeostasis of the vessel wall. The device allows real time cell imaging and control of hemodynamic conditions. The culture channels are surrounded on either side by vacuum channels to induce cyclic strain by applying cyclic suction, resulting in mechanical stretching and relaxation of the membrane in the cell culture channels. The blood flow is mimicked by creating a flow of medium at the EC side. Vascular cells remain viable during prolonged culturing, exhibit physiological morphology and organization and make cell-cell contact. During dynamic culturing of the device with a shear stress of 1-1.5 Pa and strain of 5-8%, VSMCs align perpendicular to the given strain in the direction of the flow and EC adopt a cobblestone morphology. To our knowledge, this is the first report on the development of a microfluidic device, which enables a co-culture of

  18. Propylthiouracil, independent of its antithyroid effect, promotes vascular smooth muscle cells differentiation via PTEN induction.

    PubMed

    Chen, Wei-Jan; Pang, Jong-Hwei S; Lin, Kwang-Huei; Lee, Dany-Young; Hsu, Lung-An; Kuo, Chi-Tai

    2010-01-01

    Propylthiouracil (PTU), independent of its antithyroid effect, is recently found to have an antiatherosclerotic effect. The aim of this study is to determine the impact of PTU on phenotypic modulation of vascular smooth muscle cells (VSMCs), as phenotypic modulation may contribute to the growth of atherosclerotic lesions and neointimal formation after arterial injury. Propylthiouracil reduced neointimal formation in balloon-injured rat carotid arteries. In vitro, PTU may convert VSMCs from a serum-induced dedifferentiation state to a differentiated state, as indicated by a spindle-shaped morphology and an increase in the expression of SMC differentiation marker contractile proteins, including calponin and smooth muscle (SM)-myosin heavy chain (SM-MHC). Transient transfection studies in VSMCs demonstrated that PTU induced the activity of SMC marker genes (calponin and SM-MHC) promoters, indicating that PTU up-regulates these genes expression predominantly at the transcriptional level. Furthermore, PTU enhanced the expression of PTEN and inhibition of PTEN by siRNA knockdown blocked PTU-induced activation of contractile proteins expression and promoter activity. In the rat carotid injury model, PTU reversed the down-regulation of contractile proteins and up-regulated PTEN in the neointima induced by balloon injury. Propylthiouracil promotes VSMC differentiation, at lest in part, via induction of the PTEN-mediated pathway. These findings suggest a possible mechanism by which PTU may contribute to its beneficial effects on atherogenesis and neointimal formation after arterial injury.

  19. Cerebrospinal fluid from subarachnoid haemorrhage patients causes excessive oxidative metabolism compared to vascular smooth muscle force generation.

    PubMed

    Pyne, G J; Cadoux-Hudson, T A; Clark, J F

    2001-01-01

    Cerebrospinal fluid (CSF) from subarachnoid haemorrhage (SAH) patients can stimulate vascular smooth muscle to generate force in vitro. CSF from SAH patients suffering from delayed ischaemic neurological deficits due to cerebral vasospasm can generate near maximal force in vitro and previous experiments have ascribed this generation of force to be a calcium mediated event. The intracellular calcium concentration has been demonstrated to rise during the vasospastic process. Calcium also stimulates oxidative metabolism as does adenosine diphosphate (ADP), the product of adenosine triphosphate (ATP) hydrolysis. Significant alteration in high energy metabolites such as ATP, ADP and phosphocreatine have also been demonstrated in various models of SAH mediated vasospasm. Vascular smooth muscle predominantly uses oxidative metabolism for force generation and reserves glycolytic metabolism for ion homeostasis. A decrease in oxidative metabolism during force generation would imply failing mitochondria and increased glycolytic high-energy phosphate supply. Increased oxidative metabolism would imply a decreased efficiency of the contractile apparatus or mitochondria. The aim of this study was to see if SAH CSF stimulation of porcine carotid artery oxidative metabolism was altered during force generation when compared with incremental calcium stimulation with potassium chloride depolarisation. CSF from patients (n = 10) who had subarachnoid haemorrhage stimulated force generation but with a significant 'right shift' in oxygen consumption. This 'right shift' is indicative of an increased energy cost for contractile work. These results suggest that vascular smooth muscle contractile apparatus, when stimulated by subarachnoid cerebrospinal fluid, is consuming excess adenosine triphosphate during force generation.

  20. Kv channel subunits that contribute to voltage-gated K+ current in renal vascular smooth muscle.

    PubMed

    Fergus, Daniel J; Martens, Jeffrey R; England, Sarah K

    2003-03-01

    The rat renal arterial vasculature displays differences in K(+) channel current phenotypes along its length. Small arcuate to cortical radial arteries express a delayed rectifier phenotype, while the predominant Kv current in larger arcuate and interlobar arteries is composed of both transient and sustained components. We sought to determine whether Kvalpha subunits in the rat renal interlobar and arcuate arteries form heterotetramers, which may account for the unique currents, and whether modulatory Kvbeta subunits are present in renal vascular smooth muscle cells. RT-PCR indicated the presence of several different Kvalpha subunit isoform transcripts. Co-immunoprecipitation with immunoblotting and immunohistochemical evidence suggests that a portion of the K(+) current phenotype is a heteromultimer containing delayed-rectifier Kv1.2 and A-type Kv1.4 channel subunits. RT-PCR and immunoblot analyses also demonstrated the presence of both Kvbeta1.2 and Kvbeta1.3 in renal arteries. These results suggest that heteromultimeric formation of Kvalpha subunits and the presence of modulatory Kvbeta subunits are important factors in mediating Kv currents in the renal microvasculature and suggest a potentially critical role for these channel subunits in blood pressure regulation.

  1. Urokinase Receptor Counteracts Vascular Smooth Muscle Cell Functional Changes Induced by Surface Topography

    PubMed Central

    Kiyan, Yulia; Kurselis, Kestutis; Kiyan, Roman; Haller, Hermann; Chichkov, Boris N.; Dumler, Inna

    2013-01-01

    Current treatments for human coronary artery disease necessitate the development of the next generations of vascular bioimplants. Recent reports provide evidence that controlling cell orientation and morphology through topographical patterning might be beneficial for bioimplants and tissue engineering scaffolds. However, a concise understanding of cellular events underlying cell-biomaterial interaction remains missing. In this study, applying methods of laser material processing, we aimed to obtain useful markers to guide in the choice of better vascular biomaterials. Our data show that topographically treated human primary vascular smooth muscle cells (VSMC) have a distinct differentiation profile. In particular, cultivation of VSMC on the microgrooved biocompatible polymer E-shell induces VSMC modulation from synthetic to contractile phenotype and directs formation and maintaining of cell-cell communication and adhesion structures. We show that the urokinase receptor (uPAR) interferes with VSMC behavior on microstructured surfaces and serves as a critical regulator of VSMC functional fate. Our findings suggest that microtopography of the E-shell polymer could be important in determining VSMC phenotype and cytoskeleton organization. They further suggest uPAR as a useful target in the development of predictive models for clinical VSMC phenotyping on functional advanced biomaterials. PMID:23843899

  2. Arterial complications of vascular Ehlers-Danlos syndrome.

    PubMed

    Eagleton, Matthew J

    2016-12-01

    Vascular Ehlers-Danlos syndrome (EDS) is a relatively rare genetic syndrome that occurs owing to disorders in the metabolism of fibrillary collagen. These defects affect the soft connective tissues resulting in abnormalities in the skin, joints, hollow organs, and blood vessels. Patients with these defects frequently present at a young age with spontaneous arterial complications involving the medium-sized arteries. Complications involving the hollow organs, such as spontaneous colonic perforation, are observed as well. Given the fragility of the soft tissue, open and endovascular intervention on patients with vascular EDS is fraught with high complication rates. A PubMed search was performed to identify manuscripts published related to vascular EDS. This search included more than 747 articles. These findings were cross-referenced using key terms, including endovascular, embolization, surgery, genetics, pathophysiology, connective tissue disorders, vascular complications, systematic review, type III collagen, and COL3A1. The references in key articles and review articles were evaluated for additional resources not identified in the PubMed search. Care must be taken to balance the risk of intervention vs the risk of continued observation. Life-threatening hemorrhage, however, mandates intervention. With careful, altered approaches to tissue handling, endovascular approaches may provide a safer option for managing the arterial complications observed in patients with vascular EDS. Additional hope may also be found in the use of pharmacologic agents that reduce the incidence and severity of the arterial complications. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  3. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis.

    PubMed

    Clarke, Murray C H; Figg, Nichola; Maguire, Janet J; Davenport, Anthony P; Goddard, Martin; Littlewood, Trevor D; Bennett, Martin R

    2006-09-01

    Vascular smooth muscle cell (VSMC) apoptosis occurs in many arterial diseases, including aneurysm formation, angioplasty restenosis and atherosclerosis. Although VSMC apoptosis promotes vessel remodeling, coagulation and inflammation, its precise contribution to these diseases is unknown, given that apoptosis frequently accompanies vessel injury or alterations to flow. To study the direct consequences of VSMC apoptosis, we generated transgenic mice expressing the human diphtheria toxin receptor (hDTR, encoded by HBEGF) from a minimal Tagln (also known as SM22alpha) promoter. Despite apoptosis inducing loss of 50-70% of VSMCs, normal arteries showed no inflammation, reactive proliferation, thrombosis, remodeling or aneurysm formation. In contrast, VSMC apoptosis in atherosclerotic plaques of SM22alpha-hDTR Apoe-/- mice induced marked thinning of fibrous cap, loss of collagen and matrix, accumulation of cell debris and intense intimal inflammation. We conclude that VSMC apoptosis is 'silent' in normal arteries, which have a large capacity to withstand cell loss. In contrast, VSMC apoptosis alone is sufficient to induce features of plaque vulnerability in atherosclerosis. SM22alpha-hDTR Apoe-/- mice may represent an important new model to test agents proposed to stabilize atherosclerotic plaques.

  4. Arterial grafts exhibiting unprecedented cellular infiltration and remodeling in vivo: the role of cells in the vascular wall.

    PubMed

    Row, Sindhu; Peng, Haofan; Schlaich, Evan M; Koenigsknecht, Carmon; Andreadis, Stelios T; Swartz, Daniel D

    2015-05-01

    To engineer and implant vascular grafts in the arterial circulation of a pre-clinical animal model and assess the role of donor medial cells in graft remodeling and function. Vascular grafts were engineered using Small Intestinal Submucosa (SIS)-fibrin hybrid scaffold and implanted interpositionally into the arterial circulation of an ovine model. We sought to demonstrate implantability of SIS-Fibrin based grafts; examine the remodeling; and determine whether the presence of vascular cells in the medial wall was necessary for cellular infiltration from the host and successful remodeling of the implants. We observed no occlusions or anastomotic complications in 18 animals that received these grafts. Notably, the grafts exhibited unprecedented levels of host cell infiltration that was not limited to the anastomotic sites but occurred through the lumen as well as the extramural side, leading to uniform cell distribution. Incoming cells remodeled the extracellular matrix and matured into functional smooth muscle cells as evidenced by expression of myogenic markers and development of vascular reactivity. Interestingly, tracking the donor cells revealed that their presence was beneficial but not necessary for successful grafting. Indeed, the proliferation rate and number of donor cells decreased over time as the vascular wall was dominated by host cells leading to significant remodeling and development of contractile function. These results demonstrate that SIS-Fibrin grafts can be successfully implanted into the arterial circulation of a clinically relevant animal model, improve our understanding of vascular graft remodeling and raise the possibility of engineering mural cell-free arterial grafts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Functional Constituents of a Local Serotonergic System, Intrinsic to the Human Coronary Artery Smooth Muscle Cells

    PubMed Central

    Baskar, Kannan; Sur, Swastika; Selvaraj, Vithyalakashmi; Agrawal, Devendra K.

    2015-01-01

    Human coronary artery smooth muscle cells (HCASMCs) play an important role in the pathogenesis of coronary atherosclerosis and coronary artery diseases (CAD). Serotonin is a mediator known to produce vascular smooth muscle cell (VSMC) mitogenesis and contribute to coronary atherosclerosis. We hypothesize that the human coronary artery smooth muscle cell possesses certain functional constituents of the serotonergic system such as: tryptophan hydroxylase and serotonin transporter. Our aim was to examine the presence of functional tryptophan hydroxylase-1 (TPH1) and serotonin transporter (SERT) in HCASMCs. The mRNA transcripts by qPCR and protein expression by Western blot of TPH1 and SERT were examined. The specificity and accuracy of the primers were verified using DNA gel electrophoresis and sequencing of qPCR products. The functionality of SERT was examined using a fluorescence dye-based serotonin transporter assay. The enzymatic activity of TPH was evaluated using UPLC. The HCASMCs expressed both mRNA transcripts and protein of SERT and TPH. The qPCR showed a single melt curve peak for both transcripts and in sequence analysis the amplicons were aligned with the respective genes. SERT and TPH enzymatic activity was present in the HCASMCs. Taken together, both TPH and SERT are functionally expressed in HCASMCs. These findings are novel and represent an initial step in examining the clinical relevance of the serotonergic system in HCASMCs and its role in the pathogenesis of coronary atherosclerosis and CAD. PMID:25861735

  6. Myosin light chain kinase controls voltage-dependent calcium channels in vascular smooth muscle.

    PubMed

    Martinsen, A; Schakman, O; Yerna, X; Dessy, C; Morel, N

    2014-07-01

    The Ca(2+)-dependent kinase myosin light chain kinase (MLCK) is the activator of smooth muscle contraction. In addition, it has been reported to be involved in Ca(2+) channel regulation in cultured cells, and we previously showed that the MLCK inhibitor ML-7 decreases arginine vasopressin (AVP)-induced Ca(2+) influx in rat aorta. This study was designed to investigate whether MLCK is involved in Ca(2+) regulation in resistance artery smooth muscle cell, which plays a major role in the control of blood pressure. As ML compounds were shown to have off-target effects, MLCK was downregulated by transfection with a small interfering RNA targeting MLCK (MLCK-siRNA) in rat small resistance mesenteric artery (RMA) and in the rat embryonic aortic cell line A7r5. Noradrenaline-induced contraction and Ca(2+) signal were significantly depressed in MLCK-siRNA compared to scramble-siRNA-transfected RMA. Contraction and Ca(2+) signal induced by high KCl and voltage-activated Ca(2+) current were also significantly decreased in MLCK-siRNA-transfected RMA, suggesting that MLCK depletion modifies voltage-operated Ca(2+) channels. KCl- and AVP-induced Ca(2+) signals and voltage-activated Ca(2+) current were decreased in MLCK-depleted A7r5 cells. Eventually, real-time quantitative PCR analysis indicated that in A7r5, MLCK controlled mRNA expression of CaV1.2 (L-type) and CaV3.1 (T-type) voltage-dependent Ca(2+) channels. Our results suggest that MLCK controls the transcription of voltage-dependent Ca(2+) channels in vascular smooth muscle cells.

  7. New aspects of vascular remodelling: the involvement of all vascular cell types.

    PubMed

    McGrath, John C; Deighan, Clare; Briones, Ana M; Shafaroudi, Majid Malekzadeh; McBride, Melissa; Adler, Jeremy; Arribas, Silvia M; Vila, Elisabet; Daly, Craig J

    2005-07-01

    Conventionally, the architecture of arteries is based around the close-packed smooth muscle cells and extracellular matrix. However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. A new dynamic picture has emerged of blood vessels in a constant state of self-maintenance. Recent work raises fundamental questions about the cellular heterogeneity of arteries and the time course and triggering of normal and pathological remodelling. A common denominator emerging in hypertensive remodelling is an early increase in adventitial cell density suggesting that adventitial cells drive remodelling and may initiate subsequent changes such as re-arrangement of smooth muscle cells and extracellular matrix. The organization of vascular smooth muscle cells follows regular arrangements that can be modelled mathematically. In hypertension, new patterns can be quantified in these terms and give insights to how structure affects function. As with smooth muscle, little is known about the organization of the vascular endothelium, or its role in vascular remodelling. Current observations suggest that there may be a close relationship between the helical organization of smooth muscle cells and the underlying pattern of endothelial cells. The function of myoendothelial connections is a topic of great current interest and may relate to the structure of the internal elastic lamina through which the connections must pass. In hypertensive remodelling this must present an organizational challenge. The objective of this paper is to show how the functions of blood vessels depend on their architecture and a continuous interaction of different cell types and extracellular proteins.

  8. Non-vascular smooth muscle cells in the human choroid: distribution, development and further characterization

    PubMed Central

    May, Christian Albrecht

    2005-01-01

    To characterize further non-vascular smooth muscle cells (NVSMC) in the choroid of the human eye, extensive morphological studies were performed including a three-dimensional distribution of NVSMC in the adult human eye and their appearance during development. Whole mounts and sections through the choroid and sclera of eyes of 42 human donors (between the 13th week of gestation and 89 years of age) were stained with antibodies against smooth muscle actin and other markers for smooth muscle cells. On the basis of their morphological localization, three groups of NVSMC could be distinguished in the adult eyes: (a) a semicircular arrangement of NVSMC in the suprachoroid and inner sclera, around the entry of posterior ciliary arteries and nerves; (b) NVSMC parallel to the vessels in the posterior eye segment between the point of entry of the posterior ciliary arteries and the point of exit of the vortex veins; and (c) a dense plaque-like arrangement of NVSMC in the suprachoroid, overlying the foveal region. The last of these groups showed most pronounced interindividual differences. During development, the first NVSMC to be observed at the 20th week of gestation belonged to group b. A complete NVSMC network was first observed in a 6-year-old donor eye. All three groups stained positive for smoothelin, caldesmon and calponin in all localizations. The NVSMC show a distinct distribution that might reflect different aspects of their function in the choroid and suprachoroid. All cells could be histochemically characterized as truly contractile. PMID:16191166

  9. Loss of Notch2 and Notch3 in vascular smooth muscle causes patent ductus arteriosus.

    PubMed

    Baeten, Jeremy T; Jackson, Ashley R; McHugh, Kirk M; Lilly, Brenda

    2015-12-01

    The overlapping roles of the predominant Notch receptors in vascular smooth muscle cells, Notch2 and Notch3, have not been clearly defined in vivo. In this study, we use a smooth muscle-specific deletion of Notch2 together with a global Notch3 deletion to produce mice with combinations of mutant and wild-type Notch2/3 alleles in vascular smooth muscle cells. Mice with complete loss of Notch3 and smooth muscle-expressed Notch2 display late embryonic lethality and subcutaneous hemorrhage. Mice without smooth muscle-Notch2 and only one wild-type copy of Notch3 die within one day of birth and present with vascular defects, most notably patent ductus arteriosus (DA) and aortic dilation. These defects were associated with decreased expression of contractile markers in both the DA and aorta. These results demonstrate that Notch2 and Notch3 have overlapping roles in promoting development of vascular smooth muscle cells, and together contribute to functional closure of the DA. © 2015 Wiley Periodicals, Inc.

  10. Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging.

    PubMed

    Sehgel, Nancy L; Sun, Zhe; Hong, Zhongkui; Hunter, William C; Hill, Michael A; Vatner, Dorothy E; Vatner, Stephen F; Meininger, Gerald A

    2015-02-01

    Hypertension and aging are both recognized to increase aortic stiffness, but their interactions are not completely understood. Most previous studies have attributed increased aortic stiffness to changes in extracellular matrix proteins that alter the mechanical properties of the vascular wall. Alternatively, we hypothesized that a significant component of increased vascular stiffness in hypertension is due to changes in the mechanical and adhesive properties of vascular smooth muscle cells, and that aging would augment the contribution from vascular smooth muscle cells when compared with the extracellular matrix. Accordingly, we studied aortic stiffness in young (16-week-old) and old (64-week-old) spontaneously hypertensive rats and Wistar-Kyoto wild-type controls. Systolic and pulse pressures were significantly increased in young spontaneously hypertensive rats when compared with young Wistar-Kyoto rats, and these continued to rise in old spontaneously hypertensive rats when compared with age-matched controls. Excised aortic ring segments exhibited significantly greater elastic moduli in both young and old spontaneously hypertensive rats versus Wistar-Kyoto rats. were isolated from the thoracic aorta, and stiffness and adhesion to fibronectin were measured by atomic force microscopy. Hypertension increased both vascular smooth muscle cell stiffness and vascular smooth muscle cell adhesion, and these increases were both augmented with aging. By contrast, hypertension did not affect histological measures of aortic collagen and elastin, which were predominantly changed by aging. These findings support the concept that stiffness and adhesive properties of vascular smooth muscle cells are novel mechanisms contributing to the increased aortic stiffness occurring with hypertension superimposed on aging. © 2014 American Heart Association, Inc.

  11. Transglutaminase-dependent RhoA activation and depletion by serotonin in vascular smooth muscle cells.

    PubMed

    Guilluy, Christophe; Rolli-Derkinderen, Malvyne; Tharaux, Pierre-Louis; Melino, Gerry; Pacaud, Pierre; Loirand, Gervaise

    2007-02-02

    The small G protein RhoA plays a major role in several vascular processes and cardiovascular disorders. Here we analyze the mechanisms of RhoA regulation by serotonin (5-HT) in arterial smooth muscle. 5-HT (0.1-10 microM) induced activation of RhoA followed by RhoA depletion at 24-72 h. Inhibition of 5-HT1 receptors reduced the early phase of RhoA activation but had no effect on 5-HT-induced delayed RhoA activation and depletion, which were suppressed by the 5-HT transporter inhibitor fluoxetine and the transglutaminase inhibitor monodansylcadaverin and in type 2 transglutaminase-deficient smooth muscle cells. Coimmunoprecipitations demonstrated that 5-HT associated with RhoA both in vitro and in vivo. This association was calcium-dependent and inhibited by fluoxetine and monodansylcadaverin. 5-HT promotes the association of RhoA with the E3 ubiquitin ligase Smurf1, and 5-HT-induced RhoA depletion was inhibited by the proteasome inhibitor MG132 and the RhoA inhibitor Tat-C3. Simvastatin, the Rho kinase inhibitor Y-27632, small interfering RNA-mediated RhoA gene silencing, and long-term 5-HT stimulation induced Akt activation. In contrast, inhibition of 5-HT-mediated RhoA degradation by MG132 prevented 5-HT-induced Akt activation. Long-term 5-HT stimulation also led to the inhibition of the RhoA/Rho kinase component of arterial contraction. Our data provide evidence that 5-HT, internalized through the 5-HT transporter, is transamidated to RhoA by transglutaminase. Transamidation of RhoA leads to RhoA activation and enhanced proteasomal degradation, which in turn is responsible for Akt activation and contraction inhibition. The observation of transamidation of 5-HT to RhoA in pulmonary artery of hypoxic rats suggests that this process could participate in pulmonary artery remodeling and hypertension.

  12. Brain cytoplasmic RNA 1 suppresses smooth muscle differentiation and vascular development in mice.

    PubMed

    Wang, Yung-Chun; Chuang, Ya-Hui; Shao, Qiang; Chen, Jian-Fu; Chen, Shi-You

    2018-04-13

    The cardiovascular system develops during the early stages of embryogenesis, and differentiation of smooth muscle cells (SMCs) is essential for that process. SMC differentiation is critically regulated by transforming growth factor (TGF)-β/SMAD family member 3 (SMAD3) signaling, but other regulators may also play a role. For example, long noncoding RNAs (lncRNAs) regulate various cellular activities and events, such as proliferation, differentiation, and apoptosis. However, whether long noncoding RNAs also regulate SMC differentiation remains largely unknown. Here, using the murine cell line C3H10T1/2, we found that brain cytoplasmic RNA 1 (BC1) is an important regulator of SMC differentiation. BC1 overexpression suppressed, whereas BC1 knockdown promoted, TGF-β-induced SMC differentiation, as indicated by altered cell morphology and expression of multiple SMC markers, including smooth muscle α-actin (αSMA), calponin, and smooth muscle 22α (SM22α). BC1 appeared to block SMAD3 activity and inhibit SMC marker gene transcription. Mechanistically, BC1 bound to SMAD3 via RNA SMAD-binding elements (rSBEs) and thus impeded TGF-β-induced SMAD3 translocation to the nucleus. This prevented SMAD3 from binding to SBEs in SMC marker gene promoters, an essential event in SMC marker transcription. In vivo , BC1 overexpression in mouse embryos impaired vascular SMC differentiation, leading to structural defects in the artery wall, such as random breaks in the elastic lamina, abnormal collagen deposition on SM fibers, and disorganized extracellular matrix proteins in the media of the neonatal aorta. Our results suggest that BC1 is a suppressor of SMC differentiation during vascular development. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Effects of Gingko biloba extract (EGb 761) on vascular smooth muscle cell calcification induced by β-glycerophosphate.

    PubMed

    Li, En-Gang; Tian, Jun; Xu, Zhong-Hua

    2016-01-01

    To investigate the effects of Gingko biloba extract (EGb 761) on calcification induced by β-glycerophosphate in rat aortic vascular smooth muscle cells. Rat aortic vascular smooth muscle cells were cultured with various concentrations of EGb 761 and β-glycerophosphate for 7 days. Calcium content in the cells, alkaline phosphatase activity, cell protein content, NF-κB activation, and reactive oxygen species production were assayed, respectively. The calcium depositions of vascular smooth muscle cells of the β-glycerophosphate group were significantly higher than those of the control group (p < 0.01), and were inhibited by EGb 761 in a concentration-dependent manner (p < 0.05). Data showed β-glycerophosphate induced the enhanced expression of alkaline phosphatase, up-regulated the NF-κB activity and increased reactive oxygen species production of vascular smooth muscle cells while these decreased when administrated with EGb 761(p < 0.05). EGb 761 significantly reduced deposition of calcium induced by β-glycerophosphate in rat aortic vascular smooth muscle cells. It not only reduced the deposition of calcium, but also inhibited osteogenic transdifferentiation, which may be associated with decreasing expression of alkaline phosphatase, down-regulating the NF-κB activity, and reducing reactive oxygen species production of vascular smooth muscle cells, and may have the potential to serve as a role for vascular calcification in clinical situations.

  14. miR-22 Is a Novel Mediator of Vascular Smooth Muscle Cell Phenotypic Modulation and Neointima Formation.

    PubMed

    Yang, Feng; Chen, Qishan; He, Shiping; Yang, Mei; Maguire, Eithne Margaret; An, Weiwei; Afzal, Tayyab Adeel; Luong, Le Anh; Zhang, Li; Xiao, Qingzhong

    2018-04-24

    MicroRNA-22 (miR-22) has recently been reported to play a regulatory role during vascular smooth muscle cell (VSMC) differentiation from stem cells, but little is known about its target genes and related pathways in mature VSMC phenotypic modulation or its clinical implication in neointima formation following vascular injury. We applied a wire-injury mouse model, and local delivery of AgomiR-22 or miR-22 inhibitor, as well, to explore the therapeutic potential of miR-22 in vascular diseases. Furthermore, normal and diseased human femoral arteries were harvested, and various in vivo, ex vivo, and in vitro models of VSMC phenotype switching were conducted to examine miR-22 expression during VSMC phenotype switching. Expression of miR-22 was closely regulated during VSMC phenotypic modulation. miR-22 overexpression significantly increased expression of VSMC marker genes and inhibited VSMC proliferation and migration, whereas the opposite effect was observed when endogenous miR-22 was knocked down. As expected, 2 previously reported miR-22 target genes, MECP2 (methyl-CpG binding protein 2) and histone deacetylase 4, exhibited a regulatory role in VSMC phenotypic modulation. A transcriptional regulator and oncoprotein, EVI1 (ecotropic virus integration site 1 protein homolog), has been identified as a novel miR-22 target gene in VSMC phenotypic modulation. It is noteworthy that overexpression of miR-22 in the injured vessels significantly reduced the expression of its target genes, decreased VSMC proliferation, and inhibited neointima formation in wire-injured femoral arteries, whereas the opposite effect was observed with local application of a miR-22 inhibitor to injured arteries. We next examined the clinical relevance of miR-22 expression and its target genes in human femoral arteries. We found that miR-22 expression was significantly reduced, whereas MECP2 and EVI1 expression levels were dramatically increased, in diseased in comparison with healthy femoral human

  15. Association of vascular fluoride uptake with vascular calcification and coronary artery disease.

    PubMed

    Li, Yuxin; Berenji, Gholam R; Shaba, Wisam F; Tafti, Bashir; Yevdayev, Ella; Dadparvar, Simin

    2012-01-01

    The feasibility of a fluoride positron emission tomography/computed tomography (PET/CT) scan for imaging atherosclerosis has not been well documented. The purpose of this study was to assess fluoride uptake of vascular calcification in various major arteries, including coronary arteries. We retrospectively reviewed the imaging data and cardiovascular history of 61 patients who received whole-body sodium [¹⁸F]fluoride PET/CT studies at our institution from 2009 to 2010. Fluoride uptake and calcification in major arteries, including coronary arteries, were analyzed by both visual assessment and standardized uptake value measurement. Fluoride uptake in vascular walls was demonstrated in 361 sites of 54 (96%) patients, whereas calcification was observed in 317 sites of 49 (88%) patients. Significant correlation between fluoride uptake and calcification was observed in most of the arterial walls, except in those of the abdominal aorta. Fluoride uptake in coronary arteries was demonstrated in 28 (46%) patients and coronary calcifications were observed in 34 (56%) patients. There was significant correlation between history of cardiovascular events and presence of fluoride uptake in coronary arteries. The coronary fluoride uptake value in patients with cardiovascular events was significantly higher than in patients without cardiovascular events. sodium [¹⁸F]fluoride PET/CT might be useful in the evaluation of the atherosclerotic process in major arteries, including coronary arteries. An increased fluoride uptake in coronary arteries may be associated with an increased cardiovascular risk.

  16. Molecular Pathways of Notch Signaling in Vascular Smooth Muscle Cells

    PubMed Central

    Boucher, Joshua; Gridley, Thomas; Liaw, Lucy

    2012-01-01

    Notch signaling in the cardiovascular system is important during embryonic development, vascular repair of injury, and vascular pathology in humans. The vascular smooth muscle cell (VSMC) expresses multiple Notch receptors throughout its life cycle, and responds to Notch ligands as a regulatory mechanism of differentiation, recruitment to growing vessels, and maturation. The goal of this review is to provide an overview of the current understanding of the molecular basis for Notch regulation of VSMC phenotype. Further, we will explore Notch interaction with other signaling pathways important in VSMC. PMID:22509166

  17. Role of Hypoxia-Induced Brain Derived Neurotrophic Factor in Human Pulmonary Artery Smooth Muscle

    PubMed Central

    Hartman, William; Helan, Martin; Smelter, Dan; Sathish, Venkatachalem; Thompson, Michael; Pabelick, Christina M.; Johnson, Bruce; Prakash, Y. S.

    2015-01-01

    Background Hypoxia effects on pulmonary artery structure and function are key to diseases such as pulmonary hypertension. Recent studies suggest that growth factors called neurotrophins, particularly brain-derived neurotrophic factor (BDNF), can influence lung structure and function, and their role in the pulmonary artery warrants further investigation. In this study, we examined the effect of hypoxia on BDNF in humans, and the influence of hypoxia-enhanced BDNF expression and signaling in human pulmonary artery smooth muscle cells (PASMCs). Methods and Results 48h of 1% hypoxia enhanced BDNF and TrkB expression, as well as release of BDNF. In arteries of patients with pulmonary hypertension, BDNF expression and release was higher at baseline. In isolated PASMCs, hypoxia-induced BDNF increased intracellular Ca2+ responses to serotonin: an effect altered by HIF1α inhibition or by neutralization of extracellular BDNF via chimeric TrkB-Fc. Enhanced BDNF/TrkB signaling increased PASMC survival and proliferation, and decreased apoptosis following hypoxia. Conclusions Enhanced expression and signaling of the BDNF-TrkB system in PASMCs is a potential mechanism by which hypoxia can promote changes in pulmonary artery structure and function. Accordingly, the BDNF-TrkB system could be a key player in the pathogenesis of hypoxia-induced pulmonary vascular diseases, and thus a potential target for therapy. PMID:26192455

  18. Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes.

    PubMed

    Subasinghe, Supundi; Unabia, Sharon; Barrow, Colin J; Mok, Su San; Aguilar, Marie-Isabel; Small, David H

    2003-02-01

    Accumulation of beta amyloid (Abeta) in the brain is central to the pathogenesis of Alzheimer's disease. Abeta can bind to membrane lipids and this binding may have detrimental effects on cell function. In this study, surface plasmon resonance technology was used to study Abeta binding to membranes. Abeta peptides bound to synthetic lipid mixtures and to an intact plasma membrane preparation isolated from vascular smooth muscle cells. Abeta peptides were also toxic to vascular smooth muscle cells. There was a good correlation between the toxic effect of Abeta peptides and their membrane binding. 'Ageing' the Abeta peptides by incubation for 5 days increased the proportion of oligomeric species, and also increased toxicity and the amount of binding to lipids. The toxicities of various Abeta analogs correlated with their lipid binding. Significantly, binding was influenced by the concentration of cholesterol in the lipid mixture. Reduction of cholesterol in vascular smooth muscle cells not only reduced the binding of Abeta to purified plasma membrane preparations but also reduced Abeta toxicity. The results support the view that Abeta toxicity is a direct consequence of binding to lipids in the membrane. Reduction of membrane cholesterol using cholesterol-lowering drugs may be of therapeutic benefit because it reduces Abeta-membrane binding.

  19. O-Linked β-N-Acetylglucosamine Modification of A20 Enhances the Inhibition of NF-κB (Nuclear Factor-κB) Activation and Elicits Vascular Protection After Acute Endoluminal Arterial Injury.

    PubMed

    Yao, Dan; Xu, Lijuan; Xu, Oufan; Li, Rujun; Chen, Mingxing; Shen, Hui; Zhu, Huajiang; Zhang, Fengyi; Yao, Deshang; Chen, Yiu-Fai; Oparil, Suzanne; Zhang, Zhengang; Gong, Kaizheng

    2018-06-01

    Recently, we have demonstrated that acute glucosamine-induced augmentation of protein O-linked β-N-acetylglucosamine (O-GlcNAc) levels inhibits inflammation in isolated vascular smooth muscle cells and neointimal formation in a rat model of carotid injury by interfering with NF-κB (nuclear factor-κB) signaling. However, the specific molecular target for O-GlcNAcylation that is responsible for glucosamine-induced vascular protection remains unclear. In this study, we test the hypothesis that increased A20 (also known as TNFAIP3 [tumor necrosis factor α-induced protein 3]) O-GlcNAcylation is required for glucosamine-mediated inhibition of inflammation and vascular protection. In cultured rat vascular smooth muscle cells, both glucosamine and the selective O-linked N-acetylglucosaminidase inhibitor thiamet G significantly increased A20 O-GlcNAcylation. Thiamet G treatment did not increase A20 protein expression but did significantly enhance binding to TAX1BP1 (Tax1-binding protein 1), a key regulatory protein for A20 activity. Adenovirus-mediated A20 overexpression further enhanced the effects of thiamet G on prevention of TNF-α (tumor necrosis factor-α)-induced IκB (inhibitor of κB) degradation, p65 phosphorylation, and increases in DNA-binding activity. A20 overexpression enhanced the inhibitory effects of thiamet G on TNF-α-induced proinflammatory cytokine expression and vascular smooth muscle cell migration and proliferation, whereas silencing endogenous A20 by transfection of specific A20 shRNA significantly attenuated these inhibitory effects. In balloon-injured rat carotid arteries, glucosamine treatment markedly inhibited neointimal formation and p65 activation compared with vehicle treatment. Adenoviral delivery of A20 shRNA to the injured arteries dramatically reduced balloon injury-induced A20 expression and inflammatory response compared with scramble shRNA and completely abolished the vascular protection of glucosamine. These results suggest that

  20. Vascular nanomedicine: Site specific delivery of elastin stabilizing therapeutics to damaged arteries

    NASA Astrophysics Data System (ADS)

    Sinha, Aditi

    Elastin, a structural protein in the extra-cellular matrix, plays a critical role in the normal functioning of blood vessels. Apart from performing its primary function of providing resilience to arteries, it also plays major role in regulating cell-cell and cell-matrix interactions, response to injury, and morphogenesis. Medial arterial calcification (MAC) and abdominal aortic aneurysm (AAA) are two diseases where the structural and functional integrity of elastin is severely compromised. Although the clinical presentation of MAC and AAA differ, they have one common underlying causative mechanism---pathological degradation of elastin. Hence prevention of elastin degradation in the early stages of MAC and AAA can mitigate, partially if not wholly, the fatal consequences of both the diseases. The work presented here is motivated by the overwhelming statistics of people afflicted by elastin associated cardiovascular diseases and the unavailability of cure for the same. Overall goal of our research is to understand role of elastin degradation in cardiovascular diseases and to develop a targeted vascular drug delivery system that is minimally invasive, biodegradable, and non-toxic, that prevents elastin from degradation. Our hope is that such treatment will also help regenerate elastin, thereby providing a multi-fold treatment option for elasto-degenerative vascular diseases. For this purpose, we have first confirmed the combined role of degraded elastin and hyperglycemia in the pathogenesis of MAC. We have shown that in the absence of degraded elastin and TGF-beta1 (abundantly present in diabetic arteries) vascular smooth muscle cells maintain their homeostatic state, regardless of environmental glucose concentrations. However simultaneous exposure to glucose, elastin peptides and TGF-beta1 causes the pathological transgenesis of vascular cells to osteoblast-like cells. We show that plant derived polyphenols bind to vascular elastin with great affinity resulting in

  1. Kv7.5 Potassium Channel Subunits Are the Primary Targets for PKA-Dependent Enhancement of Vascular Smooth Muscle Kv7 Currents

    PubMed Central

    Mani, Bharath K.; Robakowski, Christina; Brueggemann, Lyubov I.; Cribbs, Leanne L.; Tripathi, Abhishek; Majetschak, Matthias

    2016-01-01

    Kv7 (KCNQ) channels, formed as homo- or heterotetramers of Kv7.4 and Kv7.5 α-subunits, are important regulators of vascular smooth muscle cell (VSMC) membrane voltage. Recent studies demonstrate that direct pharmacological modulation of VSMC Kv7 channel activity can influence blood vessel contractility and diameter. However, the physiologic regulation of Kv7 channel activity is still poorly understood. Here, we study the effect of cAMP/protein kinase A (PKA) activation on whole cell K+ currents through endogenous Kv7.5 channels in A7r5 rat aortic smooth muscle cells or through Kv7.4/Kv7.5 heteromeric channels natively expressed in rat mesenteric artery smooth muscle cells. The contributions of specific α-subunits are further dissected using exogenously expressed human Kv7.4 and Kv7.5 homo- or heterotetrameric channels in A7r5 cells. Stimulation of Gαs-coupled β-adrenergic receptors with isoproterenol induced PKA-dependent activation of endogenous Kv7.5 currents in A7r5 cells. The receptor-mediated enhancement of Kv7.5 currents was mimicked by pharmacological agents that increase [cAMP] (forskolin, rolipram, 3-isobutyl-1-methylxanthine, and papaverine) or mimic cAMP (8-bromo-cAMP); the 2- to 4-fold PKA-dependent enhancement of currents was also observed with exogenously expressed Kv7.5 channels. In contrast, exogenously-expressed heterotetrameric Kv7.4/7.5 channels in A7r5 cells or native mesenteric artery smooth muscle Kv7.4/7.5 channels were only modestly enhanced, and homo-tetrameric Kv7.4 channels were insensitive to this regulatory pathway. Correspondingly, proximity ligation assays indicated that isoproterenol induced PKA-dependent phosphorylation of exogenously expressed Kv7.5 channel subunits, but not of Kv7.4 subunits. These results suggest that signal transduction-mediated responsiveness of vascular smooth muscle Kv7 channel subunits to cAMP/PKA activation follows the order of Kv7.5 >> Kv7.4/Kv7.5 > Kv7.4. PMID:26700561

  2. Overexpression of Mitofusin 2 inhibited oxidized low-density lipoprotein induced vascular smooth muscle cell proliferation and reduced atherosclerotic lesion formation in rabbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Yanhong; Chen Kuanghueih; Gao Wei

    2007-11-16

    Our previous studies have implies that Mitofusin 2 (Mfn2), which was progressively reduced in arteries from ApoE{sup -/-} mice during the development of atherosclerosis, may take part in pathogenesis of atherosclerosis. In this study, we found that overexpression of Mfn2 inhibited oxidized low-density lipoprotein or serum induced vascular smooth muscle cell proliferation by down-regulation of Akt and ERK phosphorylation. Then we investigated the in vivo role of Mfn2 on the development of atherosclerosis in rabbits using adenovirus expressing Mitofusin 2 gene (AdMfn2). By morphometric analysis we found overexpression of Mfn2 inhibited atherosclerotic lesion formation and intima/media ratio by 66.7% andmore » 74.6%, respectively, compared with control group. These results suggest that local Mfn2 treatment suppresses the development of atherosclerosis in vivo in part by attenuating the smooth muscle cell proliferation induced by lipid deposition and vascular injury.« less

  3. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension

    PubMed Central

    Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E.; Arons, Elena; Zaman, Paula; Polach, Kevin J.; Matar, Majed; Yung, Lai-Ming; Yu, Paul B.; Bowman, Frederick P.; Opotowsky, Alexander R.; Waxman, Aaron B.; Loscalzo, Joseph; Leopold, Jane A.; Maron, Bradley A.

    2016-01-01

    Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10−9 to 10−7 M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor–small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro. Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo. Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.—Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery

  4. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension.

    PubMed

    Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E; Arons, Elena; Zaman, Paula; Polach, Kevin J; Matar, Majed; Yung, Lai-Ming; Yu, Paul B; Bowman, Frederick P; Opotowsky, Alexander R; Waxman, Aaron B; Loscalzo, Joseph; Leopold, Jane A; Maron, Bradley A

    2016-07-01

    Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10(-9) to 10(-7) M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor-small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.-Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth

  5. Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease

    PubMed Central

    Ackers-Johnson, Matthew; Talasila, Amarnath; Sage, Andrew P; Long, Xiaochun; Bot, Ilze; Morrell, Nicholas W; Bennett, Martin R; Miano, Joseph M.; Sinha, Sanjay

    2015-01-01

    Objective Atherosclerosis, the cause of 50% of deaths in westernised societies, is widely regarded as a chronic vascular inflammatory disease. Vascular smooth muscle cell (VSMC) inflammatory activation in response to local pro-inflammatory stimuli contributes to disease progression and is a pervasive feature in developing atherosclerotic plaques. Therefore, it is of considerable therapeutic importance to identify mechanisms that regulate the VSMC inflammatory response. Approach and Results We report that myocardin, a powerful myogenic transcriptional coactivator, negatively regulates VSMC inflammatory activation and vascular disease. Myocardin levels are reduced during atherosclerosis, in association with phenotypic switching of smooth muscle cells. Myocardin deficiency accelerates atherogenesis in hypercholesterolemic ApoE−/− mice. Conversely, increased myocardin expression potently abrogates the induction of an array of inflammatory cytokines, chemokines and adhesion molecules in VSMCs. Expression of myocardin in VSMCs reduces lipid uptake, macrophage interaction, chemotaxis and macrophage-endothelial tethering in vitro, and attenuates monocyte accumulation within developing lesions in vivo. These results demonstrate that endogenous levels of myocardin are a critical regulator of vessel inflammation. Conclusions We propose myocardin as a guardian of the contractile, non-inflammatory VSMC phenotype, with loss of myocardin representing a critical permissive step in the process of phenotypic transition and inflammatory activation, at the onset of vascular disease. PMID:25614278

  6. Dependence of Golgi apparatus integrity on nitric oxide in vascular cells: implications in pulmonary arterial hypertension

    PubMed Central

    Lee, Jason E.; Patel, Kirit; Almodóvar, Sharilyn; Tuder, Rubin M.; Flores, Sonia C.

    2011-01-01

    Although reduced bioavailability of nitric oxide (NO) has been implicated in the pathogenesis of pulmonary arterial hypertension (PAH), its consequences on organellar structure and function within vascular cells is largely unexplored. We investigated the effect of reduced NO on the structure of the Golgi apparatus as assayed by giantin or GM130 immunofluorescence in human pulmonary arterial endothelial (HPAECs) and smooth muscle (HPASMCs) cells, bovine PAECs, and human EA.hy926 endothelial cells. Golgi structure was also investigated in cells in tissue sections of pulmonary vascular lesions in idiopathic PAH (IPAH) and in macaques infected with a chimeric simian immunodeficiency virus containing the human immunodeficiency virus (HIV)-nef gene (SHIV-nef) with subcellular three-dimensional (3D) immunoimaging. Compounds with NO scavenging activity including 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), methylene blue, N-acetylcysteine, and hemoglobin markedly fragmented the Golgi in all cell types evaluated as did monocrotaline pyrrole, while LY-83583, sildenafil, fasudil, Y-27632, Tiron, Tempol, or H2O2 did not. Golgi fragmentation by NO scavengers was inhibited by diethylamine NONOate, was evident in HPAECs after selective knockdown of endothelial nitric oxide synthase using small interfering RNA (siRNA), was independent of microtubule organization, required the GTPase dynamin 2, and was accompanied by depletion of α-soluble N-ethylmaleimide-sensitive factor (NSF) acceptor protein (α-SNAP) from Golgi membranes and codispersal of the SNAP receptor (SNARE) Vti1a with giantin. Golgi fragmentation was confirmed in endothelial and smooth muscle cells in pulmonary arterial lesions in IPAH and the SHIV-nef-infected macaque with subcellular 3D immunoimaging. In SHIV-nef-infected macaques Golgi fragmentation was observed in cells containing HIV-nef-bearing endosomes. The observed Golgi fragmentation suggests that NO plays a significant role in

  7. Differentiation and Application of Induced Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells.

    PubMed

    Maguire, Eithne Margaret; Xiao, Qingzhong; Xu, Qingbo

    2017-11-01

    Vascular smooth muscle cells (VSMCs) play a role in the development of vascular disease, for example, neointimal formation, arterial aneurysm, and Marfan syndrome caused by genetic mutations in VSMCs, but little is known about the mechanisms of the disease process. Advances in induced pluripotent stem cell technology have now made it possible to derive VSMCs from several different somatic cells using a selection of protocols. As such, researchers have set out to delineate key signaling processes involved in triggering VSMC gene expression to grasp the extent of gene regulatory networks involved in phenotype commitment. This technology has also paved the way for investigations into diseases affecting VSMC behavior and function, which may be treatable once an identifiable culprit molecule or gene has been repaired. Moreover, induced pluripotent stem cell-derived VSMCs are also being considered for their use in tissue-engineered blood vessels as they may prove more beneficial than using autologous vessels. Finally, while several issues remains to be clarified before induced pluripotent stem cell-derived VSMCs can become used in regenerative medicine, they do offer both clinicians and researchers hope for both treating and understanding vascular disease. In this review, we aim to update the recent progress on VSMC generation from stem cells and the underlying molecular mechanisms of VSMC differentiation. We will also explore how the use of induced pluripotent stem cell-derived VSMCs has changed the game for regenerative medicine by offering new therapeutic avenues to clinicians, as well as providing researchers with a new platform for modeling of vascular disease. © 2017 American Heart Association, Inc.

  8. Subclavian artery aneurysm in a patient with vascular Ehlers-Danlos syndrome.

    PubMed

    Yasuda, Shota; Imoto, Kiyotaka; Uchida, Keiji; Uranaka, Yasuko; Kurosawa, Kenji; Masuda, Munetaka

    2016-02-01

    We describe our experience of surgical treatment in a 28-year-old woman with vascular Ehlers-Danlos syndrome. A right subclavian artery aneurysm was detected. The right vertebral artery arose from the aneurysm. Digital subtraction angiography showed interruption of the left vertebral artery. The aneurysm was excised and the right vertebral artery was anastomosed end-to-side to the right common carotid artery under deep hypothermia and circulatory arrest. The patient remained very well 4 years after surgery, with no late vascular complication. © The Author(s) 2014.

  9. Vascular CXCR4 Limits Atherosclerosis by Maintaining Arterial Integrity: Evidence From Mouse and Human Studies.

    PubMed

    Döring, Yvonne; Noels, Heidi; van der Vorst, Emiel P C; Neideck, Carlos; Egea, Virginia; Drechsler, Maik; Mandl, Manuela; Pawig, Lukas; Jansen, Yvonne; Schröder, Katrin; Bidzhekov, Kiril; Megens, Remco T A; Theelen, Wendy; Klinkhammer, Barbara M; Boor, Peter; Schurgers, Leon; van Gorp, Rick; Ries, Christian; Kusters, Pascal J H; van der Wal, Allard; Hackeng, Tilman M; Gäbel, Gabor; Brandes, Ralf P; Soehnlein, Oliver; Lutgens, Esther; Vestweber, Dietmar; Teupser, Daniel; Holdt, Lesca M; Rader, Daniel J; Saleheen, Danish; Weber, Christian

    2017-07-25

    The CXCL12/CXCR4 chemokine ligand/receptor axis controls (progenitor) cell homeostasis and trafficking. So far, an atheroprotective role of CXCL12/CXCR4 has only been implied through pharmacological intervention, in particular, because the somatic deletion of the CXCR4 gene in mice is embryonically lethal. Moreover, cell-specific effects of CXCR4 in the arterial wall and underlying mechanisms remain elusive, prompting us to investigate the relevance of CXCR4 in vascular cell types for atheroprotection. We examined the role of vascular CXCR4 in atherosclerosis and plaque composition by inducing an endothelial cell (BmxCreER T2 -driven)-specific or smooth muscle cell (SMC, SmmhcCreER T2 - or TaglnCre-driven)-specific deficiency of CXCR4 in an apolipoprotein E-deficient mouse model. To identify underlying mechanisms for effects of CXCR4, we studied endothelial permeability, intravital leukocyte adhesion, involvement of the Akt/WNT/β-catenin signaling pathway and relevant phosphatases in VE-cadherin expression and function, vascular tone in aortic rings, cholesterol efflux from macrophages, and expression of SMC phenotypic markers. Finally, we analyzed associations of common genetic variants at the CXCR4 locus with the risk for coronary heart disease, along with CXCR4 transcript expression in human atherosclerotic plaques. The cell-specific deletion of CXCR4 in arterial endothelial cells (n=12-15) or SMCs (n=13-24) markedly increased atherosclerotic lesion formation in hyperlipidemic mice. Endothelial barrier function was promoted by CXCL12/CXCR4, which triggered Akt/WNT/β-catenin signaling to drive VE-cadherin expression and stabilized junctional VE-cadherin complexes through associated phosphatases. Conversely, endothelial CXCR4 deficiency caused arterial leakage and inflammatory leukocyte recruitment during atherogenesis. In arterial SMCs, CXCR4 sustained normal vascular reactivity and contractile responses, whereas CXCR4 deficiency favored a synthetic phenotype

  10. Suitability of Exoseal Vascular Closure Device for Antegrade Femoral Artery Puncture Site Closure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmelter, Christopher, E-mail: christopher.schmelter@klinikum-ingolstadt.de; Liebl, Andrea; Poullos, Nektarios

    Purpose. To assess the efficacy and safety of the Exoseal vascular closure device for antegrade puncture of the femoral artery. Methods. In a prospective study from February 2011 to January 2012, a total of 93 consecutive patients received a total of 100 interventional procedures via an antegrade puncture of the femoral artery. An Exoseal vascular closure device (6F) was used for closure in all cases. Puncture technique, duration of manual compression, and use of compression bandages were documented. All patients were monitored by vascular ultrasound and color-coded duplex sonography of their respective femoral artery puncture site within 12 to 36more » h after angiography to check for vascular complications. Results. In 100 antegrade interventional procedures, the Exoseal vascular closure device was applied successfully for closure of the femoral artery puncture site in 96 cases (96 of 100, 96.0 %). The vascular closure device could not be deployed in one case as a result of kinking of the vascular sheath introducer and in three cases because the bioabsorbable plug was not properly delivered to the extravascular space adjacent to the arterial puncture site, but instead fully removed with the delivery system (4.0 %). Twelve to 36 h after the procedure, vascular ultrasound revealed no complications at the femoral artery puncture site in 93 cases (93.0 %). Minor vascular complications were found in seven cases (7.0 %), with four cases (4.0 %) of pseudoaneurysm and three cases (3.0 %) of significant late bleeding, none of which required surgery. Conclusion. The Exoseal vascular closure device was safely used for antegrade puncture of the femoral artery, with a high rate of procedural success (96.0 %), a low rate of minor vascular complications (7.0 %), and no major adverse events.« less

  11. Steroid Hormones and Uterine Vascular Adaptation to Pregnancy

    PubMed Central

    Chang, Katherine; Zhang, Lubo

    2008-01-01

    Pregnancy is a physiological state that involves a significant decrease in uterine vascular tone and an increase in uterine blood flow, which is mediated in part by steroid hormones, including estrogen, progesterone, and cortisol. Previous studies have demonstrated the involvement of these hormones in the regulation of uterine artery contractility through signaling pathways specific to the endothelium and the vascular smooth muscle. Alterations in endothelial nitric oxide synthase expression and activity, nitric oxide production, and expression of enzymes involved in PGI2 production contribute to the uterine artery endothelium-specific responses. Steroid hormones also have an effect on calcium-activated potassium channel activity, PKC signaling pathway and myogenic tone, and alterations in pharmacomechanical coupling in the uterine artery smooth muscle. This review addresses current understanding of the molecular mechanisms by which steroid hormones including estrogen, progesterone, and cortisol modulate uterine artery contractility to alter uterine blood flow during pregnancy with an emphasis on the pregnant ewe model. PMID:18497342

  12. Arterial Smooth Muscle Mitochondria Amplify Hydrogen Peroxide Microdomains Functionally Coupled to L-Type Calcium Channels

    PubMed Central

    Chaplin, Nathan L.; Nieves-Cintrón, Madeline; Fresquez, Adriana M.; Navedo, Manuel F.; Amberg, Gregory C.

    2015-01-01

    Rationale Mitochondria are key integrators of convergent intracellular signaling pathways. Two important second messengers modulated by mitochondria are calcium and reactive oxygen species. To date, coherent mechanisms describing mitochondrial integration of calcium and oxidative signaling in arterial smooth muscle are incomplete. Objective To address and add clarity to this issue we tested the hypothesis that mitochondria regulate subplasmalemmal calcium and hydrogen peroxide microdomain signaling in cerebral arterial smooth muscle. Methods and Results Using an image-based approach we investigated the impact of mitochondrial regulation of L-type calcium channels on subcellular calcium and ROS signaling microdomains in isolated arterial smooth muscle cells. Our single cell observations were then related experimentally to intact arterial segments and to living animals. We found that subplasmalemmal mitochondrial amplification of hydrogen peroxide microdomain signaling stimulates L-type calcium channels and that this mechanism strongly impacts the functional capacity of the vasoconstrictor angiotensin II. Importantly, we also found that disrupting this mitochondrial amplification mechanism in vivo normalized arterial function and attenuated the hypertensive response to systemic endothelial dysfunction. Conclusions From these observations we conclude that mitochondrial amplification of subplasmalemmal calcium and hydrogen peroxide microdomain signaling is a fundamental mechanism regulating arterial smooth muscle function. As the principle components involved are fairly ubiquitous and positioning of mitochondria near the plasma membrane is not restricted to arterial smooth muscle, this mechanism could occur in many cell types and contribute to pathological elevations of intracellular calcium and increased oxidative stress associated with many diseases. PMID:26390880

  13. Cigarette smoke exposure promotes arterial thrombosis and vessel remodeling after vascular injury in apolipoprotein E-deficient mice.

    PubMed

    Schroeter, Marco R; Sawalich, Matthias; Humboldt, Tim; Leifheit, Maren; Meurrens, Kris; Berges, An; Xu, Haiyan; Lebrun, Stefan; Wallerath, Thomas; Konstantinides, Stavros; Schleef, Raymond; Schaefer, Katrin

    2008-01-01

    Cigarette smoking is a major risk factor for the development of cardiovascular disease. However, in terms of the vessel wall, the underlying pathomechanisms of cigarette smoking are incompletely understood, partly due to a lack of adequate in vivo models. Apolipoprotein E-deficient mice were exposed to filtered air (sham) or to cigarette mainstream smoke at a total particulate matter (TPM) concentration of 600 microg/l for 1, 2, 3, or 4 h, for 5 days/week. After exposure for 10 +/- 1 weeks, arterial thrombosis and neointima formation at the carotid artery were induced using 10% ferric chloride. Mice exposed to mainstream smoke exhibited shortened time to thrombotic occlusion (p < 0.01) and lower vascular patency rates (p < 0.001). Morphometric and immunohistochemical analysis of neointimal lesions demonstrated that mainstream smoke exposure increased the amount of alpha-actin-positive smooth muscle cells (p < 0.05) and dose-dependently increased the intima-to-media ratio (p < 0.05). Additional analysis of smooth muscle cells in vitro suggested that 10 microg TPM/ml increased cell proliferation without affecting viability or apoptosis, whereas higher concentrations (100 and 500 microg TPM/ml) appeared to be cytotoxic. Taken together, these findings suggest that cigarette smoking promotes arterial thrombosis and modulates the size and composition of neointimal lesions after arterial injury in apolipoprotein E-deficient mice. Copyright 2008 S. Karger AG, Basel.

  14. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    PubMed

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-04-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  15. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    PubMed

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-05-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  16. Medical Textiles as Vascular Implants and Their Success to Mimic Natural Arteries

    PubMed Central

    Singh, Charanpreet; Wong, Cynthia S.; Wang, Xungai

    2015-01-01

    Vascular implants belong to a specialised class of medical textiles. The basic purpose of a vascular implant (graft and stent) is to act as an artificial conduit or substitute for a diseased artery. However, the long-term healing function depends on its ability to mimic the mechanical and biological behaviour of the artery. This requires a thorough understanding of the structure and function of an artery, which can then be translated into a synthetic structure based on the capabilities of the manufacturing method utilised. Common textile manufacturing techniques, such as weaving, knitting, braiding, and electrospinning, are frequently used to design vascular implants for research and commercial purposes for the past decades. However, the ability to match attributes of a vascular substitute to those of a native artery still remains a challenge. The synthetic implants have been found to cause disturbance in biological, biomechanical, and hemodynamic parameters at the implant site, which has been widely attributed to their structural design. In this work, we reviewed the design aspect of textile vascular implants and compared them to the structure of a natural artery as a basis for assessing the level of success as an implant. The outcome of this work is expected to encourage future design strategies for developing improved long lasting vascular implants. PMID:26133386

  17. Dynamic Ca2+ signalling in rat arterial smooth muscle cells under the control of local renin–angiotensin system

    PubMed Central

    Asada, Yukinori; Yamazawa, Toshiko; Hirose, Kenzo; Takasaka, Tomonori; Iino, Masamitsu

    1999-01-01

    We visualized the changes in intracellular Ca2+ concentration ([Ca2+]i), using fluo-3 as an indicator, in individual smooth muscle cells within intact rat tail artery preparations. On average in about 45 % of the vascular smooth muscle cells we found spontaneous Ca2+ waves and oscillations (≈0.13 Hz), which we refer to here as Ca2+ ripples because the peak amplitude of [Ca2+]i was about one-seventh of that of Ca2+ oscillations evoked by noradrenaline. We also found another pattern of spontaneous Ca2+ transients often in groups of two to three cells. They were rarely observed and are referred to as Ca2+ flashes because their peak amplitude was nearly twice as large as that in noradrenaline-evoked responses. Sympathetic nerve activity was not considered responsible for the Ca2+ ripples, and they were abolished by inhibitors of either the Ca2+ pump in the sarcoplasmic reticulum (cyclopiazonic acid) or phospholipase C (U-73122). Both angiotensin antagonists ([Sar1,Ile8]-angiotensin II and losartan) and an angiotensin converting enzyme inhibitor (captopril) inhibited the Ca2+ ripples. The extracellular Ca2+-dependent tension borne by unstimulated arterial rings was reduced by the angiotensin antagonist by ≈50 %. These results indicate that the Ca2+ ripples are generated via inositol 1,4,5-trisphosphate-induced Ca2+ release from the intracellular Ca2+ stores in response to locally produced angiotensin II, which contributes to the maintenance of vascular tone. PMID:10581318

  18. Vascular Smooth Muscle-Specific EP4 Receptor Deletion in Mice Exacerbates Angiotensin II-Induced Renal Injury.

    PubMed

    Thibodeau, Jean-Francois; Holterman, Chet E; He, Ying; Carter, Anthony; Cron, Gregory O; Boisvert, Naomi C; Abd-Elrahman, Khaled S; Hsu, Karolynn J; Ferguson, Stephen S G; Kennedy, Christopher R J

    2016-10-20

    Cyclooxygenase inhibition by non-steroidal anti-inflammatory drugs is contraindicated in hypertension, as it may reduce glomerular filtration rate (GFR) and renal blood flow. However, the identity of the specific eicosanoid and receptor underlying these effects is not known. We hypothesized that vascular smooth muscle prostaglandin E2 (PGE2) E-prostanoid 4 (EP4) receptor deletion predisposes to renal injury via unchecked vasoconstrictive actions of angiotensin II (AngII) in a hypertension model. Mice with inducible vascular smooth muscle cell (VSMC)-specific EP4 receptor deletion were generated and subjected to AngII-induced hypertension. EP4 deletion was verified by PCR of aorta and renal vessels, as well as functionally by loss of PGE2-mediated mesenteric artery relaxation. Both AngII-treated groups became similarly hypertensive, whereas albuminuria, foot process effacement, and renal hypertrophy were exacerbated in AngII-treated EP4 VSMC-/- but not in EP4 VSMC+/+ mice and were associated with glomerular scarring, tubulointerstitial injury, and reduced GFR. AngII-treated EP4 VSMC-/- mice exhibited capillary damage and reduced renal perfusion as measured by fluorescent bead microangiography and magnetic resonance imaging, respectively. NADPH oxidase 2 (Nox2) expression was significantly elevated in AngII-treated EP4 -/- mice. EP4-receptor silencing in primary VSMCs abolished PGE2 inhibition of AngII-induced Nox2 mRNA and superoxide production. These data suggest that vascular EP4 receptors buffer the actions of AngII on renal hemodynamics and oxidative injury. EP4 agonists may, therefore, protect against hypertension-associated kidney damage. Antioxid. Redox Signal. 25, 642-656.

  19. Sulforaphane inhibits restenosis by suppressing inflammation and the proliferation of vascular smooth muscle cells.

    PubMed

    Kwon, Jin-Sook; Joung, Hosouk; Kim, Yong Sook; Shim, Young-Sun; Ahn, Youngkeun; Jeong, Myung Ho; Kee, Hae Jin

    2012-11-01

    Sulforaphane, a naturally occurring organosulfur compound in broccoli, has chemopreventive properties in cancer. However, the effects of sulforaphane in vascular diseases have not been examined. We therefore aimed to investigate the effects of sulforaphane on vascular smooth muscle cell (VSMC) proliferation and neointimal formation and the related mechanisms. The expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) was examined in VSMCs. The nuclear translocation of nuclear factor-κB (NF-κB) and GATA6 expression was examined in VSMCs and in a carotid artery injury model by Western blot and immunohistochemistry. We also investigated whether local delivery of sulforaphane affected neointimal formation. Sulforaphane inhibited the mRNA and protein expression of VCAM-1 induced by tumor necrosis factor (TNF)-α in VSMCs. Treatment of VSMCs with sulforaphane blocked TNF-α-induced IκBα degradation and NF-κB p65 and GATA6 expression. Furthermore, NF-κB p65 and GATA6 expression were reduced in sulforaphane-treated carotid injury sections. Notably, binding of GATA6 to the VCAM-1 promoter was dramatically reduced by sulforaphane. The MTT, BrdU incorporation, and in vitro scratch assays revealed that the proliferation and migration of VSMCs were reduced by sulforaphane. Furthermore, local administration of sulforaphane significantly reduced neointima formation 14 days after vascular injury in rats. Our results indicate that sulforaphane inhibits neointima formation via targeting of adhesion molecules through the suppression of NF-κB/GATA6. Furthermore, sulforaphane regulates migration and proliferation in VSMCs. Sulforaphane may be a potential therapeutic agent for preventing restenosis after vascular injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Relation between digital peripheral arterial tonometry and brachial artery ultrasound measures of vascular function in patients with coronary artery disease and in healthy volunteers.

    PubMed

    Lee, Craig R; Bass, Almasa; Ellis, Kyle; Tran, Bryant; Steele, Savanna; Caughey, Melissa; Stouffer, George A; Hinderliter, Alan L

    2012-03-01

    Digital peripheral arterial tonometry (PAT) is an emerging, noninvasive method to assess vascular function. The physiology underlying this phenotype, however, remains unclear. Therefore, we evaluated the relation between digital PAT and established brachial artery ultrasound measures of vascular function under basal conditions and after reactive hyperemia. Using a cross-sectional study design, digital PAT and brachial artery ultrasonography with pulsed wave Doppler were simultaneously completed at baseline and after reactive hyperemia in both those with established coronary artery disease (n = 99) and healthy volunteers with low cardiovascular disease risk (n = 40). Under basal conditions, the digital pulse volume amplitude demonstrated a significant positive correlation with the brachial artery velocity-time integral that was independent of the arterial diameter, in both the healthy volunteer (r(s) = 0.64, p <0.001) and coronary artery disease (r(s) = 0.63, p <0.001) cohorts. Similar positive relations were observed with the baseline brachial artery blood flow velocity and blood flow. In contrast, no relation between the reactive hyperemia-evoked digital PAT ratio and either brachial artery flow-mediated dilation or shear stress was observed in either cohort (p = NS). In conclusion, these findings demonstrate that the digital PAT measures of vascular function more closely reflect basal blood flow in the brachial artery than reactive hyperemia-induced changes in the arterial diameter or flow velocity, and the presence of vascular disease does not modify the physiology underlying the digital PAT phenotype. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Inhibition of MMP-2 gene expression with small interfering RNA in rabbit vascular smooth muscle cells.

    PubMed

    Hlawaty, Hanna; San Juan, Aurélie; Jacob, Marie-Paule; Vranckx, Roger; Letourneur, Didier; Feldman, Laurent J

    2007-12-01

    Matrix metalloproteinase-2 (MMP-2) is constitutively expressed in vascular smooth muscle cells (VSMCs). Using small interfering RNA (siRNA), we evaluated the effect of MMP-2 inhibition in VSMCs in vitro and ex vivo. Rabbit VSMCs were transfected in vitro with 50 nmol/l MMP-2 siRNA or scramble siRNA. Flow cytometry and confocal microscopy showed cellular uptake of siRNA in approximately 80% of VSMCs. MMP-2 mRNA levels evaluated by real-time RT-PCR, pro-MMP-2 activity from conditioned culture media evaluated by gelatin zymography, and VSMC migration were reduced by 44 +/- 19%, 43 +/- 14%, and 36 +/- 14%, respectively, in MMP-2 siRNA-transfected compared with scramble siRNA-transfected VSMCs (P < 0.005 for all). Ex vivo MMP-2 siRNA transfection was performed 2 wk after balloon injury of hypercholesterolemic rabbit carotid arteries. Fluorescence microscopy showed circumferential siRNA uptake in neointimal cells. Gelatin zymography of carotid artery culture medium demonstrated a significant decrease of pro-MMP-2 activity in MMP-2 siRNA-transfected compared with scramble siRNA-transfected arteries (P < 0.01). Overall, our results demonstrate that in vitro MMP-2 siRNA transfection in VSMCs markedly inhibits MMP-2 gene expression and VSMC migration and that ex vivo delivery of MMP-2 siRNA in balloon-injured arteries reduces pro-MMP-2 activity in neointimal cells, suggesting that siRNA could be used to modify arterial biology in vivo.

  2. Compound C Inhibits Vascular Smooth Muscle Cell Proliferation and Migration in an AMP-Activated Protein Kinase-Independent Fashion

    PubMed Central

    Peyton, Kelly J.; Yu, Yajie; Yates, Benjamin; Shebib, Ahmad R.; Liu, Xiao-ming; Wang, Hong

    2011-01-01

    6-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a] pyrimidine (compound C) is a cell-permeable pyrrazolopyrimidine derivative that acts as a potent inhibitor of AMP-activated protein kinase (AMPK). Although compound C is often used to determine the role of AMPK in various physiological processes, it also evokes AMPK-independent actions. In the present study, we investigated whether compound C influences vascular smooth muscle cell (SMC) function through the AMPK pathway. Treatment of rat aortic SMCs with compound C (0.02–10 μM) inhibited vascular SMC proliferation and migration in a concentration-dependent fashion. These actions of compound C were not mimicked or affected by silencing AMPKα expression or infecting SMCs with an adenovirus expressing a dominant-negative mutant of AMPK. In contrast, the pharmacological activator of AMPK 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside inhibited the proliferation and migration of SMCs in a manner that was strictly dependent on AMPK activity. Flow cytometry experiments revealed that compound C arrested SMCs in the G0/G1 phase of the cell cycle, and this was associated with a decrease in cyclin D1 and cyclin A protein expression and retinoblastoma protein phosphorylation and an increase in p21 protein expression. Finally, local perivascular delivery of compound C immediately after balloon injury of rat carotid arteries markedly attenuated neointima formation. These studies identify compound C as a novel AMPK-independent regulator of vascular SMC function that exerts inhibitory effects on SMC proliferation and migration and neointima formation after arterial injury. Compound C represents a potentially new therapeutic agent in treating and preventing occlusive vascular disease. PMID:21566210

  3. Compound C inhibits vascular smooth muscle cell proliferation and migration in an AMP-activated protein kinase-independent fashion.

    PubMed

    Peyton, Kelly J; Yu, Yajie; Yates, Benjamin; Shebib, Ahmad R; Liu, Xiao-ming; Wang, Hong; Durante, William

    2011-08-01

    6-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a] pyrimidine (compound C) is a cell-permeable pyrrazolopyrimidine derivative that acts as a potent inhibitor of AMP-activated protein kinase (AMPK). Although compound C is often used to determine the role of AMPK in various physiological processes, it also evokes AMPK-independent actions. In the present study, we investigated whether compound C influences vascular smooth muscle cell (SMC) function through the AMPK pathway. Treatment of rat aortic SMCs with compound C (0.02-10 μM) inhibited vascular SMC proliferation and migration in a concentration-dependent fashion. These actions of compound C were not mimicked or affected by silencing AMPKα expression or infecting SMCs with an adenovirus expressing a dominant-negative mutant of AMPK. In contrast, the pharmacological activator of AMPK 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside inhibited the proliferation and migration of SMCs in a manner that was strictly dependent on AMPK activity. Flow cytometry experiments revealed that compound C arrested SMCs in the G(0)/G(1) phase of the cell cycle, and this was associated with a decrease in cyclin D1 and cyclin A protein expression and retinoblastoma protein phosphorylation and an increase in p21 protein expression. Finally, local perivascular delivery of compound C immediately after balloon injury of rat carotid arteries markedly attenuated neointima formation. These studies identify compound C as a novel AMPK-independent regulator of vascular SMC function that exerts inhibitory effects on SMC proliferation and migration and neointima formation after arterial injury. Compound C represents a potentially new therapeutic agent in treating and preventing occlusive vascular disease.

  4. Beneficial Effects of Renal Denervation on Pulmonary Vascular Remodeling in Experimental Pulmonary Artery Hypertension.

    PubMed

    Qingyan, Zhao; Xuejun, Jiang; Yanhong, Tang; Zixuan, Dai; Xiaozhan, Wang; Xule, Wang; Zongwen, Guo; Wei, Hu; Shengbo, Yu; Congxin, Huang

    2015-07-01

    Activation of both the sympathetic nervous system and the renin-angiotensin-aldosterone system is closely associated with pulmonary arterial hypertension. We hypothesized that renal denervation decreases renin-angiotensin-aldosterone activity and inhibits the progression of pulmonary arterial hypertension. Twenty-two beagles were randomized into 3 groups. The dogs' pulmonary dynamics were measured before and 8 weeks after injection of 0.1mL/kg dimethylformamide (control dogs) or 2mg/kg dehydromonocrotaline (pulmonary arterial hypertension and pulmonary arterial hypertension + renal denervation dogs). Eight weeks after injection, neurohormone levels and pulmonary tissue morphology were measured. Levels of plasma angiotensin II and endothelin-1 were significantly increased after 8 weeks in the pulmonary arterial hypertension dogs and were higher in the lung tissues of these dogs than in those of the control and renal denervation dogs (mean [standard deviation] angiotensin II: 65 [9.8] vs 38 [6.7], 46 [8.1]; endothelin-1: 96 [10.3] vs 54 [6.2], 67 [9.4]; P < .01). Dehydromonocrotaline increased the mean pulmonary arterial pressure (16 [3.4] mmHg vs 33 [7.3] mmHg; P < .01), and renal denervation prevented this increase. Pulmonary smooth muscle cell proliferation was higher in the pulmonary arterial hypertension dogs than in the control and pulmonary arterial hypertension + renal denervation dogs. Renal denervation attenuates pulmonary vascular remodeling and decreases pulmonary arterial pressure in experimental pulmonary arterial hypertension. The effect of renal denervation may contribute to decreased neurohormone levels. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  5. Kv7.5 Potassium Channel Subunits Are the Primary Targets for PKA-Dependent Enhancement of Vascular Smooth Muscle Kv7 Currents.

    PubMed

    Mani, Bharath K; Robakowski, Christina; Brueggemann, Lyubov I; Cribbs, Leanne L; Tripathi, Abhishek; Majetschak, Matthias; Byron, Kenneth L

    2016-03-01

    Kv7 (KCNQ) channels, formed as homo- or heterotetramers of Kv7.4 and Kv7.5 α-subunits, are important regulators of vascular smooth muscle cell (VSMC) membrane voltage. Recent studies demonstrate that direct pharmacological modulation of VSMC Kv7 channel activity can influence blood vessel contractility and diameter. However, the physiologic regulation of Kv7 channel activity is still poorly understood. Here, we study the effect of cAMP/protein kinase A (PKA) activation on whole cell K(+) currents through endogenous Kv7.5 channels in A7r5 rat aortic smooth muscle cells or through Kv7.4/Kv7.5 heteromeric channels natively expressed in rat mesenteric artery smooth muscle cells. The contributions of specific α-subunits are further dissected using exogenously expressed human Kv7.4 and Kv7.5 homo- or heterotetrameric channels in A7r5 cells. Stimulation of Gαs-coupled β-adrenergic receptors with isoproterenol induced PKA-dependent activation of endogenous Kv7.5 currents in A7r5 cells. The receptor-mediated enhancement of Kv7.5 currents was mimicked by pharmacological agents that increase [cAMP] (forskolin, rolipram, 3-isobutyl-1-methylxanthine, and papaverine) or mimic cAMP (8-bromo-cAMP); the 2- to 4-fold PKA-dependent enhancement of currents was also observed with exogenously expressed Kv7.5 channels. In contrast, exogenously-expressed heterotetrameric Kv7.4/7.5 channels in A7r5 cells or native mesenteric artery smooth muscle Kv7.4/7.5 channels were only modestly enhanced, and homo-tetrameric Kv7.4 channels were insensitive to this regulatory pathway. Correspondingly, proximity ligation assays indicated that isoproterenol induced PKA-dependent phosphorylation of exogenously expressed Kv7.5 channel subunits, but not of Kv7.4 subunits. These results suggest that signal transduction-mediated responsiveness of vascular smooth muscle Kv7 channel subunits to cAMP/PKA activation follows the order of Kv7.5 > Kv7.4/Kv7.5 > Kv7.4. Copyright © 2016 by The American Society for

  6. Endothelial dysfunction impairs vascular neurotransmission in tail arteries.

    PubMed

    Sousa, Joana B; Fresco, Paula; Diniz, Carmen

    2015-01-01

    The present study intends to clarify if endothelium dysfunction impairs vascular sympathetic neurotransmission. Electrically-evoked tritium overflow (100 pulses/5 Hz) was evaluated in arteries (intact and denuded) or exhibiting some degree of endothelium dysfunction (spontaneously hypertensive arteries), pre-incubated with [(3)H]-noradrenaline in the presence of enzymes (nitric oxide synthase (NOS); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; xanthine oxidase; cyclooxygenase; adenosine kinase) inhibitors and a nucleoside transporter inhibitor. Inhibition of endothelial nitric oxide synthase with L-NIO dihydrochloride reduced tritium overflow in intact arteries whereas inhibition of neuronal nitric oxide synthase with Nω-Propyl-L-arginine hydrochloride was devoid of effect showing that only endothelial nitric oxide synthase is involved in vascular sympathetic neuromodulation. Inhibition of enzymes involved in reactive oxygen species or prostaglandins production with apocynin and allopurinol or indomethacin, respectively, failed to alter tritium overflow. A facilitation or reduction of tritium overflow was observed in the presence of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or of 5-iodotubericidin, respectively, but only in intact arteries. These effects can be ascribed to a tonic inhibitory effect mediated by A1 receptors. In denuded and hypertensive arteries, 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidine (SCH 58261) reduced tritium overflow, suggesting the occurrence of a tonic activation of A2A receptors. When endogenous adenosine bioavailability was increased by the nucleoside transporter inhibitor, S-(4-Nitrobenzyl)-6-thioinosine, tritium overflow increased in intact, denuded and hypertensive arteries. Among the endothelium-derived substances studied that could alter vascular sympathetic transmission only adenosine/adenosine receptor mediated mechanisms were clearly impaired by endothelium injury

  7. Potential role of insulin signaling on vascular smooth muscle cell migration, proliferation, and inflammation pathways.

    PubMed

    Cersosimo, Eugenio; Xu, Xiaojing; Musi, Nicolas

    2012-02-15

    To investigate the role of insulin signaling pathways in migration, proliferation, and inflammation of vascular smooth muscle cells (VSMCs), we examined the expression of active components of the phosphatidyl inositol 3 (PI-3) kinase (p-Akt) and mitogen-activated protein kinase (MAPK) (p-Erk) in primary cultures of VSMCs from human coronary arteries. VSMCs were treated in a dose-response manner with insulin (0, 1, 10, and 100 nM) for 20 min, and Akt and Erk phosphorylation were measured by Western blot analysis. In separate experiments, we evaluated the effect of 200 μM palmitate, in the presence and absence of 8 μM pioglitazone, on insulin-stimulated (100 nM for 20 min) Akt and Erk phosphorylation. The phosphorylation of Akt and Erk in VSMCs exhibited a dose dependency with a three- to fourfold increase, respectively, at the highest dose (100 nM). In the presence of palmitate, insulin-induced Akt phosphorylation was completely abolished, and there was a threefold increase in p-Erk. With addition of pioglitazone, the phosphorylation of Akt by insulin remained unchanged, whereas insulin-stimulated Erk phosphorylation was reduced by pioglitazone. These data in VSMCs indicate that high palmitate decreases insulin-stimulated Akt phosphorylation and stimulates MAPK, whereas preexposure peroxisome proliferator-activated receptor-γ agonist pioglitazone preserves Akt phosphorylation and simultaneously attenuates MAPK signaling. Our results suggest that metabolic and mitogenic insulin signals have different sensitivity, are independently regulated, and may play a role in arterial smooth muscle cells migration, proliferation, and inflammation in conditions of acute hyperinsulinemia.

  8. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells.

    PubMed

    Petri, Marcelo H; Tellier, Céline; Michiels, Carine; Ellertsen, Ingvill; Dogné, Jean-Michel; Bäck, Magnus

    2013-11-15

    The prothrombotic mediator thromboxane A2 is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor.

    PubMed

    Marchand, Melanie; Anderson, Erica K; Phadnis, Smruti M; Longaker, Michael T; Cooke, John P; Chen, Bertha; Reijo Pera, Renee A

    2014-01-01

    Smooth muscle cells (SMCs) and endothelial cells (ECs) are typically derived separately, with low efficiencies, from human pluripotent stem cells (hPSCs). The concurrent generation of these cell types might lead to potential applications in regenerative medicine to model, elucidate, and eventually treat vascular diseases. Here we report a robust two-step protocol that can be used to simultaneously generate large numbers of functional SMCs and ECs from a common proliferative vascular progenitor population via a two-dimensional culture system. We show here that coculturing hPSCs with OP9 cells in media supplemented with vascular endothelial growth factor, basic fibroblast growth factor, and bone morphogenetic protein 4 yields a higher percentage of CD31(+)CD34(+) cells on day 8 of differentiation. Upon exposure to endothelial differentiation media and SM differentiation media, these vascular progenitors were able to differentiate and mature into functional endothelial cells and smooth muscle cells, respectively. Furthermore, we were able to expand the intermediate population more than a billion fold to generate sufficient numbers of ECs and SMCs in parallel for potential therapeutic transplantations.

  10. Inhibition of intimal thickening after vascular injury with a cocktail of vascular endothelial growth factor and cyclic Arg-Gly-Asp peptide.

    PubMed

    Li, Yue; McRobb, Lucinda S; Khachigian, Levon M

    2016-10-01

    Percutaneous coronary intervention is widely used for the treatment of coronary artery disease; however, significant challenges such as restenosis remain. Key to solving these problems is to inhibit smooth muscle cell activation while enhancing re-endothelialization. Early growth response-1 (Egr-1) is a transcription factor that regulates vascular smooth muscle cell (SMC) proliferation and migration through its control of an array of downstream genes. A "cocktail" of vascular endothelial growth factor (VEGF)-A, VEGF-D and cyclic RGD was tested for its ability to inhibit neointima formation and accelerate re-endothelialization following balloon injury to carotid arteries of rats. In vitro, the cocktail stimulated endothelial cell growth yet inhibited smooth muscle cell growth. In vivo, cocktail-treated injured arteries exhibited reduced intimal thickening by >50% (P<0.05). It increased both re-endothelialization and endothelial nitric oxide synthase (NOS) expression. Cocktail reduced Egr-1 expression, an effect blocked by the NOS inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) that also prevented cocktail inhibition of neointima inhibition. This combination may potentially be useful for the treatment of restenosis with concomitant stimulation of revascularization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Enhanced effects of low molecular weight heparin intercalated with layered double hydroxide nanoparticles on rat vascular smooth muscle cells.

    PubMed

    Gu, Zi; Rolfe, Barbara E; Xu, Zhi P; Thomas, Anita C; Campbell, Julie H; Lu, Gao Q M

    2010-07-01

    Surgical procedures to remove atherosclerotic lesions and restore blood flow also injure the artery wall, promoting vascular smooth muscle cell (SMC) phenotypic change, migration, proliferation, matrix production and ultimately, restenosis of the artery. Hence identification of effective anti-restenotic strategies is a high priority in cardiovascular research, and SMCs are a key target for intervention. This paper presents the in vitro study of layered double hydroxides (LDHs) as drug delivery system for an anti-restenotic drug (low molecular weight heparin, LMWH). The cytotoxicity tests showed that LDH itself had very limited toxicity at concentrations below 50 microg/mL over 6-day incubation. LDH nanoparticles loaded with LMWH (LMWH-LDHs) were prepared and tested on rat vascular SMCs. When conjugated to LDH particles, LMWH enhanced its ability to inhibit SMC proliferation and migration, with greater than above 60% reduction compared with the control (growth medium) over 3 or 7-day incubation. Cellular uptake studies showed that compared with LMWH alone, LMWH-LDH hybrids were internalized by SMCs more rapidly, and uptake was sustained over a longer time, possibly revealing the mechanisms underlying the enhanced biological function of LMWH-LDH. The results suggest the potential of LMWH-LDH as an efficient anti-restenotic drug for clinical application. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Sulforaphane suppresses vascular adhesion molecule-1 expression in TNF-α-stimulated mouse vascular smooth muscle cells: involvement of the MAPK, NF-κB and AP-1 signaling pathways.

    PubMed

    Kim, Ji-Yun; Park, Hye-Jin; Um, Sung Hee; Sohn, Eun-Hwa; Kim, Byung-Oh; Moon, Eun-Yi; Rhee, Dong-Kwon; Pyo, Suhkneung

    2012-01-01

    Atherosclerosis is a long-term inflammatory disease of the arterial wall. Increased expression of the cell adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) is associated with increased proliferation of vascular smooth muscle cells (VSMCs), leading to increased neointima or atherosclerotic lesion formation. Therefore, the functional inhibition of adhesion molecules could be a critical therapeutic target of inflammatory disease. In the present study, we investigate the effect of sulforaphane on the expression of VCAM-1 induced by TNF-α in cultured mouse vascular smooth muscle cell lines. Pretreatment of VSMCs for 2h with sulforaphane (1-5μg/ml) dose-dependently inhibited TNF-α-induced adhesion of THP-1 monocytic cells and protein expression of VCAM-1. Sulforaphane also suppressed TNF-α-induced production of intracellular reactive oxygen species (ROS) and activation of p38, ERK and JNK. Furthermore, sulforaphane inhibited NK-κB and AP-1 activation induced by TNF-α. Sulforaphane inhibited TNF-α-induced ΙκΒ kinase activation, subsequent degradation of ΙκΒα and nuclear translocation of p65 NF-κB and decreased c-Jun and c-Fos protein level. This study suggests that sulforaphane inhibits the adhesive capacity of VSMC and downregulates the TNF-α-mediated induction of VCAM-1 in VSMC by inhibiting the MAPK, NF-κB and AP-1 signaling pathways and intracellular ROS production. Thus, sulforaphane may have beneficial effects to suppress inflammation within the atherosclerotic lesion. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Neuroblast survival depends on mature vascular network formation after mouse stroke: role of endothelial and smooth muscle progenitor cell co-administration.

    PubMed

    Nih, Lina R; Deroide, Nicolas; Leré-Déan, Carole; Lerouet, Dominique; Soustrat, Mathieu; Levy, Bernard I; Silvestre, Jean-Sébastien; Merkulova-Rainon, Tatiana; Pocard, Marc; Margaill, Isabelle; Kubis, Nathalie

    2012-04-01

    Pro-angiogenic cell-based therapies constitute an interesting and attractive approach to enhancing post-stroke neurogenesis and decreasing neurological deficit. However, most new stroke-induced neurons die during the first few weeks after ischemia, thus impairing total recovery. Although the neovascularization process involves different cell types and various growth factors, most cell therapy protocols are based on the biological effects of single-cell-type populations or on the administration of heterogeneous populations of progenitors, namely human cord blood-derived CD34(+) cells, with scarce vascular progenitor cells. Tight cooperation between endothelial cells and smooth muscle cells/pericytes is critical for the development of functional neovessels. We hypothesized that neuroblast survival in stroke brain depends on mature vascular network formation. In this study, we injected a combination of endothelial progenitor cells (EPCs) and smooth muscle progenitor cells (SMPCs), isolated from human umbilical cord blood, into a murine model of permanent focal ischemia induced by middle cerebral artery occlusion. The co-administration of SMPCs and EPCs induced enhanced angiogenesis and vascular remodeling in the peri-infarct and infarct areas, where vessels exhibited a more mature phenotype. This activation of vessel growth resulted in the maintenance of neurogenesis and neuroblast migration to the peri-ischemic cortex. Our data suggest that a mature vascular network is essential for neuroblast survival after cerebral ischemia, and that co-administration of EPCs and SMPCs may constitute a novel therapeutic strategy for improving the treatment of stroke. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  14. Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries

    PubMed Central

    Hallow, Daniel M.; Mahajan, Anuj D.; Prausnitz, Mark R.

    2007-01-01

    This study tested the hypothesis that ultrasound can target intracellular uptake of drugs into vascular endothelial cells (ECs) at low to intermediate energy and into smooth muscle cells (SMCs) at high energy. Ultrasound-enhanced delivery has been shown to enhance and target intracellular drug and gene delivery in the vasculature to treat cardiovascular disease, but quantitative studies of the delivery process are lacking. Viable ex vivo porcine carotid arteries were placed in a solution containing a model drug, TO-PRO®-1, and Optison® microbubbles. Arteries were exposed to ultrasound at 1.1 MHz and acoustic energies of 5.0, 66, or 630 J/cm2. Using confocal microscopy and fluorescent labeling of cells, the artery endothelium and media were imaged to determine the localization and to quantify intracellular uptake and cell death. At low to intermediate ultrasound energy, ultrasound was shown to target intracellular delivery into viable cells that represented 9 – 24% of exposed ECs. These conditions also typically caused 7 – 25% EC death. At high energy, intracellular delivery was targeted to SMCs, which was associated with denuding or death of proximal ECs. This work represents the first known in-depth study to evaluate intracellular uptake into cells in tissue. We conclude that significant intracellular uptake of molecules can be targeted into ECs and SMCs by ultrasound-enhanced delivery suggesting possible applications for treatment of cardivascular diseases and dysfunctions. PMID:17291619

  15. Evaluation of a static stretching intervention on vascular endothelial function and arterial stiffness.

    PubMed

    Shinno, Hiromi; Kurose, Satoshi; Yamanaka, Yutaka; Higurashi, Kyoko; Fukushima, Yaeko; Tsutsumi, Hiromi; Kimura, Yutaka

    2017-06-01

    Maintenance and enhancement of vascular endothelial function contribute to the prevention of cardiovascular disease and prolong a healthy life expectancy. Given the reversible nature of vascular endothelial function, interventions to improve this function might prevent arteriosclerosis. Accordingly, we studied the effects of a 6-month static stretching intervention on vascular endothelial function (reactive hyperaemia peripheral arterial tonometry index: RH-PAT index) and arterial stiffness (brachial-ankle pulse wave velocity: baPWV) and investigated the reversibility of these effects after a 6-month detraining period following intervention completion. The study evaluated 22 healthy, non-smoking, premenopausal women aged ≥40 years. Subjects were randomly assigned to the full-intervention (n = 11; mean age: 48.6 ± 2.8 years) or a half-intervention that included a control period (n = 11; mean age: 46.9 ± 3.6 years). Body flexibility and vascular endothelial function improved significantly after 3 months of static stretching. In addition to these improvements, arterial stiffness improved significantly after a 6-month intervention. However, after a 6-month detraining period, vascular endothelial function, flexibility, and arterial stiffness all returned to preintervention conditions, demonstrating the reversibility of the obtained effects. A 3-month static stretching intervention was found to improve vascular endothelial function, and an additional 3-month intervention also improved arterial stiffness. However, these effects were reversed by detraining.

  16. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.

    PubMed

    Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon

    2017-04-01

    Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have

  17. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β.

    PubMed

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-11-14

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer's disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA.

  18. LRP1 in Brain Vascular Smooth Muscle Cells Mediates Local Clearance of Alzheimer's Amyloid-β

    PubMed Central

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-01-01

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer’s disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA. PMID:23152628

  19. PDGF-BB induces vascular smooth muscle cell expression of high molecular weight FGF-2, which accumulates in the nucleus.

    PubMed

    Pintucci, Giuseppe; Yu, Pey-Jen; Saponara, Fiorella; Kadian-Dodov, Daniella L; Galloway, Aubrey C; Mignatti, Paolo

    2005-08-15

    Basic fibroblast growth factor (FGF-2) and platelet-derived growth factor (PDGF) are implicated in vascular remodeling secondary to injury. Both growth factors control vascular endothelial and smooth muscle cell proliferation, migration, and survival through overlapping intracellular signaling pathways. In vascular smooth muscle cells PDGF-BB induces FGF-2 expression. However, the effect of PDGF on the different forms of FGF-2 has not been elucidated. Here, we report that treatment of vascular aortic smooth muscle cells with PDGF-BB rapidly induces expression of 20.5 and 21 kDa, high molecular weight (HMW) FGF-2 that accumulates in the nucleus and nucleolus. Conversely, PDGF treatment has little or no effect on 18 kDa, low-molecular weight FGF-2 expression. PDGF-BB-induced upregulation of HMW FGF-2 expression is controlled by sustained activation of extracellular signal-regulated kinase (ERK)-1/2 and is abolished by actinomycin D. These data describe a novel interaction between PDGF-BB and FGF-2, and indicate that the nuclear forms of FGF-2 may mediate the effect of PDGF activity on vascular smooth muscle cells.

  20. Resveratrol Increases Serum BDNF Concentrations and Reduces Vascular Smooth Muscle Cells Contractility via a NOS-3-Independent Mechanism

    PubMed Central

    Malinowski, Bartosz; Grześk, Elżbieta; Grześk, Grzegorz

    2017-01-01

    Resveratrol is a polyphenol that presents both antineuroinflammatory properties and the ability to interact with NOS-3, what contributes to vasorelaxation. Brain-derived neurotrophic factor (BNDF), a molecule associated with neuroprotection in many neurodegenerative disorders, is considered as an important element of maintaining stable cerebral blood flow. Vascular smooth muscle cells (VSMCs) are considered to be an important element in the pathogenesis of neurodegeneration and a potential preventative target by agents which reduce the contractility of the vessels. Our main objectives were to define the relationship between serum and long-term oral resveratrol administration in the rat model, as well as to assess the effect of resveratrol on phenylephrine- (PHE-) induced contraction of vascular smooth muscle cells (VSMCs). Moreover, we attempt to define the dependence of contraction mechanisms on endothelial NO synthase. Experiments were performed on Wistar rats (n = 17) pretreated with resveratrol (4 weeks; 10 mg/kg p.o.) or placebo. Serum BDNF levels were quantified after 2 and 4 weeks of treatment with ELISA. Contraction force was measured on isolated and perfused tail arteries as the increase of perfusion pressure with a constant flow. Values of serum BNDF in week 0 were 1.18 ± 0.12 ng/mL (treated) and 1.17 ± 0.13 ng/mL (control) (p = ns). After 2 weeks of treatment, BDNF in the treatment group was higher than in controls, 1.52 ± 0.23 ng/mL and 1.24 ± 0.13 ng/mL, respectively. (p = 0.02) Following 4 weeks of treatment, BDNF values were higher in the resveratrol group compared to control 1.64 ± 0.31 ng/mL and 1.32 ± 0.26 ng/mL, respectively (p = 0.031). EC50 values obtained for PHE in resveratrol pretreated arteries were significantly higher than controls (5.33 ± 1.7 × 10−7 M/L versus 4.53 ± 1.2 × 10−8 M/L, p < 0.05). These results show a significant increase in BDNF concentration in the resveratrol pretreated group. The

  1. Smooth Muscle-Mediated Connective Tissue Remodeling in Pulmonary Hypertension

    NASA Astrophysics Data System (ADS)

    Mecham, Robert P.; Whitehouse, Loren A.; Wrenn, David S.; Parks, William C.; Griffin, Gail L.; Senior, Robert M.; Crouch, Edmond C.; Stenmark, Kurt R.; Voelkel, Norbert F.

    1987-07-01

    Abnormal accumulation of connective tissue in blood vessels contributes to alterations in vascular physiology associated with disease states such as hypertension and atherosclerosis. Elastin synthesis was studied in blood vessels from newborn calves with severe pulmonary hypertension induced by alveolar hypoxia in order to investigate the cellular stimuli that elicit changes in pulmonary arterial connective tissue production. A two- to fourfold increase in elastin production was observed in pulmonary artery tissue and medial smooth muscle cells from hypertensive calves. This stimulation of elastin production was accompanied by a corresponding increase in elastin messenger RNA consistent with regulation at the transcriptional level. Conditioned serum harvested from cultures of pulmonary artery smooth muscle cells isolated from hypertensive animals contained one or more low molecular weight elastogenic factors that stimulated the production of elastin in both fibroblasts and smooth muscle cells and altered the chemotactic responsiveness of fibroblasts to elastin peptides. These results suggest that connective tissue changes in the pulmonary vasculature in response to pulmonary hypertension are orchestrated by the medial smooth muscle cell through the generation of specific differentiation factors that alter both the secretory phenotype and responsive properties of surrounding cells.

  2. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timraz, Sara B.H., E-mail: sara.timraz@kustar.ac.ae; Farhat, Ilyas A.H., E-mail: ilyas.farhat@outlook.com; Alhussein, Ghada, E-mail: ghada.alhussein@kustar.ac.ae

    In vitro research on vascular tissue engineering has extensively used isolated primary human or animal smooth muscle cells (SMC). Research programs that lack such facilities tend towards commercially available primary cells sources. Here, we aim to evaluate the capacity of commercially available human SMC to maintain their contractile phenotype, and determine if dedifferentiation towards the synthetic phenotype occurs in response to conventional cell culture and passaging without any external biochemical or mechanical stimuli. Lower passage SMC adopted a contractile phenotype marked by a relatively slower proliferation rate, higher expression of proteins of the contractile apparatus and smoothelin, elongated morphology, andmore » reduced deposition of collagen types I and III. As the passage number increased, migratory capacity was enhanced, average cell speed, total distance and net distance travelled increased up to passage 8. Through the various assays, corroborative evidence pinpoints SMC at passage 7 as the transition point between the contractile and synthetic phenotypes, while passage 8 distinctly and consistently exhibited characteristics of synthetic phenotype. This knowledge is particularly useful in selecting SMC of appropriate passage number for the target vascular tissue engineering application, for example, a homeostatic vascular graft for blood vessel replacement versus recreating atherosclerotic blood vessel model in vitro. - Highlights: • Ability of human smooth muscle cells to alter phenotype in culture is evaluated. • Examined the effect of passaging human smooth muscle cells on phenotype. • Phenotype is assessed based on morphology, proliferation, markers, and migration. • Multi-resolution assessment methodology, single-cell and cell-population. • Lower and higher passages than P7 adopted a contractile and synthetic phenotype respectively.« less

  3. Increased arterial smooth muscle Ca2+ signaling, vasoconstriction, and myogenic reactivity in Milan hypertensive rats

    PubMed Central

    Linde, Cristina I.; Karashima, Eiji; Raina, Hema; Zulian, Alessandra; Wier, Withrow G.; Hamlyn, John M.; Ferrari, Patrizia; Blaustein, Mordecai P.

    2012-01-01

    The Milan hypertensive strain (MHS) rats are a genetic model of hypertension with adducin gene polymorphisms linked to enhanced renal tubular Na+ reabsorption. Recently we demonstrated that Ca2+ signaling is augmented in freshly isolated mesenteric artery myocytes from MHS rats. This is associated with greatly enhanced expression of Na+/Ca2+ exchanger-1 (NCX1), C-type transient receptor potential (TRPC6) protein, and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) compared with arteries from Milan normotensive strain (MNS) rats. Here, we test the hypothesis that the enhanced Ca2+ signaling in MHS arterial smooth muscle is directly reflected in augmented vasoconstriction [myogenic and phenylephrine (PE)-evoked responses] in isolated mesenteric small arteries. Systolic blood pressure was higher in MHS (145 ± 1 mmHg) than in MNS (112 ± 1 mmHg; P < 0.001; n = 16 each) rats. Pressurized mesenteric resistance arteries from MHS rats had significantly augmented myogenic tone and reactivity and enhanced constriction to low-dose (1–100 nM) PE. Isolated MHS arterial myocytes exhibited approximately twofold increased peak Ca2+ signals in response to 5 μM PE or ATP in the absence and presence of extracellular Ca2+. These augmented responses are consistent with increased vasoconstrictor-evoked sarcoplasmic reticulum (SR) Ca2+ release and increased Ca2+ entry, respectively. The increased SR Ca2+ release correlates with a doubling of inositol 1,4,5-trisphosphate receptor type 1 and tripling of SERCA2 expression. Pressurized MHS arteries also exhibited a ∼70% increase in 100 nM ouabain-induced vasoconstriction compared with MNS arteries. These functional alterations reveal that, in a genetic model of hypertension linked to renal dysfunction, multiple mechanisms within the arterial myocytes contribute to enhanced Ca2+ signaling and myogenic and vasoconstrictor-induced arterial constriction. MHS rats have elevated plasma levels of endogenous ouabain, which may initiate the

  4. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation.

    PubMed

    Karki, Rajendra; Kim, Seong-Bin; Kim, Dong-Wook

    2013-12-10

    Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  5. Role of ROS signaling in differential hypoxic Ca2+ and contractile responses in pulmonary and systemic vascular smooth muscle cells.

    PubMed

    Wang, Yong-Xiao; Zheng, Yun-Min

    2010-12-31

    Hypoxia causes a large increase in [Ca2+]i and attendant contraction in pulmonary artery smooth muscle cells (PASMCs), but not in systemic artery SMCs. The different responses meet the respective functional needs in these two distinct vascular myocytes; however, the underlying molecular mechanisms are not well known. We and other investigators have provided extensive evidence to reveal that voltage-dependent K+ (KV) channels, canonical transient receptor potential (TRPC) channels, ryanodine receptor Ca2+ release channels (RyRs), cyclic adenosine diphosphate-ribose, FK506 binding protein 12.6, protein kinase C, NADPH oxidase and reactive oxygen species (ROS) are the essential effectors and signaling intermediates in the hypoxic increase in [Ca2+]i in PASMCs and HPV, but they may not primarily underlie the diverse cellular responses in pulmonary and systemic vascular myocytes. Hypoxia significantly increases mitochondrial ROS generation in PASMCs, which can induce intracellular Ca2+ release by opening RyRs, and may also cause extracellular Ca2+ influx by inhibiting KV channels and activating TRPC channels, leading to a large increase in [Ca2+]i in PASMCs and HPV. In contrast, hypoxia has no or a minor effect on mitochondrial ROS generation in systemic SMCs, thereby causing no change or a negligible increase in [Ca2+]i and contraction. Further preliminary work indicates that Rieske iron-sulfur protein in the mitochondrial complex III may perhaps serve as a key initial molecular determinant for the hypoxic increase in [Ca2+]i in PASMCs and HPV, suggesting its potential important role in different cellular changes to respond to hypoxic stimulation in pulmonary and systemic artery myocytes. All these findings have greatly improved our understanding of the molecular processes for the differential hypoxic Ca2+ and contractile responses in vascular SMCs from distinct pulmonary and systemic circulation systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Gingerol Inhibits Serum-Induced Vascular Smooth Muscle Cell Proliferation and Injury-Induced Neointimal Hyperplasia by Suppressing p38 MAPK Activation.

    PubMed

    Jain, Manish; Singh, Ankita; Singh, Vishal; Maurya, Preeti; Barthwal, Manoj Kumar

    2016-03-01

    Gingerol inhibits growth of cancerous cells; however, its role in vascular smooth muscle cell (VSMC) proliferation is not known. The present study investigated the effect of gingerol on VSMC proliferation in cell culture and during neointima formation after balloon injury. Rat VSMCs or carotid arteries were harvested at 15 minutes, 30 minutes, 1, 6, 12, and 24 hours of fetal bovine serum (FBS; 10%) stimulation or balloon injury, respectively. Gingerol prevented FBS (10%)-induced proliferation of VSMCs in a dose-dependent manner (50 μmol/L-400 μmol/L). The FBS-induced proliferating cell nuclear antigen (PCNA) upregulation and p27(Kip1) downregulation were also attenuated in gingerol (200 μmol/L) pretreated cells. Fetal bovine serum-induced p38 mitogen-activated protein kinase (MAPK) activation, PCNA upregulation, and p27(Kip1) downregulation were abrogated in gingerol (200 μmol/L) and p38 MAPK inhibitor (SB203580, 10 μmol/L) pretreated cells. Balloon injury induced time-dependent p38 MAPK activation in the carotid artery. Pretreatment with gingerol (200 μmol/L) significantly attenuated injury-induced p38 MAPK activation, PCNA upregulation, and p27(Kip1) downregulation. After 14 days of balloon injury, intimal thickening, neointimal proliferation, and endothelial dysfunction were significantly prevented in gingerol pretreated arteries. In isolated organ bath studies, gingerol (30 nmol/L-300 μmol/L) inhibited phenylephrine-induced contractions and induced dose-dependent relaxation of rat thoracic aortic rings in a partially endothelium-dependent manner. Gingerol prevented FBS-induced VSMC proliferation and balloon injury-induced neointima formation by regulating p38 MAPK. Vasodilator effect of gingerol observed in the thoracic aorta was partially endothelium dependent. Gingerol is thus proposed as an attractive agent for modulating VSMC proliferation, vascular reactivity, and progression of vascular proliferative diseases. © The Author(s) 2015.

  7. Clarification of serotonin-induced effects in peripheral artery disease observed through the femoral artery response in models of diabetes and vascular occlusion: The role of calcium ions.

    PubMed

    Stojanović, Marko; Prostran, Milica; Janković, Radmila; Radenković, Miroslav

    2017-07-01

    Recent findings have demonstrated that serotonin is an important participant in the development and progression of peripheral artery diseases. Taking this into consideration, the goals of this study were to investigate the effects of serotonin on isolated Wistar rat femoral arteries in both healthy and diabetic animals, with and without artery occlusion, with a particular focus on determining the role of calcium in this process. Contraction experiments with serotonin on intact and denuded femoral artery rings, in the presence or absence of nifedipine and ouabain (both separately, or in combination), as well as Ca 2+ -free Krebs-Ringer bicarbonate solution were performed. The serotonin-induced results were concentration dependent, but only in healthy animals. The endothelium-dependent contraction of the femoral artery was assessed. In healthy animals, the endothelium-reliant part of contraction was dependent on the extracellular calcium, while the smooth muscle-related part was instead dependent on the intracellular calcium. In diabetic animals, both nifedipine and ouabain influenced serotonin-induced vascular effects by blocking intracellular calcium pathways. However, this was diminished after the simultaneous administration of both blockers. © 2017 John Wiley & Sons Australia, Ltd.

  8. Cytoplasmic YY1 Is Associated with Increased Smooth Muscle-Specific Gene Expression

    PubMed Central

    Favot, Laure; Hall, Susan M.; Haworth, Sheila G.; Kemp, Paul R.

    2005-01-01

    Immediately after birth the adluminal vascular SMCs of the pulmonary elastic arteries undergo transient actin cytoskeletal remodeling as well as cellular de-differentiation and proliferation. Vascular smooth muscle phenotype is regulated by serum response factor, which is itself regulated in part by the negative regulator YY1. We therefore studied the subcellular localization of YY1 in arteries of normal newborn piglets and piglets affected by neonatal pulmonary hypertension. We found that YY1 localization changed during development and that expression of γ-smooth muscle actin correlated with expression of cytoplasmic rather than nuclear YY1. Analysis of the regulation of YY1 localization in vitro demonstrated that polymerized γ-actin sequestered EGFP-YY1 in the cytoplasm and that YY1 activation of c-myc promoter activity was inhibited by LIM kinase, which increases actin polymerization. Consistent with these data siRNA-mediated down-regulation of YY1 in C2C12 cells increased SM22-α expression and inhibited cell proliferation. Thus, actin polymerization controls subcellular YY1 localization, which contributes to vascular SMC proliferation and differentiation in normal pulmonary artery development. In the absence of actin depolymerization, YY1 does not relocate to the nucleus, and this lack of relocation may contribute to the pathobiology of pulmonary hypertension. PMID:16314465

  9. Ultrasonographic vascular mechanics to assess arterial stiffness: a review.

    PubMed

    Teixeira, Rogério; Vieira, Maria João; Gonçalves, Alexandra; Cardim, Nuno; Gonçalves, Lino

    2016-03-01

    In recent years, the role of arterial stiffness in the development of cardiovascular diseases has been explored more extensively. Local arterial stiffness may be gauged via ultrasound, measuring pulse transit time relative to changing vessel diameters and distending pressures. Recently, direct vessel-wall tracking systems have been devised based on new ultrasonographic methodologies, such as tissue Doppler imaging and speckle-tracking analysis--vascular mechanics. These advances have been evaluated in varying arterial distributions, are proved surrogates of pulse wave velocity, and are ascending in clinical importance. In the course of this review, we describe fundamental concepts and methodologies involved in ultrasound assessment of vascular mechanics. We also present relevant clinical studies and discuss the potential clinical utility of such diagnostic pursuits. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  10. Role of smooth muscle cells on endothelial cell cytosolic free calcium in porcine coronary arteries.

    PubMed

    Budel, S; Schuster, A; Stergiopoulos, N; Meister, J J; Bény, J L

    2001-09-01

    We tested the hypothesis that the cytosolic free calcium concentration in endothelial cells is under the influence of the smooth muscle cells in the coronary circulation. In the left descending branch of porcine coronary arteries, cytosolic free calcium concentration ([Ca(2+)](i)) was estimated by determining the fluorescence ratio of two calcium probes, fluo 4 and fura red, in smooth muscle and endothelial cells using confocal microscopy. Acetylcholine and potassium, which act directly on smooth muscle cells to increase [Ca(2+)](i), were found to indirectly elevate [Ca(2+)](i) in endothelial cells; in primary cultures of endothelial cells, neither stimulus affected [Ca(2+)](i), yet substance P increased the fluorescence ratio twofold. In response to acetylcholine and potassium, isometric tension developed by arterial strips with intact endothelium was attenuated by up to 22% (P < 0.05) compared with strips without endothelium. These findings suggest that stimuli that increase smooth muscle [Ca(2+)](i) can indirectly influence endothelial cell function in porcine coronary arteries. Such a pathway for negative feedback can moderate vasoconstriction and diminish the potential for vasospasm in the coronary circulation.

  11. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; P<0.05) at all examined time points (2 to 24 hours). mRNA half-life studies showed that this response was not due to increased mRNA instability. tPA mRNA expression was decreased (to 10% of stationary control; P<0.05) by low shear stress after 12 hours of exposure and was increased (to 250% of stationary control; P<0.05) after 24 hours at high shear stress. The same trends in PAR-1 mRNA levels were observed in rat smooth muscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  12. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shuai; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208; Lv, Jiaju

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. Black-Right-Pointing-Pointer Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. Black-Right-Pointing-Pointer CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-{kappa}B) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-{kappa}B activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responsesmore » in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-{kappa}B activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNF{alpha})-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-{kappa}B transcriptional activity in RASMCs; however, did not affect the TNF{alpha}-induced NF-{kappa}B activity. Intriguingly, the TNF{alpha}-induced I{kappa}B phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of I{kappa}B{alpha} and I{kappa}B{beta} proteins, it did not alter the kinetics of TNF{alpha}-induced I{kappa}B protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-{kappa}B activity and TNF{alpha}-induced I{kappa}B kinase activation without affecting TNF{alpha}-induced NF-{kappa}B activity in VSMCs. In addition, knocking down of Cyld suppressed TNF{alpha}-induced activation of mitogen activated

  13. Cold-Induced Changes in Arterial Sensitivity

    DTIC Science & Technology

    1991-05-01

    muscle contraction . The in vitro exposure of femoral arteries from rabbits and pigs to cold resulted in a progressive loss of sensitivity to agonist. Femoral arteries isolated from hypothermic pigs (core temp = 25 C for 2 hours) were no more sensitive to NEPI in vitro than arteries from normothermic animals. However, the in situ hind limb arterial bed of the hypothermic pig was ten times more sensitive to arterial injection of NEPI than the arterial bed of the normothermic pig. The sensitivity of porcine vascular smooth muscle to NEPI does not appear to be affected by

  14. Vascular mechanics of the coronary artery

    NASA Technical Reports Server (NTRS)

    Veress, A. I.; Vince, D. G.; Anderson, P. M.; Cornhill, J. F.; Herderick, E. E.; Klingensmith, J. D.; Kuban, B. D.; Greenberg, N. L.; Thomas, J. D.

    2000-01-01

    This paper describes our research into the vascular mechanics of the coronary artery and plaque. The three sections describe the determination of arterial mechanical properties using intravascular ultrasound (IVUS), a constitutive relation for the arterial wall, and finite element method (FEM) models of the arterial wall and atheroma. METHODS: Inflation testing of porcine left anterior descending coronary arteries was conducted. The changes in the vessel geometry were monitored using IVUS, and intracoronary pressure was recorded using a pressure transducer. The creep and quasistatic stress/strain responses were determined. A Standard Linear Solid (SLS) was modified to reproduce the non-linear elastic behavior of the arterial wall. This Standard Non-linear Solid (SNS) was implemented into an axisymetric thick-walled cylinder numerical model. Finite element analysis models were created for five age groups and four levels of stenosis using the Pathobiological Determinants of Atherosclerosis Youth (PDAY) database. RESULTS: The arteries exhibited non-linear elastic behavior. The total tissue creep strain was epsilon creep = 0.082 +/- 0.018 mm/mm. The numerical model could reproduce both the non-linearity of the porcine data and time dependent behavior of the arterial wall found in the literature with a correlation coefficient of 0.985. Increasing age had a strong positive correlation with the shoulder stress level, (r = 0.95). The 30% stenosis had the highest shoulder stress due to the combination of a fully formed lipid pool and a thin cap. CONCLUSIONS: Studying the solid mechanics of the arterial wall and the atheroma provide important insights into the mechanisms involved in plaque rupture.

  15. The in vivo blood compatibility of bio-inspired small diameter vascular graft: effect of submicron longitudinally aligned topography

    PubMed Central

    2013-01-01

    Background Cardiovascular disease is the leading cause of deaths worldwide and the arterial reconstructive surgery remains the treatment of choice. Although large diameter vascular grafts have been widely used in clinical practices, there is an urgent need to develop a small diameter vascular graft with enhanced blood compatibility. Herein, we fabricated a small diameter vascular graft with submicron longitudinally aligned topography, which mimicked the tunica intima of the native arterial vessels and were tested in Sprague–Dawley (SD) rats. Methods Vascular grafts with aligned and smooth topography were prepared by electrospinning and were connected to the abdominal aorta of the SD rats to evaluate their blood compatibility. Graft patency and platelet adhesion were evaluated by color Doppler ultrasound and immunofluorescence respectively. Results We observed a significant higher patency rate (p = 0.021) and less thrombus formation in vascular graft with aligned topography than vascular graft with smooth topography. However, no significant difference between the adhesion rates on both vascular grafts (smooth/aligned: 0.35‰/0.12‰, p > 0.05) was observed. Moreover, both vascular grafts had few adherent activated platelets on the luminal surface. Conclusion Bionic vascular graft showed enhanced blood compatibility due to the effect of surface topography. Therefore, it has considerable potential for using in clinical application. PMID:24083888

  16. Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress

    NASA Technical Reports Server (NTRS)

    Seidel, Charles L.

    1998-01-01

    The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure

  17. Bisdemethoxycurcumin inhibits PDGF-induced vascular smooth muscle cell motility and proliferation

    PubMed Central

    Hua, Yinan; Dolence, Julia; Ramanan, Shalini; Ren, Jun; Nair, Sreejayan

    2013-01-01

    Scope A key event in the development of plaque in the arteries is the migration and proliferation of smooth muscle cells (SMCs) from the media to the intima of the blood vessel. This study was conducted to evaluate the effects of bisdemethoxycurcumin, a naturally occurring structural analog of curcumin, on PDGF-stimulated migration and proliferation of SMCs. Methods and results Demethoxycurcumin were synthesized by condensing vanillin and 4-hydroxybenzaldehyde. SMCs isolated from adult rat aorta were stimulated with PDGF in the presence or absence of curcumin or bisdemethoxycurcumin following which cell migration and proliferation were assessed by monolayer wound healing assay and [3H]-thymidine incorporation respectively. PDGF-induced phosphorylation of PDGF-receptor-β and its downstream effector Akt were assessed by Western blotting. Intracellular reactive oxygen species (ROS) was assessed using the fluorescent dye DCFDA. Bisdemethoxycurcumin elicited a concentration-dependent inhibition of PDGF-stimulated phosphorylation of PDGFR-β, Akt and Erk as well as the PDGF-stimulated SMC migration and proliferation. Bisdemethoxycurcumin was more potent than curcumin in inhibiting migration and proliferation and suppressing PDGF-signaling in SMCs. Both compounds were equipotent in inhibiting PDGF-stimulated intracellular ROS-generation. Conclusion Bisdemethoxycurcumin may be of potential use in the prevention or treatment of vascular disease. PMID:23554078

  18. Patent ductus arteriosus in mice with smooth muscle-specific Jag1 deletion

    PubMed Central

    Feng, Xuesong; Krebs, Luke T.; Gridley, Thomas

    2010-01-01

    The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus and is one of the most common congenital heart defects. Mice with smooth muscle cell-specific deletion of Jag1, which encodes a Notch ligand, die postnatally from patent ductus arteriosus. These mice exhibit defects in contractile smooth muscle cell differentiation in the vascular wall of the ductus arteriosus and adjacent descending aorta. These defects arise through an inability to propagate the JAG1-Notch signal via lateral induction throughout the width of the vascular wall. Both heterotypic endothelial smooth muscle cell interactions and homotypic vascular smooth muscle cell interactions are required for normal patterning and differentiation of the ductus arteriosus and adjacent descending aorta. This new model for a common congenital heart defect provides novel insights into the genetic programs that underlie ductus arteriosus development and closure. PMID:21068062

  19. Investigation of terpinen-4-ol effects on vascular smooth muscle relaxation.

    PubMed

    Maia-Joca, Rebeca Peres Moreno; Joca, Humberto Cavalcante; Ribeiro, Francisca Jéssica Penha; do Nascimento, Renata Vieira; Silva-Alves, Kerly Shamyra; Cruz, Jader S; Coelho-de-Souza, Andrelina Noronha; Leal-Cardoso, José Henrique

    2014-10-12

    This study investigated the mechanisms underlying the vascular effects of terpinen-4-ol in isolated rat aortic ring preparations. The thoracic aortae of healthy rats were submitted to isometric tension recording. Membrane resting potential and input membrane resistance were measured by conventional microelectrode technique. Terpinen-4-ol reversibly relaxed endothelium-containing preparations pre-contracted with high K(+) and phenylephrine with IC50 values of 421.43 μM and 802.50 μM, respectively. These effects were significantly reduced by vascular endothelium removal. In Ca(2+)-free and high K(+) (80 mM) medium, the contractions produced by Ba(2+) were reduced by terpinen-4-ol (100-1000 μM) in a concentration-dependent manner. In aortic rings maintained under Ca(2+)-free conditions, terpinen-4-ol significantly reduced the contractions induced by either phenylephrine (1 μM) or phorbol 12,13-dibutyrate (1 μM). Terpinen-4-ol (10-1000 μM) also relaxed the contractions evoked by BAYK-8644 (3 μM) with an IC50 of 454.23 μM. Neither membrane resting potential nor input resistance of smooth muscle cells was altered by terpinen-4-ol exposure. The present results suggest that terpinen-4-ol induced vascular smooth muscle relaxation that was preferentially due to the inhibition of electromechanical pathways related to calcium influx through voltage-operated calcium channels. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Asynchronous arterial systolic expansion as a marker of vascular aging: assessment of the carotid artery with velocity vector imaging.

    PubMed

    Yang, Woo-In; Shim, Chi Y; Bang, Woo D; Oh, Chang M; Chang, Hyuk J; Chung, Namsik; Ha, Jong-Won

    2011-12-01

    Arterial elastic properties change with aging. Measurements of pulse wave velocity and augmentation index are useful for the evaluation of arterial stiffness. However, they likely represent only global characteristics of the arterial tree rather than local vascular alterations. The aim of this study was to evaluate whether local vascular properties assessed by velocity vector imaging differed with aging. Vascular properties of carotid arteries with ages were assessed in 100 healthy volunteers (52 men) ranging from 20 to 68 years using velocity vector imaging. The peak circumferential strain and strain rate of the six segments in left common carotid arteries were analyzed and the standard deviation of the time to peak circumferential strain and strain rate of the six segments, representing the synchronicity of the arterial expansion, were calculated. Central blood pressure, augmentation index and pulse wave velocity were assessed by commercially available radial artery tonometry, the SphygmoCor system (AtCor Medical, West Ryde, Australia). A validated generalized transfer function was used to acquire the central aortic pressures and pressure waveforms. Pulse wave velocity, augmentation index and velocity vector imaging parameters showed significant changes with age. However, the age-related changes in pulse wave velocity, augmentation index and velocity vector imaging parameters were different. The increase in pulse wave velocity was more prominent in older individuals, whereas the changes in augmentation index and carotid strain and strain rate were evident earlier, at the age of 30 years. Unlike augmentation index, which showed little change in older individuals, the standard deviation of time to peak strain and strain rate showed a steady increase from younger to older individuals. Asynchronous arterial expansion could be a useful discriminative marker of vascular aging independent of individual's age.

  1. Vascular reactivity of rabbit isolated renal and femoral resistance arteries in renal wrap hypertension.

    PubMed

    Khammy, Makhala M; Angus, James A; Wright, Christine E

    2016-02-15

    In rabbits with cellophane renal wrap hypertension, hindquarter and total vascular resistance changes to pressor and depressor agents are amplified compared to those of normotensive rabbits. The aim of the present study was to evaluate the in vitro pharmacodynamics of hypertensive and normotensive rabbit small artery segments isolated from the renal and hindquarter vascular beds. Using wire myography, the full range (Emax) and sensitivity (EC50) to a range of agonists of segments of renal interlobar (≈ 600 µm i.d.), renal arcuate (≈ 250 µm i.d.) and deep femoral branch (≈ 250 µm i.d.) arteries were assessed under normalised conditions of passive tension. Interlobar arteries from hypertensive rabbits were more sensitive (EC50) than those from normotensive rabbits to noradrenaline (6-fold), methoxamine (3-fold) and angiotensin II (3-fold). Arcuate artery reactivity was largely unaffected by hypertension. Deep femoral arteries from hypertensive rabbits had enhanced sensitivity only to noradrenaline (2-fold) and methoxamine (4-fold). Sensitivity to relaxation by acetylcholine was unaffected by hypertension in all arteries. Deep femoral arteries from hypertensive rabbits were more sensitive to sodium nitroprusside than normotensive counterparts. Adenosine caused little relaxation in renal arteries, but full relaxation in deep femoral arteries, unaltered by hypertension. This study found substantial heterogeneity in the pharmacodynamic profile of vessels isolated from different vascular beds and between arterial segments within the kidney. These profiles were differentially affected by hypertension suggesting that hypertension per se is not a resultant of general vascular dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Unraveling endothelin-1 induced hypercontractility of human pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension

    PubMed Central

    Warburton, Rod; Taylor, Linda; Toksoz, Deniz; Hill, Nicholas; Polgar, Peter

    2018-01-01

    Contraction of human pulmonary artery smooth muscle cells (HPASMC) isolated from pulmonary arterial hypertensive (PAH) and normal (non-PAH) subject lungs was determined and measured with real-time electrical impedance. Treatment of HPASMC with vasoactive peptides, endothelin-1 (ET-1) and bradykinin (BK) but not angiotensin II, induced a temporal decrease in the electrical impedance profile mirroring constrictive morphological change of the cells which typically was more robust in PAH as opposed to non-PAH cells. Inhibition with LIMKi3 and a cofilin targeted motif mimicking cell permeable peptide (MMCPP) had no effect on ET-1 induced HPASMC contraction indicating a negligible role for these actin regulatory proteins. On the other hand, a MMCPP blocking the activity of caldesmon reduced ET-1 promoted contraction pointing to a regulatory role of this protein and its activation pathway in HPASMC contraction. Inhibition of this MEK/ERK/p90RSK pathway, which is an upstream regulator of caldesmon phosphorylation, reduced ET-1 induced cell contraction. While the regulation of ET-1 induced cell contraction was found to be similar in PAH and non-PAH cells, a key difference was the response to pharmacological inhibitors and to siRNA knockdown of Rho kinases (ROCK1/ROCK2). The PAH cells required much higher concentrations of inhibitors to abrogate ET-1 induced contractions and their contraction was not affected by siRNA against either ROCK1 or ROCK2. Lastly, blocking of L-type and T-type Ca2+ channels had no effect on ET-1 or BK induced contraction. However, inhibiting the activity of the sarcoplasmic reticulum Ca2+ ATPase blunted ET-1 and BK induced HPASMC contraction in both PAH and non-PAH derived HPASMC. In summary, our findings here together with previous communications illustrate similarities and differences in the regulation PAH and non-PAH smooth muscle cell contraction relating to calcium translocation, RhoA/ROCK signaling and the activity of caldesmon. These findings

  3. Characterization of evolving biomechanical properties of tissue engineered vascular grafts in the arterial circulation.

    PubMed

    Udelsman, Brooks V; Khosravi, Ramak; Miller, Kristin S; Dean, Ethan W; Bersi, Matthew R; Rocco, Kevin; Yi, Tai; Humphrey, Jay D; Breuer, Christopher K

    2014-06-27

    We used a murine model to assess the evolving biomechanical properties of tissue engineered vascular grafts (TEVGs) implanted in the arterial circulation. The initial polymeric tubular scaffold was fabricated from poly(lactic acid)(PLA) and coated with a 50:50 copolymer of poly(caprolactone) and poly(lactic acid)(P[PC/LA]). Following seeding with syngeneic bone marrow derived mononuclear cells, TEVGs (n=50) were implanted as aortic interposition grafts in wild-type mice and monitored serially using ultrasound. A custom biaxial mechanical testing device was used to quantify the in vitro circumferential and axial mechanical properties of grafts explanted at 3 or 7 months. At both times, TEVGs were much stiffer than native tissue in both directions. Repeated mechanical testing of some TEVGs treated with elastase or collagenase suggested that elastin did not contribute significantly to the overall stiffness whereas collagen did contribute. Traditional histology and immunostaining revealed smooth muscle cell layers, significant collagen deposition, and increasing elastin production in addition to considerable scaffold at both 3 and 7 months, which likely dominated the high stiffness seen in mechanical testing. These results suggest that PLA has inadequate in vivo degradation, which impairs cell-mediated development of vascular neotissue having properties closer to native arteries. Assessing contributions of individual components, such as elastin and collagen, to the developing neovessel is needed to guide computational modeling that may help to optimize the design of the TEVG. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Expression of a Novel RNA-Splicing Factor, RA301/Tra2β, in Vascular Lesions and Its Role in Smooth Muscle Cell Proliferation

    PubMed Central

    Tsukamoto, Yoshitane; Matsuo, Noriyuki; Ozawa, Kentaro; Hori, Osamu; Higashi, Toshio; Nishizaki, Junya; Tohnai, Norimitsu; Nagata, Izumi; Kawano, Kiyoshi; Yutani, Chikao; Hirota, Seiichi; Kitamura, Yukihiko; Stern, David M.; Ogawa, Satoshi

    2001-01-01

    RA301/Tra2β, a sequence-specific RNA-binding protein, was first cloned as a stress molecule in re-oxygenated astrocytes. In human vascular tissues, we have found enhanced RA301/Tra2β expression in coronary artery with intimal thickening, and atherosclerotic aorta. Balloon injury to the rat carotid artery induced RA301/Tra2β transcripts followed by expression of the antigen, which was detected in medial and neointimal vascular smooth muscle cells (VSMCs). In cultured VSMCs, hypoxia/re-oxygenation caused induction of RA301/Tra2β and was accompanied by cell proliferation, both of which were blocked by the addition of either diphenyl iodonium, a NADPH oxidase inhibitor, PD98059, a mitogen-activated protein kinase kinase inhibitor, or antisense oligonucleotide for RA301/Tra2β. Consistent with a link between RA301/Tra2β and cell proliferation, platelet-derived growth factor also induced expression of RA301/Tra2β in cultured VSMCs. These data suggest a possible role for RA301/Tra2β in the regulation of VSMC proliferation, especially in the setting of hypoxia/re-oxygenation-induced cell stress. PMID:11337366

  5. Classification of the terminal arterial vascularization of the appendix with a view to its use in reconstructive microsurgery.

    PubMed

    Ouattara, Djibril; Kipré, Yvan Zunon; Broalet, Esperance; Séri, Fréjuis Gotta; Angaté, Hervé Yangni; Bi N'Guessan, Gabriel Gnanazan; Kassanyou, Salami

    2007-12-01

    The aim of this study was to examine the arterial vascularization of the appendix, in order to propose a classification of the different vascular types of the appendix for the realization of free transfer in reconstructive microsurgery. We achieved the removal as a monobloc of the cecum, of a part of the ileum, and the upper colon, then conducted the intra-arterial injection of a mixture composed of minium, and went on to the dissection of 25 specimens of appendix from West Africa. We analyzed the appendicular territory vascularized by the different discovered arteries. The average length of the appendix was 10.5 cm, ranging from 6.5 to 13.5 cm. The vascularization of the appendix was guaranteed by three arteries: the main appendicular artery, the ceco-appendicular artery and by one or several appendicular accessory arteries. We found five types of vascularization of the appendix according to the number and type of artery needed to guarantee the vascularization of the whole of the appendix including its base. It is evident from this study that a detailed analysis of the vascularization of the appendix is necessary before its removal for a reconstructive microsurgery, because in three cases out of four, the transplant must include at least two vessels in order to guarantee the whole of its vascularization.

  6. Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurtado, Paola A.; Vora, Siddharth; Sume, Siddika Selva

    2008-02-01

    Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression.more » In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-{alpha}-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology.« less

  7. Matrix Metalloproteinase-2 Activity is Associated with Divergent Regulation of Calponin-1 in Conductance and Resistance Arteries in Hypertension-induced Early Vascular Dysfunction and Remodelling.

    PubMed

    Parente, Juliana M; Pereira, Camila A; Oliveira-Paula, Gustavo H; Tanus-Santos, José E; Tostes, Rita C; Castro, Michele M

    2017-10-01

    Matrix metalloproteinase (MMP)-2 participates in hypertension-induced maladaptive vascular remodelling by degrading extra- and intracellular proteins. The consequent extracellular matrix rearrangement and phenotype switch of vascular smooth muscle cells (VSMCs) lead to increased cellular migration and proliferation. As calponin-1 degradation by MMP-2 may lead to VSMC proliferation during hypertension, the hypothesis of this study is that increased MMP-2 activity contributes to early hypertension-induced maladaptive remodelling in conductance and resistance arteries via regulation of calponin-1. The main objective was to analyse whether MMP-2 exerts similar effects on the structure and function of the resistance and conductance arteries during early hypertension. Two-kidney, one-clip (2K-1C) hypertensive male rats and corresponding controls were treated with doxycycline (30 mg/kg/day) or water until reaching one week of hypertension. Systolic blood pressure was increased in 2K-1C rats, and doxycycline did not reduce it. Aortas and mesenteric arteries were analysed. MMP-2 activity and expression were increased in both arteries, and doxycycline reduced it. Significant hypertrophic remodelling and VSMC proliferation were observed in aortas but not in mesenteric arteries of 2K-1C rats. The contractility of mesenteric arteries to phenylephrine was increased in 2K-1C rats, and doxycycline prevented this alteration. The potency of phenylephrine to contract aortas of 2K-1C rats was increased, and doxycycline decreased it. Whereas calponin-1 expression was increased in 2K-1C mesenteric arteries, calponin-1 was reduced in aortas. Doxycycline treatment reverted changes in calponin-1 expression. MMP-2 contributes to hypertrophic remodelling in aortas by decreasing calponin-1 levels, which may result in VSMC proliferation. On the other hand, MMP-2-dependent increased calponin-1 in mesenteric arteries may contribute to vascular hypercontractility in 2K-1C rats. Divergent

  8. Long Noncoding RNA-GAS5: A Novel Regulator of Hypertension-Induced Vascular Remodeling.

    PubMed

    Wang, Yang-Ning-Zhi; Shan, Kun; Yao, Mu-Di; Yao, Jin; Wang, Jia-Jian; Li, Xiang; Liu, Ban; Zhang, Yang-Yang; Ji, Yong; Jiang, Qin; Yan, Biao

    2016-09-01

    Vascular remodeling is an important pathological feature of hypertension, leading to increased vascular resistance and reduced compliance. Endothelial cell (EC) and vascular smooth muscle cell (VSMC) dysfunction is involved in vascular remodeling. Long noncoding RNAs are potential regulators of EC and VSMC function. Herein, we determined whether long noncoding RNA-growth arrest-specific 5 (GAS5) is involved in hypertension-related vascular remodeling. We revealed that GAS5 knockdown aggravated hypertension-induced microvascular dysfunction as shown by increased retinal neovascularization and capillary leakage. GAS5 regulated the remodeling of arteries, including caudal arteries, carotid arteries, renal arteries, and thoracic arteries. GAS5 was mainly expressed in ECs and VSMCs, and its expression was significantly downregulated in hypertension. GAS5 knockdown affected endothelial activation, endothelial proliferation, VSMC phenotypic conversion, and EC-VSMC communication in vivo and in vitro. Mechanistically, GAS5 regulated EC and VSMC function through β-catenin signaling. This study identified GAS5 as a critical regulator in hypertension and demonstrated the potential of gene therapy and drug development for treating hypertension. © 2016 American Heart Association, Inc.

  9. Stretch-activation of angiotensin II type 1a receptors contributes to the myogenic response of mouse mesenteric and renal arteries.

    PubMed

    Schleifenbaum, Johanna; Kassmann, Mario; Szijártó, István András; Hercule, Hantz C; Tano, Jean-Yves; Weinert, Stefanie; Heidenreich, Matthias; Pathan, Asif R; Anistan, Yoland-Marie; Alenina, Natalia; Rusch, Nancy J; Bader, Michael; Jentsch, Thomas J; Gollasch, Maik

    2014-07-07

    Vascular wall stretch is the major stimulus for the myogenic response of small arteries to pressure. The molecular mechanisms are elusive, but recent findings suggest that G protein-coupled receptors can elicit a stretch response. To determine whether angiotensin II type 1 receptors (AT1R) in vascular smooth muscle cells exert mechanosensitivity and identify the downstream ion channel mediators of myogenic vasoconstriction. We used mice deficient in AT1R signaling molecules and putative ion channel targets, namely AT1R, angiotensinogen, transient receptor potential channel 6 (TRPC6) channels, or several subtypes of the voltage-gated K+ (Kv7) gene family (KCNQ3, 4, or 5). We identified a mechanosensing mechanism in isolated mesenteric arteries and in the renal circulation that relies on coupling of the AT1R subtype a to a Gq/11 protein as a critical event to accomplish the myogenic response. Arterial mechanoactivation occurs after pharmacological block of AT1R and in the absence of angiotensinogen or TRPC6 channels. Activation of AT1R subtype a by osmotically induced membrane stretch suppresses an XE991-sensitive Kv channel current in patch-clamped vascular smooth muscle cells, and similar concentrations of XE991 enhance mesenteric and renal myogenic tone. Although XE991-sensitive KCNQ3, 4, and 5 channels are expressed in vascular smooth muscle cells, XE991-sensitive K+ current and myogenic contractions persist in arteries deficient in these channels. Our results provide definitive evidence that myogenic responses of mouse mesenteric and renal arteries rely on ligand-independent, mechanoactivation of AT1R subtype a. The AT1R subtype a signal relies on an ion channel distinct from TRPC6 or KCNQ3, 4, or 5 to enact vascular smooth muscle cell activation and elevated vascular resistance. © 2014 American Heart Association, Inc.

  10. KCl cotransport regulation and protein kinase G in cultured vascular smooth muscle cells.

    PubMed

    Adragna, N C; Zhang, J; Di Fulvio, M; Lincoln, T M; Lauf, P K

    2002-05-15

    K-Cl cotransport is activated by vasodilators in erythrocytes and vascular smooth muscle cells and its regulation involves putative kinase/phosphatase cascades. N-ethylmaleimide (NEM) activates the system presumably by inhibiting a protein kinase. Nitrovasodilators relax smooth muscle via cGMP-dependent activation of protein kinase G (PKG), a regulator of membrane channels and transporters. We investigated whether PKG regulates K-Cl cotransport activity or mRNA expression in normal, PKG-deficient-vector-only-transfected (PKG-) and PKG-catalytic-domain-transfected (PKG+) rat aortic smooth muscle cells. K-Cl cotransport was calculated as the Cl-dependent Rb influx, and mRNA was determined by semiquantitative RT-PCR. Baseline K-Cl cotransport was higher in PKG+ than in PKG- cells (p <0.01). At 0.5 mM, NEM stimulated K-Cl cotransport by 5-fold in PKG- but not in PKG+ cells. However, NEM was more potent although less effective to activate K-Cl cotransport in normal (passage 1-3) and PKG+ than in PKG- cells. In PKG- cells, [(dihydroindenyl) oxy] alkanoic acid (300 mM) but not furosemide (1 mM) inhibited K-Cl cotransport. Furthermore, no difference in K-Cl cotransport mRNA expression was observed between these cells. In conclusion, this study shows that manipulation of PKG expression in vascular smooth muscle cells affects K-Cl cotransport activity and its activation by NEM.

  11. Anti-atherosclerotic plants which modulate the phenotype of vascular smooth muscle cells.

    PubMed

    Saleh Al-Shehabi, Tuqa; Iratni, Rabah; Eid, Ali H

    2016-10-15

    Cardiovascular disease (CVD) remains the leading cause of global death, with atherosclerosis being a major contributor to this mortality. Several mechanisms are implicated in the pathogenesis of this disease. A key element in the development and progression of atherosclerotic lesions is the phenotype of vascular smooth muscle cells. Under pathophysiologic conditions such as injury, these cells switch from a contractile to a synthetic phenotype that often possesses high proliferative and migratory capacities. Despite major advances made in the management and treatment of atherosclerosis, mortality associated with this disease remains high. This mandates that other approaches be sought. Herbal medicine, especially for the treatment of CVD, has been gaining more attention in recent years. This is in no small part due to the evidence-based values associated with the consumption of many plants as well as the relatively cheaper prices, easier access and conventional folk medicine "inherited" over generations. Sections: In this review, we provide a brief introduction about the pathogenesis of atherosclerosis then we highlight the role of vascular smooth muscle cells in this disease, especially when a phenotypic switch of these cells arises. We then thoroughly discuss the various plants that show potentially beneficial effects as anti-atherosclerotic, with prime attention given to herbs and plants that inhibit the phenotypic switch of vascular smooth muscle cells. Accumulating evidence provides the justification for the use of botanicals in the treatment or prevention of atherosclerosis. However, further studies, especially clinical ones, are warranted to better define several pharmacological parameters of these herbs, such as toxicity, tolerability, and efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A Cell Culture Model of Resistance Arteries.

    PubMed

    Biwer, Lauren A; Lechauve, Christophe; Vanhoose, Sheri; Weiss, Mitchell J; Isakson, Brant E

    2017-09-08

    The myoendothelial junction (MEJ), a unique signaling microdomain in small diameter resistance arteries, exhibits localization of specific proteins and signaling processes that can control vascular tone and blood pressure. As it is a projection from either the endothelial or smooth muscle cell, and due to its small size (on average, an area of ~1 µm 2 ), the MEJ is difficult to study in isolation. However, we have developed a cell culture model called the vascular cell co-culture (VCCC) that allows for in vitro MEJ formation, endothelial cell polarization, and dissection of signaling proteins and processes in the vascular wall of resistance arteries. The VCCC has a multitude of applications and can be adapted to suit different cell types. The model consists of two cell types grown on opposite sides of a filter with 0.4 µm pores in which the in vitro MEJs can form. Here we describe how to create the VCCC via plating of cells and isolation of endothelial, MEJ, and smooth muscle fractions, which can then be used for protein isolation or activity assays. The filter with intact cell layers can be fixed, embedded, and sectioned for immunofluorescent analysis. Importantly, many of the discoveries from this model have been confirmed using intact resistance arteries, underscoring its physiological relevance.

  13. Inadequate Health Literacy in Patients with Arterial Vascular Disease.

    PubMed

    Strijbos, Ruben M; Hinnen, Jan-Willem; van den Haak, Ronald F F; Verhoeven, Bart A N; Koning, Olivier H J

    2018-06-08

    The aim was to identify the prevalence of inadequate health literacy in patients with arterial vascular disease. This was a cross sectional study. Patients with arterial vascular disease visiting the outpatient clinic between January 5, 2015 and December 28, 2016, were randomly included and screened for inadequate health literacy with the Newest Vital Sign-Dutch (NVS-D), a validated health literacy assessment measure. A score of <4 out of six identified individuals with inadequate health literacy. Age, gender, highest education level, and reason for consultation were also registered. Data analysis was performed using Student's t-test or the Mann-Whitney U test and chi-square test. Logistic regression with backward elimination was applied to identify independent predictors. A total of 202 patients were included. The mean NVS-D score was 1.91 (SD ± 1.948, median 1). The prevalence of inadequate health literacy was 76.7%. A significantly higher prevalence of inadequate health literacy was found in patients ≥65 years (p < .001) and patients with a lower education level (p < .001). No significant difference was found between female/male patients (p = .056), nor between participants with peripheral arterial occlusive disease and abdominal aortic aneurysm (p = .116). Age (OR 1.060; 95% CI 1.017-1.104; p = .005) and education level (OR 0.164; 95% CI 0.078-0.346; p < .001) were identified as independent predictors of inadequate health literacy. This study shows a prevalence of inadequate health literacy of 76.7% in patients with arterial vascular disease, with a significantly higher prevalence in patients ≥ 65 years and patients with a lower education level. The high prevalence of inadequate health literacy should be considered when information is provided, and suggests the need to further investigate the best methods to convey medical information to this group of vulnerable patients. Copyright © 2018 European Society for Vascular Surgery. Published by

  14. What is the origin of the arterial vascularization of the corpora cavernosa? A computer-assisted anatomic dissection study

    PubMed Central

    Diallo, Djibril; Zaitouna, Mazen; Alsaid, Bayan; Quillard, Jeannine; Droupy, Stéphane; Benoit, Gérard; Bessede, Thomas

    2013-01-01

    The purpose of this study was to identify the microscopic arterial vascularization of the corpora cavernosa (CC) of the penis using computer-assisted anatomic dissection (CAAD), determine the contribution of the different penile arteries towards this vascularization, detail the nature of cavernospongiosum shunts, and locate the anastomoses between these different arteries. Tissue specimens were taken from five donors who donated their bodies to science. The specimens were fixed in 10% formalin and sliced into a series of five 5-μm sections at intervals of 200 μm. The first section was stained with hematoxylin-eosin or Masson's trichrome and the second with anti-protein S100. The cavernous artery of the penis is not the only source of arterial vascularization of the CC. In four of the five cases studied, we found two to four perforating branches arising from the dorsal arteries of the penis that join up with the cavernous artery of the penis or that are solely responsible for the vascularization of the distal third of the penis. The bulbo-urethral and urethral arteries are situated outside of the tunica albuginea of the corpus spongiosum on their lateral and dorsal sides. The anastomoses do not occur between the cavernous artery of the penis and the corpus spongiosum but between the cavernous artery of the penis and the urethral artery on the surface of the tunica albuginea. All of these arteries are accompanied by nerve branches. The CC were found to be vascularized by both cavernous and dorsal arteries of the penis. Intrapenile vascularization is organized around four arterial axes, which are anastomosed by multiple neurovascular shunts. PMID:23981086

  15. Metabolic activation of sodium nitroprusside to nitric oxide in vascular smooth muscle.

    PubMed

    Kowaluk, E A; Seth, P; Fung, H L

    1992-09-01

    Sodium nitroprusside (SNP) is thought to exert its vasodilating activity, at least in part, by vascular activation to nitric oxide (NO), but the activation mechanism has not been delineated. This study has examined the potential for vascular metabolism of SNP to NO in bovine coronary arterial smooth muscle subcellular fractions using a sensitive and specific redox-chemiluminescence assay for NO. SNP was readily metabolized to NO in subcellular fractions, and the dominant site of metabolism appeared to be located in the membrane fractions. NO-generating activity was significantly enhanced by, but did not absolutely require, the addition of a NADPH-regenerating system, NADPH per se, NADH or cysteine. A correlation analysis of NO-generating activity (in the presence of a NADPH-regenerating system) with marker enzyme activities indicated that the SNP-directed NO-generating activity was primarily membrane-associated. Radiation inactivation target-size analysis revealed that the microsomal SNP-directed NO-generating activity was relatively insensitive to inactivation by radiation exposure, suggesting that the functioning catalytic unit might be quite small. A molecular weight of 5 to 11 kDa was estimated. NO-generating activity could be solubilized from the crude microsomes with 3-[(3-cholamidopropyl)- dimethylammonio]-1-propane sulfonate, and the solubilized extract was subjected to gel filtration chromatography. NO-generating activity was eluted in two peaks: one peak corresponding to an approximate molecular weight of 4 kDa, thus confirming the existence of a small molecular weight NO-generating activity, and a second activity peak corresponding to a molecular weight of 112 to 169 kDa, the functional significance of which is unclear at present.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. COX-2 is involved in vascular oxidative stress and endothelial dysfunction of renal interlobar arteries from obese Zucker rats.

    PubMed

    Muñoz, Mercedes; Sánchez, Ana; Pilar Martínez, María; Benedito, Sara; López-Oliva, Maria-Elvira; García-Sacristán, Albino; Hernández, Medardo; Prieto, Dolores

    2015-07-01

    Obesity is related to vascular dysfunction through inflammation and oxidative stress and it has been identified as a risk factor for chronic renal disease. In the present study, we assessed the specific relationships among reactive oxygen species (ROS), cyclooxygenase 2 (COX-2), and endothelial dysfunction in renal interlobar arteries from a genetic model of obesity/insulin resistance, the obese Zucker rats (OZR). Relaxations to acetylcholine (ACh) were significantly reduced in renal arteries from OZR compared to their counterpart, the lean Zucker rat (LZR), suggesting endothelial dysfunction. Blockade of COX with indomethacin and with the selective blocker of COX-2 restored the relaxations to ACh in obese rats. Selective blockade of the TXA2/PGH2 (TP) receptor enhanced ACh relaxations only in OZR, while inhibition of the prostacyclin (PGI2) receptor (IP) enhanced basal tone and inhibited ACh vasodilator responses only in LZR. Basal production of superoxide was increased in arteries of OZR and involved NADPH and xanthine oxidase activation and NOS uncoupling. Under conditions of NOS blockade, ACh induced vasoconstriction and increased ROS generation that were augmented in arteries from OZR and blunted by COX-2 inhibition and by the ROS scavenger tempol. Hydrogen peroxide (H2O2) evoked both endothelium- and vascular smooth muscle (VSM)-dependent contractions, as well as ROS generation that was reduced by COX-2 inhibition. In addition, COX-2 expression was enhanced in both VSM and endothelium of renal arteries from OZR. These results suggest that increased COX-2-dependent vasoconstriction contributes to renal endothelial dysfunction through enhanced (ROS) generation in obesity. COX-2 activity is in turn upregulated by ROS. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Assessing Intracranial Vascular Compliance Using Dynamic Arterial Spin Labeling

    PubMed Central

    Yan, Lirong; Liu, Collin Y.; Smith, Robert X.; Jog, Mayank; Langham, Michael; Krasileva, Kate; Chen, Yufen; Ringman, John M.; Wang, Danny J.J.

    2015-01-01

    Vascular compliance (VC) is an important marker for a number of cardiovascular diseases and dementia, which is typically assessed in central and peripheral arteries indirectly by quantifying pulse wave velocity (PWV), and/or pulse pressure waveform. To date, very few methods are available for the quantification of intracranial VC. In the present study, a novel MRI technique for in-vivo assessment of intracranial VC was introduced, where dynamic arterial spin labeling (ASL) scans were synchronized with the systolic and diastolic phases of the cardiac cycle. VC is defined as the ratio of change in arterial cerebral blood volume (ΔCBV) and change in arterial pressure (ΔBP). Intracranial VC was assessed in different vascular components using the proposed dynamic ASL method. Our results show that VC mainly occurs in large arteries, gradually decreases in small arteries and arterioles. The comparison of intracranial VC between young and elderly subjects shows that aging is accompanied by a reduction of intracranial VC, in good agreement with the literature. Furthermore, a positive association between intracranial VC and cerebral perfusion measured using pseudo-continuous ASL with 3D GRASE MRI was observed independent of aging effects, suggesting loss of VC is associated with a decline in perfusion. Finally, a significant positive correlation between intracranial and central (aortic arch) VC was observed using an ungated phase-contrast 1D projection PWV technique. The proposed dynamic ASL method offers a promising approach for assessing intracranial VC in a range of cardiovascular diseases and dementia. PMID:26364865

  18. Bacterial toxins activation of abbreviated urea cycle in porcine cerebral vascular smooth muscle cells.

    PubMed

    Mishra, Rajesh G; Tseng, Tzu-Ling; Chen, Mei-Fang; Chen, Po-Yi; Lee, Tony J-F

    2016-12-01

    Nitric oxide (NO) overproduction via induction of inducible nitric oxide synthase (iNOS) is implicated in vasodilatory shock in sepsis, leading to septic encephalopathy and accelerating cerebral ischemic injury. An abbreviated urea-cycle (l-citrulline-l-arginine-NO cycle) has been demonstrated in cerebral perivascular nitrergic nerves and endothelial cells but not in normal cerebral vascular smooth muscle cell (CVSMC). This cycle indicates that argininosuccinate synthase (ASS) catalyzes l-citrulline (l-cit) conversion to form argininosuccinate (AS), and subsequent AS cleavage by argininosuccinate lyase (ASL) forms l-arginine (l-arg), the substrate for NO synthesis. The possibility that ASS enzyme in this cycle was induced in the CVSMC in sepsis was examined. Blood-vessel myography technique was used for measuring porcine isolated basilar arterial tone. NO in cultured CVSMC and in condition mediums were estimated by diaminofluorescein (DAF)-induced fluorescence and Griess reaction, respectively. Immunohistochemical and immunoblotting analyses were used to examine iNOS and ASS induction. l-cit and l-arg, which did not relax endothelium-denuded normal basilar arteries precontracted by U-46619, induced significant vasorelaxation with increased NO production in these arteries and the CVSMCs following 6-hour exposure to 20μg/ml lipopolysaccharide (LPS) or lipoteichoic acid (LTA). Pre-treatment with pyrrolidine dithiocarbamate (PDTC) and salicylate (SAL) (NFκB inhibitors), aminoguanidine (AG, an iNOS inhibitor), and nitro-l-arg (NLA, a non-specific NOS inhibitor) blocked NO synthesis in the CVSMC and attenuated l-cit- and l-arg-induced relaxation of LPS- and LTA-treated arteries. Furthermore, immunohistochemical and immunoblotting studies demonstrated that expression of basal iNOS and ASS in the smooth muscle cell of arterial segments denuded of endothelium and the cultured CVSMCs was significantly increased following 6-hour incubation with LPS or LTA. This increased i

  19. Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth

    PubMed Central

    Jackson, William F.

    2017-01-01

    Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+ and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. Vascular smooth muscle cells express multiple isoforms of at least five classes of K+ channels contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression and function of large-conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells. PMID:28212804

  20. Towards the therapeutic use of vascular smooth muscle progenitor cells.

    PubMed

    Merkulova-Rainon, Tatyana; Broquères-You, Dong; Kubis, Nathalie; Silvestre, Jean-Sébastien; Lévy, Bernard I

    2012-07-15

    Recent advances in the development of alternative proangiogenic and revascularization processes, including recombinant protein delivery, gene therapy, and cell therapy, hold the promise of greater efficacy in the management of cardiovascular disease in the coming years. In particular, vascular progenitor cell-based strategies have emerged as an efficient treatment approach to promote vessel formation and repair and to improve tissue perfusion. During the past decade, considerable progress has been achieved in understanding therapeutic properties of endothelial progenitor cells, while the therapeutic potential of vascular smooth muscle progenitor cells (SMPC) has only recently been explored; the number of the circulating SMPC being correlated with cardiovascular health. Several endogenous SMPC populations with varying phenotypes have been identified and characterized in the peripheral blood, bone marrow, and vascular wall. While the phenotypic entity of vascular SMPC is not fully defined and remains an evolving area of research, SMPC are increasingly recognized to play a special role in cardiovascular biology. In this review, we describe the current approaches used to define vascular SMPC. We further summarize the data on phenotype and functional properties of SMPC from various sources in adults. Finally, we discuss the role of SMPC in cardiovascular disease, including the contribution of SMPC to intimal proliferation, angiogenesis, and atherosclerotic plaque instability as well as the benefits resulting from the therapeutic use of SMPC.

  1. Inhibition of the AMP-activated protein kinase-α2 accentuates agonist-induced vascular smooth muscle contraction and high blood pressure in mice.

    PubMed

    Wang, Shuangxi; Liang, Bin; Viollet, Benoit; Zou, Ming-Hui

    2011-05-01

    The aim of the present study was to determine the effects and molecular mechanisms by which AMP-activated protein kinase (AMPK) regulates smooth muscle contraction and blood pressure in mice. In cultured human vascular smooth muscle cells, we observed that activation of AMPK by 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside inhibited agonist-induced phosphorylation of myosin light chain (MLC) and myosin phosphatase targeting subunit 1 (MYPT1). Conversely, AMPK inhibition with pharmacological or genetic means potentiated agonist-induced the phosphorylation of MLC and MYPT1, whereas it inhibited both Ras homolog gene family member A and Rho-associated kinase activity. In addition, AMPK activation or Rho-associated kinase inhibition with Y27632 abolished agonist-induced phosphorylation of MLC and MYPT1. Gene silencing of p190-guanosine triphosphatase-activating protein abolished the effects of AMPK activation on MLC, MYPT1, and Ras homolog gene family member A in human smooth muscle cells. Ex vivo analyses revealed that agonist-induced contractions of the mesenteric artery and aortas were stronger in both AMPKα1(-/-) and AMPKα2(-/-) knockout mice than in wild-type mice. Inhibition of Rho-associated kinase with Y27632 normalized agonist-induced contractions of AMPKα1(-/-) and AMPKα2(-/-) vessels. AMPKα2(-/-) mice had higher blood pressure along with decreased serine phosphorylation of p190-guanosine triphosphatase-activating protein. Finally, inhibition of the Ras homolog gene family member A/Rho-associated kinase pathway with Y27632, which suppressed MYPT1 and MLC phosphorylation, lowered blood pressure in AMPKα2(-/-) mice. In conclusion, AMPK decreases vascular smooth muscle cell contractility by inhibiting p190-GTP-activating protein-dependent Ras homolog gene family member A activation, indicating that AMPK may be a new therapeutic target in lowering high blood pressure.

  2. The use of micropatterning to control smooth muscle myosin heavy chain expression and limit the response to transforming growth factor β1 in vascular smooth muscle cells

    PubMed Central

    Williams, Corin; Brown, Xin Q; Bartolak-Suki, Erzsebet; Ma, Hongwei; Chilkoti, Ashutosh; Wong, Joyce Y

    2010-01-01

    In the healthy artery, contractile vascular smooth muscle cells (VSMCs) have an elongated shape and are highly aligned but transition to a synthetic phenotype in culture, while additionally becoming well spread and randomly organized. Thus, controlling VSMC phenotype is a challenge in tissue engineering. In this study, we investigated the effects of micropatterning on contractile protein expression in VSMCs at low and high passage and in the presence of transforming growth factor beta 1 (TGFβ1). Micropatterning led to significantly decreased cell area, increased elongation, and increased alignment compared to non-patterned VSMCs independent of passage number. In the presence of serum, micropatterning led to increased smooth muscle myosin heavy chain (SM-MHC) and α-actin expression in low passage VSMCs, but had no effect on high passage VSMCs. Micropatterning was as effective as TGFβ1 in up-regulating SM-MHC at low passage; however, micropatterning limited VSMC response to TGFβ1 at both low and high passage. Investigation of TGFβ receptor 1 revealed higher expression in non-patterned VSMCs compared to patterned at high passage. Our studies demonstrate that micropatterning is an important regulator of SM-MHC expression in contractile VSMCs and that it may provide a mechanism for phenotype stabilization in the presence of growth factors. PMID:20858564

  3. Speckle-Tracking-Based Evaluation of Vascular Strain at Different Sites of the Arterial Tree in Healthy Adults.

    PubMed

    Charwat-Resl, S; Niessner, A; Mueller, M; Bartko, P E; Giurgea, G A; Zehetmayer, S; Willfort-Ehringer, A; Koppensteiner, R; Schlager, O

    2016-10-01

    Purpose: Vascular ultrasound (US) allows the analysis of vascular strain by speckle-tracking. This study sought to assess the extent to which vas cular strain varies between different segments of the arterial tree. Furthermore, this study aimed to investigate the reproducibility of vascular strain determination as well as of the components that contribute to the variance of vascular strain measurements in different vascular beds. Materials and Methods: Speckle-tracking was used to determine the vascular strain of the abdominal aorta (AA), the common carotid artery (CCA), the common femoral (CFA) and the popliteal artery (PA) of healthy adults. Intra- and interday reproducibility and the components of variance of vascular strain of the respective arteries were determined. Results: A total of 589 US clips obtained in 10 healthy adults (7 males, 28.3 ± 3.2 years) were analyzable. Vascular strain was 7.2 ± 3.0 % in the AA, 5.7 ± 2.1 % in the CCA, 2.1 ± 1.1 % in the CFA and 1.9 ± 1.1 % in the PA. The intraday coefficients of variation of vascular strain were 6.2 % (AA), 3.9 % (CCA), 3.3 % (CFA) and 6.1 % (PA), and the interday coefficients of variation were 5.9 % (AA), 8.4 % (CCA), 10 % (CFA) and 4.6 % (PA). The variance of vascular strain mainly depended on the investigated vessel and subject. Individual DUS clips, the day of examination and the (right/left) body side (in paired arteries) had no impact on the variance of vascular strain. Conclusion: Vascular strain substantially varies between different sites of the arterial tree. Speckle-tracking by DUS allows the reliable determination of vascular strain at different arterial sites. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Endothelial microparticles and vascular parameters in subjects with and without arterial hypertension and coronary artery disease.

    PubMed

    Sansone, Roberto; Baaken, Maximilian; Horn, Patrick; Schuler, Dominik; Westenfeld, Ralf; Amabile, Nicolas; Kelm, Malte; Heiss, Christian

    2018-08-01

    Endothelial microparticles (EMPs) are markers of endothelial injury and activation. The role of EMPs in arterial hypertension is not well understood and EMPs are increased both in arterial hypertension and coronary artery disease (CAD). The data presented here show EMPs as defined by CD31 + /41 - , CD62e + , and CD144 + surface markers and vascular hemodynamic parameters including office and central blood pressure, heart rate, aortic augmentation index, pulse wave velocity, flow-mediated dilation, nitroglycerin-mediated dilation, brachial artery diameter, hyperemic wall shear stress, and laser Doppler perfusion of the cutaneous microcirculation of normotensives and hypertensives with and without CAD.

  5. Vascular Access System for Continuous Arterial Infusion of a Protease Inhibitor in Acute Necrotizing Pancreatitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganaha, Fumikiyo; Yamada, Tetsuhisa; Yorozu, Naoya

    1999-09-15

    We used a vascular access system (VAS) for continuous arterial infusion (CAI) of a protease inhibitor in two patients with acute necrotizing pancreatitis. The infusion catheter was placed into the dorsal pancreatic artery in the first patient and into the gastroduodenal artery in the second, via a femoral artery approach. An implantable port was then connected to the catheter and was secured in a subcutaneous pocket prepared in the right lower abdomen. No complications related to the VAS were encountered. This system provided safe and uncontaminated vascular access for successful CAI for acute pancreatitis.

  6. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karki, Rajendra; Department of Oriental Medicine Resources, Mokpo National University; Kim, Seong-Bin

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by westernmore » blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  7. Potential advantages of treatment of transplanted saphenous vein aorto-coronary artery bypass grafts with beta irradiation to prevent graft occlusion.

    PubMed

    Smith, R G

    1997-01-01

    Intimal proliferation or Neointimal hyperplasia (NIH) is a vascular lesion that often arises in arteries after balloon angioplasty or other vessel wall injuries. FIH is a vascular lesion that develops in autologous saphenous vein grafts (SVG) after transplantation into the aorto-coronary circulation or the peripheral vascular circulation. FIH shares elements of smooth muscle migration, proliferation and fibrous tissue deposition in common with nibrointimal proliferation (NIH). Either NIH of a coronary artery or FIH of a SVG obstruct the vascular lumen and result in myocardial dysfunction. Local radiotherapy has been used for several decades to reduce the post-operative recurrence of the fibrovascular proliferations of pterygia and keloids. Similarly, in animal and human experiments, endovascular radiotherapy has been shown to reduce arterial smooth muscle proliferation. Consideration of the similarities of vascular smooth muscle cell proliferation in NIH and FIH leads one to suggest that endovascular beta irradiation can reduce FIH as well as it reduces NIH. The goal of such treatment is to achieve a clinically significant decrease in the morbidity and mortality resulting from SVG occlusions. The potential for large reduction of the consequences of SVG occlusion, the very large number of patients at risk, and the simplicity of the proposed intervention encourages prompt scientific evaluation of this technique.

  8. Vascular Surgery in World War II: The Shift to Repairing Arteries.

    PubMed

    Barr, Justin; Cherry, Kenneth J; Rich, Norman M

    2016-03-01

    Vascular surgery in World War II has long been defined by DeBakey and Simeone's classic 1946 article describing arterial repair as exceedingly rare. They argued ligation was and should be the standard surgical response to arterial trauma in war. We returned to and analyzed the original records of World War II military medical units housed in the National Archives and other repositories in addition to consulting published accounts to determine the American practice of vascular surgery in World War II. This research demonstrates a clear shift from ligation to arterial repair occurring among American military surgeons in the last 6 months of the war in the European Theater of Operations. These conclusions not only highlight the role of war as a catalyst for surgical change but also point to the dangers of inaccurate history in stymieing such advances.

  9. The vascular neural network—a new paradigm in stroke pathophysiology

    PubMed Central

    Zhang, John H.; Badaut, Jerome; Tang, Jiping; Obenaus, Andre; Hartman, Richard; Pearce, William J.

    2013-01-01

    The concept of the neurovascular unit as the key brain component affected by stroke is controversial, because current definitions of this entity neglect mechanisms that control perfusion and reperfusion of arteries and arterioles upstream of the cerebral microcirculation. Indeed, although definitions vary, many researchers consider the neurovascular unit to be restricted to endothelial cells, neurons and glia within millimetres of the cerebral capillary microcirculation. This Perspectives article highlights the roles of vascular smooth muscle, endothelial cells and perivascular innervation of cerebral arteries in the initiation and progression of, and recovery from, ischaemic stroke. The concept of the vascular neural network—which includes cerebral arteries, arterioles, and downstream neuronal and glial cell types and structures—is introduced as the fundamental component affected by stroke pathophysiology. The authors also propose that the vascular neural network should be considered the main target for future therapeutic intervention after cerebrovascular insult. PMID:23070610

  10. Butylated Hydroxyanisole Stimulates Heme Oxygenase-1 Gene Expression and Inhibits Neointima Formation in Rat Arteries

    PubMed Central

    Liu, Xiao-ming; Azam, Mohammed A.; Peyton, Kelly J.; Ensenat, Diana; Keswani, Amit N.; Wang, Hong; Durante, William

    2007-01-01

    Objective Butylated hydroxyanisole (BHA) is a synthetic phenolic compound that is a potent inducer of phase II genes. Since heme oxygenase-1 (HO-1) is a vasoprotective protein that is upregulated by phase II inducers, the present study examined the effects of BHA on HO-1 gene expression and vascular smooth muscle cell proliferation. Methods The regulation of HO-1 gene expression and vascular cell growth by BHA was studied in cultured rat aortic smooth muscle cells and in balloon injured rat carotid arteries. Results Treatment of cultured smooth muscle cells with BHA stimulated the expression of HO-1 protein, mRNA and promoter activity in a time- and concentration-dependent manner. BHA-mediated HO-1 expression was dependent on the activation of NF-E2-related factor-2 by p38 mitogen-activated protein kinase. BHA also inhibited cell cycle progression and DNA synthesis in a HO-1-dependent manner. In addition, the local perivascular delivery of BHA immediately after arterial injury of rat carotid arteries induced HO-1 protein expression and markedly attenuated neointima formation. Conclusions These studies demonstrate that BHA stimulates HO-1 gene expression in vascular smooth muscle cells, and that the induction of HO-1 contributes to the antiproliferative actions of this phenolic antioxidant. BHA represents a potentially novel therapeutic agent in treating or preventing vasculoproliferative disease. PMID:17320844

  11. Sulforaphane inhibits PDGF-induced proliferation of rat aortic vascular smooth muscle cell by up-regulation of p53 leading to G1/S cell cycle arrest.

    PubMed

    Yoo, Su-Hyang; Lim, Yong; Kim, Seung-Jung; Yoo, Kyu-Dong; Yoo, Hwan-Soo; Hong, Jin-Tae; Lee, Mi-Yea; Yun, Yeo-Pyo

    2013-01-01

    Vascular diseases such as atherosclerosis and restenosis artery angioplasty are associated with vascular smooth muscle cell (VSMC) proliferation and intimal thickening arterial walls. In the present study, we investigated the inhibitory effects of sulforaphane, an isothiocyanate produced in cruciferous vegetables, on VSMC proliferation and neointimal formation in a rat carotid artery injury model. Sulforaphane at the concentrations of 0.5, 1.0, and 2.0 μM significantly inhibited platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation in a concentration-dependent manner, determined by cell count. The IC50 value of sulforaphane-inhibited VSMC proliferation was 0.8 μM. Sulforaphane increased the cyclin-dependent kinase inhibitor p21 and p53 levels, while it decreased CDK2 and cyclin E expression. The effects of sulforaphane on vascular thickening were determined 14 days after the injury to the rat carotid artery. The angiographic mean luminary diameters of the group treated with 2 and 4 μM sulforaphane were 0.25±0.1 and 0.09±0.1 mm², respectively, while the value of the control groups was 0.40±0.1 mm², indicating that sulforaphane may inhibit neointimal formation. The expression of PCNA, maker for cell cycle arrest, was decreased, while that of p53 and p21 was increased, which showed the same pattern as one in in-vitro study. These results suggest that sulforaphane-inhibited VSMC proliferation may occur through the G1/S cell cycle arrest by up-regulation of p53 signaling pathway, and then lead to the decreased neointimal hyperplasia thickening. Thus, sulforaphane may be a promising candidate for the therapy of atherosclerosis and post-angiography restenosis. © 2013.

  12. Fluid-attenuated inversion recovery vascular hyperintensities in predicting cerebral hyperperfusion after intracranial arterial stenting.

    PubMed

    Wan, Chih-Cheng; Chen, David Yen-Ting; Tseng, Ying-Chi; Yan, Feng-Xian; Lee, Kun-Yu; Chiang, Chen-Hua; Chen, Chi-Jen

    2017-08-01

    No reliable imaging sign predicting cerebral hyperperfusion after intracranial arterial stenting (IAS) had been described in the literature. This study evaluated the effect of fluid-attenuated inversion recovery vascular hyperintensities (FVHs), also called hyperintense vessel sign on T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) MR images, in predicting significant increase in cerebral blood flow (CBF) defined by arterial spin labeling (ASL) after IAS. We reviewed ASL CBF images and T2-FLAIR MR images before (D0), 1 day after (D1), and 3 days after (D3) IAS of 16 patients. T1-weighted MR images were used as cerebral maps for calculating CBF. The changes in CBF values after IAS were calculated in and compared among stenting and nonstenting vascular territories. An increase more than 50% of CBF was considered as hyperperfusion. The effect of FVHs in predicting hyperperfusion was calculated. The D1 CBF value was significantly higher than the D0 CBF value in stenting vascular, contralateral anterior cerebral artery, contralateral middle cerebral artery, and contralateral posterior cerebral artery (PCA) territories (all P < .05). The D1 and D3 CBF values were significantly higher than the D0 CBF value in overall vascular (P < .001), overall nonstenting vascular (P < .001), and ipsilateral PCA (P < .05) territories. The rate of more than 50% increases in CBF was significantly higher in patients who exhibited asymmetric FVHs than in those who did not exhibit these findings. FVHs could be a critical predictor of a significant increase in CBF after IAS.

  13. Do androgens play a beneficial role in the regulation of vascular tone? Nongenomic vascular effects of testosterone metabolites

    PubMed Central

    Perusquía, Mercedes

    2010-01-01

    The marked sexual dimorphism that exists in human cardiovascular diseases has led to the dogmatic concept that testosterone (Tes) has deleterious effects and exacerbates the development of cardiovascular disease in males. While some animal studies suggest that Tes does exert deleterious effects by enhancing vascular tone through acute or chronic mechanisms, accumulating evidence suggests that Tes and other androgens exert beneficial effects by inducing rapid vasorelaxation of vascular smooth muscle through nongenomic mechanisms. While this effect frequently has been observed in large arteries at micromolar concentrations, more recent studies have reported vasorelaxation of smaller resistance arteries at nanomolar (physiological) concentrations. The key mechanism underlying Tes-induced vasorelaxation appears to be the modulation of vascular smooth muscle ion channel function, particularly the inactivation of L-type voltage-operated Ca2+ channels and/or the activation of voltage-operated and Ca2+-activated K+ channels. Studies employing Tes analogs and metabolites reveal that androgen-induced vasodilation is a structurally specific nongenomic effect that is fundamentally different than the genomic effects on reproductive targets. For example, 5α-dihydrotestosterone exhibits potent genomic-androgenic effects but only moderate vasorelaxing activity, whereas its isomer 5β-dihydrotestosterone is devoid of androgenic effects but is a highly efficacious vasodilator. These findings suggest that the dihydro-metabolites of Tes or other androgen analogs devoid of androgenic or estrogenic effects could have useful therapeutic roles in hypertension, erectile dysfunction, prostatic ischemia, or other vascular dysfunctions. PMID:20228257

  14. A new NO donor failed to release NO and to induce relaxation in the rat basilar artery.

    PubMed

    Paulo, Michele; Rodrigues, Gerson J; da Silva, Roberto S; Bendhack, Lusiane M

    2012-02-14

    Nitric oxide (NO)-donors are pharmacologically active substances that in vivo or in vitro release NO. Their most common side effect is headache caused by cerebral vasodilatation. We previously demonstrated that the new NO-donor Ru(terpy)(bdq)NO](3+) (Terpy), synthesized in our laboratory, induces relaxation of rat aorta. This study aimed to verify the effect of Terpy and sodium nitroprusside (SNP) in basilar artery. We conducted vascular reactivity experiments on endothelium-denuded basilar rings. The concentrations of iron (Fe) and ruthenium (Ru) complex were analyzed in basilar artery lysates after incubation with NO donors by mass spectrometry. We also evaluated the NO released from SNP and Terpy by using confocal microscopy. Interestingly, Terpy did not induce relaxation of the basilar artery. SNP induced relaxation in a concentration-dependent way. NO donors cross the membrane of vascular smooth muscle and entered the cell. In spite of its permeability, Terpy did not release NO in the basilar artery. Otherwise, SNP released NO in the basilar artery cells cytoplasm. Taken together, our results demonstrate that the new NO donor (Terpy) failed to release NO and to induce relaxation in the basilar artery. The NO donor SNP induces vascular relaxation due to NO release in the vascular smooth muscle cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Chlorogenic acid inhibits hypoxia-induced pulmonary artery smooth muscle cells proliferation via c-Src and Shc/Grb2/ERK2 signaling pathway.

    PubMed

    Li, Qun-Yi; Zhu, Ying-Feng; Zhang, Meng; Chen, Li; Zhang, Zhen; Du, Yong-Li; Ren, Guo-Qiang; Tang, Jian-Min; Zhong, Ming-Kang; Shi, Xiao-Jin

    2015-03-15

    Chlorogenic acid (CGA), abundant in coffee and particular fruits, can modulate hypertension and vascular dysfunction. Hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) proliferation has been tightly linked to vascular remodeling in pulmonary arterial hypertension (PAH). Thus, the present study was designed to investigate the effect of CGA on hypoxia-induced proliferation in cultured rat PASMCs. The data showed that CGA potently inhibited PASMCs proliferation and DNA synthesis induced by hypoxia. These inhibitory effects were associated with G1 cell cycle arrest and down-regulation of cell cycle proteins. Treatment with CGA reduced hypoxia-induced hypoxia inducible factor 1α (HIF-1α) expression and trans-activation. Furthermore, hypoxia-evoked c-Src phosphorylation was inhibited by CGA. In vitro ELISA-based tyrosine kinase assay indicated that CGA was a direct inhibitor of c-Src. Moreover, CGA attenuated physical co-association of c-Src/Shc/Grb2 and ERK2 phosphorylation in PASMCs. These results suggest that CGA inhibits hypoxia-induced proliferation in PASMCs via regulating c-Src-mediated signaling pathway. In vivo investigation showed that chronic CGA treatment inhibits monocrotaline-induced PAH in rats. These findings presented here highlight the possible therapeutic use of CGA in hypoxia-related PAH. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Proinflammation: The Key to Arterial Aging

    PubMed Central

    Wang, Mingyi; Jiang, Liqun; Monticone, Robert E.; Lakatta, Edward G.

    2014-01-01

    Arterial aging is the major contributing factor to increases in the incidence and prevalence of cardiovascular disease, due mainly to the presence of chronic, low-grade, “sterile” arterial inflammation. Inflammatory signaling driven by the angiotensin II cascade perpetrates adverse age-associated arterial structural and functional remodeling. The aged artery is characterized by endothelial disruption, enhanced vascular smooth muscle cell migration and proliferation, extracellular matrix deposition, elastin fracture, and matrix calcification/amyloidosis/glycation. Importantly, the molecular mechanisms of arterial aging are also relevant to the pathogenesis of hypertension, and atherosclerosis. Age-associated arterial proinflammation is, to some extent, mutable, and interventions to suppress or delay it may have the potential to ameliorate or retard age-associated arterial diseases. PMID:24365513

  17. Smooth muscle cells differentiated from mesenchymal stem cells are regulated by microRNAs and suitable for vascular tissue grafts.

    PubMed

    Gu, Wenduo; Hong, Xuechong; Le Bras, Alexandra; Nowak, Witold N; Issa Bhaloo, Shirin; Deng, Jiacheng; Xie, Yao; Hu, Yanhua; Ruan, Xiong Z; Xu, Qingbo

    2018-05-25

    Tissue-engineered vascular grafts with long-term patency are greatly needed in the clinical settings, and smooth muscle cells (SMCs) are a critical graft component. Human mesenchymal stem cells (MSCs) are used for generating SMCs, and understanding the underlying regulatory mechanisms of the MSC-to-SMC differentiation process could improve SMC generation in the clinic. Here, we found that in response to stimulation of transforming growth factor-β1 (TGFβ1), human umbilical cord-derived MSCs abundantly express the SMC markers α-smooth muscle actin (αSMA), smooth muscle protein 22 (SM22), calponin, and smooth muscle myosin heavy chain (SMMHC) at both gene and protein levels. Functionally, MSC-derived SMCs displayed contracting capacity in vitro and supported vascular structure formation in the Matrigel plug assay in vivo More importantly, SMCs differentiated from human MSCs could migrate into decellularized mouse aorta and give rise to the smooth muscle layer of vascular grafts, indicating the potential of utilizing human MSC-derived SMCs to generate vascular grafts. Of note, microRNA (miR) array analysis and TaqMan microRNA assays identified miR-503 and miR-222-5p as potential regulators of MSC differentiation into SMCs at early time points. Mechanistically, miR-503 promoted SMC differentiation by directly targeting SMAD7, a suppressor of SMAD-related, TGFβ1-mediated signaling pathways. Moreover, miR-503 expression was SMAD4-dependent. SMAD4 was enriched at the miR-503 promoter. Furthermore, miR-222-5p inhibited SMC differentiation by targeting and down-regulating ROCK2 and αSMA. In conclusion, MSC differentiation into SMCs is regulated by miR-503 and miR-222-5p and yields functional SMCs for use in vascular grafts. © 2018 Gu et al.

  18. 3,3′Diindolylmethane Suppresses Vascular Smooth Muscle Cell Phenotypic Modulation and Inhibits Neointima Formation after Carotid Injury

    PubMed Central

    Guan, Hongjing; Zhu, Lihua; Fu, Mingyue; Yang, Da; Tian, Song; Guo, Yuanyuan; Cui, Changping; Wang, Lang; Jiang, Hong

    2012-01-01

    Background 3, 3′diindolylmethane (DIM), a natural phytochemical, has shown inhibitory effects on the growth and migration of a variety of cancer cells; however, whether DIM has similar effects on vascular smooth muscle cells (VSMCs) remains unknown. The purpose of this study was to assess the effects of DIM on the proliferation and migration of cultured VSMCs and neointima formation in a carotid injury model, as well as the related cell signaling mechanisms. Methodology/Principal Findings DIM dose-dependently inhibited the platelet-derived growth factor (PDGF)-BB-induced proliferation of VSMCs without cell cytotoxicity. This inhibition was caused by a G0/G1 phase cell cycle arrest demonstrated by fluorescence-activated cell-sorting analysis. We also showed that DIM-induced growth inhibition was associated with the inhibition of the expression of cyclin D1 and cyclin-dependent kinase (CDK) 4/6 as well as an increase in p27Kip1 levels in PDGF-stimulated VSMCs. Moreover, DIM was also found to modulate migration of VSMCs and smooth muscle-specific contractile marker expression. Mechanistically, DIM negatively modulated PDGF-BB-induced phosphorylation of PDGF-recptorβ (PDGF-Rβ) and the activities of downstream signaling molecules including Akt/glycogen synthase kinase(GSK)3β, extracellular signal-regulated kinase1/2 (ERK1/2), and signal transducers and activators of transcription 3 (STAT3). Our in vivo studies using a mouse carotid arterial injury model revealed that treatment with 150 mg/kg DIM resulted in significant reduction of the neointima/media ratio and proliferating cell nuclear antigen (PCNA)-positive cells, without affecting apoptosis of vascular cells and reendothelialization. Infiltration of inflammatory cells was also inhibited by DIM administration. Conclusion These results demonstrate that DIM can suppress the phenotypic modulation of VSMCs and neointima hyperplasia after vascular injury. These beneficial effects on VSMCs were at least partly

  19. FABP4 induces vascular smooth muscle cell proliferation and migration through a MAPK-dependent pathway.

    PubMed

    Girona, Josefa; Rosales, Roser; Plana, Núria; Saavedra, Paula; Masana, Lluís; Vallvé, Joan-Carles

    2013-01-01

    The migration and proliferation of vascular smooth muscle cells play crucial roles in the development of atherosclerotic lesions. This study examined the effects of fatty acid binding protein 4 (FABP4), an adipokine that is associated with cardiovascular risk, endothelial dysfunction and proinflammatory effects, on the migration and proliferation of human coronary artery smooth muscle cells (HCASMCs). A DNA 5-bromo-2'-deoxy-uridine (BrdU) incorporation assay indicated that FABP4 significantly induced the dose-dependent proliferation of HCASMCs with a maximum stimulatory effect at 120 ng/ml (13% vs. unstimulated cells, p<0.05). An anti-FABP4 antibody (40 ng/ml) significantly inhibited the induced cell proliferation, demonstrating the specificity of the FABP4 proliferative effect. FABP4 significantly induced HCASMC migration in a dose-dependent manner with an initial effect at 60 ng/ml (12% vs. unstimulated cells, p<0.05). Time-course studies demonstrated that FABP4 significantly increased cell migration compared with unstimulated cells from 4 h (23%vs. 17%, p<0.05) to 12 h (74%vs. 59%, p<0.05). Pretreatment with LY-294002 (5 µM) and PD98059 (10 µM) blocked the FABP4-induced proliferation and migration of HCASMCs, suggesting the activation of a kinase pathway. On a molecular level, we observed an up-regulation of the MAPK pathway without activation of Akt. We found that FABP4 induced the active forms of the nuclear transcription factors c-jun and c-myc, which are regulated by MAPK cascades, and increased the expression of the downstream genes cyclin D1 and MMP2, CCL2, and fibulin 4 and 5, which are involved in cell cycle regulation and cell migration. These findings indicate a direct effect of FABP4 on the migration and proliferation of HCASMCs, suggesting a role for this adipokine in vascular remodelling. Taken together, these results demonstrate that the FABP4-induced DNA synthesis and cell migration are mediated primarily through a MAPK-dependent pathway that

  20. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignarro, L.J.; Buga, G.M.; Wood, K.S.

    1987-12-01

    The objective of this study was to determine whether nitric oxide (NO) is responsible for the vascular smooth muscle relaxation elicited by endothelium-derived relaxing factor (EDRF). EDRF is an unstable humoral substance released from artery and vein that mediates the action of endothelium-dependent vasodilators. NO is and unstable endothelium-independent vasodilator that is released from vasodilator drugs such as nitroprusside and glyceryl trinitrate. The authors have repeatedly observed that the actions of NO on vascular smooth muscle closely resemble those of EDRF. In the present study the vascular effects of EDRF released from perfused bovine intrapulmonary artery and vein were comparedmore » with the effects of NO delivered by superfusion over endothelium-denuded arterial and venous strips arranged in a cascade. EDRF was indistinguishable from NO in that both were labile inactivated by pyrogallol or superoxide anion, stabilized by superoxide dismutase, and inhibited by oxyhemoglobin or potassium. Both EDRF and NO produced comparable increases in cyclic GMP accumulation in artery and vein, and this cyclic GMP accumulation was inhibited by pyrogallol, oxyhemoglobin, potassium, and methylene blue. EDRF was identified chemically as NO, or a labile nitroso species, by two procedures. Thus, EDRF released from artery and vein possesses identical and biological and chemical properties as NO.« less

  1. /sup 45/Ca distribution and transport in saponin skinned vascular smooth muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stout, M.A.; Diecke, F.P.

    1983-04-01

    /sup 45/Ca distribution and transport were studied in chemically skinned strips of caudal artery from Kyoto Wistar rats. Sarcolemmal membranes were made hyperpermeable by exposure for 60 min to solutions containing 0.1 mg/ml of saponin. Skinned helical strips responded with graded contractions to changes in ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid buffered free Ca solutions (10(-7) to 10(-5) M) and were sensitive to the Mg-ATP concentration. Tissues loaded in the presence of 10(-7) M Ca contracted in response to 10 mM caffeine. These experiments indicate the strips are skinned and possess a functional regulatory and contractile system and an intact Camore » sequestering system. /sup 45/Ca distributes in three compartments in skinned caudal artery strips. The Ca contents of two components are linear functions of the Ca-ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid concentration and desaturate at rapid rates. They correspond to the extracellular and cytoplasmic spaces. A significantly smaller component releases Ca at comparatively slower rates. /sup 45/Ca uptake by the slow component consists of an ATP-dependent and an ATP-independent fraction. The /sup 45/Ca content of the ATP-dependent fraction is a function of the free Ca concentration and is independent of the Ca-ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid concentration. Its content was enhanced by oxalate and was abolished by Triton X-100 skinning solutions. The ATP-independent component was not affected by Triton X-100 skinning and may represent Ca binding to cytoplasmic molecules and structures. The sequestered Ca was released with caffeine or Ca but not by epinephrine. The observations indicate that the sarcoplasmic reticulum and mitochondria of vascular smooth muscle strips skinned with saponin retain their functional integrity after saponin skinning.« less

  2. Vascular smooth muscle dysfunction induced by monomethylarsonous acid (MMA III): a contributing factor to arsenic-associated cardiovascular diseases.

    PubMed

    Bae, Ok-Nam; Lim, Eun-Kyung; Lim, Kyung-Min; Noh, Ji-Yoon; Chung, Seung-Min; Lee, Moo-Yeol; Yun, Yeo-Pyo; Kwon, Seong-Chun; Lee, Jun-Ho; Nah, Seung-Yeol; Chung, Jin-Ho

    2008-11-01

    While arsenic in drinking water is known to cause various cardiovascular diseases in human, exact mechanism still remains elusive. Recently, trivalent-methylated arsenicals, the metabolites of inorganic arsenic, were shown to have higher cytotoxic potential than inorganic arsenic. To study the role of these metabolites in arsenic-induced cardiovascular diseases, we investigated the effect of monomethylarsonous acid (MMA III), a major trivalent-methylated arsenical, on vasomotor tone of blood vessels. In isolated rat thoracic aorta and small mesenteric arteries, MMA III irreversibly suppressed normal vasoconstriction induced by three distinct agonists of phenylephrine (PE), serotonin and endothelin-1. Inhibition of vasoconstriction was retained in aortic rings without endothelium, suggesting that MMA III directly impaired the contractile function of vascular smooth muscle. The effect of MMA III was mediated by inhibition of PE-induced Ca2+ increase as found in confocal microscopy and fluorimeter in-lined organ chamber technique. The attenuation of Ca2+ increase was from concomitant inhibition of release from intracellular store and extracellular Ca2+ influx via L-type Ca2+ channel, which was blocked by MMA III as shown in voltage-clamp assay in Xenopus oocytes. MMA III did not affect downstream process of Ca2+, as shown in permeabilized arterial strips. In in vivo rat model, MMA III attenuated PE-induced blood pressure increase indeed, supporting the clinical relevance of these in vitro findings. In conclusion, MMA III-induced smooth muscle dysfunction through disturbance of Ca2+ regulation, which results in impaired vasoconstriction and aberrant blood pressure change. This study will provide a new insight into the role of trivalent-methylated arsenicals in arsenic-associated cardiovascular diseases.

  3. Continuous exposure to low amplitude extremely low frequency electrical fields characterizing the vascular streaming potential alters elastin accumulation in vascular smooth muscle cells.

    PubMed

    Bergethon, Peter R; Kindler, Dean D; Hallock, Kevin; Blease, Susan; Toselli, Paul

    2013-07-01

    In normal development and pathology, the vascular system depends on complex interactions between cellular elements, biochemical molecules, and physical forces. The electrokinetic vascular streaming potential (EVSP) is an endogenous extremely low frequency (ELF) electrical field resulting from blood flowing past the vessel wall. While generally unrecognized, it is a ubiquitous electrical biophysical force to which the vascular tree is exposed. Extracellular matrix elastin plays a central role in normal blood vessel function and in the development of atherosclerosis. It was hypothesized that ELF fields of low amplitude would alter elastin accumulation, supporting a link between the EVSP and the biology of vascular smooth muscle cells. Neonatal rat aortic smooth muscle cell cultures were exposed chronically to electrical fields characteristic of the EVSP. Extracellular protein accumulation, DNA content, and electron microscopic (EM) evaluation were performed after 2 weeks of exposure. Stimulated cultures showed no significant change in cellular proliferation as measured by the DNA concentration. The per-DNA normalized protein in the extracellular matrix was unchanged while extracellular elastin accumulation decreased 38% on average. EM analysis showed that the stimulated cells had a 2.85-fold increase in mitochondrial number. These results support the formulation that ELF fields are a potential factor in both normal vessel biology and in the pathogenesis of atherosclerotic diseases including heart disease, stroke, and peripheral vascular disease. Copyright © 2013 Wiley Periodicals, Inc.

  4. Artery cross-clamping during laparoscopic vascular surgeries; a computational tactile sensing approach.

    PubMed

    Pahlavan, Pedram; Najarian, Siamak; Afshari, Elnaz; Moini, Majid

    2013-01-01

    Artificial palpation is one of the most valuable achievements of artificial tactile sensing approach that can be used in various fields of medicine and more specifically in surgery. These techniques cause different surgical maneuvers to be done more precisely and noninvasively. In this study, considering the present problems and limitations of cross-clamping an artery during laparoscopic vascular surgeries, a new tactile sensory system will be introduced.Having imitated surgeon's palpation during open vascular surgeries and modeled it conceptually, the optimal amount of the total angular displacement of each robot joint in order to cross-clamping an artery without damaging to the artery surrounding tissues will be calculated. The elastic governing equation of contact occurred between the tactile sensor placed on the first link of the robot and the surrounding tissues around the artery were developed. A finite element model is coupled with genetic algorithm optimization method so that the normal stress and displacements in contact surface of the robot and artery's surrounding tissues would be minimized. Thus, reliability and accuracy of artificial tactile sensing method in artery cross-clamping will be demonstrated. Finally, the functional principles of the new tactile system capable of cross-clamping an artery during laparoscopic surgeries will be presented.

  5. The flavonoid quercetin induces apoptosis and inhibits JNK activation in intimal vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Vizcaino, Francisco; Bishop-Bailley, David; Lodi, Federica

    Quercetin, the most abundant dietary flavonol, exerts vasodilator, anti-hypertensive, and anti-atherogenic effects and reduces the vascular remodelling associated with elevated blood pressure. Here, we have compared the effects of quercetin in intimal- and medial-type rat vascular smooth muscle cells (VSMC) in culture. After 48 h, quercetin reduced the viability of a polyclonal intimal-type cell line derived from neonatal aorta but not of a medial-type cell line derived from adult aorta. These differential effects were similar in both proliferating and quiescent VSMC. Quercetin also preferentially reduced the viability of intimal-type over medial-type VSMC in primary cultures derived from balloon-injured carotid arteries.more » The effects of quercetin on cell viability were mainly dependent upon induction of apoptosis, as demonstrated by nuclear condensation and fragmentation, and were unrelated to PPAR{gamma}, pro-oxidant effects or nitric oxide. The expression of MAPKs (ERK, p38, and JNK) and ERK phosphorylation were not different between intimal- and medial-type VSMC. p38 phosphorylation was negligible in both cell types. Medial-type showed a weak JNK phosphorylation while this was markedly increased in intimal-type cells. Quercetin reduced JNK phosphorylation but had no consistent effect on ERK phosphorylation. In conclusion, quercetin preferentially produced apoptosis in intimal-type compared to medial-type VSMC. This might play a role in the anti-atherogenic and anti-hypertensive effects of quercetin.« less

  6. Angiotensin II type 1 receptor-associated protein regulates carotid intimal hyperplasia through controlling apoptosis of vascular smooth muscle cells.

    PubMed

    Yue, Yongqiang; Ma, Ke; Li, Zhen; Wang, Zhonggao

    2018-01-08

    Intimal hyperplasia is the main cause of restenosis after carotid artery injury, and the underlying mechanism involves the proliferation and migration of vascular smooth muscle cells (VSMCs). Angiotensin II Type 1 Receptor-Associated Protein (ATRAP) has been reported to withstand intimal hyperplasia by inhibiting VSMCs proliferation and migration; however, whether the beneficial effect of ATRAP associates with VSMCs apoptosis remains unclarified. We demonstrated that the adenoviral-mediated overexpression of ATRAP induced VSMC apoptosis, alleviating the balloon injury-induced neointima formation in rats. Under the condition of Angiotensin-II stimulation, ATRAP overexpression induced the apoptosis of rat VSMCs by depressing the PI3K-Akt signaling; whereas up-regulation of Akt by PTEN inhibitor abolished the apoptotic death. Thus, ATRAP regulates carotid intimal hyperplasia through controlling the PI3K-Akt signal-mediated VSMCs apoptosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Expression pattern and function of tyrosine receptor kinase B isoforms in rat mesenteric arterial smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otani, Kosuke; Okada, Muneyoshi; Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp

    Tyrosine receptor kinaseB (TrkB) is a high affinity receptor for brain-derived neurotrophic factor (BDNF). TrkB isoforms involve full length TrkB (TrkB FL) and truncated TrkB type1 (TrkB T1) and type 2 (TrkB T2) in rats. The aim of present study was to explore their expression pattern and function in mesenteric arterial smooth muscle cells (MASMCs). The expression of TrkB isoform protein and mRNA was examined by Western blotting, immunofluorescence and quantitative RT-PCR analyses. Cell proliferation was measured by a bromodeoxyuridine (BrdU) incorporation assay. Cell migration was measured by a Boyden chamber assay. Cell morphology was observed with a phase-contrast microscope.more » Protein and mRNA expression of BDNF and TrkB isoforms was confirmed in MASMCs. Expression level of TrkB FL was less, while that of TrkB T1 was the highest in MASMCs. Although BDNF increased phosphorylation of ERK, it had no influence on migration and proliferation of MASMCs. TrkB T1 gene knockdown by a RNA interference induced morphological changes and reduced expression level of α-smooth muscle actin (α-SMA) in MASMCs. Similar morphological changes and reduced α-SMA expression were induced in MASMCs by a Rho kinase inhibitor, Y-27632. In conclusion, we for the first time demonstrate that TrkB T1 expressed highly in MASMCs contributes to maintain normal cell morphology possibly via regulation of Rho activity. This study firstly defined expression level of TrkB isoforms and partly revealed their functions in peripheral vascular cells. - Highlights: • BDNF-TrkB axis mediates neurogenesis, growth, differentiation and survival. • Expression pattern and function of TrkB in vascular smooth muscle remain unclear. • Expression of TrkB FL is low, while that of TrkB T1 is the highest. • TrkB T1 contributes to maintain normal morphology possibly via activating Rho.« less

  8. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice.

    PubMed

    Lee, Dustin M; Battson, Micah L; Jarrell, Dillon K; Hou, Shuofei; Ecton, Kayl E; Weir, Tiffany L; Gentile, Christopher L

    2018-04-27

    Type 2 diabetes (T2D) is associated with generalized vascular dysfunction characterized by increases in large artery stiffness, endothelial dysfunction, and vascular smooth muscle dysfunction. Sodium glucose cotransporter 2 inhibitors (SGLT2i) represent the most recently approved class of oral medications for the treatment of T2D, and have been shown to reduce cardiovascular and overall mortality. Although it is currently unclear how SGLT2i decrease cardiovascular risk, an improvement in vascular function is one potential mechanism. The aim of the current study was to examine if dapagliflozin, a widely prescribed STLT2i, improves generalized vascular dysfunction in type 2 diabetic mice. In light of several studies demonstrating a bi-directional relation between orally ingested medications and the gut microbiota, a secondary aim was to determine the effects of dapagliflozin on the gut microbiota. Male diabetic mice (Db, n = 24) and control littermates (Con; n = 23) were randomized to receive either a standard diet or a standard diet containing dapagliflozin (60 mg dapagliflozin/kg diet; 0.006%) for 8 weeks. Arterial stiffness was assessed by aortic pulse wave velocity; endothelial function and vascular smooth muscle dysfunction were assessed by dilatory responses to acetylcholine and sodium nitroprusside, respectively. Compared to untreated diabetic mice, diabetic mice treated with dapagliflozin displayed significantly lower arterial stiffness (Db = 469 cm/s vs. Db + dapa = 435 cm/s, p < 0.05), and improvements in endothelial dysfunction (area under the curve [AUC] Db = 57.2 vs. Db + dapa = 117.0, p < 0.05) and vascular smooth muscle dysfunction (AUC, Db = 201.7 vs. Db + dapa = 285.5, p < 0.05). These vascular improvements were accompanied by reductions in hyperglycemia and circulating markers of inflammation. The microbiota of Db and Con mice were distinctly different, and dapagliflozin treatment was

  9. Decreasing mitochondrial fission diminishes vascular smooth muscle cell migration and ameliorates intimal hyperplasia

    PubMed Central

    Wang, Li; Yu, Tianzheng; Lee, Hakjoo; O'Brien, Dawn K.; Sesaki, Hiromi; Yoon, Yisang

    2015-01-01

    Aims Vascular smooth muscle cell (VSMC) migration in response to arterial wall injury is a critical process in the development of intimal hyperplasia. Cell migration is an energy-demanding process that is predicted to require mitochondrial function. Mitochondria are morphologically dynamic, undergoing continuous shape change through fission and fusion. However, the role of mitochondrial morphology in VSMC migration is not well understood. The aim of the study is to understand how mitochondrial fission contributes to VSMC migration and provides its in vivo relevance in the mouse model of intimal hyperplasia. Methods and results In primary mouse VSMCs, the chemoattractant PDGF induced mitochondrial shortening through the mitochondrial fission protein dynamin-like protein 1 (DLP1)/Drp1. Perturbation of mitochondrial fission by expressing the dominant-negative mutant DLP1-K38A or by DLP1 silencing greatly decreased PDGF-induced lamellipodia formation and VSMC migration, indicating that mitochondrial fission is an important process in VSMC migration. PDGF induced an augmentation of mitochondrial energetics as well as ROS production, both of which were found to be necessary for VSMC migration. Mechanistically, the inhibition of mitochondrial fission induced an increase of mitochondrial inner membrane proton leak in VSMCs, abrogating the PDGF-induced energetic enhancement and an ROS increase. In an in vivo model of intimal hyperplasia, transgenic mice expressing DLP1-K38A displayed markedly reduced ROS levels and neointima formation in response to femoral artery wire injury. Conclusions Mitochondrial fission is an integral process in cell migration, and controlling mitochondrial fission can limit VSMC migration and the pathological intimal hyperplasia by altering mitochondrial energetics and ROS levels. PMID:25587046

  10. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels playedmore » a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.« less

  11. Hydroxyapatite and Calcified Elastin Induce Osteoblast-like Differentiation in Rat Aortic Smooth Muscle Cells

    PubMed Central

    Lei, Yang; Sinha, Aditi; Nosoudi, Nasim; Grover, Ankit; Vyavahare, Naren

    2014-01-01

    Vascular calcification can be categorized into two different types. Intimal calcification related to atherosclerosis and elastin-specific medial arterial calcification (MAC). Osteoblast-like differentiation of vascular smooth muscle cells (VSMCs) has been shown in both types; however, how this relates to initiation of vascular calcification is unclear. We hypothesize that the initial deposition of hydroxyapatite-like mineral in MAC occurs on degraded elastin first and that causes osteogenic transformation of VSMCs. To test this, rat aortic smooth muscle cells (RASMCs) were cultured on hydroxyapatite crystals and calcified aortic elastin. Using RT-PCR and specific protein assays, we demonstrate that RASMCs lose their smooth muscle lineage markers like alpha smooth muscle actin (SMA) and myosin heavy chain (MHC) and undergo chondrogenic/osteogenic transformation. This is indicated by an increase in the expression of typical chondrogenic proteins such as aggrecan, collagen type II alpha 1(Col2a1) and bone proteins such as runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN). Furthermore, when calcified conditions are removed, cells return to their original phenotype. Our data supports the hypothesis that elastin degradation and calcification precedes VSMCs' osteoblast-like differentiation. PMID:24447384

  12. Mechanism of high glucose induced angiotensin II production in rat vascular smooth muscle cells.

    PubMed

    Lavrentyev, Eduard N; Estes, Anne M; Malik, Kafait U

    2007-08-31

    Angiotensin II (Ang II), a circulating hormone that can be synthesized locally in the vasculature, has been implicated in diabetes-associated vascular complications. This study was conducted to determine whether high glucose (HG) (approximately 23.1 mmol/L), a diabetic-like condition, stimulates Ang II generation and the underlying mechanism of its production in rat vascular smooth muscle cells. The contribution of various enzymes involved in Ang II generation was investigated by silencing their expression with small interfering RNA in cells exposed to normal glucose (approximately 4.1 mmol/L) and HG. Angiotensin I (Ang I) was generated from angiotensinogen by cathepsin D in the presence of normal glucose or HG. Although HG did not affect the rate of angiotensinogen conversion, it decreased expression of angiotensin-converting enzyme (ACE), downregulated ACE-dependent Ang II generation, and upregulated rat vascular chymase-dependent Ang II generation. The ACE inhibitor captopril reduced Ang II levels in the media by 90% in the presence of normal glucose and 19% in HG, whereas rat vascular chymase silencing reduced Ang II production in cells exposed to HG but not normal glucose. The glucose transporter inhibitor cytochalasin B, the aldose reductase inhibitor alrestatin, and the advanced glycation end product formation inhibitor aminoguanidine attenuated HG-induced Ang II generation. HG caused a transient increase in extracellular signal-regulated kinase (ERK)1/2 phosphorylation, and ERK1/2 inhibitors reduced Ang II accumulation by HG. These data suggest that polyol pathway metabolites and AGE can stimulate rat vascular chymase activity via ERK1/2 activation and increase Ang II production. In addition, decreased Ang II degradation, which, in part, could be attributable to a decrease in angiotensin-converting enzyme 2 expression observed in HG, contributes to increased accumulation of Ang II in vascular smooth muscle cells by HG.

  13. Effect of puberty on coronary arteries from female pigs.

    PubMed

    Chatrath, Ritu; Ronningen, Karen L; LaBreche, Peter; Severson, Sandra R; Jayachandran, Muthuvel; Bracamonte, Margarita P; Miller, Virginia M

    2003-10-01

    Vascular function changes following loss of ovarian hormones in women at menopause and in experimental animals following surgical ovariectomy. Little is known about changes in vascular function during hormonal transition from sexual immaturity (juvenile) to sexual maturity. Therefore, experiments were designed to determine effects of natural puberty on vascular function in female pigs. Tissue was studied from eight juvenile (2-3 mo) and eight adult (5-6 mo) female pigs. Plasma nitric oxide (NO) was measured, and mRNA for endothelium-derived NO synthase (eNOS) and eNOS protein were determined in aortic endothelial cells. Rings of coronary arteries were suspended for measurement of isometric force in organ chambers. Serum 17beta-estradiol levels were comparable in the two groups, whereas the arithmetic mean of progesterone levels was about two-thirds lower in adults compared with juvenile pigs. Plasma NO was significantly higher in juveniles compared with adults, but mRNA and protein for eNOS were comparable. In coronary arteries, an alpha2-adrenergic agonist caused greater endothelium-dependent relaxations in rings from juvenile compared with adult pigs. Relaxations to bradykinin were similar in arteries from both groups, but inhibition of NO reduced relaxations only in arteries from juvenile pigs. Relaxations from NO were greater in arteries from adult compared with juvenile female pigs. In conclusion, coronary arterial endothelial and smooth muscle responses are selectively modulated at puberty in female pigs. At maturity, plasma NO is reduced and sensitivity of the smooth muscle to exogenous NO is increased. Posttranscriptional regulation of eNOS protein may explain differences in NO bioavailability in juvenile pigs.

  14. Selective Expression of an Endogenous Inhibitor of FAK Regulates Proliferation and Migration of Vascular Smooth Muscle Cells

    PubMed Central

    Taylor, Joan M.; Mack, Christopher P.; Nolan, Kate; Regan, Christopher P.; Owens, Gary K.; Parsons, J. Thomas

    2001-01-01

    Extracellular matrix signaling via integrin receptors is important for smooth muscle cell (SMC) differentiation during vasculogenesis and for phenotypic modulation of SMCs during atherosclerosis. We previously reported that the noncatalytic carboxyl-terminal protein binding domain of focal adhesion kinase (FAK) is expressed as a separate protein termed FAK-related nonkinase (FRNK) and that ectopic expression of FRNK can attenuate FAK activity and integrin-dependent signaling (A. Richardson and J. T. Parsons, Nature 380:538–540, 1996). Herein we report that in contrast to FAK, which is expressed ubiquitously, FRNK is expressed selectively in SMCs, with particularly high levels observed in conduit blood vessels. FRNK expression was low during embryonic development, was significantly upregulated in the postnatal period, and returned to low but detectable levels in adult tissues. FRNK expression was also dramatically upregulated following balloon-induced carotid artery injury. In cultured rat aortic smooth muscle cells, overexpression of FRNK attenuated platelet-derived growth factor (PDGF)-BB-induced migration and also dramatically inhibited [3H]thymidine incorporation upon stimulation with PDGF-BB or 10% serum. These effects were concomitant with a reduction in SMC proliferation. Taken together, these data indicate that FRNK acts as an endogenous inhibitor of FAK signaling in SMCs. Furthermore, increased FRNK expression following vascular injury or during development may alter the SMC phenotype by negatively regulating proliferative and migratory signals. PMID:11238893

  15. Oxygenation decreases elastin secretion from rat ductus arteriosus smooth muscle cells.

    PubMed

    Kawakami, Shoji; Minamisawa, Susumu

    2015-08-01

    The ductus arteriosus (DA), a fetal arterial connection between the main pulmonary artery and the descending aorta, normally closes immediately after birth. The oxygen concentration in the blood rises after birth, and in the DA this increase in oxygen concentration causes functional closure, which is induced by smooth muscle contraction. Previous studies have demonstrated that hypoxia and/or oxygenation affect vascular remodeling of various vessels. Therefore, we hypothesized that the rise in oxygen concentration would affect the vascular structure of the DA due to production of proteins secreted from DA smooth muscle cells (SMC). Liquid chromatography-tandem mass spectrometry was used to comprehensively investigate the secreted proteins in the supernatant of rat DA SMC harvested under hypoxic conditions (1% oxygen) or under normoxic conditions (21% oxygen). We found that the rise in oxygen concentration reduced the secretion of elastin from DA SMC. On reverse transcription-polymerase chain reaction, the expression of elastin mRNA was not significantly changed in DA SMC from hypoxic to normoxic conditions. Given that elastin forms internal elastic lamina and elastic fibers in the vascular muscle layers, and that a rise in oxygen concentration reduced the secretion of elastin, this suggests that the rise in blood oxygen concentration after birth reduces the secretion of elastin, and therefore may play a role in DA structural remodeling after birth. © 2015 Japan Pediatric Society.

  16. Transferrin Receptor 1 in Chronic Hypoxia-Induced Pulmonary Vascular Remodeling.

    PubMed

    Naito, Yoshiro; Hosokawa, Manami; Sawada, Hisashi; Oboshi, Makiko; Hirotani, Shinichi; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Nishimura, Koichi; Soyama, Yuko; Fujii, Kenichi; Mano, Toshiaki; Ishihara, Masaharu; Tsujino, Takeshi; Masuyama, Tohru

    2016-06-01

    Iron is associated with the pathophysiology of several cardiovascular diseases, including pulmonary hypertension (PH). In addition, disrupted pulmonary iron homeostasis has been reported in several chronic lung diseases. Transferrin receptor 1 (TfR1) plays a key role in cellular iron transport. However, the role of TfR1 in the pathophysiology of PH has not been well characterized. In this study, we investigate the role of TfR1 in the development of hypoxia-induced pulmonary vascular remodeling. PH was induced by exposing wild-type (WT) mice and TfR1 hetero knockout mice to hypoxia for 4 weeks and evaluated via assessment of pulmonary vascular remodeling, right ventricular (RV) systolic pressure, and RV hypertrophy. In addition, we assessed the functional role of TfR1 in pulmonary artery smooth muscle cells in vitro. The morphology of pulmonary arteries did not differ between WT mice and TfR1 hetero knockout mice under normoxic conditions. In contrast, TfR1 hetero knockout mice exposed to 4 weeks hypoxia showed attenuated pulmonary vascular remodeling, RV systolic pressure, and RV hypertrophy compared with WT mice. In addition, the depletion of TfR1 by RNA interference attenuated human pulmonary artery smooth muscle cells proliferation induced by platelet-derived growth factor-BB (PDGF-BB) in vitro. These results suggest that TfR1 plays an important role in the development of hypoxia-induced pulmonary vascular remodeling. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. GPCRs in pulmonary arterial hypertension: tipping the balance.

    PubMed

    Iyinikkel, Jean; Murray, Fiona

    2018-02-21

    Pulmonary arterial hypertension (PAH) is a progressive, fatal disease characterised by increased pulmonary vascular resistance and excessive proliferation of pulmonary artery smooth muscle cells (PASMC). GPCRs, which are attractive pharmacological targets, are important regulators of pulmonary vascular tone and PASMC phenotype. PAH is associated with the altered expression and function of a number of GPCRs in the pulmonary circulation, which leads to the vasoconstriction and proliferation of PASMC and thereby contributes to the imbalance of pulmonary vascular tone associated with PAH; drugs targeting GPCRs are currently used clinically to treat PAH and extensive preclinical work supports the utility of a number of additional GPCRs. Here we review how GPCR expression and function changes with PAH and discuss why GPCRs continue to be relevant drug targets for the disease. © 2018 The British Pharmacological Society.

  18. Chitosan nanoparticle carrying small interfering RNA to platelet-derived growth factor B mRNA inhibits proliferation of smooth muscle cells in rabbit injured arteries.

    PubMed

    Xia, He; Jun, Ji; Wen-Ping, Ling; Yi-Feng, Pan; Xiao-Ling, Chen

    2013-10-01

    The purpose of this study was to elucidate the transfection of chitosan nanoparticle carrying small interfering RNA against platelet-derived growth factor B (PDGF-B) to inhibit the expression of PDGF-B mRNA and proliferation of smooth muscle cells. A rabbit iliac artery injury model was constructed. A small interfering RNA (siRNA) against PDGF-B mRNA expression vector was constructed and packaged by chitosan nanoparticle to transfect into the vascular smooth muscle cells (vSMCs) of balloon catheter-injured rabbit iliac artery wall, using a therapeutic ultrasound for the gene delivery. The experiment was divided into two groups: experimental group, denudation and nano-PDGF-B siRNA treated, and only single denudation as control. Effects of the siRNA on the expressions of proliferating cell nuclear antigen (PCNA) and PDGF-B mRNA by vSMCs and the proliferation of vSMCs were observed with the methods of routine pathological, immunohistochemical staining, in situ hybridization and morphometry. The nano siRNA against PDGF-B was successfully transfected. The nano siRNA significantly inhibited the expressions of PCNA and PDGF-B mRNA in intimal vSMCs. The local intimal thickness and area were also reduced remarkably. In conclusion, transfection of chitosan nanoparticle carrying siRNA against PDGF-B mRNA could inhibit proliferation of vSMCs in the rabbit iliac artery injury model. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  19. The angiotensin II receptor type 1b is the primary sensor of intraluminal pressure in cerebral artery smooth muscle cells.

    PubMed

    Pires, Paulo W; Ko, Eun-A; Pritchard, Harry A T; Rudokas, Michael; Yamasaki, Evan; Earley, Scott

    2017-07-15

    The angiotensin II receptor type 1b (AT 1 R b ) is the primary sensor of intraluminal pressure in cerebral arteries. Pressure or membrane-stretch induced stimulation of AT 1 R b activates the TRPM4 channel and results in inward transient cation currents that depolarize smooth muscle cells, leading to vasoconstriction. Activation of either AT 1 R a or AT 1 R b with angiotensin II stimulates TRPM4 currents in cerebral artery myocytes and vasoconstriction of cerebral arteries. The expression of AT 1 R b mRNA is ∼30-fold higher than AT 1 R a in whole cerebral arteries and ∼45-fold higher in isolated cerebral artery smooth muscle cells. Higher levels of expression are likely to account for the obligatory role of AT 1 R b for pressure-induced vasoconstriction . ABSTRACT: Myogenic vasoconstriction, which reflects the intrinsic ability of smooth muscle cells to contract in response to increases in intraluminal pressure, is critically important for the autoregulation of blood flow. In smooth muscle cells from cerebral arteries, increasing intraluminal pressure engages a signalling cascade that stimulates cation influx through transient receptor potential (TRP) melastatin 4 (TRPM4) channels to cause membrane depolarization and vasoconstriction. Substantial evidence indicates that the angiotensin II receptor type 1 (AT 1 R) is inherently mechanosensitive and initiates this signalling pathway. Rodents express two types of AT 1 R - AT 1 R a and AT 1 R b - and conflicting studies provide support for either isoform as the primary sensor of intraluminal pressure in peripheral arteries. We hypothesized that mechanical activation of AT 1 R a increases TRPM4 currents to induce myogenic constriction of cerebral arteries. However, we found that development of myogenic tone was greater in arteries from AT 1 R a knockout animals compared with controls. In patch-clamp experiments using native cerebral arterial myocytes, membrane stretch-induced cation currents were blocked by the TRPM

  20. Secondary Coronary Artery Vasospasm Promotes Cardiomyopathy Progression

    PubMed Central

    Wheeler, Matthew T.; Korcarz, Claudia E.; Collins, Keith A.; Lapidos, Karen A.; Hack, Andrew A.; Lyons, Matthew R.; Zarnegar, Sara; Earley, Judy U.; Lang, Roberto M.; McNally, Elizabeth M.

    2004-01-01

    Genetic defects in the plasma membrane-associated sarcoglycan complex produce cardiomyopathy characterized by focal degeneration. The infarct-like pattern of cardiac degeneration has led to the hypothesis that coronary artery vasospasm underlies cardiomyopathy in this disorder. We evaluated the coronary vasculature of γ-sarcoglycan mutant mice and found microvascular filling defects consistent with arterial vasospasm. However, the vascular smooth muscle sarcoglycan complex was intact in the coronary arteries of γ-sarcoglycan hearts with perturbation of the sarcoglycan complex only within the adjacent myocytes. Thus, in this model, coronary artery vasospasm derives from a vascular smooth muscle-cell extrinsic process. To reduce this secondary vasospasm, we treated γ-sarcoglycan-deficient mice with the calcium channel antagonist verapamil. Verapamil treatment eliminated evidence of vasospasm and ameliorated histological and functional evidence of cardiomyopathic progression. Echocardiography of verapamil-treated, γ-sarcoglycan-null mice showed an improvement in left ventricular fractional shortening (44.3 ± 13.3% treated versus 37.4 ± 15.3% untreated), maximal velocity at the aortic outflow tract (114.9 ± 27.9 cm/second versus 92.8 ± 22.7 cm/second), and cardiac index (1.06 ± 0.30 ml/minute/g versus 0.67 ± 0.16 ml/minute/g, P < 0.05). These data indicate that secondary vasospasm contributes to the development of cardiomyopathy and is an important therapeutic target to limit cardiomyopathy progression. PMID:14982859

  1. Denatured venous homograft as an arterial substitute in civilian vascular injuries. Thirty months' experience.

    PubMed

    La Barbera, G; Pumilia, G; La Marca, G; Martino, A

    1998-06-01

    Autologous saphenous vein (ASV) for arterial reconstruction, in vascular limb injuries is the graft material of choice. Denatured saphenous vein homograft (DSVH), thanks to its characteristics of readily available autologous biological prosthesis, has been proposed as alternative. We report our prospective experience with DSVH employed for arterial reconstruction in civilian limb vascular injuries. From January 1994 to June 1996, DSVH was implanted in 16 male patients (pts.) treated for arterial civilian injuries of eight upper limbs and eight lower limbs. In 14 cases it was performed as an interposition graft and in two cases a bypass. We performed a 30-month follow-up and a 20-month mean follow-up. Four patients had graft thrombosis at the first postoperative week and were submitted to the replacement of the graft with reappearance of distal arterial pulse; one of them had graft failure at the fifth postoperative week and because the necrosis due to extensive soft tissue damage, he was submitted to limb amputation. After 30-months' follow-up we obtained 75% primary patency rate and 93% secondary patency rate. In the absence of suitable ASV, DSVH appears to be an interesting alternative for arterial repair in limbs in civilian vascular injuries.

  2. Reactive oxygen species are involved in regulating alpha1-adrenoceptor-activated vascular smooth muscle contraction.

    PubMed

    Tsai, Ming-Ho; Jiang, Meei Jyh

    2010-08-23

    Reactive oxygen species (ROS) were shown to mediate aberrant contractility in hypertension, yet the physiological roles of ROS in vascular smooth muscle contraction have remained elusive. This study aimed to examine whether ROS regulate alpha1-adrenoceptor-activated contraction by altering myosin phosphatase activities. Using endothelium-denuded rat tail artery (RTA) strips, effects of anti-oxidants on isometric force, ROS production, phosphorylation of the 20-kDa myosin light chain (MLC20), and myosin phosphatase stimulated by alpha1-adrenoceptor agonist phenylephrine were examined. An antioxidant, N-acetyl-L-cysteine (NAC), and two NADPH oxidase inhibitors, apocynin and VAS2870, dose-dependently inhibited contraction activated by phenylephrine. Phenylephrine stimulated superoxide anion production that was diminished by the pretreatment of apocynin, VAS2870, superoxide scavenger tiron or mitochondria inhibitor rotenone, but not by xanthine oxidase inhibitor allopurinol or cyclooxygenase inhibitor indomethacin. Concurrently, NADPH oxidase activity in RTA homogenates increased within 1 min upon phenylephrine stimulation, sustained for 10 min, and was abolished by the co-treatment with apocynin, but not allopurinol or rotenone. Phenylephrine-induced MLC20 phosphorylation was dose-dependently decreased by apocynin. Furthermore, apocynin inhibited phenylephrine-stimulated RhoA translocation to plasma membrane and phosphorylation of both myosin phosphatase regulatory subunit MYPT1Thr855 and myosin phosphatase inhibitor CPI-17Thr38. ROS, probably derived from NADPH oxidase and mitochondria, partially regulate alpha1-adrenoceptor-activated smooth muscle contraction by altering myosin phosphatase-mediated MLC20 phosphorylation through both RhoA/Rho kinase- and CPI-17-dependent pathways.

  3. Origin of a common trunk for the inferior phrenic arteries from the right renal artery: a new anatomic vascular variant with clinical implications.

    PubMed

    Topaz, On; Topaz, Allyne; Polkampally, Pritam R; Damiano, Thomas; King, Christopher A

    2010-01-01

    The inferior phrenic arteries constitute a pair of important vessels, supplying multiple organs including the diaphragm, adrenal glands, esophagus, stomach, liver, inferior vena cava, and retroperitoneum. The vast majority (80-90%) of inferior phrenic arteries originate as separate vessels with near equal frequency from either the abdominal aorta or the celiac trunk. Infrequently, the right and left inferior phrenic arteries can arise in the form of a common trunk from the aorta or from the celiac trunk. We herein present three patients with a new anatomic vascular variant: a common trunk of the inferior phrenic arteries arising from the right renal artery. In one case, the left inferior phrenic branch of the common trunk provided collaterals connecting with a supra-diaphragmatic branch of the left internal mammary artery and in another with the lateral wall of the pericardium. Angiographic identification of a common trunk for the inferior phrenic arteries arising from the right renal artery is important for proper diagnosis and clinical management. The presence of this unique vascular variant can impact revascularization of the renal arteries. Published by Elsevier Inc.

  4. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    PubMed

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  5. Thrombospondin-1, -2 and -5 have differential effects on vascular smooth muscle cell physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helkin, Alex; Maier, Kristopher G.; Department of Veterans Affairs VA Healthcare Network Upstate New York at Syracuse, Syracuse, NY

    Introduction: The thrombospondins (TSPs) are matricellular proteins that exert multifunctional effects by binding cytokines, cell-surface receptors and other proteins. TSPs play important roles in vascular pathobiology and are all expressed in arterial lesions. The differential effects of TSP-1, -2, and -5 represent a gap in knowledge in vascular smooth muscle cell (VSMC) physiology. Our objective is to determine if structural differences of the TSPs imparted different effects on VSMC functions critical to the formation of neointimal hyperplasia. We hypothesize that TSP-1 and -2 induce similar patterns of migration, proliferation and gene expression, while the effects of TSP-5 are different. Methods:more » Human aortic VSMC chemotaxis was tested for TSP-2 and TSP-5 (1–40 μg/mL), and compared to TSP-1 and serum-free media (SFM) using a modified Boyden chamber. Next, VSMCs were exposed to TSP-1, TSP-2 or TSP-5 (0.2–40 μg/mL). Proliferation was assessed by MTS assay. Finally, VSMCs were exposed to TSP-1, TSP-2, TSP-5 or SFM for 3, 6 or 24 h. Quantitative real-time PCR was performed on 96 genes using a microfluidic card. Statistical analysis was performed by ANOVA or t-test, with p < 0.05 being significant. Results: TSP-1, TSP-2 and TSP-5 at 20 μg/mL all induce chemotaxis 3.1 fold compared to serum-free media. TSP-1 and TSP-2 induced proliferation 53% and 54% respectively, whereas TSP-5 did not. In the gene analysis, overall, cardiovascular system development and function is the canonical pathway most influenced by TSP treatment, and includes multiple growth factors, cytokines and proteases implicated in cellular migration, proliferation, vasculogenesis, apoptosis and inflammation pathways. Conclusions and relevance: The results of this study indicate TSP-1, -2, and -5 play active roles in VSMC physiology and gene expression. Similarly to TSP-1, VSMC chemotaxis to TSP-2 and -5 is dose-dependent. TSP-1 and -2 induces VSMC proliferation, but TSP-5 does not

  6. Peroxide generation by p47phox-Src activation of Nox2 has a key role in protein kinase C-induced arterial smooth muscle contraction.

    PubMed

    Gupte, Sachin A; Kaminski, Pawel M; George, Shimran; Kouznestova, Lioubov; Olson, Susan C; Mathew, Rajamma; Hintze, Thomas H; Wolin, Michael S

    2009-04-01

    Protein kinase C (PKC) stimulation of NAD(P)H oxidases (Nox) is an important component of multiple vascular disease processes; however, the relationship between oxidase activation and the regulation of vascular smooth muscle contraction by PKC remains poorly understood. Therefore, we examined the signaling cascade of PKC-elicited Nox activation and the role of superoxide and hydrogen peroxide in mediating PKC-induced vascular contraction. Endothelium-denuded bovine coronary arteries showed a PKC-dependent basal production of lucigenin (5 muM)-detected Nox oxidase-derived superoxide, which was stimulated fourfold by PKC activation with 10 muM phorbol 12,13-dibutyrate (PDBu). PDBu appeared to increase superoxide generation by Nox2 through both p47(phox) and peroxide-dependent Src activation mechanisms based on the actions of inhibitors, properties of Src phosphorylation, and the loss of responses in aorta from mice deficient in Nox2 and p47(phox). The actions of inhibitors of contractile regulating mechanisms, scavengers of superoxide and peroxide, and responses in knockout mouse aortas suggest that a major component of the contraction elicited by PDBu appeared to be mediated through peroxide derived from Nox2 activation stimulating force generation through Rho kinase and calmodulin kinase-II mechanisms. Superoxide generated by PDBu also attenuated relaxation to nitroglycerin. Peroxide-derived from Nox2 activation by PKC appeared to be a major contributor to the thromboxane A(2) receptor agonist U46619 (100 nM)-elicited contraction of coronary arteries. Thus a p47(phox) and Src kinase activation of peroxide production by Nox2 appears to be an important contributor to vascular contractile mechanisms mediated through activation of PKC.

  7. Inhibition of vascular smooth muscle cell proliferation and migration in vitro and neointimal hyperplasia in vivo by adenoviral-mediated atrial natriuretic peptide delivery.

    PubMed

    Larifla, Laurent; Déprez, Isabelle; Pham, Isabelle; Rideau, Dominique; Louzier, Vanessa; Adam, Micheline; Eloit, Marc; Foucan, Lydia; Adnot, Serge; Teiger, Emmanuel

    2012-07-01

    Vascular smooth muscle cell (VSMC) proliferation and migration are important components of the remodeling process in atherosclerosis or following angioplasty. Atrial natriuretic peptide (ANP) inhibits the growth of VSMCs in vitro but this effect has not been proven in vivo. In the present study, we examined the effects of local overexpression of ANP following gene transfer on in vitro VSMC proliferation and migration and in vivo neointimal formation in a rat carotid artery model of vascular injury. ANP gene transfer was performed using a recombinant adenovirus containing the ANP cDNA controlled by the Rous sarcoma virus (RSV) long terminal repeat (Ad-RSV-ANP). A recombinant adenovirus expressing the RSV-controlled β-galactosidase gene (Ad-RSV-β-gal) was used as the control. Rat VSMC culture was used for in vitro studies. In the in vivo experiments, carotid arteries were analyzed after balloon injury and local infusion of the viral solution. VSMCs transfected by Ad-RSV-ANP produced a significant amount of ANP detected by immunoreactive assay and accumulated about 6.5 times more cGMP than the viral control. VSMC proliferation stimulated with 10% fetal calf serum was reduced by 31% and migration by 25%. Fourteen days after injury, neointimal formation and the intima/media ratio were reduced by 25% and 28%, respectively, in the Ad-RSV-ANP-treated group compared to the control group. The present study demonstrates the efficacy of recombinant adenovirus Ad-RSV-ANP with respect to inhibiting rat VSMC proliferation and migration. Our findings also provide evidence that ANP is implicated in the modulation of vascular remodeling following endothelial injury. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease

    PubMed Central

    Araldi, Elisa; Chamorro-Jorganes, Aranzazu; van Solingen, Coen; Fernández-Hernando, Carlos; Suárez, Yajaira

    2013-01-01

    Atherosclerosis (also known as arteriosclerotic vascular disease) is a chronic inflammatory disease of the arterial wall, characterized by the formation of lipid-laden lesions. The activation of endothelial cells at atherosclerotic lesion–prone sites in the arterial tree results in the up-regulation of cell adhesion molecules and chemokines, which mediate the recruitment of circulating monocytes. Accumulation of monocytes and monocyte-derived phagocytes in the wall of large arteries leads to chronic inflammation and the development and progression of atherosclerosis. The lesion experiences the following steps: foam cell formation, fatty streak accumulation, migration and proliferation of vascular smooth muscle cells, and fibrous cap formation. Finally, the rupture of the unstable fibrous cap causes thrombosis in complications of advanced lesions that leads to unstable coronary syndromes, myocardial infarction and stroke. MicroRNAs have recently emerged as a novel class of gene regulators at the post-transcriptional level. Several functions of vascular cells, such as cell differentiation, contraction, migration, proliferation and inflammation that are involved in angiogenesis, neointimal formation and lipid metabolism underlying various vascular diseases, have been found to be regulated by microRNAs and are described in the present review as well as their potential therapeutic application. PMID:23713860

  9. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension

    PubMed Central

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-01-01

    Background and Purpose Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Experimental Approach Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Key Results Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O2− production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Conclusions and Implications Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. PMID:22994554

  10. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension.

    PubMed

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-02-01

    Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O(2) (-) production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  11. Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries.

    PubMed

    Bagnasco, D Suarez; Ballarin, F Montini; Cymberknop, L J; Balay, G; Negreira, C; Abraham, G A; Armentano, R L

    2014-12-01

    Development of successful small-diameter vascular grafts constitutes a real challenge to biomaterial engineering. In most cases these grafts fail in-vivo due to the presence of a mechanical mismatch between the native vessel and the vascular graft. Biomechanical characterization of real native vessels provides significant information for synthetic graft development. Electrospun nanofibrous vascular grafts emerge as a potential tailor made solution to this problem. PLLA-electrospun nanofibrous tubular structures were prepared and selected as model bioresorbable grafts. An experimental setup, using gold standard and high resolution ultrasound techniques, was adapted to characterize in vitro the poly(L-lactic acid) (PLLA) electrospun structures. The grafts were subjected to near physiologic pulsated pressure conditions, following the pressure-diameter loop approach and the criteria stated in the international standard for cardiovascular implants-tubular vascular prostheses. Additionally, ovine femoral arteries were subjected to a similar evaluation. Measurements of pressure and diameter variations allowed the estimation of dynamical compliance (%C, 10(-2) mmHg) and the pressure-strain elastic modulus (E(Pε), 10(6) dyn cm(-2)) of the abovementioned vessels (grafts and arteries). Nanofibrous PLLA showed a decrease in %C (1.38±0.21, 0.93±0.13 and 0.76±0.15) concomitant to an increase in EPε (10.57±0.97, 14.31±1.47 and 17.63±2.61) corresponding to pressure ranges of 50 to 90 mmHg, 80 to 120 mmHg and 100 to 150 mmHg, respectively. Furthermore, femoral arteries exhibited a decrease in %C (8.52±1.15 and 0.79±0.20) and an increase in E(Pε) (1.66±0.30 and 15.76±4.78) corresponding to pressure ranges of 50-90 mmHg (elastin zone) and 100-130 mmHg (collagen zone). Arterial mechanics framework, extensively applied in our previous works, was successfully used to characterize PLLA vascular grafts in vitro, although its application can be directly extended to in vivo

  12. The apoptosis induced by HMME-based photodynamic therapy in rabbit vascular smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Yin, Huijuan; Li, Xiaoyuan; Lin, Hong; Liu, Jianzhong; Yu, Hongkui

    2007-02-01

    Objective To study the effects of HMME-based photodynamic therapy on proliferation and apoptosis of rabbit vascular smooth muscle cells(VSMCs). Method The cytotoxic effect of HMME-PDT on rabbit vascular smooth muscle cells was studied by means of Trypan Blue assay, HMME at 10μg/ml concentration and the light dose at 2.4~4.8 J/cm2 were selected in the studies. The morphological character 24h post-PDT was investigated by HE Staining. Annexin V and propidium iodide (PI) binding assays were performed to analyze the characteristics of cell death after HMME-PDT. Furthermore, The intracellular distributions of the HMME were measured by the confocal laser scanning microscope. Result It was showed the photocytotoxity to VSMC cells was dose related by Trypan Blue assay. Histology observing suggests HMME-PDT could induce cell death through apoptosis or necrosis, and the apoptosic rate was up to 50.5% by AnnexinV /PI assay. Moreover, the fluorescence images of HMME intracellular localization demonstrated that the HMME diffused into the mitochondria. Conclusion HMME-PDT could significantly inhibite VSMC proliferation and induce apoptosis.

  13. Essential Roles of Raf/Extracellular Signal-regulated Kinase/Mitogen-activated Protein Kinase Pathway, YY1, and Ca2+ Influx in Growth Arrest of Human Vascular Smooth Muscle Cells by Bilirubin*

    PubMed Central

    Stoeckius, Marlon; Erat, Anna; Fujikawa, Tatsuya; Hiromura, Makoto; Koulova, Anna; Otterbein, Leo; Bianchi, Cesario; Tobiasch, Edda; Dagon, Yossi; Sellke, Frank W.; Usheva, Anny

    2012-01-01

    The biological effects of bilirubin, still poorly understood, are concentration-dependent ranging from cell protection to toxicity. Here we present data that at high nontoxic physiological concentrations, bilirubin inhibits growth of proliferating human coronary artery smooth muscle cells by three events. It impairs the activation of Raf/ERK/MAPK pathway and the cellular Raf and cyclin D1 content that results in retinoblastoma protein hypophosphorylation on amino acids S608 and S780. These events impede the release of YY1 to the nuclei and its availability to regulate the expression of genes and to support cellular proliferation. Moreover, altered calcium influx and calpain II protease activation leads to proteolytical degradation of transcription factor YY1. We conclude that in the serum-stimulated human vascular smooth muscle primary cell cultures, bilirubin favors growth arrest, and we propose that this activity is regulated by its interaction with the Raf/ERK/MAPK pathway, effect on cyclin D1 and Raf content, altered retinoblastoma protein profile of hypophosphorylation, calcium influx, and YY1 proteolysis. We propose that these activities together culminate in diminished 5 S and 45 S ribosomal RNA synthesis and cell growth arrest. The observations provide important mechanistic insight into the molecular mechanisms underlying the transition of human vascular smooth muscle cells from proliferative to contractile phenotype and the role of bilirubin in this transition. PMID:22262839

  14. FABP4 Induces Vascular Smooth Muscle Cell Proliferation and Migration through a MAPK-Dependent Pathway

    PubMed Central

    Girona, Josefa; Rosales, Roser; Plana, Núria; Saavedra, Paula; Masana, Lluís; Vallvé, Joan-Carles

    2013-01-01

    Purpose The migration and proliferation of vascular smooth muscle cells play crucial roles in the development of atherosclerotic lesions. This study examined the effects of fatty acid binding protein 4 (FABP4), an adipokine that is associated with cardiovascular risk, endothelial dysfunction and proinflammatory effects, on the migration and proliferation of human coronary artery smooth muscle cells (HCASMCs). Methods and Results A DNA 5-bromo-2′-deoxy-uridine (BrdU) incorporation assay indicated that FABP4 significantly induced the dose-dependent proliferation of HCASMCs with a maximum stimulatory effect at 120 ng/ml (13% vs. unstimulated cells, p<0.05). An anti-FABP4 antibody (40 ng/ml) significantly inhibited the induced cell proliferation, demonstrating the specificity of the FABP4 proliferative effect. FABP4 significantly induced HCASMC migration in a dose-dependent manner with an initial effect at 60 ng/ml (12% vs. unstimulated cells, p<0.05). Time-course studies demonstrated that FABP4 significantly increased cell migration compared with unstimulated cells from 4 h (23%vs. 17%, p<0.05) to 12 h (74%vs. 59%, p<0.05). Pretreatment with LY-294002 (5 µM) and PD98059 (10 µM) blocked the FABP4-induced proliferation and migration of HCASMCs, suggesting the activation of a kinase pathway. On a molecular level, we observed an up-regulation of the MAPK pathway without activation of Akt. We found that FABP4 induced the active forms of the nuclear transcription factors c-jun and c-myc, which are regulated by MAPK cascades, and increased the expression of the downstream genes cyclin D1 and MMP2, CCL2, and fibulin 4 and 5, which are involved in cell cycle regulation and cell migration. Conclusions These findings indicate a direct effect of FABP4 on the migration and proliferation of HCASMCs, suggesting a role for this adipokine in vascular remodelling. Taken together, these results demonstrate that the FABP4-induced DNA synthesis and cell migration are mediated

  15. Investigating the role of smooth muscle cells in large elastic arteries: a finite element analysis.

    PubMed

    Murtada, Sae-Il; Holzapfel, Gerhard A

    2014-10-07

    Physiological loading in large elastic arteries is considered to be mainly carried by the passive components of the media but it is not known how much the contraction of the smooth muscle cells is actually involved in the load carrying. Smooth muscle contraction is considered to occur in a relatively slow time domain but the contraction is able to produce significant tension. In the present work the role of smooth muscle contraction in large elastic arteries is investigated by analyzing how changes in the intracellular calcium, and thereby the active tone of smooth muscle cells, influence the deformation and stress behavior; different intracellular calcium functions and medial wall thicknesses with cycling internal pressure are studied. In particular, a recently proposed mechanochemical model (Murtada et al., 2012. J. Theor. Biol. 297, 176-186), which links intracellular calcium with mechanical contraction and an anisotropic model representing the elastin/collagen composite, was implemented into a 3D finite element framework. Details of the implementation procedure are described and a verification of the model implementation is provided by means of the isometric contraction/relaxation analysis of a medial strip at optimal muscle length. In addition, numerically obtained pressure-radius relationships of arterial rings modeled with one and two layers are analyzed with different geometries and at different calcium levels; a comparison with the Laplace equation is provided. Finally, a two-layer arterial ring is loaded with a realistic pressure wave and with various intracellular calcium functions (different amplitudes and mean values) and medial wall thicknesses; residual stresses are considered. The finite element results show that changes in the calcium amplitudes hardly have an influence on the current inner ring radius and the circumferential stress. However, an increase in the mean intracellular calcium value and the medial wall thickness leads to a clear

  16. Endothelial cells (ECs) for vascular tissue engineering: venous ECs are less thrombogenic than arterial ECs.

    PubMed

    Geenen, I L A; Molin, D G M; van den Akker, N M S; Jeukens, F; Spronk, H M; Schurink, G W H; Post, M J

    2015-05-01

    Primary endothelial cells (ECs) are the preferred cellular source for luminal seeding of tissue-engineered (TE) vascular grafts. Research into the potential of ECs for vascular TE has focused particularly on venous rather than arterial ECs. In this study we evaluated the functional characteristics of arterial and venous ECs, relevant for vascular TE. Porcine ECs were isolated from femoral artery (PFAECs) and vein (PFVECs). The proliferation rate was comparable for both EC sources, whereas migration, determined through a wound-healing assay, was less profound for PFVECs. EC adhesion was lower for PFVECs on collagen I, measured after 10 min of arterial shear stress. Gene expression was analysed by qRT-PCR for ECs cultured under static conditions and after exposure to arterial shear stress and revealed differences in gene expression, with lower expression of EphrinB2 and VCAM-1 and higher levels of vWF and COUP-TFII in PFVECs than in PFAECs. PFVECs exhibited diminished platelet adhesion under flow and cell-based thrombin generation was delayed for PFVECs, indicating diminished tissue factor (TF) activity. After stimulation, prostacyclin secretion, but not nitric oxide (NO), was lower in PFVECs. Our data support the use of venous ECs for TE because of their beneficial antithrombogenic profile. Copyright © 2012 John Wiley & Sons, Ltd.

  17. High expression of ubiquitin-specific peptidase 39 is associated with the development of vascular remodeling

    PubMed Central

    He, Shuai; Zhong, Wei; Yin, Li; Wang, Yifei; Qiu, Zhibing; Song, Gang

    2017-01-01

    Vascular remodeling is the primary cause underlying the failure of angioplasty surgeries, including vascular stenting, transplant vasculopathy and vein grafts. Multiple restenosis-associated proteins and genes have been identified to account for this. In the present study, the functions of ubiquitin-specific peptidase 39 (USP39) were investigated in the context of two vascular remodeling models (a mouse common carotid artery ligation and a pig bilateral saphenous vein-carotid artery interposition graft). USP39 has previously been observed to be upregulated in ligated arteries, and this result was confirmed in the pig vein graft model. In addition, Transwell assay results demonstrated that vascular smooth muscle cell (VSMC) migration was suppressed by lentiviral vector-mediated downregulation of USP39 and enhanced by upregulation of USP39. Furthermore, knockdown of USP39 inhibited VSMC cell proliferation and the expression of cyclin D1 and cyclin-dependent kinase 4, as analyzed via cell counting, MTT assay and western blotting. These results suggest that USP39 may represent a novel therapeutic target for treating vascular injury and preventing vein-graft failure. PMID:28447728

  18. Forearm Vascular Reactivity and Arterial Stiffness in Asymptomatic Subjects from the Community

    PubMed Central

    Malik, A. Rauoof; Kondragunta, Venkateswarlu; Kullo, Iftikhar J.

    2010-01-01

    Vascular reactivity may affect the stiffness characteristics of the arterial wall. We investigated the association between forearm microcirculatory and conduit artery function and measures of arterial stiffness in 527 asymptomatic non-Hispanic white adults without known cardiovascular disease. High-resolution ultrasonography of the brachial artery (ba) was performed to assess forearm microcirculatory function (ba blood flow velocity, local shear stress, and forearm vascular resistance at rest and during reactive hyperemia) and conduit artery function (ba flow-mediated dilatation baFMD and ba nitroglycerin-mediated dilatation baNMD). Arterial stiffness was assessed by cuff-derived brachial pulse pressure and aortic pulse wave velocity (aPWV) measured by applanation tonometry. In regression analyses that adjusted for heart rate, mean arterial pressure, height, cardiovascular risk factors, and hypertension medication and statin use, higher baseline ba systolic velocity and systolic shear stress were associated with greater pulse pressure (P=0.0002 and P=0.006, respectively) and higher aPWV (each P<0.0001). During hyperemia, lower ba mean velocity and lower mean shear stress were associated with higher pulse pressure (P=0.045 and P=0.036, respectively) while both systolic and mean velocity (P<0.0001 and P=0.002, respectively) and systolic and mean shear stress (P<0.0001 and P=0.003, respectively) were inversely associated with aPWV. baFMD was not associated with pulse pressure but was inversely associated with aPWV (P=0.011). baNMD was inversely associated with pulse pressure (P=0.0002) and aPWV (P=0.008). Our findings demonstrate that impaired forearm microvascular function (in the form of elevated resting blood flow velocity and impaired flow reserve) and impaired brachial artery reactivity are associated with increased arterial stiffness. PMID:18426995

  19. The C2238/αANP variant is a negative modulator of both viability and function of coronary artery smooth muscle cells.

    PubMed

    Rubattu, Speranza; Marchitti, Simona; Bianchi, Franca; Di Castro, Sara; Stanzione, Rosita; Cotugno, Maria; Bozzao, Cristina; Sciarretta, Sebastiano; Volpe, Massimo

    2014-01-01

    Abnormalities of vascular smooth muscle cells (VSMCs) contribute to development of vascular disease. Atrial natriuretic peptide (ANP) exerts important effects on VSMCs. A common ANP molecular variant (T2238C/αANP) has recently emerged as a novel vascular risk factor. We aimed at identifying effects of CC2238/αANP on viability, migration and motility in coronary artery SMCs, and the underlying signaling pathways. Cells were exposed to either TT2238/αANP or CC2238/αANP. At the end of treatment, cell viability, migration and motility were evaluated, along with changes in oxidative stress pathway (ROS levels, NADPH and eNOS expression), on Akt phosphorylation and miR21 expression levels. CC2238/αANP reduced cell vitality, increased apoptosis and necrosis, increased oxidative stress levels, suppressed miR21 expression along with consistent changes of its molecular targets (PDCD4, PTEN, Bcl2) and of phosphorylated Akt levels. As a result of increased oxidative stress, CC2238/αANP markedly stimulated cell migration and increased cell contraction. NPR-C gene silencing with specific siRNAs restored cell viability, miR21 expression, and reduced oxidative stress induced by CC2238/αANP. The cAMP/PKA/CREB pathway, driven by NPR-C activation, significantly contributed to both miR21 and phosphoAkt reduction upon CC2238/αANP. miR21 overexpression by mimic-hsa-miR21 rescued the cellular damage dependent on CC2238/αANP. CC2238/αANP negatively modulates viability through NPR-C/cAMP/PKA/CREB/miR21 signaling pathway, and it augments oxidative stress leading to increased migratory and vasoconstrictor effects in coronary artery SMCs. These novel findings further support a damaging role of this common αANP variant on vessel wall and its potential contribution to acute coronary events.

  20. HO-1 and CO decrease platelet-derived growth factor-induced vascular smooth muscle cell migration via inhibition of Nox1

    PubMed Central

    Rodriguez, Andres I.; Gangopadhyay, Archana; Kelley, Eric E.; Pagano, Patrick J.; Zuckerbraun, Brian S.; Bauer, Philip M.

    2009-01-01

    Objective Heme oxygenase-1 (HO-1), via its enzymatic degradation products, exhibits cell and tissue protective effects in models of vascular injury and disease. The migration of vascular smooth muscle cells (VSMC) from the medial to the intimal layer of blood vessels plays an integral role in the development of a neointima in these models. Despite this, there are no studies addressing the effect of increased HO-1 expression on VSMC migration. Results and Methods The effects of increased HO-1 expression as well as biliverdin, bilirubin, and carbon monoxide (CO), were studied in in vitro models of VSMC migration. Induction of HO-1 or CO, but not biliverdin or bilirubin, inhibited VSMC migration. This effect was mediated by the inhibition of Nox1 as determined by a range of approaches including detection of intracellular superoxide, NADPH oxidase activity measurements, and siRNA experiments. Furthermore, CO decreased PDGF-stimulated, redox-sensitive signaling pathways. Conclusion Herein we demonstrate that increased HO-1 expression and CO decreases PDGF-stimulated VSMC migration via inhibition of Nox1 enzymatic activity. These studies reveal a novel mechanism by which HO-1 and CO may mediate their beneficial effects in arterial inflammation and injury. PMID:19875720

  1. Netrin-1 controls sympathetic arterial innervation.

    PubMed

    Brunet, Isabelle; Gordon, Emma; Han, Jinah; Cristofaro, Brunella; Broqueres-You, Dong; Liu, Chun; Bouvrée, Karine; Zhang, Jiasheng; del Toro, Raquel; Mathivet, Thomas; Larrivée, Bruno; Jagu, Julia; Pibouin-Fragner, Laurence; Pardanaud, Luc; Machado, Maria J C; Kennedy, Timothy E; Zhuang, Zhen; Simons, Michael; Levy, Bernard I; Tessier-Lavigne, Marc; Grenz, Almut; Eltzschig, Holger; Eichmann, Anne

    2014-07-01

    Autonomic sympathetic nerves innervate peripheral resistance arteries, thereby regulating vascular tone and controlling blood supply to organs. Despite the fundamental importance of blood flow control, how sympathetic arterial innervation develops remains largely unknown. Here, we identified the axon guidance cue netrin-1 as an essential factor required for development of arterial innervation in mice. Netrin-1 was produced by arterial smooth muscle cells (SMCs) at the onset of innervation, and arterial innervation required the interaction of netrin-1 with its receptor, deleted in colorectal cancer (DCC), on sympathetic growth cones. Function-blocking approaches, including cell type-specific deletion of the genes encoding Ntn1 in SMCs and Dcc in sympathetic neurons, led to severe and selective reduction of sympathetic innervation and to defective vasoconstriction in resistance arteries. These findings indicate that netrin-1 and DCC are critical for the control of arterial innervation and blood flow regulation in peripheral organs.

  2. Eotaxin Augments Calcification in Vascular Smooth Muscle Cells.

    PubMed

    Raghuraman, Gayatri; Hsiung, Joseph; Zuniga, Mary C; Baughman, Brittanie D; Hitchner, Elizabeth; Guzman, Raul J; Zhou, Wei

    2017-03-01

    Calcification of atherosclerotic plaques in elderly patients represents a potent risk marker of cardiovascular events. Plasma analyses of patients with or without calcified plaques reveal significant differences in chemokines, particularly eotaxin, which escalates with increased calcification. We therefore, hypothesize that eotaxin in circulation augments calcification of vascular smooth muscle cells (VSMCs) possibly via oxidative stress in the vasculature. We observe that eotaxin increases the rate of calcification significantly in VSMCs as evidenced by increased alkaline phosphatase activity, calcium deposition, and osteogenic marker expression. In addition, eotaxin promotes proliferation in VSMCs and triggers oxidative stress in a NADPH oxidase dependent manner. These primary novel observations support our proposition that in the vasculature eotaxin augments mineralization. Our findings suggest that eotaxin may represent a potential therapeutic target for prevention of cardiovascular complications in the elderly. J. Cell. Biochem. 118: 647-654, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Conditional deletion of Dicer in vascular smooth muscle cells leads to the developmental delay and embryonic mortality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yaoqian; Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163; Balazs, Louisa

    2011-05-13

    Highlights: {yields} Deletion of Dicer in vascular smooth muscle cells(VSMCs) leads to embryonic mortality. {yields} Loss of Dicer in VSMCs leads to developmental delay. {yields} Loss of Dicer in VSMCs leads to hemorrhage in various organs including brain, skin and liver. {yields} Loss of Dicer in VSMCs leads to vascular wall remodeling. {yields} Loss of Dicer in VSMCs dysregulates the expression of miRNA and VSMC marker genes. -- Abstract: Dicer is a RNAase III enzyme that cleaves double stranded RNA and generates small interfering RNA (siRNA) and microRNA (miRNA). The goal of this study is to examine the role ofmore » Dicer and miRNAs in vascular smooth muscle cells (VSMCs). We deleted Dicer in VSMCs of mice, which caused a developmental delay that manifested as early as embryonic day E12.5, leading to embryonic death between E14.5 and E15.5 due to extensive hemorrhage in the liver, brain, and skin. Dicer KO embryos showed dilated blood vessels and a disarray of vascular architecture between E14.5 and E15.5. VSMC proliferation was significantly inhibited in Dicer KOs. The expression of VSMC marker genes were significantly downregulated in Dicer cKO embryos. The vascular structure of the yolk sac and embryo in Dicer KOs was lost to an extent that no blood vessels could be identified after E15.5. Expression of most miRNAs examined was compromised in VSMCs of Dicer KO. Our results indicate that Dicer is required for vascular development and regulates vascular remodeling by modulating VSMC proliferation and differentiation.« less

  4. Pulmonary vascular remodelling in a high-altitude Aymara Indian

    NASA Astrophysics Data System (ADS)

    Heath, Donald; Williams, David

    1991-12-01

    A histological study of the pulmonary vasculature in a young male high-altitude Aymara Indian revealed four aspects of interest. There was muscularization of the terminal portion of the pulmonary arterial tree to involve pulmonary arterioles as small as 15 μm in diameter, thus forming a basis for the slightly increased pulmonary vascular resistance of native highlanders. Intimal longitudinal muscle was found in pulmonary arteries and arterioles and thought to be due to chronic alveolar hypoxia. Inner muscular tubes similar to those found in chronic obstructive lung disease were present. Pulmonary veins and venules also showed intimal muscularization suggesting that alveolar hypoxia affects vascular smooth muscle cells per se irrespective of their situation. The nature of the remodelling in a pulmonary blood vessel depends on a combination of hypoxia and haemodynamics.

  5. Effect of uric acid on inflammatory COX-2 and ROS pathways in vascular smooth muscle cells.

    PubMed

    Oğuz, Nurgül; Kırça, Mustafa; Çetin, Arzu; Yeşilkaya, Akın

    2017-10-01

    Hyperuricemia is thought to play a role in cardiovascular diseases (CVD), including hypertension, coronary artery disease and atherosclerosis. However, exactly how uric acid contributes to these pathologies is unknown. An underlying mechanism of inflammatory diseases, such as atherosclerosis, includes enhanced production of cyclooxygenase-2 (COX-2) and superoxide anion. Here, we aimed to examine the effect of uric acid on inflammatory COX-2 and superoxide anion production and to determine the role of losartan. Primarily cultured vascular smooth muscle cells (VSMCs) were time and dose-dependently induced by uric acid and COX-2 and superoxide anion levels were measured. COX-2 levels were determined by ELISA, and superoxide anion was measured by the superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome c method. Uric acid elevated COX-2 levels in a time-dependent manner. Angiotensin-II receptor blocker, losartan, diminished uric-acid-induced COX-2 elevation. Uric acid also increased superoxide anion level in VSMCs. Uric acid plays an important role in CVD pathogenesis by inducing inflammatory COX-2 and ROS pathways. This is the first study demonstrating losartan's ability to reduce uric-acid-induced COX-2 elevation.

  6. Active hemorrhage and vascular injuries in splenic trauma: utility of the arterial phase in multidetector CT.

    PubMed

    Uyeda, Jennifer W; LeBedis, Christina A; Penn, David R; Soto, Jorge A; Anderson, Stephan W

    2014-01-01

    To determine whether the addition of arterial phase computed tomography (CT) to the standard combination of portal venous and delayed phase imaging increases sensitivity in the diagnosis of active hemorrhage and/or contained vascular injuries in patients with splenic trauma. The institutional review board approved this HIPAA-compliant retrospective study; the requirement to obtain informed consent was waived. The study included all patients aged 15 years and older who sustained a splenic injury from blunt or penetrating trauma and who underwent CT in the arterial and portal venous phases of image acquisition during a 74-month period (September 2005 to November 2011). CT scans were reviewed by three radiologists, and a consensus interpretation was made to classify the splenic injuries according to the American Association for the Surgery of Trauma splenic injury scale. One radiologist independently recorded the presence of contained vascular injuries or active hemorrhage and the phase or phases at which these lesions were seen. Clinical outcome was assessed by reviewing medical records. The relationship between imaging findings and clinical management was assessed with the Fisher exact test. One hundred forty-seven patients met the inclusion criteria; 32 patients (22%) had active hemorrhage and 22 (15%) had several contained vascular injuries. In 13 of the 22 patients with contained injuries, the vascular lesion was visualized only at the arterial phase of image acquisition; the other nine contained vascular injuries were seen at all phases. Surgery or embolization was performed in 11 of the 22 patients with contained vascular injury. The arterial phase of image acquisition improves detection of traumatic contained splenic vascular injuries and should be considered to optimize detection of splenic injuries in trauma with CT. ©RSNA, 2013.

  7. Expression of the high-affinity choline transporter CHT1 in rat and human arteries.

    PubMed

    Lips, Katrin S; Pfeil, Uwe; Reiners, Katja; Rimasch, Christoph; Kuchelmeister, Klaus; Braun-Dullaeus, Ruediger C; Haberberger, Rainer V; Schmidt, Rupert; Kummer, Wolfgang

    2003-12-01

    The arterial vascular wall contains a non-neuronal intrinsic cholinergic system. The rate-limiting step in acetylcholine (ACh) synthesis is choline uptake. A high-affinity choline transporter, CHT1, has recently been cloned from neural tissue and has been identified in epithelial cholinergic cells. Here we investigated its presence in rat and human arteries and in primary cell cultures of rat vascular cells (endothelial cells, smooth muscle cells, fibroblasts). CHT1-mRNA was detected in the arterial wall and in all isolated cell types by RT-PCR using five different CHT1-specific primer pairs. Antisera raised against amino acids 29-40 of the rat sequence labeled a single band (50 kD) in Western blots of rat aorta, and an additional higher molecular weight band appeared in the hippocampus. Immunohistochemistry demonstrated CHT1 immunoreactivity in endothelial and smooth muscle cells in situ and in all cultured cell types. A high-affinity [3H]-choline uptake mechanism sharing characteristics with neuronal high-affinity choline uptake, i.e., sensitivity to hemicholinium-3 and dependence on sodium, was demonstrated in rat thoracic aortic segments by microimager autoradiography. Expression of the high-affinity choline transporter CHT1 is a novel component of the intrinsic non-neuronal cholinergic system of the arterial vascular wall, predominantly in the intimal and medial layers.

  8. A Small Molecule Pyrazolo[3,4-d]Pyrimidinone Inhibitor of Zipper-Interacting Protein Kinase Suppresses Calcium Sensitization of Vascular Smooth Muscle.

    PubMed

    MacDonald, Justin A; Sutherland, Cindy; Carlson, David A; Bhaidani, Sabreena; Al-Ghabkari, Abdulhameed; Swärd, Karl; Haystead, Timothy A J; Walsh, Michael P

    2016-01-01

    A novel inhibitor of zipper-interacting protein kinase (ZIPK) was used to examine the involvement of ZIPK in the regulation of smooth muscle contraction. Pretreatment of de-endothelialized rat caudal arterial smooth muscle strips with the pyrazolo[3,4-d]pyrimidinone inhibitor 2-((1-(3-chlorophenyl)-4-oxo-4,5-dihydro-1H-pyrazolo [3,4-d]-pyrimidin-6-yl)thio)propanamide (HS38) decreased the velocity of contraction (time to reach half-maximal force) induced by the phosphatase inhibitor calyculin A in the presence of Ca(2+) without affecting maximal force development. This effect was reversed following washout of HS38 and correlated with a reduction in the rate of phosphorylation of myosin 20-kDa regulatory light chains (LC20) but not of protein kinase C-potentiated inhibitory protein for myosin phosphatase of 17 kDa (CPI-17), prostate apoptosis response-4, or myosin phosphatase-targeting subunit 1 (MYPT1), all of which have been implicated in the regulation of vascular contractility. A structural analog of HS38, with inhibitory activity toward proviral integrations of Moloney (PIM) virus 3 kinase but not ZIPK, had no effect on calyculin A-induced contraction or protein phosphorylations. We conclude that a pool of constitutively active ZIPK is involved in regulation of vascular smooth muscle contraction through direct phosphorylation of LC20 upon inhibition of myosin light chain phosphatase activity. HS38 also significantly attenuated both phasic and tonic contractile responses elicited by phenylephrine, angiotensin II, endothelin-1, U46619, and K(+)-induced membrane depolarization in the presence of Ca(2+), which correlated with inhibition of phosphorylation of LC20, MYPT1, and CPI-17. These effects of HS38 suggest that ZIPK also lies downstream from G protein-coupled receptors that signal through both Gα12/13 and Gαq/11. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Control of vascular smooth muscle function by Src-family kinases and reactive oxygen species in health and disease

    PubMed Central

    MacKay, Charles E; Knock, Greg A

    2015-01-01

    Abstract Reactive oxygen species (ROS) are now recognised as second messenger molecules that regulate cellular function by reversibly oxidising specific amino acid residues of key target proteins. Amongst these are the Src-family kinases (SrcFKs), a multi-functional group of non-receptor tyrosine kinases highly expressed in vascular smooth muscle (VSM). In this review we examine the evidence supporting a role for ROS-induced SrcFK activity in normal VSM contractile function and in vascular remodelling in cardiovascular disease. VSM contractile responses to G-protein-coupled receptor stimulation, as well as hypoxia in pulmonary artery, are shown to be dependent on both ROS and SrcFK activity. Specific phosphorylation targets are identified amongst those that alter intracellular Ca2+ concentration, including transient receptor potential channels, voltage-gated Ca2+ channels and various types of K+ channels, as well as amongst those that regulate actin cytoskeleton dynamics and myosin phosphatase activity, including focal adhesion kinase, protein tyrosine kinase-2, Janus kinase, other focal adhesion-associated proteins, and Rho guanine nucleotide exchange factors. We also examine a growing weight of evidence in favour of a key role for SrcFKs in multiple pro-proliferative and anti-apoptotic signalling pathways relating to oxidative stress and vascular remodelling, with a particular focus on pulmonary hypertension, including growth-factor receptor transactivation and downstream signalling, hypoxia-inducible factors, positive feedback between SrcFK and STAT3 signalling and positive feedback between SrcFK and NADPH oxidase dependent ROS production. We also discuss evidence for and against the potential therapeutic targeting of SrcFKs in the treatment of pulmonary hypertension. PMID:25384773

  10. Myeloid Cell 5-Lipoxygenase Activating Protein Modulates the Response to Vascular Injury

    PubMed Central

    Yu, Zhou; Ricciotti, Emanuela; Miwa, Takashi; Liu, Shulin; Ihida-Stansbury, Kaori; Landersberg, Gavin; Jones, Peter L.; Scalia, Rosario; Song, Wenchao; Assoian, Richard K.; FitzGerald, Garret A.

    2013-01-01

    Rationale Human genetics have implicated the 5- lipoxygenase (5-LO) enzyme in the pathogenesis of cardiovascular disease and an inhibitor of the 5-LO activating protein (FLAP) is in clinical development for asthma. Objective Here we determined whether FLAP deletion modifies the response to vascular injury. Methods and Results Vascular remodeling was characterized 4 weeks after femoral arterial injury in FLAP knockout (FLAP KO) mice and wild type (WT) controls. Both neointimal hyperplasia and the intima/media ratio of the injured artery were significantly reduced in the FLAP KOs while endothelial integrity was preserved. Lesional myeloid cells were depleted and vascular smooth muscle cell (VSMC) proliferation, as reflected by bromodeoxyuridine (BrdU) incorporation, was markedly attenuated by FLAP deletion. Inflammatory cytokine release from FLAP KO macrophages was depressed and their restricted ability to induce VSMC migration ex vivo was rescued with leukotriene B4 (LTB4). FLAP deletion restrained injury and attenuated upregulation of the extracellular matrix protein, tenascin C (TNC), which affords a scaffold for VSMC migration. Correspondingly, the phenotypic modulation of VSMC to a more synthetic phenotype, reflected by morphological change, loss of α-smooth muscle cell actin and upregulation of vascular cell adhesion molecule (VCAM) -1 was also suppressed in FLAP KO mice. Transplantation of FLAP replete myeloid cells rescued the proliferative response to vascular injury. Conclusion Expression of lesional FLAP in myeloid cells promotes LTB4 dependent VSMC phenotypic modulation, intimal migration and proliferation. PMID:23250985

  11. Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury?

    PubMed Central

    Albinsson, Sebastian

    2011-01-01

    Vascular smooth muscle cell (VSMC) migration and proliferation are critical events in vascular proliferative diseases. Recent studies have established microRNAs (miRNAs) as important mediators for the modulation of VSMC phenotype by targeting transcription factors and the cytoskeleton, which act as molecular switches for VSMC differentiation. The importance of miRNAs for VSMC development, differentiation, and function is evident by the fact that loss of the miRNA processing enzyme Dicer in VSMCs results in embryonic lethality due to severe vascular abnormalities. Similar abnormalities are observed in adult miR-143/145 knockout mice, indicating that these miRNAs are important for VSMC differentiation and function. However, since miR-143/145 knockout is not embryonically lethal, additional miRNA must be required during embryonic development of VSMCs. In addition, specific miRNAs such as miR-145, miR-21, and miR-221 have been found to regulate neointimal hyperplasia following vascular injury, which provides interesting possibilities for future therapeutical targets against vascular disease. Herein, we summarize recent advances regarding the role of miRNAs in VSMC phenotype modulation and response to injury. PMID:20841497

  12. Pulmonary arterial remodeling induced by a Th2 immune response

    PubMed Central

    Daley, Eleen; Emson, Claire; Guignabert, Christophe; de Waal Malefyt, Rene; Louten, Jennifer; Kurup, Viswanath P.; Hogaboam, Cory; Taraseviciene-Stewart, Laimute; Voelkel, Norbert F.; Rabinovitch, Marlene; Grunig, Ekkehard; Grunig, Gabriele

    2008-01-01

    Pulmonary arterial remodeling characterized by increased vascular smooth muscle density is a common lesion seen in pulmonary arterial hypertension (PAH), a deadly condition. Clinical correlation studies have suggested an immune pathogenesis of pulmonary arterial remodeling, but experimental proof has been lacking. We show that immunization and prolonged intermittent challenge via the airways with either of two different soluble antigens induced severe muscularization in small- to medium-sized pulmonary arteries. Depletion of CD4+ T cells, antigen-specific T helper type 2 (Th2) response, or the pathogenic Th2 cytokine interleukin 13 significantly ameliorated pulmonary arterial muscularization. The severity of pulmonary arterial muscularization was associated with increased numbers of epithelial cells and macrophages that expressed a smooth muscle cell mitogen, resistin-like molecule α, but surprisingly, there was no correlation with pulmonary hypertension. Our data are the first to provide experimental proof that the adaptive immune response to a soluble antigen is sufficient to cause severe pulmonary arterial muscularization, and support the clinical observations in pediatric patients and in companion animals that muscularization represents one of several injurious events to the pulmonary artery that may collectively contribute to PAH. PMID:18227220

  13. Resveratrol Reverses Monocrotaline-Induced Pulmonary Vascular and Cardiac Dysfunction: A Potential Role for Atrogin-1 in Smooth Muscle

    PubMed Central

    Paffett, Michael L.; Lucas, Selita N.; Campen, Matthew J.

    2011-01-01

    Arterial remodeling contributes to the elevated pulmonary artery (PA) pressures and right ventricular hypertrophy seen in pulmonary hypertension (PH). Resveratrol, a sirtuin-1 (SIRT1) pathway activator, can prevent the development of PH in a commonly used animal model, but it is unclear whether it can reverse established PH pathophysiology. Furthermore, atrophic ubiquitin ligases, such as atrogin-1 and MuRF-1, are known to be induced by SIRT1 activators but have not been characterized in hypertrophic vascular disease. Therefore, we hypothesized that monocrotaline (MCT)-induced PH would attenuate atrophy pathways in the PA while, conversely, SIRT1 activation (resveratrol) would reverse indices of PH and restore atrophic gene expression. Thus, we injected Sprague-Dawley rats with MCT (50 mg/kg i.p.) or saline at Day 0, and then treated with oral resveratrol or sildenafil from days 28–42 post-MCT injection. Oral resveratrol attenuated established MCT-induced PH indices, including right ventricular systolic pressure, right ventricular hypertrophy, and medial thickening of intrapulmonary arteries. Resveratrol also normalized PA atrogin-1 mRNA expression, which was significantly reduced by MCT. In cultured human PA smooth muscle cells (hPASMC), resveratrol significantly inhibited PDGF-stimulated proliferation and cellular hypertrophy, which was also associated with improvements in atrogin-1 levels. In addition, SIRT1 inhibition augmented hPASMC proliferation, as assessed by DNA mass, and suppressed atrogin mRNA expression. These findings demonstrate an inverse relationship between indices of PH and PA atrogin expression that is SIRT1 dependent and may reflect a novel role for SIRT1 in PASMCs opposing cellular hypertrophy and proliferation. PMID:22146233

  14. Oxytocin receptors expressed and coupled to Ca2+ signalling in a human vascular smooth muscle cell line.

    PubMed

    Yazawa, H; Hirasawa, A; Horie, K; Saita, Y; Iida, E; Honda, K; Tsujimoto, G

    1996-03-01

    1. In a human vascular smooth muscle cell line (HVSMC), binding experiments with [3H]-arginine8-vasopressin (AVP) have shown the existence of a homogeneous population of binding sites with affinity (Kd value) of 0.65 nM and a maximum number of binding sites (Bmax) of 122 fmol mg-1 protein. 2. Nonlabelled compounds compete for [3H]-AVP binding in the HVSMC membrane with an order of potency of oxytocin > lyspressin > or = AVP > Thr4, Gly7-oxytocin > (beta-mercapto-beta-beta-cyclopentamethylenepropionyl-O-Me Tyr2, Arg8) vasopressin > desmopressin > OPC21268 > OPC31260. This order was markedly different from that observed in rat vascular smooth muscle cells (A10), a well-established V1A receptor system. 3. In HVSMC both oxytocin and AVP increased inositol 1,4,5-trisphosphate (IP3) production and [Ca2+]i response, but the efficacy of the responses was greater for oxytocin than AVP. 4. Reverse transcription-polymerase chain reaction (RT-PCR) assay detected only oxytocin receptor but not V1A or V2 receptors in HVSMC, whereas only V1A receptors were found in A10 cells. 5. In conclusion, in HVSMC only oxytocin receptors are expressed among the vasopressin receptor family, and they coupled to phosphatidyl inositol (PI) turnover/Ca2+ signalling. This unexpected observation should provide new insight into the functional role of the oxytocin receptor in a human vascular smooth muscle cell line.

  15. Grape seed procyanidin extract attenuates hypoxic pulmonary hypertension by inhibiting oxidative stress and pulmonary arterial smooth muscle cells proliferation.

    PubMed

    Jin, Haifeng; Liu, Mingcheng; Zhang, Xin; Pan, Jinjin; Han, Jinzhen; Wang, Yudong; Lei, Haixin; Ding, Yanchun; Yuan, Yuhui

    2016-10-01

    Hypoxia-induced oxidative stress and excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) play important roles in the pathological process of hypoxic pulmonary hypertension (HPH). Grape seed procyanidin extract (GSPE) possesses antioxidant properties and has beneficial effects on the cardiovascular system. However, the effect of GSPE on HPH remains unclear. In this study, adult Sprague-Dawley rats were exposed to intermittent chronic hypoxia for 4 weeks to mimic a severe HPH condition. Hemodynamic and pulmonary pathomorphology data showed that chronic hypoxia significantly increased right ventricular systolic pressures (RVSP), weight of the right ventricle/left ventricle plus septum (RV/LV+S) ratio and median width of pulmonary arteries. GSPE attenuated the elevation of RVSP, RV/LV+S, and reduced the pulmonary vascular structure remodeling. GSPE also increased the levels of SOD and reduced the levels of MDA in hypoxia-induced HPH model. In addition, GSPE suppressed Nox4 mRNA levels, ROS production and PASMCs proliferation. Meanwhile, increased expression of phospho-STAT3, cyclin D1, cyclin D3 and Ki67 in PASMCs caused by hypoxia was down-regulated by GSPE. These results suggested that GSPE might potentially prevent HPH via antioxidant and antiproliferative mechanisms. Copyright © 2016. Published by Elsevier Inc.

  16. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    PubMed

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  17. Segmental arterial mediolysis--an iatrogenic vascular disorder induced by ractopamine.

    PubMed

    Slavin, Richard E; Yaeger, Micheal J

    2012-01-01

    Segmental arterial mediolysis, an uncommon arterial disorder most often occurring in the splanchnic muscular arteries of the abdomen, is a cause of catastrophic hemorrhages. Its histology and initial clinical presentations suggested that it represented a localized norepinephrine-induced vasospastic response to perturbations in vascular tone and blood volume distribution caused by coexisting vasoconstrictor conditions. However, later presentations were at odds with some aspects of this hypothesis. Nine greyhound dogs were administered a single dose of ractopamine. Two dogs developing persistent conduction abnormalities with biochemical evidence of heart injury were euthanized and necropsied--one 4 days and the other 17 days after dosage This report is based on findings and comparisons of the canine abdominal and coronary arteries to segmental arterial mediolysis. Lesions having features of early-injurious-stage segmental arterial mediolysis were identified in the canine arteries 4 days postractopamine, and arteries examined after 17 days showed alterations typically occurring in reparative-stage segmental arterial mediolysis. It is suspected that ractopamine, a Beta-2 adrenergic agonist, created segmental arterial mediolysis by neuromodulating the peripheral sympathetic nervous system to release norepinephrine from varicosities of efferent nerves serving splanchnic arteries that stimulate alpha-1 receptors to induce injury at the adventitial medial junction and medial muscle apoptosis. This finding and other cited examples suggest that segmental arterial mediolysis may be a disorder principally caused by iatrogenic or accidental exposure to alpha-1 adrenergic receptor agonists or Beta-2 agonists able to release norepinephrine from the peripheral nervous system. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Increased expression of matrix metalloproteinase-1 in systemic vessels of preeclamptic women: a critical mediator of vascular dysfunction.

    PubMed

    Estrada-Gutierrez, Guadalupe; Cappello, Renato E; Mishra, Nikita; Romero, Roberto; Strauss, Jerome F; Walsh, Scott W

    2011-01-01

    This study was conducted to determine the following: (1) whether matrix metalloproteinase-1 (MMP-1) is increased in systemic vessels of preeclamptic women, (2) whether this increase might be mediated by neutrophils, and (3) whether MMP-1 could be responsible for vascular dysfunction. Omental arteries and plasma were collected from healthy pregnant and preeclamptic women. Omental arteries were evaluated for gene and protein expression of MMP-1, collagen type 1α, tissue inhibitor of metalloproteinase-1, and vascular reactivity to MMP-1. Gene and protein expression levels were also evaluated in human vascular smooth muscle cells (VSMCs) co-cultured with activated neutrophils, reactive oxygen species, or tumor necrosis factor α. Vessel expression of MMP-1 and circulating MMP-1 levels were increased in preeclamptic women, whereas vascular expression of collagen or tissue inhibitor of metalloproteinase-1 were down-regulated or unchanged. In cultured VSMCs, the imbalance in collagen-regulating genes of preeclamptic vessels was reproduced by treatment with neutrophils, tumor necrosis factor α, or reactive oxygen species. Chemotaxis studies with cultured cells revealed that MMP-1 promoted recruitment of neutrophils via vascular smooth muscle release of interleukin-8. Furthermore, MMP-1 induced vasoconstriction via protease-activated receptor-1, whose expression was significantly increased in omental arteries of preeclamptic women and in VSMCs co-cultured with neutrophils. Collectively, these findings disclose a novel role for MMP-1 as a mediator of vasoconstriction and vascular dysfunction in preeclampsia. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Cross-Sectional Associations of Flow Reversal, Vascular Function, and Arterial Stiffness in the Framingham Heart Study.

    PubMed

    Bretón-Romero, Rosa; Wang, Na; Palmisano, Joseph; Larson, Martin G; Vasan, Ramachandran S; Mitchell, Gary F; Benjamin, Emelia J; Vita, Joseph A; Hamburg, Naomi M

    2016-12-01

    Experimental studies link oscillatory flow accompanied by flow reversal to impaired endothelial cell function. The relation of flow reversal with vascular function and arterial stiffness remains incompletely defined. We measured brachial diastolic flow patterns along with vasodilator function in addition to tonometry-based central and peripheral arterial stiffness in 5708 participants (age 47±13 years, 53% women) in the Framingham Heart Study Offspring and Third Generation cohorts. Brachial artery diastolic flow reversal was present in 35% of the participants. In multivariable regression models, the presence of flow reversal was associated with lower flow-mediated dilation (3.9±0.2 versus 5.0±0.2%; P<0.0001) and reactive hyperemic flow velocity (50±0.99 versus 57±0.93 cm/s; P<0.0001). The presence of flow reversal (compared with absence) was associated with higher central aortic stiffness (carotid-femoral pulse wave velocity 9.3±0.1 versus 8.9±0.1 m/s), lower muscular artery stiffness (carotid-radial pulse wave velocity 9.6±0.1 versus 9.8±0.1 m/s), and higher forearm vascular resistance (5.32±0.03 versus 4.66±0.02 log dyne/s/cm 5 ; P<0.0001). The relations of diastolic flow velocity with flow-mediated dilation, aortic stiffness, and forearm vascular resistance were nonlinear, with a steeper decline in vascular function associated with increasing magnitude of flow reversal. In our large, community-based sample, brachial artery flow reversal was common and associated with impaired vasodilator function and higher aortic stiffness. Our findings are consistent with the concept that flow reversal may contribute to vascular dysfunction. © 2016 American Heart Association, Inc.

  20. Changes in pulmonary arterial wall mechanical properties and lumenal architecture with induced vascular remodeling

    NASA Astrophysics Data System (ADS)

    Molthen, Robert C.; Heinrich, Amy E.; Haworth, Steven T.; Dawson, Christopher A.

    2004-04-01

    To explore and quantify pulmonary arterial remodeling we used various methods including micro-CT, high-resolution 3-dimensional x-ray imaging, to examine the structure and function of intact pulmonary vessels in isolated rat lungs. The rat is commonly used as an animal model for studies of pulmonary hypertension (PH) and the accompanying vascular remodeling, where vascular remodeling has been defined primarily by changes in the vessel wall composition in response to hypertension inducing stimuli such as chronic hypoxic exposure (CHE) or monocrotaline (MCT) injection. Little information has been provided as to how such changes affect the vessel wall mechanical properties or the lumenal architecture of the pulmonary arterial system that actually account for the hemodynamic consequences of the remodeling. In addition, although the link between primary forms of pulmonary hypertension and inherited genetics is well established, the role that genetic coding plays in hemodynamics and vascular remodeling is not. Therefore, we are utilizing Fawn-Hooded (FH), Sprague-Dawley (SD) and Brown Norway (BN)rat strains along with unique imaging methods to parameterize both vessel distensibility and lumenal morphometry using a principal pulmonary arterial pathway analysis based on self-consistency. We have found for the hypoxia model, in addition to decreased body weight, increased hematocrit, increased right ventricular hypertrophy, the distensibility of the pulmonary arteries is shown to decrease significantly in the presence of remodeling.

  1. Essential role for calcium waves in migration of human vascular smooth muscle cells.

    PubMed

    Espinosa-Tanguma, Ricardo; O'Neil, Caroline; Chrones, Tom; Pickering, J Geoffrey; Sims, Stephen M

    2011-08-01

    Vascular smooth muscle cell (SMC) migration is characterized by extension of the lamellipodia at the leading edge, lamellipodial attachment to substrate, and release of the rear (uropod) of the cell, all of which enable forward movement. However, little is known regarding the role of intracellular cytosolic Ca(2+) concentration ([Ca(2+)](i)) in coordinating these distinct activities of migrating SMCs. The objective of our study was to determine whether regional changes of Ca(2+) orchestrate the migratory cycle in human vascular SMCs. We carried out Ca(2+) imaging using digital fluorescence microscopy of fura-2 loaded human smooth muscle cells. We found that motile SMCs exhibited Ca(2+) waves that characteristically swept from the rear of polarized cells toward the leading edge. Ca(2+) waves were less evident in nonpolarized, stationary cells, although acute stimulation of these SMCs with the agonists platelet-derived growth factor-BB or histamine could elicit transient rise of [Ca(2+)](i). To investigate a role for Ca(2+) waves in the migratory cycle, we loaded cells with the Ca(2+) chelator BAPTA, which abolished Ca(2+) waves and significantly reduced retraction, supporting a causal role for Ca(2+) in initiation of retraction. However, lamellipod motility was still evident in BAPTA-loaded cells. The incidence of Ca(2+) oscillations was reduced when Ca(2+) release from intracellular stores was disrupted with the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin or by treatment with the inositol 1,4,5-trisphosphate receptor blocker 2-aminoethoxy-diphenyl borate or xestospongin C, implicating Ca(2+) stores in generation of waves. We conclude that Ca(2+) waves are essential for migration of human vascular SMCs and can encode cell polarity.

  2. Reflex vascular responses to alterations in abdominal arterial pressure and flow in anaesthetized dogs.

    PubMed

    Drinkhill, M J; Doe, C P; Myers, D S; Self, D A; Hainsworth, R

    1997-11-01

    The existence of abdominal arterial baroreceptors has long been controversial. Previously difficulties have been encountered in localizing a stimulus to abdominal arteries without affecting reflexogenic areas elsewhere. In these experiments, using anaesthetized dogs, the abdomen was vascularly isolated at the level of the diaphragm, perfused through the aorta, and drained from the inferior vena cava to a reservoir. Changes in abdominal arterial pressure were effected by changing the perfusion pump speed. During this procedure the flow back to the animal from the venous outflow reservoir was held constant. Increases and decreases in abdominal arterial pressure resulted, respectively, in decreases and increases in perfusion pressure to a vascularly isolated hind-limb and in some dogs also a forelimb. Responses were significantly larger when carotid sinus pressure was high (120-180 mmHg) than when it was low (60 mmHg). Responses were still obtained after cutting vagus, phrenic and splanchnic nerves, but were abolished by spinal cord lesion at T12. These experiments provide evidence for the existence of abdominal arterial baroreceptors. The afferent pathway for the reflex vasodilatation appears to run in the spinal cord.

  3. Netrin-1 controls sympathetic arterial innervation

    PubMed Central

    Brunet, Isabelle; Gordon, Emma; Han, Jinah; Cristofaro, Brunella; Broqueres-You, Dong; Liu, Chun; Bouvrée, Karine; Zhang, Jiasheng; del Toro, Raquel; Mathivet, Thomas; Larrivée, Bruno; Jagu, Julia; Pibouin-Fragner, Laurence; Pardanaud, Luc; Machado, Maria J.C.; Kennedy, Timothy E.; Zhuang, Zhen; Simons, Michael; Levy, Bernard I.; Tessier-Lavigne, Marc; Grenz, Almut; Eltzschig, Holger; Eichmann, Anne

    2014-01-01

    Autonomic sympathetic nerves innervate peripheral resistance arteries, thereby regulating vascular tone and controlling blood supply to organs. Despite the fundamental importance of blood flow control, how sympathetic arterial innervation develops remains largely unknown. Here, we identified the axon guidance cue netrin-1 as an essential factor required for development of arterial innervation in mice. Netrin-1 was produced by arterial smooth muscle cells (SMCs) at the onset of innervation, and arterial innervation required the interaction of netrin-1 with its receptor, deleted in colorectal cancer (DCC), on sympathetic growth cones. Function-blocking approaches, including cell type–specific deletion of the genes encoding Ntn1 in SMCs and Dcc in sympathetic neurons, led to severe and selective reduction of sympathetic innervation and to defective vasoconstriction in resistance arteries. These findings indicate that netrin-1 and DCC are critical for the control of arterial innervation and blood flow regulation in peripheral organs. PMID:24937433

  4. ABSORB: Postmarketing Surveillance Registry to Monitor the Everolimus-eluting Bioresorbable Vascular Scaffold in Patients With Coronary Artery Disease

    ClinicalTrials.gov

    2016-12-08

    Cardiovascular Diseases; Coronary Artery Disease; Myocardial Ischemia; Coronary Disease; Coronary Restenosis; Heart Diseases; Coronary Stenosis; Arteriosclerosis; Arterial Occlusive Diseases; Vascular Diseases

  5. The predictive value of retinal vascular findings for carotid artery atherosclerosis: are further recommendations with regard to carotid atherosclerosis screening needed?

    PubMed

    Song, Yeo-Jeong; Cho, Kyoung-Im; Kim, Seong-Man; Jang, Hyun-Duk; Park, Jung-Min; Kim, Sang-Soo; Kim, Dong-Jun; Lee, Hyeon-Gook; Kim, Tae-Ik

    2013-05-01

    Vascular retinopathy is the consequence of vascular disease, and the retina is the only place where the arteries can be visualized directly. The purpose of this study was to evaluate the predictive value of retinal vascular findings for carotid artery atherosclerosis. From December 2009 to January 2011, the carotid intima-media thickness (IMT) and total plaque area (TPA) were measured in 179 consecutive patients, who received a fundoscopic examination. The patients were divided into groups as follows: normal retinal artery (normal; n = 44), diabetic retinopathy (DR; n = 25), retinal artery occlusion (RAO; n = 17), retinal vein occlusion (RVO; n = 67), and hypertensive retinopathy (HTN-R; n = 26). The subjects were classified according to the presence of an increased (≥ 1 mm) IMT and plaque. The values of the mean carotid IMT in the patients with vascular retinopathy (DR, 0.87 ± 0.14 mm; RAO, 1.18 ± 0.47 mm; RVO, 0.84 ± 0.14 mm; HTN-R, 0.90 ± 0.20 mm) were significantly increased compared with those in the normal subjects (0.77 ± 0.13 mm). A total 77 of 135 vascular retinopathy patients demonstrated an increased IMT (57 %), and 97 vascular retinopathy patients had carotid artery plaque (72 %). The relative risk of vascular retinopathy in the prediction of an increased IMT and the presence of plaque was 2.79 and 3.95, respectively. Although The TPA was significantly increased in the patients with RAO (1.87 ± 2.67 cm(2)) and RVO (0.27 ± 0.23 cm(2)) compared with the normal subjects (0.18 ± 0.23 cm(2), all Ps < 0.05), there was no significant difference in the ipsilateral carotid IMT and TPA of the affected eye compared with that of the contralateral eye. In conclusion, vascular retinopathy demonstrated a good predictive value in identifying asymptomatic carotid artery atherosclerosis, and this was not confined to the ipsilateral carotid artery of the affected eye. Further recommendations with regard to carotid atherosclerosis screening in patients with

  6. Myostatin, a profibrotic factor and the main inhibitor of striated muscle mass, is present in the penile and vascular smooth muscle.

    PubMed

    Kovanecz, I; Masouminia, M; Gelfand, R; Vernet, D; Rajfer, J; Gonzalez-Cadavid, N F

    2017-09-01

    Myostatin is present in striated myofibers but, except for myometrial cells, has not been reported within smooth muscle cells (SMC). We investigated in the rat whether myostatin is present in SMC within the penis and the vascular wall and, if so, whether it is transcriptionally expressed and associated with the loss of corporal SMC occurring in certain forms of erectile dysfunction (ED). Myostatin protein was detected by immunohistochemistry/fluorescence and western blots in the perineal striated muscles, and also in the SMC of the penile corpora, arteries and veins, and aorta. Myostatin was found in corporal SMC cultures, and its transcriptional expression (and its receptor) was shown there by DNA microarrays. Myostatin protein was measured by western blots in the penile shaft of rats subjected to bilateral cavernosal nerve resection (BCNR), that were left untreated, or treated (45 days) with muscle-derived stem cells (MDSC), or concurrent daily low-dose sildenafil. Myostatin was not increased by BCNR (compared with sham operated animals), but over expressed after treatment with MDSC. This was reduced by concurrent sildenafil. The presence of myostatin in corporal and vascular SMC, and its overexpression in the corpora by MDSC therapy, may have relevance for the stem cell treatment of corporal fibrosis and ED.

  7. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguado, Andrea; Galán, María; Zhenyukh, Olha

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number ofmore » SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2

  8. Effect of angiotensin II-induced arterial hypertension on the voltage-dependent contractions of mouse arteries.

    PubMed

    Fransen, Paul; Van Hove, Cor E; Leloup, Arthur J A; Schrijvers, Dorien M; De Meyer, Guido R Y; De Keulenaer, Gilles W

    2016-02-01

    Arterial hypertension (AHT) affects the voltage dependency of L-type Ca(2+) channels in cardiomyocytes. We analyzed the effect of angiotensin II (AngII)-induced AHT on L-type Ca(2+) channel-mediated isometric contractions in conduit arteries. AHT was induced in C57Bl6 mice with AngII-filled osmotic mini-pumps (4 weeks). Normotensive mice treated with saline-filled osmotic mini-pumps were used for comparison. Voltage-dependent contractions mediated by L-type Ca(2+) channels were studied in vaso-reactive studies in vitro in isolated aortic and femoral arteries by using extracellular K(+) concentration-response (KDR) experiments. In aortic segments, AngII-induced AHT significantly sensitized isometric contractions induced by elevated extracellular K(+) and depolarization. This sensitization was partly prevented by normalizing blood pressure with hydralazine, suggesting that it was caused by AHT rather than by direct AngII effects on aortic smooth muscle cells. The EC50 for extracellular K(+) obtained in vitro correlated significantly with the rise in arterial blood pressure induced by AngII in vivo. The AHT-induced sensitization persisted when aortic segments were exposed to levcromakalim or to inhibitors of basal nitric oxide release. Consistent with these observations, AngII-treatment also sensitized the vaso-relaxing effects of the L-type Ca(2+) channel blocker diltiazem during K(+)-induced contractions. Unlike aorta, AngII-treatment desensitized the isometric contractions to depolarization in femoral arteries pointing to vascular bed specific responses of arteries to hypertension. AHT affects the voltage-dependent L-type Ca(2+) channel-mediated contraction of conduit arteries. This effect may contribute to the decreased vascular compliance in AHT and explain the efficacy of Ca(2+) channel blockers to reduce vascular stiffness and central blood pressure in AHT.

  9. Cultured rat vascular smooth muscle cells are resistant to methylamine toxicity: no correlation to semicarbazide-sensitive amine oxidase

    NASA Technical Reports Server (NTRS)

    Langford, S. D.; Trent, M. B.; Boor, P. J.

    2001-01-01

    Methylamine (MA), a component of serum and a metabolite of nicotine and certain insecticides and herbicides, is metabolized by semicarbazide-sensitive amine oxidase (SSAO). MA is toxic to cultured human umbilical vein and calf pulmonary artery endothelial cells. Endothelial cells, which do not exhibit endogenous SSAO activity, are exposed to SSAO circulating in serum. In contrast, vascular smooth muscle cells (VSMC) do exhibit innate SSAO activity both in vivo and in vitro. This property, together with the critical localization of VSMC within the arterial wall, led us to investigate the potential toxicity of MA to VSMC. Cultured rat VSMC were treated with MA (10-5 to 1 M). In some cultures, SSAO was selectively inhibited with semicarbazide or MDL-72145 [(E)-2-(3,4-dimethoxyphenyl)-3-fluoroallylamine]. Cytotoxicity was measured via MTT, vital dye exclusion, and clonogenic assays. MA proved to be toxic to VSMC only at relatively high concentrations (LC(50) of 0.1 M). The inhibition of SSAO with semicarbazide or MDL-72145 did not increase MA toxicity, suggesting that the production of formaldehyde via tissue-bound, SSAO-mediated MA metabolism does not play a role in the minimal toxicity observed in isolated rat VSMC. The omission of fetal calf serum (FCS), which contains high SSAO activity, from media similarly showed little effect on cytotoxicity. We conclude that VSMC--in contrast to previous results in endothelial cells--are relatively resistant to MA toxicity, and SSAO does not play a role in VSMC injury by MA.

  10. Different responses of mesenteric artery from normotensive and spontaneously hypertensive rats to nitric oxide and its redox congeners.

    PubMed

    Orescanin, Zorana S; Milovanović, Slobodan R; Spasić, Snezana D; Jones, David R; Spasić, Mihajlo B

    2007-01-01

    The conversion of nitric oxide (NO*) into its congeners nitrosonium (NO(+)) and nitroxyl (HNO/NO(-)) ions may have important consequences for signal transduction and physiological responses. Manganese-containing superoxide dismutase (MnSOD) may convert NO. into its redox congeners. In our current work, we have examined the mechanism of sodium nitroprusside (SNP)-induced relaxation of arteries, with or without endothelium, from both normotensive and spontaneously hypertensive (SH) rats in the absence and presence of MnSOD. SNP induced a greater degree of relaxation in normotensive than in SH rats. MnSOD antagonized SNP-induced relaxation and effect was greater in normotensive than hypertensive rats. However, MnSOD even potentiated SNP-induced relaxation in mesenteric arteries with endothelium from SH rats. Our results indicate that HNO/NO(-)-mediated relaxation is more effective in mesenteric artery smooth muscle from SH rats than from normotensive rats and that vascular dysfunction in SH rats is not solely endothelium-derived but involves changes in vascular smooth muscles.

  11. Structure and composition of pulmonary arteries, capillaries and veins

    PubMed Central

    2013-01-01

    The pulmonary vasculature is comprised of three anatomic compartments connected in series: the arterial tree, an extensive capillary bed, and the venular tree. Although in general this vasculature is thin-walled, structure is nonetheless complex. Contributions to structure (and thus potentially to function) from cells other than endothelial and smooth muscle cells as well as those from the extracellular matrix should be considered. This review is multifaceted, bringing together information regarding 1) classification of pulmonary vessels, 2) branching geometry in the pulmonary vascular tree, 3) a quantitative view of structure based on morphometry of the vascular wall, 4) the relationship of nerves, a variety of interstitial cells, matrix proteins, and striated myocytes to smooth muscle and endothelium in the vascular wall, 5) heterogeneity within cell populations and between vascular compartments, 6) homo- and heterotypic cell-cell junctional complexes, and 7) the relation of the pulmonary vasculature to that of airways. These issues for pulmonary vascular structure are compared, when data is available, across species from human to mouse and shrew. Data from studies utilizing vascular casting, light and electron microscopy, as well as models developed from those data, are discussed. Finally, the need for rigorous quantitative approaches to study of vascular structure in lung is highlighted. PMID:23606929

  12. Potential candidate genomic biomarkers of drug induced vascular injury in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalmas, Deidre A., E-mail: Deidre.A.Dalmas@gsk.com; Scicchitano, Marshall S., E-mail: Marshall.S.Scicchitano@gsk.com; Mullins, David, E-mail: David.R.Mullins@gsk.com

    2011-12-15

    Drug-induced vascular injury is frequently observed in rats but the relevance and translation to humans present a hurdle for drug development. Numerous structurally diverse pharmacologic agents have been shown to induce mesenteric arterial medial necrosis in rats, but no consistent biomarkers have been identified. To address this need, a novel strategy was developed in rats to identify genes associated with the development of drug-induced mesenteric arterial medial necrosis. Separate groups (n = 6/group) of male rats were given 28 different toxicants (30 different treatments) for 1 or 4 days with each toxicant given at 3 different doses (low, mid andmore » high) plus corresponding vehicle (912 total rats). Mesentery was collected, frozen and endothelial and vascular smooth muscle cells were microdissected from each artery. RNA was isolated, amplified and Affymetrix GeneChip Registered-Sign analysis was performed on selectively enriched samples and a novel panel of genes representing those which showed a dose responsive pattern for all treatments in which mesenteric arterial medial necrosis was histologically observed, was developed and verified in individual endothelial cell- and vascular smooth muscle cell-enriched samples. Data were confirmed in samples containing mesentery using quantitative real-time RT-PCR (TaqMan Trade-Mark-Sign ) gene expression profiling. In addition, the performance of the panel was also confirmed using similarly collected samples obtained from a timecourse study in rats given a well established vascular toxicant (Fenoldopam). Although further validation is still required, a novel gene panel has been developed that represents a strategic opportunity that can potentially be used to help predict the occurrence of drug-induced mesenteric arterial medial necrosis in rats at an early stage in drug development. -- Highlights: Black-Right-Pointing-Pointer A gene panel was developed to help predict rat drug-induced mesenteric MAN. Black

  13. Mechanosensitivity of Jagged–Notch signaling can induce a switch-type behavior in vascular homeostasis

    PubMed Central

    Stassen, Oscar M. J. A.; ter Huurne, Fleur M.; Boareto, Marcelo; Sahlgren, Cecilia M.

    2018-01-01

    Hemodynamic forces and Notch signaling are both known as key regulators of arterial remodeling and homeostasis. However, how these two factors integrate in vascular morphogenesis and homeostasis is unclear. Here, we combined experiments and modeling to evaluate the impact of the integration of mechanics and Notch signaling on vascular homeostasis. Vascular smooth muscle cells (VSMCs) were cyclically stretched on flexible membranes, as quantified via video tracking, demonstrating that the expression of Jagged1, Notch3, and target genes was down-regulated with strain. The data were incorporated in a computational framework of Notch signaling in the vascular wall, where the mechanical load was defined by the vascular geometry and blood pressure. Upon increasing wall thickness, the model predicted a switch-type behavior of the Notch signaling state with a steep transition of synthetic toward contractile VSMCs at a certain transition thickness. These thicknesses varied per investigated arterial location and were in good agreement with human anatomical data, thereby suggesting that the Notch response to hemodynamics plays an important role in the establishment of vascular homeostasis. PMID:29610298

  14. Ursolic acid suppresses leptin-induced cell proliferation in rat vascular smooth muscle cells.

    PubMed

    Yu, Ya-Mei; Tsai, Chiang-Chin; Tzeng, Yu-Wen; Chang, Weng-Cheng; Chiang, Su-Yin; Lee, Ming-Fen

    2017-07-01

    Accumulating lines of evidence indicate that high leptin levels are associated with adverse cardiovascular health in obese individuals. Proatherogenic effects of leptin include endothelial cell activation and vascular smooth muscle cell proliferation and migration. Ursolic acid (UA) has been reported to exhibit multiple biological effects including antioxidant and anti-inflammatory properties. In this study, we investigated the effect of UA on leptin-induced biological responses in rat vascular smooth muscle cells (VSMCs). A-10 VSMCs were treated with leptin in the presence or absence of UA. Intracellular reactive oxygen species (ROS) was probed by 2',7'-dichlorofluorescein diacetate. The expression of extracellular signal-regulated kinase (ERK)1/2, phospho-(ERK)1/2, nuclear factor-kappa B (NF-κB) p65 and p50, and matrix metalloproteinase-2 (MMP2) was determined by Western blotting. Immunocytochemistry and confocal laser scanning microscopy were also used for the detection of NF-κB. The secretion of MMP2 was detected by gelatin zymography. UA exhibited antioxidant activities in vitro. In rat VSMCs, UA effectively inhibited cell growth and the activity of MMP2 induced by leptin. These suppressive effects appeared by decreasing the activation of (ERK)1/2, the nuclear expression and translocation of NF-κB, and the production of ROS. UA appeared to inhibit leptin-induced atherosclerosis, which may prevent the development of obesity-induced cardiovascular diseases.

  15. Relationship between serum levels of triglycerides and vascular inflammation, measured as COX-2, in arteries from diabetic patients: a translational study

    PubMed Central

    2013-01-01

    Background Inflammation is a common feature in the majority of cardiovascular disease, including Diabetes Mellitus (DM). Levels of pro-inflammatory markers have been found in increasing levels in serum from diabetic patients (DP). Moreover, levels of Cyclooxygenase-2 (COX-2) are increased in coronary arteries from DP. Methods Through a cross-sectional design, patients who underwent CABG were recruited. Vascular smooth muscle cells (VSMC) were cultured and COX-2 was measured by western blot. Biochemical and clinical data were collected from the medical record and by blood testing. COX-2 expression was analyzed in internal mammary artery cross-sections by confocal microscopy. Eventually, PGI2 and PGE2 were assessed from VSMC conditioned media by ELISA. Results Only a high glucose concentration, but a physiological concentration of triglycerides exposure of cultured human VSMC derived from non-diabetic patients increased COX-2 expression .Diabetic patients showed increasing serum levels of glucose, Hb1ac and triglycerides. The bivariate analysis of the variables showed that triglycerides was positively correlated with the expression of COX-2 in internal mammary arteries from patients (r2 = 0.214, P < 0.04). Conclusions We conclude that is not the glucose blood levels but the triglicerydes leves what increases the expression of COX-2 in arteries from DP. PMID:23642086

  16. The effects of the ovarian cycle and pregnancy on uterine vascular impedance and uterine artery mechanics

    PubMed Central

    Sprague, Benjamin J.; Phernetton, Terrance M.; Magness, Ronald R.; Chesler, Naomi C.

    2009-01-01

    Objectives Uterine vascular resistance (UVR) is the ratio of systemic mean arterial pressure to mean uterine blood flow and is sensitive to changes in small arteries and arterioles. However, it provides little or no insight into changes in large, conduit arteries. Fluctuations in estrogen (E2) and progesterone (P4) levels during the ovarian cycle are thought to cause uterine resistance artery vasodilation; the effects on large arteries are unknown. Herein, our objective was to use the uterine vascular impedance, which is sensitive to changes in small and large arteries, to determine the effects of the ovarian cycle and pregnancy on the entire uterine vasculature. Study Design Uterine vascular perfusion pressure and flow rate were recorded simultaneously on anesthetized sheep in the nonpregnant (NP) luteal (NP-L, n=6) and follicular (NP-F, n=7) phases and in late gestation pregnant (CP, n=10) sheep. Impedance and metrics of impedance (input impedance Z0, index of wave reflection RW, characteristic impedance ZC) were calculated. E2 and P4 levels were measured from jugular vein blood samples. Finally, from pressure-diameter tests post-mortem, large uterine artery circumferential elastic modulus (ECirc) was measured. Significant differences were evaluated by two-way ANOVA or Student’s t-test. Results As expected, E2:P4 was higher in the NP-F group compared to the NP-L group (p<0.05). Also as expected, UVR and Z0 decreased in the follicular phase compared to the luteal (p<0.05), but RW, ZC, and ECirc were unaltered. Pregnancy not only substantially decreased UVR (and Z0) (p<0.00001) but also decreased ZC (p<0.001), RW (p<0.0001), ECirc (p<0.01), and pulse wave velocity (p<0.0001). Conclusions The E2:P4 ratio mediates resistance artery vasodilatation in nonpregnant states, but has no effect on conduit artery size or stiffness. In contrast, pregnancy causes dramatic vasodilation and remodeling, including substantial reductions in conduit artery stiffness and increases

  17. [Anatomical study of muscular latissimus dorsi surface vascularized by the transverse branch of thoraco-dorsal artery].

    PubMed

    Boucher, F; Pinatel, B; Shipkov, H; Mertens, P; Rouviere, O; Braye, F; Mojallal, A

    2014-10-01

    The latissimus dorsi muscle flap is a type V according to Mathes and Nahai. It is vascularized by a proximal main pedicle represented by the thoraco-dorsal pedicle and pedicle distal accessory represented by the dorsal branches of the posterior intercostal arteries. The main thoraco-dorsal pedicle has a descending branch and a transverse branch. This anatomical study clarifies the muscular territory vascularized by the transverse branch of thoraco-dorsal artery for a secondary use after harvesting a thoraco-dorsal artery perforator flap or a muscle-sparing latissimus dorsi flap. Our study focused on ten dissections latissimus dorsi muscle taken from five fresh cadavers chest, carried out within the University Department of Anatomy. The descending branch of thoraco-dorsal artery was ligated, the transverse branch was cannulated and injected with a mixture of barium sulfate/gelatin. After freezing, a static angiotomodensitometry (3D) of each flap was performed. The average muscular surface vascularized by the transverse branch is measured at 80% (77% minimum value, maximum value 83%) of the complete latissimus dorsi muscle. Intermuscular connections between the two branches of thoraco-dorsal pedicle were shown. The use of a ipsilateral latissimus dorsi muscle is a therapeutic option after harvesting a thoraco-dorsal artery perforator flap (TAP) or a muscle-sparing latissimus dorsi flap (MSLD-flap). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Lysyl Oxidase Induces Vascular Oxidative Stress and Contributes to Arterial Stiffness and Abnormal Elastin Structure in Hypertension: Role of p38MAPK.

    PubMed

    Martínez-Revelles, Sonia; García-Redondo, Ana B; Avendaño, María S; Varona, Saray; Palao, Teresa; Orriols, Mar; Roque, Fernanda R; Fortuño, Ana; Touyz, Rhian M; Martínez-González, Jose; Salaices, Mercedes; Rodríguez, Cristina; Briones, Ana M

    2017-09-01

    Vascular stiffness, structural elastin abnormalities, and increased oxidative stress are hallmarks of hypertension. Lysyl oxidase (LOX) is an elastin crosslinking enzyme that produces H 2 O 2 as a by-product. We addressed the interplay between LOX, oxidative stress, vessel stiffness, and elastin. Angiotensin II (Ang II)-infused hypertensive mice and spontaneously hypertensive rats (SHR) showed increased vascular LOX expression and stiffness and an abnormal elastin structure. Mice over-expressing LOX in vascular smooth muscle cells (TgLOX) exhibited similar mechanical and elastin alterations to those of hypertensive models. LOX inhibition with β-aminopropionitrile (BAPN) attenuated mechanical and elastin alterations in TgLOX mice, Ang II-infused mice, and SHR. Arteries from TgLOX mice, Ang II-infused mice, and/or SHR exhibited increased vascular H 2 O 2 and O 2 .- levels, NADPH oxidase activity, and/or mitochondrial dysfunction. BAPN prevented the higher oxidative stress in hypertensive models. Treatment of TgLOX and Ang II-infused mice and SHR with the mitochondrial-targeted superoxide dismutase mimetic mito-TEMPO, the antioxidant apocynin, or the H 2 O 2 scavenger polyethylene glycol-conjugated catalase (PEG-catalase) reduced oxidative stress, vascular stiffness, and elastin alterations. Vascular p38 mitogen-activated protein kinase (p38MAPK) activation was increased in Ang II-infused and TgLOX mice and this effect was prevented by BAPN, mito-TEMPO, or PEG-catalase. SB203580, the p38MAPK inhibitor, normalized vessel stiffness and elastin structure in TgLOX mice. We identify LOX as a novel source of vascular reactive oxygen species and a new pathway involved in vascular stiffness and elastin remodeling in hypertension. LOX up-regulation is associated with enhanced oxidative stress that promotes p38MAPK activation, elastin structural alterations, and vascular stiffness. This pathway contributes to vascular abnormalities in hypertension. Antioxid. Redox Signal. 27

  19. Airways and vascular smooth muscles relaxant activities of Gaultheria trichophylla.

    PubMed

    Alam, Fiaz; Saqib, Qazi Najumus; Shah, Abdul Jabbar

    2017-01-01

    The aim of this experimental work was to explore the potential pharmacological activities of Gaultheria trichophylla Royle in hyperactive respiratory and vascular conditions. Gaultheria trichophylla was extracted with solvents, phytochemical detection tests were performed, and rabbit trachea and aorta strips were used to evaluate its effects on airways and vascular smooth muscles. Qualitative phytochemical tests showed the presence of flavonoids, alkaloids, anthraquinones, saponins, terpenoids, and condensed tannins. The methanol extract caused inhibition (EC 50 values of 3.12 mg/mL) of carbachol (1 μM) and partial relaxation of K + (80 mM) caused contractions in tracheal strips. The chloroform extract was comparatively more potent against carbachol than K+ induced contraction with EC 50 values of 0.64 and 2.26 mg/mL, respectively. However, the n-hexane extract showed more potency against K + than cabachol induced contractions, as in case with verapamil, with EC 50 values of 0.61 and 6.58 mg/mL, respectively. In isolated prepared trachea, the extracts displaced the carbachol concentration response curves and maximum response was suppressed. In rabbit aorta preparations, methanol and n-hexane extracts partially relaxed phenylephrine (1 μM) and K + induced vasoconstrictions. However, the chloroform extract inhibited phenylephrine induced contractions and exhibited a vasoconstrictor effect at lower concentrations and a relaxant effect at higher concentrations against K + precontractions. The data indicates that, in addition to others, the extracts of G .trichophylla possess verapamil like Ca ++ channel blocking components which explain the possible role of this plant in respiratory and vascular conditions.

  20. [Right-side aortic arch with aberrant left subclavian artery and Kommerell's diverticulum. A cause of vascular ring].

    PubMed

    Tamayo-Espinosa, Tania; Erdmenger-Orellana, Julio; Becerra-Becerra, Rosario; Balderrabano-Saucedo, Norma; Segura-Standford, Begoña

    The right-side aortic arch may be associated with aberrant left subclavian artery, in some cases this artery originates from an aneurismal dilation of the aorta called Kommerell's diverticulum. A report is presented on 2 cases of vascular ring formed by a right-side aortic arch, anomalous left subclavian artery, Kommerell's diverticulum and left patent ductus arteriosus. A review the literature was also performed as regards the embryological development and the imaging methods used to help in the diagnosis of this rare vascular anomaly. Copyright © 2017 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  1. Protein disulfide isomerase-mediated apoptosis and proliferation of vascular smooth muscle cells induced by mechanical stress and advanced glycosylation end products result in diabetic mouse vein graft atherosclerosis.

    PubMed

    Ping, Suning; Liu, Shuying; Zhou, Yuhuan; Li, Ziqing; Li, Yuhuang; Liu, Kefeng; Bardeesi, Adham Sa; Wang, Linli; Chen, Jingbo; Deng, Lie; Wang, Jingjing; Wang, Hong; Chen, Dadi; Zhang, Zhengyu; Sheng, Puyi; Li, Chaohong

    2017-05-25

    Protein disulfide isomerase (PDI) involves cell survival and death. Whether PDI mediates mechanical stretch stress (SS) and/or advanced glycosylation end products (AGEs) -triggered simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells (VSMCs) is unknown. Here, we hypothesized that different expression levels of PDI trigger completely opposite cell fates among the different VSMC subtypes. Mouse veins were grafted into carotid arteries of non-diabetic and diabetic mice for 8 weeks; the grafted veins underwent simultaneous increases in proliferation and apoptosis, which triggered vein graft arterializations in non-diabetic or atherosclerosis in diabetic mice. A higher rate of proliferation and apoptosis was seen in the diabetic group. SS and/or AGEs stimulated the quiescent cultured VSMCs, resulting in simultaneous increases in proliferation and apoptosis; they could induce increased PDI activation and expression. Both in vivo and in vitro, the proliferating VSMCs indicated weak co-expression of PDI and SM-α-actin while apoptotic or dead cells showed strong co-expression of both. Either SS or AGEs rapidly upregulated the expression of PDI, NOX1 and ROS, and their combination had synergistic effects. Inhibiting PDI simultaneously suppressed the proliferation and apoptosis of VSMCs, while inhibition of SM-α-actin with cytochalasin D led to increased apoptosis and cleaved caspases-3 but had no effect on proliferation. In conclusion, different expression levels of PDI in VSMCs induced by SS and/or AGEs triggered a simultaneous increase in proliferation and apoptosis, accelerated vein graft arterializations or atherosclerosis, leading us to propose PDI as a novel target for the treatment of vascular remodeling and diseases.

  2. Vascular growth responses to chronic arterial occlusion are unaffected by myeloid specific focal adhesion kinase (FAK) deletion

    NASA Astrophysics Data System (ADS)

    Heuslein, Joshua L.; Murrell, Kelsey P.; Leiphart, Ryan J.; Llewellyn, Ryan A.; Meisner, Joshua K.; Price, Richard J.

    2016-05-01

    Arteriogenesis, or the lumenal expansion of pre-existing arterioles in the presence of an upstream occlusion, is a fundamental vascular growth response. Though alterations in shear stress stimulate arteriogenesis, the migration of monocytes into the perivascular space surrounding collateral arteries and their differentiation into macrophages is critical for this vascular growth response to occur. Focal adhesion kinase’s (FAK) role in regulating cell migration has recently been expanded to primary macrophages. We therefore investigated the effect of the myeloid-specific conditional deletion of FAK on vascular remodeling in the mouse femoral arterial ligation (FAL) model. Using laser Doppler perfusion imaging, whole mount imaging of vascular casted gracilis muscles, and immunostaining for CD31 in gastrocnemius muscles cross-sections, we found that there were no statistical differences in perfusion recovery, arteriogenesis, or angiogenesis 28 days after FAL. We therefore sought to determine FAK expression in different myeloid cell populations. We found that FAK is expressed at equally low levels in Ly6Chi and Ly6Clo blood monocytes, however expression is increased over 2-fold in bone marrow derived macrophages. Ultimately, these results suggest that FAK is not required for monocyte migration to the perivascular space and that vascular remodeling following arterial occlusion occurs independently of myeloid specific FAK.

  3. R59949, a diacylglycerol kinase inhibitor, inhibits inducible nitric oxide production through decreasing transplasmalemmal L-arginine uptake in vascular smooth muscle cells.

    PubMed

    Shimomura, Tomoko; Nakano, Tomoyuki; Goto, Kaoru; Wakabayashi, Ichiro

    2017-02-01

    Although diacylglycerol kinase (DGK) is known to be expressed in vascular smooth muscle cell, its functional significance remains to be clarified. We hypothesized that DGK is involved in the pathway of cytokine-induced nitric oxide (NO) production in vascular smooth muscle cells. The purpose of this study was to investigate the effects of R59949, a diacylglycerol kinase inhibitor, on inducible nitric oxide production in vascular smooth muscle cell. Cultured rat aortic smooth muscle cells (RASMCs) were used to elucidate the effects of R59949 on basal and interleukin-1β (IL-1β)-induced NO production. The effects of R59949 on protein and mRNA expression of induced nitric oxide synthase (iNOS) and on transplasmalemmal L-arginine uptake were also evaluated using RASMCs. Treatment of RASMCs with R59949 (10 μM) inhibited IL-1β (10 ng/ml)-induced NO production but not basal NO production. Neither protein nor mRNA expression level of iNOS after stimulation with IL-1β was significantly affected by R59949. Estimated enzymatic activities of iNOS in RASMCs were comparable in the absence and presence of R59949. Stimulation of RASMCs with IL-1β caused a marked increase in transplasmalemmal L-arginine uptake into RASMCs. L-Arginine uptake in the presence of IL-1β was markedly inhibited by R59949, while basal L-arginine uptake was not significantly affected by R59949. Both IL-1β-induced NO production and L-arginine uptake were abolished in the presence of cycloheximide (1 μM). The results indicate that R59949 inhibits inducible NO production through decreasing transplasmalemmal L-arginine uptake. DGK is suggested to be involved in cytokine-stimulated L-arginine transport and regulate its intracellular concentration in vascular smooth muscle cell.

  4. Krüppel-like factor 4 is induced by rapamycin and mediates the anti-proliferative effect of rapamycin in rat carotid arteries after balloon injury.

    PubMed

    Wang, Ying; Zhao, Beilei; Zhang, Yi; Tang, Zhihui; Shen, Qiang; Zhang, Youyi; Zhang, Weizhen; Du, Jie; Chien, Shu; Wang, Nanping

    2012-04-01

    The transcription factor, Krüppel-like factor 4 (KLF4), plays an important role in regulating the proliferation of vascular smooth muscle cells. This study aimed to examine the effect of rapamycin on the expression of KLF4 and the role of KLF4 in arterial neointimal formation. Expression of KLF4 was monitored using real-time PCR and immunoblotting in cultured vascular smooth muscle cells. and in rat carotid arteries in vivo after balloon injury. Adenovirus-mediated overexpression and siRNA-mediated knockdown of KLF4 were used to examine the role of KLF4 in mediating the anti-proliferative role of rapamycin . KLF4-regulated genes were identified using cDNA microarray. Rapamycin induced the expression of KLF4 in vitro and in vivo. Overexpression of KLF4 inhibited cell proliferation and the activity of mammalian target of rapamycin (mTOR) and its downstream pathways, including 4EBP-1 and p70S6K in vascular smooth muscle cells and prevented the neointimal formation in the balloon-injured arteries. KLF4 up-regulated the expression of GADD45β, p57(kip2) and p27(kip1) . Furthermore, knockdown of KLF4 attenuated the anti-proliferative effect of rapamycin both in vitro and in vivo. KLF4 plays an important role in mediating the anti-proliferative effect of rapamycin in VSMCs and balloon-injured arteries. Thus, it is a potential target for the treatment of proliferative vascular disorders such as restenosis after angioplasty. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  5. Current Trends in Heparin Use During Arterial Vascular Interventional Radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durran, Alexandra C., E-mail: durranjobs@hotmail.com; Watts, Christopher, E-mail: Christopher.watts@salisbury.nhs.uk

    2012-12-15

    Purpose: This study was designed to assess the current use of heparinized saline and bolus doses of heparin in non-neurological interventional radiology and to determine whether consensus could be reached to produce guidance for heparin use during arterial vascular intervention. Methods: An interactive electronic questionnaire was distributed to members of the British Society of Interventional Radiology regarding their current practice in the use, dosage, and timing of heparin boluses and heparinized flushing solutions.ResultsA total of 108 completed questionnaires were received. More than 80% of respondents used heparinized saline with varying concentrations; the most prevalent was 1,000 IU/l (international units ofmore » heparin per liter) and 5,000 IU/l. Fifty-one percent of interventionalists use 3,000 IU as their standard bolus dose; however, the respondents were split regarding the timing of bolus dose with {approx}60% administering it after arterial access is obtained and 40% after crossing the lesion. There was no consensus on altering dose according to body weight, and only 4% monitored clotting parameters. Conclusions: There seems to be some coherence among practicing interventionalists regarding heparin administration. We hypothesize that heparinized saline should be used at a recognized standard concentration of 1,000 IU/l as a flushing concentration in all arterial vascular interventions and that 3,000 IU bolus is considered the standard dose for straightforward therapeutic procedures and 5000 IU for complex, crural, and endovascular aneurysm repair work. The bolus should be given after arterial access is obtained to allow time for optimal anticoagulation to be achieved by the time of active intervention and stenting. Further research into clotting abnormalities following such interventional procedures would be an interesting quantifiable follow-up to this initial survey of opinions and practice.« less

  6. Design of a muscle cell-specific expression vector utilising human vascular smooth muscle alpha-actin regulatory elements.

    PubMed

    Keogh, M C; Chen, D; Schmitt, J F; Dennehy, U; Kakkar, V V; Lemoine, N R

    1999-04-01

    The facility to direct tissue-specific expression of therapeutic gene constructs is desirable for many gene therapy applications. We describe the creation of a muscle-selective expression vector which supports transcription in vascular smooth muscle, cardiac muscle and skeletal muscle, while it is essentially silent in other cell types such as endothelial cells, hepatocytes and fibroblasts. Specific transcriptional regulatory elements have been identified in the human vascular smooth muscle cell (VSMC) alpha-actin gene, and used to create an expression vector which directs the expression of genes in cis to muscle cells. The vector contains an enhancer element we have identified in the 5' flanking region of the human VSMC alpha-actin gene involved in mediating VSMC expression. Heterologous pairing experiments have shown that the enhancer does not interact with the basal transcription complex recruited at the minimal SV40 early promoter. Such a vector has direct application in the modulation of VSMC proliferation associated with intimal hyperplasia/restenosis.

  7. A novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in rat vascular smooth muscle and renal proximal tubular cells.

    PubMed

    Guo, Deng-Fu; Tardif, Valerie; Ghelima, Karin; Chan, John S D; Ingelfinger, Julie R; Chen, XiangMei; Chenier, Isabelle

    2004-05-14

    Angiotensin II stimulates cellular hypertrophy in cultured vascular smooth muscle and renal proximal tubular cells. This effect is believed to be one of earliest morphological changes of heart and renal failure. However, the precise molecular mechanism involved in angiotensin II-induced hypertrophy is poorly understood. In the present study we report the isolation of a novel angiotensin II type 1 receptor-associated protein. It encodes a 531-amino acid protein. Its mRNA is detected in all human tissues examined but highly expressed in the human kidney, pancreas, heart, and human embryonic kidney cells as well as rat vascular smooth muscle and renal proximal tubular cells. Protein synthesis and relative cell size analyzed by flow cytometry studies indicate that overexpression of the novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in cultured rat vascular smooth muscle and renal proximal tubular cells. In contrast, the hypertrophic effects was reversed in renal proximal tubular cell lines expressing the novel gene in the antisense orientation and its dominant negative mutant, which lacks the last 101 amino acids in its carboxyl-terminal tail. The hypertrophic effects are at least in part mediated via protein kinase B activation or cyclin-dependent kinase inhibitor, p27(kip1) protein expression level in vascular smooth muscle, and renal proximal tubular cells. Moreover, angiotensin II could not stimulate cellular hypertrophy in renal proximal tubular cells expressing the novel gene in the antisense orientation and its mutant. These findings may provide new molecular mechanisms to understand hypertrophic agents such as angiotensin II-induced cellular hypertrophy.

  8. Tributyltin chloride increases phenylephrine-induced contraction and vascular stiffness in mesenteric resistance arteries from female rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribeiro Júnior, Rogério Faustino, E-mail: rogeriofaustinoribeiro@hotmail.com; Marques, Vinicius Bermond; Nunes, Dieli Oliveira

    Tributyltin chloride (TBT) is an organotin compound that reduces estrogen levels in female rats. We aimed to investigate the effects of TBT exposure on vascular tonus and vascular remodelling in the resistance arteries of female rats. Rats were treated daily with TBT (500 ng/kg) for 15 days. TBT did not change arterial blood pressure but did modify some morpho-physiological parameters of third-order mesenteric resistance arteries in the following ways: (1) decreased lumen and external diameters; (2) increased wall/lm ratio and wall thickness; (3) decreased distensibility and increased stiffness; (4) increased collagen deposition; and (5) increased pulse wave velocity. TBT exposuremore » increased the phenylephrine-induced contractile response in mesenteric resistance arteries. However, vasodilatation responses induced by acetylcholine and sodium nitroprusside were not modified by TBT. It is suggested that TBT exposure reduces vascular nitric oxide (NO) production, because:(1) L-NAME incubation did not cause a leftward shift in the concentration–response curve for phenylephrine; (2) both eNOS protein expression; (3) in situ NO production were reduced. Incubation with L-NAME; and (4) SOD shifted the phenylephrine response curve to the left in TBT rats. Tiron, catalase, ML-171 and VAS2870 decreased vascular reactivity to phenylephrine only in TBT rats. Moreover, increased superoxide anion production was observed in the mesenteric resistance arteries of TBT rats accompanied by an increase in gp91phox, catalase, AT{sub 1} receptor and total ERK1/2 protein expression. In conclusion, these findings show that TBT induced alterations are most likely due to a reduction of NO production combined with increased O{sub 2}{sup −} production derived from NADPH oxidase and ERK1/2 activation. These findings offer further evidence that TBT is an environmental risk factor for cardiovascular disease. - Highlights: • Tributyltin chloride reduces estrogen levels in female rats.

  9. Open Problems in Computational Vascular Biomechanics: Hemodynamics and Arterial Wall Mechanics

    PubMed Central

    Taylor, C.A.; Humphrey, J.D.

    2009-01-01

    The vasculature consists of a complex network of vessels ranging from large arteries to arterioles, capillaries, venules, and veins. This network is vital for the supply of oxygen and nutrients to tissues and the removal of carbon dioxide and waste products from tissues. Because of its primary role as a pressure-driven chemomechanical transport system, it should not be surprising that mechanics plays a vital role in the development and maintenance of the normal vasculature as well as in the progression and treatment of vascular disease. This review highlights some past successes of vascular biomechanics, but emphasizes the need for research that synthesizes complementary advances in molecular biology, biomechanics, medical imaging, computational methods, and computing power for purposes of increasing our understanding of vascular physiology and pathophysiology as well as improving the design of medical devices and clinical interventions, including surgical procedures. That is, computational mechanics has great promise to contribute to the continued improvement of vascular health. PMID:20161129

  10. Differential Effect of Zoledronic Acid on Human Vascular Smooth Muscle Cells

    PubMed Central

    Albadawi, Hassan; Haurani, Mounir J.; Oklu, Rahmi; Trubiano, Jordan P.; Laub, Peter J.; Yoo, Hyung-Jin; Watkins, Michael T.

    2012-01-01

    Introduction The activation of human vascular smooth muscle cell proliferation, adhesion and migration is essential for intimal hyperplasia formation. These experiments were designed to test whether Zoledronic Acid (ZA) would modulate indices of human smooth muscle cell activation, exert differential effects on proliferating vs. quiescent cells and determine whether these effects were dependent on GTPase binding proteins prenylation. ZA was chosen for testing in these experiments because it is clinically used in humans with cancer, and has been shown to modulate rat smooth muscle cell proliferation and migration. Methods Human aortic smooth muscle cells (HASMC) were cultured under either proliferating or growth arrest (quiescent) conditions in the presence or absence of ZA for 48 hours, whereupon the effect of ZA on HASMC proliferation, cellular viability, metabolic activity and membrane integrity were compared. In addition, the effect of ZA on adhesion and migration were assessed in proliferating cells. The effect of increased concentration of ZA on the mevalonate pathway and genomic/cellular stress related poly ADP Ribose polymerase (PARP) enzyme activity were assessed using the relative prenylation of Rap-1A/B protein and the formation of poly ADP- ribosylated proteins (PAR) respectively. Results There was a dose dependent inhibition of cellular proliferation, adhesion and migration following ZA treatment. ZA treatment decreased indices of cellular viability and significantly increased membrane injury in proliferating vs. quiescent cells. This was correlated with the appearance of unprenylated Rap-1A protein and dose dependent down regulation of PARP activity. Conclusions These data suggest that ZA is effective in inhibiting HASMC proliferation, adhesion and migration which coincide with the appearance of unprenylated RAP-1A/B protein, thereby suggesting that the mevalonate pathway may play a role in the inhibition of HASMC activation. PMID:23164362

  11. CD38 Mediates Angiotensin II–Induced Intracellular Ca2+ Release in Rat Pulmonary Arterial Smooth Muscle Cells

    PubMed Central

    Lee, Suengwon; Paudel, Omkar; Jiang, Yongliang; Yang, Xiao-Ru

    2015-01-01

    CD38 is a multifunctional enzyme that catalyzes the formation of the endogenous Ca2+-mobilizing messengers cyclic ADP-ribose (cADPR) and nicotinic acid adenosine dinucleotide phosphate (NAADP) for the activation of ryanodine receptors (RyRs) of sarcoplasmic reticulum and NAADP-sensitive Ca2+ release channels in endolysosomes, respectively. It plays important roles in systemic vascular functions, but there is little information on CD38 in pulmonary arterial smooth muscle cells (PASMCs). Earlier studies suggested a redox-sensing role of CD38 in hypoxic pulmonary vasoconstriction. This study sought to characterize its roles in angiotensin II (Ang II)–induced Ca2+ release (AICR) in PASMCs. Examination of CD38 expression in various rat arteries found high levels of CD38 mRNA and protein in pulmonary arteries. The Ang II–elicited Ca2+ response consisted of extracellular Ca2+ influx and intracellular Ca2+ release in PASMCs. AICR activated in the absence of extracellular Ca2+ was reduced by pharmacological or siRNA inhibition of CD38, by the cADPR antagonist 8-bromo-cADPR or ryanodine, and by the NAADP antagonist Ned-19 or disruption of endolysosomal Ca2+ stores with the vacuolar H+-ATPase inhibitor bafilomycin A1. Suppression of AICR by the inhibitions of cADPR- and NAADP-dependent pathways were nonadditive, indicating interdependence of RyR- and NAADP-gated Ca2+ release. Furthermore, AICR was inhibited by the protein kinase C inhibitor staurosporine, the nonspecific NADPH oxidase (NOX) inhibitors apocynin and diphenyleneiodonium, the NOX2-specific inhibitor gp91ds-tat, and the scavenger of reactive oxygen species (ROS) tempol. These results provide the first evidence that Ang II activates CD38-dependent Ca2+ release via the NOX2-ROS pathway in PASMCs. PMID:25078456

  12. Vascular Responsiveness in Adrenalectomized Rats with Corticosterone Replacement

    NASA Technical Reports Server (NTRS)

    Darlington, Daniel N.; Kaship, Kapil; Keil, Lanny C.; Dallman, Mary F.

    1989-01-01

    To determine under resting, unstressed conditions the circulating glucocorticoid concentrations that best maintain sensitivity of the vascular smooth muscle and baroreceptor responses to vasoactive agents, rats with vascular cannulas were sham-adrenalectomized (sham) or adrenalectomized (ADRX) and provided with four levels of corticosterone replacement (-100 mg fused pellets of corticosterone: cholesterol 0, 20, 40, and 80% implanted subcutaneously at the time of adrenal surgery). Changes in vascular and baroreflex responses were determined after intravenous injection of varying doses of phenylephrine and nitroglycerin with measurement of arterial blood pressure and heart rate in the conscious, chronically cannulated rats. Vascular sensitivity was decreased, and resting arterial blood pressure tended to be decreased in the adrenalectomized rats; both were restored to normal with levels of corticosterone (40%), which also maintained body weight gain, thymus weight, and plasma corticosteroid binding globulin concentrations at normal values. The baroreflex curve generated from the sham group was different from the curves generated from the ADRX+O, 20, and 40% groups, but not different from that of the ADRX+80% group, suggesting that the baroreflex is maintained by higher levels of corticosterone than are necessary for the maintenance of the other variables. These data demonstrate that physiological levels of corticosterone (40% pellet) restore vascular responsiveness, body weight, thymus weight, and transcortin levels to normal in ADRX rats, whereas higher levels (80% pellet) are necessary for restoration of the baroreflex.

  13. Regulation of calcium channels in smooth muscle: New insights into the role of myosin light chain kinase

    PubMed Central

    Martinsen, A; Dessy, C; Morel, N

    2014-01-01

    Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca2+ flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca2+ channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca2+ channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca2+ entry in VSM is described in the present review. PMID:25483583

  14. Intercellular ultrafast Ca2+ wave in vascular smooth muscle cells: numerical and experimental study

    NASA Astrophysics Data System (ADS)

    Quijano, J. C.; Raynaud, F.; Nguyen, D.; Piacentini, N.; Meister, J. J.

    2016-08-01

    Vascular smooth muscle cells exhibit intercellular Ca2+ waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca2+ wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca2+ wave and it was suggested to be the result of the interplay between membrane potential and Ca2+ dynamics which depended on influx of extracellular Ca2+, cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca2+ wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca2+ wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca2+ wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca2+ waves in smooth muscle cells.

  15. Overexpression of mutated IkappaBalpha inhibits vascular smooth muscle cell proliferation and intimal hyperplasia formation.

    PubMed

    Zuckerbraun, Brian S; McCloskey, Carol A; Mahidhara, Raja S; Kim, Peter K M; Taylor, Bradley S; Tzeng, Edith

    2003-10-01

    Vascular injury and inflammation are associated with elaboration of a number of cytokines that signal through multiple pathways to act as smooth muscle cell (SMC) mitogens. Activation of the nuclear factor-kappa B (NF-kappaB) transcription factor is essential for SMC proliferation in vitro and is activated by vascular injury in vivo. Activation of NF-kappaB is controlled by several upstream regulators, including the inhibitors of kappa B (IkappaB). These proteins bind to and keep NF-kappaB inactivated. The purpose of this study was to determine whether adenoviral gene transfer of a mutated IkappaBalpha super-repressor (AdIkappaBalphaSR) could inhibit development of intimal hyperplasia in vivo and to investigate how over-expression of this construct influences in vitro SMC proliferation and cell cycle regulatory proteins. A rat carotid injury model was used to study prevention of intimal hyperplasia. Arteries were assayed 14 days after injury and infection with AdIkappaBalphaSR or adenoviral beta-galactosidase (AdLacZ). Untreated SMC or SMC infected with AdLacZ or AdIkappaBalphaSR were stimulated with 10% fetal bovine serum, interleukin-1beta, or tumor necrosis factor-alpha. Electrophoretic mobility shift assays were used to assay for NF-kappaB activation. Protein levels of IkappaBalpha and cyclin-dependent kinase inhibitors p21(Cip1/Waf1) and p27(Kip1) were determined with Western blot analysis. Proliferation was measured with (3)H-thymidine incorporation assays. AdIkappaBalphaSR inhibited the development of intimal hyperplasia by 49% (P <.05). Infection with AdIkappaBalphaSR significantly suppressed in vitro SMC proliferation when stimulated with serum, interleukin 1, or tumor necrosis factor alpha, and did not result in cell death. Inhibition of proliferation was associated with increased p21(Cip1/Waf1) and p27(Kip1) protein levels. Gene transfer of IkappaBalpha super-repressor inhibited development of intimal hyperplasia in vivo and SMC proliferation in vitro

  16. Feasibility study on retinal vascular bypass surgery in isolated arterially perfused caprine eye model

    PubMed Central

    Chen, Y; Wu, W; Zhang, X; Fan, W; Shen, L

    2011-01-01

    Purpose To investigate the feasibility of bypassing occluded segments of retinal venous main vessels in isolated, arterially perfused caprine eyes via the closed-sky vitrectomy approach using keratoprosthesis. Methods Isolated caprine eyes were used in this study. For each eye, the retinal vessel was perfused by Krebs solution via ophthalmic artery, and pars plana vitrectomy was performed using temporary keratoprosthesis. All retinal micro-vascular maneuvers were performed in a closed-sky eyeball. The main retinal vein was blocked by endodiathermy at the site of the vessel's first branching. Two openings, several millimeters apart, were created by vascular punctures in both the main vein and its branch vein wall straddling the induced occluded segment. Catheterization was achieved using a flexible polyimide tube, with each end inserted into the vessel wall opening. A sealed connection between the vessel and the tube was obtained by endodiathermy. Bypass of the occluded retinal vein segment was thus achieved, and the patency of this vascular bypass was confirmed by intravascular staining. Results Puncturing, catheterization, and endodiathermy were viable by closed-sky approach using keratoprosthesis. Bypassing of the occluded retinal main vein segment was accomplished with the combination of these maneuvers. Good results were obtained in 23 of 38 (60%) caprine eyes. Conclusions This study demonstrated that bypassing the occluded segment of retinal main vein can be successfully performed in a closed-sky eyeball model of isolated, arterially perfused caprine eye. This early work indicated that the more advanced retinal vascular bypass surgery in in vivo eye may be feasible in the future. PMID:21921946

  17. Increased Notch3 Activity Mediates pathological Changes in Structure of Cerebral arteries

    PubMed Central

    Baron-Menguy, Celine; Domenga-Denier, Valérie; Ghezali, Lamia; Faraci, Frank; Joutel, Anne

    2016-01-01

    CADASIL, the most frequent genetic cause of stroke and vascular dementia, is caused by highly stereotyped mutations in the NOTCH3 receptor, which is predominantly expressed in vascular smooth muscle. The well-established TgNotch3R169C mouse model develops characteristic features of the human disease, with deposition of NOTCH3 and other proteins, including TIMP3 (tissue inhibitor of metalloproteinase 3), on brain vessels as well as reduced maximal dilation, and attenuated myogenic tone of cerebral arteries, but without elevated blood pressure. Increased TIMP3 levels were recently shown to be a major determinant of altered myogenic tone. In this study, we investigated the contribution of TIMP3 and Notch3 signaling to the impairment of maximal vasodilator capacity caused by the archetypal R169C mutation. Maximally dilated cerebral arteries in TgNotch3R169C mice exhibited a decrease in lumen diameter over a range of physiological pressures that occurred prior to myogenic tone deficits. This defect was not prevented by genetic reduction of TIMP3 in TgNotch3R169C mice and was not observed in mice overexpressing TIMP3. Knock-in mice with the R169C mutation (Notch3R170C/R170C) exhibited similar reductions in arterial lumen, and both TgNotch3R169C and Notch3R170C/R170C mice showed increased cerebral artery expression of Notch3 target genes. Reduced maximal vasodilation was prevented by conditional reduction of Notch activity in smooth muscle of TgNotch3R169C mice and mimicked by conditional activation of Notch3 in smooth muscle, an effect that was blood pressure-independent. We conclude that increased Notch3 activity mediates reduction in maximal dilator capacity of cerebral arteries in CADASIL and may contribute to reductions in cerebral blood flow. PMID:27821617

  18. Tributyltin chloride increases phenylephrine-induced contraction and vascular stiffness in mesenteric resistance arteries from female rats.

    PubMed

    Ribeiro Júnior, Rogério Faustino; Marques, Vinicius Bermond; Nunes, Dieli Oliveira; Ronconi, Karoline de Sousa; de Araújo, Julia F P; Rodrigues, Paula Lopes; Padilha, Alessandra Simão; Vassallo, Dalton Valentim; Graceli, Jones B; Stefanon, Ivanita

    2016-03-15

    Tributyltin chloride (TBT) is an organotin compound that reduces estrogen levels in female rats. We aimed to investigate the effects of TBT exposure on vascular tonus and vascular remodelling in the resistance arteries of female rats. Rats were treated daily with TBT (500 ng/kg) for 15 days. TBT did not change arterial blood pressure but did modify some morpho-physiological parameters of third-order mesenteric resistance arteries in the following ways: (1) decreased lumen and external diameters; (2) increased wall/lm ratio and wall thickness; (3) decreased distensibility and increased stiffness; (4) increased collagen deposition; and (5) increased pulse wave velocity. TBT exposure increased the phenylephrine-induced contractile response in mesenteric resistance arteries. However, vasodilatation responses induced by acetylcholine and sodium nitroprusside were not modified by TBT. It is suggested that TBT exposure reduces vascular nitric oxide (NO) production, because:(1) L-NAME incubation did not cause a leftward shift in the concentration-response curve for phenylephrine; (2) both eNOS protein expression; (3) in situ NO production were reduced. Incubation with L-NAME; and (4) SOD shifted the phenylephrine response curve to the left in TBT rats. Tiron, catalase, ML-171 and VAS2870 decreased vascular reactivity to phenylephrine only in TBT rats. Moreover, increased superoxide anion production was observed in the mesenteric resistance arteries of TBT rats accompanied by an increase in gp91phox, catalase, AT1 receptor and total ERK1/2 protein expression. In conclusion, these findings show that TBT induced alterations are most likely due to a reduction of NO production combined with increased O2(-) production derived from NADPH oxidase and ERK1/2 activation. These findings offer further evidence that TBT is an environmental risk factor for cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Society of vascular surgery vascular registry comparison of carotid artery stenting outcomes for atherosclerotic vs nonatherosclerotic carotid artery disease.

    PubMed

    White, Rodney A; Sicard, Gregorio A; Zwolak, Robert M; Sidawy, Anton N; Schermerhorn, Marc L; Shackelton, Rebecca J; Siami, Flora Sandra

    2010-05-01

    The Vascular Registry (VR) on carotid procedures collects long-term outcomes on carotid artery stenting (CAS) and carotid endarterectomy (CEA) patients. The purpose of this report is to describe in-hospital and 30-day CAS outcomes in patients with atherosclerotic carotid artery disease (CAD; atherosclerosis [ATH]) compared to recurrent carotid stenosis (RES) and radiation-induced stenosis (RAD). The VR collects provider-reported data on CAS using a Web-based data management system. For this report, data were analyzed at the preprocedure, procedure, predischarge, and 30-day intervals. As of November 20, 2008, there were 4017 patients with CAS with discharge data, of which 72% were due to ATH. A total of 2321 patients were available for 30-day outcomes analysis (1623 ATH, 529 restenosis, 119 radiation, 17 dissection, 3 trauma, and 30 other). Baseline demographics showed that ATH occurred in older patients (72-years-old), had the greatest history of coronary artery disease (CAD; 62%), myocardial infarction (MI; 24%), valvular heart disease (8%), arrhythmia (16%), congestive heart failure (CHF; 16%), diabetes mellitus (DM; 35%), and chronic obstructive pulmonary disease (COPD; 20%). RES had a higher degree of baseline stenosis (87.0 vs 85.8 ATH; P = .010), were less likely to be symptomatic (35.5% vs 46.3% ATH; P < .001), but had a greater history of hypertension, peripheral vascular disease (PVD), and smoking. RAD was seen in younger patients (66.6 vs 71.7 ATH; P < .001), were more likely to be male (78.2% vs 60.9% ATH; P < .001), and had less comorbidities overall, with the exception of amaurosis fugax, smoking, and cancer. The only statistically significant difference in perioperative rates was in transient ischemic attack (TIA; 2.7% ATH vs 0.9% RES; P = .02). There were no statistically significant differences in in-hospital death/stroke/MI (ATH 5.4%, RES 3.8%, RAD 4.2%) or at 30 days (ATH 7.1%, RES 5.1%, RAD 5.0%). Even after adjusting for age, gender

  20. Na+, HCO3--cotransporter NBCn1 increases pHi gradients, filopodia, and migration of smooth muscle cells and promotes arterial remodelling.

    PubMed

    Boedtkjer, Ebbe; Bentzon, Jacob F; Dam, Vibeke S; Aalkjaer, Christian

    2016-08-01

    Arterial remodelling can cause luminal narrowing and obstruct blood flow. We tested the hypothesis that cellular acid-base transport facilitates proliferation and migration of vascular smooth muscle cells (VSMCs) and enhances remodelling of conduit arteries. [Formula: see text]-cotransport via NBCn1 (Slc4a7) mediates net acid extrusion and controls steady-state intracellular pH (pHi) in VSMCs of mouse carotid arteries and primary aortic explants. Carotid arteries undergo hypertrophic inward remodelling in response to partial or complete ligation in vivo, but the increase in media area and thickness and reduction in lumen diameter are attenuated in arteries from NBCn1 knock-out compared with wild-type mice. With [Formula: see text] present, gradients for pHi (∼0.2 units magnitude) exist along the axis of VSMC migration in primary explants from wild-type but not NBCn1 knock-out mice. Knock-out or pharmacological inhibition of NBCn1 also reduces filopodia and lowers initial rates of VSMC migration after scratch-wound infliction. Interventions to reduce H(+)-buffer mobility (omission of [Formula: see text] or inhibition of carbonic anhydrases) re-establish axial pHi gradients, filopodia, and migration rates in explants from NBCn1 knock-out mice. The omission of [Formula: see text] also lowers global pHi and inhibits proliferation in primary explants. Under physiological conditions (i.e. with [Formula: see text] present), NBCn1-mediated [Formula: see text] uptake raises VSMC pHi and promotes filopodia, VSMC migration, and hypertrophic inward remodelling. We propose that axial pHi gradients enhance VSMC migration whereas global acidification inhibits VSMC proliferation and media hypertrophy after carotid artery ligation. These findings support a key role of acid-base transport, particularly via NBCn1, for development of occlusive artery disease. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please

  1. Differential sensitivities of pulmonary and coronary arteries to hemoglobin-based oxygen carriers and nitrovasodilators: study in a bovine ex vivo model of vascular strips.

    PubMed

    Fonseca, Vera; Avizinis, Jessica; Moon-Massat, Paula; Freilich, Daniel; Kim, Hae Won; Hai, Chi-Ming

    2010-01-01

    Vasoconstriction is a major adverse effect of first and second generation hemoglobin-based oxygen carriers (HBOCs) that hinders their development as blood substitute. However, intravenous infusion of HBOC-201 (second generation) to patients induces significant pulmonary hypertension without significant coronary vasoconstriction. We compared contractile responses of isolated bovine pulmonary and coronary arterial strips to HBOC-201 and HBOC-205LL.LT.MW600 (third generation), polymerized bovine hemoglobins of different molecular weight, and their attenuation by nitroglycerin, sodium nitroprusside (SNP), and sodium nitrite. Pulmonary arteries developed negligible basal tone, but exhibited HBOC-dependent amplification of phenylephrine-induced contractions. In contrast, coronary arteries developed significant basal tone, and exhibited HBOC-dependent constant force increment to serotonin-induced contractions. Therefore, relative to basal tone, HBOC-induced contractions were greater in pulmonary than coronary arteries. Furthermore, HBOC-205LL.LT.MW600 appeared to be less vasoactive than HBOC-201. Unexpectedly, pulmonary and coronary arteries exhibited differential sensitivities to nitrovasodilators in parallel with their differential sensitivities to HBOC. However, SNP and sodium nitrite induced significant methemoglobin formation from HBOC, whereas nitroglycerin did not. These results suggest that phenotypic differences between pulmonary and coronary vascular smooth muscle cells could explain the differential hypertensive effects of HBOC on pulmonary and coronary circulation in patients. Among the three nitrovasodilators investigated, nitroglycerin appears to be the most promising candidate for attenuating HBOC-induced pulmonary hypertension in older HBOCs.

  2. Phosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition

    PubMed Central

    Xie, Yi; Jin, Yu; Merenick, Bethany L.; Ding, Min; Fetalvero, Kristina M.; Wagner, Robert J.; Mai, Alice; Gleim, Scott; Tucker, David; Birnbaum, Morris J.; Ballif, Bryan A.; Luciano, Amelia K.; Sessa, William C.; Rzucidlo, Eva M.; Powell, Richard J.; Hou, Lin; Zhao, Hongyu; Hwa, John; Yu, Jun; Martin, Kathleen A.

    2015-01-01

    Vascular smooth muscle cells (VSMCs) undergo transcriptionally regulated reversible differentiation in growing and injured blood vessels. This de-differentiation also contributes to VSMC hyperplasia following vascular injury, including that caused by angioplasty and stenting. Stents provide mechanical support and can contain and release rapamycin, an inhibitor of the mammalian target of rapamycin complex 1 (mTORC1). Rapamycin suppresses VSMC hyperplasia and promotes VSMC differentiation. We report that rapamycin-induced differentiation of VSMCs required the transcription factor GATA-6. Inhibition of mTORC1 stabilized GATA-6 and promoted the nuclear accumulation of GATA-6, its binding to DNA, and its transactivation of promoters encoding contractile proteins and inhibitors of proliferation. These effects were mediated by phosphorylation of GATA-6 at Ser290, potentially by Akt2, a kinase that is activated in VSMCs when mTORC1 is inhibited. Rapamycin induced phosphorylation of GATA-6 in wild-type mice, but not in Akt2−/− mice. Intimal hyperplasia after arterial injury was greater in Akt2−/− mice than in wild-type mice, and the exacerbated response in Akt2−/− mice was rescued to a greater extent by local overexpression of the wild-type or phosphomimetic (S290D) mutant GATA-6 than by that of the phosphorylation-deficient (S290A) mutant. Our data indicated that GATA-6 and Akt2 are involved in the mTORC1-mediated regulation of VSMC proliferation and differentiation. Identifying the downstream transcriptional targets of mTORC1 may provide cell type-specific drug targets to combat cardiovascular diseases associated with excessive proliferation of VSMCs. PMID:25969542

  3. Involvement of glutathione/glutathione S-transferase antioxidant system in butyrate-inhibited vascular smooth muscle cell proliferation.

    PubMed

    Ranganna, Kasturi; Mathew, Omana P; Yatsu, Frank M; Yousefipour, Zivar; Hayes, Barbara E; Milton, Shirlette G

    2007-11-01

    Vascular smooth muscle cell (VSMC) proliferation is an important etiological factor in vascular proliferative diseases such as primary atherosclerosis, hypertension, arterial and in-stent restenosis, and transplant vasculopathy. Our studies established that butyrate, a bacterial fermentation product of dietary fiber and a chromatin modulator, is a potent inhibitor of VSMC proliferation. The cardiovascular health benefits of a high-fiber diet, the principle source of butyrate in the body, have been known for a long time, however, very little is known about the antiatherogenic potential of butyrate. Because oxidative stress plays an important role in the pathogenesis of atherosclerosis, we examined involvement of the glutathione/glutathione S-transferase (GST) antioxidant system in butyrate's inhibition of VSMC proliferation. Treatment of proliferating VSMCs with butyrate leads to the induction of several GSTs. Interestingly, our study also demonstrated the nuclear localization of GST-P1 (GST-7-7), which is considered to be a cytosolic protein; this was demonstrated using immunostaining and was corroborated by western blotting. Also, the butyrate-induced antiproliferative action, and the induction of GST-P1 and its nuclear localization are downregulated when butyrate is withdrawn. Furthermore, assessment of intracellular glutathione levels reveals their augmentation by butyrate. Conversely, butyrate treatment reduces the levels of reactive oxygen species in VSMCs. Collectively, the butyrate-treatment-related increase in glutathione content, the reduction in reactive oxygen species, the upregulation of GST and the nuclear localization of GST-P1 in growth-arrested VSMCs imply that butyrate's antiproliferative action involves modulation of the cellular redox state. Thus, induction of the glutathione/GST antioxidant system appears to have other regulatory role(s) besides detoxification and regulation of the cellular redox state, for example, cell-cycle control and cell

  4. The role of perivascular adipose tissue in vascular smooth muscle cell growth

    PubMed Central

    Miao, Chao-Yu; Li, Zhi-Yong

    2012-01-01

    Adipose tissue is the largest endocrine organ, producing various adipokines and many other substances. Almost all blood vessels are surrounded by perivascular adipose tissue (PVAT), which has not received research attention until recently. This review will discuss the paracrine actions of PVAT on the growth of underlying vascular smooth muscle cells (VSMCs). PVAT can release growth factors and inhibitors. Visfatin is the first identified growth factor derived from PVAT. Decreased adiponectin and increased tumour necrosis factor-α in PVAT play a pathological role for neointimal hyperplasia after endovascular injury. PVAT-derived angiotensin II, angiotensin 1–7, reactive oxygen species, complement component 3, NO and H2S have a paracrine action on VSMC contraction, endothelial or fibroblast function; however, their paracrine actions on VSMC growth remain to be directly verified. Factors such as monocyte chemoattractant protein-1, interleukin-6, interleukin-8, leptin, resistin, plasminogen activator inhibitor type-1, adrenomedullin, free fatty acids, glucocorticoids and sex hormones can be released from adipose tissue and can regulate VSMC growth. Most of them have been verified for their secretion by PVAT; however, their paracrine functions are unknown. Obesity, vascular injury, aging and infection may affect PVAT, causing adipocyte abnormality and inflammatory cell infiltration, inducing imbalance of PVAT-derived growth factors and inhibitors, leading to VSMC growth and finally resulting in development of proliferative vascular disease, including atherosclerosis, restenosis and hypertension. In the future, using cell-specific gene interventions and local treatments may provide definitive evidence for identification of key factor(s) involved in PVAT dysfunction-induced vascular disease and thus may help to develop new therapies. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section

  5. Benefits of Synchrotron Microangiography for Dynamic Studies of Smooth Muscle and Endothelial Roles in the Pathophysiology of Vascular Disease

    NASA Astrophysics Data System (ADS)

    Pearson, James T.; Schwenke, Daryl O.; Jenkins, Mathew J.; Edgley, Amanda J.; Sonobe, Takashi; Ishibashi-Ueda, Hatsue; Umetani, Keiji; Eppel, Gabriela A.; Evans, Roger G.; Okura, Yasuhiko; Shirai, Mikiyasu

    2010-07-01

    Changes in endothelial and smooth muscle function compromise organ perfusion in the chronic disease states of diabetes, atherosclerosis and hypertension. Moreover, vascular dysfunction increases the likelihood of lethal acute events such as myocardial infarction and stroke, which are now leading causes of adult mortality. Many circulating and local tissue factors in these disease states contribute to impaired vasomotor regulation of the arterial vessels, leading to spasm, chronic constriction and eventually vessel remodelling. X-ray contrast absorption imaging allows assessment of vessel lumen diameter and the factors contributing to steady-state vessel calibre, however, conventional clinical devices (>200 μm resolution) are not adequate to detect microvessels or accurately assess function in real time. Using synchrotron imaging we are now able to detect small vessel calibres (˜30 μm) and quantify regional differences in calibre even under conditions of high heart rate (>500 bpm). Herein we describe recent experiments that were conducted at the Japanese Synchrotron, SPring-8 using anaesthetised Sprague-Dawley rats and C57Bl/6 mice and a synchrotron radiation contrast angiography (single narrow energy bandwidth) approach based on selective arterial injection of iodine contrast agents. Application of this approach to imaging of the heart and other vasculatures are described. Our studies show that within-animal comparisons of 3-4 branching orders of arterial vessels are possible using small bolus contrast injections and appropriate contrast washout times (15-30 min) in many organ systems. Determination of relative calibre changes before and after any treatment allows us to evaluate the contributions of different endogenous factors and ligand-receptor pathways in the maintenance of vasomotor tone. Finally, we will present our findings relating to novel therapies to prevent endothelial dysfunction in heart failure.

  6. Benefits of Synchrotron Microangiography for Dynamic Studies of Smooth Muscle and Endothelial Roles in the Pathophysiology of Vascular Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, James T.; Department of Physiology, Monash University, 3800 Clayton; Schwenke, Daryl O.

    2010-07-23

    Changes in endothelial and smooth muscle function compromise organ perfusion in the chronic disease states of diabetes, atherosclerosis and hypertension. Moreover, vascular dysfunction increases the likelihood of lethal acute events such as myocardial infarction and stroke, which are now leading causes of adult mortality. Many circulating and local tissue factors in these disease states contribute to impaired vasomotor regulation of the arterial vessels, leading to spasm, chronic constriction and eventually vessel remodelling. X-ray contrast absorption imaging allows assessment of vessel lumen diameter and the factors contributing to steady-state vessel calibre, however, conventional clinical devices (>200 {mu}m resolution) are not adequatemore » to detect microvessels or accurately assess function in real time. Using synchrotron imaging we are now able to detect small vessel calibres ({approx}30 {mu}m) and quantify regional differences in calibre even under conditions of high heart rate (>500 bpm). Herein we describe recent experiments that were conducted at the Japanese Synchrotron, SPring-8 using anaesthetised Sprague-Dawley rats and C57Bl/6 mice and a synchrotron radiation contrast angiography (single narrow energy bandwidth) approach based on selective arterial injection of iodine contrast agents. Application of this approach to imaging of the heart and other vasculatures are described. Our studies show that within-animal comparisons of 3-4 branching orders of arterial vessels are possible using small bolus contrast injections and appropriate contrast washout times (15-30 min) in many organ systems. Determination of relative calibre changes before and after any treatment allows us to evaluate the contributions of different endogenous factors and ligand-receptor pathways in the maintenance of vasomotor tone. Finally, we will present our findings relating to novel therapies to prevent endothelial dysfunction in heart failure.« less

  7. Responses of enzymatically isolated mammalian vascular smooth muscle cells to pharmacological and electrical stimuli.

    PubMed

    DeFeo, T T; Morgan, K G

    1985-05-01

    A modified method for enzymatically isolating mammalian vascular smooth muscle cells has been developed and tested for ferret portal vein smooth muscle. This method produces a high proportion of fully relaxed cells and these cells appear to have normal pharmacological responsiveness. The ED50 values for both alpha stimulation and potassium depolarization are not significantly different in the isolated cells from those obtained from intact strips of ferret portal vein, suggesting that the enzymatic treatment does not destroy receptors or alter the electrical responsiveness of the cells. It was also possible to demonstrate a vasodilatory action of papaverine, nitroprusside and adenosine directly on the isolated cells indicating that the pathways involved are intact in the isolated cells. This method should be of considerable usefulness, particularly in combination with the new fluorescent indicators and cell sorter techniques which require isolated cells.

  8. Actin isoform and alpha 1B-adrenoceptor gene expression in aortic and coronary smooth muscle is influenced by cyclical stretch.

    PubMed

    Lundberg, M S; Sadhu, D N; Grumman, V E; Chilian, W M; Ramos, K S

    1995-09-01

    The occurrence of vascular domains with specific biological and pharmacological characteristics suggests that smooth muscle cells in different arteries may respond differentially to a wide range of environmental stimuli. To determine if some of these vessel-specific differences may be attributable to mechano-sensitive gene regulation, the influence of cyclical stretch on the expression of actin isoform and alpha 1B-adrenoceptor genes was examined in aortic and coronary smooth muscle cells. Cells were seeded on an elastin substrate and subjected to maximal stretching (24% elongation) and relaxation cycles at a frequency of 120 cycles/min in a Flexercell strain unit for 72 h. Total RNA was extracted and hybridized to radiolabeled cDNA probes to assess gene expression. Stretch caused a greater reduction of actin isoform mRNA levels in aortic smooth muscle cells as compared to cells from the coronary artery. Steady-state mRNA levels of alpha 1B-adrenoceptor were also decreased by cyclical stretch in both cell types but the magnitude of the response was greater in coronary smooth muscle cells. No changes in alpha 1B-adrenoceptor or beta/gamma-actin steady-state mRNA levels were observed in H4IIE cells, a nonvascular, immortalized cell line. The relative gene expression of heat shock protein 70 was not influenced by the cyclic stretch regimen in any of these cell types. These results suggest that stretch may participate in the regulation of gene expression in vascular smooth muscle cells and that this response exhibits some degree of cell-specificity.

  9. Protein disulfide isomerase-mediated apoptosis and proliferation of vascular smooth muscle cells induced by mechanical stress and advanced glycosylation end products result in diabetic mouse vein graft atherosclerosis

    PubMed Central

    Ping, Suning; Liu, Shuying; Zhou, Yuhuan; Li, Ziqing; Li, Yuhuang; Liu, Kefeng; Bardeesi, Adham SA; Wang, Linli; Chen, Jingbo; Deng, Lie; Wang, Jingjing; Wang, Hong; Chen, Dadi; Zhang, Zhengyu; Sheng, Puyi; Li, Chaohong

    2017-01-01

    Protein disulfide isomerase (PDI) involves cell survival and death. Whether PDI mediates mechanical stretch stress (SS) and/or advanced glycosylation end products (AGEs) -triggered simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells (VSMCs) is unknown. Here, we hypothesized that different expression levels of PDI trigger completely opposite cell fates among the different VSMC subtypes. Mouse veins were grafted into carotid arteries of non-diabetic and diabetic mice for 8 weeks; the grafted veins underwent simultaneous increases in proliferation and apoptosis, which triggered vein graft arterializations in non-diabetic or atherosclerosis in diabetic mice. A higher rate of proliferation and apoptosis was seen in the diabetic group. SS and/or AGEs stimulated the quiescent cultured VSMCs, resulting in simultaneous increases in proliferation and apoptosis; they could induce increased PDI activation and expression. Both in vivo and in vitro, the proliferating VSMCs indicated weak co-expression of PDI and SM-α-actin while apoptotic or dead cells showed strong co-expression of both. Either SS or AGEs rapidly upregulated the expression of PDI, NOX1 and ROS, and their combination had synergistic effects. Inhibiting PDI simultaneously suppressed the proliferation and apoptosis of VSMCs, while inhibition of SM-α-actin with cytochalasin D led to increased apoptosis and cleaved caspases-3 but had no effect on proliferation. In conclusion, different expression levels of PDI in VSMCs induced by SS and/or AGEs triggered a simultaneous increase in proliferation and apoptosis, accelerated vein graft arterializations or atherosclerosis, leading us to propose PDI as a novel target for the treatment of vascular remodeling and diseases. PMID:28542133

  10. MicroRNA-124 controls human vascular smooth muscle cell phenotypic switch via Sp1.

    PubMed

    Tang, Yangfeng; Yu, Shangyi; Liu, Yang; Zhang, Jiajun; Han, Lin; Xu, Zhiyun

    2017-09-01

    Phenotypic switch of vascular smooth muscle cells (VSMCs) plays an important role in the pathogenesis of atherosclerosis and aortic dissection. However, the mechanisms of phenotypic modulation are still unclear. MicroRNAs have emerged as important regulators of VSMC function. We recently found that microRNA-124 (miR-124) was downregulated in proliferative vascular diseases that were characterized by a VSMC phenotypic switch. Therefore, we speculated that the aberrant expression of miR-124 might play a critical role in human aortic VSMC phenotypic switch. Using quantitative RT-PCR, we found that miR-124 was dramatically downregulated in the aortic media of clinical specimens of the dissected aorta and correlated with molecular markers of the contractile VSMC phenotype. Overexpression of miR-124 by mimicking transfection significantly attenuated platelet-derived growth factor-BB-induced human aortic VSMC proliferation and phenotypic switch. Furthermore, we identified specificity protein 1 (Sp1) as the downstream target of miR-124. A luciferase reporter assay was used to confirm direct miR-124 targeting of the 3'-untranslated region of the Sp1 gene and repression of Sp1 expression in human aortic VSMCs. Furthermore, constitutively active Sp1 in miR-124-overexpressing VSMCs reversed the antiproliferative effects of miR-124. These results demonstrated a novel mechanism of miR-124 modulation of VSMC phenotypic switch by targeting Sp1 expression. NEW & NOTEWORTHY Previous studies have demonstrated that miR-124 is involved in the proliferation of a variety of cell types. However, miRNAs are expressed in a tissue-specific manner. We first identified miR-124 as a critical regulator in human aortic vascular smooth muscle cell differentiation, proliferation, and phenotype switch by targeting the 3'-untranslated region of specificity protein 1. Copyright © 2017 the American Physiological Society.

  11. Influence of postprandial triglyceride-rich lipoproteins on lipid-mediated gene expression in smooth muscle cells of the human coronary artery.

    PubMed

    Bermúdez, Beatriz; López, Sergio; Pacheco, Yolanda M; Villar, José; Muriana, Francisco J G; Hoheisel, Jöerg D; Bauer, Andrea; Abia, Rocío

    2008-07-15

    Postprandial triglyceride-rich lipoproteins (TRL) have a direct effect on vascular smooth muscle cells (SMC) and they increase the risk of atherogenesis. Here, we have tested the hypothesis that the different fatty acid composition of TRL is capable of differentially modifying gene expression in human coronary artery SMC (CASMC). In addition, the effect of TRL on cell proliferation and transcription factor activation was also evaluated. TRL were prepared from plasma of healthy volunteers after the ingestion of meals enriched in refined olive oil (ROO), butter or a mixture of vegetable and fish oils (VEFO). We use cDNA microarrays to determine the genes differentially expressed in TRL-treated CASMC. Correspondence cluster analysis demonstrated that TRL-butter, -ROO and -VEFO provoked different transcriptional profiles in CASMC. Sixty-six genes were regulated by TRL-butter, 55 by -ROO, and 47 by -VEFO. The data revealed that TRL-butter predominantly activated genes involved in the regulation of cell proliferation and inflammation. Likewise, TRL-VEFO induced the expression of genes implicated in inflammation, while TRL-ROO promoted a less atherogenic gene profile. The pathophysiological contribution of TRL to the development of atherosclerosis and the stability of atherosclerotic plaques may depend on the fatty acid composition of TRL. Our findings suggest a role for macrophage-inhibiting cytokine-1 (MIC-1) in coronary artery cardiovascular events.

  12. A natural protective mechanism against hyperglycaemia in vascular endothelial and smooth-muscle cells: role of glucose and 12-hydroxyeicosatetraenoic acid.

    PubMed Central

    Alpert, Evgenia; Gruzman, Arie; Totary, Hanan; Kaiser, Nurit; Reich, Reuven; Sasson, Shlomo

    2002-01-01

    Bovine aortic endothelial and smooth-muscle cells down-regulate the rate of glucose transport in the face of hyperglycaemia, thus providing protection against deleterious effects of increased intracellular glucose levels. When exposed to high glucose concentrations these cells reduced the mRNA and protein content of their typical glucose transporter, GLUT-1, as well as its plasma-membrane abundance. Inhibition of the lipoxygenase (LO) pathway, and particularly 12-LO, reversed this glucose-induced down-regulatory process and restored the rate of hexose transport to the level seen in vascular cells exposed to normal glucose levels. This reversal was accompanied by increased levels of GLUT-1 mRNA and protein, as well as of its plasma-membrane content. Exposure of the vascular cells to elevated glucose concentrations increased by 2-3-fold the levels of cell-associated and secreted 12-hydroxyeicosatetraenoic acid (12-HETE), the product of 12-LO. Inhibition of 15- and 5-LO, cyclo-oxygenases 1 and 2, and eicosanoid-producing cytochrome P450 did not modify the hexose-transport system in vascular cells. These results suggest a role for HETEs in the autoregulation of hexose transport in vascular cells. 8-Iso prostaglandin F(2alpha), a non-enzymic oxidation product of arachidonic acid, had no effect on the hexose-transport system in vascular cells exposed to hyperglycaemic conditions. Taken together, these findings show that hyperglycaemia increases the production rate of 12-HETE, which in turn mediates the down-regulation of GLUT-1 expression and the glucose-transport system in vascular endothelial and smooth-muscle cells. PMID:11853550

  13. Effect of carboxyl-reduced heparin on the growth inhibition of bovine pulmonary artery smooth muscle cells

    PubMed Central

    G.Garg, Hari; Mrabat, Hicham; Yu, Lunyin; Freeman, Craig; Li, Boyangzi; Zhang, Fuming; Linhardt, Robert J.; Hales, Charles A.

    2010-01-01

    Heparin (HP) inhibits the proliferation of bovine pulmonary artery smooth muscle cells (BPASMC's), among other cell types in vitro. In order to develop a potential therapeutic agent to reverse vascular remodeling, we are involved in deciphering the relationship between the native HP structure and its antiproliferative potency. We have previously reported the influence of the molecular size and the effects of various O-sulfo and N-acetyl groups of HP on growth-inhibitory activity. In this study, to understand the influence of carboxyl groups in the HP structure required for endogenous activity, a chemically modified derivative of native HP was prepared by converting the carboxyl groups of hexuronic acid residues in HP to primary hydroxyl groups. This modification procedure involves the treatment of HP with N-(3-dimethylaminopropyl)-N-ethylcarbodiimide followed by reduction with NaBH4 to yield carboxyl-reduced heparin (CR-HP). When compared to the antiproliferative potency of native HP on cultured BPASMC's at three dose levels (1, 10, and 100 μg/mL), the CR-HP showed significantly less potency at all the doses. These results suggest that hexuronic acid residues in both major and variable sequences in HP are essential for the antiproliferative properties of native HP. PMID:20399420

  14. Vascular resistance of central retinal artery is reduced in postmenopausal women after use of estrogen.

    PubMed

    Faria, Alice Fátima Melgaço; de Souza, Marco Aurélio Martins; Geber, Selmo

    2011-08-01

    The aim of this study was to evaluate the effect of estrogen on the vascular resistance of the central retinal artery in postmenopausal women, compared with placebo, using transorbital ultrasound with Doppler velocimetry. We performed a prospective, randomized, triple-blinded placebo-controlled study. A total of 51 healthy postmenopausal women (follicle-stimulating hormone, >40 IU/L) with a mean (SD) age of 53.6 (4.8) years were studied. Participants were randomly allocated into two groups: placebo (n = 23) and estrogen (0.625 mg conjugated estrogens; n = 28). Transorbital Doppler velocimetric ultrasound was performed before and after treatment in sitting and supine positions. The mean age was similar in both groups. The pulsatility index of the central retinal arteries had a significant decrease after the use of estrogen, when women were evaluated in the sitting position. Women who received placebo did not show any difference in pulsatility index of the central retinal arteries after treatment. When the same comparison was done with participants in the supine position, no difference was observed in either group. Our study demonstrates that estrogen reduces the vascular resistance of the central retinal artery in postmenopausal women because of a vasodilatory effect.

  15. The cancer theory of pulmonary arterial hypertension

    PubMed Central

    Boucherat, Olivier; Vitry, Geraldine; Trinh, Isabelle; Paulin, Roxane; Provencher, Steeve; Bonnet, Sebastien

    2017-01-01

    Pulmonary arterial hypertension (PAH) remains a mysterious killer that, like cancer, is characterized by tremendous complexity. PAH development occurs under sustained and persistent environmental stress, such as inflammation, shear stress, pseudo-hypoxia, and more. After inducing an initial death of the endothelial cells, these environmental stresses contribute with time to the development of hyper-proliferative and apoptotic resistant clone of cells including pulmonary artery smooth muscle cells, fibroblasts, and even pulmonary artery endothelial cells allowing vascular remodeling and PAH development. Molecularly, these cells exhibit many features common to cancer cells offering the opportunity to exploit therapeutic strategies used in cancer to treat PAH. In this review, we outline the signaling pathways and mechanisms described in cancer that drive PAH cells’ survival and proliferation and discuss the therapeutic potential of antineoplastic drugs in PAH. PMID:28597757

  16. The tight junction protein ZO-2 and Janus kinase 1 mediate intercellular communications in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkachuk, Natalia; Tkachuk, Sergey; Patecki, Margret

    2011-07-08

    Highlights: {yields} The tight junction protein ZO-2 associates with Jak1 in vascular smooth muscle cells via ZO-2 N-terminal fragment. {yields} Jak1 mediates ZO-2 tyrosine phosphorylation and ZO-2 localization to the sites of homotypic intercellular contacts. {yields} The urokinase receptor uPAR regulates ZO-2/Jak1 functional association. {yields} The ZO-2/Jak1/uPAR signaling complex is required for vascular smooth muscle cells functional network formation. -- Abstract: Recent evidence points to a multifunctional role of ZO-2, the tight junction protein of the MAGUK (membrane-associated guanylate kinase-like) family. Though ZO-2 has been found in cell types lacking tight junction structures, such as vascular smooth muscle cells (VSMC),more » little is known about ZO-2 function in these cells. We provide evidence that ZO-2 mediates specific homotypic cell-to-cell contacts between VSMC. Using mass spectrometry we found that ZO-2 is associated with the non-receptor tyrosine kinase Jak1. By generating specific ZO-2 constructs we further found that the N-terminal fragment of ZO-2 molecule is responsible for this interaction. Adenovirus-based expression of Jak1 inactive mutant demonstrated that Jak1 mediates ZO-2 tyrosine phosphorylation. By means of RNA silencing, expression of Jak1 mutant form and fluorescently labeled ZO-2 fusion protein we further specified that active Jak1, but not Jak1 inactive mutant, mediates ZO-2 localization to the sites of intercellular contacts. We identified the urokinase receptor uPAR as a pre-requisite for these cellular events. Functional requirement of the revealed signaling complex for VSMC network formation was confirmed in experiments using Matrigel and in contraction assay. Our findings imply involvement of the ZO-2 tight junction independent signaling complex containing Jak1 and uPAR in VSMC intercellular communications. This mechanism may contribute to vascular remodeling in occlusive cardiovascular diseases and in

  17. Peroxisome proliferator-activated receptor (PPAR)-gamma expression in human vascular smooth muscle cells: inhibition of growth, migration, and c-fos expression by the peroxisome proliferator-activated receptor (PPAR)-gamma activator troglitazone.

    PubMed

    Benson, S; Wu, J; Padmanabhan, S; Kurtz, T W; Pershadsingh, H A

    2000-01-01

    This study was conducted to determine whether cultured human coronary artery and aorta vascular smooth muscle (VSM) cells express the nuclear transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma); whether the thiazolidinedione troglitazone, a ligand for PPARgamma, would inhibit c-fos expression by these cells; and whether troglitazone would inhibit proliferation and migration induced in these cells by mitogenic growth factors. Using immunoblotting and reverse-transcriptase polymerase chain reaction (RT-PCR) techniques, we show that both human aorta and coronary artery VSM cell lines expressed PPARgamma protein and mRNA for both PPARgamma isoforms, PPARgamma1 and PPARgamma2. Immunocytochemical staining localized the PPARgamma protein primarily within the nucleus. Troglitazone inhibited basic fibroblast growth factor and platelet-derived growth factor-BB induced DNA synthesis in a dose-dependent manner and downregulated the growth-factor-induced expression of c-fos. Troglitazone also inhibited the migration of coronary artery VSM cells along a platelet-derived growth factor-BB concentration gradient. These findings demonstrate for the first time the expression and nuclear localization of PPARgamma in human coronary artery and aorta VSM cells. The data also suggest that the downregulation of c-fos expression, growth-factor-induced proliferation, and migration by VSM may, in part, be mediated by activation of the PPARgamma receptor.

  18. Effects of serotonin on expression of the LDL receptor family member LR11 and 7-ketocholesterol-induced apoptosis in human vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagayama, Daiji; Ishihara, Noriko; Bujo, Hideaki

    2014-04-18

    Highlights: • The dedifferentiation of VSMCs in arterial intima is involved in atherosclerosis. • 5-HT showed proliferative effect on VSMCs which was abolished by sarpogrelate. • 5-HT enhanced expression of LR11 mRNA in VSMCs which was abolished by sarpogrelate. • 5-HT suppressed 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. • The mechanisms explain the 5-HT-induced remodeling of arterial structure. - Abstract: Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute tomore » the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. These findings provide new insights on the changes in the differentiation stage of VSMCs mediated by 5-HT.« less

  19. Lysyl Oxidase Induces Vascular Oxidative Stress and Contributes to Arterial Stiffness and Abnormal Elastin Structure in Hypertension: Role of p38MAPK

    PubMed Central

    Martínez-Revelles, Sonia; García-Redondo, Ana B.; Avendaño, María S.; Varona, Saray; Palao, Teresa; Orriols, Mar; Roque, Fernanda R.; Fortuño, Ana; Touyz, Rhian M.; Martínez-González, Jose; Salaices, Mercedes

    2017-01-01

    Abstract Aims: Vascular stiffness, structural elastin abnormalities, and increased oxidative stress are hallmarks of hypertension. Lysyl oxidase (LOX) is an elastin crosslinking enzyme that produces H2O2 as a by-product. We addressed the interplay between LOX, oxidative stress, vessel stiffness, and elastin. Results: Angiotensin II (Ang II)-infused hypertensive mice and spontaneously hypertensive rats (SHR) showed increased vascular LOX expression and stiffness and an abnormal elastin structure. Mice over-expressing LOX in vascular smooth muscle cells (TgLOX) exhibited similar mechanical and elastin alterations to those of hypertensive models. LOX inhibition with β-aminopropionitrile (BAPN) attenuated mechanical and elastin alterations in TgLOX mice, Ang II-infused mice, and SHR. Arteries from TgLOX mice, Ang II-infused mice, and/or SHR exhibited increased vascular H2O2 and O2.− levels, NADPH oxidase activity, and/or mitochondrial dysfunction. BAPN prevented the higher oxidative stress in hypertensive models. Treatment of TgLOX and Ang II-infused mice and SHR with the mitochondrial-targeted superoxide dismutase mimetic mito-TEMPO, the antioxidant apocynin, or the H2O2 scavenger polyethylene glycol-conjugated catalase (PEG-catalase) reduced oxidative stress, vascular stiffness, and elastin alterations. Vascular p38 mitogen-activated protein kinase (p38MAPK) activation was increased in Ang II-infused and TgLOX mice and this effect was prevented by BAPN, mito-TEMPO, or PEG-catalase. SB203580, the p38MAPK inhibitor, normalized vessel stiffness and elastin structure in TgLOX mice. Innovation: We identify LOX as a novel source of vascular reactive oxygen species and a new pathway involved in vascular stiffness and elastin remodeling in hypertension. Conclusion: LOX up-regulation is associated with enhanced oxidative stress that promotes p38MAPK activation, elastin structural alterations, and vascular stiffness. This pathway contributes to vascular abnormalities in

  20. [The effect of calcitonin gene-related peptide on collagen accumulation in pulmonary arteries of rats with hypoxic pulmonary arterial hypertension].

    PubMed

    Li, Xian-Wei; Du, Jie; Li, Yuan-Jian

    2013-03-01

    To observe the effect of calcitonin gene-related peptide (CGRP) on pulmonary vascular collagen accumulation in hypoxia rats in order to study the effect of CGRP on hypoxic pulmonary vascular structural remodeling and its possible mechanism. Rats were acclimated for 1 week, and then were randomly divided into three groups: normoxia group, hypoxia group, and hypoxia plus capsaicin group. Pulmonary arterial hypertension was induced by hypoxia in rats. Hypoxia plus capsaicin group, rats were given capsaicin (50 mg/(kg x d), s.c) 4 days before hypoxia to deplete endogenous CGRP. Hypoxia (3% O2) stimulated proliferation of pulmonary arterial smooth muscle cells (PASMCs) and proliferation was measured by BrdU marking. The expression levels of CGRP, phosphorylated ERK1/2 (p-ERK1/ 2), collagen I and collagen III were detected by real-time PCR or Western blot. Right ventricle systolic pressure (RVSP) and mean pulmonary arterial pressure (mPAP) of pulmonary arterial hypertension (PAH) rats induced by hypoxia were higher than those of normoxia rats. By HE and Masson staining, it was demonstrated that hypoxia also significantly induced hypertrophy of pulmonary arteries and increased level of collagen accumulation. Hypoxia dramatically decreased the CGRP level and increased the expression of p-ERK1/2, collagen I, collagen III in pulmonary arteries. All these effects of hypoxia were further aggravated by pre-treatment of rats with capsaicin. CGRP concentration-dependently inhibited hypoxia-induced proliferation of PASMCs, markedly decreased the expression of p-ERK1/2, collagen I and collagen III. All these effects of CGRP were abolished in the presence of CGRP8-37. These results suggest that CGRP might inhibit hypoxia-induced PAH and pulmonary vascular remodeling, through inhibiting phosphorylation of ERK1/2 and alleviating the collagen accumulation of pulmonary arteries.

  1. Calcium-independent phospholipase A2 participates in KCl-induced calcium sensitization of vascular smooth muscle.

    PubMed

    Ratz, Paul H; Miner, Amy S; Barbour, Suzanne E

    2009-07-01

    In vascular smooth muscle, KCl not only elevates intracellular free Ca(2+) ([Ca(2+)](i)), myosin light chain kinase activity and tension (T), but also can inhibit myosin light chain phosphatase activity by activation of rhoA kinase (ROCK), resulting in Ca(2+) sensitization (increased T/[Ca(2+)](i) ratio). Precisely how KCl causes ROCK-dependent Ca(2+) sensitization remains to be determined. Using Fura-2-loaded isometric rings of rabbit artery, we found that the Ca(2+)-independent phospholipase A(2) (iPLA(2)) inhibitor, bromoenol lactone (BEL), reduced the KCl-induced tonic but not early phasic phase of T and potentiated [Ca(2+)](i), reducing Ca(2+) sensitization. The PKC inhibitor, GF-109203X (> or =3 microM) and the pseudo-substrate inhibitor of PKCzeta produced a response similar to BEL. BEL reduced basal and KCl-stimulated myosin phosphatase phosphorylation. Whereas BEL and H-1152 produced strong inhibition of KCl-induced tonic T (approximately 50%), H-1152 did not induce additional inhibition of tissues already inhibited by BEL, suggesting that iPLA(2) links KCl stimulation with ROCK activation. The cPLA(2) inhibitor, pyrrolidine-1, inhibited KCl-induced tonic increases in [Ca(2+)](i) but not T, whereas the inhibitor of 20-HETE production, HET0016, acted like the ROCK inhibitor H-1152 by causing Ca(2+) desensitization. These data support a model in which iPLA(2) activity regulates Ca(2+) sensitivity.

  2. Effect of simvastatin on vascular tone in porcine coronary artery: Potential role of the mitochondria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almukhtar, H.; Garle, M.J.; Smith, P.A.

    2016-08-15

    Statins induce acute vasorelaxation which may contribute to the overall benefits of statins in the treatment of cardiovascular disease. The mechanism underlying this relaxation is unknown. As statins have been shown to alter mitochondrial function, in this study we investigated the role of mitochondria in the relaxation to simvastatin. Relaxation of porcine coronary artery segments by statins was measured using isolated tissue baths. Mitochondrial activity was determined by measuring changes in rhodamine 123 fluorescence. Changes in intracellular calcium levels were determined in freshly isolated smooth muscle cells with Fluo-4 using standard epifluorescent imaging techniques. Simvastatin, but not pravastatin, produced amore » slow relaxation of the coronary artery, which was independent of the endothelium. The relaxation was attenuated by the mitochondrial complex I inhibitor rotenone (10 μM) and the complex III inhibitor myxothiazol (10 μM), or a combination of the two. The complex III inhibitor antimycin A (10 μM) produced a similar time-dependent relaxation of the porcine coronary artery, which was attenuated by rotenone. Changes in rhodamine 123 fluorescence showed that simvastatin (10 μM) depolarized the membrane potential of mitochondria in both isolated mitochondria and intact blood vessels. Simvastatin and antimycin A both inhibited calcium-induced contractions in isolated blood vessels and calcium influx in smooth muscle cells and this inhibition was prevented by rotenone. In conclusion, simvastatin produces an endothelium-independent relaxation of the porcine coronary artery which is dependent, in part, upon effects on the mitochondria. The effects on the mitochondria may lead to a reduction in calcium influx and hence relaxation of the blood vessel. - Highlights: • Simvastatin produces a relaxation of the porcine coronary artery. • This relaxation is inhibited by mitochondrial complex inhibitors. • Simvastatin alters mitochondrial membrane

  3. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease.

    PubMed

    Dohadwala, Mustali M; Holbrook, Monika; Hamburg, Naomi M; Shenouda, Sherene M; Chung, William B; Titas, Megan; Kluge, Matthew A; Wang, Na; Palmisano, Joseph; Milbury, Paul E; Blumberg, Jeffrey B; Vita, Joseph A

    2011-05-01

    Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. We completed an acute pilot study with no placebo (n = 15) and a chronic placebo-controlled crossover study (n = 44) that examined the effects of cranberry juice on vascular function in subjects with coronary artery disease. In the chronic crossover study, subjects with coronary heart disease consumed a research preparation of double-strength cranberry juice (54% juice, 835 mg total polyphenols, and 94 mg anthocyanins) or a matched placebo beverage (480 mL/d) for 4 wk each with a 2-wk rest period between beverages. Beverage order was randomly assigned, and participants refrained from consuming other flavonoid-containing beverages during the study. Vascular function was measured before and after each beverage, with follow-up testing ≥12 h after consumption of the last beverage. Mean (±SD) carotid-femoral pulse wave velocity, a measure of central aortic stiffness, decreased after cranberry juice (8.3 ± 2.3 to 7.8 ± 2.2 m/s) in contrast with an increase after placebo (8.0 ± 2.0 to 8.4 ± 2.8 m/s) (P = 0.003). Brachial artery flow-mediated dilation, digital pulse amplitude tonometry, blood pressure, and carotid-radial pulse wave velocity did not change. In the uncontrolled pilot study, we observed improved brachial artery flow-mediated dilation (7.7 ± 2.9% to 8.7 ± 3.1%, P = 0.01) and digital pulse amplitude tonometry ratio (0.10 ± 0.12 to 0.23 ± 0.16, P = 0.001) 4 h after consumption of a single 480-mL portion of cranberry juice. Chronic cranberry juice consumption reduced carotid femoral pulse wave velocity-a clinically relevant measure of arterial stiffness. The uncontrolled pilot study suggested an acute benefit; however, no chronic effect on measures of endothelial vasodilator function was found. This trial

  4. Vascular smooth muscle cell phenotypic changes in patients with Marfan syndrome.

    PubMed

    Crosas-Molist, Eva; Meirelles, Thayna; López-Luque, Judit; Serra-Peinado, Carla; Selva, Javier; Caja, Laia; Gorbenko Del Blanco, Darya; Uriarte, Juan José; Bertran, Esther; Mendizábal, Yolanda; Hernández, Vanessa; García-Calero, Carolina; Busnadiego, Oscar; Condom, Enric; Toral, David; Castellà, Manel; Forteza, Alberto; Navajas, Daniel; Sarri, Elisabet; Rodríguez-Pascual, Fernando; Dietz, Harry C; Fabregat, Isabel; Egea, Gustavo

    2015-04-01

    Marfan's syndrome is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix microfibrils and chronic tissue growth factor (TGF)-β signaling. TGF-β is a potent regulator of the vascular smooth muscle cell (VSMC) phenotype. We hypothesized that as a result of the chronic TGF-β signaling, VSMC would alter their basal differentiation phenotype, which could facilitate the formation of aneurysms. This study explores whether Marfan's syndrome entails phenotypic alterations of VSMC and possible mechanisms at the subcellular level. Immunohistochemical and Western blotting analyses of dilated aortas from Marfan patients showed overexpression of contractile protein markers (α-smooth muscle actin, smoothelin, smooth muscle protein 22 alpha, and calponin-1) and collagen I in comparison with healthy aortas. VSMC explanted from Marfan aortic aneurysms showed increased in vitro expression of these phenotypic markers and also of myocardin, a transcription factor essential for VSMC-specific differentiation. These alterations were generally reduced after pharmacological inhibition of the TGF-β pathway. Marfan VSMC in culture showed more robust actin stress fibers and enhanced RhoA-GTP levels, which was accompanied by increased focal adhesion components and higher nuclear localization of myosin-related transcription factor A. Marfan VSMC and extracellular matrix measured by atomic force microscopy were both stiffer than their respective controls. In Marfan VSMC, both in tissue and in culture, there are variable TGF-β-dependent phenotypic changes affecting contractile proteins and collagen I, leading to greater cellular and extracellular matrix stiffness. Altogether, these alterations may contribute to the known aortic rigidity that precedes or accompanies Marfan's syndrome aneurysm formation. © 2015 American Heart Association, Inc.

  5. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.

    PubMed

    Lin, Shigang; Mequanint, Kibret

    2017-09-01

    In vitro maturation of engineered vascular tissues (EVT) requires the appropriate incorporation of smooth muscle cells (SMC) and extracellular matrix (ECM) components similar to native arteries. To this end, the aim of the current study was to fabricate 4mm inner diameter vascular tissues using mesenchymal progenitor cells seeded into tubular scaffolds. A dual-pump bioreactor operating either in perfusion or pulsatile perfusion mode was used to generate physiological-like stimuli to promote progenitor cell differentiation, extracellular elastin production, and tissue maturation. Our data demonstrated that pulsatile forces and perfusion of 3D tubular constructs from both the lumenal and ablumenal sides with culture media significantly improved tissue assembly, effectively inducing mesenchymal progenitor cell differentiation to SMCs with contemporaneous elastin production. With bioreactor cultivation, progenitor cells differentiated toward smooth muscle lineage characterized by the expression of smooth muscle (SM)-specific markers smooth muscle alpha actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). More importantly, pulsatile perfusion bioreactor cultivation enhanced the synthesis of tropoelastin and its extracellular cross-linking into elastic fiber compared with static culture controls. Taken together, the current study demonstrated progenitor cell differentiation and vascular tissue assembly, and provides insights into elastin synthesis and assembly to fibers. Incorporation of elastin into engineered vascular tissues represents a critical design goal for both mechanical and biological functions. In the present study, we seeded porous tubular scaffolds with multipotent mesenchymal progenitor cells and cultured in dual-pump pulsatile perfusion bioreactor. Physiological-like stimuli generated by bioreactor not only induced mesenchymal progenitor cell differentiation to vascular smooth muscle lineage but also actively promoted elastin synthesis and

  6. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the rolemore » of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.« less

  7. Fluid Mechanics of the Vascular Basement Membrane in the Brain

    NASA Astrophysics Data System (ADS)

    Coloma, Mikhail; Hui, Jonathan; Chiarot, Paul; Huang, Peter; Carare, Roxana; McLeod, Kenneth; Schaffer, David

    2013-11-01

    Beta-amyloid is a normal product of brain metabolic function and is found within the interstitial fluid of the brain. Failure of the clearance of beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. The vascular basement membrane (VBM) within the walls of cerebral arteries surrounds the spirally arranged smooth muscle cells and represents an essential pathway for removal of beta-amyloid from the brain. This process fails with the stiffening of arterial walls associated with aging. In this study we hypothesize that the deformation of the VBM associated with arterial pulsations drives the interstitial fluid to drain in the direction opposite of the arterial blood flow. This hypothesis is theoretically investigated by modeling the VBM as a thin, coaxial, fluid-filled porous medium surrounding a periodically deforming cylindrical tube. Flow and boundary conditions required to achieve such a backward clearance are derived through a control volume analysis of mass, momentum, and energy.

  8. Hypotensive effect and vascular relaxation in different arteries induced by the nitric oxide donor RuBPY.

    PubMed

    Pereira, Amanda de Carvalho; Araújo, Alice Valença; Paulo, Michele; Andrade, Fernanda Aparecida de; Silva, Bruno Rodrigues; Vercesi, Juliana Aparecida; da Silva, Roberto Santana; Bendhack, Lusiane Maria

    2017-01-30

    NO donors are compounds that release NO that can be used when the endogenous NO bioavailability is impaired. The compound cis-[Ru(bpy) 2 (py)(NO 2 )](PF 6 ) (RuBPY) is a nitrite-ruthenium, since it has a NO 2 in its molecule. The aim of the present study was to evaluate the effect of RuBPY on arterial pressure, as well as on the vascular relaxation of different vascular arteries in renal hypertensive (2K-1C) and normotensive (2K) rats. We have evaluated the arterial pressure and heart rate changes as well as the RuBPY and SNP-induced relaxation (thoracic aorta, mesenteric resistance, coronary and basilar arteries). The administration of RuBPY in awake rats evoked a smaller but long lasting hypotensive effect when compared to SNP, with no increase in heart rate. The relaxation induced by RuBPY was similar between 2K-1C and 2K rats in thoracic aorta, mesenteric resistance and coronary arteries. However, the relaxation induced by RuBPY was smaller in basilar arteries from 2K-1C than in 2K. Taken together, our results show that RuBPY presents several advantages over SNP, since it does not induce hypotensive effect in normotensive animals, the hypotensive effect is slower, with no reflex tachycardia, and it is long lasting. In addition, RuBPY induces coronary artery relaxation (useful for angina) and presented only a small effect on basilar artery (may not induce headache). Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Triiodothyronine Potentiates Vasorelaxation via PKG/VASP Signaling in Vascular Smooth Muscle Cells.

    PubMed

    Samuel, Sherin; Zhang, Kuo; Tang, Yi-Da; Gerdes, A Martin; Carrillo-Sepulveda, Maria Alicia

    2017-01-01

    Vascular relaxation caused by Triiodothyronine (T3) involves direct activation of endothelial cells (EC) and vascular smooth muscle cells (VSMC). Activation of protein kinase G (PKG) has risen as a novel contributor to the vasorelaxation mechanism triggered by numerous stimuli. We hypothesize that T3-induced vasorelaxation involves PKG/vasodilator-stimulated phosphoprotein (VASP) signaling pathway in VSMC. Human aortic endothelial cells (HAEC) and VSMC were treated with T3 for short (2 to 60 minutes) and long term (24 hours). Nitric oxide (NO) production was measured using DAF-FM. Expression of protein targets was determined using western blot. For functional studies, rat aortas were isolated and treated with T3 for 20 minutes and mounted in a wire myograph. Relaxation was measured by a concentration-dependent response to acetylcholine (ACh) and sodium nitroprusside (SNP). Aortas stimulated with T3 exhibited augmented sensitivity to ACh and SNP-induced relaxation, endothelium-dependent and endothelium-independent responses, respectively. T3 directly increased vasorelaxation, which was abolished in the presence of a PKG inhibitor. T3 markedly induced phosphorylation of Akt, eNOS and consequently increased NO production in EC. Likewise, T3 induced phosphorylation of VASP at serine 239 via the PKG pathway in VSMC. Our findings have uncovered a PKG/VASP signaling pathway in VSMC as a key molecular mechanism underlying T3-induced vascular relaxation. © 2017 The Author(s)Published by S. Karger AG, Basel.

  10. Calcium/calmodulin‐dependent kinase 2 mediates Epac‐induced spontaneous transient outward currents in rat vascular smooth muscle

    PubMed Central

    Humphries, Edward S. A.; Kamishima, Tomoko; Quayle, John M.

    2017-01-01

    Key points The Ca2+ and redox‐sensing enzyme Ca2+/calmodulin‐dependent kinase 2 (CaMKII) is a crucial and well‐established signalling molecule in the heart and brain.In vascular smooth muscle, which controls blood flow by contracting and relaxing in response to complex Ca2+ signals and oxidative stress, surprisingly little is known about the role of CaMKII.The vasodilator‐induced second messenger cAMP can relax vascular smooth muscle via its effector, exchange protein directly activated by cAMP (Epac), by activating spontaneous transient outward currents (STOCs) that hyperpolarize the cell membrane and reduce voltage‐dependent Ca2+ influx. How Epac activates STOCs is unknown.In the present study, we map the pathway by which Epac increases STOC activity in contractile vascular smooth muscle and show that a critical step is the activation of CaMKII.To our knowledge, this is the first report of CaMKII activation triggering cellular activity known to induce vasorelaxation. Abstract Activation of the major cAMP effector, exchange protein directly activated by cAMP (Epac), induces vascular smooth muscle relaxation by increasing the activity of ryanodine (RyR)‐sensitive release channels on the peripheral sarcoplasmic reticulum. Resultant Ca2+ sparks activate plasma membrane Ca2+‐activated K+ (BKCa) channels, evoking spontaneous transient outward currents (STOCs) that hyperpolarize the cell and reduce voltage‐dependent Ca2+ entry. In the present study, we investigate the mechanism by which Epac increases STOC activity. We show that the selective Epac activator 8‐(4‐chloro‐phenylthio)‐2′‐O‐methyladenosine‐3′, 5‐cyclic monophosphate‐AM (8‐pCPT‐AM) induces autophosphorylation (activation) of calcium/calmodulin‐dependent kinase 2 (CaMKII) and also that inhibition of CaMKII abolishes 8‐pCPT‐AM‐induced increases in STOC activity. Epac‐induced CaMKII activation is probably initiated by inositol 1,4,5‐trisphosphate (IP3)

  11. Arterial spin-labeling assessment of normalized vascular intratumoral signal intensity as a predictor of histologic grade of astrocytic neoplasms.

    PubMed

    Furtner, J; Schöpf, V; Schewzow, K; Kasprian, G; Weber, M; Woitek, R; Asenbaum, U; Preusser, M; Marosi, C; Hainfellner, J A; Widhalm, G; Wolfsberger, S; Prayer, D

    2014-03-01

    Pulsed arterial spin-labeling is a noninvasive MR imaging perfusion method performed with the use of water in the arterial blood as an endogenous contrast agent. The purpose of this study was to determine the inversion time with the largest difference in normalized intratumoral signal intensity between high-grade and low-grade astrocytomas. Thirty-three patients with gliomas, histologically classified as low-grade (n = 7) or high-grade astrocytomas (n = 26) according to the World Health Organization brain tumor classification, were included. A 3T MR scanner was used to perform pulsed arterial spin-labeling measurements at 8 different inversion times (370 ms, 614 ms, 864 ms, 1114 ms, 1364 ms, 1614 ms, 1864 ms, and 2114 ms). Normalized intratumoral signal intensity was calculated, which was defined by the signal intensity ratio of the tumor and the contralateral normal brain tissue for all fixed inversion times. A 3-way mixed ANOVA was used to reveal potential differences in the normalized vascular intratumoral signal intensity between high-grade and low-grade astrocytomas. The difference in normalized vascular intratumoral signal intensity between high-grade and low-grade astrocytomas obtained the most statistically significant results at 370 ms (P = .003, other P values ranged from .012-.955). The inversion time by which to differentiate high-grade and low-grade astrocytomas by use of normalized vascular intratumoral signal intensity was 370 ms in our study. The normalized vascular intratumoral signal intensity values at this inversion time mainly reflect the labeled intra-arterial blood bolus and therefore could be referred to as normalized vascular intratumoral signal intensity. Our data indicate that the use of normalized vascular intratumoral signal intensity values allows differentiation between low-grade and high-grade astrocytomas and thus may serve as a new, noninvasive marker for astrocytoma grading.

  12. Inducible nitric oxide synthase and vascular injury.

    PubMed

    Kibbe, M; Billiar, T; Tzeng, E

    1999-08-15

    The role nitric oxide (NO) plays in the cardiovascular system is complex and diverse. Even more controversial is the role that the inducible NO synthase enzyme (iNOS) serves in mediating different aspects of cardiovascular pathophysiology. Following arterial injury, NO has been shown to serve many vasoprotective roles, including inhibition of platelet aggregation and adherence to the site of injury, inhibition of leukocyte adherence, inhibition of vascular smooth muscle cell (VSMC) proliferation and migration, and stimulation of endothelial cell (EC) growth. These properties function together to preserve a normal vascular environment following injury. In this review, we discuss what is known about the involvement of iNOS in the vascular injury response. Additionally, we discuss the beneficial role of iNOS gene transfer to the vasculature in preventing the development of neointimal thickening. Lastly, the pathophysiology of transplant vasculopathy is discussed as well as the role of iNOS in this setting.

  13. CTP synthase 1, a smooth muscle-sensitive therapeutic target for effective vascular repair

    PubMed Central

    Tang, Rui; Cui, Xiao-Bing; Wang, Jia-Ning; Chen, Shi-You

    2013-01-01

    Objective Vascular remodeling due to smooth muscle cell (SMC) proliferation and neointima formation is a major medical challenge in cardiovascular intervention. However, anti-neointima drugs often indistinguishably block re-endothelialization, an essential step toward successful vascular repair, due to their non-specific effect on endothelial cells (EC). The objective of this study was to identify a therapeutic target that differentially regulates SMC and EC proliferation. Approach and Results By using both rat balloon-injury and mouse wire-injury models, we identified CTP synthase (CTPS) as one of the potential targets that may be used for developing therapeutics for treating neointima-related disorders. CTPS1 was induced in proliferative SMCs in vitro and neointima SMCs in vivo. Blockade of CTPS1 expression by small hairpin RNA or activity by cyclopentenyl cytosine suppressed SMC proliferation and neointima formation. Surprisingly, cyclopentenyl cytosine had much less effect on EC proliferation. Of importance, blockade of CTPS1 in vivo sustained the re-endothelialization due to induction of CTP synthesis salvage pathway enzymes nucleoside diphosphate kinase A and B in ECs. Diphosphate kinase B appeared to preserve EC proliferation via utilization of extracellular cytidine to synthesize CTP. Indeed, blockade of both CTPS1 and diphosphate kinase B suppressed EC proliferation in vitro and the re-endothelization in vivo. Conclusions Our study uncovered a fundamental difference in CTP biosynthesis between SMCs and ECs during vascular remodeling, which provided a novel strategy by using cyclopentenyl cytosine or other CTPS1 inhibitors to selectively block SMC proliferation without disturbing or even promoting re-endothelialization for effective vascular repair following injury. PMID:24008161

  14. Conditional deletion of Dicer in vascular smooth muscle cells leads to the developmental delay and embryonic mortality

    PubMed Central

    Pan, Yaoqian; Balazs, Louisa; Tigyi, Gabor; Yue, Junming

    2013-01-01

    Dicer is a RNAase III enzyme that cleaves double stranded RNA and generates small interfering RNA (siRNA) and microRNA (miRNA). The goal of this study is to examine the role of Dicer and miRNAs in vascular smooth muscle cells (VSMCs). We deleted Dicer in VSMCs of mice, which caused a developmental delay that manifested as early as embryonic day E12.5, leading to embryonic death between E14.5 and E15.5 due to extensive hemorrhage in the liver, brain, and skin. Dicer KO embryos showed dilated blood vessels and a disarray of vascular architecture between E14.5 and E15.5. VSMC proliferation was significantly inhibited in Dicer KOs. The expression of VSMC marker genes were significantly downregulated in Dicer cKO embryos. The vascular structure of the yolk sac and embryo in Dicer KOs was lost to an extent that no blood vessels could be identified after E15.5. Expression of most miRNAs examined was compromised in VSMCs of Dicer KO. Our results indicate that Dicer is required for vascular development and regulates vascular remodeling by modulating VSMC proliferation and differentiation. PMID:21371421

  15. Development of occlusive neointimal lesions in distal pulmonary arteries of endothelin B receptor-deficient rats: a new model of severe pulmonary arterial hypertension.

    PubMed

    Ivy, D Dunbar; McMurtry, Ivan F; Colvin, Kelley; Imamura, Masatoshi; Oka, Masahiko; Lee, Dong-Seok; Gebb, Sarah; Jones, Peter Lloyd

    2005-06-07

    Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate that deficiency of the ET(B) receptor predisposes adult rats to acute and chronic hypoxic PAH, yet these animals fail to develop neointimal lesions. Herein, we determined and thereafter showed that exposure of ET(B) receptor-deficient rats to the endothelial toxin monocrotaline (MCT) leads to the development of neointimal lesions that share hallmarks of human PAH. The pulmonary hemodynamic and morphometric effects of 60 mg/kg MCT in control (MCT(+/+)) and ET(B) receptor-deficient (MCT(sl/sl)) rats at 6 weeks of age were assessed. MCT(sl/sl) rats developed more severe PAH, characterized by elevated pulmonary artery pressure, diminished cardiac output, and right ventricular hypertrophy. In MCT(sl/sl) rats, morphometric evaluation revealed the presence of neointimal lesions within small distal pulmonary arteries, increased medial wall thickness, and decreased arterial-to-alveolar ratio. In keeping with this, barium angiography revealed diminished distal pulmonary vasculature of MCT(sl/sl) rat lungs. Cells within neointimal lesions expressed smooth muscle and endothelial cell markers. Moreover, cells within neointimal lesions exhibited increased levels of proliferation and were located in a tissue microenvironment enriched with vascular endothelial growth factor, tenascin-C, and activated matrix metalloproteinase-9, factors already implicated in human PAH. Finally, assessment of steady state mRNA showed that whereas expression of ET(B) receptors was decreased in MCT(sl/sl) rat lungs, ET(A) receptor expression increased. Deficiency of the ET(B) receptor markedly accelerates the progression of

  16. Development of Occlusive Neointimal Lesions in Distal Pulmonary Arteries of Endothelin B Receptor–Deficient Rats: A New Model of Severe Pulmonary Arterial Hypertension

    PubMed Central

    Ivy, D. Dunbar; McMurtry, Ivan F.; Colvin, Kelley; Imamura, Masatoshi; Oka, Masahiko; Lee, Dong-Seok; Gebb, Sarah; Jones, Peter Lloyd

    2007-01-01

    Background Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate that deficiency of the ETB receptor predisposes adult rats to acute and chronic hypoxic PAH, yet these animals fail to develop neointimal lesions. Herein, we determined and thereafter showed that exposure of ETB receptor–deficient rats to the endothelial toxin monocrotaline (MCT) leads to the development of neointimal lesions that share hallmarks of human PAH. Methods and Results The pulmonary hemodynamic and morphometric effects of 60 mg/kg MCT in control (MCT+/+) and ETB receptor–deficient (MCTsl/sl) rats at 6 weeks of age were assessed. MCTsl/sl rats developed more severe PAH, characterized by elevated pulmonary artery pressure, diminished cardiac output, and right ventricular hypertrophy. In MCTsl/sl rats, morphometric evaluation revealed the presence of neointimal lesions within small distal pulmonary arteries, increased medial wall thickness, and decreased arterial-to-alveolar ratio. In keeping with this, barium angiography revealed diminished distal pulmonary vasculature of MCTsl/sl rat lungs. Cells within neointimal lesions expressed smooth muscle and endothelial cell markers. Moreover, cells within neointimal lesions exhibited increased levels of proliferation and were located in a tissue microenvironment enriched with vascular endothelial growth factor, tenascin-C, and activated matrix metalloproteinase-9, factors already implicated in human PAH. Finally, assessment of steady state mRNA showed that whereas expression of ETB receptors was decreased in MCTsl/sl rat lungs, ETA receptor expression increased. Conclusions Deficiency of the ETB receptor markedly

  17. Junctional and nonjunctional effects of heptanol and glycyrrhetinic acid derivates in rat mesenteric small arteries

    PubMed Central

    Matchkov, Vladimir V; Rahman, Awahan; Peng, Hongli; Nilsson, Holger; Aalkjær, Christian

    2004-01-01

    Heptanol, 18α-glycyrrhetinic acid (18αGA) and 18β-glycyrrhetinic acid (18βGA) are known blockers of gap junctions, and are often used in vascular studies. However, actions unrelated to gap junction block have been repeatedly suggested in the literature for these compounds. We report here the findings from a comprehensive study of these compounds in the arterial wall. Rat isolated mesenteric small arteries were studied with respect to isometric tension (myography), [Ca2+]i (Ca2+-sensitive dyes), membrane potential and – as a measure of intercellular coupling – input resistance (sharp intracellular glass electrodes). Also, membrane currents (patch-clamp) were measured in isolated smooth muscle cells (SMCs). Confocal imaging was used for visualisation of [Ca2+]i events in single SMCs in the arterial wall. Heptanol (150 μM) activated potassium currents, hyperpolarised the membrane, inhibited the Ca2+ current, and reduced [Ca2+]i and tension, but had little effect on input resistance. Only at concentrations above 200 μM did heptanol elevate input resistance, desynchronise SMCs and abolish vasomotion. 18βGA (30 μM) not only increased input resistance and desynchronised SMCs but also had nonjunctional effects on membrane currents. 18αGA (100 μM) had no significant effects on tension, [Ca2+]i, total membrane current and synchronisation in vascular smooth muscle. We conclude that in mesenteric small arteries, heptanol and 18βGA have important nonjunctional effects at concentrations where they have little or no effect on intercellular communication. Thus, the effects of heptanol and 18βGA on vascular function cannot be interpreted as being caused only by effects on gap junctions. 18αGA apparently does not block communication between SMCs in these arteries, although an effect on myoendothelial gap junctions cannot be excluded. PMID:15210581

  18. Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle.

    PubMed

    Rezaei, Hossein B; Kamato, Danielle; Ansari, Ghazaleh; Osman, Narin; Little, Peter J

    2012-08-01

    The transforming growth factor (TGF)-β superfamily of ligands regulates a diverse set of cellular functions. Transforming growth factor-β induces its biological effects through Type I and Type II transmembrane receptors that have serine/threonine kinase activities and weak tyrosine kinase activity. In vascular smooth muscle, TGF-β binds to the TGF-β Type II receptor (TβRII) at the cell surface, recruiting the Type I receptor (TβRI) to form a heterocomplex. Consequently, after phosphorylation and activation of TβRI, the transcription factors receptor activated (R-) Smad2 and Smad3 are recruited and activated through phosphorylation of C terminal residues. Overall, Smad2/3 and co-Smad4 have similar structures consisting of three regions an N-terminal MH1 domain, a C-terminal MH2 domain and a central linker region. Phosphorylation of the Smad linker region appears to have an important role in the regulation of Smad activity and function. The mitogen-activated protein kinase (MAPK) family, CDK2, CDK4 and calcium-calmodulin dependent kinase are the main kinases that phosphorylate sites in the linker region. The role of the linker region includes enabling the formation of Smad homo-oligomers and provision of phosphorylation sites for MAPK and other kinases. In some instances, linker region phosphorylation regulates the inhibition of the nuclear translocation of Smads. In the present review, we describe TGF-β signalling through Smad2/3 and the importance of the linker region in the regulation and expression of genes induced by TGF-β superfamily ligands in the context of vascular smooth muscle. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  19. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease

    USDA-ARS?s Scientific Manuscript database

    Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. We completed an acute pilot study with no placebo...

  20. Losartan Inhibits Vascular Calcification by Suppressing the BMP2 and Runx2 Expression in Rats In Vivo.

    PubMed

    Li, Mincai; Wu, Panfeng; Shao, Juan; Ke, Zhiqiang; Li, Dan; Wu, Jiliang

    2016-04-01

    The blockade of renin-angiotensin II system has been shown to reduce morbidity and mortality in hypertension, atherosclerosis, diabetes and chronic kidney disease. Since vascular calcification (VC) is commonly found in these diseases, the aim of this study was to examine whether or not losartan, a widely used angiotensin II receptor blockers, inhibits VC in rats in vivo. A rat model of VC was generated by treating rats with a combination of warfarin and vitamin K1. Two weeks after the treatments, the rats were treated with vehicle or without losartan (100 ng/kg/day) for 2 weeks. At the end of the experiments, aortic arteries were isolated for the examination of calcification morphology, mRNA and protein expression of BMP2 and Runx2, and osteoblast differentiation. Warfarin and vitamin K instigated vascular remodeling with calcified plaques in the aortic arteries in rats. Losartan significantly attenuated warfarin- and vitamin K-induced vascular injury and calcification. Consistently, losartan suppressed the levels of mRNA and protein expression of BMP2 and Runx2, two key factors for VC. Further, vascular calcified lesion areas expressed angiotensin II 1 receptor (AT1R). Finally, losartan treatment significantly inhibited apoptosis in vascular smooth muscle cell (VSMC) in rat arteries. We conclude that losartan suppresses VC by lowering the expression of AT1R, Runx2 and BMP2, and by inhibiting the apoptosis of VSMC in rat aortic arteries.

  1. RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and vascular remodeling via the JNK pathway and vimentin cytoskeleton.

    PubMed

    Tang, Lian; Dai, Fan; Liu, Yan; Yu, Xiaoqiang; Huang, Chao; Wang, Yuqin; Yao, Wenjuan

    2018-05-20

    The RhoA/ROCK signaling pathway regulates cell morphology, adhesion, proliferation, and migration. In this study, we investigated the regulatory role of RhoA/ROCK signaling on PDGF-BB-mediated smooth muscle phenotypic modulation and vascular remodeling and clarified the molecular mechanisms behind these effects. PDGF-BB treatment induced the activation of RhoA, ROCK, PDGF-Rβ, and the expression of PDGF-Rβ in HA-VSMCs (human aortic vascular smooth muscle cells). PDGF-Rβ inhibition and RhoA suppression blocked PDGF-BB-induced RhoA activation and ROCK induction. In addition, PDGF-BB-mediated cell proliferation and migration were suppressed by PDGF-Rβ inhibition, RhoA suppression, and ROCK inhibition, suggesting that PDGF-BB promotes phenotypic modulation of HA-VSMCs by activating the RhoA/ROCK pathway via the PDGF receptor. Moreover, suppressing both ROCK1 and ROCK2 blocked cell cycle progression from G0/G1 to S phase by decreasing the transcription and protein expression of cyclin D1, CDK2, and CDK4 via JNK/c-Jun pathway, thus reducing cell proliferation in PDGF-BB-treated HA-VSMCs. ROCK1 deletion, rather than ROCK2 suppression, significantly inhibited PDGF-BB-induced migration by reducing the expression of vimentin and preventing the remodeling of vimentin and phospho-vimentin. Furthermore, ROCK1 deletion suppressed vimentin by inhibiting the phosphorylation of Smad2/3 and the nuclear translocation of Smad4. These findings suggested that ROCK1 and ROCK2 might play different roles in PDGF-BB-mediated cell proliferation and migration in HA-VSMCs. In addition, PDGF-BB and its receptor participated in neointima formation and vascular remodeling by promoting cell cycle protein expression via the JNK pathway and enhancing vimentin expression in a rat balloon injury model; effects that were inhibited by treatment with fasudil. Together, the results of this study reveal a novel mechanism through which RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and

  2. Heterogeneous gene expression and functional activity of ryanodine receptors in resistance and conduit pulmonary as well as mesenteric artery smooth muscle cells.

    PubMed

    Zheng, Yun-Min; Wang, Qing-Song; Liu, Qing-Hua; Rathore, Rakesh; Yadav, Vishal; Wang, Yong-Xiao

    2008-01-01

    Hypoxia causes heterogeneous contractile responses in resistance and conduit pulmonary as well as systemic (mesenteric) artery smooth muscle cells (RPASMCs, CPASMCs and MASMCs), but the underlying mechanisms are largely unknown. In this study, we aimed to investigate whether the gene expression and functional activity of ryanodine receptors (RyRs) would be different in these 3 cell types. RyR mRNA expression, Ca(2+) sparks and [Ca(2+)](i) were measured by real-time quantitative RT-PCR, laser scanning confocal microscopy and wide-field fluorescence microscopy, respectively. All 3 RyR subtype (RyR1, RyR2 and RyR3) mRNAs are expressed in RPASMCs, CPASMCs and MASMCs, but their expression levels are different. Spontaneous Ca(2+) sparks (functional events of RyRs) show distinct frequency, amplitude, duration, size and kinetics in these 3 cell types. Similarly, activation of RyRs by caffeine, 4-chloro-m-cresol or high K(+) induces differential Ca(2+) release. Moreover, hypoxia-induced increase in [Ca(2+)](i) is largest in MASMCs relative to CPSAMCs and smallest in RPASMCs. This study provides comprehensive evidence that RyRs are heterogeneous in gene expression and functional activity in RPASMCs, CPASMCs and MASMCs, which may contribute to the diversity of excitation-contraction coupling and hypoxic Ca(2+) responses in different vascular smooth muscle cells. Copyright 2008 S. Karger AG, Basel.

  3. Increased Notch3 Activity Mediates Pathological Changes in Structure of Cerebral Arteries.

    PubMed

    Baron-Menguy, Celine; Domenga-Denier, Valérie; Ghezali, Lamia; Faraci, Frank M; Joutel, Anne

    2017-01-01

    CADASIL (Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy), the most frequent genetic cause of stroke and vascular dementia, is caused by highly stereotyped mutations in the NOTCH3 receptor, which is predominantly expressed in vascular smooth muscle. The well-established TgNotch3 R169C mouse model develops characteristic features of the human disease, with deposition of NOTCH3 and other proteins, including TIMP3 (tissue inhibitor of metalloproteinase 3), on brain vessels, as well as reduced maximal dilation, and attenuated myogenic tone of cerebral arteries, but without elevated blood pressure. Increased TIMP3 levels were recently shown to be a major determinant of altered myogenic tone. In this study, we investigated the contribution of TIMP3 and Notch3 signaling to the impairment of maximal vasodilator capacity caused by the archetypal R169C mutation. Maximally dilated cerebral arteries in TgNotch3 R169C mice exhibited a decrease in lumen diameter over a range of physiological pressures that occurred before myogenic tone deficits. This defect was not prevented by genetic reduction of TIMP3 in TgNotch3 R169C mice and was not observed in mice overexpressing TIMP3. Knock-in mice with the R169C mutation (Notch3 R170C/R170C ) exhibited similar reductions in arterial lumen, and both TgNotch3 R169C and Notch3 R170C/R170C mice showed increased cerebral artery expression of Notch3 target genes. Reduced maximal vasodilation was prevented by conditional reduction of Notch activity in smooth muscle of TgNotch3 R169C mice and mimicked by conditional activation of Notch3 in smooth muscle, an effect that was blood pressure-independent. We conclude that increased Notch3 activity mediates reduction in maximal dilator capacity of cerebral arteries in CADASIL and may contribute to reductions in cerebral blood flow. © 2016 American Heart Association, Inc.

  4. Sodium-dependent phosphate cotransporters and phosphate-induced calcification of vascular smooth muscle cells: Redundant roles for PiT-1 and PiT-2

    PubMed Central

    Crouthamel, Matthew H.; Lau, Wei Ling; Leaf, Elizabeth M.; Chavkin, Nick; Wallingford, Mary C.; Peterson, Danielle F.; Li, Xianwu; Liu, Yonggang; Chin, Michael T.; Levi, Moshe; Giachelli, Cecilia M.

    2014-01-01

    Objective Elevated serum phosphate has emerged as a major risk factor for vascular calcification. The sodium-dependent phosphate cotransporter, PiT-1, was previously shown to be required for phosphate-induced osteogenic differentiation and calcification of cultured human VSMCs, but its importance in vascular calcification in vivo, as well as the potential role of its homologue, PiT-2, have not been determined. We investigated the in vivo requirement for PiT-1 in vascular calcification using a mouse model of chronic kidney disease, and the potential compensatory role of PiT-2 using in vitro knockdown and over-expression strategies. Approach and Results Mice with targeted deletion of PiT-1 in VSMCs were generated (PiT-1Δsm). PiT-1 mRNA levels were undetectable whereas PiT-2 mRNA levels were increased 2 fold in the vascular aortic media of PiT-1Δsm compared to PiT-1flox/flox control. When arterial medial calcification was induced in PiT-1Δsm and PiT-1flox/flox by chronic kidney disease followed by dietary phosphate loading, the degree of aortic calcification was not different between genotypes, suggesting compensation by PiT-2. Consistent with this possibility, VSMCs isolated from PiT-1Δsm mice had no PiT-1 mRNA expression, increased PiT-2 mRNA levels, and no difference in sodium-dependent phosphate uptake or phosphate-induced matrix calcification compared to PiT-1flox/flox VSMCs. Knockdown of PiT-2 decreased phosphate uptake and phosphate-induced calcification of PiT-1Δsm VSMCs. Furthermore, over-expression of PiT-2 restored these parameters in human PiT-1-deficient VSMCs. Conclusions PiT-2 can mediate phosphate uptake and calcification of VSMCs in the absence of PiT-1. Mechanistically, PiT-1 and PiT-2 appear to serve redundant roles in phosphate-induced calcification of vascular smooth muscle cells. PMID:23968976

  5. Activation of KV7 channels stimulates vasodilatation of human placental chorionic plate arteries.

    PubMed

    Mills, T A; Greenwood, S L; Devlin, G; Shweikh, Y; Robinson, M; Cowley, E; Hayward, C E; Cottrell, E C; Tropea, T; Brereton, M F; Dalby-Brown, W; Wareing, M

    2015-06-01

    Potassium (K(+)) channels are key regulators of vascular smooth muscle cell (VSMC) excitability. In systemic small arteries, Kv7 channel expression/activity has been noted and a role in vascular tone regulation demonstrated. We aimed to demonstrate functional Kv7 channels in human fetoplacental small arteries. Human placental chorionic plate arteries (CPAs) were obtained at term. CPA responses to Kv7 channel modulators was determined by wire myography. Presence of Kv7 channel mRNA (encoded by KCNQ1-5) and protein expression were assessed by RT-PCR and immunohistochemistry/immunofluorescence, respectively. Kv7 channel blockade with linopirdine increased CPA basal tone and AVP-induced contraction. Pre-contracted CPAs (AVP; 80 mM K(+) depolarization solution) exhibited significant relaxation to flupirtine, retigabine, the acrylamide (S)-1, and (S) BMS-204352, differential activators of Kv7.1 - Kv7.5 channels. All CPAs assessed expressed KCNQ1 and KCNQ3-5 mRNA; KCNQ2 was expressed only in a subset of CPAs. Kv7 protein expression was confirmed in intact CPAs and isolated VSMCs. Kv7 channels are present and active in fetoplacental vessels, contributing to vascular tone regulation in normal pregnancy. Targeting these channels may represent a therapeutic intervention in pregnancies complicated by increased vascular resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Baicalin Inhibits Hypoxia-Induced Pulmonary Artery Smooth Muscle Cell Proliferation via the AKT/HIF-1α/p27-Associated Pathway

    PubMed Central

    Zhang, Lin; Pu, Zhichen; Wang, Junsong; Zhang, Zhifeng; Hu, Dongmei; Wang, Junjie

    2014-01-01

    Baicalin, a flavonoid compound purified from the dry roots of Scutellaria baicalensis Georgi, has been shown to possess various pharmacological actions. Previous studies have revealed that baicalin inhibits the growth of cancer cells through the induction of apoptosis. Pulmonary arterial hypertension (PAH) is a devastating disease characterized by enhanced pulmonary artery smooth muscle cell (PASMCs) proliferation and suppressed apoptosis. However, the potential mechanism of baicalin in the regulation of PASMC proliferation and the prevention of cardiovascular diseases remains unexplored. To test the effects of baicalin on hypoxia, we used rats treated with or without baicalin (100 mg·kg−1 each rat) at the beginning of the third week after hypoxia. Hemodynamic and pulmonary pathomorphology data showed that right ventricular systolic pressures (RVSP), the weight of the right ventricle/left ventricle plus septum (RV/LV + S) ratio and the medial width of pulmonary arterioles were much higher in chronic hypoxia. However, baicalin treatment repressed the elevation of RVSP, RV/LV + S and attenuated the pulmonary vascular structure remodeling (PVSR) of pulmonary arterioles induced by chronic hypoxia. Additionally, baicalin (10 and 20 μmol·L−1) treatment suppressed the proliferation of PASMCs and attenuated the expression of hypoxia-inducible factor-α (HIF-α) under hypoxia exposure. Meanwhile, baicalin reversed the hypoxia-induced reduction of p27 and increased AKT/protein kinase B phosphorylation p-AKT both in vivo and in vitro. These results suggested that baicalin could effectively attenuate PVSR and hypoxic pulmonary hypertension. PMID:24821539

  7. Laceration of the Common Femoral Artery Following Deployment of the StarClose{sup TM} Vascular Closure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonsalves, Michael, E-mail: drmag1975@gmail.com; Walkden, Miles, E-mail: rwalkden@nhs.net; Belli, Anna Maria, E-mail: Anna.Belli@stgeorges.nhs.u

    2008-07-15

    StarClose is a novel arterial closure device which achieves hemostasis, following arteriotomy, via a nitinol clip deployed on the outer arterial wall. Since its introduction to the market, several studies have shown StarClose to be both safe and effective, with few major complications encountered. We report a case of common femoral artery laceration following deployment of the StarClose vascular closure system. We conclude that the injury occurred secondary to intravascular misplacement of the nitinol clip.

  8. Low vascularity predicts favourable outcomes in leiomyoma patients treated with uterine artery embolization.

    PubMed

    Tang, Yixin; Chen, Chunlin; Duan, Hui; Ma, Ben; Liu, Ping

    2016-10-01

    To investigate the clinical factors predicting outcomes of leiomyoma treated with uterine artery embolization (UAE). A total of 183 uterine leiomyoma patients undergoing UAE were retrospectively analyzed. Patient age, characteristics of vascular supply in magnetic resonance imaging (MRI)/digital subtraction angiography (DSA), number, size and location of leiomyoma were recorded. Leiomyoma regrowth, new leiomyoma appearance and recurrence of any previously reported symptoms were carefully monitored over a mean follow-up of 30 months (median 32 months, range 12-80). Potential recurrence risk factors were analyzed by univariate and multivariate cox regression analysis. Twenty-three recurrences were recorded. The difference in the vascularity classification systems between MRI and DSA was not statistically significant (P = 0.059). High vascularity in MRI, high vascularity in DSA and multiple leiomyoma showed a significant risk of recurrence using univariate and multivariate analysis (P = 0.004, P < 0.001 and P = 0.023, respectively). The other factors were not significantly associated with leiomyoma recurrence (P > 0.05). Low vascularity and solitary leiomyoma indicated favourable outcomes in patients treated with UAE. • Low vascularity and solitary mass predicted favourable outcomes in UAE-treated patients. • MRI might provide information on vascularity in leiomyoma before UAE. • Variations in vascular supply, age, size, location were not associated with recurrence.

  9. Tungstate-Targeting of BKαβ1 Channels Tunes ERK Phosphorylation and Cell Proliferation in Human Vascular Smooth Muscle

    PubMed Central

    Fernández-Mariño, Ana Isabel; Cidad, Pilar; Zafra, Delia; Nocito, Laura; Domínguez, Jorge; Oliván-Viguera, Aida; Köhler, Ralf; López-López, José R.; Pérez-García, María Teresa; Valverde, Miguel Ángel; Guinovart, Joan J.; Fernández-Fernández, José M.

    2015-01-01

    Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC) proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation. Western blot analysis in HEK cell lines showed that expression of vascular BKαβ1 channels potentiates the tungstate-induced ERK1/2 phosphorylation in a Gi/o protein-dependent manner. Tungstate activated BKαβ1 channels upstream of G proteins as channel activation was not altered by the inhibition of G proteins with GDPβS or pertussis toxin. Moreover, analysis of Gi/o protein activation measuring the FRET among heterologously expressed Gi protein subunits suggested that tungstate-targeting of BKαβ1 channels promotes G protein activation. Single channel recordings on VSMCs from wild-type and β1-knockout mice indicated that the presence of the regulatory β1 subunit was essential for the tungstate-mediated activation of BK channels in VSMCs. Moreover, the specific BK channel blocker iberiotoxin lowered tungstate-induced ERK phosphorylation by 55% and partially reverted (by 51%) the tungstate-produced reduction of platelet-derived growth factor (PDGF)-induced proliferation in human VSMCs. Our observations indicate that tungstate-targeting of BKαβ1 channels promotes activation of PTX-sensitive Gi proteins to enhance the tungstate-induced phosphorylation of ERK, and inhibits PDGF-stimulated cell proliferation in human vascular smooth muscle. PMID:25659150

  10. Role of magnolol in the proliferation of vascular smooth muscle cells.

    PubMed

    Wu, L; Zou, H; Xia, W; Dong, Q; Wang, L

    2015-05-01

    Proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of vascular remodeling. Recently, magnolol has been reported to have a potential role in regulating tumor necrosis factor α-induced proliferation of VSMCs. However, the role of magnolol in platelet-derived growth factor (PDGF)-induced proliferation of VSMCs remains unknown. Our purpose was to elucidate the effect of magnolol on the proliferation of VSMCs induced by PDGF-BB and to investigate the underlying molecular mechanisms. Our data demonstrated that magnolol inhibited rat VSMC proliferation and DNA synthesis stimulated by 20 ng/ml PDGF-BB without causing cell cytotoxicity. Flow cytometric analysis showed that magnolol inhibited S-phase entry of VSMCs. We also demonstrated that magnolol caused this effect by inhibiting the mRNA and protein expression of cyclin D1, cyclin E, and cyclin-dependent kinases 2 and 4 in PDGF-BB-stimulated VSMCs. Further analysis showed that the inhibitory effect of magnolol on the proliferation of VSMCs was associated with the inhibition of the PDGF-BB-stimulated production of intracellular reactive oxygen species (ROS) and Ras, MEK, and ERK1/2 activation. These results demonstrate that magnolol can block the proliferation of VSMCs through inhibition of intracellular ROS production and Ras-MEK-ERK1/2 pathways. Magnolol, therefore, has a potential application in preventing atherosclerosis and restenosis.

  11. Haptoglobin Preserves Vascular Nitric Oxide Signaling during Hemolysis.

    PubMed

    Schaer, Christian A; Deuel, Jeremy W; Schildknecht, Daniela; Mahmoudi, Leila; Garcia-Rubio, Ines; Owczarek, Catherine; Schauer, Stefan; Kissner, Reinhard; Banerjee, Uddyalok; Palmer, Andre F; Spahn, Donat R; Irwin, David C; Vallelian, Florence; Buehler, Paul W; Schaer, Dominik J

    2016-05-15

    Hemolysis occurs not only in conditions such as sickle cell disease and malaria but also during transfusion of stored blood, extracorporeal circulation, and sepsis. Cell-free Hb depletes nitric oxide (NO) in the vasculature, causing vasoconstriction and eventually cardiovascular complications. We hypothesize that Hb-binding proteins may preserve vascular NO signaling during hemolysis. Characterization of an archetypical function by which Hb scavenger proteins could preserve NO signaling during hemolysis. We investigated NO reaction kinetics, effects on arterial NO signaling, and tissue distribution of cell-free Hb and its scavenger protein complexes. Extravascular translocation of cell-free Hb into interstitial spaces, including the vascular smooth muscle cell layer of rat and pig coronary arteries, promotes vascular NO resistance. This critical disease process is blocked by haptoglobin. Haptoglobin does not change NO dioxygenation rates of Hb; rather, the large size of the Hb:haptoglobin complex prevents Hb extravasation, which uncouples NO/Hb interaction and vasoconstriction. Size-selective compartmentalization of Hb functions as a substitute for red blood cells after hemolysis and preserves NO signaling in the vasculature. We found that evolutionarily and structurally unrelated Hb-binding proteins, such as PIT54 found in avian species, functionally converged with haptoglobin to protect NO signaling by sequestering cell-free Hb in large protein complexes. Sequential compartmentalization of Hb by erythrocytes and scavenger protein complexes is an archetypical mechanism, which may have supported coevolution of hemolysis and normal vascular function. Therapeutic supplementation of Hb scavengers may restore vascular NO signaling and attenuate disease complications in patients with hemolysis.

  12. Vitamin D Induces Increased Systolic Arterial Pressure via Vascular Reactivity and Mechanical Properties

    PubMed Central

    dos Santos, Priscila Portugal; Rafacho, Bruna Paola Murino; Gonçalves, Andréa de Freitas; Jaldin, Rodrigo Gibin; do Nascimento, Thiago Bruder; Silva, Marcondes Alves Barbosa; Cau, Stêfany Bruno Assis; Roscani, Meliza Goi; Azevedo, Paula Schimdt; Minicucci, Marcos Ferreira; Tostes, Rita de Cássia; Zornoff, Leonardo Antonio Memede; de Paiva, Sergio Alberto Rupp

    2014-01-01

    Background/Aims The aim of this study was to evaluate whether supplementation of high doses of cholecalciferol for two months in normotensive rats results in increased systolic arterial pressure and which are the mechanisms involved. Specifically, this study assesses the potential effect on cardiac output as well as the changes in aortic structure and functional properties. Methods Male Wistar rats were divided into three groups: 1) Control group (C, n = 20), with no supplementation of vitamin D, 2) VD3 (n = 19), supplemented with 3,000 IU vitamin D/kg of chow; 3) VD10 (n = 21), supplemented with 10,000 IU vitamin D/kg of chow. After two months, echocardiographic analyses, measurements of systolic arterial pressure (SAP), vascular reactivity, reactive oxygen species (ROS) generation, mechanical properties, histological analysis and metalloproteinase-2 and -9 activity were performed. Results SAP was higher in VD3 and VD10 than in C rats (p = 0.001). Echocardiographic variables were not different among groups. Responses to phenylephrine in endothelium-denuded aortas was higher in VD3 compared to the C group (p = 0.041). Vascular relaxation induced by acetylcholine (p = 0.023) and sodium nitroprusside (p = 0.005) was impaired in both supplemented groups compared to the C group and apocynin treatment reversed impaired vasodilation. Collagen volume fraction (<0.001) and MMP-2 activity (p = 0.025) was higher in VD10 group compared to the VD3 group. Elastin volume fraction was lower in VD10 than in C and yield point was lower in VD3 than in C. Conclusion Our findings support the view that vitamin D supplementation increases arterial pressure in normotensive rats and this is associated with structural and functional vascular changes, modulated by NADPH oxidase, nitric oxide, and extracellular matrix components. PMID:24921930

  13. Ophthalmic Vascular Events after Primary Unilateral Intra-arterial Chemotherapy for Retinoblastoma in Early and Recent Eras.

    PubMed

    Dalvin, Lauren A; Ancona-Lezama, David; Lucio-Alvarez, J Antonio; Masoomian, Babak; Jabbour, Pascal; Shields, Carol L

    2018-06-16

    To assess risk factors for ophthalmic vascular events after intra-arterial chemotherapy (IAC) for retinoblastoma. Retrospective cohort study. Patients who received unilateral IAC as primary treatment for retinoblastoma from January 1, 2009, to November 30, 2017, at a single center. Records were reviewed for patient demographics, tumor features, IAC parameters, and treatment-related vascular events in the early IAC era (2009-2011) compared with the recent era (2012-2017) using the t test and Fisher exact test. Change in event rates over time was assessed using Poisson regression analysis, with Spearman's rho used to test correlation. Rate of IAC-induced ophthalmic vascular events. There were 243 chemotherapy infusions in 76 eyes of 76 patients, divided into early (22 eyes, 57 infusions) and recent (54 eyes, 186 infusions) eras. Intra-arterial chemotherapy consisted of melphalan (243 infusions), topotecan (124 infusions), and carboplatin (9 infusions). A comparison (early vs. recent era) revealed fewer mean number of infusions (2.6 vs. 3.4, P = 0.02) with similar mean patient age and presenting tumor features. Event rates decreased over time (P < 0.01), with fewer ophthalmic vascular events (early era vs. recent era) in the recent era (59% vs. 9% per eye, 23% vs. 3% per infusion, P < 0.01), including peripheral retinal nonperfusion (5% vs. 2% per eye, P = 0.50), vitreous hemorrhage (9% vs. 2%, P = 0.20), subretinal hemorrhage (0% vs. 2%, P = 0.99), branch retinal vein occlusion (5% vs. 0%, P = 0.29), choroidal ischemia (14% vs. 4%, P = 0.14), and ophthalmic artery spasm/occlusion (27% vs. 0%, P < 0.01). Events did not correlate to patient age (P = 0.75), tumor diameter (P = 0.32), tumor thickness (P = 0.59), or cumulative dosage of melphalan (P = 0.13) or topotecan (P = 0.59). There were no IAC-induced vascular events in 72 infusions of 21 consecutively treated eyes in 2016 to 2017. Ophthalmic vascular events after IAC have decreased from the early era

  14. 1,25-dihydroxyvitamin D3 receptor is upregulated in aortic smooth muscle cells during hypervitaminosis D.

    PubMed

    Rajasree, S; Umashankar, P R; Lal, A V; Sarma, P Sankara; Kartha, C C

    2002-03-01

    Several studies have demonstrated that excess of vitamin D3 is toxic particularly to vascular tissues. A notable pathological feature is arterial calcification. The nature of the toxic metabolite in hypervitaminosis D and the pathogenesis of arterial calcification are not clearly understood. The present study was undertaken to explore whether arterial calcification is a sequel of increased calcium uptake by arterial smooth muscle mediated by up regulation of vitamin D receptor in the cells in response to elevated circulating levels of vitamin D3 in serum. The experimental study was performed in 20 New Zealand white female rabbits aged 6 months. Animals in the test group were injected 10,000 IU of cholecalciferol intramuscularly twice a week for one month. Six control animals were given intra-muscular injections of plain cottonseed oil. Animals were sacrificed and aortas were examined for pathological lesions, 1,25-dihyroxyvitamin D3 (1,25(OH)2 D3) receptor levels and 45Ca uptake in smooth muscle cells. Serum samples collected at intervals were assayed for levels of 25-OH-D3 and calcium. The results showed that in animals given injections of cholecalciferol, serum levels of 25-OH-D3 were elevated. In four of these animals calcification and aneurysmal changes were seen in the aorta. Histological lesions comprised of fragmentation of elastic fibers as well as extensive loss of elastic layers. 1,25(OH)2 D3 receptor levels were up regulated and 45Ca uptake enhanced in aortas of animals which were given excessive vitamin D3. The evidences gathered suggest that excess vitamin D is arteriotoxic and that the vitamin induces arterial calcification through up regulation of 1,25(OH)2D3 receptor and increased calcium uptake in smooth muscle cells of the arteries.

  15. Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery.

    PubMed

    Huang, Alex L; Silver, Annemarie E; Shvenke, Elena; Schopfer, David W; Jahangir, Eiman; Titas, Megan A; Shpilman, Alex; Menzoian, James O; Watkins, Michael T; Raffetto, Joseph D; Gibbons, Gary; Woodson, Jonathan; Shaw, Palma M; Dhadly, Mandeep; Eberhardt, Robert T; Keaney, John F; Gokce, Noyan; Vita, Joseph A

    2007-10-01

    Reactive hyperemia is the compensatory increase in blood flow that occurs after a period of tissue ischemia, and this response is blunted in patients with cardiovascular risk factors. The predictive value of reactive hyperemia for cardiovascular events in patients with atherosclerosis and the relative importance of reactive hyperemia compared with other measures of vascular function have not been previously studied. We prospectively measured reactive hyperemia and brachial artery flow-mediated dilation by ultrasound in 267 patients with peripheral arterial disease referred for vascular surgery (age 66+/-11 years, 26% female). Median follow-up was 309 days (range 1 to 730 days). Fifty patients (19%) had an event, including cardiac death (15), myocardial infarction (18), unstable angina (8), congestive heart failure (6), and nonhemorrhagic stroke (3). Patients with an event were older and had lower hyperemic flow velocity (75+/-39 versus 95+/-50 cm/s, P=0.009). Patients with an event also had lower flow-mediated dilation (4.5+/-3.0 versus 6.9+/-4.6%, P<0.001), and when these 2 measures of vascular function were included in the same Cox proportional hazards model, lower hyperemic flow (OR 2.7, 95% CI 1.2 to 5.9, P=0.018) and lower flow-mediated dilation (OR 4.2, 95% CI: 1.8 to 9.8, P=0.001) both predicted cardiovascular events while adjusting for other risk factors. Thus, lower reactive hyperemia is associated with increased cardiovascular risk in patients with peripheral arterial disease. Furthermore, flow-mediated dilation and reactive hyperemia incrementally relate to cardiovascular risk, although impaired flow-mediated dilation was the stronger predictor in this population. These findings further support the clinical relevance of vascular function measured in the microvasculature and conduit arteries in the upper extremity.

  16. Predictive Value of Reactive Hyperemia for Cardiovascular Events in Patients With Peripheral Arterial Disease Undergoing Vascular Surgery

    PubMed Central

    Huang, Alex L.; Silver, Annemarie E.; Shvenke, Elena; Schopfer, David W.; Jahangir, Eiman; Titas, Megan A.; Shpilman, Alex; Menzoian, James O.; Watkins, Michael T.; Raffetto, Joseph D.; Gibbons, Gary; Woodson, Jonathan; Shaw, Palma M.; Dhadly, Mandeep; Eberhardt, Robert T.; Keaney, John F.; Gokce, Noyan; Vita, Joseph A.

    2008-01-01

    Objective Reactive hyperemia is the compensatory increase in blood flow that occurs after a period of tissue ischemia, and this response is blunted in patients with cardiovascular risk factors. The predictive value of reactive hyperemia for cardiovascular events in patients with atherosclerosis and the relative importance of reactive hyperemia compared with other measures of vascular function have not been previously studied. Methods and Results We prospectively measured reactive hyperemia and brachial artery flow-mediated dilation by ultrasound in 267 patients with peripheral arterial disease referred for vascular surgery (age 66±11 years, 26% female). Median follow-up was 309 days (range 1 to 730 days). Fifty patients (19%) had an event, including cardiac death (15), myocardial infarction (18), unstable angina (8), congestive heart failure (6), and nonhemorrhagic stroke (3). Patients with an event were older and had lower hyperemic flow velocity (75±39 versus 95±50 cm/s, P=0.009). Patients with an event also had lower flow-mediated dilation (4.5±3.0 versus 6.9±4.6%, P<0.001), and when these 2 measures of vascular function were included in the same Cox proportional hazards model, lower hyperemic flow (OR 2.7, 95% CI 1.2 to 5.9, P=0.018) and lower flow-mediated dilation (OR 4.2, 95% CI: 1.8 to 9.8, P=0.001) both predicted cardiovascular events while adjusting for other risk factors. Conclusions Thus, lower reactive hyperemia is associated with increased cardiovascular risk in patients with peripheral arterial disease. Furthermore, flow-mediated dilation and reactive hyperemia incrementally relate to cardiovascular risk, although impaired flow-mediated dilation was the stronger predictor in this population. These findings further support the clinical relevance of vascular function measured in the microvasculature and conduit arteries in the upper extremity. PMID:17717291

  17. Enhanced Y1-receptor-mediated vasoconstrictive action of neuropeptide Y (NPY) in superior mesenteric arteries in portal hypertension.

    PubMed

    Wiest, Reiner; Jurzik, Lars; Moleda, Lukas; Froh, Matthias; Schnabl, Bernd; von Hörsten, Stephan; Schölmerich, Juergen; Straub, Rainer H

    2006-03-01

    Vascular hyporeactivity to catecholamines contributes to arterial vasodilation and hemodynamic dysregulation in portal hypertension. Neuropeptide Y (NPY) is a sympathetic neurotransmitter facilitating adrenergic vasoconstriction via Y1-receptors on the vascular smooth muscle. Therefore, we investigated its role for vascular reactivity in the superior mesenteric artery (SMA) of portal vein ligated (PVL) and sham operated rats. In vitro perfused SMA vascular beds of rats were tested for the cumulative dose-response to NPY dependent on the presence and level of alpha1-adrenergic vascular tone (methoxamine MT: 0.3-10 microM). Moreover, the effect of NPY (50 nM) on vascular responsiveness to alpha1-adrenergic stimulation (MT: 0.3-300 microM) was evaluated. Y1-receptor function was tested by Y1-selective inhibition using BIBP-3226 (1 microM). NPY dose-dependently and endothelium-independently enhanced MT-pre-constriction in SMA. This potentiation was increasingly effective with increasing adrenergic pre-stimulation and being more pronounced in PVL rats as compared to sham rats at high MT concentrations. NPY enhanced vascular contractility only in PVL rats correcting the adrenergic vascular hyporeactivity. Y1-receptor inhibition completely abolished NPY-evoked vasoconstrictive effects. NPY endothelium-independently potentiates adrenergic vasoconstriction via Y1-receptors being more pronounced in portal hypertension improving mesenteric vascular contractility and thereby correcting the splanchnic vascular hyporeactivity. This makes NPY a superior vasoconstrictor counterbalancing arterial vasodilation in portal hypertension.

  18. Drug packaging and delivery using perfluorocarbon nanoparticles for targeted inhibition of vascular smooth muscle cells

    PubMed Central

    Zhou, Zhao-xiong; Zhang, Bai-gen; Zhang, Hao; Huang, Xiao-zhong; Hu, Ya-li; Sun, Li; Wang, Xiao-min; Zhang, Ji-wei

    2009-01-01

    Aim: To investigate the in vitro release profile of drugs encapsulated within perfluorocarbon (PFC) nanoparticles (NPs) and their ability to inhibit the activity of vascular smooth muscle cells (SMCs). Methods: Dexamethasone phosphate (DxP) or dexamethasone acetate (DxA) was encapsulated into PFC nanoparticles using a high-pressure homogenous method. The morphology and size of the NPs were examined using scanning electron microscopy (SEM) and a laser particle size analyzer. Drug loading and in vitro release were assessed by high-performance liquid chromatography (HPLC). The impact of NP capsules on SMC proliferation, migration and apoptosis in vitro was assessed using cell counting kit-8, transwell cell migration and flow cytometry assays. Results: The sizes of DxP-NPs and DxA-NPs were 224±6 nm and 236±9 nm, respectively. The encapsulation efficiency (EE) of DxP-NPs was 66.4%±1.0%, with an initial release rate of 77.2%, whereas the EE of DxA-NPs was 95.3%±1.3%, with an initial release rate of 23.6%. Both of the NP-coated drugs could be released over 7 d. Human umbilical artery SMCs were harvested and cultured for four to six passages. Compared to free DxP, SMCs treated with tissue factor (TF)-directed DxP-NPs showed significant differences in the inhibition of proliferation, migration and apoptosis (P<0.05). Conclusion: The results collectively suggest that PFC nanoparticles will be beneficial for targeted drug delivery because of the sustained drug release and effective inhibition of SMC proliferation and migration. PMID:19890365

  19. Summary of Research Adaptions of Visceral and Cerebral Resistance Arteries to Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Delp, Michael

    2003-01-01

    The proposed studies were designed address the effects of simulated microgravity on vascular smooth muscle and endothelial cell function in resistance arteries isolated from visceral tissues (spleen, mesentery and kidneys) and cerebrum. Alterations in vascular function induced by microgravity are particularly relevant to the problems of orthostatic intolerance and reduced exercise capacity experienced by astronauts upon re-entry into the earth's gravitational field. Decrements in contractile function or enhanced vasodilatory responsiveness of peripheral resistance arteries could lead to decreased peripheral resistance and orthostatic hypotension. Alternatively, augmentation of contractile function in cerebral resistance arteries could lead to increased cerebral vascular resistance and diminished perfusion of the brain. The Specific Aims and hypotheses were proposed in this grant. Following each of the Specific Aims, progress toward addressing that specific aim is presented. With the exception of Specific Aim VI (see aim for details), all aims have been experimentally addressed as proposed. The final six months of the granting period will be used for manuscript preparation; manuscripts in preparation will contain results from Specific Aims I-IV. Results from Specific Aims V and VI have been published.

  20. Vascular smooth muscle cell polyploidy and cardiomyocyte hypertrophy due to chronic NOS inhibition in vivo.

    PubMed

    Devlin, A M; Brosnan, M J; Graham, D; Morton, J J; McPhaden, A R; McIntyre, M; Hamilton, C A; Reid, J L; Dominiczak, A F

    1998-01-01

    To assess the vascular and cardiac response to NO (nitric oxide) synthase (NOS) blockade in vivo, Wistar-Kyoto rats (WKY) were treated for 3 wk with NG-nitro-L-arginine methyl ester (L-NAME; 10 mg.kg-1.day-1). L-NAME treatment induced hypertension that was associated with increased plasma renin activity. Flow cytometry cell cycle DNA analysis showed that aortic vascular smooth muscle cells (VSMC) from L-NAME-treated WKY had a significantly higher polyploid population compared with WKY controls. Using organ bath experiments, we have shown that aortic rings from L-NAME-treated WKY have an increased contractile response to phenylephrine and impaired relaxation to carbachol compared with control rings. NOS blockade in vivo caused a significant increase in cardiac and left ventricular hypertrophy. Northern mRNA analysis of the myocardium showed that L-NAME treatment caused reexpression of the fetal skeletal alpha-actin isoform without alterations in collagen type I expression, a pattern indicating true hypertrophy of the cardiomyocytes. These studies provide further insight to confirm that NO deficiency in vivo results in the development of vascular and cardiac hypertrophy.

  1. Mechanical design in arteries.

    PubMed

    Shadwick, R E

    1999-12-01

    The most important mechanical property of the artery wall is its non-linear elasticity. Over the last century, this has been well-documented in vessels in many animals, from humans to lobsters. Arteries must be distensible to provide capacitance and pulse-smoothing in the circulation, but they must also be stable to inflation over a range of pressure. These mechanical requirements are met by strain-dependent increases in the elastic modulus of the vascular wall, manifest by a J-shaped stress-strain curve, as typically exhibited by other soft biological tissues. All vertebrates and invertebrates with closed circulatory systems have arteries with this non-linear behaviour, but specific tissue properties vary to give correct function for the physiological pressure range of each species. In all cases, the non-linear elasticity is a product of the parallel arrangement of rubbery and stiff connective tissue elements in the artery wall, and differences in composition and tissue architecture can account for the observed variations in mechanical properties. This phenomenon is most pronounced in large whales, in which very high compliance in the aortic arch and exceptionally low compliance in the descending aorta occur, and is correlated with specific modifications in the arterial structure.

  2. Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xuemei; Li, Aiqin; Zhao, Liang

    Highlights: •This is the first demonstration that miR-15a is a novel target gene of KLF4. •A novel finding that KLF4 increases the expression of miR-15a in ECs and VSMCs. •The novel mechanism is that KLF4 inhibits the proliferation of ECs via miR-15a. •The novel mechanism is that KLF4 inhibits the proliferation of VSMCs via miR-15. •miR-15a mediates the anti-angiogenic activity of KLF4. -- Abstract: While recent insights indicate that the transcription factor Krüppel-like factor 4 (KLF4) is indispensable for vascular homeostasis, its exact role in proliferation and angiogenesis and how it functions remain unresolved. Thus, the aim of the presentmore » study was to evaluate the role of KLF4 in the proliferations of endothelial and vascular smooth muscle cells, as well as the angiogenesis. The overexpression of KLF4 in endothelial cells significantly impaired tube formation. KLF4 inhibited the formation of a vascular network in implanted Matrigel plugs in nude mice. Importantly, we found that KLF4 significantly upregulated the miR-15a expression in endothelial cells and vascular smooth muscle cells, and conversely, KLF4 depletion reduced the amount of miR-15a. Furthermore, KLF4 blocked cell cycle progression and decreased cyclin D1 expression in endothelial cells and vascular smooth muscle cells through the induction of miR-15a. Intriguingly, the delivery of a miR-15a antagomir to nude mice resulted in marked attenuation of the anti-angiogenic effect of KLF4. Collectively, our present study provide the first evidence that miR-15a as a direct transcriptional target of KLF4 that mediates the anti-proliferative and anti-angiogenic actions of KLF4, which indicates that KLF4 upregulation of miR-15a may represent a therapeutic option to suppress proliferative vascular disorders.« less

  3. Reduced subclinical carotid vascular disease and arterial stiffness in vegetarian men: The CARVOS Study.

    PubMed

    Acosta-Navarro, Julio; Antoniazzi, Luiza; Oki, Adriana Midori; Bonfim, Maria Carlos; Hong, Valeria; Acosta-Cardenas, Pedro; Strunz, Celia; Brunoro, Eleonora; Miname, Marcio Hiroshi; Filho, Wilson Salgado; Bortolotto, Luiz Aparecido; Santos, Raul D

    2017-03-01

    Dietary habits play an important role in the development of atherosclerosis, the most important cause of morbidity and mortality in the world. The objective of this study was to verify if vegetarian (VEG) diet could be related a better profile of subclinical vascular disease evaluated by arterial stiffness and functional and structural properties of carotid arteries, compared to omnivorous (OMN) diet. In this cross-sectional study, 44 VEG and 44 OMN apparently healthy men ≥35years of age, in order to not have confounding risk factors of subclinical atherosclerosis, were assessed for anthropometric data, blood pressure, blood lipids, glucose, C reactive protein (CRP), and arterial stiffness determined by carotid-femoral pulse wave velocity (PWV). Also, carotid intima-media thickness (c-IMT) and distensibility were evaluated. VEG men had lower body mass index, systolic and diastolic blood pressures, fasting serum total cholesterol, LDL and non-HDL-cholesterol, apolipoprotein B, glucose and glycated hemoglobin values in comparison with OMN individuals (all p values <0.05). Markers of vascular structure and function were different between VEG and OMN: PWV 7.1±0.8m/s vs. 7.7±0.9m/s (p<0.001); c-IMT 593±94 vs. 661±128μm (p=0.003); and relative carotid distensibility 6.39±1.7 vs. 5.72±1.8% (p=0.042), respectively. After a multivariate linear regression analysis, a VEG diet was independently and negatively associated with PWV (p value 0.005). A VEG diet is associated with a more favorable cardiovascular diseases biomarker profile and better vascular structural and functional parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Electromechanical coupling in rat basilar artery in response to morphine.

    PubMed

    Waters, A; Harder, D R

    1983-12-01

    Force development, intracellular membrane potential (Em), and voltage vs. current curves were measured in rat basilar artery to help elucidate the mechanism of action of morphine sulfate and a synthetic narcotic, meperidine hydrochloride, on this preparation. Morphine sulfate caused a dose-dependent contraction of these vessels, which was reversible with naloxone. Electrical studies show that morphine may act upon this vascular smooth muscle preparation by decreasing potassium conductance (gk). This hypothesis is supported by the findings that morphine sulfate depolarized these cells and increased the input resistance (rin) determined by the application of rectangular hyperpolarizing and depolarizing current pulses through the microelectrode during impalement and recording of the associated voltage changes (delta V). Meperidine hydrochloride had significantly less effect on this preparation than morphine sulfate. Further studies show that the vehicular medium used for the commercially available preparation of naloxone (viz. the methyl and propyl esters of p-hydroxybenzoic acid in a ratio of 9:1) is, in vitro, a vasodilator of cerebral vascular smooth muscle.

  5. NEPRILYSIN REGULATES PULMONARY ARTERY SMOOTH MUSCLE CELL PHENOTYPE THROUGH A PDGF RECEPTOR DEPENDENT MECHANISM

    PubMed Central

    Karoor, Vijaya; Oka, Masahiko; Walchak, Sandra J.; Hersh, Louis B.; Miller, York E.; Dempsey, Edward C.

    2013-01-01

    Reduced neprilysin (NEP), a cell surface metallopeptidase, which cleaves and inactivates pro-inflammatory and vasoactive peptides, predisposes the lung vasculature to exaggerated remodeling in response to hypoxia. We hypothesize that loss of NEP in pulmonary artery smooth muscle cells (PASMCs) results in increased migration and proliferation. PASMCs isolated from NEP−/− mice exhibited enhanced migration and proliferation in response to serum and PDGF, which was attenuated by NEP replacement. Inhibition of NEP by overexpression of a peptidase dead mutant or knockdown by siRNA in NEP+/+ cells increased migration and proliferation. Loss of NEP led to an increase in Src kinase activity and phosphorylation of PTEN resulting in activation of the PDGF receptor (PDGFR). Knockdown of Src kinase with siRNA or inhibition with PP2 a src kinase inhibitor decreased PDGFRY751 phosphorylation and attenuated migration and proliferation in NEP−/− SMCs. NEP substrates, endothelin-1(ET-1) or fibroblast growth factor-2 (FGF2), increased activation of Src and PDGFR in NEP+/+ cells, which was decreased by an ETAR antagonist, neutralizing antibody to FGF2 and Src inhibitor. Similar to the observations in PASMCs levels of p-PDGFR, p-Src and p-PTEN were elevated in NEP−/− lungs. ETAR antagonist also attenuated the enhanced responses in NEP−/−PASMCs and lungs. Taken together our results suggest a novel mechanism for regulation of PDGFR signaling by NEP substrates involving Src and PTEN. Strategies that increase lung NEP activity/expression or target key downstream effectors, like Src, PTEN or PDGFR, may be of therapeutic benefit in pulmonary vascular disease. PMID:23381789

  6. Poland syndrome associated with an aberrant subclavian artery and vascular abnormalities of the retina in a child exposed to misoprostol during pregnancy.

    PubMed

    Rosa, Rafael Fabiano Machado; Travi, Giovanni M; Valiatti, Fabiana; Zen, Paulo Ricardo Gazzola; Pinto, Louise Lapagesse; Kiss, Andrea; Graziadio, Carla; Paskulin, Giorgio Adriano

    2007-06-01

    Poland syndrome has been attributed to a process of vascular disruption, and exposure to misoprostol at 6-8 weeks of gestation has been shown to produce defects attributed to vascular disruption. Herein we report the first case of a patient with Poland syndrome associated with an aberrant subclavian artery and vascular abnormalities of the retina, whose mother used misoprostol during pregnancy. A White boy of 1 year and 7 months of age, whose mother used misoprostol during the second month of pregnancy, presented with bilateral epicanthal folds, aplasia of the sternocostal head of the pectoralis major muscle with a hypoplastic nipple on the right side, and asymmetry between the upper limbs. The results of an angiotomographic study showed the presence of an aberrant right subclavian artery. Ultrasonographic evaluation showed turbulence and a high peak in the diastolic velocity in both carotid arteries, suggesting stenosis. Ophthalmologic assessment disclosed an intense bilateral tortuosity of the retinal blood vessels, with arterialnarrowing and rarefaction of the retinal pigment epithelium. This case suggests that the mechanism of vascular disruption of misoprostol could be related to the aberrant subclavian artery and the observed Poland syndrome. His retinal findings are different from those in cases described thus far in the literature, and this pattern of anomaly has never been associated with a gestational exposure to misoprostol. The possibility of a relationship of the aberrant right subclavian artery and the pattern of blood flow verified in the carotid arteries with the eye fundus abnormalities could be causally related or simply coincidental.

  7. Does vascular stapling improve compliance of vascular anastomoses?

    PubMed

    Stansby, G; Knez, P; Berwanger, C S; Nelson, K; Reichert, V; Schmitz-Rixen, T

    2001-01-01

    Elastic properties of vessel walls are altered by vascular anastomoses. Such alterations may lead to neointimal hyperplasia, which is a common cause of reocclusion following vascular surgery. The severity of paraanastomotic hypercompliant zones and anastomotic compliance drop depend on suturing material and on elastic properties of the anastomotic vessel segments. This study compares paraanastomotic hypercompliance and anastomotic compliance drop when using a new vascular closure system (VCS) and a conventional, continuous suture line in the preparation of end-to-end anastomoses. Compliance of artery-artery, vein-artery, and polytetrafluoroethylene-artery anastomoses was measured in an artificial circulation system at mean pressures of 60, 90, and 120 mm Hg, comparing conventional suturing and the VCS. When using the VCS for vein-artery anastomoses, significantly less postanastomotic hypercompliance was achieved at mean pressures of 60 mm Hg (14.2 +/-3.8% above remote postanastomotic area), compared to suture (55.1 +/-14.8%, p<0.05). At 90 mm Hg, respective values were 11.0 +/-2.3% for VCS and 54.7 +/-10.1% for suture, p<0.01. At 120 mm Hg, in polytetrafluoroethylene-artery anastomoses, the anastomotic compliance drop was significantly less when using the continuous suture line (93.9 +/-1.1% below remote postanastomotic compliance), compared to VCS (97.2 +/-0.2%, p<0.05). Compared to conventional suturing, use of the VCS reduced postanastomotic hypercompliance in vein-artery anastomoses.

  8. Prevention of vascular dysfunction and arterial hypertension in mice generated by assisted reproductive technologies by addition of melatonin to culture media.

    PubMed

    Rexhaj, Emrush; Pireva, Agim; Paoloni-Giacobino, Ariane; Allemann, Yves; Cerny, David; Dessen, Pierre; Sartori, Claudio; Scherrer, Urs; Rimoldi, Stefano F

    2015-10-01

    Assisted reproductive technologies (ART) induce vascular dysfunction in humans and mice. In mice, ART-induced vascular dysfunction is related to epigenetic alteration of the endothelial nitric oxide synthase (eNOS) gene, resulting in decreased vascular eNOS expression and nitrite/nitrate synthesis. Melatonin is involved in epigenetic regulation, and its administration to sterile women improves the success rate of ART. We hypothesized that addition of melatonin to culture media may prevent ART-induced epigenetic and cardiovascular alterations in mice. We, therefore, assessed mesenteric-artery responses to acetylcholine and arterial blood pressure, together with DNA methylation of the eNOS gene promoter in vascular tissue and nitric oxide plasma concentration in 12-wk-old ART mice generated with and without addition of melatonin to culture media and in control mice. As expected, acetylcholine-induced mesenteric-artery dilation was impaired (P = 0.008 vs. control) and mean arterial blood pressure increased (109.5 ± 3.8 vs. 104.0 ± 4.7 mmHg, P = 0.002, ART vs. control) in ART compared with control mice. These alterations were associated with altered DNA methylation of the eNOS gene promoter (P < 0.001 vs. control) and decreased plasma nitric oxide concentration (10.1 ± 11.1 vs. 29.5 ± 8.0 μM) (P < 0.001 ART vs. control). Addition of melatonin (10(-6) M) to culture media prevented eNOS dysmethylation (P = 0.005, vs. ART + vehicle), normalized nitric oxide plasma concentration (23.1 ± 14.6 μM, P = 0.002 vs. ART + vehicle) and mesentery-artery responsiveness to acetylcholine (P < 0.008 vs. ART + vehicle), and prevented arterial hypertension (104.6 ± 3.4 mmHg, P < 0.003 vs. ART + vehicle). These findings provide proof of principle that modification of culture media prevents ART-induced vascular dysfunction. We speculate that this approach will also allow preventing ART-induced premature atherosclerosis in humans. Copyright © 2015 the American Physiological Society.

  9. Impaired arterial smooth muscle cell vasodilatory function in methamphetamine users.

    PubMed

    Nabaei, Ghaemeh; Oveisgharan, Shahram; Ghorbani, Askar; Fatehi, Farzad

    2016-11-15

    Methamphetamine use is a strong risk factor for stroke. This study was designed to evaluate arterial function and structure in methamphetamine users ultrasonographically. In a cross-sectional study, 20 methamphetamine users and 21 controls, aged between 20 and 40years, were enrolled. Common carotid artery intima-media thickness (CCA-IMT) marker of early atherogenesis, flow-mediated dilatation (FMD) determinants of endothelium-dependent vasodilation, and nitroglycerine-mediated dilatation (NMD) independent marker of vasodilation were measured in two groups. There were no significant differences between the two groups regarding demographic and metabolic characteristics. The mean (±SD) CCA-IMT in methamphetamine users was 0.58±0.09mm, versus 0.59±0.07mm in the controls (p=0.84). Likewise, FMD% was not significantly different between the two groups [7.6±6.1% in methamphetamine users vs. 8.2±5.1% in the controls; p=0.72], nor were peak flow and shear rate after hyperemia. However, NMD% was considerably decreased in the methamphetamine users [8.5±7.8% in methamphetamine users vs. 13.4±6.2% in controls; p=0.03]. According to our results, NMD is reduced among otherwise healthy methamphetamine users, which represents smooth muscle dysfunction in this group. This may contribute to the high risk of stroke among methamphetamine users. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Suppressive activities and mechanisms of ugonin J on vascular smooth muscle cells and balloon angioplasty-induced neointimal hyperplasia.

    PubMed

    Pan, Chun-Hsu; Li, Pei-Chuan; Chien, Yi-Chung; Yeh, Wan-Ting; Liaw, Chih-Chuang; Sheu, Ming-Jyh; Wu, Chieh-Hsi

    2018-02-01

    Neointimal hyperplasia (or restenosis) is primarily attributed to excessive proliferation and migration of vascular smooth muscle cells (VSMCs). In this study, we investigated the inhibitory effects and mechanisms of ugonin J on VSMC proliferation and migration as well as neointimal formation. Cell viability and the cell-cycle distribution were, respectively, analyzed using an MTT assay and flow cytometry. Cell migration was examined using a wound-healing analysis and a transwell assay. Protein expressions and gelatinase activities were, respectively, measured using Western blot and gelatin zymography. Balloon angioplasty-induced neointimal formation was induced in a rat carotid artery model and then examined using immunohistochemical staining. Ugonin J induced cell-cycle arrest at the G 0 /G 1 phase and apoptosis to inhibit VSMC growth. Ugonin J also exhibited marked suppressive activity on VSMC migration. Ugonin J significantly reduced activations of focal adhesion kinase, phosphoinositide 3-kinase, v-akt murine thymoma viral oncogene homolog 1, and extracellular signal-regulated kinase 1/2 proteins. Moreover, ugonin J obviously reduced expressions and activity levels of matrix metalloproteinase-2 and matrix metalloproteinase-9. In vivo data indicated that ugonin J prevented balloon angioplasty-induced neointimal hyperplasia. Our study suggested that ugonin J has the potential for application in the prevention of balloon injury-induced neointimal formation. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Creatinine metabolite, HMH (5-hydroxy-1-methylhydantoin; NZ-419), modulates bradykinin-induced changes in vascular smooth muscle cells.

    PubMed

    Ienaga, Kazuharu; Sohn, Mimi; Naiki, Mitsuru; Jaffa, Ayad A

    2014-06-01

    A creatinine metabolite, 5-hydroxy-1-methylhydantoin (HMH: NZ-419), a hydroxyl radical scavenger, has previously been shown to confer renoprotection by inhibiting the progression of chronic kidney disease in rats. In the current study, we demonstrate that HMH modulates the effects of glucose and bradykinin (BK) in vascular smooth muscle cell (VSMC). HMH a novel anti-oxidant drug completely suppressed the expression of B2-kinin receptors (B2KR) in response to high glucose (25 mM) stimulation in VSMC and was also shown to attenuate the effects of BK on VSMC remodeling. HMH inhibited the BK-induced increase in MAPK phosphorylation and attenuated the increase in connective tissue growth factor (CTGF) protein levels in VSMC. These findings suggest that HMH may confer vascular protection against high glucose concentrations and BK-stimulation to ameliorate vascular injury and remodeling through its anti-oxidant properties.

  12. Modulation of CaV1.2 calcium channel by neuropeptide W regulates vascular myogenic tone via G protein-coupled receptor 7.

    PubMed

    Ji, Li; Zhu, Huayuan; Chen, Hong; Fan, Wenyong; Chen, Junjie; Chen, Jing; Zhu, Guoqing; Wang, Juejin

    2015-12-01

    Neuropeptide W (NPW), an endogenous ligand for the G protein-coupled receptor 7 (GPR7), was first found to make important roles in central nerve system. In periphery, NPW was also present and regulated intracellular calcium homeostasis by L-type calcium channels. This study was designed to discover the effects of NPW-GPR7 on the function of CaV1.2 calcium channels in the vascular smooth muscle cells (VSMCs) and vasotone of arterial vessels. By whole-cell patch clamp, we studied the effects of NPW-23, the active form of NPW, on the CaV1.2 channels in the heterologously transfected human embryonic kidney 293 cells and VSMCs isolated from rat. Living system was used to explore the physiological function of NPW-23 in arterial myogenic tone. To investigate the pathological relevance, NPW mRNA level of mesenteric arteries was measured in the hypertensive and normotensive rats. NPW's receptor GPR7 was coexpressed with CaV1.2 channels in arterial smooth muscle. NPW-23 increased the ICa,L in transfected human embryonic kidney 293 cells and VSMCs via GPR7, which could be abrogated by phospholipase C (PLC)/protein kinase C (PKC) inhibitors, not protein kinase A or protein kinase G inhibitor. After NPW-23 application, the expression of pan phospho-PKC was increased; moreover, intracellular diacylglycerol level, the second messenger catalyzed by PLC, was increased 1.5-2-fold. Application with NPW-23 increased pressure-induced vasotone of the rat mesenteric arteries. Importantly, the expression of NPW was decreased in the hypertensive rats. NPW-23 regulates ICa,L via GPR7, which is mediated by PLC/PKC signaling, and such a mechanism plays a role in modulating vascular myogenic tone, which may involve in the development of vascular hypertension.

  13. Pulmonary artery relative area change detects mild elevations in pulmonary vascular resistance and predicts adverse outcome in pulmonary hypertension.

    PubMed

    Swift, Andrew J; Rajaram, Smitha; Condliffe, Robin; Capener, Dave; Hurdman, Judith; Elliot, Charlie; Kiely, David G; Wild, Jim M

    2012-10-01

    The aim of this study was to evaluate the clinical use of magnetic resonance imaging measurements related to pulmonary artery stiffness in the evaluation of pulmonary hypertension (PH). A total of 134 patients with suspected PH underwent right heart catheterization (RHC) and magnetic resonance imaging on a 1.5-T scanner within 2 days. Phase contrast imaging at the pulmonary artery trunk and cine cardiac views were acquired. Pulmonary artery area change (AC), relative AC (RAC), compliance (AC/pulse pressure from RHC), distensibility (RAC/pulse pressure from RHC), right ventricular functional indices, and right ventricular mass were all derived. Regression curve fitting identified the statistical model of best fit between RHC measurements and pulmonary artery stiffness indices. The diagnostic accuracy and prognostic value of noninvasive AC and RAC were also assessed. The relationship between pulmonary vascular resistance and pulmonary artery RAC was best reflected by an inverse linear model. Patients with mild elevation in pulmonary vascular resistance (<4 Woods units) demonstrated reduced RAC (P = 0.02) and increased right ventricular mass index (P < 0.0001) without significant loss of right ventricular function (P = 0.17). At follow-up of 0 to 40 months, 18 patients with PH had died (16%). Analysis of Kaplan-Meier plots showed that both AC and RAC predicted mortality (log-rank test, P = 0.046 and P = 0.012, respectively). Area change and RAC were also predictors of mortality using univariate Cox proportional hazards regression analysis (P = 0.046 and P = 0.03, respectively). Noninvasive assessment of pulmonary artery RAC is a marker sensitive to early increased vascular resistance in PH and is a predictor of adverse outcome.

  14. Effect of Intravitreal Anti-Vascular Endothelial Growth Factor Therapy on the Risk of Arterial Thromboembolic Events: A Meta-Analysis

    PubMed Central

    Lu, Guo-Cai; Wei, Rui-Li

    2012-01-01

    Background Intravitreal anti-vascular endothelial growth factor (VEGF) monoclonal antibodies are used in ocular neovascular diseases. A consensus has emerged that intravenous anti-VEGF can increase the risk of arterial thromboembolic events. However, the role of intravitreal anti-VEGF in arterial thromboembolism is controversial. Therefore, we did a systematic review and meta-analysis to investigate the effects of intravitreal anti-VEGF on the risk of arterial thromboembolic events. Methods Electronic databases were searched to identify relevant randomized clinical trials comparing intravitreal anti-VEGF with controls. Criteria for inclusion in our meta-analysis included a study duration of no less than 12 months, the use of a randomized control group not receiving any intravitreal active agent, and the availability of outcome data for arterial thromboembolic events, myocardial infarction, cerebrovascular accidents, and vascular death. The risk ratios and 95% CIs were calculated using a fixed-effects or random-effects model, depending on the heterogeneity of the included studies. Results A total of 4942 patients with a variety of ocular neovascular diseases from 13 randomized controlled trials were identified and included for analysis. There was no significant difference between intravitreal anti-VEGF and control in the risk of all events, with risk ratios of 0.87 (95% CI, 0.64 to 1.19) for arterial thromboembolic events, 0.96 (95% CI, 0.55–1.68) for cerebrovascular accidents, 0.69 (95% CI 0.40–1.21) for myocardial infarctions, and 0.68 (95% CI, 0.37–1.27) for vascular death. Conclusions The strength evidence suggests that the intravitreal use of anti-VEGF antibodies is not associated with an increased risk of arterial thromboembolic events. PMID:22829940

  15. Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers.

    PubMed

    Jia, Lin; Prabhakaran, Molamma P; Qin, Xiaohong; Ramakrishna, Seeram

    2014-09-01

    Fabricating scaffolds that can simulate the architecture and functionality of native extracellular matrix is a huge challenge in vascular tissue engineering. Various kinds of materials are engineered via nano-technological approaches to meet the current challenges in vascular tissue regeneration. During this study, nanofibers from pure polyurethane and hybrid polyurethane/collagen in two different morphologies (random and aligned) and in three different ratios of polyurethane:collagen (75:25; 50:50; 25:75) are fabricated by electrospinning. The fiber diameters of the nanofibrous scaffolds are in the range of 174-453 nm and 145-419 for random and aligned fibers, respectively, where they closely mimic the nanoscale dimensions of native extracellular matrix. The aligned polyurethane/collagen nanofibers expressed anisotropic wettability with mechanical properties which is suitable for regeneration of the artery. After 12 days of human aortic smooth muscle cells culture on different scaffolds, the proliferation of smooth muscle cells on hybrid polyurethane/collagen (3:1) nanofibers was 173% and 212% higher than on pure polyurethane scaffolds for random and aligned scaffolds, respectively. The results of cell morphology and protein staining showed that the aligned polyurethane/collagen (3:1) scaffold promote smooth muscle cells alignment through contact guidance, while the random polyurethane/collagen (3:1) also guided cell orientation most probably due to the inherent biochemical composition. Our studies demonstrate the potential of aligned and random polyurethane/collagen (3:1) as promising substrates for vascular tissue regeneration. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Pathology of Human Coronary and Carotid Artery Atherosclerosis and Vascular Calcification in Diabetes Mellitus.

    PubMed

    Yahagi, Kazuyuki; Kolodgie, Frank D; Lutter, Christoph; Mori, Hiroyoshi; Romero, Maria E; Finn, Aloke V; Virmani, Renu

    2017-02-01

    The continuing increase in the prevalence of diabetes mellitus in the general population is predicted to result in a higher incidence of cardiovascular disease. Although the mechanisms of diabetes mellitus-associated progression of atherosclerosis are not fully understood, at clinical and pathological levels, there is an appreciation of increased disease burden and higher levels of arterial calcification in these subjects. Plaques within the coronary arteries of patients with diabetes mellitus generally exhibit larger necrotic cores and significantly greater inflammation consisting mainly of macrophages and T lymphocytes relative to patients without diabetes mellitus. Moreover, there is a higher incidence of healed plaque ruptures and positive remodeling in hearts from subjects with type 1 diabetes mellitus and type 2 diabetes mellitus, suggesting a more active atherogenic process. Lesion calcification in the coronary, carotid, and other arterial beds is also more extensive. Although the role of coronary artery calcification in identifying cardiovascular disease and predicting its outcome is undeniable, our understanding of how key hormonal and physiological alterations associated with diabetes mellitus such as insulin resistance and hyperglycemia influence the process of vascular calcification continues to grow. Important drivers of atherosclerotic calcification in diabetes mellitus include oxidative stress, endothelial dysfunction, alterations in mineral metabolism, increased inflammatory cytokine production, and release of osteoprogenitor cells from the marrow into the circulation. Our review will focus on the pathophysiology of type 1 diabetes mellitus- and type 2 diabetes mellitus-associated vascular disease with particular focus on coronary and carotid atherosclerotic calcification. © 2016 American Heart Association, Inc.

  17. [Vascular effect of extract from mulberry leaves and underlying mechanism].

    PubMed

    Xia, Man-Li; Gao, Qin; Zhou, Xin-Mei; Qian, Ling-Bo; Shen, Zhong-Hua; Jiang, Hui-di; Xia, Qiang

    2007-01-01

    To investigate the vascular activity of extract from mulberry leaves (EML) on rat thoracic aorta and the underlying mechanism. Isolated thoracic rings of Sprague-Dawley rats were mounted on the organ bath and the tension of the vessel was recorded. (1) EML produced a concentration-dependent vasorelaxation of aorta preconstricted by high K(+) (60 mmol/L) or 10(-6) mol/L phenylephrine (PE) in endothelium-intact and endothelium-denuded arteries. (2) EML at EC(50) concentration reduced the calcium dose-response curve. (3) After incubation of aorta with verapamil, EML induced vasocontraction of aorta preconstricted by PE, which was abolished by ruthenium red. The vascular effect of EML is biphasic, the vasorelaxation is greater than the vasocontraction. The vasorelaxation induced by EML may be mediated by inhibition of voltage-and receptor-dependent calcium channels in vascular smooth muscle cells, while the vasocontraction is via activation of ryanodine receptor in endoplasmic reticulum.

  18. Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest.

    PubMed

    Manderfield, Lauren J; Aghajanian, Haig; Engleka, Kurt A; Lim, Lillian Y; Liu, Feiyan; Jain, Rajan; Li, Li; Olson, Eric N; Epstein, Jonathan A

    2015-09-01

    Notch signaling has well-defined roles in the assembly of arterial walls and in the development of the endothelium and smooth muscle of the vasculature. Hippo signaling regulates cellular growth in many tissues, and contributes to regulation of organ size, in addition to other functions. Here, we show that the Notch and Hippo pathways converge to regulate smooth muscle differentiation of the neural crest, which is crucial for normal development of the aortic arch arteries and cranial vasculature during embryonic development. Neural crest-specific deletion of the Hippo effectors Yap and Taz produces neural crest precursors that migrate normally, but fail to produce vascular smooth muscle, and Notch target genes such as Jagged1 fail to activate normally. We show that Yap is normally recruited to a tissue-specific Jagged1 enhancer by directly interacting with the Notch intracellular domain (NICD). The Yap-NICD complex is recruited to chromatin by the DNA-binding protein Rbp-J in a Tead-independent fashion. Thus, Hippo signaling can modulate Notch signaling outputs, and components of the Hippo and Notch pathways physically interact. Convergence of Hippo and Notch pathways by the mechanisms described here might be relevant for the function of these signaling cascades in many tissues and in diseases such as cancer. © 2015. Published by The Company of Biologists Ltd.

  19. [Advance in study of vascular endothelial cell and smooth muscle cell co-culture system].

    PubMed

    Li, Yujie; Yang, Qing; Weng, Xiaogang; Chen, Ying; Ruan, Congxiao; Li, Dan; Zhu, Xiaoxing

    2012-02-01

    The interactions between endothelial cells (EC) and smooth muscle cells (SMC) contribute to vascular physiological functions and also cause the occurrence and development of different kinds of diseases. Currently, EC-SMC co-culture model is the best way to study the interactions between the two kinds of cells. This article summarizes existing EC-SMC co-culture models and their effects on the structure and functions of the two kinds of cells. Microscopically speaking, it provides a basis for in-depth studies on their interactions as well as a reference for the establishment of in vitro EC-SMC co-culture system that is closer to organic physiology or pathology state.

  20. Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFβ1/BMP4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elçin, Ayşe Eser; Parmaksiz, Mahmut; Dogan, Arin

    Regenerative repair of the vascular system is challenging from the perspectives of translational medicine and tissue engineering. There are fundamental hurdles in front of creating bioartificial arteries, which involve recaputilation of the three-layered structure under laboratory settings. Obtaining and maintaining smooth muscle characteristics is an important limitation, as the transdifferentiated cells fail to display mature phenotype. This study aims to shed light on the smooth muscle differentiation of human adipose stem cells (hASCs). To this end, we first acquired hASCs from lipoaspirate samples. Upon characterization, the cells were induced to differentiate into smooth muscle (SM)-like cells using a variety ofmore » inducer combinations. Among all, TGFβ1/BMP4 combination had the highest differentiation efficiency, based on immunohistochemical analyses. hSM-like cell samples were compared to hASCs and to the positive control, human coronary artery-smooth muscle cells (hCA-SMCs) through gene transcription profiling. Microarray findings revealed the activation of gene groups that function in smooth muscle differentiation, signaling pathways, extracellular modeling and cell proliferation. Our results underline the effectiveness of the growth factors and suggest some potential variables for detecting the SM-like cell characteristics. Evidence in transcriptome level was used to evaluate the TGFβ1/BMP4 combination as a previously unexplored effector for the smooth muscle differentiation of adipose stem cells. - Highlights: • Human adipose stem cells (hASCs) were isolated, characterized and cultured. • Growth factor combinations were evaluated for their effectiveness in differentiation using IHC. • hASCs were differentiated into smooth muscle (SM)-like cells using TGF-β1 and BMP4 combination. • Microarray analysis was performed for hASCs, SM-like cells and coronary artery-SMCs. • Microarray data was used to perform hierarchical clustering and

  1. MicroRNA-Dependent Control of Serotonin-Induced Pulmonary Arterial Contraction.

    PubMed

    Dahan, Diana; Hien, Tran Thi; Tannenberg, Philip; Ekman, Mari; Rippe, Catarina; Boettger, Thomas; Braun, Thomas; Tran-Lundmark, Karin; Tran, Phan-Kiet; Swärd, Karl; Albinsson, Sebastian

    2017-01-01

    Serotonin (5-HT) is considered to play a role in pulmonary arterial hypertension by regulating vascular remodeling and smooth muscle contractility. Here, arteries from mice with inducible and smooth muscle-specific deletion of Dicer were used to address mechanisms by which microRNAs control 5-HT-induced contraction. Mice were used 5 weeks after Dicer deletion, and pulmonary artery contractility was analyzed by wire myography. No change was seen in right ventricular systolic pressure following dicer deletion, but systemic blood pressure was reduced. Enhanced 5-HT-induced contraction in Dicer KO pulmonary arteries was associated with increased 5-HT2A receptor mRNA expression whereas 5-HT1B and 5-HT2B receptor mRNAs were unchanged. Contraction by the 5-HT2A agonist TCB-2 was increased in Dicer KO as was the response to the 5-HT2B agonist BW723C86. Effects of Src and protein kinase C inhibition were similar in control and KO arteries, but the effect of inhibition of Rho kinase was reduced. We identified miR-30c as a potential candidate for 5-HT2A receptor regulation as it repressed 5-HT2A mRNA and protein. Our findings show that 5-HT receptor signaling in the arterial wall is subject to regulation by microRNAs and that this entails altered 5-HT2A receptor expression and signaling. © 2017 S. Karger AG, Basel.

  2. Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates

    PubMed Central

    Bajpai, Vivek K.; Mistriotis, Panagiotis; Loh, Yuin-Han; Daley, George Q.; Andreadis, Stelios T.

    2012-01-01

    Aims Smooth muscle cells (SMC) play an important role in vascular homeostasis and disease. Although adult mesenchymal stem cells (MSC) have been used as a source of contractile SMC, they suffer from limited proliferation potential and culture senescence, particularly when originating from older donors. By comparison, human induced pluripotent stem cells (hiPSC) can provide an unlimited source of functional SMC for autologous cell-based therapies and for creating models of vascular disease. Our goal was to develop an efficient strategy to derive functional, contractile SMC from hiPSC. Methods and results We developed a robust, stage-wise, feeder-free strategy for hiPSC differentiation into functional SMC through an intermediate stage of multipotent MSC, which could be coaxed to differentiate into fat, bone, cartilage, and muscle. At this stage, the cells were highly proliferative and displayed higher clonogenic potential and reduced senescence when compared with parental hair follicle mesenchymal stem cells. In addition, when exposed to differentiation medium, the myogenic proteins such as α-smooth muscle actin, calponin, and myosin heavy chain were significantly upregulated and displayed robust fibrillar organization, suggesting the development of a contractile phenotype. Indeed, tissue constructs prepared from these cells exhibited high levels of contractility in response to receptor- and non-receptor-mediated agonists. Conclusion We developed an efficient stage-wise strategy that enabled hiPSC differentiation into contractile SMC through an intermediate population of clonogenic and multipotent MSC. The high yield of MSC and SMC derivation suggests that our strategy may facilitate an acquisition of the large numbers of cells required for regenerative medicine or for studying vascular disease pathophysiology. PMID:22941255

  3. Sudden onset of artery dissection in a 32-year-old woman with vascular Ehlers-Danlos syndrome due to psychological stress of her mother's death: a case series.

    PubMed

    Shimoyama, Yuichiro; Umegaki, Osamu; Agui, Tomoyuki; Kadono, Noriko; Minami, Toshiaki

    2017-01-01

    Patients with vascular Ehlers-Danlos syndrome (EDS) are susceptible to significant vascular complications, such as aortic and visceral arterial ruptures, aneurysms, and dissection. We describe a case of repeated bleeding in a 57-year-old woman and a case of sudden onset of artery dissection in her daughter, both of whom were previously diagnosed with vascular EDS and managed at our institution. A 57-year-old woman was admitted to our emergency department due to sudden onset of left low back pain. Her past history included vascular EDS. An urgent abdominal computed tomography (CT) scan revealed a left-sided retroperitoneal hematoma and left external iliac artery dissection. Stent graft repair was performed. Five hours postoperatively, cardiac arrest occurred and resuscitation attempts failed. The 32-year-old daughter with genetically diagnosed vascular EDS was notified of the death of her mother during the customary end-of-life conference. Six hours after her mother's death, she was admitted to our emergency department due to sudden onset of left low back pain. On examination, she was not in hypovolemic shock, and weak pulses were palpable in the bilateral dorsalis pedis. An urgent abdominal CT scan revealed a right-sided retroperitoneal hematoma around the right external iliac artery and left external iliac artery dissection. She was admitted to the intensive care unit and underwent conservative therapy consisting of bed rest and antihypertensive therapy with nicardipine. She developed no further vascular complications requiring surgical intervention and was discharged on the 21st hospital day. Vascular rupture can be fatal in patients with vascular EDS. This report underscores the importance of strategic management of vascular complications to prevent rupture, and the importance of psychological care for the bereaved family given the hereditary nature of vascular EDS.

  4. Acute effects of pulsed-laser irradiation on the arterial wall

    NASA Astrophysics Data System (ADS)

    Nakamura, Fumitaka; Kvasnicka, Jan; Lu, Hanjiang; Geschwind, Herbert J.; Levame, Micheline; Bousbaa, Hassan; Lange, Francoise

    1992-08-01

    Pulsed laser coronary angioplasty with an excimer or a holmium-yttrium-aluminum-garnet (Ho:YAG) laser may become an alternative treatment for patients with coronary artery disease. However, little is known about its acute consequences on the normal arterial wall. This study was designed to examine the acute histologic consequences of these two pulsed lasers on the arterial wall of normal iliac arteries in rabbits. Irradiation with each laser was performed in 15 normal iliac sites on eight male New Zealand white rabbits. The excimer laser was operated at 308 nm, 25 Hz, 50 mJ/mm2/pulse, and 135 nsec/pulse and the Ho:YAG laser was operated at 2.1 micrometers , 3/5 Hz, 400 mJ/pulse, and 250 microsecond(s) ec/pulse. The excimer and Ho:YAG laser were coupled into a multifiber wire-guided catheter of 1.4 and 1.5 mm diameter, respectively. The sites irradiated with excimer or Ho:YAG laser had the same kinds of histologic features, consisting of exfoliation of the endothelium, disorganization of internal elastic lamina, localized necrosis of vascular smooth muscle cells, and fissures in the medial layer. However, the sites irradiated with excimer laser had lower grading scores than those irradiated with Ho:YAG laser (p < 0.05). Laser irradiation with excimer or Ho:YAG laser of normal arteries results in localized mechanical vascular injury.

  5. Invasion of vascular cells in vitro by Porphyromonas endodontalis.

    PubMed

    Dorn, B R; Harris, L J; Wujick, C T; Vertucci, F J; Progulske-Fox, A

    2002-04-01

    The objective of this study was to determine whether laboratory strains and clinical isolates of microorganisms associated with root canal infections can invade primary cultures of cardiovascular cells. Quantitative levels of bacterial invasion of human coronary artery endothelial cells (HCAEC) and coronary artery smooth muscle cells (CASMC) were measured using a standard antibiotic protection assay. Transmission electron microscopy was used to confirm and visualize internalization within the vascular cells. Of the laboratory and clinical strains tested, only P. endodontalis ATCC 35406 was invasive in an antibiotic protection assay using HCAEC and CASMC. Invasion of P. endodontalis ATCC 35406 was confirmed by transmission electron microscopy. Certain microorganisms associated with endodontic infections are invasive. If bacterial invasion of the vasculature contributes to the pathogenesis of cardiovascular disease, then microorganisms in the pulp chamber represent potential pathogens.

  6. Aluminum exposure for one hour decreases vascular reactivity in conductance and resistance arteries in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Patrícia Medeiros; Escobar, Alyne Goulart

    Aims: Aluminum (Al) is an important environmental contaminant; however, there are not enough evidences of Al-induced cardiovascular dysfunction. We investigated the effects of acute exposure to aluminum chloride (AlCl{sub 3}) on blood pressure, vascular reactivity and oxidative stress. Methods and results: Male Wistar rats were divided into two groups: Untreated: vehicle (ultrapure water, ip) and AlCl{sub 3}: single dose of AlCl{sub 3} (100 mg/kg,ip). Concentration-response curves to phenylephrine in the absence and presence of endothelium, the nitric oxide synthase inhibitor L-NAME, the potassium channel blocker tetraethylammonium, and the NADPH oxidase inhibitor apocynin were performed in segments from aortic and mesentericmore » resistance arteries. NO released was assessed in aorta and reactive oxygen species (ROS), malondialdehyde, non-protein thiol levels, antioxidant capacity and enzymatic antioxidant activities were investigated in plasma, aorta and/or mesenteric arteries. After one hour of AlCl{sub 3} exposure serum Al levels attained 147.7 ± 25.0 μg/L. Al treatment: 1) did not affect blood pressure, heart rate and vasodilator responses induced by acetylcholine or sodium nitroprusside; 2) decreased phenylephrine-induced vasoconstrictor responses; 3) increased endothelial modulation of contractile responses, NO release and vascular ROS production from NADPH oxidase; 4) increased plasmatic, aortic and mesenteric malondialdehyde and ROS production, and 5) decreased antioxidant capacity and affected the antioxidant biomarkers non-protein thiol levels, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase and catalase enzymatic activities. Conclusion: AlCl{sub 3}-acute exposure reduces vascular reactivity. This effect is associated with increased NO production, probably acting on K{sup +} channels, which seems to occur as a compensatory mechanism against Al-induced oxidative stress. Our results suggest that Al exerts toxic effects to the

  7. Fluorocopolymer-coated nitinol self-expanding paclitaxel-eluting stent: pharmacokinetics and vascular biology responses in a porcine iliofemoral model.

    PubMed

    Hou, Dongming; Huibregtse, Barbara A; Eppihimer, Michael; Stoffregen, William; Kocur, Gordon; Hitzman, Cory; Stejskal, Elizabeth; Heil, John; Dawkins, Keith D

    2016-08-20

    Our aim was to evaluate arterial responses to paclitaxel and a novel fluorocopolymer-coated nitinol low-dose paclitaxel-eluting stent (FP-PES). Human smooth muscle cell (SMC) migration was assessed after exposure to paclitaxel in vitro. For pharmacokinetics and vascular response, FP-PES or bare metal stents (BMS) were implanted in porcine iliofemoral arteries. Paclitaxel significantly inhibited human coronary and femoral artery SMC migration at doses as low as 1 pM. Inhibition was significantly greater for femoral compared with coronary artery SMCs from 1 pM to 1 μM. Pharmacokinetics showed consistent paclitaxel release from FP-PES over the study duration. The peak arterial wall paclitaxel level was 3.7 ng/mg at 10 days, with levels decreasing to 50% of peak at 60 days and 10% at 180 days. Paclitaxel was not detected in blood or remote organs. Arteriogram and histomorphometry analyses showed FP-PES significantly inhibits neointimal proliferation versus BMS at 30 and 90 days. Re-endothelialisation scores were not different between groups. Paclitaxel affected femoral artery SMC migration at lower concentrations and to a greater degree than it did coronary artery SMCs. The novel FP-PES used in this preclinical study demonstrated a vascular healing response similar to BMS, while significantly inhibiting neointimal formation up to 90 days.

  8. Berberine alleviates the cerebrovascular contractility in streptozotocin-induced diabetic rats through modulation of intracellular Ca²⁺ handling in smooth muscle cells.

    PubMed

    Ma, Yu-Guang; Zhang, Yin-Bin; Bai, Yun-Gang; Dai, Zhi-Jun; Liang, Liang; Liu, Mei; Xie, Man-Jiang; Guan, Hai-Tao

    2016-04-12

    Vascular dysfunction is a distinctive phenotype in diabetes mellitus. Current treatments mostly focus on the tight glycemic control and few of these treatments have been designed to directly recover the vascular dysfunction in diabetes. As a classical natural medicine, berberine has been explored as a possible therapy for DM. In addition, it is reported that berberine has an extra-protective effect in diabetic vascular dysfunction. However, little is known whether the berberine treatment could ameliorate the smooth muscle contractility independent of a functional endothelium under hyperglycemia. Furthermore, it remains unknown whether berberine affects the arterial contractility by regulating the intracellular Ca(2+) handling in vascular smooth cells (VSMCs) under hyperglycemia. Sprague-Dawley rats were used to establish the diabetic model with a high-fat diet plus injections of streptozotocin (STZ). Berberine (50, 100, and 200 mg/kg/day) were intragastrically administered to control and diabetic rats for 8 weeks since the injection of STZ. The intracellular Ca(2+) handling of isolated cerebral VSMCs was investigated by recording the whole-cell L-type Ca(2+) channel (CaL) currents, assessing the protein expressions of CaL channel, and measuring the intracellular Ca(2+) in response to caffeine. Our results showed that chronic administration of 100 mg/kg/day berberine not only reduced glucose levels, but also inhibited the augmented contractile function of cerebral artery to KCl and 5-hydroxytryptamine (5-HT) in diabetic rats. Furthermore, chronic administration of 100 mg/kg/day berberine significantly inhibited the CaL channel current densities, reduced the α1C-subunit expressions of CaL channel, decreased the resting intracellular Ca(2+) ([Ca(2+)]i) level, and suppressed the Ca(2+) releases from RyRs in cerebral VSMCs isolated from diabetic rats. Correspondingly, acute application of 10 μM berberine could directly inhibit the hyperglycemia-induced CaL currents

  9. Vascular smooth muscle-specific knockdown of the noncardiac form of the L-type calcium channel by microRNA-based short hairpin RNA as a potential antihypertensive therapy.

    PubMed

    Rhee, Sung W; Stimers, Joseph R; Wang, Wenze; Pang, Li

    2009-05-01

    In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (Ca(L)) current and vascular tone is increased because of increased expression of the noncardiac form of the Ca(L) (Ca(v)1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Ca(v)1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Ca(v)1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Ca(v)1.2 expression by 61% and decreased the Ca(L) current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Ca(v)1.2, it did not affect the Ca(L) expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Ca(v)1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Ca(v)1.2 siRNA without similarly affecting cardiac Ca(L) expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension.

  10. Vascular Smooth Muscle-Specific Knockdown of the Noncardiac Form of the L-Type Calcium Channel by MicroRNA-Based Short Hairpin RNA as a Potential Antihypertensive Therapy

    PubMed Central

    Rhee, Sung W.; Stimers, Joseph R.; Wang, Wenze; Pang, Li

    2009-01-01

    In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (CaL) current and vascular tone is increased because of increased expression of the noncardiac form of the CaL (Cav1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Cav1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Cav1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Cav1.2 expression by 61% and decreased the CaL current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Cav1.2, it did not affect the CaL expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Cav1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Cav1.2 siRNA without similarly affecting cardiac CaL expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension. PMID:19244098

  11. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease123

    PubMed Central

    Dohadwala, Mustali M; Holbrook, Monika; Hamburg, Naomi M; Shenouda, Sherene M; Chung, William B; Titas, Megan; Kluge, Matthew A; Wang, Na; Palmisano, Joseph; Milbury, Paul E; Blumberg, Jeffrey B; Vita, Joseph A

    2011-01-01

    Background: Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. Objective: The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. Design: We completed an acute pilot study with no placebo (n = 15) and a chronic placebo-controlled crossover study (n = 44) that examined the effects of cranberry juice on vascular function in subjects with coronary artery disease. Results: In the chronic crossover study, subjects with coronary heart disease consumed a research preparation of double-strength cranberry juice (54% juice, 835 mg total polyphenols, and 94 mg anthocyanins) or a matched placebo beverage (480 mL/d) for 4 wk each with a 2-wk rest period between beverages. Beverage order was randomly assigned, and participants refrained from consuming other flavonoid-containing beverages during the study. Vascular function was measured before and after each beverage, with follow-up testing ≥12 h after consumption of the last beverage. Mean (±SD) carotid-femoral pulse wave velocity, a measure of central aortic stiffness, decreased after cranberry juice (8.3 ± 2.3 to 7.8 ± 2.2 m/s) in contrast with an increase after placebo (8.0 ± 2.0 to 8.4 ± 2.8 m/s) (P = 0.003). Brachial artery flow-mediated dilation, digital pulse amplitude tonometry, blood pressure, and carotid-radial pulse wave velocity did not change. In the uncontrolled pilot study, we observed improved brachial artery flow-mediated dilation (7.7 ± 2.9% to 8.7 ± 3.1%, P = 0.01) and digital pulse amplitude tonometry ratio (0.10 ± 0.12 to 0.23 ± 0.16, P = 0.001) 4 h after consumption of a single 480-mL portion of cranberry juice. Conclusions: Chronic cranberry juice consumption reduced carotid femoral pulse wave velocity—a clinically relevant measure of arterial stiffness. The uncontrolled pilot study suggested an acute benefit; however, no chronic effect on measures of

  12. Histone Acetylation Regulates the Cell-Specific and Interferon-γ–Inducible Expression of Extracellular Superoxide Dismutase in Human Pulmonary Arteries

    PubMed Central

    Stepp, Marcus W.; Vorst, Alan L.; Folz, Rodney J.

    2011-01-01

    Extracellular superoxide dismutase (EC-SOD) is the major antioxidant enzyme present in the vascular wall, and is responsible for both the protection of vessels from oxidative stress and for the modulation of vascular tone. Concentrations of EC-SOD in human pulmonary arteries are very high relative to other tissues, and the expression of EC-SOD appears highly restricted to smooth muscle. The molecular basis for this smooth muscle–specific expression of EC-SOD is not known. Here we assessed the role of epigenetic factors in regulating the cell-specific and IFN-γ–inducible expression of EC-SOD in human pulmonary artery cells. The analysis of CpG site methylation within the promoter and coding regions of the EC-SOD gene demonstrated higher levels of DNA methylation within the distal promoter region in endothelial cells compared with smooth muscle cells. Exposure of both cell types to DNA demethylation agents reactivated the transcription of EC-SOD in endothelial cells alone. However, exposure to the histone deacetylase inhibitor trichostatin A (TSA) significantly induced EC-SOD gene expression in both endothelial cells and smooth muscle cells. Concentrations of EC-SOD mRNA were also induced up to 45-fold by IFN-γ in smooth muscle cells, but not in endothelial cells. The IFN-γ–dependent expression of EC-SOD was regulated by the Janus tyrosine kinase/signal transducers and activators of transcription proteins signaling pathway. Simultaneous exposure to TSA and IFN-γ produced a synergistic effect on the induction of EC-SOD gene expression, but only in endothelial cells. These findings provide strong evidence that EC-SOD cell-specific and IFN-γ–inducible expression in pulmonary artery cells is regulated, to a major degree, by epigenetic mechanisms that include histone acetylation and DNA methylation. PMID:21493784

  13. Dual ETA/ETB blockade with macitentan improves both vascular remodeling and angiogenesis in pulmonary arterial hypertension

    PubMed Central

    Nadeau, Valerie; Potus, Francois; Boucherat, Olivier; Paradis, Renee; Tremblay, Eve; Iglarz, Marc; Paulin, Roxane; Bonnet, Sebastien

    2017-01-01

    Dysregulated metabolism and rarefaction of the capillary network play a critical role in pulmonary arterial hypertension (PAH) etiology. They are associated with a decrease in perfusion of the lungs, skeletal muscles, and right ventricle (RV). Previous studies suggested that endothelin-1 (ET-1) modulates both metabolism and angiogenesis. We hypothesized that dual ETA/ETB receptors blockade improves PAH by improving cell metabolism and promoting angiogenesis. Five weeks after disease induction, Sugen/hypoxic rats presented severe PAH with pulmonary artery (PA) remodeling, RV hypertrophy and capillary rarefaction in the lungs, RV, and skeletal muscles (microCT angiogram, lectin perfusion, CD31 staining). Two-week treatment with dual ETA/ETB receptors antagonist macitentan (30 mg/kg/d) significantly improved pulmonary hemodynamics, PA vascular remodeling, and RV function and hypertrophy compared to vehicle-treated animals (all P = 0.05). Moreover, macitentan markedly increased lung, RV and quadriceps perfusion, and microvascular density (all P = 0.05). In vitro, these effects were associated with increases in oxidative phosphorylation (oxPhox) and markedly reduced cell proliferation of PAH-PA smooth muscle cells (PASMCs) treated with macitentan without affecting apoptosis. While macitentan did not affect oxPhox, proliferation, and apoptosis of PAH–PA endothelial cells (PAECs), it significantly improved their angiogenic capacity (tube formation assay). Exposure of control PASMC and PAEC to ET-1 fully mimicked the PAH cells phenotype, thus confirming that ET-1 is implicated in both metabolism and angiogenesis abnormalities in PAH. Dual ETA/ETB receptor blockade improved the metabolic changes involved in PAH-PASMCs’ proliferation and the angiogenic capacity of PAH-PAEC leading to an increased capillary density in lungs, RV, and skeletal muscles. PMID:29064353

  14. Stretch-induced contraction in pulmonary arteries.

    PubMed

    Kulik, T J; Evans, J N; Gamble, W J

    1988-12-01

    Stretch stimulates contraction of systemic blood vessels, but the response has not been described in pulmonary vessels. To determine whether pulmonary arteries contract when stretched, isolated cylindrical segments of pulmonary arteries were suspended between two parallel wires, stretched, and the active force was generated in response to stretch measured. Eighty-nine percent of segments from small (in situ diameter less than 1,000 microns) feline pulmonary arteries contracted when stretched, and in 65% of these the magnitude of stretch was related to the magnitude of contraction. Large (in situ diameter greater than or equal to 1,000 microns) feline pulmonary arteries did not contract with stretch. Multiple, rapidly repeated stretches resulted in a diminution of active force development. Stretch-induced contraction required external Ca2+ and was abolished by diltiazem (10 microns), but it was not affected by phenoxybenzamine, phentolamine, diethylcarbamazine, or mechanical removal of endothelium. Indomethacin blunted but did not abolish stretch-induced contraction, an effect that may have been nonspecific. This study suggests that stretch can act, probably directly, on smooth muscle in small feline pulmonary arteries to elicit contraction and that it may be a determinant of pulmonary vascular tone. In addition, feline pulmonary arteries are suitable for the in vitro study of stretch-induced contraction.

  15. Digital optical imaging of green fluorescent proteins for tracking vascular gene expression: feasibility study in rabbit and human cell models.

    PubMed

    Yang, X; Liu, H; Li, D; Zhou, X; Jung, W C; Deans, A E; Cui, Y; Cheng, L

    2001-04-01

    To investigate the feasibility of using a sensitive digital optical imaging technique to detect green fluorescent protein (GFP) expressed in rabbit vasculature and human arterial smooth muscle cells. A GFP plasmid was transfected into human arterial smooth muscle cells to obtain a GFP-smooth muscle cell solution. This solution was imaged in cell phantoms by using a prototype digital optical imaging system. For in vivo validation, a GFP-lentivirus vector was transfected during surgery into the carotid arteries of two rabbits, and GFP-targeted vessels were harvested for digital optical imaging ex vivo. Optical imaging of cell phantoms resulted in a spatial resolution of 25 microm/pixel. Fluorescent signals were detected as diffusely distributed bright spots. At ex vivo optical imaging of arterial tissues, the average fluorescent signal was significantly higher (P <.05) in GFP-targeted tissues (mean +/- SD, 9,357.3 absolute units of density +/- 1,001.3) than in control tissues (5,633.7 absolute units of density +/- 985.2). Both fluorescence microscopic and immunohistochemical findings confirmed these differences between GFP-targeted and control vessels. The digital optical imaging system was sensitive to GFPs and may potentially provide an in vivo imaging tool to monitor and track vascular gene transfer and expression in experimental investigations.

  16. Mineralocorticoid receptor antagonism protects the aorta from vascular smooth muscle cell proliferation and collagen deposition in a rat model of adrenal aldosterone-producing adenoma.

    PubMed

    Yan, Yongji; Wang, Chao; Lu, Yiqin; Gong, Huijie; Wu, Zhun; Ma, Xin; Li, Hongzhao; Wang, Baojun; Zhang, Xu

    2018-02-01

    The number of patients with adrenal aldosterone-producing adenomas (APAs) has gradually increased. However, even after adenoma resection, some patients still suffer from high systolic blood pressure (SBP), which is possibly due to great arterial remodeling. Moreover, mineralocorticoid receptors (MRs) were found to be expressed in vascular smooth muscle cells (VSMCs). This study aims to determine whether MR antagonism protects the aorta from aldosterone-induced aortic remolding. Male rats were subcutaneously implanted with an osmotic minipumps and randomly divided into four groups: control; aldosterone (1 μg/h); aldosterone plus a specific MR antagonist, eplerenone (100 mg/kg/day); and aldosterone plus a vasodilator, hydralazine (25 mg/kg/day). After 8 weeks of infusion, aortic smooth muscle cell proliferation and collagen deposition, as well as the MDM2 and TGF-β1 expression levels in the aorta, were examined. Model rats with APAs were successfully constructed. Compared with the control rats, the model rats exhibited (1) marked SBP elevation, (2) no significant alteration in aortic morphology, (3) increased VSMC proliferation and MDM2 expression in the aorta, and (4) enhanced total collagen and collagen III depositions in the aorta, accompanied with up-regulated expression of TGF-β1. These effects were significantly inhibited by co-administration with eplerenone but not with hydralazine. These findings suggested that specific MR antagonism protects the aorta from aldosterone-induced VSMC proliferation and collagen deposition.

  17. Interleukin-6 downregulated vascular smooth muscle cell contractile proteins via ATG4B-mediated autophagy in thoracic aortic dissection.

    PubMed

    An, Zhao; Qiao, Fan; Lu, Qijue; Ma, Ye; Liu, Yang; Lu, Fanglin; Xu, Zhiyun

    2017-12-01

    Interleukin-6 (IL-6) overexpression played an important role in the pathogenesis of thoracic aortic dissection (TAD). Our previous study found enhanced autophagy accompanying with contractile proteins α smooth muscle actin (α-SMA) and smooth muscle 22α (SM22α) degradation in TAD aortic vascular smooth muscle cells (VSMCs). Autophagy is an important way for intracellular proteins degradation, while IL-6 has been found as a contributing factor of autophagy in some cancers. These indicated IL-6 might contribute to the occurrence of TAD by promoting autophagy-induced contractile proteins degradation, which has not been investigated. The aim of the present study is to verify this hypothesis and investigate the mechanism of it. We collected 10 TAD and 10 control aortic specimens from patients underwent TAD surgical repair and coronary artery bypass grafting, respectively. Quantitative real-time polymerase chain reaction was used to detect mRNA expression. Protein expression level was assessed by enzyme-linked immunosorbent assay, western blot, and immunohistochemistry. Microtubule-associated protein 1 light chain 3 beta overexpression adenovirus with green and red fluorescent protein tags and transmission electron microscopy were used to detect autophagy level in VSMCs. 3-Methyladenine (3-MA) and chloroquine were used to block autophagy in human VSMCs. Experiment results showed that the expression of IL-6 was significantly increased accompanying with up-regulated autophagy in TAD aortic wall compared with controls. In vitro results showed that IL-6 stimulation decreased the expression of VSMCs contractile proteins α-SMA and SM22α accompanying with up-regulated autophagy. Blocking autophagy with 3-MA or chloroquine inhibited IL-6 induced α-SMA and SM22α degradation. Further investigation showed that autophagy-related 4B cysteine peptidase (ATG4B) was significantly overexpressed in TAD aortic wall and played important role in IL-6 induced autophagy up

  18. H2O2 generated from mitochondrial electron transport chain in thoracic perivascular adipose tissue is crucial for modulation of vascular smooth muscle contraction.

    PubMed

    Costa, Rafael M; Filgueira, Fernando P; Tostes, Rita C; Carvalho, Maria Helena C; Akamine, Eliana H; Lobato, Nubia S

    2016-09-01

    The perivascular adipose tissue (PVAT) releases a variety of factors that affect vascular function. PVAT in the thoracic aorta shares characteristics with the brown adipose tissue, including a large amount of mitochondria. PVAT-derived factors influence both endothelial and smooth muscle function via several signaling mechanisms including the release/generation of reactive nitrogen and oxygen species. Considering the importance of reactive oxygen species (ROS) on vascular function and that mitochondria are an important source of ROS, we hypothesized that mitochondria-derived ROS in the PVAT modulates vascular reactivity. Vascular reactivity to norephinephrine (NE) was evaluated in thoracic aortic rings, with or without endothelium and/or PVAT, from male Wistar rats. Mitochondrial uncoupling, as well as hydrogen peroxide (H2O2) removal, increased the contraction in vessels surrounded by PVAT. PVAT stimulated with NE exhibited increased protein expression, determined by Western blot analysis, of manganese superoxide dismutase (Mn-SOD) and decreased protein expression of catalase. Ultimately, NE increased superoxide anion (O2(-)) generation in PVAT via increases in intracellular calcium. These results clearly demonstrate that mitochondrial electron transport chain (mETC) in PVAT contributes to modulation of aortic muscle contraction by generating higher amounts of O2(-) that is, in turn, dismutated to hydrogen peroxide, which then acts as a pivotal signaling molecule regulating vascular smooth muscle contraction. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Oxidized low-density lipoprotein and upregulated expression of osteonectin and bone sialoprotein in vascular smooth muscle cells.

    PubMed

    Farrokhi, Effat; Samani, Keihan Ghatreh; Chaleshtori, Morteza Hashemzadeh

    2014-01-01

    Oxidative stress has been associated with the progression of atherosclerosis and activation of genes that lead to increased deposition of proteins in the extracellular matrix. Bone sialoprotein (BSP) and osteonectin are proteins involved in the initiation and progression of vascular calcification. To investigate the effect of oxidized low-density lipoprotein on osteonectin and BSP expression in human aorta vascular smooth muscle cells (HA/VSMCs). We treated HA/VSMCs with oxidized low-density lipoprotein (oxLDL) and measured the relative expression of osteonectin and BSP genes using the real-time polymerase chain reaction (PCR) method. We investigated the protein levels produced by each gene using the western blotting technique. oxLDL increased osteonectin and BSP levels (mean [SD], 9.1 [2.1]-fold and 4.2 [0.75]-fold, respectively) after 48 hours. The western blotting results also confirmed the increased levels of osteonectin and BSP. oxLDL may enhance vascular calcification by promoting the expression of osteonectin and BSP. Copyright© by the American Society for Clinical Pathology (ASCP).

  20. Ageing induced vascular smooth muscle cell senescence in atherosclerosis.

    PubMed

    Uryga, Anna K; Bennett, Martin R

    2016-04-15

    Atherosclerosis is a disease of ageing in that its incidence and prevalence increase with age. However, atherosclerosis is also associated with biological ageing, manifest by a number of typical hallmarks of ageing in the atherosclerotic plaque. Thus, accelerated biological ageing may be superimposed on the effects of chronological ageing in atherosclerosis. Tissue ageing is seen in all cells that comprise the plaque, but particularly in vascular smooth muscle cells (VSMCs). Hallmarks of ageing include evidence of cell senescence, DNA damage (including telomere attrition), mitochondrial dysfunction, a pro-inflammatory secretory phenotype, defects in proteostasis, epigenetic changes, deregulated nutrient sensing, and exhaustion of progenitor cells. In this model, initial damage to DNA (genomic, telomeric, mitochondrial and epigenetic changes) results in a number of cellular responses (cellular senescence, deregulated nutrient sensing and defects in proteostasis). Ultimately, ongoing damage and attempts at repair by continued proliferation overwhelm reparative capacity, causing loss of specialised cell functions, cell death and inflammation. This review summarises the evidence for accelerated biological ageing in atherosclerosis, the functional consequences of cell ageing on cells comprising the plaque, and the causal role that VSMC senescence plays in atherogenesis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  1. Disturbed Laminar Blood Flow Vastly Augments Lipoprotein Retention in the Artery Wall: A Key Mechanism Distinguishing Susceptible From Resistant Sites.

    PubMed

    Steffensen, Lasse Bach; Mortensen, Martin Bødtker; Kjolby, Mads; Hagensen, Mette Kallestrup; Oxvig, Claus; Bentzon, Jacob Fog

    2015-09-01

    Atherosclerosis develops initially at branch points and in areas of high vessel curvature. Moreover, experiments in hypercholesterolemic mice have shown that the introduction of disturbed flow in straight, atherosclerosis-resistant arterial segments turns them highly atherosclerosis susceptible. Several biomechanical mechanisms have been proposed, but none has been demonstrated. In the present study, we examined whether a causal link exists between disturbed laminar flow and the ability of the arterial wall to retain lipoproteins. Lipoprotein retention was detected at natural predilection sites of the murine thoracic aorta 18 hours after infusion of fluorescently labeled low-density lipoprotein. To test for causality between blood flow and the ability of these areas to retain lipoproteins, we manipulated blood flow in the straight segment of the common carotid artery using a constrictive collar. Disturbed laminar flow did not affect low-density lipoprotein influx, but increased the ability of the artery wall to bind low-density lipoprotein. Concordantly, disturbed laminar flow led to differential expression of genes associated with phenotypic modulation of vascular smooth muscle cells, increased expression of proteoglycan core proteins associated with lipoprotein retention, and of enzymes responsible for chondroitin sulfate glycosaminoglycan synthesis and sulfation. Blood flow regulates genes associated with vascular smooth muscle cell phenotypic modulation, as well as the expression and post-translational modification of lipoprotein-binding proteoglycan core proteins, and the introduction of disturbed laminar flow vastly augments the ability of a previously resistant, straight arterial segment to retain lipoproteins. © 2015 American Heart Association, Inc.

  2. Mesenchymal stem cell sheets exert anti-stenotic effects in a rat arterial injury model.

    PubMed

    Homma, Jun; Sekine, Hidekazu; Matsuura, Katsuhisa; Kobayashi, Eiji; Shimizu, Tatsuya

    2018-05-04

    Restenosis after catheter or surgical intervention substantially affects the prognosis of arterial occlusive disease. Mesenchymal stem cells (MSCs) may have anti-stenotic effects on injured arteries. MSC transplantation from the adventitial side of an artery is safer than endovascular transplantation but has not been extensively examined. In this study, a rat model of femoral artery injury was used to compare the anti-stenotic effects of transplanted cell sheets and transplanted cell suspensions. Rat adipose-derived stem cells (ASCs) were used as the source of MSCs. For both cell sheets and suspensions, 6×106 MSCs were transplanted on the day of arterial injury. MSC sheets attenuated neointimal hyperplasia more than MSC suspensions (intima-to-media ratio in haematoxylin/eosin-stained sections: 0.55±0.13 vs. 1.14±0.12; P<0.05). Cell engraftment (assessed by immunohistochemistry or bioluminescence imaging of luciferase-expressing cells), arterial re-endothelialisation (evaluated by immunohistochemical staining for rat endothelial cell antigen-1) and restriction of vascular smooth muscle cell proliferation in the neointima (double-staining of alpha-smooth muscle actin and phospho-histone H3) were greater when MSC sheets were applied than when MSC suspensions were used. In conclusion, MSC sheets exhibited better anti-stenotic and cell engraftment properties than MSC suspensions. MSC sheet transplantation from the adventitial side is a promising therapy for prevention of arterial restenosis.

  3. The Dynamic Actin Cytoskeleton in Smooth Muscle.

    PubMed

    Tang, Dale D

    2018-01-01

    Smooth muscle contraction requires both myosin activation and actin cytoskeletal remodeling. Actin cytoskeletal reorganization facilitates smooth muscle contraction by promoting force transmission between the contractile unit and the extracellular matrix (ECM), and by enhancing intercellular mechanical transduction. Myosin may be viewed to serve as an "engine" for smooth muscle contraction whereas the actin cytoskeleton may function as a "transmission system" in smooth muscle. The actin cytoskeleton in smooth muscle also undergoes restructuring upon activation with growth factors or the ECM, which controls smooth muscle cell proliferation and migration. Abnormal smooth muscle contraction, cell proliferation, and motility contribute to the development of vascular and pulmonary diseases. A number of actin-regulatory proteins including protein kinases have been discovered to orchestrate actin dynamics in smooth muscle. In particular, Abelson tyrosine kinase (c-Abl) is an important molecule that controls actin dynamics, contraction, growth, and motility in smooth muscle. Moreover, c-Abl coordinates the regulation of blood pressure and contributes to the pathogenesis of airway hyperresponsiveness and vascular/airway remodeling in vivo. Thus, c-Abl may be a novel pharmacological target for the development of new therapy to treat smooth muscle diseases such as hypertension and asthma. © 2018 Elsevier Inc. All rights reserved.

  4. Coronary Arteries

    MedlinePlus

    ... its own vascular system, called coronary circulation. The aorta (the main blood supplier to the body) branches ... blood to the rest of the body. Tags: aorta , arteries , blood , coronary arteries , coronary artery , coronary artery ...

  5. Effect of TPA on ion fluxes and DNA synthesis in vascular smooth muscle cells

    PubMed Central

    1985-01-01

    Previous reports have suggested that phorbol esters can decrease the affinity of epidermal growth factor (EGF) for its cellular receptors. Investigations of the consequences of the interaction between phorbol esters and EGF, however, have been limited to EGF-stimulated Na/H exchange in A431 cells (Whitely, B., D. Cassel, Y.-X. Zuang, and L. Glaser, 1984, J. Cell Biol., 99:1162-1166). In the present study, the effect of the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) on EGF-stimulated ion transport and DNA synthesis was determined in cultured vascular smooth muscle cells (A7r5). It was found that TPA stimulated Na/H exchange when added alone (half-maximal stimulatory concentration, 25 nM). However, when cells were pretreated with TPA and then challenged with EGF, TPA significantly inhibited EGF-stimulated Na/H exchange (78%; half-maximal inhibition [Ki] at 2.5 nM). Subsequently the effects of TPA on Na/K/Cl co-transport were measured. TPA was observed to inhibit Na/K/Cl co-transport (half-maximal inhibitory concentration, 50 nM) and also to inhibit EGF-stimulated Na/K/Cl co-transport (100%; Ki at 5 nM). Finally, the effects of TPA on DNA synthesis were assessed. TPA had a modest stimulatory effect on DNA synthesis (half-maximal stimulatory concentration, 6 nM), but had a significant inhibitory effect on EGF-stimulated DNA synthesis (56%; Ki at 5 nM). These findings suggest that the inhibitory effect of TPA on EGF-receptor functions goes beyond previously reported effects on Na/H exchange in A431 cells and extends to EGF-stimulation of Na/K/Cl co- transport and DNA synthesis in vascular smooth muscle cells. PMID:2410432

  6. Intervisceral artery origins in patients with abdominal aortic aneurysmal disease; evidence for systemic vascular remodelling.

    PubMed

    Bailey, Damian M; Evans, Tom G; Thomas, Kate Gower; White, Richard D; Twine, Chistopher P; Lewis, Michael H; Williams, Ian M

    2016-08-01

    What is the central question of this study? To what extent focal abdominal aortic aneurysmal (AAA) disease is associated with systemic remodelling of the vascular tree remains unknown. The present study examined whether anatomical differences exist between distances of the intervisceral artery origins and AAA location/size in patients with disease compared with healthy patients. What is the main finding and its importance? Intervisceral artery distances were shown to be consistently greater in AAA patients, highlighting the systemic nature of AAA disease that extends proximally to the abdominal aorta and its branches. The anatomical description of the natural variation in visceral artery origins has implications for the design of stent grafts and planning complex open aortic surgery. The initial histopathology of abdominal aortic aneurysmal (AAA) disease is atherosclerotic, later diverting towards a distinctive dilating rather than occlusive aortic phenotype. To what extent focal AAA disease is associated with systemic remodelling of the vascular tree remains unknown. The present study examined whether anatomical differences exist between the intervisceral artery origins and AAA location/size in patients with AAA disease (AAA+) relative to those without (AAA-). Preoperative contrast-enhanced computerized tomograms were reviewed in 90 consecutive AAA+ patients scheduled for open repair who underwent an infrarenal (n = 45), suprarenal (n = 26) or supracoeliac clamp (n = 19). These were compared with 39 age-matched AAA- control patients. Craniocaudal measurements were recorded from the distal origin of the coeliac artery to the superior mesenteric artery and from the origin of the superior mesenteric artery to both renal artery origins. Serial blood samples were obtained for estimation of the glomerular filtration rate before and after surgery. Intervisceral artery origins were shown to be consistently greater in AAA+ patients (P < 0.05 versus AAA-), although

  7. Decline in arterial partial pressure of oxygen after exercise: a surrogate marker of pulmonary vascular obstructive disease in patients with atrial septal defect and severe pulmonary hypertension.

    PubMed

    Laksmivenkateshiah, Srinivas; Singhi, Anil K; Vaidyanathan, Balu; Francis, Edwin; Karimassery, Sundaram R; Kumar, Raman K

    2011-06-01

    To examine the utility of decline in arterial partial pressure of oxygen after exercise as a marker of pulmonary vascular obstructive disease in patients with atrial septal defect and pulmonary hypertension. Treadmill exercise was performed in 18 patients with atrial septal defect and pulmonary hypertension. Arterial blood gas samples were obtained before and after peak exercise. A decline in the arterial pressure of oxygen of more than 10 millimetres of mercury after exercise was considered significant based on preliminary tests conducted on the controls. Cardiac catheterisation was performed in all patients and haemodynamic data sets were obtained on room air, oxygen, and a mixture of oxygen and nitric oxide (30-40 parts per million). There were 10 patients who had more than a 10 millimetres of mercury drop in arterial partial pressure of oxygen after exercise and who had a basal pulmonary vascular resistance index of more than 7 Wood units per square metre. Out of eight patients who had less than a 10 millimetres of mercury drop in arterial partial pressure of oxygen after exercise, seven had a basal pulmonary vascular resistance index of less than 7 Wood units per square metre, p equals 0.0001. A decline in arterial partial pressure of oxygen of more than 10 millimetres of mercury predicted a basal pulmonary vascular resistance index of more than 7 Wood units per square metre with a specificity of 100% and a sensitivity of 90%. A decline in arterial partial pressure of oxygen following exercise appears to predict a high pulmonary vascular resistance index in patients with atrial septal defect and pulmonary hypertension. This test is a useful non-invasive marker of pulmonary vascular obstructive disease in this subset.

  8. Long-term effects of UV light on contractility of rat arteries in vivo.

    PubMed

    Morimoto, Yuji; Kohyama, Shinya; Nakai, Kanji; Matsuo, Hirotaka; Karasawa, Fujio; Kikuchi, Makoto

    2003-10-01

    Several studies have shown that UV irradiation may be effective for preventing vascular restenosis or vasopasm. However, the long-term effects of UV light on the physiological properties of vessels such as arterial tension have not been elucidated. We therefore studied the long-term effects of UV using rat carotid arteries treated with UV-B light (wavelength = 313 nm, total energy = 14 mJ/mm2). The animals were sacrificed at 1, 7 and 14 days after UV light exposure, and the carotid arteries were studied by light microscopy and the contractile responses of isolated arterial rings were recorded under isometric tension. UV treatment had induced a substantial loss of smooth muscle cells (SMC) along the entire circumference of the media on days 7 and 14, whereas loss of SMC on day 1 was negligible. Contractile responses of arteries that had been exposed to UV light were significantly reduced on days, 1, 7 and 14. The susceptibility of UV-treated arteries to phenylephrine and prostaglandin F2 alpha was significantly decreased on days 1 and 7, but decreased susceptibility was not seen on day 14. Acetylcholine-induced relaxations were not altered by UV treatment. These results suggest that the long-term effect of UV light is an attenuation of smooth muscle contractility without impairment of endothelial function.

  9. Metabolism of substance P and neurokinin A by human vascular endothelium and smooth muscle.

    PubMed

    Wang, L; Sadoun, E; Stephens, R E; Ward, P E

    1994-01-01

    Analysis of SP and NKA metabolism by human vascular endothelium, relative to that in human plasma, identified integrative, multiple pathways for the processing of circulating SP (but not NKA) by angiotensin-converting enzyme (ACE; EC 3.4.15.1), dipeptidyl(amino)peptidase IV (DAP IV; EC 3.4.14.5), and aminopeptidase M (AmM; EC 3.4.11.2). In contrast, SP and NKA, which may diffuse into or be neurally released within the vessel wall, were both metabolized by smooth muscle neutral endopeptidase-24.11 (NEP-24.11; EC 3.4.24.11). Collectively, these studies indicate peptide-specific and site-specific differential processing of SP and NKA by human plasma and vasculature.

  10. Application of a vascular graft material (Solcograft-P) in experimental surgery.

    PubMed

    Nemes, A; Acsády, G; Fraefel, W; Lichti, H; Monos, E; Oertli, R; Somogyi, E; Sótonyi, P

    1985-09-01

    The implantation and post-implantation behaviour of a Solcograft-P vascular prosthesis in the aortic, aorto-iliac, carotid and vena caval positions in dogs was studied up to 100 d post-surgery in order to assess the suitability of this vascular material for use in man. Solcograft-P is prepared from the carotid arteries of calves by crosslinking the collagen stroma using adipyl dichloride. During the postoperative follow-up period of 3 month, 100% of the aortal grafts, 80% of the aorto-iliac bypasses, 60% of the vena caval grafts and 35% of the carotid implants remained patent. The biochemical properties of the Solcograft-P are better than those of Solcograft, its predecessor. The intimal lining was consistently smooth and homogeneous in grafts of biological origin, and no aneurysm was observed. Infection and early thrombosis occured no more frequently than with other grafts. The new Solcograft-P, crosslinked via ester and amide groups, seems to represent a real improvement over Solcograft. Our results suggest that Solcograft-P should prove valuable in various cases of reconstructive vascular surgery of the lower limb, especially when the autologous vena saphena magna is not available, and its mechanical properties may well prove suitable for both arterial and venous replacement.

  11. Functional preservation of vascular smooth muscle tissue

    NASA Technical Reports Server (NTRS)

    Alexander, W. C.; Hutchins, P. M.; Kimzey, S. L.

    1973-01-01

    The ionic and cellular feedback relationships operating to effect the vascular decompensatory modifications were examined to reveal procedures for implementing protective measures guarding against vascular collapse when returning from a weightless environment to that of the earth's gravity. The surgical procedures for preparing the rat cremaster, and the fixation methods are described. Abstracts of publications resulting from this research are included.

  12. MEF2C-MYOCD and Leiomodin1 Suppression by miRNA-214 Promotes Smooth Muscle Cell Phenotype Switching in Pulmonary Arterial Hypertension

    PubMed Central

    Sahoo, Sanghamitra; Meijles, Daniel N.; Al Ghouleh, Imad; Tandon, Manuj; Cifuentes-Pagano, Eugenia; Sembrat, John; Rojas, Mauricio; Goncharova, Elena; Pagano, Patrick J.

    2016-01-01

    Background Vascular hyperproliferative disorders are characterized by excessive smooth muscle cell (SMC) proliferation leading to vessel remodeling and occlusion. In pulmonary arterial hypertension (PAH), SMC phenotype switching from a terminally differentiated contractile to synthetic state is gaining traction as our understanding of the disease progression improves. While maintenance of SMC contractile phenotype is reportedly orchestrated by a MEF2C-myocardin (MYOCD) interplay, little is known regarding molecular control at this nexus. Moreover, the burgeoning interest in microRNAs (miRs) provides the basis for exploring their modulation of MEF2C-MYOCD signaling, and in turn, a pro-proliferative, synthetic SMC phenotype. We hypothesized that suppression of SMC contractile phenotype in pulmonary hypertension is mediated by miR-214 via repression of the MEF2C-MYOCD-leiomodin1 (LMOD1) signaling axis. Methods and Results In SMCs isolated from a PAH patient cohort and commercially obtained hPASMCs exposed to hypoxia, miR-214 expression was monitored by qRT-PCR. miR-214 was upregulated in PAH- vs. control subject hPASMCs as well as in commercially obtained hPASMCs exposed to hypoxia. These increases in miR-214 were paralleled by MEF2C, MYOCD and SMC contractile protein downregulation. Of these, LMOD1 and MEF2C were directly targeted by the miR. Mir-214 overexpression mimicked the PAH profile, downregulating MEF2C and LMOD1. AntagomiR-214 abrogated hypoxia-induced suppression of the contractile phenotype and its attendant proliferation. Anti-miR-214 also restored PAH-PASMCs to a contractile phenotype seen during vascular homeostasis. Conclusions Our findings illustrate a key role for miR-214 in modulation of MEF2C-MYOCD-LMOD1 signaling and suggest that an antagonist of miR-214 could mitigate SMC phenotype changes and proliferation in vascular hyperproliferative disorders including PAH. PMID:27144530

  13. Peripheral vascular dysfunction in migraine: a review

    PubMed Central

    2013-01-01

    Numerous studies have indicated an increased risk of vascular disease among migraineurs. Alterations in endothelial and arterial function, which predispose to atherosclerosis and cardiovascular diseases, have been suggested as an important link between migraine and vascular disease. However, the available evidence is inconsistent. We aimed to review and summarize the published evidence about the peripheral vascular dysfunction of migraineurs. We systematically searched in BIOSIS, the Cochrane database, Embase, Google scholar, ISI Web of Science, and Medline to identify articles, published up to April 2013, evaluating the endothelial and arterial function of migraineurs. Several lines of evidence for vascular dysfunction were reported in migraineurs. Findings regarding endothelial function are particularly controversial since studies variously indicated the presence of endothelial dysfunction in migraineurs, the absence of any difference in endothelial function between migraineurs and non-migraineurs, and even an enhanced endothelial function in migraineurs. Reports on arterial function are more consistent and suggest that functional properties of large arteries are altered in migraineurs. Peripheral vascular function, particularly arterial function, is a promising non-invasive indicator of the vascular health of subjects with migraine. However, further targeted research is needed to understand whether altered arterial function explains the increased risk of vascular disease among patients with migraine. PMID:24083826

  14. [Integripetal rhodiola herb attenuates high altitude-induced pulmonary arterial remodeling and expression of vascular endothelial growth factor in rats].

    PubMed

    Bai, Ma-Kang-Zhuo; Guo, Yan; Bian, Ba-Dun-Zhu; Dong, Hai; Wang, Tao; Luo, Feng; Wen, Fu-Qiang; Cui, Chao-Ying

    2011-04-25

    The aim of this study was to investigate the effect of integripetal rhodiola herb on pulmonary arterial remodeling and expression of vascular endothelial growth factor (VEGF) in high altitude pulmonary hypertension in rats. Fifty healthy male Wistar rats were divided into five groups randomly: Plain control group (LC group), 10-day plateau group (H(10) group), 30-day plateau group (H(30) group), 10-day rhodiola-treated plateau group (R(10) group), and 30-day rhodiola-treated plateau group (R(30) group). Each group included 10 rats. The rats in LC group were kept in Chengdu (500 meters above sea level), and rats in H and R groups were kept in Lhasa (3 700 meters above sea level). The rats in R group were daily treated with integripetal rhodiola herb extract (24%, 10 mL/kg) intragastrically for 10 d or 30 d, while rats in LC and H groups were treated with the same volume of saline. Mean pulmonary arterial pressure (mPAP) was detected via a catheter in the pulmonary artery by pressure waveform monitoring. The ratio value of right ventricle weight to left ventricle plus septum weight [RV/(LV + S)] was measured. The microstructure of pulmonary arterioles was examined by electron microscopy. The expression of VEGF in the lung was investigated using immunohistochemistry. The results showed that mPAP and [RV/(LV + S)] in H(10) group and H(30) group were higher than those in LC group (P < 0.05); but there was no significant difference between H(10) group and R(10) group (P < 0.05); and mPAP and [RV/(LV + S)] in H(30) group were lower than those in H(30) group (P < 0.05). Electron microscopy showed that compared to LC group, arteriolar endothelial cells were arranged in a columnar or palisading form, protruding into the lumen, accompanied with luminal stenosis, irregular internal elastic membrane, and proliferation of vascular smooth muscle cells in H groups, which was more obvious in H(30) group than in H(10) group; while these pathological changes were attenuated in the R

  15. Radiofrequency-enhanced vascular gene transduction and expression for intravascular MR imaging-guided therapy: feasibility study in pigs.

    PubMed

    Du, Xiangying; Qiu, Bensheng; Zhan, Xiangcan; Kolmakova, Antonina; Gao, Fabao; Hofmann, Lawrence V; Cheng, Linzhao; Chatterjee, Subroto; Yang, Xiaoming

    2005-09-01

    To evaluate the feasibility of radiofrequency (RF)-enhanced vascular gene transduction and expression by using a magnetic resonance (MR) imaging-heating guidewire as an intravascular heating vehicle during MR imaging-guided therapy. The institutional committee for animal care and use approved the experimental protocol. The study included in vitro evaluation of the use of RF energy to enhance gene transduction and expression in vascular cells, as well as in vivo validation of the feasibility of intravascular MR imaging-guided RF-enhanced vascular gene transduction and expression in pig arteries. For in vitro experiments, approximately 10(4) vascular smooth muscle cells were seeded in each of four chambers of a cell culture plate. Next, 1 mL of a green fluorescent protein gene (gfp)-bearing lentivirus was added to each chamber. Chamber 4 was heated at approximately 41 degrees C for 15 minutes by using an MR imaging-heating guidewire connected to a custom RF generator. At day 6 after transduction, the four chambers were examined and compared at confocal microscopy to determine the efficiency of gfp transduction and expression. For the in vivo experiments, a lentivirus vector bearing a therapeutic gene, vascular endothelial growth factor 165 (VEGF-165), was transferred by using a gene delivery balloon catheter in 18 femoral-iliac arteries (nine artery pairs) in domestic pigs and Yucatan pigs with atherosclerosis. During gene infusion, one femoral-iliac artery in each pig was heated to approximately 41 degrees C with RF energy transferred via the intravascular MR imaging-heating guidewire, while the contralateral artery was not heated (control condition). At day 6, the 18 arteries were harvested for quantitative Western blot analysis to compare VEGF-165 transduction and expression efficiency between RF-heated and nonheated arterial groups. Confocal microscopy showed gfp expression in chamber 4 that was 293% the level of expression in chamber 1 (49.6% +/- 25.8 vs 16

  16. A novel mechanism for the Ca(2+)-sensitizing effect of protein kinase C on vascular smooth muscle: inhibition of myosin light chain phosphatase

    PubMed Central

    1994-01-01

    Mechanisms of Ca2+ sensitization of both myosin light chain (MLC) phosphorylation and force development by protein kinase C (PKC) were studied in permeabilized tonic smooth muscle obtained from the rabbit femoral artery. For comparison, the Ca2+ sensitizing effect of guanosine 5'-O-(gamma-thiotriphosphate) (GTP gamma S) was examined, which had been previously shown to inhibit MLC phosphatase in phasic vascular smooth muscle. We now report that PKC activators (phorbol esters, short chain synthetic diacylglycerols and a diacylglycerol kinase inhibitor) and GTP gamma S significantly increase both MLC phosphorylation and force development at constant [Ca2+]. Major phosphorylation site occurring in the presence of phorbol-12,13- dibutyrate (PDBu) or GTP gamma S at constant [Ca2+] is the same serine residue (Ser-19) as that phosphorylated by MLC kinase in response to increased Ca2+ concentrations. In an ATP- and Ca(2+)-free solution containing 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4- diazepine (ML-9), to avoid the kinase activity, both PDBu and GTP gamma S significantly decreased the rate of MLC dephosphorylation to half its control value. However, PDBu inhibited the relaxation rate more than did GTP gamma S. In the presence of microcystin-LR to inhibit the phosphatase activity, neither PDBu nor GTP gamma S affected MLC phosphorylation and force development. These results indicate that PKC, like activation of GTP binding protein, increases Ca2+ sensitivity of both MLC phosphorylation and force production through inhibition of MLC phosphatase. PMID:7807049

  17. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition.

    PubMed

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Qing, Hua; Heywood, Elizabeth B; Jones, Karrie L; Cohn, Dianne; Bruemmer, Dennis

    2011-04-01

    Proliferation of smooth muscle cells (SMC) in response to vascular injury is central to neointimal vascular remodeling. There is accumulating evidence that histone acetylation constitutes a major epigenetic modification for the transcriptional control of proliferative gene expression; however, the physiological role of histone acetylation for proliferative vascular disease remains elusive. In the present study, we investigated the role of histone deacetylase (HDAC) inhibition in SMC proliferation and neointimal remodeling. We demonstrate that mitogens induce transcription of HDAC 1, 2, and 3 in SMC. Short interfering RNA-mediated knockdown of either HDAC 1, 2, or 3 and pharmacological inhibition of HDAC prevented mitogen-induced SMC proliferation. The mechanisms underlying this reduction of SMC proliferation by HDAC inhibition involve a growth arrest in the G(1) phase of the cell cycle that is due to an inhibition of retinoblastoma protein phosphorylation. HDAC inhibition resulted in a transcriptional and posttranscriptional regulation of the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip). Furthermore, HDAC inhibition repressed mitogen-induced cyclin D1 mRNA expression and cyclin D1 promoter activity. As a result of this differential cell cycle-regulatory gene expression by HDAC inhibition, the retinoblastoma protein retains a transcriptional repression of its downstream target genes required for S phase entry. Finally, we provide evidence that these observations are applicable in vivo by demonstrating that HDAC inhibition decreased neointima formation and expression of cyclin D1 in a murine model of vascular injury. These findings identify HDAC as a critical component of a transcriptional cascade regulating SMC proliferation and suggest that HDAC might play a pivotal role in the development of proliferative vascular diseases, including atherosclerosis and in-stent restenosis.

  18. Epigenetic Regulation of Vascular Smooth Muscle Cell Proliferation and Neointima Formation by Histone Deacetylase Inhibition

    PubMed Central

    Findeisen, Hannes M.; Gizard, Florence; Zhao, Yue; Qing, Hua; Heywood, Elizabeth B.; Jones, Karrie L.; Cohn, Dianne; Bruemmer, Dennis

    2011-01-01

    Objective Proliferation of smooth muscle cells (SMC) in response to vascular injury is central to neointimal vascular remodeling. There is accumulating evidence that histone acetylation constitutes a major epigenetic modification for the transcriptional control of proliferative gene expression; however, the physiological role of histone acetylation for proliferative vascular disease remains elusive. Methods and Results In the present study, we investigated the role of histone deacetylase (HDAC) inhibition in SMC proliferation and neointimal remodeling. We demonstrate that mitogens induce transcription of HDAC 1, 2 and 3 in SMC. siRNA-mediated knock-down of either HDAC 1, 2 or 3 and pharmacologic inhibition of HDAC prevented mitogen-induced SMC proliferation. The mechanisms underlying this reduction of SMC proliferation by HDAC inhibition involve a growth arrest in the G1-phase of the cell cycle due to an inhibition of retinoblastoma protein phosphorylation. HDAC inhibition resulted in a transcriptional and posttranscriptional regulation of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip. Furthermore, HDAC inhibition repressed mitogen-induced cyclin D1 mRNA expression and cyclin D1 promoter activity. As a result of this differential cell cycle-regulatory gene expression by HDAC inhibition, the retinoblastoma protein retains a transcriptional repression of its downstream target genes required for S phase entry. Finally, we provide evidence that these observations are applicable in vivo by demonstrating that HDAC inhibition decreased neointima formation and expression of cyclin D1 in a murine model of vascular injury. Conclusion These findings identify HDAC as a critical component of a transcriptional cascade regulating SMC proliferation and suggest that HDAC might play a pivotal role in the development of proliferative vascular diseases, including atherosclerosis and in-stent restenosis. PMID:21233448

  19. Alleviative effect of grape seed proanthocyanidin extract on small artery vascular remodeling in spontaneous hypertensive rats via inhibition of collagen hyperplasia.

    PubMed

    Liang, Ying; Gao, Haiqing; Wang, Jian; Wang, Quanzhen; Zhao, Shaohua; Zhang, Jun; Qiu, Jie

    2017-05-01

    Vascular remodeling is a primary contributor to the initiation and development of hypertension, which has a pathological association with subsequent multi-organ damage. Grape seed proanthocyanidin extracts (GSPE) exhibit protective cardiovascular effects, resulting from their anti‑oxidant and anti‑inflammatory properties. However, the function and mechanism underlying the effect of GSPE on small artery remodeling remain to be elucidated. The present study investigated the effect of GSPE on vascular remodeling in the mesenteric small arteries of spontaneous hypertensive rats (SHR). Parameters associated with hypertension, including systolic blood pressure, oxidative stress, morphological and ultrastructural alteration of vessels, deposition of collagen and transforming growth factor (TGF)-β1, were analyzed. The results revealed that GSPE alleviated hypertension-induced hypertrophic vascular remodeling in the small arteries of SHR, which was independent of blood pressure. GSPE decreased oxidative stress associated with hypertension in SHR and suppressed the increased expression of TGF‑β1, which blocked the translocation and differentiation of adventitia fibroblasts and eventually inhibited collagen hyperplasia in the blood vessel. The inhibitory effect of GSPE on small artery remodeling was achieved via its suppressive effect on oxidant production and the subsequent intercellular and intracellular cascades. The findings of the present study supported the potential therapeutic value of GSPE for the treatment of hypertension.

  20. Bergamot essential oil differentially modulates intracellular Ca2+ levels in vascular endothelial and smooth muscle cells: a new finding seen with fura-2.

    PubMed

    You, Ji H; Kang, Purum; Min, Sun Seek; Seol, Geun Hee

    2013-04-01

    In this study, we compared the effect of the essential oil of Citrus bergamia Risso [bergamot, bergamot essential oil (BEO)] on the intracellular Ca levels in vascular endothelial (EA) and mouse vascular smooth muscle (MOVAS) cells, using the fura-2 fluorescence technique. BEO caused an initial transient increase in intracellular Ca concentration ([Ca]i) in EA cells, followed by a decrease, whereas it induced a sustained increase in [Ca]i in MOVAS cells. Linalyl acetate (LA) as a major component of BEO-induced [Ca]i mobilization was similar to BEO in EA cells. The increase of [Ca]i by LA was higher in EA cells than in MOVAS cells. [Ca]i rise induced by extracellular Ca application was significantly blocked by BEO or LA in EA cells but not in MOVAS cells, suggesting that BEO and LA block Ca influx in EA cells. The present results suggest that BEO and LA differentially modulate intracellular Ca levels in vascular endothelial and smooth muscle cells. In addition, blockade of Ca influx by BEO and LA in EA cells may explain the protective effects of BEO on endothelial dysfunction associated with cardiovascular disease.

  1. [Peripheral vascular injuries in polytrauma].

    PubMed

    Richter, A; Silbernik, D; Oestreich, K; Karaorman, M; Storz, L W

    1995-09-01

    Between 1972 und 1993 a total of 68 patients were treated at the Department of Surgery of the University Clinic of Mannheim for peripheral vascular injury resulting from multiple trauma. The average age of these patients was 31.3 years, and most of them were male (88.2%; n = 60). The injured vessels were localized evenly in all the extremities: 31 patients (45.5%) presented with arterial damage of the upper extremity, and 37 (54.5%) showed lesions along the femoro-popliteal arteries. The most frequent location of injured vessels in the multiply traumatized patient was the popliteal artery (n = 18, 26.5%), the distal part of the superficial femoral artery (n = 12, 17.6%), the brachial artery (n = 14, 20.6%) and the axillary artery (n = 10, 14.6%). The dominant cause, of trauma was road traffic accidents (72%), and 20 patients (29%) acquired their vascular injuries as motorcyclists. There were also 13 occupational accidents (19%) involving vascular injuries. In addition to a vascular trauma 34 patients (50%) had complicated fractures, and a further 34 patients (50%) had multiple fractures: 12 (17.6%) had head and brain damage, 5 (7.3%) had blunt abdominal trauma and 6 (8.8%) had blunt thoracic injury. The general amputation rate was 2.9% (n = 2). One patient died on the table of a torn off subclavian artery combined with multiple other injuries. Paresis of the plexus is a particular problem after vascular lesions of the upper extremity: in 22 patients (71%) paresis of the plexus persisted after successful vascular reconstruction (follow-up period between 3 months and 16 years, median time 3.45 years).(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Graded effects of unregulated smooth muscle myosin on intestinal architecture, intestinal motility and vascular function in zebrafish.

    PubMed

    Abrams, Joshua; Einhorn, Zev; Seiler, Christoph; Zong, Alan B; Sweeney, H Lee; Pack, Michael

    2016-05-01

    Smooth muscle contraction is controlled by the regulated activity of the myosin heavy chain ATPase (Myh11). Myh11 mutations have diverse effects in the cardiovascular, digestive and genitourinary systems in humans and animal models. We previously reported a recessive missense mutation, meltdown (mlt), which converts a highly conserved tryptophan to arginine (W512R) in the rigid relay loop of zebrafish Myh11. The mlt mutation disrupts myosin regulation and non-autonomously induces invasive expansion of the intestinal epithelium. Here, we report two newly identified missense mutations in the switch-1 (S237Y) and coil-coiled (L1287M) domains of Myh11 that fail to complement mlt Cell invasion was not detected in either homozygous mutant but could be induced by oxidative stress and activation of oncogenic signaling pathways. The smooth muscle defect imparted by the mlt and S237Y mutations also delayed intestinal transit, and altered vascular function, as measured by blood flow in the dorsal aorta. The cell-invasion phenotype induced by the three myh11 mutants correlated with the degree of myosin deregulation. These findings suggest that the vertebrate intestinal epithelium is tuned to the physical state of the surrounding stroma, which, in turn, governs its response to physiologic and pathologic stimuli. Genetic variants that alter the regulation of smooth muscle myosin might be risk factors for diseases affecting the intestine, vasculature, and other tissues that contain smooth muscle or contractile cells that express smooth muscle proteins, particularly in the setting of redox stress. © 2016. Published by The Company of Biologists Ltd.

  3. Exchange protein activated by cAMP (Epac) induces vascular relaxation by activating Ca2+-sensitive K+ channels in rat mesenteric artery

    PubMed Central

    Roberts, Owain Llŷr; Kamishima, Tomoko; Barrett-Jolley, Richard; Quayle, John M; Dart, Caroline

    2013-01-01

    Vasodilator-induced elevation of intracellular cyclic AMP (cAMP) is a central mechanism governing arterial relaxation but is incompletely understood due to the diversity of cAMP effectors. Here we investigate the role of the novel cAMP effector exchange protein directly activated by cAMP (Epac) in mediating vasorelaxation in rat mesenteric arteries. In myography experiments, the Epac-selective cAMP analogue 8-pCPT-2′-O-Me-cAMP-AM (5 μm, subsequently referred to as 8-pCPT-AM) elicited a 77.6 ± 7.1% relaxation of phenylephrine-contracted arteries over a 5 min period (mean ± SEM; n= 6). 8-pCPT-AM induced only a 16.7 ± 2.4% relaxation in arteries pre-contracted with high extracellular K+ over the same time period (n= 10), suggesting that some of Epac's relaxant effect relies upon vascular cell hyperpolarization. This involves Ca2+-sensitive, large-conductance K+ (BKCa) channel opening as iberiotoxin (100 nm) significantly reduced the ability of 8-pCPT-AM to reverse phenylephrine-induced contraction (arteries relaxed by only 35.0 ± 8.5% over a 5 min exposure to 8-pCPT-AM, n= 5; P < 0.05). 8-pCPT-AM increased Ca2+ spark frequency in Fluo-4-AM-loaded mesenteric myocytes from 0.045 ± 0.008 to 0.103 ± 0.022 sparks s-1μm-1 (P < 0.05) and reversibly increased both the frequency (0.94 ± 0.25 to 2.30 ± 0.72 s−1) and amplitude (23.9 ± 3.3 to 35.8 ± 7.7 pA) of spontaneous transient outward currents (STOCs) recorded in isolated mesenteric myocytes (n= 7; P < 0.05). 8-pCPT-AM-activated STOCs were sensitive to iberiotoxin (100 nm) and to ryanodine (30 μm). Current clamp recordings of isolated myocytes showed a 7.9 ± 1.0 mV (n= 10) hyperpolarization in response to 8-pCPT-AM that was sensitive to iberiotoxin (n= 5). Endothelial disruption suppressed 8-pCPT-AM-mediated relaxation in phenylephrine-contracted arteries (24.8 ± 4.9% relaxation after 5 min of exposure, n= 5; P < 0.05), as did apamin and TRAM-34, blockers of Ca2+-sensitive, small- and intermediate

  4. Vascular effects of advanced glycation end-products: content of immunohistochemically detected AGEs in radial artery samples as a predictor for arterial calcification and cardiovascular risk in asymptomatic patients with chronic kidney disease.

    PubMed

    Janda, Katarzyna; Krzanowski, Marcin; Gajda, Mariusz; Dumnicka, Paulina; Jasek, Ewa; Fedak, Danuta; Pietrzycka, Agata; Kuźniewski, Marek; Litwin, Jan A; Sułowicz, Władysław

    2015-01-01

    Our aim was to determine whether vascular deposition of advanced glycation end-products (AGEs) is associated with arterial calcification and cardiovascular mortality in chronic kidney disease (CKD) patients and to assess the relationships between vascular content of AGEs and selected clinical and biochemical parameters. The study comprised 54 CKD patients (33 hemodialyzed, 21 predialyzed). Examined parameters included BMI, incidence of diabetes, plasma fasting glucose, AGEs, soluble receptor for AGEs and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, serum C-reactive protein (hsCRP), plasminogen activator inhibitor-1 (PAI-1), and fetuin-A. Fragments of radial artery obtained during creation of hemodialysis access were stained for calcifications using alizarin red. AGEs deposits were identified immunohistochemically and their relative content was quantified. Vascular content of AGEs was positively correlated with BMI, hsCRP, fetuin-A, PAI-1, and DPPH scavenging in simple regression; only fetuin-A was an independent predictor in multiple regression. There was a significant positive trend in the intensity of AGEs immunostaining among patients with grades 1, 2, and 3 calcifications. AGEs immunostaining intensity predicted 3-year cardiovascular mortality irrespective of patient's age. The present study demonstrates an involvement of AGEs in the development of medial arterial calcification and the impact of arterial AGE deposition on cardiovascular mortality in CKD patients.

  5. Vascular calcification: When should we interfere in chronic kidney disease patients and how?

    PubMed Central

    Sharaf El Din, Usama Abdel Azim; Salem, Mona Mansour; Abdulazim, Dina Ossama

    2016-01-01

    Chronic kidney disease (CKD) patients are endangered with the highest mortality rate compared to other chronic diseases. Cardiovascular events account for up to 60% of the fatalities. Cardiovascular calcifications affect most of the CKD patients. Most of this calcification is related to disturbed renal phosphate handling. Fibroblast growth factor 23 and klotho deficiency were incriminated in the pathogenesis of vascular calcification through different mechanisms including their effects on endothelium and arterial wall smooth muscle cells. In addition, deficient klotho gene expression, a constant feature of CKD, promotes vascular pathology and shares in progression of the CKD. The role of gut in the etio-pathogenesis of systemic inflammation and vascular calcification is a newly discovered mechanism. This review will cover the medical history, prevalence, pathogenesis, clinical relevance, different tools used to diagnose, the ideal timing to prevent or to withhold the progression of vascular calcification and the different medications and medical procedures that can help to prolong the survival of CKD patients. PMID:27648404

  6. The effect of ACE inhibition on the pulmonary vasculature in combined model of chronic hypoxia and pulmonary arterial banding in Sprague Dawley rats

    NASA Astrophysics Data System (ADS)

    Clarke, Shanelle; Baumgardt, Shelley; Molthen, Robert

    2010-03-01

    Microfocal CT was used to image the pulmonary arterial (PA) tree in rodent models of pulmonary hypertension (PH). CT images were used to measure the arterial tree diameter along the main arterial trunk at several hydrostatic intravascular pressures and calculate distensibility. High-resolution planar angiographic imaging was also used to examine distal PA microstructure. Data on pulmonary artery tree morphology improves our understanding of vascular remodeling and response to treatments. Angiotensin II (ATII) has been identified as a mediator of vasoconstriction and proliferative mitotic function. ATII has been shown to promote vascular smooth muscle cell hypertrophy and hyperplasia as well as stimulate synthesis of extracellular matrix proteins. Available ATII is targeted through angiotensin converting enzyme inhibitors (ACEIs), a method that has been used in animal models of PH to attenuate vascular remodeling and decrease pulmonary vascular resistance. In this study, we used rat models of chronic hypoxia to induce PH combined with partial left pulmonary artery occlusion (arterial banding, PLPAO) to evaluate effects of the ACEI, captopril, on pulmonary vascular hemodynamic and morphology. Male Sprague Dawley rats were placed in hypoxia (FiO2 0.1), with one group having underwent PLPAO three days prior to the chronic hypoxia. After the twenty-first day of hypoxia exposure, treatment was started with captopril (20 mg/kg/day) for an additional twenty-one days. At the endpoint, lungs were excised and isolated to examine: pulmonary vascular resistance, ACE activity, pulmonary vessel morphology and biomechanics. Hematocrit and RV/LV+septum ratio was also measured. CT planar images showed less vessel dropout in rats treated with captopril versus the non-treatment lungs. Distensibility data shows no change in rats treated with captopril in both chronic hypoxia (CH) and CH with PLPAO (CH+PLPAO) models. Hemodynamic measurements also show no change in the pulmonary vascular

  7. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development.

    PubMed

    Covassin, L D; Siekmann, A F; Kacergis, M C; Laver, E; Moore, J C; Villefranc, J A; Weinstein, B M; Lawson, N D

    2009-05-15

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development.

  8. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development

    PubMed Central

    Covassin, L. D.; Siekmann, A. F.; Kacergis, M. C.; Laver, E.; Moore, J. C.; Villefranc, J. A.; Weinstein, B. M.; Lawson, N. D.

    2009-01-01

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development. PMID:19269286

  9. β-Catenin C-terminal signals suppress p53 and are essential for artery formation

    PubMed Central

    Riascos-Bernal, Dario F.; Chinnasamy, Prameladevi; Cao, Longyue (Lily); Dunaway, Charlene M.; Valenta, Tomas; Basler, Konrad; Sibinga, Nicholas E. S.

    2016-01-01

    Increased activity of the tumour suppressor p53 is incompatible with embryogenesis, but how p53 is controlled is not fully understood. Differential requirements for p53 inhibitors Mdm2 and Mdm4 during development suggest that these control mechanisms are context-dependent. Artery formation requires investment of nascent endothelial tubes by smooth muscle cells (SMCs). Here, we find that embryos lacking SMC β-catenin suffer impaired arterial maturation and die by E12.5, with increased vascular wall p53 activity. β-Catenin-deficient SMCs show no change in p53 levels, but greater p53 acetylation and activity, plus impaired growth and survival. In vivo, SMC p53 inactivation suppresses phenotypes caused by loss of β-catenin. Mechanistically, β-catenin C-terminal interactions inhibit Creb-binding protein-dependent p53 acetylation and p53 transcriptional activity, and are required for artery formation. Thus in SMCs, the β-catenin C-terminus indirectly represses p53, and this function is essential for embryogenesis. These findings have implications for angiogenesis, tissue engineering and vascular disease. PMID:27499244

  10. Rheological approaches of arteries.

    PubMed

    Bauer, R D

    1984-01-01

    A fundamental problem of haemodynamics lies in the description of the rheological properties of arteries. The time and history dependency of stress and strain, the nonlinearity of the stress-radius relationship, and the activity of vascular smooth muscle complicate or even prevent a complete mathematical characterization of the arterial wall mechanics. Due to this nonlinearity, dynamic investigations were hitherto performed in excised arteries in vitro by means of small sinusoidal changes of stress and radius at different stress levels in a wide frequency range. To allow an analysis of the dynamic rheological properties of arteries in vivo, we have developed a procedure which permits the separate determination of the elastic, the viscous, and the inertial forces acting on the arterial wall. The stress can be subdivided into an elastic stress which is a function of radius (r), a viscous stress which is a function of dr/dt, and an inertial stress which is a function of d2r/dt2. These stresses are formulated as polynomials. Under cyclic loading and unloading, hysteresis loops appear in the stress-radius diagrams of arteries. Since the elastic stress-radius diagram must be free from any loop, the coefficients of the viscous and the inertial stress can be found by a fitting procedure, using the criterion of loop elimination. Investigations were performed on exposed canine arteries in vivo. The main result was that the elastic stress-radius curve was markedly nonlinear at greater pulse pressures. The viscous wall behaviour, too, was nonlinear and depended mainly on the square of the vessel radius.

  11. The first perforating branch of the deep femoral artery: A reliable recipient vessel for vascularized fibular grafts: An anatomical study.

    PubMed

    Sur, Yoo Joon; Morsy, Mohamed; Mohan, Anita T; Zhu, Lin; Lachman, Nirusha; Saint-Cyr, Michel

    2016-03-01

    Although the perforating branches of the deep femoral artery have been introduced as recipient vessels for vascularized fibular grafts in the treatment of osteonecrosis of the femoral head, comprehensive knowledge of the related anatomy is deficient. The aims of this study were to provide detailed anatomical data for the perforating branches of the deep femoral artery and validate their usefulness as recipient vessels for vascularized fibular grafts. Anatomical dissection was performed on 11 fresh human cadaveric lower extremities. The number, locations, and diameters of the perforating branches were documented. The topographic relationships with the vastus ridge and the tendinous insertion of the gluteus maximus were clarified. The diameters of the perforating branches were compared with those of the ascending branch of the lateral circumflex femoral and the peroneal arteries. The mean number of perforating branches was 3.5. The mean distances from the vastus ridge to the first, second, and third perforating branches were 8.1, 13.7, and 20.4 cm, respectively. The first perforating branch was always located medial to the tendinous insertion of the gluteus maximus, whereas the second perforating branch was always located distal to the gluteus maximus. The mean diameters of the first, second, third, and fourth perforating branches were 3.1, 2.3, 1.6, and 1.2 mm, respectively. The mean diameters of the ascending branch of the lateral circumflex femoral and the peroneal arteries were 2.0 and 3.6 mm, respectively. The first perforating branch of the deep femoral artery is an appropriate alternative recipient vessel for vascularized fibular grafts in the treatment of osteonecrosis of the femoral head. It has a very consistent anatomy with a suitable location and diameter for anastomosis of the peroneal artery. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  12. Effects of Moderate Aerobic Exercise Training on Vascular Health and Blood Pressure in African Americans

    PubMed Central

    Feairheller, Deborah L.; Diaz, Keith M.; Kashem, Mohammed A.; Thakkar, Sunny R.; Veerabhadrappa, Praveen; Sturgeon, Kathleen M.; Ling, Chenyi; Williamson, Sheara T.; Kretzschmar, Jan; Lee, Hojun; Grimm, Heather; Babbitt, Dianne M.; Vin, Charmie; Fan, Xiaoxuan; Crabbe, Deborah L.; Brown, Michael D.

    2014-01-01

    As healthcare progresses toward individualized medicine, understanding how different racial groups respond to lifestyle interventions is valuable. It is established that African Americans have disproportionate levels of cardiovascular disease and impaired vascular health, and clinical practice guidelines suggest lifestyle interventions as the first line of treatment. Recently, we reported six months of aerobic exercise improved inflammatory markers, flow-mediated dilation (FMD), and levels of circulating endothelial microparticles (EMPs) in African American adults. This study is a subgroup analysis of the aerobic exercise-induced changes in vascular health and blood pressure (BP) measures; carotid artery intima-media thickness (IMT), nitroglycerin-mediated dilation (NMD), ambulatory BP, and office BP. Sedentary African American adults (53.4±6.2yrs;21F,5M) showed improved vascular health, but no change in BP. Carotid artery IMT decreased 6.4%, plasma NO levels increased 76.6%, plasma EMP levels decreased, percent FMD increased 59.6%, and FMD/NMD ratio increased 36.2% (P <0.05 for all). Six months of aerobic exercise training is sufficient to elicit improvements in vascular structure and function in African Americans, even without improvements in BP measures or NMD (i.e., smooth muscle function). To our knowledge, this is the first study to report such findings in African Americans. PMID:24779748

  13. Arterial wave intensity and ventricular-arterial coupling by vascular ultrasound: rationale and methods for the automated analysis of forwards and backwards running waves.

    PubMed

    Rakebrandt, F; Palombo, C; Swampillai, J; Schön, F; Donald, A; Kozàkovà, M; Kato, K; Fraser, A G

    2009-02-01

    Wave intensity (WI) in the circulation is estimated noninvasively as the product of instantaneous changes in pressure and velocity. We recorded diameter as a surrogate for pressure, and velocity in the right common carotid artery using an Aloka SSD-5500 ultrasound scanner. We developed automated software, applying the water hammer equation to obtain local wave speed from the slope of a pressure/velocity loop during early systole to separate net WI into individual forwards and backwards-running waves. A quality index was developed to test for noisy data. The timing, duration, peak amplitude and net energy of separated WI components were measured in healthy subjects with a wide age range. Age and arterial stiffness were independent predictors of local wave speed, whereas backwards-travelling waves correlated more strongly with ventricular systolic function than with age-related changes in arterial stiffness. Separated WI offers detailed insight into ventricular-arterial interactions that may be useful for assessing the relative contributions of ventricular and vascular function to wave travel.

  14. Arteriopathy diagnosis in childhood arterial ischemic stroke: results of the vascular effects of infection in pediatric stroke study.

    PubMed

    Wintermark, Max; Hills, Nancy K; deVeber, Gabrielle A; Barkovich, A James; Elkind, Mitchell S V; Sear, Katherine; Zhu, Guangming; Leiva-Salinas, Carlos; Hou, Qinghua; Dowling, Michael M; Bernard, Timothy J; Friedman, Neil R; Ichord, Rebecca N; Fullerton, Heather J

    2014-12-01

    Although arteriopathies are the most common cause of childhood arterial ischemic stroke, and the strongest predictor of recurrent stroke, they are difficult to diagnose. We studied the role of clinical data and follow-up imaging in diagnosing cerebral and cervical arteriopathy in children with arterial ischemic stroke. Vascular effects of infection in pediatric stroke, an international prospective study, enrolled 355 cases of arterial ischemic stroke (age, 29 days to 18 years) at 39 centers. A neuroradiologist and stroke neurologist independently reviewed vascular imaging of the brain (mandatory for inclusion) and neck to establish a diagnosis of arteriopathy (definite, possible, or absent) in 3 steps: (1) baseline imaging alone; (2) plus clinical data; (3) plus follow-up imaging. A 4-person committee, including a second neuroradiologist and stroke neurologist, adjudicated disagreements. Using the final diagnosis as the gold standard, we calculated the sensitivity and specificity of each step. Cases were aged median 7.6 years (interquartile range, 2.8-14 years); 56% boys. The majority (52%) was previously healthy; 41% had follow-up vascular imaging. Only 56 (16%) required adjudication. The gold standard diagnosis was definite arteriopathy in 127 (36%), possible in 34 (9.6%), and absent in 194 (55%). Sensitivity was 79% at step 1, 90% at step 2, and 94% at step 3; specificity was high throughout (99%, 100%, and 100%), as was agreement between reviewers (κ=0.77, 0.81, and 0.78). Clinical data and follow-up imaging help, yet uncertainty in the diagnosis of childhood arteriopathy remains. This presents a challenge to better understanding the mechanisms underlying these arteriopathies and designing strategies for prevention of childhood arterial ischemic stroke. © 2014 American Heart Association, Inc.

  15. The role of platelets in the development and progression of pulmonary arterial hypertension.

    PubMed

    Kazimierczyk, Remigiusz; Kamiński, Karol

    2018-06-06

    Pulmonary arterial hypertension is a multifactorial disease characterized by vasoconstriction, vascular remodeling, inflammation and thrombosis. Although an increasing number of research confirmed that pulmonary artery endothelial cells, pulmonary artery smooth muscle cells as well as platelets have a role in the pulmonary arterial hypertension pathogenesis, it is still unclear what integrates these factors. In this paper, we review the evidence that platelets through releasing a large variety of chemokines could actively impact the pulmonary arterial hypertension pathogenesis and development. A recent publication revealed that not only an excess of platelet derived cytokines, but also a deficiency may be associated with pulmonary arterial hypertension development and progression. Hence, a simple platelet blockade may not be a correct action to treat pulmonary arterial hypertension. Our review aims to analyse the interactions between the platelets and different types of cells involved in pulmonary arterial hypertension pathogenesis. This knowledge could help to find novel therapeutic options and improve prognosis in this devastating disease. Copyright © 2018 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  16. Improved penile histology by phalloidin stain: circular and longitudinal cavernous smooth muscles, dual-endothelium arteries, and erectile dysfunction-associated changes.

    PubMed

    Lin, Guiting; Qiu, Xuefeng; Fandel, Thomas M; Albersen, Maarten; Wang, Zhong; Lue, Tom F; Lin, Ching-Shwun

    2011-10-01

    To investigate whether fluorochrome-conjugated phalloidin can delineate cavernous smooth muscle (CSM) cells and whether it can be combined with immunofluorescence (IF) staining to quantify erectile dysfunction (ED)-associated changes. ED was induced by cavernous nerve crush in rats. Penile tissues of control and ED rats were stained with Alexa-488-conjugated phalloidin and/or with antibodies against rat endothelial cell antigen (RECA), CD31, neuronal nitric oxide synthase (nNOS), and collagen-IV (Col-IV). Phalloidin was able to delineate CSM as composed of a circular and a longitudinal compartment. When combined with IF stain for CD31 or RECA, it helped the identification of the helicine arteries as covered by endothelial cells on both sides of the smooth muscle layer. When combined with IF stain for nNOS, it helped the identification that nNOS-positive nerves were primarily localized within the dorsal nerves and in the adventitia of dorsal arteries. When combined with IF stain for Col-IV, it helped identify that Col-IV was localized around smooth muscles and beneath the endothelium. Phalloidin also facilitated the quantitative analysis of ED-related changes in the penis. In rats with cavernous nerve injury, RECA or Col-IV expression did not change significantly, but CSM and nNOS nerve contents decreased significantly. Phalloidin stain improved penile histology, enabling the visualization of the circular and longitudinal compartments in the CSM. It also worked synergistically with IF stain, permitting the visualization of the dual endothelial covering in helicine arteries, and facilitating the quantification of ED-related histologic changes. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Potassium Channels and Uterine Vascular Adaptation to Pregnancy and Chronic Hypoxia

    PubMed Central

    Zhu, Ronghui; Xiao, DaLiao; Zhang, Lubo

    2014-01-01

    During a normal course of pregnancy, uterine vascular tone is significantly decreased resulting in a striking increase in uterine blood flow, which is essential for fetal development and fetal growth. Chronic hypoxia during gestation may adversely affect the normal adaptation of uterine vascular tone and increase the risk of preeclampsia and fetal intrauterine growth restriction. In this review, we present evidence that the regulation of K+ channels is an important mechanism in the adaptation of uterine vascular tone to pregnancy and hypoxia. There are four types of K+ channels identified in arterial smooth muscle cells: 1) voltage-dependent K+ (Kv) channels, 2) Ca2+-activated K+ (KCa) channels, 3) inward rectifier K+ (KIR) channels, and 4) ATP-sensitive K+ (KATP) channels. Pregnancy differentially augments the expression and activity of K+ channels via downregulation of protein kinase C signaling in uterine and other vascular beds, leading to decreased uterine vascular tone and increased uterine blood flow. Sex steroid hormones play an important role in the pregnancy-mediated alteration of K+ channels in the uterine vasculature. In addition, chronic hypoxia alters uterine vascular K+ channels expression and activities via modulation of steroid hormones/receptors-mediated signaling, resulting in increased uterine vascular tone during pregnancy. PMID:24063385

  18. Heparin Stimulates Elastogenesis: Application to Silk-Based Vascular Grafts

    PubMed Central

    Baughman, Cassandra; Kaplan, David L.; Castellot, John J.

    2013-01-01

    With over 500,000 coronary artery bypass grafts (CABG) performed annually in the United States alone, there is a significant clinical need for a small diameter tissue engineered vascular graft. A principle goal in tissue engineering is to develop materials and growth conditions that encourage appropriate re-cellularization and extracellular matrix formation in vivo. A particular challenge in vascular tissue engineering results from the inability of adult cells to produce elastin, as its expression is developmentally limited. We investigated factors to stimulate elastogenesis in vitro, and found that heparin treatment of adult human vascular smooth muscle cells promoted the formation of elastic fibers. This effect was heparin-specific, and dependent on cell density and growth state. We then applied this information to a silk-based construct, and found that immobilized heparin showed essentially identical biological effects to that of soluble heparin. These findings indicate that heparinized vascular grafts may promote elastin formation and regulate restenosis, in addition to heparin’s well-established antithrombotic properties. Given the increase in elastin mRNA level and the increase in extracellular elastin present, our data suggests that there may be multiple levels of elastin regulation that are mediated by heparin treatment. PMID:21600981

  19. Thrombin-mediated proteoglycan synthesis utilizes both protein-tyrosine kinase and serine/threonine kinase receptor transactivation in vascular smooth muscle cells.

    PubMed

    Burch, Micah L; Getachew, Robel; Osman, Narin; Febbraio, Mark A; Little, Peter J

    2013-03-08

    G protein-coupled receptor signaling is mediated by three main mechanisms of action; these are the classical pathway, β-arrestin scaffold signaling, and the transactivation of protein-tyrosine kinase receptors such as those for EGF and PDGF. Recently, it has been demonstrated that G protein-coupled receptors can also mediate signals via transactivation of serine/threonine kinase receptors, most notably the transforming growth factor-β receptor family. Atherosclerosis is characterized by the development of lipid-laden plaques in blood vessel walls. Initiation of plaque development occurs via low density lipoprotein retention in the neointima of vessels due to binding with modified proteoglycans secreted by vascular smooth muscle cells. Here we show that transactivation of protein-tyrosine kinase receptors is mediated by matrix metalloproteinase triple membrane bypass signaling. In contrast, serine/threonine kinase receptor transactivation is mediated by a cytoskeletal rearrangement-Rho kinase-integrin system, and both protein-tyrosine kinase and serine/threonine kinase receptor transactivation concomitantly account for the total proteoglycan synthesis stimulated by thrombin in vascular smooth muscle. This work provides evidence of thrombin-mediated proteoglycan synthesis and paves the way for a potential therapeutic target for plaque development and atherosclerosis.

  20. Structural remodeling of coronary resistance arteries: effects of age and exercise training

    PubMed Central

    Hanna, Mina A.; Taylor, Curtis R.; Chen, Bei; La, Hae-Sun; Maraj, Joshua J.; Kilar, Cody R.; Behnke, Bradley J.; Delp, Michael D.

    2014-01-01

    Age is known to induce remodeling and stiffening of large-conduit arteries; however, little is known of the effects of age on remodeling and mechanical properties of coronary resistance arteries. We employed a rat model of aging to investigate whether 1) age increases wall thickness and stiffness of coronary resistance arteries, and 2) exercise training reverses putative age-induced increases in wall thickness and stiffness of coronary resistance arteries. Young (4 mo) and old (21 mo) Fischer 344 rats remained sedentary or underwent 10 wk of treadmill exercise training. Coronary resistance arteries were isolated for determination of wall-to-lumen ratio, effective elastic modulus, and active and passive responses to changes in intraluminal pressure. Elastin and collagen content of the vascular wall were assessed histologically. Wall-to-lumen ratio increased with age, but this increase was reversed by exercise training. In contrast, age reduced stiffness, and exercise training increased stiffness in coronary resistance arteries from old rats. Myogenic responsiveness was reduced with age and restored by exercise training. Collagen-to-elastin ratio (C/E) of the wall did not change with age and was reduced with exercise training in arteries from old rats. Thus age induces hypertrophic remodeling of the vessel wall and reduces the stiffness and myogenic function of coronary resistance arteries. Exercise training reduces wall-to-lumen ratio, increases wall stiffness, and restores myogenic function in aged coronary resistance arteries. The restorative effect of exercise training on myogenic function of coronary resistance arteries may be due to both changes in vascular smooth muscle phenotype and expression of extracellular matrix proteins. PMID:25059239

  1. Whey Protein Attenuates Angiotensin II-Primed Premature Senescence of Vascular Smooth Muscle Cells through Upregulation of SIRT1

    PubMed Central

    2017-01-01

    Whey protein, a by-product of milk curdling, exhibits diverse biological activities and is used as a dietary supplement. However, its effects on stress-induced vascular aging have not yet been elucidated. In this study, we found that whey protein significantly inhibited the Ang II-primed premature senescence of vascular smooth muscle cells (VSMCs). In addition, we observed a marked dose- and time-dependent increase in SIRT1 promoter activity and mRNA in VSMCs exposed to whey protein, accompanied by elevated SIRT1 protein expression. Ang II-mediated repression of SIRT1 level was dose-dependently reversed in VSMCs treated with whey protein, suggesting that SIRT1 is involved in preventing senescence in response to this treatment. Furthermore, resveratrol, a well-defined activator of SIRT1, potentiated the effects of whey protein on Ang II-primed premature senescence, whereas sirtinol, an inhibitor of SIRT1, exerted the opposite. Taken together, these results indicated that whey protein-mediated upregulation of SIRT1 exerts an anti-senescence effect, and can thus ameliorate Ang IIinduced vascular aging as a dietary supplement. PMID:29725214

  2. [Intramuscular injection of lentivirus-mediated EPAS1 gene improves hind limb ischemia and its mechanism in a rat model of peripheral artery vascular disease].

    PubMed

    Wang, Zhihong; Gu, Hongbin; Yang, Fan; Xie, Huajie; Sheng, Lei; Li, Mingfei

    2017-11-01

    Objective To investigate the effect of over-expressed endothelial Per-Arnt-Sim domain protein 1 (EPAS1) on peripheral arterial disease (PAD) in a rat model. Methods PAD rat model was established by external iliac artery ligation followed by lentivirus-mediated EPAS1 gene injection into rat right adductor magnus. The models were evaluated by quantitative analysis of gait disturbance. The changes of blood flow in the posterior extremity of the rats were detected using laser Doppler. The expressions of EPAS1, hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) mRNAs were tested by real-time quantitative PCR. The expression of α-smooth muscle actin (αSMA) was detected by immunohistochemical staining. Results Compared with lenti-EGFP group, rat hind limb function and circulation got recovered obviously 7 days after lenti-EPAS1 injection. The mRNA expressions of EPAS1, HGF, bFGF, and VEGF were up-regulated in the lenti-EPAS1-treated sites.The expression of αSMA showed an obvious increase in the lenti-EPAS1-treated muscles. Conclusion Over-expressed lenti-EPAS1 can promote angiogenesis via the up-regulation of EPAS1-related angiogenic factors in the muscles of the affected hind limb and reduce gait disturbance.

  3. Vitamin D modulates tissue factor and protease-activated receptor 2 expression in vascular smooth muscle cells.

    PubMed

    Martinez-Moreno, Julio M; Herencia, Carmen; Montes de Oca, Addy; Muñoz-Castañeda, Juan R; Rodríguez-Ortiz, M Encarnación; Díaz-Tocados, Juan M; Peralbo-Santaella, Esther; Camargo, Antonio; Canalejo, Antonio; Rodriguez, Mariano; Velasco-Gimena, Francisco; Almaden, Yolanda

    2016-03-01

    Clinical and epidemiologic studies reveal an association between vitamin D deficiency and increased risk of cardiovascular disease. Because vascular smooth muscle cell (VSMC)-derived tissue factor (TF) is suggested to be critical for arterial thrombosis, we investigated whether the vitamin D molecules calcitriol and paricalcitol could reduce the expression of TF induced by the proinflammatory cytokine TNF-α in human aortic VSMCs. We found that, compared with controls, incubation with TNF-α increased TF expression and procoagulant activity in a NF-κB-dependent manner, as deduced from the increased nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells protein 65 (p65-NF-κB) and direct interaction of NF-κB to the TF promoter. This was accompanied by the up-regulation of TF signaling mediator protease-activated receptor 2 (PAR-2) expression and by the down-regulation of vitamin D receptor expression in a miR-346-dependent way. However, addition of calcitriol or paricalcitol blunted the TNF-α-induced TF expression and activity (2.01 ± 0.24 and 1.32 ± 0.14 vs. 3.02 ± 0.39 pmol/mg protein, P < 0.05), which was associated with down-regulation of NF-κB signaling and PAR-2 expression, as well as with restored levels of vitamin D receptor and enhanced expression of TF pathway inhibitor. Our data suggest that inflammation promotes a prothrombotic state through the up-regulation of TF function in VSMCs and that the beneficial cardiovascular effects of vitamin D may be partially due to decreases in TF expression and its activity in VSMCs. © FASEB.

  4. Vascular complications following prophylactic balloon occlusion of the internal iliac arteries resolved by successful interventional thrombolysis in a patient with morbidly adherent placenta*

    PubMed Central

    Zhang, Ning; Lou, Wei-hua; Zhang, Xue-bin; Fu, Jia-ning; Chen, Yun-yan; Zhuang, Zhi-guo; Lin, Jian-hua

    2017-01-01

    The increasing incidence of morbidly adherent placenta (MAP) is placing women at a higher risk of life-threatening massive hemorrhage. The involvement of interventional radiology to manage this complex condition by performing prophylactic iliac artery balloon occlusion has been reported recently. However, the effectiveness and safety of this technique have not been fully determined. Here we report the case of a 25-year-old woman with placenta increta with preemptive bilateral internal iliac artery balloons who had external iliac artery thrombosis detected by computed tomography angiography (CTA) 72 h post cesarean section. A digital subtraction angiogram (DSA) and intra-arterial thrombolysis were instantly performed followed by supplementary conservative treatments, leading to a desirable resolution of thrombus without sequela. This is the first report of vascular complications with successful interventional thrombolysis in this setting. Our experience suggests that prophylactic iliac artery balloon occlusion should be used cautiously in cases of MAP and consideration given to minimizing vascular complications given the hypercoagulable state of pregnancy. PMID:28271663

  5. The association of oxidative stress with arterial compliance and vascular resistance in a bi-ethnic population: the SABPA study.

    PubMed

    Mokhaneli, Maserame Cleopatra; Fourie, Carla Maria T; Botha, Shani; Mels, Catharina Martha C

    2016-08-01

    A loss of arterial elasticity increases the risk for cardiovascular events. Oxidative injury to the vessel wall may be one of the underlying mechanisms influencing arterial elasticity. We compared markers of oxidative stress, antioxidant capacity, inflammation, windkessel compliance (Cwk), and total peripheral resistance (TPR) in black and white South Africans. Associations of arterial compliance and vascular resistance (as indicated by TPR) with oxidative stress, antioxidant capacity and inflammatory markers were also investigated. We included 146 black and 181 white men and women. Measurements from the Finometer device were used to calculate Cwk and TPR while thiobarbituric acids reactive substances (TBARS), glutathione peroxidase (GPx), C-reactive protein (CRP), and interleukin-6 (IL-6) were analyzed in serum or urine samples. Black participants had higher TPR, TBARS, GPx, CRP, and IL-6 levels (all p ≤ 0.018) and lower Cwk (both p ≤ 0.013) compared to white participants. Multiple regression analyses revealed independent associations of Cwk (β = -0.27, p = 0.015) and TPR (β = 0.18, p = 0.018) with TBARS in black participants, while Cwk (β = -0.10; p = 0.019) and TPR (β = 0.13, p = 0.047) were independently associated with GPx in white participants. Decreased arterial compliance and increased vascular resistance associated with increased oxidative damage independent of hypertensive status in black participants. These results suggest that oxidative stress plays a role in early vascular changes in a black population prone to the development of cardiovascular disease.

  6. Differential endothelial transcriptomics identifies semaphorin 3G as a vascular class 3 semaphorin.

    PubMed

    Kutschera, Simone; Weber, Holger; Weick, Anja; De Smet, Frederik; Genove, Guillem; Takemoto, Minoru; Prahst, Claudia; Riedel, Maria; Mikelis, Constantinos; Baulande, Sylvain; Champseix, Catherine; Kummerer, Petra; Conseiller, Emmanuel; Multon, Marie-Christine; Heroult, Melanie; Bicknell, Roy; Carmeliet, Peter; Betsholtz, Christer; Augustin, Hellmut G

    2011-01-01

    To characterize the role of a vascular-expressed class 3 semaphorin (semaphorin 3G [Sema3G]). Semaphorins have been identified as axon guidance molecules. Yet, they have more recently also been characterized as attractive and repulsive regulators of angiogenesis. Through a transcriptomic screen, we identified Sema3G as a molecule of angiogenic endothelial cells. Sema3G-deficient mice are viable and exhibit no overt vascular phenotype. Yet, LacZ expression in the Sema3G locus revealed intense arterial vascular staining in the angiogenic vasculature, starting at E9.5, which was detectable throughout adolescence and downregulated in adult vasculature. Sema3G is expressed as a full-length 100-kDa secreted molecule that is processed by furin proteases to yield 95- and a 65-kDa Sema domain-containing subunits. Full-length Sema3G binds to NP2, whereas processed Sema3G binds to NP1 and NP2. Expression profiling and cellular experiments identified autocrine effects of Sema3G on endothelial cells and paracrine effects on smooth muscle cells. Although the mouse knockout phenotype suggests compensatory mechanisms, the experiments identify Sema3G as a primarily endothelial cell-expressed class 3 semaphorin that controls endothelial and smooth muscle cell functions in autocrine and paracrine manners, respectively.

  7. IGF-1 Has Plaque-Stabilizing Effects in Atherosclerosis by Altering Vascular Smooth Muscle Cell Phenotype

    PubMed Central

    von der Thüsen, Jan H.; Borensztajn, Keren S.; Moimas, Silvia; van Heiningen, Sandra; Teeling, Peter; van Berkel, Theo J.C.; Biessen, Erik A.L.

    2011-01-01

    Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic plaque on IGF-1 signaling and stability-related phenotypic parameters of murine vSMCs in vitro, and the effects of IGF-1 supplementation on plaque phenotype in an atherosclerotic mouse model. M1-polarized, macrophage-conditioned medium inhibited IGF-1 signaling by ablating IGF-1 and increasing IGF-binding protein 3, increased vSMC apoptosis, and decreased proliferation. Expression of α-actin and col3a1 genes was strongly attenuated by macrophage-conditioned medium, whereas expression of matrix-degrading enzymes was increased. Importantly, all of these effects could be corrected by supplementation with IGF-1. In vivo, treatment with the stable IGF-1 analog Long R3 IGF-1 in apolipoprotein E knockout mice reduced stenosis and core size, and doubled cap/core ratio in early atherosclerosis. In advanced plaques, Long R3 IGF-1 increased the vSMC content of the plaque by more than twofold and significantly reduced the rate of intraplaque hemorrhage. We believe that IGF-1 in atherosclerotic plaques may have a role in preventing plaque instability, not only by modulating smooth muscle cell turnover, but also by altering smooth muscle cell phenotype. PMID:21281823

  8. Hepatocyte growth factor fusion protein having collagen-binding activity (CBD-HGF) accelerates re-endothelialization and intimal hyperplasia in balloon-injured rat carotid artery.

    PubMed

    Ohkawara, Nana; Ueda, Hiroki; Shinozaki, Shohei; Kitajima, Takashi; Ito, Yoshihiro; Asaoka, Hiroshi; Kawakami, Akio; Kaneko, Eiji; Shimokado, Kentaro

    2007-08-01

    Hepatocyte growth factor (HGF) is known to stimulate endothelial cell proliferation. However, re-endothelialization is not enhanced when the native protein is administered to the injured artery, probably due to the short half-life of HGF at the site of injury. Therefore, the effects of an HGF fusion protein having collagen-binding activity (CBD-HGF) on re-endothelialization and neointimal formation was studied in the balloon-injured rat carotid artery. The left common carotid artery of male Sprague-Dawley rats was injured with an inflated balloon catheter, and then treated with CBD-HGF 10 microg/mL), HGF (10 micro g/mL) or saline (control) for 15 min. After 14 days, the rats were injected with Evans blue and sacrificed. The re-endothelialized area was significantly greater in the CBD-HGF- treated rats than in the control or HGF -treated rats. Neointimal formation was significantly more pronounced in the CBD-HGF treated rats than in other rat groups. Both HGF and CBD-HGF stimulated proliferation of vascular smooth muscle cells as well as endothelial cells in vitro. Consistent with this, cultured smooth muscle cells were shown to express the HGF receptor (c-Met). CBD-HGF accelerates re-endothelialization and neointimal formation in vivo. CBD fusion protein is a useful vehicle to deliver vascular growth factors to injured arteries.

  9. Vascular smooth muscle cell calcification is mediated by regulated exosome secretion.

    PubMed

    Kapustin, Alexander N; Chatrou, Martijn L L; Drozdov, Ignat; Zheng, Ying; Davidson, Sean M; Soong, Daniel; Furmanik, Malgorzata; Sanchis, Pilar; De Rosales, Rafael Torres Martin; Alvarez-Hernandez, Daniel; Shroff, Rukshana; Yin, Xiaoke; Muller, Karin; Skepper, Jeremy N; Mayr, Manuel; Reutelingsperger, Chris P; Chester, Adrian; Bertazzo, Sergio; Schurgers, Leon J; Shanahan, Catherine M

    2015-04-10

    Matrix vesicles (MVs), secreted by vascular smooth muscle cells (VSMCs), form the first nidus for mineralization and fetuin-A, a potent circulating inhibitor of calcification, is specifically loaded into MVs. However, the processes of fetuin-A intracellular trafficking and MV biogenesis are poorly understood. The objective of this study is to investigate the regulation, and role, of MV biogenesis in VSMC calcification. Alexa488-labeled fetuin-A was internalized by human VSMCs, trafficked via the endosomal system, and exocytosed from multivesicular bodies via exosome release. VSMC-derived exosomes were enriched with the tetraspanins CD9, CD63, and CD81, and their release was regulated by sphingomyelin phosphodiesterase 3. Comparative proteomics showed that VSMC-derived exosomes were compositionally similar to exosomes from other cell sources but also shared components with osteoblast-derived MVs including calcium-binding and extracellular matrix proteins. Elevated extracellular calcium was found to induce sphingomyelin phosphodiesterase 3 expression and the secretion of calcifying exosomes from VSMCs in vitro, and chemical inhibition of sphingomyelin phosphodiesterase 3 prevented VSMC calcification. In vivo, multivesicular bodies containing exosomes were observed in vessels from chronic kidney disease patients on dialysis, and CD63 was found to colocalize with calcification. Importantly, factors such as tumor necrosis factor-α and platelet derived growth factor-BB were also found to increase exosome production, leading to increased calcification of VSMCs in response to calcifying conditions. This study identifies MVs as exosomes and shows that factors that can increase exosome release can promote vascular calcification in response to environmental calcium stress. Modulation of the exosome release pathway may be as a novel therapeutic target for prevention. © 2015 American Heart Association, Inc.

  10. Visit-to-visit and 24-h blood pressure variability: association with endothelial and smooth muscle function in African Americans.

    PubMed

    Diaz, K M; Veerabhadrappa, P; Kashem, M A; Thakkar, S R; Feairheller, D L; Sturgeon, K M; Ling, C; Williamson, S T; Kretzschmar, J; Lee, H; Grimm, H; Babbitt, D M; Vin, C; Fan, X; Crabbe, D L; Brown, M D

    2013-11-01

    The purpose of this study was to investigate the association of visit-to-visit and 24-h blood pressure (BP) variability with markers of endothelial injury and vascular function. We recruited 72 African Americans who were non-diabetic, non-smoking and free of cardiovascular (CV) and renal disease. Office BP was measured at three visits and 24-h ambulatory BP monitoring was conducted to measure visit-to-visit and 24-h BP variability, respectively. The 5-min time-course of brachial artery flow-mediated dilation and nitroglycerin-mediated dilation were assessed as measures of endothelial and smooth muscle function. Fasted blood samples were analyzed for circulating endothelial microparticles (EMPs). Significantly lower CD31+CD42- EMPs were found in participants with high visit-to-visit systolic blood pressure (SBP) variability or high 24-h diastolic blood pressure (DBP) variability. Participants with high visit-to-visit DBP variability had significantly lower flow-mediated dilation and higher nitroglycerin-mediated dilation at multiple time-points. When analyzed as continuous variables, 24-h mean arterial pressure variability was inversely associated with CD62+ EMPs; visit-to-visit DBP variability was inversely associated with flow-mediated dilation normalized by smooth muscle function and was positively associated with nitroglycerin-mediated dilation; and 24-h DBP variability was positively associated with nitroglycerin-mediated dilation. All associations were independent of age, gender, body mass index and mean BP. In conclusion, in this cohort of African Americans visit-to-visit and 24-h BP variability were associated with measures of endothelial injury, endothelial function and smooth muscle function. These results suggest that BP variability may influence the pathogenesis of CV disease, in part, through influences on vascular health.

  11. Mechanism of action vasodilation Annona muricata L. leaves extract mediated vascular smooth muscles

    NASA Astrophysics Data System (ADS)

    Ismail, S.; Hayati, N.; Rahmawati, N.

    2018-04-01

    Annona muricata L. leaves (AML) is used as ethnomedicine by the Dayak Abai ethnicity in North Kalimantan for its already known use to reduce blood pressure. However, the mechanism of action in the vessel is still poorly understood. Aim study to prove the mechanism of action of AML in blood vessels. AML was extracted with a maceration technique using ethanol solvent. Mechanism of action test was performed with isolated rat aortic with endothelium (endo-intact) and without endothelium (endo-denuded). AML extract intervention on rats aorta with endo-intact and endo-denuded can induction vasodilatation activity. Increasing AML extract concentration can improve decrease vasodilatation activity on isolated rats aortic with endo-intact compared to endo-denuded, it means that endothelium can weaken vasodilatation activity of aorta mediated by vascular smooth muscle after the extract was given.

  12. Aberrant Splicing Induced by Dysregulated Rbfox2 Produces Enhanced Function of CaV1.2 Calcium Channel and Vascular Myogenic Tone in Hypertension.

    PubMed

    Zhou, Yingying; Fan, Jia; Zhu, Huayuan; Ji, Li; Fan, Wenyong; Kapoor, Isha; Wang, Yue; Wang, Yuan; Zhu, Guoqing; Wang, Juejin

    2017-12-01

    Calcium influx from activated voltage-gated calcium channel Ca V 1.2 in vascular smooth muscle cells is indispensable for maintaining myogenic tone and blood pressure. The function of Ca V 1.2 channel can be optimized by alternative splicing, one of post-transcriptional modification mechanisms. The splicing factor Rbfox2 is known to regulate the Ca V 1.2 pre-mRNA alternative splicing events during neuronal development. However, Rbfox2's roles in modulating the key function of vascular Ca V 1.2 channel and in the pathogenesis of hypertension remain elusive. Here, we report that the proportion of Ca V 1.2 channels with alternative exon 9* is increased by 10.3%, whereas that with alternative exon 33 is decreased by 10.5% in hypertensive arteries. Surprisingly, the expression level of Rbfox2 is increased ≈3-folds, presumably because of the upregulation of a dominant-negative isoform of Rbfox2. In vascular smooth muscle cells, we find that knockdown of Rbfox2 dynamically increases alternative exon 9*, whereas decreases exon 33 inclusion of Ca V 1.2 channels. By patch-clamp studies, we show that diminished Rbfox2-induced alternative splicing shifts the steady-state activation and inactivation curves of vascular Ca V 1.2 calcium channel to hyperpolarization, which makes the window current potential to more negative. Moreover, siRNA-mediated knockdown of Rbfox2 increases the pressure-induced vascular myogenic tone of rat mesenteric artery. Taken together, our data indicate that Rbfox2 modulates the functions of vascular Ca V 1.2 calcium channel by dynamically regulating the expressions of alternative exons 9* and 33, which in turn affects the vascular myogenic tone. Therefore, our work suggests a key role for Rbfox2 in hypertension, which provides a rational basis for designing antihypertensive therapies. © 2017 American Heart Association, Inc.

  13. [Hepatic artery of the rat in experimental cirrhosis of the liver].

    PubMed

    Baĭbekov, I M; Vorozheĭkin, V M; Khoroshaev, V A; Khamidov, P M

    1984-04-01

    In 30 male rats of Wistar strain (20 more rats served as controls) thickness of the internal elastic membrane, that of the media, cross section area of the media and that of the lumen were define 3, 4, 5 and 6 months after the experiment was started. The initial changes in the hepatic artery structure are noted on the 4th month, however, differences in the parameters are not yet statistically significant. On the 5th month certain signs of hypertrophy in the smooth muscle cells of the media are clearly seen, as well as an increasing thickness of the internal elastic membrane and that of the tunica media. Simultaneously, the index of labelling the myocyte nuclei reaches its maximum. The increasing thickness of the arterial wall causes certain decrease in the lumen cross section area. The changes of all the parameters are statistically significant. In 6 months after the beginning of the experiment, a pronounced hyperelastosis develops in the wall of the hepatic artery; a part of the smooth muscle cells in the tunica media undergoes atrophy. The area of the vascular lumen decreases by 16%, comparing to the age control. The experimental data confirm certain clinical observations and reveal some features in the mechanism of pathological changes occurring in the hepatic artery wall at cirrhosis.

  14. New stent surface materials: the impact of polymer-dependent interactions of human endothelial cells, smooth muscle cells, and platelets.

    PubMed

    Busch, Raila; Strohbach, Anne; Rethfeldt, Stefanie; Walz, Simon; Busch, Mathias; Petersen, Svea; Felix, Stephan; Sternberg, Katrin

    2014-02-01

    Despite the development of new coronary stent technologies, in-stent restenosis and stent thrombosis are still clinically relevant. Interactions of blood and tissue cells with the implanted material may represent an important cause of these side effects. We hypothesize material-dependent interaction of blood and tissue cells. The aim of this study is accordingly to investigate the impact of vascular endothelial cells, smooth muscle cells and platelets with various biodegradable polymers to identify a stent coating or platform material that demonstrates excellent endothelial-cell-supportive and non-thrombogenic properties. Human umbilical venous endothelial cells, human coronary arterial endothelial cells and human coronary arterial smooth muscle cells were cultivated on the surfaces of two established biostable polymers used for drug-eluting stents, namely poly(ethylene-co-vinylacetate) (PEVA) and poly(butyl methacrylate) (PBMA). We compared these polymers to new biodegradable polyesters poly(l-lactide) (PLLA), poly(3-hydroxybutyrate) (P(3HB)), poly(4-hydroxybutyrate) (P(4HB)) and a polymeric blend of PLLA/P(4HB) in a ratio of 78/22% (w/w). Biocompatibility tests were performed under static and dynamic conditions. Measurement of cell proliferation, viability, glycocalix width, eNOS and PECAM-1 mRNA expression revealed strong material dependency among the six polymer samples investigated. Only the polymeric blend of PLLA/P(4HB) achieved excellent endothelial markers of biocompatibility. Data show that PLLA and P(4HB) tend to a more thrombotic response, whereas the polymer blend is characterized by a lower thrombotic potential. These data demonstrate material-dependent endothelialization, smooth muscle cell growth and thrombogenicity. Although polymers such as PEVA and PBMA are already commonly used for vascular implants, they did not sufficiently meet the criteria for biocompatibility. The investigated biodegradable polymeric blend PLLA/P(4HB) evidently represents a

  15. Acute insulin resistance stimulates and insulin sensitization attenuates vascular smooth muscle cell migration and proliferation.

    PubMed

    Cersosimo, Eugenio; Xu, Xiaojing; Upala, Sikarin; Triplitt, Curtis; Musi, Nicolas

    2014-08-01

    Differential activation/deactivation of insulin signaling, PI-3K and MAP-K pathways by high glucose and palmitate, with/out the insulin sensitizer pioglitazone (PIO), have been previously shown in vascular smooth muscle cells (VSMCs). To determine the biological impact of these molecular changes, we examined VSMC migration and proliferation ("M"&"P") patterns in similar conditions. VSMCs from healthy human coronary arteries were incubated in growth medium and "M"&"P" were analyzed after exposure to high glucose (25 mmol/L) ± palmitate (200 μmol/L) and ± PIO (8 μmol/L) for 5 h. "M"&"P" were assessed by: (1) polycarbonate membrane barrier with chemo-attractants and extended cell protrusions quantified by optical density (OD595 nm); (2) % change in radius area (2D Assay) using inverted microscopy images; and (3) cell viability assay expressed as cell absorbance (ABS) in media. "M" in 25 mmol/L glucose media increased by ~25% from baseline and % change in radius area rose from ~20% to ~30%. The addition of PIO was accompanied by a significant decrease in "M" from 0.25 ± 0.02 to 0.19 ± 0.02; a comparable decline from 0.25 ± 0.02 to 0.18 ± 0.02 was also seen with 25 mmol/L of glucose +200 μmol/L of palmitate. When PIO was coincubated with high glucose plus palmitate there was a 50% reduction in % change in radius. A ~10% increase in ABS, reflecting augmented "P" in media with 25 mmol/L glucose versus control was documented. The addition of PIO reduced ABS from 0.208 ± 0.03 to 0.183 ± 0.06. Both high glucose and palmitate showed ABS of ~0.140 ± 0.02, which decreased with PIO to ~0.120 ± 0.02, indicating "P" was reduced. These results confirm that high glucose and palmitate stimulate VSMCs migration and proliferation in vitro, which is attenuated by coincubation with the insulin sensitizer PIO. Although, we cannot ascertain whether these functional changes are coincident with the activation/deactivation of signal molecules, our findings are consistent with the

  16. Acute insulin resistance stimulates and insulin sensitization attenuates vascular smooth muscle cell migration and proliferation

    PubMed Central

    Cersosimo, Eugenio; Xu, Xiaojing; Upala, Sikarin; Triplitt, Curtis; Musi, Nicolas

    2014-01-01

    Abstract Differential activation/deactivation of insulin signaling, PI‐3K and MAP‐K pathways by high glucose and palmitate, with/out the insulin sensitizer pioglitazone (PIO), have been previously shown in vascular smooth muscle cells (VSMCs). To determine the biological impact of these molecular changes, we examined VSMC migration and proliferation (“M”&”P”) patterns in similar conditions. VSMCs from healthy human coronary arteries were incubated in growth medium and “M”&”P” were analyzed after exposure to high glucose (25 mmol/L) ± palmitate (200 μmol/L) and ± PIO (8 μmol/L) for 5 h. “M”&”P” were assessed by: (1) polycarbonate membrane barrier with chemo‐attractants and extended cell protrusions quantified by optical density (OD595 nm); (2) % change in radius area (2D Assay) using inverted microscopy images; and (3) cell viability assay expressed as cell absorbance (ABS) in media. “M” in 25 mmol/L glucose media increased by ~25% from baseline and % change in radius area rose from ~20% to ~30%. The addition of PIO was accompanied by a significant decrease in “M” from 0.25 ± 0.02 to 0.19 ± 0.02; a comparable decline from 0.25 ± 0.02 to 0.18 ± 0.02 was also seen with 25 mmol/L of glucose +200 μmol/L of palmitate. When PIO was coincubated with high glucose plus palmitate there was a 50% reduction in % change in radius. A ~10% increase in ABS, reflecting augmented “P” in media with 25 mmol/L glucose versus control was documented. The addition of PIO reduced ABS from 0.208 ± 0.03 to 0.183 ± 0.06. Both high glucose and palmitate showed ABS of ~0.140 ± 0.02, which decreased with PIO to ~0.120 ± 0.02, indicating “P” was reduced. Conclusion: These results confirm that high glucose and palmitate stimulate VSMCs migration and proliferation in vitro, which is attenuated by coincubation with the insulin sensitizer PIO. Although, we cannot ascertain whether these functional changes are coincident with the activation

  17. LPA1 receptor-mediated thromboxane A2 release is responsible for lysophosphatidic acid-induced vascular smooth muscle contraction.

    PubMed

    Dancs, Péter Tibor; Ruisanchez, Éva; Balogh, Andrea; Panta, Cecília Rita; Miklós, Zsuzsanna; Nüsing, Rolf M; Aoki, Junken; Chun, Jerold; Offermanns, Stefan; Tigyi, Gábor; Benyó, Zoltán

    2017-04-01

    Lysophosphatidic acid (LPA) has been recognized recently as an endothelium-dependent vasodilator, but several lines of evidence indicate that it may also stimulate vascular smooth muscle cells (VSMCs), thereby contributing to vasoregulation and remodeling. In the present study, mRNA expression of all 6 LPA receptor genes was detected in murine aortic VSMCs, with the highest levels of LPA 1 , LPA 2 , LPA 4 , and LPA 6 In endothelium-denuded thoracic aorta (TA) and abdominal aorta (AA) segments, 1-oleoyl-LPA and the LPA 1-3 agonist VPC31143 induced dose-dependent vasoconstriction. VPC31143-induced AA contraction was sensitive to pertussis toxin (PTX), the LPA 1&3 antagonist Ki16425, and genetic deletion of LPA 1 but not that of LPA 2 or inhibition of LPA 3 , by diacylglycerol pyrophosphate. Surprisingly, vasoconstriction was also diminished in vessels lacking cyclooxygenase-1 [COX1 knockout (KO)] or the thromboxane prostanoid (TP) receptor (TP KO). VPC31143 increased thromboxane A 2 (TXA 2 ) release from TA of wild-type, TP-KO, and LPA 2 -KO mice but not from LPA 1 -KO or COX1-KO mice, and PTX blocked this effect. Our findings indicate that LPA causes vasoconstriction in VSMCs, mediated by LPA 1 -, G i -, and COX1-dependent autocrine/paracrine TXA 2 release and consequent TP activation. We propose that this new-found interaction between the LPA/LPA 1 and TXA 2 /TP pathways plays significant roles in vasoregulation, hemostasis, thrombosis, and vascular remodeling.-Dancs, P. T., Ruisanchez, E., Balogh, A., Panta, C. R., Miklós, Z., Nüsing, R. M., Aoki, J., Chun, J., Offermanns, S., Tigyi, G., Benyó, Z. LPA 1 receptor-mediated thromboxane A 2 release is responsible for lysophosphatidic acid-induced vascular smooth muscle contraction. © FASEB.

  18. Characterisation of calcium phosphate crystals on calcified human aortic vascular smooth muscle cells and potential role of magnesium.

    PubMed

    Louvet, Loïc; Bazin, Dominique; Büchel, Janine; Steppan, Sonja; Passlick-Deetjen, Jutta; Massy, Ziad A

    2015-01-01

    Cardiovascular disease including vascular calcification (VC) remains the leading cause of death in patients suffering from chronic kidney disease (CKD). The process of VC seems likely to be a tightly regulated process where vascular smooth muscle cells are playing a key role rather than just a mere passive precipitation of calcium phosphate. Characterisation of the chemical and crystalline structure of VC was mainly led in patients or animal models with CKD. Likewise, Mg2+ was found to be protective in living cells although a potential role for Mg2+ could not be excluded on crystal formation and precipitation. In this study, the crystal formation and the role of Mg2+ were investigated in an in vitro model of primary human aortic vascular smooth muscle cells (HAVSMC) with physical techniques. In HAVSMC incubated with increased Ca x Pi medium, only calcium phosphate apatite crystals (CPA) were detected by Micro-Fourier Transform InfraRed spectroscopy (µFTIR) and Field Effect Scanning Electron Microscope (FE-SEM) and Energy Dispersive X-ray spectrometry (EDX) at the cell layer level. Supplementation with Mg2+ did not alter the crystal composition or structure. The crystal deposition was preferentially positioned near or directly on cells as pictured by FE-SEM observations and EDX measurements. Large µFTIR maps revealed spots of CPA crystals that were associated to the cellular layout. This qualitative analysis suggests a potential beneficial effect of Mg2+ at 5 mM in noticeably reducing the number and intensities of CPA µFTIR spots. For the first time in a model of HAVSMC, induced calcification led to the formation of the sole CPA crystals. Our data seems to exclude a physicochemical role of Mg2+ in altering the CPA crystal growth, composition or structure. Furthermore, Mg2+ beneficial role in attenuating VC should be linked to an active cellular role.

  19. Understanding Arteries | Coronary Artery Disease | NIH MedlinePlus the Magazine

    MedlinePlus

    ... oxygen-poor blood to the heart. This cycle works well when the arteries and veins are healthy. A Healthy Artery An artery is a muscular tube. It has a smooth lining and flexible walls that allow blood to pass freely. Active ...

  20. Design and development of multilayer vascular graft

    NASA Astrophysics Data System (ADS)

    Madhavan, Krishna

    2011-07-01

    Vascular graft is a widely-used medical device for the treatment of vascular diseases such as atherosclerosis and aneurysm as well as for the use of vascular access and pediatric shunt, which are major causes of mortality and morbidity in this world. Dysfunction of vascular grafts often occurs, particularly for grafts with diameter less than 6mm, and is associated with the design of graft materials. Mechanical strength, compliance, permeability, endothelialization and availability are issues of most concern for vascular graft materials. To address these issues, we have designed a biodegradable, compliant graft made of hybrid multilayer by combining an intimal equivalent, electrospun heparin-impregnated poly-epsilon-caprolactone nanofibers, with a medial equivalent, a crosslinked collagen-chitosan-based gel scaffold. The intimal equivalent is designed to build mechanical strength and stability suitable for in vivo grafting and to prevent thrombosis. The medial equivalent is designed to serve as a scaffold for the activity of the smooth muscle cells important for vascular healing and regeneration. Our results have shown that genipin is a biocompatible crosslinker to enhance the mechanical properties of collagen-chitosan based scaffolds, and the degradation time and the activity of smooth muscle cells in the scaffold can be modulated by the crosslinking degree. For vascular grafting and regeneration in vivo, an important design parameter of the hybrid multilayer is the interface adhesion between the intimal and medial equivalents. With diametrically opposite affinities to water, delamination of the two layers occurs. Physical or chemical modification techniques were thus used to enhance the adhesion. Microscopic examination and graft-relevant functional characterizations have been performed to evaluate these techniques. Results from characterization of microstructure and functional properties, including burst strength, compliance, water permeability and suture

  1. BK Channels in the Vascular System.

    PubMed

    Krishnamoorthy-Natarajan, G; Koide, M

    2016-01-01

    Autoregulation of blood flow is essential for the preservation of organ function to ensure continuous supply of oxygen and essential nutrients and removal of metabolic waste. This is achieved by controlling the diameter of muscular arteries and arterioles that exhibit a myogenic response to changes in arterial blood pressure, nerve activity and tissue metabolism. Large-conductance voltage and Ca(2+)-dependent K(+) channels (BK channels), expressed exclusively in smooth muscle cells (SMCs) in the vascular wall of healthy arteries, play a critical role in regulating the myogenic response. Activation of BK channels by intracellular, local, and transient ryanodine receptor-mediated "Ca(2+) sparks," provides a hyperpolarizing influence on the SMC membrane potential thereby decreasing the activity of voltage-dependent Ca(2+) channels and limiting Ca(2+) influx to promote SMC relaxation and vasodilation. The BK channel α subunit, a large tetrameric protein with each monomer consisting of seven-transmembrane domains, a long intracellular C-terminal tail and an extracellular N-terminus, associates with the β1 and γ subunits in vascular SMCs. The BK channel is regulated by factors originating within the SMC or from the endothelium, perivascular nerves and circulating blood, that significantly alter channel gating properties, Ca(2+) sensitivity and expression of the α and/or β1 subunit. The BK channel thus serves as a central receiving dock that relays the effects of the changes in several such concomitant autocrine and paracrine factors and influences cardiovascular health. This chapter describes the primary mechanism of regulation of myogenic response by BK channels and the alterations to this mechanism wrought by different vasoactive mediators. © 2016 Elsevier Inc. All rights reserved.

  2. The interaction of IGF-1/IGF-1R and hydrogen sulfide on the proliferation of mouse primary vascular smooth muscle cells.

    PubMed

    Shuang, Tian; Fu, Ming; Yang, Guangdong; Wu, Lingyun; Wang, Rui

    2018-03-01

    Hydrogen sulfide (H 2 S) is mostly produced by cystathionine-gamma-lyase (CSE) in vascular system and it inhibits the proliferation of vascular smooth muscle cells (SMCs). Insulin-like growth factor-1 (IGF-1), via its receptor (IGF-1R), exerts multiple physiological and pathophysiological effects on the vasculature, including stimulating SMC proliferation and migration, and inhibiting SMC apoptosis. Since H 2 S and IGF-1/IGF-1R have opposite effects on SMC proliferation, it becomes imperative to better understand the interaction of these two signaling mechanisms on SMC proliferation. SMCs isolated from small mesenteric arteries of CSE knockout (KO) and wild-type (WT) mice were used in the present study. The effects of IGF-1 and H 2 S on SMC proliferation were evaluated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and bromodeoxyuridine (BrdU) assays. Protein expression was determined by western blot, and H 2 S-induced protein S-sulfhydration was assessed with a modified biotin switch assay. We found that IGF-1 dose-dependently increased the proliferation of both WT-SMCs and KO-SMCs, and this effect was more significant in KO-SMCs. Supplement of sodium hydrosulfide (NaHS) inhibited IGF-1-induced cell proliferation, while this effect was abolished by blocking IGF-1/IGF-1R signaling with picropodophyllin (PPP) or knocking out of the expression of IGF-1R. H 2 S significantly down-regulates the expression of IGF-1R, stimulates IGF-1R S-sulfhydration, and attenuates the binding of IGF-1 with IGF-1R. This study provides novel insight on the involvement of IGF-1/IGF-1R in H 2 S-inhibited SMC proliferation and suggests H 2 S-based innovative treatment strategies for proliferative cardiovascular diseases such as atherosclerosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Constituents of Mediterranean Spices Counteracting Vascular Smooth Muscle Cell Proliferation: Identification and Characterization of Rosmarinic Acid Methyl Ester as a Novel Inhibitor.

    PubMed

    Liu, Rongxia; Heiss, Elke H; Waltenberger, Birgit; Blažević, Tina; Schachner, Daniel; Jiang, Baohong; Krystof, Vladimir; Liu, Wanhui; Schwaiger, Stefan; Peña-Rodríguez, Luis M; Breuss, Johannes M; Stuppner, Hermann; Dirsch, Verena M; Atanasov, Atanas G

    2018-04-01

    Aberrant vascular smooth muscle cell (VSMC) proliferation is involved in atherosclerotic plaque formation and restenosis. Mediterranean spices have been reported to confer cardioprotection, but their direct influence on VSMCs has largely not been investigated. This study aims at examining rosmarinic acid (RA) and 11 related constituents for inhibition of VSMC proliferation in vitro, and at characterizing the most promising compound for their mode of action and influence on neointima formation in vivo. RA, rosmarinic acid methyl ester (RAME), and caffeic acid methyl ester inhibit VSMC proliferation in a resazurin conversion assay with IC 50 s of 5.79, 3.12, and 6.78 µm, respectively. RAME significantly reduced neointima formation in vivo in a mouse femoral artery cuff model. Accordingly, RAME leads to an accumulation of VSMCs in the G 0 /G 1 cell-cycle phase, as indicated by blunted retinoblastoma protein phosphorylation upon mitogen stimulation and inhibition of cyclin-dependent kinase 2 in vitro. RAME represses PDGF-induced VSMC proliferation in vitro and reduces neointima formation in vivo. These results recommend RAME as an interesting compound with VSMC-inhibiting potential. Future metabolism and pharmacokinetics studies might help to further evaluate the potential relevance of RAME and other spice-derived polyphenolics for vasoprotection. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Evaluation of the Microcirculation in Chronic Thromboembolic Pulmonary Hypertension Patients: The Impact of Pulmonary Arterial Remodeling on Postoperative and Follow-Up Pulmonary Arterial Pressure and Vascular Resistance.

    PubMed

    Jujo, Takayuki; Sakao, Seiichiro; Ishibashi-Ueda, Hatsue; Ishida, Keiichi; Naito, Akira; Sugiura, Toshihiko; Shigeta, Ayako; Tanabe, Nobuhiro; Masuda, Masahisa; Tatsumi, Koichiro

    2015-01-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is generally recognized to be caused by persistent organized thrombi that occlude the pulmonary arteries. The aim of this study was to investigate the characteristics of small vessel remodeling and its impact on the hemodynamics in CTEPH patients. Hemodynamic data were obtained from right heart catheterization in 17 CTEPH patients before pulmonary endarterectomy (PEA). Lung tissue specimens were obtained at the time of PEA. Pathological observations and evaluation of quantitative changes in pulmonary muscular arteries and veins were performed using light microscopy on 423 slides in 17 patients. The relationship between the results and the hemodynamics of CTEPH was investigated. Pulmonary arteriopathy and venopathy were recognized in most cases, although no plexiform lesions and no capillary-hemangiomatosis-like lesions were detected in any of the specimens. The severity of pulmonary arteriopathy was correlated with pulmonary vascular resistance (PVR) in the postoperative and follow-up periods. The PVR and mean pulmonary arterial pressure were significantly higher in the high-obstruction group than in the low-obstruction group. The findings in pulmonary venopathy were similar to the findings seen in pulmonary veno-occlusive disease in some cases, although severe venopathy was only observed in a portion of the pulmonary veins. There was a significant correlation between the extent of pulmonary arteriopathy and venopathy, although an effect of pulmonary venopathy to hemodynamics, including pulmonary arterial wedged pressure (PAWP), could not be identified. The vascular remodeling of the pulmonary muscular arteries was closely associated with the hemodynamics of CTEPH. Severe pulmonary arteriopathy might be related to residual pulmonary hypertension after PEA. Those altered pulmonary arteries might be a new target for the persistent PH after the operation.

  5. Histological and Morphometric Analyses for Rat Carotid Artery Balloon Injury Studies

    PubMed Central

    Tulis, David Anthony

    2010-01-01

    i. Summary Experiments aimed at analyzing the response of blood vessels to mechanical injury and ensuing remodeling responses often employ the highly characterized carotid artery balloon injury model in laboratory rats. This approach utilizes luminal insertion of a balloon embolectomy catheter into the common carotid artery with inflation and withdrawal resulting in an injury characterized by vascular endothelial cell (EC) denudation and medial wall distension. The adaptive response to this injury is typified by robust vascular smooth muscle cell (SMC) replication and migration, SMC apoptosis and necrosis, enhanced synthesis and deposition of extracellular matrix (ECM) components, partial vascular EC regeneration from the border zones, luminal narrowing and establishment of a neointima in time-dependent fashion. Evaluation of these adaptive responses to blood vessel injury can include acute and longer-term qualitative and quantitative measures including expression analyses, activity assays, immunostaining for a plethora of factors and signals, and morphometry of neointima formation and gross mural remodeling. This chapter presents a logical continuation of Chapter    in this series that offers details for performing the rat carotid artery balloon injury model in a standard laboratory setting by providing commonly used protocols for performing histological and morphometric analyses in such studies. Moreover, procedures, caveats, and considerations included in this chapter are highly relevant for alternative animal vascular physiology/pathophysiology studies and in particular those related to mechanisms of vascular injury and repair. Included in this chapter are specifics for in situ perfusion-fixation, tissue harvesting and processing for both snap-frozen and paraffin-embedded protocols, specimen embedding and sectioning, slide preparation, several standard histological staining steps, and routine morphological assessment. Included in Notes are important caveats

  6. Mechanism of the antihypertensive and vasorelaxant effects of the flavonoid tiliroside in resistance arteries.

    PubMed

    Silva, Grazielle C; Pereira, Aline C; Rezende, Bruno A; da Silva, José P Felippe; Cruz, Jader S; de Souza, Maria de Fátima V; Gomes, Roosevelt A; Teles, Yanna C F; Cortes, Steyner F; Lemos, Virginia S

    2013-08-01

    Hypertension is a leading cause of death and disability globally, and its prevalence continues to accelerate. The cardiovascular effects of the flavonoid tiliroside have never been reported. In this work, using complementary in vivo and in vitro approaches, we describe the antihypertensive effect of tiliroside and the underlying mechanisms involved in the reduction of blood pressure. Tiliroside (1, 5 or 10 mg/kg) induced a dose-dependent long-lasting decrease in blood pressure in conscious DOCA-salt hypertensive rats that was accompanied by an increased heart rate. Tiliroside also induced a concentration-dependent vasodilation of mesenteric resistance arteries precontracted with phenylephrine. Removal of the endothelium or pretreatment of the preparation with L-NAME or indomethacin did not modify the vasodilator response for tiliroside. When vessels were precontracted with a high K⁺ (50 mM) solution, tiliroside exhibited a vasodilator effect similar to that observed in vessels precontracted with phenylephrine. Experiments carried out in nominally Ca²⁺-free solution showed that tiliroside antagonized CaCl₂-induced contractions. Moreover, tiliroside reduced the rise in intracellular Ca²⁺ concentration induced by membrane depolarization in vascular smooth muscle cells. Finally, tiliroside decreased the voltage-activated peak amplitude of the L-type Ca²⁺ channel current in freshly dissociated vascular smooth muscle cells from mesenteric arteries. Altogether, our results point to an antihypertensive effect of tiliroside due to a reduction in peripheral resistance through blockage of voltage-activated peak amplitude of the L-type Ca²⁺ channel in smooth muscle cells. Georg Thieme Verlag KG Stuttgart · New York.

  7. Capillary arterialization requires the bone-marrow-derived cell (BMC)-specific expression of chemokine (C-C motif) receptor-2, but BMCs do not transdifferentiate into microvascular smooth muscle.

    PubMed

    Nickerson, Meghan M; Burke, Caitlin W; Meisner, Joshua K; Shuptrine, Casey W; Song, Ji; Price, Richard J

    2009-01-01

    Chemokine (C-C motif) receptor-2 (CCR2) regulates arteriogenesis and angiogenesis, facilitating the MCP-1-dependent recruitment of growth factor-secreting bone marrow-derived cells (BMCs). Here, we tested the hypothesis that the BMC-specific expression of CCR2 is also required for new arteriole formation via capillary arterialization. Following non-ischemic saphenous artery occlusion, we measured the following in gracilis muscles: monocyte chemotactic protein-1 (MCP-1) in wild-type (WT) C57Bl/6J mice by ELISA, and capillary arterialization in WT-WT and CCR2(-/-)-WT (donor-host) bone marrow chimeric mice, as well as BMC transdifferentiation in EGFP(+)-WT mice, by smooth muscle (SM) alpha-actin immunochemistry. MCP-1 levels were significantly elevated 1 day after occlusion in WT mice. In WT-WT mice at day 7, compared to sham controls, arterial occlusion induced a 34% increase in arteriole length density, a 46% increase in SM alpha-actin(+) vessels, and a 45% increase in the fraction of vessels coated with SM alpha-actin, indicating significant capillary arterialization. However, in CCR2(-/-)-WT mice, no differences were observed between arterial occlusion and sham surgery. In EGFP(+)-WT mice, EGFP and SM alpha-actin never colocalized. We conclude that BMC-specific CCR2 expression is required for skeletal muscle capillary arterialization following arterial occlusion; however, BMCs do not transdifferentiate into smooth muscle.

  8. Corynoxeine isolated from the hook of Uncaria rhynchophylla inhibits rat aortic vascular smooth muscle cell proliferation through the blocking of extracellular signal regulated kinase 1/2 phosphorylation.

    PubMed

    Kim, Tack-Joong; Lee, Ju-Hyun; Lee, Jung-Jin; Yu, Ji-Yeon; Hwang, Bang-Yeon; Ye, Sang-Kyu; Shujuan, Li; Gao, Li; Pyo, Myoung-Yun; Yun, Yeo-Pyo

    2008-11-01

    The proliferation of vascular smooth muscle cells (VSMCs) induced by injury to the intima of arteries is an important etiologic factor in vascular proliferative disorders such as atherosclerosis and restenosis. Uncaria rhynchophylla is traditional Chinese herb that has been applied to the treatment of convulsive disorders, such as epilepsy, in China. In the present study, we examined whether corynoxeine exerts inhibitory effects on platelet-derived growth factor (PDGF)-BB-induced rat aortic VSMC proliferation and the possible mechanism of such effects. Pre-treatment of VSMCs with corynoxeine (5-50 microM) for 24 h resulted in significant decreases in cell number without any cytotoxicity; the inhibition percentages were 25.0+/-12.5, 63.0+/-27.5 and 88.0+/-12.5% at 5, 20 and 50 microM, respectively. Also, corynoxeine significantly inhibited the 50 ng/ml PDGF-BB-induced DNA synthesis of VSMCs in a concentration-dependent manner without any cytotoxicity; the inhibitions were 32.8+/-11.0, 51.8+/-8.0 and 76.9+/-7.4% at concentrations of 5, 20 and 50 microM, respectively. Pre-incubation of VSMCs with corynoxeine significantly inhibited PDGF-BB-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation, whereas corynoxeine had no effects on mitogen-activated protein kinase (MAPK/ERK)-activating kinase 1 and 2 (MEK1/2), Akt, or phospholipase C (PLC)gamma1 activation or on PDGF receptor beta (PDGF-Rbeta) phosphorylation. These results suggest that corynoxeine is a potent ERK1/2 inhibitor of key PDGF-BB-induced VSMC proliferation and may be useful in the prevention and treatment of vascular diseases and restenosis after angioplasty.

  9. Gas6 - Axl receptor signaling is regulated by glucose in vascular smooth muscle cells

    PubMed Central

    Cavet, Megan E.; Smolock, Elaine M.; Ozturk, Oktay H.; World, Cameron; Pang, Jinjiang; Konishi, Atsushi; Berk, Bradford C.

    2009-01-01

    Objective The receptor tyrosine kinase Axl and its ligand Gas6 are involved in the development of renal diabetic disease. In vascular smooth muscle cells (VSMC) Axl is activated by reactive oxygen species and stimulates migration and cell survival, suggesting a role for Axl in the vascular complications of diabetes. Methods and Results We investigated the effect of varying glucose concentration on Axl signaling in VSMC. Glucose exerted powerful effects on Gas6-Axl signaling with greater activation of Akt and mTOR in low glucose, and greater activation of ERK1/2 in high glucose. Plasma membrane distribution and tyrosine phosphorylation of Axl were not affected by glucose. However, co-immunoprecipitation studies demonstrated that glucose changed the interaction of Axl with its binding partners. Specifically, binding of Axl to the p85 subunit of PI3-kinase was increased in low glucose, whereas binding to SHP-2 was increased in high glucose. Furthermore, Gas6-Axl induced migration was increased in high glucose, while Gas6-Axl mediated inhibition of apoptosis was greater in low glucose. Conclusion This study demonstrates a role for glucose in altering Axl signaling through coupling to binding partners, and suggests a mechanism by which Axl contributes to VSMC dysfunction in diabetes. PMID:18292389

  10. Vascular Augmentation in Renal Transplantation: Supercharging and Turbocharging.

    PubMed

    Jeong, Euicheol C; Hwang, Seung Hwan; Eo, Su Rak

    2017-05-01

    The most common anatomic variant seen in donor kidneys for renal transplantation is the presence of multiple renal arteries, which can cause an increased risk of complications. Accessory renal arteries should be anastomosed to the proper source arteries to improve renal perfusion via the appropriate vascular reconstruction techniques. In microsurgery, 2 kinds of vascular augmentation methods, known as 'supercharging' and 'turbocharging,' have been introduced to ensure vascular perfusion in the transferred flap. Supercharging uses a distant source of the vessels, while turbocharging uses vascular sources within the same flap territory. These technical concepts can also be applied in renal transplantation, and in this report, we describe 2 patients who underwent procedures using supercharging and turbocharging. In one case, the ipsilateral deep inferior epigastric artery was transposed to the accessory renal artery (supercharging), and in the other case, the accessory renal artery was anastomosed to the corresponding main renal artery with a vascular graft (turbocharging). The transplanted kidneys showed good perfusion and proper function. No cases of renal failure, hypertension, rejection, or urologic complications were observed. These microsurgical techniques can be safely utilized for renal transplantation with donor kidneys that have multiple arteries with a lower complication rate and better outcome.

  11. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Dong Ju; Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA; Kim, Soo Yeon

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Anti-atherogenic effect of PL was examined using partial carotid ligation model in ApoE KO mice. Black-Right-Pointing-Pointer PL prevented atherosclerotic plaque development, VSMCs proliferation, and NF-{kappa}B activation. Black-Right-Pointing-Pointer Piperlongumine reduced vascular smooth muscle cell activation through PDGF-R{beta} and NF-{kappa}B-signaling. Black-Right-Pointing-Pointer PL may serve as a new therapeutic molecule for atherosclerosis treatment. -- Abstract: Piperlongumine (piplartine, PL) is an alkaloid found in the long pepper (Piper longum L.) and has well-documented anti-platelet aggregation, anti-inflammatory, and anti-cancer properties; however, the role of PL in prevention of atherosclerosis is unknown. We evaluated the anti-atherosclerotic potential of PL in an in vivo murinemore » model of accelerated atherosclerosis and defined its mechanism of action in aortic vascular smooth muscle cells (VSMCs) in vitro. Local treatment with PL significantly reduced atherosclerotic plaque formation as well as proliferation and nuclear factor-kappa B (NF-{kappa}B) activation in an in vivo setting. PL treatment in VSMCs in vitro showed inhibition of migration and platelet-derived growth factor BB (PDGF-BB)-induced proliferation to the in vivo findings. We further identified that PL inhibited PDGF-BB-induced PDGF receptor beta activation and suppressed downstream signaling molecules such as phospholipase C{gamma}1, extracellular signal-regulated kinases 1 and 2 and Akt. Lastly, PL significantly attenuated activation of NF-{kappa}B-a downstream transcriptional regulator in PDGF receptor signaling, in response to PDGF-BB stimulation. In conclusion, our findings demonstrate a novel, therapeutic mechanism by which PL suppresses atherosclerosis plaque formation in vivo.« less

  12. Multiple roles of connexins in atherosclerosis- and restenosis-induced vascular remodelling.

    PubMed

    Morel, Sandrine

    2014-01-01

    Endothelial dysfunction is the initial step in atherosclerotic plaque development in large- and medium-sized arteries. This progressive disease, which starts during childhood, is characterized by the accumulation of lipids, macrophages, neutrophils, T lymphocytes and smooth muscle cells in the intima of the vessels. Erosion and rupture of the atherosclerotic plaque may induce myocardial infarction and cerebrovascular accidents, which are responsible for a large percentage of sudden deaths. The most common treatment for atherosclerosis is angioplasty and stent implantation, but these surgical interventions favour a vascular reaction called restenosis and the associated de-endothelialization increases the risk of thrombosis. This review provides an overview of the role of connexins, a large family of transmembrane proteins, in vascular remodelling associated with atherosclerosis and restenosis. The connexins expressed in the vascular wall are Cx37, Cx40, Cx43 and Cx45; their expressions vary with vascular territory and species. Connexins form hemichannels or gap junction channels, allowing the exchange of ions and small metabolites between the cytosol and extracellular space or between neighbouring cells, respectively. Connexins have important roles in vascular physiology; they support radial and longitudinal cell-to-cell communication in the vascular wall, and significant changes in their expression patterns have been described during atherosclerosis and restenosis.

  13. Vascular Ehlers-Danlos Syndrome With a Novel Missense COL3A1 Mutation Present With Pulmonary Complications and Iliac Arterial Dissection.

    PubMed

    Gu, Guangchao; Yang, Hang; Cui, Lijia; Fu, Yuanyuan; Li, Fangda; Zhou, Zhou; Zheng, Yuehong

    2018-02-01

    Vascular Ehlers-Danlos syndrome (vEDS) is a life-threatening connective tissue disorder due to its high tendency of arterial and organ rupture. Pulmonary complications in vEDS are rare. We present a young male patient with vEDS who developed severe pulmonary complications and severe rupture of the iliac artery at different stages of his life. Vascular Ehlers-Danlos syndrome was diagnosed based on clinical manifestations and confirmed by the identification of COL3A1 gene mutation. Due to high bleeding tendency and weak cardiopulmonary capacity, conservative treatment was taken for him. To our knowledge, this is the first report of vEDS case in which the patient developed both pulmonary complications and dissection of large arteries. Our report emphasizes the importance of considering vEDS when an adolescent develops unexplained pulmonary cysts with fragility of lung tissues. Genetic counseling and close monitoring should be performed for earlier diagnosis and prevention of severe complications of large arteries. The typical presentations of vEDS were also discussed by means of a review of case reports on vEDS with pulmonary complications.

  14. Profilin-1 Is Expressed in Human Atherosclerotic Plaques and Induces Atherogenic Effects on Vascular Smooth Muscle Cells

    PubMed Central

    Caglayan, Evren; Romeo, Giulio R.; Kappert, Kai; Odenthal, Margarete; Südkamp, Michael; Body, Simon C.; Shernan, Stanton K.; Hackbusch, Daniel; Vantler, Marius; Kazlauskas, Andrius; Rosenkranz, Stephan

    2010-01-01

    Background Profilin-1 is an ubiquitous actin binding protein. Under pathological conditions such as diabetes, profilin-1 levels are increased in the vascular endothelium. We recently demonstrated that profilin-1 overexpression triggers indicators of endothelial dysfunction downstream of LDL signaling, and that attenuated expression of profilin-1 confers protection from atherosclerosis in vivo. Methodology Here we monitored profilin-1 expression in human atherosclerotic plaques by immunofluorescent staining. The effects of recombinant profilin-1 on atherogenic signaling pathways and cellular responses such as DNA synthesis (BrdU-incorporation) and chemotaxis (modified Boyden-chamber) were evaluated in cultured rat aortic and human coronary vascular smooth muscle cells (VSMCs). Furthermore, the correlation between profilin-1 serum levels and the degree of atherosclerosis was assessed in humans. Principal Findings In coronary arteries from patients with coronary heart disease, we found markedly enhanced profilin expression in atherosclerotic plaques compared to the normal vessel wall. Stimulation of rat aortic and human coronary VSMCs with recombinant profilin-1 (10−6 M) in vitro led to activation of intracellular signaling cascades such as phosphorylation of Erk1/2, p70S6 kinase and PI3K/Akt within 10 minutes. Furthermore, profilin-1 concentration-dependently induced DNA-synthesis and migration of both rat and human VSMCs, respectively. Inhibition of PI3K (Wortmannin, LY294002) or Src-family kinases (SU6656, PP2), but not PLCγ (U73122), completely abolished profilin-induced cell cycle progression, whereas PI3K inhibition partially reduced the chemotactic response. Finally, we found that profilin-1 serum levels were significantly elevated in patients with severe atherosclerosis in humans (p<0.001 vs. no atherosclerosis or control group). Conclusions Profilin-1 expression is significantly enhanced in human atherosclerotic plaques compared to the normal vessel wall

  15. Multimodality Intra-Arterial Imaging Assessment of the Vascular Trauma Induced by Balloon-Based and Nonballoon-Based Renal Denervation Systems.

    PubMed

    Karanasos, Antonios; Van Mieghem, Nicolas; Bergmann, Martin W; Hartman, Eline; Ligthart, Jurgen; van der Heide, Elco; Heeger, Christian-H; Ouhlous, Mohamed; Zijlstra, Felix; Regar, Evelyn; Daemen, Joost

    2015-07-01

    Renal denervation is a new treatment considered for several possible indications. As new systems are introduced, the incidence of acute renal artery wall injury with relation to the denervation method is unknown. We investigated the acute repercussion of renal denervation on the renal arteries of patients treated with balloon-based and nonballoon-based denervation systems by quantitative angiography, intravascular ultrasound, and optical coherence tomography (OCT). Twenty-five patients (50 renal arteries) underwent bilateral renal denervation with 5 different systems, 3 of which balloon-based (Paradise [n=5], Oneshot [n=6], and Vessix V2 [n=5)]) and 2 nonballoon-based (Symplicity [n=6] and EnligHTN [n=3]). Analysis included quantitative angiography and morphometric intravascular ultrasound measurements pre and post procedure and assessment of vascular trauma (dissection, edema, or thrombus) by OCT after denervation. A significant reduction in lumen size by quantitative angiography and intravascular ultrasound was observed in nonballoon denervation but not in balloon denervation. By postdenervation OCT, dissection was seen in 14 arteries (32.6%). The percentage of frames with dissection was higher in balloon-based denervation catheters. Thrombus and edema were detected in 35 (81.4%) and 32 (74.4%) arteries, respectively. In arteries treated with balloon-based denervation that had dissection by OCT, the balloon/artery ratio was higher (1.24 [1.17-1.32] versus 1.10 [1.04-1.18]; P<0.01). A varying extent of vascular injury was observed after renal denervation in all systems; however, different patterns were identified in balloon-based and in nonballoon-based denervation systems. In balloon denervation, the presence of dissections by OCT was associated with a higher balloon/artery ratio. © 2015 American Heart Association, Inc.

  16. Intraspecific scaling laws of vascular trees.

    PubMed

    Huo, Yunlong; Kassab, Ghassan S

    2012-01-07

    A fundamental physics-based derivation of intraspecific scaling laws of vascular trees has not been previously realized. Here, we provide such a theoretical derivation for the volume-diameter and flow-length scaling laws of intraspecific vascular trees. In conjunction with the minimum energy hypothesis, this formulation also results in diameter-length, flow-diameter and flow-volume scaling laws. The intraspecific scaling predicts the volume-diameter power relation with a theoretical exponent of 3, which is validated by the experimental measurements for the three major coronary arterial trees in swine (where a least-squares fit of these measurements has exponents of 2.96, 3 and 2.98 for the left anterior descending artery, left circumflex artery and right coronary artery trees, respectively). This scaling law as well as others agrees very well with the measured morphometric data of vascular trees in various other organs and species. This study is fundamental to the understanding of morphological and haemodynamic features in a biological vascular tree and has implications for vascular disease.

  17. [Effects of control-releasing arsenic trioxide-eluting stent on intimal smooth muscle cells and type III collagen in canine coronary artery post-stent model].

    PubMed

    Zhao, Jun-Li; Sun, Bao-Gui; Wen, Qin-Zhu

    2010-06-01

    To study the safety and efficacy of control-releasing arsenic trioxide (As2O3)-eluting stent on intimal smooth muscle cells (SMC) and type III collagen (CIII) in canine coronary artery post-stent model. Twenty-four experimental canines were equally divided into 4 groups, the three tested groups were deployed by stents with different dosage of As2O3 (1.6 microg/mm2, 2.4 microg/mm2 and 3.2 microg/mm2 in low, median and high dose groups, respectively) and coated with polybutyl methacrylate/nano silica and poly-lactide-coglycolide in mild oversizing (stent/vessel ratio of 1.3:1) in left anterior descending (LAD) or circumflex coronary arteries (LCX), while the control group only by simple coated stent without As2O3. The effect was assessed 4 weeks after stent implantation in terms of vascular histomorphology, and changes of SMC and C III expressions were detected using immunohistochemical analysis. Subintimal hemorrhage, medial/adventitial necrosis, thrombosis and inflammatory cell infiltration were not found and integral endothelium could be seen under screening electron microscopy in all groups. Positive expression of SMC and CIII in the tested groups, especial in the high dose As2O3 group, was more weaker than that in control group. Histo-morphological analysis showed that the neo-genetic intimal area and vascular stenosis were lower, but the mean luminal diameter was larger in the three tested groups than that in the control group (P < 0.01). Comparisons of various indices between tested groups treated by different doses of As2O3 showed that the difference between high/median dose vs. low dose was significant (P < 0.01), but that between high dose vs. median dose was insignificant (P > 0.05). Control-releasing As2O3-eluting stent shows a reliable and safe effect in preventing and treating post-stent restenosis by its dose-dependent inhibition on expressions of SMC and CIII to suppress the neo-genesis of intimal hyperplasia.

  18. Ca2+ removal mechanisms in rat cerebral resistance size arteries.

    PubMed Central

    Kamishima, T; McCarron, J G

    1998-01-01

    Tissue blood flow and blood pressure are each regulated by the contractile behavior of resistance artery smooth muscle. Vascular diseases such as hypertension have also been attributed to changes in vascular smooth muscle function as a consequence of altered Ca2+ removal. In the present study of Ca2+ removal mechanisms, in dissociated single cells from resistance arteries using fura-2 microfluorimetry and voltage clamp, Ca2+ uptake by the sarcoplasmic reticulum and extrusion by the Ca2+ pump in the cell membrane were demonstrably important in regulating Ca2+. In contrast, the Na+-Ca2+ exchanger played no detectable role in clearing Ca2+. Thus a voltage pulse to 0 mV, from a holding potential of -70 mV, triggered a Ca2+ influx and increased intracellular Ca2+ concentration ([Ca2+]i). On repolarization, [Ca2+]i returned to the resting level. The decline in [Ca2+]i consisted of three phases. Ca2+ removal was fast immediately after repolarization (first phase), then plateaued (second phase), and finally accelerated just before [Ca2+]i returned to resting levels (third phase). Thapsigargin or ryanodine, which each inhibit Ca2+ uptake into stores, did not affect the first but significantly inhibited the third phase. On the other hand, Na+ replacement with choline+ did not affect either the phasic features of Ca2+ removal or the absolute rate of its decline. Ca2+ removal was voltage-independent; holding the membrane potential at 120 mV, rather than at -70 mV, after the voltage pulse to 0 mV, did not attenuate Ca2+ removal rate. These results suggest that Ca2+ pumps in the sarcoplasmic reticulum and the plasma membrane, but not the Na+-Ca2+ exchanger, are important in Ca2+ removal in cerebral resistance artery cells. PMID:9746518

  19. A serum response factor-dependent transcriptional regulatory program identifies distinct smooth muscle cell sublineages.

    PubMed Central

    Kim, S; Ip, H S; Lu, M M; Clendenin, C; Parmacek, M S

    1997-01-01

    The SM22alpha promoter has been used as a model system to define the molecular mechanisms that regulate smooth muscle cell (SMC) specific gene expression during mammalian development. The SM22alpha gene is expressed exclusively in vascular and visceral SMCs during postnatal development and is transiently expressed in the heart and somites during embryogenesis. Analysis of the SM22alpha promoter in transgenic mice revealed that 280 bp of 5' flanking sequence is sufficient to restrict expression of the lacZ reporter gene to arterial SMCs and the myotomal component of the somites. DNase I footprint and electrophoretic mobility shift analyses revealed that the SM22alpha promoter contains six nuclear protein binding sites (designated smooth muscle elements [SMEs] -1 to -6, respectively), two of which bind serum response factor (SRF) (SME-1 and SME-4). Mutational analyses demonstrated that a two-nucleotide substitution that selectively eliminates SRF binding to SME-4 decreases SM22alpha promoter activity in arterial SMCs by approximately 90%. Moreover, mutations that abolish binding of SRF to SME-1 and SME-4 or mutations that eliminate each SME-3 binding activity totally abolished SM22alpha promoter activity in the arterial SMCs and somites of transgenic mice. Finally, we have shown that a multimerized copy of SME-4 (bp -190 to -110) when linked to the minimal SM22alpha promoter (bp -90 to +41) is necessary and sufficient to direct high-level transcription in an SMC lineage-restricted fashion. Taken together, these data demonstrate that distinct transcriptional regulatory programs control SM22alpha gene expression in arterial versus visceral SMCs. Moreover, these data are consistent with a model in which combinatorial interactions between SRF and other transcription factors that bind to SME-4 (and that bind directly to SRF) activate transcription of the SM22alpha gene in arterial SMCs. PMID:9121477

  20. Interaction with caveolin-1 modulates vascular ATP-sensitive potassium (KATP) channel activity

    PubMed Central

    Davies, Lowri M; Purves, Gregor I; Barrett-Jolley, Richard; Dart, Caroline

    2010-01-01

    ATP-sensitive potassium channels (KATP channels) of arterial smooth muscle are important regulators of arterial tone, and hence blood flow, in response to vasoactive transmitters. Recent biochemical and electron microscopic evidence suggests that these channels localise to small vesicular invaginations of the plasma membrane, known as caveolae, and interact with the caveolae-associated protein, caveolin. Here we report that interaction with caveolin functionally regulates the activity of the vascular subtype of KATP channel, Kir6.1/SUR2B. Pinacidil-evoked recombinant whole-cell Kir6.1/SUR2B currents recorded in HEK293 cells stably expressing caveolin-1 (69.6 ± 8.3 pA pF−1, n= 8) were found to be significantly smaller than currents recorded in caveolin-null cells (179.7 ± 35.9 pA pF−1, n= 6; P < 0.05) indicating that interaction with caveolin may inhibit channel activity. Inclusion in the pipette-filling solution of a peptide corresponding to the scaffolding domain of caveolin-1 had a similar inhibitory effect on whole-cell Kir6.1/SUR2B currents as co-expression with full-length caveolin-1, while a scrambled version of the same peptide had no effect. Interestingly, intracellular dialysis of vascular smooth muscle cells with the caveolin-1 scaffolding domain peptide (SDP) also caused inhibition of pinacidil-evoked native whole-cell KATP currents, indicating that a significant proportion of vascular KATP channels are susceptible to block by exogenously applied SDP. In cell-attached recordings of Kir6.1/SUR2B single channel activity, the presence of caveolin-1 significantly reduced channel open probability (from 0.05 ± 0.01 to 0.005 ± 0.001; P < 0.05) and the amount of time spent in a relatively long-lived open state. These changes in kinetic behaviour can be explained by a caveolin-induced shift in the channel's sensitivity to its physiological regulator MgADP. Our findings thus suggest that interaction with caveolin-1 suppresses vascular-type KATP channel

  1. Dll4-Notch signaling determines the formation of native arterial collateral networks and arterial function in mouse ischemia models.

    PubMed

    Cristofaro, Brunella; Shi, Yu; Faria, Marcella; Suchting, Steven; Leroyer, Aurelie S; Trindade, Alexandre; Duarte, Antonio; Zovein, Ann C; Iruela-Arispe, M Luisa; Nih, Lina R; Kubis, Nathalie; Henrion, Daniel; Loufrani, Laurent; Todiras, Mihail; Schleifenbaum, Johanna; Gollasch, Maik; Zhuang, Zhen W; Simons, Michael; Eichmann, Anne; le Noble, Ferdinand

    2013-04-01

    Arteriogenesis requires growth of pre-existing arteriolar collateral networks and determines clinical outcome in arterial occlusive diseases. Factors responsible for the development of arteriolar collateral networks are poorly understood. The Notch ligand Delta-like 4 (Dll4) promotes arterial differentiation and restricts vessel branching. We hypothesized that Dll4 may act as a genetic determinant of collateral arterial networks and functional recovery in stroke and hind limb ischemia models in mice. Genetic loss- and gain-of-function approaches in mice showed that Dll4-Notch signaling restricts pial collateral artery formation by modulating arterial branching morphogenesis during embryogenesis. Adult Dll4(+/-) mice showed increased pial collateral numbers, but stroke volume upon middle cerebral artery occlusion was not reduced compared with wild-type littermates. Likewise, Dll4(+/-) mice showed reduced blood flow conductance after femoral artery occlusion, and, despite markedly increased angiogenesis, tissue ischemia was more severe. In peripheral arteries, loss of Dll4 adversely affected excitation-contraction coupling in arterial smooth muscle in response to vasopressor agents and arterial vessel wall adaption in response to increases in blood flow, collectively contributing to reduced flow reserve. We conclude that Dll4-Notch signaling modulates native collateral formation by acting on vascular branching morphogenesis during embryogenesis. Dll4 furthermore affects tissue perfusion by acting on arterial function and structure. Loss of Dll4 stimulates collateral formation and angiogenesis, but in the context of ischemic diseases such beneficial effects are overruled by adverse functional changes, demonstrating that ischemic recovery is not solely determined by collateral number but rather by vessel functionality.

  2. Dll4-Notch signaling determines the formation of native arterial collateral networks and arterial function in mouse ischemia models

    PubMed Central

    Cristofaro, Brunella; Shi, Yu; Faria, Marcella; Suchting, Steven; Leroyer, Aurelie S.; Trindade, Alexandre; Duarte, Antonio; Zovein, Ann C.; Iruela-Arispe, M. Luisa; Nih, Lina R.; Kubis, Nathalie; Henrion, Daniel; Loufrani, Laurent; Todiras, Mihail; Schleifenbaum, Johanna; Gollasch, Maik; Zhuang, Zhen W.; Simons, Michael; Eichmann, Anne; le Noble, Ferdinand

    2013-01-01

    Arteriogenesis requires growth of pre-existing arteriolar collateral networks and determines clinical outcome in arterial occlusive diseases. Factors responsible for the development of arteriolar collateral networks are poorly understood. The Notch ligand Delta-like 4 (Dll4) promotes arterial differentiation and restricts vessel branching. We hypothesized that Dll4 may act as a genetic determinant of collateral arterial networks and functional recovery in stroke and hind limb ischemia models in mice. Genetic loss- and gain-of-function approaches in mice showed that Dll4-Notch signaling restricts pial collateral artery formation by modulating arterial branching morphogenesis during embryogenesis. Adult Dll4+/- mice showed increased pial collateral numbers, but stroke volume upon middle cerebral artery occlusion was not reduced compared with wild-type littermates. Likewise, Dll4+/- mice showed reduced blood flow conductance after femoral artery occlusion, and, despite markedly increased angiogenesis, tissue ischemia was more severe. In peripheral arteries, loss of Dll4 adversely affected excitation-contraction coupling in arterial smooth muscle in response to vasopressor agents and arterial vessel wall adaption in response to increases in blood flow, collectively contributing to reduced flow reserve. We conclude that Dll4-Notch signaling modulates native collateral formation by acting on vascular branching morphogenesis during embryogenesis. Dll4 furthermore affects tissue perfusion by acting on arterial function and structure. Loss of Dll4 stimulates collateral formation and angiogenesis, but in the context of ischemic diseases such beneficial effects are overruled by adverse functional changes, demonstrating that ischemic recovery is not solely determined by collateral number but rather by vessel functionality. PMID:23533173

  3. RI in central retinal artery as assessed by CDI does not correspond to retinal vascular resistance.

    PubMed

    Polska, E; Kircher, K; Ehrlich, P; Vecsei, P V; Schmetterer, L

    2001-04-01

    The aim of the present study was to investigate the association between ultrasound Doppler measurements of resistive index (RI) in the central retinal artery and retinal vascular resistance (R) assessed with laser Doppler velocimetry, vessel size measurement, and calculation of ocular perfusion pressure (PP) in healthy subjects. An increase in vascular resistance was induced by inhalation of 100% O(2). During hyperoxia no significant changes in PP were observed. Mean flow velocity in main retinal veins was reduced by -27.5 +/- 2.0%. The average decrease in diameter was -11.5 +/- 1.0%. R, which was calculated as the ratio of PP to flow rate, increased by 97.6 +/- 7.7%. RI increased as well, but the effect was much smaller (6.6 +/- 2.2%). In addition, a negative correlation was found between baseline values of R and RI (r = -0.83). During hyperoxia R and RI were not associated. In conclusion, our data indicate that RI as assessed with color Doppler imaging in the central retinal artery is not an adequate measure of R.

  4. Inhibition of Proliferation of Vascular Smooth Muscle Cells by Cucurbitanes from Momordica charantia.

    PubMed

    Tuan, Nguyen Quoc; Lee, Do-Hyung; Oh, Joonseok; Kim, Chung Sub; Heo, Kyung-Sun; Myung, Chang-Seon; Na, MinKyun

    2017-07-28

    The cucurbitaceous plant Momordica charantia L., named "bitter melon", inhabits Asia, Africa, and South America and has been used as a traditional medicine. The atypical proliferation of vascular smooth muscle cells (VSMCs) plays an important role in triggering the pathogenesis of cardiovascular diseases. Platelet-derived growth factor (PDGF) is regarded as the most powerful growth factor in promoting the intimal accumulation of VSMCs. The current study features the identification of six new cucurbitane-type triterpenoids (1-6) from the fruits of M.  charantia, utilizing diverse chromatographic and spectroscopic techniques. In particular, the 2D structure of 1 was confirmed utilizing the long-range HSQMBC NMR pulse, capable of measuring heteronuclear long-range correlations ( 4-6 J CH ). The cucurbitanes were also assessed for their inhibitory activity against PDGF-induced VSMC proliferation. This current study may constitute a basis for developing those chemotypes into sensible pharmacophores alleviating cardiovascular disorders.

  5. Glutathione -S-Transferase μ 1 Regulates Vascular Smooth Muscle Cell Proliferation, Migration, and Oxidative Stress

    PubMed Central

    Yang, Yanqiang; Parsons, Kelly K.; Chi, Liqun; Malakauskas, Sandra M.; Le, Thu H.

    2009-01-01

    Glutathione S-transferase μ-1, GSTM1, belongs to a superfamily of glutathione-S-transferases that metabolize a broad range of reactive oxygen species (ROS) and xenobiotics. Across species, genetic variants that result in decreased expression of the Gstm1 gene are associated with increased susceptibility for vascular diseases, including atherosclerosis in humans. We previously identified Gstm1 as a positional candidate in our gene mapping study for susceptibility to renal vascular injury characterized by medial hypertrophy and hyperplasia of the renal vessels. To determine the role of Gstm1 in vascular smooth muscle cells (VSMCs), we isolated VSMCs from mouse aortas. We demonstrate that VSMCs from the susceptible C57BL/6 mice have reduced expression of Gstm1 mRNA and its protein product compared to that of the resistant 129 mice. After serum stimulation, C57BL/6 VSMCs proliferate and migrate at a much faster rate than 129 VSMCs. Furthermore, C57BL/6 VSMCs have higher levels of ROS, and exhibit exaggerated p38 MAPK phosphorylation after exposure to H2O2. To establish causality, we show that knockdown of Gstm1 by siRNA results in increased proliferation of VSMCs in a dose dependent manner, as well as in increased ROS levels and VSM cell migration. Moreover, Gstm1 siRNA causes increased p38 MAPK phosphorylation, and attenuates the anti-proliferative effect of TEMPOL. Our data suggest that Gstm1 is a novel regulator of VSMC proliferation and migration through its role in handling ROS. Genetic variants that cause a decremental change in expression of Gstm1 may permit an environment of exaggerated oxidative stress, leading to susceptibility to vascular remodeling and atherosclerosis. PMID:19822795

  6. Ascorbate transport in pig coronary artery smooth muscle: Na(+) removal and oxidative stress increase loss of accumulated cellular ascorbate.

    PubMed

    Holmes, M E; Samson, S E; Wilson, J X; Dixon, S J; Grover, A K

    2000-01-01

    Pig deendothelialized coronary artery rings and smooth muscle cells cultured from them accumulated ascorbate from medium containing Na(+). The accumulated material was determined to be ascorbate using high-performance liquid chromatography. We further characterized ascorbate uptake in the cultured cells. The data fitted best with a Hill coefficient of 1 for ascorbate (K(asc) = 22 +/- 2 microM) and 2 for Na(+) (K(Na) = 84 +/- 10 mM). The anion transport inhibitors sulfinpyrazone and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) inhibited the uptake. Transferring cultured cells loaded with (14)C-ascorbate into an ascorbate-free solution resulted in a biphasic loss of radioactivity - an initial sulfinpyrazone-insensitive faster phase and a late sulfinpyrazone-sensitive slower phase. Transferring loaded cells into a Na(+)-free medium increased the loss in the initial phase in a sulfinpyrazone-sensitive manner, suggesting that the ascorbate transporter is bidirectional. Including peroxide or superoxide in the solution increased the loss of radioactivity. Thus, ascorbate accumulated in coronary artery smooth muscle cells by a Na(+)-dependent transporter was lost in an ascorbate-free solution, and the loss was increased by removing Na(+) from the medium or by oxidative stress. Copyright 2000 S. Karger AG, Basel

  7. Microparticle Shedding by Erythrocytes, Monocytes and Vascular Smooth Muscular Cells Is Reduced by Aspirin in Diabetic Patients.

    PubMed

    Chiva-Blanch, Gemma; Suades, Rosa; Padró, Teresa; Vilahur, Gemma; Peña, Esther; Ybarra, Juan; Pou, Jose M; Badimon, Lina

    2016-07-01

    Diabetes mellitus is associated with an enhanced risk for cardiovascular disease and its prevalence is increasing. Diabetes induces metabolic stress on blood and vascular cells, promoting platelet activation and vascular dysfunction. The level of vascular cell activation can be measured by the number and phenotype of microparticles found in the circulation. The aim of this study was to investigate the effect of a platelet-inhibitory dose of aspirin on the number and type of microparticles shed to the circulation. Forty-three diabetic patients were enrolled in the study and received a daily dose of 100mg of aspirin for 10 days to cover the average platelet life-span in the circulation. Before and after the intervention period, circulating microparticles were characterized and quantified by flow cytometry. Type 1 diabetic patients had about twice the number of tissue factor-positive circulating microparticles (derived both from platelets and monocytes) and endothelial-derived E-selectin positive microparticles than type 2 diabetic patients. Aspirin therapy significantly inhibited platelets since cyclooxygenase 1 derived thromboxane generation levels were reduced by 99%. Microparticles derived from erythrocytes, activated monocytes, and smooth muscle cells were significantly reduced after 10 days of aspirin administration. These results indicate that: a) vascular and blood cells in type 1 diabetic patients are exposed to more sustained stress shown by their specific microparticle origin and levels; b) aspirin therapy inhibits vascular wall cell activation and microparticle shedding, and c) the effects of aspirin are similar in type 1 and 2 diabetes. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  8. Mismatch between stiffness in elastic and muscular arteries as a predictor of vascular calcification in dialysis patients.

    PubMed

    Laucyte-Cibulskiene, Agne; Petraviciute, Modesta; Gudynaite, Migle; Gumbys, Liutauras; Valanciene, Dileta; Galiauskiene, Kristina; Ryliskyte, Ligita; Rimsevicius, Laurynas; Miglinas, Marius; Strupas, Kestutis

    2018-04-01

    Vascular calcification is one of the risk factors for arterial stiffness in patients with chronic kidney disease. We hypothesized that a mismatch between elastic and muscular arteries, represented as pulse wave velocity (PWV) ratio, could depict the extent of vascular calcification in end-stage renal disease. We also aimed to compare the predictive PWV ratio value to other factors possibly related to vascular calcification in dialysis population. In this cross-sectional study, in 60 chronic dialysis patients without previous cerebrovascular events, cardiovascular disease and events or clinically evident peripheral artery disease (ankle-brachial index >0.9), carotid-femoral and carotid-radial PWV as well as central hemodynamic parameters were measured by applanation tonometry (SphygmoCor). The PWV ratio using carotid-femoral PWV divided by carotid-radial PWV was calculated. Each patient underwent blood tests and chest X-ray for aortic arch calcification scoring. Two experienced radiologists blinded to patient's medical data evaluated chest X-rays (Cohen's kappa coefficient 0.76) and calculated how many sectors were calcified (Ogawa et al. in Hemodial Int 13:301-306, 2009). Differently scored chest X-rays were repeatedly reviewed and a consensus was reached. The study population consisted of 31 (51.7%) males and 29 (48.3%) females, mean age 52.73 ± 13.76 years. Increased risk for aortic arch calcification was associated with higher PWV ratio even after adjustment for age, height, heart rate, ferritin level and C-reactive protein level (OR 2.59E+04, 95% CI 2.43E+01, 2.65E+09, p = 0.021). PWV ratio together with above-mentioned variables could predict the presence of aortic arch calcification with specificity of 93% (95% CI 78, 99%) and sensitivity of 53% (95% CI 34, 72%). The elastic and muscular arteries' stiffness mismatch was strongly associated with the extent of aortic arch calcification in this dialysis population and had better calcification

  9. Substance-specific importance of EGFR for vascular smooth muscle cells motility in primary culture.

    PubMed

    Schreier, Barbara; Schwerdt, Gerald; Heise, Christian; Bethmann, Daniel; Rabe, Sindy; Mildenberger, Sigrid; Gekle, Michael

    2016-07-01

    Besides their importance for the vascular tone, vascular smooth muscle cells (VSMC) also contribute to pathophysiological vessel alterations. Various G-protein coupled receptor ligands involved in vascular dysfunction and remodeling can transactivate the epidermal growth factor receptor (EGFR) of VSMC, yet the importance of EGFR transactivation for the VSMC phenotype is incompletely understood. The aims of this study were (i) to characterize further the importance of the VSMC-EGFR for proliferation, migration and marker gene expression for inflammation, fibrosis and reactive oxygen species (ROS) homeostasis and (ii) to test the hypothesis that vasoactive substances (endothelin-1, phenylephrine, thrombin, vasopressin and ATP) rely differentially on the EGFR with respect to the abovementioned phenotypic alterations. In primary, aortic VSMC from mice without conditional deletion of the EGFR, proliferation, migration, marker gene expression (inflammation, fibrosis and ROS homeostasis) and cell signaling (ERK 1/2, intracellular calcium) were analyzed. VSMC-EGFR loss reduced collective cell migration and single cell migration probability, while no difference between the genotypes in single cell velocity, chemotaxis or marker gene expression could be observed under control conditions. EGF promoted proliferation, collective cell migration, chemokinesis and chemotaxis and leads to a proinflammatory gene expression profile in wildtype but not in knockout VSMC. Comparing the impact of five vasoactive substances (all reported to transactivate EGFR and all leading to an EGFR dependent increase in ERK1/2 phosphorylation), we demonstrate that the importance of EGFR for their action is substance-dependent and most apparent for crowd migration but plays a minor role for gene expression regulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effects of age and caloric restriction in the vascular response of renal arteries to endothelin-1 in rats.

    PubMed

    Amor, Sara; García-Villalón, Angel Luis; Rubio, Carmen; Carrascosa, Jose Ma; Monge, Luis; Fernández, Nuria; Martín-Carro, Beatriz; Granado, Miriam

    2017-02-01

    Cardiovascular alterations are the most prevalent cause of impaired physiological function in aged individuals with kidney being one the most affected organs. Aging-induced alterations in renal circulation are associated with a decrease in endothelium-derived relaxing factors such as nitric oxide (NO) and with an increase in contracting factors such as endothelin-1(ET-1). As caloric restriction (CR) exerts beneficial effects preventing some of the aging-induced alterations in cardiovascular system, the aim of this study was to analyze the effects of age and caloric restriction in the vascular response of renal arteries to ET-1 in aged rats. Vascular function was studied in renal arteries from 3-month-old Wistar rats fed ad libitum (3m) and in renal arteries from 8-and 24-month-old Wistar rats fed ad libitum (8m and 24m), or subjected to 20% caloric restriction during their three last months of life (8m-CR and 24m-CR). The contractile response to ET-1 was increased in renal arteries from 8m and 24m compared to 3m rats. ET-1-induced contraction was mediated by ET-A receptors in all experimental groups and also by ET-B receptors in 24m rats. Caloric restriction attenuated the increased contraction to ET-1 in renal arteries from 8m but not from 24m rats possibly through NO release proceeding from ET-B endothelial receptors. In 24m rats, CR did not attenuate the aging-increased response of renal arteries to ET-1, but it prevented the aging-induced increase in iNOS mRNA levels and the aging-induced decrease in eNOS mRNA levels in arterial tissue. In conclusion, aging is associated with an increased response to ET-1 in renal arteries that is prevented by CR in 8m but not in 24m rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Signal transduction in the development of pulmonary arterial hypertension

    PubMed Central

    Malenfant, Simon; Neyron, Anne-Sophie; Paulin, Roxane; Potus, François; Meloche, Jolyane; Provencher, Steeve; Bonnet, Sébastien

    2013-01-01

    Pulmonary arterial hypertension (PAH) is a unique disease. Properly speaking, it is not a disease of the lung. It can be seen more as a microvascular disease occurring mainly in the lungs and affecting the heart. At the cellular level, the PAH paradigm is characterized by inflammation, vascular tone imbalance, pulmonary arterial smooth muscle cell proliferation and resistance to apoptosis and the presence of in situ thrombosis. At a clinical level, the aforementioned abnormal vascular properties alter physically the pulmonary circulation and ventilation, which greatly influence the right ventricle function as it highly correlates with disease severity. Consequently, right heart failure remains the principal cause of death within this cohort of patients. While current treatment modestly improve patients’ conditions, none of them are curative and, as of today, new therapies are lacking. However, the future holds potential new therapies that might have positive influence on the quality of life of the patient. This article will first review the clinical presentation of the disease and the different molecular pathways implicated in the pathobiology of PAH. The second part will review tomorrow's future putative therapies for PAH. PMID:24015329

  12. [The clinical impact of artery-first approach combined with vascular resection and reconstruction in the treatment of pancreatic head carcinoma].

    PubMed

    Huang, J L; Li, W G; Chen, F Z; Su, Z J; Li, F M; Liu, B

    2017-03-23

    Objective: To evaluate the application of artery first, combined vascular resection and reconstruction in the treatment of pancreatic head carcinoma. Methods: The clinical data of 13 patients with pancreatic head cancer were retrospectively analyzed from February 2014 to March 2016 in the Affiliated Hospital of Xiamen University. Preoperative computed tomography of high resolution layer or magnetic resonance imaging examination demonstrated pancreatic head carcinoma, as well as close adhesion, stenosis, compression or displacement of superior mesenteric vein or portal vein wall. In the operation, the artery first approach was used and the whole arterial blood supply in the head of the pancreas was fully exposed and interdicted. Finally, en block resection and vascular resection and reconstruction was adopted. Results: 12 of 13 patients had pancreatoduodenectomy synchronously with vascular resection and reconstruction; the other patient had these two surgery sequentially. Four patients received blood vessel wedge resection, five had segmental resection combined with end to end suture, and four had segmental resection combined with artificial vascular graft reconstruction. Operation time was (327.2±65.5) minutes, and the amount of blood loss was (472.6±226.4) millilitres. One patient suffered from delayed gastric emptying, and two patients had pancreatic fistula. All patients recovered from postoperative complications by conservative treatment. No patients developed biliary fistula, gastrointestinal fistula, abdominal infection, pulmonary infection, diarrhea, hypoglycemia or other complications, and none died in perioperative period. Postoperative pathological findings confirmed the diagnosis of pancreatic ductal adenocarcinoma. Mean tumor diameter was (4.2±1.5)cm, and (3.8±1.5) metastasis were found in (13.6±2.5) resected lymph nodes. In 11 cases, the tumor cells were found in the outer membrane of blood vessels, 2 cases were found to have tumor invasion in the

  13. Protective effect of N-acetylcysteine against oxygen radical-mediated coronary artery injury.

    PubMed

    Rodrigues, A J; Evora, P R B; Schaff, H V

    2004-08-01

    The present study investigated the protective effect of N-acetylcysteine (NAC) against oxygen radical-mediated coronary artery injury. Vascular contraction and relaxation were determined in canine coronary arteries immersed in Kreb's solution (95% O2-5% CO2), incubated or not with NAC (10 mM), and exposed to free radicals (FR) generated by xanthine oxidase (100 mU/ml) plus xanthine (0.1 mM). Rings not exposed to FR or NAC were used as controls. The arteries were contracted with 2.5 microM prostaglandin F2alpha. Subsequently, concentration-response curves for acetylcholine, calcium ionophore and sodium fluoride were obtained in the presence of 20 microM indomethacin. Concentration-response curves for bradykinin, calcium ionophore, sodium nitroprusside, and pinacidil were obtained in the presence of indomethacin plus Nomega-nitro-L-arginine (0.2 mM). The oxidative stress reduced the vascular contraction of arteries not exposed to NAC (3.93 +/- 3.42 g), compared to control (8.56 +/- 3.16 g) and to NAC group (9.07 +/- 4.0 g). Additionally, in arteries not exposed to NAC the endothelium-dependent nitric oxide (NO)-dependent relaxation promoted by acetylcholine (1 nM to 10 microM) was also reduced (maximal relaxation of 52.1 +/- 43.2%), compared to control (100%) and NAC group (97.0 +/- 4.3%), as well as the NO/cyclooxygenase-independent receptor-dependent relaxation provoked by bradykinin (1 nM to 10 microM; maximal relaxation of 20.0 +/- 21.2%), compared to control (100%) and NAC group (70.8 +/- 20.0%). The endothelium-independent relaxation elicited by sodium nitroprusside (1 nM to 1 microM) and pinacidil (1 nM to 10 microM) was not affected. In conclusion, the vascular dysfunction caused by the oxidative stress, expressed as reduction of the endothelium-dependent relaxation and of the vascular smooth muscle contraction, was prevented by NAC.

  14. 2′,3′-cAMP, 3′-AMP, and 2′-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors

    PubMed Central

    Ren, Jin; Gillespie, Delbert G.

    2011-01-01

    Rat vascular smooth muscle cells (VSMCs) from renal microvessels metabolize 2′,3′-cAMP to 2′-AMP and 3′-AMP, and these AMPs are converted to adenosine that inhibits microvascular VSMC proliferation via A2B receptors. The goal of this study was to test whether this mechanism also exists in VSMCs from conduit arteries and whether it is similarly expressed in human vs. rat VSMCs. Incubation of rat and human aortic VSMCs with 2′,3′-cAMP concentration-dependently increased levels of 2′-AMP and 3′-AMP in the medium, with a similar absolute increase in 2′-AMP vs. 3′-AMP. In contrast, in human coronary VSMCs, 2′,3′-cAMP increased 2′-AMP levels yet had little effect on 3′-AMP levels. In all cell types, 2′,3′-cAMP increased levels of adenosine, but not 5′-AMP, and 2′,3′-AMP inhibited cell proliferation. Antagonism of A2B receptors (MRS-1754), but not A1 (1,3-dipropyl-8-cyclopentylxanthine), A2A (SCH-58261), or A3 (VUF-5574) receptors, attenuated the antiproliferative effects of 2′,3′-cAMP. In all cell types, 2′-AMP, 3′-AMP, and 5′-AMP increased adenosine levels, and inhibition of ecto-5′-nucleotidase blocked this effect of 5′-AMP but not that of 2′-AMP nor 3′-AMP. Also, 2′-AMP, 3′-AMP, and 5′-AMP, like 2′,3′-cAMP, exerted antiproliferative effects that were abolished by antagonism of A2B receptors with MRS-1754. In conclusion, VSMCs from conduit arteries metabolize 2′,3′-cAMP to AMPs, which are metabolized to adenosine. In rat and human aortic VSMCs, both 2′-AMP and 3′-AMP are involved in this process, whereas, in human coronary VSMCs, 2′,3′-cAMP is mainly converted to 2′-AMP. Because adenosine inhibits VSMC proliferation via A2B receptors, local vascular production of 2′,3′-cAMP may protect conduit arteries from atherosclerosis. PMID:21622827

  15. Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers.

    PubMed

    Wingate, K; Bonani, W; Tan, Y; Bryant, S J; Tan, W

    2012-04-01

    The importance of mesenchymal stem cells (MSC) in vascular regeneration is becoming increasingly recognized. However, few in vitro studies have been performed to identify the effects of environmental elasticity on the differentiation of MSC into vascular cell types. Electrospinning and photopolymerization techniques were used to fabricate a three-dimensional (3-D) polyethylene glycol dimethacrylate nanofiber hydrogel matrix with tunable elasticity for use as a cellular substrate. Compression testing demonstrated that the elastic modulus of the hydrated 3-D matrices ranged from 2 to 15 kPa, similar to the in vivo elasticity of the intima basement membrane and media layer. MSC seeded on rigid matrices (8-15 kPa) showed an increase in cell area compared with those seeded on soft matrices (2-5 kPa). Furthermore, the matrix elasticity guided the cells to express different vascular-specific phenotypes with high differentiation efficiency. Around 95% of MSC seeded on the 3-D matrices with an elasticity of 3 kPa showed Flk-1 endothelial markers within 24h, while only 20% of MSC seeded on the matrices with elasticity >8 kPa demonstrated Flk-1 marker. In contrast, ∼80% of MSC seeded on 3-D matrices with elasticity >8 kPa demonstrated smooth muscle α-actin marker within 24h, while fewer than 10% of MSC seeded on 3-D matrices with elasticity <5 kPa showed α-actin markers. The ability to control MSC differentiation into either endothelial or smooth muscle-like cells based purely on the local elasticity of the substrate could be a powerful tool for vascular tissue regeneration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Differential Protein Kinase C-dependent Modulation of Kv7.4 and Kv7.5 Subunits of Vascular Kv7 Channels*

    PubMed Central

    Brueggemann, Lioubov I.; Mackie, Alexander R.; Cribbs, Leanne L.; Freda, Jessica; Tripathi, Abhishek; Majetschak, Matthias; Byron, Kenneth L.

    2014-01-01

    The Kv7 family (Kv7.1–7.5) of voltage-activated potassium channels contributes to the maintenance of resting membrane potential in excitable cells. Previously, we provided pharmacological and electrophysiological evidence that Kv7.4 and Kv7.5 form predominantly heteromeric channels and that Kv7 activity is regulated by protein kinase C (PKC) in response to vasoconstrictors in vascular smooth muscle cells. Direct evidence for Kv7.4/7.5 heteromer formation, however, is lacking. Furthermore, it remains to be determined whether both subunits are regulated by PKC. Utilizing proximity ligation assays to visualize single molecule interactions, we now show that Kv7.4/Kv.7.5 heteromers are endogenously expressed in vascular smooth muscle cells. Introduction of dominant-negative Kv7.4 and Kv7.5 subunits in mesenteric artery myocytes reduced endogenous Kv7 currents by 84 and 76%, respectively. Expression of an inducible protein kinase Cα (PKCα) translocation system revealed that PKCα activation is sufficient to suppress endogenous Kv7 currents in A7r5 rat aortic and mesenteric artery smooth muscle cells. Arginine vasopressin (100 and 500 pm) and the PKC activator phorbol 12-myristate 13-acetate (1 nm) each inhibited human (h) Kv7.5 and hKv7.4/7.5, but not hKv7.4 channels expressed in A7r5 cells. A decrease in hKv7.5 and hKv7.4/7.5 current densities was associated with an increase in PKC-dependent phosphorylation of the channel proteins. These findings provide further evidence for a differential regulation of Kv7.4 and Kv7.5 channel subunits by PKC-dependent phosphorylation and new mechanistic insights into the role of heteromeric subunit assembly for regulation of vascular Kv7 channels. PMID:24297175

  17. Evaluation of the Microcirculation in Chronic Thromboembolic Pulmonary Hypertension Patients: The Impact of Pulmonary Arterial Remodeling on Postoperative and Follow-Up Pulmonary Arterial Pressure and Vascular Resistance

    PubMed Central

    Ishida, Keiichi; Naito, Akira; Sugiura, Toshihiko; Shigeta, Ayako; Tanabe, Nobuhiro; Masuda, Masahisa; Tatsumi, Koichiro

    2015-01-01

    Background Chronic thromboembolic pulmonary hypertension (CTEPH) is generally recognized to be caused by persistent organized thrombi that occlude the pulmonary arteries. The aim of this study was to investigate the characteristics of small vessel remodeling and its impact on the hemodynamics in CTEPH patients. Methods and Results Hemodynamic data were obtained from right heart catheterization in 17 CTEPH patients before pulmonary endarterectomy (PEA). Lung tissue specimens were obtained at the time of PEA. Pathological observations and evaluation of quantitative changes in pulmonary muscular arteries and veins were performed using light microscopy on 423 slides in 17 patients. The relationship between the results and the hemodynamics of CTEPH was investigated. Pulmonary arteriopathy and venopathy were recognized in most cases, although no plexiform lesions and no capillary-hemangiomatosis-like lesions were detected in any of the specimens. The severity of pulmonary arteriopathy was correlated with pulmonary vascular resistance (PVR) in the postoperative and follow-up periods. The PVR and mean pulmonary arterial pressure were significantly higher in the high-obstruction group than in the low-obstruction group. The findings in pulmonary venopathy were similar to the findings seen in pulmonary veno-occlusive disease in some cases, although severe venopathy was only observed in a portion of the pulmonary veins. There was a significant correlation between the extent of pulmonary arteriopathy and venopathy, although an effect of pulmonary venopathy to hemodynamics, including pulmonary arterial wedged pressure (PAWP), could not be identified. Conclusion The vascular remodeling of the pulmonary muscular arteries was closely associated with the hemodynamics of CTEPH. Severe pulmonary arteriopathy might be related to residual pulmonary hypertension after PEA. Those altered pulmonary arteries might be a new target for the persistent PH after the operation. PMID:26252755

  18. Simultaneous Increases in Proliferation and Apoptosis of Vascular Smooth Muscle Cells Accelerate Diabetic Mouse Venous Atherosclerosis

    PubMed Central

    Liu, Shuying; Zhang, Zhengyu; Wang, Jingjing; Zhou, Yuhuan; Liu, Kefeng; Huang, Jintao; Chen, Dadi; Wang, Junmei; Li, Chaohong

    2015-01-01

    Aims This study was designed to demonstrate simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells (VSMCs) leading to accelerated vein graft remodeling and to explore the underlying mechanisms. Methods Vein grafts were performed in non-diabetic and diabetic mice. The cultured quiescent VSMCs were subjected to mechanical stretch stress (SS) and/or advanced glycosylation end products (AGEs). Harvested vein grafts and treated VSMCs were used to detect cell proliferation, apoptosis, mitogen-activated protein kinases (MAPKs) activation and SM-α-actin expression. Results Significantly thicker vessel walls and greater increases in proliferation and apoptosis were observed in diabetic vein grafts than those in non-diabetic. Both SS and AGEs were found to induce different activation of three members of MAPKs and simultaneous increases in proliferation and apoptosis of VSMCs, and combined treatment with both had a synergistic effect. VSMCs with strong SM-α-actin expression represented more activated JNKs or p38MAPK, and cell apoptosis, while the cells with weak SM-α-actin expression demonstrated preferential activation of ERKs and cell proliferation. In contrast, inhibition of MAPKs signals triggered significant decreases in VSMC proliferation, and apoptosis. Treatment of the cells with RNA interference of receptor of AGEs (RAGE) also resulted in significant decreases in both proliferation and apoptosis. Conclusions Increased pressure-induced SS triggers simultaneous increases in proliferation and apoptosis of VSMCs in the vein grafts leading to vein arterializations, which can be synergistically accelerated by high glucose-induced AGEs resulting in vein graft atherosclerosis. Either SS or AGEs and their combination induce simultaneous increases in proliferation and apoptosis of VSMCs via different activation of three members of MAPKs resulting from different VSMC subtypes classified by SM-α-actin expression levels. PMID:26488175

  19. Biphasic effect of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract on rat isolated vascular smooth muscles.

    PubMed

    Chiwororo, Witness D H; Ojewole, John A O

    2008-12-01

    In this study, we examined the effects of Psidium guajava Linn. leaf aqueous extract (PGE) on isolated, spontaneously-contracting portal veins, as well as on endothelium-intact and endothelium-denuded descending thoracic aortic ring preparations of healthy, normotensive rats. Graded concentrations of PGE (0.25-4.0 mg/ml) caused concentration-dependent, initial brief but significant (P<0.05) rises of the basal tones and amplitudes of pendular, rhythmic contractions, followed by secondary pronounced, longer-lasting and significant (P<0.05-0.001) inhibitions of contractile amplitudes of the isolated portal veins. Relatively low concentrations of PGE (<1.0 mg/ml) always contracted freshly-mounted, naïve, endothelium-intact aortic ring preparations. However, relatively high concentrations of PGE (1.0-4.0 mg/ml) always produced initial brief contractions/augmentations of noradrenaline (NA, 10(-7)M)-induced contractions of endothelium-intact and endothelium-denuded aortic ring preparations, followed by secondary, pronounced relaxations of the aortic ring muscles. Moreover, relatively high concentrations of PGE (1.0-4.0 mg/kg) always relaxed NA-induced contractions of the aortic ring preparations in a concentration-related manner. The arterial-relaxing effects of PGE were more pronounced in endothelium-intact aortic rings than in endothelium-denuded aortic ring preparations. The relaxant effects of PGE on endothelium-intact aortic rings were only partially inhibited by N(G)-nitro-L-arginine methyl ester (L-NAME, 100 microM), a nitric oxide synthase inhibitor, suggesting that the vasorelaxant effect of PGE on aortic rings is probably mediated via both endothelium-derived relaxing factor (EDRF)-dependent and EDRF-independent mechanisms. Taken together, the findings of this study indicate that PGE possesses a biphasic effect on rat isolated vascular smooth muscles.

  20. Caffeine's Vascular Mechanisms of Action

    PubMed Central

    Echeverri, Darío; Montes, Félix R.; Cabrera, Mariana; Galán, Angélica; Prieto, Angélica

    2010-01-01

    Caffeine is the most widely consumed stimulating substance in the world. It is found in coffee, tea, soft drinks, chocolate, and many medications. Caffeine is a xanthine with various effects and mechanisms of action in vascular tissue. In endothelial cells, it increases intracellular calcium stimulating the production of nitric oxide through the expression of the endothelial nitric oxide synthase enzyme. Nitric oxide is diffused to the vascular smooth muscle cell to produce vasodilation. In vascular smooth muscle cells its effect is predominantly a competitive inhibition of phosphodiesterase, producing an accumulation of cAMP and vasodilation. In addition, it blocks the adenosine receptors present in the vascular tissue to produce vasoconstriction. In this paper the main mechanisms of action of caffeine on the vascular tissue are described, in which it is shown that caffeine has some cardiovascular properties and effects which could be considered beneficial. PMID:21188209