Science.gov

Sample records for arthropod vibratory communication

  1. Deceptive vibratory communication: pupae of a beetle exploit the freeze response of larvae to protect themselves

    PubMed Central

    Kojima, Wataru; Ishikawa, Yukio; Takanashi, Takuma

    2012-01-01

    It is argued that animal signals may have evolved so as to manipulate the response of receivers in a way that increases the fitness of the signallers. In deceptive communication, receivers incur costs by responding to false signals. Recently, we reported that pupae of the soil-inhabiting Japanese rhinoceros beetle Trypoxylus dichotoma produce vibratory signals to deter burrowing larvae, thereby protecting themselves. In the present study, monitoring of vibrations associated with larval movement revealed that T. dichotoma larvae remained motionless for ca 10 min when pupal vibratory signals were played back transiently (freeze response). Furthermore, pupal signals of T. dichotoma elicited a freeze response in three other scarabaeid species, whose pupae do not produce vibratory signals. This indicates that the freeze response to certain types of vibration evolved before the divergence of these species and has been evolutionarily conserved, presumably because of the fitness advantage in avoiding predators. Pupae of T. dichotoma have probably exploited pre-existing anti-predator responses of conspecific larvae to protect themselves by emitting deceptive vibratory signals. PMID:22675138

  2. Substrate-borne vibratory communication during courtship in Drosophila melanogaster.

    PubMed

    Fabre, Caroline C G; Hedwig, Berthold; Conduit, Graham; Lawrence, Peter A; Goodwin, Stephen F; Casal, José

    2012-11-20

    Courtship in Drosophila melanogaster has become an iconic example of an innate and interactive series of behaviors. The female signals her acceptance of copulation by becoming immobile in response to a male's display of stereotyped actions. The male and female communicate via vision, air-borne sounds, and pheromones, but what triggers the female's immobility is undetermined. Here, we describe an overlooked and important component of Drosophila courtship. Video recordings and laser vibrometry show that the male abdomen shakes ("quivers"), generating substrate-borne vibrations at about six pulses per second. We present evidence that the female becomes receptive and stops walking because she senses these vibrations, rather than as a response to air-borne songs produced by the male fluttering the wings. We also present evidence that the neural circuits expressing the sex-determination genes fruitless and doublesex drive quivering behavior. These abdominal quivers and associated vibrations, as well as their effect on female receptivity, are conserved in other Drosophila species. Substrate-borne vibrations are an ancient form of communication that is widespread in animals. Our findings in Drosophila open a door to study the neuromuscular circuitry responsible for these signals and the sensory systems needed for their reception. PMID:23103187

  3. Mating Behaviour and Vibratory Signalling in Non-Hearing Cave Crickets Reflect Primitive Communication of Ensifera

    PubMed Central

    Stritih, Nataša; Čokl, Andrej

    2012-01-01

    In Ensifera, the lack of well-supported phylogeny and the focus on acoustic communication of the terminal taxa hinders understanding of the evolutionary history of their signalling behaviour and the related sensory structures. For Rhaphidophoridae, the most relic of ensiferans following morphology-based phylogenies, the signalling modes are still unknown. Together with a detailed description of their mating process, we provide evidence on vibratory signalling for the sympatric European species Troglophilus neglectus and T. cavicola. Despite their temporal shift in reproduction, the species’ behaviours differ significantly. Signalling by abdominal vibration constitutes an obligatory part of courtship in T. neglectus, while it is absent in T. cavicola. Whole-body vibration is expressed after copulation in both species. While courtship signalling appears to stimulate females for mating, the function of post-copulation signals remains unclear. Mating and signalling of both species were found to take place in most cases on bark, and less frequently on other available substrates, like moss and rock. The signals’ frequency spectra were substrate dependent, but with the dominant peak always expressed below 120 Hz. On rock, the intensity of T. neglectus courtship signals was below the species’ physiological detection range, presumably constraining the evolution of such signalling in caves. The species’ behavioural divergence appears to reflect their divergent mating habitats, in and outside caves. We propose that short-range tremulation signalling in courtship, such as is expressed by T. neglectus, represents the primitive mode and context of mechanical signalling in Ensifera. The absence of high-frequency components in the signals may be related to the absence of the crista acoustica homologue (CAH) in the vibratory tibial organ of Rhaphidophoridae. This indirectly supports the hypothesis proposing that the CAH, as an evolutionary precursor of the ear, evolved in

  4. Mating behaviour and vibratory signalling in non-hearing cave crickets reflect primitive communication of Ensifera.

    PubMed

    Stritih, Nataša; Čokl, Andrej

    2012-01-01

    In Ensifera, the lack of well-supported phylogeny and the focus on acoustic communication of the terminal taxa hinders understanding of the evolutionary history of their signalling behaviour and the related sensory structures. For Rhaphidophoridae, the most relic of ensiferans following morphology-based phylogenies, the signalling modes are still unknown. Together with a detailed description of their mating process, we provide evidence on vibratory signalling for the sympatric European species Troglophilus neglectus and T. cavicola. Despite their temporal shift in reproduction, the species' behaviours differ significantly. Signalling by abdominal vibration constitutes an obligatory part of courtship in T. neglectus, while it is absent in T. cavicola. Whole-body vibration is expressed after copulation in both species. While courtship signalling appears to stimulate females for mating, the function of post-copulation signals remains unclear. Mating and signalling of both species were found to take place in most cases on bark, and less frequently on other available substrates, like moss and rock. The signals' frequency spectra were substrate dependent, but with the dominant peak always expressed below 120 Hz. On rock, the intensity of T. neglectus courtship signals was below the species' physiological detection range, presumably constraining the evolution of such signalling in caves. The species' behavioural divergence appears to reflect their divergent mating habitats, in and outside caves. We propose that short-range tremulation signalling in courtship, such as is expressed by T. neglectus, represents the primitive mode and context of mechanical signalling in Ensifera. The absence of high-frequency components in the signals may be related to the absence of the crista acoustica homologue (CAH) in the vibratory tibial organ of Rhaphidophoridae. This indirectly supports the hypothesis proposing that the CAH, as an evolutionary precursor of the ear, evolved in Ensifera

  5. Soluble proteins of chemical communication: an overview across arthropods.

    PubMed

    Pelosi, Paolo; Iovinella, Immacolata; Felicioli, Antonio; Dani, Francesca R

    2014-01-01

    Detection of chemical signals both in insects and in vertebrates is mediated by soluble proteins, highly concentrated in olfactory organs, which bind semiochemicals and activate, with still largely unknown mechanisms, specific chemoreceptors. The same proteins are often found in structures where pheromones are synthesized and released, where they likely perform a second role in solubilizing and delivering chemical messengers in the environment. A single class of soluble polypeptides, called Odorant-Binding Proteins (OBPs) is known in vertebrates, while two have been identified in insects, OBPs and CSPs (Chemosensory Proteins). Despite their common name, OBPs of vertebrates bear no structural similarity with those of insects. We observed that in arthropods OBPs are strictly limited to insects, while a few members of the CSP family have been found in crustacean and other arthropods, where however, based on their very limited numbers, a function in chemical communication seems unlikely. The question we address in this review is whether another class of soluble proteins may have been adopted by other arthropods to perform the role of OBPs and CSPs in insects. We propose that lipid-transporter proteins of the Niemann-Pick type C2 family could represent likely candidates and report the results of an analysis of their sequences in representative species of different arthropods. PMID:25221516

  6. Soluble proteins of chemical communication: an overview across arthropods

    PubMed Central

    Pelosi, Paolo; Iovinella, Immacolata; Felicioli, Antonio; Dani, Francesca R.

    2014-01-01

    Detection of chemical signals both in insects and in vertebrates is mediated by soluble proteins, highly concentrated in olfactory organs, which bind semiochemicals and activate, with still largely unknown mechanisms, specific chemoreceptors. The same proteins are often found in structures where pheromones are synthesized and released, where they likely perform a second role in solubilizing and delivering chemical messengers in the environment. A single class of soluble polypeptides, called Odorant-Binding Proteins (OBPs) is known in vertebrates, while two have been identified in insects, OBPs and CSPs (Chemosensory Proteins). Despite their common name, OBPs of vertebrates bear no structural similarity with those of insects. We observed that in arthropods OBPs are strictly limited to insects, while a few members of the CSP family have been found in crustacean and other arthropods, where however, based on their very limited numbers, a function in chemical communication seems unlikely. The question we address in this review is whether another class of soluble proteins may have been adopted by other arthropods to perform the role of OBPs and CSPs in insects. We propose that lipid-transporter proteins of the Niemann-Pick type C2 family could represent likely candidates and report the results of an analysis of their sequences in representative species of different arthropods. PMID:25221516

  7. ELF communications system ecological monitoring program: Soil arthropods and earthworms

    NASA Astrophysics Data System (ADS)

    Snider, Richard J.; Snider, Renate M.

    1995-04-01

    Based on analysis of years grouped by pre-ELF and operational periods, density fluctuations of arthropods (Collembola and mites) were, in some taxa, significantly different between sites; in others, differences between year groups were significant within either of the study sites. No consistent patterns were seen at the level of species or higher taxa. In some species, effects of the 1988 drought may have carried over into 1989, the first year of antenna operation. Surface-active Collembola, velvet mites and carabid beetles did not alter their activity patterns following antenna activation (e.g., species predominantly spring-active remained spring-active). Although analyses routinely yielded significant differences with respect to total numbers captured in Test and Control, numbers alone were found to be unreliable estimators for disturbance, because a variety of potentially important factors other than EM fields were present. Weekly changes in relative numbers captured, however, showed that increases and decreases in activity were synchronous in the study sites. Carabid beetle activity, which is highly seasonal and governed mainly by reproductive processes, was not affected by EM fields.

  8. Temporal Processing of Vibratory Communication Signals at the Level of Ascending Interneurons in Nezara viridula (Hemiptera: Pentatomidae)

    PubMed Central

    Zorović, Maja

    2011-01-01

    During mating, males and females of N. viridula (Heteroptera: Pentatomidae) produce sex- and species-specific calling and courtship substrate-borne vibratory signals, grouped into songs. Recognition and localization of these signals are fundamental for successful mating. The recognition is mainly based on the temporal pattern, i.e. the amplitude modulation, while the frequency spectrum of the signals usually only plays a minor role. We examined the temporal selectivity for vibratory signals in four types of ascending vibratory interneurons in N. viridula. Using intracellular recording and labelling technique, we analyzed the neurons' responses to 30 pulse duration/interval duration (PD/ID) combinations. Two response arrays were created for each neuron type, showing the intensity of the responses either as time-averaged spike counts or as peak instantaneous spike rates. The mean spike rate response arrays showed preference of the neurons for short PDs (below 600 ms) and no selectivity towards interval duration; while the peak spike rate response arrays exhibited either short PD/long ID selectivity or no selectivity at all. The long PD/short ID combinations elicited the weakest responses in all neurons tested. No response arrays showed the receiver preference for either constant period or duty cycle. The vibratory song pattern selectivity matched the PD of N. viridula male vibratory signals, thus pointing to temporal filtering for the conspecific vibratory signals already at level of the ascending interneurons. In some neurons the responses elicited by the vibratory stimuli were followed by distinct, regular oscillations of the membrane potential. The distance between the oscillation peaks matched the temporal structure of the male calling song, indicating a possible resonance based mechanism for signal recognition. PMID:22053216

  9. Advanced turboprop vibratory characteristics

    NASA Technical Reports Server (NTRS)

    Srinivasan, A. V.; Fulton, G. B.

    1984-01-01

    The assembly of SR5 advanced turboprop blades to develop a structural dynamic data base for swept props is reported. Steady state blade deformation under centrifugal loading and vibratory characteristics of the rotor assembly were measured. Vibration was induced through a system of piezoelectric crystals attached to the blades. Data reduction procedures are used to provide deformation, mode shape, and frequencies of the assembly at predetermined speeds.

  10. Vibratory gyroscopic sensors

    NASA Astrophysics Data System (ADS)

    Fox, C. H. J.; Hardie, D. J. W.

    The paper describes the principles of operation of vibratory gyroscopic sensors based on simple oscillators, balanced oscillators, and vibrating shells with particular emphasis on the third type. Error mechanisms are discussed and the relative merits of the three types are considered leading to the conclusion that vibrating shell sensors offer substantial advantages over the other types in terms of their immunity to external vibration and the relatively weak interaction between the basic sensing vibration of the shell and the instrument mounting.

  11. Arthropod Genetics.

    ERIC Educational Resources Information Center

    Zumwalde, Sharon

    2000-01-01

    Introduces an activity on arthropod genetics that involves phenotype and genotype identification of the creature and the construction process. Includes a list of required materials and directions to build a model arthropod. (YDS)

  12. Silicon Bulk Micromachined Vibratory Gyroscope

    NASA Technical Reports Server (NTRS)

    Tang, T. K.; Gutierrez, R. C.; Wilcox, J. Z.; Stell, C.; Vorperian, V.; Calvet, R.; Li, W. J.; Charkaborty, I.; Bartman, R.; Kaiser, W. J.

    1996-01-01

    This paper reports on design, modeling, fabrication, and characterization of a novel silicon bulk micromachined vibratory rate gyroscope designed for microspacecraft applications. The new microgyroscope consists of a silicon four leaf cloverstructure with a post attached to the center.

  13. Invasive arthropods.

    PubMed

    Sanders, C J; Mellor, P S; Wilson, A J

    2010-08-01

    Many arthropod species have been transported around the globe and successfully invaded new regions. Invasive arthropods can have severe impacts on animal and human health, agriculture and forestry, and the biodiversity of natural habitats as well as those modified by humans. The economic and environmental effects of invasion can be both direct, through feeding and competition, and indirect, such as the transmission of pathogens. In this paper, the authors consider ten examples that illustrate the main mechanisms of introduction, the characteristics that enable species to rapidly expand their ranges and some of the consequences of their arrival.

  14. Vibratory tactile display for textures

    NASA Technical Reports Server (NTRS)

    Ikei, Yasushi; Ikeno, Akihisa; Fukuda, Shuichi

    1994-01-01

    We have developed a tactile display that produces vibratory stimulus to a fingertip in contact with a vibrating tactor matrix. The display depicts tactile surface textures while the user is exploring a virtual object surface. A piezoelectric actuator drives the individual tactor in accordance with both the finger movement and the surface texture being traced. Spatiotemporal display control schemes were examined for presenting the fundamental surface texture elements. The temporal duration of vibratory stimulus was experimentally optimized to simulate the adaptation process of cutaneous sensation. The selected duration time for presenting a single line edge agreed with the time threshold of tactile sensation. Then spatial stimulus disposition schemes were discussed for representation of other edge shapes. As an alternative means not relying on amplitude control, a method of augmented duration at the edge was investigated. Spatial resolution of the display was measured for the lines presented both in perpendicular and parallel to a finger axis. Discrimination of texture density was also measured on random dot textures.

  15. GEC Ferranti piezo vibratory gyroscope

    NASA Technical Reports Server (NTRS)

    Nuttall, J. D.

    1993-01-01

    Prototypes of a piezo-electric vibratory angular rate transducer (gyroscope) (PVG) have been constructed and evaluated. The construction is on the lines suggested by Burdess. The sensitive element is a cylinder of radially poled piezo-electric ceramic. The cylinder is metallized inside and out, and the outer metallization is divided into eight electrodes. The metallization on the inside is earthed. A phase locked loop, using pairs of the electrodes, causes the cylinder to vibrate in one of its two fundamental, degenerate modes. In the presence of rotation, some of the vibration is coupled into the outer mode. This can be detected, or suppressed with a closed-up technique and provides a measure of rotation rate. The gyroscope provides a number of advantages over rotating mass and optical instruments: low size and mass, lower power consumption, potentially high reliability, potentially good dormancy, low cost and high maximum rate.

  16. Non-inertial calibration of vibratory gyroscopes

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor)

    2003-01-01

    The electrostatic elements already present in a vibratory gyroscope are used to simulate the Coriolis forces. An artificial electrostatic rotation signal is added to the closed-loop force rebalance system. Because the Coriolis force is at the same frequency as the artificial electrostatic force, the simulated force may be introduced into the system to perform an inertial test on MEMS vibratory gyroscopes without the use of a rotation table.

  17. 21 CFR 884.4270 - Vibratory cervical dilators.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Vibratory cervical dilators. 884.4270 Section 884.4270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....4270 Vibratory cervical dilators. (a) Identification. A vibratory cervical dilator is a device...

  18. Vibratory finishing as a decontamination process

    SciTech Connect

    McCoy, M.W.; Arrowsmith, H.W.; Allen, R.P.

    1980-10-01

    The major objective of this research is to develop vibratory finishing into a large-scale decontamination technique that can economicaly remove transuranic and other surface contamination from large volumes of waste produced by the operation and decommissioning of retired nuclear facilities. The successful development and widespread application of this decontamination technique would substantially reduce the volume of waste requiring expensive geologic disposal. Other benefits include exposure reduction for decontamination personnel and reduced risk of environmental contamination. Laboratory-scale studies showed that vibratory finishing can rapidly reduce the contamination level of transuranic-contaminated stainless steel and Plexiglas to well below the 10-nCi/g limit. The capability of vibratory finishing as a decontamination process was demonstrated on a large scale. The first decontamination demonstration was conducted at the Hanford N-Reactor, where a vibratory finisher was installed to reduce personnel exposure during the summer outage. Items decontaminated included fuel spacers, process-tube end caps, process-tube inserts, pump parts, ball-channel inspection tools and miscellaneous hand tools. A second demonstration is currently being conducted in the decontamination facility at the Hanford 231-Z Building. During this demonstration, transuranic-contaminated material from decommissioned plutonium facilities is being decontaminated to <10 nCi/g to minimize the volume of material that will require geologic disposal. Items that are being decontaminated include entire glove boxes, process-hood structural material and panels, process tanks, process-tank shields, pumps, valves and hand tools used during the decommissioning work.

  19. Cloverleaf Vibratory Microgyroscope with Integrated Post

    NASA Technical Reports Server (NTRS)

    Tang, Tony K.; Gutierrez, Roman; Roger, Damien

    2003-01-01

    A modified design and fabrication sequence has been devised to improve the performance of a cloverleaf vibratory microgyroscope that includes an axial rod or post rigidly attached to the center of the cloverleaf structure. The basic concepts of cloverleaf vibratory microgyroscopes, without and with rods or posts, were described in two prior articles in NASA Tech Briefs, Vol. 21, No. 9 (September 1997): Micromachined Planar Vibratory Microgyroscopes (NPO-19713), page 68 and Planar Vibratory Microgyroscope: Alternative Configuration (NPO-19714), page 70. As described in more detail in the second-mentioned prior article, the cloverleaf-shaped structure and the rod or post are parts of a vibratory element that senses rotation via the effect of the Coriolis force upon its vibrations. Heretofore, the posts for devices of this type have been fabricated separately, then assembled manually onto the cloverleaf structures. The resulting imperfections in the assembled units have given rise to asymmetric stresses in the cloverleaf structures and, consequently, to changes in resonant frequencies of vibration and in shapes of vibration modes. These changes, in turn, have caused variations in performance among nominally identical devices. The modified design provides for the fabrication of the upper half of the post as an integral part of the cloverleaf structure; this is accomplished by reactive-ion etching of a single-piece half-post-and-cloverleaf structure from a wafer of silicon. The lower half of the post and a baseplate are also a single piece made by reactive-ion etching from a wafer of silicon. The two pieces are bonded together (see figure) by a thermal-compression metal-to-metal bonding technique to form a cloverleaf gyroscope with an integrated post structure..

  20. Continuous Tuning and Calibration of Vibratory Gyroscopes

    NASA Technical Reports Server (NTRS)

    Hayworth, Ken

    2003-01-01

    A method of control and operation of an inertial reference unit (IRU) based on vibratory gyroscopes provides for continuously repeated cycles of tuning and calibration. The method is intended especially for application to an IRU containing vibratory gyroscopes that are integral parts of microelectromechanical systems (MEMS) and that have cloverleaf designs, as described in several previous NASA Tech Briefs articles. The method provides for minimization of several measures of spurious gyroscope output, including zero-rate offset (ZRO), angle random walk (ARW), and rate drift. These benefits are afforded both at startup and thereafter during continuing operation, in the presence of unknown rotation rates and changes in temperature. A vibratory gyroscope contains a precision mechanically resonant structure containing two normal modes of vibration nominally degenerate in frequency and strongly coupled via a Coriolis term. In the case of the cloverleaf design MEMS gyro, these normal modes of vibration are plate rocking modes. The rocking motion of the plate is described by giving two angles, theta(sub 1) and theta(sub 2). A proof mass consisting of a post orthogonal to the plate ensures a high degree of Coriolis coupling of vibratory energy from one mode into the other under inertial rotation. The plate is driven and sensed capacitively across a few-microns-wide gap, and the normal mode frequencies can be tuned electrostatically by DC voltages applied across this gap. In order to sense rotation, the resonator plate is caused to rock in the theta(sub 1) direction, then any small motions in the theta(sub 2) direction are sensed, rebalanced, and interpreted as inertial rotation. In this scenario, the "drive" has been assigned to the theta(sub 1) direction, and the "sense" has been assigned to the theta(sub 2) direction.

  1. Vibratory pumping of a free fluid stream

    DOEpatents

    Merrigan, Michael A.; Woloshun, Keith A.

    1990-01-01

    A vibratory fluid pump having a force generator for generating asymmetric periodic waves or oscillations connected to one end of one or more fluid conveyance means, such as filaments. The opposite ends of the filaments are connected to springs. Fluid introduced onto the filaments will traverse along the filaments according to the magnitude of the positive and negative excursions of the periodic waves or oscillations, and can be recovered from the filaments.

  2. Arthropods in Biological Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article reports the use of insect colloidal artificial diets suitable for the rearing of economically important arthropods, such as Lygus lineolaris, Lygus hesperus, Coleomegilla maculata, and Phytoseiulus persimilis The different diets contain key nutrients such as proteins, carbohydrates, vi...

  3. Vibratory Shock Compaction of Granular Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Amme, Robert C.

    2004-05-01

    Vibratory Shock Compaction (VSC) is a proven means for quickly forming strong, durable solids from a wide variety of granular materials[1]. Calcination of tank and other forms of high level radioactive wastes results in fine granular material that is quite amenable to volume reduction and stabilization. We have employed utilities coal ash as a calcine waste surrogate, blended with a quartz/feldspar-rich sand and 0-20% proportions of a borosilicate glass. The blends were compacted at room temperature and fired so that the glass melt could form an efficient binder. Included in the blend are small quantities of three RCRA metals, chromium, cadmium and lead, to permit testing for heavy metal stability. The VSC process is described and the results presented in terms of the waste form dissolution rates, compressive strengths, elastic moduli as determined from resonant frequency measurements, and heavy metal leach rates from Toxicity Characteristic Leaching Procedure measurements. Vibratory shock compaction employing glass binders appears to be a viable alternative to traditional vitrification processes for granular waste forms. [1] See http://www.resonantshockcompact.com

  4. Making Precise Resonators for Mesoscale Vibratory Gyroscopes

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2004-01-01

    An alternative approach to the design and fabrication of vibratory gyroscopes is founded on the use of fabrication techniques that yield best results in the mesoscopic size range, which is characterized by overall device dimensions of the order of a centimeter. This approach stands in contradistinction to prior approaches in (1) the macroscopic size range (the size range of conventional design and fabrication, characterized by overall device dimensions of many centimeters) and (2) the microscopic size range [the size range of microelectromechanical systems (MEMS), characterized by overall device dimensions of the order of a millimeter or less]. The mesoscale approach offers some of the advantage of the MEMS approach (sizes and power demands smaller than those of the macroscale approach) and some of the advantage of the macroscale approach (the possibility of achieving relative dimensional precision greater than that of the MEMS approach). Relative dimensional precision is a major issue in the operation of a vibratory gyroscope. The heart of a vibratory gyroscope is a mechanical resonator that is required to have a specified symmetry in a plane orthogonal to the axis about which rotation is to be measured. If the resonator could be perfectly symmetrical, then in the absence of rotation, a free vibration of the resonator could remain fixed along any orientation relative to its housing; that is, the gyroscope could exhibit zero drift. In practice, manufacturing imprecision gives rise to some asymmetry in mass, flexural stiffness or dissipation, resulting in a slight drift or beating motion of an initial vibration pattern that cannot be distinguished from rotation. In the mesoscale approach, one exploits the following concepts: For a given amount of dimensional error generated in manufacturing, the asymmetry and hence the rate-of-rotation drift of the gyroscope can be reduced by increasing the scale. The decrease in asymmetry also reduces coupling of vibrations to the

  5. Parametrically disciplined operation of a vibratory gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Hayworth, Ken J. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.

  6. Fast Laser Shutters With Low Vibratory Disturbances

    NASA Technical Reports Server (NTRS)

    Brinza, David; Moore, Donald; Hochberg, Eric; Radey, Tom; Chen, Albert

    2005-01-01

    A prototype vacuum-compatible, fast-acting, long-life shutter unit that generates very little vibratory disturbance during switching is reviewed. This is one of a number of shutters designed to satisfy requirements specific to an experiment, to be performed aboard a spacecraft in flight, in which laser beams must be blocked rapidly and completely, without generating a vibratory disturbance large enough to adversely affect the power and frequency stability of the lasers. Commercial off-the-shelf laboratory shutter units -- typically containing electromagnet-coil-driven mechanisms -- were found not to satisfy the requirements because they are not vacuum-compatible, their actuators engage in uncompensated motions that generate significant vibrations, and their operational lifetimes are too short. Going beyond the initial outerspace application, the present vacuum-compatible, fast-acting, long-life shutter units could also be used in terrestrial settings in which there are requirements for their special characteristics. In designing these shutter units, unbalanced, electromagnetically driven mechanisms were replaced with balanced mechanisms that include commercial piezoelectric bending actuators. In each shutter unit, the piezoelectric bending actuators are configured symmetrically as opposing cantilever beams within a housing that contains integral mounts for lenses that focus a laser beam to a waist at the shutter location. In operation, the laser beam is blocked by titanium blades bonded near the free ends of the piezoelectric benders. The benders are driven by shaped electrical pulses with a maximum voltage differential of less than 60 V. Preliminary measurements indicate that rise and fall times are less than 1 ms.

  7. Vertical-plane pendulum absorbers for minimizing helicopter vibratory loads

    NASA Technical Reports Server (NTRS)

    Amer, K. B.; Neff, J. R.

    1974-01-01

    The use of pendulum dynamic absorbers mounted on the blade root and operating in the vertical plane to minimize helicopter vibratory loads was discussed. A qualitative description was given of the concept of the dynamic absorbers and some results of analytical studies showing the degree of reduction in vibratory loads attainable are presented. Operational experience of vertical plane dynamic absorbers on the OH-6A helicopter is also discussed.

  8. Morphology and physiology of vibratory interneurons in the thoracic ganglia of the southern green stinkbug Nezara viridula (L.).

    PubMed

    Zorović, Maja; Presern, Janez; Cokl, Andrej

    2008-05-10

    The central processing mechanisms of vibratory signals in small plant-dwelling insects that rely primarily on substrate-borne vibratory communication are still largely unknown. To elucidate the neural mechanisms involved in vibratory signaling, the vibration-sensitive interneurons in thoracic ganglia of the southern green stinkbug, Nezara viridula, were investigated electrophysiologically by single-cell recordings and staining. Ten types of interneurons were described and divided into four categories, based on their gross morphology. The cell body of the L-shaped CG-AC neurons is located in the metathoracic neuromere of the central ganglion, and the axon ascends contralaterally. This group comprises five types of neurons differing in their fine structure and functional properties. CG-AB neurons are dorsal unpaired median (DUM) neurons with cell bodies in the mesothoracic neuromere of the central ganglion and two axons that ascend bilaterally into the prothoracic ganglion. Group CG-L includes three types of local neurons limited to the central ganglion. With ipsilateral dendritic arborizations and contralateral axonal branching, their gross morphology is similar to that of cricket omega cells. Interneuron PTG-DC, with the cell body in the prothoracic ganglion (PTG) and a contralaterally descending axon, conveys information received by the sensory organs of the front contralateral leg to the neuropil regions of the ipsilateral middle and hind legs. Based on their frequency tuning and acceleration sensitivity, the vibratory interneurons fall into two groups: the low-frequency units are tuned to 50 Hz and the middle frequency units to 200 Hz, with their acceleration thresholds at 10(-1) m/s(2) and 5 x 10(-3) m/s(2), respectively. Their function is discussed with relevance to the vibratory communication of N. viridula. PMID:18335563

  9. Complex vibratory patterns in an elephant larynx.

    PubMed

    Herbst, Christian T; Svec, Jan G; Lohscheller, Jörg; Frey, Roland; Gumpenberger, Michaela; Stoeger, Angela S; Fitch, W Tecumseh

    2013-11-01

    Elephants' low-frequency vocalizations are produced by flow-induced self-sustaining oscillations of laryngeal tissue. To date, little is known in detail about the vibratory phenomena in the elephant larynx. Here, we provide a first descriptive report of the complex oscillatory features found in the excised larynx of a 25 year old female African elephant (Loxodonta africana), the largest animal sound generator ever studied experimentally. Sound production was documented with high-speed video, acoustic measurements, air flow and sound pressure level recordings. The anatomy of the larynx was studied with computed tomography (CT) and dissections. Elephant CT vocal anatomy data were further compared with the anatomy of an adult human male. We observed numerous unusual phenomena, not typically reported in human vocal fold vibrations. Phase delays along both the inferior-superior and anterior-posterior (A-P) dimension were commonly observed, as well as transverse travelling wave patterns along the A-P dimension, previously not documented in the literature. Acoustic energy was mainly created during the instant of glottal opening. The vestibular folds, when adducted, participated in tissue vibration, effectively increasing the generated sound pressure level by 12 dB. The complexity of the observed phenomena is partly attributed to the distinct laryngeal anatomy of the elephant larynx, which is not simply a large-scale version of its human counterpart. Travelling waves may be facilitated by low fundamental frequencies and increased vocal fold tension. A travelling wave model is proposed, to account for three types of phenomena: A-P travelling waves, 'conventional' standing wave patterns, and irregular vocal fold vibration.

  10. Analysis of rotor vibratory loads using higher harmonic pitch control

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.; Boschitsch, Alexander H.; Wachspress, Daniel A.

    1992-01-01

    Experimental studies of isolated rotors in forward flight have indicated that higher harmonic pitch control can reduce rotor noise. These tests also show that such pitch inputs can generate substantial vibratory loads. The modification is summarized of the RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) analysis of isolated rotors to study the vibratory loading generated by high frequency pitch inputs. The original RotorCRAFT code was developed for use in the computation of such loading, and uses a highly refined rotor wake model to facilitate this task. The extended version of RotorCRAFT incorporates a variety of new features including: arbitrary periodic root pitch control; computation of blade stresses and hub loads; improved modeling of near wake unsteady effects; and preliminary implementation of a coupled prediction of rotor airloads and noise. Correlation studies are carried out with existing blade stress and vibratory hub load data to assess the performance of the extended code.

  11. Vibratory compaction tests on graphite powders for neutron shielding

    SciTech Connect

    Morgan, W.C.

    1982-05-01

    Mistures of three size ranges of graphite powders have been vibratory packed to densities as high as 1.40 gm/cm/sup 3/, which is 87.5 percent of the design density for the graphte segment of the FMIT test cell shield. Ultrasonic resonance vibration of the particles was determined to be an impractical method for achieving the required density. Possible options for fabricating the shield are: (1) revert to solid graphite, rather than vibratory packed powder, or (2) develop the mechanical vibratory compaction method, which would require (a) designing for the higher heat-load attendant with the reduced graphite density, or (b) increasing the thickness of the graphite segment by 15 percent or (c) seeking a new source of graphite powder with higher particle density.

  12. Vocal fold epithelial hyperplasia. Vibratory behavior vs extent of lesion.

    PubMed

    Zhao, R X; Hirano, M; Tanaka, S; Sato, K

    1991-09-01

    The vibratory behavior of 72 vocal folds with epithelial hyperplasia or dysplasia was investigated by means of videostroboscopy. The amplitude of vibration (AMP) and mucosal wave (WAV) were related to the relative area, depth, and relative volume of the lesion. The AMP and WAV were evaluated for the entire vocal fold (AMPE, WAVE) and for the affected portion or the lesion (AMPL, WAVL). The AMPE, AMPL, WAVE, and WAVL were negatively related to the relative area, depth, and relative volume. The relationship between the limited vibratory movement and the extent of the lesion was most significantly manifested in WAVL. A complete absence of any vibratory movement of the vocal fold took place only for large lesions occupying three fourths or more of the membranous vocal fold.

  13. Modifications of Fabrication of Vibratory Microgyroscopes

    NASA Technical Reports Server (NTRS)

    Bae, Sam Y.; Yee, Karl Y.; Wiberg, Dean

    2005-01-01

    A micromachining process for the fabrication of vibratory microgyroscopes from silicon wafers, and aspects of the microgyroscope design that are inextricably linked with the fabrication process, have been modified in an effort to increase production yields from perspectives of both quantity and quality. Prior to the modifications, the effective production yield of working microgyroscopes was limited to one or less per wafer. The modifications are part of a continuing effort to improve the design and increase production yields to more than 30 working microgyroscopes per wafer. A discussion of pertinent aspects of the unmodified design and the unmodified fabrication process is prerequisite to a meaningful description of the modifications. The design of the microgyroscope package was not conducive to high yield and rapid testing of many microgyroscopes. One of the major impediments to high yield and testing was found to lie in vibration- isolation beams around the four edges of each microgyroscope, which beams were found to be unnecessary for achieving high resonance quality factors (Q values) characterizing the vibrations of petallike cantilevers. The fabrication process included an 8- m-deep plasma etch. The purpose of the etch was to create 8- m vertical gaps, below which were to be placed large gold evaporated electrodes and sensing pads to drive and sense resonant vibrations of the "petals." The process also included a step in which bridges between dies were cut to separate the dies. The etched areas must be kept clean and smooth (free of debris and spikes), because any object close to 8 m high in those areas would stop the vibrations. However, it was found that after the etch, there remained some spikes with heights that were, variously, almost as high or as high as the etch depth. It also was found that the cutting of bridges created silicon debris, some of which lodged in the 8- m gaps and some of which landed on top of the petals. The masses added to the

  14. Methane production in terrestrial arthropods

    SciTech Connect

    Hackstein, J.H.P.; Stumm, C.K. )

    1994-06-07

    The authors have screened more than 110 representatives of the different taxa of terrestrial arthropods for methane production in order to obtain additional information about the origins of biogenic methane. Methanogenic bacteria occur in the hindguts of nearly all tropical representatives of millipedes (Diplopoda), cockroaches (Blattaria), termites (Isoptera), and scarab beetles (Scarabaeidae), while such methanogens are absent from 66 other arthropod species investigated. Three types of symbiosis were found: in the first type, the arthropod's hindgut is colonized by free methanogenic bacteria; in the second type, methanogens are closely associated with chitinous structures formed by the host's hindgut; the third type is mediated by intestinal anaerobic protists with intracellular methanogens. Such symbiotic associations are likely to be a characteristic property of the particular taxon. Since these taxa represent many families with thousands of species, the world populations of methane-producing arthropods constitute an enormous biomass. The authors show that arthropod symbionts can contribute substantially to atmospheric methane.

  15. Arthropod viruses and small RNAs.

    PubMed

    Vijayendran, Diveena; Airs, Paul M; Dolezal, Kelly; Bonning, Bryony C

    2013-10-01

    The recently characterized small RNAs provide a new paradigm for physiological studies. These molecules have been shown to be integral players in processes as diverse as development and innate immunity against bacteria and viruses in eukaryotes. Several of the well-characterized small RNAs including small interfering RNAs, microRNAs and PIWI-interacting RNAs are emerging as important players in mediating arthropod host-virus interactions. Understanding the role of small RNAs in arthropod host-virus molecular interactions will facilitate manipulation of these pathways for both management of arthropod pests of agricultural and medical importance, and for protection of beneficial arthropods such as honey bees and shrimp. This review highlights recent research on the role of small RNAs in arthropod host-virus interactions with reference to other host-pathogen systems. PMID:23932976

  16. Methane production in terrestrial arthropods.

    PubMed

    Hackstein, J H; Stumm, C K

    1994-06-01

    We have screened more than 110 representatives of the different taxa of terrestrial arthropods for methane production in order to obtain additional information about the origins of biogenic methane. Methanogenic bacteria occur in the hindguts of nearly all tropical representatives of millipedes (Diplopoda), cockroaches (Blattaria), termites (Isoptera), and scarab beetles (Scarabaeidae), while such methanogens are absent from 66 other arthropod species investigated. Three types of symbiosis were found: in the first type, the arthropod's hindgut is colonized by free methanogenic bacteria; in the second type, methanogens are closely associated with chitinous structures formed by the host's hindgut; the third type is mediated by intestinal anaerobic protists with intracellular methanogens. Such symbiotic associations are likely to be a characteristic property of the particular taxon. Since these taxa represent many families with thousands of species, the world populations of methane-producing arthropods constitute an enormous biomass. We show that arthropod symbionts can contribute substantially to atmospheric methane.

  17. Methane production in terrestrial arthropods.

    PubMed Central

    Hackstein, J H; Stumm, C K

    1994-01-01

    We have screened more than 110 representatives of the different taxa of terrestrial arthropods for methane production in order to obtain additional information about the origins of biogenic methane. Methanogenic bacteria occur in the hindguts of nearly all tropical representatives of millipedes (Diplopoda), cockroaches (Blattaria), termites (Isoptera), and scarab beetles (Scarabaeidae), while such methanogens are absent from 66 other arthropod species investigated. Three types of symbiosis were found: in the first type, the arthropod's hindgut is colonized by free methanogenic bacteria; in the second type, methanogens are closely associated with chitinous structures formed by the host's hindgut; the third type is mediated by intestinal anaerobic protists with intracellular methanogens. Such symbiotic associations are likely to be a characteristic property of the particular taxon. Since these taxa represent many families with thousands of species, the world populations of methane-producing arthropods constitute an enormous biomass. We show that arthropod symbionts can contribute substantially to atmospheric methane. Images PMID:8202505

  18. Selection of slim hole core rods by vibratory analysis

    SciTech Connect

    Eustes, A.W. III; Mitchell, B.J.; Stoner, M.S.

    1994-12-01

    The purpose of this research was to determine the nature of the core rod vibrations and characterize their vibratory spectrums in order that an optimal core rod size could be chosen. The research was performed for the Yucca Mountain Site Characterization Project, US Department of Energy, Office of Civilian Radioactive Waste Management, which is directing the coring of boreholes at Yucca Mountain, Nevada. This paper describes the axial, torsional, and transient buckling vibratory models developed for the selection of optimum core rod size. The axial and torsional vibratory core rod simulator (VCRS) models are coupled by way of a transient buckling wave which propagates over the length of the core rod. This paper reports the frequencies and magnitudes of the stresses in the 101 core rod now in use. In addition, four core bit vibratory forcing functions for thrust and torque wee developed. The thrust and torque frequencies and magnitudes for the bit forcing functions were extracted from full-size laboratory core bit tests with fast Fourier transforms. The natural frequencies of the core rod were determined with closed-form solution models and were confirmed with a finite element model. Finally, a selection of core rod sizes were modeled to determine the best size to minimize damaging stress which stems from vibration.

  19. Vibratory or Visual Stimulation Reduces Self-Injury.

    ERIC Educational Resources Information Center

    Taylor, Caroline R.; Chamove, Arnold S.

    1986-01-01

    The effects of alternate forms of sensory stimulation on self-injurious behavior (SIB) in a profoundly retarded 24-year-old female were evaluated. Both vibratory stimulation (a massager) and visual stimulation (flashing red light) equally and significantly decreased the subject's SIB in both treatment and nontreatment environments. (Author/DB)

  20. Household Arthropod Allergens in Korea

    PubMed Central

    Jeong, Kyoung Yong

    2009-01-01

    Arthropods are important in human health, which can transmit pathogens to humans, parasitize, or produce important allergens. Allergy prevalence becomes higher in Korea recently as well as other developed countries in contrast to a decrease of infectious diseases. Allergic diseases caused by household arthropods have increased dramatically during the last few decades since human beings spend more their time for indoor activities in modernized life style. Household arthropods are one of the most common causes of allergic diseases. Biological characterization of household arthropods and researches on their allergens will provide better understanding of the pathogenesis of allergic diseases and suggest new therapeutic ways. Therefore, studies on arthropods of allergenic importance can be considered one of the major research areas in medical arthropodology and parasitology. Here, the biology of several household arthropods, including house dust mites and cockroaches, the 2 most well known arthropods living indoor together with humans worldwide, and characteristics of their allergens, especially the research activities on these allergens performed in Korea, are summarized. PMID:19885330

  1. Laboratory Identification of Arthropod Ectoparasites

    PubMed Central

    Pritt, Bobbi S.

    2014-01-01

    SUMMARY The collection, handling, identification, and reporting of ectoparasitic arthropods in clinical and reference diagnostic laboratories are discussed in this review. Included are data on ticks, mites, lice, fleas, myiasis-causing flies, and bed bugs. The public health importance of these organisms is briefly discussed. The focus is on the morphological identification and proper handling and reporting of cases involving arthropod ectoparasites, particularly those encountered in the United States. Other arthropods and other organisms not of public health concern, but routinely submitted to laboratories for identification, are also briefly discussed. PMID:24396136

  2. Laboratory identification of arthropod ectoparasites.

    PubMed

    Mathison, Blaine A; Pritt, Bobbi S

    2014-01-01

    The collection, handling, identification, and reporting of ectoparasitic arthropods in clinical and reference diagnostic laboratories are discussed in this review. Included are data on ticks, mites, lice, fleas, myiasis-causing flies, and bed bugs. The public health importance of these organisms is briefly discussed. The focus is on the morphological identification and proper handling and reporting of cases involving arthropod ectoparasites, particularly those encountered in the United States. Other arthropods and other organisms not of public health concern, but routinely submitted to laboratories for identification, are also briefly discussed. PMID:24396136

  3. Influence of arthropods on ecosystems

    SciTech Connect

    Seastedt, T.R.; Crossley, D.A. Jr.

    1984-03-01

    Arthropod interactions with plants and microbes influence the amounts of living and dead organic matter and transfers of nutrients in terrestrial ecosystems. Arthropods in the canopy have their greatest effect on mobile elements such as potassium, whereas soil detritivores influence mineralization rates of less mobile elements such as nitrogen, phosphorus, and calcium. Nominal (baseline) herbivory and detritivory combine to speed nutrient cycling and reduce standing crops of decaying plant materials. 49 references, 1 figure, 3 tables.

  4. Sensory cilia in arthropods.

    PubMed

    Keil, Thomas A

    2012-11-01

    In arthropods, the modified primary cilium is a structure common to all peripheral sensory neurons other than photoreceptors. Since its first description in 1958, it has been investigated in great detail in numerous sense organs (sensilla) of many insect species by means of electron microscopy and electrophysiology. The perfection of molecular biological methods has led to an enormous advance in our knowledge about development and function of sensory cilia in the fruitfly since the end of the last century. The cilia show a wealth of adaptations according to their different physiological roles: chemoreception, mechanoreception, hygroreception, and thermoreception. Divergent types of receptors and channels have evolved fulfilling these tasks. The number of olfactory receptor genes can be close to 300 in ants, whereas in crickets slightest mechanical stimuli are detected by the interaction of extremely sophisticated biomechanical devices with mechanosensory cilia. Despite their enormous morphological and physiological divergence, sensilla and sensory cilia develop according to a stereotyped pattern. Intraflagellar transport genes have been found to be decisive for proper development and function.

  5. Mechanical Assessment of the Waste Package Subject to Vibratory Motion

    SciTech Connect

    M. Gross

    2004-10-14

    The purpose of this document is to provide an integrated overview of the calculation reports that define the response of the waste package and its internals to vibratory ground motion. The calculation reports for waste package response to vibratory ground motion are identified in Table 1-1. Three key calculation reports describe the potential for mechanical damage to the waste package, fuel assemblies, and cladding from a seismic event. Three supporting documents have also been published to investigate sensitivity of damage to various assumptions for the calculations. While these individual reports present information on a specific aspect of waste package and cladding response, they do not describe the interrelationship between the various calculations and the relationship of this information to the seismic scenario class for Total System Performance Assessment-License Application (TSPA-LA). This report is designed to fill this gap by providing an overview of the waste package structural response calculations.

  6. Vibratory Urticaria Associated with a Missense Variant in ADGRE2.

    PubMed

    Boyden, Steven E; Desai, Avanti; Cruse, Glenn; Young, Michael L; Bolan, Hyejeong C; Scott, Linda M; Eisch, A Robin; Long, R Daniel; Lee, Chyi-Chia R; Satorius, Colleen L; Pakstis, Andrew J; Olivera, Ana; Mullikin, James C; Chouery, Eliane; Mégarbané, André; Medlej-Hashim, Myrna; Kidd, Kenneth K; Kastner, Daniel L; Metcalfe, Dean D; Komarow, Hirsh D

    2016-02-18

    Patients with autosomal dominant vibratory urticaria have localized hives and systemic manifestations in response to dermal vibration, with coincident degranulation of mast cells and increased histamine levels in serum. We identified a previously unknown missense substitution in ADGRE2 (also known as EMR2), which was predicted to result in the replacement of cysteine with tyrosine at amino acid position 492 (p.C492Y), as the only nonsynonymous variant cosegregating with vibratory urticaria in two large kindreds. The ADGRE2 receptor undergoes autocatalytic cleavage, producing an extracellular subunit that noncovalently binds a transmembrane subunit. We showed that the variant probably destabilizes an autoinhibitory subunit interaction, sensitizing mast cells to IgE-independent vibration-induced degranulation. (Funded by the National Institutes of Health.). PMID:26841242

  7. Vibratory Urticaria Associated with a Missense Variant in ADGRE2

    PubMed Central

    Boyden, Steven E.; Desai, Avanti; Cruse, Glenn; Young, Michael L.; Bolan, Hyejeong C.; Scott, Linda M.; Eisch, A. Robin; Long, R. Daniel; Lee, Chyi-Chia R.; Satorius, Colleen L.; Pakstis, Andrew J.; Olivera, Ana; Mullikin, James C.; Chouery, Eliane; Mégarbané, André; Medlej-Hashim, Myrna; Kidd, Kenneth K.; Kastner, Daniel L.; Metcalfe, Dean D.; Komarow, Hirsh D.

    2016-01-01

    SUMMARY Patients with autosomal dominant vibratory urticaria have localized hives and systemic manifestations in response to dermal vibration, with coincident degranulation of mast cells and increased histamine levels in serum. We identified a previously unknown missense substitution in ADGRE2 (also known as EMR2), which was predicted to result in the replacement of cysteine with tyrosine at amino acid position 492 (p.C492Y), as the only nonsynonymous variant cosegregating with vibratory urticaria in two large kindreds. The ADGRE2 receptor undergoes autocatalytic cleavage, producing an extracellular subunit that noncovalently binds a transmembrane subunit. We showed that the variant probably destabilizes an autoinhibitory subunit interaction, sensitizing mast cells to IgE-independent vibration-induced degranulation. (Funded by the National Institutes of Health.) PMID:26841242

  8. Deburring die-castings by wet vibratory plant

    NASA Technical Reports Server (NTRS)

    Loeschbart, H. M.

    1980-01-01

    A wet vibratory procedure for the removal of burrs from die castings is described. In this process synthetic abrasive chips and detergent solutions are agitated with the work in such a way as to produce a spiral circulatory movement. Details of various forms of vibrator basin and shapes of abrasive are illustrated. The automation of deburring is illustrated through the application of vibrators of spiral design in combination with transport and drying devices.

  9. Deburring die-castings by wet vibratory plant

    NASA Astrophysics Data System (ADS)

    Loeschbart, H. M.

    1980-02-01

    A wet vibratory procedure for the removal of burrs from die castings is described. In this process synthetic abrasive chips and detergent solutions are agitated with the work in such a way as to produce a spiral circulatory movement. Details of various forms of vibrator basin and shapes of abrasive are illustrated. The automation of deburring is illustrated through the application of vibrators of spiral design in combination with transport and drying devices.

  10. Characterization of the Bell-Shaped Vibratory Angular Rate Gyro

    PubMed Central

    Liu, Ning; Su, Zhong; Li, Qing; Fu, MengYin; Liu, Hong; Fan, JunFang

    2013-01-01

    The bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG and looks like the millimeter-grade Chinese traditional bell, such as QianLong Bell and Yongle Bell. It is made of Ni43CrTi, which is a constant modulus alloy. The exciting element, control element and detection element are uniformly distributed and attached to the resonator, respectively. This work presents the design, analysis and experimentation on the BVG. It is most important to analyze the vibratory character of the bell-shaped resonator. The strain equation, internal force and the resonator's equilibrium differential equation are derived in the orthogonal curvilinear coordinate system. When the input angular velocity is existent on the sensitive axis, an analysis of the vibratory character is performed using the theory of thin shells. On this basis, the mode shape function and the simplified second order normal vibration mode dynamical equation are obtained. The coriolis coupling relationship about the primary mode and secondary mode is established. The methods of the signal processing and control loop are presented. Analyzing the impact resistance property of the bell-shaped resonator, which is compared with other shell resonators using the Finite Element Method, demonstrates that BVG has the advantage of a better impact resistance property. A reasonable means of installation and a prototypal gyro are designed. The gyroscopic effect of the BVG is characterized through experiments. Experimental results show that the BVG has not only the advantages of low cost, low power, long work life, high sensitivity, and so on, but, also, of a simple structure and a better impact resistance property for low and medium angular velocity measurements. PMID:23966183

  11. Evolution of arthropod silks.

    PubMed

    Craig, C L

    1997-01-01

    Silks belong to the class of molecules called structural proteins. The ability to produce silk proteins has evolved multiple times in the arthropods, and silk secreting glands have evolved via two different pathways. The comparative data and phylogenetic analyses in this review suggest that the silk-secreting systems of spiders and insects are homologous and linked to the crural gland (origin of systemic pathway to silk production) and cuticular secretions (origin of surficial pathway to silk production) of an onychophoran-like ancestor. The evolution of silk secreting organs via a surficial pathway is possible in adult and larval hexapods, regardless of their developmental mode. Silk secretion via a systemic pathway is possible in either adult or larval hexapods, but only larval insects have dedicated silk producing glands. Spiders, however, have evolved silk producing systems via both systemic pathway and surficial pathways, and a single individual retains both throughout its lifespan. Early in the evolution of spiders, silk glands were undifferentiated, suggesting that the number of silk secreting glands of any individual was related to the spider's energetic need to produce large quantities of protein. However, the complex silk-producing systems that characterize the aerial web-building spiders and the diverse types of proteins they produce suggest that their silks reflect the diverse and increasing number of ways in which spiders use them. Because the muscular and innervated spinnerets and spigots of spiders allow them to control fiber functional properties, silk proteins represent an avenue through which animal behavior may directly affect the molecular properties of a protein.

  12. Arthropod use of invertebrate carrion

    SciTech Connect

    Seastedt, T.R.; Mameli, L.; Gridley, K.

    1980-08-01

    Arthropods associated with cricket carcasses placed on top and within deciduous forest litter were collected over a 12 month interval. Vespid wasps and ants quickly removed carcasses left on top of forest litter, but carcasses placed within litter persisted throughout the study. Major consumers of carcasses in litter varied seasonally; maggots dominated on fresh carcasses in summer, but fresh carcasses placed in litter in autumn were consumed by other arthropods. A gamasid mite, Hypoaspis (Laelaspis) johnieae dominated the microarthropod fauna found on exoskeleton fragments. A method for collecting invertebrate carrion feeders and measuring carrion disappearance is presented.

  13. Arthropod use of invertebrate carrion

    SciTech Connect

    Seastedt, T.R.; Mameli, L.; Gridley, K.

    1981-01-01

    Arthropods associated with cricket carcasses placed on top and within deciduous forest litter were collected for 12 months. Vespid wasps and ants quickly removed carcasses left on top of forest litter, but carcasses placed within litter persisted throughout the study. Major consumers of carcasses in litter varied seasonally; maggots dominated on fresh carcasses in summer, but fresh carcasses placed in litter in autumn were consumed by other arthropods. A gamasid mite, Hypoaspis (Laelaspis) johnieae, dominated the microarthropod fauna found on exoskeleton fragments. A method for collecting invertebrate carrion feeders and measuring carrion disappearance is presented. 15 references, 2 tables.

  14. Carnivorous arthropods after spring flood

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spring flooding is a common practice in Wisconsin cranberries, but flooding as insect control produces variable results among marshes. This project is aimed at figuring out why it works, and why it sometimes doesn’t. We have focused on tracking arthropod populations to explain the observed patterns ...

  15. Chaotic behavior on in-phase vibratory conveyors

    SciTech Connect

    Raski, J.Z.

    1998-07-01

    One of the basic building blocks of IBM's computer technology is the thin-film interstitial metallized ceramic (IMC) substrate. The packaging of these substrates employs small input/output (IO) pins to provide both mechanical and electrical connection to the printed circuit board. In the automated manufacturing of the substrate, the input and output pins are individually conveyed by in-line vibratory conveyors. However, a nonperiodic motion of these pins is observed at certain angles of conveyor table tilt that cannot be explained by classical models of friction. This paper models the motion of a single I/O pin on an in-phase, linearly oscillating conveyor using the classical model of friction and compares that result with experimental observations. It is shown here, analytically and experimentally, that when the vibratory conveyor table amplitude and the coefficient of friction between the pin and the table are sufficiently large, the pin is conveyed forward with some velocity. If the conveyor table's angle of tilt is sufficiently large and the coefficient of friction is sufficiently low, the pin may slip backwards just as fast as the conveyor table drives it forward, resulting in a net pin velocity of zero. Surrounding the condition at which the net velocity of the pin is zero is a chaotic basin of attraction in which the pin motion is non-periodic. This basin of attraction was experimentally determined to be bracketed within a range of values of the coefficient of friction. The implications of these theoretical and experimental results are discussed in terms of the practical application of in-phase vibratory conveyors in manufacturing.

  16. Modification of piezoelectric vibratory gyroscope resonator parameters by feedback control.

    PubMed

    Loveday, P W; Rogers, C A

    1998-01-01

    A method for analyzing the effect of feedback control on the dynamics of piezoelectric resonators used in vibratory gyroscopes has been developed. This method can be used to determine the feasibility of replacing the traditional mechanical balancing operations, used to adjust the resonant frequency, by displacement feedback and for determining the velocity feedback required to produce a particular bandwidth. Experiments were performed on a cylindrical resonator with discrete piezoelectric actuation and sensing elements to demonstrate the principles. Good agreement between analysis and experiment was obtained, and it was shown that this type of resonator could be balanced by displacement feedback. The analysis method presented also is applicable to micromachined piezoelectric gyroscopes. PMID:18244281

  17. Investigation of the Effect of Blade Sweep on Rotor Vibratory Loads

    NASA Technical Reports Server (NTRS)

    Tarzanin, F. J., Jr.; Vlaminck, R. R.

    1983-01-01

    The effect of helicopter rotor blade planform sweep on rotor vibratory hub, blade, and control system loads has been analytically investigated. The importance of sweep angle, sweep initiation radius, flap bending stiffness and torsion bending stiffness is discussed. The mechanism by which sweep influences the vibratory hub loads is investigated.

  18. Arthropod diversity in a tropical forest.

    PubMed

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K; Guilhaumon, François; Missa, Olivier; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Schmidl, Jürgen; Tishechkin, Alexey K; Winchester, Neville N; Roubik, David W; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jon R; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H C; Dejean, Alain; Fagan, Laura L; Floren, Andreas; Kitching, Roger L; Medianero, Enrique; Miller, Scott E; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P; Roisin, Yves; Schmidt, Jesper B; Sørensen, Line; Leponce, Maurice

    2012-12-14

    Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic breadth of arthropod taxa from the soil to the forest canopy in the San Lorenzo forest, Panama. We collected 6144 arthropod species from 0.48 hectare and extrapolated total species richness to larger areas on the basis of competing models. The whole 6000-hectare forest reserve most likely sustains 25,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates of arthropod biodiversity developed from plant models.

  19. Vibratory compaction method for preparing lunar regolith drilling simulant

    NASA Astrophysics Data System (ADS)

    Chen, Chongbin; Quan, Qiquan; Deng, Zongquan; Jiang, Shengyuan

    2016-07-01

    Drilling and coring is an effective way to acquire lunar regolith samples along the depth direction. To facilitate the modeling and simulation of lunar drilling, ground verification experiments for drilling and coring should be performed using lunar regolith simulant. The simulant should mimic actual lunar regolith, and the distribution of its mechanical properties should vary along the longitudinal direction. Furthermore, an appropriate preparation method is required to ensure that the simulant has consistent mechanical properties so that the experimental results can be repeatable. Vibratory compaction actively changes the relative density of a raw material, making it suitable for building a multilayered drilling simulant. It is necessary to determine the relation between the preparation parameters and the expected mechanical properties of the drilling simulant. A vibratory compaction model based on the ideal elastoplastic theory is built to represent the dynamical properties of the simulant during compaction. Preparation experiments indicated that the preparation method can be used to obtain drilling simulant with the desired mechanical property distribution along the depth direction.

  20. Quantitative phase imaging of arthropods

    PubMed Central

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-01-01

    Abstract. Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy. PMID:26334858

  1. Quantitative phase imaging of arthropods.

    PubMed

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-01-01

    Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy. PMID:26334858

  2. Quantitative phase imaging of arthropods

    NASA Astrophysics Data System (ADS)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-11-01

    Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy.

  3. Quantitative phase imaging of arthropods.

    PubMed

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-01-01

    Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy.

  4. Cyanogenesis in plants and arthropods.

    PubMed

    Zagrobelny, Mika; Bak, Søren; Møller, Birger Lindberg

    2008-05-01

    Cyanogenic glucosides are phytoanticipins known to be present in more than 2500 plant species. They are regarded as having an important role in plant defense against herbivores due to bitter taste and release of toxic hydrogen cyanide upon tissue disruption, but recent investigations demonstrate additional roles as storage compounds of reduced nitrogen and sugar that may be mobilized when demanded for use in primary metabolism. Some specialized herbivores, especially insects, preferentially feed on cyanogenic plants. Such herbivores have acquired the ability to metabolize cyanogenic glucosides or to sequester them for use in their own defense against predators. A few species of arthropods (within diplopods, chilopods and insects) are able to de novo biosynthesize cyanogenic glucosides and some are able to sequester cyanogenic glucosides from their food plant as well. This applies to larvae of Zygaena (Zygaenidae). The ratio and content of cyanogenic glucosides is tightly regulated in Zygaena filipendulae, and these compounds play several important roles in addition to defense in the life cycle of Zygaena. The transfer of a nuptial gift of cyanogenic glucosides during mating of Zygaena has been demonstrated as well as the involvement of hydrogen cyanide in male attraction and nitrogen metabolism. As more plant and arthropod species are examined, it is likely that cyanogenic glucosides are found to be more widespread than formerly thought and that cyanogenic glucosides are intricately involved in many key processes in the life cycle of plants and arthropods.

  5. Adaptive control of a vibratory angle measuring gyroscope.

    PubMed

    Park, Sungsu

    2010-01-01

    This paper presents an adaptive control algorithm for realizing a vibratory angle measuring gyroscope so that rotation angle can be directly measured without integration of angular rate, thus eliminating the accumulation of numerical integration errors. The proposed control algorithm uses a trajectory following approach and the reference trajectory is generated by an ideal angle measuring gyroscope driven by the estimate of angular rate and the auxiliary sinusoidal input so that the persistent excitation condition is satisfied. The developed control algorithm can compensate for all types of fabrication imperfections such as coupled damping and stiffness, and mismatched stiffness and un-equal damping term in an on-line fashion. The simulation results show the feasibility and effectiveness of the developed control algorithm that is capable of directly measuring rotation angle without the integration of angular rate.

  6. Analysis of the vibratory excitation arising from spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Mark, William D.

    1987-01-01

    Tools required to understand and predict in terms of its underlying causes the vibratory excitation arising from meshing spiral bevel gears are developed. A generalized three component transmission error of meshing spiral bevel gears is defined. Equations are derived that yield the three components of the generalized transmission error in terms of deviations of tooth running surfaces from equispaced perfect spherical involute surfaces and tooth/gearbody elastic deformations arising from the three components of the generalized force transmitted by the meshing gears. A method for incorporating these equations into the equations of motion of a gear system is described. Equations are derived for the three components of the generalized force transmitted by the gears which are valid whenever inertial effects of the meshing gears and their supports are negligible. Bearing offsets from the positions occupied by the shaft centerlines of perfect spherical involute bevel gears and bearing/bearing support flexibilities enter into the computation of these forces.

  7. The origin and evolution of arthropods.

    PubMed

    Budd, Graham E; Telford, Maximilian J

    2009-02-12

    The past two decades have witnessed profound changes in our understanding of the evolution of arthropods. Many of these insights derive from the adoption of molecular methods by systematists and developmental biologists, prompting a radical reordering of the relationships among extant arthropod classes and their closest non-arthropod relatives, and shedding light on the developmental basis for the origins of key characteristics. A complementary source of data is the discovery of fossils from several spectacular Cambrian faunas. These fossils form well-characterized groupings, making the broad pattern of Cambrian arthropod systematics increasingly consensual.

  8. Knowledge of Arthropod Carnivory and Herbivory: Factors Influencing Preservice Elementary Teacher's Attitudes and Beliefs toward Arthropods

    ERIC Educational Resources Information Center

    Wagler, Ron; Wagler, Amy

    2013-01-01

    Human negativity toward arthropods has been well documented but the factors that contribute to this negativity have been elusive. This study explored knowledge of arthropod carnivory and herbivory as possible casual factors that contribute to the negative tendencies preservice elementary teachers have toward most arthropods. Specifically, this…

  9. Communication.

    ERIC Educational Resources Information Center

    Strauss, Andre

    The following essays on communication are presented: communication as a condition of survival, communication for special purposes, the means of transmission of communication, communication within social and economic structures, the teaching of communication through the press, the teaching of modern languages, communication as a point of departure,…

  10. Analyzing arthropods for the presence of bacteria.

    PubMed

    Andrews, Elizabeth S

    2013-02-01

    Bacteria within arthropods can be identified using culture-independent methods. This unit describes protocols for surface sterilization of arthropods, DNA extraction of whole bodies and tissues, touchdown PCR amplification using 16S rDNA general bacteria primers, and profiling the bacterial community using denaturing gradient gel electrophoresis.

  11. Molecular bases of plant resistance to arthropods.

    PubMed

    Smith, C Michael; Clement, Stephen L

    2012-01-01

    Arthropod-resistant crops provide significant ecological and economic benefits to global agriculture. Incompatible interactions involving resistant plants and avirulent pest arthropods are mediated by constitutively produced and arthropod-induced plant proteins and defense allelochemicals synthesized by resistance gene products. Cloning and molecular mapping have identified the Mi-1.2 and Vat arthropod resistance genes as CC-NBS-LRR (coiled coil-nucleotide binding site-leucine rich repeat) subfamily NBS-LRR resistance proteins, as well as several resistance gene analogs. Genetic linkage mapping has identified more than 100 plant resistance gene loci and linked molecular markers used in cultivar development. Rice and sorghum arthropod-resistant cultivars and, to a lesser extent, raspberry and wheat cultivars are components of integrated pest management (IPM) programs in Asia, Australia, Europe, and North America. Nevertheless, arthropod resistance in most food and fiber crops has not been integrated due primarily to the application of synthetic insecticides. Plant and arthropod genomics provide many opportunities to more efficiently develop arthropod-resistant plants, but integration of resistant cultivars into IPM programs will succeed only through interdisciplinary collaboration.

  12. Molecular bases of plant resistance to arthropods.

    PubMed

    Smith, C Michael; Clement, Stephen L

    2012-01-01

    Arthropod-resistant crops provide significant ecological and economic benefits to global agriculture. Incompatible interactions involving resistant plants and avirulent pest arthropods are mediated by constitutively produced and arthropod-induced plant proteins and defense allelochemicals synthesized by resistance gene products. Cloning and molecular mapping have identified the Mi-1.2 and Vat arthropod resistance genes as CC-NBS-LRR (coiled coil-nucleotide binding site-leucine rich repeat) subfamily NBS-LRR resistance proteins, as well as several resistance gene analogs. Genetic linkage mapping has identified more than 100 plant resistance gene loci and linked molecular markers used in cultivar development. Rice and sorghum arthropod-resistant cultivars and, to a lesser extent, raspberry and wheat cultivars are components of integrated pest management (IPM) programs in Asia, Australia, Europe, and North America. Nevertheless, arthropod resistance in most food and fiber crops has not been integrated due primarily to the application of synthetic insecticides. Plant and arthropod genomics provide many opportunities to more efficiently develop arthropod-resistant plants, but integration of resistant cultivars into IPM programs will succeed only through interdisciplinary collaboration. PMID:21910639

  13. Arthropods affecting the human eye.

    PubMed

    Panadero-Fontán, Rosario; Otranto, Domenico

    2015-02-28

    Ocular infestations by arthropods consist in the parasitization of the human eye, either directly (e.g., some insect larvae causing ophthalmomyiasis) or via arthropods feeding on lachrymal/conjunctival secretions (e.g., some eye-seeking insects, which also act as vectors of eye pathogens). In addition, demodicosis and phthiriasis may also cause eye discomfort in humans. Ophthalmomyiasis by larvae of the families Oestridae, Calliphoridae and Sarcophagidae, are frequent causative agents of human ocular infestations. Over the last decades, the extensive use of macrocyclic lactones in cattle has reduced the frequency of infestations by Hypoderma bovis and Hypoderma lineatum (family Oestridae), and consequently, human infestations by these species. A prompt diagnosis of ocular myiasis (e.g., by serological tests) is pivotal for positive prognoses, particularly when the larvae are not detectable during the ophthalmologic examination. Molecular diagnoses may also assist physicians and parasitologists in achieving time-efficient diagnoses of infestations by Oestridae causing myiasis. Finally, due to widespread international travel to exotic destinations, cases of myiasis are increasing in non-endemic areas, therefore requiring physicians to acquire a profound knowledge of the clinical symptoms linked to these infestations to prevent costly, inappropriate treatments or severe complications. PMID:25620292

  14. Noninsect Arthropods in Popular Music

    PubMed Central

    Coelho, Joseph R.

    2011-01-01

    The occurrence of noninsect arthropods in popular music was examined in order to explore human attitudes toward these species, especially as compared to insects. Crustaceans were the most commonly referenced taxonomic group in artist names, album titles and cover art, followed by spiders and scorpions. The surprising prevalence of crustaceans may be related to the palatability of many of the species. Spiders and scorpions were primarily used for shock value, as well as totemic qualities of strength and ferocity. Spiders were the most abundant group among song titles, perhaps because of their familiarity to the general public. Three noninsect arthropod album titles were found from the early 1970s, then none appear until 1990. Older albums are difficult to find unless they are quite popular, and the resurgence of albums coincides with the rise of the internet. After 1990, issuance of such albums increased approximately linearly. Giant and chimeric album covers were the most common of themes, indicating the use of these animals to inspire fear and surprise. The lyrics of select songs are presented to illustrate the diversity of sentiments present, from camp spookiness to edibility. PMID:26467627

  15. Arthropods affecting the human eye.

    PubMed

    Panadero-Fontán, Rosario; Otranto, Domenico

    2015-02-28

    Ocular infestations by arthropods consist in the parasitization of the human eye, either directly (e.g., some insect larvae causing ophthalmomyiasis) or via arthropods feeding on lachrymal/conjunctival secretions (e.g., some eye-seeking insects, which also act as vectors of eye pathogens). In addition, demodicosis and phthiriasis may also cause eye discomfort in humans. Ophthalmomyiasis by larvae of the families Oestridae, Calliphoridae and Sarcophagidae, are frequent causative agents of human ocular infestations. Over the last decades, the extensive use of macrocyclic lactones in cattle has reduced the frequency of infestations by Hypoderma bovis and Hypoderma lineatum (family Oestridae), and consequently, human infestations by these species. A prompt diagnosis of ocular myiasis (e.g., by serological tests) is pivotal for positive prognoses, particularly when the larvae are not detectable during the ophthalmologic examination. Molecular diagnoses may also assist physicians and parasitologists in achieving time-efficient diagnoses of infestations by Oestridae causing myiasis. Finally, due to widespread international travel to exotic destinations, cases of myiasis are increasing in non-endemic areas, therefore requiring physicians to acquire a profound knowledge of the clinical symptoms linked to these infestations to prevent costly, inappropriate treatments or severe complications.

  16. Arthropods of medicoveterinary importance in zoos.

    PubMed

    Adler, Peter H; Tuten, Holly C; Nelder, Mark P

    2011-01-01

    Zoos present a unique assemblage of arthropods, captive vertebrates, free-roaming wildlife, humans, and plants, each with its own biota of symbiotic organisms. Arthropods of medicoveterinary importance are well represented in zoos, and an ample literature documents their influence in these animal-rich environments. Mosquitoes are of greatest significance because of the animal and human pathogens they transmit, followed by ectoparasites, many of which are exotic and present health risks to captive and native animals. Biting flies, cockroaches, filth flies, and triatomid bugs represent additional concerns. Integrated management programs for arthropods in zoos are commonplace. Zoos can play a role in biosurveillance, serving as an advanced guard for detecting exotic arthropods and vector-borne diseases. We provide the first review of arthropods of medicoveterinary importance in zoos. A case is made for the value of collaborations between entomologists and zoo personnel as a means of enhancing research and public education while safeguarding the health of captive animals and the public.

  17. Floral diversity increases beneficial arthropod richness and decreases variability in arthropod community composition.

    PubMed

    Bennett, Ashley B; Gratton, Claudio

    2013-01-01

    Declines in species diversity resulting from anthropogenic alterations of the environment heighten the need to develop management strategies that conserve species and ecosystem services. This study examined how native plant species and their diversity influence the abundance and richness of beneficial arthropods, a functionally important group that provides ecosystem services such as pollination and natural pest suppression. Beneficial arthropods were sampled in replicated study plots containing native perennials planted in one-, two-, and seven-species mixtures. We found plant diversity had a positive impact on arthropod richness but not on arthropod abundance. An analysis of arthropod community composition revealed that each flower species attracted a different assemblage of beneficial arthropods. In addition, the full seven-species mixture also attracted a distinct arthropod community compared to single-species monocultures. Using a multivariate approach, we determined whether arthropod assemblages in two- and seven-species plots were additive and could be predicted based on assemblages from their component single-species plots. On average, assemblages in diverse plots were nonadditive when compared to assemblages predicted using single-species plots. Arthropod assemblages in two-species plots most closely resembled those of only one of the flower species in the mixture. However, the arthropod assemblages in seven-species plots, although statistically deviating from the expectation of an additive model, more closely resembled predicted communities compared to the assemblages found in two-species plots, suggesting that variability in arthropod community composition decreased as planting diversity increased. Our study demonstrates that careful selection of plants in managed landscapes can augment beneficial arthropod richness and support a more predictable arthropod community, suggesting that planning and design efforts could shape arthropod assemblages in natural

  18. Jean-Martin Charcot and his vibratory chair for Parkinson disease.

    PubMed

    Goetz, Christopher G

    2009-08-11

    Vibration therapy is currently used in diverse medical specialties ranging from orthopedics to urology to sports medicine. The celebrated 19th-century neurologist, J.-M. Charcot, used vibratory therapy to treat Parkinson disease (PD). This study analyzed printed writings by Charcot and other writers on vibratory therapy and accessed unpublished notes from the Salpêtrière Hospital, Paris. Charcot lectured on several occasions on vibratory therapy and its neurologic applications. He developed a vibration chair for patients with PD after he observed that patients were more comfortable and slept better after a train or carriage ride. He replicated this experience by having patients undergo daily 30-minute sessions in the automated vibratory chair (fauteuil trépidant). His junior colleague, Gilles de la Tourette, extended these observations and developed a helmet that vibrated the head on the premise that the brain responded directly to the pulsations. Although after Charcot's death vibratory therapy was not widely pursued, vibratory appliances are reemerging in 21st century medicine and can be retested using adaptations of Charcot's neurologic protocols.

  19. Error Model and Compensation of Bell-Shaped Vibratory Gyro.

    PubMed

    Su, Zhong; Liu, Ning; Li, Qing

    2015-01-01

    A bell-shaped vibratory angular velocity gyro (BVG), inspired by the Chinese traditional bell, is a type of axisymmetric shell resonator gyroscope. This paper focuses on development of an error model and compensation of the BVG. A dynamic equation is firstly established, based on a study of the BVG working mechanism. This equation is then used to evaluate the relationship between the angular rate output signal and bell-shaped resonator character, analyze the influence of the main error sources and set up an error model for the BVG. The error sources are classified from the error propagation characteristics, and the compensation method is presented based on the error model. Finally, using the error model and compensation method, the BVG is calibrated experimentally including rough compensation, temperature and bias compensation, scale factor compensation and noise filter. The experimentally obtained bias instability is from 20.5°/h to 4.7°/h, the random walk is from 2.8°/h(1/2) to 0.7°/h(1/2) and the nonlinearity is from 0.2% to 0.03%. Based on the error compensation, it is shown that there is a good linear relationship between the sensing signal and the angular velocity, suggesting that the BVG is a good candidate for the field of low and medium rotational speed measurement.

  20. Relationships between CSID and vocal fold vibratory function

    NASA Astrophysics Data System (ADS)

    Cooke, Melissa L.

    High correlations have been reported between the acoustic-based Cepstral/Spectral Index of Dysphonia (CSID) and perceptual judgments of dysphonia. This study explores whether CSID provides additional insight and explains more of the variance in HSV-based properties of vocal fold vibratory function than has been reported for other acoustic measures. Using the Analysis of Dysphonia in Speech and Voice (ADSV) program, CSID and its component variables were correlated with HSV-based measures of glottal cycle aperiodicity and glottal area for 20 subjects who underwent phonomicrosurgery. Results indicate CSID is only marginally correlated with glottal cycle aperiodicity in pre- and post-surgical conditions and does not correlate as highly as the cepstral peak prominence alone. Additionally, results reveal higher correlations when examining within-subject change from pre-surgical to post-surgical assessments rather than correlating measures across subjects. Future directions are discussed that aim at improving our understanding of the relationships between acoustic parameters and underlying phonatory function.

  1. Error Model and Compensation of Bell-Shaped Vibratory Gyro

    PubMed Central

    Su, Zhong; Liu, Ning; Li, Qing

    2015-01-01

    A bell-shaped vibratory angular velocity gyro (BVG), inspired by the Chinese traditional bell, is a type of axisymmetric shell resonator gyroscope. This paper focuses on development of an error model and compensation of the BVG. A dynamic equation is firstly established, based on a study of the BVG working mechanism. This equation is then used to evaluate the relationship between the angular rate output signal and bell-shaped resonator character, analyze the influence of the main error sources and set up an error model for the BVG. The error sources are classified from the error propagation characteristics, and the compensation method is presented based on the error model. Finally, using the error model and compensation method, the BVG is calibrated experimentally including rough compensation, temperature and bias compensation, scale factor compensation and noise filter. The experimentally obtained bias instability is from 20.5°/h to 4.7°/h, the random walk is from 2.8°/h1/2 to 0.7°/h1/2 and the nonlinearity is from 0.2% to 0.03%. Based on the error compensation, it is shown that there is a good linear relationship between the sensing signal and the angular velocity, suggesting that the BVG is a good candidate for the field of low and medium rotational speed measurement. PMID:26393593

  2. Traumatic insemination in terrestrial arthropods.

    PubMed

    Tatarnic, Nikolai J; Cassis, Gerasimos; Siva-Jothy, Michael T

    2014-01-01

    Traumatic insemination is a bizarre form of mating practiced by some invertebrates in which males use hypodermic genitalia to penetrate their partner's body wall during copulation, frequently bypassing the female genital tract and ejaculating into their blood system. The requirements for traumatic insemination to evolve are stringent, yet surprisingly it has arisen multiple times within invertebrates. In terrestrial arthropods traumatic insemination is most prevalent in the true bug infraorder Cimicomorpha, where it has evolved independently at least three times. Traumatic insemination is thought to occur in the Strepsiptera and has recently been recorded in fruit fly and spider lineages. We review the putative selective pressures that may have led to the evolution of traumatic insemination across these lineages, as well as the pressures that continue to drive divergence in male and female reproductive morphology and behavior. Traumatic insemination mechanisms and attributes are compared across independent lineages. PMID:24160423

  3. Traumatic insemination in terrestrial arthropods.

    PubMed

    Tatarnic, Nikolai J; Cassis, Gerasimos; Siva-Jothy, Michael T

    2014-01-01

    Traumatic insemination is a bizarre form of mating practiced by some invertebrates in which males use hypodermic genitalia to penetrate their partner's body wall during copulation, frequently bypassing the female genital tract and ejaculating into their blood system. The requirements for traumatic insemination to evolve are stringent, yet surprisingly it has arisen multiple times within invertebrates. In terrestrial arthropods traumatic insemination is most prevalent in the true bug infraorder Cimicomorpha, where it has evolved independently at least three times. Traumatic insemination is thought to occur in the Strepsiptera and has recently been recorded in fruit fly and spider lineages. We review the putative selective pressures that may have led to the evolution of traumatic insemination across these lineages, as well as the pressures that continue to drive divergence in male and female reproductive morphology and behavior. Traumatic insemination mechanisms and attributes are compared across independent lineages.

  4. Effects of invasive plants on arthropods.

    PubMed

    Litt, Andrea R; Cord, Erin E; Fulbright, Timothy E; Schuster, Greta L

    2014-12-01

    Non-native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer-reviewed literature to evaluate responses of arthropod communities and functional groups to non-native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty-two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web-building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to

  5. Effects of invasive plants on arthropods.

    PubMed

    Litt, Andrea R; Cord, Erin E; Fulbright, Timothy E; Schuster, Greta L

    2014-12-01

    Non-native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer-reviewed literature to evaluate responses of arthropod communities and functional groups to non-native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty-two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web-building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to

  6. A Shoe Insole Delivering Subsensory Vibratory Noise Improves Balance and Gait in Healthy Elderly People

    PubMed Central

    Lipsitz, Lewis; Lough, Matthew; Niemi, James; Travison, Thomas; Howlett, Harold; Manor, Brad

    2014-01-01

    Objective The objective of this study was to test whether subsensory vibratory noise applied to the sole of the foot using a novel piezo-electric vibratory insole, can significantly improve sensation, enhance balance, and reduce gait variability in elderly people. We also aimed to determine the optimal level of vibratory noise, and whether the therapeutic effect would endure and the user’s sensory threshold would remain constant during the course of a day. Design A randomized single-blind crossover study of three subsensory noise stimulation levels on 3 separate days. Setting Balance and gait laboratory Participants 12 healthy community-dwelling elderly volunteers aged 65 – 90 years who could feel the maximum insole vibration. Intervention A urethane foam insole with the piezo-electric actuators delivering subsensory vibratory noise stimulation to the soles of the feet. Main Outcome Measures Balance, gait, and timed up-and-go tests. Results The vibratory insoles significantly improved performance on the timed up-and-go test, reduced the area of postural sway, and reduced the temporal variability of walking at both 70% and 85% of the sensory threshold and throughout the course of a day. Vibratory sensation thresholds remained relatively stable within and across study days. Conclusions This study provides proof of concept that the application of the principle of stochastic resonance to the foot sole sensory system using a new low voltage piezoelectric technology can improve measures of balance and gait that are associated with falls. Effective vibratory noise amplitudes range from 70% to 85% of the sensory thresholds and can be set once daily. PMID:25450133

  7. Palaeontology: Clearing the Heads of Cambrian Arthropods.

    PubMed

    Strausfeld, Nicholas J

    2015-07-20

    Understanding the identity of segments and the evolution of their appendages is a prime concern of arthropod evolution studies. This has been challenging for long extinct stem-groups. Now, Cambrian fossils offer insights that will help further evolutionary considerations.

  8. Regulation of ecosystem processes by arthropod communities

    SciTech Connect

    Seastedt, T.R.; Crossley, D.A. Jr.

    1983-09-01

    Arthropods or their activities regulate the amounts of forms of mass and nutrients in terrestrial ecosystems. Canopy arthropods have the largest impacts on mobile elements such as potassium, while soil detritivores control mineralization rates of less mobile elements such as nitrogen, phosphorus and calcium. Nominal (base-line) herbivory and detritivory combine to speed nutrient cycling and reduce standing crops of decaying plant materials. 42 references, 1 figure, 3 tables.

  9. Cambrian bivalved arthropod reveals origin of arthrodization.

    PubMed

    Legg, David A; Sutton, Mark D; Edgecombe, Gregory D; Caron, Jean-Bernard

    2012-12-01

    Extant arthropods are diverse and ubiquitous, forming a major constituent of most modern ecosystems. Evidence from early Palaeozoic Konservat Lagerstätten indicates that this has been the case since the Cambrian. Despite this, the details of arthropod origins remain obscure, although most hypotheses regard the first arthropods as benthic predators or scavengers such as the fuxianhuiids or megacheirans ('great-appendage' arthropods). Here, we describe a new arthropod from the Tulip Beds locality of the Burgess Shale Formation (Cambrian, series 3, stage 5) that possesses a weakly sclerotized thorax with filamentous appendages, encased in a bivalved carapace, and a strongly sclerotized, elongate abdomen and telson. A cladistic analysis resolved this taxon as the basal-most member of a paraphyletic grade of nekto-benthic forms with bivalved carapaces. This grade occurs at the base of Arthropoda (panarthropods with arthropodized trunk limbs) and suggests that arthrodization (sclerotization and jointing of the exoskeleton) evolved to facilitate swimming. Predatory and fully benthic habits evolved later in the euarthropod stem-lineage and are plesiomorphically retained in pycnogonids (sea spiders) and euchelicerates (horseshoe crabs and arachnids). PMID:23055069

  10. Cambrian bivalved arthropod reveals origin of arthrodization

    PubMed Central

    Legg, David A.; Sutton, Mark D.; Edgecombe, Gregory D.; Caron, Jean-Bernard

    2012-01-01

    Extant arthropods are diverse and ubiquitous, forming a major constituent of most modern ecosystems. Evidence from early Palaeozoic Konservat Lagerstätten indicates that this has been the case since the Cambrian. Despite this, the details of arthropod origins remain obscure, although most hypotheses regard the first arthropods as benthic predators or scavengers such as the fuxianhuiids or megacheirans (‘great-appendage’ arthropods). Here, we describe a new arthropod from the Tulip Beds locality of the Burgess Shale Formation (Cambrian, series 3, stage 5) that possesses a weakly sclerotized thorax with filamentous appendages, encased in a bivalved carapace, and a strongly sclerotized, elongate abdomen and telson. A cladistic analysis resolved this taxon as the basal-most member of a paraphyletic grade of nekto-benthic forms with bivalved carapaces. This grade occurs at the base of Arthropoda (panarthropods with arthropodized trunk limbs) and suggests that arthrodization (sclerotization and jointing of the exoskeleton) evolved to facilitate swimming. Predatory and fully benthic habits evolved later in the euarthropod stem-lineage and are plesiomorphically retained in pycnogonids (sea spiders) and euchelicerates (horseshoe crabs and arachnids). PMID:23055069

  11. Morphology and physiology of auditory and vibratory ascending interneurones in bushcrickets.

    PubMed

    Nebeling, B

    2000-02-15

    Auditory/vibratory interneurones of the bushcricket species Decticus albifrons and Decticus verrucivorus were studied with intracellular dye injection and electrophysiology. The morphologies of five physiologically characterised auditory/vibratory interneurones are shown in the brain, subesophageal and prothoracic ganglia. Based on their physiology, these five interneurones fall into three groups, the purely auditory or sound neurones: S-neurones, the purely vibratory V-neurones, and the bimodal vibrosensitive VS-neurones. The S1-neurones respond phasically to airborne sound whereas the S4-neurones exhibit a tonic spike pattern. Their somata are located in the prothoracic ganglion and they show an ascending axon with dendrites located in the prothoracic, subesophageal ganglia, and the brain. The VS3-neurone, responding to both auditory and vibratory stimuli in a tonic manner, has its axon traversing the brain, the suboesophageal ganglion and the prothoracic ganglion although with dendrites only in the brain. The V1- and V2-neurones respond to vibratory stimulation of the fore- and midlegs with a tonic discharge pattern, and our data show that they receive inhibitory input suppressing their spontaneous activity. Their axon transverses the prothoracic ganglion, subesophageal ganglion and terminate in the brain with dendritic branching. Thus the auditory S-neurones have dendritic arborizations in all three ganglia (prothoracic, subesophageal, and brain) compared to the vibratory (V) and vibrosensitive (VS) neurones, which have dendrites almost only in the brain. The dendrites of the S-neurones are also more extensive than those of the V-, VS-neurones. V- and VS-neurones terminate more laterally in the brain. Due to an interspecific comparison of the identified auditory interneurones the S1-neurone is found to be homologous to the TN1 of crickets and other bushcrickets, and the S4-neurone also can be called AN2. J. Exp. Zool. 286:219-230, 2000.

  12. The monitoring system for vibratory disturbance detection in microgravity environment aboard the international space station

    NASA Technical Reports Server (NTRS)

    Laster, Rachel M.

    2004-01-01

    Scientists in the Office of Life and Microgravity Sciences and Applications within the Microgravity Research Division oversee studies in important physical, chemical, and biological processes in microgravity environment. Research is conducted in microgravity environment because of the beneficial results that come about for experiments. When research is done in normal gravity, scientists are limited to results that are affected by the gravity of Earth. Microgravity provides an environment where solid, liquid, and gas can be observed in a natural state of free fall and where many different variables are eliminated. One challenge that NASA faces is that space flight opportunities need to be used effectively and efficiently in order to ensure that some of the most scientifically promising research is conducted. Different vibratory sources are continually active aboard the International Space Station (ISS). Some of the vibratory sources include crew exercise, experiment setup, machinery startup (life support fans, pumps, freezer/compressor, centrifuge), thruster firings, and some unknown events. The Space Acceleration Measurement System (SAMs), which acts as the hardware and carefully positioned aboard the ISS, along with the Microgravity Environment Monitoring System MEMS), which acts as the software and is located here at NASA Glenn, are used to detect these vibratory sources aboard the ISS and recognize them as disturbances. The various vibratory disturbances can sometimes be harmful to the scientists different research projects. Some vibratory disturbances are recognized by the MEMS's database and some are not. Mainly, the unknown events that occur aboard the International Space Station are the ones of major concern. To better aid in the research experiments, the unknown events are identified and verified as unknown events. Features, such as frequency, acceleration level, time and date of recognition of the new patterns are stored in an Excel database. My task is to

  13. Effect of angular inflow on the vibratory response of a counter-rotating propeller

    NASA Technical Reports Server (NTRS)

    Turnberg, J. E.; Brown, P. C.

    1985-01-01

    This report presents the results of a propeller vibratory stress survey on the Fairey Gannet aircraft aimed at giving an assessment of the difference in vibratory response between single and counter-rotating propeller operation in angular inflow. The survey showed that counter-rotating operation of the propeller had the effect of increasing the IP response of the rear propeller by approximately 25 percent over comparable single-rotation operation while counter-rotating operation did not significantly influence the IP response of the front propeller.

  14. Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion

    SciTech Connect

    S. Mastilovic

    2003-06-16

    The objective of this calculation is twofold. First, to determine whether or not separation of interlocking drip shield (DS) segments occurs during vibratory ground motion. Second, if DS separation does not occur, to estimate the area of the DS for which the residual 1st principal stress exceeds a certain limit. (The area of DS plate-1 and DS plate-2 [see Attachment I] where the residual 1st principal stress exceeds a certain limit will be, for brevity, referred to as ''the damaged area'' throughout this document; also, DS plate-1 and DS plate-2 will be referred to, for brevity, as ''DS plates'' henceforth.) The stress limit used throughout this document is defined as 50 percent of yield strength of the DS plate material, Titanium Grade 7 (Ti-7) (SB-265 R52400), at temperature of 150 C. A set of 15 calculations is performed at two different annual frequencies of occurrence (annual exceedance frequency): 10{sup -6} per year (1/yr) and 10{sup -7} 1/yr . (Note: Due to computational problems only five realizations at 10{sup -7} 1/yr are presented in this document.) Additionally, one calculation is performed at the annual frequency of occurrence of 5 {center_dot} 10{sup -4} 1/yr. The scope of this document is limited to reporting whether or not the DS separation occurs. If the DS separation does not occur the scope is limited to reporting the calculation results in terms of the damaged area. All these results are evaluated for the DS plates. This calculation is intended for use in support of the Total System Performance Assessment-License Application seismicity modeling. This calculation is associated with the DS design and was performed by the Waste Package Design group. AP-3.12Q, ''Design Calculations and Analyses'' (Ref. 1) is used to perform the calculation and develop the document. The DS is classified as Quality Level 1 (Ref. 5, p. 7). Therefore, this calculation is subject to the Quality Assurance Requirements and Description (Ref. 4). The information provided by

  15. Reevaluating the arthropod tree of life.

    PubMed

    Giribet, Gonzalo; Edgecombe, Gregory D

    2012-01-01

    Arthropods are the most diverse group of animals and have been so since the Cambrian radiation. They belong to the protostome clade Ecdysozoa, with Onychophora (velvet worms) as their most likely sister group and tardigrades (water bears) the next closest relative. The arthropod tree of life can be interpreted as a five-taxon network, containing Pycnogonida, Euchelicerata, Myriapoda, Crustacea, and Hexapoda, the last two forming the clade Tetraconata or Pancrustacea. The unrooted relationship of Tetraconata to the three other lineages is well established, but of three possible rooting positions the Mandibulata hypothesis receives the most support. Novel approaches to studying anatomy with noninvasive three-dimensional reconstruction techniques, the application of these techniques to new and old fossils, and the so-called next-generation sequencing techniques are at the forefront of understanding arthropod relationships. Cambrian fossils assigned to the arthropod stem group inform on the origin of arthropod characters from a lobopodian ancestry. Monophyly of Pycnogonida, Euchelicerata, Myriapoda, Tetraconata, and Hexapoda is well supported, but the interrelationships of arachnid orders and the details of crustacean paraphyly with respect to Hexapoda remain the major unsolved phylogenetic problems. PMID:21910637

  16. Evolving specialization of the arthropod nervous system

    PubMed Central

    Jarvis, Erin; Bruce, Heather S.; Patel, Nipam H.

    2012-01-01

    The diverse array of body plans possessed by arthropods is created by generating variations upon a design of repeated segments formed during development, using a relatively small “toolbox” of conserved patterning genes. These attributes make the arthropod body plan a valuable model for elucidating how changes in development create diversity of form. As increasingly specialized segments and appendages evolved in arthropods, the nervous systems of these animals also evolved to control the function of these structures. Although there is a remarkable degree of conservation in neural development both between individual segments in any given species and between the nervous systems of different arthropod groups, the differences that do exist are informative for inferring general principles about the holistic evolution of body plans. This review describes developmental processes controlling neural segmentation and regionalization, highlighting segmentation mechanisms that create both ectodermal and neural segments, as well as recent studies of the role of Hox genes in generating regional specification within the central nervous system. We argue that this system generates a modular design that allows the nervous system to evolve in concert with the body segments and their associated appendages. This information will be useful in future studies of macroevolutionary changes in arthropod body plans, especially in understanding how these transformations can be made in a way that retains the function of appendages during evolutionary transitions in morphology. PMID:22723369

  17. Epidemiology of the arthropod-borne encephalitides*

    PubMed Central

    Miles, J. A. R.

    1960-01-01

    Since the recognition that louping-ill, known for well over 100 years as an epizootic disease of sheep in Scotland, was caused by a virus transmitted by arthropods, many other arthropod-borne viruses capable of causing encephalitis in domestic animals or man have been discovered. The author reviews here the knowledge at present available on these viruses, originally termed ”arthropod-borne encephalitides viruses” but now often referred to as ”arbor viruses”. In this discussion of the host and vector relationships of the two broad groups of arbor viruses — the mosquito-borne and the tick-borne—and of the distribution, epidemiology and control of the various diseases they cause, the author includes an outline of the types of investigation likely to provide the most useful information, stressing in this connexion the value of ecological surveys. PMID:14422369

  18. Sophisticated digestive systems in early arthropods.

    PubMed

    Vannier, Jean; Liu, Jianni; Lerosey-Aubril, Rudy; Vinther, Jakob; Daley, Allison C

    2014-05-02

    Understanding the way in which animals diversified and radiated during their early evolutionary history remains one of the most captivating of scientific challenges. Integral to this is the 'Cambrian explosion', which records the rapid emergence of most animal phyla, and for which the triggering and accelerating factors, whether environmental or biological, are still unclear. Here we describe exceptionally well-preserved complex digestive organs in early arthropods from the early Cambrian of China and Greenland with functional similarities to certain modern crustaceans and trace these structures through the early evolutionary lineage of fossil arthropods. These digestive structures are assumed to have allowed for more efficient digestion and metabolism, promoting carnivory and macrophagy in early arthropods via predation or scavenging. This key innovation may have been of critical importance in the radiation and ecological success of Arthropoda, which has been the most diverse and abundant invertebrate phylum since the Cambrian.

  19. Responses of prairie arthropod communities to fire and fertilizer: Balancing plant and arthropod conservation

    USGS Publications Warehouse

    Hartley, M.K.; Rogers, W.E.; Siemann, E.; Grace, J.

    2007-01-01

    Fire is an important tool for limiting woody plant invasions into prairies, but using fire management to maintain grassland plant communities may inadvertently reduce arthropod diversity. To test this, we established twenty-four 100 m2 plots in a tallgrass prairie in Galveston County, Texas, in spring 2000. Plots were assigned a fire (no burn, one time burn [2000], two time burn [2000, 2001]) and fertilization treatment (none, NPK addition) in a full factorial design. Fertilization treatments allowed us to examine the effects of fire at a different level of productivity. We measured plant cover by species and sampled arthropods with sweep nets during the 2001 growing season. Path analysis indicated that fertilization reduced while annual fires increased arthropod diversity via increases and decreases in woody plant abundance, respectively. There was no direct effect of fire on arthropod diversity or abundance. Diptera and Homoptera exhibited particularly strong positive responses to fires. Lepidoptera had a negative response to nutrient enrichment. Overall, the negative effects of fire on the arthropod community were minor in contrast to the strong positive indirect effects of small-scale burning on arthropod diversity if conservation of particular taxa is not a priority. The same fire regime that minimized woody plant invasion also maximized arthropod diversity.

  20. Using detrended fluctuation analysis (DFA) to analyze whether vibratory insoles enhance balance stability for elderly fallers.

    PubMed

    Wang, Chien-Chih; Yang, Wen-Hung

    2012-01-01

    Falls are a common and devastating problem among elderly people. In a previous study, vibratory insoles were developed to improve postural stability for elderly fallers. To verify the effects of vibratory insoles, a two-stage experiment was conducted to collect center of pressure (COP) signals from 26 elderly fallers and 16 healthy young subjects while standing still. The DFA is used to analyze the behavior of different time-series data obtained from the trajectory of COP. Postural stability was compared by the DFA scaling exponent between a control condition (before using vibratory insoles) and a vibration condition (after using vibratory insoles). For elderly fallers, DFA scaling exponents 95% confidence interval were [1.434, 1.547] and [1.329, 1.451] under control and vibration conditions in the anteroposterior (AP) direction, respectively. The experimental results revealed that temporary stimuli of appropriate amplitude produced by vibration insoles enhanced postural stability in elderly fallers and was more obvious in the AP direction.

  1. A vibratory stimulation-based inhibition system for nocturnal bruxism: a clinical report.

    PubMed

    Watanabe, T; Baba, K; Yamagata, K; Ohyama, T; Clark, G T

    2001-03-01

    For the single subject tested to date, the bruxism-contingent vibratory-feedback system for occlusal appliances effectively inhibited bruxism without inducing substantial sleep disturbance. Whether the reduction in bruxism would continue if the device no longer provided feedback and whether the force levels applied are optimal to induce suppression remain to be determined.

  2. Characterizing Vibratory Kinematics in Children and Adults with High-Speed Digital Imaging

    ERIC Educational Resources Information Center

    Patel, Rita; Dubrovskiy, Denis; Döllinger, Michael

    2014-01-01

    Purpose: The aim of this study is to quantify and identify characteristic vibratory motion in typically developing prepubertal children and young adults using high-speed digital imaging. Method: The vibrations of the vocal folds were recorded from 27 children (ages 5-9 years) and 35 adults (ages 21-45 years), with high speed at 4,000 frames per…

  3. Automated Measurement of Vocal Fold Vibratory Asymmetry from High-Speed Videoendoscopy Recordings

    ERIC Educational Resources Information Center

    Mehta, Daryush D.; Deliyski, Dimitar D.; Quatieri, Thomas F.; Hillman, Robert E.

    2011-01-01

    Purpose: In prior work, a manually derived measure of vocal fold vibratory phase asymmetry correlated to varying degrees with visual judgments made from laryngeal high-speed videoendoscopy (HSV) recordings. This investigation extended this work by establishing an automated HSV-based framework to quantify 3 categories of vocal fold vibratory…

  4. Research on the Signal Process of a Bell-Shaped Vibratory Angular Rate Gyro

    PubMed Central

    Su, Zhong; Liu, Ning; Li, Qing; Fu, Mengyin; Liu, Hong; Fan, Junfang

    2014-01-01

    A bell-shaped vibratory angular rate gyro, which is inspired by the Chinese traditional bell, is a kind of axisymmetric shell resonator gyroscope. Its sensitive element is a vibratory-like Chinese traditional bell, using a piezoelectric element on the wall of the vibrator to detect the standing wave's precession to solve the input angular rate. This work mainly studies the circuit system of a bell-shaped vibratory angular rate gyro. It discusses the process of circuit system design, analysis and experiment, in detail, providing the foundation to develop a bell-shaped vibratory angular rate gyro. Since the bell-shaped resonator's curved structure has the characteristics of large noise in the piezoelectric signal and large harmonics, this paper analyzes its working and signal detection method, then gives the whole plan of the circuit system, including the drive module, the detection module and the control loop. It also studies every part of the whole system, gives a detailed design and analysis process and proves part of the circuit system using digital simulation. At the end of the article, the test result of the circuit system shows that it can remove the disadvantages of the curved structure having large noise in the piezoelectric signal and large harmonics and is more effective at solving the input angular rate. PMID:24633451

  5. [Protozoons and arthropods found in eyes].

    PubMed

    Gökpinar, Sami; Aydenzöz, Meral

    2010-01-01

    Protozoons and arthropods can be observed commonly all around the world including our country. These parasites can cause different kind of disorders in human and animals. Some of these can cause eye disorders. The aim of this review was to present information about how the protozoons such as Toxoplasma gondii, Leishmania spp., Trypanosoma spp., Giardia spp., Acanthamoeba spp., Plasmodium spp., the arthropods insects of myiasis, Phthirus pubis, ticks, Demodex folliculorum and Linguatula serrata (under discussion as to which order it beongs) invade the eye of host leading to clinical symptoms, diagnosis and treatment.

  6. Cysteine Proteases from Bloodfeeding Arthropod Ectoparasites

    PubMed Central

    Sojka, Daniel; Francischetti, Ivo M. B.; Calvo, Eric; Kotsyfakis, Michalis

    2012-01-01

    Cysteine proteases have been discovered in various bloodfeeding ectoparasites. Here, we assemble the available information about the function of these peptidases and reveal their role in hematophagy and parasite development. While most of the data shed light on key proteolytic events that play a role in arthropod physiology, we also report on the association of cysteine proteases with arthropod vectorial capacity. With emphasis on ticks, specifically Ixodes ricinus, we finally propose a model about the contribution of cysteine peptidases to blood digestion, and how their concerted action with other tick midgut proteases leads to the absorbance of nutrients by the midgut epithelial cells. PMID:21660665

  7. Communication

    NASA Technical Reports Server (NTRS)

    Griner, James

    2010-01-01

    NASA s communication work for the UAS Command and Control area will build upon work currently being conducted under NASA Recovery Act funds. Communication portions of UAS NextGen ConOps, Stateof- the-Art assessment, and Gap Analysis. Preliminary simulations for UAS CNPC link scalability assessment. Surrogate UAS aircraft upgrades. This work will also leverage FY10 in-guide funding for communication link model development. UAS are currently managed through exceptions and are operating using DoD frequencies for line-of-sight (LOS) and satellite-based communications links, low-power LOS links in amateur bands, or unlicensed Instrument/Scientific/Medical (ISM) frequencies. None of these frequency bands are designated for Safety and Regularity of Flight. No radio-frequency (RF) spectrum has been allocated by the International Telecommunications Union (ITU) specifically for UAS command and control links, for either LOS or Beyond LOS (BLOS) communication.

  8. [Total and methyl mercury contents in arthropods].

    PubMed

    Zheng, Dong-Mei; Wang, Qi-Chao; Zhang, Zhong-Sheng; Zheng, Na; Zhang, Xiu-Wu

    2007-11-01

    We researched mercury contents in plants and arthropods collected from the river banks in mercury polluted areas. The results show that total mercury (T-Hg) and methyl mercury (Me-Hg) in Locusta migratoria manilensis and Acrida chinensis are 0.032 - 0.402 mg x kg(-1), 0.023 - 0.362 mg x kg(-1) and 0.003 - 0.031 mg x kg(-1), 0.004 - 0.015 mg x kg(-1) while the proportion of Me-Hg to T-Hg are 3.5% - 49.7% and 2.0% - 44.4%. T-Hg in arthropods is higher than that a magnitude in non-polluted areas. As primary consumers, mercury contents in Locusta migratoria manilensis and Acrida chinensis are lower than plants they eat. That is not consistent with the non-polluted areas. Paratenodera sinensis is the second consumer and there is an obvious mercury accumulation in it. For Locusta migratoria manilensis, T-Hg decreased with the body length while for Acrida chinensis that increased following a decreasing. But Me-Hg in both increased with body length. Mercury contents in tissues of arthropods are significantly different. The order is abdomen > thorax > head. Mercury and methyl mercury contents in arthropods would lead wild birds, fowls and amphibians in the ecologic risk condition.

  9. Arthropods vector grapevine trunk disease pathogens.

    PubMed

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.

  10. Virus discovery and recent insights into virus diversity in arthropods.

    PubMed

    Junglen, Sandra; Drosten, Christian

    2013-08-01

    Recent studies on virus discovery have focused mainly on mammalian and avian viruses. Arbovirology with its long tradition of ecologically oriented investigation is now catching up, with important novel insights into the diversity of arthropod-associated viruses. Recent discoveries include taxonomically outlying viruses within the families Flaviviridae, Togaviridae, and Bunyaviridae, and even novel virus families within the order Nidovirales. However, the current focusing of studies on blood-feeding arthropods has restricted the range of arthropod hosts analyzed for viruses so far. Future investigations should include species from other arthropod taxa than Ixodita, Culicidae and Phlebotominae in order to shed light on the true diversity of arthropod viruses.

  11. Trees as templates for tropical litter arthropod diversity.

    PubMed

    Donoso, David A; Johnston, Mary K; Kaspari, Michael

    2010-09-01

    Increased tree species diversity in the tropics is associated with even greater herbivore diversity, but few tests of tree effects on litter arthropod diversity exist. We studied whether tree species influence patchiness in diversity and abundance of three common soil arthropod taxa (ants, gamasid mites, and oribatid mites) in a Panama forest. The tree specialization hypothesis proposes that tree-driven habitat heterogeneity maintains litter arthropod diversity. We tested whether tree species differed in resource quality and quantity of their leaf litter and whether more heterogeneous litter supports more arthropod species. Alternatively, the abundance-extinction hypothesis states that arthropod diversity increases with arthropod abundance, which in turn tracks resource quantity (e.g., litter depth). We found little support for the hypothesis that tropical trees are templates for litter arthropod diversity. Ten tree species differed in litter depth, chemistry, and structural variability. However, the extent of specialization of invertebrates on particular tree taxa was low and the more heterogeneous litter between trees failed to support higher arthropod diversity. Furthermore, arthropod diversity did not track abundance or litter depth. The lack of association between tree species and litter arthropods suggests that factors other than tree species diversity may better explain the high arthropod diversity in tropical forests. PMID:20349247

  12. Possibility of application of small-size robots with vibratory piezoelectric actuators for inspection of physical state of surfaces

    NASA Astrophysics Data System (ADS)

    Stepanenko, D. A.; Minchenya, V. T.; Asimov, R. M.; Zimmermann, K.

    2012-05-01

    The article describes design and principle of control of small-size inspection robot with vibratory piezoelectric actuator and possibility of its application for non-destructive evaluation (NDE). Controlled movement of robot is implemented using single bimorph piezoelement by means of frequency control of electric voltage applied to piezoelement. Such scheme of control is realized as a result of application of structural asymmetry principle consisting in relative shift of resonant characteristics of robot supporting elements (legs) by means of imparting geometric asymmetry to them. During movement of robot upon inspected surface each of its legs excites in substrate elastic waves which can be registered by another robot as a consequence of piezoelectric effect reversibility. As a result group of communicating robots (robotic swarm) will be able to distribute over the surface of inspected object and perform its multiagent control. This will give possibility to accelerate and simplify inspection of large and geometrically-complex objects. Autonomy and compactness of the described robots will also make reasonable their application for NDE of hard-to-access surfaces and potentially hazardous objects.

  13. Vibratory hub load data reduction and analysis from the reverse velocity rotor wind tunnel test, phase 2B

    NASA Technical Reports Server (NTRS)

    Taylor, R. B.

    1976-01-01

    The vibratory hub loads data analysis from the reverse velocity rotor wind tunnel test is reported. Vibratory loads were obtained from the rotating hub balance and also by synthesis of generalized coordinates from the blade flap bending moments. Load trends were defined as a function of speed, rotor thrust and 2 per rev cyclic from each of the data methods. These trends were compared to determine the degree of agreement between each method and provide substantiation for the generalized coordinate approach.

  14. Vibratory response modeling and verification of a high precision optical positioning system.

    SciTech Connect

    Barraza, J.; Kuzay, T.; Royston, T. J.; Shu, D.

    1999-06-18

    A generic vibratory-response modeling program has been developed as a tool for designing high-precision optical positioning systems. Based on multibody dynamics theory, the system is modeled as rigid-body structures connected by linear elastic elements, such as complex actuators and bearings. The full dynamic properties of each element are determined experimentally or theoretically, then integrated into the program as inertial and stiffness matrices. Utilizing this program, the theoretical and experimental verification of the vibratory behavior of a double-multilayer monochromator support and positioning system is presented. Results of parametric design studies that investigate the influence of support floor dynamics and highlight important design issues are also presented. Overall, good matches between theory and experiment demonstrate the effectiveness of the program as a dynamic modeling tool.

  15. Effect of vibratory soldier alarm signals on the foraging behavior of subterranean termites (Isoptera: Rhinotermitidae).

    PubMed

    Inta, R; Evans, T A; Lai, J C S

    2009-02-01

    Termite soldiers produce a vibratory alarm signal to warn conspecific workers. This study recorded and characterized the alarm signals of Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae) and then investigated the effect of playing these recorded alarm signals on C. acinaciformis feeding activity. Foraging groups of termites were offered paired wooden blocks: either one block, continuously stimulated with a vibratory alarm signal, paired with a nonstimulated block (the alarm treatment), continuously stimulated with a pink noise signal, paired with a nonstimulated block (control for nonspecific vibrations) or two nonstimulated blocks (control for environmental effects), for 4 wk. The amount of wood eaten in the blocks stimulated by the alarm signals was significantly less than the paired nonstimulated blocks, while there seemed to be no preference in the case of the pink noise playback or control for direction. Importantly, the termites seemed not to have adapted to the recorded alarm signal over the 4-wk duration of the experiment, unlike previous studies using nonbiologically derived signals.

  16. Vibratory Loads Data from a Wind-Tunnel Test of Structurally Tailored Model Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Yeager, William T., Jr.; Hamouda, M-Nabil H.; Idol, Robert F.; Mirick, Paul H.; Singleton, Jeffrey D.; Wilbur, Matthew L.

    1991-01-01

    An experimental study was conducted in the Langley Transonic Dynamics Tunnel to investigate the use of a Bell Helicopter Textron (BHT) rotor structural tailoring concept, known as rotor nodalization, in conjunction with advanced blade aerodynamics as well as to evaluate rotor blade aerodynamic design methodologies. A 1/5-size, four-bladed bearingless hub, three sets of Mach-scaled model rotor blades were tested in forward flight from transition up to an advance ratio of 0.35. The data presented pertain only to the evaluation of the structural tailoring concept and consist of fixed-system and rotating system vibratory loads. These data will be useful for evaluating the effects of tailoring blade structural properties on fixed-system vibratory loads, as well as validating analyses used in the design of advanced rotor systems.

  17. Communications

    ERIC Educational Resources Information Center

    Bailenson, Jeremy; Buzzanell, Patrice; Deetz, Stanley; Tewksbury, David; Thompson, Robert J.; Turow, Joseph; Bichelmeyer, Barbara; Bishop, M. J.; Gayeski, Diane

    2013-01-01

    Scholars representing the field of communications were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Jeremy Bailenson, Patrice Buzzanell, Stanley Deetz, David Tewksbury, Robert J. Thompson, and…

  18. Cost-benefits of a mobile, trailer-contained, vibratory finishing decontamination facility

    SciTech Connect

    Hazelton, R.F.; McCoy, M.W.

    1982-07-01

    The objective of this study was to determine the cost-benefits of a vibratory finishing process, developed at Pacific Northwest Laboratory (PNL), which has been used successfully to remove a variety of transuranic (TRU) contaminants from surfaces of metallic and nonmetallic wastes. Once TRU contaminants are removed, the metallic and nonmetallic materials can be disposed of as low-level waste (LLW). Otherwise, these materials would be disposed of in geologic repositories. This study provides an economic evaluation of the vibratory finishing process as a possible method for use in decontaminating and decommissioning retired facilities at Hanford and oher sites. Specifically, the economic evaluation focuses on a scoping design for a mobile, trailer-contained facility, which could be used in the field in conjunction with decontamination and decommissioning operations. The capital cost of the mobile facility is estimated to be about $1.09 million including contingency and working capital. Annual operating costs, including disposal costs, are estimated to be $440,000 for processing about 6340 ft/sup 3//yr of pre-sectioned, TRU-contaminated material. Combining the operating cost and the capital cost, annualized at a discount rate of 10%, the total annual cost estimate is $602,000. The unit cost for vibratory finishing is estimated to be about $11/ft/sup 3/ of original reference glove box volume (Abrams et at. 1980). All costs are in first quarter 1981 dollars. Although not directly comparable, the unit cost for the vibratory finishing process is very favorable when considered beside typical, substantially higher, unit costs for processing and geologically disposing of TUR-contaminated materials. The probable accuracy of this study cost estimate is about +- 30%. It is therefore recommended that a detailed cost estimate be prepared if a mobile facility is designed.

  19. Effect of workpiece edge angle on radius produced by vibratory finishing

    SciTech Connect

    Gillespie, L.K.

    1981-06-01

    An investigation was conducted to determine the effect of the included edge angle upon the radius produced by vibratory finishing of small precision parts. Workpiece materials studied included phosphor bronze, 6061-T6 aluminum, and 303Se stainless steel. Edges having included angles smaller than 90/sup 0/ require finishing cycles up to 20 times longer than those having angles greater than 90/sup 0/. The effect of the edge angle can be easily calculated.

  20. Effect of changing speckles in digital holography on measurements of static and vibratory displacements.

    PubMed

    Stetson, Karl A

    2016-06-01

    This paper presents a study of speckle effects in measurements of static and vibratory displacements by digital holography. Such effects are shown to arise from changes in speckle fields that often occur between holographic recordings. These may be between recording holograms before and after static deformations or changes in sets of holograms recorded for vibration measurement. If the images do not change between such recordings, the effects appear to be limited mainly to round-off errors. PMID:27411207

  1. Mechanical Assessment of the Drep Shield Subject to Vibratory Motion and Dynamic and Static Rock Loading

    SciTech Connect

    R.C. Quittmeyer

    2005-11-16

    The purpose of the drip shield (DS) is to divert water that may seep into emplacement drifts from contacting the waste packages, and to protect the waste packages from impact or static loading from rockfall. The objective of this document is to summarize, into one location, the results of a series of supporting engineering calculations that were developed to study the effect of static and dynamic loads on the mechanical performance of the DS. The potential DS loads are a result of: (1) Potential earthquake vibratory ground motion, and resulting interaction of the DS, waste package and pallet, and drift invert; (2) Dynamic impacts of rockfall resulting from emplacement drift damage as a result of earthquake vibratory motion; and (3) Static load of the caved rock rubble that may come to rest on the DS as a result of vibratory motion or from time-dependent yielding of the rock mass surrounding the emplacement drift. The potential mechanical failure mechanisms that may result from these loads include: (1) Overturning and/or separation of the interlocking DS segments; (2) Loss of structural integrity and stability of the DS, including excessive deformation or buckling; and (3) Localized damage to the top and side-wall plates of the DS. The scope of this document is limited to summarizing results presented in the supporting calculations in the areas of analysis of the potential for DS collapse, and determination of the damaged surface area of the DS plates. New calculations are presented to determine whether or not separation of DSs occur under vibratory motion.

  2. Ecology of herbivorous arthropods in urban landscapes.

    PubMed

    Raupp, Michael J; Shrewsbury, Paula M; Herms, Daniel A

    2010-01-01

    Urbanization affects communities of herbivorous arthropods and provides opportunities for dramatic changes in their abundance and richness. Underlying these changes are creation of impervious surfaces; variation in the density, diversity, and complexity of vegetation; and maintenance practices including pulsed inputs of fertilizers, water, and pesticides. A rich body of knowledge provides theoretical underpinnings for predicting and understanding impacts of urbanization on arthropods. However, relatively few studies have elucidated mechanisms that explain patterns of insect and mite abundance and diversity across urbanization gradients. Published accounts suggest that responses to urbanization are often taxon specific, highly variable, and linked to properties of urbanization that weaken top-down and/or bottom-up processes, thereby destabilizing populations of herbivores and their natural enemies. In addition to revealing patterns in diversity and abundance of herbivores across urbanization gradients, a primary objective of this review is to examine mechanisms underlying these patterns and to identify potential hypotheses for future testing.

  3. Folsomia candida (Collembola): a "standard" soil arthropod.

    PubMed

    Fountain, Michelle T; Hopkin, Steve P

    2005-01-01

    Folsomia candida Willem 1902, a member of the order Collembola (colloquially called springtails), is a common and widespread arthropod that occurs in soils throughout the world. The species is parthenogenetic and is easy to maintain in the laboratory on a diet of granulated dry yeast. F. candida has been used as a "standard" test organism for more than 40 years for estimating the effects of pesticides and environmental pollutants on nontarget soil arthropods. However, it has also been employed as a model for the investigation of numerous other phenomena such as cold tolerance, quality as a prey item, and effects of microarthropod grazing on pathogenic fungi and mycorrhizae of plant roots. In this comprehensive review, aspects of the life history, ecology, and ecotoxicology of F. candida are covered. We focus on the recent literature, especially studies that have examined the effects of soil pollutants on reproduction in F. candida using the protocol published by the International Standards Organization in 1999.

  4. Effects of vibratory stimulation-induced kinesthetic illusions on the neural activities of patients with stroke

    PubMed Central

    Kodama, Takayuki; Nakano, Hideki; Ohsugi, Hironori; Murata, Shin

    2016-01-01

    [Purpose] This study evaluated the influence of vibratory stimulation-induced kinesthetic illusion on brain function after stroke. [Subjects] Twelve healthy individuals and 13 stroke patients without motor or sensory loss participated. [Methods] Electroencephalograms were taken at rest and during vibratory stimulation. As a neurophysiological index of brain function, we measured the μ-rhythm, which is present mainly in the kinesthetic cortex and is attenuated by movement or motor imagery and compared the data using source localization analyses in the Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA) program. [Results] At rest, μ-rhythms appeared in the sensorimotor and supplementary motor cortices in both healthy controls and stroke patients. Under vibratory stimulation, no μ-rhythm appeared in the sensorimotor cortex of either group. Moreover, in the supplementary motor area, which stores the motor imagery required for kinesthetic illusions, the μ-rhythms of patients were significantly stronger than those of the controls, although the μ-rhythms of both groups were reduced. Thus, differences in neural activity in the supplementary motor area were apparent between the subject groups. [Conclusion] Kinesthetic illusions do occur in patients with motor deficits due to stroke. The neural basis of the supplementary motor area in stroke patients may be functionally different from that found in healthy controls. PMID:27065525

  5. Research on Bell-Shaped Vibratory Angular Rate Gyro's Character of Resonator

    PubMed Central

    Su, Zhong; Fu, Mengyin; Li, Qing; Liu, Ning; Liu, Hong

    2013-01-01

    Bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a new type Coriolis vibratory gyro that was inspired by Chinese traditional clocks. The resonator fuses based on a variable thickness axisymmetric multicurved surface shell. Its characteristics can directly influence the performance of BVG. The BVG structure not only has capabilities of bearing high overload, high impact and, compared with the tuning fork, vibrating beam, shell and a comb structure, but also a higher frequency to overcome the influence of the disturbance of the exterior environment than the same sized hemispherical resonator gyroscope (HRG) and the traditional cylinder vibratory gyroscope. It can be widely applied in high dynamic low precision angular rate measurement occasions. The main work is as follows: the issue mainly analyzes the structure and basic principle, and investigates the bell-shaped resonator's mathematical model. The reasonable structural parameters are obtained from finite element analysis and an intelligent platform. Using the current solid vibration gyro theory analyzes the structural characteristics and principles of BVG. The bell-shaped resonator is simplified as a paraboloid of the revolution mechanical model, which has a fixed closed end and a free opened end. It obtains the natural frequency and vibration modes based on the theory of elasticity. The structural parameters are obtained from the orthogonal method by the research on the structural parameters of the resonator analysis. It obtains the modal analysis, stress analysis and impact analysis with the chosen parameters. Finally, using the turntable experiment verifies the gyro effect of the BVG. PMID:23575033

  6. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Sanchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego; Vásquez, Rafael E.

    2016-08-01

    Fault diagnosis is an effective tool to guarantee safe operations in gearboxes. Acoustic and vibratory measurements in such mechanical devices are all sensitive to the existence of faults. This work addresses the use of a deep random forest fusion (DRFF) technique to improve fault diagnosis performance for gearboxes by using measurements of an acoustic emission (AE) sensor and an accelerometer that are used for monitoring the gearbox condition simultaneously. The statistical parameters of the wavelet packet transform (WPT) are first produced from the AE signal and the vibratory signal, respectively. Two deep Boltzmann machines (DBMs) are then developed for deep representations of the WPT statistical parameters. A random forest is finally suggested to fuse the outputs of the two DBMs as the integrated DRFF model. The proposed DRFF technique is evaluated using gearbox fault diagnosis experiments under different operational conditions, and achieves 97.68% of the classification rate for 11 different condition patterns. Compared to other peer algorithms, the addressed method exhibits the best performance. The results indicate that the deep learning fusion of acoustic and vibratory signals may improve fault diagnosis capabilities for gearboxes.

  7. Research on bell-shaped vibratory angular rate gyro's character of resonator.

    PubMed

    Su, Zhong; Fu, Mengyin; Li, Qing; Liu, Ning; Liu, Hong

    2013-01-01

    Bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a new type Coriolis vibratory gyro that was inspired by Chinese traditional clocks. The resonator fuses based on a variable thickness axisymmetric multicurved surface shell. Its characteristics can directly influence the performance of BVG. The BVG structure not only has capabilities of bearing high overload, high impact and, compared with the tuning fork, vibrating beam, shell and a comb structure, but also a higher frequency to overcome the influence of the disturbance of the exterior environment than the same sized hemispherical resonator gyroscope (HRG) and the traditional cylinder vibratory gyroscope. It can be widely applied in high dynamic low precision angular rate measurement occasions. The main work is as follows: the issue mainly analyzes the structure and basic principle, and investigates the bell-shaped resonator's mathematical model. The reasonable structural parameters are obtained from finite element analysis and an intelligent platform. Using the current solid vibration gyro theory analyzes the structural characteristics and principles of BVG. The bell-shaped resonator is simplified as a paraboloid of the revolution mechanical model, which has a fixed closed end and a free opened end. It obtains the natural frequency and vibration modes based on the theory of elasticity. The structural parameters are obtained from the orthogonal method by the research on the structural parameters of the resonator analysis. It obtains the modal analysis, stress analysis and impact analysis with the chosen parameters. Finally, using the turntable experiment verifies the gyro effect of the BVG. PMID:23575033

  8. Sexual behaviour: rapid speciation in an arthropod.

    PubMed

    Mendelson, Tamra C; Shaw, Kerry L

    2005-01-27

    Theory predicts that sexual behaviour in animals can evolve rapidly, accelerating the rate of species formation. Here we estimate the rate of speciation in Laupala, a group of forest-dwelling Hawaiian crickets that is characterized primarily through differences in male courtship song. We find that Laupala has the highest rate of speciation so far recorded in arthropods, supporting the idea that divergence in courtship or sexual behaviour drives rapid speciation in animals.

  9. Arthropods in amber from the Triassic Period.

    PubMed

    Schmidt, Alexander R; Jancke, Saskia; Lindquist, Evert E; Ragazzi, Eugenio; Roghi, Guido; Nascimbene, Paul C; Schmidt, Kerstin; Wappler, Torsten; Grimaldi, David A

    2012-09-11

    The occurrence of arthropods in amber exclusively from the Cretaceous and Cenozoic is widely regarded to be a result of the production and preservation of large amounts of tree resin beginning ca. 130 million years (Ma) ago. Abundant 230 million-year-old amber from the Late Triassic (Carnian) of northeastern Italy has previously yielded myriad microorganisms, but we report here that it also preserves arthropods some 100 Ma older than the earliest prior records in amber. The Triassic specimens are a nematoceran fly (Diptera) and two disparate species of mites, Triasacarus fedelei gen. et sp. nov., and Ampezzoa triassica gen. et sp. nov. These mites are the oldest definitive fossils of a group, the Eriophyoidea, which includes the gall mites and comprises at least 3,500 Recent species, 97% of which feed on angiosperms and represents one of the most specialized lineages of phytophagous arthropods. Antiquity of the gall mites in much their extant form was unexpected, particularly with the Triassic species already having many of their present-day features (such as only two pairs of legs); further, it establishes conifer feeding as an ancestral trait. Feeding by the fossil mites may have contributed to the formation of the amber droplets, but we find that the abundance of amber during the Carnian (ca. 230 Ma) is globally anomalous for the pre-Cretaceous and may, alternatively, be related to paleoclimate. Further recovery of arthropods in Carnian-aged amber is promising and will have profound implications for understanding the evolution of terrestrial members of the most diverse phylum of organisms.

  10. Arthropods in amber from the Triassic Period

    NASA Astrophysics Data System (ADS)

    Schmidt, Alexander R.; Jancke, Saskia; Lindquist, Evert E.; Ragazzi, Eugenio; Roghi, Guido; Nascimbene, Paul C.; Schmidt, Kerstin; Wappler, Torsten; Grimaldi, David A.

    2012-09-01

    The occurrence of arthropods in amber exclusively from the Cretaceous and Cenozoic is widely regarded to be a result of the production and preservation of large amounts of tree resin beginning ca. 130 million years (Ma) ago. Abundant 230 million-year-old amber from the Late Triassic (Carnian) of northeastern Italy has previously yielded myriad microorganisms, but we report here that it also preserves arthropods some 100 Ma older than the earliest prior records in amber. The Triassic specimens are a nematoceran fly (Diptera) and two disparate species of mites, Triasacarus fedelei gen. et sp. nov., and Ampezzoa triassica gen. et sp. nov. These mites are the oldest definitive fossils of a group, the Eriophyoidea, which includes the gall mites and comprises at least 3,500 Recent species, 97% of which feed on angiosperms and represents one of the most specialized lineages of phytophagous arthropods. Antiquity of the gall mites in much their extant form was unexpected, particularly with the Triassic species already having many of their present-day features (such as only two pairs of legs); further, it establishes conifer feeding as an ancestral trait. Feeding by the fossil mites may have contributed to the formation of the amber droplets, but we find that the abundance of amber during the Carnian (ca. 230 Ma) is globally anomalous for the pre-Cretaceous and may, alternatively, be related to paleoclimate. Further recovery of arthropods in Carnian-aged amber is promising and will have profound implications for understanding the evolution of terrestrial members of the most diverse phylum of organisms.

  11. Arthropods in amber from the Triassic Period.

    PubMed

    Schmidt, Alexander R; Jancke, Saskia; Lindquist, Evert E; Ragazzi, Eugenio; Roghi, Guido; Nascimbene, Paul C; Schmidt, Kerstin; Wappler, Torsten; Grimaldi, David A

    2012-09-11

    The occurrence of arthropods in amber exclusively from the Cretaceous and Cenozoic is widely regarded to be a result of the production and preservation of large amounts of tree resin beginning ca. 130 million years (Ma) ago. Abundant 230 million-year-old amber from the Late Triassic (Carnian) of northeastern Italy has previously yielded myriad microorganisms, but we report here that it also preserves arthropods some 100 Ma older than the earliest prior records in amber. The Triassic specimens are a nematoceran fly (Diptera) and two disparate species of mites, Triasacarus fedelei gen. et sp. nov., and Ampezzoa triassica gen. et sp. nov. These mites are the oldest definitive fossils of a group, the Eriophyoidea, which includes the gall mites and comprises at least 3,500 Recent species, 97% of which feed on angiosperms and represents one of the most specialized lineages of phytophagous arthropods. Antiquity of the gall mites in much their extant form was unexpected, particularly with the Triassic species already having many of their present-day features (such as only two pairs of legs); further, it establishes conifer feeding as an ancestral trait. Feeding by the fossil mites may have contributed to the formation of the amber droplets, but we find that the abundance of amber during the Carnian (ca. 230 Ma) is globally anomalous for the pre-Cretaceous and may, alternatively, be related to paleoclimate. Further recovery of arthropods in Carnian-aged amber is promising and will have profound implications for understanding the evolution of terrestrial members of the most diverse phylum of organisms. PMID:22927387

  12. Arthropod community organization and development in pear

    NASA Astrophysics Data System (ADS)

    Gut, Larry J.; Liss, W. J.; Westigard, P. H.

    1991-01-01

    Arthropod communities in pear are conceptualized as hierarchically organized systems in which several levels of organization or subsystems can be recognized between the population level and the community as a whole. An individual pear tree is taken to be the community habitat with arthropod subcommunities developing on leaf, fruit, and wood subcommunity habitats. Each subcommunity is composed of trophically organized systems of populations. Each system of populations is comprised of a functional group or guild of phytophagous arthropods that use the habitat primarily for feeding but also for overwintering or egg deposition, and associated groups of specialized predators, parasitoids, and hyperparasitoids. Several species move from one subcommunity to another during the course of community development and thus integrate community subsystems. Community development or change in organization through time is conceptualized as being jointly determined by the development of the habitat and the organization of the species pool. The influence of habitat development on community development within a species pool is emphasized in this research. Seasonal habitat development is expressed as change in the kinds and biomasses of developmental states of wood, leaf, and fruit subcommunity habitats. These changes are accompanied by changes in the kinds, biomasses, and distributions of associated community subsystems.

  13. How Did Arthropod Sesquiterpenoids and Ecdysteroids Arise? Comparison of Hormonal Pathway Genes in Noninsect Arthropod Genomes.

    PubMed

    Qu, Zhe; Kenny, Nathan James; Lam, Hon Ming; Chan, Ting Fung; Chu, Ka Hou; Bendena, William G; Tobe, Stephen S; Hui, Jerome Ho Lam

    2015-06-25

    The phylum Arthropoda contains the largest number of described living animal species, with insects and crustaceans dominating the terrestrial and aquatic environments, respectively. Their successful radiations have long been linked to their rigid exoskeleton in conjunction with their specialized endocrine systems. In order to understand how hormones can contribute to the evolution of these animals, here, we have categorized the sesquiterpenoid and ecdysteroid pathway genes in the noninsect arthropod genomes, which are known to play important roles in the regulation of molting and metamorphosis in insects. In our analyses, the majority of gene homologs involved in the biosynthetic, degradative, and signaling pathways of sesquiterpenoids and ecdysteroids can be identified, implying these two hormonal systems were present in the last common ancestor of arthropods. Moreover, we found that the "Broad-Complex" was specifically gained in the Pancrustacea, and the innovation of juvenile hormone (JH) in the insect linage correlates with the gain of the JH epoxidase (CYP15A1/C1) and the key residue changes in the binding domain of JH receptor ("Methoprene-tolerant"). Furthermore, the gain of "Phantom" differentiates chelicerates from the other arthropods in using ponasterone A rather than 20-hydroxyecdysone as molting hormone. This study establishes a comprehensive framework for interpreting the evolution of these vital hormonal pathways in these most successful animals, the arthropods, for the first time.

  14. How Did Arthropod Sesquiterpenoids and Ecdysteroids Arise? Comparison of Hormonal Pathway Genes in Noninsect Arthropod Genomes

    PubMed Central

    Qu, Zhe; Kenny, Nathan James; Lam, Hon Ming; Chan, Ting Fung; Chu, Ka Hou; Bendena, William G.; Tobe, Stephen S.; Hui, Jerome Ho Lam

    2015-01-01

    The phylum Arthropoda contains the largest number of described living animal species, with insects and crustaceans dominating the terrestrial and aquatic environments, respectively. Their successful radiations have long been linked to their rigid exoskeleton in conjunction with their specialized endocrine systems. In order to understand how hormones can contribute to the evolution of these animals, here, we have categorized the sesquiterpenoid and ecdysteroid pathway genes in the noninsect arthropod genomes, which are known to play important roles in the regulation of molting and metamorphosis in insects. In our analyses, the majority of gene homologs involved in the biosynthetic, degradative, and signaling pathways of sesquiterpenoids and ecdysteroids can be identified, implying these two hormonal systems were present in the last common ancestor of arthropods. Moreover, we found that the “Broad-Complex” was specifically gained in the Pancrustacea, and the innovation of juvenile hormone (JH) in the insect linage correlates with the gain of the JH epoxidase (CYP15A1/C1) and the key residue changes in the binding domain of JH receptor (“Methoprene-tolerant”). Furthermore, the gain of “Phantom” differentiates chelicerates from the other arthropods in using ponasterone A rather than 20-hydroxyecdysone as molting hormone. This study establishes a comprehensive framework for interpreting the evolution of these vital hormonal pathways in these most successful animals, the arthropods, for the first time. PMID:26112967

  15. Numerical investigation of soil plugging effect inside sleeve of cast-in-place piles driven by vibratory hammers in clays.

    PubMed

    Xiao, Yong Jie; Chen, Fu Quan; Dong, Yi Zhi

    2016-01-01

    During driving sleeve of cast-in-place piles by vibratory hammers, soils were squeezed into sleeve and then soil plugging was formed. The physic-mechanical properties of the soil plug have direct influence on the load transmission between the sleeve wall and soil plug. Nevertheless, the researches on this issue are insufficient. In this study, finite element and infinite element coupling model was introduced, through the commercial code ABAQUS, to simulate the full penetration process of the sleeve driven from the ground surface to the desired depth by applying vibratory hammers. The research results indicated that the cyclic shearing action decreases both in soil shear strength and in granular cementation force when the sleeve is driven by vibratory hammers, which leads to a partially plugged mode of the soil plug inside the sleeve. Accordingly, the penetration resistance of sleeve driven by vibratory hammers is the smallest compared to those by other installation methods. When driving the sleeve, the annular soil arches forming in the soil plug at sleeve end induce a significant rise in the internal shaft resistance. Moreover, the influence of vibration frequencies, sleeve diameters, and soil layer properties on the soil plug was investigated in detail, and at the same time improved formulas were brought forward to describe the soil plug resistance inside vibratory driven sleeve. PMID:27386238

  16. Biobased lactams as novel arthropod repellents.

    PubMed

    Chauhan, Kamlesh R; Khanna, Hemant; Bathini, Nagendra Babu; Le, Thanh C; Grieco, John

    2014-12-01

    Enanatiomerically pure 4aS,7S,7aR and 4aS,7S,7aS-nepetalactams and their analogs have been prepared in just two steps from 4aS,7S,7aR and 4aS,7S,7aS-nepetalactones, major components of catnip oil. Lactams or cyclic amides from iridoid monoterpenes are generated and being evaluated as a new class of compounds as arthropod deterrents against disease vectors. PMID:25632454

  17. Fundamental understanding, prediction and validation of rotor vibratory loads in steady-level flight

    NASA Astrophysics Data System (ADS)

    Datta, Anubhav

    This work isolates the physics of aerodynamics and structural dynamics from the helicopter rotor aeromechanics problem, investigates them separately, identifies the prediction deficiencies in each, improves upon them, and couples them back together. The objective is to develop a comprehensive analysis capability for accurate and consistent prediction of rotor vibratory loads in steady level flight. The rotor vibratory loads are the dominant source of helicopter vibration. There are two critical vibration regimes for helicopters in steady level flight: (1) low speed transition and (2) high speed forward flight. The mechanism of rotor vibration at low speed transition is well understood---inter-twinning of blade tip vortices below the rotor disk. The mechanism of rotor vibration at high speed is not clear. The focus in this research is on high speed flight. The goal is to understand the key mechanisms involved and accurately model them. Measured lift, chord force, pitching moment and damper force from the UH-60A Flight Test Program are used to predict, validate and refine the rotor structural dynamics. The prediction errors originate entirely from structural modeling. Once validated, the resultant blade deformations are used to predict and validate aerodynamics. Air loads are calculated using a table look up based unsteady lifting-line model and compared with predictions from a 3-dimensional unsteady CFD model. Both Navier-Stokes and Euler predictions are studied. (Abstract shortened by UMI.) The 3D Navier-Stokes CFD analysis is then consistently coupled with a rotor comprehensive analysis to improve prediction of rotor vibratory loads at high speed. The CFD-comprehensive code coupling is achieved using a loose coupling methodology. The CFD analysis significantly improves section pitching moment prediction near the blade tip, because it captures the steady and unsteady 3D transonic effects. Accurate pitching moments drive elastic twist deformations which together

  18. An examination of the relations between rotor vibratory loads and airframe vibrations

    NASA Technical Reports Server (NTRS)

    Niebanck, C. F.

    1985-01-01

    Harmonic rotor hub loads and airframe interactions in steady flight are reviewed, with regard to the objective of achieving lower airframe vibration by modifying blade root loads. Flight test and wind tunnel data are reviewed, along with sample fuselage response data. Trends which could provide a generalized approach to the above objective are found to be very limited. Recent analytical and corresponding experimental blade tuning modifications are reviewed and compared. Rotor vibratory load modification and substantial vibration changes were achieved over a wide range of rotor operating conditions.

  19. Process for forming integral edge seals in porous gas distribution plates utilizing a vibratory means

    NASA Technical Reports Server (NTRS)

    Feigenbaum, Haim (Inventor); Pudick, Sheldon (Inventor)

    1988-01-01

    A process for forming an integral edge seal in a gas distribution plate for use in a fuel cell. A seal layer is formed along an edge of a porous gas distribution plate by impregnating the pores in the layer with a material adapted to provide a seal which is operative dry or when wetted by an electrolyte of a fuel cell. Vibratory energy is supplied to the sealing material during the step of impregnating the pores to provide a more uniform seal throughout the cross section of the plate.

  20. Penile vibratory stimulation and electroejaculation in the treatment of ejaculatory dysfunction.

    PubMed

    Sønksen, Jens; Ohl, Dana A

    2002-12-01

    The purpose of this review is to present the current understanding of penile vibratory stimulation (PVS) and electroejaculation (EEJ) procedures and its clinical use in men with ejaculatory dysfunction. Unfortunately, the record of treating such individuals has been quite poor, but within recent years development and refinement of PVS and EEJ in men with spinal cord injury (SCI) has significantly enhanced the prospects for treatment of ejaculatory dysfunction. The majority of spinal cord injured men are not able to produce antegrade ejaculation by masturbation or sexual stimulation. However, approximately 80% of all spinal cord injured men with an intact ejaculatory reflex arc (above T10) can obtain antegrade ejaculation with PVS. Electroejaculation may be successful in obtaining ejaculate from men with all types of SCI, including men who do not have major components of the ejaculatory reflex arc. Because vibratory stimulation is very simple in use, non-invasive, it does not require anaesthesia and is preferred by the patients when compared with EEJ, PVS is recommended to be the first choice of treatment in spinal cord injured men. Furthermore, EEJ has been successfully used to induce ejaculation in men with multiple sclerosis and diabetic neuropathy. Any other conditions which affect the ejaculatory mechanism of the central and/or peripheral nervous system including surgical nerve injury may be treated successfully with EEJ. Finally, for sperm retrieval and sperm cryopreservation before intensive anticancer therapy in pubertal boys, PVS and EEJ have been successfully performed in patients who failed to obtain ejaculation by masturbation. Nearly all data concerning semen characteristics in men with ejaculatory dysfuntion originate from spinal cord injured men. Semen analyses demonstrate low sperm motility rates in the majority of spinal cord injured men. The data give evidence of a decline in spermatogenesis and motility of ejaculated spermatozoa shortly after (few

  1. Administering and detecting protein marks on arthropods for dispersal research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring arthropod movement is often required to better understand their population dynamics, dispersal patterns, host plant preferences, and other ecological interactions. Arthropods are usually tracked in nature by tagging them with a unique mark and then re-collecting them over time and space t...

  2. Hematopoiesis and hematopoietic organs in arthropods.

    PubMed

    Grigorian, Melina; Hartenstein, Volker

    2013-03-01

    Hemocytes (blood cells) are motile cells that move throughout the extracellular space and that exist in all clades of the animal kingdom. Hemocytes play an important role in shaping the extracellular environment and in the immune response. Developmentally, hemocytes are closely related to the epithelial cells lining the vascular system (endothelia) and the body cavity (mesothelia). In vertebrates and insects, common progenitors, called hemangioblasts, give rise to the endothelia and blood cells. In the adult animal, many differentiated hemocytes seem to retain the ability to proliferate; however, in most cases investigated closely, the bulk of hemocyte proliferation takes place in specialized hematopoietic organs. Hematopoietic organs provide an environment where undifferentiated blood stem cells are able to self-renew, and at the same time generate offspring that differentiate into different blood cell types. Hematopoiesis in vertebrates, taking place in the bone marrow, has been subject to intensive research by immunologists and stem cell biologists. Much less is known about blood cell formation in invertebrate animals. In this review, we will survey structural and functional properties of invertebrate hematopoietic organs, with a main focus on insects and other arthropod taxa. We will then discuss similarities, at the molecular and structural level, that are apparent when comparing the development of blood cells in hematopoietic organs of vertebrates and arthropods. Our comparative review is intended to elucidate aspects of the biology of blood stem cells that are more easily missed when focusing on one or a few model species.

  3. A molecular palaeobiological exploration of arthropod terrestrialization.

    PubMed

    Lozano-Fernandez, Jesus; Carton, Robert; Tanner, Alastair R; Puttick, Mark N; Blaxter, Mark; Vinther, Jakob; Olesen, Jørgen; Giribet, Gonzalo; Edgecombe, Gregory D; Pisani, Davide

    2016-07-19

    Understanding animal terrestrialization, the process through which animals colonized the land, is crucial to clarify extant biodiversity and biological adaptation. Arthropoda (insects, spiders, centipedes and their allies) represent the largest majority of terrestrial biodiversity. Here we implemented a molecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the deepest history of the terrestrial arthropods. We focused on the three independent, Palaeozoic arthropod terrestrialization events (those of Myriapoda, Hexapoda and Arachnida) and showed that a marine route to the colonization of land is the most likely scenario. Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record, Myriapoda are inferred to have colonized land earlier, substantially predating trace or body fossil evidence. An estimated origin of myriapods by the Early Cambrian precedes the appearance of embryophytes and perhaps even terrestrial fungi, raising the possibility that terrestrialization had independent origins in crown-group myriapod lineages, consistent with morphological arguments for convergence in tracheal systems.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325830

  4. A Silurian short-great-appendage arthropod

    PubMed Central

    Siveter, Derek J.; Briggs, Derek E. G.; Siveter, David J.; Sutton, Mark D.; Legg, David; Joomun, Sarah

    2014-01-01

    A new arthropod, Enalikter aphson gen. et sp. nov., is described from the Silurian (Wenlock Series) Herefordshire Lagerstätte of the UK. It belongs to the Megacheira (=short-great-appendage group), which is recognized here, for the first time, in strata younger than mid-Cambrian age. Discovery of this new Silurian taxon allows us to identify a Devonian megacheiran representative, Bundenbachiellus giganteus from the Hunsrück Slate of Germany. The phylogenetic position of megacheirans is controversial: they have been interpreted as stem chelicerates, or stem euarthropods, but when Enalikter and Bundenbachiellus are added to the most comprehensive morphological database available, a stem euarthropod position is supported. Enalikter represents the only fully three-dimensionally preserved stem-group euarthropod, it falls in the sister clade to the crown-group euarthropods, and it provides new insights surrounding the origin and early evolution of the euarthropods. Recognition of Enalikter and Bundenbachiellus as megacheirans indicates that this major arthropod group survived for nearly 100 Myr beyond the mid-Cambrian. PMID:24452026

  5. A molecular palaeobiological exploration of arthropod terrestrialization

    PubMed Central

    Carton, Robert; Edgecombe, Gregory D.

    2016-01-01

    Understanding animal terrestrialization, the process through which animals colonized the land, is crucial to clarify extant biodiversity and biological adaptation. Arthropoda (insects, spiders, centipedes and their allies) represent the largest majority of terrestrial biodiversity. Here we implemented a molecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the deepest history of the terrestrial arthropods. We focused on the three independent, Palaeozoic arthropod terrestrialization events (those of Myriapoda, Hexapoda and Arachnida) and showed that a marine route to the colonization of land is the most likely scenario. Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record, Myriapoda are inferred to have colonized land earlier, substantially predating trace or body fossil evidence. An estimated origin of myriapods by the Early Cambrian precedes the appearance of embryophytes and perhaps even terrestrial fungi, raising the possibility that terrestrialization had independent origins in crown-group myriapod lineages, consistent with morphological arguments for convergence in tracheal systems. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325830

  6. Investigation on Multi-Physics Simulation-Based Virtual Machining System for Vibratory Finishing of Integrally Bladed Rotors (IBRS)

    NASA Astrophysics Data System (ADS)

    Achiamah-Ampomah, N.; Cheng, Kai

    2016-02-01

    An investigation was carried out to improve the slow surface finishing times of integrally bladed rotors (IBRs) in the aerospace industry. Traditionally they are finished by hand, or more currently by abrasive flow machining. The use of a vibratory finishing technique to improve process times has been suggested; however as a largely empirical process, very few studies have been done to improve and optimize the cycle times, showing that critical and ongoing research is still needed in this area. An extensive review of the literature was carried out, and the findings used to identify the key parameters and model equations which govern the vibratory process. Recommendations were made towards a multi-physics-based simulation model, as well as projections made for the future of vibratory finishing and optimization of surface finishes and cycle times.

  7. Effects of large herbivores on grassland arthropod diversity.

    PubMed

    van Klink, R; van der Plas, F; van Noordwijk, C G E Toos; WallisDeVries, M F; Olff, H

    2015-05-01

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141 studies on this topic of which 24 simultaneously investigated plant and arthropod diversity. Using the data from these 24 studies, we compared the responses of plant and arthropod diversity to an increase in grazing intensity. This quantitative assessment showed no overall significant effect of increasing grazing intensity on plant diversity, while arthropod diversity was generally negatively affected. To understand these negative effects, we explored the mechanisms by which large herbivores affect arthropod communities: direct effects, changes in vegetation structure, changes in plant community composition, changes in soil conditions, and cascading effects within the arthropod interaction web. We identify three main factors determining the effects of large herbivores on arthropod diversity: (i) unintentional predation and increased disturbance, (ii) decreases in total resource abundance for arthropods (biomass) and (iii) changes in plant diversity, vegetation structure and abiotic conditions. In general, heterogeneity in vegetation structure and abiotic conditions increases at intermediate grazing intensity, but declines at both low and high grazing intensity. We conclude that large herbivores can only increase arthropod diversity if they cause an increase in (a)biotic heterogeneity, and then only if this increase is large enough to compensate for the loss of total resource abundance and the increased mortality rate. This is expected to occur only at low herbivore densities or with spatio-temporal variation in herbivore densities. As we demonstrate that arthropod diversity is often more negatively affected by grazing than plant diversity, we strongly recommend considering the

  8. Effects of large herbivores on grassland arthropod diversity

    PubMed Central

    van Klink, R; van der Plas, F; van Noordwijk, C G E (Toos); WallisDeVries, M F; Olff, H

    2015-01-01

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141 studies on this topic of which 24 simultaneously investigated plant and arthropod diversity. Using the data from these 24 studies, we compared the responses of plant and arthropod diversity to an increase in grazing intensity. This quantitative assessment showed no overall significant effect of increasing grazing intensity on plant diversity, while arthropod diversity was generally negatively affected. To understand these negative effects, we explored the mechanisms by which large herbivores affect arthropod communities: direct effects, changes in vegetation structure, changes in plant community composition, changes in soil conditions, and cascading effects within the arthropod interaction web. We identify three main factors determining the effects of large herbivores on arthropod diversity: (i) unintentional predation and increased disturbance, (ii) decreases in total resource abundance for arthropods (biomass) and (iii) changes in plant diversity, vegetation structure and abiotic conditions. In general, heterogeneity in vegetation structure and abiotic conditions increases at intermediate grazing intensity, but declines at both low and high grazing intensity. We conclude that large herbivores can only increase arthropod diversity if they cause an increase in (a)biotic heterogeneity, and then only if this increase is large enough to compensate for the loss of total resource abundance and the increased mortality rate. This is expected to occur only at low herbivore densities or with spatio-temporal variation in herbivore densities. As we demonstrate that arthropod diversity is often more negatively affected by grazing than plant diversity, we strongly recommend considering the

  9. [Community diversity of soil arthropods in forest-steppe ecotone].

    PubMed

    Zhu, Xin-yu; Gao, Bao-ji; Bi, Hua-ming; Wang, Wen-xun; Yuan, Sheng-liang; Hu, Yun-chuan

    2007-11-01

    An investigation on the community diversity of soil arthropods in the forest-steppe ecotone of north Hebei Province was conducted. A total of 10 420 individuals of soil arthropods were collected, which belonged to 25 groups, 6 classes and 24 orders. Acarina and Collembola were the dominant orders, and there were 8 groups of frequent orders and 15 groups of rare orders. The diversity index (H'), DG index, and evenness of soil arthropod community were relatively higher in forest zone, but lower in meadow-steppe zone. Soil pH had a higher degree of interconnection with the numbers of soil arthropod groups, while soil temperature and moisture content had a higher degree of interconnection with the numbers of soil arthropod individuals.

  10. Ecotoxicological study of insecticide effects on arthropods in common bean.

    PubMed

    de Barros, Emerson Cristi; Ventura, Hudson Vaner; Gontijo, Pablo Costa; Pereira, Renata Ramos; Picanço, Marcelo Coutinho

    2015-01-01

    Arthropods are an important group of macroorganisms that work to maintain ecosystem health. Despite the agricultural benefits of chemical control against arthropod pests, insecticides can cause environmental damage. We examined the effects of one and two applications of the insecticides chlorfenapyr (0.18 liters a.i. ha-1) and methamidophos (0.45 liters a.i. ha-1), both independently and in combination, on arthropods in plots of common bean. The experiment was repeated for two growing seasons. Principal response curve, richness estimator, and Shannon-Wiener diversity index analyses were performed. The insecticides generally affected the frequency, richness, diversity, and relative abundance of the arthropods. In addition, the arthropods did not experience recovery after the insecticide applications. The results suggest that the insecticide impacts were sufficiently drastic to eliminate many taxa from the studied common bean plots.

  11. Ecotoxicological Study of Insecticide Effects on Arthropods in Common Bean

    PubMed Central

    de Barros, Emerson Cristi; Ventura, Hudson Vaner; Gontijo, Pablo Costa; Pereira, Renata Ramos; Picanço, Marcelo Coutinho

    2015-01-01

    Arthropods are an important group of macroorganisms that work to maintain ecosystem health. Despite the agricultural benefits of chemical control against arthropod pests, insecticides can cause environmental damage. We examined the effects of one and two applications of the insecticides chlorfenapyr (0.18 liters a.i. ha-1) and methamidophos (0.45 liters a.i. ha-1), both independently and in combination, on arthropods in plots of common bean. The experiment was repeated for two growing seasons. Principal response curve, richness estimator, and Shannon–Wiener diversity index analyses were performed. The insecticides generally affected the frequency, richness, diversity, and relative abundance of the arthropods. In addition, the arthropods did not experience recovery after the insecticide applications. The results suggest that the insecticide impacts were sufficiently drastic to eliminate many taxa from the studied common bean plots. PMID:25700537

  12. Evaluation of the vibratory feeder method for assessment of powder flow properties.

    PubMed

    Bhattachar, Shobha N; Hedden, David B; Olsofsky, Angela M; Qu, Xianggui; Hsieh, Wen-Yaw; Canter, Kelly G

    2004-01-28

    The flow properties of pharmaceutical powders and blends used in solid oral dosage forms are an important consideration during dosage form development. The vibratory feeder method, a flow measurement technique that quantifies avalanche flow, has been adapted for measurement of the flow properties of common pharmaceutical powders used in solid oral dosage forms. The flow properties of 17 different powders were measured with the instrument, and the results are reported as a powder flow index (PFI). The PFI trends of the powders correlate well with flow properties reported in the literature. The flow properties of the powders were also measured with a commercially available avalanche instrument, the Aero-Flow, and the results were reported as the mean time to avalanche (MTA). Since the two instruments analyze the avalanche by different algorithms, the results were compared with nonparametric statistical evaluation of ranked data, and they were found to be in excellent agreement. A recommended procedure for measurement of powder flow with the vibratory feeder is presented.

  13. Effect of vibratory soldier alarm signals on the foraging behavior of subterranean termites (Isoptera: Rhinotermitidae).

    PubMed

    Inta, R; Evans, T A; Lai, J C S

    2009-02-01

    Termite soldiers produce a vibratory alarm signal to warn conspecific workers. This study recorded and characterized the alarm signals of Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae) and then investigated the effect of playing these recorded alarm signals on C. acinaciformis feeding activity. Foraging groups of termites were offered paired wooden blocks: either one block, continuously stimulated with a vibratory alarm signal, paired with a nonstimulated block (the alarm treatment), continuously stimulated with a pink noise signal, paired with a nonstimulated block (control for nonspecific vibrations) or two nonstimulated blocks (control for environmental effects), for 4 wk. The amount of wood eaten in the blocks stimulated by the alarm signals was significantly less than the paired nonstimulated blocks, while there seemed to be no preference in the case of the pink noise playback or control for direction. Importantly, the termites seemed not to have adapted to the recorded alarm signal over the 4-wk duration of the experiment, unlike previous studies using nonbiologically derived signals. PMID:19253626

  14. Structural-acoustic coupling effects on the non-vacuum packaging vibratory cylinder gyroscope.

    PubMed

    Xi, Xiang; Wu, Xuezhong; Wu, Yulie; Zhang, Yongmeng; Tao, Yi; Zheng, Yu; Xiao, Dingbang

    2013-01-01

    The resonant shells of vibratory cylinder gyroscopes are commonly packaged in metallic caps. In order to lower the production cost, a portion of vibratory cylinder gyroscopes do not employ vacuum packaging. However, under non-vacuum packaging conditions there can be internal acoustic noise leading to considerable acoustic pressure which is exerted on the resonant shell. Based on the theory of the structural-acoustic coupling, the dynamical behavior of the resonant shell under acoustic pressure is presented in this paper. A finite element (FE) model is introduced to quantitatively analyze the effect of the structural-acoustic coupling. Several main factors, such as sealing cap sizes and degree of vacuum which directly affect the vibration of the resonant shell, are studied. The results indicate that the vibration amplitude and the operating frequency of the resonant shell will be changed when the effect of structural-acoustic coupling is taken into account. In addition, an experiment was set up to study the effect of structural-acoustic coupling on the sensitivity of the gyroscope. A 32.4 mV/°/s increase of the scale factor and a 6.2 Hz variation of the operating frequency were observed when the radial gap size between the resonant shell and the sealing cap was changed from 0.5 mm to 20 mm.

  15. Vibratory Loads Reduction Testing of the NASA/Army/MIT Active Twist Rotor

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew; Mirick, Paul H.; Yeager, William T., Jr.; Langston, Chester W.; Cesnik, Carlos E. S.; Shin, SangJoon

    2001-01-01

    Recent studies have indicated that controlled strain-induced blade twisting can be attained using piezoelectric active fiber composite technology, and that such advancement may provide a mechanism for reduced rotorcraft vibrations and increased rotor performance. In order to validate these findings experimentally, a cooperative effort between the NASA Langley Research Center, the Army Research Laboratory, and the MIT Active Materials and Structures Laboratory has been developed. As a result of this collaboration a four-bladed, aeroelastically-scaled, active-twist model rotor has been designed and fabricated for testing in the heavy gas test medium of the NASA Langley Transonic Dynamics Tunnel. Initial wind tunnel testing has been conducted to assess the impact of active blade twist on both fixed- and rotating-system vibratory loads in forward flight. The active twist control was found to have a pronounced effect on all system loads and was shown to generally offer reductions in fixed-system loads of 60% to 95%, depending upon flight condition, with 1.1 to 1.4 of dynamic blade twist observed. A summary of the systems developed and the vibratory loads reduction results obtained are presented in this paper.

  16. Reliability of automatic vibratory equipment for ultrasonic strain measurement of the median nerve.

    PubMed

    Yoshii, Yuichi; Ishii, Tomoo; Etou, Fumihiko; Sakai, Shinsuke; Tanaka, Toshikazu; Ochiai, Naoyuki

    2014-10-01

    The objective of this study was to test the reliability of ultrasonic median nerve strain measurements using automatic vibratory equipment. Strain ratios of the median nerve in the carpal tunnel model and the reference coupler were measured at three different settings of the transducer: 0, +2 and +4 mm (+ = compressing the model down 2-4 mm initially). After measurement of the carpal tunnel model, a +4-mm setting was chosen for in vivo measurement. The median nerve strains of 30 wrists were measured by two examiners using the equipment. Intra- and inter-examiner correlation coefficients (CCs) for the strain ratios were calculated. The closest ratio was found in the +4-mm placement (strain ratio: 0.73, Young's modulus ratio: 0.79). The intra-examiner CC was 0.91 (p < 0.01), and the inter-examiner CCs were 0.72-0.78 (p < 0.01). The automatic vibratory equipment was useful in quantifying median nerve strain at the wrist.

  17. A study of the temperature characteristics of vibration mode axes for vibratory cylinder gyroscopes.

    PubMed

    Wu, Yulie; Xi, Xiang; Tao, Yi; Wu, Xiaomei; Wu, Xuezhong

    2011-01-01

    The zero bias stability, which is an important performance parameter for vibratory cylinder gyroscopes, is high sensitive to temperature change. It is considered that the varying temperature makes the vibration mode axes unstable, which has significant influence on the zero bias stability. This paper will investigate this problem in detail. First, the relationships between the angular positions of vibration mode axes and the zero bias are analyzed. Secondly, the thermal-modal model of the cylinder resonator with several defects such as mass imbalance, frequency split (FS), and geometry errors are developed by ANSYS. Simulation results show that with the increase of temperature, angular positions of the vibration mode axes obviously change, which leads to a dramatic zero bias drift. Finally, several major influence factors on the angular position stability of vibration mode axes, including frequency split, geometry errors, thermal elastic modulus coefficient (TEMC) and thermal expansion coefficient (TEC) are analyzed in detail. Simulation results in this paper will be helpful for deep understanding of the drift principle of zero bias induced by temperature for vibratory cylinder gyroscopes and also be helpful for further temperature compensation or control. PMID:22164038

  18. Effect On The Processing Characteristics Of ZnO Varistors Produced Using Vibratory Milling

    NASA Astrophysics Data System (ADS)

    Kelleher, M. C.; Hashmi, M. S. J.

    2011-01-01

    Each manufacturing stage in the production of zinc oxide varistors from powder preparation to the final encapsulated device is important not only for the formation of the varistor component with optimum microstructure and thus electrical characteristics but also for avoiding the introduction of flaws and reduced yield. In this paper the authors describe and discuss the effect of multi-elemental oxide additives having been milled for different durations using a vibratory mill with cylindrical zirconia media on the powder characteristics of the subsequent processing stages. A commercial ZnO varistor formulation was used. The subsequent processing stages that are given particular attention include first spray drying and second milling. The characteristics include agglomerate size, powder density and elemental uniformity of the first spray-dried powders, and particle size, specific surface area, zirconium concentration and pore size of the second milled powders. They were evaluated using laser diffraction, scanning electron microscopic, mercury porosimetry, Brunauer, Emmett and Teller (BET) and inductively coupled plasma (ICP) analysis. Some interesting correlations are observed between the powder properties and vibratory milling durations of the mixed metal oxide additives (MMOA).

  19. A study of the temperature characteristics of vibration mode axes for vibratory cylinder gyroscopes.

    PubMed

    Wu, Yulie; Xi, Xiang; Tao, Yi; Wu, Xiaomei; Wu, Xuezhong

    2011-01-01

    The zero bias stability, which is an important performance parameter for vibratory cylinder gyroscopes, is high sensitive to temperature change. It is considered that the varying temperature makes the vibration mode axes unstable, which has significant influence on the zero bias stability. This paper will investigate this problem in detail. First, the relationships between the angular positions of vibration mode axes and the zero bias are analyzed. Secondly, the thermal-modal model of the cylinder resonator with several defects such as mass imbalance, frequency split (FS), and geometry errors are developed by ANSYS. Simulation results show that with the increase of temperature, angular positions of the vibration mode axes obviously change, which leads to a dramatic zero bias drift. Finally, several major influence factors on the angular position stability of vibration mode axes, including frequency split, geometry errors, thermal elastic modulus coefficient (TEMC) and thermal expansion coefficient (TEC) are analyzed in detail. Simulation results in this paper will be helpful for deep understanding of the drift principle of zero bias induced by temperature for vibratory cylinder gyroscopes and also be helpful for further temperature compensation or control.

  20. Structural-Acoustic Coupling Effects on the Non-Vacuum Packaging Vibratory Cylinder Gyroscope

    PubMed Central

    Xi, Xiang; Wu, Xuezhong; Wu, Yulie; Zhang, Yongmeng; Tao, Yi; Zheng, Yu; Xiao, Dingbang

    2013-01-01

    The resonant shells of vibratory cylinder gyroscopes are commonly packaged in metallic caps. In order to lower the production cost, a portion of vibratory cylinder gyroscopes do not employ vacuum packaging. However, under non-vacuum packaging conditions there can be internal acoustic noise leading to considerable acoustic pressure which is exerted on the resonant shell. Based on the theory of the structural-acoustic coupling, the dynamical behavior of the resonant shell under acoustic pressure is presented in this paper. A finite element (FE) model is introduced to quantitatively analyze the effect of the structural-acoustic coupling. Several main factors, such as sealing cap sizes and degree of vacuum which directly affect the vibration of the resonant shell, are studied. The results indicate that the vibration amplitude and the operating frequency of the resonant shell will be changed when the effect of structural-acoustic coupling is taken into account. In addition, an experiment was set up to study the effect of structural-acoustic coupling on the sensitivity of the gyroscope. A 32.4 mV/°/s increase of the scale factor and a 6.2 Hz variation of the operating frequency were observed when the radial gap size between the resonant shell and the sealing cap was changed from 0.5 mm to 20 mm. PMID:24351631

  1. A Study of the Temperature Characteristics of Vibration Mode Axes for Vibratory Cylinder Gyroscopes

    PubMed Central

    Wu, Yulie; Xi, Xiang; Tao, Yi; Wu, Xiaomei; Wu, Xuezhong

    2011-01-01

    The zero bias stability, which is an important performance parameter for vibratory cylinder gyroscopes, is high sensitive to temperature change. It is considered that the varying temperature makes the vibration mode axes unstable, which has significant influence on the zero bias stability. This paper will investigate this problem in detail. First, the relationships between the angular positions of vibration mode axes and the zero bias are analyzed. Secondly, the thermal-modal model of the cylinder resonator with several defects such as mass imbalance, frequency split (FS), and geometry errors are developed by ANSYS. Simulation results show that with the increase of temperature, angular positions of the vibration mode axes obviously change, which leads to a dramatic zero bias drift. Finally, several major influence factors on the angular position stability of vibration mode axes, including frequency split, geometry errors, thermal elastic modulus coefficient (TEMC) and thermal expansion coefficient (TEC) are analyzed in detail. Simulation results in this paper will be helpful for deep understanding of the drift principle of zero bias induced by temperature for vibratory cylinder gyroscopes and also be helpful for further temperature compensation or control. PMID:22164038

  2. Vibratory noise to the fingertip enhances balance improvement associated with light touch.

    PubMed

    Magalhães, Fernando Henrique; Kohn, André Fabio

    2011-03-01

    Light touch of a fingertip on an external stable surface greatly improves the postural stability of standing subjects. The hypothesis of the present work was that a vibrating surface could increase the effectiveness of fingertip signaling to the central nervous system (e.g., by a stochastic resonance mechanism) and hence improve postural stability beyond that achieved by light touch. Subjects stood quietly over a force plate while touching with their right index fingertip a surface that could be either quiescent or randomly vibrated at two low-level noise intensities. The vibratory noise of the contact surface caused a significant decrease in postural sway, as assessed by center of pressure measures in both time and frequency domains. Complementary experiments were designed to test whether postural control improvements were associated with a stochastic resonance mechanism or whether attentional mechanisms could be contributing. A full curve relating body sway parameters and different levels of vibratory noise resulted in a U-like function, suggesting that the improvement in sway relied on a stochastic resonance mechanism. Additionally, no decrease in postural sway was observed when the vibrating contact surface was attached to the subject's body, suggesting that no attentional mechanisms were involved. These results indicate that sensory cues obtained from the fingertip need not necessarily be associated with static contact surfaces to cause improvement in postural stability. A low-level noisy vibration applied to the contact surface could lead to a better performance of the postural control system. PMID:21191573

  3. Ecdysis triggering hormone signaling in arthropods.

    PubMed

    Roller, Ladislav; Zitnanová, Inka; Dai, Li; Simo, Ladislav; Park, Yoonseong; Satake, Honoo; Tanaka, Yoshiaki; Adams, Michael E; Zitnan, Dusan

    2010-03-01

    Ecdysis triggering hormones (ETHs) from endocrine Inka cells initiate the ecdysis sequence through action on central neurons expressing ETH receptors (ETHR) in model moth and dipteran species. We used various biochemical, molecular and BLAST search techniques to detect these signaling molecules in representatives of diverse arthropods. Using peptide isolation from tracheal extracts, cDNA cloning or homology searches, we identified ETHs in a variety of hemimetabolous and holometabolous insects. Most insects produce two related ETHs, but only a single active peptide was isolated from the cricket and one peptide is encoded by the eth gene of the honeybee, parasitic wasp and aphid. Immunohistochemical staining with antiserum to Manduca PETH revealed Inka cells on tracheal surface of diverse insects. In spite of conserved ETH sequences, comparison of natural and the ETH-induced ecdysis sequence in the honeybee and beetle revealed considerable species-specific differences in pre-ecdysis and ecdysis behaviors. DNA sequences coding for putative ETHR were deduced from available genomes of several hemimetabolous and holometabolous insects. In all insects examined, the ethr gene encodes two subtypes of the receptor (ETHR-A and ETHR-B). Phylogenetic analysis showed that these receptors fall into a family of closely related GPCRs. We report for the first time the presence of putative ETHs and ETHRs in genomes of other arthropods, including the tick (Arachnida) and water flea (Crustacea). The possible source of ETH in ticks was detected in paired cells located in all pedal segments. Our results provide further evidence of structural and functional conservation of ETH-ETHR signaling.

  4. Role of arthropod communities in bioenergy crop litter decomposition†.

    PubMed

    Zangerl, Arthur R; Miresmailli, Saber; Nabity, Paul; Lawrance, Allen; Yanahan, Alan; Mitchell, Corey A; Anderson-Teixeira, Kristina J; David, Mark B; Berenbaum, May R; DeLucia, Evan H

    2013-10-01

    The extensive land use conversion expected to occur to meet demands for bioenergy feedstock production will likely have widespread impacts on agroecosystem biodiversity and ecosystem services, including carbon sequestration. Although arthropod detritivores are known to contribute to litter decomposition and thus energy flow and nutrient cycling in many plant communities, their importance in bioenergy feedstock communities has not yet been assessed. We undertook an experimental study quantifying rates of litter mass loss and nutrient cycling in the presence and absence of these organisms in three bioenergy feedstock crops-miscanthus (Miscanthus x giganteus), switchgrass (Panicum virgatum), and a planted prairie community. Overall arthropod abundance and litter decomposition rates were similar in all three communities. Despite effective reduction of arthropods in experimental plots via insecticide application, litter decomposition rates, inorganic nitrogen leaching, and carbon-nitrogen ratios did not differ significantly between control (with arthropods) and treatment (without arthropods) plots in any of the three community types. Our findings suggest that changes in arthropod faunal composition associated with widespread adoption of bioenergy feedstock crops may not be associated with profoundly altered arthropod-mediated litter decomposition and nutrient release.

  5. The evolution of the mitochondrial genetic code in arthropods revisited.

    PubMed

    Abascal, Federico; Posada, David; Zardoya, Rafael

    2012-04-01

    A variant of the invertebrate mitochondrial genetic code was previously identified in arthropods (Abascal et al. 2006a, PLoS Biol 4:e127) in which, instead of translating the AGG codon as serine, as in other invertebrates, some arthropods translate AGG as lysine. Here, we revisit the evolution of the genetic code in arthropods taking into account that (1) the number of arthropod mitochondrial genomes sequenced has triplicated since the original findings were published; (2) the phylogeny of arthropods has been recently resolved with confidence for many groups; and (3) sophisticated probabilistic methods can be applied to analyze the evolution of the genetic code in arthropod mitochondria. According to our analyses, evolutionary shifts in the genetic code have been more common than previously inferred, with many taxonomic groups displaying two alternative codes. Ancestral character-state reconstruction using probabilistic methods confirmed that the arthropod ancestor most likely translated AGG as lysine. Point mutations at tRNA-Lys and tRNA-Ser correlated with the meaning of the AGG codon. In addition, we identified three variables (GC content, number of AGG codons, and taxonomic information) that best explain the use of each of the two alternative genetic codes.

  6. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    PubMed

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  7. Nuisance arthropods, nonhost odors, and vertebrate chemical aposematism

    NASA Astrophysics Data System (ADS)

    Weldon, Paul J.

    2010-05-01

    Mosquitoes, ticks, and other ectoparasitic arthropods use chemoreception to avoid vertebrates that are known or presumed to be dangerous or otherwise unprofitable hosts. Nonhosts may belong to a species that is regularly unaccepted or one that includes both accepted and unaccepted individuals. A diverse array of qualities including immunocompetence, vigilant grooming behavior, mechanical inaccessibility, and toxicity have been proposed as the features that render vertebrate chemical emitters unsuitable as hosts for arthropods. In addition to advantages accrued by ectoparasitic arthropods that avoid nonhosts, vertebrates that are not accepted as hosts benefit by evading injurious ectoparasites and the infectious agents they transmit. The conferral of advantages to both chemical receivers (ectoparasitic arthropods) and emitters (unpreferred vertebrates) in these interactions renders nonhost odors aposematic. Chemical aposematism involving ectoparasites selects for vertebrates that emit distinctive odors. In addition, chemical mimicry, where vulnerable organisms benefit when misidentified as nonhosts, may be accommodated by duped ectoparasites.

  8. Ecological mechanisms underlying arthropod species diversity in grasslands.

    PubMed

    Joern, Anthony; Laws, Angela N

    2013-01-01

    Arthropods are an important component of grassland systems, contributing significantly to biodiversity and ecosystem structure and function. Climate, fire, and grazing by large herbivores are important drivers in grasslands worldwide. Arthropod responses to these drivers are highly variable and clear patterns are difficult to find, but responses are largely indirect with respect to changes in resources, species interactions, habitat structure, and habitat heterogeneity resulting from interactions among fire, grazing, and climate. Here, we review these ecological mechanisms influencing grassland arthropod diversity. We summarize hypotheses describing species diversity at local and regional scales and then discuss specific factors that may affect arthropod diversity in grassland systems. These factors include direct and indirect effects of grazing, fire, and climate, species interactions, above- and belowground interactions, and landscape-level effects.

  9. Grandeur Alliances: Symbiont Metabolic Integration and Obligate Arthropod Hematophagy.

    PubMed

    Rio, Rita V M; Attardo, Geoffrey M; Weiss, Brian L

    2016-09-01

    Several arthropod taxa live exclusively on vertebrate blood. This food source lacks essential metabolites required for the maintenance of metabolic homeostasis, and as such, these arthropods have formed symbioses with nutrient-supplementing microbes that facilitate their host's 'hematophagous' feeding ecology. Herein we highlight metabolic contributions of bacterial symbionts that reside within tsetse flies, bed bugs, lice, reduviid bugs, and ticks, with specific emphasis on B vitamin and cofactor biosynthesis. Importantly, these arthropods can transmit pathogens of medical and veterinary relevance and/or cause infestations that induce psychological and dermatological distress. Microbial metabolites, and the biochemical pathways that generate them, can serve as specific targets of novel control mechanisms aimed at disrupting the metabolism of hematophagous arthropods, thus combatting pest invasion and vector-borne pathogen transmission.

  10. Grandeur Alliances: Symbiont Metabolic Integration and Obligate Arthropod Hematophagy.

    PubMed

    Rio, Rita V M; Attardo, Geoffrey M; Weiss, Brian L

    2016-09-01

    Several arthropod taxa live exclusively on vertebrate blood. This food source lacks essential metabolites required for the maintenance of metabolic homeostasis, and as such, these arthropods have formed symbioses with nutrient-supplementing microbes that facilitate their host's 'hematophagous' feeding ecology. Herein we highlight metabolic contributions of bacterial symbionts that reside within tsetse flies, bed bugs, lice, reduviid bugs, and ticks, with specific emphasis on B vitamin and cofactor biosynthesis. Importantly, these arthropods can transmit pathogens of medical and veterinary relevance and/or cause infestations that induce psychological and dermatological distress. Microbial metabolites, and the biochemical pathways that generate them, can serve as specific targets of novel control mechanisms aimed at disrupting the metabolism of hematophagous arthropods, thus combatting pest invasion and vector-borne pathogen transmission. PMID:27236581

  11. The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): the integration of chemical and vibroacoustic signals

    PubMed Central

    Cristaldo, Paulo F.; Jandák, Vojtĕch; Kutalová, Kateřina; Rodrigues, Vinícius B.; Brothánek, Marek; Jiříček, Ondřej; DeSouza, Og; Šobotník, Jan

    2015-01-01

    ABSTRACT Alarm signalling is of paramount importance to communication in all social insects. In termites, vibroacoustic and chemical alarm signalling are bound to operate synergistically but have never been studied simultaneously in a single species. Here, we inspected the functional significance of both communication channels in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis that these are not exclusive, but rather complementary processes. In natural situations, the alarm predominantly attracts soldiers, which actively search for the source of a disturbance. Laboratory testing revealed that the frontal gland of soldiers produces a rich mixture of terpenoid compounds including an alarm pheromone. Extensive testing led to identification of the alarm pheromone being composed of abundant monoterpene hydrocarbons (1S)-α-pinene and myrcene, along with a minor component, (E)-β-ocimene. The vibratory alarm signalling consists of vibratory movements evidenced as bursts; a series of beats produced predominantly by soldiers. Exposing termite groups to various mixtures containing the alarm pheromone (crushed soldier heads, frontal gland extracts, mixture of all monoterpenes, and the alarm pheromone mixture made of standards) resulted in significantly higher activity in the tested groups and also increased intensity of the vibratory alarm communication, with the responses clearly dose-dependent. Lower doses of the pheromone provoked higher numbers of vibratory signals compared to higher doses. Higher doses induced long-term running of all termites without stops necessary to perform vibratory behaviour. Surprisingly, even crushed worker heads led to low (but significant) increases in the alarm responses, suggesting that other unknown compound in the worker's head is perceived and answered by termites. Our results demonstrate the existence of different alarm levels in termites, with lower levels being communicated through vibratory

  12. Single Trial Analysis of ERP Using Test Technique and Difference Evaluation of Modulated Vibratory Stimuli

    NASA Astrophysics Data System (ADS)

    Uchida, Masafumi; Nozawa, Akio; Ide, Hideto

    The purpose of this study is to develop the tactile display which consists of a single vibrator by using the modulated vibration. To achieve this purpose, we must evaluate the stimulus difference of the tactile in the modulated vibratory stimuli. In this study, the stimulus difference has been estimated by detecting the P300 wave in the averaged waveform of the ERP. However, it is indispensable to evaluate the stimulus difference efficiently to make the differential limen in the frequency region to express the modulated vibration clear. In this paper, the single trial analysis on the ERP that the significant difference of the EEG before and after the stimulus presentation is evaluated by the test technique is proposed.

  13. Effect of residual stress on modal patterns of MEMS vibratory gyroscope

    NASA Astrophysics Data System (ADS)

    Dutta, Shankar; Panchal, Abha; Kumar, Manoj; Pal, Ramjay; Bhan, R. K.

    2016-04-01

    Deep boron diffusion often induces residual stress in bulk micromachined MEMS structures, which may affect the MEMS devices operation. In this study, we studied the modal patterns of MEMS vibratory gyroscope under the residual stress (100 - 1000 MPa). Modal patterns and modal frequencies of the gyro are found to be dependent on the residual stress values. Without any residual stress, the modal frequencies drive and sense modeswere found to be 20.06 kHz and 20.36 kHz respectively. In presence of 450 MPa residual stress, the modal frequencies of the drive and sense modes were changed to 42.75 kHz and 43.07 kHz respectively.

  14. Development of vibratory stress relief actuators based on giant magnetostrictive materials

    NASA Astrophysics Data System (ADS)

    He, Wen

    2005-12-01

    A kind of actuator, which is used in the high frequency Vibratory Stress Relief (VSR), was researched. The actuator is based on the technology of giant magnetostrictive materials. The design principle of the actuator was firstly analyzed, which consists of the analysis of giant magnetostrictive materials and a force generator. Then the design criterion of magnetostrictive actuators was deeply discussed, which includes the dimension design of magnetostrictive materials, the design of magnetic field and the design of elimination of heat. Finally, a real actuator was developed, which has been used in the high frequency VSR. The experimental results show that the developed actuator works very well. Large exciting force but small vibration amplitude will make it widely used in the VSR.

  15. An Intensified Vibratory Milling Process for Enhancing the Breakage Kinetics during the Preparation of Drug Nanosuspensions.

    PubMed

    Li, Meng; Zhang, Lu; Davé, Rajesh N; Bilgili, Ecevit

    2016-04-01

    As a drug-sparing approach in early development, vibratory milling has been used for the preparation of nanosuspensions of poorly water-soluble drugs. The aim of this study was to intensify this process through a systematic increase in vibration intensity and bead loading with the optimal bead size for faster production. Griseofulvin, a poorly water-soluble drug, was wet-milled using yttrium-stabilized zirconia beads with sizes ranging from 50 to 1500 μm at low power density (0.87 W/g). Then, this process was intensified with the optimal bead size by sequentially increasing vibration intensity and bead loading. Additional experiments with several bead sizes were performed at high power density (16 W/g), and the results were compared to those from wet stirred media milling. Laser diffraction, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and dissolution tests were used for characterization. Results for the low power density indicated 800 μm as the optimal bead size which led to a median size of 545 nm with more than 10% of the drug particles greater than 1.8 μm albeit the fastest breakage. An increase in either vibration intensity or bead loading resulted in faster breakage. The most intensified process led to 90% of the particles being smaller than 300 nm. At the high power intensity, 400 μm beads were optimal, which enhanced griseofulvin dissolution significantly and signified the importance of bead size in view of the power density. Only the optimally intensified vibratory milling led to a comparable nanosuspension to that prepared by the stirred media milling.

  16. Sectioning of contaminated components for decontamination by vibratory finishing and electropolishing

    SciTech Connect

    Fetrow, L.K.; Allen, R.P.

    1981-09-01

    This report summarizes work conducted to develop, adapt, and evaluate a variety of techniques for sectioning glove boxes, chemical processing equipment, pipes, ducts, and other contaminated components in preparation for decontamination by vibratory finishing and electropolishing. These sectioning studies were conducted with a special 10-ft x 20-ft x 10-ft stainless-steel, walk-in glove box equipped for either hands-on operation via gloves and personnel entry, or remote operation using master slave manipulators and a bridge crane. Several sectioning techniques have been evaluated with respect to effectiveness, versatility, secondary waste generation, and capability for remote operation. The methods include wet and dry plasma arc torch cutting, mechanical sawing and nibbling, abrasive cutting, and hydraulic shearing and punching. The results of these comparison studies show that the plasma arc torch is a very rapid and effective metal cutting tool for size reduction applications. However, its use to prepare material for decontamination should be minimized because of problems with smoke generation, torch manipulation, waste generation, and entrainment of contamination. Mechanical saws eliminate all but the waste generation problem, but are very slow and labor intensive. Mechanical nibblers are fast and produce a waste form that can be decontaminated, but are limited with respect to the geometry and thickness of material that can be sectioned. High-speed abrasive saws provide high cutting rates, but produce nontreatable waste from the cut as well as from blade wear. Hydraulic shearing rapidly produces sectioned material in the small sizes required for decontamination by vibratory finishing. The kerf material also can be decontaminated. However, the glove box first must be sectioned into relatively narrow strips by one of the other techniques.

  17. An Intensified Vibratory Milling Process for Enhancing the Breakage Kinetics during the Preparation of Drug Nanosuspensions.

    PubMed

    Li, Meng; Zhang, Lu; Davé, Rajesh N; Bilgili, Ecevit

    2016-04-01

    As a drug-sparing approach in early development, vibratory milling has been used for the preparation of nanosuspensions of poorly water-soluble drugs. The aim of this study was to intensify this process through a systematic increase in vibration intensity and bead loading with the optimal bead size for faster production. Griseofulvin, a poorly water-soluble drug, was wet-milled using yttrium-stabilized zirconia beads with sizes ranging from 50 to 1500 μm at low power density (0.87 W/g). Then, this process was intensified with the optimal bead size by sequentially increasing vibration intensity and bead loading. Additional experiments with several bead sizes were performed at high power density (16 W/g), and the results were compared to those from wet stirred media milling. Laser diffraction, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and dissolution tests were used for characterization. Results for the low power density indicated 800 μm as the optimal bead size which led to a median size of 545 nm with more than 10% of the drug particles greater than 1.8 μm albeit the fastest breakage. An increase in either vibration intensity or bead loading resulted in faster breakage. The most intensified process led to 90% of the particles being smaller than 300 nm. At the high power intensity, 400 μm beads were optimal, which enhanced griseofulvin dissolution significantly and signified the importance of bead size in view of the power density. Only the optimally intensified vibratory milling led to a comparable nanosuspension to that prepared by the stirred media milling. PMID:26182907

  18. Administering and Detecting Protein Marks on Arthropods for Dispersal Research.

    PubMed

    Hagler, James R; Machtley, Scott A

    2016-01-28

    Monitoring arthropod movement is often required to better understand associated population dynamics, dispersal patterns, host plant preferences, and other ecological interactions. Arthropods are usually tracked in nature by tagging them with a unique mark and then re-collecting them over time and space to determine their dispersal capabilities. In addition to actual physical tags, such as colored dust or paint, various types of proteins have proven very effective for marking arthropods for ecological research. Proteins can be administered internally and/or externally. The proteins can then be detected on recaptured arthropods with a protein-specific enzyme-linked immunosorbent assay (ELISA). Here we describe protocols for externally and internally tagging arthropods with protein. Two simple experimental examples are demonstrated: (1) an internal protein mark introduced to an insect by providing a protein-enriched diet and (2) an external protein mark topically applied to an insect using a medical nebulizer. We then relate a step-by-step guide of the sandwich and indirect ELISA methods used to detect protein marks on the insects. In this demonstration, various aspects of the acquisition and detection of protein markers on arthropods for mark-release-recapture, mark-capture, and self-mark-capture types of research are discussed, along with the various ways that the immunomarking procedure has been adapted to suit a wide variety of research objectives.

  19. Management effect on bird and arthropod interaction in suburban woodlands

    PubMed Central

    2011-01-01

    Background Experiments from a range of ecosystems have shown that insectivorous birds are important in controlling the populations of their invertebrate prey. Here, we report on a large field experiment testing the hypothesis that management for enhancing recreational values in suburban woodlands affects the intensity of bird predation on canopy-living arthropods. Bird exclosures were used in two types of management (understory clearance and dense understory) at two foraging heights in oak Quercus robur canopies and the experiment was replicated at two sites. Results The biomass and abundance of arthropods were high on net-enclosed branches but strongly reduced on control branches in both types of management. In woods with dense understory, the effect of bird predation on arthropod abundance was about twice as high as in woods with understory clearance. The effect of bird predation on arthropod biomass was not significantly affected by management. Conclusions Our data provide experimental evidence to support the idea that bird predation on arthropods can be affected by forest management. We suggest that the mechanism is twofold: reduction of bird abundance and shift of foraging behaviour. In urban woodlands, there may be a management trade-off between enhancing recreational values and promoting bird predation rates on arthropods. PMID:21362174

  20. Selenium hyperaccumulation reduces plant arthropod loads in the field.

    PubMed

    Galeas, Miriam L; Klamper, Erin M; Bennett, Lindsay E; Freeman, John L; Kondratieff, Boris C; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2008-01-01

    The elemental defense hypothesis proposes that some plants hyperaccumulate toxic elements as a defense mechanism. In this study the effectiveness of selenium (Se) as an arthropod deterrent was investigated under field conditions. Arthropod loads were measured over two growing seasons in Se hyperaccumulator habitats in Colorado, USA, comparing Se hyperaccumulator species (Astragalus bisulcatus and Stanleya pinnata) with nonhyperaccumulators (Camelina microcarpa, Astragalus americanus, Descurainia pinnata, Medicago sativa, and Helianthus pumilus). The Se hyperaccumulating plant species, which contained 1000-14 000 microg Se g(-1) DW, harbored significantly fewer arthropods (c. twofold) and fewer arthropod species (c. 1.5-fold) compared with nonhyperaccumulator species that contained < 30 microg Se g(-1) DW. Arthropods collected on Se-hyperaccumulating plants contained three- to 10-fold higher Se concentrations than those found on nonhyperaccumulating species, but > 10-fold lower Se concentrations than their hyperaccumulator hosts. Several arthropod species contained > 100 microg Se g(-1) DW, indicating Se tolerance and perhaps feeding specialization. These results support the elemental defense hypothesis and suggest that invertebrate herbivory may have contributed to the evolution of Se hyperaccumulation.

  1. The incidence of bacterial endosymbionts in terrestrial arthropods

    PubMed Central

    Weinert, Lucy A.; Araujo-Jnr, Eli V.; Ahmed, Muhammad Z.; Welch, John J.

    2015-01-01

    Intracellular endosymbiotic bacteria are found in many terrestrial arthropods and have a profound influence on host biology. A basic question about these symbionts is why they infect the hosts that they do, but estimating symbiont incidence (the proportion of potential host species that are actually infected) is complicated by dynamic or low prevalence infections. We develop a maximum-likelihood approach to estimating incidence, and testing hypotheses about its variation. We apply our method to a database of screens for bacterial symbionts, containing more than 3600 distinct arthropod species and more than 150 000 individual arthropods. After accounting for sampling bias, we estimate that 52% (CIs: 48–57) of arthropod species are infected with Wolbachia, 24% (CIs: 20–42) with Rickettsia and 13% (CIs: 13–55) with Cardinium. We then show that these differences stem from the significantly reduced incidence of Rickettsia and Cardinium in most hexapod orders, which might be explained by evolutionary differences in the arthropod immune response. Finally, we test the prediction that symbiont incidence should be higher in speciose host clades. But while some groups do show a trend for more infection in species-rich families, the correlations are generally weak and inconsistent. These results argue against a major role for parasitic symbionts in driving arthropod diversification. PMID:25904667

  2. One-step PCR amplification of complete arthropod mitochondrial genomes.

    PubMed

    Hwang, U W; Park, C J; Yong, T S; Kim, W

    2001-06-01

    A new PCR primer set which enables one-step amplification of complete arthropod mitochondrial genomes was designed from two conserved 16S rDNA regions for the long PCR technique. For this purpose, partial 16S rDNAs amplified with universal primers 16SA and 16SB were newly sequenced from six representative arthropods: Armadillidium vulgare and Macrobrachium nipponense (Crustacea), Anopheles sinensis (Insecta), Lithobius forficatus and Megaphyllum sp. (Myriapoda), and Limulus polyphemus (Chelicerata). The genomic locations of two new primers, HPK16Saa and HPK16Sbb, correspond to positions 13314-13345 and 12951-12984, respectively, in the Drosophila yakuba mitochondrial genome. The usefulness of the primer set was experimentally examined and confirmed with five of the representative arthropods, except for A. vulgare, which has a linearized mitochondrial genome. With this set, therefore, we could easily and rapidly amplify complete mitochondrial genomes with small amounts of arthropod DNA. Although the primers suggested here were examined only with arthropod groups, a possibility of successful application to other invertebrates is very high, since the high degree of sequence conservation is shown on the primer sites in other invertebrates. Thus, this primer set can serve various research fields, such as molecular evolution, population genetics, and molecular phylogenetics based on DNA sequences, RFLP, and gene rearrangement of mitochondrial genomes in arthropods and other invertebrates. PMID:11399145

  3. Mortality of nontarget arthropods from an aerial application of pyrethrins.

    PubMed

    Kwan, Jonathan A; Novak, Mark G; Hyles, Timothy S; Niemela, Michael K

    2009-06-01

    Mortality of nontarget organisms from an ultra-low volume (ULV) aerial application of pyrethrins (Evergreen EC 60-6) was monitored by collecting arthropods from ground tarps placed at the interface of open and canopy areas. A larger number and greater diversity of arthropods were recovered from tarps in the ULV spray area. The observed mortality was approximately 10-fold greater than in the control area. Kruskal-Wallis tests revealed a significant difference in the abundance and diversity of arthropods collected at treatment and control sites at 1 and 12 h postspray. Arthropods, primarily insects, from the treatment area included representatives from 12 orders and > or = 34 families, as compared to 7 orders and 12 families in the control area. Chironomidae (midges) and Formicidae (ants) were the most commonly represented families, accounting for 61% of the arthropods collected from the treatment area; no large-bodied insects (>8 mm) were recovered. Mortality of sentinel mosquitoes in the treatment and control areas averaged 96% and <1%, respectively, at 24 h postexposure. This study supports previous work that the impact of a single ULV application of pyrethrins was limited to a variety of small-bodied arthropods.

  4. The incidence of bacterial endosymbionts in terrestrial arthropods.

    PubMed

    Weinert, Lucy A; Araujo-Jnr, Eli V; Ahmed, Muhammad Z; Welch, John J

    2015-05-22

    Intracellular endosymbiotic bacteria are found in many terrestrial arthropods and have a profound influence on host biology. A basic question about these symbionts is why they infect the hosts that they do, but estimating symbiont incidence (the proportion of potential host species that are actually infected) is complicated by dynamic or low prevalence infections. We develop a maximum-likelihood approach to estimating incidence, and testing hypotheses about its variation. We apply our method to a database of screens for bacterial symbionts, containing more than 3600 distinct arthropod species and more than 150 000 individual arthropods. After accounting for sampling bias, we estimate that 52% (CIs: 48-57) of arthropod species are infected with Wolbachia, 24% (CIs: 20-42) with Rickettsia and 13% (CIs: 13-55) with Cardinium. We then show that these differences stem from the significantly reduced incidence of Rickettsia and Cardinium in most hexapod orders, which might be explained by evolutionary differences in the arthropod immune response. Finally, we test the prediction that symbiont incidence should be higher in speciose host clades. But while some groups do show a trend for more infection in species-rich families, the correlations are generally weak and inconsistent. These results argue against a major role for parasitic symbionts in driving arthropod diversification.

  5. Antiviral responses of arthropod vectors: an update on recent advances.

    PubMed

    Rückert, Claudia; Bell-Sakyi, Lesley; Fazakerley, John K; Fragkoudis, Rennos

    2014-01-01

    Arthropod vectors, such as mosquitoes, ticks, biting midges and sand flies, transmit many viruses that can cause outbreaks of disease in humans and animals around the world. Arthropod vector species are invading new areas due to globalisation and environmental changes, and contact between exotic animal species, humans and arthropod vectors is increasing, bringing with it the regular emergence of new arboviruses. For future strategies to control arbovirus transmission, it is important to improve our understanding of virus-vector interactions. In the last decade knowledge of arthropod antiviral immunity has increased rapidly. RNAi has been proposed as the most important antiviral response in mosquitoes and it is likely to be the most important antiviral response in all arthropods. However, other newly-discovered antiviral strategies such as melanisation and the link between RNAi and the JAK/STAT pathway via the cytokine Vago have been characterised in the last few years. This review aims to summarise the most important and most recent advances made in arthropod antiviral immunity. PMID:25674592

  6. Antiviral responses of arthropod vectors: an update on recent advances.

    PubMed

    Rückert, Claudia; Bell-Sakyi, Lesley; Fazakerley, John K; Fragkoudis, Rennos

    2014-01-01

    Arthropod vectors, such as mosquitoes, ticks, biting midges and sand flies, transmit many viruses that can cause outbreaks of disease in humans and animals around the world. Arthropod vector species are invading new areas due to globalisation and environmental changes, and contact between exotic animal species, humans and arthropod vectors is increasing, bringing with it the regular emergence of new arboviruses. For future strategies to control arbovirus transmission, it is important to improve our understanding of virus-vector interactions. In the last decade knowledge of arthropod antiviral immunity has increased rapidly. RNAi has been proposed as the most important antiviral response in mosquitoes and it is likely to be the most important antiviral response in all arthropods. However, other newly-discovered antiviral strategies such as melanisation and the link between RNAi and the JAK/STAT pathway via the cytokine Vago have been characterised in the last few years. This review aims to summarise the most important and most recent advances made in arthropod antiviral immunity.

  7. Spiroplasma - an emerging arthropod-borne pathogen?

    PubMed

    Cisak, Ewa; Wójcik-Fatla, Angelina; Zając, Violetta; Sawczyn, Anna; Sroka, Jacek; Dutkiewicz, Jacek

    2015-01-01

    Spiroplasma is a genus of wall-less, low-GC, small Gram-positive bacteria of the internal contractile cytoskeleton, with helical morphology and motility. The genus is classified within the class Mollicutes. Spiroplasma / host interactions can be classified as commensal, pathogenic or mutualist. The majority of spiroplasmas are found to be commensals of insects, arachnids, crustaceans or plants, whereas a small number of species are pathogens of plants, insects, and crustaceans. Insects are particularly rich sources of spiroplasmas. The bacteria are common in haematophagous arthropods: deerflies, horseflies, mosquitoes, and in ticks, where they may occur abundantly in salivary glands. The ability of spiroplasmas to propagate in rodents was experimentally proven, and Spiroplasma infections have been reported recently in humans. Some authors have purported an etiological role of Spiroplasma in causing transmissible spongiform encephalopathies (TSEs), but convincing proof is lacking. The possibility for humans and other vertebrates to be infected with Spiroplasma spp. in natural conditions is largely unknown, as well as the possibility of the transmission of these bacteria by ticks and haematophagous insects. Nevertheless, in the light of new data, such possibilities cannot be excluded. PMID:26706960

  8. Microspectrophotometry of Arthropod Visual Screening Pigments

    PubMed Central

    Strother, G. K.; Casella, A. J.

    1972-01-01

    Absorption spectra of visual screening pigments obtained in vitro with a microspectrophotometer using frozen sections are given for the insects Musca domestica, Phormia regina, Libellula luctuosa, Apis mellifera (worker honeybee only), Drosophila melanogaster (wild type only) and the arachnids Lycosa baltimoriana and Lycosa miami. The spectral range covered is 260–700 nm for Lycosa and Drosophila and 310–700 nm for the remainder of the arthropods. A complete description of the instrumentation is given. For the flies, Phormia and Musca, light absorption by the yellow and red pigments is high from 310 to about 610 nm. This implies that for these insects there should be no wavelength shift in electroretinogram (ERG) results due to light leakage among neighboring ommatidia for this wavelength range. The same comment applies to Calliphora erythrocephala, which is known to have similar screening pigments. For some of the insects studied a close correspondence is noted between screening pigment absorption spectra and spectral sensitivity curves for individual photoreceptors, available in the literature. In some cases the screening pigment absorption spectra can be related to chemical extraction results, with the general observation that some of the in vitro absorption peaks are shifted to the red. The Lycosa, Apis, and Libellula dark red pigments absorb strongly over a wide spectral range and therefore prevent chemical identification. PMID:4623852

  9. Sampling of Stochastic Input Parameters for Rockfall Calculations and for Structural Response Calculations Under Vibratory Ground Motion

    SciTech Connect

    M. Gross

    2004-09-01

    The purpose of this scientific analysis is to define the sampled values of stochastic (random) input parameters for (1) rockfall calculations in the lithophysal and nonlithophysal zones under vibratory ground motions, and (2) structural response calculations for the drip shield and waste package under vibratory ground motions. This analysis supplies: (1) Sampled values of ground motion time history and synthetic fracture pattern for analysis of rockfall in emplacement drifts in nonlithophysal rock (Section 6.3 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (2) Sampled values of ground motion time history and rock mechanical properties category for analysis of rockfall in emplacement drifts in lithophysal rock (Section 6.4 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (3) Sampled values of ground motion time history and metal to metal and metal to rock friction coefficient for analysis of waste package and drip shield damage to vibratory motion in ''Structural Calculations of Waste Package Exposed to Vibratory Ground Motion'' (BSC 2004 [DIRS 167083]) and in ''Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion'' (BSC 2003 [DIRS 163425]). The sampled values are indices representing the number of ground motion time histories, number of fracture patterns and rock mass properties categories. These indices are translated into actual values within the respective analysis and model reports or calculations. This report identifies the uncertain parameters and documents the sampled values for these parameters. The sampled values are determined by GoldSim V6.04.007 [DIRS 151202] calculations using appropriate distribution types and parameter ranges. No software development or model development was required for these calculations. The calculation of the sampled values allows parameter uncertainty to be incorporated into the rockfall and structural response calculations that support development of the seismic scenario for the

  10. Developmental modularity and the evolutionary diversification of arthropod limbs.

    PubMed

    Williams, T A; Nagy, L M

    2001-10-15

    Segmentation is one of the most salient characteristics of arthropods, and differentiation of segments along the body axis is the basis of arthropod diversification. This article evaluates whether the evolution of segmentation involves the differentiation of already independent units, i.e., do segments evolve as modules? Because arthropod segmental differentiation is commonly equated with differential character of appendages, we analyze appendages by comparing similarities and differences in their development. The comparison of arthropod limbs, even between species, is a comparison of serially repeated structures. Arthropod limbs are not only reiterated along the body axis, but limbs themselves can be viewed as being composed of reiterated parts. The interpretation of such reiterated structures from an evolutionary viewpoint is far from obvious. One common view is that serial repetition is evidence of a modular organization, i.e., repeated structures with a common fundamental identity that develop semi-autonomously and are free to diversify independently. In this article, we evaluate arthropod limbs from a developmental perspective and ask: are all arthropod limbs patterned using a similar set of mechanisms which would reflect that they all share a generic coordinate patterning system? Using Drosophila as a basis for comparison, we find that appendage primordia, positioned along the body using segmental patterning coordinates, do indeed have elements of common identity. However, we do not find evidence of a single coordinate system shared either between limbs or among limb branches. Data concerning the other diagnostic of developmental modularity--semi-autonomy of development--are not currently available for sufficient taxa. Nonetheless, some data comparing patterns of morphogenesis provide evidence that limbs cannot always be temporally or spatially decoupled from the development of their neighbors, suggesting that segment modularity is a derived character.

  11. Arthropod community structure on strip-mined lands in Ohio

    SciTech Connect

    Urbanek, R.P.

    1982-01-01

    During 1978-79, biomass, density, diversity, and taxonomic composition of above-ground, non-acarine arthropods were studied on newly reclaimed areas planted to grass-legumes (1-4 years after reclamation), older mined lands planted to crown vetch (Coronilla varia L.) and unmined old field habitat in Harrison County, Ohio. The reclaimed areas were rapidly colonized and productive. In the herbaceous layer, newly reclaimed areas had highest annual arthropod densities (1062.5 individuals/m/sup 2/) and biomass (553.6 mg/m/sup 2/). Larvae of alfalfa weevil (Hypera postica Gyllenhal) were major contributors to arthropod density in the herbaceous layer during spring 1978, accounting for 47.4% and 18.8% of individuals on the areas examined 1 and 3 years after reclamation, respectively. During September, grasshoppers (Acrididae) accounted for up to 70% of arthropod biomass in the herbaceous layer on newly reclaimed areas. A significant decline in arthropod biomass from 1 to 2 years after reclamation was due to a large decrease in weevil and spittlebug (Philaenus spumarius L.) populations, associated with a decline in yellow sweet clover (Melilotus officinalis (L.) Lam.) and red clover (Trifolium pratense L.). The crown vetch area supported low numbers and biomass of arthropods in the herbaceous layer but moderate to high numbers and biomass in the litter layer. Nematoceran larvae (Cecidomyiidae, Chironomidae) were abundant during May on the area examined 2 years after reclamation and comprised 73.5% of litter arthropod individuals. The unmined old field was generally richer (48.0% more morphotypes, 32.2% more families per sampling period) than the mined sites. On newly reclaimed areas richness in the herbaceous layer was positively related to biomass of clovers.

  12. [Protection of travellers against biting arthropod vectors].

    PubMed

    Carnevale, P

    1998-01-01

    Several diseases are transmitted by hematophageous insect/arthropod and, except for yellow fever and Japanese B encephalitis, there are still no vaccines. Personal protection therefore remains the choice method for disease prevention and can usefully complete chemoprophylaxis if available (such as for malaria). Personal protection can be ensured by three main methods: avoiding risky areas; using repellents on skin and/or garments; using pyrethroids insecticide on garments (permethrin), mosquito nets (several Pyr. available) and any other materials (curtains etc.) including camping tents, plasting "UN sheeting" used in refugees camps etc. Repellent gave some protection for few hours (# 6 hours) and new formulations have been developed to extend their duration. Great care must be taken when using DEET which is not recommended for children and pregnant women. Coils and mats can be used but care must also be taken when using some coils available on local market and which can often be irritating and useless. Mosquito nets impregnated with an insecticide remains the choice method of protection against night-biting insects such as anopheles and is a good way of preventing malaria. Insecticide must be used according to safety measures clearly indicated (or which must be clearly indicated) by companies. All these measures are efficient and must be selected according to local conditions and human behaviour. Travelling is not "risky" but 3 points must be kept in mind: accurate advice must be sought before travelling; this advice must be followed while persuing a "normal life"; a physician must be consulted in case of any trouble during and after the trip. PMID:10078390

  13. Analysis of rabbit intervertebral disc physiology based on water metabolism. II. Changes in normal intervertebral discs under axial vibratory load

    SciTech Connect

    Hirano, N.; Tsuji, H.; Ohshima, H.; Kitano, S.; Itoh, T.; Sano, A.

    1988-11-01

    Metabolic changes induced by axial vibratory load to the spine were investigated based on water metabolism in normal intervertebral discs of rabbits with or without pentobarbital anesthesia. Tritiated water concentration in the intervertebral discs of unanesthetized rabbits was reduced remarkably by axial vibration for 30 minutes using the vibration machine developed for this study. Repeated vibratory load for 18 and 42 hours duration showed the recovery of /sup 3/H/sub 2/O concentration of the intervertebral disc without anesthesia. Computer simulation suggested a reduction of blood flow surrounding the intervertebral disc following the vibration stress. However, no reduction of the /sup 3/H/sub 2/O concentration in the intervertebral disc was noted under anesthesia. Emotional stress cannot be excluded as a factor in water metabolism in the intervertebral disc.

  14. Characterizing the Effective Bandwidth of Nonlinear Vibratory Energy Harvesters Possessing Multiple Stable Equilibria

    NASA Astrophysics Data System (ADS)

    Panyam Mohan Ram, Meghashyam

    In the last few years, advances in micro-fabrication technologies have lead to the development of low-power electronic devices spanning critical fields related to sensing, data transmission, and medical implants. Unfortunately, effective utilization of these devices is currently hindered by their reliance on batteries. In many of these applications, batteries may not be a viable choice as they have a fixed storage capacity and need to be constantly replaced or recharged. In light of such challenges, several novel concepts for micro-power generation have been recently introduced to harness, otherwise, wasted ambient energy from the environment and maintain these low-power devices. Vibratory energy harvesting is one such concept which has received significant attention in recent years. While linear vibratory energy harvesters have been well studied in the literature and their performance metrics have been established, recent research has focused on deliberate introduction of stiffness nonlinearities into the design of these devices. It has been shown that, nonlinear energy harvesters have a wider steady-state frequency bandwidth as compared to their linear counterparts, leading to the premise that they can used to improve performance, and decrease sensitivity to variations in the design and excitation parameters. This dissertation aims to investigate this premise by developing an analytical framework to study the influence of stiffness nonlinearities on the performance and effective bandwidth of nonlinear vibratory energy harvesters. To achieve this goal, the dissertation is divided into three parts. The first part investigates the performance of bi-stable energy harvesters possessing a symmetric quartic potential energy function under harmonic excitations and carries out a detailed analysis to define their effective frequency bandwidth. The second part investigates the relative performance of mono- and bi-stable energy harvesters under optimal electric loading

  15. Exoskeletons and economics: indoor arthropod diversity increases in affluent neighbourhoods.

    PubMed

    Leong, Misha; Bertone, Matthew A; Bayless, Keith M; Dunn, Robert R; Trautwein, Michelle D

    2016-08-01

    In urban ecosystems, socioeconomics contribute to patterns of biodiversity. The 'luxury effect', in which wealthier neighbourhoods are more biologically diverse, has been observed for plants, birds, bats and lizards. Here, we used data from a survey of indoor arthropod diversity (defined throughout as family-level richness) from 50 urban houses and found that house size, surrounding vegetation, as well as mean neighbourhood income best predict the number of kinds of arthropods found indoors. Our finding, that homes in wealthier neighbourhoods host higher indoor arthropod diversity (consisting of primarily non-pest species), shows that the luxury effect can extend to the indoor environment. The effect of mean neighbourhood income on indoor arthropod diversity was particularly strong for individual houses that lacked high surrounding vegetation ground cover, suggesting that neighbourhood dynamics can compensate for local choices of homeowners. Our work suggests that the management of neighbourhoods and cities can have effects on biodiversity that can extend from trees and birds all the way to the arthropod life in bedrooms and basements. PMID:27484644

  16. Skimming the surface with Burgess Shale arthropod locomotion

    PubMed Central

    Minter, Nicholas J.; Mángano, M. Gabriela; Caron, Jean-Bernard

    2012-01-01

    The first arthropod trackways are described from the Middle Cambrian Burgess Shale Formation of Canada. Trace fossils, including trackways, provide a rich source of biological and ecological information, including direct evidence of behaviour not commonly available from body fossils alone. The discovery of large arthropod trackways is unique for Burgess Shale-type deposits. Trackway dimensions and the requisite number of limbs are matched with the body plan of a tegopeltid arthropod. Tegopelte, one of the rarest Burgess Shale animals, is over twice the size of all other benthic arthropods known from this locality, and only its sister taxon, Saperion, from the Lower Cambrian Chengjiang biota of China, approaches a similar size. Biomechanical trackway analysis demonstrates that tegopeltids were capable of rapidly skimming across the seafloor and, in conjunction with the identification of gut diverticulae in Tegopelte, supports previous hypotheses on the locomotory capabilities and carnivorous mode of life of such arthropods. The trackways occur in the oldest part (Kicking Horse Shale Member) of the Burgess Shale Formation, which is also known for its scarce assemblage of soft-bodied organisms, and indicate at least intermittent oxygenated bottom waters and low sedimentation rates. PMID:22072605

  17. Exoskeletons and economics: indoor arthropod diversity increases in affluent neighbourhoods

    PubMed Central

    Bertone, Matthew A.; Bayless, Keith M.; Dunn, Robert R.; Trautwein, Michelle D.

    2016-01-01

    In urban ecosystems, socioeconomics contribute to patterns of biodiversity. The ‘luxury effect’, in which wealthier neighbourhoods are more biologically diverse, has been observed for plants, birds, bats and lizards. Here, we used data from a survey of indoor arthropod diversity (defined throughout as family-level richness) from 50 urban houses and found that house size, surrounding vegetation, as well as mean neighbourhood income best predict the number of kinds of arthropods found indoors. Our finding, that homes in wealthier neighbourhoods host higher indoor arthropod diversity (consisting of primarily non-pest species), shows that the luxury effect can extend to the indoor environment. The effect of mean neighbourhood income on indoor arthropod diversity was particularly strong for individual houses that lacked high surrounding vegetation ground cover, suggesting that neighbourhood dynamics can compensate for local choices of homeowners. Our work suggests that the management of neighbourhoods and cities can have effects on biodiversity that can extend from trees and birds all the way to the arthropod life in bedrooms and basements. PMID:27484644

  18. The non-target impact of spinosyns on beneficial arthropods.

    PubMed

    Biondi, Antonio; Mommaerts, Veerle; Smagghe, Guy; Viñuela, Elisa; Zappalà, Lucia; Desneux, Nicolas

    2012-12-01

    Spinosyn-based products, mostly spinosad, have been widely recommended by extension specialists and agribusiness companies; consequently, they have been used to control various pests in many different cropping systems. Following the worldwide adoption of spinosad-based products for integrated and organic farming, an increasing number of ecotoxicological studies have been published in the past 10 years. These studies are primarily related to the risk assessment of spinosad towards beneficial arthropods. This review takes into account recent data with the aim of (i) highlighting potentially adverse effects of spinosyns on beneficial arthropods (and hence on ecosystem services that they provide in agroecosystems), (ii) clarifying the range of methods used to address spinosyn side effects on biocontrol agents and pollinators in order to provide new insights for the development of more accurate bioassays, (iii) identifying pitfalls when analysing laboratory results to assess field risks and (iv) gaining increasing knowledge on side effects when using spinosad for integrated pest management (IPM) programmes and organic farming. For the first time, a thorough review of possible risks of spinosad and novel spinosyns (such as spinetoram) to beneficial arthropods (notably natural enemies and pollinators) is provided. The acute lethal effect and multiple sublethal effects have been identified in almost all arthropod groups studied. This review will help to optimise the future use of spinosad and new spinosyns in IPM programmes and for organic farming, notably by preventing the possible side effects of spinosyns on beneficial arthropods.

  19. Arthropod abundance and diversity in transgenic Bt soybean.

    PubMed

    Yu, Huilin; Li, Yunhe; Li, Xiangju; Wu, Kongming

    2014-08-01

    Before the commercialization of any insect-resistant genetically modified crop, it must be subjected to a rigorous premarket risk assessment. Here, possible effects of growing of transgenic Cry1Ac soybean on arthropod communities under field conditions were assessed for 2 yr and quantified in terms of arthropod community indices including the Shannon-Weaver diversity index, richness index, and dominance index. Our results showed no significant differences of diversity, richness, or dominant indices for Bt soybean compared with the recipient cultivar, conventional soybean, or sprayed conventional soybean. Conventional soybean treatment with insecticide had an adverse effect on the arthropod community after spraying, but arthropod community diversity recovered quickly. Bt soybean had no negative effect on the dominant distribution of subcommunities, including sucking pests, other pests, predators, parasitoids, and others except for lepidopteran pests. The dominance distribution of lepidopteran pests decreased significantly in Bt soybean because of the significant decrease in the numbers of Spodoptera litura (F.) and Ascotis selenaria Schiffermüller et Denis compared with the recipient cultivar. Our results showed that there were no negative effects of Cry1Ac soybean on the arthropod community in soybean field plots in the short term.

  20. Exoskeletons and economics: indoor arthropod diversity increases in affluent neighbourhoods.

    PubMed

    Leong, Misha; Bertone, Matthew A; Bayless, Keith M; Dunn, Robert R; Trautwein, Michelle D

    2016-08-01

    In urban ecosystems, socioeconomics contribute to patterns of biodiversity. The 'luxury effect', in which wealthier neighbourhoods are more biologically diverse, has been observed for plants, birds, bats and lizards. Here, we used data from a survey of indoor arthropod diversity (defined throughout as family-level richness) from 50 urban houses and found that house size, surrounding vegetation, as well as mean neighbourhood income best predict the number of kinds of arthropods found indoors. Our finding, that homes in wealthier neighbourhoods host higher indoor arthropod diversity (consisting of primarily non-pest species), shows that the luxury effect can extend to the indoor environment. The effect of mean neighbourhood income on indoor arthropod diversity was particularly strong for individual houses that lacked high surrounding vegetation ground cover, suggesting that neighbourhood dynamics can compensate for local choices of homeowners. Our work suggests that the management of neighbourhoods and cities can have effects on biodiversity that can extend from trees and birds all the way to the arthropod life in bedrooms and basements.

  1. Investigating acoustic correlates of human vocal fold vibratory phase asymmetry through modeling and laryngeal high-speed videoendoscopya

    PubMed Central

    Mehta, Daryush D.; Zañartu, Matías; Quatieri, Thomas F.; Deliyski, Dimitar D.; Hillman, Robert E.

    2011-01-01

    Vocal fold vibratory asymmetry is often associated with inefficient sound production through its impact on source spectral tilt. This association is investigated in both a computational voice production model and a group of 47 human subjects. The model provides indirect control over the degree of left–right phase asymmetry within a nonlinear source–filter framework, and high-speed videoendoscopy provides in vivo measures of vocal fold vibratory asymmetry. Source spectral tilt measures are estimated from the inverse-filtered spectrum of the simulated and recorded radiated acoustic pressure. As expected, model simulations indicate that increasing left–right phase asymmetry induces steeper spectral tilt. Subject data, however, reveal that none of the vibratory asymmetry measures correlates with spectral tilt measures. Probing further into physiological correlates of spectral tilt that might be affected by asymmetry, the glottal area waveform is parameterized to obtain measures of the open phase (open/plateau quotient) and closing phase (speed/closing quotient). Subjects’ left–right phase asymmetry exhibits low, but statistically significant, correlations with speed quotient (r = 0.45) and closing quotient (r = −0.39). Results call for future studies into the effect of asymmetric vocal fold vibration on glottal airflow and the associated impact on voice source spectral properties and vocal efficiency. PMID:22225054

  2. Vibratory response of a mirror support/positioning system for the Advanced Photon Source project at Argonne National Laboratory

    SciTech Connect

    Basdogan, I.; Shu, Deming; Kuzay, T.M.; Royston, T.J.; Shabana, A.A.

    1996-08-01

    The vibratory response of a typical mirror support/positioning system used at the experimental station of the Advanced Photon Source (APS) project at Argonne National Laboratory is investigated. Positioning precision and stability are especially critical when the supported mirror directs a high-intensity beam aimed at a distant target. Stability may be compromised by low level, low frequency seismic and facility-originated vibrations traveling through the ground and/or vibrations caused by flow-structure interactions in the mirror cooling system. The example case system has five positioning degrees of freedom through the use of precision actuators and rotary and linear bearings. These linkage devices result in complex, multi-dimensional vibratory behavior that is a function of the range of positioning configurations. A rigorous multibody dynamical approach is used for the development of the system equations. Initial results of the study, including estimates of natural frequencies and mode shapes, as well as limited parametric design studies, are presented. While the results reported here are for a particular system, the developed vibratory analysis approach is applicable to the wide range of high-precision optical positioning systems encountered at the APS and at other comparable facilities.

  3. Species identity influences belowground arthropod assemblages via functional traits

    PubMed Central

    Gorman, Courtney E.; Read, Quentin D.; Van Nuland, Michael E.; Bryant, Jessica A. M.; Welch, Jessica N.; Altobelli, Joseph T.; Douglas, Morgan J.; Genung, Mark A.; Haag, Elliot N.; Jones, Devin N.; Long, Hannah E.; Wilburn, Adam D.; Schweitzer, Jennifer A.; Bailey, Joseph K.

    2013-01-01

    Plant species influence belowground communities in a variety of ways, ultimately impacting nutrient cycling. Functional plant traits provide a means whereby species identity can influence belowground community interactions, but little work has examined whether species identity influences belowground community processes when correcting for evolutionary history. Specifically, we hypothesized that closely related species would exhibit (i) more similar leaf and root functional traits than more distantly related species, and (ii) more similar associated soil arthropod communities. We found that after correcting for evolutionary history, tree species identity influenced belowground arthropod communities through plant functional traits. These data suggest that plant species structure may be an important predictor in shaping associated soil arthropod communities and further suggest the importance of better understanding the extended consequences of evolutionary history on ecological processes, as similarity in traits may not always reflect similar ecology.

  4. Inbreeding and the evolution of sociality in arthropods

    NASA Astrophysics Data System (ADS)

    Tabadkani, Seyed Mohammad; Nozari, Jamasb; Lihoreau, Mathieu

    2012-10-01

    Animals have evolved strategies to optimally balance costs and benefits of inbreeding. In social species, these adaptations can have a considerable impact on the structure, the organization, and the functioning of groups. Here, we consider how selection for inbreeding avoidance fashions the social behavior of arthropods, a phylum exhibiting an unparalleled richness of social lifestyles. We first examine life histories and parental investment patterns determining whether individuals should actively avoid or prefer inbreeding. Next, we illustrate the diversity of inbreeding avoidance mechanisms in arthropods, from the dispersal of individuals to the rejection of kin during mate choice and the production of unisexual broods by females. Then, we address the particular case of haplodiploid insects. Finally, we discuss how inbreeding may drive and shape the evolution of arthropods societies along two theoretical pathways.

  5. Plant species loss decreases arthropod diversity and shifts trophic structure.

    PubMed

    Haddad, Nick M; Crutsinger, Gregory M; Gross, Kevin; Haarstad, John; Knops, Johannes M H; Tilman, David

    2009-10-01

    Plant diversity is predicted to be positively linked to the diversity of herbivores and predators in a foodweb. Yet, the relationship between plant and animal diversity is explained by a variety of competing hypotheses, with mixed empirical results for each hypothesis. We sampled arthropods for over a decade in an experiment that manipulated the number of grassland plant species. We found that herbivore and predator species richness were strongly, positively related to plant species richness, and that these relationships were caused by different mechanisms at herbivore and predator trophic levels. Even more dramatic was the threefold increase, from low- to high-plant species richness, in abundances of predatory and parasitoid arthropods relative to their herbivorous prey. Our results demonstrate that, over the long term, the loss of plant species propagates through food webs, greatly decreasing arthropod species richness, shifting a predator-dominated trophic structure to being herbivore dominated, and likely impacting ecosystem functioning and services.

  6. Physical ecology of fluid flow sensing in arthropods.

    PubMed

    Casas, Jérôme; Dangles, Olivier

    2010-01-01

    Terrestrial and aquatic arthropods sense fluid flow in many behavioral and ecological contexts, using dedicated, highly sensitive mechanosensory hairs, which are often abundant. Strong similarities exist in the biomechanics of flow sensors and in the sensory ecology of insects, arachnids, and crustaceans in their respective fluid environments. We extend these considerations to flow in sand and its implications for flow sensing by arthropods inhabiting this granular medium. Finally, we highlight the need to merge the various findings of studies that have focused on different arthropods in different fluids. This could be achieved using the unique combination, for sensory ecology, of both a workable and well-accepted mathematical model for hair-based flow sensing, both in air and water, and microelectronic mechanical systems microtechnology to tinker with physical models.

  7. Arthropods and their products as aphrodisiacs--review of literature.

    PubMed

    Pajovic, B; Radosavljevic, M; Radunovic, M; Radojevic, N; Bjelogrlic, B

    2012-04-01

    After a short review of impotence, the definitions of erectants and aphrodisiacs are presented. The Authors propose division of arthropods according to the places of effect. The description of particular arthropods with their pictures and nomenclature, is followed by certain or probable mechanisms of achieving the aphrodisiac and sometimes toxic effect, that were available in the literature since 1929 till nowadays. We mention the most usual locations, mainly in Asia, where they are found and consumed, but also, we describe the manner of preparing and intake. The review includes the following arthropods: lobster, Arizona bark scorpion, deathstalker, banana spider, Mediterranean black widow, Burmeister's triatoma, giant water bug, diving-beetle, Korean bug, diaclina, flannel moth, Spanish fly, migratory locust, red wood ant and honeybee.

  8. Inbreeding and the evolution of sociality in arthropods.

    PubMed

    Tabadkani, Seyed Mohammad; Nozari, Jamasb; Lihoreau, Mathieu

    2012-10-01

    Animals have evolved strategies to optimally balance costs and benefits of inbreeding. In social species, these adaptations can have a considerable impact on the structure, the organization, and the functioning of groups. Here, we consider how selection for inbreeding avoidance fashions the social behavior of arthropods, a phylum exhibiting an unparalleled richness of social lifestyles. We first examine life histories and parental investment patterns determining whether individuals should actively avoid or prefer inbreeding. Next, we illustrate the diversity of inbreeding avoidance mechanisms in arthropods, from the dispersal of individuals to the rejection of kin during mate choice and the production of unisexual broods by females. Then, we address the particular case of haplodiploid insects. Finally, we discuss how inbreeding may drive and shape the evolution of arthropods societies along two theoretical pathways.

  9. Single and Multiple Visual Systems in Arthropods

    PubMed Central

    Wald, George

    1968-01-01

    Extraction of two visual pigments from crayfish eyes prompted an electrophysiological examination of the role of visual pigments in the compound eyes of six arthropods. The intact animals were used; in crayfishes isolated eyestalks also. Thresholds were measured in terms of the absolute or relative numbers of photons per flash at various wavelengths needed to evoke a constant amplitude of electroretinogram, usually 50 µv. Two species of crayfish, as well as the green crab, possess blue- and red-sensitive receptors apparently arranged for color discrimination. In the northern crayfish, Orconectes virilis, the spectral sensitivity of the dark-adapted eye is maximal at about 550 mµ, and on adaptation to bright red or blue lights breaks into two functions with λmax respectively at about 435 and 565 mµ, apparently emanating from different receptors. The swamp crayfish, Procambarus clarkii, displays a maximum sensitivity when dark-adapted at about 570 mµ, that breaks on color adaptation into blue- and red-sensitive functions with λmax about 450 and 575 mµ, again involving different receptors. Similarly the green crab, Carcinides maenas, presents a dark-adapted sensitivity maximal at about 510 mµ that divides on color adaptation into sensitivity curves maximal near 425 and 565 mµ. Each of these organisms thus possesses an apparatus adequate for at least two-color vision, resembling that of human green-blinds (deuteranopes). The visual pigments of the red-sensitive systems have been extracted from the crayfish eyes. The horse-shoe crab, Limulus, and the lobster each possesses a single visual system, with λmax respectively at 520 and 525 mµ. Each of these is invariant with color adaptation. In each case the visual pigment had already been identified in extracts. The spider crab, Libinia emarginata, presents another variation. It possesses two visual systems apparently differentiated, not for color discrimination but for use in dim and bright light, like

  10. [Diversity and stability of arthropod assemblage in tea orchard].

    PubMed

    Chen, Yigen; Xiong, Jinjun; Huang, Mingdu; Gu, Dejiu

    2004-05-01

    Two tea orchards, simplex tea orchard with weeds removed manually or by herbicides (STO) and complex tea orchard with the weed Hedyotis uncinella (CTO), each with an area of 0. 4 hm2, were established in 1995 in Yingde Hongxing Tea Plantation, Guangdong Province. The primary eigenvalues, species richness index (R), assemblage diversity index (H'), evenness index (J) and species concentration index (C) of arthropod assemblage were employed and compared to assess the efficacy of STO and CTO on the diversity and stabilityof arthropod assemblage. Stability indexes Ss/Si and Sn/Sp and variation coefficient of diversity index ds/dm were utilized as well. The results demonstrated that the R of arthropod assemblage in CTO ranged from 4 to 8, with the highest of 7.7403, while that in STO varied mainly between 4 to 6. The average R of arthropod assemblage in CTO was 5.4672 +/- 0.3483, higher than that in STO (4.8809 +/- 0.3175). The H' of arthropod in CTO (3.8535 +/- 0.1232) was higher, in contrast to the value in STO (3.4654 +/- 0.1856). The J in CTO was higher, while the species concentration index (C) was lower, in comparison to STO. The stability indexes Ss/Si and Sn/Sp of CTO were greater than those of STO, while the ds/dm in CTO (0.1107) was lower than that in STO (0.1855). All these indicated that the diversity of arthropod assemblage was better preserved in CTO, and the assemblage in CTO was more stable.

  11. Two novel measurements for the drive-mode resonant frequency of a micromachined vibratory gyroscope.

    PubMed

    Wang, Ancheng; Hu, Xiaoping; Luo, Bing; Jiang, Mingming; He, Xiaofeng; Tang, Kanghua

    2013-01-01

    To investigate the drive-mode resonance frequency of a micromachined vibratory gyroscope (MVG), one needs to measure it accurately and efficiently. The conventional approach to measure the resonant frequency is by performing a sweep frequency test and spectrum analysis. The method is time-consuming and inconvenient because of the requirements of many test points, a lot of data storage and off-line analyses. In this paper, we propose two novel measurement methods, the search method and track method, respectively. The former is based on the magnitude-frequency characteristics of the drive mode, utilizing a one-dimensional search technique. The latter is based on the phase-frequency characteristics, applying a feedback control loop. Their performances in precision, noise resistivity and efficiency are analyzed through detailed simulations. A test system is implemented based on a field programmable gate array (FPGA) and experiments are carried out. By comparing with the common approach, feasibility and superiorities of the proposed methods are validated. In particular, significant efficiency improvements are achieved whereby the conventional frequency method consumes nearly 5,000 s to finish a measurement, while only 5 s is needed for the track method and 1 s for the search method.

  12. Special element approach for calculating the vibratory response of adhesively bonded and composite structures

    NASA Astrophysics Data System (ADS)

    Kim, N. E.; Griffin, J. H.

    1994-02-01

    An approach is presented that may be used to calculate the natural frequencies and loss factors of composite sandwich beams or beams containing adhesively bonded joints. The approach uses special finite elements to represent either composite or joint elements and the modal strain energy method to calculate the loss factor for each vibratory mode of interest. The special element represents a section of the composite beam or the overlap joint as an element with four nodes. Its properties are calculated by using a generalization of the shape function concept from finite elements in which the shape function (displacement fields) in the special elements are determined by performing static stress analysis on the special element's substructure. The resulting special element has only a small number of degrees of freedom and, yet, accurately represents the geometrically complex substructure. Results obtained using this approach on sandwich beams compare well with an analytical solution published in the literature. In addition, it correlates reasonably well with data taken from tests on adhesively bonded beams.

  13. Design of vibratory energy harvesters under stochastic parametric uncertainty: a new optimization philosophy

    NASA Astrophysics Data System (ADS)

    Haji Hosseinloo, Ashkan; Turitsyn, Konstantin

    2016-05-01

    Vibratory energy harvesters as potential replacements for conventional batteries are not as robust as batteries. Their performance can drastically deteriorate in the presence of uncertainty in their parameters. Parametric uncertainty is inevitable with any physical device mainly due to manufacturing tolerances, defects, and environmental effects such as temperature and humidity. Hence, uncertainty propagation analysis and optimization under uncertainty seem indispensable with any energy harvester design. Here we propose a new modeling philosophy for optimization under uncertainty; optimization for the worst-case scenario (minimum power) rather than for the ensemble expectation of the power. The proposed optimization philosophy is practically very useful when there is a minimum requirement on the harvested power. We formulate the problems of uncertainty propagation and optimization under uncertainty in a generic and architecture-independent fashion, and then apply them to a single-degree-of-freedom linear piezoelectric energy harvester with uncertainty in its different parameters. The simulation results show that there is a significant improvement in the worst-case power of the designed harvester compared to that of a naively optimized (deterministically optimized) harvester. For instance, for a 10% uncertainty in the natural frequency of the harvester (in terms of its standard deviation) this improvement is about 570%.

  14. Modeling and analysis of mechanical Quality factor of the resonator for cylinder vibratory gyroscope

    NASA Astrophysics Data System (ADS)

    Xi, Xiang; Wu, Xuezhong; Wu, Yulie; Zhang, Yongmeng

    2016-08-01

    Mechanical Quality factor(Q factor) of the resonator is an important parameter for the cylinder vibratory gyroscope(CVG). Traditional analytical methods mainly focus on a partial energy loss during the vibration process of the CVG resonator, thus are not accurate for the mechanical Q factor prediction. Therefore an integrated model including air damping loss, surface defect loss, support loss, thermoelastic damping loss and internal friction loss is proposed to obtain the mechanical Q factor of the CVG resonator. Based on structural dynamics and energy dissipation analysis, the contribution of each energy loss to the total mechanical Q factor is quantificationally analyzed. For the resonator with radius ranging from 10 mm to 20 mm, its mechanical Q factor is mainly related to the support loss, thermoelastic damping loss and internal friction loss, which are fundamentally determined by the geometric sizes and material properties of the resonator. In addition, resonators made of alloy 3J53 (Ni42CrTiAl), with different sizes, were experimentally fabricated to test the mechanical Q factor. The theoretical model is well verified by the experimental data, thus provides an effective theoretical method to design and predict the mechanical Q factor of the CVG resonator.

  15. Separation of water from metal working emulsions by ultrafiltration using vibratory membranes.

    PubMed

    Moulai-Mostefa, Nadji; Frappart, Matthieu; Akoum, Omar; Ding, Luhui; Jaffrin, Michel Y

    2010-05-15

    In this paper, we investigate the application of a vibratory shear-enhanced filtration system (VSEP) to separation of water from oil-in-water emulsions. The VSEP module consists in an annular membrane of 500 cm(2) area which oscillates azimuthally in its own plane with an amplitude depending upon frequency. Polyethersulfone (PES) membranes of 50 and 20 kDa were used. Test fluids consisted of oil-in-water emulsion at an oil concentration of 4% prepared from a concentrated cutting fluid. The critical flux for stable operation was investigated by increasing the permeate flux in steps while monitoring the transmembrane pressure (TMP). With a 50 kDa membrane the flux increased nonlinearly with TMP and reached 250 L h(-1)m(-2) at a TMP of 1500 kPa while permeate turbidity decayed from 1.8 to 0.9 NTU above 600 kPa from an initial emulsion turbidity of 21,900 NTU. With the 20 kDa membrane, the flux increased linearly with TMP until 1600 kPa, but the oil concentration in permeate became negligible (turbidity near zero NTU). Concentration tests showed that the flux decreased linearly with ln(VRR) where VRR is the volume reduction ratio while permeate turbidity increased exponentially to 25NTU above a VRR of 4. This work confirms the high performance of the VSEP for oil separation from water in metal working emulsions.

  16. The endoskeletal structures in arthropods: cytology, morphology and evolution.

    PubMed

    Bitsch, Colette; Bitsch, Jacques

    2002-02-01

    The paper proposes an overview of the endoskeletal structures of the head and trunk in the different arthropod groups: Chelicerata, Crustacea, Myriapoda and Hexapoda (=Insecta s.l.). Two major endoskeletal systems are reported with their cytological characteristics: those made up of connective tissue derived from muscular tendons, and those consisting of cuticular rods or plates arising from integumentary ingrowths. The morphological value of the various endoskeletal structures, their possible homologies in different groups, and their presumed evolutionary changes are discussed. This survey may be considered as a first step to use morphological characteristics of the endoskeleton in future cladistic analyses to assess the phylogeny of arthropods. PMID:18088953

  17. [2013 update about arthropod envenomations in French Guyana].

    PubMed

    Ganteaume, F; Imbert, C

    2014-02-01

    French Guiana, by its geographical situation, its climate and its biodiversity, is often called "the green hell". Indeed, this French department of America shelters a wildlife rich, abundant among which many species of arthropods, some of which are responsible for envenomations. These accidents consist of scorpion's or hymenoptera's stings or spider's bites. The associated clinical aspect is variable, from simple pain to circulatory collapse, or lung oedema. However, symptomatology is generally mild; four deaths associated to arthropod envenomations have been reported in the past 25 years. This article focuses on envenomations in French Guiana, describing favoring human behavior, risks and venoms associated with the main related animal species.

  18. 40 CFR 180.1124 - Arthropod pheromones; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Arthropod pheromones; exemption from... FOOD Exemptions From Tolerances § 180.1124 Arthropod pheromones; exemption from the requirement of a tolerance. Arthropod pheromones, as described in § 152.25(b) of this chapter, when used in retrievably...

  19. 40 CFR 180.1124 - Arthropod pheromones; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Arthropod pheromones; exemption from... FOOD Exemptions From Tolerances § 180.1124 Arthropod pheromones; exemption from the requirement of a tolerance. Arthropod pheromones, as described in § 152.25(b) of this chapter, when used in retrievably...

  20. 40 CFR 180.1124 - Arthropod pheromones; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Arthropod pheromones; exemption from... FOOD Exemptions From Tolerances § 180.1124 Arthropod pheromones; exemption from the requirement of a tolerance. Arthropod pheromones, as described in § 152.25(b) of this chapter, when used in retrievably...

  1. 40 CFR 180.1124 - Arthropod pheromones; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Arthropod pheromones; exemption from... FOOD Exemptions From Tolerances § 180.1124 Arthropod pheromones; exemption from the requirement of a tolerance. Arthropod pheromones, as described in § 152.25(b) of this chapter, when used in retrievably...

  2. 40 CFR 180.1124 - Arthropod pheromones; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Arthropod pheromones; exemption from... FOOD Exemptions From Tolerances § 180.1124 Arthropod pheromones; exemption from the requirement of a tolerance. Arthropod pheromones, as described in § 152.25(b) of this chapter, when used in retrievably...

  3. Bioactivity of cedarwood oil and cedrol against arthropod pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heartwood samples from Juniperus virginiana, were extracted with liquid carbon dioxide and the bioactivity of carbon dioxide-derived cedarwood oil (CWO) towards several species of arthropods was investigated. Repellency or toxicity was tested for ants, ticks, and cockroaches. Ants in an outdoor bi...

  4. Diet-consumer nitrogen isotope fractionation for prolonged fasting arthropods.

    PubMed

    Mizota, Chitoshi; Yamanaka, Toshiro

    2011-12-01

    Nitrogen acquisition for cellular metabolism during diapause is a primary concern for herbivorous arthropods. Analyses of naturally occurring stable isotopes of nitrogen help elucidate the mechanism. Relevant articles have cited (58 times up to mid-June 2011) anomalously elevated δ(15)N (per mil deviation of (15)N/(14)N, relative to atmospheric nitrogen=0 ‰) values (diet-consumer nitrogen isotope fractionation; up to 12 ‰) for a prolonged fasting raspberry beetle (Byturus tomentosus Degeer (Coleoptera: Byturidae)), which feeds on red raspberries (Rubus idaeus: δ(15)N= ~ +2 ‰). Biologists have hypothesised that extensive recycling of amino acid nitrogen is responsible for the prolonged fasting. Since this hypothesis was proposed in 1995, scientists have integrated biochemical and molecular knowledge to support the mechanism of prolonged diapausing of animals. To test the validity of the recycling hypothesis, we analysed tissue nitrogen isotope ratios for four Japanese arthropods: the shield bug Parastrachia japonensis Scott (Hemiptera: Cydnidae), the burrower bug Canthophorus niveimarginatus Scott (Hemiptera: Cydnidae), leaf beetle Gastrophysa atrocyanea Motschulsky (Coleoptera: Chrysomelidae) and the Japanese oak silkworm Antheraea yamamai (Lepidoptera: Saturniidae), all of which fast for more than 6 months as part of their life-history strategy. Resulting diet-consumer nitrogen isotope discrimination during fasting ranged from 0 to 7‰, as in many commonly known terrestrial arthropods. We conclude that prolonged fasting of arthropods does not always result in anomalous diet-consumer nitrogen isotope fractionation, since the recycling process is closed or nearly closed with respect to nitrogen isotopes. PMID:22166153

  5. A multimodal bait for trapping blood-sucking arthropods.

    PubMed

    Ryelandt, Julien; Noireau, François; Lazzari, Claudio R

    2011-02-01

    Artificial baits constitute important tools for the detection and sampling of blood-sucking arthropods, in particular those that are vectors of parasites affecting human health. At present, many different devices have been proposed to attract blood-sucking arthropods, mostly based on the attractiveness of particular chemicals or blends. However, most of them revealed themselves as unpractical (e.g. they require an electrical supply), expensive (e.g. gas bottles) or not efficient enough. On the other hand, the use of living baits is as effective but it has practical constraints and/or raises ethical questions. We present here a multimodal lure to attract blood-sucking arthropods designed taking into account both practical constraints and costs. The main characteristics of our bait are: (1) artificiality (no living-host); (2) multimodality (it associates heat, carbon dioxide and chemical attractants); (3) independency from any energy source; (4) no need for gas bottles; (5) easy to prepare and use in the field; (6) low cost. We tested the ability of the bait to attract blood-sucking arthropods in the laboratory and in the field, using capture sticky-traps. Our bait evinced to be almost as efficient as live hosts (mice) for the capture of Chagas disease and Borrelia vectors in Bolivia. The multimodal lure here presented is a generalist bait, i.e. effective for attracting different haematophagous species.

  6. Sampling epigeal arthropods: A permanent, sheltered, closeable pitfall trapping station

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epigeal arthropods constitute the bulk of herbivore, predator, and decomposer species in soil and litter ecosystems. Being small and difficult to observe within these sometimes densely vegetated habitats, they are inherently difficult to sample quantitatively. Further, most methods have inherent tax...

  7. Effects of a Major Tree Invader on Urban Woodland Arthropods.

    PubMed

    Buchholz, Sascha; Tietze, Hedwig; Kowarik, Ingo; Schirmel, Jens

    2015-01-01

    Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia), which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera); 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity.

  8. Successive Gain of Insulator Proteins in Arthropod Evolution

    PubMed Central

    Heger, Peter; George, Rebecca; Wiehe, Thomas

    2013-01-01

    Alteration of regulatory DNA elements or their binding proteins may have drastic consequences for morphological evolution. Chromatin insulators are one example of such proteins and play a fundamental role in organizing gene expression. While a single insulator protein, CTCF (CCCTC-binding factor), is known in vertebrates, Drosophila melanogaster utilizes six additional factors. We studied the evolution of these proteins and show here that—in contrast to the bilaterian-wide distribution of CTCF—all other D. melanogaster insulators are restricted to arthropods. The full set is present exclusively in the genus Drosophila whereas only two insulators, Su(Hw) and CTCF, existed at the base of the arthropod clade and all additional factors have been acquired successively at later stages. Secondary loss of factors in some lineages further led to the presence of different insulator subsets in arthropods. Thus, the evolution of insulator proteins within arthropods is an ongoing and dynamic process that reshapes and supplements the ancient CTCF-based system common to bilaterians. Expansion of insulator systems may therefore be a general strategy to increase an organism’s gene regulatory repertoire and its potential for morphological plasticity. PMID:24094345

  9. Diet-consumer nitrogen isotope fractionation for prolonged fasting arthropods.

    PubMed

    Mizota, Chitoshi; Yamanaka, Toshiro

    2011-12-01

    Nitrogen acquisition for cellular metabolism during diapause is a primary concern for herbivorous arthropods. Analyses of naturally occurring stable isotopes of nitrogen help elucidate the mechanism. Relevant articles have cited (58 times up to mid-June 2011) anomalously elevated δ(15)N (per mil deviation of (15)N/(14)N, relative to atmospheric nitrogen=0 ‰) values (diet-consumer nitrogen isotope fractionation; up to 12 ‰) for a prolonged fasting raspberry beetle (Byturus tomentosus Degeer (Coleoptera: Byturidae)), which feeds on red raspberries (Rubus idaeus: δ(15)N= ~ +2 ‰). Biologists have hypothesised that extensive recycling of amino acid nitrogen is responsible for the prolonged fasting. Since this hypothesis was proposed in 1995, scientists have integrated biochemical and molecular knowledge to support the mechanism of prolonged diapausing of animals. To test the validity of the recycling hypothesis, we analysed tissue nitrogen isotope ratios for four Japanese arthropods: the shield bug Parastrachia japonensis Scott (Hemiptera: Cydnidae), the burrower bug Canthophorus niveimarginatus Scott (Hemiptera: Cydnidae), leaf beetle Gastrophysa atrocyanea Motschulsky (Coleoptera: Chrysomelidae) and the Japanese oak silkworm Antheraea yamamai (Lepidoptera: Saturniidae), all of which fast for more than 6 months as part of their life-history strategy. Resulting diet-consumer nitrogen isotope discrimination during fasting ranged from 0 to 7‰, as in many commonly known terrestrial arthropods. We conclude that prolonged fasting of arthropods does not always result in anomalous diet-consumer nitrogen isotope fractionation, since the recycling process is closed or nearly closed with respect to nitrogen isotopes.

  10. The function and evolution of Wnt genes in arthropods.

    PubMed

    Murat, Sophie; Hopfen, Corinna; McGregor, Alistair P

    2010-11-01

    Wnt signalling is required for a wide range of developmental processes, from cleavage to patterning and cell migration. There are 13 subfamilies of Wnt ligand genes and this diverse repertoire appeared very early in metazoan evolution. In this review, we first summarise the known Wnt gene repertoire in various arthropods. Insects appear to have lost several Wnt subfamilies, either generally, such as Wnt3, or in lineage specific patterns, for example, the loss of Wnt7 in Anopheles. In Drosophila and Acyrthosiphon, only seven and six Wnt subfamilies are represented, respectively; however, the finding of nine Wnt genes in Tribolium suggests that arthropods had a larger repertoire ancestrally. We then discuss what is currently known about the expression and developmental function of Wnt ligands in Drosophila and other insects in comparison to other arthropods, such as the spiders Achaearanea and Cupiennius. We conclude that studies of Wnt genes have given us much insight into the developmental roles of some of these ligands. However, given the frequent loss of Wnt genes in insects and the derived development of Drosophila, further studies of these important genes are required in a broader range of arthropods to fully understand their developmental function and evolution.

  11. Extreme Arthropods: Exploring Evolutionary Adaptations to Polar and Temperate Deserts

    ERIC Educational Resources Information Center

    Sandro, Luke; Constible, Juanita M.; Lee, Richard E., Jr.

    2007-01-01

    In this activity, Namib and Antarctic arthropods are used to illustrate several important biological principles. Among these are the key ideas that form follows function and that the environment drives evolution. In addition, students will discover that the climates of the Namib Desert and the Antarctic Peninsula are similar in several ways, and…

  12. Evolution of the salivary apyrases of blood-feeding arthropods.

    PubMed

    Hughes, Austin L

    2013-09-15

    Phylogenetic analyses of three families of arthropod apyrases were used to reconstruct the evolutionary relationships of salivary-expressed apyrases, which have an anti-coagulant function in blood-feeding arthropods. Members of the 5'nucleotidase family were recruited for salivary expression in blood-feeding species at least five separate times in the history of arthropods, while members of the Cimex-type apyrase family have been recruited at least twice. In spite of these independent events of recruitment for salivary function, neither of these families showed evidence of convergent amino acid sequence evolution in salivary-expressed members. On the contrary, in the 5'-nucleotide family, salivary-expressed proteins conserved ancestral amino acid residues to a significantly greater extent than related proteins without salivary function, implying parallel evolution by conservation of ancestral characters. This unusual pattern of sequence evolution suggests the hypothesis that purifying selection favoring conservation of ancestral residues is particularly strong in salivary-expressed members of the 5'-nucleotidase family of arthropods because of constraints arising from expression within the vertebrate host.

  13. Successive gain of insulator proteins in arthropod evolution.

    PubMed

    Heger, Peter; George, Rebecca; Wiehe, Thomas

    2013-10-01

    Alteration of regulatory DNA elements or their binding proteins may have drastic consequences for morphological evolution. Chromatin insulators are one example of such proteins and play a fundamental role in organizing gene expression. While a single insulator protein, CTCF (CCCTC-binding factor), is known in vertebrates, Drosophila melanogaster utilizes six additional factors. We studied the evolution of these proteins and show here that-in contrast to the bilaterian-wide distribution of CTCF-all other D. melanogaster insulators are restricted to arthropods. The full set is present exclusively in the genus Drosophila whereas only two insulators, Su(Hw) and CTCF, existed at the base of the arthropod clade and all additional factors have been acquired successively at later stages. Secondary loss of factors in some lineages further led to the presence of different insulator subsets in arthropods. Thus, the evolution of insulator proteins within arthropods is an ongoing and dynamic process that reshapes and supplements the ancient CTCF-based system common to bilaterians. Expansion of insulator systems may therefore be a general strategy to increase an organism's gene regulatory repertoire and its potential for morphological plasticity.

  14. Book Review: Bioassays with Arthropods: 2nd Edition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The technical book "Bioassays with Arthropods: 2nd Edition" (2007. Jacqueline L. Robertson, Robert M. Russell, Haiganoush K, Preisler and N. E. Nevin, Eds. CRC Press, Boca Raton, FL, 224 pp.) was reviewed for the scientific readership of the peer-reviewed publication Journal of Economic Entomology. ...

  15. Effects of a Major Tree Invader on Urban Woodland Arthropods

    PubMed Central

    2015-01-01

    Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia), which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera); 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity. PMID:26359665

  16. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory

    PubMed Central

    Wybouw, Nicky; Pauchet, Yannick; Heckel, David G.; Van Leeuwen, Thomas

    2016-01-01

    Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in terrestrial ecosystems. We gather a body of evidence showing that genomes of various plant feeding insects and mites possess genes whose presence can only be explained by horizontal gene transfer (HGT). HGT is the asexual transmission of genetic information between reproductively isolated species. Although HGT is known to have great adaptive significance in prokaryotes, its impact on eukaryotic evolution remains obscure. Here, we show that laterally transferred genes into arthropods underpin many adaptations to phytophagy, including efficient assimilation and detoxification of plant produced metabolites. Horizontally acquired genes and the traits they encode often functionally diversify within arthropod recipients, enabling the colonization of more host plant species and organs. We demonstrate that HGT can drive metazoan evolution by uncovering its prominent role in the adaptations of arthropods to exploit plants. PMID:27307274

  17. Arthropod Surveillance Programs: Basic Components, Strategies, and Analysis

    PubMed Central

    Rochon, Kateryn; Duehl, Adrian J.; Anderson, John F.; Barrera, Roberto; Su, Nan-Yao; Gerry, Alec C.; Obenauer, Peter J.; Campbell, James F.; Lysyk, Tim J.; Allan, Sandra A.

    2015-01-01

    Effective entomological surveillance planning stresses a careful consideration of methodology, trapping technologies, and analysis techniques. Herein, the basic principles and technological components of arthropod surveillance plans are described, as promoted in the symposium “Advancements in arthropod monitoring technology, techniques, and analysis” presented at the 58th annual meeting of the Entomological Society of America in San Diego, CA. Interdisciplinary examples of arthropod monitoring for urban, medical, and veterinary applications are reviewed. Arthropod surveillance consists of the three components: 1) sampling method, 2) trap technology, and 3) analysis technique. A sampling method consists of selecting the best device or collection technique for a specific location and sampling at the proper spatial distribution, optimal duration, and frequency to achieve the surveillance objective. Optimized sampling methods are discussed for several mosquito species (Diptera: Culicidae) and ticks (Acari: Ixodidae). The advantages and limitations of novel terrestrial and aerial insect traps, artificial pheromones and kairomones are presented for the capture of red flour beetle (Coleoptera: Tenebrionidae), small hive beetle (Coleoptera: Nitidulidae), bed bugs (Hemiptera: Cimicidae), and Culicoides (Diptera: Ceratopogonidae) respectively. After sampling, extrapolating real world population numbers from trap capture data are possible with the appropriate analysis techniques. Examples of this extrapolation and action thresholds are given for termites (Isoptera: Rhinotermitidae) and red flour beetles. PMID:26543242

  18. Effects of a Major Tree Invader on Urban Woodland Arthropods.

    PubMed

    Buchholz, Sascha; Tietze, Hedwig; Kowarik, Ingo; Schirmel, Jens

    2015-01-01

    Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia), which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera); 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity. PMID:26359665

  19. Leaf litter arthropod responses to tropical forest restoration.

    PubMed

    Cole, Rebecca J; Holl, Karen D; Zahawi, Rakan A; Wickey, Philipp; Townsend, Alan R

    2016-08-01

    Soil and litter arthropods represent a large proportion of tropical biodiversity and perform important ecosystem functions, but little is known about the efficacy of different tropical forest restoration strategies in facilitating their recovery in degraded habitats. We sampled arthropods in four 7- to 8-year-old restoration treatments and in nearby reference forests. Sampling was conducted during the wet and dry seasons using extractions from litter and pitfall samples. Restoration treatments were replicated in 50 × 50-m plots in four former pasture sites in southern Costa Rica: plantation - trees planted throughout the plot; applied nucleation/islands - trees planted in patches of different sizes; and natural regeneration - no tree planting. Arthropod abundance, measures of richness and diversity, and a number of functional groups were greater in the island treatment than in natural regeneration or plantation treatments and, in many cases, were similar to reference forest. Litter and pitfall morphospecies and functional group composition in all three restoration treatments were significantly different than reference sites, but island and plantation treatments showed more recovery than natural regeneration. Abundance and functional group diversity showed a much greater degree of recovery than community composition. Synthesis and applications: The less resource-intensive restoration strategy of planting tree islands was more effective than tree plantations in restoring arthropod abundance, richness, and functional diversity. None of the restoration strategies, however, resulted in similar community composition as reference forest after 8 years of recovery, highlighting the slow rate of recovery of arthropod communities after disturbance, and underscoring the importance of conservation of remnant forests in fragmented landscapes. PMID:27551373

  20. Influence of crop management practices on bean foliage arthropods.

    PubMed

    Pereira, J L; Picanço, M C; Pereira, E J G; Silva, A A; Jakelaitis, A; Pereira, R R; Xavier, V M

    2010-12-01

    Crop management practices can affect the population of phytophagous pest species and beneficial arthropods with consequences for integrated pest management. In this study, we determined the effect of no-tillage and crop residue management on the arthropod community associated with the canopy of common beans (Phaseolus vulgaris L.). Abundance and species composition of herbivorous, detritivorous, predaceous and parasitoid arthropods were recorded during the growing seasons of 2003 and 2004 in Coimbra County, Minas Gerais State, Brazil. Arthropod diversity and guild composition were similar among crop management systems, but their abundance was higher under no-tillage relative to conventional cultivation and where residues from the preceding crop were maintained in the field. Thirty-four arthropod species were recorded, and those most representative of the impact of the crop management practices were Hypogastrura springtails, Empoasca kraemeri and Circulifer leafhoppers, and Solenopsis ants. The infestation levels of major insect-pests, especially leafhoppers (Hemiptera: Cicadellidae), was on average seven-fold lower under no-tillage with retention of crop residues relative to the conventional system with removal of residues, whereas the abundance of predatory ants (Hymenoptera: Formicidae) and springtails (Collembola: Hypogastruridae) were, respectively, about seven- and 15-fold higher in that treatment. Importantly, a significant trophic interaction among crop residues, detritivores, predators and herbivores was observed. Plots managed with no-tillage and retention of crop residues had the highest bean yield, while those with conventional cultivation and removal of the crop residues yielded significantly less beans. This research shows that cropping systems that include zero tillage and crop residue retention can reduce infestation by foliar insect-pests and increase abundance of predators and detritivores, thus having direct consequences for insect pest management.

  1. Complex brain and optic lobes in an early Cambrian arthropod.

    PubMed

    Ma, Xiaoya; Hou, Xianguang; Edgecombe, Gregory D; Strausfeld, Nicholas J

    2012-10-11

    The nervous system provides a fundamental source of data for understanding the evolutionary relationships between major arthropod groups. Fossil arthropods rarely preserve neural tissue. As a result, inferring sensory and motor attributes of Cambrian taxa has been limited to interpreting external features, such as compound eyes or sensilla decorating appendages, and early-diverging arthropods have scarcely been analysed in the context of nervous system evolution. Here we report exceptional preservation of the brain and optic lobes of a stem-group arthropod from 520 million years ago (Myr ago), Fuxianhuia protensa, exhibiting the most compelling neuroanatomy known from the Cambrian. The protocerebrum of Fuxianhuia is supplied by optic lobes evidencing traces of three nested optic centres serving forward-viewing eyes. Nerves from uniramous antennae define the deutocerebrum, and a stout pair of more caudal nerves indicates a contiguous tritocerebral component. Fuxianhuia shares a tripartite pre-stomodeal brain and nested optic neuropils with extant Malacostraca and Insecta, demonstrating that these characters were present in some of the earliest derived arthropods. The brain of Fuxianhuia impacts molecular analyses that advocate either a branchiopod-like ancestor of Hexapoda or remipedes and possibly cephalocarids as sister groups of Hexapoda. Resolving arguments about whether the simple brain of a branchiopod approximates an ancestral insect brain or whether it is the result of secondary simplification has until now been hindered by lack of fossil evidence. The complex brain of Fuxianhuia accords with cladistic analyses on the basis of neural characters, suggesting that Branchiopoda derive from a malacostracan-like ancestor but underwent evolutionary reduction and character reversal of brain centres that are common to hexapods and malacostracans. The early origin of sophisticated brains provides a probable driver for versatile visual behaviours, a view that accords

  2. Effect of Axial Force on the Performance of Micromachined Vibratory Rate Gyroscopes

    PubMed Central

    Hou, Zhanqiang; Xiao, Dingbang; Wu, Xuezhong; Dong, Peitao; Chen, Zhihua; Niu, Zhengyi; Zhang, Xu

    2011-01-01

    It is reported in the published literature that the resonant frequency of a silicon micromachined gyroscope decreases linearly with increasing temperature. However, when the axial force is considerable, the resonant frequency might increase as the temperature increases. The axial force is mainly induced by thermal stress due to the mismatch between the thermal expansion coefficients of the structure and substrate. In this paper, two types of micromachined suspended vibratory gyroscopes with slanted beams were proposed to evaluate the effect of the axial force. One type was suspended with a clamped-free (C-F) beam and the other one was suspended with a clamped-clamped (C-C) beam. Their drive modes are the bending of the slanted beam, and their sense modes are the torsion of the slanted beam. The relationships between the resonant frequencies of the two types were developed. The prototypes were packaged by vacuum under 0.1 mbar and an analytical solution for the axial force effect on the resonant frequency was obtained. The temperature dependent performances of the operated mode responses of the micromachined gyroscopes were measured. The experimental values of the temperature coefficients of resonant frequencies (TCF) due to axial force were 101.5 ppm/°C for the drive mode and 21.6 ppm/°C for the sense mode. The axial force has a great influence on the modal frequency of the micromachined gyroscopes suspended with a C-C beam, especially for the flexure mode. The quality factors of the operated modes decreased with increasing temperature, and changed drastically when the micromachined gyroscopes worked at higher temperatures. PMID:22346578

  3. [Responses of ground arthropod functional groups to the enclosure of grazing grassland in desert steppe].

    PubMed

    Liu, Ren-tao; Li, Xue-bin; Xin, Ming; Ma, Lin; Liu, Kai

    2011-08-01

    With the support of the National Resources Monitoring Station in Yanchi County of Ningxia, an investigation was conducted on the ground arthropods, vegetations, and soil properties in the enclosed and un-enclosed grazing grassland in desert steppe. In the meantime, the functional groups of ground arthropods were classified according to their feeding habits. The ground arthropods in the desert steppe could be classified into four functional groups, i.e., predatory, phytophagous, saprophagous, and omnivorous, among which, predatory and phytophagous groups were dominant in quantity, and phytophagous and saprophagous groups were predominant in biomass, implying that the ground arthropod in desert steppe was mainly characterized by phytophagous arthropods. Enclosure increased the individual and group number of predatory, phytophagous, and omnivorous arthropods as well as the biomass of predatory and omnivorous arthropods, and enhanced the biodiversity of predatory and phytophagous arthropods, which was closely correlated with the vegetation recovery and soil environment improvement, and demonstrated that the enclosure of grazing grassland increased the diversity and complexity of ground arthropod functional groups in desert steppe. Nevertheless, the individual number and biomass of saprophagous arthropods decreased after the enclosure, reflecting the dependence of these arthropods on grazing grassland.

  4. [Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields].

    PubMed

    Zhang, Qing-Ling; Li, Yun-He; Hua, Hong-Xia; Yang, Chang-Ju; Wu, Hong-Jin; Peng, Yu-Fa

    2013-06-01

    Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.

  5. Arthropod food webs become increasingly lipid-limited at higher trophic levels.

    PubMed

    Wilder, Shawn M; Norris, Michael; Lee, Raymond W; Raubenheimer, David; Simpson, Stephen J

    2013-07-01

    Understanding why food chains are relatively short in length has been an area of research and debate for decades. We tested if progressive changes in the nutritional content of arthropods with trophic position limit the availability of a key nutrient, lipid, for carnivores. Arthropods at higher trophic levels had progressively less lipid and more protein in their bodies compared with arthropods at lower trophic levels. The nutrients present in arthropod bodies were directly related to the nutrients that predators extracted when feeding on those arthropods. As a consequence, nutrient assimilation shifted from lipid-biased to protein-biased as arthropods ascended trophic levels from herbivores to secondary carnivores. Successive changes in the nutritional consequences of predation may ultimately set an upper limit on the number of trophic levels in arthropod communities. Further work is needed to examine the influence of lipid and other nutrients on food web traits in a range of ecosystems.

  6. The relationships between residual stress relaxation and texture development in AZ31 Mg alloys via the vibratory stress relief technique

    SciTech Connect

    Wang, Jia-Siang; Hsieh, Chih-Chun; Lai, Hsuan-Han; Kuo, Che-Wei; Wu, Paxon Ti-Yuan; Wu, Weite

    2015-01-15

    A systematic study of residual stress relaxation and the texture evolution of cold-rolled AZ31 Mg alloys using the vibratory stress relief technique with a simple cantilever beam vibration system was performed using a high-resolution X-ray diffractometer and a portable X-ray residual stress analyzer. The effects of vibrational stress excitation on the surface residual stress distribution and on the texture of pole figures (0002) occurring during the vibratory stress relief were examined. Compared with the effects corresponding to the same alloy under non-vibration condition, it can be observed that the uniform surface residual stress distribution and relaxation of the compressive residual stress in the stress concentration zone were observed rather than all of the residual stresses being eliminated. Furthermore, with an increase in the vibrational aging time, the compressive residual stress, texture density, and (0002) preferred orientation increased first and then decreased. It should be underlined that the vibratory stress relief process for the vibrational aging time of more than 10 min is able to weaken the strong basal textures of AZ31 Mg alloys, which is valuable for enhancement of their formability and is responsible for an almost perfect 3D-Debye–Scherrer ring. - Highlights: • 3D-Debye ring about VSR technique is not discussed in the existing literature. • A newly developed VSR method is suitable for small or thin workpieces. • The cosα method accurately and effectively determines the residual stresses. • The VSR technique is valuable for enhancement of their formability. • The texture and preferred orientation change with the vibrational aging time.

  7. Ecology and management of arthropod pests of poultry.

    PubMed

    Axtell, R C; Arends, J J

    1990-01-01

    The worldwide spread of modern, high-density confined poultry production systems under the direction of integrators has intensified the importance of a select number of arthropod ectoparasites and habitat pests. This concentrated production of poultry provides artificial ecosystems that are sometimes ideal for the development of large populations of arthropod pests. At the same time the systems are amenable to integrated pest management involving a multipest and multimethod approach to reducing or eliminating arthropod pests. Since rodents are major pests, they should be included in an integrated pest management program to make the program most cost-effective and attractive to the integrators and producers (5). Quantitative data are scarce on economic effects, and the concept of economic thresholds is difficult to apply either to ectoparasites or to habitat pests. The risk of transporting ectoparasites among flocks is difficult to evaluate and necessitates treatment after early detection of the arthropods. Flies and litter beetles present a threat of disease transmission and the potential for lawsuits from neighbors or public health agencies that are factors not subject to easy cost estimates. The monetary losses of a flock devastated by disease or a farm forced to close are so great that the risks are unacceptable. Production losses from lowered feed conversion ratios and insulation damage are likely to be detected by the sophisticated record-keeping of the integrators. Minimal use of pesticides and other chemicals on poultry and in poultry housing is an objective of the integrators and, consequently, an integrated pest management (IPM) approach that reduces the need for pesticides is attractive. The key to further development of effective arthropod management programs for poultry is the implementation of pest and disease monitoring programs for the complete system. Improvements in arthropod sampling methods and more attention to monitoring the biosecurity systems

  8. Fluctuating Wall Pressure and Vibratory Response of a Cylindrical Elastic Shell due to Confined Jet Excitations.

    NASA Astrophysics Data System (ADS)

    Ng, Kam Wing

    A theoretical and experimental study was conducted to investigate the flow-induced noise and vibration caused by confined jet flows in a cylindrical duct. Unrestricted pipe flow and flows restricted by various orifices were tested for a wide range of velocities to simulate the flow in piping systems. Wall pressure data showed that the noise levels vary with the pipe's axial location and the peak noise is located at the vicinity of the end of the jet potential core. A non-dimensional wall pressure spectrum was established for the various confined jets by the Strouhal relationship, where the length scale is the jet hydraulic diameter. This jet pressure spectrum agrees with the wall pressure spectrum of a turbulent boundary layer above a rigid plane. Correlations of wall pressure fluctuations and pipe wall acceleration signals showed that jet flows generate more deterministic features than pipe flow. The coherence functions of the wall pressure and pipe wall acceleration signals are relatively high near the exit of the jet. The high coherence is probably due to the large-scale coherent structures. An analytical model was developed to study the effect of the turbulent jet flow field on the wall pressure and vibratory motion of the duct wall. Based on flow field measurements, the blocked surface pressure was calculated using Lighthill's method, and then used to drive the fluid -filled shell. The wall pressure and pipe wall acceleration were determined by solving the coupled fluid solid interaction problem. The wall pressure was obtained by summing the blocked surface pressure and the pressure due to the wall vibration. An amplitude modulated convecting wave field was used to simulate the moving acoustic sources of the jet. The random nature of the turbulent jet was incorporated into the analytical model. Specifically, the acoustic pressure was assumed to result from hydrodynamic pressure fluctuations which are uncorrelated in the radial direction, but are correlated in

  9. Personal Protection Measures Against Mosquitoes, Ticks, and Other Arthropods.

    PubMed

    Alpern, Jonathan D; Dunlop, Stephen J; Dolan, Benjamin J; Stauffer, William M; Boulware, David R

    2016-03-01

    Arthropod-associated diseases are a major cause of morbidity among travelers. Obtaining a detailed travel itinerary and understanding traveler-specific and destination-specific risk factors can help mitigate the risk of vector-borne diseases. DEET, picaridin, PMD, and IR3535 are insect repellents that offer sufficient protection against arthropod bites. IR3535 does not provide adequate protection against Anopheles mosquitoes, and should be avoided in malaria-endemic regions. General protective measures, such as bite avoidance, protective clothing, insecticide-treated bed nets, and insecticide-treated clothing, should be recommended, especially in malaria-endemic areas. Spatial repellents may prevent nuisance biting, but have not been shown to prevent against vector-borne disease.

  10. Arthropod-borne diseases associated with political and social disorder.

    PubMed

    Brouqui, Philippe

    2011-01-01

    The living conditions and the crowded situations of the homeless, war refugees, or victims of a natural disaster provide ideal conditions for the spread of lice, fleas, ticks, flies and mites. The consequence of arthropod infestation in these situations is underestimated. Along with louse-borne infections such as typhus, trench fever, and relapsing fever, the relationship between Acinetobacter spp.-infected lice and bacteremia in the homeless is not clear. Murine typhus, tungiasis, and myiasis are likely underestimated, and there has been a reemergence of bed bugs. Attempted eradication of the body louse, despite specific measures, has been disappointing, and infections with Bartonella quintana continue to be reported. The efficacy of ivermectin in eradicating the human body louse, although the effect is not sustained, might provide new therapeutic approaches. Arthropod-borne diseases continue to emerge within the deprived population. Public health programs should be engaged rapidly to control these pests and reduce the incidence of these transmissible diseases. PMID:20822446

  11. Survey of the arthropods on jojoba (Simmondsia chinensis)

    SciTech Connect

    Pinto, J.D.; Frommer, S.I.

    1980-02-01

    Simmondsia chinensis (jojoba), a plant native to southwestern North America, has become of economic interest due to the various industrial uses of the unique liquid wax found in its seeds. In a survey of arthropods associated with sylvatic jojoba in California and Arizona, we collected 106 species of insects and mites. Of these, 50 are phytophagous, 29 are parasitic, and 18 are predaceous. Most of the phytophagous species are also known to feed on plants other than jojoba; several of these are notorious generalists. The bionomics of the 4 commonest phytophagous species, Asphondylia n. sp. (Cecidomyiidae), Epinotia kasloana (Olethreutidae), Periploca n. sp. (Walshiidae), and Incisitermes fruticavus (Kalotermitidae) are summarized briefly. None of the phytophagous species were observed to cause extensive damage to sylvatic jojoba. The numerous parasitic and predaceous arthropods probably account for the natural control of many of them. These relationships should be kept in mind when planning future commercial plantations of jojoba.

  12. [Endosymbionts of arthropods and nematodes: allies to fight infectious diseases?].

    PubMed

    Vavre, Fabrice; Mavingui, Patrick

    2011-11-01

    Arthropods and nematodes are important protagonists in human health because either they act as vectors of pathogens (bacteria, protozoa, viruses or fungus), or are themselves parasites. Fighting infectious diseases is based essentially on vaccination (prevention) or chemotherapeutic (curative) approaches in human, but one can envisage as an alternative to reduce the number of vectors or limit their ability to spread pathogens. Such strategies controlling dissemination will undoubtedly benefit from the knowledge accumulated by recent works on powerful mechanisms developed by symbiotic insect bacteria such as Wolbachia to popagate in arthropods and nematods. This review summarizes these recent data, and indicate how these mechanisms can be manipulated to reduce the dissemination of insect vectors propagating human diseases.

  13. Personal Protection Measures Against Mosquitoes, Ticks, and Other Arthropods.

    PubMed

    Alpern, Jonathan D; Dunlop, Stephen J; Dolan, Benjamin J; Stauffer, William M; Boulware, David R

    2016-03-01

    Arthropod-associated diseases are a major cause of morbidity among travelers. Obtaining a detailed travel itinerary and understanding traveler-specific and destination-specific risk factors can help mitigate the risk of vector-borne diseases. DEET, picaridin, PMD, and IR3535 are insect repellents that offer sufficient protection against arthropod bites. IR3535 does not provide adequate protection against Anopheles mosquitoes, and should be avoided in malaria-endemic regions. General protective measures, such as bite avoidance, protective clothing, insecticide-treated bed nets, and insecticide-treated clothing, should be recommended, especially in malaria-endemic areas. Spatial repellents may prevent nuisance biting, but have not been shown to prevent against vector-borne disease. PMID:26900115

  14. Plant genetics predicts intra-annual variation in phytochemistry and arthropod community structure.

    PubMed

    Wimp, G M; Wooley, S; Bangert, R K; Young, W P; Martinsen, G D; Keim, P; Rehill, B; Lindroth, R L; Whitham, T G

    2007-12-01

    With the emerging field of community genetics, it is important to quantify the key mechanisms that link genetics and community structure. We studied cottonwoods in common gardens and in natural stands and examined the potential for plant chemistry to be a primary mechanism linking plant genetics and arthropod communities. If plant chemistry drives the relationship between plant genetics and arthropod community structure, then several predictions followed. We would find (i) the strongest correlation between plant genetic composition and chemical composition; (ii) an intermediate correlation between plant chemical composition and arthropod community composition; and (iii) the weakest relationship between plant genetic composition and arthropod community composition. Our results supported our first prediction: plant genetics and chemistry had the strongest correlation in the common garden and the wild. Our results largely supported our second prediction, but varied across space, seasonally, and according to arthropod feeding group. Plant chemistry played a larger role in structuring common garden arthropod communities relative to wild communities, free-living arthropods relative to leaf and stem modifiers, and early-season relative to late-season arthropods. Our results did not support our last prediction, as host plant genetics was at least as tightly linked to arthropod community structure as plant chemistry, if not more so. Our results demonstrate the consistency of the relationship between plant genetics and biodiversity. Additionally, plant chemistry can be an important mechanism by which plant genetics affects arthropod community composition, but other genetic-based factors are likely involved that remain to be measured.

  15. Frequency Split Elimination Method for a Solid-State Vibratory Angular Rate Gyro with an Imperfect Axisymmetric-Shell Resonator

    PubMed Central

    Lin, Zhen; Fu, Mengyin; Deng, Zhihong; Liu, Ning; Liu, Hong

    2015-01-01

    The resonator of a solid-state vibratory gyro is responsible for sensing angular motion. Frequency splitting of an axisymmetric-shell resonator is a common problem caused by manufacturing defects. The defect causes a frequency difference between two working modes which consist of two nodes and two antinodes. The difference leads to the loss of gyroscopic effect, and thus the resonator cannot sense angular motion. In this paper, the resonator based on an axisymmetric multi-curved surface shell structure is investigated and an approach to eliminate frequency splits is proposed. Since axisymmetric multi-curved surface shell resonators are too complex to be modeled, this paper proposes a simplified model by focusing on a common property of the axisymmetric shell. The resonator with stochastic imperfections is made equivalent to a perfect shell with an imperfect mass point. Rayleigh's energy method is used in the theoretical analysis. Finite element modeling is used to demonstrate the effectiveness of the elimination approach. In real cases, a resonator's frequency split is eliminated by the proposed approach. In this paper, errors in the theoretical analysis are discussed and steps to be taken when the deviation between assumptions and the real situation is large are figured out. The resonator has good performance after processing. The elimination approach can be applied to any kind of solid-state vibratory gyro resonators with an axisymmetric shell structure. PMID:25648707

  16. Arthropod-Borne Diseases: The Camper's Uninvited Guests.

    PubMed

    Juckett, Gregory

    2015-08-01

    Arthropod-borne diseases are a major problem whenever outdoor activities bring arthropods and people into contact. The arthropods discussed here include arachnids (ticks) and insects. Most arthropod bites and stings are minor, with the notable exception being bee-sting anaphylaxis. Ticks cause the most disease transmission. Key hard tick vectors include black-legged (Ixodes), dog (Dermacentor), and lone star (Amblyomma) ticks, which transmit Lyme and various rickettsial diseases. Insect repellents, permethrin sprays, and proper tick inspection reduce this risk significantly. Lyme disease and the milder southern-tick-associated rash illness (STARI) are characterized by the erythema migrans rash followed, in the case of Lyme disease, by early, disseminated, and late systemic symptoms. Treatment is with doxycycline or ceftriaxone. Indefinite treatment of "chronic Lyme disease" based on subjective symptoms is not beneficial. Rickettsial diseases include ehrlichiosis, anaplasmosis, and Rocky Mountain spotted fever, which are characterized by fever, headache, and possible rash and should be empirically treated with doxycycline while awaiting laboratory confirmation. Tularemia is a bacterial disease (Francisella) spread by ticks and rabbits and characterized by fever and adenopathy. Treatment is with gentamicin or streptomycin. Babesiosis is a protozoal disease, mimicking malaria, that causes a self-limited flu-like disease in healthy hosts but can be life threatening with immune compromise. Treatment is with atovaquone and azithromycin. Other tick-related conditions include viral diseases (Powassan, Colorado tick fever, heartland virus), tick-borne relapsing fever (Borrelia), and tick paralysis (toxin). Mosquitoes, lice, fleas, and mites are notable for their annoying bites but are increasingly significant disease vectors even in the United States.

  17. Cyberdiversity: improving the informatic value of diverse tropical arthropod inventories.

    PubMed

    Miller, Jeremy A; Miller, Joshua H; Pham, Dinh-Sac; Beentjes, Kevin K

    2014-01-01

    In an era of biodiversity crisis, arthropods have great potential to inform conservation assessment and test hypotheses about community assembly. This is because their relatively narrow geographic distributions and high diversity offer high-resolution data on landscape-scale patterns of biodiversity. However, a major impediment to the more widespread application of arthropod data to a range of scientific and policy questions is the poor state of modern arthropod taxonomy, especially in the tropics. Inventories of spiders and other megadiverse arthropods from tropical forests are dominated by undescribed species. Such studies typically organize their data using morphospecies codes, which make it difficult for data from independent inventories to be compared and combined. To combat this shortcoming, we offer cyberdiversity, an online community-based approach for reconciling results of independent inventory studies where current taxonomic knowledge is incomplete. Participating scientists can upload images and DNA barcode sequences to dedicated databases and submit occurrence data and links to a web site (www.digitalSpiders.org). Taxonomic determinations can be shared with a crowdsourcing comments feature, and researchers can discover specimens of interest available for loan and request aliquots of genomic DNA extract. To demonstrate the value of the cyberdiversity framework, we reconcile data from three rapid structured inventories of spiders conducted in Vietnam with an independent inventory (Doi Inthanon, Thailand) using online image libraries. Species richness and inventory completeness were assessed using non-parametric estimators. Community similarity was evaluated using a novel index based on the Jaccard replacing observed with estimated values to correct for unobserved species. We use a distance-decay framework to demonstrate a rudimentary model of landscape-scale changes in community composition that will become increasingly informative as additional

  18. Arthropod-Borne Diseases: The Camper's Uninvited Guests.

    PubMed

    Juckett, Gregory

    2015-08-01

    Arthropod-borne diseases are a major problem whenever outdoor activities bring arthropods and people into contact. The arthropods discussed here include arachnids (ticks) and insects. Most arthropod bites and stings are minor, with the notable exception being bee-sting anaphylaxis. Ticks cause the most disease transmission. Key hard tick vectors include black-legged (Ixodes), dog (Dermacentor), and lone star (Amblyomma) ticks, which transmit Lyme and various rickettsial diseases. Insect repellents, permethrin sprays, and proper tick inspection reduce this risk significantly. Lyme disease and the milder southern-tick-associated rash illness (STARI) are characterized by the erythema migrans rash followed, in the case of Lyme disease, by early, disseminated, and late systemic symptoms. Treatment is with doxycycline or ceftriaxone. Indefinite treatment of "chronic Lyme disease" based on subjective symptoms is not beneficial. Rickettsial diseases include ehrlichiosis, anaplasmosis, and Rocky Mountain spotted fever, which are characterized by fever, headache, and possible rash and should be empirically treated with doxycycline while awaiting laboratory confirmation. Tularemia is a bacterial disease (Francisella) spread by ticks and rabbits and characterized by fever and adenopathy. Treatment is with gentamicin or streptomycin. Babesiosis is a protozoal disease, mimicking malaria, that causes a self-limited flu-like disease in healthy hosts but can be life threatening with immune compromise. Treatment is with atovaquone and azithromycin. Other tick-related conditions include viral diseases (Powassan, Colorado tick fever, heartland virus), tick-borne relapsing fever (Borrelia), and tick paralysis (toxin). Mosquitoes, lice, fleas, and mites are notable for their annoying bites but are increasingly significant disease vectors even in the United States. PMID:26350321

  19. Cyberdiversity: improving the informatic value of diverse tropical arthropod inventories.

    PubMed

    Miller, Jeremy A; Miller, Joshua H; Pham, Dinh-Sac; Beentjes, Kevin K

    2014-01-01

    In an era of biodiversity crisis, arthropods have great potential to inform conservation assessment and test hypotheses about community assembly. This is because their relatively narrow geographic distributions and high diversity offer high-resolution data on landscape-scale patterns of biodiversity. However, a major impediment to the more widespread application of arthropod data to a range of scientific and policy questions is the poor state of modern arthropod taxonomy, especially in the tropics. Inventories of spiders and other megadiverse arthropods from tropical forests are dominated by undescribed species. Such studies typically organize their data using morphospecies codes, which make it difficult for data from independent inventories to be compared and combined. To combat this shortcoming, we offer cyberdiversity, an online community-based approach for reconciling results of independent inventory studies where current taxonomic knowledge is incomplete. Participating scientists can upload images and DNA barcode sequences to dedicated databases and submit occurrence data and links to a web site (www.digitalSpiders.org). Taxonomic determinations can be shared with a crowdsourcing comments feature, and researchers can discover specimens of interest available for loan and request aliquots of genomic DNA extract. To demonstrate the value of the cyberdiversity framework, we reconcile data from three rapid structured inventories of spiders conducted in Vietnam with an independent inventory (Doi Inthanon, Thailand) using online image libraries. Species richness and inventory completeness were assessed using non-parametric estimators. Community similarity was evaluated using a novel index based on the Jaccard replacing observed with estimated values to correct for unobserved species. We use a distance-decay framework to demonstrate a rudimentary model of landscape-scale changes in community composition that will become increasingly informative as additional

  20. Cyberdiversity: Improving the Informatic Value of Diverse Tropical Arthropod Inventories

    PubMed Central

    Miller, Jeremy A.; Miller, Joshua H.; Pham, Dinh-Sac; Beentjes, Kevin K.

    2014-01-01

    In an era of biodiversity crisis, arthropods have great potential to inform conservation assessment and test hypotheses about community assembly. This is because their relatively narrow geographic distributions and high diversity offer high-resolution data on landscape-scale patterns of biodiversity. However, a major impediment to the more widespread application of arthropod data to a range of scientific and policy questions is the poor state of modern arthropod taxonomy, especially in the tropics. Inventories of spiders and other megadiverse arthropods from tropical forests are dominated by undescribed species. Such studies typically organize their data using morphospecies codes, which make it difficult for data from independent inventories to be compared and combined. To combat this shortcoming, we offer cyberdiversity, an online community-based approach for reconciling results of independent inventory studies where current taxonomic knowledge is incomplete. Participating scientists can upload images and DNA barcode sequences to dedicated databases and submit occurrence data and links to a web site (www.digitalSpiders.org). Taxonomic determinations can be shared with a crowdsourcing comments feature, and researchers can discover specimens of interest available for loan and request aliquots of genomic DNA extract. To demonstrate the value of the cyberdiversity framework, we reconcile data from three rapid structured inventories of spiders conducted in Vietnam with an independent inventory (Doi Inthanon, Thailand) using online image libraries. Species richness and inventory completeness were assessed using non-parametric estimators. Community similarity was evaluated using a novel index based on the Jaccard replacing observed with estimated values to correct for unobserved species. We use a distance-decay framework to demonstrate a rudimentary model of landscape-scale changes in community composition that will become increasingly informative as additional

  1. Preliminary observations of arthropods associated with buried carrion on Oahu.

    PubMed

    Rysavy, Noel M; Goff, M Lee

    2015-03-01

    Several studies in Hawaii have focused on arthropod succession and decomposition patterns of surface remains, but the current research presents the first study to focus on shallow burials in this context. Three domestic pig carcasses (Sus scrofa L.) were buried at the depths of 20-40 cm in silty clay loam soil on an exposed ridge on the leeward side of the volcanically formed Koolau Mountain Range. One carcass was exhumed after 3 weeks, another after 6 weeks, and the last carcass was exhumed after 9 weeks. An inventory of arthropod taxa present on the carrion and in the surrounding soil and observations pertaining to decomposition were recorded at each exhumation. The longer the carrion was buried, the greater the diversity of arthropod species that were recovered from the remains. Biomass loss was calculated to be 49% at the 3-week interval, 56% at the 6-week interval, and 59% at the 9-week interval.

  2. Evolution, Discovery, and Interpretations of Arthropod Mushroom Bodies

    PubMed Central

    Strausfeld, Nicholas J.; Hansen, Lars; Li, Yongsheng; Gomez, Robert S.; Ito, Kei

    1998-01-01

    Mushroom bodies are prominent neuropils found in annelids and in all arthropod groups except crustaceans. First explicitly identified in 1850, the mushroom bodies differ in size and complexity between taxa, as well as between different castes of a single species of social insect. These differences led some early biologists to suggest that the mushroom bodies endow an arthropod with intelligence or the ability to execute voluntary actions, as opposed to innate behaviors. Recent physiological studies and mutant analyses have led to divergent interpretations. One interpretation is that the mushroom bodies conditionally relay to higher protocerebral centers information about sensory stimuli and the context in which they occur. Another interpretation is that they play a central role in learning and memory. Anatomical studies suggest that arthropod mushroom bodies are predominately associated with olfactory pathways except in phylogenetically basal insects. The prominent olfactory input to the mushroom body calyces in more recent insect orders is an acquired character. An overview of the history of research on the mushroom bodies, as well as comparative and evolutionary considerations, provides a conceptual framework for discussing the roles of these neuropils. PMID:10454370

  3. Mechanisms of Arthropod Transmission of Plant and Animal Viruses

    PubMed Central

    Gray, Stewart M.; Banerjee, Nanditta

    1999-01-01

    A majority of the plant-infecting viruses and many of the animal-infecting viruses are dependent upon arthropod vectors for transmission between hosts and/or as alternative hosts. The viruses have evolved specific associations with their vectors, and we are beginning to understand the underlying mechanisms that regulate the virus transmission process. A majority of plant viruses are carried on the cuticle lining of a vector’s mouthparts or foregut. This initially appeared to be simple mechanical contamination, but it is now known to be a biologically complex interaction between specific virus proteins and as yet unidentified vector cuticle-associated compounds. Numerous other plant viruses and the majority of animal viruses are carried within the body of the vector. These viruses have evolved specific mechanisms to enable them to be transported through multiple tissues and to evade vector defenses. In response, vector species have evolved so that not all individuals within a species are susceptible to virus infection or can serve as a competent vector. Not only are the virus components of the transmission process being identified, but also the genetic and physiological components of the vectors which determine their ability to be used successfully by the virus are being elucidated. The mechanisms of arthropod-virus associations are many and complex, but common themes are beginning to emerge which may allow the development of novel strategies to ultimately control epidemics caused by arthropod-borne viruses. PMID:10066833

  4. Structural Diversity of Self-Assembled Iridescent Arthropod Biophotonic Nanostructures

    NASA Astrophysics Data System (ADS)

    Saranathan, Vinod Kumar; Prum, Richard O.

    2015-03-01

    Many organisms, especially arthropods, produce vivid interference colors using diverse mesoscopic (100-350 nm) integumentary biophotonic nanostructures that are increasingly being investigated for technological applications. Despite a century of interest, we lack precise structural knowledge of many biophotonic nanostructures and mechanisms controlling their development, when such knowledge can open novel biomimetic routes to facilely self-assemble tunable, multi-functional materials. Here, we use synchrotron small angle X-ray scattering and electron microscopy to characterize the photonic nanostructure of 140 iridescent integumentary scales and setae from 127 species of terrestrial arthropods in 85 genera from 5 orders. We report a rich nanostructural diversity, including triply-periodic bicontinuous networks, close-packed spheres, inverse columnar, perforated lamellar, and disordered sponge-like morphologies, commonly observed as stable phases of amphiphilic surfactants, block copolymer, and lyotropic lipid-water systems. Diverse arthropod lineages appear to have independently evolved to utilize the self-assembly of infolding bilayer membranes to develop biophotonic nanostructures that span the phase-space of amphiphilic morphologies, but at optical length scales.

  5. Genetic diversity in aspen and its relation to arthropod abundance.

    PubMed

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2014-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen.

  6. Digital cameras with designs inspired by the arthropod eye.

    PubMed

    Song, Young Min; Xie, Yizhu; Malyarchuk, Viktor; Xiao, Jianliang; Jung, Inhwa; Choi, Ki-Joong; Liu, Zhuangjian; Park, Hyunsung; Lu, Chaofeng; Kim, Rak-Hwan; Li, Rui; Crozier, Kenneth B; Huang, Yonggang; Rogers, John A

    2013-05-01

    In arthropods, evolution has created a remarkably sophisticated class of imaging systems, with a wide-angle field of view, low aberrations, high acuity to motion and an infinite depth of field. A challenge in building digital cameras with the hemispherical, compound apposition layouts of arthropod eyes is that essential design requirements cannot be met with existing planar sensor technologies or conventional optics. Here we present materials, mechanics and integration schemes that afford scalable pathways to working, arthropod-inspired cameras with nearly full hemispherical shapes (about 160 degrees). Their surfaces are densely populated by imaging elements (artificial ommatidia), which are comparable in number (180) to those of the eyes of fire ants (Solenopsis fugax) and bark beetles (Hylastes nigrinus). The devices combine elastomeric compound optical elements with deformable arrays of thin silicon photodetectors into integrated sheets that can be elastically transformed from the planar geometries in which they are fabricated to hemispherical shapes for integration into apposition cameras. Our imaging results and quantitative ray-tracing-based simulations illustrate key features of operation. These general strategies seem to be applicable to other compound eye devices, such as those inspired by moths and lacewings (refracting superposition eyes), lobster and shrimp (reflecting superposition eyes), and houseflies (neural superposition eyes). PMID:23636401

  7. Egocentric path integration models and their application to desert arthropods.

    PubMed

    Merkle, Tobias; Rost, Martin; Alt, Wolfgang

    2006-06-01

    Path integration enables desert arthropods to find back to their nest on the shortest track from any position. To perform path integration successfully, speeds and turning angles along the preceding outbound path have to be measured continuously and combined to determine an internal global vector leading back home at any time. A number of experiments have given an idea how arthropods might use allothetic or idiothetic signals to perceive their orientation and moving speed. We systematically review the four possible model descriptions of mathematically precise path integration, whereby we favour and elaborate the hitherto not used variant of egocentric cartesian coordinates. Its simple and intuitive structure is demonstrated in comparison to the other models. Measuring two speeds, the forward moving speed and the angular turning rate, and implementing them into a linear system of differential equations provides the necessary information during outbound route, reorientation process and return path. In addition, we propose several possible types of systematic errors that can cause deviations from the correct homeward course. Deviations have been observed for several species of desert arthropods in different experiments, but their origin is still under debate. Using our egocentric path integration model we propose simple error indices depending on path geometry that will allow future experiments to rule out or corroborate certain error types.

  8. Evolution, discovery, and interpretations of arthropod mushroom bodies.

    PubMed

    Strausfeld, N J; Hansen, L; Li, Y; Gomez, R S; Ito, K

    1998-01-01

    Mushroom bodies are prominent neuropils found in annelids and in all arthropod groups except crustaceans. First explicitly identified in 1850, the mushroom bodies differ in size and complexity between taxa, as well as between different castes of a single species of social insect. These differences led some early biologists to suggest that the mushroom bodies endow an arthropod with intelligence or the ability to execute voluntary actions, as opposed to innate behaviors. Recent physiological studies and mutant analyses have led to divergent interpretations. One interpretation is that the mushroom bodies conditionally relay to higher protocerebral centers information about sensory stimuli and the context in which they occur. Another interpretation is that they play a central role in learning and memory. Anatomical studies suggest that arthropod mushroom bodies are predominately associated with olfactory pathways except in phylogenetically basal insects. The prominent olfactory input to the mushroom body calyces in more recent insect orders is an acquired character. An overview of the history of research on the mushroom bodies, as well as comparative and evolutionary considerations, provides a conceptual framework for discussing the roles of these neuropils. PMID:10454370

  9. Microbial control of arthropod pests of tropical tree fruits.

    PubMed

    Dolinski, Claudia; Lacey, Lawrence A

    2007-01-01

    A multitude of insects and mites attack fruit crops throughout the tropics. The traditional method for controlling most of these pests is the application of chemical pesticides. Growing concern on the negative environmental effects has encouraged the development of alternatives. Inundatively and inoculatively applied microbial control agents (virus, bacteria, fungi, and entomopathogenic nematodes) have been developed as alternative control methods of a wide variety of arthropods including tropical fruit pests. The majority of the research and applications in tropical fruit agroecosystems has been conducted in citrus, banana, coconut, and mango. Successful microbial control initiatives of citrus pests and mites have been reported. Microbial control of arthropod pests of banana includes banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae) (with EPNs and fungi) among others Oryctes rhinoceros (L.) is one of the most important pests of coconut and one of the most successful uses of non-occluded virus for classical biological control. Key pests of mango that have been controlled with microbial control agents include fruit flies (Diptera: Tephritidae) (with EPNs and fungi), and other pests. Also successful is the microbial control of arthropod pests of guava, papaya and pineapple. The challenge towards a broader application of entomopathogens is the development of successful combinations of entomopathogens, predators, and parasitoids along with other interventions to produce effective and sustainable pest management.

  10. Genetic diversity in aspen and its relation to arthropod abundance

    PubMed Central

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2015-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen. PMID:25674097

  11. Bioinformatic prediction of arthropod/nematode-like peptides in non-arthropod, non-nematode members of the Ecdysozoa.

    PubMed

    Christie, Andrew E; Nolan, Daniel H; Garcia, Zachery A; McCoole, Matthew D; Harmon, Sarah M; Congdon-Jones, Benjamin; Ohno, Paul; Hartline, Niko; Congdon, Clare Bates; Baer, Kevin N; Lenz, Petra H

    2011-02-01

    The Onychophora, Priapulida and Tardigrada, along with the Arthropoda, Nematoda and several other small phyla, form the superphylum Ecdysozoa. Numerous peptidomic studies have been undertaken for both the arthropods and nematodes, resulting in the identification of many peptides from each group. In contrast, little is known about the peptides used as paracrines/hormones by species from the other ecdysozoan taxa. Here, transcriptome mining and bioinformatic peptide prediction were used to identify peptides in members of the Onychophora, Priapulida and Tardigrada, the only non-arthropod, non-nematode members of the Ecdysozoa for which there are publicly accessible expressed sequence tags (ESTs). The extant ESTs for each phylum were queried using 106 arthropod/nematode peptide precursors. Transcripts encoding calcitonin-like diuretic hormone and pigment-dispersing hormone (PDH) were identified for the onychophoran Peripatopsis sedgwicki, with transcripts encoding C-type allatostatin (C-AST) and FMRFamide-like peptide identified for the priapulid Priapulus caudatus. For the Tardigrada, transcripts encoding members of the A-type allatostatin, C-AST, insect kinin, orcokinin, PDH and tachykinin-related peptide families were identified, all but one from Hypsibius dujardini (the exception being a Milnesium tardigradum orcokinin-encoding transcript). The proteins deduced from these ESTs resulted in the prediction of 48 novel peptides, six onychophoran, eight priapulid and 34 tardigrade, which are the first described from these phyla.

  12. Bioinformatic prediction of arthropod/nematode-like peptides in non-arthropod, non-nematode members of the Ecdysozoa.

    PubMed

    Christie, Andrew E; Nolan, Daniel H; Garcia, Zachery A; McCoole, Matthew D; Harmon, Sarah M; Congdon-Jones, Benjamin; Ohno, Paul; Hartline, Niko; Congdon, Clare Bates; Baer, Kevin N; Lenz, Petra H

    2011-02-01

    The Onychophora, Priapulida and Tardigrada, along with the Arthropoda, Nematoda and several other small phyla, form the superphylum Ecdysozoa. Numerous peptidomic studies have been undertaken for both the arthropods and nematodes, resulting in the identification of many peptides from each group. In contrast, little is known about the peptides used as paracrines/hormones by species from the other ecdysozoan taxa. Here, transcriptome mining and bioinformatic peptide prediction were used to identify peptides in members of the Onychophora, Priapulida and Tardigrada, the only non-arthropod, non-nematode members of the Ecdysozoa for which there are publicly accessible expressed sequence tags (ESTs). The extant ESTs for each phylum were queried using 106 arthropod/nematode peptide precursors. Transcripts encoding calcitonin-like diuretic hormone and pigment-dispersing hormone (PDH) were identified for the onychophoran Peripatopsis sedgwicki, with transcripts encoding C-type allatostatin (C-AST) and FMRFamide-like peptide identified for the priapulid Priapulus caudatus. For the Tardigrada, transcripts encoding members of the A-type allatostatin, C-AST, insect kinin, orcokinin, PDH and tachykinin-related peptide families were identified, all but one from Hypsibius dujardini (the exception being a Milnesium tardigradum orcokinin-encoding transcript). The proteins deduced from these ESTs resulted in the prediction of 48 novel peptides, six onychophoran, eight priapulid and 34 tardigrade, which are the first described from these phyla. PMID:21074533

  13. The i5K Initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment.

    PubMed

    2013-01-01

    Insects and their arthropod relatives including mites, spiders, and crustaceans play major roles in the world's terrestrial, aquatic, and marine ecosystems. Arthropods compete with humans for food and transmit devastating diseases. They also comprise the most diverse and successful branch of metazoan evolution, with millions of extant species. Here, we describe an international effort to guide arthropod genomic efforts, from species prioritization to methodology and informatics. The 5000 arthropod genomes initiative (i5K) community met formally in 2012 to discuss a roadmap for sequencing and analyzing 5000 high-priority arthropods and is continuing this effort via pilot projects, the development of standard operating procedures, and training of students and career scientists. With university, governmental, and industry support, the i5K Consortium aspires to deliver sequences and analytical tools for each of the arthropod branches and each of the species having beneficial and negative effects on humankind. PMID:23940263

  14. Comparative analysis of hemocyte phagocytosis between six species of arthropods as measured by flow cytometry.

    PubMed

    Oliver, Jonathan D; Dusty Loy, J; Parikh, Grishma; Bartholomay, Lyric

    2011-10-01

    Phagocytosis of pathogens by hemocytes is a rapid-acting immune response and represents a primary means of limiting microbial infection in some species of arthropods. To survey the relative capacity of hemocyte phagocytosis as a function of the arthropod immune response, we examined the extent of phagocytosis among a wide taxonomic range of arthropod species including a decapod crustacean (Litopenaeus vannamei), three ixodid tick species (Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis), a mosquito species (Aedes aegypti), and a larval moth (Manduca sexta). Injected fluorescent beads were used as a model to elicit phagocytosis and were measured by flow cytometry, a technique provided in detail that may be adapted for use with any species of arthropod. The data indicated that smaller arthropods generally had a higher proportion of phagocytic cells than larger arthropods.

  15. The i5K Initiative: Advancing Arthropod Genomics for Knowledge, Human Health, Agriculture, and the Environment

    PubMed Central

    2013-01-01

    Insects and their arthropod relatives including mites, spiders, and crustaceans play major roles in the world’s terrestrial, aquatic, and marine ecosystems. Arthropods compete with humans for food and transmit devastating diseases. They also comprise the most diverse and successful branch of metazoan evolution, with millions of extant species. Here, we describe an international effort to guide arthropod genomic efforts, from species prioritization to methodology and informatics. The 5000 arthropod genomes initiative (i5K) community met formally in 2012 to discuss a roadmap for sequencing and analyzing 5000 high-priority arthropods and is continuing this effort via pilot projects, the development of standard operating procedures, and training of students and career scientists. With university, governmental, and industry support, the i5K Consortium aspires to deliver sequences and analytical tools for each of the arthropod branches and each of the species having beneficial and negative effects on humankind. PMID:23940263

  16. TRU-waste decontamination and size reduction review, June 1983, US DOE/PNC technology exchange. [Electropolishing, vibratory cleaning and spray decontamination

    SciTech Connect

    Becker, G.W. Jr.

    1983-01-01

    A review of transuranic (TRU) noncombustible waste decontamination and size reduction technology is presented. Electropolishing, vibratory cleaning, and spray decontamination processes developed at Battelle Pacific Northwest Laboratory (PNL) and Savannah River Laboratory (SRL) are highlighted. TRU waste size reduction processes at (PNL), Los Alamos National Laboratory (LANL), the Rocky Flats Plant (RFP), and SRL are also highlighted.

  17. High-performance micromachined vibratory rate- and rate-integrating gyroscopes

    NASA Astrophysics Data System (ADS)

    Cho, Jae Yoong

    The performance of vibratory micromachined gyroscopes has been continuously improving for the past two decades. However, to further improve performance of the MEMS gyroscope in harsh environment, it is necessary for gyros to reduce the sensitivity to environmental parameters, including vibration and temperature change. In addition, conventional rate-mode MEMS gyroscopes have limitation in performance due to tradeoff between resolution, bandwidth, and full-scale range. In this research, we aim to reduce vibration sensitivity by developing gyros that operate in the balanced mode. The balanced mode creates zero net momentum and reduces energy loss through an anchor. The gyro can differentially cancel measurement errors from external vibration along both sensor axes. The vibration sensitivity of the balanced-mode gyroscope including structural imbalance from microfabrication reduces as the absolute difference between in-phase parasitic mode and operating mode frequencies increases. The parasitic sensing mode frequency is designed larger than the operating mode frequency to achieve both improved vibration insensitivity and shock resistivity. A single anchor is used in order to minimize thermoresidual stress change. We developed two gyroscope based on these design principles. The Balanced Oscillating Gyro (BOG) is a quad-mass tuning-fork rate gyroscope. The relationship between gyro design and modal characteristics is studied extensively using finite element method (FEM). The gyro is fabricated using the planar Si-on-glass (SOG) process with a device thickness of 100microm. The BOG is evaluated using the first-generation analog interface circuitry. Under a frequency mismatch of 5Hz between driving and sense modes, the angle random walk (ARW) is measured to be 0.44°/sec/✓Hz. The performance is limited by quadrature error and low-frequency noise in the circuit. The Cylindrical Rate-Integrating Gyroscope (CING) operates in whole-angle mode. The gyro is completely

  18. Arthropods of the great indoors: characterizing diversity inside urban and suburban homes.

    PubMed

    Bertone, Matthew A; Leong, Misha; Bayless, Keith M; Malow, Tara L F; Dunn, Robert R; Trautwein, Michelle D

    2016-01-01

    Although humans and arthropods have been living and evolving together for all of our history, we know very little about the arthropods we share our homes with apart from major pest groups. Here we surveyed, for the first time, the complete arthropod fauna of the indoor biome in 50 houses (located in and around Raleigh, North Carolina, USA). We discovered high diversity, with a conservative estimate range of 32-211 morphospecies, and 24-128 distinct arthropod families per house. The majority of this indoor diversity (73%) was made up of true flies (Diptera), spiders (Araneae), beetles (Coleoptera), and wasps and kin (Hymenoptera, especially ants: Formicidae). Much of the arthropod diversity within houses did not consist of synanthropic species, but instead included arthropods that were filtered from the surrounding landscape. As such, common pest species were found less frequently than benign species. Some of the most frequently found arthropods in houses, such as gall midges (Cecidomyiidae) and book lice (Liposcelididae), are unfamiliar to the general public despite their ubiquity. These findings present a new understanding of the diversity, prevalence, and distribution of the arthropods in our daily lives. Considering their impact as household pests, disease vectors, generators of allergens, and facilitators of the indoor microbiome, advancing our knowledge of the ecology and evolution of arthropods in homes has major economic and human health implications.

  19. Arthropods of the great indoors: characterizing diversity inside urban and suburban homes.

    PubMed

    Bertone, Matthew A; Leong, Misha; Bayless, Keith M; Malow, Tara L F; Dunn, Robert R; Trautwein, Michelle D

    2016-01-01

    Although humans and arthropods have been living and evolving together for all of our history, we know very little about the arthropods we share our homes with apart from major pest groups. Here we surveyed, for the first time, the complete arthropod fauna of the indoor biome in 50 houses (located in and around Raleigh, North Carolina, USA). We discovered high diversity, with a conservative estimate range of 32-211 morphospecies, and 24-128 distinct arthropod families per house. The majority of this indoor diversity (73%) was made up of true flies (Diptera), spiders (Araneae), beetles (Coleoptera), and wasps and kin (Hymenoptera, especially ants: Formicidae). Much of the arthropod diversity within houses did not consist of synanthropic species, but instead included arthropods that were filtered from the surrounding landscape. As such, common pest species were found less frequently than benign species. Some of the most frequently found arthropods in houses, such as gall midges (Cecidomyiidae) and book lice (Liposcelididae), are unfamiliar to the general public despite their ubiquity. These findings present a new understanding of the diversity, prevalence, and distribution of the arthropods in our daily lives. Considering their impact as household pests, disease vectors, generators of allergens, and facilitators of the indoor microbiome, advancing our knowledge of the ecology and evolution of arthropods in homes has major economic and human health implications. PMID:26819844

  20. Ectomycota Associated with Arthropods from Bat Hibernacula in Eastern Canada, with Particular Reference to Pseudogymnoasucs destructans.

    PubMed

    Vanderwolf, Karen J; Malloch, David; McAlpine, Donald F

    2016-04-22

    The introduction of Pseudogymnoascus destructans (Pd) to North America, agent of white-nose syndrome in hibernating bats, has increased interest in fungi from underground habitats. While bats are assumed to be the main vector transmitting Pd cave-to-cave, the role of other fauna is unexplored. We documented the fungi associated with over-wintering arthropods in Pd-positive hibernacula, including sites where bats had been recently extirpated or near-extirpated, to determine if arthropods carried Pd, and to compare fungal assemblages on arthropods to bats. We isolated 87 fungal taxa in 64 genera from arthropods. Viable Pd was cultured from 15.3% of arthropods, most frequently from harvestmen (Nelima elegans). Fungal assemblages on arthropods were similar to those on bats. The different fungal assemblages documented among arthropods may be due to divergent patterns of movement, aggregation, feeding, or other factors. While it is unlikely that arthropods play a major role in the transmission dynamics of Pd, we demonstrate that arthropods may carry viable Pd spores and therefore have the potential to transport Pd, either naturally or anthropogenically, within or among hibernacula. This underlines the need for those entering hibernacula to observe decontamination procedures and for such procedures to evolve as our understanding of potential mechanisms of Pd dispersal improve.

  1. [Relationships between island characteristics and arthropod diversity in Thousand-Island Lake].

    PubMed

    Ren, Li-jun; Xu, Zhi-hong; Lu, Jian-bo; Zhao, Gai; Zhang, Qun

    2009-09-01

    In April, May, August, and October 2006, grid-based sampling method was adopted to investigate the diversity and abundance of arthropods on 50 islands in the Thousand-island Lake, with the effects of island area, island altitude, island shape, inter-island distance, and island-mainland distance on arthropod species richness analyzed. With the increase of island area, the richness of total arthropod species and that of the arthropod species with high- and low- dispersal ability all increased, and the relationships between island area and arthropod species richness corresponded to the classical island biogeography model. The island area, island altitude, and island shape had comprehensive effects on the arthropod species richness, while inter-island distance and island-mainland distance had less effects. The richness of total arthropod species had a significant positive correlation with island altitude and island shape, that of the arthropod species with high- dispersal ability was significantly positively correlated with island area and island altitude, while no significant relationship was observed between the richness of arthropod species with low-dispersal ability and the island characteristics.

  2. Ectomycota Associated with Arthropods from Bat Hibernacula in Eastern Canada, with Particular Reference to Pseudogymnoascus destructans

    PubMed Central

    Vanderwolf, Karen J.; Malloch, David; McAlpine, Donald F.

    2016-01-01

    The introduction of Pseudogymnoascus destructans (Pd) to North America, agent of white-nose syndrome in hibernating bats, has increased interest in fungi from underground habitats. While bats are assumed to be the main vector transmitting Pd cave-to-cave, the role of other fauna is unexplored. We documented the fungi associated with over-wintering arthropods in Pd-positive hibernacula, including sites where bats had been recently extirpated or near-extirpated, to determine if arthropods carried Pd, and to compare fungal assemblages on arthropods to bats. We isolated 87 fungal taxa in 64 genera from arthropods. Viable Pd was cultured from 15.3% of arthropods, most frequently from harvestmen (Nelima elegans). Fungal assemblages on arthropods were similar to those on bats. The different fungal assemblages documented among arthropods may be due to divergent patterns of movement, aggregation, feeding, or other factors. While it is unlikely that arthropods play a major role in the transmission dynamics of Pd, we demonstrate that arthropods may carry viable Pd spores and therefore have the potential to transport Pd, either naturally or anthropogenically, within or among hibernacula. This underlines the need for those entering hibernacula to observe decontamination procedures and for such procedures to evolve as our understanding of potential mechanisms of Pd dispersal improve. PMID:27110827

  3. Bioactive alkaloids of frog skin: Combinatorial bioprospecting reveals that pumiliotoxins have an arthropod source

    PubMed Central

    Daly, John W.; Kaneko, Tetsuo; Wilham, Jason; Garraffo, H. Martin; Spande, Thomas F.; Espinosa, Alex; Donnelly, Maureen A.

    2002-01-01

    Nearly 500 alkaloids have been detected in skin extracts from frogs of the family Dendrobatidae. All seem to have been sequestered unchanged into skin glands from alkaloid-containing arthropods. Ants, beetles, and millipedes seem to be the source of decahydroquinolines, certain izidines, coccinellines, and spiropyrrolizidine oximes. But the dietary source for a major group of frog-skin alkaloids, namely the pumiliotoxins (PTXs), alloPTXs, and homoPTXs, remained a mystery. In hopes of revealing an arthropod source for the PTX group, small arthropods were collected from eight different sites on a Panamanian island, where the dendrobatid frog (Dendrobates pumilio) was known to contain high levels of two PTXs. The mixed arthropod collections from several sites, each representing up to 20 arthropod taxa, contained PTX 307A and/or alloPTX 323B. In addition, the mixed arthropod collections from several sites contained a 5,8-disubstituted indolizidine (205A or 235B), representing another class of alkaloids previously unknown from an arthropod. An ant alkaloid, decahydroquinoline 195A, was detected in the mixed arthropod collections from several sites. Thus, “combinatorial bioprospecting” demonstrates that further collection and analysis of individual taxa of leaf-litter arthropods should reveal the taxa from which PTXs, alloPTXs, and 5,8-disubstituted indolizidines are derived. PMID:12381780

  4. Arthropods of the great indoors: characterizing diversity inside urban and suburban homes

    PubMed Central

    Leong, Misha; Bayless, Keith M.; Malow, Tara L.F.; Dunn, Robert R.; Trautwein, Michelle D.

    2016-01-01

    Although humans and arthropods have been living and evolving together for all of our history, we know very little about the arthropods we share our homes with apart from major pest groups. Here we surveyed, for the first time, the complete arthropod fauna of the indoor biome in 50 houses (located in and around Raleigh, North Carolina, USA). We discovered high diversity, with a conservative estimate range of 32–211 morphospecies, and 24–128 distinct arthropod families per house. The majority of this indoor diversity (73%) was made up of true flies (Diptera), spiders (Araneae), beetles (Coleoptera), and wasps and kin (Hymenoptera, especially ants: Formicidae). Much of the arthropod diversity within houses did not consist of synanthropic species, but instead included arthropods that were filtered from the surrounding landscape. As such, common pest species were found less frequently than benign species. Some of the most frequently found arthropods in houses, such as gall midges (Cecidomyiidae) and book lice (Liposcelididae), are unfamiliar to the general public despite their ubiquity. These findings present a new understanding of the diversity, prevalence, and distribution of the arthropods in our daily lives. Considering their impact as household pests, disease vectors, generators of allergens, and facilitators of the indoor microbiome, advancing our knowledge of the ecology and evolution of arthropods in homes has major economic and human health implications. PMID:26819844

  5. Geographic patterns of ground-dwelling arthropods across an ecoregional transition in the north American Southwest

    USGS Publications Warehouse

    Lightfoot, D.C.; Brantley, S.L.; Allen, C.D.

    2008-01-01

    We examined the biogeographic patterns of ground-dwelling arthropod communities across a heterogeneous semiarid region of the Southern Rio Grande Rift Valley of New Mexico. Our 3 sites included portions of 5 ecoregions, with the middle site a transition area where all ecoregions converged. We addressed the following 3 questions: (1) Do the species assemblage patterns for ground arthropods across habitats and sites conform to recognized ecoregions? (2) Are arthropod assemblages in distinct vegetation-defined habitats within an ecoregion more similar to each other or to assemblages in similar vegetation-defined habitats in other ecoregions? (3) Is there a detectable edge effect with increased arthropod diversity in the area of converging ecoregions? We encountered 442 target arthropod species from pitfall traps operating continuously for 7 years over a series of different habitats at each of the 3 sites. We examined geographic distributions of spider and cricket/grasshopper species in detail, and they showed affinities for different ecoregions, respectively. Each habitat within a study site supported a unique overall arthropod assemblage; nevertheless, different habitats at the same site were more similar to each other than they were to similar habitats at other sites. Overall arthropod species richness was greatest in the area where all 5 ecoregions converged. Arthropod species and their geographic distributions are poorly known relative to vascular plants and vertebrate animals. Findings from this research indicate that ecoregional classification is a useful tool for understanding biogeographic patterns among arthropods.

  6. Ectomycota Associated with Arthropods from Bat Hibernacula in Eastern Canada, with Particular Reference to Pseudogymnoasucs destructans.

    PubMed

    Vanderwolf, Karen J; Malloch, David; McAlpine, Donald F

    2016-01-01

    The introduction of Pseudogymnoascus destructans (Pd) to North America, agent of white-nose syndrome in hibernating bats, has increased interest in fungi from underground habitats. While bats are assumed to be the main vector transmitting Pd cave-to-cave, the role of other fauna is unexplored. We documented the fungi associated with over-wintering arthropods in Pd-positive hibernacula, including sites where bats had been recently extirpated or near-extirpated, to determine if arthropods carried Pd, and to compare fungal assemblages on arthropods to bats. We isolated 87 fungal taxa in 64 genera from arthropods. Viable Pd was cultured from 15.3% of arthropods, most frequently from harvestmen (Nelima elegans). Fungal assemblages on arthropods were similar to those on bats. The different fungal assemblages documented among arthropods may be due to divergent patterns of movement, aggregation, feeding, or other factors. While it is unlikely that arthropods play a major role in the transmission dynamics of Pd, we demonstrate that arthropods may carry viable Pd spores and therefore have the potential to transport Pd, either naturally or anthropogenically, within or among hibernacula. This underlines the need for those entering hibernacula to observe decontamination procedures and for such procedures to evolve as our understanding of potential mechanisms of Pd dispersal improve. PMID:27110827

  7. Dual-mass vibratory rate gyroscope with suppressed translational acceleration response and quadrature-error correction capability

    NASA Technical Reports Server (NTRS)

    Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Lemkin, Mark A. (Inventor); Roessig, Allen W. (Inventor)

    2001-01-01

    A microfabricated vibratory rate gyroscope to measure rotation includes two proof-masses mounted in a suspension system anchored to a substrate. The suspension has two principal modes of compliance, one of which is driven into oscillation. The driven oscillation combined with rotation of the substrate about an axis perpendicular to the substrate results in Coriolis acceleration along the other mode of compliance, the sense-mode. The sense-mode is designed to respond to Coriolis accelerationwhile suppressing the response to translational acceleration. This is accomplished using one or more rigid levers connecting the two proof-masses. The lever allows the proof-masses to move in opposite directions in response to Coriolis acceleration. The invention includes a means for canceling errors, termed quadrature error, due to imperfections in implementation of the sensor. Quadrature-error cancellation utilizes electrostatic forces to cancel out undesired sense-axis motion in phase with drive-mode position.

  8. Waptia and the Diversification of Brood Care in Early Arthropods.

    PubMed

    Caron, Jean-Bernard; Vannier, Jean

    2016-01-11

    Brood care, including the carrying of eggs or juveniles, is a form of parental care, which, like other parental traits [1], enhances offspring fitness with variable costs and benefits to the parents [2]. Attempts to understand why and how parental care evolved independently in numerous animal groups often emphasize the role of environmental pressures such as predation, ephemeral resources, and, more generally, the harshness of environment. The fossil record can, in principle, provide minimum age constraints on the evolution of life-history traits, including brood care and key information on the reproductive strategies of extinct organisms. New, exceptionally preserved specimens of the weakly sclerotized arthropod Waptia fieldensis from the middle Cambrian (ca. 508 million years ago) Burgess Shale, Canada, provide the oldest example of in situ eggs with preserved embryos in the fossil record. The relatively small clutch size, up to 24 eggs, and the relatively large diameter of individual eggs, some over 2 mm, contrast with the high number of small eggs-found without preserved embryos-in the bivalved bradoriid arthropod Kunmingella douvillei from the Chengjiang biota (ca. 515 million years ago). The presence of these two different parental strategies suggests a rapid evolution of a variety of modern-type life-history traits, including extended investment in offspring survivorship, soon after the Cambrian emergence of animals. Together with previously described brooded eggs in ostracods from the Upper Ordovician (ca. 450 million years ago), these new findings suggest that the presence of a bivalved carapace played a key role in the early evolution of parental care in arthropods. PMID:26711492

  9. Arthropod phylogeny revisited, with a focus on crustacean relationships.

    PubMed

    Koenemann, Stefan; Jenner, Ronald A; Hoenemann, Mario; Stemme, Torben; von Reumont, Björn M

    2010-01-01

    Higher-level arthropod phylogenetics is an intensely active field of research, not least as a result of the hegemony of molecular data. However, not all areas of arthropod phylogenetics have so far received equal attention. The application of molecular data to infer a comprehensive phylogeny of Crustacea is still in its infancy, and several emerging results are conspicuously at odds with morphology-based studies. In this study, we present a series of molecular phylogenetic analyses of 88 arthropods, including 57 crustaceans, representing all the major lineages, with Onychophora and Tardigrada as outgroups. Our analyses are based on published and new sequences for two mitochondrial markers, 16S rDNA and cytochrome c oxidase subunit I (COI), and the nuclear ribosomal gene 18S rDNA. We designed our phylogenetic analyses to assess the effects of different strategies of sequence alignment, alignment masking, nucleotide coding, and model settings. Our comparisons show that alignment optimization of ribosomal markers based on secondary structure information can have a radical impact on phylogenetic reconstruction. Trees based on optimized alignments recover monophyletic Arthropoda (excluding Onychophora), Pancrustacea, Malacostraca, Insecta, Myriapoda and Chelicerata, while Maxillopoda and Hexapoda emerge as paraphyletic groups. Our results are unable to resolve the highest-level relationships within Arthropoda, and none of our trees supports the monophyly of Myriochelata or Mandibulata. We discuss our results in the context of both the methodological variations between different analyses, and of recently proposed phylogenetic hypotheses. This article offers a preliminary attempt to incorporate the large diversity of crustaceans into a single molecular phylogenetic analysis, assessing the robustness of phylogenetic relationships under varying analysis parameters. It throws into sharp relief the relative strengths and shortcomings of the combined molecular data for

  10. Arthropod phylogeny revisited, with a focus on crustacean relationships.

    PubMed

    Koenemann, Stefan; Jenner, Ronald A; Hoenemann, Mario; Stemme, Torben; von Reumont, Björn M

    2010-01-01

    Higher-level arthropod phylogenetics is an intensely active field of research, not least as a result of the hegemony of molecular data. However, not all areas of arthropod phylogenetics have so far received equal attention. The application of molecular data to infer a comprehensive phylogeny of Crustacea is still in its infancy, and several emerging results are conspicuously at odds with morphology-based studies. In this study, we present a series of molecular phylogenetic analyses of 88 arthropods, including 57 crustaceans, representing all the major lineages, with Onychophora and Tardigrada as outgroups. Our analyses are based on published and new sequences for two mitochondrial markers, 16S rDNA and cytochrome c oxidase subunit I (COI), and the nuclear ribosomal gene 18S rDNA. We designed our phylogenetic analyses to assess the effects of different strategies of sequence alignment, alignment masking, nucleotide coding, and model settings. Our comparisons show that alignment optimization of ribosomal markers based on secondary structure information can have a radical impact on phylogenetic reconstruction. Trees based on optimized alignments recover monophyletic Arthropoda (excluding Onychophora), Pancrustacea, Malacostraca, Insecta, Myriapoda and Chelicerata, while Maxillopoda and Hexapoda emerge as paraphyletic groups. Our results are unable to resolve the highest-level relationships within Arthropoda, and none of our trees supports the monophyly of Myriochelata or Mandibulata. We discuss our results in the context of both the methodological variations between different analyses, and of recently proposed phylogenetic hypotheses. This article offers a preliminary attempt to incorporate the large diversity of crustaceans into a single molecular phylogenetic analysis, assessing the robustness of phylogenetic relationships under varying analysis parameters. It throws into sharp relief the relative strengths and shortcomings of the combined molecular data for

  11. Modulating the Behaviors of Mesenchymal Stem Cells Via the Combination of High-Frequency Vibratory Stimulations and Fibrous Scaffolds

    PubMed Central

    Tong, Zhixiang; Duncan, Randall L.

    2013-01-01

    We are interested in the in vitro engineering of artificial vocal fold tissues via the strategic combination of multipotent mesenchymal stem cells (MSCs), physiologically relevant mechanical stimulations, and biomimetic artificial matrices. We have constructed a vocal fold bioreactor that is capable of imposing vibratory stimulations on the cultured cells at human phonation frequencies. Separately, fibrous poly (ɛ-caprolactone) (PCL) scaffolds emulating the ligamentous structure of the vocal fold were prepared by electrospinning, were incorporated in the vocal fold bioreactor, and were driven into a wave-like motion in an axisymmetrical fashion by the oscillating air. MSC-laden PCL scaffolds were subjected to vibrations at 200 Hz with a normal center displacement of ∼40 μm for a total of 7 days. A continuous (CT) or a 1 h-on-1 h-off (OF) regime with a total dynamic culture time of 12 h per day was applied. The dynamic loading did not cause any physiological trauma to the cells. Immunohistotochemical staining revealed the reinforcement of the actin filament and the enhancement of α5β1 integrin expression under selected dynamic culture conditions. Cellular expression of essential vocal fold extracellular matrix components, such as elastin, hyaluronic acid, and matrix metalloproteinase-1, was significantly elevated as compared with the static controls, and the OF regime is more conducive to matrix production than the CT vibration mode. Analyses of genes of typical fibroblast hallmarks (tenascin-C, collagen III, and procollagen I) as well as markers for MSC differentiation into nonfibroblastic lineages confirmed MSCs' adaptation of fibroblastic behaviors. Overall, the high-frequency vibratory stimulation, when combined with a synthetic fibrous scaffold, serves as a potent modulator of MSC functions. The novel bioreactor system presented here, as a versatile, yet well-controlled model, offers an in vitro platform for understanding vibration

  12. Comparison of Caenorhabditis elegans NLP peptides with arthropod neuropeptides.

    PubMed

    Husson, Steven J; Lindemans, Marleen; Janssen, Tom; Schoofs, Liliane

    2009-04-01

    Neuropeptides are small messenger molecules that can be found in all metazoans, where they govern a diverse array of physiological processes. Because neuropeptides seem to be conserved among pest species, selected peptides can be considered as attractive targets for drug discovery. Much can be learned from the model system Caenorhabditis elegans because of the availability of a sequenced genome and state-of-the-art postgenomic technologies that enable characterization of endogenous peptides derived from neuropeptide-like protein (NLP) precursors. Here, we provide an overview of the NLP peptide family in C. elegans and discuss their resemblance with arthropod neuropeptides and their relevance for anthelmintic discovery.

  13. Impacts of major predators on tropical agroforest arthropods: comparisons within and across taxa.

    PubMed

    Philpott, Stacy M; Greenberg, Russell; Bichier, Peter; Perfecto, Ivette

    2004-06-01

    In food web studies, taxonomically unrelated predators are often grouped into trophic levels regardless of their relative importance on prey assemblages, multiple predator effects, or interactions such as omnivory. Ants and birds are important predators likely to differentially shape arthropod assemblages, but no studies have compared their effects on a shared prey base. In two separate studies, we excluded birds and ants from branches of a canopy tree ( Inga micheliana) in a coffee farm in Mexico for 2 months in the dry and wet seasons of 2002. We investigated changes in arthropod densities with and without predation pressure from (1) birds and (2) ant assemblages dominated by one of two ant species ( Azteca instabilis and Camponotus senex). We first analyzed individual effects of each predator (birds, Azteca instabilis, and C. senex) then used a per day effect metric to compare differences in effects across (birds vs ants) and within predator taxa (the two ant species). Individually, birds reduced densities of total and large arthropods and some arthropod orders (e.g., spiders, beetles, roaches) in both seasons. Azteca instabilis did not significantly affect arthropods (total, small, large or specific orders). Camponotus senex, however, tended to remove arthropods (total, small), especially in the dry season, and affected arthropod densities of some orders both positively and negatively. Predators greatly differed in their effects on Inga arthropods (for all, small, large, and individual orders of arthropods) both in sign (+/-) and magnitudes of effects. Birds had stronger negative effects on arthropods than ants and the two dominant ant species had stronger effects on arthropods in different seasons. Our results show that aggregating taxonomically related and unrelated predators into trophic levels without prior experimental data quantifying the sign and strengths of effects may lead to a misrepresentation of food web interactions. PMID:15095089

  14. Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants.

    PubMed

    Mooney, Kailen A; Gruner, Daniel S; Barber, Nicholas A; Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell

    2010-04-20

    Theory on trophic interactions predicts that predators increase plant biomass by feeding on herbivores, an indirect interaction called a trophic cascade. Theory also predicts that predators feeding on predators, or intraguild predation, will weaken trophic cascades. Although past syntheses have confirmed cascading effects of terrestrial arthropod predators, we lack a comprehensive analysis for vertebrate insectivores-which by virtue of their body size and feeding habits are often top predators in these systems-and of how intraguild predation mediates trophic cascade strength. We report here on a meta-analysis of 113 experiments documenting the effects of insectivorous birds, bats, or lizards on predaceous arthropods, herbivorous arthropods, and plants. Although vertebrate insectivores fed as intraguild predators, strongly reducing predaceous arthropods (38%), they nevertheless suppressed herbivores (39%), indirectly reduced plant damage (40%), and increased plant biomass (14%). Furthermore, effects of vertebrate insectivores on predatory and herbivorous arthropods were positively correlated. Effects were strongest on arthropods and plants in communities with abundant predaceous arthropods and strong intraguild predation, but weak in communities depauperate in arthropod predators and intraguild predation. The naturally occurring ratio of arthropod predators relative to herbivores varied tremendously among the studied communities, and the skew to predators increased with site primary productivity and in trees relative to shrubs. Although intraguild predation among arthropod predators has been shown to weaken herbivore suppression, we find this paradigm does not extend to vertebrate insectivores in these communities. Instead, vertebrate intraguild preda-tion is associated with strengthened trophic cascades, and insectivores function as dominant predators in terrestrial plant-arthropod communities.

  15. "Bugs on Bugs": An Inquiry-Based, Collaborative Activity to Learn Arthropod & Microbial Biodiversity

    ERIC Educational Resources Information Center

    Lampert, Evan C.; Morgan, Jeanelle M.

    2015-01-01

    Diverse communities of arthropods and microbes provide humans with essential ecosystem goods and services. Arthropods are the most diverse and abundant macroscopic animals on the planet, and many remain to be discovered. Much less is known about microbial diversity, despite their importance as free-living species and as symbionts. We created…

  16. The i5K Initiative: Advancing arthropod genomics for knowledge, human health, agriculture, and the environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects and their arthropod relatives including mites, spiders, and crustaceans, play major roles in the world’s terrestrial, aquatic, and marine ecosystems. Arthropods compete with humans for food and transmit devastating diseases. They also comprise the most diverse and successful branch of metazo...

  17. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L.).

    PubMed

    Robinson, Kathryn M; Ingvarsson, Pär K; Jansson, Stefan; Albrectsen, Benedicte R

    2012-01-01

    We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp) collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.

  18. Dominant meat ants affect only their specialist predator in an epigaeic arthropod community.

    PubMed

    Gibb, Heloise

    2003-08-01

    Ants are thought to exert an important influence on the structure of arthropod assemblages through predation and competition. I examined the effect of a dominant ant, Iridomyrmex purpureus, on epigaeic arthropod assemblages on rock outcrops using an exclusion experiment. I compared arthropod assemblages on four replicate outcrops allocated to each of the following treatments: I. purpureus present; I. purpureus absent; I. purpureus excluded; and procedural control. Nests of I. purpureus were caged in summer 2001 and epigaeic arthropod assemblages were sampled at all sites using pitfall traps in autumn and spring 2001 and summer 2002. I also collected items from foraging workers to determine the diet of I. purpureus. Exclusion cages successfully reduced the abundance of I. purpureus workers in pitfall traps by more than 97%. Exclusion of I. purpureus did not affect the size distribution, biomass or abundance of arthropod predators or non-predatory arthropods, although the total biomass of ants was greater at sites with I. purpureus. Spider biomass, species richness, abundance and composition were also not affected by the presence of I. purpureus, although the I. purpureus mimic and specialist predator, Habronestes bradleyi, became less abundant at sites from which I. purpureus was excluded. Predation by I. purpureus on other arthropods may not have a significant effect on epigaeic arthropod communities, but the complex role of I. purpureus in this ecosystem and the high diversity of species belonging to multiple trophic levels may obscure its effects in this system.

  19. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    PubMed

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community.

  20. Avirulence effector discovery in a plant galling and plant parasitic arthropod, the Hessian fly (Mayetiola destructor)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly specialized obligate plant-parasites exist within several groups of arthropods (insects and mites). Many of these are important pests, but the molecular basis of their parasitism and its evolution are poorly understood. One hypothesis is that plant parasitic arthropods use effector proteins...

  1. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    PubMed

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community. PMID:21361009

  2. Technique for Studying Arthropod and Microbial Communities within Tree Tissues

    PubMed Central

    Aflitto, Nicholas C; Hofstetter, Richard W; McGuire, Reagan; Dunn, David D; Potter, Kristen A

    2014-01-01

    Phloem tissues of pine are habitats for many thousands of organisms. Arthropods and microbes use phloem and cambium tissues to seek mates, lay eggs, rear young, feed, or hide from natural enemies or harsh environmental conditions outside of the tree. Organisms that persist within the phloem habitat are difficult to observe given their location under bark. We provide a technique to preserve intact phloem and prepare it for experimentation with invertebrates and microorganisms. The apparatus is called a ‘phloem sandwich’ and allows for the introduction and observation of arthropods, microbes, and other organisms. This technique has resulted in a better understanding of the feeding behaviors, life-history traits, reproduction, development, and interactions of organisms within tree phloem. The strengths of this technique include the use of inexpensive materials, variability in sandwich size, flexibility to re-open the sandwich or introduce multiple organisms through drilled holes, and the preservation and maintenance of phloem integrity. The phloem sandwich is an excellent educational tool for scientific discovery in both K-12 science courses and university research laboratories. PMID:25489987

  3. Molecular Basis of the Bohr Effect in Arthropod Hemocyanin

    SciTech Connect

    Hirota, S.; Kawahara, T; Beltramini, M; Di Muro, P; Magliozzo, R; Peisach, J; Powers, L; Tanaka, N; Nagao, S; Bubacco, L

    2008-01-01

    Flash photolysis and K-edge x-ray absorption spectroscopy (XAS) were used to investigate the functional and structural effects of pH on the oxygen affinity of three homologous arthropod hemocyanins (Hcs). Flash photolysis measurements showed that the well-characterized pH dependence of oxygen affinity (Bohr effect) is attributable to changes in the oxygen binding rate constant, kon, rather than changes in koff. In parallel, coordination geometry of copper in Hc was evaluated as a function of pH by XAS. It was found that the geometry of copper in the oxygenated protein is unchanged at all pH values investigated, while significant changes were observed for the deoxygenated protein as a function of pH. The interpretation of these changes was based on previously described correlations between spectral lineshape and coordination geometry obtained for model compounds of known structure A pH-dependent change in the geometry of cuprous copper in the active site of deoxyHc, from pseudotetrahedral toward trigonal was assigned from the observed intensity dependence of the 1s ? 4pz transition in x-ray absorption near edge structure (XANES) spectra. The structural alteration correlated well with increase in oxygen affinity at alkaline pH determined in flash photolysis experiments. These results suggest that the oxygen binding rate in deoxyHc depends on the coordination geometry of Cu(I) and suggest a structural origin for the Bohr effect in arthropod Hcs.

  4. Technique for studying arthropod and microbial communities within tree tissues.

    PubMed

    Aflitto, Nicholas C; Hofstetter, Richard W; McGuire, Reagan; Dunn, David D; Potter, Kristen A

    2014-11-16

    Phloem tissues of pine are habitats for many thousands of organisms. Arthropods and microbes use phloem and cambium tissues to seek mates, lay eggs, rear young, feed, or hide from natural enemies or harsh environmental conditions outside of the tree. Organisms that persist within the phloem habitat are difficult to observe given their location under bark. We provide a technique to preserve intact phloem and prepare it for experimentation with invertebrates and microorganisms. The apparatus is called a 'phloem sandwich' and allows for the introduction and observation of arthropods, microbes, and other organisms. This technique has resulted in a better understanding of the feeding behaviors, life-history traits, reproduction, development, and interactions of organisms within tree phloem. The strengths of this technique include the use of inexpensive materials, variability in sandwich size, flexibility to re-open the sandwich or introduce multiple organisms through drilled holes, and the preservation and maintenance of phloem integrity. The phloem sandwich is an excellent educational tool for scientific discovery in both K-12 science courses and university research laboratories.

  5. Arthropods as a source of new RNA viruses.

    PubMed

    Bichaud, L; de Lamballerie, X; Alkan, C; Izri, A; Gould, E A; Charrel, R N

    2014-12-01

    The discovery and development of methods for isolation, characterisation and taxonomy of viruses represents an important milestone in the study, treatment and control of virus diseases during the 20th century. Indeed, by the late-1950s, it was becoming common belief that most human and veterinary pathogenic viruses had been discovered. However, at that time, knowledge of the impact of improved commercial transportation, urbanisation and deforestation, on disease emergence, was in its infancy. From the late 1960s onwards viruses, such as hepatitis virus (A, B and C) hantavirus, HIV, Marburg virus, Ebola virus and many others began to emerge and it became apparent that the world was changing, at least in terms of virus epidemiology, largely due to the influence of anthropological activities. Subsequently, with the improvement of molecular biotechnologies, for amplification of viral RNA, genome sequencing and proteomic analysis the arsenal of available tools for virus discovery and genetic characterization opened up new and exciting possibilities for virological discovery. Many recently identified but "unclassified" viruses are now being allocated to existing genera or families based on whole genome sequencing, bioinformatic and phylogenetic analysis. New species, genera and families are also being created following the guidelines of the International Committee for the Taxonomy of Viruses. Many of these newly discovered viruses are vectored by arthropods (arboviruses) and possess an RNA genome. This brief review will focus largely on the discovery of new arthropod-borne viruses.

  6. Character combinations, convergence and diversification in ectoparasitic arthropods.

    PubMed

    Poulin, Robert

    2009-08-01

    Different lineages of organisms diversify over time at different rates, in part as a consequence of the characteristics of the species in these lineages. Certain suites of traits possessed by species within a clade may determine rates of diversification, with some particular combinations of characters acting synergistically to either limit or promote diversification; the most successful combinations may also emerge repeatedly in different clades via convergent evolution. Here, the association between species characters and diversification is investigated amongst 21 independent lineages of arthropods ectoparasitic on vertebrate hosts. Using nine characters (each with two to four states) that capture general life history strategy, transmission mode and host-parasite interaction, each lineage was described by the set of character states it possesses. The results show, firstly, that most possible pair-wise combinations of character states have been adopted at least once, sometimes several times independently by different lineages; thus, ectoparasitic arthropods have explored most of the life history character space available to them. Secondly, lineages possessing commonly observed combinations of character states are not necessarily the ones that have experienced the highest rates of diversification (measured as a clade's species-per-genus ratio). Thirdly, some specific traits are associated with higher rates of diversification. Using more than one host per generation, laying eggs away from the host and intermediate levels of fecundity are features that appear to have promoted diversification. These findings indicate that particular species characters may be evolutionary drivers of diversity, whose effects could also apply in other taxa.

  7. Technique for studying arthropod and microbial communities within tree tissues.

    PubMed

    Aflitto, Nicholas C; Hofstetter, Richard W; McGuire, Reagan; Dunn, David D; Potter, Kristen A

    2014-01-01

    Phloem tissues of pine are habitats for many thousands of organisms. Arthropods and microbes use phloem and cambium tissues to seek mates, lay eggs, rear young, feed, or hide from natural enemies or harsh environmental conditions outside of the tree. Organisms that persist within the phloem habitat are difficult to observe given their location under bark. We provide a technique to preserve intact phloem and prepare it for experimentation with invertebrates and microorganisms. The apparatus is called a 'phloem sandwich' and allows for the introduction and observation of arthropods, microbes, and other organisms. This technique has resulted in a better understanding of the feeding behaviors, life-history traits, reproduction, development, and interactions of organisms within tree phloem. The strengths of this technique include the use of inexpensive materials, variability in sandwich size, flexibility to re-open the sandwich or introduce multiple organisms through drilled holes, and the preservation and maintenance of phloem integrity. The phloem sandwich is an excellent educational tool for scientific discovery in both K-12 science courses and university research laboratories. PMID:25489987

  8. The importance of arthropod pests in Belgian pome fruit orchards.

    PubMed

    Bangels, Eva; De Schaetzen, Charles; Hayen, Guy; Paternotte, Edouard; Gobin, Bruno

    2008-01-01

    Located in temperate, maritime climate with frequent rainfall, crop protection in Belgian orchards is dominated by fungicides. Though, the importance of arthropod pests should not be underestimated. Pcfruit, the former Research station of Gorsem, has been maintaining a warning system for fruit pests in Belgium since 1944. Therefore, various pests and beneficial's and their life cycle stages have been monitored in Gorsem and in different observation posts across Belgium, being part of a monitoring network. Although up to 3000 arthropod species are present in pome fruit orchards, about 25% can be considered as harmful and another 25% as beneficial. Out of those species, around 100 harmful and 50 beneficial organisms are omnipresent. The list of monitored species is extended yearly for upcoming or difficult to control organisms. Integrated pest management was introduced in the eighties, with the accent on using selective pesticides and saving beneficial organisms. A shift in pesticide use affected the importance of secondary pests, together with recent exceptional climatic conditions. Following many years of monitoring insects and mites and editing warning bulletins in our station, a ranking of the economical importance of different pest species is presented.

  9. Exotic plants contribute positively to biodiversity functions but reduce native seed production and arthropod richness.

    PubMed

    Cook-Patton, Susan C; Agrawal, Anurag A

    2014-06-01

    Although exotic plants comprise a substantial portion of floristic biodiversity, their contributions to community and ecosystem processes are not well understood. We manipulated plant species richness in old-field communities to compare the impacts of native vs. exotic species on plant biomass, seed production, and arthropod community structure. Plants within diverse communities, regardless of whether they were native or exotic, had higher biomass and seed production than in monocultures and displayed positive complementarity. Increasing native or exotic plant richness also enhanced the richness of arthropods on plants, but exotics attracted fewer arthropod species for a given arthropod abundance than did natives. Additionally, when exotic and native plants grew together, exotics suppressed seed production of native species. Thus, exotic plants appear to contribute positively to some biodiversity functions, but may impact native communities over longer time frames by reducing native seed production and recruiting fewer arthropod species.

  10. Introduction to the Arizona Sky Island Arthropod Project (ASAP): Systematics, Biogeography, Ecology, and Population Genetics of Arthropods of the Madrean Sky Islands

    PubMed Central

    Moore, Wendy; Meyer, Wallace M.; Eble, Jeffrey A.; Franklin, Kimberly; Wiens, John F.; Brusca, Richard C.

    2014-01-01

    The Arizona Sky Island Arthropod Project (ASAP) is a new multi-disciplinary research program at the University of Arizona that combines systematics, biogeography, ecology, and population genetics to study origins and patterns of arthropod diversity along elevation gradients and among mountain ranges in the Madrean Sky Island Region. Arthropods represent taxonomically and ecologically diverse organisms that drive key ecosystem processes in this mountain archipelago. Using data from museum specimens and specimens we obtain during long-term collecting and monitoring programs, ASAP will document arthropod species across Arizona's Sky Islands to address a number of fundamental questions about arthropods of this region. Baseline data will be used to determine climatic boundaries for target species, which will then be integrated with climatological models to predict future changes in arthropod communities and distributions in the wake of rapid climate change. ASAP also makes use of the natural laboratory provided by the Sky Islands to investigate ecological and genetic factors that influence diversification and patterns of community assembly. Here, we introduce the project, outline overarching goals, and describe preliminary data from the first year of sampling ground-dwelling beetles and ants in the Santa Catalina Mountains. PMID:25505938

  11. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle.

    PubMed

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K; Schmidl, Jürgen; Winchester, Neville N; Roubik, David W; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H C; Dejean, Alain; Fagan, Laura L; Floren, Andreas; Kitching, Roger L; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P; Roisin, Yves; Schmidt, Jesper B; Sørensen, Line; Lewinsohn, Thomas M; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2 km of distance, 40 m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods.

  12. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle.

    PubMed

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K; Schmidl, Jürgen; Winchester, Neville N; Roubik, David W; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H C; Dejean, Alain; Fagan, Laura L; Floren, Andreas; Kitching, Roger L; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P; Roisin, Yves; Schmidt, Jesper B; Sørensen, Line; Lewinsohn, Thomas M; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2 km of distance, 40 m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods. PMID:26633187

  13. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle

    PubMed Central

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K.; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K.; Schmidl, Jürgen; Winchester, Neville N.; Roubik, David W.; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R.; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H. C.; Dejean, Alain; Fagan, Laura L.; Floren, Andreas; Kitching, Roger L.; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P.; Roisin, Yves; Schmidt, Jesper B.; Sørensen, Line; Lewinsohn, Thomas M.; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods. PMID:26633187

  14. Arthropods and associated arthropod-borne diseases transmitted by migrating birds. The case of ticks and tick-borne pathogens.

    PubMed

    Sparagano, Olivier; George, David; Giangaspero, Annunziata; Špitalská, Eva

    2015-09-30

    Geographic spread of parasites and pathogens poses a constant risk to animal health and welfare, particularly given that climate change is expected to potentially expand appropriate ranges for many key species. The spread of deleterious organisms via trade routes and human travelling is relatively closely controlled, though represents only one possible means of parasite/pathogen distribution. The transmission via natural parasite/pathogen movement between geographic locales, is far harder to manage. Though the extent of such movement may be limited by the relative inability of many parasites and pathogens to actively migrate, passive movement over long distances may still occur via migratory hosts. This paper reviews the potential role of migrating birds in the transfer of ectoparasites and pathogens between geographic locales, focusing primarily on ticks. Bird-tick-pathogen relationships are considered, and evidence provided of long-range parasite/pathogen transfer from one location to another during bird migration events. As shown in this paper not only many different arthropod species are carried by migrating birds but consequently these pests carry many different pathogens species which can be transmitted to the migrating birds or to other animal species when those arthropods are dropping during these migrations. Data available from the literature are provided highlighting the need to understand better dissemination paths and disease epidemiology.

  15. Arthropods and associated arthropod-borne diseases transmitted by migrating birds. The case of ticks and tick-borne pathogens.

    PubMed

    Sparagano, Olivier; George, David; Giangaspero, Annunziata; Špitalská, Eva

    2015-09-30

    Geographic spread of parasites and pathogens poses a constant risk to animal health and welfare, particularly given that climate change is expected to potentially expand appropriate ranges for many key species. The spread of deleterious organisms via trade routes and human travelling is relatively closely controlled, though represents only one possible means of parasite/pathogen distribution. The transmission via natural parasite/pathogen movement between geographic locales, is far harder to manage. Though the extent of such movement may be limited by the relative inability of many parasites and pathogens to actively migrate, passive movement over long distances may still occur via migratory hosts. This paper reviews the potential role of migrating birds in the transfer of ectoparasites and pathogens between geographic locales, focusing primarily on ticks. Bird-tick-pathogen relationships are considered, and evidence provided of long-range parasite/pathogen transfer from one location to another during bird migration events. As shown in this paper not only many different arthropod species are carried by migrating birds but consequently these pests carry many different pathogens species which can be transmitted to the migrating birds or to other animal species when those arthropods are dropping during these migrations. Data available from the literature are provided highlighting the need to understand better dissemination paths and disease epidemiology. PMID:26343302

  16. Perspectives on the evolutionary ecology of arthropod antimicrobial peptides.

    PubMed

    Rolff, Jens; Schmid-Hempel, Paul

    2016-05-26

    Antimicrobial peptides (AMPs) are important elements of the innate immune defence in multicellular organisms that target and kill microbes. Here, we reflect on the various points that are raised by the authors of the 11 contributions to a special issue of Philosophical Transactions on the 'evolutionary ecology of arthropod antimicrobial peptides'. We see five interesting topics emerging. (i) AMP genes in insects, and perhaps in arthropods more generally, evolve much slower than most other immune genes. One explanation refers to the constraints set by AMPs being part of a finely tuned defence system. A new view argues that AMPs are under strong stabilizing selection. Regardless, this striking observation still invites many more questions than have been answered so far. (ii) AMPs almost always are expressed in combinations and sometimes show expression patterns that are dependent on the infectious agent. While it is often assumed that this can be explained by synergistic interactions, such interactions have rarely been demonstrated and need to be studied further. Moreover, how to define synergy in the first place remains difficult and needs to be addressed. (iii) AMPs play a very important role in mediating the interaction between a host and its mutualistic or commensal microbes. This has only been studied in a very small number of (insect) species. It has become clear that the very same AMPs play different roles in different situations and hence are under concurrent selection. (iv) Different environments shape the physiology of organisms; especially the host-associated microbial communities should impact on the evolution host AMPs. Studies in social insects and some organisms from extreme environments seem to support this notion, but, overall, the evidence for adaptation of AMPs to a given environment is scant. (v) AMPs are considered or already developed as new drugs in medicine. However, bacteria can evolve resistance to AMPs. Therefore, in the light of our

  17. Perspectives on the evolutionary ecology of arthropod antimicrobial peptides.

    PubMed

    Rolff, Jens; Schmid-Hempel, Paul

    2016-05-26

    Antimicrobial peptides (AMPs) are important elements of the innate immune defence in multicellular organisms that target and kill microbes. Here, we reflect on the various points that are raised by the authors of the 11 contributions to a special issue of Philosophical Transactions on the 'evolutionary ecology of arthropod antimicrobial peptides'. We see five interesting topics emerging. (i) AMP genes in insects, and perhaps in arthropods more generally, evolve much slower than most other immune genes. One explanation refers to the constraints set by AMPs being part of a finely tuned defence system. A new view argues that AMPs are under strong stabilizing selection. Regardless, this striking observation still invites many more questions than have been answered so far. (ii) AMPs almost always are expressed in combinations and sometimes show expression patterns that are dependent on the infectious agent. While it is often assumed that this can be explained by synergistic interactions, such interactions have rarely been demonstrated and need to be studied further. Moreover, how to define synergy in the first place remains difficult and needs to be addressed. (iii) AMPs play a very important role in mediating the interaction between a host and its mutualistic or commensal microbes. This has only been studied in a very small number of (insect) species. It has become clear that the very same AMPs play different roles in different situations and hence are under concurrent selection. (iv) Different environments shape the physiology of organisms; especially the host-associated microbial communities should impact on the evolution host AMPs. Studies in social insects and some organisms from extreme environments seem to support this notion, but, overall, the evidence for adaptation of AMPs to a given environment is scant. (v) AMPs are considered or already developed as new drugs in medicine. However, bacteria can evolve resistance to AMPs. Therefore, in the light of our

  18. Arthropod symbiotes of Laonastes aenigmamus (Rodentia:Diatomyidae).

    PubMed

    Bochkov, A V; Abramov, A V; Durden, L A; Apanaskevich, D A; Stekolnikov, A A; Stanyukovich, M K; Gnophanxay, S; Tikhonov, A N

    2011-04-01

    Arthropod symbiotes of the Laotian rock-rat, Laonastes aenigmamus (Rodentia:Diatomyidae), from Laos are examined. This host is a member of Diatomyidae previously thought to have gone extinct >10 million yr ago. Permanent symbiotes are represented by 2 species, a new species of sucking louse, Polyplax sp., near rhizomydis (Phthiraptera:Polyplacidae), and a new species of fur mite, Afrolistrophorus sp., near maculatus (Acariformes:Listrophoridae). The temporary parasites are represented by 18 species, i.e., 1 mesostigmatan species, i.e., a new species of Androlaelaps near casalis (Parasitiformes:Laelapidae); immature stages of 2 tick species, Ixodes granulatus and Haemaphysalis sp. (Parasitiformes:Ixodidae); and a rich fauna of chiggers (Acariformes:Trombiculidae) comprising 8 genera and 15 species. It is hypothesized that this host completely lost its initial fauna of ectosymbiotes and that ancestors of the recorded symbiotes switched to this host from rodents of the superfamily Muroidea.

  19. Decomposition and arthropod succession in Whitehorse, Yukon Territory, Canada.

    PubMed

    Bygarski, Katherine; LeBlanc, Helene N

    2013-03-01

    Forensic arthropod succession patterns are known to vary between regions. However, the northern habitats of the globe have been largely left unstudied. Three pig carcasses were studied outdoors in Whitehorse, Yukon Territory. Adult and immature insects were collected for identification and comparison. The dominant Diptera and Coleoptera species at all carcasses were Protophormia terraneovae (R-D) (Fam: Calliphoridae) and Thanatophilus lapponicus (Herbst) (Fam: Silphidae), respectively. Rate of decomposition, patterns of Diptera and Coleoptera succession, and species dominance were shown to differ from previous studies in temperate regions, particularly as P. terraenovae showed complete dominance among blowfly species. Rate of decomposition through the first four stages was generally slow, and the last stage of decomposition was not observed at any carcass due to time constraints. It is concluded that biogeoclimatic range has a significant effect on insect presence and rate of decomposition, making it an important factor to consider when calculating a postmortem interval.

  20. Interaction between arthropod filiform hairs in a fluid enviroment

    PubMed Central

    Cummins, Bree; Gedeon, Tomáš; Klapper, Isaac; Cortez, Ricardo

    2009-01-01

    Many arthropods use filiform hairs as mechanoreceptors to detect air motion. In common house crickets (Acheta domestica) the hairs cover two antenna-like appendages called cerci at the rear of the abdomen. The biomechanical stimulus-response properties of individual filiform hairs have been investigated and modeled extensively in several earlier studies. However, only a few previous studies have considered viscosity-mediated coupling between pairs of hairs, and only in particular configurations. Here we present a model capable of calculating hair-to-hair coupling in arbitrary configurations. We simulate the coupled motion of a small group of mechanosensory hairs on a cylindrical section of cercus. We have found that the coupling effects are non-negligible, and likely constrain the operational characteristics of the cercal sensory array. PMID:17434184

  1. Arthropods as disease vectors in a changing environment.

    PubMed

    Sutherst, R W

    1993-01-01

    Arthropod vectors need to acquire energy, moisture, hosts and shelter from their environment. Changing human populations and industrialization affect almost every aspect of the environment. In particular, the prospects of climatic warming, urbanization and vegetation changes have the potential to materially affect global patterns of vector-borne diseases. Global warming will enable the expansion of the geographical distributions of vectors. The population dynamics of vectors will change in response to extended seasons suitable for development followed by less severe winters. The incidence of epidemics is likely to change in response to an expected disproportionate increase in the frequency of extreme climatic events. The impact of such changes on each of the major vector-borne diseases is reviewed and projections are made on the likely global areas at risk from spread of disease vectors. Research needs are identified and response strategies are suggested in the context of the ever-increasing impact of human populations and industrial activity on the environment.

  2. Omnivory in terrestrial arthropods: mixing plant and prey diets.

    PubMed

    Coll, Moshe; Guershon, Moshe

    2002-01-01

    Many terrestrial communities include omnivorous arthropods that feed on both prey and plant resources. In this review we first discuss some unique morphological, physiological, and behavioral traits that enable omnivores to exploit such dissimilar foods, and we explore possible evolutionary pathways to omnivory. We then examine possible benefits and costs of omnivory, describe the relationships between omnivory and other high-order complex trophic interactions, and consider the stability level of communities with closed-loop omnivory. Finally, we explore some of the implications of omnivory for crop damage and for biological, chemical, and cultural control practices. We conclude that the growing realization of the ubiquity of omnivory in nature may require a change in our view of the structure and function of ecological systems.

  3. Chromatography of arthropod-borne viruses on calcium phosphate columns*

    PubMed Central

    Smith, C. E. Gordon; Holt, Dolores

    1961-01-01

    This is an interim report on the fractionation of arthropod-borne viruses of groups A and B by chromatography on calcium phosphate. The method used provides an excellent, cheap and simple tool for the preparation of stable haemagglutinating and complement-fixing antigens for routine diagnostic and other purposes and for the concentration of such products. In the results reported, viruses of groups A and B have been shown to have two haemagglutinins, one of which is the virus particle. The haemagglutinins are antigenically similar but differ in sedimentation characteristics and in reaction with protamine sulfate. Group B viruses have also been shown to have two complement-fixing antigens with different sedimentation properties; one of these antigens is the virus particle. So far no complement-fixing antigen other than the virus particle has been found with group A viruses. ImagesFIG. 1 PMID:20604091

  4. Comparison of Arthropod Prey of Red-Cockaded Woodpeckers on the Boles of Longleaf and Loblolly Pines

    SciTech Connect

    Horn, S.; Hanula, J.

    2002-01-01

    Use of knockdown insecticides to sample arthropods on longleaf and loblolly pine to determine which harbored the greater abundance of potential prey. Alterations of longleaf pine bark surface to determine whether bark structure may affect arthropods residing on a tree's bole. Recovery revealed fewer arthropods from scraped trees. Results suggest the bark structure and not the chemical nature of the bark is responsible for differences in arthropod abundance and biomass. Retaining or restoring longleaf pine in red-cockaded woodpecker habitats should increase arthropod availability for this endangered bird and other back-foraging species.

  5. New insights on arthropod toxins that potentiate erectile function.

    PubMed

    Nunes, Kenia P; Torres, Fernanda S; Borges, Marcia H; Matavel, Alessandra; Pimenta, Adriano M C; De Lima, Maria E

    2013-07-01

    The use of natural substances for the treatment of diseases or injuries is an ancient practice of many cultures. According to folklore, natural aphrodisiacs may help to raise libido and increase desire. The supposed aphrodisiacs mainly include a plethora of preparations of plants, among other substances. However, the real boundary between myth and reality has not been established yet in most cases and such boundaries must be drawn by scientific methods. A growing interest of the scientific community has been focused on animal venoms, especially those from arthropods, i.e. spiders and scorpions, which cause priapism, a prolonged and painful erection. This review highlights the studies that have been performed with venoms and toxins from arthropods known to cause priapism, among other toxic symptoms, pointing out some pharmacological approaches for better understanding this effect. To date, the venom of some spiders, mainly Phoneutria nigriventer, and scorpions, such as the yellow South American scorpion Tityus serrulatus, among others, have been known to cause priapism. Since erectile dysfunction (ED) is a growing health problem in the world, more common in patients with vascular diseases as diabetes and hypertension, the use of animal venoms and toxins as pharmacological tools could not only shed light to the mechanisms involved in erectile function, but also represent a possible model for new drugs to treat ED. Unfortunately, attempts to correlate the structure of those priapism-related toxins were unfruitful. Such difficulties lie firstly on the poor data concerning purified priapism-related toxins, instead of whole venoms and/or semi-purified fractions, and secondly, on the scarce available primary sequences and structural data, mainly from spider toxins. It has been shown that all these toxins modify the sodium (Na(+)) channel activity, mostly slowing down its inactivation current. Improving the knowledge on the tertiary structure of these toxins could provide

  6. Decoding the ubiquitin-mediated pathway of arthropod disease vectors.

    PubMed

    Choy, Anthony; Severo, Maiara S; Sun, Ruobai; Girke, Thomas; Gillespie, Joseph J; Pedra, Joao H F

    2013-01-01

    Protein regulation by ubiquitin has been extensively described in model organisms. However, characterization of the ubiquitin machinery in disease vectors remains mostly unknown. This fundamental gap in knowledge presents a concern because new therapeutics are needed to control vector-borne diseases, and targeting the ubiquitin machinery as a means for disease intervention has been already adopted in the clinic. In this study, we employed a bioinformatics approach to uncover the ubiquitin-mediated pathway in the genomes of Anopheles gambiae, Aedes aegypti, Culex quinquefasciatus, Ixodes scapularis, Pediculus humanus and Rhodnius prolixus. We observed that (1) disease vectors encode a lower percentage of ubiquitin-related genes when compared to Drosophila melanogaster, Mus musculus and Homo sapiens but not Saccharomyces cerevisiae; (2) overall, there are more proteins categorized as E3 ubiquitin ligases when compared to E2-conjugating or E1-activating enzymes; (3) the ubiquitin machinery within the three mosquito genomes is highly similar; (4) ubiquitin genes are more than doubled in the Chagas disease vector (R. prolixus) when compared to other arthropod vectors; (5) the deer tick I. scapularis and the body louse (P. humanus) genomes carry low numbers of E1-activating enzymes and HECT-type E3 ubiquitin ligases; (6) R. prolixus have low numbers of RING-type E3 ubiquitin ligases; and (7) C. quinquefasciatus present elevated numbers of predicted F-box E3 ubiquitin ligases, JAB and UCH deubiquitinases. Taken together, these findings provide novel opportunities to study the interaction between a pathogen and an arthropod vector. PMID:24205097

  7. Molecular basis of the Bohr effect in arthropod hemocyanin.

    PubMed

    Hirota, Shun; Kawahara, Takumi; Beltramini, Mariano; Di Muro, Paolo; Magliozzo, Richard S; Peisach, Jack; Powers, Linda S; Tanaka, Naoki; Nagao, Satoshi; Bubacco, Luigi

    2008-11-14

    Flash photolysis and K-edge x-ray absorption spectroscopy (XAS) were used to investigate the functional and structural effects of pH on the oxygen affinity of three homologous arthropod hemocyanins (Hcs). Flash photolysis measurements showed that the well-characterized pH dependence of oxygen affinity (Bohr effect) is attributable to changes in the oxygen binding rate constant, k(on), rather than changes in k(off). In parallel, coordination geometry of copper in Hc was evaluated as a function of pH by XAS. It was found that the geometry of copper in the oxygenated protein is unchanged at all pH values investigated, while significant changes were observed for the deoxygenated protein as a function of pH. The interpretation of these changes was based on previously described correlations between spectral lineshape and coordination geometry obtained for model compounds of known structure (Blackburn, N. J., Strange, R. W., Reedijk, J., Volbeda, A., Farooq, A., Karlin, K. D., and Zubieta, J. (1989) Inorg. Chem., 28, 1349-1357). A pH-dependent change in the geometry of cuprous copper in the active site of deoxyHc, from pseudotetrahedral toward trigonal was assigned from the observed intensity dependence of the 1s --> 4p(z) transition in x-ray absorption near edge structure (XANES) spectra. The structural alteration correlated well with increase in oxygen affinity at alkaline pH determined in flash photolysis experiments. These results suggest that the oxygen binding rate in deoxyHc depends on the coordination geometry of Cu(I) and suggest a structural origin for the Bohr effect in arthropod Hcs.

  8. Phenoptosis in arthropods and immortality of social insects.

    PubMed

    Kartsev, V M

    2014-10-01

    In general, there are no drastic differences in phenoptosis patterns in plant and animal organisms. However, there are some specific features characteristic for insects and other arthropods: 1) their development includes metamorphosis with different biochemical laws at consecutive developmental stages; 2) arthropods can reduce or stop development and aging when in a state of diapause or temporal cold immobility; 3) their life cycle often correlates with seasonal changes of surroundings; 4) polymorphism is widespread - conspecifics differ by their lifespans and phenoptosis features; 5) lifespan-related sexual dimorphism is common; 6) significant situational plasticity of life cycle organization is an important feature; for example, the German wasp (Paravespula germanica) is obligatorily univoltine in the temperate zone, while in tropical regions its lifespan increases and leads to repeated reproduction; 7) life cycles of closely related species may differ significantly, for example, in contrast to German wasp, some tropical hornets (Vespa) have only one reproduction period. Surprisingly, many insect species have been shown to be subjected to gradual aging and phenoptosis, like the highest mammals. However, queens of social insects and some long-lived arachnids can apparently be considered non-aging organisms. In some species, lifespan is limited to one season, while others live much longer or shorter. Cases of one-time reproduction are rather rare. Aphagia is common in insects (over 10,000 species). Cannibalism is an important mortality factor in insects as well as in spiders. In social insects, which exist only in colonies (families), the lifetime of a colony can be virtually unlimited. However, in case of some species the developmental cycle and death of a colony after its completion are predetermined. Most likely, natural selection in insects does not lengthen individual lifespan, but favors increase in reproduction efficiency based on fast succession of

  9. Effects of persistent insecticides on beneficial soil arthropod in conventional fields compared to organic fields, puducherry.

    PubMed

    Anbarashan, Padmavathy; Gopalswamy, Poyyamoli

    2013-07-15

    The usage of synthetic fertilizers/insecticides in conventional farming has dramatically increased over the past decades. The aim of the study was to compare the effects of bio-pesticides and insecticides/pesticides on selected beneficial non targeted arthropods. Orders Collembola, Arachinida/Opiliones, Oribatida and Coleoptera were the main groups of arthropods found in the organic fields and Coleoptera, Oribatida, Gamasida and Collembola in conventional fields. Pesticides/insecticides had a significant effect on non-targeted arthropods order- Collembola, Arachinida/Opiliones, Hymenoptera and Thysonoptera were suppressed after pesticides/insecticides spraying. Bio-insecticides in organic fields had a non-significant effect on non targeted species and they started to increase in abundance after 7 days of spraying, whereas insecticide treatment in conventional fields had a significant long-term effect on non targeted arthropods and short term effect on pests/insects, it started to increase after 21 days of the spraying. These results indicate that insecticide treatment kept non targeted arthropods at low abundance. In conclusion, organic farming does not significantly affected the beneficial-non targeted arthropods biodiversity, whereas preventive insecticide application in conventional fields had significant negative effects on beneficial non targeted arthropods. Therefore, conventional farmers should restrict insecticide applications, unless pest densities reach the thresholds and more desirably can switch to organic farming practices. PMID:24505991

  10. [Population structure of soil arthropod in different age Pinus massoniana plantations].

    PubMed

    Tan, Bo; Wu, Fu-zhong; Yang, Wan-qin; Zhang, Jian; Xu, Zhen-feng; Liu, Yang; Gou, Xiao-lin

    2013-04-01

    An investigation was conducted on the population structure of soil arthropod community in the 3-, 8-, 14-, 31-, and 40-years old Pinus massoniana plantations in the upper reaches of the Yangtze River in spring (May) and autumn (October), 2011, aimed to search for the scientific management of the plantation. A total of 4045 soil arthropods were collected, belonging to 57 families. Both the individual density and the taxonomic group number of the soil arthropod community decreased obviously with increasing soil depth, and this trend increased with increasing stand age. The dominant groups and ordinary groups of the soil arthropod community varied greatly with the stand age of P. massoniana plantation, and a significant difference (P<0.05) was observed in the individual density and taxonomic group number among different age P. massoniana plantations. In comparison with other stand age P. massoniana plantations, 3years old P. massoniana plantation had a significant difference in the structure and diversity of soil arthropod community, and the similarity index of the soil arthropod community was lower. The individual density, taxonomic group number, and diversity of soil arthropod community were the highest in 8-years old P. massoniana plantation, and then, decreased obviously with increasing stand age. It was suggested that the land fertility of the P. massoniana plantations could be degraded with increasing stand age, and it would be appropriate to make artificial regulation and restoration in 8-years old P. massoniana plantation.

  11. Effects of persistent insecticides on beneficial soil arthropod in conventional fields compared to organic fields, puducherry.

    PubMed

    Anbarashan, Padmavathy; Gopalswamy, Poyyamoli

    2013-07-15

    The usage of synthetic fertilizers/insecticides in conventional farming has dramatically increased over the past decades. The aim of the study was to compare the effects of bio-pesticides and insecticides/pesticides on selected beneficial non targeted arthropods. Orders Collembola, Arachinida/Opiliones, Oribatida and Coleoptera were the main groups of arthropods found in the organic fields and Coleoptera, Oribatida, Gamasida and Collembola in conventional fields. Pesticides/insecticides had a significant effect on non-targeted arthropods order- Collembola, Arachinida/Opiliones, Hymenoptera and Thysonoptera were suppressed after pesticides/insecticides spraying. Bio-insecticides in organic fields had a non-significant effect on non targeted species and they started to increase in abundance after 7 days of spraying, whereas insecticide treatment in conventional fields had a significant long-term effect on non targeted arthropods and short term effect on pests/insects, it started to increase after 21 days of the spraying. These results indicate that insecticide treatment kept non targeted arthropods at low abundance. In conclusion, organic farming does not significantly affected the beneficial-non targeted arthropods biodiversity, whereas preventive insecticide application in conventional fields had significant negative effects on beneficial non targeted arthropods. Therefore, conventional farmers should restrict insecticide applications, unless pest densities reach the thresholds and more desirably can switch to organic farming practices.

  12. Evolution of Ecdysis and Metamorphosis in Arthropods: The Rise of Regulation of Juvenile Hormone.

    PubMed

    Cheong, Sam P S; Huang, Juan; Bendena, William G; Tobe, Stephen S; Hui, Jerome H L

    2015-11-01

    Arthropods are the most successful group of animals, and are found in diverse habitats; they account for more than 80% of described animal species. A rigid exoskeleton is a common feature that is shared across the different groups of arthropods. The exoskeleton offers protection and is shed between developmental stages via a unique evolutionarily conserved process known as molting/ecdysis. Molting is triggered by steroid hormones, the ecdysteroids, and the regulation of their biosynthesis has long been proposed as a contributor to the success of arthropods during evolution. Nevertheless, how novelties arose that contributed to the diversifications of arthropods remain unclear. Juvenile hormones (JHs) are sequiterpenoids that were thought to be unique to insects, modulating the timing of metamorphosis in conjunction with the actions of ecdysteroids. Here, we revisit the old question of "the role that the sesquiterpenoids play in arthropod evolution" with a focus on the neglected non-insect arthropods. We hypothesize that the sesquiterpenoid, methyl farnesoate (MF), had already established regulatory functions in the last common ancestor of arthropods, and the difference in the regulation of biosynthesis and degradation of sesquiterpenoids, such as MF and JH, was another major driving force in the successful radiation of insects.

  13. Aerial arthropod communities of native and invaded forests, Robinson Crusoe Island, Chile.

    PubMed

    Hagen, Erin N; Bakker, Jonathan D; Gara, Robert I

    2010-08-01

    Invasive species significantly contribute to biological change and threaten biodiversity, with a growing body of evidence that plant invasions affect higher trophic levels. We explored the relative importance of plant invasion and forest structure on aerial arthropod abundance, diversity, and composition on Robinson Crusoe Island, Chile. We used flight intercept traps to sample aerial arthropods within distinct canopy strata of native and invaded forests over 3-mo periods in 2006 and 2007. Arthropod abundance and diversity were higher in native than invaded forest, and arthropod communities were distinct between forest types. In both forest types, arthropod abundance was highest in the lower canopy, and canopy strata exhibited some differences in arthropod community composition. Several morphospecies were distinctly associated with each forest type. The strong differences in aerial arthropod communities associated with the invasion of native forest by non-native plants may affect other trophic levels, such as insectivorous birds. Steps to stop invasive plant spread and to restore native forest composition and structure are needed to safeguard the integrity of native communities, from plants to higher-level consumers.

  14. Acquisition of Cry1Ac protein by non-target arthropods in Bt soybean fields.

    PubMed

    Yu, Huilin; Romeis, Jörg; Li, Yunhe; Li, Xiangju; Wu, Kongming

    2014-01-01

    Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.

  15. Acquisition of Cry1Ac Protein by Non-Target Arthropods in Bt Soybean Fields

    PubMed Central

    Yu, Huilin; Romeis, Jörg; Li, Yunhe; Li, Xiangju; Wu, Kongming

    2014-01-01

    Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean. PMID:25110881

  16. Arthropod abundance and seasonal bird use of bottomland forest harvest gaps.

    SciTech Connect

    Moorman, Christopher, E.; Bowen, Liessa T.; Kilgo, John, C.; Hanula, James, L.; Horn, Scott; Ulyshen, Michael, D.

    2012-03-01

    We investigated the influence of arthropod abundance and vegetation structure on shifts in avian use of canopy gap, gap edge, and surrounding forest understory in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. We compared captures of foliage-gleaning birds among locations during four periods (spring migration, breeding, post-breeding, and fall migration). Foliage arthropod densities were greatest in the forest understory in all four seasons, but understory vegetation density was greatest in gaps. Foliage-gleaning bird abundance was positively associated with foliage-dwelling arthropods during the breeding (F = 18.5, P < 0.001) and post-breeding periods (F = 9.4, P = 0.004), and negatively associated with foliage-dwelling arthropods during fall migration (F = 5.4, P = 0.03). Relationships between birds and arthropods were inconsistent, but the arthropod prey base seemed to be least important during migratory periods. Conversely, bird captures were positively correlated with understory vegetation density during all four periods (P < 0.001). Our study suggests high bird abundance associated with canopy gaps during the non-breeding period resulted less from high arthropod food resource availability than from complex understory and midstory vegetation structure.

  17. Do Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs use vibrational communication?

    NASA Astrophysics Data System (ADS)

    Chuche, Julien; Thiéry, Denis; Mazzoni, Valerio

    2011-07-01

    Small Auchenorrhyncha use substrate-borne vibrations to communicate. Although this behaviour is well known in adult leafhoppers, so far no studies have been published on nymphs. Here we checked the occurrence of vibrational communication in Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs as a possible explanation of their aggregative distributions on host plants. We studied possible vibratory emissions of isolated and grouped nymphs, as well as their behavioural responses to vibration stimuli that simulated presence of conspecifics, to disturbance noise, white noise and predator spiders. None of our synthetic stimuli or pre-recorded substrate vibrations from nymphs elicited specific vibration responses and only those due to grooming or mechanical contacts of the insect with the leaf were recorded. Thus, S. titanus nymphs showed to not use species-specific vibrations neither for intra- nor interspecific communication and also did not produce alarm vibrations when facing potential predators. We conclude that their aggregative behaviour is independent from a vibrational communication.

  18. Sweeping beauty: is grassland arthropod community composition effectively estimated by sweep netting?

    PubMed Central

    Spafford, Ryan D; Lortie, Christopher J

    2013-01-01

    Arthropods are critical ecosystem components due to their high diversity and sensitivity to perturbation. Furthermore, due to their ease of capture they are often the focus of environmental health surveys. There is much debate regarding the best sampling method to use in these surveys. Sweep netting and pan trapping are two sampling methods commonly used in agricultural arthropod surveys, but have not been contrasted in natural grassland systems at the community level. The purpose of this study was to determine whether sweep netting was effective at estimating arthropod diversity at the community level in grasslands or if supplemental pan trapping was needed. Arthropods were collected from grassland sites in Montana, USA, in the summer of 2011. The following three standardized evaluation criteria (consistency, reliability, and precision) were developed to assess the efficacy of sweep netting and pan trapping, based on analyses of variations in arthropod abundances, species richness, evenness, capture frequency, and community composition. Neither sampling method was sufficient in any criteria to be used alone for community-level arthropod surveys. On a taxa-specific basis, however, sweep netting was consistent, reliable, and precise for Thysanoptera, infrequently collected (i.e., rare) insects, and Arachnida, whereas pan trapping was consistent, reliable, and precise for Collembola and bees, which is especially significant given current threats to the latter's populations worldwide. Species-level identifications increase the detected dissimilarity between sweep netting and pan trapping. We recommend that community-level arthropod surveys use both sampling methods concurrently, at least in grasslands, but likely in most nonagricultural systems. Target surveys, such as monitoring bee communities in fragmented grassland habitat or where detailed information on behavior of the target arthropod groups is available can in some instances employ singular methods. As a

  19. Future rainfall patterns will reduce arthropod abundance in model arable agroecosystems with different soil types

    NASA Astrophysics Data System (ADS)

    Zaller, Johann; Simmer, Laura; Tabi Tataw, James; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas

    2013-04-01

    Climate change scenarios for eastern Austria predict a seasonal shift in precipitation patterns with fewer but heavier rainfall events and longer drought periods during the growing season and more precipitation during winter. This is expected to alter arthropods living in natural and agricultural ecosystems with consequences for several ecosystem functions and services. In order to better understand the effects of future rainfall patterns on aboveground arthropods inhabiting an agroecosystem, we conducted an experiment where we simulated rainfall patterns in model arable systems with three different soil types. Experiments were conducted in winter wheat cultivated in a lysimeter facility near Vienna, Austria, where three different soil types (calcaric phaeozem, calcic chernozem and gleyic phaeozem) were subjected to long-term current vs. predicted rainfall patterns according to regionalized climate change projections for 2071-2100. Aboveground arthropods were assessed by suction sampling in April, May and June 2012. We found significant differences in mean total arthropod abundances between the sampling dates with 20 ± 2 m-2, 90 ± 20 m-2 and 289 ± 54 m-2 in April, May and June, respectively. Across all three sampling dates, future rainfall patterns significantly reduced the abundance of Araneae (-43%), Auchenorrhyncha (-39%), Coleoptera (-48%), Carabidae (-41%), Chrysomelidae (-64%), Collembola (-58%), Diptera (-75%) and Neuroptera (-73%). Generally, different soil types had no effect on the abundance of arthropods. The diversity of arthropod communities was unaffected by rainfall patterns or soil types. Correlation analyses of arthropod abundances with crop biomass, weed density and abundance suggest that rainfall effects indirectly affected arthropods via changes on crops and weeds. In conclusion, these results show that future rainfall patterns will have detrimental effects on the abundance of a variety of aboveground arthropods in winter wheat with potential

  20. Sweeping beauty: is grassland arthropod community composition effectively estimated by sweep netting?

    PubMed

    Spafford, Ryan D; Lortie, Christopher J

    2013-09-01

    Arthropods are critical ecosystem components due to their high diversity and sensitivity to perturbation. Furthermore, due to their ease of capture they are often the focus of environmental health surveys. There is much debate regarding the best sampling method to use in these surveys. Sweep netting and pan trapping are two sampling methods commonly used in agricultural arthropod surveys, but have not been contrasted in natural grassland systems at the community level. The purpose of this study was to determine whether sweep netting was effective at estimating arthropod diversity at the community level in grasslands or if supplemental pan trapping was needed. Arthropods were collected from grassland sites in Montana, USA, in the summer of 2011. The following three standardized evaluation criteria (consistency, reliability, and precision) were developed to assess the efficacy of sweep netting and pan trapping, based on analyses of variations in arthropod abundances, species richness, evenness, capture frequency, and community composition. Neither sampling method was sufficient in any criteria to be used alone for community-level arthropod surveys. On a taxa-specific basis, however, sweep netting was consistent, reliable, and precise for Thysanoptera, infrequently collected (i.e., rare) insects, and Arachnida, whereas pan trapping was consistent, reliable, and precise for Collembola and bees, which is especially significant given current threats to the latter's populations worldwide. Species-level identifications increase the detected dissimilarity between sweep netting and pan trapping. We recommend that community-level arthropod surveys use both sampling methods concurrently, at least in grasslands, but likely in most nonagricultural systems. Target surveys, such as monitoring bee communities in fragmented grassland habitat or where detailed information on behavior of the target arthropod groups is available can in some instances employ singular methods. As a

  1. Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance.

    PubMed

    Farrell, Kelly Anne; Harpole, W Stanley; Stein, Claudia; Suding, Katharine N; Borer, Elizabeth T

    2015-01-01

    Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities.

  2. Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance

    PubMed Central

    Farrell, Kelly Anne; Harpole, W. Stanley; Stein, Claudia; Suding, Katharine N.; Borer, Elizabeth T.

    2015-01-01

    Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities. PMID:26158494

  3. The arthropod, but not the vertebrate host or its environment, dictates bacterial community composition of fleas and ticks

    PubMed Central

    Hawlena, Hadas; Rynkiewicz, Evelyn; Toh, Evelyn; Alfred, Andrew; Durden, Lance A; Hastriter, Michael W; Nelson, David E; Rong, Ruichen; Munro, Daniel; Dong, Qunfeng; Fuqua, Clay; Clay, Keith

    2013-01-01

    Bacterial community composition in blood-sucking arthropods can shift dramatically across time and space. We used 16S rRNA gene amplification and pyrosequencing to investigate the relative impact of vertebrate host-related, arthropod-related and environmental factors on bacterial community composition in fleas and ticks collected from rodents in southern Indiana (USA). Bacterial community composition was largely affected by arthropod identity, but not by the rodent host or environmental conditions. Specifically, the arthropod group (fleas vs ticks) determined the community composition of bacteria, where bacterial communities of ticks were less diverse and more dependent on arthropod traits—especially tick species and life stage—than bacterial communities of fleas. Our data suggest that both arthropod life histories and the presence of arthropod-specific endosymbionts may mask the effects of the vertebrate host and its environment. PMID:22739493

  4. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses

    PubMed Central

    Li, Ci-Xiu; Shi, Mang; Tian, Jun-Hua; Lin, Xian-Dan; Kang, Yan-Jun; Chen, Liang-Jun; Qin, Xin-Cheng; Xu, Jianguo; Holmes, Edward C; Zhang, Yong-Zhen

    2015-01-01

    Although arthropods are important viral vectors, the biodiversity of arthropod viruses, as well as the role that arthropods have played in viral origins and evolution, is unclear. Through RNA sequencing of 70 arthropod species we discovered 112 novel viruses that appear to be ancestral to much of the documented genetic diversity of negative-sense RNA viruses, a number of which are also present as endogenous genomic copies. With this greatly enriched diversity we revealed that arthropods contain viruses that fall basal to major virus groups, including the vertebrate-specific arenaviruses, filoviruses, hantaviruses, influenza viruses, lyssaviruses, and paramyxoviruses. We similarly documented a remarkable diversity of genome structures in arthropod viruses, including a putative circular form, that sheds new light on the evolution of genome organization. Hence, arthropods are a major reservoir of viral genetic diversity and have likely been central to viral evolution. DOI: http://dx.doi.org/10.7554/eLife.05378.001 PMID:25633976

  5. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses.

    PubMed

    Li, Ci-Xiu; Shi, Mang; Tian, Jun-Hua; Lin, Xian-Dan; Kang, Yan-Jun; Chen, Liang-Jun; Qin, Xin-Cheng; Xu, Jianguo; Holmes, Edward C; Zhang, Yong-Zhen

    2015-01-29

    Although arthropods are important viral vectors, the biodiversity of arthropod viruses, as well as the role that arthropods have played in viral origins and evolution, is unclear. Through RNA sequencing of 70 arthropod species we discovered 112 novel viruses that appear to be ancestral to much of the documented genetic diversity of negative-sense RNA viruses, a number of which are also present as endogenous genomic copies. With this greatly enriched diversity we revealed that arthropods contain viruses that fall basal to major virus groups, including the vertebrate-specific arenaviruses, filoviruses, hantaviruses, influenza viruses, lyssaviruses, and paramyxoviruses. We similarly documented a remarkable diversity of genome structures in arthropod viruses, including a putative circular form, that sheds new light on the evolution of genome organization. Hence, arthropods are a major reservoir of viral genetic diversity and have likely been central to viral evolution.

  6. Changes in soil temperature during prescribed burns impact local arthropod communities

    NASA Astrophysics Data System (ADS)

    Verble-Pearson, Robin; Perry, Gad

    2016-04-01

    As wildfires increase in severity and intensity globally, the development of methods to assess their effects on soils is of increasing importance. We examined soil arthropod communities in the southern United States and estimated their abundance, species richness, and composition in areas recently impacted by prescribed burns. In addition, we placed thermal probes in soils and correlated soil temperatures to arthropod responses. Longer fire residence times resulted in greater soil heating which resulted in decreases in arthropod abundance and species richness and shifts in species composition. We believe that these results may be useful in developing tools to assess fire effects on soil systems.

  7. Longleaf Pine Characterists Associated with Arthropods Available for Red-Cockaded Woodpeckers

    SciTech Connect

    Hanula, J.L.; Franzreb, K.E.; Pepper, W.D.

    1999-01-25

    The authors sampled arthropods on 300 longleaf pine under varying stand conditions and ranging in age from 20 to 100 years. The most diverse orders were beetles, spiders, ants, wasps and bees. The most abundant were aphids and Hymenoptera with a large number of ants. Arthropod biomass per tree increased in age up to 65-70 years, but biomass was highest in the youngest stands. Arthropods were positively correlated to bark thickness and tree diameter, but negatively related to the stand basal area. No relationships were found between abundance and ground vegetation conditions.

  8. Full-Malaria/Parasites and Full-Arthropods: databases of full-length cDNAs of parasites and arthropods, update 2009.

    PubMed

    Wakaguri, Hiroyuki; Suzuki, Yutaka; Katayama, Toshiaki; Kawashima, Shuichi; Kibukawa, Eri; Hiranuka, Kazushi; Sasaki, Masahide; Sugano, Sumio; Watanabe, Junichi

    2009-01-01

    Full-Malaria/Parasites is a database for transcriptome studies of apicomplexa and other parasites, which is based on our original full-length cDNA sequences and physical cDNA clone resources. In this update, the database has been expanded to contain the shogun sequencing for the entire sequences of 14,818 non-redundant full-length cDNA clones from six apicomplexa parasites and 6.8 million of transcription start sites (TSS), both of which had been produced by novel protocols using the oligo-capping method and the Illumina GA sequencer. The former should be the ultimate data for exact annotation of the expressed genes, while the latter should be useful for ultra-deep expression analysis. Furthermore, we have launched Full-Arthropods, a full-length cDNA database for arthropods of medical importance. Full-Arthropods contains 50 343 one-pass sequences, 10 399 shotgun complete sequences and 22.4 million TSS tags in anopheles mosquitoes that transmit malaria, tsetse flies that transmit trypanosomiasis and dust mites that cause allergic dermatitis and bronchial asthma. By providing the largest integrated full-length cDNA data resources in the apicomplexa parasites as well as their vectors, Full-Malaria/Parasites and Full-Arthropods should help combat parasitic diseases. Full-Malaria/Parasites and Full-Arthropods are accessible from http://fullmal.hgc.jp/.

  9. Changes In CO2 Gas Flux And Soil Temperatures Induced By A Vibratory Seismic Source At Solfatara (Phlegrean Fields, Italy).

    NASA Astrophysics Data System (ADS)

    Vandemeulebrouck, J.; Gresse, M.; Chiodini, G.; Byrdina, S.; Woith, H.; Bruno, P. P.

    2014-12-01

    Solfatara, the most active crater of Phlegrean Fields (Italy) is characterized by a fumarolic activity and an intense diffuse degassing, with 1500 tons of CO2 and > 3000 tons of water vapor released per day. A major part of the emitted water vapor is condensed at the near surface producing a thermal power flux around 100 MW, and contributing substantially to the total water input into the hydrothermal system. On May 2014, during a seismic experiment (RICEN) in the frame of the MED-SUV European project, a Minivib vibratory seismic source was used to generate a frequency modulated seismic signal at different points of Solfatara. We performed CO2 flux measurements at a few meters from the seismic source during the vibrations. In certain points, the vibrations induced a remarkable increase in the CO2 diffuse degassing, with a flux that doubled during the low-frequency seismic vibrations and returned to previous values afterwards. The observed CO2 flux increase could be due to permeability enhancement in the sub-surface soil layers during the seismic vibrations. Close to Fangaia mud pool, we also monitored the soil temperature at different levels above the condensation depth and observed transient temperature changes during the vibrations but also outside the vibration periods. Seismic vibrations likely favor the triggering of thermal instabilities of gravitational or convective origin in the liquid-saturated condensate layer.

  10. Design and Analysis of a Novel Fully Decoupled Tri-axis Linear Vibratory Gyroscope with Matched Modes.

    PubMed

    Xia, Dunzhu; Kong, Lun; Gao, Haiyu

    2015-07-13

    We present in this paper a novel fully decoupled silicon micromachined tri-axis linear vibratory gyroscope. The proposed gyroscope structure is highly symmetrical and can be limited to an area of about 8.5 mm × 8.5 mm. It can differentially detect three axes' angular velocities at the same time. By elaborately arranging different beams, anchors and sensing frames, the drive and sense modes are fully decoupled from each other. Moreover, the quadrature error correction and frequency tuning functions are taken into consideration in the structure design for all the sense modes. Since there exists an unwanted in-plane rotational mode, theoretical analysis is implemented to eliminate it. To accelerate the mode matching process, the particle swam optimization (PSO) algorithm is adopted and a frequency split of 149 Hz is first achieved by this method. Then, after two steps of manual adjustment of the springs' dimensions, the frequency gap is further decreased to 3 Hz. With the help of the finite element method (FEM) software ANSYS, the natural frequencies of drive, yaw, and pitch/roll modes are found to be 14,017 Hz, 14,018 Hz and 14,020 Hz, respectively. The cross-axis effect and scale factor of each mode are also simulated. All the simulation results are in good accordance with the theoretical analysis, which means the design is effective and worthy of further investigation on the integration of tri-axis accelerometers on the same single chip to form an inertial measurement unit.

  11. Preliminary evaluation of cavitation resistance of type 316LN stainless steel in mercury using a vibratory horn

    NASA Astrophysics Data System (ADS)

    Pawel, S. J.; Manneschmidt, E. T.

    2003-05-01

    Type 316LN stainless steel in a variety of conditions (annealed, cold-worked, surface-modified) was exposed to cavitation conditions in stagnant mercury using a vibratory horn. The test conditions included peak-to-peak displacement of the specimen surface of 25 μm at a frequency of 20 kHz and a mercury temperature in the range -5 to 80 °C. Following a brief incubation period in which little or no damage was observed, specimens of annealed 316LN exhibited increasing weight loss and surface roughening with increasing exposure times. Examination of test surfaces with the scanning electron microscope revealed primarily general/uniform wastage in all cases but, for long exposure times, a few randomly oriented 'pits' were also observed. Type 316LN that was 50% cold-worked was considerably more resistant to cavitation erosion damage than annealed material, but the surface modifications (CrN coating, metallic glass coating, laser treatment to form a diamond-like surface) provided little or no protection for the substrate. In addition, the cavitation erosion resistance of other materials - Inconel 718, Nitronic 60, and Stellite 3 - was also compared with that of 316LN for identical screening test conditions.

  12. Further Examination of the Vibratory Loads Reduction Results from the NASA/ARMY/MIT Active Twist Rotor Test

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Sekula, Martin K.

    2002-01-01

    The vibration reduction capabilities of a model rotor system utilizing controlled, strain-induced blade twisting are examined. The model rotor blades, which utilize piezoelectric active fiber composite actuators, were tested in the NASA Langley Transonic Dynamics Tunnel using open-loop control to determine the effect of active-twist on rotor vibratory loads. The results of this testing have been encouraging, and have demonstrated that active-twist rotor designs offer the potential for significant load reductions in future helicopter rotor systems. Active twist control was found to use less than 1% of the power necessary to operate the rotor system and had a pronounced effect on both rotating- and fixed-system loads, offering reductions in individual harmonic loads of up to 100%. A review of the vibration reduction results obtained is presented, which includes a limited set of comparisons with results generated using the second-generation version of the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II) rotorcraft comprehensive analysis.

  13. Step-response of a torsional device with multiple discontinuous non-linearities: Formulation of a vibratory experiment

    NASA Astrophysics Data System (ADS)

    Krak, Michael D.; Dreyer, Jason T.; Singh, Rajendra

    2016-03-01

    A vehicle clutch damper is intentionally designed to contain multiple discontinuous non-linearities, such as multi-staged springs, clearances, pre-loads, and multi-staged friction elements. The main purpose of this practical torsional device is to transmit a wide range of torque while isolating torsional vibration between an engine and transmission. Improved understanding of the dynamic behavior of the device could be facilitated by laboratory measurement, and thus a refined vibratory experiment is proposed. The experiment is conceptually described as a single degree of freedom non-linear torsional system that is excited by an external step torque. The single torsional inertia (consisting of a shaft and torsion arm) is coupled to ground through parallel production clutch dampers, which are characterized by quasi-static measurements provided by the manufacturer. Other experimental objectives address physical dimensions, system actuation, flexural modes, instrumentation, and signal processing issues. Typical measurements show that the step response of the device is characterized by three distinct non-linear regimes (double-sided impact, single-sided impact, and no-impact). Each regime is directly related to the non-linear features of the device and can be described by peak angular acceleration values. Predictions of a simplified single degree of freedom non-linear model verify that the experiment performs well and as designed. Accordingly, the benchmark measurements could be utilized to validate non-linear models and simulation codes, as well as characterize dynamic parameters of the device including its dissipative properties.

  14. A substrate energy dissipation mechanism in in-phase and anti-phase micromachined z-axis vibratory gyroscopes

    NASA Astrophysics Data System (ADS)

    Trusov, Alexander A.; Schofield, Adam R.; Shkel, Andrei M.

    2008-09-01

    This paper analyzes energy dissipation mechanisms in vacuum-operated in-phase and anti-phase actuated micromachined z-axis vibratory gyroscopes. The type of actuation is experimentally identified as the key factor to energy dissipation. For in-phase devices, dissipation through the die substrate is the dominant energy loss mechanism. This damping mechanism depends strongly on the die attachment method; rigid die attachment minimizes the loss of energy at the cost of reduced vibrational and stress isolation. For anti-phase actuated devices, dissipation through the substrate is suppressed and immunity to external vibrations is provided. However, even in anti-phase actuated devices fabrication imperfections introduce structural non-symmetry, enabling dissipation of energy through the die substrate due to momentum imbalance. Based on the experimental investigation, an analytical model for energy dissipation through the die substrate is proposed and used to study the effects of the actuation type, die attachment and fabrication imperfections. The limiting Q-factor for in-phase devices is generally below 20 × 103 while Q-factors much higher than 100 × 103 can be achieved with balanced anti-phase actuated gyroscopes.

  15. Mineral cycling in soil and litter arthropod food chains. Progress report, 1985

    SciTech Connect

    Crossley, D.A. Jr.

    1985-01-01

    Research progress in the following areas is briefly summarized: (1) microarthropod effects on microbial immobilization of nutrients during decomposition; and (2) effects of arthropods on decomposition rates of unconfined leaf litter. (ACR)

  16. Introduction to symposium: Arthropods and wildlife conservation: synergy in complex biological systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The symposium will discuss the effects of arthropods and other stressors on wildlife conservation programs. Speakers with affiliations in wildlife biology, parasitology and entomology will be included in the program. Research of national and international interest will be presented....

  17. Can Row Spacing Influence Arthropod Communities in Soybean? Implications for Early and Late Planting.

    PubMed

    Buchanan, Amanda L; Zobel, Emily; Hinds, Jermaine; Rosario-Lebron, Armando; Hooks, Cerruti R R

    2015-06-01

    Row spacing in agricultural systems can influence crop yield as well as pest and predator abundances. Soybean (Glycine max L. Merrill) growers in Maryland typically plant in narrow (∼19 cm), medium (∼38 cm), or wide (∼76 cm)-spaced rows, and there is a general lack of information on how these row-spacing schemes influence arthropod abundance and soybean yields. A study was conducted during two growing seasons to determine the effect of soybean row spacing and planting date (early and late) on soybean arthropods and yield. Despite a great deal of variation in arthropod responses to row spacing, and interactions between row spacing and study year, leaf-feeding herbivores were generally more abundant in narrow-spaced soybeans. All arthropod functional groups were more abundant, and yield was greater in early-planted soybeans relative to late-planted soybeans. Potential causes and implications of these finding are discussed.

  18. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic

    PubMed Central

    Vannier, Jean; Schoenemann, Brigitte; Gillot, Thomas; Charbonnier, Sylvain; Clarkson, Euan

    2016-01-01

    Vision has revolutionized the way animals explore their environment and interact with each other and rapidly became a major driving force in animal evolution. However, direct evidence of how ancient animals could perceive their environment is extremely difficult to obtain because internal eye structures are almost never fossilized. Here, we reconstruct with unprecedented resolution the three-dimensional structure of the huge compound eye of a 160-million-year-old thylacocephalan arthropod from the La Voulte exceptional fossil biota in SE France. This arthropod had about 18,000 lenses on each eye, which is a record among extinct and extant arthropods and is surpassed only by modern dragonflies. Combined information about its eyes, internal organs and gut contents obtained by X-ray microtomography lead to the conclusion that this thylacocephalan arthropod was a visual hunter probably adapted to illuminated environments, thus contradicting the hypothesis that La Voulte was a deep-water environment. PMID:26785293

  19. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic.

    PubMed

    Vannier, Jean; Schoenemann, Brigitte; Gillot, Thomas; Charbonnier, Sylvain; Clarkson, Euan

    2016-01-01

    Vision has revolutionized the way animals explore their environment and interact with each other and rapidly became a major driving force in animal evolution. However, direct evidence of how ancient animals could perceive their environment is extremely difficult to obtain because internal eye structures are almost never fossilized. Here, we reconstruct with unprecedented resolution the three-dimensional structure of the huge compound eye of a 160-million-year-old thylacocephalan arthropod from the La Voulte exceptional fossil biota in SE France. This arthropod had about 18,000 lenses on each eye, which is a record among extinct and extant arthropods and is surpassed only by modern dragonflies. Combined information about its eyes, internal organs and gut contents obtained by X-ray microtomography lead to the conclusion that this thylacocephalan arthropod was a visual hunter probably adapted to illuminated environments, thus contradicting the hypothesis that La Voulte was a deep-water environment. PMID:26785293

  20. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    PubMed

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  1. Ecosystem engineers on plants: indirect facilitation of arthropod communities by leaf-rollers at different scales.

    PubMed

    Vieira, Camila; Romero, Gustavo Q

    2013-07-01

    Ecosystem engineering is a process by which organisms change the distribution of resources and create new habitats for other species via non-trophic interactions. Leaf-rolling caterpillars can act as ecosystem engineers because they provide shelter to secondary users. In this study, we report the influence of leaf-rolling caterpillars on speciose tropical arthropod communities along both spatial scales (leaf-level and plant-level effects) and temporal scales (dry and rainy seasons). We predict that rolled leaves can amplify arthropod diversity at both the leaf and plant levels and that this effect is stronger in dry seasons, when arthropods are prone to desiccation. Our results show that the abundance, richness, and biomass of arthropods within several guilds increased up to 22-fold in naturally and artificially created leaf shelters relative to unaltered leaves. These effects were observed at similar magnitudes at both the leaf and plant scales. Variation in the shelter architecture (funnel, cylinders) did not influence arthropod parameters, as diversity, abundance, orbiomass, but rolled leaves had distinct species composition if compared with unaltered leaves. As expected, these arthropod parameters on the plants with rolled leaves were on average approximately twofold higher in the dry season. Empty leaf rolls and whole plants were rapidly recolonized by arthropods over time, implying a fast replacement of individuals; within 15-day intervals the rolls and plants reached a species saturation. This study is the first to examine the extended effects of engineering caterpillars as diversity amplifiers at different temporal and spatial scales. Because shelter-building caterpillars are ubiquitous organisms in tropical and temperate forests, they can be considered key structuring elements for arthropod communities on plants.

  2. Dynamics of the leaf-litter arthropod fauna following fire in a neotropical woodland savanna.

    PubMed

    Vasconcelos, Heraldo L; Pacheco, Renata; Silva, Raphael C; Vasconcelos, Pedro B; Lopes, Cauê T; Costa, Alan N; Bruna, Emilio M

    2009-11-09

    Fire is an important agent of disturbance in tropical savannas, but relatively few studies have analyzed how soil-and-litter dwelling arthropods respond to fire disturbance despite the critical role these organisms play in nutrient cycling and other biogeochemical processes. Following the incursion of a fire into a woodland savanna ecological reserve in Central Brazil, we monitored the dynamics of litter-arthropod populations for nearly two years in one burned and one unburned area of the reserve. We also performed a reciprocal transplant experiment to determine the effects of fire and litter type on the dynamics of litter colonization by arthropods. Overall arthropod abundance, the abundance of individual taxa, the richness of taxonomic groups, and the species richness of individual taxa (Formiciade) were lower in the burned site. However, both the ordinal-level composition of the litter arthropod fauna and the species-level composition of the litter ant fauna were not dramatically different in the burned and unburned sites. There is evidence that seasonality of rainfall interacts with fire, as differences in arthropod abundance and diversity were more pronounced in the dry than in the wet season. For many taxa the differences in abundance between burned and unburned sites were maintained even when controlling for litter availability and quality. In contrast, differences in abundance for Collembola, Formicidae, and Thysanoptera were only detected in the unmanipulated samples, which had a lower amount of litter in the burned than in the unburned site throughout most of our study period. Together these results suggest that arthropod density declines in fire-disturbed areas as a result of direct mortality, diminished resources (i.e., reduced litter cover) and less favorable microclimate (i.e., increased litter desiccation due to reduction in tree cover). Although these effects were transitory, there is evidence that the increasingly prevalent fire return interval of

  3. Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs

    PubMed Central

    Cardoso, João C. R.; Félix, Rute C.; Power, Deborah M.

    2014-01-01

    Nematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors (GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes. PMID:24651821

  4. Bison grazing increases arthropod abundance and diversity in a tallgrass prairie.

    PubMed

    Moran, Matthew D

    2014-10-01

    How grazing-induced ecosystem changes by ungulates indirectly affect other consumers is a question of great interest. I investigated the effect of grazing by American Bison (Bos bison L.) on an arthropod community in tallgrass prairie. Grazing increased the abundance of arthropods, an increase that was present in both herbivorous and carnivorous assemblages, but not in detritivores. The increase in herbivores and reduction in plant biomass from grazing resulted in an arthropod herbivore load almost three times higher in grazed plots compared with controls. Among herbivores, the sap-feeding insect guild was dramatically more abundant, while chewing herbivores were not affected. Herbivorous and carnivorous arthropod richness was higher in grazed plots, although the response was strongest among herbivores. Arthropod abundance on individual grasses and forbs was significantly higher in grazed areas, while plant type had no effect on abundance, indicating that the change was ecosystem-wide and not simply in response to a reduction in grass biomass from grazing. The response of arthropods to grazing was strongest in the early part of the growing season. Published research shows that ungulate grazing, although decreasing available biomass to other consumers, enhances plant quality by increasing nitrogen level in plants. The arthropod results of this study suggest higher plant quality outweighs the potential negative competitive effects of plant biomass removal, although other activities of bison could not be ruled out as the causative mechanism. Because arthropods are extremely abundant organisms in grasslands and a food source for other consumers, bison may represent valuable management tools for maintaining biodiversity.

  5. Tropical dermatology: Venomous arthropods and human skin: Part II. Diplopoda, Chilopoda, and Arachnida.

    PubMed

    Haddad, Vidal; Cardoso, João Luiz Costa; Lupi, Omar; Tyring, Stephen K

    2012-09-01

    Members of arthropod classes Chilopoda (centipedes), Diplopoda (millipedes), and Arachnida (spiders and scorpions) cause tissue injury via bites, stings, and/or a release of toxins. A few members of the Acari subclass of Arachnida (mites and ticks) can transmit a variety of infectious diseases, but this review will cover the noninfectious manifestations of these vectors. Dermatologists should be familiar with the injuries caused by these arthropods in order to initiate proper treatment and recommend effective preventative measures.

  6. Dynamics of the Leaf-Litter Arthropod Fauna Following Fire in a Neotropical Woodland Savanna

    PubMed Central

    Vasconcelos, Heraldo L.; Pacheco, Renata; Silva, Raphael C.; Vasconcelos, Pedro B.; Lopes, Cauê T.; Costa, Alan N.; Bruna, Emilio M.

    2009-01-01

    Fire is an important agent of disturbance in tropical savannas, but relatively few studies have analyzed how soil-and-litter dwelling arthropods respond to fire disturbance despite the critical role these organisms play in nutrient cycling and other biogeochemical processes. Following the incursion of a fire into a woodland savanna ecological reserve in Central Brazil, we monitored the dynamics of litter-arthropod populations for nearly two years in one burned and one unburned area of the reserve. We also performed a reciprocal transplant experiment to determine the effects of fire and litter type on the dynamics of litter colonization by arthropods. Overall arthropod abundance, the abundance of individual taxa, the richness of taxonomic groups, and the species richness of individual taxa (Formiciade) were lower in the burned site. However, both the ordinal-level composition of the litter arthropod fauna and the species-level composition of the litter ant fauna were not dramatically different in the burned and unburned sites. There is evidence that seasonality of rainfall interacts with fire, as differences in arthropod abundance and diversity were more pronounced in the dry than in the wet season. For many taxa the differences in abundance between burned and unburned sites were maintained even when controlling for litter availability and quality. In contrast, differences in abundance for Collembola, Formicidae, and Thysanoptera were only detected in the unmanipulated samples, which had a lower amount of litter in the burned than in the unburned site throughout most of our study period. Together these results suggest that arthropod density declines in fire-disturbed areas as a result of direct mortality, diminished resources (i.e., reduced litter cover) and less favorable microclimate (i.e., increased litter desiccation due to reduction in tree cover). Although these effects were transitory, there is evidence that the increasingly prevalent fire return interval of

  7. Bison grazing increases arthropod abundance and diversity in a tallgrass prairie.

    PubMed

    Moran, Matthew D

    2014-10-01

    How grazing-induced ecosystem changes by ungulates indirectly affect other consumers is a question of great interest. I investigated the effect of grazing by American Bison (Bos bison L.) on an arthropod community in tallgrass prairie. Grazing increased the abundance of arthropods, an increase that was present in both herbivorous and carnivorous assemblages, but not in detritivores. The increase in herbivores and reduction in plant biomass from grazing resulted in an arthropod herbivore load almost three times higher in grazed plots compared with controls. Among herbivores, the sap-feeding insect guild was dramatically more abundant, while chewing herbivores were not affected. Herbivorous and carnivorous arthropod richness was higher in grazed plots, although the response was strongest among herbivores. Arthropod abundance on individual grasses and forbs was significantly higher in grazed areas, while plant type had no effect on abundance, indicating that the change was ecosystem-wide and not simply in response to a reduction in grass biomass from grazing. The response of arthropods to grazing was strongest in the early part of the growing season. Published research shows that ungulate grazing, although decreasing available biomass to other consumers, enhances plant quality by increasing nitrogen level in plants. The arthropod results of this study suggest higher plant quality outweighs the potential negative competitive effects of plant biomass removal, although other activities of bison could not be ruled out as the causative mechanism. Because arthropods are extremely abundant organisms in grasslands and a food source for other consumers, bison may represent valuable management tools for maintaining biodiversity. PMID:25198902

  8. Community structure and nutrient content of canopy arthropods in clearcut and uncut forest ecosystems

    SciTech Connect

    Schowalter, T.D.; Webb, J.W.; Crossley, D.A. Jr.

    1981-08-01

    This paper describes differences in canopy arthropod community structure, major cation content, and calculated nutrient consumption between clearcut and undisturbed hardwood forest watersheds at Coweeta Hydrologic Laboratory, North Carolina, USA, during the first two growing seasons following cutting. Although canopy arthropod biomass was about 0.08% of foliage biomass on both watersheds, aphid mass increased 23-fold and ant mass increased 6-fold per unit foliage mass following cutting. These groups in general had lower nutrient concentrations than did chewing herbivores and predators. Arthropod K concentrations were 33% lower on the clearcut; Na, K, and Mg concentrations were 20 to 50% higher in 1978 than in 1977. Arthropod Mg and Ca concentrations, but not Na and K, were reduced significantly more by the greater effect of drought on the clearcut watershed. Consumption estimates based in part on consumption rates reported by others indicated increased nutrient translocation from foilage via arthropods following cutting. These data indicated that canopy arthropod responses to changes in nutrient availability following disturbance could have increased nutrient cycling rates and contributed to nutrient retention by the recovering ecosystem.

  9. Abundance and Diversity of Soil Arthropods in the Olive Grove Ecosystem

    PubMed Central

    Gonçalves, Maria Fátima; Pereira, José Alberto

    2012-01-01

    Arthropods are part of important functional groups in soil food webs. Recognizing these arthropods and understanding their function in the ecosystem as well as when they are active is essential to understanding their roles. In the present work, the abundance and diversity of soil arthropods is examined in olive groves in the northeast region of Portugal during the spring. Five classes of arthropods were found: Chilopoda, Malacostraca, Entognatha, Insecta, and Arachnida. Captures were numerically dominated by Collembola within Entognatha, representing 70.9% of total captures. Arachnida and Insecta classes represented about 20.4 and 9.0%, respectively. Among the predatory arthropods, the most representative groups were Araneae and Opiliones from Arachnida, and Formicidae, Carabidae, and Staphylinidae from Insecta. From the Formicidae family, Tetramorium semilaeve (Andre 1883), Tapinoma nigerrimum (Nylander 1856), and Crematogaster scutellaris (Olivier 1792) were the most representative ant species. Arthropods demonstrated preference during the day, with 74% of the total individuals recovered in this period, although richness and similarity were analogous during the day and night. PMID:22943295

  10. Emerging roles of aquaporins in relation to the physiology of blood-feeding arthropods.

    PubMed

    Benoit, Joshua B; Hansen, Immo A; Szuter, Elise M; Drake, Lisa L; Burnett, Denielle L; Attardo, Geoffrey M

    2014-10-01

    Aquaporins (AQPs) are proteins that span plasma membranes allowing the movement of water and small solutes into or out of cells. The type, expression levels and activity of AQPs play a major role in the relative permeability of each cell to water or other solutes. Research on arthropod AQPs has expanded in the last 10 years due to the completion of several arthropod genome projects and the increased availability of genetic information accessible through other resources such as de novo transcriptome assemblies. In particular, there has been significant advancement in elucidating the roles that AQPs serve in relation to the physiology of blood-feeding arthropods of medical importance. The focus of this review is upon the significance of AQPs in relation to hematophagy in arthropods. This will be accomplished via a narrative describing AQP functions during the life history of hematophagic arthropods that includes the following critical phases: (1) Saliva production necessary to blood feeding, (2) Intake and excretion of water during blood digestion, (3) Reproduction and egg development and (4) Off-host environmental stress tolerance. The concentration on these phases will highlight known vulnerabilities in the biology of hematophagic arthropods that could be used to develop novel control strategies as well as research topics that have yet to be examined.

  11. Abundance and diversity of soil arthropods in the olive grove ecosystem.

    PubMed

    Gonçalves, Maria Fátima; Pereira, José Alberto

    2012-01-01

    Arthropods are part of important functional groups in soil food webs. Recognizing these arthropods and understanding their function in the ecosystem as well as when they are active is essential to understanding their roles. In the present work, the abundance and diversity of soil arthropods is examined in olive groves in the northeast region of Portugal during the spring. Five classes of arthropods were found: Chilopoda, Malacostraca, Entognatha, Insecta, and Arachnida. Captures were numerically dominated by Collembola within Entognatha, representing 70.9% of total captures. Arachnida and Insecta classes represented about 20.4 and 9.0%, respectively. Among the predatory arthropods, the most representative groups were Araneae and Opiliones from Arachnida, and Formicidae, Carabidae, and Staphylinidae from Insecta. From the Formicidae family, Tetramorium semilaeve (Andre 1883), Tapinoma nigerrimum (Nylander 1856), and Crematogaster scutellaris (Olivier 1792) were the most representative ant species. Arthropods demonstrated preference during the day, with 74% of the total individuals recovered in this period, although richness and similarity were analogous during the day and night.

  12. Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders.

    PubMed

    Koyanagi, Mitsumasa; Nagata, Takashi; Katoh, Kazutaka; Yamashita, Shigeki; Tokunaga, Fumio

    2008-02-01

    Among terrestrial animals, only vertebrates and arthropods possess wavelength-discrimination ability, so-called "color vision". For color vision to exist, multiple opsins which encode visual pigments sensitive to different wavelengths of light are required. While the molecular evolution of opsins in vertebrates has been well investigated, that in arthropods remains to be elucidated. This is mainly due to poor information about the opsin genes of non-insect arthropods. To obtain an overview of the evolution of color vision in Arthropoda, we isolated three kinds of opsins, Rh1, Rh2, and Rh3, from two jumping spider species, Hasarius adansoni and Plexippus paykulli. These spiders belong to Chelicerata, one of the most distant groups from Hexapoda (insects), and have color vision as do insects. Phylogenetic analyses of jumping spider opsins revealed a birth and death process of color vision evolution in the arthropod lineage. Phylogenetic positions of jumping spider opsins revealed that at least three opsins had already existed before the Chelicerata-Pancrustacea split. In addition, sequence comparison between jumping spider Rh3 and the shorter wavelength-sensitive opsins of insects predicted that an opsin of the ancestral arthropod had the lysine residue responsible for UV sensitivity. These results strongly suggest that the ancestral arthropod had at least trichromatic vision with a UV pigment and two visible pigments. Thereafter, in each pancrustacean and chelicerate lineage, the opsin repertoire was reconstructed by gene losses, gene duplications, and function-altering amino acid substitutions, leading to evolution of color vision. PMID:18217181

  13. Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders.

    PubMed

    Koyanagi, Mitsumasa; Nagata, Takashi; Katoh, Kazutaka; Yamashita, Shigeki; Tokunaga, Fumio

    2008-02-01

    Among terrestrial animals, only vertebrates and arthropods possess wavelength-discrimination ability, so-called "color vision". For color vision to exist, multiple opsins which encode visual pigments sensitive to different wavelengths of light are required. While the molecular evolution of opsins in vertebrates has been well investigated, that in arthropods remains to be elucidated. This is mainly due to poor information about the opsin genes of non-insect arthropods. To obtain an overview of the evolution of color vision in Arthropoda, we isolated three kinds of opsins, Rh1, Rh2, and Rh3, from two jumping spider species, Hasarius adansoni and Plexippus paykulli. These spiders belong to Chelicerata, one of the most distant groups from Hexapoda (insects), and have color vision as do insects. Phylogenetic analyses of jumping spider opsins revealed a birth and death process of color vision evolution in the arthropod lineage. Phylogenetic positions of jumping spider opsins revealed that at least three opsins had already existed before the Chelicerata-Pancrustacea split. In addition, sequence comparison between jumping spider Rh3 and the shorter wavelength-sensitive opsins of insects predicted that an opsin of the ancestral arthropod had the lysine residue responsible for UV sensitivity. These results strongly suggest that the ancestral arthropod had at least trichromatic vision with a UV pigment and two visible pigments. Thereafter, in each pancrustacean and chelicerate lineage, the opsin repertoire was reconstructed by gene losses, gene duplications, and function-altering amino acid substitutions, leading to evolution of color vision.

  14. Silurian horseshoe crab illuminates the evolution of arthropod limbs.

    PubMed

    Briggs, Derek E G; Siveter, Derek J; Siveter, David J; Sutton, Mark D; Garwood, Russell J; Legg, David

    2012-09-25

    The basic arrangement of limbs in euarthropods consists of a uniramous head appendage followed by a series of biramous appendages. The body is divided into functional units or tagmata which are usually distinguished by further differentiation of the limbs. The living horseshoe crabs are remnants of a much larger diversity of aquatic chelicerates. The limbs of the anterior and posterior divisions of the body of living horseshoe crabs differ in the loss of the outer and inner ramus, respectively, of an ancestral biramous limb. Here we report a new fossil horseshoe crab from the mid-Silurian Lagerstätte in Herefordshire, United Kingdom (approximately 425 Myr B.P.), a site that has yielded a remarkably preserved assemblage of soft-bodied fossils. The limbs of the new form can be homologized with those of living Limulus, but retain an ancestral biramous morphology. Remarkably, however, the two limb branches originate separately, providing fossil evidence to suggest that repression or loss of gene expression might have given rise to the appendage morphology of Limulus. Both branches of the prosomal limbs of this new fossil are robust and segmented in contrast to their morphology in Cambrian arthropods, revealing that a true biramous limb was once present in chelicerates as well as in the mandibulates. PMID:22967511

  15. Linking membrane physical properties and low temperature tolerance in arthropods.

    PubMed

    Waagner, Dorthe; Bouvrais, Hélène; Ipsen, John H; Holmstrup, Martin

    2013-12-01

    Maintenance of membrane fluidity is of crucial importance in ectotherms experiencing thermal changes. This maintenance has in ectotherms most often been indicated using indirect measures of biochemical changes of phospholipid membranes, which is then assumed to modulate the physico-chemical properties of the membrane. Here, we measure bending rigidity characterizing the membrane flexibility of re-constituted membrane vesicles to provide a more direct link between membrane physical characteristics and low temperature tolerance. Bending rigidity of lipid bilayers was measured in vitro using Giant Unilamellar Vesicles formed from phospholipid extracts of the springtail, Folsomia candida. The bending rigidity of these membranes decreased when exposed to 0.4 vol% ethanol (0.23 mM/L). Springtails exposed to ethanol for 24h significantly increased their cold shock tolerance. Thus, by chemically inducing decreased membrane rigidity, we have shown a direct link between the physico-chemical properties of the membranes and the capacity to tolerate low temperature in a chill-susceptible arthropod. PMID:24080490

  16. Death rates reflect accumulating brain damage in arthropods

    PubMed Central

    Fonseca, Duane B; Brancato, Carolina L; Prior, Andrew E; Shelton, Peter M.J; Sheehy, Matt R.J

    2005-01-01

    We present the results of the first quantitative, whole-lifespan study of the relationship between age-specific neurolipofuscin concentration and natural mortality rate in any organism. In a convenient laboratory animal, the African migratory locust, Locusta migratoria, we find an unusual delayed-onset neurolipofuscin accumulation pattern that is highly correlated with exponentially accelerating age-specific Gompertz–Makeham death rates in both males (r=0.93, p=0.0064) and females (r=0.97, p=0.0052). We then test the conservation of this association by aggregating the locust results with available population-specific data for a range of other terrestrial, freshwater, marine, tropical and temperate arthropods whose longevities span three orders of magnitude. This synthesis shows that the strong association between neurolipofuscin deposition and natural mortality is a phylogenetically and environmentally widespread phenomenon (r=0.96, p<0.0001). These results highlight neurolipofuscin as a unique and outstanding integral biomarker of ageing. They also offer compelling evidence for the proposal that, in vital organs like the brain, either the accumulation of toxic garbage in the form of lipofuscin itself, or the particular molecular reactions underlying lipofuscinogenesis, including free-radical damage, are the primary events in senescence. PMID:16191601

  17. The ubiquity of intraguild predation among predatory arthropods.

    PubMed

    Gagnon, Annie-Ève; Heimpel, George E; Brodeur, Jacques

    2011-01-01

    Intraguild predation (IGP) occurs when one predator species attacks another predator species with which it competes for a shared prey species. Despite the apparent omnipresence of intraguild interactions in natural and managed ecosystems, very few studies have quantified rates of IGP in various taxa under field conditions. We used molecular analyses of gut contents to assess the nature and incidence of IGP among four species of coccinellid predators in soybean fields. Over half of the 368 predator individuals collected in soybean contained the DNA of other coccinellid species indicating that IGP was very common at our field site. Furthermore, 13.2% of the sampled individuals contained two and even three other coccinellid species in their gut. The interaction was reciprocal, as each of the four coccinellid species has the capacity to feed on the others. To our knowledge, this study represents the most convincing field evidence of a high prevalence of IGP among predatory arthropods. The finding has important implications for conservation biology and biological control.

  18. No Accumulation of Transposable Elements in Asexual Arthropods.

    PubMed

    Bast, Jens; Schaefer, Ina; Schwander, Tanja; Maraun, Mark; Scheu, Stefan; Kraaijeveld, Ken

    2016-03-01

    Transposable elements (TEs) and other repetitive DNA can accumulate in the absence of recombination, a process contributing to the degeneration of Y-chromosomes and other nonrecombining genome portions. A similar accumulation of repetitive DNA is expected for asexually reproducing species, given their entire genome is effectively nonrecombining. We tested this expectation by comparing the whole-genome TE loads of five asexual arthropod lineages and their sexual relatives, including asexual and sexual lineages of crustaceans (Daphnia water fleas), insects (Leptopilina wasps), and mites (Oribatida). Surprisingly, there was no evidence for increased TE load in genomes of asexual as compared to sexual lineages, neither for all classes of repetitive elements combined nor for specific TE families. Our study therefore suggests that nonrecombining genomes do not accumulate TEs like nonrecombining genomic regions of sexual lineages. Even if a slight but undetected increase of TEs were caused by asexual reproduction, it appears to be negligible compared to variance between species caused by processes unrelated to reproductive mode. It remains to be determined if molecular mechanisms underlying genome regulation in asexuals hamper TE activity. Alternatively, the differences in TE dynamics between nonrecombining genomes in asexual lineages versus nonrecombining genome portions in sexual species might stem from selection for benign TEs in asexual lineages because of the lack of genetic conflict between TEs and their hosts and/or because asexual lineages may only arise from sexual ancestors with particularly low TE loads. PMID:26560353

  19. Arthropod phylogeny based on eight molecular loci and morphology

    NASA Technical Reports Server (NTRS)

    Giribet, G.; Edgecombe, G. D.; Wheeler, W. C.

    2001-01-01

    The interrelationships of major clades within the Arthropoda remain one of the most contentious issues in systematics, which has traditionally been the domain of morphologists. A growing body of DNA sequences and other types of molecular data has revitalized study of arthropod phylogeny and has inspired new considerations of character evolution. Novel hypotheses such as a crustacean-hexapod affinity were based on analyses of single or few genes and limited taxon sampling, but have received recent support from mitochondrial gene order, and eye and brain ultrastructure and neurogenesis. Here we assess relationships within Arthropoda based on a synthesis of all well sampled molecular loci together with a comprehensive data set of morphological, developmental, ultrastructural and gene-order characters. The molecular data include sequences of three nuclear ribosomal genes, three nuclear protein-coding genes, and two mitochondrial genes (one protein coding, one ribosomal). We devised new optimization procedures and constructed a parallel computer cluster with 256 central processing units to analyse molecular data on a scale not previously possible. The optimal 'total evidence' cladogram supports the crustacean-hexapod clade, recognizes pycnogonids as sister to other euarthropods, and indicates monophyly of Myriapoda and Mandibulata.

  20. Death rates reflect accumulating brain damage in arthropods.

    PubMed

    Fonseca, Duane B; Brancato, Carolina L; Prior, Andrew E; Shelton, Peter M J; Sheehy, Matt R J

    2005-09-22

    We present the results of the first quantitative, whole-lifespan study of the relationship between age-specific neurolipofuscin concentration and natural mortality rate in any organism. In a convenient laboratory animal, the African migratory locust, Locusta migratoria, we find an unusual delayed-onset neurolipofuscin accumulation pattern that is highly correlated with exponentially accelerating age-specific Gompertz-Makeham death rates in both males (r=0.93, p=0.0064) and females (r=0.97, p=0.0052). We then test the conservation of this association by aggregating the locust results with available population-specific data for a range of other terrestrial, freshwater, marine, tropical and temperate arthropods whose longevities span three orders of magnitude. This synthesis shows that the strong association between neurolipofuscin deposition and natural mortality is a phylogenetically and environmentally widespread phenomenon (r=0.96, p < 0.0001). These results highlight neurolipofuscin as a unique and outstanding integral biomarker of ageing. They also offer compelling evidence for the proposal that, in vital organs like the brain, either the accumulation of toxic garbage in the form of lipofuscin itself, or the particular molecular reactions underlying lipofuscinogenesis, including free-radical damage, are the primary events in senescence.

  1. Linking membrane physical properties and low temperature tolerance in arthropods.

    PubMed

    Waagner, Dorthe; Bouvrais, Hélène; Ipsen, John H; Holmstrup, Martin

    2013-12-01

    Maintenance of membrane fluidity is of crucial importance in ectotherms experiencing thermal changes. This maintenance has in ectotherms most often been indicated using indirect measures of biochemical changes of phospholipid membranes, which is then assumed to modulate the physico-chemical properties of the membrane. Here, we measure bending rigidity characterizing the membrane flexibility of re-constituted membrane vesicles to provide a more direct link between membrane physical characteristics and low temperature tolerance. Bending rigidity of lipid bilayers was measured in vitro using Giant Unilamellar Vesicles formed from phospholipid extracts of the springtail, Folsomia candida. The bending rigidity of these membranes decreased when exposed to 0.4 vol% ethanol (0.23 mM/L). Springtails exposed to ethanol for 24h significantly increased their cold shock tolerance. Thus, by chemically inducing decreased membrane rigidity, we have shown a direct link between the physico-chemical properties of the membranes and the capacity to tolerate low temperature in a chill-susceptible arthropod.

  2. No Accumulation of Transposable Elements in Asexual Arthropods

    PubMed Central

    Bast, Jens; Schaefer, Ina; Schwander, Tanja; Maraun, Mark; Scheu, Stefan; Kraaijeveld, Ken

    2016-01-01

    Transposable elements (TEs) and other repetitive DNA can accumulate in the absence of recombination, a process contributing to the degeneration of Y-chromosomes and other nonrecombining genome portions. A similar accumulation of repetitive DNA is expected for asexually reproducing species, given their entire genome is effectively nonrecombining. We tested this expectation by comparing the whole-genome TE loads of five asexual arthropod lineages and their sexual relatives, including asexual and sexual lineages of crustaceans (Daphnia water fleas), insects (Leptopilina wasps), and mites (Oribatida). Surprisingly, there was no evidence for increased TE load in genomes of asexual as compared to sexual lineages, neither for all classes of repetitive elements combined nor for specific TE families. Our study therefore suggests that nonrecombining genomes do not accumulate TEs like nonrecombining genomic regions of sexual lineages. Even if a slight but undetected increase of TEs were caused by asexual reproduction, it appears to be negligible compared to variance between species caused by processes unrelated to reproductive mode. It remains to be determined if molecular mechanisms underlying genome regulation in asexuals hamper TE activity. Alternatively, the differences in TE dynamics between nonrecombining genomes in asexual lineages versus nonrecombining genome portions in sexual species might stem from selection for benign TEs in asexual lineages because of the lack of genetic conflict between TEs and their hosts and/or because asexual lineages may only arise from sexual ancestors with particularly low TE loads. PMID:26560353

  3. Systemic immediate allergic reactions to arthropod stings and bites.

    PubMed

    Bircher, Andreas J

    2005-01-01

    Most of the encounters with biting and stinging insects result in more or less pronounced localized reactions. Typically, urticarial wheals and papular reactions are observed. Less often local bullous or hemorrhagic or disseminated papular reactions, particularly in children and immunologically naive adults, may be seen. With the exception of bee and wasp venom allergies, immediate-type allergic reactions to arthropod stings and bites are rare. Systemic IgE-mediated hypersensitivity has also been reported from additional hymenoptera species, e.g. hornets, bumble bees and ants. Rare are systemic reactions to mosquitoes, flies or kissing bugs and exceptional from ticks, bed bugs, moths, caterpillars and spiders. A major problem is the often lacking standardization of extracts for skin testing and for the determination of specific IgE. Some of the allergens have been characterized and few of them synthesized using recombinant techniques. Most investigations have been made with whole-body extracts or extracts from salivary glands, while desensitization has rarely been attempted. Currently, primary prevention by avoidance of stings and bites, and adequate instruction of sensitized individuals in the use of emergency drugs are mandatory. PMID:15724094

  4. Silurian horseshoe crab illuminates the evolution of arthropod limbs

    NASA Astrophysics Data System (ADS)

    Briggs, Derek E. G.; Siveter, Derek J.; Siveter, David J.; Sutton, Mark D.; Garwood, Russell J.; Legg, David

    2012-09-01

    The basic arrangement of limbs in euarthropods consists of a uniramous head appendage followed by a series of biramous appendages. The body is divided into functional units or tagmata which are usually distinguished by further differentiation of the limbs. The living horseshoe crabs are remnants of a much larger diversity of aquatic chelicerates. The limbs of the anterior and posterior divisions of the body of living horseshoe crabs differ in the loss of the outer and inner ramus, respectively, of an ancestral biramous limb. Here we report a new fossil horseshoe crab from the mid-Silurian Lagerstätte in Herefordshire, United Kingdom (approximately 425 Myr B.P.), a site that has yielded a remarkably preserved assemblage of soft-bodied fossils. The limbs of the new form can be homologized with those of living Limulus, but retain an ancestral biramous morphology. Remarkably, however, the two limb branches originate separately, providing fossil evidence to suggest that repression or loss of gene expression might have given rise to the appendage morphology of Limulus. Both branches of the prosomal limbs of this new fossil are robust and segmented in contrast to their morphology in Cambrian arthropods, revealing that a true biramous limb was once present in chelicerates as well as in the mandibulates.

  5. Silurian horseshoe crab illuminates the evolution of arthropod limbs.

    PubMed

    Briggs, Derek E G; Siveter, Derek J; Siveter, David J; Sutton, Mark D; Garwood, Russell J; Legg, David

    2012-09-25

    The basic arrangement of limbs in euarthropods consists of a uniramous head appendage followed by a series of biramous appendages. The body is divided into functional units or tagmata which are usually distinguished by further differentiation of the limbs. The living horseshoe crabs are remnants of a much larger diversity of aquatic chelicerates. The limbs of the anterior and posterior divisions of the body of living horseshoe crabs differ in the loss of the outer and inner ramus, respectively, of an ancestral biramous limb. Here we report a new fossil horseshoe crab from the mid-Silurian Lagerstätte in Herefordshire, United Kingdom (approximately 425 Myr B.P.), a site that has yielded a remarkably preserved assemblage of soft-bodied fossils. The limbs of the new form can be homologized with those of living Limulus, but retain an ancestral biramous morphology. Remarkably, however, the two limb branches originate separately, providing fossil evidence to suggest that repression or loss of gene expression might have given rise to the appendage morphology of Limulus. Both branches of the prosomal limbs of this new fossil are robust and segmented in contrast to their morphology in Cambrian arthropods, revealing that a true biramous limb was once present in chelicerates as well as in the mandibulates.

  6. Arthropod eye-inspired digital camera with unique imaging characteristics

    NASA Astrophysics Data System (ADS)

    Xiao, Jianliang; Song, Young Min; Xie, Yizhu; Malyarchuk, Viktor; Jung, Inhwa; Choi, Ki-Joong; Liu, Zhuangjian; Park, Hyunsung; Lu, Chaofeng; Kim, Rak-Hwan; Li, Rui; Crozier, Kenneth B.; Huang, Yonggang; Rogers, John A.

    2014-06-01

    In nature, arthropods have a remarkably sophisticated class of imaging systems, with a hemispherical geometry, a wideangle field of view, low aberrations, high acuity to motion and an infinite depth of field. There are great interests in building systems with similar geometries and properties due to numerous potential applications. However, the established semiconductor sensor technologies and optics are essentially planar, which experience great challenges in building such systems with hemispherical, compound apposition layouts. With the recent advancement of stretchable optoelectronics, we have successfully developed strategies to build a fully functional artificial apposition compound eye camera by combining optics, materials and mechanics principles. The strategies start with fabricating stretchable arrays of thin silicon photodetectors and elastomeric optical elements in planar geometries, which are then precisely aligned and integrated, and elastically transformed to hemispherical shapes. This imaging device demonstrates nearly full hemispherical shape (about 160 degrees), with densely packed artificial ommatidia. The number of ommatidia (180) is comparable to those of the eyes of fire ants and bark beetles. We have illustrated key features of operation of compound eyes through experimental imaging results and quantitative ray-tracing-based simulations. The general strategies shown in this development could be applicable to other compound eye devices, such as those inspired by moths and lacewings (refracting superposition eyes), lobster and shrimp (reflecting superposition eyes), and houseflies (neural superposition eyes).

  7. Inference on arthropod demographic parameters: computational advances using R.

    PubMed

    Maia, Aline De Holanda Nunes; Pazianotto, Ricardo Antonio De Almeida; Luiz, Alfredo José Barreto; Marinho-Prado, Jeanne Scardini; Pervez, Ahmad

    2014-02-01

    We developed a computer program for life table analysis using the open source, free software programming environment R. It is useful to quantify chronic nonlethal effects of treatments on arthropod populations by summarizing information on their survival and fertility in key population parameters referred to as fertility life table parameters. Statistical inference on fertility life table parameters is not trivial because it requires the use of computationally intensive methods for variance estimation. Our codes present some advantages with respect to a previous program developed in Statistical Analysis System. Additional multiple comparison tests were incorporated for the analysis of qualitative factors; a module for regression analysis was implemented, thus, allowing analysis of quantitative factors such as temperature or agrochemical doses; availability is granted for users, once it was developed using an open source, free software programming environment. To illustrate the descriptive and inferential analysis implemented in lifetable.R, we present and discuss two examples: 1) a study quantifying the influence of the proteinase inhibitor berenil on the eucalyptus defoliator Thyrinteina arnobia (Stoll) and 2) a study investigating the influence of temperature on demographic parameters of a predaceous ladybird, Hippodamia variegata (Goeze). PMID:24665730

  8. No Accumulation of Transposable Elements in Asexual Arthropods.

    PubMed

    Bast, Jens; Schaefer, Ina; Schwander, Tanja; Maraun, Mark; Scheu, Stefan; Kraaijeveld, Ken

    2016-03-01

    Transposable elements (TEs) and other repetitive DNA can accumulate in the absence of recombination, a process contributing to the degeneration of Y-chromosomes and other nonrecombining genome portions. A similar accumulation of repetitive DNA is expected for asexually reproducing species, given their entire genome is effectively nonrecombining. We tested this expectation by comparing the whole-genome TE loads of five asexual arthropod lineages and their sexual relatives, including asexual and sexual lineages of crustaceans (Daphnia water fleas), insects (Leptopilina wasps), and mites (Oribatida). Surprisingly, there was no evidence for increased TE load in genomes of asexual as compared to sexual lineages, neither for all classes of repetitive elements combined nor for specific TE families. Our study therefore suggests that nonrecombining genomes do not accumulate TEs like nonrecombining genomic regions of sexual lineages. Even if a slight but undetected increase of TEs were caused by asexual reproduction, it appears to be negligible compared to variance between species caused by processes unrelated to reproductive mode. It remains to be determined if molecular mechanisms underlying genome regulation in asexuals hamper TE activity. Alternatively, the differences in TE dynamics between nonrecombining genomes in asexual lineages versus nonrecombining genome portions in sexual species might stem from selection for benign TEs in asexual lineages because of the lack of genetic conflict between TEs and their hosts and/or because asexual lineages may only arise from sexual ancestors with particularly low TE loads.

  9. Design and Analysis of a Novel Fully Decoupled Tri-axis Linear Vibratory Gyroscope with Matched Modes.

    PubMed

    Xia, Dunzhu; Kong, Lun; Gao, Haiyu

    2015-01-01

    We present in this paper a novel fully decoupled silicon micromachined tri-axis linear vibratory gyroscope. The proposed gyroscope structure is highly symmetrical and can be limited to an area of about 8.5 mm × 8.5 mm. It can differentially detect three axes' angular velocities at the same time. By elaborately arranging different beams, anchors and sensing frames, the drive and sense modes are fully decoupled from each other. Moreover, the quadrature error correction and frequency tuning functions are taken into consideration in the structure design for all the sense modes. Since there exists an unwanted in-plane rotational mode, theoretical analysis is implemented to eliminate it. To accelerate the mode matching process, the particle swam optimization (PSO) algorithm is adopted and a frequency split of 149 Hz is first achieved by this method. Then, after two steps of manual adjustment of the springs' dimensions, the frequency gap is further decreased to 3 Hz. With the help of the finite element method (FEM) software ANSYS, the natural frequencies of drive, yaw, and pitch/roll modes are found to be 14,017 Hz, 14,018 Hz and 14,020 Hz, respectively. The cross-axis effect and scale factor of each mode are also simulated. All the simulation results are in good accordance with the theoretical analysis, which means the design is effective and worthy of further investigation on the integration of tri-axis accelerometers on the same single chip to form an inertial measurement unit. PMID:26184217

  10. Design and Analysis of a Novel Fully Decoupled Tri-axis Linear Vibratory Gyroscope with Matched Modes

    PubMed Central

    Xia, Dunzhu; Kong, Lun; Gao, Haiyu

    2015-01-01

    We present in this paper a novel fully decoupled silicon micromachined tri-axis linear vibratory gyroscope. The proposed gyroscope structure is highly symmetrical and can be limited to an area of about 8.5 mm × 8.5 mm. It can differentially detect three axes’ angular velocities at the same time. By elaborately arranging different beams, anchors and sensing frames, the drive and sense modes are fully decoupled from each other. Moreover, the quadrature error correction and frequency tuning functions are taken into consideration in the structure design for all the sense modes. Since there exists an unwanted in-plane rotational mode, theoretical analysis is implemented to eliminate it. To accelerate the mode matching process, the particle swam optimization (PSO) algorithm is adopted and a frequency split of 149 Hz is first achieved by this method. Then, after two steps of manual adjustment of the springs’ dimensions, the frequency gap is further decreased to 3 Hz. With the help of the finite element method (FEM) software ANSYS, the natural frequencies of drive, yaw, and pitch/roll modes are found to be 14,017 Hz, 14,018 Hz and 14,020 Hz, respectively. The cross-axis effect and scale factor of each mode are also simulated. All the simulation results are in good accordance with the theoretical analysis, which means the design is effective and worthy of further investigation on the integration of tri-axis accelerometers on the same single chip to form an inertial measurement unit. PMID:26184217

  11. Temporal variation in the arthropod community of desert riparian habitats with varying amounts of saltcedar (Tamarix ramosissima)

    USGS Publications Warehouse

    Durst, S.L.; Theimer, T.C.; Paxton, E.H.; Sogge, M.K.

    2008-01-01

    We used Malaise traps to examine the aerial arthropod community in riparian habitats dominated by native willow, exotic saltcedar, or a mixture of these two tree species in central Arizona, USA. Over the course of three sampling periods per year in 2003 and 2004, native habitats had significantly greater diversity (Shannon-Wiener) and supported different arthropod communities compared to exotic habitats, while mixed habitats were intermediate in terms of diversity and supported an arthropod community statistically indistinguishable from the exotic site. The composition of arthropod communities varied significantly between the two years, and there was an approximately two-fold difference in richness and diversity. Overall, we documented complex interactions indicating that differences among the arthropod communities of riparian habitats may be driven not only by the composition of native and exotic tree species making up these habitats, but also by year and season of arthropod sampling.

  12. Mineral cycling in soil and litter arthropod food chains. Progress report, November 1, 1980-October 31, 1981

    SciTech Connect

    Crossley, D.A. Jr.

    1980-06-15

    Progress and current status are reported for research projects concerned with mineral element and nutrient dynamics in soil arthropod food chains. Research is performed within the larger context of terrestrial decomposition, in which soil arthropods may act as regulators of nutrient dynamics during decomposition. Research is measuring rates of nutrient accumulation and excretion by using radioactive tracer analogs of nutrients. This year, emphasis has been placed on field work in which soil arthropod population size and nutrients inputs were varied experimentally. The presence of microarthropods in field microcosms increased the mineralization of N and P in each case, but rates were not correlated with arthropod densities. Experiments recently started are using both arthropod and microfloral inhibitors, in open systems on the forest floor, with the objective of quantifying arthropod enhancement of microbial immobilization of nutrients.

  13. Mineral cycling in soil and litter arthropod food chains. Three-year progress report, February 1, 1984-January 31, 1987

    SciTech Connect

    Crossley, D.A. Jr.

    1986-08-29

    This report summarizes progress in a three-year research project on the influence of soil arthropods (mites, collembolans, insects, millipedes and others) upon decomposition rates and nutrient dynamics in decaying vegetable matter. Research has concentrated on two aspects of elemental dynamics in decomposing organic matter: Effects of arthropods on rates of decomposition and nutrient loss (mineralization of carbon and other elements), and arthropod stimulation of microbial immobilization of nutrient elements during decomposition.

  14. Evolution in plant populations as a driver of ecological changes in arthropod communities.

    PubMed

    Johnson, Marc T J; Vellend, Mark; Stinchcombe, John R

    2009-06-12

    Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to

  15. Large-scale experimental landscapes reveal distinctive effects of patch shape and connectivity on arthropod communities.

    SciTech Connect

    Orrock, John, L.; Curler, Gregory, R.; Danielson, Brent, J.; Coyle, David. R.

    2011-09-14

    The size, shape, and isolation of habitat patches can affect organism behavior and population dynamics, but little is known about the relative role of shape and connectivity in affecting ecological communities at large spatial scales. Using six sampling sessions from July 2001 until August 2002, we collected 33,685 arthropods throughout seven 12-ha experimental landscapes consisting of clear-cut patches surrounded by a matrix of mature pine forest. Patches were explicitly designed to manipulate connectivity (via habitat corridors) independently of area and edge effects. We found that patch shape, rather than connectivity, affected ground-dwelling arthropod richness and beta diversity (i.e. turnover of genera among patches). Arthropod communities contained fewer genera and exhibited less turnover in high-edge connected and high-edge unconnected patches relative to low-edge unconnected patches of similar area. Connectivity, rather than patch shape, affected the evenness of ground-dwelling arthropod communities; regardless of patch shape, high-edge connected patches had lower evenness than low- or high-edge unconnected patches. Among the most abundant arthropod orders, increased richness in low-edge unconnected patches was largely due to increased richness of Coleoptera, whereas Hymenoptera played an important role in the lower evenness in connected patches and patterns of turnover. These findings suggest that anthropogenic habitat alteration can have distinct effects on ground-dwelling arthropod communities that arise due to changes in shape and connectivity. Moreover, this work suggests that corridors, which are common conservation tools that change both patch shape and connectivity, can have multiple effects on arthropod communities via different mechanisms, and each effect may alter components of community structure.

  16. Habitat and species identity, not diversity, predict the extent of refuse consumption by urban arthropods.

    PubMed

    Youngsteadt, Elsa; Henderson, Ryanna C; Savage, Amy M; Ernst, Andrew F; Dunn, Robert R; Frank, Steven D

    2015-03-01

    Urban green spaces provide ecosystem services to city residents, but their management is hindered by a poor understanding of their ecology. We examined a novel ecosystem service relevant to urban public health and esthetics: the consumption of littered food waste by arthropods. Theory and data from natural systems suggest that the magnitude and resilience of this service should increase with biological diversity. We measured food removal by presenting known quantities of cookies, potato chips, and hot dogs in street medians (24 sites) and parks (21 sites) in New York City, USA. At the same sites, we assessed ground-arthropod diversity and abiotic conditions, including history of flooding during Hurricane Sandy 7 months prior to the study. Arthropod diversity was greater in parks (on average 11 hexapod families and 4.7 ant species per site), than in medians (nine hexapod families and 2.7 ant species per site). However, counter to our diversity-based prediction, arthropods in medians removed 2-3 times more food per day than did those in parks. We detected no effect of flooding (at 19 sites) on this service. Instead, greater food removal was associated with the presence of the introduced pavement ant (Tetramorium sp. E) and with hotter, drier conditions that may have increased arthropod metabolism. When vertebrates also had access to food, more was removed, indicating that arthropods and vertebrates compete for littered food. We estimate that arthropods alone could remove 4-6.5 kg of food per year in a single street median, reducing its availability to less desirable fauna such as rats. Our results suggest that species identity and habitat may be more relevant than diversity for predicting urban ecosystem services. Even small green spaces such as street medians provide ecosystem services that may complement those of larger habitat patches across the urban landscape.

  17. Habitat and species identity, not diversity, predict the extent of refuse consumption by urban arthropods.

    PubMed

    Youngsteadt, Elsa; Henderson, Ryanna C; Savage, Amy M; Ernst, Andrew F; Dunn, Robert R; Frank, Steven D

    2015-03-01

    Urban green spaces provide ecosystem services to city residents, but their management is hindered by a poor understanding of their ecology. We examined a novel ecosystem service relevant to urban public health and esthetics: the consumption of littered food waste by arthropods. Theory and data from natural systems suggest that the magnitude and resilience of this service should increase with biological diversity. We measured food removal by presenting known quantities of cookies, potato chips, and hot dogs in street medians (24 sites) and parks (21 sites) in New York City, USA. At the same sites, we assessed ground-arthropod diversity and abiotic conditions, including history of flooding during Hurricane Sandy 7 months prior to the study. Arthropod diversity was greater in parks (on average 11 hexapod families and 4.7 ant species per site), than in medians (nine hexapod families and 2.7 ant species per site). However, counter to our diversity-based prediction, arthropods in medians removed 2-3 times more food per day than did those in parks. We detected no effect of flooding (at 19 sites) on this service. Instead, greater food removal was associated with the presence of the introduced pavement ant (Tetramorium sp. E) and with hotter, drier conditions that may have increased arthropod metabolism. When vertebrates also had access to food, more was removed, indicating that arthropods and vertebrates compete for littered food. We estimate that arthropods alone could remove 4-6.5 kg of food per year in a single street median, reducing its availability to less desirable fauna such as rats. Our results suggest that species identity and habitat may be more relevant than diversity for predicting urban ecosystem services. Even small green spaces such as street medians provide ecosystem services that may complement those of larger habitat patches across the urban landscape. PMID:25463151

  18. Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods

    PubMed Central

    Longcore, Travis; Aldern, Hannah L.; Eggers, John F.; Flores, Steve; Franco, Lesly; Hirshfield-Yamanishi, Eric; Petrinec, Laina N.; Yan, Wilson A.; Barroso, André M.

    2015-01-01

    Artificial lighting allows humans to be active at night, but has many unintended consequences, including interference with ecological processes, disruption of circadian rhythms and increased exposure to insect vectors of diseases. Although ultraviolet and blue light are usually most attractive to arthropods, degree of attraction varies among orders. With a focus on future indoor lighting applications, we manipulated the spectrum of white lamps to investigate the influence of spectral composition on number of arthropods attracted. We compared numbers of arthropods captured at three customizable light-emitting diode (LED) lamps (3510, 2704 and 2728 K), two commercial LED lamps (2700 K), two commercial compact fluorescent lamps (CFLs; 2700 K) and a control. We configured the three custom LEDs to minimize invertebrate attraction based on published attraction curves for honeybees and moths. Lamps were placed with pan traps at an urban and two rural study sites in Los Angeles, California. For all invertebrate orders combined, our custom LED configurations were less attractive than the commercial LED lamps or CFLs of similar colour temperatures. Thus, adjusting spectral composition of white light to minimize attracting nocturnal arthropods is feasible; not all lights with the same colour temperature are equally attractive to arthropods. PMID:25780237

  19. Modification and Application of a Leaf Blower-vac for Field Sampling of Arthropods.

    PubMed

    Zou, Yi; van Telgen, Mario D; Chen, Junhui; Xiao, Haijun; de Kraker, Joop; Bianchi, Felix J J A; van der Werf, Wopke

    2016-01-01

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure, application of this sampling device provides absolute estimates of the populations of arthropods as numbers per standardized sampling area. The sampling efficiency depends critically on the sampling duration. In a mature rice crop, a two-minute sampling in an enclosure of 0.13 m(2) yields more than 90% of the arthropod population. The device also allows sampling of arthropods dwelling on the water surface or the soil in rice paddies, but it is not suitable for sampling fast flying insects, such as predatory Odonata or larger hymenopterous parasitoids. The modified blower-vac is simple to construct, and cheaper and easier to handle than traditional suction sampling devices, such as D-vac. The low cost makes the modified blower-vac also accessible to researchers in developing countries.

  20. Disturbance and recovery of salt marsh arthropod communities following BP Deepwater Horizon oil spill.

    PubMed

    McCall, Brittany D; Pennings, Steven C

    2012-01-01

    Oil spills represent a major environmental threat to coastal wetlands, which provide a variety of critical ecosystem services to humanity. The U.S. Gulf of Mexico is a hub of oil and gas exploration activities that historically have impacted intertidal habitats such as salt marsh. Following the BP Deepwater Horizon oil spill, we sampled the terrestrial arthropod community and marine invertebrates found in stands of Spartina alterniflora, the most abundant plant in coastal salt marshes. Sampling occurred in 2010 as oil was washing ashore and a year later in 2011. In 2010, intertidal crabs and terrestrial arthropods (insects and spiders) were suppressed by oil exposure even in seemingly unaffected stands of plants; however, Littoraria snails were unaffected. One year later, crab and arthropods had largely recovered. Our work is the first attempt that we know of assessing vulnerability of the salt marsh arthropod community to oil exposure, and it suggests that arthropods are both quite vulnerable to oil exposure and quite resilient, able to recover from exposure within a year if host plants remain healthy. PMID:22412916

  1. Oak tree canker disease supports arthropod diversity in a natural ecosystem.

    PubMed

    Lee, Yong-Bok; An, Su Jung; Park, Chung Gyoo; Kim, Jinwoo; Han, Sangjo; Kwak, Youn-Sig

    2014-03-01

    Microorganisms have many roles in nature. They may act as decomposers that obtain nutrients from dead materials, while some are pathogens that cause diseases in animals, insects, and plants. Some are symbionts that enhance plant growth, such as arbuscular mycorrhizae and nitrogen fixation bacteria. However, roles of plant pathogens and diseases in natural ecosystems are still poorly understood. Thus, the current study addressed this deficiency by investigating possible roles of plant diseases in natural ecosystems, particularly, their positive effects on arthropod diversity. In this study, the model system was the oak tree (Quercus spp.) and the canker disease caused by Annulohypoxylon truncatum, and its effects on arthropod diversity. The oak tree site contained 44 oak trees; 31 had canker disease symptoms while 13 were disease-free. A total of 370 individual arthropods were detected at the site during the survey period. The arthropods belonged to 25 species, 17 families, and seven orders. Interestingly, the cankered trees had significantly higher biodiversity and richness compared with the canker-free trees. This study clearly demonstrated that arthropod diversity was supported by the oak tree canker disease. PMID:25288984

  2. Disturbance and Recovery of Salt Marsh Arthropod Communities following BP Deepwater Horizon Oil Spill

    PubMed Central

    McCall, Brittany D.; Pennings, Steven C.

    2012-01-01

    Oil spills represent a major environmental threat to coastal wetlands, which provide a variety of critical ecosystem services to humanity. The U.S. Gulf of Mexico is a hub of oil and gas exploration activities that historically have impacted intertidal habitats such as salt marsh. Following the BP Deepwater Horizon oil spill, we sampled the terrestrial arthropod community and marine invertebrates found in stands of Spartina alterniflora, the most abundant plant in coastal salt marshes. Sampling occurred in 2010 as oil was washing ashore and a year later in 2011. In 2010, intertidal crabs and terrestrial arthropods (insects and spiders) were suppressed by oil exposure even in seemingly unaffected stands of plants; however, Littoraria snails were unaffected. One year later, crab and arthropods had largely recovered. Our work is the first attempt that we know of assessing vulnerability of the salt marsh arthropod community to oil exposure, and it suggests that arthropods are both quite vulnerable to oil exposure and quite resilient, able to recover from exposure within a year if host plants remain healthy. PMID:22412916

  3. Impact of chemically contaminated sewage sludge on the collard arthropod community

    SciTech Connect

    Culliney, T.W.; Pimentel, D.; Lisk, D.J.

    1986-08-01

    Stress effects on a terrestrial arthropod community were evident in a study of collards grown in soil amended with chemically contaminated sewage sludge. Plant growth in the contaminated sludge was significantly reduced compared with growth in plots treated with relatively uncontaminated sludge from two small towns or with mature alone. Population densities of major arthropod taxa tended to be lower in plots of contaminated sludge than they were in uncontaminated sludge and manure plots. Species richness and diversity were also reduced in contaminated-sludge plots compared with those of uncontaminated sludge and manure treatments. In general, few differences were observed in plant growth and arthropod numbers between the uncontaminated-sludge treatment, or uncontaminated sludge treated with cadmium or with the insecticide dieldrin. Because cadmium and dieldrin were applied at dosages of cadmium and polychlorinated biphenyls (PCB's) found in the contaminated sludge, results suggested that these two toxins were not responsible for the effects on plants and arthropods observed in the contaminated-sludge treatment. Results of this study indicated the potential for sludge-borne contaminants to suppress growth in crop plants and reduce abundance of their associated arthropods.

  4. Oak tree canker disease supports arthropod diversity in a natural ecosystem.

    PubMed

    Lee, Yong-Bok; An, Su Jung; Park, Chung Gyoo; Kim, Jinwoo; Han, Sangjo; Kwak, Youn-Sig

    2014-03-01

    Microorganisms have many roles in nature. They may act as decomposers that obtain nutrients from dead materials, while some are pathogens that cause diseases in animals, insects, and plants. Some are symbionts that enhance plant growth, such as arbuscular mycorrhizae and nitrogen fixation bacteria. However, roles of plant pathogens and diseases in natural ecosystems are still poorly understood. Thus, the current study addressed this deficiency by investigating possible roles of plant diseases in natural ecosystems, particularly, their positive effects on arthropod diversity. In this study, the model system was the oak tree (Quercus spp.) and the canker disease caused by Annulohypoxylon truncatum, and its effects on arthropod diversity. The oak tree site contained 44 oak trees; 31 had canker disease symptoms while 13 were disease-free. A total of 370 individual arthropods were detected at the site during the survey period. The arthropods belonged to 25 species, 17 families, and seven orders. Interestingly, the cankered trees had significantly higher biodiversity and richness compared with the canker-free trees. This study clearly demonstrated that arthropod diversity was supported by the oak tree canker disease.

  5. Disturbance and recovery of salt marsh arthropod communities following BP Deepwater Horizon oil spill.

    PubMed

    McCall, Brittany D; Pennings, Steven C

    2012-01-01

    Oil spills represent a major environmental threat to coastal wetlands, which provide a variety of critical ecosystem services to humanity. The U.S. Gulf of Mexico is a hub of oil and gas exploration activities that historically have impacted intertidal habitats such as salt marsh. Following the BP Deepwater Horizon oil spill, we sampled the terrestrial arthropod community and marine invertebrates found in stands of Spartina alterniflora, the most abundant plant in coastal salt marshes. Sampling occurred in 2010 as oil was washing ashore and a year later in 2011. In 2010, intertidal crabs and terrestrial arthropods (insects and spiders) were suppressed by oil exposure even in seemingly unaffected stands of plants; however, Littoraria snails were unaffected. One year later, crab and arthropods had largely recovered. Our work is the first attempt that we know of assessing vulnerability of the salt marsh arthropod community to oil exposure, and it suggests that arthropods are both quite vulnerable to oil exposure and quite resilient, able to recover from exposure within a year if host plants remain healthy.

  6. Modification and Application of a Leaf Blower-vac for Field Sampling of Arthropods.

    PubMed

    Zou, Yi; van Telgen, Mario D; Chen, Junhui; Xiao, Haijun; de Kraker, Joop; Bianchi, Felix J J A; van der Werf, Wopke

    2016-01-01

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure, application of this sampling device provides absolute estimates of the populations of arthropods as numbers per standardized sampling area. The sampling efficiency depends critically on the sampling duration. In a mature rice crop, a two-minute sampling in an enclosure of 0.13 m(2) yields more than 90% of the arthropod population. The device also allows sampling of arthropods dwelling on the water surface or the soil in rice paddies, but it is not suitable for sampling fast flying insects, such as predatory Odonata or larger hymenopterous parasitoids. The modified blower-vac is simple to construct, and cheaper and easier to handle than traditional suction sampling devices, such as D-vac. The low cost makes the modified blower-vac also accessible to researchers in developing countries. PMID:27584040

  7. Mitochondrial genomes of parasitic arthropods: implications for studies of population genetics and evolution.

    PubMed

    Shao, R; Barker, S C

    2007-02-01

    Over 39000 species of arthropods parasitize humans, domestic animals and wildlife. Despite their medical, veterinary and economic importance, most aspects of the population genetics and evolution of the vast majority of parasitic arthropods are poorly understood. Mitochondrial genomes are a rich source of markers for studies of population genetics and evolution. These markers include (1) nucleotide sequences of each of the 37 mitochondrial genes and non-coding regions; (2) concatenated nucleotide sequences of 2 or more genes; and (3) genomic features, such as gene duplications, gene rearrangements, and changes in gene content and secondary structures of RNAs. To date, the mitochondrial genomes of over 700 species of multi-cellular animals have been sequenced entirely, however, only 24 of these species are parasitic arthropods. Of the mitochondrial genome markers, only the nucleotide sequences of 4 mitochondrial genes, cox1, cob, rrnS and rrnL, have been well explored in population genetic and evolutionary studies of parasitic arthropods whereas the sequences of the other 33 genes, and various genomic features have not. We review current knowledge of the mitochondrial genomes of parasitic arthropods, summarize applications of mitochondrial genes and genomic features in population genetic and evolutionary studies, and highlight prospects for future research.

  8. The origins of the arthropod nervous system: insights from the Onychophora.

    PubMed

    Whitington, Paul M; Mayer, Georg

    2011-05-01

    A revision of evolutionary relationships of the Arthropoda has provided fresh impetus to tracing the origins of the nervous system of this group of animals: other members of the Ecdysozoa possess a markedly different type of nervous system from both the arthropods and the annelid worms, with which they were previously grouped. Given their status as favoured sister taxon of the arthropods, Onychophora (velvet worms) are a key group for understanding the evolutionary changes that have taken place in the panarthropod (Arthropoda + Onychophora + Tardigrada) lineage. This article reviews our current knowledge of the structure and development of the onychophoran nervous system. The picture that emerges from these studies is that the nervous system of the panarthropod ancestor was substantially different from that of modern arthropods: this animal probably possessed a bipartite, rather than a tripartite brain; its nerve cord displayed only a limited degree of segmentation; and neurons were more numerous but more uniform in morphology than in living arthropods. These observations suggest an evolutionary scenario, by which the arthropod nervous system evolved from a system of orthogonally crossing nerve tracts present in both a presumed protostome ancestor and many extant worm-like invertebrates, including the onychophorans.

  9. Surviving in a frozen desert: environmental stress physiology of terrestrial Antarctic arthropods.

    PubMed

    Teets, Nicholas M; Denlinger, David L

    2014-01-01

    Abiotic stress is one of the primary constraints limiting the range and success of arthropods, and nowhere is this more apparent than Antarctica. Antarctic arthropods have evolved a suite of adaptations to cope with extremes in temperature and water availability. Here, we review the current state of knowledge regarding the environmental physiology of terrestrial arthropods in Antarctica. To survive low temperatures, mites and Collembola are freeze-intolerant and rely on deep supercooling, in some cases supercooling below -30°C. Also, some of these microarthropods are capable of cryoprotective dehydration to extend their supercooling capacity and reduce the risk of freezing. In contrast, the two best-studied Antarctic insects, the midges Belgica antarctica and Eretmoptera murphyi, are freeze-tolerant year-round and rely on both seasonal and rapid cold-hardening to cope with decreases in temperature. A common theme among Antarctic arthropods is extreme tolerance of dehydration; some accomplish this by cuticular mechanisms to minimize water loss across their cuticle, while a majority have highly permeable cuticles but tolerate upwards of 50-70% loss of body water. Molecular studies of Antarctic arthropod stress physiology are still in their infancy, but several recent studies are beginning to shed light on the underlying mechanisms that govern extreme stress tolerance. Some common themes that are emerging include the importance of cuticular and cytoskeletal rearrangements, heat shock proteins, metabolic restructuring and cell recycling pathways as key mediators of cold and water stress in the Antarctic.

  10. NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra.

    PubMed

    Sweet, Shannan K; Asmus, Ashley; Rich, Matthew E; Wingfield, John; Gough, Laura; Boelman, Natalie T

    2015-04-01

    The physical and biological responses to rapid arctic warming are proving acute, and as such, there is a need to monitor, understand, and predict ecological responses over large spatial and temporal scales. The use of the normalized difference vegetation index (NDVI) acquired from airborne and satellite sensors addresses this need, as it is widely used as a tool for detecting and quantifying spatial and temporal dynamics of tundra vegetation cover, productivity, and phenology. Such extensive use of the NDVI to quantify vegetation characteristics suggests that it may be similarly applied to characterizing primary and secondary consumer communities. Here, we develop empirical models to predict canopy arthropod biomass with canopy-level measurements of the NDVI both across and within distinct tundra vegetation communities over four growing seasons in the Arctic Foothills region of the Brooks Range, Alaska, USA. When canopy arthropod biomass is predicted with the NDVI across all four growing seasons, our overall model that includes all four vegetation communities explains 63% of the variance in canopy arthropod biomass, whereas our models specific to each of the four vegetation communities explain 74% (moist tussock tundra), 82% (erect shrub tundra), 84% (riparian shrub tundra), and 87% (dwarf shrub tundra) of the observed variation in canopy arthropod biomass. Our field-based study suggests that measurements of the NDVI made from air- and spaceborne sensors may be able to quantify spatial and temporal variation in canopy arthropod biomass at landscape to regional scales.

  11. Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods.

    PubMed

    Longcore, Travis; Aldern, Hannah L; Eggers, John F; Flores, Steve; Franco, Lesly; Hirshfield-Yamanishi, Eric; Petrinec, Laina N; Yan, Wilson A; Barroso, André M

    2015-05-01

    Artificial lighting allows humans to be active at night, but has many unintended consequences, including interference with ecological processes, disruption of circadian rhythms and increased exposure to insect vectors of diseases. Although ultraviolet and blue light are usually most attractive to arthropods, degree of attraction varies among orders. With a focus on future indoor lighting applications, we manipulated the spectrum of white lamps to investigate the influence of spectral composition on number of arthropods attracted. We compared numbers of arthropods captured at three customizable light-emitting diode (LED) lamps (3510, 2704 and 2728 K), two commercial LED lamps (2700 K), two commercial compact fluorescent lamps (CFLs; 2700 K) and a control. We configured the three custom LEDs to minimize invertebrate attraction based on published attraction curves for honeybees and moths. Lamps were placed with pan traps at an urban and two rural study sites in Los Angeles, California. For all invertebrate orders combined, our custom LED configurations were less attractive than the commercial LED lamps or CFLs of similar colour temperatures. Thus, adjusting spectral composition of white light to minimize attracting nocturnal arthropods is feasible; not all lights with the same colour temperature are equally attractive to arthropods.

  12. Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods.

    PubMed Central

    Weeks, Andrew R; Velten, Robert; Stouthamer, Richard

    2003-01-01

    Many intracellular micro-organisms are now known to cause reproductive abnormalities and other phenomena in their hosts. The endosymbiont Wolbachia is the best known of these reproductive manipulators owing to its extremely high incidence among arthropods and the diverse host effects it has been implicated as causing. However, recent evidence suggests that another intracellular bacterium, a Cytophaga-like organism (CLO), may also induce several reproductive effects in its hosts. Here, we present the first survey of arthropod hosts for infection by the CLO. We use a sensitive hemi-nested polymerase chain reaction method to screen 223 species from 20 arthropod orders for infection by the CLO and Wolbachia. The results indicate that, although not as prevalent as Wolbachia, the CLO infects a significant number of arthropod hosts (ca. 7.2%). In addition, double infections of the CLO and Wolbachia were found in individuals of seven arthropod species. Sequencing analysis of the 16S rDNA region of the CLO indicates evidence for horizontal transmission of the CLO strains. We discuss these results with reference to future studies on host effects induced by intracellular micro-organisms. PMID:12964989

  13. An armoured Cambrian lobopodian from China with arthropod-like appendages.

    PubMed

    Liu, Jianni; Steiner, Michael; Dunlop, Jason A; Keupp, Helmut; Shu, Degan; Ou, Qiang; Han, Jian; Zhang, Zhifei; Zhang, Xingliang

    2011-02-24

    Cambrian fossil Lagerstätten preserving soft-bodied organisms have contributed much towards our understanding of metazoan origins. Lobopodians are a particularly interesting group that diversified and flourished in the Cambrian seas. Resembling 'worms with legs', they have long attracted much attention in that they may have given rise to both Onychophora (velvet worms) and Tardigrada (water bears), as well as to arthropods in general. Here we describe Diania cactiformis gen. et sp. nov. as an 'armoured' lobopodian from the Chengjiang fossil Lagerstätte (Cambrian Stage 3), Yunnan, southwestern China. Although sharing features with other typical lobopodians, it is remarkable for possessing robust and probably sclerotized appendages, with what appear to be articulated elements. In terms of limb morphology it is therefore closer to the arthropod condition, to our knowledge, than any lobopodian recorded until now. Phylogenetic analysis recovers it in a derived position, close to Arthropoda; thus, it seems to belong to a grade of organization close to the point of becoming a true arthropod. Further, D. cactiformis could imply that arthropodization (sclerotization of the limbs) preceded arthrodization (sclerotization of the body). Comparing our fossils with other lobopodian appendage morphologies--see Kerygmachela, Jianshanopodia and Megadictyon--reinforces the hypothesis that the group as a whole is paraphyletic, with different taxa expressing different grades of arthropodization. PMID:21350485

  14. The origins of the arthropod nervous system: insights from the Onychophora.

    PubMed

    Whitington, Paul M; Mayer, Georg

    2011-05-01

    A revision of evolutionary relationships of the Arthropoda has provided fresh impetus to tracing the origins of the nervous system of this group of animals: other members of the Ecdysozoa possess a markedly different type of nervous system from both the arthropods and the annelid worms, with which they were previously grouped. Given their status as favoured sister taxon of the arthropods, Onychophora (velvet worms) are a key group for understanding the evolutionary changes that have taken place in the panarthropod (Arthropoda + Onychophora + Tardigrada) lineage. This article reviews our current knowledge of the structure and development of the onychophoran nervous system. The picture that emerges from these studies is that the nervous system of the panarthropod ancestor was substantially different from that of modern arthropods: this animal probably possessed a bipartite, rather than a tripartite brain; its nerve cord displayed only a limited degree of segmentation; and neurons were more numerous but more uniform in morphology than in living arthropods. These observations suggest an evolutionary scenario, by which the arthropod nervous system evolved from a system of orthogonally crossing nerve tracts present in both a presumed protostome ancestor and many extant worm-like invertebrates, including the onychophorans. PMID:21315833

  15. Oak Tree Canker Disease Supports Arthropod Diversity in a Natural Ecosystem

    PubMed Central

    Lee, Yong-Bok; An, Su Jung; Park, Chung Gyoo; Kim, Jinwoo; Han, Sangjo; Kwak, Youn-Sig

    2014-01-01

    Microorganisms have many roles in nature. They may act as decomposers that obtain nutrients from dead materials, while some are pathogens that cause diseases in animals, insects, and plants. Some are symbionts that enhance plant growth, such as arbuscular mycorrhizae and nitrogen fixation bacteria. However, roles of plant pathogens and diseases in natural ecosystems are still poorly understood. Thus, the current study addressed this deficiency by investigating possible roles of plant diseases in natural ecosystems, particularly, their positive effects on arthropod diversity. In this study, the model system was the oak tree (Quercus spp.) and the canker disease caused by Annulohypoxylon truncatum, and its effects on arthropod diversity. The oak tree site contained 44 oak trees; 31 had canker disease symptoms while 13 were disease-free. A total of 370 individual arthropods were detected at the site during the survey period. The arthropods belonged to 25 species, 17 families, and seven orders. Interestingly, the cankered trees had significantly higher biodiversity and richness compared with the canker-free trees. This study clearly demonstrated that arthropod diversity was supported by the oak tree canker disease. PMID:25288984

  16. [Semiologic value and optimum stimuli trial during the vibratory test: results of a 3D analysis of nystagmus].

    PubMed

    Dumas, G; Michel, J; Lavieille, J P; Ouedraogo, E

    2000-11-01

    Nystagmus signaling vestibular dysfunction was observed after vibratory stimulation with a 100 Hz ABC stimulator in a population of 36 patients with unilateral labyrinthine pathology (ULP) (pre and postoperative neuromas, vestibular neurectomies) and 10 patients with vestibular neuritis. The stimulus was applied on 3 bony points of the skull (vertex and 2 mastoids) and 2 muscular points of the neck (right and left posterior cervical region). These results were compared with those in 95 normal subjects and 19 cases of central disease and were correlated on the same day with results of the caloric test and head shaking test (HST). A consistent nystagmus was found in only 6 % of the normal subjects (specificity 94 %) and in 10 % of the central lesions, but in 94 % of the 36 peripheral ULP. The sensitivity of the test was equivalent to the HST. The signal was optimized in 30 patients: stimulus frequency, amplitude, stimulator mass, form of the contact, patient tolerance. The best results were obtained for a frequency of 100 Hz and an amplitude of 0.5 mm (there was no response under 0.1 mm vibration amplitude). Under videoscopy and 3D videonystagmography, the direction or side of the nystagmus was constant, but its axis (horizontal, oblique or rotational) changed according to the location of the stimulator: on the mastoid (elective location of stimulation with responses in 94 % of cases) the axis was most often horizontal or horizontal rotational. On the vertex location (where nystagmus was observed in 60 % of cases) the axis of nystagmus was most often rotational or oblique and sometimes horizontal-rotational. The nystagmus showed short latency (less than 200 ms). It started and stopped as stimulation was initiated and interrupted. Nystagmus persisted for the duration of patient tolerance. This nystagmus generally signifies unilateral vestibular weakness rather than vestibular predominance. It is a good indicator of unilateral vestibular dysfunction and could serve as

  17. [Elucidation of cross arch stabilization for the lower unilateral free end denture in terms of vibratory science].

    PubMed

    Hojyo, S

    1989-06-01

    Cases of lower unilateral free end defect are the source of many problems in clinical dentistry. The denture design method most commonly used is cross arch stabilization which involves creating a retainer on the side opposite the defect via a bar in order to stabilize the denture and protect the retaining teeth. Almost all research on this method involves experiments using a static load. Moreover, there are few studies that attempt to clarify the relationship between the major connector and the retaining teeth. As a means of clarifying these problems, the authors used the modal analysis method and a vibrometer, both of which have proven effective in general observation of lowr denture dynamics when dynamic force is applied. This allowed them to see the relationship between the metal framework configuration and the retainer in animation and thereby study displacement quantity and damping quantity. The following interesting were obtained. 1. There were four modes detected for fixed vibration on the individual metal frameworks: 500Hz band, 1kHz band 2kHz band and 4kHz band. 2. The dynamics of the individual metal frameworks were as follows: Mode 1 was a rigid body mode in a vertical direction with a fulcrum of angle 54. Mode 2 was a horizontal rigid body mode with a fulcrum of angle 54. Mode 3 was a mixture of a horizontal rigid bode and horizontal bend mode. There was a rolling type mode observed only from the plate type. Mode 4 consisted mainly of a horizontal bend mode. This showed that there were differences among the various modes. 3. Judging from the displacement rate computed at the 500Hz band, the rate of displacement decreases as the thickness and ratio decrease. 4. Judging from linear damping quantity and damping quantity in terms of frequency, the finishing line showed a greater tendency toward resonance. 5. Analysis in terms of vibratory science using modal analysis and octave band analysis hinted at the significance of cross arch stabilization.

  18. Experimental and analytical evaluation of the effects of simulated engine inlets on the blade vibratory stresses of the SR-3 model prop-fan

    NASA Technical Reports Server (NTRS)

    Bansal, Prem N.

    1985-01-01

    A cooperative wind tunnel test program, referred to as GUN-3, had been conducted previously to assess the effect of inlet configuration and location on the inlet face pressure recovery and inlet drag in the presence of a high-speed advanced turboprop. These tests were conducted with the inlets located just downstream of the SR-3 model Prop-Fan, a moderately swept, eight-bladed 62.2 cm (24.5 inch) diameter advanced, high-speed turboprop model fabricated from titanium. During these tests, two blades of the SR-3 model Prop-Fan were strain gaged to measure the vibratory blade stresses occurring during the inlet aerodynamic test program. The purpose of the effort reported herein was to reduce and analyze the test results related to the vibratory strain gage measurements obtained. Three inlet configurations had been tested. These were: (1) single scoop, (2) twin scoop, and (3) annular. Each of the three inlets was tested at a position just behind the rotor. The single scoop inlet was also tested at a position further aft. Tests were also done without an inlet. These results emphasize the importance of avoiding critical speeds in the continuous operating range.

  19. Evolution of early development of the nervous system: a comparison between arthropods.

    PubMed

    Stollewerk, Angelika; Simpson, Pat

    2005-09-01

    Large numbers of cells with unique neuronal specificity are generated during development of the central nervous system of animals. Here we discuss the events that generate cell diversity during early development of the ventral nerve cord of different arthropod groups. Neural precursors are generated in a spatial array in the epithelium of each hemisegment over a period of time. Spatial cues within the epithelium are thought to evolve as embryogenesis proceeds. This spatiotemporal information might generate diversity among the neural precursors in all arthropod groups, although the mechanisms regulating the positioning of individual precursors have diverged. However, distinct strategies for the generation of neuronal diversity have evolved in the different arthropod lineages that appear to correlate with specific modes of ontogenesis. We hypothesize that an evolutionary trend towards reduced cell numbers and possibly rapid embryogenesis in insects has culminated in the appearance of stereotyped neuroblast lineages.

  20. Seasonal relationships between birds and arthropods in bottomland forest canopy gaps.

    SciTech Connect

    Bowen, Liessa, Thomas

    2004-12-31

    Bowen, Liessa, Thomas. 2004. Seasonal relationships between birds and arthropods in bottomland forest canopy gaps. PhD Dissertation. North Carolina State University. Raleigh, North Carolina. 98pp. I investigated the influence of arthropod availability and vegetation structure on avian habitat use at the center, edge, and adjacent to forest canopy gaps in 2001 and 2002. I used mist-netting and plot counts to estimate abundance of birds using three sizes (0.13, 0.26, and 0.5 ha) of 7-8 year old group-selection timber harvest openings during four seasons (spring migration, breeding, post-breeding, and fall migration) in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. I used foliage clipping, Malaise trapping, and pitfall trapping to determine arthropod abundance within each habitat, and I used a warm water crop-flush on captured birds to gather information about arthropods eaten. I observed more birds, including forest interior species, forest-edge spedge species, and several individual species, in early-successional canopy gap and gap-edge habitats than in surrounding mature forest during all seasons. I found a significant interaction between season and habitat type for several groups and individual species, suggesting a seasonal shift in habitat use. Captures of all birds, insectivorous birds, foliage- gleaners, ground-gleaners, aerial salliers, Hooded Warbler (Wilsonia citrina), Northern Cardinal (Cardinalis cardinalis), White-eyed Vireo (Vireo griseus), and Black-throated Blue Warbler (Dendroica caerulescens) were positively correlated with understory vegetation density during two or more seasons. I found relationships between insectivorous birds and leaf-dwelling Lepidoptera, insectivorous birds and ground-dwelling arthropods, foliage-gleaning birds and foliage-dwelling arthropods, and aerial salliers and flying arthropods, as well as between individual bird species and arthropods. Relationships were inconsistent, however, with many

  1. Tiny individuals attached to a new Silurian arthropod suggest a unique mode of brood care

    NASA Astrophysics Data System (ADS)

    Briggs, Derek E. G.; Siveter, Derek J.; Siveter, David J.; Sutton, Mark D.

    2016-04-01

    The ˜430-My-old Herefordshire, United Kingdom, Lagerstätte has yielded a diversity of remarkably preserved invertebrates, many of which provide fundamental insights into the evolutionary history and ecology of particular taxa. Here we report a new arthropod with 10 tiny arthropods tethered to its tergites by long individual threads. The head of the host, which is covered by a shield that projects anteriorly, bears a long stout uniramous antenna and a chelate limb followed by two biramous appendages. The trunk comprises 11 segments, all bearing limbs and covered by tergites with long slender lateral spines. A short telson bears long parallel cerci. Our phylogenetic analysis resolves the new arthropod as a stem-group mandibulate. The evidence suggests that the tethered individuals are juveniles and the association represents a complex brooding behavior. Alternative possibilities—that the tethered individuals represent a different epizoic or parasitic arthropod—appear less likely.

  2. Preservation of three-dimensional anatomy in phosphatized fossil arthropods enriches evolutionary inference

    PubMed Central

    Schwermann, Achim H; dos Santos Rolo, Tomy; Caterino, Michael S; Bechly, Günter; Schmied, Heiko; Baumbach, Tilo; van de Kamp, Thomas

    2016-01-01

    External and internal morphological characters of extant and fossil organisms are crucial to establishing their systematic position, ecological role and evolutionary trends. The lack of internal characters and soft-tissue preservation in many arthropod fossils, however, impedes comprehensive phylogenetic analyses and species descriptions according to taxonomic standards for Recent organisms. We found well-preserved three-dimensional anatomy in mineralized arthropods from Paleogene fissure fillings and demonstrate the value of these fossils by utilizing digitally reconstructed anatomical structure of a hister beetle. The new anatomical data facilitate a refinement of the species diagnosis and allowed us to reject a previous hypothesis of close phylogenetic relationship to an extant congeneric species. Our findings suggest that mineralized fossils, even those of macroscopically poor preservation, constitute a rich but yet largely unexploited source of anatomical data for fossil arthropods. DOI: http://dx.doi.org/10.7554/eLife.12129.001 PMID:26854367

  3. Hydrogen and sulfate additions to the forest floor and their effects on soil and litter arthropods

    SciTech Connect

    Craft, C.B.; Webb, J.W.

    1983-04-01

    Acid rain is known to have a detrimental effect on many freshwater systems. Its effects on terrestrial systems are poorly known. The study was conducted to determine the effects of neutral and acidic SO/sub 4/ deposition on soil and litter arthropods and the consequent effects on available P. The specific objectives were to pinpoint functional groups that are affecte by increased acid deposition and to assess the impact on both direct (soil arthropods) and indirect (soil pH and Al) factors governing soil P. By analyzing the effects of H and SO/sub 4/ deposition on arthropod trophic structure, it becomes possible to apply the results obtained in this study to other ecosystems that are impacted by acid rain.

  4. Tiny individuals attached to a new Silurian arthropod suggest a unique mode of brood care

    PubMed Central

    Briggs, Derek E. G.; Siveter, Derek J.; Siveter, David J.; Sutton, Mark D.; Legg, David

    2016-01-01

    The ∼430-My-old Herefordshire, United Kingdom, Lagerstätte has yielded a diversity of remarkably preserved invertebrates, many of which provide fundamental insights into the evolutionary history and ecology of particular taxa. Here we report a new arthropod with 10 tiny arthropods tethered to its tergites by long individual threads. The head of the host, which is covered by a shield that projects anteriorly, bears a long stout uniramous antenna and a chelate limb followed by two biramous appendages. The trunk comprises 11 segments, all bearing limbs and covered by tergites with long slender lateral spines. A short telson bears long parallel cerci. Our phylogenetic analysis resolves the new arthropod as a stem-group mandibulate. The evidence suggests that the tethered individuals are juveniles and the association represents a complex brooding behavior. Alternative possibilities—that the tethered individuals represent a different epizoic or parasitic arthropod—appear less likely. PMID:27044103

  5. Gene expression patterns in an onychophoran reveal that regionalization predates limb segmentation in pan-arthropods.

    PubMed

    Janssen, Ralf; Eriksson, Bo Joakim; Budd, Graham E; Akam, Michael; Prpic, Nikola-Michael

    2010-01-01

    In arthropods, such as Drosophila melanogaster, the leg gap genes homothorax (hth), extradenticle (exd), dachshund (dac), and Distal-less (Dll) regionalize the legs in order to facilitate the subsequent segmentation of the legs. We have isolated homologs of all four leg gap genes from the onychophoran Euperipatoides kanangrensis and have studied their expression. We show that leg regionalization takes place in the legs of onychophorans even though they represent simple and nonsegmented appendages. This implies that leg regionalization evolved for a different function and was only later co-opted for a role in leg segmentation. We also show that the leg gap gene patterns in onychophorans (especially of hth and exd) are similar to the patterns in crustaceans and insects, suggesting that this is the plesiomorphic state in arthropods. The reversed hth and exd patterns in chelicerates and myriapods are therefore an apomorphy for this group, the Myriochelata, lending support to the Myriochelata and Tetraconata clades in arthropod phylogeny.

  6. Saliva activated transmission (SAT) of Thogoto virus: relationship with vector potential of different haematophagous arthropods.

    PubMed

    Jones, L D; Hodgson, E; Williams, T; Higgs, S; Nuttall, P A

    1992-07-01

    Tick saliva (or salivary gland extract) potentiates the transmission of Thogoto (THO) virus to uninfected ticks feeding on a non-viraemic guinea-pig. This phenomenon has been named saliva activated transmission (SAT). To investigate the potential of different haematophagous arthropods to mediate SAT, guinea-pigs were infested with uninfected R.appendiculatus Neumann nymphs and inoculated with THO virus and salivary gland extract (SGE) derived from a range of ixodid (metastriate and prostriate) or argasid ticks, or mosquitoes; control guinea-pigs were inoculated with virus alone. Enhancement of THO virus transmission was observed only when SGE was derived from metastriate ticks. Comparison with the vector potential of these various arthropod species revealed that enhancement of THO virus transmission was specific for ticks which were competent vectors of the virus. The data indicate a correlation between vector competence and the ability of haematophagous arthropods to mediate SAT of THO virus. PMID:1330087

  7. Movement of entomophagous arthropods in agricultural landscapes: links to pest suppression.

    PubMed

    Schellhorn, N A; Bianchi, F J J A; Hsu, C L

    2014-01-01

    Entomophagous arthropods can provide valuable biological control services, but they need to fulfill their life cycle in agricultural landscapes often dominated by ephemeral and disturbed habitats. In this environment, movement is critical to escape from disturbances and to find resources scattered in space and time. Despite considerable research effort in documenting species movement and spatial distribution patterns, the quantification of arthropod movement has been hampered by their small size and the variety of modes of movement that can result in redistribution at different spatial scales. In addition, insight into how movement influences in-field population processes and the associated biocontrol services is limited because emigration and immigration are often confounded with local-scale population processes. More detailed measurements of the habitat functionality and movement processes are needed to better understand the interactions between species movement traits, disturbances, the landscape context, and the potential for entomophagous arthropods to suppress economically important pests.

  8. Feeding and the rhodopsin family g-protein coupled receptors in nematodes and arthropods.

    PubMed

    Cardoso, João C R; Félix, Rute C; Fonseca, Vera G; Power, Deborah M

    2012-01-01

    In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs) play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologs of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans), and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster), suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologs of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR) that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors. PMID:23264768

  9. Elevated atmospheric CO2 alters the arthropod community in a forest understory

    NASA Astrophysics Data System (ADS)

    Hamilton, Jason; Zangerl, Arthur R.; Berenbaum, May R.; Sparks, Jed P.; Elich, Lauren; Eisenstein, Alissa; DeLucia, Evan H.

    2012-08-01

    The objective of this study was to determine the extent to which overall population sizes and community composition of arthropods in a naturally occurring forest understory are altered by elevated CO2. The Free Air Concentration Enrichment (FACE) method was used to fumigate large, replicated plots in the Piedmont region of North Carolina, USA to achieve the CO2 concentration predicted for 2050 (˜580 μl l-1). In addition, the extent to which unrestricted herbivorous arthropods were spatially delimited in their resource acquisition was determined. Stable isotope data for spiders (δ13C and δ15N) were collected in ambient and elevated CO2 plots and analyzed to determine whether their prey species moved among plots. Elevated CO2 had no effect on total arthropod numbers but had a large effect on the composition of the arthropod community. Insects collected in our samples were identified to a level that allowed for an assignment of trophic classification (generally to family). For the groups of insects sensitive to atmospheric gas composition, there was an increase in the numbers of individuals collected in primarily predaceous orders (Araneae and Hymenoptera; from 60% to more than 150%) under elevated CO2 and a decrease in the numbers in primarily herbivorous orders (Lepidoptera and Coleoptera; from -30 to -45%). Isotopic data gave no indication that the treatment plots represented a "boundary" to the movement of insects or that there were distinct and independent insect populations inside and outside the treatment plots. A simple two-ended mixing model estimates 55% of the carbon and nitrogen in spider biomass originated external to the elevated CO2 plots. In addition to changes in insect performance, decreases in herbivorous arthropods and increases in predaceous arthropods may also be factors involved in reduced herbivory under elevated CO2 in this forest.

  10. Functional richness and ecosystem services: bird predation on arthropods in tropical agroecosystems.

    PubMed

    Philpott, Stacy M; Soong, Oliver; Lowenstein, Jacob H; Pulido, Astrid Luz; Lopez, Diego Tobar; Flynn, Dan F B; DeClerck, Fabrice

    2009-10-01

    In agroecosystems, biodiversity correlates with ecosystem function, yet mechanisms driving these relationships are often unknown. Examining traits and functional classifications of organisms providing ecosystem functions may provide insight into the mechanisms. Birds are important predators of insects, including pests. However, biological simplification of agroforests may decrease provisioning of this pest removal service by reducing bird taxonomic and functional diversity. A recent meta-analysis of bird exclosure studies from a range of agroecosystems in Central America concluded that higher bird richness is associated with significantly greater arthropod removal, yet the mechanism remains unclear. We conducted a meta-analysis of the same data to examine whether birds demonstrate functional complementarity in tropical agroforests. We classified birds according to relevant traits (body mass, foraging strategy, foraging Strata, and diet) and then examined how design of functional classification, including trait selection, classification methods, and the functional diversity metric used affect the suitability of different classifications as predictors of ecosystem services. We determined that vegetation characteristics are not likely drivers of arthropod removal by birds. For some functional classifications, functional richness positively correlated with arthropod removal, indicating that species complementarity may be an important mechanism behind this ecosystem function. The predictive ability of functional classifications increased with the number of traits included in the classification. For the two best classifications examined, functional group richness was a better predictor of arthropod reduction than other metrics of functional diversity (FD and Rao's Q). However, no functional classification predicted arthropod removal better than simple species richness; thus other factors may be important. Our analysis indicates that the sampling effect may also play a

  11. Rapid mortality of pest arthropods by direct exposure to a dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Bures, Brian Lee

    The spread of arthropods due to trade of agricultural commodities and travel of humans is a significant problem in many countries. Limiting the movement of pest species is commonly achieved by the use of chemical pesticides at quarantine facilities. One potential alternative to chemical pesticides is direct exposure of contaminated commodities to ambient pressure electrical discharges. The arthropods are directly exposed to a 5.0 cm helium discharge with power densities on the order of 60 mW/cm3. Direct measurement of chemical species and ambient gas temperature shows the DBD treatment remains effective when the chemically reactive species are suppressed by helium, and when the ambient gas temperature of the discharge is below 40°C. In addition to gas temperature measurements and chemical species identification, the electron temperature and electron density were measured using the neutral bremsstrahlung continuum technique. This study is the first successful implementation of the neutral bremsstrahlung continuum emission diagnostic to a barrier discharge. The primary advantages of the diagnostic for barrier discharges are the measurement is passive and the spatial resolution is only limited by the collimation of the light and the sensitivity of the detector. Although the electron temperature (1.0--1.5 eV) and electron density (˜108 cm-3) are modest, non-chemical dielectric barrier discharge (DBD) treatment of arthropods has proven effective in significantly reducing the population of some arthropods including human body lice, green peach aphids, and western flower thrips. However, the treatment was not universally effective on all arthropod species. German cockroaches and citrus mealy bugs showed substantial resistance to the treatment. The study has shown the treatment does not always induce instant mortality: however, the mortality increases over a 24 hr-period after treatment. Based upon visual observation and the time after treatment to reach maximum

  12. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields

    PubMed Central

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity. PMID:26197473

  13. Convergent evolution of chemical defense in poison frogs and arthropod prey between Madagascar and the Neotropics.

    PubMed

    Clark, Valerie C; Raxworthy, Christopher J; Rakotomalala, Valérie; Sierwald, Petra; Fisher, Brian L

    2005-08-16

    With few exceptions, aposematically colored poison frogs sequester defensive alkaloids, unchanged, from dietary arthropods. In the Neotropics, myrmicine and formicine ants and the siphonotid millipede Rhinotus purpureus are dietary sources for alkaloids in dendrobatid poison frogs, yet the arthropod sources for Mantella poison frogs in Madagascar remained unknown. We report GC-MS analyses of extracts of arthropods and microsympatric Malagasy poison frogs (Mantella) collected from Ranomafana, Madagascar. Arthropod sources for 11 "poison frog" alkaloids were discovered, 7 of which were also detected in microsympatric Mantella. These arthropod sources include three endemic Malagasy ants, Tetramorium electrum, Anochetus grandidieri, and Paratrechina amblyops (subfamilies Myrmicinae, Ponerinae, and Formicinae, respectively), and the pantropical tramp millipede R. purpureus. Two of these ant species, A. grandidieri and T. electrum, were also found in Mantella stomachs, and ants represented the dominant prey type (67.3% of 609 identified stomach arthropods). To our knowledge, detection of 5,8-disubstituted (ds) indolizidine iso-217B in T. electrum represents the first izidine having a branch point in its carbon skeleton to be identified from ants, and detection of 3,5-ds pyrrolizidine 251O in A. grandidieri represents the first ponerine ant proposed as a dietary source of poison frog alkaloids. Endemic Malagasy ants with defensive alkaloids (with the exception of Paratrechina) are not closely related to any Neotropical species sharing similar chemical defenses. Our results suggest convergent evolution for the acquisition of defensive alkaloids in these dietary ants, which may have been the critical prerequisite for subsequent convergence in poison frogs between Madagascar and the Neotropics.

  14. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    PubMed

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  15. A Comparison of Conservation Reserve Program Habitat Plantings with Respect to Arthropod Prey for Grassland Birds

    USGS Publications Warehouse

    McIntyre, N.E.; Thompson, Thomas R.

    2003-01-01

    The Conservation Reserve Program (CRP) was designed to reduce soil erosion and curb agricultural overproduction by converting highly erodible agricultural land to various forms of perennial habitat. It has had an incidental benefit of providing habitat for wildlife and has been beneficial in reversing population declines of several grassland bird species. However, the mechanisms behind these reversals remain unknown. One such mechanism may be differences in food availability on CRP vs. non-CRP land or between different types of CRP. The influence of CRP habitat type on the abundance of arthropod prey used by grassland birds has not been previously explored. We compared the abundance and diversity of arthropods among four CRP habitat types in Texas [replicated plots of exotic lovegrass (Eragrostis curvula), Old World bluestem (Bothriochloa ischaemum), mixed native grasses with buffalograss (Buchloe?? dactyloides) and mixed native grasses without buffalograss] and native shortgrass prairie. Attention was focused on adult and juvenile spiders (Order Araneae), beetles (Coleoptera), orthopterans (Orthroptera: grasshoppers and crickets) and lepidopterans (Lepidoptera: butterflies and moths), as these taxa are the primary prey items of grassland birds during the breeding season. Arthropod diversity and abundance were higher on indigenous prairie compared to CRP, reflecting differences in vegetative diversity and structure, but there were no differences in arthropod richness or abundance among CRP types. These results indicate that, although CRP is not equivalent to native prairie in terms of vegetation or arthropod diversity, CRP lands do support arthropod prey for grassland birds. More direct assays of the survivorship and fitness of birds on CRP compared to native shortgrass prairie are clearly warranted.

  16. Responsiveness of arthropod herbivores and their natural enemies to modified weed management in corn.

    PubMed

    Albajes, Ramon; Lumbierres, Belén; Pons, Xavier

    2009-06-01

    Alteration of weed flora as consequence of the deployment of genetically modified herbicide-tolerant crops may affect higher trophic levels in agrosystems. A 4-yr study is being conducted in Spain to investigate interrelations between weeds and associated arthropods in corn fields. In a first step, the work aimed to detect the most responsive arthropods to weed management changes. To identify the most responsive arthropods, arthropod composition and abundance in herbicide-tolerant corn plots treated twice with glyphosate and untreated plots were compared for 2 yr. Plots were sampled seven times during the season by visual inspection and pitfall and yellow sticky traps to estimate abundance and activity of the main arthropod herbivores, predators, and parasitoids. As intended, the abundance and composition of weed flora was strongly altered by the differential herbicide treatments. Several groups of arthropods responded to the weed changes but in variable directions. Whereas leafhoppers and aphids were more abundant on herbicide-treated plots, the contrary was found for phytophagous thrips. Among predators, Orius sp., spiders, and trombidids were more abundant on treated plots, whereas nabids and carabids were more abundant in untreated plots; the same case was found for carabids and spiders caught in pitfall traps. Among parasitoids, ichneumonids were more abundant in untreated plots and mymarids in treated plots. These results cannot be interpreted in terms of nontarget effects of postemergence treatments with broad-spectrum herbicides; for this, a comparison with conventional weed management practices should be done and this is the current step in the study. PMID:19508806

  17. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants

    PubMed Central

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages. PMID:26731271

  18. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants.

    PubMed

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages.

  19. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants.

    PubMed

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages. PMID:26731271

  20. Relationship between land use pattern and the structure and diversity of soil meso-micro arthropod community.

    PubMed

    Zhang, Limin; Zhang, Xueping; Cui, Wei

    2014-05-01

    Soil arthropod communities can provide valuable information regarding the impacts of human disturbances on ecosystem structure. Our study evaluated the structure, composition and diversity of soil meso-micro arthropod communities, in six different vegetation types and assessed the impacts of human activity. A completely randomized design, including 3 replicates from 6 sites (mowing steppe, natural grassland, severe degradation grassland, farmland, artificial shelter forest, and wetland) was used. Soil samples from the depth of 0 to 20 cm were collected during May, July, and September 2007. Soil meso-micro arthropod were separated using the Tullgren funnels method, and were identified and counted. Soil pH value, organic matter, and total nitrogen were measured in topsoil (0-20 cm) from each site. A total of 5,602 soil meso-micro arthropod individuals were collected, representing 4 classes, 14 orders, and 57 families. Most soil arthropods were widely distributed; however, some species appeared to be influenced by environment variables, and might serve as bioindicators of adverse human impacts. Canonical correspondence analysis indicated the soil arthropod distribution in the severely degraded grassland, mowing steppe, farmland, and shelter forest differed from the natural grassland. Arthropod density and diversity were greatest in May, and the forestland community was the most stable. Because of the vital role soil arthropods have in maintaining a healthy ecosystem, mechanisms to maintain their abundance and diversity should be further evaluated.

  1. [Effects of cutting and reseeding on the ground-dwelling arthropod community in Caragana intermedia forest in desert steppe].

    PubMed

    Liu, Ren-Tao; Chai, Yong-Qing; Yang, Xin-Guo; Song, Nai-Ping; Wang, Xin-Yun; Wang, Lei

    2013-01-01

    Taking a 25-year-old Caragana intermedia forest in desert steppe as test object, an investigation was conducted on the ground-dwelling arthropod community in cutting and no-cutting stands with and without reseeding, aimed to understand the effects of cutting, reseeding and their interaction on the individual number and group richness of ground-dwelling arthropod in C. intermedia forest. There were significantly lower number and richness of ground-dwelling arthropod in the open spaces than under the shrubs in the no-cutting and no-reseeding stands. Cutting, reseeding and both of them could significantly increase the number and richness of ground-dwelling arthropod in the open spaces, but not under the shrubs, compared with no cutting or reseeding. Consequently, there were no significant differences in the distribution of ground-dwelling arthropod in the open spaces and under the shrubs in the cutting, reseeding, or cutting and reseeding stands. Further, there was a similar buffer effect between cutting and reseeding on the ground-dwelling arthropod. No significant differences were observed in the ground-dwelling arthropod distribution, between cutting stand and reseeding stand, between cutting stand and cutting and reseeding stand, and between reseeding stand and cutting and reseeding stand. It was suggested that cutting, reseeding, or both of them could significantly improve the ground-dwelling arthropod diversity especially in the open spaces, being beneficial for the restoration of degraded grassland ecosystem and the rational management on artificial C. intermedia forest in desert steppe.

  2. A survey of the foliar and soil arthropod communities in sunflower (Helianthus annuus) fields in central and eastern South Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The long coevolutionary history between sunflowers (Helianthus annuus, Asterales: Asteraceae) and arthropods in the Northern Great Plains has resulted in a commonly grown oilseed crop that harbors a large diversity of insects. A bioenventory of foliar and subterranean arthropods was performed in 22 ...

  3. The diversity and abundance of small arthropods in onion, Allium cepa, seed crops, and their potential role in pollination.

    PubMed

    Walker, M K; Howlett, B G; Wallace, A R; McCallum, J A; Teulon, D A J

    2011-01-01

    Onion, Allium cepa L. (Asparagales: Amaryllidaceae), crop fields grown for seed production require arthropod pollination for adequate seed yield. Although many arthropod species visit A. cepa flowers, for most there is little information on their role as pollinators. Small flower visiting arthropods (body width < 3 mm) in particular are rarely assessed. A survey of eight flowering commercial A. cepa seed fields in the North and South Islands of New Zealand using window traps revealed that small arthropods were highly abundant among all except one field. Insects belonging to the orders Diptera and Thysanoptera were the most abundant and Hymenoptera, Collembola, Psocoptera, Hemiptera, and Coleoptera were also present. To test whether small arthropods might contribute to pollination, seed sets from umbels caged within 3 mm diameter mesh cages were compared with similarly caged, hand-pollinated umbels and uncaged umbels. Caged umbels that were not hand-pollinated set significantly fewer seeds (average eight seeds/umbel, n = 10) than caged hand-pollinated umbels (average 146 seeds/umbel) and uncaged umbels (average 481 seeds/umbel). Moreover, sticky traps placed on umbels within cages captured similar numbers of small arthropods as sticky traps placed on uncaged umbels, suggesting cages did not inhibit the movement of small arthropods to umbels. Therefore, despite the high abundance of small arthropods within fields, evidence to support their role as significant pollinators of commercial A. cepa seed crops was not found.

  4. Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating transgenic crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arthropods form a major part of the biodiversity in agricultural landscapes. Many species are valued because they provide ecosystem services, including biological control, pollination, and decomposition, or because they are valued for cultural or economic reasons. Some arthropods reduce crop yield a...

  5. [Alpha and beta arthropods diversity from the different environments of Parque Nacional Los Cardones, Salta, Argentina].

    PubMed

    Belén Cava, Maria; Antonio Corronca, José; José Echeverría, Alejandro

    2013-12-01

    The essential role of the National Parks is to protect nature, in order to prevent the deterioration and loss of the ecosystem under protection. Very few records about the diversity of arthropods are known from Los Cardones National Park, where three eco-regions are protected: Puna and Monte eco-regions and the High Andean Grassland of the Yungas. Here, we aimed to compare the alpha and beta diversity of arthropods in these eco-regions, and to prove if sites from the same ecoregion, show greater similarity between them in their assemblages, than with sites of the other eco-regions. We also identified arthropod orders with higher species richness, and indicated the families that contribute the most to the registered beta diversity. Three sampling sites were established on each eco-region and the arthropods were sampled using pitfall traps and suction samples. We evaluated the obtained inventory through nonparametric estimators of species richness, and compared diversity among eco-regions through "diversity profiles" and "effective number of species". Beta diversity was assessed by different methods such as the Morisita Index, nonmetric multidimentional scaling analysis, a multiple permutation procedure, and a Similarity Percentage analysis. We recorded 469 spp/morphospecies and recognized three arthropod orders (spiders, dipterans and hymenopterans) that are diverse and abundant in the Park. Besides, the diversity in Los Cardones National Park was found to be high, but it was observed higher in the High Andean Grassland of the Yungas, and lower in the Puna. The inventory obtained was good, reached up to the 81% of the species richness estimated by nonparametric estimators. Each eco-region of the park showed a very particular arthropod community that was tested by a multi-response permutation procedure. The species turnover between eco-regions was high, so that the different environments of the protected area are contributing to the maintenance of the regional

  6. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity.

    PubMed

    Hertzog, Lionel R; Meyer, Sebastian T; Weisser, Wolfgang W; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  7. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity

    PubMed Central

    Hertzog, Lionel R.; Meyer, Sebastian T.; Weisser, Wolfgang W.; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  8. Production of arthropod pests and vectors in coal strip mine ponds. Program report

    SciTech Connect

    Pickard, E.

    1981-06-01

    The objective of this study was to determine what species of medically important arthropods, particularly mosquitoes, are breeding in coal strip mine ponds, to what extent, and whether these breeding sites will serve as a focus of annoyance or a potential outbreak center of arthropod-borne diseases to surrounding communities. Pond age was compared with physical and chemical characteristics of the water and associated vegetation communities. Various sampling techniques were used to determine the composition and density of all life stages of the aquatic insect fauna.

  9. Onychophoran Hox genes and the evolution of arthropod Hox gene expression

    PubMed Central

    2014-01-01

    Introduction Onychophora is a relatively small phylum within Ecdysozoa, and is considered to be the sister group to Arthropoda. Compared to the arthropods, that have radiated into countless divergent forms, the onychophoran body plan is overall comparably simple and does not display much in-phylum variation. An important component of arthropod morphological diversity consists of variation of tagmosis, i.e. the grouping of segments into functional units (tagmata), and this in turn is correlated with differences in expression patterns of the Hox genes. How these genes are expressed in the simpler onychophorans, the subject of this paper, would therefore be of interest in understanding their subsequent evolution in the arthropods, especially if an argument can be made for the onychophoran system broadly reflecting the ancestral state in the arthropods. Results The sequences and embryonic expression patterns of the complete set of ten Hox genes of an onychophoran (Euperipatoides kanangrensis) are described for the first time. We find that they are all expressed in characteristic patterns that suggest a function as classical Hox genes. The onychophoran Hox genes obey spatial colinearity, and with the exception of Ultrabithorax (Ubx), they all have different and distinct anterior expression borders. Notably, Ubx transcripts form a posterior to anterior gradient in the onychophoran trunk. Expression of all onychophoran Hox genes extends continuously from their anterior border to the rear end of the embryo. Conclusions The spatial expression pattern of the onychophoran Hox genes may contribute to a combinatorial Hox code that is involved in giving each segment its identity. This patterning of segments in the uniform trunk, however, apparently predates the evolution of distinct segmental differences in external morphology seen in arthropods. The gradient-like expression of Ubx may give posterior segments their specific identity, even though they otherwise express the same

  10. [Alpha and beta arthropods diversity from the different environments of Parque Nacional Los Cardones, Salta, Argentina].

    PubMed

    Belén Cava, Maria; Antonio Corronca, José; José Echeverría, Alejandro

    2013-12-01

    The essential role of the National Parks is to protect nature, in order to prevent the deterioration and loss of the ecosystem under protection. Very few records about the diversity of arthropods are known from Los Cardones National Park, where three eco-regions are protected: Puna and Monte eco-regions and the High Andean Grassland of the Yungas. Here, we aimed to compare the alpha and beta diversity of arthropods in these eco-regions, and to prove if sites from the same ecoregion, show greater similarity between them in their assemblages, than with sites of the other eco-regions. We also identified arthropod orders with higher species richness, and indicated the families that contribute the most to the registered beta diversity. Three sampling sites were established on each eco-region and the arthropods were sampled using pitfall traps and suction samples. We evaluated the obtained inventory through nonparametric estimators of species richness, and compared diversity among eco-regions through "diversity profiles" and "effective number of species". Beta diversity was assessed by different methods such as the Morisita Index, nonmetric multidimentional scaling analysis, a multiple permutation procedure, and a Similarity Percentage analysis. We recorded 469 spp/morphospecies and recognized three arthropod orders (spiders, dipterans and hymenopterans) that are diverse and abundant in the Park. Besides, the diversity in Los Cardones National Park was found to be high, but it was observed higher in the High Andean Grassland of the Yungas, and lower in the Puna. The inventory obtained was good, reached up to the 81% of the species richness estimated by nonparametric estimators. Each eco-region of the park showed a very particular arthropod community that was tested by a multi-response permutation procedure. The species turnover between eco-regions was high, so that the different environments of the protected area are contributing to the maintenance of the regional

  11. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity.

    PubMed

    Hertzog, Lionel R; Meyer, Sebastian T; Weisser, Wolfgang W; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  12. Arthropod-borne virus antibodies in sera of residents of Kainji Lake Basin, Nigeria 1980.

    PubMed

    Adekolu-John, E O; Fagbami, A H

    1983-01-01

    A survey for haemagglutination-inhibiting arthropod-borne virus antibody was carried out in the Kainji Lake area of Nigeria. Of 267 persons tested, 139 (52%) and 158 (59%) had alphavirus and flavivirus group HI antibody, respectively. The prevalence of antibody to individual virus antigen is as follows: Chikungunya, 45%; Semliki Forest, 25%; Sindbis, 33%, Yellow fever, 31%, Dengue type 2, 46%; and Zika 56%. The presence of high antibody rates to Chikungunya, Dengue type 2 and Yellow fever viruses is of public health significance. These viruses have been identified as the most important arthropod-borne viruses causing human infections in Nigeria.

  13. [Bases for control of arthropod vectors: I--Definitions, bioecology of vectors (author's transl)].

    PubMed

    Picq, J J; Discamps, G; Albert, J P

    1978-01-01

    Arthropoda form the most diversified and multitudinous phyllum of the animal kingdom. In this "arthropod world", the authors give the respective position of the arthropoda: a) detrimental to crops, b) venomous and noxious for human being, but mainly those who are vectors of human diseases, say about a hundred species. Biological, ecological and environmental main features of the most important arthropod vectors of human tropical diseases are reviewed. Various factors acting on the relation between pathological agent and vector and between vector and man are considered. Importance and complexity of entomological surveys are emphasized with, as a consequence, the necessity of specialized medical entomologists to manage them.

  14. Increasing role of arthropod bites in tularaemia transmission in Poland - case reports and diagnostic methods.

    PubMed

    Formińska, Kamila; Zasada, Aleksandra A; Rastawicki, Waldemar; Śmietańska, Karolina; Bander, Dorota; Wawrzynowicz-Syczewska, Marta; Yanushevych, Mariya; Niścigórska-Olsen, Jolanta; Wawszczak, Marek

    2015-01-01

    The study describes four cases of tularaemia - one developed after contact with rabbits and three developed after an arthropod bite. Due to non-specific clinical symptoms, accurate diagnosis of tularaemia may be difficult. The increasing contribution of the arthropod vectors in the transmission of the disease indicates that special effort should be made to apply sensitive and specific diagnostic methods for tularaemia, and to remind health-care workers about this route of Francisella tularensis infections. The advantages and disadvantages of various diagnostic methods - molecular, serological and microbiological culture - are discussed. The PCR as a rapid and proper diagnostic method for ulceroglandular tularaemia is presented.

  15. Collection & Processing of Medically Important Arthropods for Arbovirus Isolation.

    ERIC Educational Resources Information Center

    Sudia, W. Daniel; Chamberlain, Roy W.

    The methods given for collecting, preserving, and processing mosquitoes and other archropods for isolation of arboviruses are those used by the National Communicable Disease Center. Techniques of collecting mosquitoes as they bite, using light or bait traps, and from their daytime resting sites are described and illustrated. Details of subsequent…

  16. Does carcass enrichment alter community structure of predaceous and parasitic arthropods? A second test of the arthropod saturation hypothesis at the Anthropology Research Facility in Knoxville, Tennessee.

    PubMed

    Schoenly, Kenneth G; Shahid, S Adam; Haskell, Neal H; Hall, Robert D

    2005-01-01

    In a second test of an arthropod saturation hypothesis, we analyzed if the on-campus Anthropology Research Facility (ARF) at the University of Tennessee, Knoxville, with its 20+ yr history of carcass enrichment, is comparable to non-enriched sites in community structure of predatory and parasitic arthropods that prey upon the sarcosaprophagous fauna. Over a 12-day period in June 1998, using pitfall traps and sweep nets, 10,065 predaceous, parasitic, and hematophagous (blood-feeding) arthropods were collected from freshly euthanized pigs (Sus scrofa L.) placed at ARF and at three surrounding sites various distances away (S2-S4). The community structure of these organisms was comparable in most paired-site tests with respect to species composition, colonization rates, and evenness of pitfall-trap abundances on a per carcass basis. Site differences were found in rarefaction tests of both sweep-net and pitfall-trap taxa and in tests of taxonomic evenness and ranked abundances of sweep-net samples. Despite these differences, no evidence was found that the predatory/parasitic fauna at ARF was impoverished with fewer but larger populations as a result of carcass enrichment. Comparison of the sarcosaprophagous and predatory/parasitic faunas revealed a tighter (and more predictable) linkage between carrion feeders (sarcosaprovores) and their carrion than between carrion feeders and their natural enemies (predators and parasitoids), leading us to conclude that ARF is more representative of surrounding sites with respect to the sarcosaprovore component than to the predatory/parasitic component within the larger carrion-arthropod community.

  17. [Effects of plant viruses on vector and non-vector herbivorous arthropods and their natural enemies: a mini review].

    PubMed

    He, Xiao-Chan; Xu, Hong-Xing; Zhou, Xiao-Jun; Zheng, Xu-Song; Sun, Yu-Jian; Yang, Ya-Jun; Tian, Jun-Ce; Lü, Zhong-Xian

    2014-05-01

    Plant viruses transmitted by arthropods, as an important biotic factor, may not only directly affect the yield and quality of host plants, and development, physiological characteristics and ecological performances of their vector arthropods, but also directly or indirectly affect the non-vector herbivorous arthropods and their natural enemies in the same ecosystem, thereby causing influences to the whole agro-ecosystem. This paper reviewed the progress on the effects of plant viruses on herbivorous arthropods, including vector and non-vector, and their natural enemies, and on their ecological mechanisms to provide a reference for optimizing the management of vector and non-vector arthropod populations and sustainable control of plant viruses in agro-ecosystem.

  18. Temporal Dynamics of Arthropods on Six Tree Species in Dry Woodlands on the Caribbean Island of Puerto Rico

    PubMed Central

    Beltrán, William; Wunderle, Joseph M.

    2014-01-01

    The seasonal dynamics of foliage arthropod populations are poorly studied in tropical dry forests despite the importance of these studies for understanding arthropod population responses to environmental change. We monitored the abundance, temporal distributions, and body size of arthropods in five naturalized alien and one native tree species to characterize arthropod seasonality in dry novel Prosopis–Leucaena woodlands in Puerto Rico. A branch clipping method was used monthly to sample foliage arthropod abundance over 39 mo. Seasonal patterns of rainfall and abundance within various arthropod taxa were highly variable from year to year. Abundance for most taxa did not show significant seasonality over the 3 yr, although most taxa had abundance peaks each year. However, Homoptera displayed high seasonality with significant temporal aggregations in each year. Formicidae, Orthoptera, and Coleoptera showed high variation in abundance between wet and dry periods, whereas Hemiptera were consistently more abundant in the wet period. Seasonal differences in mean abundance were found only in a few taxa on Tamarindus indica L., Bucida buceras L., Pithecellobium dulce, and (Roxburgh) Benth. Mean arthropod abundance varied among tree species, with highest numbers on Prosopis juliflora, (Swartz) De Candolle, Pi. dulce, Leucaena leucocephala, and (Lamarck) de Wit. Abundance of Araneae, Orthoptera, Coleoptera, Lepidoptera larvae, and all arthropods showed weak relationships with one or more climatic variables (rainfall, maximum temperature, or relative humidity). Body size of arthropods was usually largest during the dry periods. Overall, total foliage arthropod abundance showed no consistent seasonality among years, which may become a more common trend in dry forests and woodlands in the Caribbean if seasonality of rainfall becomes less predictable. PMID:25502036

  19. Temporal dynamics of arthropods on six tree species in dry woodlands on the Caribbean Island of Puerto Rico.

    PubMed

    Beltrán, William; Wunderle, Joseph M

    2014-01-01

    The seasonal dynamics of foliage arthropod populations are poorly studied in tropical dry forests despite the importance of these studies for understanding arthropod population responses to environmental change. We monitored the abundance, temporal distributions, and body size of arthropods in five naturalized alien and one native tree species to characterize arthropod seasonality in dry novel Prosopis-Leucaena woodlands in Puerto Rico. A branch clipping method was used monthly to sample foliage arthropod abundance over 39 mo. Seasonal patterns of rainfall and abundance within various arthropod taxa were highly variable from year to year. Abundance for most taxa did not show significant seasonality over the 3 yr, although most taxa had abundance peaks each year. However, Homoptera displayed high seasonality with significant temporal aggregations in each year. Formicidae, Orthoptera, and Coleoptera showed high variation in abundance between wet and dry periods, whereas Hemiptera were consistently more abundant in the wet period. Seasonal differences in mean abundance were found only in a few taxa on Tamarindus indica L., Bucida buceras L., Pithecellobium dulce, and (Roxburgh) Benth. Mean arthropod abundance varied among tree species, with highest numbers on Prosopis juliflora, (Swartz) De Candolle, Pi. dulce, Leucaena leucocephala, and (Lamarck) de Wit. Abundance of Araneae, Orthoptera, Coleoptera, Lepidoptera larvae, and all arthropods showed weak relationships with one or more climatic variables (rainfall, maximum temperature, or relative humidity). Body size of arthropods was usually largest during the dry periods. Overall, total foliage arthropod abundance showed no consistent seasonality among years, which may become a more common trend in dry forests and woodlands in the Caribbean if seasonality of rainfall becomes less predictable. PMID:25502036

  20. Temporal dynamics of arthropods on six tree species in dry woodlands on the Caribbean Island of Puerto Rico.

    PubMed

    Beltrán, William; Wunderle, Joseph M

    2014-01-01

    The seasonal dynamics of foliage arthropod populations are poorly studied in tropical dry forests despite the importance of these studies for understanding arthropod population responses to environmental change. We monitored the abundance, temporal distributions, and body size of arthropods in five naturalized alien and one native tree species to characterize arthropod seasonality in dry novel Prosopis-Leucaena woodlands in Puerto Rico. A branch clipping method was used monthly to sample foliage arthropod abundance over 39 mo. Seasonal patterns of rainfall and abundance within various arthropod taxa were highly variable from year to year. Abundance for most taxa did not show significant seasonality over the 3 yr, although most taxa had abundance peaks each year. However, Homoptera displayed high seasonality with significant temporal aggregations in each year. Formicidae, Orthoptera, and Coleoptera showed high variation in abundance between wet and dry periods, whereas Hemiptera were consistently more abundant in the wet period. Seasonal differences in mean abundance were found only in a few taxa on Tamarindus indica L., Bucida buceras L., Pithecellobium dulce, and (Roxburgh) Benth. Mean arthropod abundance varied among tree species, with highest numbers on Prosopis juliflora, (Swartz) De Candolle, Pi. dulce, Leucaena leucocephala, and (Lamarck) de Wit. Abundance of Araneae, Orthoptera, Coleoptera, Lepidoptera larvae, and all arthropods showed weak relationships with one or more climatic variables (rainfall, maximum temperature, or relative humidity). Body size of arthropods was usually largest during the dry periods. Overall, total foliage arthropod abundance showed no consistent seasonality among years, which may become a more common trend in dry forests and woodlands in the Caribbean if seasonality of rainfall becomes less predictable.

  1. Phase and speed synchronization control of four eccentric rotors driven by induction motors in a linear vibratory feeder with unknown time-varying load torques using adaptive sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo

    2016-05-01

    In this paper, phase and speed synchronization control of four eccentric rotors (ERs) driven by induction motors in a linear vibratory feeder with unknown time-varying load torques is studied. Firstly, the electromechanical coupling model of the linear vibratory feeder is established by associating induction motor's model with the dynamic model of the system, which is a typical under actuated model. According to the characteristics of the linear vibratory feeder, the complex control problem of the under actuated electromechanical coupling model converts to phase and speed synchronization control of four ERs. In order to keep the four ERs operating synchronously with zero phase differences, phase and speed synchronization controllers are designed by employing adaptive sliding mode control (ASMC) algorithm via a modified master-slave structure. The stability of the controllers is proved by Lyapunov stability theorem. The proposed controllers are verified by simulation via Matlab/Simulink program and compared with the conventional sliding mode control (SMC) algorithm. The results show the proposed controllers can reject the time-varying load torques effectively and four ERs can operate synchronously with zero phase differences. Moreover, the control performance is better than the conventional SMC algorithm and the chattering phenomenon is attenuated. Furthermore, the effects of reference speed and parametric perturbations are discussed to show the strong robustness of the proposed controllers. Finally, experiments on a simple vibratory test bench are operated by using the proposed controllers and without control, respectively, to validate the effectiveness of the proposed controllers further.

  2. Biostable agonists that match or exceed activity of native insect kinins on recombinant arthropod GPCRs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The multifunctional arthropod insect kinins share the evolutionarily conserved C-terminal pentapeptide motif Phe-X1-X2-Trp-Gly-NH2, where X1 = His, Asn, Ser, or Tyr and X2 = Ser, Pro, or Ala. Insect kinins regulate diuresis in many species of insects. Compounds with similar biological activity cou...

  3. Natural carbon dioxide generation for the attraction of blood feeding arthropods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hematophagous arthropods are attracted to elevated carbon dioxide levels because it is closely associated with host blood meal availability. Bottled gas or frozen (dry ice) carbon dioxide are commonly used in surveillance programs and field collection techniques to increase the number of species and...

  4. Relationships between dead wood and arthropods in the Southeastern United States.

    SciTech Connect

    Ulyshen, Michael, Darragh

    2009-05-01

    The importance of dead wood to maintaining forest diversity is now widely recognized. However, the habitat associations and sensitivities of many species associated with dead wood remain unknown, making it difficult to develop conservation plans for managed forests. The purpose of this research, conducted on the upper coastal plain of South Carolina, was to better understand the relationships between dead wood and arthropods in the southeastern United States. In a comparison of forest types, more beetle species emerged from logs collected in upland pine-dominated stands than in bottomland hardwood forests. This difference was most pronounced for Quercus nigra L., a species of tree uncommon in upland forests. In a comparison of wood postures, more beetle species emerged from logs than from snags, but a number of species appear to be dependent on snags including several canopy specialists. In a study of saproxylic beetle succession, species richness peaked within the first year of death and declined steadily thereafter. However, a number of species appear to be dependent on highly decayed logs, underscoring the importance of protecting wood at all stages of decay. In a study comparing litter-dwelling arthropod abundance at different distances from dead wood, arthropods were more abundant near dead wood than away from it. In another study, grounddwelling arthropods and saproxylic beetles were little affected by large-scale manipulations of dead wood in upland pine-dominated forests, possibly due to the suitability of the forests surrounding the plots.

  5. Natural products from forest resources for use as arthropod and fungal biocides.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural products from Pacific Northwest forest resources can offer alternatives to the use of synthetic pesticides in the control of both arthropods of public health concern and forest fungal pathogens. Tree heartwood extracts with high toxicity (low LC50) in preliminary brine shrimp bioassays were...

  6. Natural Products from Forest Resources for Use as Arthropod and Fungal Biocides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural products from Pacific Northwest forest resources can offer alternatives to the use of synthetic pesticides in the control of both arthropods of public health concern and forest fungal pathogens. Tree heartwood extracts with high toxicity (low LC50) in preliminary brine shrimp bioassays were...

  7. Diverse urban plantings managed with sufficient resource availability can increase plant productivity and arthropod diversity.

    PubMed

    Muller, Jonathon N; Loh, Susan; Braggion, Ligia; Cameron, Stephen; Firn, Jennifer L

    2014-01-01

    Buildings structures and surfaces are explicitly being used to grow plants, and these "urban plantings" are generally designed for aesthetic value. Urban plantings also have the potential to contribute significant "ecological values" by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban center of Brisbane, Australia (subtropical climatic region) over 2, 6 week sampling periods characterized by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation), plant CO2 assimilation, soil CO2 efflux, and arthropod diversity. Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly-likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context.

  8. The midgut epithelium of aquatic arthropods: a critical target organ in environmental toxicology.

    PubMed Central

    Beaty, Barry J; Mackie, Ryan S; Mattingly, Kimberly S; Carlson, Jonathan O; Rayms-Keller, Alfredo

    2002-01-01

    The midgut epithelium of aquatic arthropods is emerging as an important and toxicologically relevant organ system for monitoring environmental pollution. The peritrophic matrix of aquatic arthropods, which is secreted by the midgut epithelium cells, is perturbed by copper or cadmium. Molecular biological studies have identified and characterized two midgut genes induced by heavy metals in the midgut epithelium. Many other metal-responsive genes (MRGs) await characterization. One of the MRGs codes for an intestinal mucin, which is critical for protecting the midgut from toxins and pathogens. Another codes for a tubulin gene, which is critical for structure and function of the midgut epithelial cells. Perturbation of expression of either gene could condition aquatic arthropod survivorship. Induction of these MRGs is a more sensitive and rapid indicator of heavy-metal pollution than biological assays. Characterization of genes induced by pollutants could provide mechanistic understanding of fundamental cellular responses to pollutants and insight into determinants of aquatic arthropod population genetic structure and survivorship in nature. PMID:12634118

  9. Teaching Students about Biodiversity by Studying the Correlation between Plants & Arthropods

    ERIC Educational Resources Information Center

    Richardson, Matthew L.; Hari, Janice

    2008-01-01

    On Earth there is a huge diversity of arthropods, many of which are highly adaptive and able to exploit virtually every terrestrial habitat. Because of their prevalence even in urban environments, they make an excellent model system for any life science class. Since plants also exploit virtually every terrestrial habitat, studying the relationship…

  10. Responses of arthropod fauna assemblages to goat grazing management in northern Spanish heathlands.

    PubMed

    Rosa García, Rocío; Jáuregui, Berta M; García, Urcesino; Osoro, Koldo; Celaya, Rafael

    2009-08-01

    Changes in arthropod fauna assemblages after different goat grazing treatments (breeds and stocking rates) and responses to grazing cessation were studied in a heath-gorse shrubland located in northern Spain. Three treatments (low grazing pressure and high grazing pressure with Cashmere breed and high grazing pressure with local Celtiberic breed) with three replicates were randomly allocated to nine plots. Fauna data were collected three times per year during 3 grazing yr (2003, 2004, and 2005) and three times during 2007, i.e., 2 yr after grazing cessation. Arthropods were collected by 12 pitfall traps per plot, whereas vegetation cover and height were estimated by 100 random contacts per plot. Arthropod community composition was mostly affected by sampling year during the grazing period (between 2003 and 2005) but also between 2005 and 2007 (after cessation). Species composition differed between treatments, although the differences were not attributed to the stocking rates or to the goat breeds along those periods. Differences between treatments remained constant from 2003 to 2005 and between 2005 and 2007. Heather height explained most of the variance in arthropod species data during the last grazing year (2005), whereas heather cover was the most explanatory environmental variable 2 yr after grazing cessation (2007). Grazing effects still remained on both vegetation and fauna 2 yr after grazing cessation. PMID:19689876

  11. Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record.

    PubMed

    Edgecombe, Gregory D

    2010-01-01

    Monophyly of Arthropoda is emphatically supported from both morphological and molecular perspectives. Recent work finds Onychophora rather than Tardigrada to be the closest relatives of arthropods. The status of tardigrades as panarthropods (rather than cycloneuralians) is contentious from the perspective of phylogenomic data. A grade of Cambrian taxa in the arthropod stem group includes gilled lobopodians, dinocaridids (e.g., anomalocaridids), fuxianhuiids and canadaspidids that inform on character acquisition between Onychophora and the arthropod crown group. A sister group relationship between Crustacea (itself likely paraphyletic) and Hexapoda is retrieved by diverse kinds of molecular data and is well supported by neuroanatomy. This clade, Tetraconata, can be dated to the early Cambrian by crown group-type mandibles. The rival Atelocerata hypothesis (Myriapoda+Hexapoda) has no molecular support. The basal node in the arthropod crown group is embroiled in a controversy over whether myriapods unite with chelicerates (Paradoxopoda or Myriochelata) or with crustaceans and hexapods (Mandibulata). Both groups find some molecular and morphological support, though Mandibulata is presently the stronger morphological hypothesis. Either hypothesis forces an unsampled ghost lineage for Myriapoda from the Cambrian to the mid Silurian. PMID:19854297

  12. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods.

    PubMed

    Ebeling, Anne; Meyer, Sebastian T; Abbas, Maike; Eisenhauer, Nico; Hillebrand, Helmut; Lange, Markus; Scherber, Christoph; Vogel, Anja; Weigelt, Alexandra; Weisser, Wolfgang W

    2014-01-01

    Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning.

  13. [Effects of different landscape patch structure on the diversity of arthropod community in tea plantations].

    PubMed

    Li, Jian-Long; Tang, Jin-Chi; Zhao, Chao-Yi; Tang, Hao; Li, Xiu-Di; Li, Hua-Shou

    2013-05-01

    A field survey with random block design was conducted to study the effects of different landscape patch structure on the arthropod community in tea plantations. In the tea plantations with small woodland (QM) or Acacia confuse (XS) patches, predatory spider had the highest proportion, occupying 62.3% and 69.5% of the total arthropods, respectively, being significantly higher than that in the tea plantations close to paddy field (DT) or near a village (RJ). The tea plantations with QM had the highest diversity index and species richness of arthropod community, while the evenness index and dominance index were not significantly different from the other tea plantations. The tea plantations with QM and XS had much richer natural enemies, and the order of the diversity index, evenness index, and richness index of natural enemies in the tea plantations ranked as QM > XS > DT > RJ. It was suggested that landscape patch structure had great effect on the diversity of arthropod community in tea plantations.

  14. Arthropods, plants and transmission lines in Arizona: community dynamics during secondary succession in a desert grassland

    SciTech Connect

    Butt, S.M.; Beley, J.R.; Ditsworth, T.M.; Johnson, C.D.; Balda, R.P.

    1980-11-01

    In 1972, access roads were constructed and then used by heavy equipment to build a 500 kV powerline in north central Arizona. Secondary succession of arthropods was studied till 1977 by comparing the initially bare soil of the roads with undisturbed control plots nearby. It was found that, after construction, total anthropod densities were reduced for two to three years, that after five years no anthropod taxa had greater densities on the disturbed areas, but some were significantly reduced, the diversity of arthropods dropped for a period of three or four years, that arthropod community similarity of the two study plots appeared to be related to total cover of plants and similarity of plant communities, the significant correlations between arthropod taxa suggested that the plant communities of the two plots are close in successional status, plant succession was not as rapid as expected, and the disturbed area had a great reduction in perennial grasses but an increase in annual herbs. The numerical dominance of herbivores on both disturbed and control plots, especially after construction, supports the hypothesis that linear, predominantly grazing food chains are characteristic of early successional stages.

  15. Disparate effects of plant genotypic diversity on foliage and litter arthropod communities

    SciTech Connect

    Crutsinger, Greg; Reynolds, Nicholas; Classen, Aimee T; Sanders, Dr. Nathan James

    2008-01-01

    Intraspecific diversity within plant species is increasingly recognized as an important influence on the structure of associated arthropod communities, though whether there are congruent responses of above- and belowground communities to intraspecific diversity remains unclear. In this study, we compare the effects of host-plant genotype and genotypic diversity of the perennial plant, Solidago altissima, on the arthropod community associated with living plant tissue (foliage-based community) and microarthropods associated with leaf litter (litter-based community). We found that variation among host-plant genotypes had strong effects on the diversity and composition of foliage-based arthropods, but only weak influence on litter-based microarthropods. Furthermore, host-plant genotypic diversity was positively related to the abundance and diversity of foliage-based arthropods, including herbivore and predator trophic levels. In contrast, there were minimal effects of genotypic diversity in litter on microarthropods. Our study illustrates that incorporating both above- and belowground perspective into community genetics studies leads to very different conclusions about the importance of intraspecific diversity, than when considering aboveground responses in isolation.

  16. Field Documentation of Unusual Post-Mortem Arthropod Activity on Human Remains.

    PubMed

    Pechal, Jennifer L; Benbow, M Eric; Tomberlin, Jeffery K; Crippen, Tawni L; Tarone, Aaron M; Singh, Baneshwar; Lenhart, Paul A

    2015-01-01

    During a forensic investigation, the presence of physical marks on human remains can influence the interpretation of events related to the death of an individual. Some tissue injury on human remains can be misinterpreted as ante- or peri-mortem wounds by an investigator when in reality the markings resulted from post-mortem arthropod activity. Unusual entomological data were collected during a study examining the decomposition of a set of human remains in San Marcos, Texas. An adult female Pediodectes haldemani (Girard) (Orthoptera: Tettigoniidae) and an Armadillidium cf. vulgare (Isopoda: Armadilidiidae) were documented feeding on the remains. Both arthropods produced physical marks or artifacts on the remains that could be misinterpreted as attack, abuse, neglect, or torture. Additionally, red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae), were observed constructing structures in the mark produced by the P. haldemani feeding. These observations provide insight into the potential of post-mortem arthropod damage to human remains, which previously had not been described for these taxa, and therefore, physical artifacts on any remains found in similar circumstances may result from arthropod activity and not ante- or peri-mortem wounds. PMID:26336287

  17. Plant Diversity Impacts Decomposition and Herbivory via Changes in Aboveground Arthropods

    PubMed Central

    Ebeling, Anne; Meyer, Sebastian T.; Abbas, Maike; Eisenhauer, Nico; Hillebrand, Helmut; Lange, Markus; Scherber, Christoph; Vogel, Anja; Weigelt, Alexandra; Weisser, Wolfgang W.

    2014-01-01

    Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning. PMID:25226237

  18. Field Documentation of Unusual Post-Mortem Arthropod Activity on Human Remains.

    PubMed

    Pechal, Jennifer L; Benbow, M Eric; Tomberlin, Jeffery K; Crippen, Tawni L; Tarone, Aaron M; Singh, Baneshwar; Lenhart, Paul A

    2015-01-01

    During a forensic investigation, the presence of physical marks on human remains can influence the interpretation of events related to the death of an individual. Some tissue injury on human remains can be misinterpreted as ante- or peri-mortem wounds by an investigator when in reality the markings resulted from post-mortem arthropod activity. Unusual entomological data were collected during a study examining the decomposition of a set of human remains in San Marcos, Texas. An adult female Pediodectes haldemani (Girard) (Orthoptera: Tettigoniidae) and an Armadillidium cf. vulgare (Isopoda: Armadilidiidae) were documented feeding on the remains. Both arthropods produced physical marks or artifacts on the remains that could be misinterpreted as attack, abuse, neglect, or torture. Additionally, red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae), were observed constructing structures in the mark produced by the P. haldemani feeding. These observations provide insight into the potential of post-mortem arthropod damage to human remains, which previously had not been described for these taxa, and therefore, physical artifacts on any remains found in similar circumstances may result from arthropod activity and not ante- or peri-mortem wounds.

  19. Effect of ground cover vegetation on the abundance and diversity of beneficial arthropods in citrus orchards.

    PubMed

    Silva, E B; Franco, J C; Vasconcelos, T; Branco, M

    2010-08-01

    The effect of ground cover upon the communities of beneficial arthropods established in the canopy of lemon trees was investigated, by comparing three ground-cover management treatments applied: RV, resident vegetation; S, sowed selected species; and BS, bare soil by controlling weeds with herbicide. Over two consecutive years, arthropod communities in the tree canopy were sampled periodically by beating and suction techniques. Significantly higher numbers of beneficial arthropods were found in the RV and S treatments in comparison with bare soil. Spiders and parasitoid wasps were the two most common groups, representing, respectively, 70% and 19% of all catches in beating samples and 33% and 53% in suction samples. For the RV and S treatments, significant seasonal deviations from the bare soil treatment were observed using principal response curves. Similar seasonal patterns were observed over the two years. The RV and S treatments showed significant positive deviations from the BS treatment in late spring and summer, accounted for the higher numbers of parasitoid wasps, coccinelids and lacewings present. By contrast, the seasonal deviations observed for the spider community differed from those of the remaining arthropods. During late winter and early spring, the RV and S treatments presented a higher abundance of spiders in the tree canopy, in comparison with bare soil, whereas in the summer significantly more spiders were found in the bare soil treatment. Spider movements between tree canopy and ground vegetation layers may justify this result.

  20. Cross-species transmission of honey bee viruses in associated arthropods.

    PubMed

    Levitt, Abby L; Singh, Rajwinder; Cox-Foster, Diana L; Rajotte, Edwin; Hoover, Kelli; Ostiguy, Nancy; Holmes, Edward C

    2013-09-01

    There are a number of RNA virus pathogens that represent a serious threat to the health of managed honey bees (Apis mellifera). That some of these viruses are also found in the broader pollinator community suggests the wider environmental spread of these viruses, with the potential for a broader impact on ecosystems. Studies on the ecology and evolution of these viruses in the arthropod community as a whole may therefore provide important insights into these potential impacts. We examined managed A. mellifera colonies, nearby non-Apis hymenopteran pollinators, and other associated arthropods for the presence of five commonly occurring picorna-like RNA viruses of honey bees - black queen cell virus, deformed wing virus, Israeli acute paralysis virus, Kashmir bee virus and sacbrood virus. Notably, we observed their presence in several arthropod species. Additionally, detection of negative-strand RNA using strand-specific RT-PCR assays for deformed wing virus and Israeli acute paralysis virus suggests active replication of deformed wing virus in at least six non-Apis species and active replication of Israeli acute paralysis virus in one non-Apis species. Phylogenetic analysis of deformed wing virus also revealed that this virus is freely disseminating across the species sampled in this study. In sum, our study indicates that these viruses are not specific to the pollinator community and that other arthropod species have the potential to be involved in disease transmission in pollinator populations.

  1. The Role of Dead Wood in Maintaining Arthropod Diversity on the Forest Floor

    SciTech Connect

    Hanula, James L.; Horn, Scott; Wade, Dale D.

    2006-08-01

    Dead wood is a major component of forests and contributes to overall diversity, primarily by supporting insects that feed directly on or in it. Further, a variety of organisms benefit by feeding on those insects. What is not well known is how or whether dead wood influences the composition of the arthropod community that is not solely dependent on it as a food resource, or whether woody debris influences prey available to generalist predators. One group likely to be affected by dead wood is ground-dwelling arthropods. We studied the effect of adding large dead wood to unburned and frequently burned pine stands to determine if dead wood was used more when the litter and understory plant community are removed. We also studied the effect of annual removal of dead wood from large (10-ha) plots over a 5-year period on ground-dwelling arthropods. In related studies, we examined the relationships among an endangered woodpecker that forages for prey on live trees, its prey, and dead wood in the forest. Finally, the results of these and other studies show that dead wood can influence the abundance and diversity of the ground-dwelling arthropod community and of prey available to generalist predators not foraging directly on dead trees.

  2. Conservation of the ethanol-induced locomotor stimulant response among arthropods.

    PubMed

    Kliethermes, Christopher L

    2015-01-01

    Ethanol-induced locomotor stimulation has been variously described as reflective of the disinhibitory, euphoric, or reinforcing effects of ethanol and is commonly used as an index of acute ethanol sensitivity in rodents. The fruit fly Drosophila melanogaster also shows a locomotor stimulant response to ethanol that is believed to occur via conserved, ethanol-sensitive neurobiological mechanisms, but it is currently unknown whether this response is conserved among arthropod species or is idiosyncratic to D. melanogaster. The current experiments surveyed locomotor responses to ethanol in a phylogenetically diverse panel of insects and other arthropod species. A clear ethanol-induced locomotor stimulant response was seen in 9 of 13 Drosophilidae species tested, in 8 of 10 other species of insects, and in an arachnid (wolf spider) and a myriapod (millipede) species. Given the diverse phylogenies of the species that showed the response, these experiments support the hypothesis that locomotor stimulation is a conserved behavioral response to ethanol among arthropod species. Further comparative studies are needed to determine whether the specific neurobiological mechanisms known to underlie the stimulant response in D. melanogaster are conserved among arthropod and vertebrate species.

  3. Evolutionary genomics place the origin of Wolbachia in nematodes, not arthropods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wolbachia, the most widely studied endosymbiont in arthropods, is a target for biological control of mosquito-borne diseases (malaria and dengue virus), and antibiotic elimination of infectious filarial nematodes. We sequenced and analyzed the genome of a new strain (wPpe) in the plant-parasitic nem...

  4. Differential Rickettsial Transcription in Bloodfeeding and Non-Bloodfeeding Arthropod Hosts

    PubMed Central

    Verhoeve, Victoria I.; Jirakanwisal, Krit; Utsuki, Tadanobu; Macaluso, Kevin R.

    2016-01-01

    Crucial factors influencing the epidemiology of Rickettsia felis rickettsiosis include pathogenesis and transmission. Detection of R. felis DNA in a number of arthropod species has been reported, with characterized isolates, R. felis strain LSU and strain LSU-Lb, generated from the cat flea, Ctenocephalides felis, and the non-hematophagous booklouse, Liposcelis bostrychophila, respectively. While it is realized that strain influence on host biology varies, the rickettsial response to these distinct host environments remained undefined. To identify a panel of potential rickettsial transmission determinants in the cat flea, the transcriptional profile for these two strains of R. felis were compared in their arthropod hosts using RNAseq. Rickettsial genes with increased transcription in the flea as compared to the booklouse were identified. Genes previously associated with bacterial virulence including LPS biosynthesis, Type IV secretion system, ABC transporters, and a toxin-antitoxin system were selected for further study. Transcription of putative virulence-associated genes was determined in a flea infection bioassay for both strains of R. felis. A host-dependent transcriptional profile during bloodfeeding, specifically, an increased expression of selected transcripts in newly infected cat fleas and flea feces was detected when compared to arthropod cell culture and incubation in vertebrate blood. Together, these studies have identified novel, host-dependent rickettsial factors that likely contribute to successful horizontal transmission by bloodfeeding arthropods. PMID:27662479

  5. Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record.

    PubMed

    Edgecombe, Gregory D

    2010-01-01

    Monophyly of Arthropoda is emphatically supported from both morphological and molecular perspectives. Recent work finds Onychophora rather than Tardigrada to be the closest relatives of arthropods. The status of tardigrades as panarthropods (rather than cycloneuralians) is contentious from the perspective of phylogenomic data. A grade of Cambrian taxa in the arthropod stem group includes gilled lobopodians, dinocaridids (e.g., anomalocaridids), fuxianhuiids and canadaspidids that inform on character acquisition between Onychophora and the arthropod crown group. A sister group relationship between Crustacea (itself likely paraphyletic) and Hexapoda is retrieved by diverse kinds of molecular data and is well supported by neuroanatomy. This clade, Tetraconata, can be dated to the early Cambrian by crown group-type mandibles. The rival Atelocerata hypothesis (Myriapoda+Hexapoda) has no molecular support. The basal node in the arthropod crown group is embroiled in a controversy over whether myriapods unite with chelicerates (Paradoxopoda or Myriochelata) or with crustaceans and hexapods (Mandibulata). Both groups find some molecular and morphological support, though Mandibulata is presently the stronger morphological hypothesis. Either hypothesis forces an unsampled ghost lineage for Myriapoda from the Cambrian to the mid Silurian.

  6. Somatic and Germline Diversification of a Putative Immunoreceptor within One Phylum: Dscam in Arthropods.

    PubMed

    Brites, Daniela; Du Pasquier, Louis

    2015-01-01

    Arthropod Dscam, the homologue of the human Down Syndrome cell adhesion molecule, is a receptor used by the nervous and immune systems. Unlike in vertebrates, evolutionary pressure has selected and maintained a vast Dscam diversity of isoforms, known to specifying neuronal identity during the nervous system differentiation. This chapter examines the different modes of Dscam diversification in the context of arthropods' evolution and that of their immune system, where its role is controversial. In the single Dscam gene of insects and crustaceans, mutually exclusive alternative splicing affects three clusters of duplicated exons encoding the variable parts of the receptor. The Dscam gene produces over 10,000 isoforms. In the more basal arthropods such as centipedes, Dscam diversity results from a combination of many germline genes (over 80) with, in about half of those, the possibility of alternative splicing affecting only one exon cluster. In the even more basal arthropods, such as chelicerates, no splicing possibility is detected, but there exist dozens of germline Dscam genes. Compared to controlling the expression of multiple germline genes, the somatic mutually alternative splicing within a single gene may offer a simplified way of expressing a large Dscam repertoire. Expressed by hemocytes, Dscam is considered a phagocytic receptor but is also encountered in solution. More information is necessary about its binding to pathogens, its role in phagocytosis, its possible role in specifying hemocyte identity, its kinetics of expression, and the regulation of its RNA splicing to understand how its diversity is linked to immunity.

  7. Effects of the brown anole invasion and betelnut palm planting on arthropod diversity in southern Taiwan.

    PubMed

    Huang, Shao-Chang; Norval, Gerrut; Wei, Chia-Shian; Tso, I-Min

    2008-11-01

    The brown anole ( Anolis sagrei ) occurs naturally in various localities in Central America, and an exotic invasive population was first reported in Sheishan District, Chiayi County, Taiwan, in 2000. Previous studies showed that following the invasion of A. sagrei , the diversity and abundance of local terrestrial arthropods, such as orb spiders and arboreal insects, were severely affected. In this study, we assessed the impact of A. sagrei on arthropod diversity in Taiwan by comparing spider and insect diversities among betelnut palm plantations, in which this lizard species was either present or absent, and a secondary forest. In addition, enclosures were established in which the density of A. sagrei was manipulated to investigate the effect of this predator on spiders. The results of a lizard stomach content analysis showed that spiders comprised 7% and insects 90% of the prey consumed. Among the insects consumed by A. sagrei , more than 50% were ants. The abundances of the major arthropod prey of A. sagrei , such as jumping spiders and hymenopterans, in the lizard-present sites were much lower than in the lizard-removed sites. The enclosure experiments also showed that predation by the lizards significantly reduced the abundance of jumping spiders. All these results indicated that the introduced lizard greatly affected the diversity and abundance of terrestrial arthropods in agricultural areas in southern Taiwan. PMID:19267623

  8. Vertical T-maze choice assay for arthropod response to odorants.

    PubMed

    Stelinski, Lukasz; Tiwari, Siddharth

    2013-01-01

    Given the economic importance of insects and arachnids as pests of agricultural crops, urban environments or as vectors of plant and human diseases, various technologies are being developed as control tools. A subset of these tools focuses on modifying the behavior of arthropods by attraction or repulsion. Therefore, arthropods are often the focus of behavioral investigations. Various tools have been developed to measure arthropod behavior, including wind tunnels, flight mills, servospheres, and various types of olfactometers. The purpose of these tools is to measure insect or arachnid response to visual or more often olfactory cues. The vertical T-maze olfactometer described here measures choices performed by insects in response to attractants or repellents. It is a high throughput assay device that takes advantage of the positive phototaxis (attraction to light) and negative geotaxis (tendency to walk or fly upward) exhibited by many arthropods. The olfactometer consists of a 30 cm glass tube that is divided in half with a Teflon strip forming a T-maze. Each half serves as an arm of the olfactometer enabling the test subjects to make a choice between two potential odor fields in assays involving attractants. In assays involving repellents, lack of normal response to known attractants can also be measured as a third variable. PMID:23439130

  9. Influence of buffalograss management practices on Western chinch bug and its beneficial arthropods.

    PubMed

    Carstens, Jeffrey; Heng-Moss, Tiffany; Baxendale, Frederick; Gaussoin, Roch; Frank, Kevin; Young, Linda

    2007-02-01

    A 2-yr study was conducted to document the influence of selected buffalograss, Buchloë dactyloides (Nuttall) Engelmann, management practices (three mowing heights and five nitrogen levels) on the seasonal abundance of the western chinch bug, Blissus occiduus Barber (Heteroptera: Lygaeidae), and its beneficial arthropods. Vacuum, pitfall, and sticky traps samples were collected every 14 d from the middle of May through October from western chinch bug-resistant ('Prestige') and -susceptible ('378') buffalograss management plots. In total, 27,374 and 108,908 western chinch bugs were collected in vacuum and pitfall traps, respectively. More than 78% of all western chinch bugs were collected from the highly susceptible buffalograss 378. Significantly more bigeyed bugs (Geocoridae: Geocoris spp.) were collected from the 378 buffalograsss management plots than the Prestige plots. In contrast, buffalograss cultivar had little influence on the abundance of other beneficial arthropods collected. Statistically, western chinch bugs were least abundant at the lowest mowing height (2.5 cm) and increased in abundance with increasing fertility. Numerically, however, differences among management levels on western chinch bug abundance were minimal. Numerous beneficial arthropods were collected from buffalograss management plots, including spiders, predatory ants, ground beetles (Carabidae), rove beetles (Staphylinidae), bigeyed bugs, and several species of hymenopterous parasitoids. In general, beneficial arthropods were essentially unaffected by either mowing height or nitrogen level. Scelionid wasps represented 66.3% of the total parasitoids collected. The total number of scelionid wasps collected among the three mowing heights and five nitrogen levels were approximately equal. PMID:17370821

  10. The Hunsrück biota: A unique window into the ecology of Lower Devonian arthropods.

    PubMed

    Rust, Jes; Bergmann, Alexandra; Bartels, Christoph; Schoenemann, Brigitte; Sedlmeier, Stephanie; Kühl, Gabriele

    2016-03-01

    The approximately 400-million-year old Hunsrück biota provides a unique window into Devonian marine life. Fossil evidence suggests that this biota was dominated by echinoderms and various classes of arthropods, including Trilobita, stem lineage representatives of Euarthropoda, Chelicerata and Eucrustacea, as well as several crown group Chelicerata and Eucrustacea. The Hunsrück biota's exceptional preservation allows detailed reconstructions and description of key-aspects of its fauna's functional morphologies thereby revealing modes of locomotion, sensory perception, and feeding strategies. Morphological and stratigraphic data are used for a critical interpretation of the likely habitats, mode of life and nutritional characteristics of this diverse fauna. Potential predators include pycnogonids and other chelicerates, as well as the now extinct stem arthropods Schinderhannes bartelsi, Cambronatus brasseli and Wingertshellicus backesi. Mainly the deposit feeding Trilobita, Marrellomorpha and Megacheira, such as Bundenbachiellus giganteus, represents scavengers. Possibly, opportunistic scavenging was also performed by the afore-mentioned predators. Most of the studied arthropods appear to have been adapted to living in relatively well-illuminated conditions within the photic zone. Fossil evidence for associations amongst arthropods and other classes of metazoans is reported. These associations provide evidence of likely community structures.

  11. Somatic and Germline Diversification of a Putative Immunoreceptor within One Phylum: Dscam in Arthropods.

    PubMed

    Brites, Daniela; Du Pasquier, Louis

    2015-01-01

    Arthropod Dscam, the homologue of the human Down Syndrome cell adhesion molecule, is a receptor used by the nervous and immune systems. Unlike in vertebrates, evolutionary pressure has selected and maintained a vast Dscam diversity of isoforms, known to specifying neuronal identity during the nervous system differentiation. This chapter examines the different modes of Dscam diversification in the context of arthropods' evolution and that of their immune system, where its role is controversial. In the single Dscam gene of insects and crustaceans, mutually exclusive alternative splicing affects three clusters of duplicated exons encoding the variable parts of the receptor. The Dscam gene produces over 10,000 isoforms. In the more basal arthropods such as centipedes, Dscam diversity results from a combination of many germline genes (over 80) with, in about half of those, the possibility of alternative splicing affecting only one exon cluster. In the even more basal arthropods, such as chelicerates, no splicing possibility is detected, but there exist dozens of germline Dscam genes. Compared to controlling the expression of multiple germline genes, the somatic mutually alternative splicing within a single gene may offer a simplified way of expressing a large Dscam repertoire. Expressed by hemocytes, Dscam is considered a phagocytic receptor but is also encountered in solution. More information is necessary about its binding to pathogens, its role in phagocytosis, its possible role in specifying hemocyte identity, its kinetics of expression, and the regulation of its RNA splicing to understand how its diversity is linked to immunity. PMID:26537380

  12. Assessment of Risk of Insect-resistant Transgenic Crops to Nontarget Arthropods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An international initiative is developing a scientifically rigorous approach to evaluate potential risks to non-target arthropods (NTA’s) posed by insect-resistant, genetically modified (IRGM) crops. It adapts the tiered approach to risk assessment that is accepted internationally within regulatory ...

  13. Update on the proteomics of major arthropod vectors of human and animal pathogens.

    PubMed

    Patramool, Sirilaksana; Choumet, Valérie; Surasombatpattana, Pornapat; Sabatier, Laurence; Thomas, Frédéric; Thongrungkiat, Supatra; Rabilloud, Thierry; Boulanger, Nathalie; Biron, David G; Missé, Dorothée

    2012-12-01

    Vector-borne diseases (VBDs) are defined as infectious diseases of humans and animals caused by pathogenic agents such as viruses, protists, bacteria, and helminths transmitted by the bite of blood-feeding arthropod (BFA) vectors. VBDs represent a major public health threat in endemic areas, generally subtropical zones, and many are considered to be neglected diseases. Genome sequencing of some arthropod vectors as well as modern proteomic and genomic technologies are expanding our knowledge of arthropod-pathogen interactions. This review describes the proteomic approaches that have been used to investigate diverse biological questions about arthropod vectors, including the interplay between vectors and pathogens. Proteomic studies have identified proteins and biochemical pathways that may be involved in molecular crosstalk in BFA-pathogen associations. Future work can build upon this promising start and functional analyses coupled with interactome bioassays will be carried out to investigate the role of candidate peptides and proteins in BFA-human pathogen associations. Dissection of the host-pathogen interactome will be key to understanding the strategies and biochemical pathways used by BFAs to cope with pathogens.

  14. Selected examples of dispersal of arthropods associated with agricultural crop and animal production

    NASA Technical Reports Server (NTRS)

    Henneberry, T. J.

    1979-01-01

    The economic importance of arthropods in agricultural production systems and the possibilities of using dispersal behavior to develop and manipulate control are examined. Examples of long and short distance dispersal of economic insect pests and beneficial species from cool season host reservoirs and overwintering sites are presented. Significant dispersal of these species often occurring during crop and animal production is discussed.

  15. Arthropods, plants, and transmission lines in Arizona: secondary succession in a Sonoran Desert habitat

    SciTech Connect

    Johnson, C.D.; Ditsworth, T.M.; Beley, J.R.

    1981-09-01

    Overall arthropod densities were low at this site, but the arthropod densities on the disturbed areas appeared to be enhanced after several years. No taxa were found to be statistically different in density between control and disturbed plots. Diversity decreased on the disturbed area after construction. Arthropod community similarity (C) was lower after construction, but C values appear to be related to presence or absence of annual herbs and grasses and not to total cover. Except for globe mallow, there were no pioneer plant species on the experimental plot. Effects of powerline construction on the experimental plant community were a brief reduction in total cover and a slight increase in cover of herbs and annual grasses. The 1976 and 1977 samples exhibit comparable cover values of these plants on both experimental and control plots. The dominant arthropod taxa on the experimental area (especially Thysanoptera, Cicadellidae, Coccinellidae, and Melyridae) appear to be responding numerically to the annual herbs and grasses which are becoming established on the plot.

  16. The value of urban vacant land to support arthropod biodiversity and ecosystem services.

    PubMed

    Gardiner, Mary M; Burkman, Caitlin E; Prajzner, Scott P

    2013-12-01

    The expansion of urban areas is occurring globally, but not all city neighborhoods are gaining population. Because of economic decline and the recent foreclosure crisis, many U.S. cities are demolishing abandoned residential structures to create parcels of vacant land. In some cities, weak housing markets have, or will likely, recover in the near term, and these parcels will be redeveloped. However, in other cities, large numbers of abandoned parcels have no significant market value and no likelihood of near-term redevelopment. The creation of these vacated green spaces could offer opportunities to preserve declining species, restore ecosystem functions, and support diverse ecosystem services. Arthropods are an important indicator of the ability of urban vacant land to serve multiple functions, from conservation to food production. Across Europe, vacant lands have been found to support a diversity of rare species, and similar examinations of arthropods within this habitat are underway in the United States. In addition, using vacant land as a resource for local food production is growing rapidly worldwide. Arthropods play key roles in the sustainability of food production in cities, and land conversion to farming has been found to influence their community composition and function. A greater focus on quantifying the current ecological value of vacant land and further assessment of how changes in its ecosystem management affect biodiversity and ecosystem processes is clearly needed. Herein, we specifically focus on the role of arthropods in addressing these priorities to advance our ecological understanding of the functional role of vacant land habitats in cities.

  17. Removing external DNA decontamination from arthropod predators destined for molecular gut-content analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Field and laboratory experiments have demonstrated that mass-collection methods, such as sweep-netting, vacuum sampling, and foliage beating, can lead to contamination of fed pred...

  18. Removing external DNA contamination from arthropod predators destined for molecular gut-content analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Field and laboratory experiments have demonstrated that mass-collection methods, such as sweep-netting, vacuum sampling, and foliage beating, can lead to contamination of fed pred...

  19. A global meta-analytic contrast of cushion-plant effects on plants and on arthropods.

    PubMed

    Liczner, Amanda R; Lortie, Christopher J

    2014-01-01

    Nurse plant facilitation is a commonly reported plant-plant interaction and is an important factor influencing community structure in stressful environments. Cushion plants are an example of alpine nurse plants that modify microclimatic conditions within their canopies to create favourable environments for other plants. In this meta-analysis, the facilitative effects of cushion plants was expanded from previous syntheses of the topic and the relative strength of facilitation for other plants and for arthropods were compared globally.The abundance, diversity, and species presence/absence effect size estimates were tested as plant responses to nurse plants and a composite measure was tested for arthropods. The strength of facilitation was on average three times greater for arthropods relative to all plant responses to cushions. Plant species presence, i.e., frequency of occurrence, was not enhanced by nurse-plants. Cushion plants nonetheless acted as nurse plants for both plants and arthropods in most alpine contexts globally, and although responses by other plant species currently dominate the facilitation literature, preliminary synthesis of the evidence suggests that the potential impacts of nurses may be even greater for other trophic levels.

  20. Arthropod food web restoration following removal of an invasive wetland plant.

    PubMed

    Gratton, Claudio; Denno, Robert F

    2006-04-01

    Restoration of habitats impacted by invasive plants is becoming an increasingly important tool in the management of native biodiversity, though most studies do not go beyond monitoring the abundance of particular taxonomic groups, such as the return of native vegetation. Yet, the reestablishment of trophic interactions among organisms in restored habitats is equally important if we are to monitor and understand how ecosystems recover. This study examined whether food web interactions among arthropods (as inferred by abundance of naturally occurring stable isotopes of C [delta13C] and N [delta15N]) were reestablished in the restoration of a coastal Spartina alterniflora salt marsh that had been invaded by Phragmites australis. From patterns of C and N stable isotopes we infer that trophic interactions among arthropods in the native salt marsh habitats are characterized by reliance on the dominant marsh plant Spartina as a basal resource. Herbivores such as delphacid planthoppers and mirid bugs have isotope signatures characteristic of Spartina, and predatory arthropods such as dolicopodid flies and spiders likewise have delta13C and delta15N signatures typical of Spartina-derived resources (approximately -13 per thousand and 10 per thousand, respectively). Stable isotope patterns also suggest that the invasion of Phragmites into salt marshes and displacement of Spartina significantly alter arthropod food web interactions. Arthropods in Phragmites-dominated sites have delta13C isotope values between -18 per thousand and -20 per thousand, suggesting reliance on detritus and/or benthic microalgae as basal resources and not on Phragmites, which has a delta13C approximately -26 per thousand. Since most Phragmites herbivores are either feeding internally or are rare transients from nearby Spartina, these resources do not provide significant prey resources for other arthropod consumers. Rather, predator isotope signatures in the invaded habitats indicate dependence on