Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison
2015-06-05
Zirconia implant and 4x11.5 Titanium implant placed in artificial bone ( polyurethane foam ) at .08 rotations /sec…………………………………28 viii...measurements as they relate to primary Implant Stability. Artificial Bone made of solid ridged polyurethane foam was used as an alternative test...30 pound per cubic foot solid rigid polyurethane blocks used to substitute human cancellous bone
2011-01-01
Background The different treatment strategies for bone cysts in children are often associated with persistence and high recurrence rates of the lesions. The safety and clinical outcomes of a combined mechanical and biological treatment with elastic intramedullary nailing, artificial bone substitute and autologous platelet rich plasma are evaluated. Methods From 02/07 to 01/09 we offered all children with bone cysts the treatment combination of elastic intramedullary nailing (ESIN), artificial bone substitute (Orthoss®) and autologous platelet rich plasma, concentrated by the Gravitational Platelet Separation (GPS®) - System. All patients were reviewed radiologically for one year following the removal of the intramedullary nailing, which was possible because of cyst obliteration. Results A cohort of 12 children (4 girls, 8 boys) was recruited. The mean patient age was 11.4 years (range 7-15 years). The bone defects (ten humeral, two femoral) included eight juvenile and four aneurysmal bone cysts. Five patients suffered from persistent cysts following earlier unsuccessful treatment of humeral bone cyst after pathologic fracture; the other seven presented with acute pathologic fractures. No peri- or postoperative complications occurred. The radiographic findings showed a total resolution of the cysts in ten cases (Capanna Grade 1); in two cases a small residual cyst remained (Capanna Grade 2). The intramedullary nails were removed six to twelve months (mean 7.7) after the operation; in one case, a fourteen year old boy (Capanna Grade 2), required a further application of GPS® and Orthoss® to reach a total resolution of the cyst. At follow-up (20-41 months, mean 31.8 months) all patients showed very good functional results and had returned to sporting activity. No refracture occurred, no further procedure was necessary. Conclusions The combination of elastic intramedullary nailing, artificial bone substitute and autologous platelet rich plasma (GPS®) enhances the treatment of bone cysts in children, with no resulting complications. PMID:21314981
Pietsch, Arnold P; Raith, Stefan; Ode, Jan-Eric; Teichmann, Jan; Lethaus, Bernd; Möhlhenrich, Stephan C; Hölzle, Frank; Duda, Georg N; Steiner, Timm
2016-06-01
The goal of this study was to determine a combination of screw and transplantation type that offers optimal primary stability for reconstructive surgery. Fibular, iliac crest, and scapular transplants were tested along with artificial bone substrate. Six different kinds of bone screws (Medartis(©)) were compared, each type utilized with one of six specimens from human transplants (n = 6). Controlled screw-in-tests were performed and the required torque was protocolled. Subsequently, pull-out-tests were executed to determine the retention forces. The artificial bone substitute material showed significantly higher retention forces than real bone samples. The self-drilling screws achieved the significantly highest retention values in the synthetic bone substitute material. Cancellous screws achieved the highest retention in the fibular transplants, while self-drilling and cancellous screws demonstrated better retention than cortical screws in the iliac crest. In the scapular graft, no significant differences were found between the screw types. In comparison to the human transplant types, the cortical screws showed the significantly highest values in the fibula and the lowest values in the iliac crest. The best retention was found in the combination of cancellous screws with fibular graft (514.8 N + -252.3 N). For the flat bones (i.e., scapular and illiac crest) we recommend the cancellous screws. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Polymeric scaffolds as stem cell carriers in bone repair.
Rossi, Filippo; Santoro, Marco; Perale, Giuseppe
2015-10-01
Although bone has a high potential to regenerate itself after damage and injury, the efficacious repair of large bone defects resulting from resection, trauma or non-union fractures still requires the implantation of bone grafts. Materials science, in conjunction with biotechnology, can satisfy these needs by developing artificial bones, synthetic substitutes and organ implants. In particular, recent advances in polymer science have provided several innovations, underlying the increasing importance of macromolecules in this field. To address the increasing need for improved bone substitutes, tissue engineering seeks to create synthetic, three-dimensional scaffolds made from polymeric materials, incorporating stem cells and growth factors, to induce new bone tissue formation. Polymeric materials have shown a great affinity for cell transplantation and differentiation and, moreover, their structure can be tuned in order to maintain an adequate mechanical resistance and contemporarily be fully bioresorbable. This review emphasizes recent progress in polymer science that allows relaible polymeric scaffolds to be synthesized for stem cell growth in bone regeneration. Copyright © 2013 John Wiley & Sons, Ltd.
Efficacy of different bone volume expanders for augmenting lumbar fusions.
Epstein, Nancy E
2008-01-01
A wide variety of bone volume expanders are being used in performing posterolateral lumbar noninstrumented and instrumented lumbar fusions. This article presents a review of their efficacy based on fusion rates, complications, and outcomes. Lumbar noninstrumented and instrumented fusions frequently use laminar autografts and different bone graft expanders. This review presents the utility of multiple forms/ratios of DBMs containing allografts. It also discusses the efficacy of artificial bone graft substitutes, including HA and B-TCP. Dynamic x-ray and/or CT examinations were used to document fusion in most series. Outcomes were variously assessed using Odom's criteria or different outcome questionnaires (Oswestry Questionnaire, SF-36, Dallas Pain Questionnaire, and/or Low Back Pain Rating Scale). Performing noninstrumented and instrumented lumbar posterolateral fusions resulted in comparable fusion rates in many series. Similar outcomes were also documented based on Odom's criteria or the multiple patient-based questionnaires. However, in some studies, the addition of spinal instrumentation increased the reoperation rate, operative time, blood loss, and cost. Various forms of DBMs, applied in different ratios to autografts, effectively supplemented spinal fusions in animal models and patient series. beta-Tricalcium phosphate, which is used to augment autograft fusions addressing idiopathic scoliosis or lumbar disease, also proved to be effective. Different types of bone volume expanders, including various forms of allograft-based DBMs, and artificial bone graft substitutes (HA and B-TCP) effectively promote posterolateral lumbar noninstrumented and instrumented fusions when added to autografts.
Fabrication of porous low crystalline calcite block by carbonation of calcium hydroxide compact.
Matsuya, Shigeki; Lin, Xin; Udoh, Koh-ichi; Nakagawa, Masaharu; Shimogoryo, Ryoji; Terada, Yoshihiro; Ishikawa, Kunio
2007-07-01
Calcium carbonate (CaCO(3)) has been widely used as a bone substitute material because of its excellent tissue response and good resorbability. In this experimental study, we propose a new method obtaining porous CaCO(3) monolith for an artificial bone substitute. In the method, calcium hydroxide compacts were exposed to carbon dioxide saturated with water vapor at room temperature. Carbonation completed within 3 days and calcite was the only product. The mechanical strength of CaCO(3) monolith increased with carbonation period and molding pressure. Development of mechanical strength proceeded through two steps; the first rapid increase by bonding with calcite layer formed at the surface of calcium hydroxide particles and the latter increase by the full conversion of calcium hydroxide to calcite. The latter process was thought to be controlled by the diffusion of CO(2) through micropores in the surface calcite layer. Porosity of calcite blocks thus prepared had 36.8-48.1% depending on molding pressure between 1 MPa and 5 MPa. We concluded that the present method may be useful for the preparation of bone substitutes or the preparation of source material for bone substitutes since this method succeeded in fabricating a low-crystalline, and thus a highly reactive, porous calcite block.
Ishikawa, Kunio; Arifta, Tya Indah; Hayashi, Koichiro; Tsuru, Kanji
2018-03-26
Carbonate apatite (CO 3 Ap) blocks have attracted considerable attention as an artificial bone substitute material because CO 3 Ap is a component of and shares properties with bone, including high osteoconductivity and replacement by bone similar to autografts. In this study, we fabricated an interconnected porous CO 3 Ap block using α-tricalcium phosphate (TCP) spheres and evaluated the tissue response to this material in a rabbit tibial bone defect model. Interconnected porous α-TCP, the precursor of interconnected porous CO 3 Ap, could not be fabricated directly by sintering α-TCP spheres. It was therefore made via a setting reaction with α-TCP spheres, yielding interconnected porous calcium-deficient hydroxyapatite that was subjected to heat treatment. Immersing the interconnected porous α-TCP in Na-CO 3 -PO 4 solution produced CO 3 Ap, which retained the interconnected porous structure after the dissolution-precipitation reaction. The diametral tensile strength and porosity of the porous CO 3 Ap were 1.8 ± 0.4 MPa and 55% ± 3.2%, respectively. Both porous and dense (control) CO 3 Ap showed excellent tissue response and good osteoconductivity. At 4 weeks after surgery, approximately 15% ± 4.9% of the tibial bone defect was filled with new bone when reconstruction was performed using porous CO 3 Ap; this amount was five times greater than that obtained with dense CO 3 Ap. At 12 weeks after surgery, for porous CO 3 Ap, approximately 47% of the defect was filled with new bone as compared to 16% for dense CO 3 Ap. Thus, the interconnected porous CO 3 Ap block is a promising artificial bone substitute material for the treatment of bone defects caused by large fractures or bone tumor resection. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.
Artificial organs versus regenerative medicine: is it true?
Nosé, Yukihiko; Okubo, Hisashi
2003-09-01
Individuals engaged in the fields of artificial kidney and artificial heart have often mistakenly stated that "the era of artificial organs is over; regenerative medicine is the future." Contrarily, we do not believe artificial organs and regenerative medicine are different medical technologies. As a matter of fact, artificial organs developed during the last 50 years have been used as a bridge to regeneration. The only difference between regenerative medicine and artificial organs is that artificial organs for the bridge to regeneration promote tissue regeneration in situ, instead of outside the body (for example, vascular prostheses, neuroprostheses, bladder substitutes, skin prostheses, bone prostheses, cartilage prostheses, ligament prostheses, etc.). All of these artificial organs are successful because tissue regeneration over a man-made prosthesis is established inside the patient's body (artificial organs to support regeneration). Another usage of the group of artificial organs for the bridge to regeneration is to sustain the functions of the patient's diseased organs during the regeneration process of the body's healthy tissues and/or organs. This particular group includes artificial kidney, hepatic assist, respiratory assist, and circulatory assist. Proof of regeneration of these healthy tissues and/or organs is demonstrated in the short-term recovery of end-stage organ failure patients (artificial organs for bridge to regeneration). A third group of artificial organs for the bridge to regeneration accelerates the regenerating process of the patient's healthy tissues and organs. This group includes neurostimulators, artificial blood (red cells) blood oxygenators, and plasmapheresis devices, including hemodiafiltrators. So-called "therapeutic artificial organs" fall into this category (artificial organs to accelerate regeneration). Thus, almost all of today's artificial organs are useful in the bridge to regeneration of healthy natural tissues and organs. It does not matter whether these tissues are cultivated inside or outside the patient's body. Thus, we strongly believe in the need for joint development programs between artificial organ technologies and regenerative medicine technologies. In particular, the importance of using both man-made substitute organ technologies and natural tissue-derived substitute organ technologies is stressed for improved medical care in the future.
Experimental and computational studies on the femoral fracture risk for advanced core decompression.
Tran, T N; Warwas, S; Haversath, M; Classen, T; Hohn, H P; Jäger, M; Kowalczyk, W; Landgraeber, S
2014-04-01
Two questions are often addressed by orthopedists relating to core decompression procedure: 1) Is the core decompression procedure associated with a considerable lack of structural support of the bone? and 2) Is there an optimal region for the surgical entrance point for which the fracture risk would be lowest? As bioresorbable bone substitutes become more and more common and core decompression has been described in combination with them, the current study takes this into account. Finite element model of a femur treated by core decompression with bone substitute was simulated and analyzed. In-vitro compression testing of femora was used to confirm finite element results. The results showed that for core decompression with standard drilling in combination with artificial bone substitute refilling, daily activities (normal walking and walking downstairs) are not risky for femoral fracture. The femoral fracture risk increased successively when the entrance point is located further distal. The critical value of the deviation of the entrance point to a more distal part is about 20mm. The study findings demonstrate that optimal entrance point should locate on the proximal subtrochanteric region in order to reduce the subtrochanteric fracture risk. Furthermore the consistent results of finite element and in-vitro testing imply that the simulations are sufficient. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rentsch, Barbe; Hofmann, Andre; Breier, Annette; Rentsch, Claudia; Scharnweber, Dieter
2009-10-01
The aim of this study was to evaluate an embroidered polycaprolactone-co-lactide (trade name PCL) scaffold for the application in bone tissue engineering. The surface of the PCL scaffolds was hydrolyzed with NaOH and coated with collagen I (coll I) and chondroitin sulfate (CS). It was investigated if a change of the surface properties and the application of coll I and CS could promote cell adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSC). The porosity (80%) and pore size (0.2-1 mm) of the scaffold could be controlled by embroidery technique and should be suitable for bone ingrowth. The treatment with NaOH made the polymer surface more hydrophilic (water contact angle dropped to 25%), enhanced the coll I adsorption (up to 15%) and the cell attachment (two times). The coll I coated scaffold improved cell attachment and proliferation (three times). CS, as part of the artificial matrix, could induce the osteogenic differentiation of hMSC without other differentiation additives. The investigated scaffolds could act not just as temporary matrix for cell migration, proliferation, and differentiation in bone tissue engineering but also have a great potential as bioartificial bone substitute.
Advances in bionanomaterials for bone tissue engineering.
Scott, Timothy G; Blackburn, Gary; Ashley, Michael; Bayer, Ilker S; Ghosh, Anindya; Biris, Alexandru S; Biswas, Abhijit
2013-01-01
Bone is a specialized form of connective tissue that forms the skeleton of the body and is built at the nano and microscale levels as a multi-component composite material consisting of a hard inorganic phase (minerals) in an elastic, dense organic network. Mimicking bone structure and its properties present an important frontier in the fields of nanotechnology, materials science and bone tissue engineering, given the complex morphology of this tissue. There has been a growing interest in developing artificial bone-mimetic nanomaterials with controllable mineral content, nanostructure, chemistry for bone, cartilage tissue engineering and substitutes. This review describes recent advances in bionanomaterials for bone tissue engineering including developments in soft tissue engineering. The significance and basic process of bone tissue engineering along with different bionanomaterial bone scaffolds made of nanocomposites and nanostructured biopolymers/bioceramics and the prerequisite biomechanical functions are described. It also covers latest developments in soft-tissue reconstruction and replacement. Finally, perspectives on the future direction in nanotechnology-enabled bone tissue engineering are presented.
NASA Astrophysics Data System (ADS)
Bian, Weiguo; Qin, Lian; Li, Dichen; Wang, Jin; Jin, Zhongmin
2010-09-01
The artificial biodegradable osteochondral construct is one of mostly promising lifetime substitute in the joint replacement. And the complex hierarchical structure of natural joint is important in developing the osteochondral construct. However, the architecture features of the interface between cartilage and bone, in particular those at the micro-and nano-structural level, remain poorly understood. This paper investigates these structural data of the cartilage-bone interface by micro computerized tomography (μCT) and Scanning Electron Microscope (SEM). The result of μCT shows that important bone parameters and the density of articular cartilage are all related to the position in the hierarchical structure. The conjunctions of bone and cartilage were defined by SEM. All of the study results would be useful for the design of osteochondral construct further manufactured by nano-tech. A three-dimensional model with gradient porous structure is constructed in the environment of Pro/ENGINEERING software.
Shariff, Khairul Anuar; Tsuru, Kanji; Ishikawa, Kunio
2017-06-01
β-Tricalcium phosphate (β-TCP) has attracted much attention as an artificial bone substitute owing to its biocompatibility and osteoconductivity. In this study, osteoconductivity of β-TCP bone substitute was enhanced without using growth factors or cells. Dicalcium phosphate dihydrate (DCPD), which is known to possess the highest solubility among calcium phosphates, was coated on β-TCP granules by exposing their surface with acidic calcium phosphate solution. The amount of coated DCPD was regulated by changing the reaction time between β-TCP granules and acidic calcium phosphate solution. Histomorphometry analysis obtained from histological results revealed that the approximately 10mol% DCPD-coated β-TCP granules showed the largest new bone formation compared to DCPD-free β-TCP granules, approximately 2.5mol% DCPD-coated β-TCP granules, or approximately 27mol% DCPD-coated β-TCP granules after 2 and 4weeks of implantation. Based on this finding, we demonstrate that the osteoconductivity of β-TCP granules could be improved by coating their surface with an appropriate amount of DCPD. Copyright © 2017 Elsevier B.V. All rights reserved.
Calcium Orthophosphates in Nature, Biology and Medicine
Dorozhkin, Sergey V.
2009-01-01
The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. These materials are of the special significance because they represent the inorganic part of major normal (bones, teeth and dear antlers) and pathological (i.e. those appearing due to various diseases) calcified tissues of mammals. Due to a great chemical similarity with the biological calcified tissues, many calcium orthophosphates possess remarkable biocompatibility and bioactivity. Materials scientists use this property extensively to construct artificial bone grafts that are either entirely made of or only surface-coated with the biologically relevant calcium ortho-phosphates. For example, self-setting hydraulic cements made of calcium orthophosphates are helpful in bone repair, while titanium substitutes covered by a surface layer of calcium orthophosphates are used for hip joint endoprostheses and as tooth substitutes. Porous scaffolds made of calcium orthophosphates are very promising tools for tissue engineering applications. In addition, technical grade calcium orthophosphates are very popular mineral fertilizers. Thus ere calcium orthophosphates are of great significance for humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Fabrication of porous calcite using chopped nylon fiber and its evaluation using rats.
Ishikawa, Kunio; Tram, Nguyen Xuan Thanh; Tsuru, Kanji; Toita, Riki
2015-02-01
Although porous calcite has attracted attention as bone substitutes, limited studies have been made so far. In the present study, porous calcite block was fabricated by introducing chopped nylon fiber as porogen. Ca(OH)2 powder containing 10 wt% chopped nylon fiber was compacted at 150 MPa, and sintered to burn out the fiber and to carbonate the Ca(OH)2 under stream of 1:2 O2-CO2. Sintering of Ca(OH)2 at 750 °C or lower temperature resulted in incomplete burning out of the fiber whereas sintering at 800 °C or higher temperature resulted in the formation of CaO due to the thermal decomposition of Ca(OH)2. However, sintering at 770 °C resulted in complete burning out of the fiber and complete carbonation of Ca(OH)2 to calcite without forming CaO. Macro- and micro-porosities of the porous calcite were approximately 23 and 16%, respectively. Diameter of the macropores was approximately 100 μm which is suitable for bone tissue penetration. Porous calcite block fabricated by this method exhibited good tissue response when implanted in the bone defect in femur of 12-weeks-old rat. Four weeks after implantation, bone bonded on the surface of calcite. Furthermore, bone tissue penetrated interior to the macropore at 8 weeks. These results demonstrated the good potential value of porous calcite as artificial bone substitutes.
Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction
Chiara, Gardin; Letizia, Ferroni; Lorenzo, Favero; Edoardo, Stellini; Diego, Stomaci; Stefano, Sivolella; Eriberto, Bressan; Barbara, Zavan
2012-01-01
Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM) of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs) from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering. PMID:22312283
[Preparation of nano-nacre artificial bone].
Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying
2008-12-01
To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.
Saijo, Hideto; Igawa, Kazuyo; Kanno, Yuki; Mori, Yoshiyuki; Kondo, Kayoko; Shimizu, Koutaro; Suzuki, Shigeki; Chikazu, Daichi; Iino, Mitsuki; Anzai, Masahiro; Sasaki, Nobuo; Chung, Ung-il; Takato, Tsuyoshi
2009-01-01
Ideally, artificial bones should be dimensionally compatible with deformities, and be biodegradable and osteoconductive; however, there are no artificial bones developed to date that satisfy these requirements. We fabricated novel custom-made artificial bones from alpha-tricalcium phosphate powder using an inkjet printer and implanted them in ten patients with maxillofacial deformities. The artificial bones had dimensional compatibility in all the patients. The operation time was reduced due to minimal need for size adjustment and fixing manipulation. The postsurgical computed tomography analysis detected partial union between the artificial bones and host bone tissues. There were no serious adverse reactions. These findings provide support for further clinical studies of the inkjet-printed custom-made artificial bones.
Xu, Ning; Ye, Xiaojian; Wei, Daixu; Zhong, Jian; Chen, Yuyun; Xu, Guohua; He, Dannong
2014-09-10
The medical community has expressed significant interest in the development of new types of artificial bones that mimic natural bones. In this study, computed tomography (CT)-guided fused deposition modeling (FDM) was employed to fabricate polycaprolactone (PCL)/hydroxyapatite (HA) and PCL 3D artificial bones to mimic natural goat femurs. The in vitro mechanical properties, in vitro cell biocompatibility, and in vivo performance of the artificial bones in a long load-bearing goat femur bone segmental defect model were studied. All of the results indicate that CT-guided FDM is a simple, convenient, relatively low-cost method that is suitable for fabricating natural bonelike artificial bones. Moreover, PCL/HA 3D artificial bones prepared by CT-guided FDM have more close mechanics to natural bone, good in vitro cell biocompatibility, biodegradation ability, and appropriate in vivo new bone formation ability. Therefore, PCL/HA 3D artificial bones could be potentially be of use in the treatment of patients with clinical bone defects.
PDGFBB promotes PDGFR{alpha}-positive cell migration into artificial bone in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Shigeyuki; Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582; Iwasaki, Ryotaro
2012-05-18
Highlights: Black-Right-Pointing-Pointer We examined effects of PDGFBB in PDGFR{alpha} positive cell migration in artificial bones. Black-Right-Pointing-Pointer PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. Black-Right-Pointing-Pointer PDGFBB promoted PDGFR{alpha} positive cell migration into artificial bones but not osteoblast proliferation. Black-Right-Pointing-Pointer PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure.more » Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor {alpha} (PDGFR{alpha})-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGF{beta}) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.« less
Beta-palmitate - a natural component of human milk in supplemental milk formulas.
Havlicekova, Zuzana; Jesenak, Milos; Banovcin, Peter; Kuchta, Milan
2016-03-17
The composition and function of human milk is unique and gives a basis for the development of modern artificial milk formulas that can provide an appropriate substitute for non-breastfed infants. Although human milk is not fully substitutable, modern milk formulas are attempting to mimic human milk and partially substitute its complex biological positive effects on infants. Besides the immunomodulatory factors from human milk, research has been focused on the composition and structure of human milk fat with a high content of β-palmitic acid (sn-2 palmitic acid, β-palmitate). According to the available studies, increasing the content of β-palmitate added to milk formulas promotes several beneficial physiological functions. β-palmitate positively influences fatty acid metabolism, increases calcium absorption, improves bone matrix quality and the stool consistency, and has a positive effect on the development of the intestinal microbiome.
In vitro control of human bone marrow stromal cells for bone tissue engineering.
Anselme, Karine; Broux, Odile; Noel, Benoit; Bouxin, Bertrand; Bascoulergue, Gerard; Dudermel, Anne-France; Bianchi, Fabien; Jeanfils, Joseph; Hardouin, Pierre
2002-12-01
For the clinical application of cultured human mesenchymal stem cells (MSCs), cells must have minimal contact with fetal calf serum (FCS) because it might be a potential vector for contamination by adventitious agents. The use of human plasma and serum for clinical applications also continues to give rise to considerable concerns with respect to the transmission of known and unknown human infectious agents. With the objective of clinical applications of cultured human MSCs, we tested the ability of autologous plasma, AB human serum, FCS, and artificial serum substitutes containing animal-derived proteins (Ultroser G) or vegetable-derived proteins (Prolifix S6) to permit their growth and differentiation in vitro. To conserve as much autologous plasma as possible, we attempted to mix it at decreasing concentrations with the serum substitute containing vegetable-derived mitogenic factors. Under control conditions, by day 10 all the fibroblast colony-forming units (CFU-Fs) were alkaline phosphatase (ALP) positive. However, their number and size were highly variable among donors. Better CFU-F formation was obtained with Ultroser G, and with human AB serum and autologous plasma mixed at, respectively, 5 and 1% with Prolifix S6. The effects of these mixtures on CFU-F formation demonstrate synergy, with the human serum or plasma supplying the factors that favor differentiation of MSCs while Prolifix S6 supplies the mitogenic factors. Finally, we demonstrated the possibility of controlling human MSC growth and differentiation in vitro. Notably, by means of a minimal quantity of human serum or human plasma mixed with a new serum substitute containing vegetable-derived proteins, we displayed growth and differentiation of human MSCs comparable to that obtained with FCS or serum substitutes containing animal-derived proteins. These results will have crucial significance for future applications of cultured human MSCs in bone tissue engineering.
Fernandez de Grado, Gabriel; Keller, Laetitia; Idoux-Gillet, Ysia; Wagner, Quentin; Musset, Anne-Marie; Benkirane-Jessel, Nadia; Bornert, Fabien; Offner, Damien
2018-01-01
Bone replacement might have been practiced for centuries with various materials of natural origin, but had rarely met success until the late 19th century. Nowadays, many different bone substitutes can be used. They can be either derived from biological products such as demineralized bone matrix, platelet-rich plasma, hydroxyapatite, adjunction of growth factors (like bone morphogenetic protein) or synthetic such as calcium sulfate, tri-calcium phosphate ceramics, bioactive glasses, or polymer-based substitutes. All these substitutes are not suitable for every clinical use, and they have to be chosen selectively depending on their purpose. Thus, this review aims to highlight the principal characteristics of the most commonly used bone substitutes and to give some directions concerning their clinical use, as spine fusion, open-wedge tibial osteotomy, long bone fracture, oral and maxillofacial surgery, or periodontal treatments. However, the main limitations to bone substitutes use remain the management of large defects and the lack of vascularization in their central part, which is likely to appear following their utilization. In the field of bone tissue engineering, developing porous synthetic substitutes able to support a faster and a wider vascularization within their structure seems to be a promising way of research. PMID:29899969
Zhu, Minghua; Zeng, Yi; Sun, Tao; Peng, Qiang
2005-03-15
To investigate the osteogenic potential of four kinds of new bioactive ceramics combined with bovine bone morphogenetic proteins (BMP) and to explore the feasibility of using compounds as bone substitute material. Ninety-six rats were divided into 4 groups (24 in each group). BMP was combined with hydroxyapatite (HA), tricalcium phosphate (TCP), fluoridated-HA (FHA), and collagen-HA(CHA) respectively. The left thighs of the rats implanted with HA/BMP, TCP/BMP, FHA/BMP, and CHA/BMP were used as experimental groups. The right thighs of the rats implanted with HA, TCP, CHA, and decalcified dentin matrix (DDM) were used as control groups. The rats were sacrificed 1, 3, 5 and 7 weeks after implantation and bone induction was estimated by alkaline phosphatase (ALP), phosphorus (P), and total protein (TP) measurement. The histological observation and electronic microscope scanning of the implants were also made. The cartilage growth in the 4 experimental groups and the control group implanted with DDM was observed 1 week after operation and fibrous connective tissues were observed in the other 3 control groups. 3 weeks after implantation, lamellar bone with bone marrow and positive reaction in ALP stain were observed in the 4 experimental groups. No bone formation or positive reaction in ALP stain were observed in the control groups. The amount of ALP activity, P value, and new bone formation in the experimental groups were higher than those in the control group(P < 0.05). The amount of ALP activity, P value, and new bone formation in TCP/BMP group were higher than those in HA/BMP, CHA/BMP and FHA/BMP groups (P < 0.05). There was no significant difference in TP between the BMP treatment group and the control groups. From 5th to 7th week, new bone formation, histochemistry evaluation, and the level of ALP, P, TP value were as high as those in the 3rd week. New composite artificial bone of TCP/BMP, HA/BMP, CHA/BMP, and FHA/BMP all prove to be effective, but TCP/BMP is the most effective so that it is the most suitable biomaterial replacement of tissue.
Belouka, Sofia-Maria; Strietzel, Frank Peter
To compare the tissue composition of augmented sites after using two different synthetic bone substitute materials, nanocrystalline and nanoporous hydroxyapatite (HA), for sinus floor elevation and augmentation. Forty-four patients received 88 titanium screw implants (Camlog Promote plus) of 4.3-mm diameter and 11- or 13-mm length, placed simultaneously during sinus floor elevation and augmentation. Nanocrystalline (Ostim) or nanoporous (NanoBone) HA were used exclusively. Bone substitute materials and implant lengths were allocated by randomization. Bone biopsy specimens were obtained from the former area of the lateral access window at implant exposure during healing abutment placement after 6 months. Biopsy specimens were prepared and examined histologically and histomorphometrically. All implants were osseointegrated at the time of exposure. Clinically and histologically, no signs of inflammation in the augmented sites were present. The histomorphometric analysis of 44 biopsy specimens revealed 31.8% ± 11.6% newly formed bone for sites augmented with nanocrystalline HA and 34.6% ± 9.2% for nanoporous HA (P = .467). The proportion of remaining bone substitute material was 28.4% ± 18.6% and 30% ± 13%, respectively (P = .453). The proportion of soft tissue within the biopsy specimens was 39.9% ± 11.1% and 35.4% ± 6.8%, respectively (P = .064). No significant differences were found between the area fractions of bone, bone substitute material, and soft tissue concerning the bone substitute material utilized. Within the present study, both synthetic bone substitute materials, nanocrystalline and nanoporous HA, were found to support bone formation in sinus floor elevation and augmentation procedures by osteoconductivity. They were not completely resorbed after 6 months. The amounts of newly formed bone, soft tissue, and bone substitute material remnants were found to be similar, indicating that both materials are likewise suitable for sinus floor elevation and augmentation procedures.
Beladi, Faranak; Saber-Samandari, Samaneh; Saber-Samandari, Saeed
2017-06-01
In the past few decades, artificial graft materials for bone tissue engineering have gained much importance. In this study, novel porous 3D nanocomposite scaffolds composed of polyacrylamide grafted cellulose and hydroxyapatite were proposed. They were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD). The swelling behavior of the scaffolds was examined in both water and phosphate buffer saline (PBS) solution. The cytotoxicity of the scaffolds was determined by MTT assays on human fibroblast gum (HuGu) cells. Results showed that the nanocomposite scaffolds were highly porous with maximum porosity of 85.7% interconnected with a pore size of around 72-125μm. The results of cell culture experiments showed that the scaffolds extracts do not have cytotoxicity in any concentration. Obtained results suggested that the introduced scaffolds are comparable with the trabecular bone from the compositional, structural, and mechanical perspectives and have a great potential as a bone substitute. Copyright © 2017 Elsevier B.V. All rights reserved.
The manufacture of synthetic non-sintered and degradable bone grafting substitutes.
Gerike, W; Bienengräber, V; Henkel, K-O; Bayerlein, T; Proff, P; Gedrange, T; Gerber, Th
2006-02-01
A new synthetic bone grafting substitute (NanoBone, ARTOSS GmbH, Germany) is presented. This is produced by a new technique, the sol-gel-method. This bone grafting substitute consists of nanocrystalline hydroxyapatite (HA) and nanostructured silica (SiO2). By achieving a highly porous structure good osteoconductivity can be seen. In addition, the material will be completely biodegraded and new own bone is formed. It has been demonstrated that NanoBone is biodegraded by osteoclasts in a manner comparable to the natural bone remodelling process.
Hall, Deborah J; Turner, Thomas M; Urban, Robert M
2018-04-16
CaSO 4 /CaPO 4 -TCP bone graft substitute has been shown to be effective for treatment of bone lesion defects, but its mechanical, histological, and radiographic characteristics have not been studied in direct comparison with a conventional treatment such as cancellous allograft bone. Thirteen canines had a critical-size axial defect created bilaterally into the proximal humerus. CaSO 4 /CaPO 4 -TCP bone graft substitute (PRO-DENSE™, Wright Medical Technology) was injected into the defect in one humerus, and an equal volume of freeze-dried cancellous allograft bone chips was placed in the contralateral defect. The area fraction of new bone, residual graft, and fibrous tissue and the compressive strength and elastic modulus of bone within the defects were determined after 6, 13, or 26 weeks and correlated with radiographic changes. The data were analyzed using Friedman and Mann-Whitney tests. There was more bone in defects treated with the CaSO 4 /CaPO 4 -TCP bone graft substitute compared to defects treated with cancellous bone allograft at all three time points, and the difference at 13 weeks was significant (p = 0.025). The new bone was significantly stronger and stiffer in defects treated with the CaSO 4 /CaPO 4 -TCP bone graft substitute compared to defects treated with cancellous bone allograft at 13 (p = 0.046) and 26 weeks (p = 0.025). At 26 weeks, all defects treated with CaSO 4 /CaPO 4 -TCP bone graft substitute demonstrated complete healing with new bone, whereas healing was incomplete in all defects treated with cancellous allograft chips. The CaSO 4 /CaPO 4 -TCP bone graft substitute could provide faster and significantly stronger healing of bone lesions compared to the conventional treatment using freeze-dried cancellous allograft bone. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.
Novel microinjector for carrying bone substitutes for bone regeneration in periodontal diseases.
Tsai, Hsiao-Cheng; Li, Yi-Chen; Young, Tai-Horng; Chen, Min-Huey
2016-01-01
Traditionally, guide bone regeneration (GBR) was a widely used method for repairing bone lost from periodontal disease. There were some disadvantages associated with the GBR method, such as the need for a stable barrier membrane and a new creative cavity during the surgical process. To address these disadvantages, the purpose of this study was to evaluate a novel microinjector developed for dental applications. The microinjector was designed to carry bone graft substitutes to restore bone defects for bone regeneration in periodontal diseases. The device would be used to replace the GBR method. In this study, the injected force and ejected volume of substitutes (including air, water, and ethanol) were defined by Hooke's law (n = 3). The optimal particle size of bone graft substitutes was determined by measuring the recycle ratio of bone graft substitutes from the microinjector (n = 3). Furthermore, a novel agarose gel model was used to evaluate the feasibility of the microinjector. The current study found that the injected force was less than 0.4 N for obtaining the ejected volume of approximately 2 mL, and when the particle size of tricalcium phosphate (TCP) was smaller than 0.5 mm, 80% TCP could be ejected from the microinjector. Furthermore, by using an agarose model to simulate the periodontal soft tissue, it was also found that bone graft substitutes could be easily injected into the gel. The results confirmed the feasibility of this novel microinjector for dental applications to carry bone graft substitutes for the restoration of bone defects of periodontal disease. Copyright © 2015. Published by Elsevier B.V.
Artificial Blood Substitutes: First Steps on the Long Route to Clinical Utility
Moradi, Samira; Jahanian-Najafabadi, Ali; Roudkenar, Mehryar Habibi
2016-01-01
The 21st century is challenging for human beings. Increased population growth, population aging, generation of new infectious agents, and natural disasters are some threatening factors for the current state of blood transfusion. However, it seems that science and technology not only could overcome these challenges but also would turn many human dreams to reality in this regard. Scientists believe that one of the future evolutionary innovations could be artificial blood substitutes that might pave the way to a new era in transfusion medicine. In this review, recent status and progresses in artificial blood substitutes, focusing on red blood cells substitutes, are summarized. In addition, steps taken toward the development of artificial blood technology and some of their promises and hurdles will be highlighted. However, it must be noted that artificial blood is still at the preliminary stages of development, and to fulfill this dream, ie, to routinely transfuse artificial blood into human vessels, we still have to strengthen our knowledge and be patient. PMID:27812292
Reichert, Christoph; Götz, Werner; Reimann, Susanne; Keilig, Ludger; Hagner, Martin; Bourauel, Christoph; Jäger, Andreas
2013-03-01
To develop an in vitro assay for quantitative analysis of the degradation to which a bone substitute is exposed by osteoclasts. The aim of establishing this method was to improve the predictability of carrying out tooth movements via bone substitutes and to provide a basis for verification in exemplary clinical cases. After populating a bone substitute (NanoBone®; ArtOss, Germany) with osteoclastic cells, inductively-coupled mass spectrometry was used to evaluate changing calcium levels in the culture medium as a marker of resorption activity. It was observed that calcium levels increased substantially in the culture medium with the cells populating the bone substitute. This in vitro assay is a valid method that can assist clinicians in selecting the appropriate materials for certain patients. While tooth movements occurring through this material were successful, uncertainty about the approach will remain as long-term results are not available.
Development and in vitro examination of materials for osseointegration
NASA Astrophysics Data System (ADS)
Jalota, Sahil
Bone is a connective tissue with nanosized particles of carbonated apatitic calcium phosphate dispersed in a hydrated collagen matrix. With the ageing of the baby boomer population, an increasing number of people sustain bone fractures and defects. Hence, efforts are underway to develop materials to hasten the healing and repairing of such defects. These materials are termed as artificial bone substitutes. This study represents innovative techniques for development of bone implant materials and improving the existing substitute materials. Emphasis was on three different kinds of materials: Metals (titanium and alloys), Ceramics (calcium phosphates), and Polymers (collagen). The bioactivity of titanium and alloys, resorptivity of calcium phosphates and biocompatibility of collagen were the major issues with these materials. These issues are appropriately addressed in this dissertation. For titanium and alloys, biomimetic coating methodology was developed for uniformly and evenly coating 3-D titanium structures. Cracks were observed in these coatings and a protocol was developed to form crack-free biomimetic coatings. In calcium phosphates, increasing the resorption rate of HA (hydroxyapatite) and decreasing the resorption rate of beta-TCP (beta-tricalcium phosphate) were studied. HA-based ceramics were synthesized with Na+ and CO32- ions dopings, and development of biphasic mixtures of HA-beta-TCP and HA-Rhenanite was performed. Similarly, beta-TCP ceramics were synthesized with Zn 2+ ion doping and development of beta-TCP-HA biphasic mixtures was performed. In case of collagen, a biomimetic coating process was developed that decreased the time to coat the collagen substrates and also increased biocompatibility, as determined by the response of mouse osteoblasts.
Cao, Lei; Li, Xiaokang; Zhou, Xiaoshu; Li, Yong; Vecchio, Kenneth S; Yang, Lina; Cui, Wei; Yang, Rui; Zhu, Yue; Guo, Zheng; Zhang, Xing
2017-03-22
Sea urchin spines (Heterocentrotus mammillatus), with a hierarchical open-cell structure similar to that of human trabecular bone and superior mechanical property (compressive strength ∼43.4 MPa) suitable for machining to shape, were explored for potential applications of bone defect repair. Finite element analyses reveal that the compressive stress concentrates along the dense growth rings and dissipates through strut structures of the stereoms, indicating that the exquisite mesostructures play an important role in high strength-to-weight ratios. The fracture strength of magnesium-substituted tricalcium phosphate (β-TCMP) scaffolds produced by hydrothermal conversion of urchin spines is about 9.3 MPa, comparable to that of human trabecular bone. New bone forms along outer surfaces of β-TCMP scaffolds after implantation in rabbit femoral defects for one month and grows into the majority of the inner open-cell spaces postoperation in three months, showing tight interface between the scaffold and regenerative bone tissue. Fusion of beagle lumbar facet joints using a Ti-6Al-4V cage and β-TCMP scaffold can be completed within seven months with obvious biodegradation of the β-TCMP scaffold, which is nearly completely degraded and replaced by newly formed bone ten months after implantation. Thus, sea urchin spines suitable for machining to shape have advantages for production of biodegradable artificial grafts for bone defect repair.
Permeability study of cancellous bone and its idealised structures.
Syahrom, Ardiyansyah; Abdul Kadir, Mohammed Rafiq; Harun, Muhamad Nor; Öchsner, Andreas
2015-01-01
Artificial bone is a suitable alternative to autografts and allografts, however their use is still limited. Though there were numerous reports on their structural properties, permeability studies of artificial bones were comparably scarce. This study focused on the development of idealised, structured models of artificial cancellous bone and compared their permeability values with bone surface area and porosity. Cancellous bones from fresh bovine femur were extracted and cleaned following an established protocol. The samples were scanned using micro-computed tomography (μCT) and three-dimensional models of the cancellous bones were reconstructed for morphology study. Seven idealised and structured cancellous bone models were then developed and fabricated via rapid prototyping technique. A test-rig was developed and permeability tests were performed on the artificial and real cancellous bones. The results showed a linear correlation between the permeability and the porosity as well as the bone surface area. The plate-like idealised structure showed a similar value of permeability to the real cancellous bones. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Study on clinical application of nano-hydroxyapatite bone in bone defect repair.
Zhu, Weimin; Wang, Daping; Xiong, Jianyi; Liu, Jianquan; You, Wei; Huang, Jianghong; Duan, Li; Chen, Jielin; Zeng, Yanjun
2015-01-01
To study the clinical effect of bone defect treated with nano-hydroxyapatite(Nano-HA) artificial bone. From September 2009 to June 2012, 27 cases of bone defect were analyzed retrospectively. The position of bone defect included humerus, radius, ulna, femur, tibia and calcaneus. The range of bone defect was from 0.3 × 1.0 cm to 3 × 6.5 cm. Among them, there were 22 cases with fractures and 5 cases with tumors. All patients were treated with Nano-HA artificial bone. The ability of bone defect repair was evaluated by X-ray exams performed preoperatively and postoperatively. HSS scores were adopted for final evaluation at the latest follow-up. The patients were followed up from 11 to 26 months (average of 18.5 months). No general side effects occurred. X-ray photo showed an integrity interface between Nano-HA and bone. Primary healing was obtained in all cases without any complication. The Nano-HA artificial bone had a good biocompatibility and could be an ideal artificial bone in the reconstruction of bone defect.
NASA Astrophysics Data System (ADS)
Sutikno; Handayani, L.; Edi, S. S.; Susilo; Elvira
2018-03-01
The purpose of this research is to observe the mechanism and the rate of corrosion of artificial bone made of metal by using x-ray radiography technique. Artificial bones can be made of metallic materials and composites which are biomaterials. The most commonly used metal for bone graft is stainless steel. The interaction between artificial bone and human tissue will have important medical impacts that need to be observed and examined. This interaction can be a mechanical or chemical interaction. X-ray radiography technique is selected because it uses non-destructive method. This method is done by x-ray radiation exposure on the observed body part. The bone density and bone fracture can be seen on the resulted radiographic film or image on the monitor screen.
Osteointegration of porous absorbable bone substitutes: A systematic review of the literature.
Paulo, Maria Júlia Escanhoela; Dos Santos, Mariana Avelino; Cimatti, Bruno; Gava, Nelson Fabrício; Riberto, Marcelo; Engel, Edgard Eduard
2017-07-01
Biomaterials' structural characteristics and the addition of osteoinductors influence the osteointegration capacity of bone substitutes. This study aims to identify the characteristics of porous and resorbable bone substitutes that influence new bone formation. An Internet search for studies reporting new bone formation rates in bone defects filled with porous and resorbable substitutes was performed in duplicate using the PubMed, Web of Science, Scielo, and University of São Paulo Digital Library databases. Metaphyseal or calvarial bone defects 4 to 10 mm in diameter from various animal models were selected. New bone formation rates were collected from the histomorphometry or micro-CT data. The following variables were analyzed: animal model, bone region, defect diameter, follow-up time after implantation, basic substitute material, osteoinductor addition, pore size and porosity. Of 3,266 initially identified articles, 15 articles describing 32 experimental groups met the inclusion criteria. There were no differences between the groups in the experimental model characteristics, except for the follow-up time, which showed a very weak to moderate correlation with the rate of new bone formation. In terms of the biomaterial and structural characteristics, only porosity showed a significant influence on the rate of new bone formation. Higher porosity is related to higher new bone formation rates. The influence of other characteristics could not be identified, possibly due to the large variety of experimental models and methodologies used to estimate new bone formation rates. We suggest the inclusion of standard control groups in future experimental studies to compare biomaterials.
De Coster, Peter; Browaeys, Hilde; De Bruyn, Hugo
2011-03-01
Various grafting materials have been designed to minimize edentulous ridge volume loss following tooth extraction by encouraging new bone formation in healing sockets. BoneCeramic® is a composite of hydroxyapatite and bèta-tricalcium phosphate with pores of 100-500 microns. The aim of this study was to evaluate bone regeneration in healing sockets substituted with BoneCeramic® prior to implant procedures. Fifteen extraction sockets were substituted with BoneCeramic® and 14 sockets were left to heal naturally in 10 patients (mean age 59.6 years). Biopsies were collected only from the implant recipient sites during surgery after healing periods ranging from 6-74 weeks (mean 22). In total, 24 biopsies were available; 10 from substituted and 14 from naturally healed sites. In one site, the implant was not placed intentionally and, in four substituted sites, implant placement had to be postponed due to inappropriate healing, hence from five sites biopsies were not available. Histological sections were examined by transmitted light microscope. At the time of implant surgery, bone at substituted sites was softer than in controls, compromising initial implant stability. New bone formation at substituted sites was consistently poorer than in controls, presenting predominantly loose connective tissue and less woven bone. The use of BoneCeramic® as a grafting material in fresh extraction sockets appears to interfere with normal healing processes of the alveolar bone. On the basis of the present preliminary findings, its indication as a material for bone augmentation, when implant placement is considered within 6-38 weeks after extraction, should be revised. © 2009, Copyright the Authors. Journal Compilation © 2011, Wiley Periodicals, Inc.
Implant-retained craniofacial prostheses for facial defects
Federspil, Philipp A.
2012-01-01
Craniofacial prostheses, also known as epistheses, are artificial substitutes for facial defects. The breakthrough for rehabilitation of facial defects with implant-retained prostheses came with the development of the modern silicones and bone anchorage. Following the discovery of the osseointegration of titanium in the 1950s, dental implants have been made of titanium in the 1960s. In 1977, the first extraoral titanium implant was inserted in a patient. Later, various solitary extraoral implant systems were developed. Grouped implant systems have also been developed which may be placed more reliably in areas with low bone presentation, as in the nasal and orbital region, or the ideally pneumatised mastoid process. Today, even large facial prostheses may be securely retained. The classical atraumatic surgical technique has remained an unchanged prerequisite for successful implantation of any system. This review outlines the basic principles of osseointegration as well as the main features of extraoral implantology. PMID:22073096
Athanasiou, Vasilis T; Papachristou, Dionysios J; Panagopoulos, Andreas; Saridis, Alkis; Scopa, Chrisoula D; Megas, Panagiotis
2010-01-01
Different types of bone-graft substitutes have been developed and are on the market worldwide to eliminate the drawbacks of autogenous grafting. This experimental animal study was undertaken to evaluate the different histological properties of various bone graft substitutes utilized in this hospital. Ninety New Zealand white rabbits were divided into six groups of 15 animals. Under general anesthesia, a 4.5 mm-wide hole was drilled into both the lateral femoral condyles of each rabbit, for a total of 180 condyles for analysis. The bone defects were filled with various grafts, these being 1) autograft, 2) DBM crunch allograft (Grafton), 3) bovine cancellous bone xenograft (Lubboc), 4) calcium phosphate hydroxyapatite substitute (Ceraform), 5) calcium sulfate substitute (Osteoset), and 6) no filling (control). The animals were sacrificed at 1, 3, and 6 months after implantation and tissue samples from the implanted areas were processed for histological evaluation. A histological grading scale was designed to determine the different histological parameters of bone healing. The highest histological grades were achieved with the use of cancellous bone autograft. Bovine xenograft (Lubboc) was the second best in the histological scale grading. The other substitutes (Grafton, Ceraform, Osteoset) had similar scores but were inferior to both allograft and xenograft. Bovine xenograft showed better biological response than the other bone graft substitutes; however, more clinical studies are necessary to determine its overall effectiveness.
Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite
Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent
2014-01-01
Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments. PMID:25482413
Choi, Sungjin; Lee, Jongil; Igawa, Kazuyo; Suzuki, Shigeki; Mochizuki, Manabu; Nishimura, Ryohei; Chung, Ung-il; Sasaki, Nobuo
2011-12-01
Artificial bone implants are often incorporated with osteoinductive factors to facilitate early bone regeneration. Calcium phosphate, the main component in artificial bone implants, strongly binds these factors, and in a few cases, the incorporated proteins are not released from the implant under conditions of physiological pH, thereby leading to reduction in their osteoinductivity. In this study, we coated tailor-made bone implants with trehalose to facilitate the release of basic fibroblast growth factor (bFGF). In an in vitro study, mouse osteoblastic cells were separately cultured for 48 hr in a medium with a untreated implant (T-), trehalose-coated implant (T+), bFGF-incorporated implant (FT-), and bFGF-incorporated implant with trehalose coating (FT+). In the FT+ group, cell viability was significantly higher than that in the other groups (P<0.05). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed that trehalose effectively covered the surface of the artificial bone implant without affecting the crystallinity or the mechanical strength of the artificial bone implant. These results suggest that coating artificial bone implants with trehalose could limit the binding of bFGF to calcium phosphate.
Kuang, Guan-Ming; Yau, W P; Lu, William W; Chiu, K Y
2010-08-01
Anterior cruciate ligament reconstruction with a soft tissue autograft (hamstring autograft) has grown in popularity in the last 10 years. However, the issues of a relatively long healing time and an inferior histological healing result in terms of Sharpey-like fibers connection in soft tissue grafts are still unsolved. To obtain a promising outcome in the long run, prompt osteointegration of the tendon graft within the bone tunnel is essential. In recent decades, numerous methods have been reported to enhance osteointegration of soft tissue graft in the bone tunnel. In this article, we review the current literature in this research area, mainly focusing on strategies applied to the local bone tunnel environment. Biological strategies such as stem cell and gene transfer technology, as well as the local application of specific growth factors have been reported to yield exciting results. The use of biological bone substitute and physical stimulation also obtained promising results. Artificially engineered tissue has promise as a solution to the problem of donor site morbidity. Despite these encouraging results, the current available evidence is still experimental. Further clinical studies in terms of randomized control trial in the future should be conducted to extrapolate these basic science study findings into clinical practice.
Osteointegration of porous absorbable bone substitutes: A systematic review of the literature
Paulo, Maria Júlia Escanhoela; dos Santos, Mariana Avelino; Cimatti, Bruno; Gava, Nelson Fabrício; Riberto, Marcelo; Engel, Edgard Eduard
2017-01-01
Biomaterials’ structural characteristics and the addition of osteoinductors influence the osteointegration capacity of bone substitutes. This study aims to identify the characteristics of porous and resorbable bone substitutes that influence new bone formation. An Internet search for studies reporting new bone formation rates in bone defects filled with porous and resorbable substitutes was performed in duplicate using the PubMed, Web of Science, Scielo, and University of São Paulo Digital Library databases. Metaphyseal or calvarial bone defects 4 to 10 mm in diameter from various animal models were selected. New bone formation rates were collected from the histomorphometry or micro-CT data. The following variables were analyzed: animal model, bone region, defect diameter, follow-up time after implantation, basic substitute material, osteoinductor addition, pore size and porosity. Of 3,266 initially identified articles, 15 articles describing 32 experimental groups met the inclusion criteria. There were no differences between the groups in the experimental model characteristics, except for the follow-up time, which showed a very weak to moderate correlation with the rate of new bone formation. In terms of the biomaterial and structural characteristics, only porosity showed a significant influence on the rate of new bone formation. Higher porosity is related to higher new bone formation rates. The influence of other characteristics could not be identified, possibly due to the large variety of experimental models and methodologies used to estimate new bone formation rates. We suggest the inclusion of standard control groups in future experimental studies to compare biomaterials. PMID:28793006
Shakibaie-M, Behnam
2013-01-01
The aim of this study was to compare the effectiveness of two bone substitute materials for socket preservation after tooth extraction. Extraction sockets in 10 patients were filled with either inorganic bovine bone material (Bio-Oss) or with synthetic material consisting of hydroxyapatite and silicon dioxide (NanoBone). Extraction sockets without filling served as the control. The results demonstrate the effectiveness of the presented protocol for socket preservation and that the choice of a suitable bone substitute material is crucial. The dimensions of the alveolar ridge were significantly better preserved with Bio-Oss than with NanoBone or without treatment. Bio-Oss treatment resulted in better bone quality and quantity for successful implant placement.
Engineering bone tissue substitutes from human induced pluripotent stem cells.
de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja
2013-05-21
Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease.
Zhang, Yumin; Wang, Jianru; Wang, Jue; Niu, Xiaojun; Liu, Jianchun; Gao, Lan; Zhai, Xiaoyan; Chu, Kaibo
2015-12-01
Bone substitutes are used in wide range of orthopaedic application. An ideal bone substitute should exhibit superior osteoinductive and osteoconductive properties. Neither bio-derived materials nor synthetic materials can meet the needs of an ideal bone substitute. Preparation of composite materials is a promising way to improve properties of biomaterial. In this study, the porous poly lactic acid (PLA)/demineralized bone matrix (DBM) composite biomaterials prepared by supercritical CO2 technique were implanted to repair rabbit radius segmental bone defect. By comparing with PLA and bone autograft, the X-ray result and histological analysis showed the repair effect of PLA/DBM porous composite materials is significantly better than that of the PLA group and the blank control group, and is similar to autologous bone. The PLA/DBM can promote the healing of bone defects and can be used as a kind of ideal alternative materials to repair bone defects.
Liang, Fan; Leland, Hyuma; Jedrzejewski, Breanna; Auslander, Allyn; Maniskas, Seija; Swanson, Jordan; Urata, Mark; Hammoudeh, Jeffrey; Magee, William
2018-05-01
Alveolar cleft reconstruction has historically relied on autologous iliac crest bone grafting (ICBG), but donor site morbidity, pain, and prolonged hospitalization have prompted the search for bone graft substitutes. The authors evaluated bone graft substitutes with the highest levels of evidence, and highlight the products that show promise in alveolar cleft repair and in maxillary augmentation. This comprehensive review guides the craniofacial surgeon toward safe and informed utilization of biomaterials in the alveolar cleft.A literature search was performed to identify in vitro human studies that fulfilled the following criteria: Level I or Level II of evidence, ≥30 subjects, and a direct comparison between a autologous bone graft and a bone graft substitute. A second literature search was performed that captured all studies, regardless of level of evidence, which evaluated bone graft substitutes for alveolar cleft repair or alveolar augmentation for dental implants. Adverse events for each of these products were tabulated as well.Sixteen studies featuring 6 bone graft substitutes: hydroxyapatite, demineralized bone matrix (DBM), β-tricalcium phosphate (TCP), calcium phosphate, recombinant human bone morphogenic protein-2 (rhBMP-2), and rhBMP7 fit the inclusion criteria for the first search. Through our second search, the authors found that DBM, TCP, rhBMP-2, and rhBMP7 have been studied most extensively in the alveolar cleft literature, though frequently in studies using less rigorous methodology (Level III evidence or below). rhBMP-2 was the best studied and showed comparable efficacy to ICBG in terms of volume of bone regeneration, bone density, and capacity to accommodate tooth eruption within the graft site. Pricing for products ranged from $290 to $3110 per 5 mL.The balance between innovation and safety is a complex process requiring constant vigilance and evaluation. Here, the authors profile several bone graft substitutes that demonstrate the most promise in alveolar cleft reconstruction.
Shimizu, Hideo; Jinno, Yohei; Ayukawa, Yasunori; Atsuta, Ikiru; Arahira, Takaaki; Todo, Mitsugu; Koyano, Kiyoshi
2016-10-01
The aim of this study was to evaluate the effectiveness of a novel bone substitute material fabricated using a biodegradable polymer-calcium phosphate nanoparticle composite. Porous structured poly-L-lactic acid (PLLA) and hydroxyapatite (HA) nanoparticle composite, which was fabricated using solid-liquid phase separation and freeze-drying methods, was grafted into bone defects created in rat calvarium or tibia. Rats were killed 4 weeks after surgery, and histological analyses were performed to evaluate new bone formation. Scanning electron microscopic observation showed the interconnecting pores within the material and the pore diameter was approximately 100 to 300 μm. HA nanoparticles were observed to be embedded into the PLLA beams. In the calvarial implantation model, abundant blood vessels and fibroblastic cells were observed penetrating into pores, and in the tibia model, newly formed bone was present around and within the composite. The PLLA-HA nanoparticle composite bone substitute developed in this study showed biocompatibility, elasticity, and operability and thus has potential as a novel bone substitute.
Gauthier, O; Bouler, J M; Weiss, P; Bosco, J; Aguado, E; Daculsi, G
1999-08-01
This in vivo study investigated the influence of two calcium phosphate particle sizes (40-80 microm and 200-500 microm) on the cellular degradation activity associated with the bone substitution process of two injectable bone substitutes (IBS). The tested biomaterials were obtained by associating a biphasic calcium phosphate (BCP) ceramic mineral phase and a 3% aqueous solution of a cellulosic polymer (hydroxypropylmethylcellulose). Both were injected into osseous defects at the distal end of rabbit femurs for 2- and 3-week periods. Quantitative results for tartrate-resistant acid phosphatase (TRAP) cellular activity, new bone formation, and ceramic resorption were studied for statistical purposes. Positive TRAP-stained degradation cells were significantly more numerous for IBS 40-80 than IBS 200-500, regardless of implantation time. BCP degradation was quite marked during the first 2 weeks for IBS 40-80, and bone colonization occurred more extensively for IBS 40-80 than for IBS 200-500. The resorption-bone substitution process occurred earlier and faster for IBS 40-80 than IBS 200-500. Both tested IBS displayed similar biological efficiency, with conserved in vivo bioactivity and bone-filling ability. Differences in calcium phosphate particle sizes influenced cellular degradation activity and ceramic resorption but were compatible with efficient bone substitution.
Ghanaati, Shahram; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin; Stuebinger, Stefan; Korzinskas, Tadas; Obreja, Karina; Landes, Constantin; Kirkpatrick, Charles J; Sader, Robert A
2013-12-01
In this study the de novo bone formation capacity of a nanocrystalline hydroxyapatite bone substitute was assessed 3 and 6 months after its insertion into the human sinus cavity. Sinus cavity augmentation was performed in a total of 14 patients (n = 7 implantation after 3 months; n = 7 implantation after 6 months) with severely atrophic maxillary bone. The specimens obtained after 3 and 6 months were analyzed histologically and histomorphometrically with special focus on bone metabolism within the residual bone and the augmented region. This study revealed that bone tissue formation started from the bone-biomaterial-interface and was directed into the most cranial parts of the augmented region. There was no statistically significant difference in new bone formation after 3 and 6 months (24.89 ± 10.22% vs 31.29 ± 2.29%), respectively. Within the limits of the present study and according to previously published data, implant insertion in regions augmented with this bone substitute material could be considered already after 3 months. Further clinical studies with bone substitute materials are necessary to validate these findings. © 2012 Wiley Periodicals, Inc.
Fienitz, Tim; Moses, Ofer; Klemm, Christoph; Happe, Arndt; Ferrari, Daniel; Kreppel, Matthias; Ormianer, Zeev; Gal, Moti; Rothamel, Daniel
2017-04-01
The objective of this study is to histologically and radiologically compare a sintered and a non-sintered bovine bone substitute material in sinus augmentation procedures. Thirty-three patients were included in the clinically controlled randomized multicentre study resulting in a total of 44 treated sinuses. After lateral approach, sinuses were filled with either a sintered (SBM, Alpha Bio's Graft ® ) or a non-sintered (NSBM, Bio Oss ® ) deproteinized bovine bone substitute material. The augmentation sites were radiologically assessed before and immediately after the augmentation procedure as well as prior to implant placement. Bone trephine biopsies for histological analysis were harvested 6 months after augmentation whilst preparing the osteotomies for implant placement. Healing was uneventful in all patients. After 6 months, radiological evaluation of 43 sinuses revealed a residual augmentation height of 94.65 % (±2.74) for SBM and 95.76 % (±2.15) for NSBM. One patient left the study for personal reasons. Histological analysis revealed a percentage of new bone of 29.71 % (±13.67) for SBM and 30.57 % (±16.07) for NSBM. Residual bone substitute material averaged at 40.68 % (±16.32) for SBM compared to 43.43 % (±19.07) for NSBM. All differences between the groups were not statistically significant (p > 0.05, Student's t test). Both xenogeneic bone substitute materials showed comparable results regarding new bone formation and radiological height changes in external sinus grafting procedures. Both bone substitute materials allow for a predictable new bone formation following sinus augmentation procedures.
Seebach, Caroline; Schultheiss, Judith; Wilhelm, Kerstin; Frank, Johannes; Henrich, Dirk
2010-07-01
Various synthetic bone-graft substitutes are used commercially as osteoconductive scaffolds in the treatment of bone defects and fractures. The role of bone-graft substitutes is changing from osteoconductive conduits for growth to an delivery system for biologic fracture treatments. Achieving optimal bone regeneration requires biologics (e.g. MSC) and using the correct scaffold incorporated into a local environment for bone regeneration. The need for an unlimited supply with high quality bone-graft substitutes continue to find alternatives for bone replacement surgery. This in vitro study investigates cell seeding efficiency, metabolism, gene expression and growth behaviour of MSC sown on six commercially clinical available bone-graft substitutes in order to define their biological properties: synthetic silicate-substituted porous hydroxyapatite (Actifuse ABX), synthetic alpha-TCP (Biobase), synthetic beta-TCP (Vitoss), synthetic beta-TCP (Chronos), processed human cancellous allograft (Tutoplast) and processed bovines hydroxyapatite ceramic (Cerabone). 250,000 MSC derived from human bone marrow (n=4) were seeded onto the scaffolds, respectively. On days 2, 6 and 10 the adherence of MSC (fluorescence microscopy) and cellular activity (MTT assay) were analysed. Osteogenic gene expression (cbfa-1) was analysed by RT-PCR and scanning electron microscopy was performed. The highest number of adhering cells was found on Tutoplast (e.g. day 6: 110.0+/-24.0 cells/microscopic field; p<0.05) followed by Chronos (47.5+/-19.5, p<0.05), Actifuse ABX (19.1+/-4.4), Biobase (15.7+/-9.9), Vitoss (8.8+/-8.7) and Cerabone (8.1+/-2.2). MSC seeded onto Tutoplast showed highest metabolic activity and gene expression of cbfa-1. These data are confirmed by scanning electron microscopy. The cell shapes varied from round-shaped cells to wide spread cells and cell clusters, depending on the bone-graft substitutes. Processed human cancellous allograft is a well-structured and biocompatible scaffold for ingrowing MSC in vitro. Of all other synthetical scaffolds, beta-tricalcium phosphate (Chronos) have shown the best growth behaviour for MSC. Our results indicate that various bone-graft substitutes influence cell seeding efficiency, metabolic activity and growth behaviour of MSC in different manners. We detected a high variety of cellular integration of MSC in vitro, which may be important for bony integration in the clinical setting. 2010 Elsevier Ltd. All rights reserved.
Singh, Indrajeet; Gupta, Hemant; Pradhan, R; Sinha, VP; Gupta, Sumit
2012-01-01
Introduction Bone grafts are frequently used for the treatment of bone defects, but can cause postoperative complications, and sometimes a sufficient quantity of bone is not available. Hence, synthetic biomaterials have been used as an alternative to autogenous bone grafts. Recent clinical reports suggest that application of autologous blood plasma enriched with platelets can enhance the formation of new bone. There are very few in vitro or in vivo studies published on the efficiency of platelet-rich plasma (PRP). The objective of this study was to evaluate the alloplastic bone substitute for its osteogenic potential with or without PRP. Materials and Methods Twenty-three patients with periapical bony defects were selected for this study. Clinical parameters such as pain visual analog scale (VAS), swelling, infection, graft migration, rejection, radiographical interpretations at regular interval and scintigraphic evaluation were done to evaluate osteogenic potential of alloplastic bone substitute with or without PRP. Results The highest acceleration in bone formation was observed in groups where alloplastic bone substitute was used with PRP. There were no statistically significant differences between the two groups regarding other outcome variables throughout the postoperative period. Conclusion Addition of PRP significantly accelerates vascularization of the graft, improves soft tissue healing, reduces postoperative morbidity and enhances bone regeneration. PMID:25756013
Takeuchi, Ryohei; Woon-Hwa, Jung; Ishikawa, Hiroyuki; Yamaguchi, Yuichiro; Osawa, Katsunari; Akamatsu, Yasushi; Kuroda, Koichi
2017-12-01
The purpose of this study was to compare the mechanical fixation strengths of anteromedial and medial plate positions in osteotomy, and clarify the effects of bone substitute placement into the osteotomy site. Twenty-eight sawbone tibia models were used. Four different models were prepared: Group A, the osteotomy site was open and the plate position was anteromedial; Group B, bone substitutes were inserted into the osteotomy site and the plate position was anteromedial; Group C, the osteotomy site was open and the plate position was medial; and Group D, bone substitutes were inserted into the osteotomy site and the plate position was medial. The loading condition ranged from 0 to 800N and one hertz cycles were applied. Changes of the tibial posterior slope angle (TPS), stress on the plate and lateral hinge were measured. The changes in the TPS and the stress on the plate were significantly larger in Group A than in Group C. These were significantly larger in Group A than in Group B, and in Group C than in Group D. There was no significant difference between Group B and Group D, and no significant difference between knee flexion angles of 0° and 10°. Stress on the lateral hinge was significantly smaller when bone substitute was used. A medial plate position was biomechanically superior to an anteromedial position if bone substitute was not used. Bone substitute distributed the stress concentration around the osteotomy gap and prevented an increase in TPS angle regardless of the plate position. Copyright © 2017. Published by Elsevier B.V.
Lorenz, Jonas; Kubesch, Alica; Korzinskas, Tadas; Barbeck, Mike; Landes, Constantin; Sader, Robert A; Kirkpatrick, Charles J; Ghanaati, Shahram
2015-12-01
This study compared the material-specific tissue response to the synthetic, hydroxyapatite-based bone substitute material NanoBone (NB) with that of the xenogeneic, bovine-based bone substitute material Bio-Oss (BO). The sinus cavities of 14 human patients were augmented with NB and BO in a split-mouth design. Six months after augmentation, bone biopsies were extracted for histological and histomorphometric investigation prior to dental implant insertion. The following were evaluated: the cellular inflammatory pattern, the induction of multinucleated giant cells, vascularization, the relative amounts of newly formed bone, connective tissue, and the remaining bone substitute material. NB granules were well integrated in the peri-implant tissue and were surrounded by newly formed bone tissue. Multinucleated giant cells were visible on the surfaces of the remaining granules. BO granules were integrated into the newly formed bone tissue, which originated from active osteoblasts on their surface. Histomorphometric analysis showed a significantly higher number of multinucleated giant cells and blood vessels in the NB group compared to the BO group. No statistical differences were observed in regard to connective tissue, remaining bone substitute, and newly formed bone. The results of this study highlight the different cellular reactions to synthetic and xenogeneic bone substitute materials. The significantly higher number of multinucleated giant cells within the NB implantation bed seems to have no effect on its biodegradation. Accordingly, the multinucleated giant cells observed within the NB implantation bed have characteristics more similar to those of foreign body giant cells than to those of osteoclasts.
NASA Astrophysics Data System (ADS)
Shiga, Yasuhiro; Orita, Sumihisa; Kubota, Go; Kamoda, Hiroto; Yamashita, Masaomi; Matsuura, Yusuke; Yamauchi, Kazuyo; Eguchi, Yawara; Suzuki, Miyako; Inage, Kazuhide; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Abe, Koki; Kanamoto, Hirohito; Inoue, Masahiro; Kinoshita, Hideyuki; Aoki, Yasuchika; Toyone, Tomoaki; Furuya, Takeo; Koda, Masao; Takahashi, Kazuhisa; Ohtori, Seiji
2016-11-01
Fresh platelet-rich plasma (PRP) accelerates bone union in rat model. However, fresh PRP has a short half-life. We suggested freeze-dried PRP (FD-PRP) prepared in advance and investigated its efficacy in vivo. Spinal posterolateral fusion was performed on 8-week-old male Sprague-Dawley rats divided into six groups based on the graft materials (n = 10 per group): sham control, artificial bone (A hydroxyapatite-collagen composite) -alone, autologous bone, artificial bone + fresh-PRP, artificial bone + FD-PRP preserved 8 weeks, and artificial bone + human recombinant bone morphogenetic protein 2 (BMP) as a positive control. At 4 and 8 weeks after the surgery, we investigated their bone union-related characteristics including amount of bone formation, histological characteristics of trabecular bone at remodeling site, and biomechanical strength on 3-point bending. Comparable radiological bone union was confirmed at 4 weeks after surgery in 80% of the FD-PRP groups, which was earlier than in other groups (p < 0.05). Histologically, the trabecular bone had thinner and more branches in the FD-PRP. Moreover, the biomechanical strength was comparable to that of autologous bone. FD-PRP accelerated bone union at a rate comparable to that of fresh PRP and BMP by remodeling the bone with thinner, more tangled, and rigid trabecular bone.
Shiga, Yasuhiro; Orita, Sumihisa; Kubota, Go; Kamoda, Hiroto; Yamashita, Masaomi; Matsuura, Yusuke; Yamauchi, Kazuyo; Eguchi, Yawara; Suzuki, Miyako; Inage, Kazuhide; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Abe, Koki; Kanamoto, Hirohito; Inoue, Masahiro; Kinoshita, Hideyuki; Aoki, Yasuchika; Toyone, Tomoaki; Furuya, Takeo; Koda, Masao; Takahashi, Kazuhisa; Ohtori, Seiji
2016-01-01
Fresh platelet-rich plasma (PRP) accelerates bone union in rat model. However, fresh PRP has a short half-life. We suggested freeze-dried PRP (FD-PRP) prepared in advance and investigated its efficacy in vivo. Spinal posterolateral fusion was performed on 8-week-old male Sprague-Dawley rats divided into six groups based on the graft materials (n = 10 per group): sham control, artificial bone (A hydroxyapatite–collagen composite) –alone, autologous bone, artificial bone + fresh-PRP, artificial bone + FD-PRP preserved 8 weeks, and artificial bone + human recombinant bone morphogenetic protein 2 (BMP) as a positive control. At 4 and 8 weeks after the surgery, we investigated their bone union–related characteristics including amount of bone formation, histological characteristics of trabecular bone at remodeling site, and biomechanical strength on 3-point bending. Comparable radiological bone union was confirmed at 4 weeks after surgery in 80% of the FD-PRP groups, which was earlier than in other groups (p < 0.05). Histologically, the trabecular bone had thinner and more branches in the FD-PRP. Moreover, the biomechanical strength was comparable to that of autologous bone. FD-PRP accelerated bone union at a rate comparable to that of fresh PRP and BMP by remodeling the bone with thinner, more tangled, and rigid trabecular bone. PMID:27833116
Boix, Damien; Gauthier, Olivier; Guicheux, Jérôme; Pilet, Paul; Weiss, Pierre; Grimandi, Gaël; Daculsi, Guy
2004-05-01
The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute for bone regeneration around dental implants placed into fresh extraction sockets. Third and fourth mandibular premolars were extracted from three beagle dogs and the interradicular septa were surgically reduced to induce a mesial bone defect. Thereafter, titanium implants were immediately placed. On the left side of the jaw, mesial bone defects were filled with an injectable bone substitute (IBS), obtained by combining a polymer and biphasic calcium phosphate ceramic granules. The right defects were left unfilled as controls. After 3 months of healing, specimens were prepared for histological and histomorphometric evaluations. No post-surgical complications were observed during the healing period. In all experimental conditions, histological observations revealed a lamellar bone formation in contact with the implant. Histomorphometric analysis showed that IBS triggers a significant (P<0.05) increase in terms of the number of threads in contact with bone, bone-to-implant contact, and peri-implant bone density of approximately 8.6%, 11.0%, and 14.7%, respectively. In addition, no significant difference was observed when number of threads, bone-to-implant contact, and bone density in the filled defects were compared to the no-defect sites. It is concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate significantly increases bone regeneration around immediately placed implants.
Bone substitutes and expanders in Spine Surgery: A review of their fusion efficacies
Millhouse, Paul W; Kepler, Christopher K; Radcliff, Kris E.; Fehlings, Michael G.; Janssen, Michael E.; Sasso, Rick C.; Benedict, James J.; Vaccaro, Alexander R
2016-01-01
Study Design A narrative review of literature. Objective This manuscript intends to provide a review of clinically relevant bone substitutes and bone expanders for spinal surgery in terms of efficacy and associated clinical outcomes, as reported in contemporary spine literature. Summary of Background Data Ever since the introduction of allograft as a substitute for autologous bone in spinal surgery, a sea of literature has surfaced, evaluating both established and newly emerging fusion alternatives. An understanding of the available fusion options and an organized evidence-based approach to their use in spine surgery is essential for achieving optimal results. Methods A Medline search of English language literature published through March 2016 discussing bone graft substitutes and fusion extenders was performed. All clinical studies reporting radiological and/or patient outcomes following the use of bone substitutes were reviewed under the broad categories of Allografts, Demineralized Bone Matrices (DBM), Ceramics, Bone Morphogenic proteins (BMPs), Autologous growth factors (AGFs), Stem cell products and Synthetic Peptides. These were further grouped depending on their application in lumbar and cervical spine surgeries, deformity correction or other miscellaneous procedures viz. trauma, infection or tumors; wherever data was forthcoming. Studies in animal populations and experimental in vitro studies were excluded. Primary endpoints were radiological fusion rates and successful clinical outcomes. Results A total of 181 clinical studies were found suitable to be included in the review. More than a third of the published articles (62 studies, 34.25%) focused on BMP. Ceramics (40 studies) and Allografts (39 studies) were the other two highly published groups of bone substitutes. Highest radiographic fusion rates were observed with BMPs, followed by allograft and DBM. There were no significant differences in the reported clinical outcomes across all classes of bone substitutes. Conclusions There is a clear publication bias in the literature, mostly favoring BMP. Based on the available data, BMP is however associated with the highest radiographic fusion rate. Allograft is also very well corroborated in the literature. The use of DBM as a bone expander to augment autograft is supported, especially in the lumbar spine. Ceramics are also utilized as bone graft extenders and results are generally supportive, although limited. The use of autologous growth factors is not substantiated at this time. Cell matrix or stem cell-based products and the synthetic peptides have inadequate data. More comparative studies are needed to evaluate the efficacy of bone graft substitutes overall. PMID:27909654
Bone grafts, bone substitutes and orthobiologics
Roberts, Timothy T.; Rosenbaum, Andrew J.
2012-01-01
The biology of fracture healing is better understood than ever before, with advancements such as the locking screw leading to more predictable and less eventful osseous healing. However, at times one’s intrinsic biological response, and even concurrent surgical stabilization, is inadequate. In hopes of facilitating osseous union, bone grafts, bone substitutes and orthobiologics are being relied on more than ever before. The osteoinductive, osteoconductive and osteogenic properties of these substrates have been elucidated in the basic science literature and validated in clinical orthopaedic practice. Furthermore, an industry built around these items is more successful and in demand than ever before. This review provides a comprehensive overview of the basic science, clinical utility and economics of bone grafts, bone substitutes and orthobiologics. PMID:23247591
The ultrastructure and processing properties of Straumann Bone Ceramic and NanoBone.
Dietze, S; Bayerlein, T; Proff, P; Hoffmann, A; Gedrange, T
2006-02-01
The ultrastructure, fundamental chemistry, and processing modes of fully synthetic bone grafting materials are relevant to the reconstruction of osseous defects. Rapid progress in the profitable market of biomaterials has led to the development of various bone substitutes. Despite all these efforts, an ideal and full substitute of autologous bone is not yet in sight. With regard to anorganic calcium phosphate ceramics, Straumann Bone Ceramic and NanoBone are compared. These have a similar composition and are osteoconductive, which indispensably requires contact with well-vascularised bone.
Kolk, Andreas; Handschel, Jörg; Drescher, Wolf; Rothamel, Daniel; Kloss, Frank; Blessmann, Marco; Heiland, Max; Wolff, Klaus-Dietrich; Smeets, Ralf
2012-12-01
An autologous bone graft is still the ideal material for the repair of craniofacial defects, but its availability is limited and harvesting can be associated with complications. Bone replacement materials as an alternative have a long history of success. With increasing technological advances the spectrum of grafting materials has broadened to allografts, xenografts, and synthetic materials, providing material specific advantages. A large number of bone-graft substitutes are available including allograft bone preparations such as demineralized bone matrix and calcium-based materials. More and more replacement materials consist of one or more components: an osteoconductive matrix, which supports the ingrowth of new bone; and osteoinductive proteins, which sustain mitogenesis of undifferentiated cells; and osteogenic cells (osteoblasts or osteoblast precursors), which are capable of forming bone in the proper environment. All substitutes can either replace autologous bone or expand an existing amount of autologous bone graft. Because an understanding of the properties of each material enables individual treatment concepts this review presents an overview of the principles of bone replacement, the types of graft materials available, and considers future perspectives. Bone substitutes are undergoing a change from a simple replacement material to an individually created composite biomaterial with osteoinductive properties to enable enhanced defect bridging. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Boix, D; Weiss, P; Gauthier, O; Guicheux, J; Bouler, J-M; Pilet, P; Daculsi, G; Grimandi, G
2006-11-01
The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute on the prevention of alveolar ridge resorption after tooth extraction. Maxillary and mandibular premolars were extracted from 3 Beagle dogs with preservation of alveolar bone. Thereafter, distal sockets were filled with an injectable bone substitute (IBS), obtained by combining a polymer solution and granules of a biphasic calcium phosphate (BCP) ceramic. As a control, the mesial sockets were left unfilled. After a 3 months healing period, specimens were removed and prepared for histomorphometric evaluation with image analysis. Histomorphometric study allowed to measure the mean and the maximal heights of alveolar crest modifications. Results always showed an alveolar bone resorption in unfilled sockets. Resorption in filled maxillary sites was significantly lower than in control sites. Interestingly, an alveolar ridge augmentation was measured in mandibular filled sockets including 30% of newly-formed bone. It was concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate can significantly increase alveolar ridge preservation after tooth extraction.
Zhao, Yi-Nan; Fan, Jun-Jun; Li, Zhi-Quan; Liu, Yan-Wu; Wu, Yao-Ping; Liu, Jian
2017-02-01
Calcium phosphate cement (CPC) porous scaffold is widely used as a suitable bone substitute to repair bone defect, but the optimal pore size is unclear yet. The current study aimed to evaluate the effect of different pore sizes on the processing of bone formation in repairing segmental bone defect of rabbits using CPC porous scaffolds. Three kinds of CPC porous scaffolds with 5 mm diameters and 12 mm length were prepared with the same porosity but different pore sizes (Group A: 200-300 µm, Group B: 300-450 µm, Group C: 450-600 µm, respectively). Twelve millimeter segmental bone defects were created in the middle of the radius bone and filled with different kinds of CPC cylindrical scaffolds. After 4, 12, and 24 weeks, alkaline phosphatase (ALP), histological assessment, and mechanical properties evaluation were performed in all three groups. After 4 weeks, ALP activity increased in all groups but was highest in Group A with smallest pore size. The new bone formation within the scaffolds was not obvious in all groups. After 12 weeks, the new bone formation within the scaffolds was obvious in each group and highest in Group A. At 24 weeks, no significant difference in new bone formation was observed among different groups. Besides the osteoconductive effect, Group A with smallest pore size also had the best mechanical properties in vivo at 12 weeks. We demonstrate that pore size has a significant effect on the osteoconductivity and mechanical properties of calcium phosphate cement porous scaffold in vivo. Small pore size favors the bone formation in the early stage and may be more suitable for repairing segmental bone defect in vivo. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Bone healing and bone substitutes.
Costantino, Peter D; Hiltzik, David; Govindaraj, Satish; Moche, Jason
2002-02-01
With the advent of new biomaterials and surgical techniques, the reconstructive surgeon has a wider range of treatment modalities for the rehabilitation and reconstruction of craniofacial skeletal deformities than ever before. These innovative substances act as true bone graft substitutes, thereby allowing the surgeon to avoid the use of autogenous bone grafts and their associated donor site morbidity. Surgeons have long been interested in producing a composite graft that can heal faster by induction, incorporate with surrounding tissues, and be remodeled to resemble native bone. Currently, there are a host of bone graft substitutes available that vary in both their composition and properties. Craniomaxillofacial surgeons must therefore become comfortable with numerous biomaterials to best tailor the treatment for each patient individually. Ongoing investigations into the next phase of tissue engineering will continue to bring us closer to the ability to regenerate or replace bone.
NASA Astrophysics Data System (ADS)
Florschutz, Anthony Vatroslav
Utilization of bone grafts for the treatment of skeletal pathology is a common practice in orthopaedic, craniomaxillofacial, dental, and plastic surgery. Autogenous bone graft is the established archetype but has disadvantages including donor site morbidity, limited supply, and prolonging operative time. In order to avoid these and other issues, bone graft substitute materials are becoming increasingly prevalent among surgeons for reconstructing skeletal defects and arthrodesis applications. Bone graft substitutes are biomaterials, biologics, and guided tissue/bone regenerative devices that can be used alone or in combinations as supplements or alternatives to autogenous bone graft. There is a growing interest and trend to specialize graft substitutes for specific indications and although there is good rationale for this indication-specific approach, the development and utility of a more universal bone graft substitute may provide a better answer for patients and surgeons. The aim of the present research focuses on the design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite composites for potential use as a bone graft substitutes. After initial establishment of rational material design, gelatinhydroxyapatite scaffolds were fabricated with different gelatin:hydroxyapatite ratios and crosslinking concentrations. The synthesized scaffolds were subsequently evaluated on the basis of their swelling behavior, porosity, density, percent composition, mechanical properties, and morphology and further assessed with respect to cell-biomaterial interaction and biomineralization in vitro. Although none of the materials achieved mechanical properties suitable for structural graft applications, a reproducible material design and synthesis was achieved with properties recognized to facilitate bone formation. Select scaffold formulations as well as a subset of scaffolds loaded with recombinant human bone morphogenetic protein-2 were implanted ectopically in a rodent animal model and histologically evaluated for biocompatibility, degradation, and bone formation in vivo. The gelatin-hydroxyapatite scaffolds retained dimensional structure over 28 days and did not elicit any undesirable systemic or local effects. Distinct areas of mineralization and osteoid/bone were noted in all the implanted scaffolds and quantitative differences were primarily dependent on the presence of hydroxyapatite.
NASA Astrophysics Data System (ADS)
Lexow, G. Jakob; Kluge, Marcel; Majdani, Omid; Lenarz, Thomas; Rau, Thomas S.
2017-03-01
Several research groups have proposed individual solutions for surgical assistance devices to perform minimally invasive cochlear implantation. The main challenge is the drilling of a small bore hole from the surface of the skull to the inner ear at submillimetric accuracy. Each group tested the accuracy of their device in their respective test bench or in a small number of temporal bone specimens. This complicates the comparison of the different approaches. Thus, a simple and inexpensive phantom based evaluation method is proposed which resembles clinical conditions. The method is based on half-skull phantoms made of bone-substitute material - optionally equipped with an artificial skin replica to include skin incision within the evaluation procedure. Anatomical structures of the temporal bone derived from segmentations using clinical imaging data are registered into a computer tomographic scan of the skull phantom and used for the planning of the drill trajectory. Drilling is performed with the respective device under conditions close to the intraoperative setting. Evaluation of accuracy can either be performed through postoperative imaging or by means of added targets on the inside of the skull model. Two different targets are proposed: simple reference marks only for measuring the accuracy of the device and a target containing a scala tympani model for evaluation of the complete workflow including the insertion of the electrode carrier. Experiments using the presented method take place under reproducible conditions thus allowing the comparison of the different approaches. In addition, artificial phantoms are easier to obtain and handle than human specimens.
Human Research Program Human Health Countermeasures Element: Evidence Report - Artificial Gravity
NASA Technical Reports Server (NTRS)
Clement, Gilles
2015-01-01
The most serious risks of long-duration flight involve radiation, behavioral stresses, and physiological deconditioning. Artificial gravity (AG), by substituting for the missing gravitational cues and loading in space, has the potential to mitigate the last of these risks by preventing the adaptive responses from occurring. The rotation of a Mars-bound spacecraft or an embarked human centrifuge offers significant promise as an effective, efficient multi-system countermeasure against the physiological deconditioning associated with prolonged weightlessness. Virtually all of the identified risks associated with bone loss, muscle weakening, cardiovascular deconditioning, and sensorimotor disturbances might be alleviated by the appropriate application of AG. However, experience with AG in space has been limited and a human-rated centrifuge is currently not available on board the ISS. A complete R&D program aimed at determining the requirements for gravity level, gravity gradient, rotation rate, frequency, and duration of AG exposure is warranted before making a decision for implementing AG in a human spacecraft.
Yamaguchi, Yoko; Shiota, Makoto; FuJii, Masaki; Sekiya, Michi; Ozeki, Masahiko
2016-01-01
Primary stability after implant placement is essential for osseointegration. It is important to understand the bone/implant interface for analyzing the influence of implant design on primary stability. In this study rigid polyurethane foam is used as artificial bone to evaluate the bone-implant interface and to identify where the torque is being generated during placement. Five implant systems-Straumann-Standard (ST), Straumann-Bone Level (BL), Straumann-Tapered Effect (TE), Nobel Biocare-Brånemark MKIII (MK3), and Nobel Biocare-Brånemark MKIV (MK4)-were used for this experiment. Artificial bone blocks were prepared and the implant was installed. After placement, a metal jig and one side artificial bone block were removed and then the implant embedded in the artificial bone was exposed for observing the bone-implant interface. A digital micro-analyzer was used for observing the contact interface. The insertion torque values were 39.35, 23.78, 12.53, 26.35, and 17.79 N cm for MK4, BL, ST, TE, and MK3, respectively. In ST, MK3, TE, MK4, and BL the white layer areas were 61 × 103 μm(2), 37 × 103 μm(2), 103 × 103 μm(2) in the tapered portion and 84 × 03 μm(2) in the parallel portion, 134 × 103 μm(2), and 98 × 103 μm(2) in the tapered portion and 87 × 103 μm(2) in the parallel portion, respectively. The direct observation method of the implant/artificial bone interface is a simple and useful method that enables the identification of the area where implant retention occurs. A white layer at the site of stress concentration during implant placement was identified and the magnitude of the stress was quantitatively estimated. The site where the highest torque occurred was the area from the thread crest to the thread root and the under and lateral aspect of the platform. The artificial bone debris created by the self-tapping blade accumulated in both the cutting chamber and in the space between the threads and artificial bone.
Li, Hong; Ge, Yunsheng; Zhang, Pengyun; Wu, Lingxiang; Chen, Shiyi
2012-01-01
Surface coating with an organic layer-by-layer self-assembled template of chitosan and hyaluronic acid on a poly(ethylene terephthalate) (PET) artificial ligament was designed for the promotion and enhancement of graft-to-bone healing after artificial ligament implantation in a bone tunnel. The results of in vitro culturing of MC3T3-E1 mouse osteoblastic cells supported the hypothesis that the layer-by-layer coating of chitosan and hyaluronic acid could promote the cell compatibility of grafts and could promote osteoblast proliferation. A rabbit extra-articular tendon-to-bone healing model was used to evaluate the effect of this kind of surface-modified stainless artificial ligament in vivo. The final results proved that this organic compound coating could significantly promote and enhance new bone formation at the graft-bone interface histologically and, correspondingly, the experimental group with coating had significantly higher biomechanical properties compared with controls at 8 weeks (P < 0.05).
Lavrador, Catarina; Mascarenhas, Ramiro; Coelho, Paulo; Brites, Cláudia; Pereira, Alfredo; Gogolewski, Sylwester
2016-03-01
Bone substitutes have been a critical issue as the natural source can seldom provide enough bone to support full healing. No bone substitute complies with all necessary functions and characteristics that an autograft does. Polyurethane sponges have been used as a surgical alternative to cancellous bone grafts for critical bone defect donor sites. Critical bone defects were created on the tibial tuberosity and iliac crest using an ovine model. In group I (control-untreated), no bone regeneration was observed in any animal. In group II (defects left empty but covered with a microporous polymeric membrane), the new bone bridged the top ends in all animals. In groups III and IV, bone defects were implanted with polyurethane scaffolds modified with biologically active compounds, and bone regeneration was more efficient than in group II. In groups III and IV there were higher values of bone regeneration specific parameters used for evaluation (P < 0.05) although the comparison between these groups was not possible. The results obtained in this study suggest that biodegradable polyurethane substitutes modified with biologically active substances may offer an alternative to bone graft, reducing donor site morbidity associated with autogenous cancellous bone harvesting.
Kanazawa, Masayuki; Tsuru, Kanji; Fukuda, Naoyuki; Sakemi, Yuta; Nakashima, Yasuharu; Ishikawa, Kunio
2017-06-01
This study aimed to evaluate in vivo behavior of a carbonate apatite (CO 3 Ap) block fabricated by compositional transformation via a dissolution-precipitation reaction using a calcium hydrogen phosphate dihydrate [DCPD: CaHPO 4 ·2H 2 O] block as a precursor. These blocks were used to reconstruct defects in the femur and tibia of rabbits, using sintered dense hydroxyapatite (HAp) blocks as the control. Both the CO 3 Ap and HAp blocks showed excellent tissue response and good osteoconductivity. HAp block maintained its structure even after 24 weeks of implantation, so no bone replacement of the implant was observed throughout the post-implantation period in either femoral or tibial bone defects. In contrast, CO 3 Ap was resorbed with increasing time after implantation and replaced with new bone. The CO 3 Ap block was resorbed approximately twice as fast at the metaphysis of the proximal tibia than at the epiphysis of the distal femur. The CO 3 Ap block was resorbed at an approximately linear change over time, with complete resorption was estimated by extrapolation of data at approximately 1-1.5 years. Hence, the CO 3 Ap block fabricated in this study has potential value as an ideal artificial bone substitute because of its resorption and subsequent replacement by bone.
Bioactivity tests of calcium phosphates with variant molar ratios of main components.
Pluta, Klaudia; Sobczak-Kupiec, Agnieszka; Półtorak, Olga; Malina, Dagmara; Tyliszczak, Bożena
2018-03-09
Calcium phosphates constitute attractive materials of biomedical applications. Among them particular attention is devoted to bioactive hydroxyapatite (HAp) and bioresorbable tricalcium phosphate (TCP) that possess ability to bind to living bones and can be used clinically as important bone substitutes. Notably, in vivo bone bioactivity can be predicted from apatite formation of bone immersed in SBF fluids. Thus, analyses of behavior of calcium phosphates immersed in various bio fluids are of great importance. Recently, stoichiometric HAp and TCP structures have been widely studied, whereas only limited number of publications have been devoted to analyses of nonstoichiometric calcium phosphates. Here, we report physicochemical analysis of natural and synthetic phosphates with variable Ca/P molar ratios. Subsequently attained structures were subjected to incubation in either artificial saliva or Ringer's fluids. Both pH and conductivity of such fluids were determined before and after incubation. Furthermore, the influence of the Ca/P values on such parameters was exemplified. Physicochemical analysis of received materials was performed by XRD and FT-IR characterization techniques. Their potential antibacterial activity and behavior in the presence of infectious microorganisms as Escherichia coli and Staphylococcus aureus was also evaluated. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.
A comparative biomechanical study of bone ingrowth in two porous hydroxyapatite bioceramics
NASA Astrophysics Data System (ADS)
Ren, Li-Mei; Todo, Mitsugu; Arahira, Takaaki; Yoshikawa, Hideki; Myoui, Akira
2012-12-01
Calcium phosphate-based bioceramics have been widely used as artificial bone substitute materials because of their superior biocompatibility and osteoconductivity. In the present study, mechanical properties changes of two hydroxyapatite (HA) ceramics induced by bone ingrowth were tested and evaluated in a rabbit model. Both materials (NEOBONE®, Apaceram-AX®) have highly interconnected pores with a porosity of 75-85%. The major structural difference between them lies in that Apaceram-AX® has micropores smaller than 10 micrometers in diameter, whereas NEOBONE® does not contain such micropores. Both materials were implanted into the femoral condyles of rabbits for the specified observation period (1, 5, 12, 24, and 48 weeks) and then evaluated by experimental approach in combination with finite element method (FEM). Results indicate that two porous bioceramics exhibit different degradability in vivo, and remarkably different variation of total stiffness, elastic modulus distribution, as well as strain energy density distribution calculated by FE simulation. These results demonstrate how the internal microstructures affect the progress of bone regeneration and mechanical properties with the duration of implantation, emphasizing the importance of biomaterial design tailored to various clinic applications. Additionally, this study showed a potential for applying the computational method to monitor the time-dependent biomechanical changes of implanted porous bioceramics.
Shi, Jiajia; Sun, Jie; Zhang, Wen; Liang, Hui; Shi, Qin; Li, Xiaoran; Chen, Yanyan; Zhuang, Yan; Dai, Jianwu
2016-10-07
The reconstruction of bone usually depends on substitute transplantation, which has drawbacks including the limited bone substitutes available, comorbidity, immune rejection, and limited endogenous bone regeneration. Here, we constructed a functionalized bone substitute by combining application of the demineralized bone matrix (DBM) and collagen-binding stromal-cell-derived factor-1α (CBD-SDF-1α). DBM was a poriferous and biodegradable bone substitute, derived from bovine bone and consisting mainly of collagen. CBD-SDF-1α could bind to collagen and be controllably released from the DBM to mobilize stem cells. In a rat femur defect model, CBD-SDF-1α-modified DBM scaffolds could efficiently mobilize CD34 + and c-kit + endogenous stem cells homing to the injured site at 3 days after implantation. According to the data from micro-CT, CBD-SDF-1α-modified DBM scaffolds could help the bone defects rejoin with mineralization accumulated and bone volume expanded. Interestingly, osteoprotegerin (OPG) and osteopontin (OPN) were highly expressed in CBD-SDF-1α group at an early time after implantation, while osteocalcin (OCN) was more expanded. H&E and Masson's trichrome staining showed that the CBD-SDF-1α-modified DBM scaffold group had more osteoblasts and that the bone defect rejoined earlier. The ultimate strength of the regenerated bone was investigated by three-point bending, showing that the CBD-SDF-1α group had superior strength. In conclusion, CBD-SDF-1α-modified DBM scaffolds could promote bone regeneration by recruiting endogenous stem cells.
2013-01-01
Background Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. Materials and methods One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Results Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. Conclusions This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting. PMID:23286366
Ghanaati, Shahram; Udeabor, Samuel E; Barbeck, Mike; Willershausen, Ines; Kuenzel, Oliver; Sader, Robert A; Kirkpatrick, C James
2013-01-04
Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting.
High-strength mineralized collagen artificial bone
NASA Astrophysics Data System (ADS)
Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai
2014-03-01
Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.
Periosteum tissue engineering-a review.
Li, Nanying; Song, Juqing; Zhu, Guanglin; Li, Xiaoyu; Liu, Lei; Shi, Xuetao; Wang, Yingjun
2016-10-18
As always, the clinical therapy of critical size bone defects caused by trauma, tumor removal surgery or congenital malformation is facing great challenges. Currently, various approaches including autograft, allograft and cell-biomaterial composite based tissue-engineering strategies have been implemented to reconstruct injured bone. However, due to damage during the transplantation processes or design negligence of the bionic scaffolds, these methods expose vulnerabilities without the assistance of periosteum, a bilayer membrane on the outer surface of the bone. Periosteum plays a significant role in bone formation and regeneration as a store for progenitor cells, a source of local growth factors and a scaffold to recruit cells and growth factors, and more and more researchers have recognized its great value in tissue engineering application. Besides direct transplantation, periosteum-derived cells can be cultured on various scaffolds for osteogenesis or chondrogenesis application due to their availability. Research studies also provide a biomimetic methodology to synthesize artificial periosteum which mimic native periosteum in structure or function. According to the studies, these tissue-engineered periostea did obviously enhance the therapeutic effects of bone graft and scaffold engineering while they could be directly used as substitutes of native periosteum. Periosteum tissue engineering, whose related research studies have provided new opportunities for the development of bone tissue engineering and therapy, has gradually become a hot spot and there are still lots to consummate. In this review, tissue-engineered periostea were classified into four kinds and discussed, which might help subsequent researchers get a more systematic view of pseudo-periosteum.
Boos, Anja M; Weigand, Annika; Deschler, Gloria; Gerber, Thomas; Arkudas, Andreas; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P
2014-01-01
New therapeutic strategies are required for critical size bone defects, because the gold standard of transplanting autologous bone from an unharmed area of the body often leads to several severe side effects and disadvantages for the patient. For years, tissue engineering approaches have been seeking a stable, axially vascularized transplantable bone replacement suitable for transplantation into the recipient bed with pre-existing insufficient conditions. For this reason, the arteriovenous loop model was developed and various bone substitutes have been vascularized. However, it has not been possible thus far to engineer a primary stable and axially vascularized transplantable bone substitute. For that purpose, a primary stable silica-embedded nanohydroxyapatite (HA) bone substitute in combination with blood, bone marrow, expanded, or directly retransplanted mesenchymal stem cells, recombinant human bone morphogenetic protein 2 (rhBMP-2), and different carrier materials (fibrin, cell culture medium, autologous serum) was tested subcutaneously for 4 or 12 weeks in the sheep model. Autologous serum lead to an early matrix change during degradation of the bone substitute and formation of new bone tissue. The best results were achieved in the group combining mesenchymal stem cells expanded with 60 μg/mL rhBMP-2 in autologous serum. Better ingrowth of fibrovascular tissue could be detected in the autologous serum group compared with the control (fibrin). Osteoclastic activity indicating an active bone remodeling process was observed after 4 weeks, particularly in the group with autologous serum and after 12 weeks in every experimental group. This study clearly demonstrates the positive effects of autologous serum in combination with mesenchymal stem cells and rhBMP-2 on bone formation in a primary stable silica-embedded nano-HA bone grafting material in the sheep model. In further experiments, the results will be transferred to the sheep arteriovenous loop model in order to engineer an axially vascularized primary stable bone replacement in clinically relevant size for free transplantation. PMID:25429218
Olesova, V N; Amkhadova, M A; Simakova, T G; Mirgazizov, M Z; Pozharitskaya, M M
2017-03-01
For evaluation of the efficiency of bone substitute, nanostructurized Gamalant-paste-FORTEPlus was placed into a mandibular defect in rats. Bone tissue reparation was evaluated after 30 days by histological methods under a microscope. Use of bone substitute in experimental mandibular defect ensured more complete and rapid restructuring of the bone tissue in comparison with the control (natural healing).
Lorenz, Jonas; Barbeck, Mike; Sader, Robert A; Kirkpatrick, Charles J; Russe, Philippe; Choukroun, Joseph; Ghanaati, Shahram
2016-06-01
Bone substitute materials of different origin and chemical compositions are frequently used in augmentation procedures to enlarge the local bone amount. However, relatively little data exist on the long-term tissue reactions. The presented case reports for the first time histological and histomorphometrical analyses of a nanocrystaline hydroxyapatite-based bone substitute material implanted in the human sinus cavity after an integration period of 3 years. The extracted biopsy was analyzed histologically and histomorphometrically with focus on the tissue reactions, vascularization, new bone formation, and the induction of a foreign body reaction. A comparably high rate of connective tissue (48.25%) surrounding the remaining bone substitute granules (42.13%) was observed. Accordingly, the amount of bone tissue (9.62%) built the smallest fraction within the biopsy. Further, tartrate-resistant acid phosphatase-positive and -negative multinucleated giant cells (4.35 and 3.93 cells/mm(2), respectively) were detected on the material-tissue interfaces. The implantation bed showed a mild vascularization of 10.03 vessels/mm(2) and 0.78%. The present case report shows that after 3 years, a comparable small amount of bone tissue was observable. Thus, the foreign body response to the bone substitute seems to be folded without further degradation or regeneration.
Artificial Gravity: Will it Preserve Bone Health on Long-Duration Missions?
NASA Technical Reports Server (NTRS)
Davis-Street, Janis; Paloski, William H.
2005-01-01
Prolonged microgravity exposure disrupts bone, muscle, and cardiovascular homeostasis, sensory-motor coordination, immune function, and behavioral performance. Bone loss, in particular, remains a serious impediment to the success of exploration-class missions by increasing the risks of bone fracture and renal stone formation for crew members. Current countermeasures, consisting primarily of resistive and aerobic exercise, have not yet proven fully successful for preventing bone loss during long-duration spaceflight. While other bone-specific countermeasures, such as pharmacological therapy and dietary modifications, are under consideration, countermeasure approaches that simultaneously address multiple physiologic systems may be more desirable for exploration-class missions, particularly if they can provide effective protection at reduced mission resource requirements (up-mass, power, crew time, etc). The most robust of the multi-system approaches under consideration, artificial gravity (AG), could prevent all of the microgravity-related physiological changes from occurring. The potential methods for realizing an artificial gravity countermeasure are reviewed, as well as selected animal and human studies evaluating the effects of artificial gravity on bone function. Future plans for the study of the multi-system effects of artificial gravity include a joint, cooperative international effort that will systematically seek an optimal prescription for intermittent AG to preserve bone, muscle, and cardiovascular function in human subjects deconditioned by 6 degree head-down-tilt-bed rest. It is concluded that AG has great promise as a multi-system countermeasure, but that further research is required to determine the appropriate parameters for implementation of such a countermeasure for exploration-class missions.
Bone tissue engineering: state of the art and future trends.
Salgado, António J; Coutinho, Olga P; Reis, Rui L
2004-08-09
Although several major progresses have been introduced in the field of bone regenerative medicine during the years, current therapies, such as bone grafts, still have many limitations. Moreover, and in spite of the fact that material science technology has resulted in clear improvements in the field of bone substitution medicine, no adequate bone substitute has been developed and hence large bone defects/injuries still represent a major challenge for orthopaedic and reconstructive surgeons. It is in this context that TE has been emerging as a valid approach to the current therapies for bone regeneration/substitution. In contrast to classic biomaterial approach, TE is based on the understanding of tissue formation and regeneration, and aims to induce new functional tissues, rather than just to implant new spare parts. The present review pretends to give an exhaustive overview on all components needed for making bone tissue engineering a successful therapy. It begins by giving the reader a brief background on bone biology, followed by an exhaustive description of all the relevant components on bone TE, going from materials to scaffolds and from cells to tissue engineering strategies, that will lead to "engineered" bone. Scaffolds processed by using a methodology based on extrusion with blowing agents.
Artificial Gravity: Effects on Bone Turnover
NASA Technical Reports Server (NTRS)
Heer, M.; Zwart, S /R.; Baecker, N.; Smith, S. M.
2007-01-01
The impact of microgravity on the human body is a significant concern for space travelers. Since mechanical loading is a main reason for bone loss, artificial gravity might be an effective countermeasure to the effects of microgravity. In a 21-day 6 head-down tilt bed rest (HDBR) pilot study carried out by NASA, USA, the utility of artificial gravity (AG) as a countermeasure to immobilization-induced bone loss was tested. Blood and urine were collected before, during, and after bed rest for bone marker determinations. Bone mineral density was determined by DXA and pQCT before and after bed rest. Urinary excretion of bone resorption markers (n-telopeptide and helical peptide) were increased from pre-bed rest, but there was no difference between the control and the AG group. The same was true for serum c-telopeptide measurements. Bone formation markers were affected by bed rest and artificial gravity. While bone-specific alkaline phosphatase tended to be lower in the AG group during bed rest (p = 0.08), PINP, another bone formation marker, was significantly lower in AG subjects than CN before and during bed rest. PINP was lower during bed rest in both groups. For comparison, artificial gravity combined with ergometric exercise was tested in a 14-day HDBR study carried out in Japan (Iwase et al. J Grav Physiol 2004). In that study, an exercise regime combined with AG was able to significantly mitigate the bed rest-induced increase in the bone resorption marker deoxypyridinoline. While further study is required to more clearly differentiate bone and muscle effects, these initial data demonstrate the potential effectiveness of short-radius, intermittent AG as a countermeasure to the bone deconditioning that occurs during bed rest and spaceflight. Future studies will need to optimize not only the AG prescription (intensity and duration), but will likely need to include the use of exercise or other combined treatments.
Rancitelli, Davide; Grossi, Giovanni Battista; Herford, Alan Scott
2016-01-01
The reconstruction of the atrophic alveolar ridges for implant placement is today a common procedure in dentistry daily practice. The surgical reconstruction provides for the optimization of the supporting bone for the implants and a restoration of the amount of keratinized gingiva for esthetic and functional reasons. In the past, tissue regeneration has been performed with autogenous bone and free gingival or connective tissue grafts. Nowadays, bone substitutes and specific collagen matrix allow for a complete restoration of the atrophic ridge without invasive harvesting procedures. A maxillary reconstruction of an atrophic ridge by means of tissue substitutes and its histological features are then presented. PMID:27022489
Maiorana, Carlo; Beretta, Mario; Rancitelli, Davide; Grossi, Giovanni Battista; Cicciù, Marco; Herford, Alan Scott
2016-01-01
The reconstruction of the atrophic alveolar ridges for implant placement is today a common procedure in dentistry daily practice. The surgical reconstruction provides for the optimization of the supporting bone for the implants and a restoration of the amount of keratinized gingiva for esthetic and functional reasons. In the past, tissue regeneration has been performed with autogenous bone and free gingival or connective tissue grafts. Nowadays, bone substitutes and specific collagen matrix allow for a complete restoration of the atrophic ridge without invasive harvesting procedures. A maxillary reconstruction of an atrophic ridge by means of tissue substitutes and its histological features are then presented.
Kim, Dae-Seung; Lee, Woo-Jin; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Kim, Tae-Il; Yi, Won-Jin
2014-06-01
We compared implant stability as determined by the peak frequency from the impact response with the implant stability quotient (ISQ) by resonance frequency analysis (RFA) in various artificial bone conditions. The clinical bone conditions were simulated using an artificial bone material with different cortical thicknesses and trabecular densities. The artificial bone material was solid, rigid polyurethane. The polyurethane foam of 0.8g/cm(3) density was used for the cortical bone layer, and that of 0.08, 0.16, 0.24, 0.32, and 0.48g/cm(3) densities for the trabecular bone layer. The cortical bone material of 4 different thicknesses (1.4, 1.6, 1.8, and 2.0mm) was attached to the trabecular bone with varying density. Two types of dental implants (10 and 13mm lengths of 4.0mm diameter) were placed into the artificial bone blocks. An inductive sensor was used to measure the vibration caused by tapping the adapter-implant assembly. The peak frequency of the power spectrum of the impact response was used as the criterion for implant stability. The ISQ value was also measured for the same conditions. The stability, as measured by peak frequency (SPF) and ISQ value, increased as the trabecular density and the cortical density increased in linear regression analysis. The SPF and ISQ values were highly correlated with each other when the trabecular bone density and cortical bone thickness changed (Pearson correlation=0.90, p<0.01). The linear regression of the SPF with the cortical bone thickness showed higher goodness of fit (R(2) measure) than the ISQ value with the cortical bone thickness. The SPF could differentiate implantation conditions as many as the ISQ value when the trabecular bone density and the cortical density changed. However, the ISQ value was not consistent with the general stability tendency in some conditions. The SPF showed better consistency and differentiability with implant stability than the ISQ value by resonance frequency analysis in the various implantation conditions. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Fee, L
2017-04-21
Socket preservation maintains bone volume post-extraction in anticipation of an implant placement or fixed partial denture pontic site. This procedure helps compensate for the resorption of the facial bone wall. Socket preservation should be considered when implant placement needs to be delayed for patient or site-related reasons. The ideal healing time before implant placement is six months. Socket preservation can reduce the need for later bone augmentation. By reducing bone resorption and accelerating bone formation it increases implant success and survival. Biomaterials for socket grafting including autograft, allograft, xenograft and alloplast. A bone substitute with a low substitution rate is recommended.
Weigand, Annika; Beier, Justus P; Hess, Andreas; Gerber, Thomas; Arkudas, Andreas; Horch, Raymund E; Boos, Anja M
2015-05-01
During the last decades, a range of excellent and promising strategies in Bone Tissue Engineering have been developed. However, the remaining major problem is the lack of vascularization. In this study, extrinsic and intrinsic vascularization strategies were combined for acceleration of vascularization. For optimal biomechanical stability of the defect site and simplifying future transition into clinical application, a primary stable and approved nanostructured bone substitute in clinically relevant size was used. An arteriovenous (AV) loop was microsurgically created in sheep and implanted, together with the bone substitute, in either perforated titanium chambers (intrinsic/extrinsic) for different time intervals of up to 18 weeks or isolated Teflon(®) chambers (intrinsic) for 18 weeks. Over time, magnetic resonance imaging and micro-computed tomography (CT) analyses illustrate the dense vascularization arising from the AV loop. The bone substitute was completely interspersed with newly formed tissue after 12 weeks of intrinsic/extrinsic vascularization and after 18 weeks of intrinsic/extrinsic and intrinsic vascularization. Successful matrix change from an inorganic to an organic scaffold could be demonstrated in vascularized areas with scanning electron microscopy and energy dispersive X-ray spectroscopy. Using the intrinsic vascularization method only, the degradation of the scaffold and osteoclastic activity was significantly lower after 18 weeks, compared with 12 and 18 weeks in the combined intrinsic-extrinsic model. Immunohistochemical staining revealed an increase in bone tissue formation over time, without a difference between intrinsic/extrinsic and intrinsic vascularization after 18 weeks. This study presents the combination of extrinsic and intrinsic vascularization strategies for the generation of an axially vascularized bone substitute in clinically relevant size using a large animal model. The additional extrinsic vascularization promotes tissue ingrowth and remodeling processes of the bone substitute. Extrinsic vessels contribute to faster vascularization and finally anastomose with intrinsic vasculature, allowing microvascular transplantation of the bone substitute after a shorter prevascularization time than using the intrinsic method only. It can be reasonably assumed that the usage of perforated chambers can significantly reduce the time until transplantation of bone constructs. Finally, this study paves the way for further preclinical testing for proof of the concept as a basis for early clinical applicability.
Kopp, Sigmar; Behrend, Detlef; Kundt, Günther; Ottl, Peter; Frerich, Bernhard; Warkentin, Mareike
2013-06-01
To examine the influence of bone-substitute application during implantation on the success of immediately placed and loaded dental implants. A total of 147 consecutive patients (age, 16.5-80.4 years) were provided with 696 immediately loaded implants. The mean follow-up time was 34.1 months. Of these implants, 50.4% (n=351) were immediately placed into extraction sockets. A total of 119 implants were added by simultaneous bone-substitute application (NanoBone, Artoss GmbH, Rostock Germany), whereas the other implants were placed in healed bone. Univariate and multivariate analysis was performed using IBM SPSS V.20. The overall implant success rate was 96.1%. Implants with simultaneous bone replacement had a hazard ratio of 0.877 (p=0.837); 95% CI, 0.253-3.04). Factors found to be statistically significant modifiers of success on multivariate analysis (p<0.05) included type of superstructure (p<0.001), implant-abutment connection (p<0.001), membrane use (p=0.010), and jaw (p=0.026). None of the other factors investigated were significant modifiers. The present study demonstrates high success rates for immediately loaded implants and their superstructures independent of the simultaneous application of bone substitute. The declared aim of socket preservation, the prevention avoiding bone loss, is achieved in the immediate implant placement scenario under immediate-loading conditions.
Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes
No, Young Jung; Li, Jiao Jiao; Zreiqat, Hala
2017-01-01
Doped calcium silicate ceramics (DCSCs) have recently gained immense interest as a new class of candidates for the treatment of bone defects. Although calcium phosphates and bioactive glasses have remained the mainstream of ceramic bone substitutes, their clinical use is limited by suboptimal mechanical properties. DCSCs are a class of calcium silicate ceramics which are developed through the ionic substitution of calcium ions, the incorporation of metal oxides into the base binary xCaO–ySiO2 system, or a combination of both. Due to their unique compositions and ability to release bioactive ions, DCSCs exhibit enhanced mechanical and biological properties. Such characteristics offer significant advantages over existing ceramic bone substitutes, and underline the future potential of adopting DCSCs for clinical use in bone reconstruction to produce improved outcomes. This review will discuss the effects of different dopant elements and oxides on the characteristics of DCSCs for applications in bone repair, including mechanical properties, degradation and ion release characteristics, radiopacity, and biological activity (in vitro and in vivo). Recent advances in the development of DCSCs for broader clinical applications will also be discussed, including DCSC composites, coated DCSC scaffolds and DCSC-coated metal implants. PMID:28772513
Barbanti Brodano, G; Griffoni, C; Zanotti, B; Gasbarrini, A; Bandiera, S; Ghermandi, R; Boriani, S
2015-10-01
Iliac crest bone graft (ICBG) is considered the gold standard for spine surgical procedures to achieve a successful fusion, because of its known osteoinductive and osteoconductive properties. Considering its autogenous origin, the use of ICBG has not been associated to an increase of intraoperative or postoperative complications directly related to the surgery. However, complications related to the harvesting procedure and to the donor site morbidity have been largely reported in the literature, favoring the development of a wide range of alternative products to be used as bone graft extenders or substitutes for spine fusion. The family of ceramic-based bone grafts has been widely used and studied during the last years for spine surgical procedures in order to reduce the need for iliac crest bone grafting and the consequent morbidity associated to the harvesting procedures. We report here the results of a post-market surveillance analysis performed on four independent cohorts of patients (115 patients) to evaluate the safety of three different formulations of hydroxyapatite-derived products used as bone graft extenders/substitutes for lumbar arthrodesis. No intraoperative or post-operative complications related to the use of hydroxyapatite-derived products were detected, during medium and long follow up period (minimum 12 months-maximum 5 years). This post-market surveillance analysis evidenced the safety of ceramic products as bone graft extenders or substitutes for spine fusion. Moreover, the evidence of the safety of hydroxyapatite-derived products allows to perform clinical studies aimed at evaluating the fusion rates and the clinical outcomes of these materials as bone graft extenders/substitutes, in order to support their use as an alternative to ICBG for spine fusion.
Ghanaati, Shahram; Orth, Carina; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin W; Booms, Patrick; Stübinger, Stefan; Landes, Constantin; Sader, Robert Anton; Kirkpatrick, Charles James
2010-06-01
The clinical suitability of a bone substitute material is determined by the ability to induce a tissue reaction specific to its composition. The aim of this in vivo study was to analyze the tissue reaction to a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute.The subcutaneous implantation model in Wistar rats was chosen to assess the effect of silica degradation on the vascularization of the biomaterial and its biodegradation within a time period of 6 months. Already at day 10 after implantation, histomorphometrical analysis showed that the vascularization of the implantation bed reached its peak value compared to all other time points. Both vessel density and vascularization significantly decreased until day 90 after implantation. In this time period, the bone substitute underwent a significant degradation initiated by TRAP-positive and TRAP-negative multinucleated giant cells together with macrophages and lymphocytes. Although no specific tissue reaction could be related to the described silica degradation, the biomaterial was close to being fully degraded without a severe inflammatory response. These characteristics are advantageous for bone regeneration and remodeling processes.
Sugar substitutes: Health controversy over perceived benefits
Tandel, Kirtida R.
2011-01-01
Sugar is an inseparable part of the food we consume. But too much sugar is not ideal for our teeth and waistline. There have been some controversial suggestions that excessive sugar may play an important role in certain degenerative diseases. So artificial sweeteners or artificially sweetened products continue to attract consumers. A sugar substitute (artificial sweetener) is a food additive that duplicates the effect of sugar in taste, but usually has less food energy. Besides its benefits, animal studies have convincingly proven that artificial sweeteners cause weight gain, brain tumors, bladder cancer and many other health hazards. Some kind of health related side effects including carcinogenicity are also noted in humans. A large number of studies have been carried out on these substances with conclusions ranging from “safe under all conditions” to “unsafe at any dose”. Scientists are divided in their views on the issue of artificial sweetener safety. In scientific as well as in lay publications, supporting studies are often widely referenced while the opposing results are de-emphasized or dismissed. So this review aims to explore the health controversy over perceived benefits of sugar substitutes. PMID:22025850
Pan, Yong-Xiong; Yang, Guang-Gang; Li, Zhong-Wan; Shi, Zhong-Min; Sun, Zhan-Dong
2018-01-01
Abstract This study investigated clinical outcomes of biomimetic mineralized collagen artificial bone putty for bone reconstruction in the treatment of calcaneus fracture. Sixty cases of calcaneal fractures surgically treated with open reduction and internal fixation in our hospital from June 2014–2015 were chosen and randomly divided into two groups, including 30 cases treated with biomimetic mineralized collagen artificial bone putty as treatment group, and 30 cases treated with autogenous ilia as control group. The average follow-up time was 17.2 ± 3.0 months. The results showed that the surgery duration and postoperative drainage volume of treatment group were significantly lower than control group; there were no statistically significant differences in the fracture healing time, American Orthopaedic Foot and Ankle Society scores at 3 and 12 months after surgery, Böhler’s angle, Gissane’s angle and height of calcaneus between the two groups. There were no significant differences in wound complication and reject reaction between the two groups, while significant difference in donor site complication. As a conclusion, the implantation of biomimetic mineralized collagen artificial bone putty in the open reduction of calcaneal fracture resulted in reliable effect and less complications, which is suitable for clinical applications in the treatment of bone defect in calcaneal fractures. PMID:29644087
Rignon-Bret, Christophe; Hadida, Alain; Aidan, Alexis; Nguyen, Thien-Huong; Pasquet, Gerard; Fron-Chabouis, Helene; Wulfman, Claudine
2016-05-20
Bone preservation is an essential issue in the context of last teeth extraction and complete edentulism. The intended treatment, whether a complete denture or an implant placement, is facilitated with a voluminous residual ridge. Bone resorption after multiple extractions has not been as well studied as the bone resorption that occurs after the extraction of a single tooth. Recent advances in bone substitute materials have revived this issue. The purpose of this study is to evaluate the interest in using bone substitute material to fill the socket after last teeth extraction in a maxillary immediate complete denture procedure compared with the conventional protocol without socket filling. A randomized, controlled, clinical trial was designed. The 34 participants eligible for maxillary immediate complete denture were divided into two groups. Complete dentures were prepared despite persistence of the last anterior teeth. The control group received a conventional treatment including denture placement immediately after extractions. In the experimental group, in addition to the immediate denture placement, a xenograft bone-substitute material (Bio-Oss Collagen®) was placed in the fresh sockets. The primary outcome of the study is to compare mean bone ridge height loss 1 year after maxillary immediate complete denture placement, with or without bone-substitute material, in incisor and canine sockets. The secondary outcomes are to compare the average bone ridge height and width loss for each extraction site. An original quantitative evaluation method using cone beam computed tomography was designed for reproducible measurements, with a radio-opaque denture duplicate. Two independent operators perform the radiologic measurements. The immediate complete denture technique limits bone resorption in multiple extraction situations and thus allows better denture retention and better options for implant placement. To compare the benefit of using any bone socket-filling material, we proposed a quantitative evaluation protocol of resorption in the specific case of the last anterior maxillary teeth extraction with immediate denture placement. ClinicalTrials.gov, NCT02120053 . Registered on 18 April 2014.
Vascularized Bone Tissue Engineering: Approaches for Potential Improvement
Nguyen, Lonnissa H.; Annabi, Nasim; Nikkhah, Mehdi; Bae, Hojae; Binan, Loïc; Park, Sangwon; Kang, Yunqing
2012-01-01
Significant advances have been made in bone tissue engineering (TE) in the past decade. However, classical bone TE strategies have been hampered mainly due to the lack of vascularization within the engineered bone constructs, resulting in poor implant survival and integration. In an effort toward clinical success of engineered constructs, new TE concepts have arisen to develop bone substitutes that potentially mimic native bone tissue structure and function. Large tissue replacements have failed in the past due to the slow penetration of the host vasculature, leading to necrosis at the central region of the engineered tissues. For this reason, multiple microscale strategies have been developed to induce and incorporate vascular networks within engineered bone constructs before implantation in order to achieve successful integration with the host tissue. Previous attempts to engineer vascularized bone tissue only focused on the effect of a single component among the three main components of TE (scaffold, cells, or signaling cues) and have only achieved limited success. However, with efforts to improve the engineered bone tissue substitutes, bone TE approaches have become more complex by combining multiple strategies simultaneously. The driving force behind combining various TE strategies is to produce bone replacements that more closely recapitulate human physiology. Here, we review and discuss the limitations of current bone TE approaches and possible strategies to improve vascularization in bone tissue substitutes. PMID:22765012
NASA Astrophysics Data System (ADS)
Lu, Yanfei; Lekszycki, Tomasz
2018-03-01
A new description of graft substitution by bone tissue is proposed in this work. The studied domain is considered as a continuum model consisting of a mixture of the bone tissue and the graft material. Densities of both components evolve in time as a result of cellular activity and biodegradation. The proposed model focuses on the interaction between the bone cell activity, mechanical stimuli, nutrients supply and scaffold microstructure. Different combinations of degradation rate and stiffness of the graft material were examined by numerical simulation. It follows from the calculations that the degradation rate of the scaffold should be tuned to the synthesis/resorption rate of the tissue, which are dependent among the others on scaffold porosity changes. Simulation results imply potential criteria to choose proper bone substitute material in consideration of degradation rate, initial porosity and mechanical characteristics.
Han, Junjie; Wan, Peng; Ge, Ye; Fan, Xinmin; Tan, Lili; Li, Jianjun; Yang, Ke
2016-01-01
Bone defects are very challenging in orthopedic practice. There are many practical and clinical shortcomings in the repair of the defect by using autografts, allografts or xenografts, which continue to motivate the search for better alternatives. The ideal bone grafts should provide mechanical support, fill osseous voids and enhance the bone healing. Biodegradable magnesium-strontium (Mg-Sr) alloys demonstrate good biocompatibility and osteoconductive properties, which are promising biomaterials for bone substitutes. The aim of this study was to evaluate and pair the degradation of Mg-Sr alloys for grafting with their clinical demands. The microstructure and performance of Mg-Sr alloys, in vitro degradation and biological properties including in vitro cytocompatibility and in vivo implantation were investigated. The results showed that the as-cast Mg-Sr alloy exhibited a rapid degradation rate compared with the as-extruded alloy due to the intergranular distribution of the second phase and micro-galvanic corrosion. However, the initial degradation could be tailored by the coating protection, which was proved to be cytocompatible and also suitable for bone repair observed by in vivo implantation. The integrated fracture calluses were formed and bridged the fracture gap without gas bubble accumulation, meanwhile the substitutes simultaneously degraded. In conclusion, the as-cast Mg-Sr alloy with coating is potential to be used for bone substitute alternative. Copyright © 2015 Elsevier B.V. All rights reserved.
Lorenz, Jonas; Eichler, Kathrin; Barbeck, Mike; Lerner, Henriette; Stübinger, Stefan; Seipel, Catherine; Vogl, Thomas J; Kovács, Adorján F; Ghanaati, Shahram; Sader, Robert A
2016-01-01
In numerous animal and human studies, it could be detected that in bone augmentation procedures, material's physicochemical characteristics can influence the cellular inflammatory pattern and therefore the integration in the host tissue. Histological, histomorphometrical, and clinical analyses of the integration of the biomaterial in the surrounding tissue are well established methodologies; however, they do not make a statement on volume and density changes of the augmented biomaterial. The aim of the present study was to assess the volume and density of a xenogeneic (Bio-Oss ® , BO) and a synthetic (NanoBone ® , NB) bone substitute material in split-mouth sinus augmentations in former tumor patients to complete histological and histomorphometrical assessment. Immediately and 6 months after sinus augmentation computed tomography scans were recorded, bone grafts were marked, and the volume was calculated with radiologic RIS-PACS software (General Electric Healthcare, Chalfont St. Giles, Great Britain) to determine the integration and degradation behavior of both biomaterials. Radiographic analysis revealed a volume reduction of the initial augmented bone substitute material (i.e. 100%) to 77.36 (±11.68) % in the BO-group, respectively, 75.82 (±22.28) % in the NB-group six months after augmentation. In both materials, the volume reduction was not significant. Bone density significantly increased in both groups. The presented radiological investigation presents a favorable method to obtain clinically relevant information concerning the integration and degradation behavior of bone substitute materials.
NASA Astrophysics Data System (ADS)
Chaikina, M. V.; Komarova, E. G.; Sharkeev, Yu. P.; Bulina, N. V.; Prosanov, I. Yu.
2016-08-01
The paper presents the results of mechanochemical synthesis of hydroxyapatite (HAP) with simultaneous substitutions of lanthanum (La3+) for calcium ions and silicate ((SiO4)4--group) for the phosphate group with the substituent concentrations in the range 0.2-2.0 mol per HAP mol. The use of Si-substituted HAP as a coating material promotes accelerated osteosynthesis and osteointegration of implants into the bone tissue. The replacement of calcium ions by La3+ in the HAP structure plays an antimicrobial role preventing inflammatory processes. Annealing-induced variations in the lattice parameters of synthesized samples indicate the substituent incorporation into the HAP structure. It is known that complex compounds with lanthanides are used for cancer chemotherapy. In particular, La plays a key role in the course of treatment of injured defects of bone tissue. In addition, La-substituted HAP can be used for filling bone defects and coating implants in postoperational areas affected by bone cancer.
Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral.
Marisa, Mary E; Zhou, Shiliang; Melot, Brent C; Peaslee, Graham F; Neilson, James R
2016-12-05
Hydroxyapatite is an inorganic mineral closely resembling the mineral phase in bone. However, as a biological mineral, it is highly disordered, and its composition and atomistic structure remain poorly understood. Here, synchrotron X-ray total scattering and pair distribution function analysis methods provide insight into the nature of atomistic disorder in a synthetic bone mineral analogue, chemically substituted hydroxyapatite. By varying the effective hydrolysis rate and/or carbonate concentration during growth of the mineral, compounds with varied degrees of paracrystallinity are prepared. From advanced simulations constrained by the experimental pair distribution function and density functional theory, the paracrystalline disorder prevalent in these materials appears to result from accommodation of carbonate in the lattice through random displacement of the phosphate groups. Though many substitution modalities are likely to occur in concert, the most predominant substitution places carbonate into the mirror plane of an ideal phosphate site. Understanding the mineralogical imperfections of a biologically analogous hydroxyapatite is important not only to potential bone grafting applications but also to biological mineralization processes themselves.
Comparing the Efficacy of Three Different Nano-scale Bone Substitutes: In vivo Study.
Razavi, Sayed Mohammad; Rismanchian, Mansour; Jafari-Pozve, Nasim; Nosouhian, Saied
2017-01-01
Synthetic biocompatible bone substitutions have been used widely for bone tissue regeneration as they are safe and effective. The aim of this animal study is to compare the effectiveness of three different biocompatible bone substitutes, including nano-hydroxyapatite (nano-HA) nano-bioglass (nano-BG) and forstrite scaffolds. In this interventional and experimental study, four healthy dogs were anesthetized, and the first to fourth premolars were extracted in each quadrant. After healing, the linear incision on the crestal ridge from molar to anterior segment prepared in each quadrant and 16 defects in each dog were prepared. Nano-HA, nano-BG, and forstrite scaffold was prepared according to the size of defects and placed in the 12 defects randomly, four defects remained as a control group. The dogs were sacrificed in four time intervals (15, 30, 45, and 60 days after) and the percentage of different types of regenerated bones (lamellar and woven) and connective tissue were recorded in histological process. The data were analyzed using Mann-Whitney test (α = 0.05). The difference in nano-HA and nano-BG with the control group was significant in three-time intervals regarding the amount of bone formation ( P < 0.01). After 15 days, the nano-HA showed the highest amount of woven and lamellar bone regeneration (18.37 ± 1.06 and 30.44 ± 0.54). Nano-HA and nano-BG groups showed a significant amount of bone regeneration, especially after 30 days, but paying more surveys and observation to these materials as bone substitutes seem to be needed.
Comparing the Efficacy of Three Different Nano-scale Bone Substitutes: In vivo Study
Razavi, Sayed Mohammad; Rismanchian, Mansour; Jafari-pozve, Nasim; Nosouhian, Saied
2017-01-01
Background: Synthetic biocompatible bone substitutions have been used widely for bone tissue regeneration as they are safe and effective. The aim of this animal study is to compare the effectiveness of three different biocompatible bone substitutes, including nano-hydroxyapatite (nano-HA) nano-bioglass (nano-BG) and forstrite scaffolds. Materials and Methods: In this interventional and experimental study, four healthy dogs were anesthetized, and the first to fourth premolars were extracted in each quadrant. After healing, the linear incision on the crestal ridge from molar to anterior segment prepared in each quadrant and 16 defects in each dog were prepared. Nano-HA, nano-BG, and forstrite scaffold was prepared according to the size of defects and placed in the 12 defects randomly, four defects remained as a control group. The dogs were sacrificed in four time intervals (15, 30, 45, and 60 days after) and the percentage of different types of regenerated bones (lamellar and woven) and connective tissue were recorded in histological process. The data were analyzed using Mann–Whitney test (α = 0.05). Results: The difference in nano-HA and nano-BG with the control group was significant in three-time intervals regarding the amount of bone formation (P < 0.01). After 15 days, the nano-HA showed the highest amount of woven and lamellar bone regeneration (18.37 ± 1.06 and 30.44 ± 0.54). Conclusion: Nano-HA and nano-BG groups showed a significant amount of bone regeneration, especially after 30 days, but paying more surveys and observation to these materials as bone substitutes seem to be needed. PMID:28603705
Konermann, A; Staubwasser, M; Dirk, C; Keilig, L; Bourauel, C; Götz, W; Jäger, A; Reichert, C
2014-04-01
The aim of this study was to determine the material composition and cell-mediated remodelling of different calcium phosphate-based bone substitutes. Osteoclasts were cultivated on bone substitutes (Cerabone, Maxresorb, and NanoBone) for up to 5 days. Bafilomycin A1 addition served as the control. To determine cellular activity, the supernatant content of calcium and phosphate was measured by inductively coupled plasma optical emission spectrometry. Cells were visualized on the materials by scanning electron microscopy. Material composition and surface characteristics were assessed by energy-dispersive X-ray spectroscopy. Osteoclast-induced calcium and phosphate release was material-specific. Maxresorb exhibited the highest ion release to the medium (P = 0.034; calcium 40.25mg/l day 5, phosphate 102.08 mg/l day 5) and NanoBone the lowest (P = 0.021; calcium 8.43 mg/l day 5, phosphate 15.15 mg/l day 5); Cerabone was intermediate (P = 0.034; calcium 16.34 mg/l day 5, phosphate 30.6 mg/l day 5). All investigated materials showed unique resorption behaviours. The presented methodology provides a new perspective on the investigation of bone substitute biodegradation, maintaining the material-specific micro- and macrostructure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
An experimental study on the application of radionuclide imaging in repair of the bone defect
Zhu, Weimin; Wang, Daping; Zhang, Xiaojun; Lu, Wei; Liu, Jianquan; Peng, Liangquan; Li, Hao; Han, Yun; Zeng, Yanjun
2011-01-01
The aim of our study was to validate the effect of radionuclide imaging in early monitoring of the bone’s reconstruction, the animal model of bone defect was made on the rabbits repaired with HA artificial bone. The ability of bone defect repair was evaluated by using radionuclide bone imaging at 2, 4, 8 and 12 weeks postoperatively. The results indicate that the experimental group stimulated more bone formation than that of the control group. The differences of the bone reconstruction ability were statistically significant (p<0.05). The nano-HA artificial has good bone conduction, and it can be used for the treatment of bone defects. Radionuclide imaging may be an effective and first choice method for the early monitoring of the bone’s reconstruction. PMID:21875418
Iundusi, Riccardo; Gasbarra, Elena; D'Arienzo, Michele; Piccioli, Andrea; Tarantino, Umberto
2015-05-13
Reduction of tibial plateau fractures and maintain a level of well aligned congruent joint is key to a satisfactory clinical outcome and is important for the return to pre-trauma level of activity. Stable internal fixation support early mobility and weight bearing. The augmentation with bone graft substitute is often required to support the fixation to mantain reduction. For these reasons there has been development of novel bone graft substitutes for trauma applications and in particular synthetic materials based on calcium phosphates and/or apatite combined with calcium sulfates. Injectable bone substitutes can optimize the filling of irregular bone defects. The purpose of this study was to assess the potential of a novel injectable bone substitute CERAMENT™|BONE VOID FILLER in supporting the initial reduction and preserving alignment of the joint surface until fracture healing. From June 2010 through May 2011 adult patients presenting with acute, closed and unstable tibial plateau fractures which required both grafting and internal fixation, were included in a prospective study with percutaneous or open reduction and internal fixation (ORIF) augmented with an injectable ceramic biphasic bone substitute CERAMENT™|BONE VOID FILLER (BONESUPPORT™, Lund, Sweden) to fill residual voids. Clinical follow up was performed at 1, 3, 9 and 12 months and any subsequent year; including radiographic analysis and Rasmussen system for knee functional grading. Twenty four patients, balanced male-to-female, with a mean age of 47 years, were included and followed with an average of 44 months (range 41-52 months). Both Schatzker and Müller classifications were used and was type II or 41-B3 in 7 patients, type III or 41-B2 in 12 patients, type IV or 41-C1 in 2 patients and type VI or 41-C3 in 3 patients, respectively. The joint alignement was satisfactory and manteined within a range of 2 mm, with an average of 1.18 mm. The mean Rasmussen knee function score was 26.5, with 14 patients having an excellent result and the remaining 10 with a good result. It can be concluded that radiological and clinical outcome was satisfactory and obtained in all cases without complications. This injectable novel biphasic hydroxyapatite and calcium sulfate ceramic material is a valuable armamentarium in the treatment of trauma where bone graft is required.
New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.
Kubasiewicz-Ross, Paweł; Hadzik, Jakub; Seeliger, Julia; Kozak, Karol; Jurczyszyn, Kamil; Gerber, Hanna; Dominiak, Marzena; Kunert-Keil, Christiane
2017-09-01
Many types of bone substitute materials are available on the market. Researchers are refining new bone substitutes to make them comparable to autologous grafting materials in treatment of bone defects. The purpose of the study was to evaluate the osseoconductive potential and bone defect regeneration in rat calvaria bone defects treated with new synthetic nano-hydroxyapatite. The study was performed on 30 rats divided into 5 equal groups. New preproduction of experimental nano-hydroxyapatite material by NanoSynHap (Poznań, Poland) was tested and compared with commercially available materials. Five mm critical size defects were created and filled with the following bone grafting materials: 1) Geistlich Bio-Oss ® ; 2) nano-hydroxyapatite+β-TCP; 3) nano-hydroxyapatite; 4) nano-hydroxyapatite+collagen membrane. The last group served as controls without any augmentation. Bone samples from calvaria were harvested for histological and micro-ct evaluation after 8 weeks. New bone formation was observed in all groups. Histomorphometric analysis revealed an amount of regenerated bone between 34.2 and 44.4% in treated bone defects, whereas only 13.0% regenerated bone was found in controls. Interestingly, in group 3, no significant particles of the nano-HA material were found. In contrast, residual bone substitute material could be detected in all other test groups. Micro-CT study confirmed the results of the histological examinations. The new nano-hydroxyapatite provides comparable results to other grafts in the field of bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.
Development and evaluation of tetrapod-shaped granular artificial bones.
Choi, Sungjin; Liu, I-li; Yamamoto, Kenichi; Igawa, Kazuyo; Mochizuki, Manabu; Sakai, Takamasa; Echigo, Ryosuke; Honnami, Muneki; Suzuki, Shigeki; Chung, Ung-il; Sasaki, Nobuo
2012-07-01
We have developed a novel form of granular artificial bone "Tetrabones" with a homogeneous tetrapod shape and uniform size. Tetrabones are four armed structures that accumulate to form the intergranular pores that allow invasion of cells and blood vessels. In this study we evaluated the physicochemical characteristics of Tetrabones in vitro, and compared their biological and biomechanical properties in vivo to those of conventional β-tricalcium phosphate (β-TCP) granule artificial bone. Both the rupture strength and elastic modulus of Tetrabone particles were higher than those of β-TCP granules in vitro. The connectivity of intergranular pores 100, 300, and 400 μm in size were higher in Tetrabones than in the β-TCP granules. Tetrabones showed similar osteoconductivity and biomechanical stiffness to β-TCP at 2 months after implantation in an in vivo study of canine bone defects. These results suggest that Tetrabones may be a good bone graft material in bone reconstruction. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Huang, Guofeng; Liu, Guojun; Zhang, Feng; Gao, Jianting; Wang, Jiangze; Chen, Qi; Wu, Benwen; Ding, Zhenqi; Cai, Taoyi
2017-01-01
Under physiological conditions bone defects often occur at mechanical load bearing sites and bone substitutes used for regeneration should be similarly subjected to mechanical loading stress. In this study, we investigated whether a novel heel-strike like mechanical loading method can be used as a complementary therapy to promote bone regeneration following bone substitute grafting. To test this, three groups of rabbits with segmental bone defects in the tibia were implanted with bovine deproteinized cancellous bone scaffold (DCBS), with one group also receiving heel-strike like mechanical loading generated by a rap stress stimulator. From weeks 4-12 post-operation X-ray and micro-CT scanning showed that rabbits receiving combination therapy had significantly more callus at the bone defect. Moreover, bone defects in the combination group were completely replaced with new bone at week 12, while the DCBS implantation alone group healed only partially and rabbits receiving neither DCBS nor mechanical loading developed only small calluses throughout the observation period. Analysis of micro-CT scanning results demonstrated that new bone density in the combination group was significantly higher than the DCBS only group at weeks 4 and 12 ( p <0.05). H&E staining results also indicated a significantly higher percentage of new bone in the bone defect area and a lower percentage of residual scaffold in the combination group compared to the DCBS only group ( p <0.05). Thus, this heel-strike like mechanical loading method appears to accelerate bone regeneration following substitute implantation by restoring a local mechanical loading environment in segmental bone defects.
Monodisperse selenium-substituted hydroxyapatite: Controllable synthesis and biocompatibility.
Sun, Jianpeng; Zheng, Xiaoyan; Li, Hui; Fan, Daidi; Song, Zhanping; Ma, Haixia; Hua, Xiufu; Hui, Junfeng
2017-04-01
Hydroxyapatite (HA) is the major inorganic component of natural bone tissue. As an essential trace element, selenium involves in antioxidation and anticancer of human body. So far, ion-doped hydroxyapatites (HAs) are widely investigated owing to their great applications in field of biomaterial, biological labeling. In this paper, series of monodisperse HA doped with SeO 3 2- (SeHA) was successfully synthesized based on the liquid-solid-solution (LSS) strategy. The obtained samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive spectrometer (EDS). The results indicated that the SeO 3 2- doping level of the Se/(P+Se) molar ratio of 0-0.4 can be requisitely controlled, and the morphology of SeHA nanoparticles varied from nanorods to nanoneedles with increasing Se/(P+Se) molar ratio. Significantly, the as-synthesized SeHA nanocrystals exhibit a low cytotoxicity for osteoblastic cells, showing exciting potentials for application in artificial scaffold materials inhibiting of tumor growth in bone. Copyright © 2016 Elsevier B.V. All rights reserved.
Yu, D; Li, Q; Mu, X; Chang, T; Xiong, Z
2008-10-01
Active artificial bone composed of poly lactide-co-glycolide (PLGA)/ tricalcium phosphate (TCP) was prefabricated using low-temperature rapid-prototyping technology so that the process of osteogenesis could be observed in it. PLGA and TCP were the primary materials, they were molded at low temperature, then recombinant human bone morphogenetic protein-2 (rhBMP-2) was added to form an active artificial bone. Goats with standard cranial defects were randomly divided into experimental (implants with rhBMP-2 added) and control (implants without rhBMP-2) groups, and osteogenesis was observed and evaluated by imaging and biomechanical and histological examinations. The PLGA-TCP artificial bone scaffold (90% porosity) had large and small pores of approximately 360microm and 3-5microm diameter. Preliminary and complete repair of the cranial defect in the goats occurred 12 and 24 weeks after surgery, respectively. The three-point bending strength of the repaired defects attained that of the normal cranium. In conclusion, low-temperature rapid-prototyping technology can preserve the biological activity of this scaffold material. The scaffold has a good three-dimensional structure and it becomes an active artificial bone after loading with rhBMP-2 with a modest degradation rate and excellent osteogenesis in the goat.
Zaman, Chowdury Tanira; Takeuchi, Akari; Matsuya, Shigeki; Zaman, Q H M Shawket; Ishikawa, Kunio
2008-09-01
B-type carbonate apatite (CO3Ap) block may be an ideal artificial bone substitute because it is closer in chemical composition to bone mineral. In the present study, the feasibility to fabricate CO3Ap blocks was investigated using compositional transformation, which was based on the dissolution-precipitation reaction of a gypsum-calcite composite with free-molding behavior. For the compositional change, or phosphorization, gypsum-calcite composites of varying CaCO3 contents were immersed in 1 mol/L (NH4)3PO4 aqueous solution at 100 degrees C for 24 hours. No macroscopic changes were found after the treatment, whereas microscopic change was observed at SEM level. X-ray diffraction, Fourier transform infrared spectroscopy and CHN analysis indicated that the composites were B-type CO3Ap containing approximately 6-7 wt% of CO3, a value similar to that of biological bone apatite. Diametral tensile strength of the CO3Ap block was approximately 1-3 MPa. Based on the results obtained, it was therefore concluded that gypsum-calcite was a good candidate for the fabrication of CO3Ap blocks, coupled with the advantage that the composite can be molded to any shape by virtue of the setting property of gypsum.
NASA Technical Reports Server (NTRS)
Mulugeta, L.; Werner, C. R.; Pennline, J. A.
2015-01-01
During exploration class missions, such as to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Data has shown that astronauts lose bone mass at a rate of 1% to 2% a month in microgravity, particularly in lower extremities such as the proximal femur. Exercise countermeasures have not completely eliminated bone loss from long duration spaceflight missions, which leaves astronauts susceptible to early onset osteoporosis and greater risk of fracture. Introduction of the Advanced Resistive Exercise Device and other large exercise devices on the International Space Station (ISS), coupled with improved nutrition, has further minimized bone loss. However, unlike the ISS, exploration vehicles will have very limited volume and power available to accommodate such capabilities. Therefore, novel concepts like artificial gravity systems are being explored as a means to provide sufficient load stimulus to the musculoskeletal system to mitigate bone changes that may lead to early onset osteoporosis and increased risk of fracture. Currently, there is minimal data available to drive further research and development efforts to appropriately explore such options. Computational modeling can be leveraged to gain insight on the level of osteoprotection that may be achieved using artificial gravity produced by a spinning spacecraft or centrifuge. With this in mind, NASA's Digital Astronaut Project (DAP) has developed a bone remodeling model that has been validated for predicting volumetric bone mineral density (vBMD) changes of trabecular and cortical bone both for gravitational unloading condition and the equivalent of 1g daily load stimulus. Using this model, it is possible to simulate vBMD changes in trabecular and cortical bone under different gravity conditions. In this presentation, we will discuss our preliminary findings regarding if and how artificial gravity may be used to mitigate spaceflight induced bone loss.
Stroud, Nicholas J; DiPaola, Matthew J; Martin, Brian L; Steiler, Cindy A; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D; Roche, Christopher P
2013-11-01
Numerous glenoid implant designs have been introduced into the global marketplace in recent years; however, little comparative biomechanical data exist to substantiate one design consideration over another. This study dynamically evaluated reverse shoulder glenoid baseplate fixation and compared the initial fixation associated with 2 reverse shoulder designs having an equivalent center of rotation in low-density and high-density bone substitute substrates. Significant differences in fixation were observed between implant designs, where the circular-porous reverse shoulder was associated with approximately twice the micromotion per equivalent test than the oblong-grit-blasted design. Additionally, 6 of the 7 circular-porous reverse shoulders failed catastrophically in the low-density bone model at an average of 2603 ± 981 cycles. None of the oblong-grit-blasted designs failed in the low-or high-density bone models and none of the circular-porous designs failed in the high-density bone models after 10,000 cycles of loading. These results demonstrate that significant differences in initial fixation exist between reverse shoulder implants having an equivalent center of rotation and suggest that design parameters, other than the position of the center of rotation, significantly affect fixation in low-density and high-density polyurethane bone substitutes. Subtle changes in glenoid baseplate design can dramatically affect fixation, particularly in low-density bone substitutes that are intended to simulate the bone quality of the recipient population for reverse shoulders. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Lorenz, Jonas; Eichler, Kathrin; Barbeck, Mike; Lerner, Henriette; Stübinger, Stefan; Seipel, Catherine; Vogl, Thomas J.; Kovács, Adorján F.; Ghanaati, Shahram; Sader, Robert A.
2016-01-01
Background: In numerous animal and human studies, it could be detected that in bone augmentation procedures, material's physicochemical characteristics can influence the cellular inflammatory pattern and therefore the integration in the host tissue. Histological, histomorphometrical, and clinical analyses of the integration of the biomaterial in the surrounding tissue are well established methodologies; however, they do not make a statement on volume and density changes of the augmented biomaterial. Aims: The aim of the present study was to assess the volume and density of a xenogeneic (Bio-Oss®, BO) and a synthetic (NanoBone®, NB) bone substitute material in split-mouth sinus augmentations in former tumor patients to complete histological and histomorphometrical assessment. Methods: Immediately and 6 months after sinus augmentation computed tomography scans were recorded, bone grafts were marked, and the volume was calculated with radiologic RIS-PACS software (General Electric Healthcare, Chalfont St. Giles, Great Britain) to determine the integration and degradation behavior of both biomaterials. Results: Radiographic analysis revealed a volume reduction of the initial augmented bone substitute material (i.e. 100%) to 77.36 (±11.68) % in the BO-group, respectively, 75.82 (±22.28) % in the NB-group six months after augmentation. In both materials, the volume reduction was not significant. Bone density significantly increased in both groups. Conclusion: The presented radiological investigation presents a favorable method to obtain clinically relevant information concerning the integration and degradation behavior of bone substitute materials. PMID:28299254
Busse, Björn; Schilling, Arndt F.; Schinke, Thorsten; Amling, Michael; Lange, Tobias
2012-01-01
Bioactive bone substitute materials are a valuable alternative to autologous bone transplantations in the repair of skeletal defects. However, clinical studies have reported varying success rates for many commonly used biomaterials. While osteoblasts have traditionally been regarded as key players mediating osseointegration, increasing evidence suggests that bone-resorbing osteoclasts are of crucial importance for the longevity of applied biomaterials. As no standardized data on the resorbability of biomaterials exists, we applied an in vitro-assay to compare ten commonly used bone substitutes. Human peripheral blood mononuclear cells (PBMCs) were differentiated into osteoclasts in the co-presence of dentin chips and biomaterials or dentin alone (control) for a period of 28 days. Osteoclast maturation was monitored on day 0 and 14 by light microscopy, and material-dependent changes in extracellular pH were assessed twice weekly. Mature osteoclasts were quantified using TRAP stainings on day 28 and their resorptive activity was determined on dentin (toluidin blue staining) and biomaterials (scanning electron microscopy, SEM). The analyzed biomaterials caused specific changes in the pH, which were correlated with osteoclast multinuclearity (r = 0.942; p = 0.034) and activity on biomaterials (r = 0.594; p = 0.041). Perossal led to a significant reduction of pH, nuclei per osteoclast and dentin resorption, whereas Tutogen bovine and Tutobone human strikingly increased all three parameters. Furthermore, natural biomaterials were resorbed more rapidly than synthetic biomaterials leading to differential relative resorption coefficients, which indicate whether bone substitutes lead to a balanced resorption or preferential resorption of either the biomaterial or the surrounding bone. Taken together, this study for the first time compares the effects of widely used biomaterials on osteoclast formation and resorbability in an unbiased approach that may now aid in improving the preclinical evaluation of bone substitute materials. PMID:23071629
Lorenz, Jonas; Al-Maawi, Sarah; Sader, Robert; Ghanaati, Shahram
2018-05-21
Autologous bone transfer is regarded as the gold standard for ridge augmentation before dental implantation, especially in severe bony defects caused by tumor resection or atrophy. In addition to the advantages of autologous bone, transplantation has several disadvantages, such as secondary operation, increased morbidity and pain. The present study reports, for the first time, a combination of a xenogeneic bone substitute (BO) with platelet-rich fibrin (PRF), which is a fully autologous blood concentrate derived from the patient's own peripheral blood by centrifugation. Solid A-PRF+TM and liquid i-PRFTM together with an individualized 3-D planned titanium mesh were used for reconstruction of a severe tumor-related bony defect within the mandible of a former head and neck cancer patient. The BO enriched with regenerative components from PRF allowed the reconstruction of the mandibular resective defect under the 3-D-mesh without autologous bone transplantation. Complete rehabilitation and restoration of the patient´s oral function were achieved. Histological analysis of extracted bone biopsies confirmed that the new bone within the augmented region originated from the residual bone. Within the limitations of the presented case, the applied concept appears to be a promising approach to increase the regenerative capacity of a bone substitute material, as well as decrease the demand for autologous bone transplantation, even in cases in which autologous bone is considered the golden standard. PRF can be considered a reliable source for increasing the biological capacities of bone substitute materials.
Barbanti Brodano, G; Mazzoni, E; Tognon, M; Griffoni, C; Manfrini, M
2012-05-01
Spine fusion is the gold standard treatment in degenerative and traumatic spine diseases. The bone regenerative medicine needs (i) in vitro functionally active osteoblasts, and/or (ii) the in vivo induction of the tissue. The bone tissue engineering seems to be a very promising approach for the effectiveness of orthopedic surgical procedures, clinical applications are often hampered by the limited availability of bone allograft or substitutes. New biomaterials have been recently developed for the orthopedic applications. The main characteristics of these scaffolds are the ability to induce the bone tissue formation by generating an appropriate environment for (i) the cell growth and (ii) recruiting precursor bone cells for the proliferation and differentiation. A new prototype of biomaterials known as "bioceramics" may own these features. Bioceramics are bone substitutes mainly composed of calcium and phosphate complex salt derivatives. In this study, the characteristics bioceramics bone substitutes have been tested with human mesenchymal stem cells obtained from the bone marrow of adult orthopedic patients. These cellular models can be employed to characterize in vitro the behavior of different biomaterials, which are used as bone void fillers or three-dimensional scaffolds. Human mesenchymal stem cells in combination with biomaterials seem to be good alternative to the autologous or allogenic bone fusion in spine surgery. The cellular model used in our study is a useful tool for investigating cytocompatibility and biological features of HA-derived scaffolds.
Carbon-centered radicals in γ-irradiated bone substituting biomaterials based on hydroxyapatite.
Sadlo, Jaroslaw; Strzelczak, Grazyna; Lewandowska-Szumiel, Malgorzata; Sterniczuk, Marcin; Pajchel, Lukasz; Michalik, Jacek
2012-09-01
Gamma irradiated synthetic hydroxyapatite, bone substituting materials NanoBone(®) and HA Biocer were examined using EPR spectroscopy and compared with powdered human compact bone. In every case, radiation-induced carbon centered radicals were recorded, but their molecular structures and concentrations differed. In compact bone and synthetic hydroxyapatite the main signal assigned to the CO(2) (-) anion radical was stable, whereas the signal due to the CO(3) (3-) radical dominated in NanoBone(®) and HA Biocer just after irradiation. However, after a few days of storage of these samples, also a CO(2) (-) signal was recorded. The EPR study of irradiated compact bone and the synthetic graft materials suggest that their microscopic structures are different. In FT-IR spectra of NanoBone(®), HA Biocer and synthetic hydroxyapatite the HPO(4) (2-) and CO(3) (2-) in B-site groups are detected, whereas in compact bone signals due to collagen dominate.
Fujishiro, Takaaki; Bauer, Thomas W; Kobayashi, Naomi; Kobayashi, Hideo; Sunwoo, Moon Hae; Seim, Howard B; Turner, A Simon
2007-09-01
Demineralized bone matrix (DBMs) preparations are a potential alternative or supplement to autogenous bone graft, but many DBMs have not been adequately tested in clinically relevant animal models. The aim of current study was to compare the efficacy of a new bone graft substitute composed of a combination of mineralized and demineralized allograft, along with hyaluronic acid (AFT Bone Void Filler) with several other bone graft materials in a sheep vertebral bone void model. A drilled defect in the sheep vertebral body was filled with either the new DBM preparation, calcium sulfate (OsteoSet), autologous bone graft, or left empty. The sheep were euthanized after 6 or 12 weeks, and the defects were examined by histology and quantitative histomorphometry. The morphometry data were analyzed by one-way analysis of variance with the post hoc Tukey-Kramer test or the Student's t-test. All of the bone defects in the AFT DBM preparation group showed good new bone formation with variable amounts of residual DBM and mineralized bone graft. The DBM preparation group at 12 weeks contained significantly more new bone than the defects treated with calcium sulfate or left empty (respectively, p < 0.05, p < 0.01). There was no significant difference between the DBM and autograft groups. No adverse inflammatory reactions were associated with any of the three graft materials. The AFT preparation of a mixture of mineralized and demineralized allograft appears to be an effective autograft substitute as tested in this sheep vertebral bone void model.
Calcium kinetics during bed rest with artificial gravity and exercise countermeasures
USDA-ARS?s Scientific Manuscript database
We assessed the potential for countermeasures to lessen the loss of bone calcium during bed rest. Subjects ingested less calcium during bed rest, and with artificial gravity, they also absorbed less calcium. With exercise, they excreted less calcium. To retain bone during bed rest, calcium intake ne...
Chon, Jegyun; Shin, Sangyeop; Jang, Gunil; Jeon, Taehyeon
2016-01-01
Background We investigated the causes of impingement between the patella bone and the bearing post during high flexion in cruciate-substituting total knee arthroplasty and proposed a treatment strategy. Methods This prospective cohort study included 218 cases that had undergone cruciate-substituting total knee arthroplasty from February 2014 to January 2015; a single surgeon performed the operation using the same method without patellar resurfacing in all patients. Results In these patients, the occurrence of impingement was determined by performing more than 120° high knee flexion after inserting a bearing perioperatively. The incidence of impingement was significantly associated with bearing design, femoral implant size, patella bone length, and patella inferior pole angle (p < 0.05). The impingement was resolved by resection of the lower articular side of the patella bone. Conclusions In the cruciate-substituting high-flexion total knee arthroplasty, impingement between the patella bone and bearing post was more common in patients with mobile bearing, small-size femoral component, and a long patella or a large inferior pole angle. In cases of intraoperative impingement between the patella bone and the bearing post, resection in the lower portion of the patella prevented impingement of the bearing with soft tissue or the patella by widening the space between the patella and the bearing post, which in turn prevented postoperative reduction in range of motion. PMID:27247740
Chon, Jegyun; Lee, Bongju; Shin, Sangyeop; Jang, Gunil; Jeon, Taehyeon
2016-06-01
We investigated the causes of impingement between the patella bone and the bearing post during high flexion in cruciate-substituting total knee arthroplasty and proposed a treatment strategy. This prospective cohort study included 218 cases that had undergone cruciate-substituting total knee arthroplasty from February 2014 to January 2015; a single surgeon performed the operation using the same method without patellar resurfacing in all patients. In these patients, the occurrence of impingement was determined by performing more than 120° high knee flexion after inserting a bearing perioperatively. The incidence of impingement was significantly associated with bearing design, femoral implant size, patella bone length, and patella inferior pole angle (p < 0.05). The impingement was resolved by resection of the lower articular side of the patella bone. In the cruciate-substituting high-flexion total knee arthroplasty, impingement between the patella bone and bearing post was more common in patients with mobile bearing, small-size femoral component, and a long patella or a large inferior pole angle. In cases of intraoperative impingement between the patella bone and the bearing post, resection in the lower portion of the patella prevented impingement of the bearing with soft tissue or the patella by widening the space between the patella and the bearing post, which in turn prevented postoperative reduction in range of motion.
Ahmadzadeh, Elham; Talebnia, Farid; Tabatabaei, Meisam; Ahmadzadeh, Hossein; Mostaghaci, Babak
2016-07-01
To repair damaged bone tissues, osteoconductive bone graft substitutes are required for enhancement of the regenerative potential of osteoblast cells. Nanostructured hydroxyapatite is a bioactive ceramic used for bone tissue engineering purposes. In this study, carbonate hydroxyapatite (cHA) and zinc-magnesium substituted hydroxyapatite (Zn-Mg-HA) nanoparticles were synthesized via biomineralization method using Enterobacter aerogenes. The structural phase composition and the morphology of the samples were analyzed using appropriate powder characterization methods. Next, a composite graft was fabricated by using polyvinyl alcohol and both cHA and Zn-Mg-HA samples. In vivo osteogenic potential of the graft was then investigated in a rabbit tibial osteotomy model. Histological, radiological and morphological studies showed that the graft was mineralized by the newly formed bone tissue without signs of inflammation or infection after 4 weeks of implantation. These histomorphometric results suggest that the fabricated graft can function as a potent osteoconductive bone tissue substitute. Copyright © 2016 Elsevier Inc. All rights reserved.
Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marisa, Mary E.; Zhou, Shiliang; Melot, Brent C.
Hydroxyapatite is an inorganic mineral closely resembling the mineral phase in bone. However, as a biological mineral, it is highly disordered, and its composition and atomistic structure remain poorly understood. Here, synchrotron X-ray total scattering and pair distribution function analysis methods provide insight into the nature of atomistic disorder in a synthetic bone mineral analogue, chemically substituted hydroxyapatite. By varying the effective hydrolysis rate and/or carbonate concentration during growth of the mineral, compounds with varied degrees of paracrystallinity are prepared. From advanced simulations constrained by the experimental pair distribution function and density functional theory, the paracrystalline disorder prevalent in thesemore » materials appears to result from accommodation of carbonate in the lattice through random displacement of the phosphate groups. Though many substitution modalities are likely to occur in concert, the most predominant substitution places carbonate into the mirror plane of an ideal phosphate site. Understanding the mineralogical imperfections of a biologically analogous hydroxyapatite is important not only to potential bone grafting applications but also to biological mineralization processes themselves.« less
Chronic sinusitis associated with the use of unrecognized bone substitute: a case report.
Beklen, Arzu; Pihakari, Antti; Rautemaa, Riina; Hietanen, Jarkko; Ali, Ahmed; Konttinen, Yrjö T
2008-05-01
Bone grafts are used for bone augmentation to ensure optimal implant placement. However, this procedure may sometimes cause sinusitis. The case of a 44-year-old woman with the diagnosis of recurrent and chronic sinusitis of her right maxillary sinus with a history of dental implant surgery is presented. After several attempts with normal standard sinusitis therapy, unrecognized bone substitute was removed from the sinus cavity, which finally led to resolution of the sinusitis. This case reiterates the importance of a careful examination, consultation, and second opinion for the selection of optimal treatment.
NASA Astrophysics Data System (ADS)
Al-Akhras, M.-Ali H.; Hasan Qaseer, M. K.; Albiss, B. A.; Alebrhim, M. Anwar; Gezawa, Umar S.
2018-02-01
Valuable structural and chemical features can be obtained for spongy and hard bone by infrared spectroscopy and X-ray diffraction. A better understanding of chemical and structural differences between spongy and hard bone is a very important contributor to bone quality. Our data according to IR data showed that the collagen cross-links occurred to be higher in spongy bone, and crystallinity was lower in spongy bone. Deconvolution of the infrared band near 870 cm-1 reveals evidence for A2-type carbonate substitution on hydroxyapatite of spongy bone in addition to the A and B type carbonate substitution that are also found in hard bone. IR and XRD data confirmed the results of each other since full width at half maximum of 002-apatite pattern of XRD showed that the crystallinity was lower in spongy bone. The microstructure was examined by using scanning electron microscope and the result showed that the lattice of thin threads in spongy bone and is less dense than hard bone.
Trisi, Paolo; Rao, Walter; Rebaudi, Alberto; Fiore, Peter
2003-02-01
The effect of the pure-phase beta-tricalcium phosphate (beta-TCP) Cerasorb on bone regeneration was evaluated in hollow titanium cylinders implanted in the posterior jaws of five volunteers. Beta-TCP particles were inserted inside the cylinders and harvested 6 months after placement. The density of the newly formed bone inside the bone-growing chambers measured 27.84% +/- 24.67% in test and 17.90% +/- 4.28% in control subjects, without a statistically significant difference. Analysis of the histologic specimens revealed that the density of the regenerated bone was related to the density of the surrounding bone. The present study demonstrates the spontaneous healing of infrabony artificial defects, 2.5 mm diameter, in the jaw. The pure beta-TCP was resorbed simultaneously with new bone formation, without interference with the bone matrix formation.
Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; S P Singh
2016-12-01
Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO2 in Na2O-CaO-SrO-P2O5-SiO2 system. This work demonstrates that the substitution of SrO for SiO2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO2. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.
Aziz, Mina S R; Nicayenzi, Bruce; Crookshank, Meghan C; Bougherara, Habiba; Schemitsch, Emil H; Zdero, Radovan
2014-05-01
The human humerus is the third largest longbone and experiences 2-3% of all fractures. Yet, almost no data exist on its intact biomechanical properties, thus preventing researchers from obtaining a full understanding of humerus behavior during injury and after being repaired with fracture plates and nails. The aim of this experimental study was to compare the biomechanical stiffness and strength of "gold standard" fresh-frozen humeri to a variety of humerus models. A series of five types of intact whole humeri were obtained: human fresh-frozen (n = 19); human embalmed (n = 18); human dried (n = 15); artificial "normal" (n = 12); and artificial "osteoporotic" (n = 12). Humeri were tested under "real world" clinical loading modes for shear stiffness, torsional stiffness, cantilever bending stiffness, and cantilever bending strength. After removing geometric effects, fresh-frozen results were 585.8 ± 181.5 N/mm2 (normalized shear stiffness); 3.1 ± 1.1 N/(mm2 deg) (normalized torsional stiffness); 850.8 ± 347.9 N/mm2 (normalized cantilever stiffness); and 8.3 ± 2.7 N/mm2 (normalized cantilever strength). Compared to fresh-frozen values, statistical equivalence (p ≥ 0.05) was obtained for all four test modes (embalmed humeri), 1 of 4 test modes (dried humeri), 1 of 4 test modes (artificial "normal" humeri), and 1 of 4 test modes (artificial "osteoporotic" humeri). Age and bone mineral density versus experimental results had Pearson linear correlations ranging from R = -0.57 to 0.80. About 77% of human humeri failed via a transverse or oblique distal shaft fracture, whilst 88% of artificial humeri failed with a mixed transverse + oblique fracture. To date, this is the most comprehensive study on the biomechanics of intact human and artificial humeri and can assist researchers to choose an alternate humerus model that can substitute for fresh-frozen humeri.
Fürst, David; Senck, Sascha; Hollensteiner, Marianne; Esterer, Benjamin; Augat, Peter; Eckstein, Felix; Schrempf, Andreas
2017-07-01
Artificial materials reflecting the mechanical properties of human bone are essential for valid and reliable implant testing and design. They also are of great benefit for realistic simulation of surgical procedures. The objective of this study was therefore to characterize two groups of self-developed synthetic foam structures by static compressive testing and by microcomputed tomography. Two mineral fillers and varying amounts of a blowing agent were used to create different expansion behavior of the synthetic open-cell foams. The resulting compressive and morphometric properties thus differed within and also slightly between both groups. Apart from the structural anisotropy, the compressive and morphometric properties of the synthetic foam materials were shown to mirror the respective characteristics of human vertebral trabecular bone in good approximation. In conclusion, the artificial materials created can be used to manufacture valid synthetic bones for surgical training. Further, they provide novel possibilities for studying the relationship between trabecular bone microstructure and biomechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Bone repair using a new injectable self-crosslinkable bone substitute.
Fellah, Borhane H; Weiss, Pierre; Gauthier, Olivier; Rouillon, Thierry; Pilet, Paul; Daculsi, Guy; Layrolle, Pierre
2006-04-01
A new injectable and self-crosslinkable bone substitute (IBS2) was developed for filling bone defects. The IBS2 consisted of a chemically modified polymer solution mixed with biphasic calcium phosphate (BCP) ceramic particles. The polymer hydroxypropylmethyl cellulose was functionalized with silanol groups (Si-HPMC) and formed a viscous solution (3 wt %) in alkaline medium. With a decrease in pH, self-hardening occurred due to the formation of intermolecular -Si-O- bonds. During setting, BCP particles, 40 to 80 microm in diameter, were added to the polymer solution at a weight ratio of 50/50. The resulting injectable material was bilaterally implanted into critically sized bone defects at the distal femoral epiphyses of nine New Zealand White rabbits. The IBS2 filled the bone defects entirely and remained in place. After 8 weeks, bone had grown centripetally and progressed towards the center of the defects. Newly formed bone, ceramic, and nonmineralized tissue ratios were 24.6% +/- 5.6%, 21.6% +/- 5.8%, and 53.7% +/- 0.1%, respectively. Mineralized and mature bone was observed between and in contact with the BCP particles. The bone/ceramic apposition was 73.4% +/- 10.6%. The yield strength for the IBS2-filled defects was 16.4 +/- 7.2 MPa, significantly higher than for the host trabecular bone tissue (2.7 +/- 0.4 MPa). This study showed that BCP particles supported the bone healing process by osteoconduction while the Si-HPMC hydrogel created intergranular space for bone ingrowth. This new injectable and self-crosslinkable bone substitute could be used conveniently in orthopedic surgery for filling critical-size bone defects. Copyright 2006 Orthopaedic Research Society
Vogel, Danny; Rathay, Andreas; Teufel, Stephanie; Ellenrieder, Martin; Zietz, Carmen; Sander, Manuela; Bader, Rainer
2017-01-01
In THA a sufficient primary implant stability is the precondition for successful secondary stability. Industrial foams of different densities have been used for primary stability investigations. The aim of this study was to analyse and compare the insertion behaviour of threaded and press-fit cups in vivo and ex vivo using bone substitutes with various densities. Two threaded (Bicon Plus®, Trident® TC) and one press-fit cup (Trident PSL®) were inserted by orthopaedic surgeons (S1, S2) into 10, 20 and 31 pcf blocks, using modified surgical instruments allowing measurements of the insertion forces and torques. Furthermore, the insertion behaviour of two cups were analysed intraoperatively. Torques for the threaded cups increased while bone substitute density increased. Maximum insertion torques were observed for S2 with 102 Nm for the Bicon Plus® in 20 pcf blocks and 77 Nm for the Trident® TC in 31 pcf blocks, which compares to the in vivo measurement (85 Nm). The average insertion forces for the press-fit cup varied from 5.2 to 6.8 kN (S1) and 7.2-11.5 kN (S2) ex vivo. Intraoperatively an average insertion force of 8.0 kN was determined. Implantation behaviour was influenced by acetabular cup design, bone substitute and experience of the surgeon. No specific density of bone substitute could be favoured for ex vivo investigations on the implantation behaviour of acetabular cups. The use synthetic bone blocks of high density (31 pcf) led to problems regarding cup orientation and seating. Therefore, bone substitutes used should be critically scrutinized in terms of the comparability to the in vivo situation.
Hydroxyapatite crystals as a bone graft substitute in benign lytic lesions of bone
Gupta, Anil Kumar; Kumar, Praganesh; Keshav, Kumar; Singh, Anant
2015-01-01
Background: Bone grafts are required to fill a cavity created after curettage of benign lytic lesions of the bone. To avoid the problems associated at donor site with autologous bone graft, we require allograft or bone graft substitutes. We evaluated the healing of lytic lesions after hydroxyapatite (HA) grafting by serial radiographs. Materials and Methods: Forty cases of benign lytic lesions of bone were managed by simple curettage and grafting using HA blocks. Commercially available HA of bovine origin (Surgiwear Ltd., Shahjahanpur, India) was used for this purpose. Mean duration of followup was 34.8 months (range 12–84 months). Mean patient age was 19.05 years (range 3–55 years). Radiological staging of graft incorporation was done as per criteria of Irwin et al. 2001. Results: In our series, two cases were in stage I. A total of 11 cases were in stage II and 27 were in stage III. Graft incorporation was radiologically complete by 15 months. Clinical recovery was observed before radiological healing. The average time taken to return to preoperative function was 3 months. Recurrence was observed in giant cell tumor (n = 3) and chondromyxoid fibroma (n = 1). There was no incidence of graft rejection, collapse, growth plate disturbances or antigenic response. Conclusions: We conclude that calcium HA is biologically acceptable bone graft substitute in the management of benign lytic lesions of bone. PMID:26806973
Atiya, Basim K; Shanmuhasuntharam, Palasuntharam; Huat, Siar; Abdulrazzak, Shurooq; Oon, Ha
2014-01-01
Different forms of dentin, including untreated, undemineralized, demineralized, boiled, or mixed with other materials, have been evaluated for efficacy as bone substitutes. However, the effects of application of liquid nitrogen-treated dentin for bone grafting remain unknown. The objective of this study was to chronologically evaluate bone healing following grafting with liquid nitrogen-treated dentin in a rabbit model. Autogenous dentin treated with liquid nitrogen at -196°C for 20 minutes was used. In 16 New Zealand White rabbits, a bone defect (5 mm in diameter) was created in each femur and randomly grafted with either autogenous dentin (experimental group) or autogenous bone grafts (positive control). In another four rabbits (negative control), a similar defect in each femur was left empty. The rabbits were sacrificed at 2, 4, 8, and 12 weeks. Explants of grafted sites were harvested for histologic and histomorphometric analysis. At 2 and 4 weeks in both the experimental and positive control groups, accelerated formation of new bone was observed, which was undergoing remodeling at 8 and 12 weeks. The mean new bone score was higher in the experimental than in the negative control groups, but this was not statistically significant. The present results demonstrated that liquid nitrogen-treated autogenous dentin has both osteoconductive and osteoinductive properties and therefore has potential as a bone substitute.
[Creation of artificial cartilage by nanotechnology].
Murosaki, Takayuki; Gong, Jian Ping; Osada, Yoshihito
2006-02-01
Artificial joints are made from hard and dry materials like metal or ceramics, although these artificial joints have several problems such as bacterial infection, high surface friction and wear, lack in shock-absorption. From this viewpoint, hydrogels have a high potential as substitutes for articular cartilage, although most of them suffer from lack of mechanical strength. In our recent study, we have found hydrogels, that exhibit high fracture strength as several tens of megapascals, extremely low coefficient of friction as 10(-4), high wear resistance, and with biocompatibility. These gels might open new era of soft and wet materials as substitutes for articular cartilage and other tissues.
Ren, Na; Li, Jianhua; Qiu, Jichuan; Sang, Yuanhua; Jiang, Huaidong; Boughton, Robert I; Huang, Ling; Huang, Wei; Liu, Hong
2014-08-13
Titanium (Ti) is widely used for load-bearing bio-implants, however, it is bio-inert and exhibits poor osteo-inductive properties. Calcium and magnesium ions are considered to be involved in bone metabolism and play a physiological role in the angiogenesis, growth, and mineralization of bone tissue. In this study, a facile synthesis approach to the in situ construction of a nanostructure enriched with Ca(2+) and Mg(2+) on the surface of titanium foil is proposed by inserting Ca(2+) and Mg(2+) into the interlayers of sodium titanate nanostructures through an ion-substitution process. The characteriz 0.67, and 0.73 nm ation results validate that cations can be inserted into the interlayer regions of the layered nanostructure without any obvious change of morphology. The cation content is positively correlated to the concentration of the solutions employed. The biological assessments indicate that the type and the amount of cations in the titanate nanostructure can alter the bioactivity of titanium implants. Compared with a Na(+) filled titanate nanostructure, the incorporation of divalent ions (Mg(2+) , Ca(2+) ) can effectively enhance protein adsorption, and thus also enhance the adhesion and differentiation ability of rat bone-marrow stem cells (rBMSCs). The Mg(2+) /Ca(2+) -titanate nanostructure is a promising implantable material that will be widely applicable in artificial bones, joints, and dental implants. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Larsson, Sune; Procter, Philip
2011-09-01
When stabilising a fracture the contact between the screw and the surrounding bone is crucial for mechanical strength. Through development of screws with new thread designs, as well as optimisation of other properties, improved screw purchase has been gained. Other alternatives to improve screw fixation in osteoporotic bone, as well as normal bone if needed, includes the use of various coatings on the screw that will induce a bonding between the implant surface and the bone implant, as well as application of drugs such as bisphosphonates locally in the screw hole to induce improved screw anchorage through their anticatabolic effect on the bone tissue. As failure of internal fixation of fractures in osteoporotic bone typically occurs through breakage of the bone that surrounds the implant, rather than the implant itself, an alternative strategy in osteoporotic bone can include augmentation of the bone around the screw. This is useful when screws alone are being used for fixation, as it will increase pull-out resistance, but also when conventional plates and screws are used. In angularly stable plate-screw systems, screw back-out is not a problem if the locking mechanism between the screws and the plate works. However, augmentation that will strengthen the bone around the screws can also be useful in conjunction with angle-stable plate-screw systems, as the augmentation will provide valuable support when subjected to loading that might cause cut-out. For many years conventional bone cement, polymethylmethacrylate (PMMA), has been used for augmentation, but due to side effects--including great difficulties if removal becomes necessary--the use of PMMA has never gained wide acceptance. With the introduction of bone substitutes, such as calcium phosphate cement, it has been shown that augmentation around screws can be achieved without the drawbacks seen with PMMA. When dealing with fixation of fractures in osteoporotic bone where screw stability might be inadequate, it therefore seems an attractive option to include bone substitutes for augmentation around screws as part of the armamentarium. Clinical studies now are needed to determine the indications in which bone augmentation with bone-graft substitutes (BGSs) would merit clinical usage. Copyright © 2011. Published by Elsevier Ltd.
Sogal, A; Tofe, A J
1999-09-01
Several commercial products are currently available for clinical application as bone graft substitutes. These products can be broadly classified into two categories: synthetic and natural. Bovine bone is a popular source for several of the natural bone substitutes. The availability of bovine derived xenogenic bone substitutes has made it possible to avoid traumatic and expensive secondary surgery to obtain autogenous bone once thought essential for effective bone replacement. While autogenous bone still remains the undisputed "gold standard" in bone grafting, the realization that bone requirement in several clinical applications is as effectively met by xenografts has lead to their widespread use. But the convenience of using xenografts is tempered by the possibility of disease transmission from cattle to humans. The recent incidents of bovine spongiform encephalopathies (BSE) in humans have underscored this likelihood. In this paper, we report a risk analysis performed to assess the possibility of such disease transmission from a commercially available bone graft substitute (BGS) that is popularly used in clinical dentistry. An extensive review of current literature on the status of risk assessment of BSE transmission was conducted, and two risk assessment models were identified as applicable to the present study. Risk assessment models developed by the German Federal Ministry of Health and by the Pharmaceutical Research and Manufacturers Association of America were applied to BGS. Results from the analyses conducted using both models showed that the risk of disease (BSE) transmission from BGS was negligible and could be attributed to the stringent protocols followed in sourcing and processing of the raw bovine bone used in the commercial product. Based on the risk analysis, it is evident that the risk of BSE infection from BGS is several orders of magnitude less than that posed by the risk of death related to, lightning, tornadoes, or similar remote events. However, this low risk can only be maintained as long as an effective and active risk management program is implemented in operations that involve processing xenogenic tissue for human use.
[Current treatment situation and progress on bone defect of collapsed tibial plateau fractures].
Luo, Chang-qi; Fang, Yue; Tu, Chong-qi; Yang, Tian-fu
2016-02-01
Characteristics of collapsed tibial plateau fracture determines that the joint surface must remain anatomical reduction,line of force in tibial must exist and internal fixation must be strong. However, while renewing articular surface smoothness, surgeons have a lot of problems in dealing with bone defect under the joint surface. Current materials used for bone defect treatment include three categories: autologous bone, allograft bone and bone substitutes. Some scholars think that autologous bone grafts have a number of drawbacks, such as increasing trauma, prolonged operation time, the limited source, bone area bleeding,continuous pain, local infection and anesthesia,but most scholars believe that the autologous cancellous bone graft is still the golden standard. Allograft bone has the ability of bone conduction, but the existence of immune responses, the possibility of a virus infection, and the limited source of the allograft cannot meet the clinical demands. Likewise, bone substitutes have the problem that osteogenesis does not match with degradation in rates. Clinical doctors can meet the demand of the patient's bone graft according to patient's own situation and economic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehler, E; Sterling, D; Higgins, P
Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of severalmore » composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology.« less
The effect of low-speed drilling without irrigation on heat generation: an experimental study.
Oh, Ji-Hyeon; Fang, Yiqin; Jeong, Seung-Mi; Choi, Byung-Ho
2016-02-01
In this study we evaluated heat generation during the low-speed drilling procedure without irrigation. Ten artificial bone blocks that were similar to human D1 bone were used in this study. The baseline temperature was 37.0℃. We drilled into 5 artificial bone blocks 60 times at the speed of 50 rpm without irrigation. As a control group, we drilled into an additional 5 artificial bone blocks 60 times at the speed of 1,500 rpm with irrigation. The temperature changes during diameter 2 mm drilling were measured using thermocouples. The mean maximum temperatures during drilling were 40.9℃ in the test group and 39.7℃ in the control group. Even though a statistically significant difference existed between the two groups, the low-speed drilling did not produce overheating. These findings suggest that low-speed drilling without irrigation may not lead to overheating during drilling.
Perić Kačarević, Zeljka; Kavehei, Faraz; Houshmand, Alireza; Franke, Jörg; Smeets, Ralf; Rimashevskiy, Denis; Wenisch, Sabine; Schnettler, Reinhard; Jung, Ole; Barbeck, Mike
2018-04-01
Xenogeneic bone substitute materials are widely used in oral implantology. Prior to their clinical use, purification of the former bone tissue has to be conducted to ensure the removal of immunogenic components and pathogens. Different physicochemical methods are applied for purification of the donor tissue, and temperature treatment is one of these methods. Differences in these methods and especially the application of different temperatures for purification may lead to different material characteristics, which may influence the tissue reactions to these materials and the related (bone) healing process. However, little is known about the different material characteristics and their influences on the healing process. Thus, the aim of this mini-review is to summarize the preparation processes and the related material characteristics, safety aspects, tissue reactions, resorbability and preclinical and clinical data of two widely used xenogeneic bone substitutes that mainly differ in the temperature treatment: sintered (cerabone ® ) and non-sintered (Bio-Oss ® ) bovine-bone materials. Based on the summarized data from the literature, a connection between the material-induced tissue reactions and the consequences for the healing processes are presented with the aim of translation into their clinical application.
Mozzati, Marco; Gallesio, Giorgia; Staiti, Giorgio; Iezzi, Giovanna; Piattelli, Adriano; Mortellaro, Carmen
2017-06-01
The aim of the present study was to evaluate the efficacy of biomimetic composite bone substitute composed of equine collagen I and Mg-hydroxyapatite in improving socket preservation after tooth extraction in humans. Thirty-two patients were subjected to a single tooth extraction, performed without elevation of the full-thickness flap. In each patient, socket was grafted with the bone substitute and specimens were retrieved 2 months after surgery and processed for histological observations. The clinical outcome variables were healing index, visual analog score for pain, postsurgery complications, and patient satisfaction evaluated through a questionnaire. No adverse reaction or infection occurred, in which healing index averaged 5.8 (range 4-7). Pain scores were lower. The patients' questionnaire outcomes were unanimously in favor of the test treatment. At low-power magnification, it was possible to see a portion of native bone with small marrow spaces and many areas of bone remodeling. At high-power magnification, it could be observed that small newly formed trabeculae originated from the preexisting bone and bone spicules in the middle of the defect. Grafting the postextraction socket with composite bone substitute may improve the healing process by accelerating socket closure and tissue maturation. Such a product demonstrated excellent biocompatibility as no inflammatory reaction could be detected histologically and was well accepted by patients.
Kruse, A; Jung, R E; Nicholls, F; Zwahlen, R A; Hämmerle, C H F; Weber, F E
2011-05-01
A comparison of synthetic hydroxyapatite/silica oxide, xenogenic hydroxyapatite-based bone substitute materials with empty control sites in terms of bone regeneration enhancement in a rabbit calvarial four non-critical-sized defect model. In each of six rabbits, four bicortical calvarial bone defects were generated. The following four treatment modalities were randomly allocated: (1) empty control site, (2) synthetic hydroxyapatite/silica oxide-based (HA/SiO) test granules, (3) xenogenic hydroxyapatite -based granules, (4) synthetic hydroxyapatite/silica oxide -based (HA/SiO) test two granules. The results of the latter granules have not been reported due to their size being three times bigger than the other two granule types. After 4 weeks, the animals were sacrificed and un-decalcified sections were obtained for histological analyses. For statistical analysis, the Kruskal-Wallis test was applied (P<0.05). Histomorphometric analysis showed an average area fraction of newly formed bone of 12.32±10.36% for the empty control, 17.47±6.42% for the xenogenic hydroxyapatite -based granules group, and 21.2±5.32% for the group treated with synthetic hydroxyapatite/silica oxide -based granules. Based on the middle section, newly formed bone bridged the defect to 38.33±37.55% in the empty control group, 54.33±22.12% in the xenogenic hydroxyapatite -based granules group, and to 79±13.31% in the synthetic hydroxyapatite/silica oxide -based granules group. The bone-to-bone substitute contact was 46.38±18.98% for the xenogenic and 59.86±14.92% for the synthetic hydroxyapatite/silica oxide-based granules group. No significant difference in terms of bone formation and defect bridging could be detected between the two bone substitute materials or the empty defect. There is evidence that the synthetic hydroxyapatite/silica oxide granules provide comparable results with a standard xenogenic bovine mineral in terms of bone formation and defect bridging in non-critical size defects. © 2010 John Wiley & Sons A/S.
Kotsakis, Georgios A; Joachim, Frederic P C; Saroff, Stephen A; Mahesh, Lanka; Prasad, Hari; Rohrer, Michael D
2014-01-01
The objective of this study was to evaluate bone regeneration in 24 sockets grafted with a calcium phosphosilicate putty alloplastic bone substitute. A core was obtained from 17 sockets prior to implant placement for histomorphometry at 5 to 6 months postextraction. Radiographic analysis during the same postextraction healing period showed radiopaque tissue in all sockets. Histomorphometric analysis revealed a mean vital bone content of 31.76% (± 14.20%) and residual graft content of 11.47% (± 8.99%) after a mean healing period of 5.7 months. The high percentage of vital bone in the healed sites in combination with its timely absorption rate suggest that calcium phosphosilicate putty can be a reliable choice for osseous regeneration in extraction sockets.
Hainich, J; von Rechenberg, B; Jakubietz, R G; Jakubietz, M G; Giovanoli, P; Grünert, J G
2014-02-01
Surgical treatment of osteoporotic distal radius fractures with locking plates does not completely prevent loss of reduction. Additional bone deficit stabilisation with the use of bone substitute materials is receiving increased attention. Most knowledge on the in vivo behavior of bone substitutes originates from a small number of animal models after its implantation in young, good vascularized bone. This paper investigates the osteoconductivity, resorption and biocompatibility of beta-tricalcium phosphate as a temporary bone replacement in osteoporotic type distal radius fractures. 15 bone samples taken from the augmented area of the distal radius of elderly people during metal removal were examined. The material was found to be osteoconductive, good degradable, and biocompatible. Degrading process and remodelling to woven bone seem to require more time than in available comparative bioassays. The material is suitable for temporary replacement of lost, distal radius bone from the histological point of view. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha
2013-02-01
With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.
Childhood Cancer: Osteosarcoma
... either a bone graft (usually from a bone bank) or more often a special metal prosthesis (artificial ... risk of infection and fracture is higher with bank bone replacement and therefore metal prostheses are more ...
Artificial Sweeteners and Other Sugar Substitutes
... Lactitol Honey Sucralose (Splenda) Maltitol Maple syrup Mannitol Molasses Sorbitol Xylitol Advantame The topic of sugar substitutes ... for consumption are fruit juices and nectars, honey, molasses, and maple syrup. Natural sweeteners have a variety ...
Can we improve fixation and outcomes? Use of bone substitutes.
Moroni, Antonio; Larsson, Sune; Hoang Kim, Amy; Gelsomini, Letizia; Giannoudis, Peter V
2009-07-01
Hip fractures secondary to osteoporosis are common in the elderly. Stabilizing these fractures until union is achieved is a challenge due to poor bone stock and insufficient purchase of the implant to the bone. The reported high rate of complications has prompted extensive research in the development of fixation techniques. Furthermore, manipulation of both the local fracture environment in terms of application of growth factors, scaffolds, and mesenchymal cells and the systemic administration of agents promoting bone formation and bone strength has been considered as a treatment option with promising results. There are only a few evidence-based studies reporting on fixation augmentation techniques. This article reports on the efficacy of bone graft substitutes for the fixation of hip fractures, in particular calcium phosphates, which have been used as granules, cements, and implant coatings.
Coralline hydroxyapatite bone graft substitutes.
Elsinger, E C; Leal, L
1996-01-01
The authors present a review of the various bone grafts currently available with special attention to coral bone grafts. Several of the benefits of coralline hydroxyapatite bone graft substitutes, such as safety and biocompatibility, will be addressed in this article, part of an ongoing investigation of coral bone grafts used in triple arthrodesis procedures. To date, eight cases have been performed. In seven cases, granular chips were employed to pack the subtalar joint. The final case, presented in this article, represents a 26-year-old male who, 2 years previously, sustained a calcaneal fracture with resultant shortening along the lateral column. A coralline hydroxyapatite block was used at the calcaneocuboid joint to achieve distraction. Clinically, the patient is progressing well at 10 months postoperatively. Radiographically, one can still clearly appreciate the margins of the bone graft at 5 months.
Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones.
Ignjatović, Nenad; Ajduković, Zorica; Savić, Vojin; Najman, Stevo; Mihailović, Dragan; Vasiljević, Perica; Stojanović, Zoran; Uskoković, Vuk; Uskoković, Dragan
2013-02-01
Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of 6 months after the implantation of the material containing different amounts of cobalt, ranging from 5 to 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study.
Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones
Ignjatović, Nenad; Ajduković, Zorica; Savić, Vojin; Najman, Stevo; Mihailović, Dragan; Vasiljević, Perica; Stojanović, Zoran; Uskoković, Vuk; Uskoković, Dragan
2012-01-01
Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of six months after the implantation of the material containing different amounts of cobalt, ranging from 5 – 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study. PMID:23090835
NASA Astrophysics Data System (ADS)
Baker, Kevin C.
Numerous clinical situations necessitate the use of bone graft materials to enhance bone formation. While autologous and allogenic materials are considered the gold standards in the setting of fracture healing and spine fusion, their disadvantages, which include donor site morbidity and finite supply have stimulated research and development of novel bone graft substitute materials. Among the most promising candidate materials are resorbable polymers, composed of lactic and/or glycolic acid. While the characteristics of these materials, such as predictable degradation kinetics and biocompatibility, make them an excellent choice for bone graft substitute applications, they lack mechanical strength when synthesized with the requisite porous morphology. As such, porous resorbable polymers are often reinforced with filler materials. In the presented work, we describe the use of supercritical carbon dioxide (scCO2) processing to create porous resorbable polymeric constructs reinforced by nanostructured, organically modified Montmorillonite clay (nanoclay). scCO2 processing simultaneously disperses the nanoclay throughout the polymeric matrix, while imparting a porous morphology to the construct conducive to facilitating cellular infiltration and neoangiogenesis, which are necessary components of bone growth. With the addition of as little as 2.5wt% of nanoclay, the compressive strength of the constructs nearly doubles putting them on par with human cortico-cancellous bone. Rheological measurements indicate that the dominant mode of reinforcement of the nanocomposite constructs is the restriction of polymer chain mobility. This restriction is a function of the positive interaction between polymer chains and the nanoclay. In vivo inflammation studies indicate biocompatibility of the constructs. Ectopic osteogenesis assays have determined that the scCO2-processed nanocomposites are capable of supporting growth-factor induced bone formation. scCO 2-processed resorbable polymer nanocomposites composed of resorbable polymers and nanocaly exhibit physical, mechanical and biologic properties that make them excellent candidate materials for structural bone graft substitute applications.
Anitua, Eduardo; Orive, Gorka; Pla, Rafael; Roman, Pedro; Serrano, Victoriano; Andía, Isabel
2009-10-01
The effect of local application of scaffold-like preparation rich in growth factors (PRGF) on bone regeneration in artificial defects and the potential effect of humidifying titanium dental implants with liquid PRGF on their osseointegration were investigated. The PRGF formulations were obtained from venous blood of three goats and applied either as a 3D fibrin scaffold (scaffold-like PRGF) in the regeneration of artificial defects or as liquid PRGF via humidifying the implants before their insertion. Initially, 12 defects were filled with scaffold-like PRGF and another 12 were used as controls. The histological analysis at 8 weeks revealed mature bone trabeculae when PRGF was used, whereas the control samples showed mainly connective tissue with incipient signs of bone formation. For the second set of experiments, 26 implants (13 humidified with liquid PRGF) were placed in the tibiae of goats. Histological and histomorphometric results demonstrated that application of liquid PRGF increased the percentage of bone-implant contact in 84.7%. The whole surface of the PRGF-treated implants was covered by newly formed bone, whereas only the upper half was surrounded in control implants. In summary, PRGF can accelerate bone regeneration in artificial defects and improve the osseointegration of titanium dental implants.
Evaluation of suitable porosity for sintered porous {beta}-tricalcium phosphate as a bone substitute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jin-Hong; Bae, Ji-Yong; Shim, Jaebum
2012-09-15
Structural and mechanical characterization is performed for sintered porous beta tricalcium phosphate ({beta}-TCP) to determine the appropriate porosity for use as a bone substitute. Four different types of porous {beta}-TCP specimen with different porosities are fabricated through a sintering process. For structural characterization, scanning electron microscopy and a Microfocus X-ray computed tomography system are used to investigate the pore openings on the specimen's surface, pore size, pore distribution, and pore interconnections. Compression tests of the specimens are performed, and mechanical properties such as the elastic modulus and compressive strength are obtained. Also, the geometric shape and volume of the {beta}-TCPmore » around the contact region of two pores, which need to be initially resolved after implantation in order to increase the size of the pore openings, are evaluated through simple calculations. The results show that porous {beta}-TCP with 42.1% porosity may be a suitable bone substitute candidate in terms of sustaining external loads, and inducing and cultivating bone cells. - Highlights: Black-Right-Pointing-Pointer Structural and mechanical characterization was performed for sintered porous {beta}-TCP specimens. Black-Right-Pointing-Pointer For structural characterization, SEM and Microfocus X-ray CT system were used. Black-Right-Pointing-Pointer For mechanical characterization, compression tests were performed. Black-Right-Pointing-Pointer Porous {beta}-TCP with 42.1% porosity may be a suitable bone substitute.« less
Liang, Weiqiang; Yao, Yuanyuan; Huang, Zixian; Chen, Yuhong; Ji, Chenyang; Zhang, Jinming
2016-07-01
The purpose of this study was to evaluate the clinical application of individual craniofacial bone fabrications using computer-assisted design (CAD)-computer-assisted manufacturing technology for the reconstruction of craniofacial bone defects. A total of 8 patients diagnosed with craniofacial bone defects were enrolled in this study between May 2007 and August 2010. After computed tomography scans were obtained, the patients were fitted with artificial bone that was created using CAD software, rapid prototyping technology, and epoxy-methyl acrylate resin and hydroxyapatite materials. The fabrication was fixed to the defect area with titanium screws, and soft tissue defects were repaired if necessary. The fabrications were precisely fixed to the defect areas, and all wounds healed well without any serious complications except for 1 case with intraoral incision dehiscence, which required further treatment. Postoperative curative effects were retrospectively observed after 6 to 48 months, acceptable anatomic and cosmetic outcomes were obtained, and no rejections or other complications occurred. The use of CAD-computer-assisted manufacturing technology-assisted epoxy-methyl acrylate resin and hydroxyapatite composite artificial bone to treat patients with craniofacial bone defects could enable the precise reconstruction of these defects and obtain good anatomic and cosmetic outcomes. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Scaffold Design for Bone Regeneration
Polo-Corrales, Liliana; Latorre-Esteves, Magda; Ramirez-Vick, Jaime E.
2014-01-01
The use of bone grafts is the standard to treat skeletal fractures, or to replace and regenerate lost bone, as demonstrated by the large number of bone graft procedures performed worldwide. The most common of these is the autograft, however, its use can lead to complications such as pain, infection, scarring, blood loss, and donor-site morbidity. The alternative is allografts, but they lack the osteoactive capacity of autografts and carry the risk of carrying infectious agents or immune rejection. Other approaches, such as the bone graft substitutes, have focused on improving the efficacy of bone grafts or other scaffolds by incorporating bone progenitor cells and growth factors to stimulate cells. An ideal bone graft or scaffold should be made of biomaterials that imitate the structure and properties of natural bone ECM, include osteoprogenitor cells and provide all the necessary environmental cues found in natural bone. However, creating living tissue constructs that are structurally, functionally and mechanically comparable to the natural bone has been a challenge so far. This focus of this review is on the evolution of these scaffolds as bone graft substitutes in the process of recreating the bone tissue microenvironment, including biochemical and biophysical cues. PMID:24730250
Ceccarelli, Gabriele; Bloise, Nora; Vercellino, Marco; Battaglia, Rosalia; Morgante, Lucia; De Angelis, Maria Gabriella Cusella; Imbriani, Marcello; Visai, Livia
2013-04-01
Tissue engineering (by culturing cells on appropriate scaffolds, and using bioreactors to drive the correct bone structure formation) is an attractive alternative to bone grafting or implantation of bone substitutes. Osteogenesis is a biological process that involves many molecular intracellular pathways organized to optimize bone modeling. The use of bioreactor systems and especially the perfusion bioreactor, provides both the technological means to reveal fundamental mechanisms of cell function in a 3D environment, and the potential to improve the quality of engineered tissues. In this mini-review all the characteristics for the production of an appropriate bone construct are analyzed: the stem cell source, scaffolds useful for the seeding of pre-osteoblastic cells and the effects of fluid flow on differentiation and proliferation of bone precursor cells. By automating and standardizing tissue manufacture in controlled closed systems, engineered tissues may reduce the gap between the process of bone formation in vitro and subsequent graft of bone substitutes in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.
With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO{sub 2} 70 mol%, CaO 26 mol % and P{sub 2}O{sub 5} 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulatedmore » Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.« less
Liu, Yang; Zhang, Yilan; Huang, Yalan; Luo, Gaoxing; Peng, Yizhi; Yan, Hong; Luo, Qizhi; Zhang, Jiaping; Wu, Jun; Peng, Daizhi
2016-04-01
To observe the effects of artificial dermis combined with basic fibroblast growth factor (bFGF) on the treatment of cicatrix and deep skin wounds. The clinical data of 72 patients with wounds repaired with artificial dermis, hospitalized in our unit from October 2010 to April 2015, conforming to the study criteria, were retrospectively analyzed. The types of wounds were wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone, in a total number of 102. Wounds were divided into artificial dermis group (A, n=60) and artificial dermis+ bFGF group (B, n=42) according to whether or not artificial dermis combined with bFGF. In group A, after release and resection of cicatrices or thorough debridement of deep skin wounds, artificial dermis was directly grafted to wounds in the first stage operation. After complete vascularization of artificial dermis, wounds were repaired with autologous split-thickness skin grafts in the second stage operation. In group B, all the procedures were exactly the same as those in group A except that artificial dermis had been soaked in bFGF for 30 min before grafting. Operation area, complete vascularization time of artificial dermis, survival of skin grafts, and the follow-up condition of wounds in the two groups were recorded. Data were processed with t test and Fisher's exact test. (1) Operation areas of wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone in the two groups were about the same (with t values from -1.853 to -0.200, P values above 0.05). Complete vascularization time of artificial dermis in wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone in group B were respectively (15.6 ± 2.9), (14.7 ± 2.7), and (20.3 ± 4.4) d, and they were shorter by an average time of 2.7, 4.0, 7.4 d, respectively, as compared with those in corresponding types of wounds in group A [respectively (18.3 ± 4.7), (18.7 ± 4.2), and (27.7 ± 8.8) d, with t values from -2.779 to -2.383, P values below 0.05]. (2) The ratio of skin grafts with excellent survival in the three types of wounds in group B were higher than those in corresponding types of wounds in group A, but there were no statistically significant differences (with P values above 0.05). (3) Patients were followed up for 1 to 48 months, and there were no obvious cicatrices in skin graft sites and the donor sites during the following time. Artificial dermis combined with bFGF can effectively shorten the vascularization time of artificial dermis in wounds after resection of cicatrices and deep skin wounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaikina, M. V., E-mail: chaikinam@solid.nsc.ru; Bulina, N. V., E-mail: bulina@solid.nsc.ru; Prosanov, I. Yu., E-mail: prosanov@mail.ru
The paper presents the results of mechanochemical synthesis of hydroxyapatite (HAP) with simultaneous substitutions of lanthanum (La{sup 3+}) for calcium ions and silicate ((SiO{sub 4}){sup 4−}-group) for the phosphate group with the substituent concentrations in the range 0.2–2.0 mol per HAP mol. The use of Si-substituted HAP as a coating material promotes accelerated osteosynthesis and osteointegration of implants into the bone tissue. The replacement of calcium ions by La{sup 3+} in the HAP structure plays an antimicrobial role preventing inflammatory processes. Annealing-induced variations in the lattice parameters of synthesized samples indicate the substituent incorporation into the HAP structure. It ismore » known that complex compounds with lanthanides are used for cancer chemotherapy. In particular, La plays a key role in the course of treatment of injured defects of bone tissue. In addition, La-substituted HAP can be used for filling bone defects and coating implants in postoperational areas affected by bone cancer.« less
Endoscopic Surgery for Symptomatic Unicameral Bone Cyst of the Proximal Femur
Miyamoto, Wataru; Takao, Masato; Yasui, Youichi; Miki, Shinya; Matsushita, Takashi
2013-01-01
Recently, surgical treatment of a symptomatic unicameral cyst of the proximal femur has been achieved with less invasive procedures than traditional open curettage with an autologous bone graft. In this article we introduce endoscopic surgery for a symptomatic unicameral cyst of the proximal femur. The presented technique, which includes minimally invasive endoscopic curettage of the cyst and injection of a bone substitute, not only minimizes muscle damage around the femur but also enables sufficient curettage of the fibrous membrane in the cyst wall and the bony septum through direct detailed visualization by an endoscope. Furthermore, sufficient initial strength after curettage can be obtained by injecting calcium phosphate cement as a bone substitute. PMID:24892010
Endoscopic Surgery for Symptomatic Unicameral Bone Cyst of the Proximal Femur.
Miyamoto, Wataru; Takao, Masato; Yasui, Youichi; Miki, Shinya; Matsushita, Takashi
2013-11-01
Recently, surgical treatment of a symptomatic unicameral cyst of the proximal femur has been achieved with less invasive procedures than traditional open curettage with an autologous bone graft. In this article we introduce endoscopic surgery for a symptomatic unicameral cyst of the proximal femur. The presented technique, which includes minimally invasive endoscopic curettage of the cyst and injection of a bone substitute, not only minimizes muscle damage around the femur but also enables sufficient curettage of the fibrous membrane in the cyst wall and the bony septum through direct detailed visualization by an endoscope. Furthermore, sufficient initial strength after curettage can be obtained by injecting calcium phosphate cement as a bone substitute.
Applications of Metals for Bone Regeneration.
Glenske, Kristina; Donkiewicz, Phil; Köwitsch, Alexander; Milosevic-Oljaca, Nada; Rider, Patrick; Rofall, Sven; Franke, Jörg; Jung, Ole; Smeets, Ralf; Schnettler, Reinhard; Wenisch, Sabine; Barbeck, Mike
2018-03-12
The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum . In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.
Applications of Metals for Bone Regeneration
Glenske, Kristina; Donkiewicz, Phil; Köwitsch, Alexander; Milosevic-Oljaca, Nada; Rider, Patrick; Rofall, Sven; Franke, Jörg; Jung, Ole; Smeets, Ralf; Schnettler, Reinhard; Wenisch, Sabine
2018-01-01
The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration. PMID:29534546
Asa'ad, Farah; Giannì, Aldo Bruno; Giannobile, William V.; Rasperini, Giulio
2016-01-01
To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on “3D-printed” ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration. PMID:27366149
Smith, Lauren M.; Bigelow, Erin M.R.; Nolan, Bonnie T.; Faillace, Meghan E.; Nadeau, Joseph H.; Jepsen, Karl J.
2014-01-01
Functional adaptation may complicate the choice of phenotype used in genetic studies that seek to identify genes contributing to fracture susceptibility. Often, genetic variants affecting one trait are compensated by coordinated changes in other traits. Bone fracture is a prototypic example because mechanical function of long bones (stiffness and strength) depends on how the system coordinately adjusts the amount (cortical area) and quality (tissue-mineral density, TMD) of bone tissue to mechanically offset the natural variation in bone robustness (total area/length). We propose that efforts aimed at identifying genes regulating fracture resistance will benefit from better understanding how functional adaptation contributes to the genotype-phenotype relationship. We analyzed the femurs of C57BL/6J – ChrA/J/NaJ Chromosome Substitution Strains (CSSs) to systemically interrogate the mouse genome for chromosomes harboring genes that regulate mechanical function. These CSSs (CSS-i, i = the substituted chromosome) showed changes in mechanical function on the order of -26.6 to 11.5% relative to the B6 reference strain after adjusting for body size. Seven substitutions showed altered robustness, cortical area, or TMD, but no effect on mechanical function (CSS-4, 5, 8, 9, 17, 18, 19); six substitutions showed altered robustness, cortical area, or TMD, and reduced mechanical function (CSS-1, 2, 6, 10, 12, 15); and one substitution also showed reduced mechanical function but exhibited no significant changes in the three physical traits analyzed in this study (CSS-3). A key feature that distinguished CSSs that maintained function from those with reduced function was whether the system adjusted cortical area and TMD to the levels needed to compensate for the natural variation in bone robustness. These results provide a novel biomechanical mechanism linking genotype with phenotype, indicating that genes control function not only by regulating individual traits, but also by regulating how the system coordinately adjusts multiple traits to establish function. PMID:25003813
Brown, Desmond A; Mallory, Grant W; Higgins, Dominique M; Abdulaziz, Mohammed; Huddleston, Paul M; Nassr, Ahmad; Fogelson, Jeremy L; Clarke, Michelle J
2014-07-01
A cost-effective procurement process for harvesting, storing, and using femoral head allografts is described. A brief review of the literature on the use of these allografts and a discussion of costs are provided. To describe a cost-effective method for the harvesting, storage, and use of femoral heads from patients undergoing total hip arthroplasty at our institution as a source of allograft bone. Spine fusion surgery uses a large proportion of commercially available bone grafts and bone substitutes. As the number of such surgical procedures performed in the United States continues to rise, these materials are at a historically high level of demand, which is projected to continue. Iliac crest bone autograft has historically been the standard of care, although this may be losing favor due to potential donor site morbidity. Although many substitutes are effective in promoting arthrodesis, their use is limited because of cost. Femoral heads are harvested under sterile conditions during total hip arthroplasty. The patient is tested per Food and Drug Administration regulations, and the tissue sample is cultured. The tissue is frozen and quarantined for a 6-month minimum pending repeat testing of donors and subsequently released for use. The relative cost-effectiveness of this tissue as a source of allograft bone is discussed. The average femoral head allograft is 54 to 56 mm in diameter and yields 50 cm of bone graft, with an average cost of US $435 for processing of the tissue resulting in a cost of US $8.70 per cm of allograft produced. Average production costs are significantly lower than those for other commonly available commercial bone grafts and substitutes. Femoral head allograft is a cost-effective alternative to commercially available allografts and bone substitutes. The method of procurement, storage, and use described could be adopted by other institutions in an effort to mitigate cost and increase supply. N/A.
Roh, Jiyeon; Kim, Ji-Youn; Choi, Young-Muk; Ha, Seong-Min; Kim, Kyoung-Nam; Kim, Kwang-Mahn
2016-01-01
The demand of bone graft materials has been increasing. Among various origins of bone graft materials, natural coral composed of up to 99% calcium carbonate was chosen and converted into hydroxyapatite (HA); silicon was then substituted into the HA. Then, the Si-HA was mixed with β-tricalcium phosphate (TCP) in the ratios 100:0 (S100T0), 70:30 (S70T30), 60:40 (S60T40), and 50:50 (S50T50). The materials were implanted for four and eight weeks in a rat calvarial bone defect model (8 mm). The MBCPTM (HA:β-TCP = 60:40, Biomatalante, Vigneux de Bretagne, France) was used as a control. After euthanasia, the bone tissue was analyzed by making histological slides. From the results, S60T40 showed the fastest bone regeneration in four weeks (p < 0.05). In addition, S60T40, S50T50, and MBCPTM showed significant new bone formation in eight weeks (p < 0.05). In conclusion, Si-HA/TCP showed potential as a bone graft material. PMID:28787903
Roh, Jiyeon; Kim, Ji-Youn; Choi, Young-Muk; Ha, Seong-Min; Kim, Kyoung-Nam; Kim, Kwang-Mahn
2016-02-06
The demand of bone graft materials has been increasing. Among various origins of bone graft materials, natural coral composed of up to 99% calcium carbonate was chosen and converted into hydroxyapatite (HA); silicon was then substituted into the HA. Then, the Si-HA was mixed with β-tricalcium phosphate (TCP) in the ratios 100:0 (S100T0), 70:30 (S70T30), 60:40 (S60T40), and 50:50 (S50T50). The materials were implanted for four and eight weeks in a rat calvarial bone defect model (8 mm). The MBCPTM (HA:β-TCP = 60:40, Biomatalante, Vigneux de Bretagne, France) was used as a control. After euthanasia, the bone tissue was analyzed by making histological slides. From the results, S60T40 showed the fastest bone regeneration in four weeks (p < 0.05). In addition, S60T40, S50T50, and MBCPTM showed significant new bone formation in eight weeks (p < 0.05). In conclusion, Si-HA/TCP showed potential as a bone graft material.
Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne-Wistrand, Anna; Walles, Heike; Hansmann, Jan
2015-09-01
Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide-co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans. © 2015 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial Licence, which permits use, distribution and reproduction in any medium, provided the Contribution is properly cited and is not used for commercial purpose.
Spies, Christian K G; Schnürer, Stefan; Gotterbarm, Tobias; Breusch, Steffen J
2010-01-01
To examine and compare biocompatibility, osteocompatibility, rate of resorption, and remodelling dynamics of 2 calcium phosphate cements in comparison with a well-established hydroxyapatite ceramic. In a randomised fashion, Bone Source™, Cementek™, and Endobon™ were implanted bilaterally into the proximal metaphyseal tibiae of 35 Göttinger minipigs in a direct right vs. left intra-individual comparison. Fluorescent labelling was used. Histological and morphometric evaluations were carried out at 6, 12, and 52 weeks. All bone substitutes showed good biocompatibility, bioactivity, and osteoconductivity. Endobon™ was not degraded over the follow-up period. Cementek™ was degraded constantly and significantly over the time intervals, whereas Bone Source™ was degraded mainly from the 6 week to 12 week interval. After 52 weeks, a significant difference of residual material within the defect zone was detected between all substitutes, with the highest resorption rate for Cementek™. Bone Source™ was least degraded. Defects filled with Endobon™ were characterised by a significantly continuous bony ingrowth over the time intervals. Bone formation within the defects filled with Cementek™ and Bone Source™ showed significant peaks 12 weeks after implantation. After 52 weeks, a significant difference in the amount of new bone within the defect area was detected, with the highest levels for Endobon™, followed by Cementek™. After 1 year a restitution ad integrum could not be observed in any treatment group. The ceramic Endobon™ showed the expected response histologically. Based on its porosity it excelled in osteoconductivity. Concerning the calcium phosphate cements, a thorough osseous incorporation seemed to inhibit further degradation of both bone substitute materials.
Biomimetic heterogenous elastic tissue development.
Tsai, Kai Jen; Dixon, Simon; Hale, Luke Richard; Darbyshire, Arnold; Martin, Daniel; de Mel, Achala
2017-01-01
There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach.
Sheydaeian, Esmat; Vlasea, Mihaela; Woo, Ami; Pilliar, Robert; Hu, Eugene; Toyserkani, Ehsan
2017-05-01
This article addresses the effects of glycerol (GLY) concentrations on the mechanical properties of calcium polyphosphate (CPP) bone substitute structures manufactured using binder jetting additive manufacturing. To achieve this goal, nine types of water-based binder solutions were prepared with 10, 12.5, and 15 wt % GLY liquid-binding agent, mixed, respectively, with 0, 0.75, and 1.5 wt % ethylene glycol diacetate (EGD) flow enhancer. The print quality of each of the solutions was established quantitatively using an image processing algorithm. The print quality analysis narrowed down the solutions to three batches containing 1.5 wt % EGD and variable amount of GLY. These solutions were used to manufacture porous CPP bone substitute samples, which were characterized physically to determine shrinkage, porosity, microstructure, and compression strength. The 12.5 wt % GLY, 1.5 wt % EGD solution resulted in the highest mechanical strength after sintering (34.6 ± 5.8 MPa), illustrating similar mechanical properties when compared to previous studies (33.9 ± 6.3 MPa) of additively manufactured CPP bone substitutes using a commercially available binder. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 828-835, 2017. © 2016 Wiley Periodicals, Inc.
Artificial Cells, Blood Substitutes, and Immobilization Biotechnology. Volume 22, Number 3, 1994.
1994-05-01
culture, microorganisms, enzymes, drugs, receptors, sorbents, immunosorbents and other biologically active molecules. (2) Artificial cells, microcapsules ...recombinant hemoglobin, and others. Chemistry, methods, in-vitro studies, in-vivo evaluations and clinical results. (4) Microencapsulation and other
Artificial Cells, Blood Substitutes, and Immobilization Biotechnology. Volume 22 Number 2, 1994.
1994-05-01
culture, microorganisms, enzymes, drugs, receptors, sorbents, immunosorbents and other biologically active molecules. (2) Artificial cells, microcapsules ...recombinant hemoglobin, and others. Chemistry, methods, in-vitro studies, in-vivo evaluations and clinical results. (4) Microencapsulation and other
Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, Volume 22 Number 4, 1994.
1994-01-01
culture, microorganisms, enzymes, drugs, receptors, sorbents, immunosorbents and other biologically active molecules. (2) Artificial cells, microcapsules ...recombinant hemoglobin, and others. Chemistry, methods, in-vitro studies, in-vivo evaluations and clinical results. (4) Microencapsulation and other
NASA Astrophysics Data System (ADS)
Kim, Yang-Hee; Lee, Byong-Taek
2011-06-01
In this study, a novel artificial small bone consisting of ZrO2-biphasic calcium phosphate/polymethylmethacrylate-polycaprolactone-hydroxyapatite (ZrO2-BCP/PMMA-PCL-HAp) was fabricated using a combination of sponge replica and electrospinning methods. To mimic the cancellous bone, the ZrO2/BCP scaffold was composed of three layers, ZrO2, ZrO2/BCP and BCP, fabricated by the sponge replica method. The PMMA-PCL fibers loaded with HAp powder were wrapped around the ZrO2/BCP scaffold using the electrospinning process. To imitate the Haversian canal region of the bone, HAp-loaded PMMA-PCL fibers were wrapped around a steel wire of 0.3 mm diameter. As a result, the bundles of fiber wrapped around the wires imitated the osteon structure of the cortical bone. Finally, the ZrO2/BCP scaffold was surrounded by HAp-loaded PMMA-PCL composite bundles. After removal of the steel wires, the ZrO2/BCP scaffold and bundles of HAp-loaded PMMA-PCL formed an interconnected structure resembling the human bone. Its diameter, compressive strength and porosity were approximately 12 mm, 5 MPa and 70%, respectively, and the viability of MG-63 osteoblast-like cells was determined to be over 90% by the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. This artificial bone shows excellent cytocompatibility and is a promising bone regeneration material.
Kim, Yang-Hee; Lee, Byong-Taek
2011-01-01
In this study, a novel artificial small bone consisting of ZrO2-biphasic calcium phosphate/polymethylmethacrylate-polycaprolactone-hydroxyapatite (ZrO2-BCP/PMMA-PCL-HAp) was fabricated using a combination of sponge replica and electrospinning methods. To mimic the cancellous bone, the ZrO2/BCP scaffold was composed of three layers, ZrO2, ZrO2/BCP and BCP, fabricated by the sponge replica method. The PMMA-PCL fibers loaded with HAp powder were wrapped around the ZrO2/BCP scaffold using the electrospinning process. To imitate the Haversian canal region of the bone, HAp-loaded PMMA-PCL fibers were wrapped around a steel wire of 0.3 mm diameter. As a result, the bundles of fiber wrapped around the wires imitated the osteon structure of the cortical bone. Finally, the ZrO2/BCP scaffold was surrounded by HAp-loaded PMMA-PCL composite bundles. After removal of the steel wires, the ZrO2/BCP scaffold and bundles of HAp-loaded PMMA-PCL formed an interconnected structure resembling the human bone. Its diameter, compressive strength and porosity were approximately 12 mm, 5 MPa and 70%, respectively, and the viability of MG-63 osteoblast-like cells was determined to be over 90% by the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. This artificial bone shows excellent cytocompatibility and is a promising bone regeneration material. PMID:27877406
Gauthier, O; Bouler, J M; Weiss, P; Bosco, J; Daculsi, G; Aguado, E
1999-10-01
This study investigated the in vivo performance of two composite injectable bone substitutes (IBS), each with different calcium-phosphate particles granulometries [40-80 (IBS 40-80) and 200-500 microm (IBS 200-500)]. These biomaterials were obtained by associating a biphasic calcium-phosphate (BCP) ceramic mineral phase with a 3% aqueous solution of a cellulosic polymer (hydroxy-propyl-methyl-cellulose). Both materials were injected for periods of 2, 3, 8, or 12 weeks into bone defects at the distal end of rabbit femurs. Quantitative results on new bone formation, BCP resorption, and staining for tartrate-resistant acid phosphatase (TRAP) activity were studied for statistical purposes. Measurements with scanning electron microscopy and image analysis showed that the final rates of newly formed bone were similar for both tested IBS after 12 weeks of implantation. Bone colonization occurred more extensively during early implantation times for IBS 40-80 than for IBS 200-500. For the latter, BCP degradation occurred regularly throughout the implantation period, whereas it was very intensive during the first 2 weeks for IBS 40-80. Positive TRAP-stained degradation cells were significantly more numerous for IBS 40-80 than for IBS 200-500 regardless of implantation time. With the granulometry of either mineral phase, both tested IBS supported extensive bone colonization, which was greater than that previously reported for an equivalent block of macroporous BCP. The resorption-bone substitution process seemed to occur earlier and faster for IBS 40-80 than for IBS 200-500. Both tested IBS expressed similar biological efficiency, with conserved in vivo bioactivity and bone-filling ability. Copyright 1999 John Wiley & Sons, Inc.
Bone marrow oxytocin mediates the anabolic action of estrogen on the skeleton
USDA-ARS?s Scientific Manuscript database
Estrogen withdrawal in women due to natural or artificial menopause is followed by rapid bone loss, osteoporosis, and a high fracture risk. Replacement with estrogen prevents this bone loss and reduces the risk of fracture. Estrogen uses two mechanisms to exert this effect: it inhibits bone resorpti...
Lorenz, Jonas; Korzinskas, Tadas; Chia, Poju; Maawi, Sarah Al; Eichler, Katrin; Sader, Robert A; Ghanaati, Shahram
2018-02-01
The present prospective randomized split-mouth trial reports on the 3-year clinical and radiological follow-up investigation of implants placed 7 months after sinus augmentation with 2 different bone substitute materials. The aim of the study was to complete the histologic observation of cellular reactions by analyses of the implants and the volumetric changes of the augmented bone substitute materials. A sinus augmentation split-mouth trial was performed in 14 patients with the synthetic bone substitute material Nanobone (NB) and the xenogeneic Bio-Oss (BO). Changes in volume and density of the augmented biomaterials were investigated by analysis of computed tomography scans, taken immediately after augmentation and after 7 months. Clinical implant parameters were assessed after 3 years of loading. Both bone substitute materials underwent nonsignificant volume reduction and significant increase in bone density over an integration period of 7 months. No significant differences concerning volume and bone density were observed between the groups. Three years after loading, 51 of 53 implants were in situ with no peri-implant infections, and only a few soft-tissue variations were present. The present prospective randomized study showed that no differences could be observed clinically and radiologically. Accordingly, it seems that both biomaterials, independent of their physicochemical composition, enable clinical success and long-time stability for dental implants. Interestingly, the histological results showed distinct differences in cellular reactions: While the xenogeneic BO induced a mild tissue reaction with only few multinucleated giant cells and comparably low vascularization, the synthetic NB induced a multinucleated giant cell-triggered tissue reaction with an increase of vascularization. Thus, the present study showed that a combination analysis-histological, clinical, and radiological-is necessary for a detailed assessment of a biomaterial's quality for clinical application.
Developing better artificial bones.
Flinn, Edward D
2003-01-01
Researchers at the Center for Commercial Applications of Combustion in Space at the Colorado School of Mines are preparing the Space-DRUMS (Dynamically Responding Ultrasonic Matrix Systems) materials processing facility for transport to the International Space Station. The Space-DRUMS uses acoustic pressure beams to maintain the position of a suspended liquid or solid. Space-DRUMS will be used to extend experiments with tricalcium phosphate in the development of artificial bone material.
Alveolar bone repair with strontium- containing nanostructured carbonated hydroxyapatite.
Carmo, André Boziki Xavier do; Sartoretto, Suelen Cristina; Alves, Adriana Terezinha Neves Novellino; Granjeiro, José Mauro; Miguel, Fúlvio Borges; Calasans-Maia, Jose; Calasans-Maia, Monica Diuana
2018-01-18
This study aimed to evaluate bone repair in rat dental sockets after implanting nanostructured carbonated hydroxyapatite/sodium alginate (CHA) and nanostructured carbonated hydroxyapatite/sodium alginate containing 5% strontium microspheres (SrCHA) as bone substitute materials. Twenty male Wistar rats were randomly divided into two experimental groups: CHA and SrCHA (n=5/period/group). After one and 6 weeks of extraction of the right maxillary central incisor and biomaterial implantation, 5 μm bone blocks were obtained for histomorphometric evaluation. The parameters evaluated were remaining biomaterial, loose connective tissue and newly formed bone in a standard area. Statistical analysis was performed by Mann-Withney and and Wilcoxon tests at 95% level of significance. The histomorphometric results showed that the microspheres showed similar fragmentation and bio-absorbation (p>0.05). We observed the formation of new bones in both groups during the same experimental periods; however, the new bone formation differed significantly between the weeks 1 and 6 (p=0.0039) in both groups. The CHA and SrCHA biomaterials were biocompatible, osteoconductive and bioabsorbable, indicating their great potential for clinical use as bone substitutes.
[Nano-hydroxyapatite/collagen composite for bone repair].
Feng, Qing-ling; Cui, Fu-zhai; Zhang, Wei
2002-04-01
To develop nano-hydroxyapatite/collagen (NHAC) composite and test its ability in bone repairing. NHAC composite was developed by biomimetic method. The composite showed some features of natural bone in both composition and microstructure. The minerals could contribute to 50% by weight of the composites in sheet form. The inorganic phase in the composite was carbonate-substituted hydroxyapatite (HA) with low crystallinity and nanometer size. HA precipitates were uniformly distributed on the type I collagen matrix without preferential orientation. The composite exhibited an isotropic mechanical behavior. However, the resistance of the composite to localized pressure could reach the lower limit of that of femur compacta. The tissue response to the NHAC composite implanted in marrow cavity was investigated. Knoop micro-hardness test was performed to compare the mechanical behavior of the composite and bone. At the interface of the implant and marrow tissue, solution-mediated dissolution and macrophage-mediated resorption led to the degradation of the composite, followed by interfacial bone formation by osteoblasts. The process of implant degradation and bone substitution was reminiscent of bone remodeling. The composite can be incorporated into bone metabolism instead of being a permanent implant.
Nasal Floor Augmentation for the Reconstruction of the Atrophic Maxilla: A Case Series
El-Ghareeb, Moustafa; Pi-Anfruns, Joan; Khosousi, Mohammed; Aghaloo, Tara; Moy, Peter
2012-01-01
Purpose The severely atrophic edentulous maxilla imposes a challenge for dental implant rehabilitation. Nasal floor augmentation (NFA) is a method of augmenting bone height in the anterior maxilla. Autogenous bone has been commonly used as a graft material. Because of variations in results and lack of insufficient studies reporting the use of bone substitutes to graft the nasal floor, this study aims to evaluate the survival and success of dental implants placed in nasally grafted maxillae with osteoconductive bone substitutes. Materials and Methods Six patients with completely edentulous maxillae and inadequate height in the anterior to support implants underwent NFA. The nasal floor was exposed through an intraoral approach and grafted with osteoconductive bone graft substitutes. Twenty-four dental implants were placed, restored with a bar-retained implant-supported overdenture after a traditional healing period, and followed up after prosthetic loading. Patient satisfaction was evaluated with a questionnaire, and responses were expressed on a visual analog scale from 1 to 10. Bone levels were quantified radiographically based on a score ranging from 1 to 3, where 3 represented the highest bone support. Implants were evaluated for thread exposure and soft tissue health and were considered successful if the following criteria were met: absence of mobility; lack of symptoms; bone score of 3; and healthy peri-implant soft tissue without thread exposure. Results The age of patients ranged from 48 to 84 years, with a mean of 71.2 years. Three patients underwent NFA and simultaneous implant placement, whereas the other 3 had a mean healing period of 6.5 months before implant placement. Post-loading follow-up ranged from 4 to 29 months, with a mean of 14.2 months. The implant survival rate was 100%, with no complications. Ninety-three percent of the responses to the treatment satisfaction questionnaire had a score of 7 or greater. Bone scores ranged from 2 to 3, with 87.5% of implants having a score of 3 and 12.5% having a score of 2. None of the implants had a bone score of 1. Conclusions The use of osteoconductive bone substitutes for NFA, as shown in this small case series, is a reliable method for reconstruction of the anterior atrophic maxilla for implant-supported overdentures. PMID:22177805
Weigand, Annika; Beier, Justus P; Schmid, Rafael; Knorr, Tobias; Kilian, David; Götzl, Rebekka; Gerber, Thomas; Horch, Raymund E; Boos, Anja M
2017-03-01
For decades, researchers have been developing a range of promising strategies in bone tissue engineering with the aim of producing a significant clinical benefit over existing therapies. However, a major problem concerns the traditional use of xenogeneic substances for the expansion of cells, which complicates direct clinical transfer. The study's aim was to establish a totally autologous sheep model as a basis for further preclinical studies and future clinical application. Ovine mesenchymal stromal cells (MSC) were cultivated in different concentrations (0%, 2%, 5%, 10%, and 25%) of either autologous serum (AS) or fetal calf serum (FCS). With an increase of serum concentration, enhanced metabolic activity and proliferation could be observed. There were minor differences between MSC cultivated in AS or FCS, comparing gene and protein expression of osteogenic and stem cell markers, morphology, and osteogenic differentiation. MSC implanted subcutaneously in the sheep model, together with a nanostructured bone substitute, either in stable block or moldable putty form, induced similar vascularization and remodeling of the bone substitute irrespective of cultivation of MSC in AS or FCS and osteogenic differentiation. The bone substitute in block form together with MSC proved particularly advantageous in the induction of ectopic bone formation compared to the cell-free control and putty form. It could be demonstrated that AS is suitable for replacement of FCS for cultivation of ovine MSC for bone tissue engineering purposes. Substantial progress has been made in the development of a strictly xenogeneic-free preclinical animal model to bring future clinical application of bone tissue engineering strategies within reach.
Early matrix change of a nanostructured bone grafting substitute in the rat.
Xu, Weiguo; Holzhüter, Gerd; Sorg, Heiko; Wolter, Daniel; Lenz, Solvig; Gerber, Thomas; Vollmar, Brigitte
2009-11-01
A nanocrystalline bone substitute embedded in a highly porous silica gel matrix (NanoBone) has previously been shown to bridge bone defects by an organic matrix. As the initial host response on the bone graft substitute might be a determinant for subsequent bone formation, our present purpose was to characterize the early tissue reaction on this biomaterial. After implantation of 80 mg of NanoBone into the adipose neck tissue of a total of 35 rats, grafts were harvested for subsequent analysis at days 3, 6, 9, 12, and 21. The biomaterial was found encapsulated by granulation tissue which partly penetrated the implant at day 3 and completely pervaded the graft at day 12 on implantation. Histology revealed tartrate-resistant acid phosphatase (TRAP)-positive giant cells covering the biomaterial. ED1 (CD68) immunopositivity of these cells further indicated their osteoclast-like phenotype. Scanning electron microscopy revealed organic tissue components within the periphery of the graft already at day 9, whereas the central hematoma region still presented the silica-surface of the biomaterial. Energy dispersive X-ray spectroscopy further demonstrated that the silica gel was degraded faster in the peripheral granulation tissue than in the central hematoma and was replaced by organic host components by day 12. In conclusion, the silica gel matrix is rapidly replaced by carbohydrate macromolecules. This might represent a key step in the process of graft degradation on its way toward induction of bone formation. The unique composition and structure of this nanoscaled biomaterial seem to support its degradation by host osteoclast-like giant cells.
Guided bone regeneration with a synthetic biodegradable membrane: a comparative study in dogs.
Jung, Ronald E; Kokovic, Vladimir; Jurisic, Milan; Yaman, Duygu; Subramani, Karthikeyan; Weber, Franz E
2011-08-01
The aim of the present study was to compare a newly developed biodegradable polylactide/polyglycolide/N-methyl-2-pyrrolidone (PLGA/NMP) membrane with a standard resorbable collagen membrane (RCM) in combination with and without the use of a bone substitute material (deproteinized bovine bone mineral [DBBM]) looking at the proposed tenting effect and bone regeneration. In five adult German sheepdogs, the mandibular premolars P2, P3, P4, and the molar M1 were bilaterally extracted creating two bony defects on each site. A total of 20 dental implants were inserted and allocated to four different treatment modalities within each dog: PLGA/NMP membrane only (Test 1), PLGA/NMP membrane with DBBM (Test 2), RCM only (negative control), and RCM with DBBM (positive control). A histomorphometric analysis was performed 12 weeks after implantation. For statistical analysis, a Friedman test and subsequently a Wilcoxon signed ranks test were applied. In four out of five PLGA/NMP membrane-treated defects, the membranes had broken into pieces without the support of DBBM. This led to a worse outcome than in the RCM group. In combination with DBBM, both membranes revealed similar amounts of area of bone regeneration and bone-to-implant contact without significant differences. On the level of the third implant thread, the PLGA/NMP membrane induced more horizontal bone formation beyond the graft than the RCM. The newly developed PLGA/NMP membrane performs equally well as the RCM when applied in combination with DBBM. Without bone substitute material, the PLGA/NMP membrane performed worse than the RCM in challenging defects, and therefore, a combination with a bone substitute material is recommended. © 2010 John Wiley & Sons A/S.
Management of segmental bony defects: the role of osteoconductive orthobiologics.
McKee, Michael D
2006-01-01
Our knowledge about, and the availability of, orthobiologic materials has increased exponentially in the last decade. Although previously confined to the experimental or animal-model realm, several orthobiologics have been shown to be useful in a variety of clinical situations. As surgical techniques in vascular anastomosis, soft-tissue coverage, limb salvage, and fracture stabilization have improved, the size and frequency of bony defects (commensurate with the severity of the initial injury) have increased, as well. Because all methods of managing segmental bony defects have drawbacks, a need remains for a readily available, void-filling, inexpensive bone substitute. Such a bone substitute fulfills a permissive role in allowing new bone to grow into a given defect. Such potential osteoconductive materials include ceramics, calcium sulfate or calcium phosphate compounds, hydroxyapatite, deproteinized bone, corals, and recently developed polymers. Some materials that have osteoinductive properties, such as demineralized bone matrix, also display prominent osteoconductive properties.
The biodegradation of hydroxyapatite bone graft substitutes in vivo.
Rumpel, E; Wolf, E; Kauschke, E; Bienengräber, V; Bayerlein, T; Gedrange, T; Proff, P
2006-02-01
Hydroxyapatite (HA) ceramics are widely used for bone reconstruction. They are osteoconductive and serve as structural scaffolds for the deposition of new bone. Generally, scaffold materials should be degradable as they affect the mechanical properties of the reconstructed bone negatively. Degradation by osteoclasts during the bone remodelling process is desirable but often does not take place. In the current study we analysed by light microscopy the degradation of two granular HA implants in critically sized defects in the mandibula of Goettingen mini-pigs five weeks after implantation. Bio-Oss consists of sintered bovine bone and NanoBone is a synthetic HA produced in a sol-gel process in the presence of SiO2. We found that both biomaterials were degraded by osteoclasts with ruffled borders and acid phosphatase activity. The osteoclasts created resorption lacunae and resorptive trails and contained mineral particles. Frequently, resorption surfaces were in direct contact with bone formative surfaces on one granule. Granules, especially of NanoBone, were also covered by osteoclasts if located in vascularised connective tissue distant from bone tissue. However, this usually occurred without the creation of resorption lacunae. The former defect margins consisted of newly formed bone often without remnants of bone substitutes. Our results show that the degradation of both biomaterials corresponds to the natural bone degradation processes and suggest the possibility of complete resorption during bone remodelling.
Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.
Dutta, S R; Passi, D; Singh, P; Bhuibhar, A
2015-03-01
Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.
Improving the clinical evidence of bone graft substitute technology in lumbar spine surgery.
Hsu, Wellington K; Nickoli, M S; Wang, J C; Lieberman, J R; An, H S; Yoon, S T; Youssef, J A; Brodke, D S; McCullough, C M
2012-12-01
Bone graft substitutes have been used routinely for spine fusion for decades, yet clinical evidence establishing comparative data remains sparse. With recent scrutiny paid to the outcomes, complications, and costs associated with osteobiologics, a need to improve available data guiding efficacious use exists. We review the currently available clinical literature, studying the outcomes of various biologics in posterolateral lumbar spine fusion, and establish the need for a multicenter, independent osteobiologics registry.
Improving the Clinical Evidence of Bone Graft Substitute Technology in Lumbar Spine Surgery
Hsu, Wellington K.; Nickoli, M. S.; Wang, J. C.; Lieberman, J. R.; An, H. S.; Yoon, S. T.; Youssef, J. A.; Brodke, D. S.; McCullough, C. M.
2012-01-01
Bone graft substitutes have been used routinely for spine fusion for decades, yet clinical evidence establishing comparative data remains sparse. With recent scrutiny paid to the outcomes, complications, and costs associated with osteobiologics, a need to improve available data guiding efficacious use exists. We review the currently available clinical literature, studying the outcomes of various biologics in posterolateral lumbar spine fusion, and establish the need for a multicenter, independent osteobiologics registry. PMID:24353975
2014-01-01
The term "endo-perio" lesion has been proposed to describe the destructive lesion resulting from inflammatory products found in varying degrees in both the periodontium and the pulpal tissues. In most of the cases, clinical symptoms disappear following successful endodontic therapy. However failure after conventional root canal treatment calls for surgical intervention. A 35 year old male patient with endo-perio lesion in right maxillary lateral incisor was treated with platelet rich fibrin (PRF) and alloplastic bone substitute after conventional endodontic therapy. At the end of 6 months there was gain in clinical attachment, increased radiographic bone fill and reduction in probing depth which was maintained till 18 month follow-up. Present case report aims to evaluate the efficacy of PRF and alloplastic bone substitute in the management of intrabony defect associated with endo-perio lesion in maxillary lateral incisor because the healing potential of PRF and bone graft has not been widely studied in endodontics. The use of PRF allows the clinician to optimize tissue remodelling, wound healing and angiogenesis by the local delivery of growth factors and proteins. The novel technique described here enables the clinician to be benefited from the full regenerative capacity of this autologous biologic material. PMID:24516830
Goyal, Lata
2014-02-01
The term "endo-perio" lesion has been proposed to describe the destructive lesion resulting from inflammatory products found in varying degrees in both the periodontium and the pulpal tissues. In most of the cases, clinical symptoms disappear following successful endodontic therapy. However failure after conventional root canal treatment calls for surgical intervention. A 35 year old male patient with endo-perio lesion in right maxillary lateral incisor was treated with platelet rich fibrin (PRF) and alloplastic bone substitute after conventional endodontic therapy. At the end of 6 months there was gain in clinical attachment, increased radiographic bone fill and reduction in probing depth which was maintained till 18 month follow-up. Present case report aims to evaluate the efficacy of PRF and alloplastic bone substitute in the management of intrabony defect associated with endo-perio lesion in maxillary lateral incisor because the healing potential of PRF and bone graft has not been widely studied in endodontics. The use of PRF allows the clinician to optimize tissue remodelling, wound healing and angiogenesis by the local delivery of growth factors and proteins. The novel technique described here enables the clinician to be benefited from the full regenerative capacity of this autologous biologic material.
Moore, Shannon R.; Heu, Céline; Yu, Nicole Y.C.; Whan, Renee M.; Knothe, Ulf R.; Milz, Stefan
2016-01-01
An abundance of surgical studies during the past 2 centuries provide empirical evidence of periosteum's regenerative power for reconstructing tissues as diverse as trachea and bone. This study aimed to develop quantitative, efficacy-based measures, thereby providing translational guidelines for the use of periosteum to harness the body's own healing potential and generate target tissues. The current study quantitatively and qualitatively demonstrated tissue generation modulated by a periosteum substitute membrane that replicates the structural constituents of native periosteum (elastin, collagen, progenitor cells) and its barrier, extracellular, and cellular properties. It shows the potentiation of the periosteum's regenerative capacity through the progenitor cells that inhabit the tissue, biological factors intrinsic to the extracellular matrix of periosteum, and mechanobiological factors related to implant design and implementation. In contrast to the direct intramembranous bone generated in defects surrounded by patent periosteum in situ, tissue generation in bone defects bounded by the periosteum substitute implant occurred primarily via endochondral mechanisms whereby cartilage was first generated and then converted to bone. In addition, in defects treated with the periosteum substitute, tissue generation was highest along the major centroidal axis, which is most resistant to prevailing bending loads. Taken together, these data indicate the possibility of designing modular periosteum substitute implants that can be tuned for vectorial and spatiotemporal delivery of biological agents and facilitation of target tissue genesis for diverse surgical scenarios and regenerative medicine approaches. It also underscores the potential to develop physical therapy protocols to maximize tissue genesis via the implant's mechanoactive properties. Significance In the past 2 centuries, the periosteum, a niche for stem cells and super-smart biological material, has been used empirically in surgery to repair tissues as diverse as trachea and bone. In the past 25 years, the number of articles indexed in PubMed for the keywords “periosteum and tissue engineering” and “periosteum and regenerative medicine” has burgeoned. Yet the biggest limitation to the prescriptive use of periosteum is lack of easy access, giving impetus to the development of periosteum substitutes. Recent studies have opened up the possibility to bank periosteal tissues (e.g., from the femoral neck during routine resection for implantation of hip replacements). This study used an interdisciplinary, quantitative approach to assess tissue genesis in modular periosteum substitute implants, with the aim to provide translational strategies for regenerative medicine and tissue engineering. PMID:27465072
Moore, Shannon R; Heu, Céline; Yu, Nicole Y C; Whan, Renee M; Knothe, Ulf R; Milz, Stefan; Knothe Tate, Melissa L
2016-12-01
: An abundance of surgical studies during the past 2 centuries provide empirical evidence of periosteum's regenerative power for reconstructing tissues as diverse as trachea and bone. This study aimed to develop quantitative, efficacy-based measures, thereby providing translational guidelines for the use of periosteum to harness the body's own healing potential and generate target tissues. The current study quantitatively and qualitatively demonstrated tissue generation modulated by a periosteum substitute membrane that replicates the structural constituents of native periosteum (elastin, collagen, progenitor cells) and its barrier, extracellular, and cellular properties. It shows the potentiation of the periosteum's regenerative capacity through the progenitor cells that inhabit the tissue, biological factors intrinsic to the extracellular matrix of periosteum, and mechanobiological factors related to implant design and implementation. In contrast to the direct intramembranous bone generated in defects surrounded by patent periosteum in situ, tissue generation in bone defects bounded by the periosteum substitute implant occurred primarily via endochondral mechanisms whereby cartilage was first generated and then converted to bone. In addition, in defects treated with the periosteum substitute, tissue generation was highest along the major centroidal axis, which is most resistant to prevailing bending loads. Taken together, these data indicate the possibility of designing modular periosteum substitute implants that can be tuned for vectorial and spatiotemporal delivery of biological agents and facilitation of target tissue genesis for diverse surgical scenarios and regenerative medicine approaches. It also underscores the potential to develop physical therapy protocols to maximize tissue genesis via the implant's mechanoactive properties. In the past 2 centuries, the periosteum, a niche for stem cells and super-smart biological material, has been used empirically in surgery to repair tissues as diverse as trachea and bone. In the past 25 years, the number of articles indexed in PubMed for the keywords "periosteum and tissue engineering" and "periosteum and regenerative medicine" has burgeoned. Yet the biggest limitation to the prescriptive use of periosteum is lack of easy access, giving impetus to the development of periosteum substitutes. Recent studies have opened up the possibility to bank periosteal tissues (e.g., from the femoral neck during routine resection for implantation of hip replacements). This study used an interdisciplinary, quantitative approach to assess tissue genesis in modular periosteum substitute implants, with the aim to provide translational strategies for regenerative medicine and tissue engineering. ©AlphaMed Press.
Barboni, Barbara; Mangano, Carlo; Valbonetti, Luca; Marruchella, Giuseppe; Berardinelli, Paolo; Martelli, Alessandra; Muttini, Aurelio; Mauro, Annunziata; Bedini, Rossella; Turriani, Maura; Pecci, Raffaella; Nardinocchi, Delia; Zizzari, Vincenzo Luca; Tetè, Stefano; Piattelli, Adriano; Mattioli, Mauro
2013-01-01
Background Evidence has been provided that a cell-based therapy combined with the use of bioactive materials may significantly improve bone regeneration prior to dental implant, although the identification of an ideal source of progenitor/stem cells remains to be determined. Aim In the present research, the bone regenerative property of an emerging source of progenitor cells, the amniotic epithelial cells (AEC), loaded on a calcium-phosphate synthetic bone substitute, made by direct rapid prototyping (rPT) technique, was evaluated in an animal study. Material And Methods Two blocks of synthetic bone substitute (∼0.14 cm3), alone or engineered with 1×106 ovine AEC (oAEC), were grafted bilaterally into maxillary sinuses of six adult sheep, an animal model chosen for its high translational value in dentistry. The sheep were then randomly divided into two groups and sacrificed at 45 and 90 days post implantation (p.i.). Tissue regeneration was evaluated in the sinus explants by micro-computer tomography (micro-CT), morphological, morphometric and biochemical analyses. Results And Conclusions The obtained data suggest that scaffold integration and bone deposition are positively influenced by allotransplantated oAEC. Sinus explants derived from sheep grafted with oAEC engineered scaffolds displayed a reduced fibrotic reaction, a limited inflammatory response and an accelerated process of angiogenesis. In addition, the presence of oAEC significantly stimulated osteogenesis either by enhancing bone deposition or making more extent the foci of bone nucleation. Besides the modulatory role played by oAEC in the crucial events successfully guiding tissue regeneration (angiogenesis, vascular endothelial growth factor expression and inflammation), data provided herein show that oAEC were also able to directly participate in the process of bone deposition, as suggested by the presence of oAEC entrapped within the newly deposited osteoid matrix and by their ability to switch-on the expression of a specific bone-related protein (osteocalcin, OCN) when transplanted into host tissues. PMID:23696804
Cellular bone matrices: viable stem cell-containing bone graft substitutes
Skovrlj, Branko; Guzman, Javier Z.; Al Maaieh, Motasem; Cho, Samuel K.; Iatridis, James C.; Qureshi, Sheeraz A.
2015-01-01
BACKGROUND CONTEXT Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. PURPOSE To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. STUDY DESIGN Areview of literature. METHODS A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. RESULTS Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs’ survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. CONCLUSIONS Cellular bone matrices may be a promising bone augmentation technology in spinal fusion surgery. Although CBMs appear to be safe for use as bone graft substitutes, their efficacy in spinal fusion surgery remains highly inconclusive. Large, nonindustry sponsored studies evaluating the efficacy of CBMs are required. Without results from such studies, surgeons must be made aware of the potential pitfalls of CBMs in spinal fusion surgery. With the currently available data, there is insufficient evidence to support the use of CBMs as bone graft substitutes in spinal fusion surgery. PMID:24929059
Cellular bone matrices: viable stem cell-containing bone graft substitutes.
Skovrlj, Branko; Guzman, Javier Z; Al Maaieh, Motasem; Cho, Samuel K; Iatridis, James C; Qureshi, Sheeraz A
2014-11-01
Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. Areview of literature. A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs' survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. Cellular bone matrices may be a promising bone augmentation technology in spinal fusion surgery. Although CBMs appear to be safe for use as bone graft substitutes, their efficacy in spinal fusion surgery remains highly inconclusive. Large, nonindustry sponsored studies evaluating the efficacy of CBMs are required. Without results from such studies, surgeons must be made aware of the potential pitfalls of CBMs in spinal fusion surgery. With the currently available data, there is insufficient evidence to support the use of CBMs as bone graft substitutes in spinal fusion surgery. Copyright © 2014 Elsevier Inc. All rights reserved.
Xu, Weiguo; Ganz, Cornelia; Weber, Ulf; Adam, Martin; Holzhüter, Gerd; Wolter, Daniel; Frerich, Bernhard; Vollmar, Brigitte; Gerber, Thomas
2011-01-01
In clinical practice, vertebral compression fractures occur after trauma and osteoporosis. Kyphoplasty is a minimally invasive procedure using bone filler material for the treatment of such fractures. A full synthetic injectable bone substitute (SIBS) was manufactured by means of spray drying. The aim of this study was to characterize the SIBS and to analyze the remodelling process during degradation of the biomaterial and new bone formation after implantation. SIBS is an aqueous suspension of donut-like microparticles. These microparticles consist of nanocrystallites of synthetic hydroxyapatite embedded in amorphous silica gel. After implantation of SIBS in a proximal tibial diaphyseal defect in 52 rats, grafts were harvested for subsequent analysis on different days. Newly formed bone originating from endosteum was observed on day 6. Hematomas in the medullary space and cortical wounds disappeared on day 12. The wound region was completely replaced by a composite of newly formed cancellous bone, extracellular matrix, and SIBS. At day 63 the cortical defect was fully healed by bone, while newly formed bone in the medullary space almost disappeared and was replaced with bone marrow. In conclusion, SIBS demonstrated a unique structure with osteoinductive and bioresorbable properties, which induced fast bone regeneration. Therefore, a clinical application of SIBS for kyphoplasty is promising. PMID:21845044
Early diagenesis and recrystallization of bone
NASA Astrophysics Data System (ADS)
Keenan, Sarah W.; Engel, Annette Summers
2017-01-01
One of the most challenging problems in paleobiology is determining how bone transforms from a living tissue into a fossil. The geologic record is replete with vertebrate fossils preserved from a range of depositional environments, including wetland systems. However, thermodynamic models suggest that bone (modeled as hydroxylapatite) is generally unstable in a range of varying geochemical conditions and should readily dissolve if it does not alter to a more thermodynamically stable phase, such as a fluorine-enriched apatite. Here, we assess diagenesis of alligator bone from fleshed, articulated skeletons buried in wetland soils and from de-fleshed bones in experimental mesocosms with and without microbial colonization. When microbial colonization of bone was inhibited, bioapatite recrystallization to a more stable apatite phase occurred after one month of burial. Ca-Fe-phosphate phases in bone developed after several months to years due to ion substitutions from the protonation of the hydroxyl ion. These rapid changes demonstrate a continuum of structural and bonding transformations to bone that have not been observed previously. When bones were directly in contact with sediment and microbial cells, rapid bioerosion and compositional alteration occurred after one week, but slowed after one month because biofilms reduced exposed surfaces and subsequent bioapatite lattice substitutions. Microbial contributions are likely essential in forming stable apatite phases during early diagenesis and for enabling bone preservation and fossilization.
Yunoki, Shunji; Sugiura, Hiroaki; Ikoma, Toshiyuki; Kondo, Eiji; Yasuda, Kazunori; Tanaka, Junzo
2011-02-01
The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm⁻³ and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 ± 0.48 and 0.651 ± 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.
Vukicevic, Arso M; Jovicic, Gordana R; Jovicic, Milos N; Milicevic, Vladimir L; Filipovic, Nenad D
2018-02-01
Bone injures (BI) represents one of the major health problems, together with cancer and cardiovascular diseases. Assessment of the risks associated with BI is nontrivial since fragility of human cortical bone is varying with age. Due to restrictions for performing experiments on humans, only a limited number of fracture resistance curves (R-curves) for particular ages have been reported in the literature. This study proposes a novel decision support system for the assessment of bone fracture resistance by fusing various artificial intelligence algorithms. The aim was to estimate the R-curve slope, toughness threshold and stress intensity factor using the two input parameters commonly available during a routine clinical examination: patients age and crack length. Using the data from the literature, the evolutionary assembled Artificial Neural Network was developed and used for the derivation of Linear regression (LR) models of R-curves for arbitrary age. Finally, by using the patient (age)-specific LR models and diagnosed crack size one could estimate the risk of bone fracture under given physiological conditions. Compared to the literature, we demonstrated improved performances for estimating nonlinear changes of R-curve slope (R 2 = 0.82 vs. R 2 = 0.76) and Toughness threshold with ageing (R 2 = 0.73 vs. R 2 = 0.66).
Li, Hong; Li, Jinyan; Jiang, Jia; Lv, Fang; Chang, Jiang; Chen, Shiyi; Wu, Chengtie
2017-05-01
To solve the poor healing of polyethylene terephthalate (PET) artificial ligament in bone tunnel, copper-containing bioactive glass (Cu-BG) nanocoatings on PET artificial ligaments were successfully prepared by pulsed laser deposition (PLD). It was hypothesized that Cu-BG coated PET (Cu-BG/PET) grafts could enhance the in vitro osteogenic and angiogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) and in vivo graft-bone healing after anterior cruciate ligament (ACL) reconstruction in a goat model. Scanning electron microscope and EDS mapping analysis revealed that the prepared nanocoatings had uniform element distribution (Cu, Ca, Si and P) and nanostructure. The surface hydrophilicity of PET grafts was significantly improved after depositing Cu-BG nanocoatings. The in vitro study displayed that the Cu-BG/PET grafts supported the attachment and proliferation of rBMSCs, and significantly promoted the expression of HIF-1α gene, which up-regulated the osteogenesis-related genes (S100A10, BMP2, OCN) and angiogenesis-related genes (VEGF) in comparison with PET or BG coated PET (BG/PET) grafts which do not contain Cu element. Meanwhile, Cu-BG/PET grafts promoted the bone regeneration at the graft-host bone interface and decreased graft-bone interface width, thus enhancing the bonding strength as well as angiogenesis (as indicated by CD31 expression) in the goat model as compared with BG/PET and pure PET grafts. The study demonstrates that the Cu-containing biomaterials significantly promote osteogenesis and angiogenesis in the repair of bone defects of large animals and thus offering a promising method for ACL reconstruction by using Cu-containing nanobioglass modified PET grafts. It remains a significant challenge to develop an artificial graft with distinct osteogenetic/angiogenetic activity to enhance graft-bone healing for ligament reconstruction. To solve these problems, copper-containing bioactive glass (Cu-BG) nanocoatings on PET artificial ligaments were successfully prepared by pulsed laser deposition (PLD). It was found that the prepared Cu-BG/PET grafts significantly stimulated the proliferation and osteogenic/angiogenic differentiation of bone marrow stromal cells (BMSCs) through activating HIF-1α/S100A10/Ca 2+ signal pathway. The most important is that the in vivo bone-forming ability of Cu-containing biomaterials was, for the first time, elucidated in a large animal model, revealing the enhanced capacity of osteogenesis and angiogenesis with incorporation of bioactive Cu element. It is suggested that the copper-containing biomaterials significantly promote osteogenesis and angiogenesis in large animal defects and thus offering a promising method for ACL reconstruction by using Cu-containing nanobioglass modification of PET grafts, paving the way to apply Cu-containing biomaterials for tissue engineering and regenerative medicine. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Da-Fu; Zhou, Zhi-Yu; Dai, Xue-Jun; Gao, Man-Man; Huang, Bao-Ding; Liang, Tang-Zhao; Shi, Rui; Zou, Li-Jin; Li, Hai-Sheng; Bünger, Cody; Tian, Wei; Zou, Xue-Nong
2014-03-01
The precise mechanism of bone regeneration in different bone graft substitutes has been well studied in recent researches. However, miRNAs regulation of the bone formation has been always mysterious. We developed the anterior lumbar interbody fusion (ALIF) model in pigs using equine bone protein extract (BPE), recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS), and autograft as bone graft substitute, respectively. The miRNA and gene expression profiles of different bone graft materials were examined using microarray technology and data analysis, including self-organizing maps, KEGG pathway and Biological process GO analyses. We then jointly analyzed miRNA and mRNA profiles of the bone fusion tissue at different time points respectively. Results showed that miRNAs, including let-7, miR-129, miR-21, miR-133, miR-140, miR-146, miR-184, and miR-224, were involved in the regulation of the immune and inflammation response, which provided suitable inflammatory microenvironment for bone formation. At late stage, several miRNAs directly regulate SMAD4, Estrogen receptor 1 and 5-hydroxytryptamine (serotonin) receptor 2C for bone formation. It can be concluded that miRNAs play important roles in balancing the inflammation and bone formation.
Abshagen, K; Schrodi, I; Gerber, T; Vollmar, B
2009-11-01
One of the major challenges in the application of bone substitutes is adequate vascularization and biocompatibility of the implant. Thus, the temporal course of neovascularization and the microvascular inflammatory response of implants of NanoBone (fully synthetic nanocrystalline bone grafting material) were studied in vivo by using the mouse dorsal skinfold chamber model. Angiogenesis, microhemodynamics, and leukocyte-endothelial cell interaction were analyzed repetitively after implantation in the center and in the border zone of the implant up to 15 days. Both NanoBone granules and plates exhibited high biocompatibility comparable to that of cancellous bone, as indicated by a lack of venular leukocyte activation after implantation. In both synthetic NanoBone groups, signs of angiogenesis could be observed even at day 5 after implantation, whereas granules showed higher functional vessel density compared with NanoBone plates. The angiogenic response of the cancellous bone was markedly accelerated in the center of the implant tissue. Histologically, implant tissue showed an ingrowth of vascularized fibrous tissue into the material combined with an increased number of foreign-body giant cells. In conclusion, NanoBone, particularly in granular form, showed high biocompatibility and high angiogenic response, thus improving the healing of bone defects. Our results underline that, beside the composition and nanostructure, the macrostructure is also of importance for the incorporation of the biomaterial by the host tissue. (c) 2008 Wiley Periodicals, Inc.
Alveolar bone repair with strontium- containing nanostructured carbonated hydroxyapatite
do Carmo, André Boziki Xavier; Sartoretto, Suelen Cristina; Alves, Adriana Terezinha Neves Novellino; Granjeiro, José Mauro; Miguel, Fúlvio Borges; Calasans-Maia, Jose; Calasans-Maia, Monica Diuana
2018-01-01
ABSTRACT Objective This study aimed to evaluate bone repair in rat dental sockets after implanting nanostructured carbonated hydroxyapatite/sodium alginate (CHA) and nanostructured carbonated hydroxyapatite/sodium alginate containing 5% strontium microspheres (SrCHA) as bone substitute materials. Methods Twenty male Wistar rats were randomly divided into two experimental groups: CHA and SrCHA (n=5/period/group). After one and 6 weeks of extraction of the right maxillary central incisor and biomaterial implantation, 5 μm bone blocks were obtained for histomorphometric evaluation. The parameters evaluated were remaining biomaterial, loose connective tissue and newly formed bone in a standard area. Statistical analysis was performed by Mann-Withney and and Wilcoxon tests at 95% level of significance. Results The histomorphometric results showed that the microspheres showed similar fragmentation and bio-absorbation (p>0.05). We observed the formation of new bones in both groups during the same experimental periods; however, the new bone formation differed significantly between the weeks 1 and 6 (p=0.0039) in both groups. Conclusion The CHA and SrCHA biomaterials were biocompatible, osteoconductive and bioabsorbable, indicating their great potential for clinical use as bone substitutes. PMID:29364342
Magnesium-enriched hydroxyapatite as bone filler in an ameloblastoma mandibular defect
Grigolato, Roberto; Pizzi, Natalia; Brotto, Maria C; Corrocher, Giovanni; Desando, Giovanna; Grigolo, Brunella
2015-01-01
The aim of this study was to evaluate the clinical performance of a magnesium-enriched hydroxyapatite biomaterial used as bone substitute in a case of mandibular ameloblastoma treated with conservative surgery. A 63 year old male patient was treated for an ameloblastoma in the anterior mandibular profile. After tissue excision, the bone defect was filled with a synthetic hydroxyapatite biomaterial enriched with magnesium ions, in order to promote bone tissue regeneration and obtain a good aesthetic result. Twenty-five months after surgery, due to ameloblastoma recurrence in an area adjacent to the previously treated one, the patient underwent to a further surgery. In that occasion the surgeon performed a biopsy in the initially treated area, in order to investigate the nature of the newly-formed tissue and to evaluate the bone regenerative potential of this biomaterial by clinical, radiographic and histological analyses. The clinical, radiographic and histological evaluations showed various characteristics of bone remodeling stage with an ongoing osteogenic formation and a good osteo-integration. In conclusion, magnesium-enriched hydroxyapatite used as bone substitute in a mandibular defect due to ameloblastoma excision showed an effective bone regeneration at 25 months follow-up, demonstrating an excellent biocompatibility and a high osteo-integration property. PMID:25784998
Wang, Chen; Shen, Hong; Tian, Ye; Xie, Yue; Li, Ailing; Ji, Lijun; Niu, Zhongwei; Wu, Decheng; Qiu, Dong
2014-08-13
Mechanical properties are among the most concerned issues for artificial bone grafting materials. The scaffolds used for bone grafts are either too brittle (glass) or too weak (polymer), and therefore composite scaffolds are naturally expected as the solution. However, despite the intensive studies on composite bone grafting materials, there still lacks a material that could be matched to the natural cancellous bones. In this study, nanosized bioactive particles (BP) with controllable size and good colloidal stability were used to composite with gelatin, forming macroporous scaffolds. It was found that the mechanical properties of obtained composite scaffolds, in terms of elastic modulus, compressive strength, and strain at failure, could match to that of natural cancellous bones. This is ascribed to the good distribution of particle in matrix and strong interaction between particle and gelatin. Furthermore, the incorporation of BPs endues the composite scaffolds with bioactivity, forming HA upon reacting with simulated body fluid (SBF) within days, thus stimulating preosteoblasts attachment, growth, and proliferation in these scaffolds. Together with their good mechanical properties, these composite scaffolds are promising artificial bone grating materials.
Ear epistheses as an alternative to autogenous reconstruction.
Federspil, Philipp A
2009-08-01
An ear episthesis is an artificial substitute for the auricle. The term EAR PROSTHESIS is used synonymously. The breakthrough came with the introduction of the modern silicones and their colorings. Although there are still indications for noninvasive methods of retention such as medical adhesives, the best and most reliable method of fixation is by bone anchorage. Long-lasting osseointegration with reaction-free skin penetration can be achieved with titanium implants. The first system used extraorally was the Brånemark flange fixture. Later, different solitary titanium implants were introduced, such as the ITI system. A different strategy used the titanium grids (Epitec) or plates (Epiplating) derived from osteosynthesis systems. These systems are fixed subperiosteally with several bone screws and are therefore also labeled as grouped implants. With these modern developments, secure retention can be achieved also in unfavorable anatomic situations. The grouped systems are resistant to torque with abutment insertion. The latest development is the subcutaneously implanted double magnet without skin penetration. The advantages of implant retained ear epistheses include optimal camouflage, predictable cosmetic results, fast rehabilitation, no donor site morbidity, and early detection of tumor recurrence. Depending on the clinical setting, prosthetic rehabilitation may be more than just an alternative to plastic reconstructive surgery. Copyright Thieme Medical Publishers.
Advances in surgical management of lumbar degenerative disease.
Silber, Jeff S; Anderson, D Greg; Hayes, Victor M; Vaccaro, Alexander R
2002-07-01
The past several years have seen many advances in spine technology. Some of these advances have improved the quality of life of patients suffering from disabling low back pain from degenerative disk disease. Traditional fusion procedures are trending toward less invasive approaches with less iatrogenic soft-tissue morbidity. The diversity of bone graft substitutes is increasing with the potential for significant improvements in fusion success with the future introduction of several well tested bone morphogenic proteins to the spinal market. Biologic solutions to modify the natural history of disk degeneration are being investigated. Recently, electrothermal modulation of the posterior annulus fibrosis has been published as a semi-invasive technique to relieve low back pain generated by fissures in the outer annulus and ingrowing nociceptors (intradiskal electrothermal therapy, and intradiskal electrothermal annuloplasty). Initial results are promising, however, prospective randomized studies comparing this technique with conservative therapy are still lacking. The same is true for artificial nucleus pulposus replacement using hydrogel cushions implanted in the intervertebral space after removal of the nucleus pulposus posterior or through an anterior approach. Intervertebral disk prostheses are presently being studied in small prospective patient cohorts. As with all new developments, careful prospective, long-term trials are needed to fully define the role of these technologies in the management of symptomatic lumbar degenerative disk disease.
NASA Astrophysics Data System (ADS)
Madupalli, Honey; Pavan, Barbara; Tecklenburg, Mary M. J.
2017-11-01
The mineral component of bone and other biological calcifications is primarily a carbonate substituted calcium apatite. Integration of carbonate into two sites, substitution for phosphate (B-type carbonate) and substitution for hydroxide (A-type carbonate), influences the crystal properties which relate to the functional properties of bone. In the present work, a series of AB-type carbonated apatites (AB-CAp) having varying A-type and B-type carbonate weight fractions were prepared and analyzed by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and carbonate analysis. A detailed characterization of A-site and B-site carbonate assignment in the FTIR ν3 region is proposed. The mass fractions of carbonate in A-site and B-site of AB-CAp correlate differently with crystal axis length and crystallite domain size. In this series of samples reduction in crystal domain size correlates only with A-type carbonate which indicates that carbonate in the A-site is more disruptive to the apatite structure than carbonate in the B-site. High temperature methods were required to produce significant A-type carbonation of apatite, indicating a higher energy barrier for the formation of A-type carbonate than for B-type carbonate. This is consistent with the dominance of B-type carbonate substitution in low temperature synthetic and biological apatites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Backly, Rania M.; IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genova; Faculty of Dentistry, Alexandria University, Alexandria
The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX{sup ®}) membranemore » was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12–16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (μCT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX{sup ®}) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute.« less
Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review.
Graziani, Gabriela; Bianchi, Michele; Sassoni, Enrico; Russo, Alessandro; Marcacci, Maurilio
2017-05-01
One of the main critical aspects behind the failure or success of an implant resides in its ability to fast bond with the surrounding bone. To boost osseointegration, the ideal implant material should exhibit composition and structure similar to those of biological apatite. To this aim, the most common approach is to coat the implant surface with a coating of hydroxyapatite (HA), resembling the main component of mineralized tissues. However, bone apatite is a non-stoichiometric, multi-substituted poorly-crystalline apatite, containing significant amounts of foreign ions, with high biological relevance. Ion-substituted HAs can be deposited by so called "wet methods", which are however poorly reproducible and hardly industrially feasible; at the same time bioactive coatings realized by plasma assisted method, interesting for industrial applications, are generally made of stoichiometric (i.e. un-substituted) HA. In this work, the literature concerning plasma-assisted deposition methods used to deposit ion-substituted HA was reviewed and the last advances in this field discussed. The ions taken into exam are those present in mineralized tissues and possibly having biological relevance. Notably, literature about this topic is scarce, especially relating to in vivo animal and clinical trials; further on, available studies evaluate the performance of substituted coatings from different points of view (mechanical properties, bone growth, coating dissolution, etc.) which hinders a proper evaluation of the real efficacy of ion-doped HA in promoting bone regeneration, compared to stoichiometric HA. Moreover, results obtained for plasma sprayed coatings (which is the only method currently employed for deposition at the industrial scale) were collected and compared to those of novel plasma-assisted techniques, that are expected to overcome its limitations. Data so far available on the topic were discussed to highlight advantages, limitations and possible perspectives of these procedures. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Spray-dried whole bovine blood, dry poultry egg, and a dry milk substitute are the constituents of the standard artificial diet currently used for mass rearing screwworm larvae, Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae). Due to high cost and uncertainty of the commercial supply of ...
Zhang, Peng; Han, Fei; Li, Yunxia; Chen, Jiwu; Chen, Tianwu; Zhi, Yunlong; Jiang, Jia; Lin, Chao; Chen, Shiyi; Zhao, Peng
2016-01-01
The Ligament Advanced Reinforcement System has recently been widely used as the primary graft of choice in anterior cruciate ligament (ACL) reconstruction. But the biological graft-bone healing still remains a problem. Previous studies have shown that simvastatin (SIM) stimulates bone formation. The objective of this study was to investigate whether surface coating with collagen containing low-dose SIM microsphere could enhance the surface biocompatibility of polyethylene terephthalate (PET) artificial ligaments to accelerate graft-to-bone healing. The in vitro studies demonstrated that bone marrow stromal cells on the collagen-coated PET scaffolds (COL/PET) and simvastatin/collagen-coated PET scaffolds (SIM/COL/PET) proliferated vigorously. Compared with the PET group and the COL/PET group, SIM could induce bone marrow stromal cells' osteoblastic differentiation, high alkaline phosphatase activity, more mineralization deposition, and more expression of osteoblast-related genes, such as osteocalcin, runt-related transcription factor 2, bone morphogenetic protein-2, and vascular endothelial growth factor, in the SIM/COL/PET group. In vivo, rabbits received ACL reconstruction with different scaffolds. Histological analysis demonstrated that graft-bone healing was significantly greater with angiogenesis and osteogenesis in the SIM/COL/PET group than the other groups. In addition, biomechanical testing at the eighth week demonstrated a significant increase in the ultimate failure load and stiffness in the SIM/COL/PET group. The low dose of SIM-sustained release from SIM/COL/PET promoted the graft-bone healing via its effect on both angiogenesis and osteogenesis. This study suggested that collagen containing low-dose SIM microsphere coating on the surface of PET artificial ligaments could be potentially applied for ACL reconstruction.
Calori, G M; Mazza, E; Colombo, M; Mazzola, S; Mineo, G V; Giannoudis, P V
2014-02-01
To determine the efficacy of core decompression (CD) technique combined with recombinant morphogenetic proteins, autologous mesenchymal stem cells (MSCs) and xenograft bone substitute into the necrotic lesion of the femoral head on clinical symptoms and on the progression of osteonecrosis of the femoral head. A total of 38 patients (40 hips) with early stage osteonecrosis of the femoral head were studied over a 4-year period. CD technique combined with recombinant morphogenetic proteins, autologous MSCs and xenograft bone substitute was associated with a significant reduction in both pain and joint symptoms and reduced the incidence of fractural stages. At 36 months, 33 patients achieved clinical and radiographic healing. This long-term follow-up study confirmed that CD technique combined with recombinant morphogenetic proteins, autologous MSCs and xenograft bone substitute may be an effective treatment for patients with early stage osteonecrosis of the femoral head. Copyright © 2013 Elsevier Ltd. All rights reserved.
Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes.
Morais, D S; Rodrigues, M A; Silva, T I; Lopes, M A; Santos, M; Santos, J D; Botelho, C M
2013-06-05
In this work three different hydrogels were developed to associate, as vehicles, with the synthetic bone substitute GR-HAP. One based on an alginate matrix (Alg); a second on a mixture of alginate and chitosan (Alg/Ch); and a third on alginate and hyaluronate (Alg/HA), using Ca(2+) ions as cross-linking agents. The hydrogels, as well as the respective injectable bone substitutes (IBSs), were fully characterized from the physical-chemical point of view. Weight change studies proved that all hydrogels were able to swell and degrade within 72 h at pH 7.4 and 4.0, being Alg/HA the hydrogel with the highest degradation rate (80%). Rheology studies demonstrated that all hydrogels are non-Newtonian viscoelastic fluids, and injectability tests showed that IBSs presented low maximum extrusion forces, as well as quite stable average forces. In conclusion, the studied hydrogels present the necessary features to be successfully used as vehicles of GR-HAP, particularly the hydrogel Alg/HA. Copyright © 2013 Elsevier Ltd. All rights reserved.
Assessment of angiogenesis in osseointegration of a silica-collagen biomaterial using 3D-nano-CT.
Alt, Volker; Kögelmaier, Daniela Vera; Lips, Katrin S; Witt, Vera; Pacholke, Sabine; Heiss, Christian; Kampschulte, Marian; Heinemann, Sascha; Hanke, Thomas; Thormann, Ulrich; Schnettler, Reinhard; Langheinrich, Alexander C
2011-10-01
Bony integration of biomaterials is a complex process in which angiogenesis plays a crucial role. We evaluated micro- and nano-CT imaging to demonstrate and quantify neovascularization in bony integration of a biomaterial and to give an image based estimation for the needed resolution for imaging angiogenesis in an animal model of femora defect healing. In 8 rats 5mm full-size defects were created at the left femur that was filled with silica-collagen bone substitute material and internally fixed with plate osteosynthesis. After 6 weeks the femora were infused in situ with Microfil, harvested and scanned for micro-CT (9 μm)(3) and nano-CT (3 μm)(3) imaging. Using those 3D images, the newly formed blood vessels in the area of the biomaterial were assessed and the total vascular volume fraction, the volume of the bone substitute material and the volume of the bone defect were quantitatively characterized. Results were complemented by histology. Differences were statistically assessed using (ANOVA). High-resolution nano-CT demonstrated new blood vessel formation surrounding the biomaterial in all animals at capillary level. Immunohistochemistry confirmed the newly formed blood vessels surrounding the bone substitute material. The mean vascular volume fraction (VVF) around the implant was calculated to be 3.01 ± 0.4%. The VVF was inversely correlated with the volume of the bone substitute material (r=0.8) but not with the dimension of the fracture zone (r=0.3). Nano-CT imaging is feasible for quantitative analysis of angiogenesis during bony integration of biomaterials and a promising tool in this context for the future. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Oshima, Masamitsu; Inoue, Kaoru; Nakajima, Kei; Tachikawa, Tetsuhiko; Yamazaki, Hiromichi; Isobe, Tomohide; Sugawara, Ayaka; Ogawa, Miho; Tanaka, Chie; Saito, Masahiro; Kasugai, Shohei; Takano-Yamamoto, Teruko; Inoue, Takashi; Tezuka, Katsunari; Kuboki, Takuo; Yamaguchi, Akira; Tsuji, Takashi
2014-01-01
Bio-hybrid artificial organs are an attractive concept to restore organ function through precise biological cooperation with surrounding tissues in vivo. However, in bio-hybrid artificial organs, an artificial organ with fibrous connective tissues, including muscles, tendons and ligaments, has not been developed. Here, we have enveloped with embryonic dental follicle tissue around a HA-coated dental implant, and transplanted into the lower first molar region of a murine tooth-loss model. We successfully developed a novel fibrous connected tooth implant using a HA-coated dental implant and dental follicle stem cells as a bio-hybrid organ. This bio-hybrid implant restored physiological functions, including bone remodelling, regeneration of severe bone-defect and responsiveness to noxious stimuli, through regeneration with periodontal tissues, such as periodontal ligament and cementum. Thus, this study represents the potential for a next-generation bio-hybrid implant for tooth loss as a future bio-hybrid artificial organ replacement therapy. PMID:25116435
da Cruz, Gabriela Alessandra; de Toledo, Sérgio; Sallum, Enilson Antonio; de Lima, Antonio Fernando Martorelli
2007-01-01
This study evaluated the morphological and chemical composition of the following bone substitutes: cancellous and cortical organic bovine bone with macro and microparticle size ranging from 1.0 to 2.0 mm and 0.25 to 1.0 mm, respectively; inorganic bovine bone with particle size ranging from 0.25 to 1.0 mm; hydroxyapatite with particle size ranging from 0.75 to 1.0 mm; and demineralized freeze-dried bone allograft with particle size ranging from 0.25 to 0.5 mm. The samples were sputter-coated with gold in an ion coater, the morphology was observed and particle size was measured under vacuum by scanning electron microscopy (SEM). The chemical composition was evaluated by spectroscopy of dispersion energy (EDS) microanalysis using samples without coating. SEM analysis provided visual evidence that all examined materials have irregular shape and particle sizes larger than those informed by the manufacturer. EDS microanalysis detected the presence of sodium, calcium and phosphorus that are usual elements of the bone tissue. However, mineral elements were detected in all analyzed particles of organic bovine bone except for macro cancellous organic bovine bone. These results suggest that the examined organic bovine bone cannot be considered as a pure organic material.
Han, Xiang-Yong; Fu, Yuan-Fei; Zhang, Fu-Qiang
2007-02-01
Bone defects in oral and maxillofacial region was a common problem. To repair the defect, bone grafts including autograft, allograft and artificial bone graft were used in clinic despite of their disadvantages. Nowadays, bone tissue engineering has become a commonly used method to repair bone defect. This paper reviewed the application of beta-TCP, collagen and beta-TCP/collagen composite in bone tissue engineering. It was concluded that beta-TCP/collagen composite was a promising materials in bone tissue engineering.
NASA Astrophysics Data System (ADS)
Gajda, Jerzy K.; Niesterowicz, Andrzej; Mazurkiewicz, Henryk
1995-03-01
A high number of osseous diseases, particularly of the backbone and hip-joint regions, result in a need for their overall treatment and prevention. Two basic treatment methods are used: physical exercises at an early stage of the illness, and surgical treatment in an advanced stage. Recently, in operational treatment of coxarthrosis the elements of the joint (acetabulum and capitellum) were replaced by their artificial counterparts, despite some drawbacks and unknowns related to this kind of treatment. In order to check the effectiveness of this treatment and to eliminate its drawbacks we have tested the joint by means of speckle photography method. The objective of this paper is an attempt to evaluate stress and displacement distributions in a system consisting of artificial acetabulum and capitellum and a natural bone in order to determine an optimum fitting of artificial acetabulum and capitellum and a natural bone in order to determine an optimum fitting of artificial elements that guarantees uniform distribution of stresses corresponding to anatomical and physiological parameters of the hip-joint. Speckle photographs have been analyzed point by point with the help of the algorithm for striped images processing.
Ajduković, Zorica R; Mihajilov-Krstev, Tatjana M; Ignjatović, Nenad L; Stojanović, Zoran; Mladenović-Antić, Snezana B; Kocić, Branislava D; Najman, Stevo; Petrović, Nenad D; Uskoković, Dragan P
2016-02-01
In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.
Pietruska, Małgorzata; Skurska, Anna; Pietruski, Jan; Dolińska, Ewa; Arweiler, Nicole; Milewski, Robert; Duraj, Ewa; Sculean, Anton
2012-11-01
The aim of this study has been to compare the clinical and radiographic outcome of periodontal intrabony defect treatment by open flap debridement alone or in combination with nanocrystalline hydroxyapatite bone substitute application. Thirty patients diagnosed with advanced periodontits were divided into two groups: the control group (OFD), in which an open flap debridement procedure was performed and the test group (OFD+NHA), in which defects were additionally filled with nanocrystalline hydroxyapatite bone substitute material. Plaque index (PI), gingival index (GI), bleeding on probing (BOP), pocket depth (PD), gingival recession (GR) and clinical attachment level (CAL) were measured prior to, then 6 and 12months following treatment. Radiographic depth and width of defects were also evaluated. There were no differences in any clinical and radiographic parameters between the examined groups prior to treatment. After treatment, BOP, GI, PD, CAL, radiographic depth and width parameter values improved statistically significantly in both groups. The PI value did not change, but the GR value increased significantly after treatment. There were no statistical differences in evaluated parameters between OFD and OFD+NHA groups 6 and 12months after treatment. Within the limits of the study, it can be concluded that the additional use of nanocrystalline hydroxyapatite bone substitute material after open flap procedure does not improve clinical and radiographic treatment outcome. Copyright © 2012 Elsevier GmbH. All rights reserved.
Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.
Aruwajoye, Olumide O; Kim, Harry K W; Aswath, Pranesh B
2015-04-01
Ischemic osteonecrosis of the femoral head (IOFH) can lead to excessive resorption of the trabecular bone and collapse of the femoral head as a structure. A well-known mineral component to trabecular bone is hydroxyapatite, which can be present in many forms due to ionic substitution, thus altering chemical composition. Unfortunately, very little is known about the chemical changes to bone apatite following IOFH. We hypothesized that the apatite composition changes in necrotic bone possibly contribute to increased osteoclast resorption and structural collapse of the femoral head. The purpose of this study was to assess the macroscopic and local phosphate composition of actively resorbed necrotic trabecular bone to isolate differences between areas of increased osteoclast resorption and normal bone formation. A piglet model of IOFH was used. Scanning electron microscopy (SEM), histology, X-ray absorbance near edge structure (XANES), and Raman spectroscopy were performed on femoral heads to characterize normal and necrotic trabecular bone. Backscattered SEM, micro-computed tomography and histology showed deformity and active resorption of necrotic bone compared to normal. XANES and Raman spectroscopy obtained from actively resorbed necrotic bone and normal bone showed increased carbonate-to-phosphate content in the necrotic bone. The changes in the apatite composition due to carbonate substitution may play a role in the increased resorption of necrotic bone due to its increase in solubility. Indeed, a better understanding of the apatite composition of necrotic bone could shed light on osteoclast activity and potentially improve therapeutic treatments that target excessive resorption of bone.
Lehmann, Giorgia; Cacciotti, Ilaria; Palmero, Paola; Montanaro, Laura; Bianco, Alessandra; Campagnolo, Luisa; Camaioni, Antonella
2012-10-01
Calcium phosphate-based materials should show excellent bone-bonding and cell-mediated resorption characteristics at the same time, in order to be employed for bone replacement. In this perspective, pure (HAp) and silicon-substituted hydroxyapatite (Si-HAp, 1.4% wt) porous cylinders were prepared starting from synthesized powders and polyethylene spheres used as porogens, and investigated as supports for osteoblast and osteoclast progenitor differentiation. A systematic and detailed biological characterization is reported, in terms of cell adhesion, viability, proliferation, differentiation and bioresorption, aimed at proposing a complete and reliable picture of bone cell in vitro behavior, comprehensive of both the osteogenesis and the bone resorption processes. In order to achieve this purpose, cytocompatibility, differentiation and gene expression by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were carried out using parietal bone-derived pre-osteoblasts obtained from neonatal mice and the bioresorption capability was assessed by seeding human peripheral blood monocytes, as osteoclast precursors. It resulted that both pure and Si-substituted HAps were able to promote differentiation of precursor cells in mature osteoblasts and osteoclasts. In particular, the Si-HAps enhanced the pre-osteoblast proliferation and showed higher osteoclast-mediated bioresorption capability, as supported by the presence of larger and more numerous resorption lacunae, whereas HAps promoted a more robust cell differentiation in terms of both osteocalcin gene expression by qRT-PCR and cell morphological evaluation by SEM analysis.
Zhou, Fengjuan; Zheng, Xiaofei; Xie, Meng; Mo, Anchun; Wu, Hongkun
2017-06-01
To evaluate the microenvironment changes in the sockets substituted with bovine-derived xenografts during the early healing period. After extraction of the right maxillary incisor of Sprague Dawley rats, 48 rats were randomly divided into 2 groups. The extraction sockets of the test group were filled with Bio-Oss, whereas the control group was allowed to heal without intervention. The bone quality of the extraction sockets was observed through micro-CT and immunohistochemistry. Micro-CT scanning showed that the bone mineral density in the test group was significantly higher than that in the control group during the early healing period, whereas immunohistochemistry showed that the bone formation-related factors were significantly different between the test and control groups. The bovine-derived xenografts may interfere with the healing process of the extraction socket in the early healing stage. Bone formation of the extraction socket was delayed after grafting with bone substitute.
Non-union in 3 of 15 osteotomies of the distal radius without bone graft
Scheer, Johan H; Adolfsson, Lars E
2015-01-01
Background and purpose Open-wedge osteotomies of the distal radius create a void that is usually filled with either iliac crest bone graft or bone substitute. Previous studies have suggested that this is unnecessary. We investigated the safety of omitting the filling procedure. Patients and methods We included 15 patients with a dorsal malunion of a distal radius fracture. A palmar approach and angle-stable plates were used. The patients were followed until there was radiographic and clinical healing. Results Non-union occurred in 3 of the 15 patients. The study, which had been planned to include 25 patients, was then discontinued. 6 osteotomies created a trapezoid void (no cortical contact); 3 of these did not unite after the index procedure (p = 0.04), but did subsequently, after autogenous bone grafting. A trapezoid void was significantly associated with non-union (p = 0.04). Interpretation When a trapezoid defect is created, one should consider bone substitute or autogenous bone graft. This has been shown to be safe in other studies. PMID:25619425
Shin, Hong-In; Sohn, Dong-Seok
2005-12-01
To augment the atrophic posterior maxilla, a sinus bone graft has been widely used for sinus floor augmentation. Various bone substitutes have been developed and grafted in the maxillary sinus with and without membranes perforation, although autogenous bone is recommended as a gold standard of grafting materials. Membrane perforation is the most common complication associated with sinus bone graft. To repair a perforation, various methods have been developed. This case report is focused on histologic findings of 1 bovine hydroxyapatite (Bio-Oss; Geistlich Pharma AG, Wolhusen, Switzerland) and 2 kinds of human mineral allograft- Tutoplast cancellous microchips (TutoGen Medical GmbH, Neunkirchen am. Brand Germany), and irradiated allogeniccancellous bone and marrow (ICB; Rocky Mountain Tissue Bank, Aurora, CO) used for sinus graft in the same patient with membrane perforation after various healing periods. Mineral allograft showed favorable new bone regeneration with the repair of membrane perforation. This case report also describes a technique regarding how to repair completely perforated sinus membrane after the removal of a mucocele using human collagen membrane (Tutoplast pericardium; TutoGen Medical GmbH) and fibrin adhesive (Greenplast; Green Cross Co., Youngin, Korea) to stabilize collagen membrane.
Interconnected porous hydroxyapatite ceramics for bone tissue engineering
Yoshikawa, Hideki; Tamai, Noriyuki; Murase, Tsuyoshi; Myoui, Akira
2008-01-01
Several porous calcium hydroxyapatite (HA) ceramics have been used clinically as bone substitutes, but most of them possessed few interpore connections, resulting in pathological fracture probably due to poor bone formation within the substitute. We recently developed a fully interconnected porous HA ceramic (IP-CHA) by adopting the ‘foam-gel’ technique. The IP-CHA had a three-dimensional structure with spherical pores of uniform size (average 150 μm, porosity 75%), which were interconnected by window-like holes (average diameter 40 μm), and also demonstrated adequate compression strength (10–12 MPa). In animal experiments, the IP-CHA showed superior osteoconduction, with the majority of pores filled with newly formed bone. The interconnected porous structure facilitates bone tissue engineering by allowing the introduction of mesenchymal cells, osteotropic agents such as bone morphogenetic protein or vasculature into the pores. Clinically, we have applied the IP-CHA to treat various bony defects in orthopaedic surgery, and radiographic examinations demonstrated that grafted IP-CHA gained radiopacity more quickly than the synthetic HA in clinical use previously. We review the accumulated data on bone tissue engineering using the novel scaffold and on clinical application in the orthopaedic field. PMID:19106069
Hsu, J T; Huang, H L; Tsai, M T; Wu, A Y J; Tu, M G; Fuh, L J
2013-02-01
This study investigated the effects of bone stiffness (elastic modulus) and three-dimensional (3D) bone-to-implant contact ratio (BIC%) on the primary stabilities of dental implants using micro-computed tomography (micro-CT) and resonance frequency analyses. Artificial sawbone models with five values of elastic modulus (137, 123, 47.5, 22, and 12.4 MPa) comprising two types of trabecular structure (solid-rigid and cellular-rigid) were investigated for initial implant stability quotient (ISQ), measured using the wireless Osstell resonance frequency analyzer. Bone specimens were attached to 2 mm fibre-filled epoxy sheets mimicking the cortical shell. ISQ was measured after placing a dental implant into the bone specimen. Each bone specimen with an implant was subjected to micro-CT scanning to calculate the 3D BIC% values. The similarity of the cellular type of artificial bone to the trabecular structure might make it more appropriate for obtaining accurate values of primary implant stability than solid-bone blocks. For the cellular-rigid bone models, the ISQ increased with the elastic modulus of cancellous bone. The regression correlation coefficient was 0.96 for correlations of the ISQ with the elasticity of cancellous bone and with the 3D BIC%. The initial implant stability was moderately positively correlated with the elasticity of cancellous bone and with the 3D BIC%. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming
2015-01-01
The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m(2)/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration.
Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus
2016-01-01
In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm3) as compared to rhBMP-2 alone (10.9 ± 2.1 mm3) when analyzed using micro computed tomography (μ-CT) (p < 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone. PMID:27189411
Building better bone: The weaving of biologic and engineering strategies for managing bone loss.
Schwartz, Andrew M; Schenker, Mara L; Ahn, Jaimo; Willett, Nick J
2017-09-01
Segmental bone loss remains a challenging clinical problem for orthopaedic trauma surgeons. In addition to the missing bone itself, the local tissues (soft tissue, vascular) are often highly traumatized as well, resulting in a less than ideal environment for bone regeneration. As a result, attempts at limb salvage become a highly expensive endeavor, often requiring multiple operations and necessitating the use of every available strategy (autograft, allograft, bone graft substitution, Masquelet, bone transport, etc.) to achieve bony union. A cost-sensitive, functionally appropriate, and volumetrically adequate engineered substitute would be practice-changing for orthopaedic trauma surgeons and these patients with difficult clinical problems. In tissue engineering and bone regeneration fields, numerous research efforts continue to make progress toward new therapeutic interventions for segmental bone loss, including novel biomaterial development as well as cell-based strategies. Despite an ever-evolving literature base of these new therapeutic and engineered options, there remains a disconnect with the clinical practice, with very few translating into clinical use. A symposium entitled "Building better bone: The weaving of biologic and engineering strategies for managing bone loss," was presented at the 2016 Orthopaedic Research Society Conference to further explore this engineering-clinical disconnect, by surveying basic, translational, and clinical researchers along with orthopaedic surgeons and proposing ideas for pushing the bar forward in the field of segmental bone loss. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1855-1864, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Longitudinal modelling of the exposure of young UK patients with PKU to acesulfame K and sucralose.
O'Sullivan, Aaron J; Pigat, Sandrine; O'Mahony, Cian; Gibney, Michael J; McKevitt, Aideen I
2017-11-01
Artificial sweeteners are used in protein substitutes intended for the dietary management of inborn errors of metabolism (phenylketonuria, PKU) to improve the variety of medical foods available to patients and ensure dietary adherence to the prescribed course of dietary management. These patients can be exposed to artificial sweeteners from the combination of free and prescribed foods. Young children have a higher risk of exceeding acceptable daily intakes (ADI) for additives than adults, due to higher food intakes per kg body weight. Young patients with PKU aged 1-3 years can be exposed to higher levels of artificial sweeteners from these dual sources than normal healthy children and are at a higher risk of exceeding the ADI. Standard intake assessment methods are not adequate to assess the additive exposure of young patients with PKU. The aim of this study was to estimate the combination effect on the intake of artificial sweeteners and the impact of the introduction of new provisions for an artificial sweetener (sucralose, E955) on exposure of PKU patients using a validated probabilistic model. Food consumption data were derived from the food consumption survey data of healthy young children in the United Kingdom from the National Diet and Nutrition Survey (NDNS, 1992-2012). Specially formulated protein substitutes as foods for special medical purposes (FSMPs) were included in the exposure model to replace restricted foods. Inclusion of these protein substitutes is based on recommendations to ensure adequate protein intake in these patients. Exposure assessment results indicated the availability of sucralose for use in FSMPs for PKU leads to changes in intakes in young patients. These data further support the viability of probabilistic modelling as a means to estimate food additive exposure in patients consuming medical nutrition products.
Oheim, Ralf; Simon, Maciej J K; Steiner, Malte; Vettorazzi, Eik; Barvencik, Florian; Ignatius, Anita; Amling, Michael; Clarke, Iain J; Pogoda, Pia; Beil, F Timo
2017-04-01
Hypothalamic-pituitary disconnection (HPD) leads to low bone turnover followed by bone loss and reduced biomechanical properties in sheep. To investigate the role of peripheral hormones in this centrally induced systemic bone loss model, we planned a hormone replacement experiment. Therefore, estrogen (OHE), thyroxin (OHT) or a combination of both (OHTE) was substituted in ovariectomized HPD sheep, as both hormones are decreased in HPD sheep and are known to have a significant but yet not fully understood impact on bone metabolism. Bone turnover and structural parameters were analyzed in comparison to different control groups - untreated sheep (C), ovariectomized (O) and ovariectomized+HPD sheep (OH). We performed histomorphometric and HR-pQCT analyses nine months after the HPD procedure, as well as biomechanical testing of all ewes studied. In HPD sheep (OH) the low bone turnover led to a significant bone loss. Treatment with thyroxin alone (OHT) mainly increased bone resorption, leading to a further reduction in bone volume. In contrast, the treatment with estrogen alone (OHE) and the combined treatment with estrogen and thyroxin (OHTE) prevented HPD-induced bone loss completely. In conclusion, peripheral hormone substitution was able to prevent HPD-induced low-turnover osteoporosis in sheep. But only the treatment with estrogen alone or in combination with thyroxin was able to completely preserve bone mass and structure. These findings demonstrate the importance of peripheral hormones for a balanced bone remodeling and a physiological bone turnover. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Beom-Su; Choi, Moon-Ki; Yoon, Jung-Hoon; Lee, Jun
2015-07-01
The aim of this study was to evaluate the in vivo osteogenic potential of biphasic calcium phosphate (BCP), bone morphogenetic protein 2 (BMP-2), and/or mesenchymal stem cell (MSC) composites by using a rabbit calvarial defect model. Bone formation was assessed by using three different kinds of implants in rabbit calvarial defects, BCP alone, BCP/recombinant human (rh) BMP-2, and BCP/rhBMP-2/MSCs composite. The implants were harvested after 2 or 8 weeks, and the area of new bone formation was quantified by micro-computed tomography (micro-CT) and histologic studies. The highest bone formation was achieved with the BCP/rhBMP-2/MSCs treatment, and it was significantly higher than that achieved with the empty or BCP-alone treatment. The quantity of new bone at 8 weeks was greater than at 4 weeks in each group. The relative density of osteocalcin immunoreactivity also increased during this interval. These results indicate that the combination of BCP, rhBMP-2, and MSCs synergistically enhances osteogenic potential during the early healing period and could be used as a bone graft substitute. Copyright © 2015 Elsevier Inc. All rights reserved.
Ghanaati, Shahram; Barbeck, Mike; Lorenz, Jonas; Stuebinger, Stefan; Seitz, Oliver; Landes, Constantin; Kovács, Adorján F; Kirkpatrick, Charles J; Sader, Robert A
2013-07-01
The present study was first to evaluate the material-specific cellular tissue response of patients with head and neck cancer to a nanocrystalline hydroxyapatite bone substitute NanoBone (NB) in comparison with a deproteinized bovine bone matrix Bio-Oss (BO) after implantation into the sinus cavity. Eight patients with tumor resection for oral cancer and severely resorbed maxillary bone received materials according to a split mouth design for 6 months. Bone cores were harvested prior to implantation and analyzed histologically and histomorphometrically. Implant survival was followed-up to 2 years after placement. Histologically, NB underwent a higher vascularization and induced significantly more tartrate-resistant acid phosphatase-positive (TRAP-positive) multinucleated giant cells when compared with BO, which induced mainly mononuclear cells. No significant difference was observed in the extent of new bone formation between both groups. The clinical follow-up showed undisturbed healing of all implants in the BO-group, whereas the loss of one implant was observed in the NB-group. Within its limits, the present study showed for the first time that both material classes evaluated, despite their induction of different cellular tissue reactions, may be useful as augmentation materials for dental and maxillofacial surgical applications, particularly in patients who previously had oral cancer.
Li, Mei; Yang, Xuan; Wang, Weidan; Zhang, Yu; Wan, Peng; Yang, Ke; Han, Yong
2017-04-01
Regeneration of bone defects is a clinical challenge that usually necessitates bone grafting materials. Limited bone supply and donor site morbidity limited the application of autografting, and improved biomaterials are needed to match the performance of autografts. Osteoinductive materials would be the perfect candidates for achieving this task. Strontium (Sr) is known to encourage bone formation and also prevent osteoporosis. Such twin requirements have motivated researchers to develop Sr-substituted biomaterials for orthopedic applications. The present study demonstrated a new concept of developing biodegradable and hollow three-dimensional magnesium-strontium (MgSr) devices for grafting with their clinical demands. The microstructure and performance of MgSr devices, in vitro degradation and biological properties including in vitro cytocompatibility and osteoinductivity were investigated. The results showed that our MgSr devices exhibited good cytocompatibility and osteogenic effect. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the expression level of osteogenesis-related genes and proteins, respectively. The results showed that our MgSr devices could both up-regulate the genes and proteins expression of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), as well as alkaline phosphatase (ALP), Osteopontin (OPN), Collagen I (COL I) and Osteocalcin (OCN) significantly. Taken together, our innovation presented in this work demonstrated that the hollow three-dimensional MgSr substitutes had excellent biocompatibility and osteogenesis and could be potential candidates for bone grafting for future orthopedic applications. Copyright © 2016 Elsevier B.V. All rights reserved.
de Peppo, Giuseppe Maria; Sladkova, Martina; Sjövall, Peter; Palmquist, Anders; Oudina, Karim; Hyllner, Johan; Thomsen, Peter; Petite, Hervé; Karlsson, Camilla
2013-01-01
Bone tissue engineering represents a promising strategy to obviate bone deficiencies, allowing the ex vivo construction of bone substitutes with unprecedented potential in the clinical practice. Considering that in the human body cells are constantly stimulated by chemical and mechanical stimuli, the use of bioreactor is emerging as an essential factor for providing the proper environment for the reproducible and large-scale production of the engineered substitutes. Human mesenchymal stem cells (hMSCs) are experimentally relevant cells but, regardless the encouraging results reported after culture under dynamic conditions in bioreactors, show important limitations for tissue engineering applications, especially considering their limited proliferative potential, loss of functionality following protracted expansion, and decline in cellular fitness associated with aging. On the other hand, we previously demonstrated that human embryonic stem cell-derived mesodermal progenitors (hES-MPs) hold great potential to provide a homogenous and unlimited source of cells for bone engineering applications. Based on prior scientific evidence using different types of stem cells, in the present study we hypothesized that dynamic culture of hES-MPs in a packed bed/column bioreactor had the potential to affect proliferation, expression of genes involved in osteogenic differentiation, and matrix mineralization, therefore resulting in increased bone-like tissue formation. The reported findings suggest that hES-MPs constitute a suitable alternative cell source to hMSCs and hold great potential for the construction of bone substitutes for tissue engineering applications in clinical settings.
Meakin, Lee B.; Price, Joanna S.; Lanyon, Lance E.
2014-01-01
Changing loading regimens by natural means such as exercise, with or without interference such as osteotomy, has provided useful information on the structure:function relationship in bone tissue. However, the greatest precision in defining those aspects of the overall strain environment that influence modeling and remodeling behavior has been achieved by relating quantified changes in bone architecture to quantified changes in bones’ strain environment produced by direct, controlled artificial bone loading. Jiri Hert introduced the technique of artificial loading of bones in vivo with external devices in the 1960s using an electromechanical device to load rabbit tibiae through transfixing stainless steel pins. Quantifying natural bone strains during locomotion by attaching electrical resistance strain gages to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in a variety of bones in a number of species demonstrated remarkable uniformity in the peak strains and maximum strain rates experienced. Experiments combining strain gage instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats, and mice has yielded significant insight into the control of strain-related adaptive (re)modeling. This diversity of approach has been largely superseded by non-invasive transcutaneous loading in rats and mice, which is now the model of choice for many studies. Together such studies have demonstrated that over the physiological strain range, bone’s mechanically adaptive processes are responsive to dynamic but not static strains; the size and nature of the adaptive response controlling bone mass is linearly related to the peak loads encountered; the strain-related response is preferentially sensitive to high strain rates and unresponsive to static ones; is most responsive to unusual strain distributions; is maximized by remarkably few strain cycles, and that these are most effective when interrupted by short periods of rest between them. PMID:25324829
Fernández, Tulio; Olave, Gilberto; Valencia, Carlos H; Arce, Sandra; Quinn, Julian M W; Thouas, George A; Chen, Qi-Zhi
2014-07-01
Vascularization of an artificial graft represents one of the most significant challenges facing the field of bone tissue engineering. Over the past decade, strategies to vascularize artificial scaffolds have been intensively evaluated using osteoinductive calcium phosphate (CaP) biomaterials in animal models. In this work, we observed that CaP-based biomaterials implanted into rat calvarial defects showed remarkably accelerated formation and mineralization of new woven bone in defects in the initial stages, at a rate of ∼60 μm/day (0.8 mg/day), which was considerably higher than normal bone growth rates (several μm/day, 0.1 mg/day) in implant-free controls of the same age. Surprisingly, we also observed histological evidence of primary osteon formation, indicated by blood vessels in early-region fibrous tissue, which was encapsulated by lamellar osteocyte structures. These were later fully replaced by compact bone, indicating complete regeneration of calvarial bone. Thus, the CaP biomaterial used here is not only osteoinductive, but vasculogenic, and it may have contributed to the bone regeneration, despite an absence of osteons in normal rat calvaria. Further investigation will involve how this strategy can regulate formation of vascularized cortical bone such as by control of degradation rate, and use of models of long, dense bones, to more closely approximate repair of human cortical bone.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-29
..., and vote on information related to the premarket approval application (PMA) for the Augment Bone Graft, sponsored by Biomimetic Therapeutics, Inc. The intended use of the device is as an alternative bone grafting substitute to autologous bone graft in applications to facilitate fusion in the ankle and foot without...
Morais, M M; Turcatto, A P; Pereira, R A; Francoy, T M; Guidugli-Lazzarini, K R; Gonçalves, L S; de Almeida, J M V; Ellis, J D; De Jong, D
2013-12-19
Pollen substitute diets are a valuable resource for maintaining strong and health honey bee colonies. Specific diets may be useful in one region or country and inadequate or economically unviable in others. We compared two artificial protein diets that had been formulated from locally-available ingredients in Brazil with bee bread and a non-protein sucrose diet. Groups of 100 newly-emerged, adult workers of Africanized honey bees in Brazil and European honey bees in the USA were confined in small cages and fed on one of four diets for seven days. The artificial diets included a high protein diet made of soy milk powder and albumin, and a lower protein level diet consisting of soy milk powder, brewer's yeast and rice bran. The initial protein levels in newly emerged bees were approximately 18-21 µg/µL hemolymph. After feeding on the diets for seven days, the protein levels in the hemolymph were similar among the protein diet groups (~37-49 µg/µL after seven days), although Africanized bees acquired higher protein levels, increasing 145 and 100% on diets D1 and D2, respectively, versus 83 and 60% in the European bees. All the protein diets resulted in significantly higher levels of protein than sucrose solution alone. In the field, the two pollen substitute diets were tested during periods of low pollen availability in the field in two regions of Brazil. Food consumption, population development, colony weight, and honey production were evaluated to determine the impact of the diets on colony strength parameters. The colonies fed artificial diets had a significant improvement in all parameters, while control colonies dwindled during the dearth period. We conclude that these two artificial protein diets have good potential as pollen substitutes during dearth periods and that Africanized bees more efficiently utilize artificial protein diets than do European honey bees.
Hubble, Matthew J W
2002-09-01
Bone grafts are used in musculoskeletal surgery to restore structural integrity and enhance osteogenic potential. The demand for bone graft for skeletal reconstruction in bone tumor, revision arthroplasty, and trauma surgery, couple with recent advances in understanding and application of the biology of bone transplantation, has resulted in an exponential increase in the number of bone-grafting procedures performed over the last decade. It is estimated that 1.5 million bone-grafting procedures are currently performed worldwide each year, compared to a fraction of that number 20 years ago. Major developments also have resulted in the harvesting, storage, and use of bone grafts and production of graft derivatives, substitutes, and bone-inducing agents.
Response of human bone marrow-derived MSCs on triphasic Ca-P substrate with various HA/TCP ratio.
Bajpai, Indu; Kim, Duk Yeon; Kyong-Jin, Jung; Song, In-Hwan; Kim, Sukyoung
2017-01-01
Calcium phosphates (Ca-P) are used commonly as artificial bone substitutes to control the biodegradation rate of an implant in the body fluid. This study examined the in vitro proliferation of human bone marrow-derived mesenchymal stem cells (hBMSCs) on triphasic Ca-P samples. For this aspect, hydroxyapatite (HA), dicalcium phosphate dehydrate (DCPD), and calcium hydroxide (Ca(OH) 2 ) were mixed at various ratios, cold compacted, and sintered at 1250°C in air. X-ray diffraction showed that the β-tricalcium phosphate (TCP) to α-TCP phase transformation increased with increasing DCPD/HA ratio. The micro-hardness deceased with increasing TCP content, whereas the mean grain size and porosity increased with increasing TCP concentration. To evaluate the in vitro degree of adhesion and proliferation on the HA/TCP samples, human BMSCs were incubated on the HA/TCP samples and analyzed by a cells proliferation assay, expression of the extracellular matrix (ECM) genes, such as α-smooth muscle actin (α-SMA) and fibronectin (FN), and FITC-phalloidin fluorescent staining. In terms of the interactions of human BMSCs with the triphasic Ca-P samples, H50T50 (Ca/P = 1.59) markedly enhanced cell spreading, proliferation, FN, and α-SMA compared with H100T0 (Ca/P = 1.67). Interestingly, these results show that among the five HA/TCP samples, H50T50 is the optimal Ca-P composition for in vitro cell proliferation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 72-80, 2017. © 2015 Wiley Periodicals, Inc.
[A study of linearity and reciprocity during shock applied with a hammer to human dry skull].
Kumazawa, Y; Sekiguchi, J; Saito, M; Honma, K; Toyoda, M; Matsuo, E
1990-09-01
The authors used a human dry skull on which the cranial bone mandible had been joined with an artificial articulator disk to form a single unit. Impact acceleration corresponding to weak and strong tapping was considered a dynamic load in examining the vibration transfer characteristics of the facial cranial bone when impact was applied from the mentum section in a situation designed to be closer to reality. Flexion injection type (resonance frequency f0 = 100 to 150 Hz, produced by GC Corp.) was applied to the human dry skull as an artificial periodontal membrane at thickness of 0.3 mm. In addition, Exaflex heavy body type (f0 = 400 Hz, produced by GC Corp.) was applied as an artificial disk. This was then placed on a damper produced by spreading a rubber dam sheet with a thickness of 35 microns on a tire tube with a diameter of 35 cm and an air pressure of 35 kg/cm2. Investigations were then made concerning linearity and reciprocity to determine whether an experimental system could be achieved or not. This was then followed by modal analysis. As a result, the following matters were ascertained: (1) The resonating area differed according to the extent of the force. (2) An increase in the viscoelastic elements of the silicon was accompanied by attenuation of force. (3) Directionality of force attenuation was caused by the complexity of bone structure. (4) A tapping force of 0.3G or 1G was sufficiently attenuated by the facial cranial bone. (5) The transfer function at the bone seams and thinner areas of the bones was insufficient for modal analysis of the facial region and total cranial bone of the human dry skull.
A gelatin composite scaffold strengthened by drug-loaded halloysite nanotubes.
Ji, Lijun; Qiao, Wei; Zhang, Yuheng; Wu, Huayu; Miao, Shiyong; Cheng, Zhilin; Gong, Qianming; Liang, Ji; Zhu, Aiping
2017-09-01
Mechanical properties and anti-infection are two of the most concerned issues for artificial bone grafting materials. Bone regeneration porous scaffolds with sustained drug release were developed by freeze-drying the mixture of nanosized drug-loaded halloysite nanotubes (HNTs) and gelatin. The scaffolds showed porous structure and excellent biocompatibility. The mechanical properties of the obtained composite scaffolds were enhanced significantly by HNTs to >300%, comparing to those of gelatin scaffold, and match to those of natural cancellous bones. The ibuprofen-loaded HNTs incorporated in the scaffolds allowed extended drug release over 100h, comparing to 8h when directly mixed the drug into the gelatin scaffold. The biological properties of the composite scaffolds were investigated by culturing MG63 cells on them. The HNTs/gelatin scaffolds with excellent mechanical properties and sustained drug release could be a promising artificial bone grating material. Copyright © 2017 Elsevier B.V. All rights reserved.
Advances in Skin Regeneration Using Tissue Engineering.
Vig, Komal; Chaudhari, Atul; Tripathi, Shweta; Dixit, Saurabh; Sahu, Rajnish; Pillai, Shreekumar; Dennis, Vida A; Singh, Shree R
2017-04-07
Tissue engineered skin substitutes for wound healing have evolved tremendously over the last couple of years. New advances have been made toward developing skin substitutes made up of artificial and natural materials. Engineered skin substitutes are developed from acellular materials or can be synthesized from autologous, allograft, xenogenic, or synthetic sources. Each of these engineered skin substitutes has their advantages and disadvantages. However, to this date, a complete functional skin substitute is not available, and research is continuing to develop a competent full thickness skin substitute product that can vascularize rapidly. There is also a need to redesign the currently available substitutes to make them user friendly, commercially affordable, and viable with longer shelf life. The present review focuses on providing an overview of advances in the field of tissue engineered skin substitute development, the availability of various types, and their application.
NASA Astrophysics Data System (ADS)
Ilgenstein, Bernd; Deyhle, Hans; Jaquiery, Claude; Kunz, Christoph; Stalder, Anja; Stübinger, Stefan; Jundt, Gernot; Beckmann, Felix; Müller, Bert; Hieber, Simone E.
2012-10-01
Bone augmentation is a vital part of surgical interventions of the oral and maxillofacial area including dental implantology. Prior to implant placement, sufficient bone volume is needed to reduce the risk of peri-implantitis. While augmentation using harvested autologous bone is still considered as gold standard, many surgeons prefer bone substitutes to reduce operation time and to avoid donor site morbidity. To assess the osteogenic efficacy of commercially available augmentation materials we analyzed drill cores extracted before implant insertion. In younger patients, distraction osteogenesis is successfully applied to correct craniofacial deformities through targeted bone formation. To study the influence of mesenchymal stem cells on bone regeneration during distraction osteogenesis, human mesenchymal stem cells were injected into the distraction gap of nude rat mandibles immediately after osteotomy. The distraction was performed over eleven days to reach a distraction gap of 6 mm. Both the rat mandibles and the drill cores were scanned using synchrotron radiation-based micro computed tomography. The three-dimensional data were manually registered and compared with corresponding two-dimensional histological sections to assess bone regeneration and its morphology. The analysis of the rat mandibles indicates that bone formation is enhanced by mesenchymal stem cells injected before distraction. The bone substitutes yielded a wide range of bone volume and degree of resorption. The volume fraction of the newly formed bone was determined to 34.4% in the computed tomography dataset for the augmentation material Geistlich Bio-Oss®. The combination of computed tomography and histology allowed a complementary assessment for both bone augmentation and distraction osteogenesis.
Nanocomposites and bone regeneration
NASA Astrophysics Data System (ADS)
James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.
2011-12-01
This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.
Percutaneous osteoplasty with a bone marrow nail for fractures of long bones: experimental study.
Nakata, Kouhei; Kawai, Nobuyuki; Sato, Morio; Cao, Guang; Sahara, Shinya; Tanihata, Hirohiko; Takasaka, Isao; Minamiguchi, Hiroyuki; Nakai, Tomoki
2010-09-01
To develop percutaneous osteoplasty with the use of a bone marrow nail for fixation of long-bone fractures, and to evaluate its feasibility and safety in vivo and in vitro. Six long bones in three healthy swine were used in the in vivo study. Acrylic cement was injected through an 11-gauge bone biopsy needle and a catheter into a covered metallic stent placed within the long bone, creating a bone marrow nail. In the in vitro study, we determined the bending, tug, and compression strengths of the acrylic cement nails 9 cm long and 8 mm in diameter (N = 10). The bending strength of the artificially fractured bones (N = 6) restored with the bone marrow nail and cement augmentation was then compared with that of normal long bones (N = 6). Percutaneous osteoplasty with a bone marrow nail was successfully achieved within 1 hour for all swine. After osteoplasty, all swine regained the ability to run until they were euthanized. Blood tests and pathologic findings showed no adverse effects. The mean bending, tug, and compression strengths of the nail were 91.4 N/mm(2) (range, 75.0-114.1 N/mm(2)), 20.9 N/mm(2) (range, 6.6-30.4 N/mm(2)), and 103.0 N/mm(2) (range, 96.3-110.0 N/mm(2)), respectively. The bending strength ratio of artificially fractured bones restored with bone marrow nail and cement augmentation to normal long bone was 0.32. Percutaneous osteoplasty with use of a bone marrow nail and cement augmentation appears to have potential in treating fractures of non-weight-bearing long bones. Copyright 2010 SIR. Published by Elsevier Inc. All rights reserved.
Mechanisms of Guided Bone Regeneration: A Review
Liu, Jie; Kerns, David G
2014-01-01
Post-extraction crestal bone resorption is common and unavoidable which can lead to significant ridge dimensional changes. To regenerate enough bone for successful implant placement, Guided Bone Regeneration (GBR) is often required. GBR is a surgical procedure that uses barrier membranes with or without particulate bone grafts or/and bone substitutes. There are two approaches of GBR in implant therapy: GBR at implant placement (simultaneous approach) and GBR before implant placement to increase the alveolar ridge or improve ridge morphology (staged approach). Angiogenesis and ample blood supply play a critical role in promoting bone regeneration. PMID:24894890
Shokri, Abbas; Ramezani, Leila; Bidgoli, Mohsen; Akbarzadeh, Mahdi; Ghazikhanlu-Sani, Karim; Fallahi-Sichani, Hamed
2018-03-01
This study aimed to evaluate the effect of field-of-view (FOV) size on the gray values derived from conebeam computed tomography (CBCT) compared with the Hounsfield unit values from multidetector computed tomography (MDCT) scans as the gold standard. A radiographic phantom was designed with 4 acrylic cylinders. One cylinder was filled with distilled water, and the other 3 were filled with 3 types of bone substitute: namely, Nanobone, Cenobone, and Cerabone. The phantom was scanned with 2 CBCT systems using 2 different FOV sizes, and 1 MDCT system was used as the gold standard. The mean gray values (MGVs) of each cylinder were calculated in each imaging protocol. In both CBCT systems, significant differences were noted in the MGVs of all materials between the 2 FOV sizes ( P <.05) except for Cerabone in the Cranex3D system. Significant differences were found in the MGVs of each material compared with the others in both FOV sizes for each CBCT system. No significant difference was seen between the Cranex3D CBCT system and the MDCT system in the MGVs of bone substitutes on images obtained with a small FOV. The size of the FOV significantly changed the MGVs of all bone substitutes, except for Cerabone in the Cranex3D system. Both CBCT systems had the ability to distinguish the 3 types of bone substitutes based on a comparison of their MGVs. The Cranex3D CBCT system used with a small FOV had a significant correlation with MDCT results.
NASA Technical Reports Server (NTRS)
Owens, L. J.
1974-01-01
Connection simplifies and eases donning and removing artificial limb; eliminates harnesses and clamps; and reduces skin pressures by allowing bone to carry all tensile and part of compressive loads between prosthesis and stump. Because connection is modular, it is easily modified to suit individual needs.
[The development of research in tribology of artificial joints].
Dai, Zhendong; Gong, Juanqing
2006-06-01
Aseptic loosening of the prosthesis is a major form for the failure of artificial joints, which results in the conglomeration of wear particles at the bone-implant interface. This paper briefly reviews the recent development of tribology of artificial joints preserving good lubrication, enhancing the wear resistance of materials for the joints, reducing the generation of sensitive-size particles and depressing the debris-tissue reactions. Suggestion for improvement in the design of artificial joints is presented.
A laboratory model was developed to predict exposure effects in the field. Accumulation of non-ortho- and mono-ortho-substituted PCBs in liver tissue and their effects on mummichogs (Fundulus heteroclitus) were investigated. An artificial diet spiked with a mixture of eight PCB c...
Lavallé, F; Pascal-Mousselard, H; Rouvillain, J L; Ribeyre, D; Delattre, O; Catonné, Y
2004-10-01
The aim of this radiological study was to evaluate the use of a biphasic ceramic wedge combined with plate fixation with locked adjustable screws for open wedge tibial osteotomy. Twenty-six consecutive patients (27 knees) underwent surgery between December 1999 and March 2002 to establish a normal lower-limb axis. The series included 6 women and 20 men, mean age 50 years (16 right knees and 11 left knees). Partial weight-bearing with crutches was allowed on day 1. A standard radiological assessment was performed on day 1, 90, and 360 (plain AP and lateral stance films of the knee). A pangonogram was performed before surgery and at day 360. Presence of a lateral metaphyseal space, development of peripheral cortical bridges, and osteointegration of the bone substitute-bone interface were evaluated used to assess bone healing. The medial tibial angle between the line tangent to the tibial plateau and the anatomic axis of the tibia (beta) was evaluated to assess preservation of postoperative correction. The HKA angle was determined. Three patients were lost to follow-up and 23 patients (24 knees) were retained for analysis. At last follow-up, presence of peripheral cortical bridges and complete filling of the lateral metaphyseal space demonstrated bone healing in all patients. Good quality osteointegration was achieved since 21 knees did not present an interface between the bone substitute and native bone (homogeneous transition zone). The beta angle was unchanged for 23 knees. A normal axis was observed in patients (16 knees) postoperatively. Use of a biphasic ceramic wedge in combination with plate fixation with locked adjustable screws is a reliable option for open wedge tibial osteotomy. The bone substitute fills the gap well. Tolerance and integration are optimal. Bone healing is achieved. Plate fixation with protected weight bearing appears to be a solid assembly, maintaining these corrections.
Ahmed, Gazi Jased; Tatsukawa, Eri; Morishita, Kota; Shibata, Yasuaki; Suehiro, Fumio; Kamitakahara, Masanobu; Yokoi, Taishi; Koji, Takehiko; Umeda, Masahiro; Nishimura, Masahiro; Ikeda, Tohru
2016-01-01
The implantation of biomaterials induces a granulomatous reaction accompanied by foreign body giant cells (FBGCs). The characterization of multinucleated giant cells (MNGCs) around bone substitutes implanted in bone defects is more complicated because of healing with bone admixed with residual bone substitutes and their hybrid, and the appearance of two kinds of MNGCs, osteoclasts and FBGCs. Furthermore, the clinical significance of osteoclasts and FBGCs in the healing of implanted regions remains unclear. The aim of the present study was to characterize MNGCs around bone substitutes using an extraskeletal implantation model and evaluate the clinical significance of osteoclasts and FBGCs. Beta-tricalcium phosphate (β-TCP) granules were implanted into rat subcutaneous tissue with or without bone marrow mesenchymal cells (BMMCs), which include osteogenic progenitor cells. We also compared the biological significance of plasma and purified fibrin, which were used as binders for implants. Twelve weeks after implantation, osteogenesis was only detected in specimens implanted with BMMCs. The expression of two typical osteoclast markers, tartrate-resistant acid phosphatase (TRAP) and cathepsin-K (CTSK), was analyzed, and TRAP-positive and CTSK-positive osteoclasts were only detected beside bone. In contrast, most of the MNGCs in specimens without the implantation of BMMCs were FBGCs that were negative for TRAP, whereas the degradation of β-TCP was detected. In the region implanted with β-TCP granules with plasma, FBGCs tested positive for CTSK, and when β-TCP granules were implanted with purified fibrin, FBGCs tested negative for CTSK. These results showed that osteogenesis was essential to osteoclastogenesis, two kinds of FBGCs, CTSK-positive and CTSK-negative, were induced, and the expression of CTSK was plasma-dependent. In addition, the implantation of BMMCs was suggested to contribute to osteogenesis and the replacement of implanted β-TCP granules to bone. PMID:27462135
[Current state and development of artificial lungs].
Mei, Zaoxian; Sun, Xin; Wu, Qi
2010-12-01
The artificial lung is a technical device for providing life support; it will be put in use when the natural lungs are failing and are not able to maintain sufficient oxygenation of the body's organ systems. From the viewpoint of long-term development, the artificial lung should be permanently implanted in the body, so that it will substitute for the human pulmonary function partially or completely. In this paper, four artificial lung technologies were expounded with reference to the development and research process of artificial lung. They were extracorporeal membrane oxygenation, intravascular artificial lung, implantable artificial lung, and pumpless extracorporeal lung assist. In this paper were described the structure of the four kinds of artificial lung, the working principle, and their advantages, disadvantages and indications. The prospect of artificial lung was evaluated in the light of the data from the existing animal experiments and from the clinical experience of the centers.
NASA Astrophysics Data System (ADS)
Batra, Uma; Kapoor, Seema; Sharma, Sonia
2013-06-01
Hydroxyapatite (HA), incorporating small amount of magnesium, shows attractive biological performance in terms of improved bone metabolism, osteoblast and osteoclast activity, and bone in-growth. This article reports a systematic investigation on the influence of magnesium (Mg) substitution on structural and thermal behavior of nanodimensional HA. HA and Mg-substituted HA nanopowders were synthesized through sol-gel route. The morphology and size of nanopowders were characterized by transmission electron microscopy. The BET surface area was evaluated from N2 adsorption isotherms. Structural analysis and thermal behavior were investigated by means of Fourier transform infrared spectroscopy, x-ray diffraction, thermogravimetry, and differential thermal analysis. As-synthesized powders consisted of flake-like agglomerates of HA and calcium-deficient HA. The incorporation of magnesium in HA resulted in decrease of crystallite size, crystallinity, and lattice parameters a and c and increase in BET surface area. β-tricalcium phosphate formation occured at lower calcination temperature in Mg-substituted HA than HA.
Lenz, Gerhard P; Stasiak, Andrzej; Deszczyński, Jarosław; Karpiński, Janusz; Stolarczyk, Artur; Ziółkowski, Marcin; Szczesny, Grzegorz
2003-10-30
Background. This work focuses on problems of heuristic techniques based on artificial intelligence. Mainly about artificial non-linear and multilayer neurons, which were used to estimate the bone union fractures treatment process using orthopaedic stabilizers Dynastab DK. Material and methods. The author utilizes computer software based on multilayer neuronal network systems, which allows to predict the curve of the bone union at early stages of therapy. The training of the neural net has been made on fifty six cases of bone fracture which has been cured by the Dynastab stabilizers DK. Using such trained net, seventeen fractures of long bones shafts were being examined on strength and prediction of the bone union as well. Results. Analyzing results, it should be underlined that mechanical properties of the bone union in the slot of fracture are changing in nonlinear way in function of time. Especially, major changes were observed during the forth month of the fracture treatment. There is strong correlation between measure number two and measure number six. Measure number two is more strict and in the matter of fact it refers to flexion, as well as the measure number six, to compression of the bone in the fracture slot. Conclusions. Consequently, deflection loads are especially hazardous for healing bone. The very strong correlation between real curves and predicted curves shows the correctness of the neuronal model.
Bone Sialoproteins and Breast Cancer Detection
2004-07-01
used to follow proteolytic activity on more natural macromolecular substrates. These substrates are so highly substituted with fluorescein moieties that...uninformative for breast cancer, but does correlate with bone mineral density, parathyroid hormone and phosphorus . (Summary of Appendix II). Normal MEPE...calcium, phosphorus , vitamin D, as well as novel phosphatonin(s), and the bone and kidney organs. Candidate phosphaturic factors include MEPE; PHEX, a
Bose, Susmita; Tarafder, Solaiman
2012-01-01
Calcium phosphates (CaPs) are the most widely used bone substitutes in bone tissue engineering due to their compositional similarities to bone mineral and excellent biocompatibility. In recent years, CaPs, especially hydroxyapatite and tricalcium phosphate, have attracted significant interest in simultaneous use as bone substitute and drug delivery vehicle, adding a new dimension to their application. CaPs are more biocompatible than many other ceramic and inorganic nanoparticles. Their biocompatibility and variable stoichiometry, thus surface charge density, functionality, and dissolution properties, make them suitable for both drug and growth factor delivery. CaP matrices and scaffolds have been reported to act as delivery vehicles for growth factors and drugs in bone tissue engineering. Local drug delivery in musculoskeletal disorder treatments can address some of the critical issues more effectively and efficiently than the systemic delivery. CaPs are used as coatings on metallic implants, CaP cements, and custom designed scaffolds to treat musculoskeletal disorders. This review highlights some of the current drug and growth factor delivery approaches and critical issues using CaP particles, coatings, cements, and scaffolds towards orthopedic and dental applications. PMID:22127225
Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming
2015-01-01
The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m2/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration. PMID:25609957
Kohal, Ralf Joachim; Straub, Lisa Marie; Wolkewitz, Martin; Bächle, Maria; Patzelt, Sebastian Berthold Maximilian
2015-10-01
To evaluate the potential of two bone substitute materials and the influence of different healing periods in guided bone regeneration therapy of osseous defects around implants. Twenty-four edentulous patients received implants in the region of the lost lower incisors. Around two standardized osseous defects were created, treated either with a 50:50 mixture of PepGen P-15® and OsteoGraf®/N-700 (test group) or with BioOss® (control group), and covered with titanium membranes. After healing periods of 2, 4, 6, or 9 months, the implants were removed together with the surrounding bone and subsequently prepared for histological evaluations. Defect depths in both groups showed a clinical reduction after intervention. The histologically measured distance from the implant shoulder to the first point of bone-implant contact (BIC) after treatment did not differ between the two groups. The healing time influenced the level of the first point of BIC, with a longer healing period producing a more coronal first point of BIC. A greater percentage BIC and a higher fraction of mineralized bone were found in the pristine bone area compared with the augmented defect area. It can be concluded that in the treatment of osseous defects around oral implants, both materials were equally effective bone substitute materials when used in combination with guided bone regeneration. © 2014 Wiley Periodicals, Inc.
Bone tissue reactions to biomimetic ion-substituted apatite surfaces on titanium implants.
Ballo, Ahmed M; Xia, Wei; Palmquist, Anders; Lindahl, Carl; Emanuelsson, Lena; Lausmaa, Jukka; Engqvist, Håkan; Thomsen, Peter
2012-07-07
The aim of this study was to evaluate the bone tissue response to strontium- and silicon-substituted apatite (Sr-HA and Si-HA) modified titanium (Ti) implants. Sr-HA, Si-HA and HA were grown on thermally oxidized Ti implants by a biomimetic process. Oxidized implants were used as controls. Surface properties, i.e. chemical composition, surface thickness, morphology/pore characteristics, crystal structure and roughness, were characterized with various analytical techniques. The implants were inserted in rat tibiae and block biopsies were prepared for histology, histomorphometry and scanning electron microscopy analysis. Histologically, new bone formed on all implant surfaces. The bone was deposited directly onto the Sr-HA and Si-HA implants without any intervening soft tissue. The statistical analysis showed significant higher amount of bone-implant contact (BIC) for the Si-doped HA modification (P = 0.030), whereas significant higher bone area (BA) for the Sr-doped HA modification (P = 0.034), when compared with the non-doped HA modification. The differences were most pronounced at the early time point. The healing time had a significant impact for both BA and BIC (P < 0.001). The present results show that biomimetically prepared Si-HA and Sr-HA on Ti implants provided bioactivity and promoted early bone formation.
Knothe Tate, Melissa L.; Chang, Hana; Moore, Shannon R.; Knothe, Ulf R.
2011-01-01
Purpose Pluripotent cells residing in the periosteum, a bi-layered membrane enveloping all bones, exhibit a remarkable regenerative capacity to fill in critical sized defects of the ovine femur within two weeks of treatment. Harnessing the regenerative power of the periosteum appears to be limited only by the amount of healthy periosteum available. Here we use a substitute periosteum, a delivery device cum implant, to test the hypothesis that directional delivery of endogenous periosteal factors enhances bone defect healing. Methods Newly adapted surgical protocols were used to create critical sized, middiaphyseal femur defects in four groups of five skeletally mature Swiss alpine sheep. Each group was treated using a periosteum substitute for the controlled addition of periosteal factors including the presence of collagen in the periosteum (Group 1), periosteum derived cells (Group 2), and autogenic periosteal strips (Group 3). Control group animals were treated with an isotropic elastomer membrane alone. We hypothesized that periosteal substitute membranes incorporating the most periosteal factors would show superior defect infilling compared to substitute membranes integrating fewer factors (i.e. Group 3>Group 2>Group 1>Control). Results Based on micro-computed tomography data, bone defects enveloped by substitute periosteum enabling directional delivery of periosteal factors exhibit superior bony bridging compared to those sheathed with isotropic membrane controls (Group 3>Group 2>Group 1, Control). Quantitative histological analysis shows significantly increased de novo tissue generation with delivery of periosteal factors, compared to the substitute periosteum containing a collagen membrane alone (Group 1) as well as compared to the isotropic control membrane. Greatest tissue generation and maximal defect bridging was observed when autologous periosteal transplant strips were included in the periosteum substitute. Conclusion Periosteum-derived cells as well as other factors intrinsic to periosteum play a key role for infilling of critical sized defects. PMID:22174873
NASA Astrophysics Data System (ADS)
Nguyen, Duong Thuy Thi
According to the Centers for Disease Control, the geriatric population of ≥65 years of age will increase to 51.5 million in 2020; 40% of white women and 13% of white men will be at risk for fragility fractures or fractures sustained under normal stress and loading conditions due to bone disease, leading to hospitalization and surgical treatment. Fracture management strategies can be divided into pharmaceutical therapy, surgical intervention, and tissue regeneration for fracture prevention, fracture stabilization, and fracture site regeneration, respectively. However, these strategies fail to accommodate the pathological nature of fragility fractures, leading to unwanted side effects, implant failures, and non-unions. Compromised innate bone healing reactions of patients with bone diseases are exacerbated with protective bone therapy. Once these patients sustain a fracture, bone healing is a challenge, especially when fracture stabilization is unsuccessful. Traditional stabilizing screw and plate systems were designed with emphasis on bone mechanics rather than biology. Bone grafts are often used with fixation devices to provide skeletal continuity at the fracture gap. Current bone grafts include autologous bone tissue and donor bone tissue; however, the quality and quantity demanded by fragility fractures sustained by high-risk geriatric patients and patients with bone diseases are not met. Consequently, bone tissue engineering strategies are advancing towards functionalized bone substitutes to provide fracture reconstruction while effectively mediating bone healing in normal and diseased fracture environments. In order to target fragility fractures, fracture management strategies should be tailored to allow bone regeneration and fracture stabilization with bioactive bone substitutes designed for the pathological environment. The clinical outcome of these materials must be predictable within various disease environments. Initial development of a targeted treatment strategy should focus on simulating, in vitro, a physiological bone environment to predict clinical effectiveness of engineered bone and understand cellular responses due to the proposed agents and bioactive scaffolds. An in vitro test system can be the necessary catalyst to reduce implant failures and non-unions in fragility fractures.
Development of a bone-fixation prosthetic attachment. [with quick-disconnect coupling
NASA Technical Reports Server (NTRS)
Owens, L. J.
1975-01-01
An artificial limb attached directly to the bone by a quick-disconnect coupling was tested in-place at a California medical rehabilitation center. Its design concept and development, made possible by multiple spinoffs of aerospace technology, are discussed.
Mu, X; Dong, J; Wang, W
1995-11-01
This paper illustrates the results of surgical correction in 11 cases with orbital deformities such as periorbital deficiency after orbitotomy for retinoblastoma and orbital malposition after facial trauma. EH composite material, mixture of hydroxyapatite and epoxide acrylate maleic resin in constant proportion, was used as a good bone graft substitute in all 11 cases. This material was easier to be molded during surgery, safe to human body, had no toxic effects, no irritation and no implant-related complications. The early results obtained in these patients are encouraging.
Goossens, Quentin; Leuridan, Steven; Henyš, Petr; Roosen, Jorg; Pastrav, Leonard; Mulier, Michiel; Desmet, Wim; Denis, Kathleen; Vander Sloten, Jos
2017-11-01
In cementless total hip arthroplasty (THA), the initial stability is obtained by press-fitting the implant in the bone to allow osseointegration for a long term secondary stability. However, finding the insertion endpoint that corresponds to a proper initial stability is currently based on the tactile and auditory experiences of the orthopedic surgeon, which can be challenging. This study presents a novel real-time method based on acoustic signals to monitor the acetabular implant fixation in cementless total hip arthroplasty. Twelve acoustic in vitro experiments were performed on three types of bone models; a simple bone block model, an artificial pelvic model and a cadaveric model. A custom made beam was screwed onto the implant which functioned as a sound enhancer and insertor. At each insertion step an acoustic measurement was performed. A significant acoustic resonance frequency shift was observed during the insertion process for the different bone models; 250 Hz (35%, second bending mode) to 180 Hz (13%, fourth bending mode) for the artificial bone block models and 120 Hz (11%, eighth bending mode) for the artificial pelvis model. No significant frequency shift was observed during the cadaveric experiment due to a lack of implant fixation in this model. This novel diagnostic method shows the potential of using acoustic signals to monitor the implant seating during insertion. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Vaquette, Cédryck; Viateau, Véronique; Guérard, Sandra; Anagnostou, Fani; Manassero, Mathieu; Castner, David G.; Migonney, Véronique
2013-01-01
This study investigates the impact of polystyrene sodium sulfonate (PolyNaSS) grafting onto the osseointegration of a polyethylene terephthalate artificial ligament (Ligament Advanced Reinforcement System, LARS™) used for Anterior Cruciate Ligament (ACL). The performance of grafted and non-grafted ligaments was assessed in vitro by culturing human osteoblasts under osteogenic induction and this demonstrated that the surface modification was capable of up-regulating the secretion of ALP and induced higher level of mineralisation as measured 6 weeks post-seeding by Micro-Computed Tomography. Grafted and non-grafted LARS™ were subsequently implanted in an ovine model for ACL reconstruction and the ligament-to-bone interface was evaluated by histology and biomechanical testing 3 and 12 months post-implantation. The grafted ligaments exhibited more frequent direct ligament-to-bone contact and bone formation in the core of the ligament at the later time point than the nongrafted specimens, the grafting also significantly reduced the fibrous encapsulation of the ligament 12 months post-implantation. However, this improved osseo-integration was not translated into a significant increase in the biomechanical pull-out loads. These results provide evidences that PolyNaSS grafting improved the osseo-integration of the artificial ligament within the bone tunnels. This might positively influence the outcome of the surgical reconstructions, as higher ligament stability is believed to limit micro-movement and therefore permits earlier and enhanced healing. PMID:23790438
Tomić, S; Krajcinović, O; Blagojević, Z; Apostolović, M; Lalosević, V
2006-01-01
We analyzed 30 patients with infected diaphyseal defect of femur, which have been treated by lengthening one of the bone fragments with Ilizarov apparatus. The mean length of the bone defect was 6 cm. Substitution of the defect, bone healing and elimination of the infection was achieved in 27 patients. The mean time of apparatus fixation was 10 months. According to Palley scoring system, 10 patients had excellent functional results.
Yoon, Jong-Suk; Lee, Sang-Hwa; Yoon, Hyun-Joong
2014-10-01
The purpose of this study was to investigate the influence of platelet-rich fibrin (PRF) on angiogenesis and osteogenesis in guided bone regeneration (GBR) using xenogenic bone in rabbit cranial defects. In each rabbit, 2 circular bone defects, one on either side of the midline, were prepared using a reamer drill. Each of the experimental sites received bovine bone with PRF, and each of the control sites received bovine bone alone. The animals were sacrificed at 1 week (n = 4), 2 weeks (n = 3) and 4 weeks (n = 3). Biopsy samples were examined histomorphometrically by light microscopy, and expression of vascular endothelial growth factor (VEGF) was determined by immunohistochemical staining. At all experimental time points, immunostaining intensity for VEGF was consistently higher in the experimental group than in the control group. However, the differences between the control group and the experimental group were not statistically significant in the histomorphometrical and immunohistochemical examinations. The results of this study suggest that PRF may increase the number of marrow cells. However, PRF along with xenogenic bone substitutes does not show a significant effect on bony regeneration. Further large-scale studies are needed to confirm our results. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Ghanaati, Shahram; Barbeck, Mike; Lorenz, Jonas; Stuebinger, Stefan; Seitz, Oliver; Landes, Constantin; Kovács, Adorján F.; Kirkpatrick, Charles J.; Sader, Robert A.
2013-01-01
Background: The present study was first to evaluate the material-specific cellular tissue response of patients with head and neck cancer to a nanocrystalline hydroxyapatite bone substitute NanoBone (NB) in comparison with a deproteinized bovine bone matrix Bio-Oss (BO) after implantation into the sinus cavity. Materials and Methods: Eight patients with tumor resection for oral cancer and severely resorbed maxillary bone received materials according to a split mouth design for 6 months. Bone cores were harvested prior to implantation and analyzed histologically and histomorphometrically. Implant survival was followed-up to 2 years after placement. Results: Histologically, NB underwent a higher vascularization and induced significantly more tartrate-resistant acid phosphatase-positive (TRAP-positive) multinucleated giant cells when compared with BO, which induced mainly mononuclear cells. No significant difference was observed in the extent of new bone formation between both groups. The clinical follow-up showed undisturbed healing of all implants in the BO-group, whereas the loss of one implant was observed in the NB-group. Conclusions: Within its limits, the present study showed for the first time that both material classes evaluated, despite their induction of different cellular tissue reactions, may be useful as augmentation materials for dental and maxillofacial surgical applications, particularly in patients who previously had oral cancer. PMID:24205471
Germaini, Marie-Michèle; Detsch, Rainer; Grünewald, Alina; Magnaudeix, Amandine; Lalloue, Fabrice; Boccaccini, Aldo R; Champion, Eric
2017-06-06
The influence of carbonate substitution (4.4 wt%, mixed A/B type) in hydroxyapatite ceramics for bone remodeling scaffolds was investigated by separately analyzing the response of pre-osteoblasts and osteoclast-like cells. Carbonated hydroxyapatite (CHA) (Ca 9.5 (PO 4 ) 5.5 (CO 3 ) 0.5 (OH)(CO 3 ) 0.25 -CHA), mimicking the chemical composition of natural bone mineral, and pure hydroxyapatite (HA) (Ca 10 (PO 4 ) 6 (OH) 2 -HA) porous ceramics were processed to obtain a similar microstructure and surface physico-chemical properties (grain size, porosity ratio and pore size, surface roughness and zeta potential). The biological behavior was studied using MC3T3-E1 pre-osteoblastic and RAW 264.7 monocyte/macrophage cell lines. Chemical dissolution in the culture media and resorption lacunae produced by osteoclasts occur with both HA and CHA ceramics, but CHA exhibits much higher dissolution and greater bioresorption ability. CHA ceramics promoted a significantly higher level of pre-osteoblast proliferation. Osteoblastic differentiation, assessed by qRT-PCR of RUNX2 and COLIA2, and pre-osteoclastic proliferation and differentiation were not significantly different on CHA or HA ceramics but cell viability and metabolism were significantly greater on CHA ceramics. Thus, the activity of both osteoclast-like and osteoblastic cells was influenced by the carbonate substitution in the apatite structure. Furthermore, CHA showed a particularly interesting balance between biodegradation, by osteoclasts and chemical dissolution, and osteogenesis through osteoblasts' activity, to stimulate bone regeneration. It is hypothesized that this amount of 4.4 wt% carbonate substitution leads to an adapted concentration of calcium in the fluid surrounding the ceramic to stimulate the activity of cells. These results highlight the superior biological behavior of microporous 4.4 wt% A/B CHA ceramics that could beneficially replace the commonly used HA of biphasic calcium phosphates for future applications in bone tissue engineering.
Llinas, Paola; Masella, Michel; Stigbrand, Torgny; Ménez, André; Stura, Enrico A.; Le Du, Marie Hélène
2006-01-01
Strontium is used in the treatment of osteoporosis as a ranelate compound, and in the treatment of painful scattered bone metastases as isotope. At very high doses and in certain conditions, it can lead to osteomalacia characterized by impairment of bone mineralization. The osteomalacia symptoms resemble those of hypophosphatasia, a rare inherited disorder associated with mutations in the gene encoding for tissue-nonspecific alkaline phosphatase (TNAP). Human alkaline phosphatases have four metal binding sites—two for zinc, one for magnesium, and one for calcium ion—that can be substituted by strontium. Here we present the crystal structure of strontium-substituted human placental alkaline phosphatase (PLAP), a related isozyme of TNAP, in which such replacement can have important physiological implications. The structure shows that strontium substitutes the calcium ion with concomitant modification of the metal coordination. The use of the flexible and polarizable force-field TCPEp (topological and classical polarization effects for proteins) predicts that calcium or strontium has similar interaction energies at the calcium-binding site of PLAP. Since calcium helps stabilize a large area that includes loops 210–228 and 250–297, its substitution by strontium could affect the stability of this region. Energy calculations suggest that only at high doses of strontium, comparable to those found for calcium, can strontium substitute for calcium. Since osteomalacia is observed after ingestion of high doses of strontium, alkaline phosphatase is likely to be one of the targets of strontium, and thus this enzyme might be involved in this disease. PMID:16815919
Development of implants composed of bioactive materials for bone repair
NASA Astrophysics Data System (ADS)
Xiao, Wei
The purpose of this Ph.D. research was to address the clinical need for synthetic bioactive materials to heal defects in non-loaded and loaded bone. Hollow hydroxyapatite (HA) microspheres created in a previous study were evaluated as a carrier for controlled release of bone morphogenetic protein-2 (BMP2) in bone regeneration. New bone formation in rat calvarial defects implanted with BMP2-loaded microspheres (43%) was significantly higher than microspheres without BMP2 (17%) at 6 weeks postimplantation. Then hollow HA microspheres with a carbonate-substituted composition were prepared to improve their resorption rate. Hollow HA microspheres with 12 wt. % of carbonate showed significantly higher new bone formation (73 +/- 8%) and lower residual HA (7 +/- 2%) than stoichiometric HA microspheres (59 +/- 2% new bone formation; 21 +/- 3% residual HA). The combination of carbonate-substituted hollow HA microspheres and clinically-safe doses of BMP2 could provide promising implants for healing non-loaded bone defects. Strong porous scaffolds of bioactive silicate (13-93) glass were designed with the aid of finite-element modeling, created by robocasting and evaluated for loaded bone repair. Scaffolds with a porosity gradient to mimic human cortical bone showed a compressive strength of 88 +/- 20 MPa, a flexural strength of 34 +/- 5 MPa and the ability to support bone infiltration in vivo. The addition of a biodegradable polylactic acid (PLA) layer to the external surface of these scaffolds increased their load-bearing capacity in four-point bending by 50% and dramatically enhanced their work of fracture, resulting in a "ductile" mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture conducive to bone infiltration, could provide optimal implants for structural bone repair.
Bone regeneration with biomaterials and active molecules delivery.
D' Este, Matteo; Eglin, David; Alini, Mauro; Kyllonen, Laura
2015-01-01
The combination of biomaterials and drug delivery strategies is a promising avenue towards improved synthetic bone substitutes. With the delivery of active species biomaterials can be provided with the bioactivity they still lack for improved bone regeneration. Recently, a lot of research efforts have been put towards this direction. Biomaterials for bone regeneration have been supplemented with small or biological molecules for improved osteoprogenitor cell recruitment, osteoinductivity, anabolic or angiogenic response, regulation of bone metabolism and others. The scope of this review is to summarize the most recent results in this field.
Recent advances in bone tissue engineering scaffolds
Bose, Susmita; Roy, Mangal; Bandyopadhyay, Amit
2012-01-01
Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, biodegradable materials that harbor different growth factors, drugs, genes or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved. PMID:22939815
Genetics Home Reference: osteoarthritis
... Houard X. Why subchondral bone in osteoarthritis? The importance of the cartilage bone interface in osteoarthritis. Osteoporos ... Reviewed : October 2017 Published : June 26, 2018 The resources on this site should not be used as a substitute ... Department of Health & Human Services National Institutes of Health National Library of ...
de Wild, Michael; Amacher, Fabienne; Bradbury, Christopher R; Molenberg, Aart
2016-04-01
Resorbable bone substitute materials are widely used for bone augmentation after tumor resection, parallel to implant placement, or in critical size bone defects. In this study, the structural dissolution of a biphasic calcium phosphate bone substitute material with a hydroxyapatite (HA)/tricalcium phosphate (β-TCP) ratio of 60/40 was investigated by repeatedly placing porous blocks in EDTA solution at 37 °C. At several time points, the blocks were investigated by SEM, µCT, and gravimetry. It was found that always complete 2-3 µm sized grains were removed from the structure and that the β-TCP is dissolved more rapidly. This selective dissolution of the β-TCP grains was confirmed by XRD measurements. The blocks were eroded from the outside toward the center. The structure remained mechanically stable because the central part showed a delayed degradation and because the slower dissolving HA grains preserved the integrity of the structure. © 2015 Wiley Periodicals, Inc.
Biomimetics of Bone Implants: The Regenerative Road.
Brett, Elizabeth; Flacco, John; Blackshear, Charles; Longaker, Michael T; Wan, Derrick C
2017-01-01
The current strategies for healing bone defects are numerous and varied. At the core of each bone healing therapy is a biomimetic mechanism, which works to enhance bone growth. These range from porous scaffolds, bone mineral usage, collagen, and glycosaminoglycan substitutes to transplanted cell populations. Bone defects face a range of difficulty in their healing, given the composite of dense outer compact bone and blood-rich inner trabecular bone. As such, the tissue possesses a number of inherent characteristics, which may be clinically harnessed as promoters of bone healing. These include mechanical characteristics, mineral composition, native collagen content, and cellular fraction of bone. This review charts multiple biomimetic strategies to help heal bony defects in large and small osseous injury sites, with a special focus on cell transplantation.
Meininger, Susanne; Mandal, Sourav; Kumar, Alok; Groll, Jürgen; Basu, Bikramjit; Gbureck, Uwe
2016-02-01
Strontium ions (Sr(2+)) are known to prevent osteoporosis and also encourage bone formation. Such twin requirements have motivated researchers to develop Sr-substituted biomaterials for orthopaedic applications. The present study demonstrates a new concept of developing Sr-substituted Mg3(PO4)2 - based biodegradable scaffolds. In particular, this work reports the fabrication, mechanical properties with an emphasis on strength reliability as well as in vitro degradation of highly biodegradable strontium-incorporated magnesium phosphate cements. These implantable scaffolds were fabricated using three-dimensional powder printing, followed by high temperature sintering and/or chemical conversion, a technique adaptable to develop patient-specific implants. A moderate combination of strength properties of 36.7MPa (compression), 24.2MPa (bending) and 10.7MPa (tension) were measured. A reasonably modest Weibull modulus of up to 8.8 was recorded after uniaxial compression or diametral tensile tests on 3D printed scaffolds. A comparison among scaffolds with varying compositions or among sintered or chemically hardened scaffolds reveals that the strength reliability is not compromised in Sr-substituted scaffolds compared to baseline Mg3(PO4)2. The micro-computed tomography analysis reveals the presence of highly interconnected porous architecture in three-dimension with lognormal pore size distribution having median in the range of 17.74-26.29μm for the investigated scaffolds. The results of extensive in vitro ion release study revealed passive degradation with a reduced Mg(2+) release and slow but sustained release of Sr(2+) from strontium-substituted magnesium phosphate scaffolds. Taken together, the present study unequivocally illustrates that the newly designed Sr-substituted magnesium phosphate scaffolds with good strength reliability could be used for biomedical applications requiring consistent Sr(2+)- release, while the scaffold degrades in physiological medium. The study investigates the additive manufacturing of scaffolds based on different strontium-substituted magnesium phosphate bone cements by means of three-dimensional powder printing technique (3DPP). Magnesium phosphates were chosen due to their higher biodegradability compared to calcium phosphates, which is due to both a higher solubility as well as the absence of phase changes (to low soluble hydroxyapatite) in vivo. Since strontium ions are known to promote bone formation by stimulating osteoblast growth, we aimed to establish such a highly degradable magnesium phosphate ceramic with an enhanced bioactivity for new bone ingrowth. After post-processing, mechanical strengths of up to 36.7MPa (compression), 24.2MPa (bending) and 10.7MPa (tension) could be achieved. Simultaneously, the failure reliability of those bioceramic implant materials, measured by Weibull modulus calculations, were in the range of 4.3-8.8. Passive dissolution studies in vitro proved an ion release of Mg(2+) and PO4(3-) as well as Sr(2+), which is fundamental for in vivo degradation and a bone growth promoting effect. In our opinion, this work broadens the range of bioceramic bone replacement materials suitable for additive manufacturing processing. The high biodegradability of MPC ceramics together with the anticipated promoting effect on osseointegration opens up the way for a patient-specific treatment with the prospect of a fast and complete healing of bone fractures. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Panaroni, Cristina; Gioia, Roberta; Lupi, Anna; Besio, Roberta; Goldstein, Steven A.; Kreider, Jaclynn; Leikin, Sergey; Vera, Juan Carlos; Mertz, Edward L.; Perilli, Egon; Baruffaldi, Fabio; Villa, Isabella; Farina, Aurora; Casasco, Marco; Cetta, Giuseppe; Rossi, Antonio; Frattini, Annalisa; Marini, Joan C.; Vezzoni, Paolo
2009-01-01
Autosomal dominant osteogenesis imperfecta (OI) caused by glycine substitutions in type I collagen is a paradigmatic disorder for stem cell therapy. Bone marrow transplantation in OI children has produced a low engraftment rate, but surprisingly encouraging symptomatic improvements. In utero transplantation (IUT) may hold even more promise. However, systematic studies of both methods have so far been limited to a recessive mouse model. In this study, we evaluated intrauterine transplantation of adult bone marrow into heterozygous BrtlIV mice. Brtl is a knockin mouse with a classical glycine substitution in type I collagen [α1(I)-Gly349Cys], dominant trait transmission, and a phenotype resembling moderately severe and lethal OI. Adult bone marrow donor cells from enhanced green fluorescent protein (eGFP) transgenic mice engrafted in hematopoietic and nonhematopoietic tissues differentiated to trabecular and cortical bone cells and synthesized up to 20% of all type I collagen in the host bone. The transplantation eliminated the perinatal lethality of heterozygous BrtlIV mice. At 2 months of age, femora of treated Brtl mice had significant improvement in geometric parameters (P < .05) versus untreated Brtl mice, and their mechanical properties attained wild-type values. Our results suggest that the engrafted cells form bone with higher efficiency than the endogenous cells, supporting IUT as a promising approach for the treatment of genetic bone diseases. PMID:19414862
Bone Graft Substitute Provides Metaphyseal Fixation for a Stemless Humeral Implant.
Kim, Myung-Sun; Kovacevic, David; Milks, Ryan A; Jun, Bong-Jae; Rodriguez, Eric; DeLozier, Katherine R; Derwin, Kathleen A; Iannotti, Joseph P
2015-07-01
Stemless humeral fixation has become an alternative to traditional total shoulder arthroplasty, but metaphyseal fixation may be compromised by the quality of the trabecular bone that diminishes with age and disease, and augmentation of the fixation may be desirable. The authors hypothesized that a bone graft substitute (BGS) could achieve initial fixation comparable to polymethylmethacrylate (PMMA) bone cement. Fifteen fresh-frozen human male humerii were randomly implanted using a stemless humeral prosthesis, and metaphyseal fixation was augmented with either high-viscosity PMMA bone cement (PMMA group) or a magnesium-based injectable BGS (OsteoCrete; Bone Solutions Inc, Dallas, Texas) (OC group). Both groups were compared with a control group with no augmentation. Initial stiffness, failure load, failure displacement, failure cycle, and total work were compared among groups. The PMMA and OC groups showed markedly higher failure loads, failure displacements, and failure cycles than the control group (P<.01). There were no statistically significant differences in initial stiffness, failure load, failure displacement, failure cycle, or total work between the PMMA and OC groups. The biomechanical properties of magnesium-based BGS fixation compared favorably with PMMA bone cement in the fixation of stemless humeral prostheses and may provide sufficient initial fixation for this clinical application. Future work will investigate the long-term remodeling characteristics and bone quality at the prosthetic-bone interface in an in vivo model to evaluate the clinical efficacy of this approach. Copyright 2015, SLACK Incorporated.
Comparison of the osteogenic potential of bone dust and iliac bone chip.
Ye, Shuai; Seo, Kyu-Bum; Park, Byung-Hyun; Song, Kyung-Jin; Kim, Jung-Ryul; Jang, Kyu-Yun; Chae, Young Ju; Lee, Kwang-Bok
2013-11-01
There is no comparative study of the in vitro and in vivo osteogenic potential of iliac bone chips (autogenous iliac cancellous bone chips) compared with bone dusts generated during the decortication process with a high-speed burr in spine fracture or fusion surgery. To compare the osteogenic potential of three sizes of bone dusts with iliac bone chips and to determine whether bone dusts can be used as a bone graft substitute. In vitro and in vivo study. Bone chips were harvested from the posterior superior iliac spine and bone dusts from the vertebrae of 15 patients who underwent spinal fracture surgery. Bone dust was divided into three groups: small (3 mm), middle (4 mm), and large (5 mm) according to the size of the burr tip. A comparison was made using a cell proliferation assay, alkaline phosphatase (ALP) activity, the degree of mineralization in an in vitro model, and radiographic and histologic studies (the change of absorbable area and tissue density) after implantation of the various materials into back muscles of nude mice. Although all three bone dust groups were less active with regard to cell proliferation, ALP activity, and the degree of mineralization, than were bone chips, they still exhibited osteogenic potential. Furthermore, there was no significant difference among the three bone dust groups. The three bone dust groups did show greater absorbable area and change of the tissue density than did the iliac bone chip group. Again, there was no significant difference among the three bone dust groups in this regard. Histologically, specimens from the bone dust groups had a higher osteoclast cell number than specimens from the iliac bone chip group. The osteogenic potential of bone dusts is lower than that of iliac bone chips, and the absorption speed of bone dusts in vivo is faster than that of iliac bone chips. The increased resorption speed appeared to result from an increase in osteoclast cell number. Therefore, caution needs to be used when surgeons employ bone dust as a bone graft substitute. Copyright © 2013 Elsevier Inc. All rights reserved.
Shokri, Abbas; Bidgoli, Mohsen; Akbarzadeh, Mahdi; Ghazikhanlu-Sani, Karim; Fallahi-Sichani, Hamed
2018-01-01
Purpose This study aimed to evaluate the effect of field-of-view (FOV) size on the gray values derived from conebeam computed tomography (CBCT) compared with the Hounsfield unit values from multidetector computed tomography (MDCT) scans as the gold standard. Materials and Methods A radiographic phantom was designed with 4 acrylic cylinders. One cylinder was filled with distilled water, and the other 3 were filled with 3 types of bone substitute: namely, Nanobone, Cenobone, and Cerabone. The phantom was scanned with 2 CBCT systems using 2 different FOV sizes, and 1 MDCT system was used as the gold standard. The mean gray values (MGVs) of each cylinder were calculated in each imaging protocol. Results In both CBCT systems, significant differences were noted in the MGVs of all materials between the 2 FOV sizes (P<.05) except for Cerabone in the Cranex3D system. Significant differences were found in the MGVs of each material compared with the others in both FOV sizes for each CBCT system. No significant difference was seen between the Cranex3D CBCT system and the MDCT system in the MGVs of bone substitutes on images obtained with a small FOV. Conclusion The size of the FOV significantly changed the MGVs of all bone substitutes, except for Cerabone in the Cranex3D system. Both CBCT systems had the ability to distinguish the 3 types of bone substitutes based on a comparison of their MGVs. The Cranex3D CBCT system used with a small FOV had a significant correlation with MDCT results. PMID:29581947
Casarrubios, Laura; Matesanz, María Concepción; Sánchez-Salcedo, Sandra; Arcos, Daniel; Vallet-Regí, María; Portolés, María Teresa
2016-11-15
Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200°C) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700°C) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages) have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone. Copyright © 2016 Elsevier Inc. All rights reserved.
Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng
2016-01-01
Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233
NASA Astrophysics Data System (ADS)
Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng
2016-04-01
Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds.
Advanced engineering and biomimetic materials for bone repair and regeneration
NASA Astrophysics Data System (ADS)
Yang, Lei; Zhong, Chao
2013-12-01
Over the past decade, there has been tremendous progress in developing advanced biomaterials for tissue repair and regeneration. This article reviews the frontiers of this field from two closely related areas, new engineering materials for bone substitution and biomimetic mineralization for bone-like nanocomposites. Rather than providing an exhaustive overview of the literature, we focus on several representative directions. We also discuss likely future trends in these areas, including synthetic biology-enabled biomaterials design and multifunctional implant materials for bone repair and regeneration.
Mardinger, Ofer; Vered, Marilena; Chaushu, Gavriel; Nissan, Joseph
2012-06-01
Intrasocket reactive soft tissue can be used for primary closure during augmentation of infected extraction sites exhibiting severe bone loss prior to implant placement. The present study evaluated the histological characteristics of the initially used intrasocket reactive soft tissue, the overlying soft tissue, and the histomorphometry of the newly formed bone during implant placement. Thirty-six consecutive patients (43 sites) were included in the study. Extraction sites demonstrating extensive bone loss on preoperative periapical and panoramic radiographs served as inclusion criteria. Forty-three implants were inserted after a healing period of 6 months. Porous bovine xenograft bone mineral was used as a single bone substitute. The intrasocket reactive soft tissue was sutured over the grafting material to seal the coronal portion of the socket. Biopsies of the intrasocket reactive soft tissue at augmentation, healed mucosa, and bone cores at implant placement were retrieved and evaluated. The intrasocket reactive soft tissue demonstrated features compatible with granulation tissue and long junctional epithelium. The mucosal samples at implant placement demonstrated histopathological characteristics of keratinized mucosa with no residual elements of granulation tissue. Histomorphometrically, the mean composition of the bone cores was - vital bone 40 ± 19% (13.7-74.8%); bone substitute 25.7 ± 13% (0.6-51%); connective tissue 34.3 ± 15% (13.8-71.9%). Intrasocket reactive soft tissue used for primary closure following ridge augmentation is composed of granulation tissue and long junctional epithelium. At implant placement, clinical and histological results demonstrate its replacement by keratinized gingiva. The histomorphometrical results reveal considerable bone formation. Fresh extraction sites of hopeless teeth demonstrating chronic infection and severe bone loss may be grafted simultaneously with their removal. © 2010 Wiley Periodicals, Inc.
Makings of a brittle bone: Unexpected lessons from a low protein diet study of a mouse OI model
Mertz, E.L.; Makareeva, E.; Mirigian, L.S.; Koon, K.Y.; Perosky, J.E.; Kozloff, K.M.; Leikin, S.
2016-01-01
Glycine substitutions in type I collagen appear to cause osteogenesis imperfecta (OI) by disrupting folding of the triple helix, the structure of which requires Gly in every third position. It is less clear, however, whether the resulting bone malformations and fragility are caused by effects of intracellular accumulation of misfolded collagen on differentiation and function of osteoblasts, effects of secreted misfolded collagen on the function of bone matrix, or both. Here we describe a study originally conceived for testing how reducing intracellular accumulation of misfolded collagen would affect mice with a Gly610 to Cys substitution in the triple helical region of the α2(I) chain. To stimulate degradation of misfolded collagen by autophagy, we utilized a low protein diet. The diet had beneficial effects on osteoblast differentiation and bone matrix mineralization, but it also affected bone modeling and suppressed overall animal growth. Our more important observations, however, were not related to the diet. They revealed how altered osteoblast function and deficient bone formation by each cell caused by the G610C mutation combined with increased osteoblastogenesis might make the bone more brittle, all of which are common OI features. In G610C mice, increased bone formation surface compensated for reduced mineral apposition rate, resulting in normal cortical area and thickness at the cost of altering cortical modeling process, retaining woven bone, and reducing the ability of bone to absorb energy through plastic deformation. Reduced collagen and increased mineral density in extracellular matrix of lamellar bone compounded the problem, further reducing bone toughness. The latter observations might have particularly important implications for understanding OI pathophysiology and designing more effective therapeutic interventions. PMID:27039252
Malunion of Long-Bone Fractures in a Conflict Zone in the Democratic Republic of Congo.
Bauhahn, Grace; Veen, Harald; Hoencamp, Rigo; Olim, Nelson; Tan, Edward C T H
2017-09-01
Malunion is a well-recognized complication of long-bone fractures which accounts for more than 25% of injuries in conflict zones. The aim of this study was to investigate the rate of malunion sustained by casualties with penetrating gunshot wounds in an International Committee of the Red Cross (ICRC) surgical substitution project in the Democratic Republic of Congo (DRC) and compare these results with current literature. A retrospective cohort study was performed. All patients admitted to the ICRC facility between the periods of 01.10.2014 and 31.12.2015 with long-bone fractures caused by gunshot wound were included, and data were collected retrospectively from the patient's hospital notes. A total of 191 fractures caused by gunshot were treated in the DRC at the ICRC surgical substitution project during the study period. On average, the fractures were 3 days old on admission and were all open, with 62% also being comminuted. The ICRC management protocol, which emphasizes debridement, antibiotic prophylaxis and conservative fracture stabilization, was followed in all cases. Forty-eight percentage of the fractures were finally classified as 'union without complication'; however, 17% were classified as 'malunion'. This study indicates that open long-bone fractures that are managed by the ICRC surgical substitution project in DRC may have an increased likelihood of malunion as compared to long-bone fractures treated in developed countries. Patient delay and mechanism of injury may have caused increased rates of infection which are likely behind these increased rates of malunion, alongside the lack of definitive fracture treatment options made available to the surgical team.
Zhang, Lei; Shen, Shunyao; Yu, Hongbo; Shen, Steve Guofang; Wang, Xudong
2015-07-01
The aim of this study was to investigate the use of computer-aided design and computer-aided manufacturing hydroxyapatite (HA)/epoxide acrylate maleic (EAM) compound construction artificial implants for craniomaxillofacial bone defects. Computed tomography, computer-aided design/computer-aided manufacturing and three-dimensional reconstruction, as well as rapid prototyping were performed in 12 patients between 2008 and 2013. The customized HA/EAM compound artificial implants were manufactured through selective laser sintering using a rapid prototyping machine into the exact geometric shapes of the defect. The HA/EAM compound artificial implants were then implanted during surgical reconstruction. Color-coded superimpositions demonstrated the discrepancy between the virtual plan and achieved results using Geomagic Studio. As a result, the HA/EAM compound artificial bone implants were perfectly matched with the facial areas that needed reconstruction. The postoperative aesthetic and functional results were satisfactory. The color-coded superimpositions demonstrated good consistency between the virtual plan and achieved results. The three-dimensional maximum deviation is 2.12 ± 0.65 mm and the three-dimensional mean deviation is 0.27 ± 0.07 mm. No facial nerve weakness or pain was observed at the follow-up examinations. Only 1 implant had to be removed 2 months after the surgery owing to severe local infection. No other complication was noted during the follow-up period. In conclusion, computer-aided, individually fabricated HA/EAM compound construction artificial implant was a good craniomaxillofacial surgical technique that yielded improved aesthetic results and functional recovery after reconstruction.
Shiba, Dai; Mizuno, Hiroyasu; Yumoto, Akane; Shimomura, Michihiko; Kobayashi, Hiroe; Morita, Hironobu; Shimbo, Miki; Hamada, Michito; Kudo, Takashi; Shinohara, Masahiro; Asahara, Hiroshi; Shirakawa, Masaki; Takahashi, Satoru
2017-09-07
This Japan Aerospace Exploration Agency project focused on elucidating the impacts of partial gravity (partial g) and microgravity (μg) on mice using newly developed mouse habitat cage units (HCU) that can be installed in the Centrifuge-equipped Biological Experiment Facility in the International Space Station. In the first mission, 12 C57BL/6 J male mice were housed under μg or artificial earth-gravity (1 g). Mouse activity was monitored daily via downlinked videos; μg mice floated inside the HCU, whereas artificial 1 g mice were on their feet on the floor. After 35 days of habitation, all mice were returned to the Earth and processed. Significant decreases were evident in femur bone density and the soleus/gastrocnemius muscle weights of μg mice, whereas artificial 1 g mice maintained the same bone density and muscle weight as mice in the ground control experiment, in which housing conditions in the flight experiment were replicated. These data indicate that these changes were particularly because of gravity. They also present the first evidence that the addition of gravity can prevent decreases in bone density and muscle mass, and that the new platform 'MARS' may provide novel insights on the molecular-mechanisms regulating biological processes controlled by partial g/μg.
Wang, Yanen; Wang, Kai; Li, Xinpei; Wei, Qinghua; Chai, Weihong; Wang, Shuzhi; Che, Yu; Lu, Tingli; Zhang, Bo
2017-01-01
A key requirement for three-dimensional printing (3-DP) at room temperature of medical implants depends on the availability of printable and biocompatible binder-powder systems. Different concentration polyvinyl alcohol (PVA) and phosphoric acid solutions were chosen as the binders to make the artificial stent biocompatible with sufficient compressive strength. In order to achieve an optimum balance between the bioceramic powder and binder solution, the biocompatibility and mechanical properties of these artificial stent samples were tested using two kinds of binder solutions. This study demonstrated the printable binder formulation at room temperature for the 3D artificial bone scaffolds. 0.6 wt% PVA solution was ejected easily via inkjet printing, with a supplementation of 0.25 wt% Tween 80 to reduce the surface tension of the polyvinyl alcohol solution. Compared with the polyvinyl alcohol scaffolds, the phosphoric acid scaffolds had better mechanical properties. Though both scaffolds supported the cell proliferation, the absorbance of the polyvinyl alcohol scaffolds was higher than that of the phosphoric acid scaffolds. The artificial stents with a hydroxyapatite/beta-tricalcium phosphate (HA/β-TCP) weight ratios of 60:40 depicted good biocompatibility for both scaffolds. Considering the scaffolds' mechanical and biocompatible properties, the phosphoric acid scaffolds with a HA/β-TCP weight ratio of 60:40 may be the best combination for bone tissue engineering applications.
Chitosan Composites for Bone Tissue Engineering—An Overview
Venkatesan, Jayachandran; Kim, Se-Kwon
2010-01-01
Bone contains considerable amounts of minerals and proteins. Hydroxyapatite [Ca10(PO4)6(OH)2] is one of the most stable forms of calcium phosphate and it occurs in bones as major component (60 to 65%), along with other materials including collagen, chondroitin sulfate, keratin sulfate and lipids. In recent years, significant progress has been made in organ transplantation, surgical reconstruction and the use of artificial protheses to treat the loss or failure of an organ or bone tissue. Chitosan has played a major role in bone tissue engineering over the last two decades, being a natural polymer obtained from chitin, which forms a major component of crustacean exoskeleton. In recent years, considerable attention has been given to chitosan composite materials and their applications in the field of bone tissue engineering due to its minimal foreign body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth and osteoconduction. The composite of chitosan including hydroxyapatite is very popular because of the biodegradability and biocompatibility in nature. Recently, grafted chitosan natural polymer with carbon nanotubes has been incorporated to increase the mechanical strength of these composites. Chitosan composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering. Herein, the preparation, mechanical properties, chemical interactions and in vitro activity of chitosan composites for bone tissue engineering will be discussed. PMID:20948907
[Mechanical strength and mechano-compatibility of tissue-engineered bones].
Tanaka, Shigeo
2016-01-01
Current artificial bones made of metals and ceramics may be replaced around a decade after implantation due to its low durability, which is brought on by a large difference from the host bone in mechanical properties, i.e., low mechano-compatibility. On the other hand, tissue engineering could be a solution with regeneration of bone tissues from stem cells in vitro. However, there are still some problems to realize exactly the same mechanical properties as those of real bone. This paper introduces the technical background of bone tissue engineering and discusses possible methods for installation of mechano-compatibility into a regenerative bone. At the end, future directions toward the realization of ideal mechano-compatible regenerative bone are proposed.
Can Artificial Reef Wrecks Reduce Diver Impacts on Shipwrecks? The Management Dimension
NASA Astrophysics Data System (ADS)
Edney, Joanne; Spennemann, Dirk H. R.
2015-08-01
Managers have been advocating the use of artificial reef wrecks to diversify the experiences of recreational divers and thereby reduce the well-known impact on reefs. To examine whether artificial reef wrecks can serve as substitutes for historic shipwrecks this paper discusses the attitude of Australian divers to wreck diving in general and to artificial reef wrecks in particular. While the overwhelming majority of divers surveyed accepted the need for control, the experienced divers were less interested in artificial reef wrecks and less prepared to tolerate controls over their perceived freedom to dive wrecks. We present projections that show that this legacy issue will have largely resolved itself by 2025 due to attrition and natural ageing.
Tonelli, Fernanda MP; Santos, Anderson K; Gomes, Katia N; Lorençon, Eudes; Guatimosim, Silvia; Ladeira, Luiz O; Resende, Rodrigo R
2012-01-01
In recent years, significant progress has been made in organ transplantation, surgical reconstruction, and the use of artificial prostheses to treat the loss or failure of an organ or bone tissue. In recent years, considerable attention has been given to carbon nanotubes and collagen composite materials and their applications in the field of tissue engineering due to their minimal foreign-body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth, proliferation, and differentiation. Recently, grafted collagen and some other natural and synthetic polymers with carbon nanotubes have been incorporated to increase the mechanical strength of these composites. Carbon nanotube composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering. PMID:22923989
TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model.
Handschel, Jörg; Wiesmann, Hans Peter; Stratmann, Udo; Kleinheinz, Johannes; Meyer, Ulrich; Joos, Ulrich
2002-04-01
Tricalciumphosphate (TCP) has been used as a ceramic bone substitute material in the orthopedic field as well as in craniofacial surgery. Some controversies exist concerning the osteoconductive potential of this material in different implantation sites. This study was designed to evaluate the biological response of calvarial bone towards TCP granules under non-loading conditions to assess the potential of TCP as a biodegredable and osteoconductive bone substitue material for the cranial vault. Full-thickness non-critical size defects were made bilaterally in the calvaria of 21 adult Wistar rats. One side was filled by TCP granules, the contralateral side was left empty and used as a control. Animals were sacrified in defined time intervals up to 6 months. Bone regeneration was analyzed with special respect toward the micromorphological and microanalytical features of the material-bone interaction by electron microscopy and electron diffraction analysis. Histologic examination revealed no TCP degradation even after 6 months of implantation. In contrast, a nearly complete bone regeneration of control defects was found after 6 months. At all times TCP was surrounded by a thin fibrous layer without presence of osteoblasts and features of regular mineralization. As far as degradation and substitution are concerned, TCP is a less favourable material tinder conditions of non-loading.
Mihatovic, Ilja; Becker, Jürgen; Golubovic, Vladimir; Hegewald, Andrea; Schwarz, Frank
2012-03-01
To assess the influence of two barrier membranes and two bone graft substitutes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Saddle-type defects were prepared in the lower jaws of 6 fox hounds and randomly filled with a natural bone mineral (NBM) and a biphasic calcium phosphate (SBC) and allocated to either an in situ gelling polyethylene glycol (PEG) or a collagen membrane (CM). At 8 weeks, modSLA titanium implants were inserted and left to heal in a submerged position. At 8+2 weeks, respectively, dissected blocks were processed for histomorphometrical analysis (e.g., mineralized tissue [MT], bone-to-implant contact [BIC]). The mean MT values (mm2) and BIC values (%) tended to be higher in the PEG groups (MT: NBM [3.4±1.7]; SBC [4.2±2]/BIC: NBM [67.7±16.9]; SBC [66.9±17.8]) when compared with the corresponding CM groups (MT: NBM [2.5±0.8]; SBC [2.3±1.6]/BIC: NBM [54.1±22.6]; SBC [61±8.7]). These differences, however, did not reach statistical significance. It was concluded that all augmentation procedures investigated supported bone regeneration and staged osseointegration of modSLA titanium implants. © 2011 John Wiley & Sons A/S.
Son, Jun-Sik; Kim, Su-Gwan; Oh, Ji-Su; Appleford, Mark; Oh, Sunho; Ong, Joo L; Lee, Kyu-Bok
2011-12-15
This study presents a novel design of a ceramic/polymer biphasic combination scaffold that mimics natural bone structures and is used as a bone graft substitute. To mimic the natural bone structures, the outside cortical-like shells were composed of porous hydroxyapatite (HA) with a hollow interior using a polymeric template-coating technique; the inner trabecular-like core consisted of porous poly(D,L-lactic acid) (PLA) that was loaded with dexamethasone (DEX) and was directly produced using a particle leaching/gas forming technique to create the inner diameter of the HA scaffold. It was observed that the HA and PLA parts of the fabricated HA/PLA biphasic scaffold contained open and interconnected pore structures, and the boundary between both parts was tightly connected without any gaps. It was found that the structure of the combination scaffold was analogous to that of natural bone based on micro-computed tomography analysis. Additionally, the dense, uniform apatite layer was formed on the surface of the HA/PLA biphasic scaffold through a biomimetic process, and DEX was successfully released from the PLA of the biphasic scaffold over a 1-month period. This release caused human embryonic palatal mesenchyme cells to proliferate, differentiate, produce ECM, and form tissue in vitro. Therefore, it was concluded that this functionally graded scaffold is similar to natural bone and represents a potential bone-substitute material. Copyright © 2011 Wiley Periodicals, Inc.
Three new HLA-C alleles (HLA-C*14:02:13, HLA-C*15:72 and HLA-C*15:74) in Saudi bone marrow donors.
Fakhoury, H A; Jawdat, D; Alaskar, A S; Al Jumah, M; Cereb, N; Hajeer, A H
2015-10-01
Three new HLA-C alleles were identified by sequence-based typing method (SBT) in donors for the Saudi Bone Marrow Donor Registry (SBMDR). HLA-C*14:02:13 differs from HLA-C*14:02:01 by a silent G to A substitution at nucleotide position 400 in exon 2, where lysine at position 66 remains unchanged. HLA-C*15:72 differs from HLA-C*15:22 by a nonsynonymous C to A substitution at nucleotide position 796 in exon 3, resulting in an amino acid change from phenylalanine to leucine at position 116. HLA-C*15:74 differs from HLA-C*15:08 by a nonsynonymous C to T substitution at nucleotide position 914 in exon 3, resulting in an amino acid change from arginine to tryptophan at position 156. © 2015 John Wiley & Sons Ltd.
Hard tissue regeneration using bone substitutes: an update on innovations in materials
Sarkar, Swapan Kumar
2015-01-01
Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues. PMID:25995658
Hard tissue regeneration using bone substitutes: an update on innovations in materials.
Sarkar, Swapan Kumar; Lee, Byong Taek
2015-05-01
Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues.
Oporto V, Gonzalo H; Fuentes, Ramón; Borie, Eduardo; del Sol, Mariano; Orsi, Iara Augusta; Engelke, Wilfried
2014-01-01
Regeneration of resorbed edentulous sites can be induced by bone grafts from the subject himself and/or by the use of biomaterials. At present, there has been an extensive search for biomaterials that are evaluated by artificially creating one or more critical defects. The aim of this work was to clinically and radiographically analyze bone formation by the use of some biomaterials in artificially created defects in the parietal bone of rabbits. Six rabbits were used, creating defects of 8 mm in diameter in parietal bones. One defect was maintained with coagulum only, and in others, freeze-dried bone allograft (FDBA), autologous bone, and a combination of autologous bone with FDBA respectively, were added. Animals were sacrificed at 15-90 days with 2 weeks interval each, and calvaria were analyzed macroscopically, measuring by digital caliper the lack of filling at the surface of defects, identifying limits at anteroposterior and coronal view, realizing a digital photograph register of their external surfaces. This was subsequently evaluated radiographically by occlusal film radiography used to quantify its density through software. In conclusion, autologous bone showed the best behavior, clinically as well as radiographically. However, FDBA is a good option as an alternative to autologous bone as its behavior was slightly lower over time. The combination of autologous bone and FDBA in the same defect showed results considerably inferior to grafts used separately. Low radiopacity and clear limits were observed through time for the control coagulum filled defect. PMID:25126163
Dau, Michael; Kämmerer, Peer W; Henkel, Kai-Olaf; Gerber, Thomas; Frerich, Bernhard; Gundlach, Karsten K H
2016-05-01
Healing characteristics as well as level of tissue integration and degradation of two different nanostructured hydroxyapatite bone substitute materials (BSM) in comparison with a deproteinized hydroxyapatite bovine BSM were evaluated in an in vivo animal experiment. In the posterior mandible of 18 minipigs, bilateral mono cortical critical size bone defects were created. Randomized augmentation procedures with NanoBone(®) (NHA1), Ostim(®) (NHA2) or Bio-Oss(®) (DBBM) were conducted (each material n = 12). Samples were analyzed after five (each material n = 6) and 8 months (each material n = 6). Defect healing, formation of soft tissue and bone as well as the amount of remaining respective BSM were quantified both macro- and microscopically. For NHA2, the residual bone defect after 5 weeks was significantly less compared to NHA1 or DBBM. There was no difference in residual BSM between NHA1 and DBBM, but the amount in NHA2 was significantly lower. NHA2 also showed the least amount of soft tissue and the highest amount of new bone after 5 weeks. Eight months after implantation, no significant differences in the amount of residual bone defects, in soft tissue or in bone formation were detected between the groups. Again, NHA2 showed significant less residual material than NHA1 and DBBM. We observed non-significant differences in the biological hard tissue response of NHA1 and DBBM. The water-soluble NHA2 initially induced an increased amount of new bone but was highly compressed which may have a negative effect in less stable augmentations of the jaw. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kühl, Sebastian; Brochhausen, Christoph; Götz, Hermann; Filippi, Andreas; Payer, Michael; d'Hoedt, Bernd; Kreisler, Matthias
2013-03-01
This study aims to evaluate the effect of adding bone substitute materials (BSM) to particulated autogenous bone (PAB) on the volume fraction (Vf) of newly formed bone after maxillary sinus augmentation. Thirty healthy patients undergoing maxillary sinus augmentation were included. PAB (N = 10), mixtures of PAB and beta-tricalciumphosphate (PAB/β-TCP) (N = 10), as well as PAB and β-TCP and hydroxyapatite (PAB/HA/β-TCP) (N = 10) were randomly used for sinus augmentation. A sample of the graft material was maintained from each patient at time of maxillary sinus augmentation, and Vfs of the PAB and/or BSM in the samples were determined by means of microcomputerized tomography (μ-CT). Five months later, samples of the grafted areas were harvested during implantation using a trephine bur. μ-CT analysis of these samples was performed, and the Vf of bone and BSM were compared with the data obtained 5 months earlier from the original material. The mean Vf of the bone showed a statistically significant increase (p < 0.05) in all groups after a healing period of 5 months without statistically significant difference between the groups. With regard to the increase of bone volume, it is not relevant if PAB is used alone or combined with β-TCP or HA/β-TCP. The amount of PAB and associated donor site morbidity may be reduced by adding BSM for maxillary sinus augmentation.
Does PRP enhance bone integration with grafts, graft substitutes, or implants? A systematic review
2013-01-01
Background Several bone implants are applied in clinical practice, but none meets the requirements of an ideal implant. Platelet-rich plasma (PRP) is an easy and inexpensive way to obtain growth factors in physiologic proportions that might favour the regenerative process. The aim of this review is to analyse clinical studies in order to investigate the role of PRP in favouring bone integration of graft, graft substitutes, or implants, and to identify the materials for which the additional use of PRP might be associated with superior osseo- and soft tissues integration. Methods A search on PubMed database was performed considering the literature from 2000 to 2012, using the following string: ("Bone Substitutes"[Mesh] OR "Bone Transplantation"[Mesh] OR "Bone Regeneration"[Mesh] OR "Osseointegration"[Mesh]) AND ("Blood Platelets"[Mesh] OR "Platelet-Rich Plasma"[Mesh]). After abstracts screening, the full-texts of selected papers were analyzed and the papers found from the reference lists were also considered. The search focused on clinical applications documented in studies in the English language: levels of evidence included in the literature analysis were I, II and III. Results Literature analysis showed 83 papers that fulfilled the inclusion criteria: 26 randomized controlled trials (RCT), 14 comparative studies, 29 case series, and 14 case reports. Several implant materials were identified: 24 papers on autologous bone, 6 on freeze-dried bone allograft (FDBA), 16 on bovine porous bone mineral (BPBM), 9 on β-tricalcium phosphate (β-TCP), 4 on hydroxyapatite (HA), 2 on titanium (Ti), 1 on natural coral, 1 on collagen sponge, 1 on medical-grade calcium sulphate hemihydrate (MGCSH), 1 on bioactive glass (BG) and 18 on a combination of biomaterials. Only 4 papers were related to the orthopaedic field, whereas the majority belonged to clinical applications in oral/maxillofacial surgery. Conclusions The systematic research showed a growing interest in this approach for bone implant integration, with an increasing number of studies published over time. However, knowledge on this topic is still preliminary, with the presence mainly of low quality studies. Many aspects still have to be understood, such as the biomaterials that can benefit most from PRP and the best protocol for PRP both for production and application. PMID:24261343
Ismail, Tarek; Osinga, Rik; Todorov, Atanas; Haumer, Alexander; Tchang, Laurent A; Epple, Christian; Allafi, Nima; Menzi, Nadia; Largo, René D; Kaempfen, Alexandre; Martin, Ivan; Schaefer, Dirk J; Scherberich, Arnaud
2017-11-01
Avascular necrosis of bone (AVN) leads to sclerosis and collapse of bone and joints. The standard of care, vascularized bone grafts, is limited by donor site morbidity and restricted availability. The aim of this study was to generate and test engineered, axially vascularized SVF cells-based bone substitutes in a rat model of AVN. SVF cells were isolated from lipoaspirates and cultured onto porous hydroxyapatite scaffolds within a perfusion-based bioreactor system for 5days. The resulting constructs were inserted into devitalized bone cylinders mimicking AVN-affected bone. A ligated vascular bundle was inserted upon subcutaneous implantation of constructs in nude rats. After 1 and 8weeks in vivo, bone formation and vascularization were analyzed. Newly-formed bone was found in 80% of SVF-seeded scaffolds after 8weeks but not in unseeded controls. Human ALU+cells in the bone structures evidenced a direct contribution of SVF cells to bone formation. A higher density of regenerative, M2 macrophages was observed in SVF-seeded constructs. In both experimental groups, devitalized bone was revitalized by vascularized tissue after 8 weeks. SVF cells-based osteogenic constructs revitalized fully necrotic bone in a challenging AVN rat model of clinically-relevant size. SVF cells contributed to accelerated initial vascularization, to bone formation and to recruitment of pro-regenerative endogenous cells. Avascular necrosis (AVN) of bone often requires surgical treatment with autologous bone grafts, which is surgically demanding and restricted by significant donor site morbidity and limited availability. This paper describes a de novo engineered axially-vascularized bone graft substitute and tests the potential to revitalize dead bone and provide efficient new bone formation in a rat model. The engineering of an osteogenic/vasculogenic construct of clinically-relevant size with stromal vascular fraction of human adipose, combined to an arteriovenous bundle is described. This construct revitalized and generated new bone tissue. This successful approach proposes a novel paradigm in the treatment of AVN, in which an engineered, vascularized osteogenic graft would be used as a germ to revitalize large volumes of necrotic bone. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Merli, Mauro; Moscatelli, Marco; Mariotti, Giorgia; Pagliaro, Umberto; Raffaelli, Eugenia; Nieri, Michele
2015-01-01
The objective of this parallel randomised controlled trial is to compare two bone substitutes and collagen membranes in a one-stage procedure for horizontal bone augmentation: anorganic bovine bone (Bio-Oss) and collagen porcine membranes (Bio-Gide) (BB group) versus a synthetic resorbable bone graft substitute made of pure β-tricalcium phosphate (Ceros TCP) and porcine pericardium collagen membranes (Jason) (CJ group). Patients in need of implant treatment having at least one site with horizontal osseous defects at a private clinic in Rimini (Italy) were included in this study. Patients were randomised to receive either the BB or CJ treatment. Randomisation was computer-generated with allocation concealment by opaque sequentially numbered sealed envelopes. Patients and the outcome assessor were blinded to group assignment. The main outcome measures were implant failure, complications, clinical bone gain at augmented sites, and complete filling of the bone defect. Secondary outcome measures were chair-time, postoperative pain and peri-implant marginal bone level changes. Twenty-five patients with 32 implants were allocated to the BB group and 25 patients with 29 implants to the CJ group. All 50 randomised patients received the treatment as allocated and there were no dropouts up to 6-months post-loading (12 months post-surgery). There were no failures and there were three complications in the BB group and three complications in the CJ group (relative risk: 1.00, 95% CI from 0.22 to 4.49, P = 1.00). The estimated difference between treatments in the vertical defect bone gain was -0.15 mm (95% CI from -0.65 to 0.35, P = 0.5504) favouring the BB group, and the estimated difference between treatments in the horizontal defect bone gain was -0.27 mm (95%CI from -0.73 to 0.19, P = 0.3851) favouring the BB group. There was no difference in the complete filling of the defect (relative risk: 0.88, 95%CI from 0.58 to 1.34, P = 0.7688). No significant differences were detected for chair-time (P = 0.3524), for VAS pain immediately after surgery (P = 0.5644), VAS pain after 1 week (P = 0.5074) and VAS pain after 2 weeks (P = 0.6950). A slight difference (0.24 mm, 95%CI from 0.0004 to 0.47, P = 0.0464) was detected in radiographic peri-implant bone loss favouring the CJ group. No significant differences, except for radiographic bone loss, were observed in this randomised controlled trial comparing anorganic bovine bone with collagen porcine membranes versus synthetic resorbable bone made of pure β-tricalcium phosphate with pericardium collagen membranes for horizontal augmentation.
Bi, Long; Li, De-Cheng; Huang, Zhao-Song; Yuan, Zhi
2013-07-01
Processed xenegeneic cancellous bone represents an alternative to bone autograft. In order to observe the effects of present prion inactivation treatments on the natural properties of xenogeneic cancellous bones, we treated bovine bone granules with sodium hydroxide (NaOH), sodium hypochlorite (NaOCl), and gaseous hydrogen peroxide (gH2 O2 ) respectively in this study. The microstructure, composition, and mineral content of the granules were evaluated by scanning electron micrograph, energy dispersive X-ray spectroscopy, ash analysis, and micro-computed tomography. The biomechanical property was analyzed by a materials testing machine. The cytocompatibility was evaluated by using a mouse fibroblast cell line (3T3). The microstructure, organic content, and mechanical strength were dramatically altered at the surface of bone in both NaOH- and NaOCl-treated groups, but not in the gH2 O2 -treated group. Compared with the gH2 O2 -treated group, attachment and proliferation of 3T3 were reduced in either NaOH- or NaOCl-treated groups. As the consequence, gH2 O2 treatment may be a useful approach of disinfection for the preparation of natural cancellous bone with well-preserved structural, mechanical, and biological properties. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Xu, Jianwen; Li, Xinning; Lian, Jane B; Ayers, David C; Song, Jie
2009-10-01
We tested the hypothesis that synthetic composites containing a high percentage of osteoconductive biominerals well-integrated with a hydrophilic polymer matrix can be engineered to provide both the structural and biochemical framework of a viable synthetic bone substitute. FlexBone, an elastic hydrogel-mineral composite exhibiting excellent structural integration was prepared by crosslinking poly(2-hydroxyethyl methacrylate) hydrogel in the presence of 25 wt% nanocrystalline hydroxyapatite and 25 wt% tricalcium phosphate. Biologically active factors tetracycline, BMP-2/7, and RANKL that stimulate bone formation and remodeling were encapsulated into FlexBone during polymerization or via postpolymerization adsorption. SEM and dynamic mechanical analyses showed that the encapsulation of tetracycline (5.0 wt%) did not compromise the structural integrity and compressive behavior of FlexBone, which could withstand repetitive megapascal-compressive loadings and be securely press-fitted into critical femoral defects. Dose-dependent, sustained in vitro release of tetracycline was characterized by spectroscopy and bacterial inhibition. A single dose of 40 ng BMP-2/7 or 10 ng RANKL pre-encapsulated with 50 mg FlexBone, released over 1 week, was able to induce local osteogenic differentiation of myoblast C2C12 cells and osteoclastogenesis of macrophage RAW264.7 cells, respectively. With a bonelike structural composition, useful surgical handling characteristics, and tunable biochemical microenvironment, FlexBone provides an exciting opportunity for the treatment of hard-to-heal skeletal defects with minimal systemic side effects. (c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Correlating the nanoscale mechanical and chemical properties of knockout mice bones
NASA Astrophysics Data System (ADS)
Kavukcuoglu, Nadire Beril
Bone is a mineral-organic composite where the organic matrix is mainly type I collagen plus small amounts of non-collagenous proteins including osteopontin (OPN), osteocalcin (OC) and fibrillin 2 (Fbn2). Mature bone undergoes remodeling continually so new bone is formed and old bone resorbed. Uncoupling between the bone resorption and bone formation causes an overall loss of bone mass and leads to diseases like osteoporosis and osteopenia. These are characterized by structural deterioration of the bone tissue and an increased risk of fracture. The non-collagenous bone proteins are known to have a role in regulating bone turnover and to affect the structural integrity of bone. OPN and OC play a key role in bone resorption and formation, while absence of Fbn-2 causes a connective tissue disorder (congenital contractural arachnodactyly) and has been associated with decreased bone mass. In this thesis nanoindentation and Raman-microspectroscopy techniques were used to investigate and correlate the mechanical and chemical properties of cortical femoral bones from OPN deficient (OPN-/-), OC deficient (OC-/-) and Fbn-2 deficient (Fbn2-/-) mice and their age, sex and background matched wild-type controls (OPN+/+, OC+/+ and Fbn2+/+). For OPN the hardness (H) and elastic modulus (E) of under 12 week OPN-/- bones were significantly lower than for OPN+/+ bones, but Raman showed no significant difference. Mechanical properties of bones from mice older than 12 weeks were not significantly different with genotype. However, mineralization and crystallinity from >50 week OPN-/- bones were significantly higher than for OPN+/+ bones. Mechanical properties of OPN-/- bones showed no variation with age, but mineralization, crystallinity and type-B carbonate substitution increased for both genotypes. For OC-/- intra-bone analyses showed that the hardness and crystallinity of the bones were significantly higher, especially in the mid-cortical sections, compared to OC+/+ bones. Fbn2-/- bones had significantly lower hardness and elastic modulus compared to Fbn2+/+ bones, but the crystallinity was higher. Type-B carbonate substitution decreased significantly in OC-/- and Fbn2-/- bones compared to their wild-type controls. The thesis has provided new insight into how non-collagenous proteins affect the nanomechanics and chemistry of bone tissue. This information will assist in the development of new treatments for osteopenia/osteoporosis.
Vacuum-sintered body of a novel apatite for artificial bone
NASA Astrophysics Data System (ADS)
Tamura, Kenichi; Fujita, Tatsushi; Morisaki, Yuriko
2013-12-01
We produced regenerative artificial bone material and bone parts using vacuum-sintered bodies of a novel apatite called "Titanium medical apatite (TMA®)" for biomedical applications. TMA was formed by chemically connecting a Ti oxide molecule with the reactive [Ca10(PO4)6] group of Hydroxyapatite (HAp). The TMA powders were kneaded with distilled water, and solid cylinders of compacted TMA were made by compression molding at 10 MPa using a stainless-steel vessel. The TMA compacts were dried and then sintered in vacuum (about 10-3 Pa) or in air using a resistance heating furnace in the temperature range 1073-1773 K. TMA compacts were sintered at temperatures greater than 1073 K, thus resulting in recrystallization. The TMA compact bodies sintered in the range 1273-1773 K were converted into mixtures composed of three crystalline materials: α-TCP (tricalcium phosphate), β-TCP, and Perovskite-CaTiO3. The Perovskite crystals were stable and hard. In vacuum-sintering, the Perovskite crystals were transformed into fibers (approximately 1 µm in diameter × 8 µm in length), and the fiber distribution was uniform in various directions. We refer to the TMA vacuum-sintered bodies as a "reinforced composite material with Perovskite crystal fibers." However, in atmospheric sintering, the Perovskite crystals were of various sizes and were irregularly distributed as a result of the effect of oxygen. After sintering temperature at 1573 K, the following results were obtained: the obtained TMA vacuum-sintered bodies (1) were white, (2) had a density of approximately 2300 kg/m3 (corresponding to that of a compact bone or a tooth), and had a thermal conductivity of approximately 31.3 W/(m·K) (corresponding to those of metal or ceramic implants). Further, it was possible to cut the TMA bodies into various forms with a cutting machine. An implant made of TMA and inserted into a rabbit jaw bone was covered by new bone tissues after just one month because of the high biocompatibility of the TMA implant. TMA vacuum-sintered bodies are promising biomaterials for use as artificial bone materials to regenerate bone parts and produce bone reinforcement structures that are used for bone junctions in dental and orthopedic surgery.
Artificial sweeteners: safe or unsafe?
Qurrat-ul-Ain; Khan, Sohaib Ahmed
2015-02-01
Artificial sweeteners or intense sweeteners are sugar substitutes that are used as an alternative to table sugar. They are many times sweeter than natural sugar and as they contain no calories, they may be used to control weight and obesity. Extensive scientific research has demonstrated the safety of the six low-calorie sweeteners currently approved for use in foods in the U.S. and Europe (stevia, acesulfame-K, aspartame, neotame, saccharin and sucralose), if taken in acceptable quantities daily. There is some ongoing debate over whether artificial sweetener usage poses a health threat .This review article aims to cover thehealth benefits, and risks, of consuming artificial sweeteners, and discusses natural sweeteners which can be used as alternatives.
Calvo Guirado, Jose Luis; Ramírez Fernández, Maria Piedad; Negri, Bruno; Delgado Ruiz, Rafael Arcesio; Maté Sánchez de-Val, José Eduardo; Gómez-Moreno, Gerardo
2013-02-01
Adequate alveolar ridges are fundamental to successful rehabilitation with implants. There are diverse techniques for reconstructing atrophied ridges, of which bone substitute grafts is one possibility. The aim of this study was to carry out radiological and histomorphometric evaluations of bone response to collagenized porcine bone xenografts over a 4-month period following their insertion in rabbits' tibiae. Twenty New Zealand rabbits were used. Twenty collagenized porcine bone xenografts (Osteobiol® mp3, Tecnoss Dental s.r.l., Torino, Italy), in granulated form of 600 to 1,000 µm, were inserted in the proximal metaphyseal area of the animals' tibiae and 20 control areas were created. Following implantation, the animals were sacrificed in four groups of five, after 1, 2, 3, and 4 months, respectively. Radiological and histomorphometric studies were made. After 4 months, radiological images revealed bone defects with a decrease in graft volume and the complete repair of the osseous defect. No healed or residual bone alterations attributable to the presence of the implants were observed. Histomorphometric analysis at 4 months found mean values for newly formed bone, residual graft material, and non-mineralized connective tissue of 25.4 ± 1.8%, 36.37 ± 3.0%, and 38.22 ± 2.5%, respectively. There were no statistical differences in the length of cortical formation with collagenized porcine xenograft (98.9 ± 1.1%) compared with the control samples (99.1 ± 0.7%) at the end of the study period. The biomaterial used proved to be biocompatible, bioabsorbable, and osteoconductive and as such, a possible bone substitute that did not interfere with the bone's normal reparative processes. © 2011 Wiley Periodicals, Inc.
Basu, Bikramjit; Sabareeswaran, A; Shenoy, S J
2015-08-01
One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2 -3Al2 O3 -1.5P2 O5 -3SrO-2SrF2 for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass. © 2014 Wiley Periodicals, Inc.
Valiense, Helder; Barreto, Mauricio; Resende, Rodrigo F; Alves, Adriana T; Rossi, Alexandre M; Mavropoulos, Elena; Granjeiro, José M; Calasans-Maia, Mônica D
2016-02-01
Various synthetic bone substitutes have been developed to reconstruct bone defects. One of the most prevalent ceramics in bone treatment is hydroxyapatite (HA) that is a useful material as bone substitute, however, with a low rate of biodegradation. Its structure allows isomorphic cationic and anionic substitutions to be easily introduced, which can alter the crystallinity, morphology, biocompatibility, and osteoconductivity. The objective of this study was to investigate the in vitro and in vivo biological responses to strontium-containing nanostructured carbonated HA/sodium alginate (SrCHA) spheres (425<ϕ <600 μm) that were used for sinus lifts in rabbits using nanostructured carbonated HA/sodium alginate (CHA) as a reference. Cytocompatibility was determined using a multiparametric assay after exposing murine preosteoblasts to the extracts of these materials. Twelve male and female rabbits underwent bilateral sinus lift procedures and were divided into two groups (CHA or SrCHA) and in two experimental periods (4 and 12 weeks), for microscopic and histomorphometric analyses. The in vitro test revealed the overall viability of the cells exposed to the CHA and SrCHA extracts; thus, these extracts were considered cytocompatible, which was confirmed by three different parameters in the in vitro tests. The histological analysis showed chronic inflammation with a prevalence of macrophages around the CHA spheres after 4 weeks, and this inflammation decreased after 12 weeks. Bone formation was observed in both groups, and smaller quantities of SrCHA spheres were observed after 12 weeks, indicating greater bioresorption of SrCHA than CHA. SrCHA spheres are biocompatible and osteoconductive and undergo bioresorption earlier than CHA spheres. © 2015 Wiley Periodicals, Inc.
Baba Ismail, Yanny M; Wimpenny, Ian; Bretcanu, Oana; Dalgarno, Kenneth; El Haj, Alicia J
2017-06-01
Ionic substitutions have been proposed as a tool to control the functional behavior of synthetic hydroxyapatite (HA), particularly for Bone Tissue Engineering applications. The effect of simultaneous substitution of different levels of carbonate (CO 3 ) and silicon (Si) ions in the HA lattice was investigated. Furthermore, human bone marrow-derived mesenchymal stem cells (hMSCs) were cultured on multi-substituted HA (SiCHA) to determine if biomimetic chemical compositions were osteoconductive. Of the four different compositions investigates, SiCHA-1 (0.58 wt % Si) and SiCHA-2 (0.45 wt % Si) showed missing bands for CO 3 and Si using FTIR analysis, indicating competition for occupation of the phosphate site in the HA lattice; 500°C was considered the most favorable calcination temperature as: (i) the powders produced possessed a similar amount of CO 3 (2-8 wt %) and Si (<1.0 wt %) as present in native bone; and (ii) there was a minimal loss of CO 3 and Si from the HA structure to the surroundings during calcination. Higher Si content in SiCHA-1 led to lower cell viability and at most hindered proliferation, but no toxicity effect occurred. While, lower Si content in SiCHA-2 showed the highest ALP/DNA ratio after 21 days culture with hMSCs, indicating that the powder may stimulate osteogenic behavior to a greater extent than other powders. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1775-1785, 2017. © 2017 Wiley Periodicals, Inc.
2011-02-02
no treatments and the pres- ence of periosteal callus-like layer surrounding defects with scaffold implantation were observed after 8 weeks post...vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials. 2004; 25(20):5037–44. 20. Lu JX, Gallur A, Flautre
Gagala, J; Tarczynska, M; Gaweda, K; Matuszewski, L
2014-09-01
Osteonecrosis of the femoral head is an entity which occurs mainly in young and active patients aged between 20 and 50. The success of hip joint preserving treatments ranges from 15% to 50% depending on the stage and amount of osteonecrotic lesion. Total hip replacement is indicated in late post-collapse hips but it has unsatisfactory survival because of the wear and osteolysis in young and active patients. Osteochondral allografts have been reported in the treatment of large articular lesions with defects in underlying bone in knee, talus and shoulder. By combining osteoconductive properties of osteochondral allograft with osteogenic abilities of bone marrow-derived mesenchymal cells it has a potential to be an alternative to an autologous graft. The adjunct of hinged joint distraction should minimize stresses in subchondral bone to promote creeping substitution and prevent femoral head collapse. Unlike current treatment modalities, it would provide both structural support and allow bony and articular substitution. Copyright © 2014 Elsevier Ltd. All rights reserved.
[Osteostimulating effect of bone xenograft on bone tissue regeneration].
Balin, V N; Balin, D V; Iordanishvili, A K; Musikin, M I
2015-01-01
The aim of experimental case-control study performed in 28 dogs divided in 2 groups was to assess local tissue reactions on bone xenograft transplantation; dynamics of bone remodeling and formation at the site of bone defect wall contacting with bone xenograft; dynamics and mechanisms of xenograft remodeling. Transplantation of xenograft in conventional bone defects did not cause inflammatory of destructive reactions because of high biocompatibility of the material. At transplantation site active fibrous bone trabeculae formation filling the spaces between xenograft participles was observed. On the 90th day newly formed bone showed lammelar structure. Simultaneously from the 42d day the invasion of cell elements from recipient bed into the material was seen leading to xenograft resorption. The observed dynamics may be assessed as gradual substitution of xenograft with newly formed host bone structures.
Applications of 3D printing in the management of severe spinal conditions.
Provaggi, Elena; Leong, Julian J H; Kalaskar, Deepak M
2017-06-01
The latest and fastest-growing innovation in the medical field has been the advent of three-dimensional printing technologies, which have recently seen applications in the production of low-cost, patient-specific medical implants. While a wide range of three-dimensional printing systems has been explored in manufacturing anatomical models and devices for the medical setting, their applications are cutting-edge in the field of spinal surgery. This review aims to provide a comprehensive overview and classification of the current applications of three-dimensional printing technologies in spine care. Although three-dimensional printing technology has been widely used for the construction of patient-specific anatomical models of the spine and intraoperative guide templates to provide personalized surgical planning and increase pedicle screw placement accuracy, only few studies have been focused on the manufacturing of spinal implants. Therefore, three-dimensional printed custom-designed intervertebral fusion devices, artificial vertebral bodies and disc substitutes for total disc replacement, along with tissue engineering strategies focused on scaffold constructs for bone and cartilage regeneration, represent a set of promising applications towards the trend of individualized patient care.
Heo, Dong Hwa; Lee, Dong Chan; Oh, Jong Yang; Park, Choon Keun
2017-02-01
OBJECTIVE Bony overgrowth and spontaneous fusion are complications of cervical arthroplasty. In contrast, bone loss or bone remodeling of vertebral bodies at the operation segment after cervical arthroplasty has also been observed. The purpose of this study is to investigate a potential complication-bone loss of the anterior portion of the vertebral bodies at the surgically treated segment after cervical total disc replacement (TDR)-and discuss the clinical significance. METHODS All enrolled patients underwent follow-up for more than 24 months after cervical arthroplasty using the Baguera C disc. Clinical evaluations included recording demographic data and measuring the visual analog scale and Neck Disability Index scores. Radiographic evaluations included measurements of the functional spinal unit's range of motion and changes such as bone loss and bone remodeling. The grading of the bone loss of the operative segment was classified as follows: Grade 1, disappearance of the anterior osteophyte or small minor bone loss; Grade 2, bone loss of the anterior portion of the vertebral bodies at the operation segment without exposure of the artificial disc; or Grade 3, significant bone loss with exposure of the anterior portion of the artificial disc. RESULTS Forty-eight patients were enrolled in this study. Among them, bone loss developed in 29 patients (Grade 1 in 15 patients, Grade 2 in 6 patients, and Grade 3 in 8 patients). Grade 3 bone loss was significantly associated with postoperative neck pain (p < 0.05). Bone loss was related to the motion preservation effect of the operative segment after cervical arthroplasty in contrast to heterotopic ossification. CONCLUSIONS Bone loss may be a potential complication of cervical TDR and affect early postoperative neck pain. However, it did not affect mid- to long-term clinical outcomes or prosthetic failure at the last follow-up. Also, this phenomenon may result in the motion preservation effect in the operative segment after cervical TDR.
Singh, Sangeeta
2009-05-01
To evaluate the efficacy of platelet-rich plasma concentrate in the management of a cirumferential, infrabony defect associated with an endoperio lesion in a maxillary canine. A 45 year-old male patient with an endoperio lesion in the left maxillary canine was initially treated with endodontic therapy. Following the endodontic treatment, the circumferential, infrabony defect was treated using platelet-rich plasma and an alloplastic bone substitute. At the end of three months, there was a gain in the clinical attachment level and reduction in probing depth. Radiographic evidence showed that there was significant bony fill. The results were maintained at the time of recall nine months later.
Dau, Michael; Ganz, Cornelia; Zaage, Franziska; Frerich, Bernhard; Gerber, Thomas
2017-01-01
The aim of this study was to examine the in vivo characteristics and levels of integration and degradation of a ready-to-use bone grafting block with elastic properties (elastic block) for the use in surgery. Thirty-six male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. All created defects - one per animal - were filled with an unsintered nanocrystalline hydroxyapatite embedded either with a non-cross-linked hydrogel carrier (CONT, n=18) or a cross-linked hydrogel carrier (elastic block [EB], n=18) based on polyvinylpyrrolidone (PVP) and silica sol, respectively. The animals were killed after 12 (n=12), 21 (n=12) and 63 days (n=12). The bone formation and defect healing were quantified by histomorphometric measurements made in paraffin sections. Additionally, immunohistochemical (tartrate-resistant acid phosphatase [TRAP] and alkaline phosphatase [aP]), antibody-based examinations (CD68) and energy-dispersive x-ray scattering measurements of silica atom concentration were carried out. A larger remaining bone defect area overall was observed in EB after 12 days and 21 days. After 63 days, similar areas of remaining bone defects were found. The amount of the remaining carrier material in EB overall was higher at all times. In CONT no residual carrier material was found at 12 days and later. CD68 analyses showed significantly lower level of CD68-positive marked cells after 21 days in CONT, and nonsignificant differences at 12 and 63 days, respectively. Additionally, a significantly higher level of aP-positive marked cells was observed in CONT after 12 days. Later on, the levels of aP-positive marked cells were slightly higher in EB (21 and 63 days). Furthermore, no significant differences regarding the level of TRAP-positive marked cells in each group were observed. The bone substitute (EB) with the cross-linked PVP-based hydrogel carrier leads at the beginning to a higher amount of remaining carrier material and remaining bone substitute. This delayed degradation is supposed to be the reason for the observed lower level of bone remodeling and is caused by the irradiation changes (cross links) in the structure in PVP.
Dau, Michael; Ganz, Cornelia; Zaage, Franziska; Frerich, Bernhard; Gerber, Thomas
2017-01-01
Purpose The aim of this study was to examine the in vivo characteristics and levels of integration and degradation of a ready-to-use bone grafting block with elastic properties (elastic block) for the use in surgery. Materials and methods Thirty-six male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. All created defects – one per animal – were filled with an unsintered nanocrystalline hydroxyapatite embedded either with a non-cross-linked hydrogel carrier (CONT, n=18) or a cross-linked hydrogel carrier (elastic block [EB], n=18) based on polyvinylpyrrolidone (PVP) and silica sol, respectively. The animals were killed after 12 (n=12), 21 (n=12) and 63 days (n=12). The bone formation and defect healing were quantified by histomorphometric measurements made in paraffin sections. Additionally, immunohistochemical (tartrate-resistant acid phosphatase [TRAP] and alkaline phosphatase [aP]), antibody-based examinations (CD68) and energy-dispersive x-ray scattering measurements of silica atom concentration were carried out. Results A larger remaining bone defect area overall was observed in EB after 12 days and 21 days. After 63 days, similar areas of remaining bone defects were found. The amount of the remaining carrier material in EB overall was higher at all times. In CONT no residual carrier material was found at 12 days and later. CD68 analyses showed significantly lower level of CD68-positive marked cells after 21 days in CONT, and nonsignificant differences at 12 and 63 days, respectively. Additionally, a significantly higher level of aP-positive marked cells was observed in CONT after 12 days. Later on, the levels of aP-positive marked cells were slightly higher in EB (21 and 63 days). Furthermore, no significant differences regarding the level of TRAP-positive marked cells in each group were observed. Conclusion The bone substitute (EB) with the cross-linked PVP-based hydrogel carrier leads at the beginning to a higher amount of remaining carrier material and remaining bone substitute. This delayed degradation is supposed to be the reason for the observed lower level of bone remodeling and is caused by the irradiation changes (cross links) in the structure in PVP. PMID:29066890
Artificial Muscle Kits for the Classroom
NASA Technical Reports Server (NTRS)
2004-01-01
Commonly referred to as "artificial muscles," electroactive polymer (EAP) materials are lightweight strips of highly flexible plastic that bend or stretch when subjected to electric voltage. EAP materials may prove to be a substitution for conventional actuation components such as motors and gears. Since the materials behave similarly to biological muscles, this emerging technology has the potential to develop improved prosthetics and biologically-inspired robots, and may even one day replace damaged human muscles. The practical application of artificial muscles provides a challenge, however, since the material requires improved effectiveness and durability before it can fulfill its potential.
Harnessing the power of macrophages/monocytes for enhanced bone tissue engineering.
Dong, Lei; Wang, Chunming
2013-06-01
Bone tissue engineering has attracted considerable attention as a promising treatment modality for severe bone degeneration. The pressing need for more sophisticated and fully functional bone substitutes has spurred a refocus on the development of bone constructs in a way more comparable to the physiological process. Current research is increasingly revealing the central roles of macrophages/monocytes in regulating bone development and repair, so we propose that these immunocytes can play a similar pivotal role in directing engineered bone regeneration. Accordingly, we discuss two possible strategies to exemplify how the distinctive power of macrophages/monocytes--particularly their cytokine-secretion ability and chemotactic response to foreign materials--can be harnessed to enhance the performance of bone tissue engineering applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Exercise does not enhance aged bone's impaired response to artificial loading in C57Bl/6 mice.
Meakin, Lee B; Udeh, Chinedu; Galea, Gabriel L; Lanyon, Lance E; Price, Joanna S
2015-12-01
Bones adapt their structure to their loading environment and so ensure that they become, and are maintained, sufficiently strong to withstand the loads to which they are habituated. The effectiveness of this process declines with age and bones become fragile fracturing with less force. This effect in humans also occurs in mice which experience age-related bone loss and reduced adaptation to loading. Exercise engenders many systemic and local muscular physiological responses as well as engendering local bone strain. To investigate whether these physiological responses influence bones' adaptive responses to mechanical strain we examined whether a period of treadmill exercise influenced the adaptive response to an associated period of artificial loading in young adult (17-week) and old (19-month) mice. After treadmill acclimatization, mice were exercised for 30 min three times per week for two weeks. Three hours after each exercise period, right tibiae were subjected to 40 cycles of non-invasive axial loading engendering peak strain of 2250 με. In both young and aged mice exercise increased cross-sectional muscle area and serum sclerostin concentration. In young mice it also increased serum IGF1. Exercise did not affect bone's adaptation to loading in any measured parameter in young or aged bone. These data demonstrate that a level of exercise sufficient to cause systemic changes in serum, and adaptive changes in local musculature, has no effect on bone's response to loading 3h later. This study provides no support for the beneficial effects of exercise on bone in the elderly being mediated by systemic or local muscle-derived effects rather than local adaptation to altered mechanical strain. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Liu, Yonggang; Tan, Peng; Liu, Shanshan; Shi, Hang; Feng, Xin; Ma, Qun
2015-01-01
Objective: Calculus bovis have been widely used in Chinese herbology for the treatment of hyperpyrexia, convulsions, and epilepsy. Nowadays, due to the limited source and high market price, the substitutes, artificial and in vitro cultured Calculus bovis, are getting more and more commonly used. The adulteration phenomenon is serious. Therefore, it is crucial to establish a fast and simple method in discriminating the natural, artificial and in vitro cultured Calculus bovis. Bile acids, one of the main active constituents, are taken as an important indicator for evaluating the quality of Calculus bovis and the substitutes. Several techniques have been built to analyze bile acids in Calculus bovis. Whereas, as bile acids are with poor ultraviolet absorbance and high structural similarity, effective technology for identification and quality control is still lacking. Methods: In this study, high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (LC/MS/MS) was applied in the analysis of bile acids, which effectively identified natural, artificial and in vitro cultured Calculus bovis and provide a new method for their quality control. Results: Natural, artificial and in vitro cultured Calculus bovis were differentiated by bile acids analysis. A new compound with protonated molecule at m/z 405 was found, which we called 3α, 12α-dihydroxy-7-oxo-5α-cholanic acid. This compound was discovered in in vitro cultured Calculus bovis, but almost not detected in natural and artificial Calculus bovis. A total of 13 constituents was identified. Among them, three bio-markers, including glycocholic acid, glycodeoxycholic acid and taurocholic acid (TCA) were detected in both natural and artificial Calculus bovis, but the density of TCA was different in two kinds of Calculus bovis. In addition, the characteristics of bile acids were illustrated. Conclusions: The HPLC coupled with tandem MS (LC/MS/MS) method was feasible, easy, rapid and accurate in identifying natural, artificial and in vitro cultured Calculus bovis. PMID:25829769
7 CFR 1000.40 - Classes of utilization.
Code of Federal Regulations, 2011 CFR
2011-01-01
... similar soft, high-moisture cheese resembling cottage cheese in form or use; (ii) Milkshake and ice milk... or any product containing artificial fat or fat substitutes that resembles a fluid cream product...
7 CFR 1000.40 - Classes of utilization.
Code of Federal Regulations, 2010 CFR
2010-01-01
... similar soft, high-moisture cheese resembling cottage cheese in form or use; (ii) Milkshake and ice milk... or any product containing artificial fat or fat substitutes that resembles a fluid cream product...
Moussa, Mira; Carrel, Jean-Pierre; Scherrer, Susanne; Cattani-Lorente, Maria; Wiskott, Anselm; Durual, Stéphane
2015-01-01
Introduction: A 3D-printed construct made of orthogonally layered strands of tricalcium phosphate (TCP) and hydroxyapatite has recently become available. The material provides excellent osteoconductivity. We simulated a medium-term experiment in a sheep calvarial model by priming the blocks with BMP-2. Vertical bone growth/maturation and material resorption were evaluated. Materials and methods: Titanium hemispherical caps were filled with either bare- or BMP-2 primed constructs and placed onto the calvaria of adult sheep (n = 8). Histomorphometry was performed after 8 and 16 weeks. Results: After 8 weeks, relative to bare constructs, BMP-2 stimulation led to a two-fold increase in bone volume (Bare: 22% ± 2.1%; BMP-2 primed: 50% ± 3%) and a 3-fold decrease in substitute volume (Bare: 47% ± 5%; BMP-2 primed: 18% ± 2%). These rates were still observed at 16 weeks. The new bone grew and matured to a haversian-like structure while the substitute material resorbed via cell- and chemical-mediation. Conclusion: By priming the 3D construct with BMP-2, bone metabolism was physiologically accelerated, that is, enhancing vertical bone growth and maturation as well as material bioresorption. The scaffolding function of the block was maintained, leaving time for the bone to grow and mature to a haversian-like structure. In parallel, the material resorbed via cell-mediated and chemical processes. These promising results must be confirmed in clinical tests.
Wang, Chun-Hui; Guo, Zhong-Shang; Pang, Fei; Zhang, Li-Yuan; Yan, Ming; Yan, Jin-Hong; Li, Ke-Wen; Li, Xiao-Jie; Li, Yong; Bi, Long; Han, Yi-Sheng
2015-07-22
The objective of this study was to investigate whether surface coating with graphene could enhance the surface bioactivation of PET-based artificial ligaments to accelerate graft-to-bone healing after anterior cruciate ligament reconstruction. In an in vitro study, the proliferation of MC3T3-E1 cells and their differentiation on the scaffolds were quantified via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and real-time polymerase chain reaction assays. The significantly higher optical-density values and transcription levels of osteoblast-specific genes indicated that graphene modification could promote the proliferation of MC3T3-E1 cells and accelerate their specific differentiation into osteogenic lineages on scaffolds. In an in vivo test, rabbits were used to establish an extra-articular graft-to-bone healing model. At 4, 8, and 12 weeks after surgery, biomechanical tests, microcomputed tomography analysis, and histological observations were performed. The final results demonstrated that the microstructural parameters, the average mineral apposition rate of the bone, and the biomechanical properties of the graphene-coated polyethylene terephthalate (PET)-based artificial ligament (G-PET-AL) group were significantly higher than those of the PET-AL graft group (P < 0.05). The results of Van Gieson staining indicated that in the G-PET-AL group, there was more newly formed bone than there was in the group in which nongraphene-coated PET-ALs were used. In conclusion, graphene exhibits considerable potential for enhancing the surface bioactivation of materials.
Effects of Artificial Ligaments with Different Porous Structures on the Migration of BMSCs
Wang, Chun-Hui; Hou, Wei; Yan, Ming; Guo, Zhong-shang; Wu, Qi; Bi, Long; Han, Yi-Sheng
2015-01-01
Polyethylene terephthalate- (PET-) based artificial ligaments (PET-ALs) are commonly used in anterior cruciate ligament (ACL) reconstruction surgery. The effects of different porous structures on the migration of bone marrow mesenchymal stem cells (BMSCs) on artificial ligaments and the underlying mechanisms are unclear. In this study, a cell migration model was utilized to observe the migration of BMSCs on PET-ALs with different porous structures. A rabbit extra-articular graft-to-bone healing model was applied to investigate the in vivo effects of four types of PET-ALs, and a mechanical test and histological observation were performed at 4 weeks and 12 weeks. The BMSC migration area of the 5A group was significantly larger than that of the other three groups. The migration of BMSCs in the 5A group was abolished by blocking the RhoA/ROCK signaling pathway with Y27632. The in vivo study demonstrated that implantation of 5A significantly improved osseointegration. Our study explicitly demonstrates that the migration ability of BMSCs can be regulated by varying the porous structures of the artificial ligaments and suggests that this regulation is related to the RhoA/ROCK signaling pathway. Artificial ligaments prepared using a proper knitting method and line density may exhibit improved biocompatibility and clinical performance. PMID:26106429
Beckmann, J; Steinert, A; Zilkens, C; Zeh, A; Schnurr, C; Schmitt-Sody, M; Gebauer, M
2016-04-01
Knee arthroplasty is a successful standard procedure in orthopedic surgery; however, approximately 20 % of patients are dissatisfied with the clinical results as they suffer pain and can no longer achieve the presurgery level of activity. According to the literature the reasons are inexact fitting of the prosthesis or too few anatomically formed implants resulting in less physiological kinematics of the knee joint. Reducing the number of dissatisfied patients and the corresponding number of revisions is an important goal considering the increasing need for artificial joints. In this context, patient-specific knee implants are an obvious alternative to conventional implants. For the first time implants are now matched to the individual bone and not vice versa to achieve the best possible individual situation and geometry and more structures (e.g. ligaments and bone) are preserved or only those structures are replaced which were actually destroyed by arthrosis. According to the authors view, this represents an optimal and pioneering addition to conventional implants. Patient-specific implants and the instruments needed for correct alignment and fitting can be manufactured by virtual 3D reconstruction and 3D printing based on computed tomography (CT) scans. The portfolio covers medial as well as lateral unicondylar implants, medial as well as lateral bicompartmental implants (femorotibial and patellofemoral compartments) and cruciate ligament-preserving as well as cruciate ligament-substituting total knee replacements; however, it must be explicitly emphasized that the literature is sparse and no long-term data are available.
Ritz, Ulrike; Gerke, Rebekka; Götz, Hermann; Stein, Stefan; Rommens, Pol Maria
2017-11-29
Although a lot of research has been performed, large segmental bone defects caused by trauma, infection, bone tumors or revision surgeries still represent big challenges for trauma surgeons. New and innovative bone substitutes are needed. Three-dimensional (3D) printing is a novel procedure to create 3D porous scaffolds that can be used for bone tissue engineering. In the present study, solid discs as well as porous cage-like 3D prints made of polylactide (PLA) are coated or filled with collagen, respectively, and tested for biocompatibility and endotoxin contamination. Microscopic analyses as well as proliferation assays were performed using various cell types on PLA discs. Stromal-derived factor (SDF-1) release from cages filled with collagen was analyzed and the effect on endothelial cells tested. This study confirms the biocompatibility of PLA and demonstrates an endotoxin contamination clearly below the FDA (Food and Drug Administration) limit. Cells of various cell types (osteoblasts, osteoblast-like cells, fibroblasts and endothelial cells) grow, spread and proliferate on PLA-printed discs. PLA cages loaded with SDF-1 collagen display a steady SDF-1 release, support cell growth of endothelial cells and induce neo-vessel formation. These results demonstrate the potential for PLA scaffolds printed with an inexpensive desktop printer in medical applications, for example, in bone tissue engineering.
NASA Astrophysics Data System (ADS)
Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng
2016-01-01
We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo. The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery.
Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng
2016-01-01
We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo . The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery.
Biological and medical significance of calcium phosphates.
Dorozhkin, Sergey V; Epple, Matthias
2002-09-02
The inorganic part of hard tissues (bones and teeth) of mammals consists of calcium phosphate, mainly of apatitic structure. Similarly, most undesired calcifications (i.e. those appearing as a result of various diseases) of mammals also contain calcium phosphate. For example, atherosclerosis results in blood-vessel blockage caused by a solid composite of cholesterol with calcium phosphate. Dental caries result in a replacement of less soluble and hard apatite by more soluble and softer calcium hydrogenphosphates. Osteoporosis is a demineralization of bone. Therefore, from a chemical point of view, processes of normal (bone and teeth formation and growth) and pathological (atherosclerosis and dental calculus) calcifications are just an in vivo crystallization of calcium phosphate. Similarly, dental caries and osteoporosis can be considered to be in vivo dissolution of calcium phosphates. On the other hand, because of the chemical similarity with biological calcified tissues, all calcium phosphates are remarkably biocompatible. This property is widely used in medicine for biomaterials that are either entirely made of or coated with calcium phosphate. For example, self-setting bone cements made of calcium phosphates are helpful in bone repair and titanium substitutes covered with a surface layer of calcium phosphates are used for hip-joint endoprostheses and tooth substitutes, to facilitate the growth of bone and thereby raise the mechanical stability. Calcium phosphates have a great biological and medical significance and in this review we give an overview of the current knowledge in this subject.
Gerke, Rebekka; Götz, Hermann; Rommens, Pol Maria
2017-01-01
Although a lot of research has been performed, large segmental bone defects caused by trauma, infection, bone tumors or revision surgeries still represent big challenges for trauma surgeons. New and innovative bone substitutes are needed. Three-dimensional (3D) printing is a novel procedure to create 3D porous scaffolds that can be used for bone tissue engineering. In the present study, solid discs as well as porous cage-like 3D prints made of polylactide (PLA) are coated or filled with collagen, respectively, and tested for biocompatibility and endotoxin contamination. Microscopic analyses as well as proliferation assays were performed using various cell types on PLA discs. Stromal-derived factor (SDF-1) release from cages filled with collagen was analyzed and the effect on endothelial cells tested. This study confirms the biocompatibility of PLA and demonstrates an endotoxin contamination clearly below the FDA (Food and Drug Administration) limit. Cells of various cell types (osteoblasts, osteoblast-like cells, fibroblasts and endothelial cells) grow, spread and proliferate on PLA-printed discs. PLA cages loaded with SDF-1 collagen display a steady SDF-1 release, support cell growth of endothelial cells and induce neo-vessel formation. These results demonstrate the potential for PLA scaffolds printed with an inexpensive desktop printer in medical applications, for example, in bone tissue engineering. PMID:29186036
Phosphoserine-modified calcium phosphate cements: bioresorption and substitution.
Offer, Liliana; Veigel, Bastian; Pavlidis, Theodoros; Heiss, Christian; Gelinsky, Michael; Reinstorf, Antje; Wenisch, Sabine; Lips, Katrin Susanne; Schnettler, Reinhard
2011-01-01
This work reports the effects of phosphoserine addition on the biodegradability of calcium phosphate cements. The characteristics of a phosphoserine-modified calcium phosphate cement without collagen in a large animal model are presented here for the first time. Critical size bone defects in the proximal tibia of 10 sheep were filled with the bone cement, and five sheep with empty defects were included as controls. The sheep were sacrificed after either 10 days or 12 weeks, and bones were processed for histological, histomorphometric and enzyme histochemical analyses as well as transmission electron microscopic examination. After 12 weeks, there was no significant reduction in either the implant or the bone defect cross-sectional area. Different amounts of fibrous tissue were observed around the implant and in the bone defect after 12 weeks. The direct bone-implant contact decreased after 12 weeks (p = 0.034). Although the implanted material properly filled the defect and promoted an initial activation of macrophages and osteoblasts, the resorption and simultaneous substitution did not reach expected levels during the experimental time course. Although other studies have shown that the addition of phosphoserine to calcium phosphate cements that have already been modified with collagen I resulted in an acceleration of cement resorption and bone regeneration, this study demonstrates that phosphoserine-modified calcium phosphate cements without collagen perform poorly in the treatment of bone defects. Efforts to use phosphoserine in the development of new composites should take into consideration the need to improve osteoconduction simultaneously via other means. Copyright © 2010 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Rack, A.; Stiller, M.; Nelson, K.; Knabe, C.; Rack, T.; Zabler, S.; Dalügge, O.; Riesemeier, H.; Cecilia, A.; Goebbels, J.
2010-09-01
Biocompatible materials such as porous bioactive calcium phosphate ceramics or titanium are regularly applied in dental surgery: ceramics are used to support the local bone regeneration in a given defect, afterwards titanium implants replace lost teeth. The current gold standard for bone reconstruction in implant dentistry is the use of autogenous bone grafts. But the concept of guided bone regeneration (GBR) has become a predictable and well documented surgical approach using biomaterials (bioactive calcium phosphate ceramics) which qualify as bone substitutes for this kind of application as well. We applied high resolution synchrotron microtomography and subsequent 3d image analysis in order to investigate bone formation and degradation of the bone substitute material in a three-dimensional manner, extending the knowledge beyond the limits of classical histology. Following the bone regeneration, titanium-based implants to replace lost teeth call for high mechanical precision, especially when two-piece concepts are used in order to guaranty leak tightness. Here, synchrotron-based radiography in comparison with classical laboratory radiography yields high spatial resolution in combination with high contrast even when exploiting micro-sized features in these kind of highly attenuating objects. Therefore, we could study micro-gap formation at interfaces in two-piece dental implants with the specimen under different mechanical load. We could prove the existence of micro-gaps for implants with conical connections as well as to study the micromechanical behavior of the mating zone of conical implants during loading. The micro-gap is a potential issue of failure, i. e. bacterial leakage which can induce an inflammatory process.
Payer, Michael; Lohberger, Birgit; Strunk, Dirk; Reich, Karoline M; Acham, Stephan; Jakse, Norbert
2014-04-01
Aim of the pilot trial was to evaluate applicability and effects of directly autotransplanted tibial bone marrow (BM) aspirates on the incorporation of porous bovine bone mineral in a sinus lift model and on the osseointegration of dental implants. Six edentulous patients with bilaterally severely resorbed maxillae requiring sinus augmentation and implant treatment were included. During surgery, tibial BM was harvested and added to bone substitute material (Bio-Oss(®) ) at the randomly selected test site. At control sites, augmentation was performed with Bio-Oss(®) alone. The cellular content of each BM aspirate was checked for multipotency and surface antigen expression as quality control. Histomorphometric analysis of biopsies from the augmented sites after 3 and 6 months (during implantation) was used to evaluate effects on bone regeneration. Osseointegration of implants was evaluated with Periotest(®) and radiographic means. Multipotent cellular content in tibial BM aspirates was comparable to that in punctures from the iliac crest. No significant difference in amount of new bone formation and the integration of bone substitute particles was detected histomorphometrically. Periotest(®) values and radiographs showed successful osseointegration of inserted implants at all sites. Directly autotransplanted tibial BM aspirates did not show beneficial regenerative effects in the small study population (N = 6) of the present pilot trial. However, the proximal tibia proved to be a potential donor site for small quantities of BM. Future trials should clarify whether concentration of tibial BM aspirates could effect higher regenerative potency. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[Biomaterials in bone repair].
Puska, Mervi; Aho, Allan J; Vallittu, Pekka K
2013-01-01
In orthopedics, traumatology, and craniofacial surgery, biomaterials should meet the clinical demands of bone that include shape, size and anatomical location of the defect, as well as the physiological load-bearing stresses. Biomaterials are metals, ceramics, plastics or materials of biological origin. In the treatment of large defects, metallic endoprostheses or bone grafts are employed, whereas ceramics in the case of small defects. Plastics are employed on the artificial joint surfaces, in the treatment of vertebral compression fractures, and as biodegradable screws and plates. Porosity, bioactivity, and identical biomechanics to bone are fundamental for achieving a durable, well-bonded, interface between biomaterial and bone. In the case of severe bone treatments, biomaterials should also imply an option to add biologically active substances.
Tarzia, Vincenzo; Braccioni, Fausto; Bortolussi, Giacomo; Buratto, Edward; Gallo, Michele; Bottio, Tomaso; Vianello, Andrea; Gerosa, Gino
2016-06-01
Management of patients treated with CardioWest Total Artificial Heart (CW-TAH) as a bridge to heart transplantation (HTx) is complicated by difficulties in determining the optimal timing of transplantation. We present a case of a 53-year-old man supported as an outpatient with a CW-TAH, whose condition deteriorated following exchange of the portable driver. The patient was followed-up with serial cardiopulmonary exercise testing (CPET) which demonstrated a fall of peak VO2 to below 12 ml/kg/min following driver substitution, and the patient was subsequently treated with urgent orthotopic HTx. This case highlights the potential utility of CPET as a means for monitoring and indicating timing of HTx in patients with CW-TAH, as well as the potential for clinical deterioration following portable driver substitution.
Calcium kinetics during bed rest with artificial gravity and exercise countermeasures
Smith, S. M.; Castaneda-Sceppa, C.; O’Brien, K. O.; Abrams, S. A.; Gillman, P.; Brooks, N. E.; Cloutier, G. J.; Heer, M.; Zwart, S. R.; Wastney, M. E.
2015-01-01
Summary We assessed the potential for countermeasures to lessen the loss of bone calcium during bed rest. Subjects ingested less calcium during bed rest, and with artificial gravity, they also absorbed less calcium. With exercise, they excreted less calcium. To retain bone during bed rest, calcium intake needs to be maintained. Introduction This study aims to assess the potential for artificial gravity (AG) and exercise (EX) to mitigate loss of bone calcium during space flight. Methods We performed two studies: (1) a 21-day bed rest (BR) study with subjects receiving 1 h/day AG (n=8) or no AG (n=7) and (2) a 28-day BR study with 1 h/day resistance EX (n=10) or no EX (n=3). In both studies, stable isotopes of Ca were administered orally and intravenously, at baseline and after 10 days of BR, and blood, urine, and feces were sampled for up to 14 days post dosing. Tracers were measured using thermal ionization mass spectrometry. Data were analyzed by compartmental modeling. Results Less Ca was absorbed during BR, resulting in lower Ca balance in BR+AG (−6.04±3.38 mmol/day, P=0.023). However, Ca balance did not change with BR+EX, even though absorbed Ca decreased and urinary Ca excretion increased, because endogenous excretion decreased, and there was a trend for increased bone deposition (P=0.06). Urinary N-telopeptide excretion increased in controls during BR, but not in the EX group. Markers of bone formation were not different between treatment groups for either study. Ca intake decreased during BR (by 5.4 mmol/day in the AG study and 2.8 mmol/day in the EX study), resulting in lower absorbed Ca. Conclusions During BR (or space flight), Ca intake needs to be maintained or even increased with countermeasures such as exercise, to enable maintenance of bone Ca. PMID:24861908
Ding, Ming; Andreasen, Christina M; Dencker, Mads L; Jensen, Anders E; Theilgaard, Naseem; Overgaard, Søren
2015-04-01
Cylindrical critical size defects were created at the distal femoral condyles bilaterally of eight female adult sheep. Titanium implants with 2-mm concentric gaps were inserted and the gaps were filled with one of the four materials: allograft; a synthetic 15-amino acid cell-binding peptide coated hydroxyapatite (ABM/P-15); hydroxyapatite + βtricalciumphosphate+ Poly-Lactic-Acid (HA/βTCP-PDLLA); or ABM/P-15+HA/βTCP-PDLLA. After nine weeks, bone-implant blocks were harvested and sectioned for micro-CT scanning, push-out test, and histomorphometry. Significant bone formation and implant fixation could be observed in all four groups. Interestingly, the microarchitecture of the ABM/P-15 group was significantly different from the control group. Tissue volume fraction and thickness were significantly greater in the ABM/P-15 group than in the allograft group. Bone formation and bone ingrowth to porous titanium implant were not significantly different among the four groups. The ABM/P-15 group had similar shear mechanical properties on implant fixation as the allograft group. Adding HA/βTCP-PDLLA to ABM/P-15 did not significantly change these parameters. This study revealed that ABM/P-15 had significantly bone formation in concentric gap, and its enhancements on bone formation and implant fixation were at least as good as allograft. It is suggested that ABM/P-15 might be a good alternative biomaterial for bone implant fixation in this well-validated critical-size defect gap model in sheep. Nevertheless, future clinical researches should focus on prospective, randomized, controlled trials in order to fully elucidate whether ABM/P-15 could be a feasible candidate for bone substitute material in orthopedic practices. © 2014 Wiley Periodicals, Inc.
Schwarz, Frank; Mihatovic, Ilja; Golubovic, Vladimir; Hegewald, Andrea; Becker, Jürgen
2012-01-01
To assess the influence of two barrier membranes and two bone graft substitutes mixed with autogenous bone (AB) on staged guided bone regeneration and osseointegration of titanium implants in dogs. Four saddle-type defects each were prepared in the upper jaw of six fox hounds and randomly filled with a natural bone mineral (NBM)+AB and a biphasic calcium phosphate (SBC)+AB and allocated to either an in situ gelling polyethylene glycol (PEG) or a collagen membrane (CM). At 8 weeks, modSLA titanium implants were inserted and left to heal in a submerged position. At 8+2 weeks, dissected blocks were processed for histomorphometrical analysis (e.g., treated area [TA], bone-to-implant contact [BIC]). The mean TA values (mm(2) ) and BIC values (%) tended to be higher in the PEG groups(TA: NBM+AB [10.4 ± 2.5]; SBC+AB [10.4 ± 5.8]/BIC: NBM+AB [86.4 ± 20.1]; SBC+AB [80.1 ± 21.5]) when compared with the corresponding CM groups (TA: NBM+AB [9.7 ± 4.8]; SBC+AB [7.8 ± 4.3]/BIC: NBM+AB [71.3 ± 20.8]; SBC+AB [72.4 ± 20.3]). A significant difference was observed for the mean TA values in the SBC+AB groups. It was concluded that all augmentation procedures investigated supported bone regeneration and staged osseointegration of modSLA titanium implants. However, the application of PEG may be associated with increased TA values. © 2011 John Wiley & Sons A/S.
Heikkilä, Jouni T; Kukkonen, Juha; Aho, Allan J; Moisander, Susanna; Kyyrönen, Timo; Mattila, Kimmo
2011-04-01
Purpose of this study was to compare bioactive glass and autogenous bone as a bone substitute material in tibial plateau fractures. We designed a prospective, randomized study consisting of 25 consecutive operatively treated patients with depressed unilateral tibial comminuted plateau fracture (AO classification 41 B2 and B3).14 patients (7 females, 7 males, mean age 57 years, range 25-82) were randomized in the bioglass group (BG) and 11 patients (6 females, 5 males, mean age 50 years, range 31-82) served as autogenous bone control group (AB). Clinical examination of the patients was performed at 3 and 12 months, patients' subjective and functional results were evaluated at 12 months. Radiological analysis was performed preoperatively, immediately postoperatively and at 3 and 12 months. The postoperative redepression for both studied groups was 1 mm until 3 months and remained unchanged at 12 months. No differences were identified in the subjective evaluation, functional tests and clinical examination between the two groups during 1 year follow-up. We conclude that bioactive glass granules can be clinically used as filler material instead of autogenous bone in the lateral tibial plateau compression fractures.
Arnold, Patricia A; Ellerbrock, Emily R; Bowman, Lyn; Loucks, Anne B
2014-11-07
Osteoporosis is characterized by reduced bone strength, but no FDA-approved medical device measures bone strength. Bone strength is strongly associated with bone stiffness, but no FDA-approved medical device measures bone stiffness either. Mechanical Response Tissue Analysis (MRTA) is a non-significant risk, non-invasive, radiation-free, vibration analysis technique for making immediate, direct functional measurements of the bending stiffness of long bones in humans in vivo. MRTA has been used for research purposes for more than 20 years, but little has been published about its accuracy. To begin to investigate its accuracy, we compared MRTA measurements of bending stiffness in 39 artificial human ulna bones to measurements made by Quasistatic Mechanical Testing (QMT). In the process, we also quantified the reproducibility (i.e., precision and repeatability) of both methods. MRTA precision (1.0±1.0%) and repeatability (3.1 ± 3.1%) were not as high as those of QMT (0.2 ± 0.2% and 1.3+1.7%, respectively; both p<10(-4)). The relationship between MRTA and QMT measurements of ulna bending stiffness was indistinguishable from the identity line (p=0.44) and paired measurements by the two methods agreed within a 95% confidence interval of ± 5%. If such accuracy can be achieved on real human ulnas in situ, and if the ulna is representative of the appendicular skeleton, MRTA may prove clinically useful. Copyright © 2014 Elsevier Ltd. All rights reserved.
CHOI, Sungjin; LIU, I-Li; YAMAMOTO, Kenichi; HONNAMI, Muneki; SAKAI, Takamasa; OHBA, Shinsuke; ECHIGO, Ryosuke; SUZUKI, Shigeki; NISHIMURA, Ryouhei; CHUNG, Ung-il; SASAKI, Nobuo; MOCHIZUKI, Manabu
2013-01-01
ABSTRACT We investigated biodegradability and new bone formation after implantation of tetrapod-shaped granular artificial bone (Tetrabone®) or β-tricalcium phosphate granules (β-TCP) in experimental critical-size defects in dogs, which were created through medial and lateral femoral condyles. The defect was packed with Tetrabone® (Tetrabone group) or β-TCP (β-TCP group) or received no implant (control group). Computed tomography (CT) was performed at 0, 4 and 8 weeks after implantation. Micro-CT and histological analysis were conducted to measure the non-osseous tissue rate and the area and distribution of new bone tissue in the defect at 8 weeks after implantation. On CT, β-TCP was gradually resorbed, while Tetrabone® showed minimal resorption at 8 weeks after implantation. On micro-CT, non-osseous tissue rate of the control group was significantly higher compared with the β-TCP and Tetrabone groups (P<0.01), and that of the β-TCP group was significantly higher compared with the Tetrabone group (P<0.05). On histology, area of new bone tissue of the β-TCP group was significantly greater than those of the Tetrabone and control groups (P<0.05), and new bone distribution of the Tetrabone group was significantly greater than those of the β-TCP and control groups (P<0.05). These results indicate differences in biodegradability and connectivity of intergranule pore structure between study samples. In conclusion, Tetrabone® may be superior for the repair of large bone defects in dogs. PMID:24161964
Choi, Sungjin; Liu, I-Li; Yamamoto, Kenichi; Honnami, Muneki; Sakai, Takamasa; Ohba, Shinsuke; Echigo, Ryosuke; Suzuki, Shigeki; Nishimura, Ryouhei; Chung, Ung-Il; Sasaki, Nobuo; Mochizuki, Manabu
2014-03-01
We investigated biodegradability and new bone formation after implantation of tetrapod-shaped granular artificial bone (Tetrabone®) or β-tricalcium phosphate granules (β-TCP) in experimental critical-size defects in dogs, which were created through medial and lateral femoral condyles. The defect was packed with Tetrabone® (Tetrabone group) or β-TCP (β-TCP group) or received no implant (control group). Computed tomography (CT) was performed at 0, 4 and 8 weeks after implantation. Micro-CT and histological analysis were conducted to measure the non-osseous tissue rate and the area and distribution of new bone tissue in the defect at 8 weeks after implantation. On CT, β-TCP was gradually resorbed, while Tetrabone® showed minimal resorption at 8 weeks after implantation. On micro-CT, non-osseous tissue rate of the control group was significantly higher compared with the β-TCP and Tetrabone groups (P<0.01), and that of the β-TCP group was significantly higher compared with the Tetrabone group (P<0.05). On histology, area of new bone tissue of the β-TCP group was significantly greater than those of the Tetrabone and control groups (P<0.05), and new bone distribution of the Tetrabone group was significantly greater than those of the β-TCP and control groups (P<0.05). These results indicate differences in biodegradability and connectivity of intergranule pore structure between study samples. In conclusion, Tetrabone® may be superior for the repair of large bone defects in dogs.
Yadav, Rajesh K; Baeg, Jin-Ook; Oh, Gyu Hwan; Park, No-Joong; Kong, Ki-jeong; Kim, Jinheung; Hwang, Dong Won; Biswas, Soumya K
2012-07-18
The photocatalyst-enzyme coupled system for artificial photosynthesis process is one of the most promising methods of solar energy conversion for the synthesis of organic chemicals or fuel. Here we report the synthesis of a novel graphene-based visible light active photocatalyst which covalently bonded the chromophore, such as multianthraquinone substituted porphyrin with the chemically converted graphene as a photocatalyst of the artificial photosynthesis system for an efficient photosynthetic production of formic acid from CO(2). The results not only show a benchmark example of the graphene-based material used as a photocatalyst in general artificial photosynthesis but also the benchmark example of the selective production system of solar chemicals/solar fuel directly from CO(2).
2012-01-01
Background and purpose The most frequently used bones for mechanical testing of orthopedic and trauma devices are fresh frozen cadaveric bones, embalmed cadaveric bones, and artificial composite bones. Even today, the comparability of these different bone types has not been established. Methods We tested fresh frozen and embalmed cadaveric femora that were similar concerning age, sex, bone mineral density, and stiffness. Artificial composite femora were used as a reference group. Testing parameters were pullout forces of cortex and cancellous screws, maximum load until failure, and type of fracture generated. Results Stiffness and type of fracture generated (Pauwels III) were similar for all 3 bone types (fresh frozen: 969 N/mm, 95% confidence interval (CI): 897–1,039; embalmed: 999 N/mm, CI: 875–1,121; composite: 946 N/mm, CI: 852–1,040). Furthermore, no significant differences were found between fresh frozen and embalmed femora concerning pullout forces of cancellous screws (fresh frozen: 654 N, CI: 471–836; embalmed: 595 N, CI: 365–823) and cortex screws (fresh frozen: 1,152 N, CI: 894–1,408; embalmed: 1,461 N, CI: 880–2,042), and axial load until failure (fresh frozen: 3,427 N, CI: 2,564–4290; embalmed: 3,603 N, CI: 2,898–4,306). The reference group showed statistically significantly different results for pullout forces of cancellous screws (2,344 N, CI: 2,068–2,620) and cortex screws (5,536 N, CI: 5,203–5,867) and for the axial load until failure (> 7,952 N). Interpretation Embalmed femur bones and fresh frozen bones had similar characteristics by mechanical testing. Thus, we suggest that embalmed human cadaveric bone is a good and safe option for mechanical testing of orthopedic and trauma devices. PMID:22978564
Pohlemann, Tim; Gueorguiev, Boyko; Agarwal, Yash; Wahl, Dieter; Sprecher, Christoph; Schwieger, Karsten; Lenz, Mark
2015-04-01
The novel dynamic locking screw (DLS) was developed to improve bone healing with locked-plate osteosynthesis by equalising construct stiffness at both cortices. Due to a theoretical damping effect, this modulated stiffness could be beneficial for fracture fixation in osteoporotic bone. Therefore, the mechanical behaviour of the DLS at the screw-bone interface was investigated in an artificial osteoporotic bone model and compared with conventional locking screws (LHS). Osteoporotic surrogate bones were plated with either a DLS or a LHS construct consisting of two screws and cyclically axially loaded (8,500 cycles, amplitude 420 N, increase 2 mN/cycle). Construct stiffness, relative movement, axial screw migration, proximal (P) and distal (D) screw pullout force and loosening at the bone interface were determined and statistically evaluated. DLS constructs exhibited a higher screw pullout force of P 85 N [standard deviation (SD) 21] and D 93 N (SD 12) compared with LHS (P 62 N, SD 28, p = 0.1; D 57 N, SD 25, p < 0.01) and a significantly lower axial migration over cycles compared with LHS (p = 0.01). DLS constructs showed significantly lower axial construct stiffness (403 N/mm, SD 21, p < 0.01) and a significantly higher relative movement (1.1 mm, SD 0.05, p < 0.01) compared with LHS (529 N/mm, SD 27; 0.8 mm, SD 0.04). Based on the model data, the DLS principle might also improve in vivo plate fixation in osteoporotic bone, providing enhanced residual holding strength and reducing screw cutout. The influence of pin-sleeve abutment still needs to be investigated.
Fritz, Jason R; Phillips, Brett T; Conkling, Nicole; Fourman, Mitchell; Melendez, Mark M; Bhatnagar, Divya; Simon, Marcia; Rafailovich, Miriam; Dagum, Alexander B
2012-10-01
Dermal substitutes are currently used in plastic surgery to cover various soft tissue defects caused by trauma, burns, or ablative cancer surgery. Little information is available on the biomechanical properties of these dermal substitutes after adequate incorporation as compared to normal skin. Determining parameters such as tensile strength in these skin substitutes will help us further understand their wound healing properties and potential in developing artificial tissue constructs. We hypothesize that a dermal substitute has a lower stress-strain curve and altered stress-induced deformation quantified with tensiometry and digital image speckle correlation (DISC) analysis. Two separate 5×10-cm full-thickness wounds were created on the dorsum of 3 female swine. Fibrin glue was applied before either a full-thickness skin graft (FTSG) or application of artificial dermal matrix. On day 42, cultured autologous keratinocytes were applied as a cell sheet to the wound covered with Integra. On day 56, the wounds were fully excised and fresh tissue specimens, including normal skin, were stored in a physiological solution and prepared for analysis. Rectangular samples were excised from the center of each specimen measuring 4×4×30 mm. Using a tensiometer and DISC analysis, we evaluated the tensile strength of 3 different groups of skin, namely, normal, FTSG, and Integra. There is a significant difference between the Integra specimen when compared to normal skin and FTSG. We found a minimal difference in the stress-strain curves of the latter two. Integra alone shows plastic deformation with continued stretching before ultimate midline fracture. There is significant change between the Young's moduli of the normal skin and the Integra, whereas there is little difference between the FTSG and the normal skin; DISC confirms this analysis. The normal skin and FTSG show a convergence of vectors to a linear plane, whereas Integra shows very little organization. Using 2 different methods of analysis, we have shown a dermal substitute does not display similar biomechanical properties after adequate incorporation. These major tensile strength differences are shown between normal, grafted, and Integra constructs under physiological conditions. These properties will lead to further understanding of artificial tissue and engineered constructs in laboratory and clinical applications.
He, Fupo; Zhang, Jing; Yang, Fanwen; Zhu, Jixiang; Tian, Xiumei; Chen, Xiaoming
2015-05-01
The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. Copyright © 2015 Elsevier B.V. All rights reserved.
Substitute CT generation from a single ultra short time echo MRI sequence: preliminary study
NASA Astrophysics Data System (ADS)
Ghose, Soumya; Dowling, Jason A.; Rai, Robba; Liney, Gary P.
2017-04-01
In MR guided radiation therapy planning both MR and CT images for a patient are acquired and co-registered to obtain a tissue specific HU map. Generation of the HU map directly from the MRI would eliminate the CT acquisition and may improve radiation therapy planning. In this preliminary study of substitute CT (sCT) generation, two porcine leg phantoms were scanned using a 3D ultrashort echo time (PETRA) sequence and co-registered to corresponding CT images to build tissue specific regression models. The model was created from one co-registered CT-PETRA pair to generate the sCT for the other PETRA image. An expectation maximization based clustering was performed on the co-registered PETRA image to identify the soft tissues, dense bone and air class membership probabilities. A tissue specific non linear regression model was built from one registered CT-PETRA pair dataset to predict the sCT of the second PETRA image in a two-fold cross validation schema. A complete substitute CT is generated in 3 min. The mean absolute HU error for air was 0.3 HU, bone was 95 HU, fat was 30 HU and for muscle it was 10 HU. The mean surface reconstruction error for the bone was 1.3 mm. The PETRA sequence enabled a low mean absolute surface distance for the bone and a low HU error for other classes. The sCT generated from a single PETRA sequence shows promise for the generation of fast sCT for MRI based radiation therapy planning.
van Houdt, C I A; Cardoso, D A; van Oirschot, B A J A; Ulrich, D J O; Jansen, J A; Leeuwenburgh, S C G; van den Beucken, J J J P
2017-09-01
Demineralized bone matrix (DBM) is an allograft bone substitute used for bone repair surgery to overcome drawbacks of autologous bone grafting, such as limited supply and donor-site comorbidities. In view of different demineralization treatments to obtain DBM, we examined the biological performance of two differently demineralized types of DBM, i.e. by acidic treatment using hydrochloric acid (HCl) or treatment with the chelating agent ethylene diamine tetra-acetate (EDTA). First, we evaluated the osteo-inductive properties of both DBMs by implanting the materials subcutaneously in rats. Second, we evaluated the effects on bone formation by incorporating DBM in a hyaluronic acid (HA) gel to fill a porous titanium scaffold for use in a critical-sized calvarial defect model in 36 male Wistar rats. These porous titanium scaffolds were implanted empty or filled with HA gel containing either DBM HCl or DBM EDTA. Ectopically implanted DBM HCl and DBM EDTA did not induce ectopic bone formation over the course of 12 weeks. For the calvarial defects, mean percentages of newly formed bone at 2 weeks were significantly higher for Ti-Empty compared to Ti-HA + DBM HCl , but not compared to Ti-HA + DBM EDTA. Significant temporal bone formation was observed for Ti-Empty and Ti-HA + DBM HCl, but not for Ti-HA + DBM EDTA. At 8 weeks there were no significant differences in values of bone formation between the three experimental constructs. In conclusion, these results showed that, under the current experimental conditions, neither DBM HCl nor DBM EDTA possess osteo-inductive properties. Additionally, in combination with an HA gel loaded in a porous titanium scaffold, DBM HCl and DBM EDTA showed similar amounts of new bone formation after 8 weeks, which were lower than using the empty porous titanium scaffold. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Lin, Kaili; Xia, Lunguo; Li, Haiyan; Jiang, Xinquan; Pan, Haobo; Xu, Yuanjin; Lu, William W; Zhang, Zhiyuan; Chang, Jiang
2013-12-01
The regeneration capacity of the osteoporotic bones is generally lower than that of the normal bones. Current methods of bone defect treatment for osteoporosis are not always satisfactory. Recent studies have shown that the silicate based biomaterials can stimulate osteogenesis and angiogenesis due to the silicon (Si) ions released from the materials, and enhance bone regeneration in vivo. Other studies showed that strontium (Sr) plays a distinct role on inhibiting bone resorption. Based on the hypothesis that the combination of Si and Sr may have synergetic effects on osteoporotic bone regeneration, the porous Sr-substituted calcium silicate (SrCS) ceramic scaffolds combining the functions of Sr and Si elements were developed with the goals to promote osteoporotic bone defect repair. The effects of the ionic extract from SrCS on osteogenic differentiation of bone marrow mesenchymal stem cells derived from ovariectomized rats (rBMSCs-OVX), angiogenic differentiation of human umbilical vein endothelial cells (HUVECs) were investigated. The in vitro results showed that Sr and Si ions released from SrCS enhanced cell viability, alkaline phosphatase (ALP) activity, and mRNA expression levels of osteoblast-related genes of rBMSCs-OVX and expression of vascular endothelial growth factor (VEGF) without addition of extra osteogenic and angiogenic reagents. The activation in extracellular signal-related kinases (ERK) and p38 signaling pathways were observed in rBMSCs-OVX cultured in the extract of SrCS, and these effects could be blocked by ERK inhibitor PD98059, and P38 inhibitor SB203580, respectively. Furthermore, the ionic extract of SrCS stimulated HUVECs proliferation, differentiation and angiogenesis process. The in vivo experiments revealed that SrCS dramatically stimulated bone regeneration and angiogenesis in a critical sized OVX calvarial defect model, and the enhanced bone regeneration might be attributed to the modulation of osteogenic differentiation of endogenous mesenchymal stem cells (MSCs) and the inhibition of osteoclastogenesis, accompanying with the promotion of the angiogenic activity of endothelial cells (ECs). Copyright © 2013 Elsevier Ltd. All rights reserved.
Boos, Anja M; Loew, Johanna S; Deschler, Gloria; Arkudas, Andreas; Bleiziffer, Oliver; Gulle, Heinz; Dragu, Adrian; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P
2011-01-01
Abstract Bone tissue engineering approaches increasingly focus on the use of mesenchymal stem cells (MSC). In most animal transplantation models MSC are isolated and expanded before auto cell transplantation which might be critical for clinical application in the future. Hence this study compares the potential of directly auto-transplanted versus in vitro expanded MSC with or without bone morphogenetic protein-2 (BMP-2) to induce bone formation in a large volume ceramic bone substitute in the sheep model. MSC were isolated from bone marrow aspirates and directly auto-transplanted or expanded in vitro and characterized using fluorescence activated cell sorting (FACS) and RT-PCR analysis before subcutaneous implantation in combination with BMP-2 and β-tricalcium phosphate/hydroxyapatite (β-TCP/HA) granules. Constructs were explanted after 1 to 12 weeks followed by histological and RT-PCR evaluation. Sheep MSC were CD29+, CD44+ and CD166+ after selection by Ficoll gradient centrifugation, while directly auto-transplanted MSC-populations expressed CD29 and CD166 at lower levels. Both, directly auto-transplanted and expanded MSC, were constantly proliferating and had a decreasing apoptosis over time in vivo. Directly auto-transplanted MSC led to de novo bone formation in a heterotopic sheep model using a β-TCP/HA matrix comparable to the application of 60 μg/ml BMP-2 only or implantation of expanded MSC. Bone matrix proteins were up-regulated in constructs following direct auto-transplantation and in expanded MSC as well as in BMP-2 constructs. Up-regulation was detected using immunohistology methods and RT-PCR. Dense vascularization was demonstrated by CD31 immunohistology staining in all three groups. Ectopic bone could be generated using directly auto-transplanted or expanded MSC with β-TCP/HA granules alone. Hence BMP-2 stimulation might become dispensable in the future, thus providing an attractive, clinically feasible approach to bone tissue engineering. PMID:20636333
Singh, Sangeeta
2009-01-01
To evaluate the efficacy of platelet-rich plasma concentrate in the management of a cirumferential, infrabony defect associated with an endoperio lesion in a maxillary canine. A 45 year-old male patient with an endoperio lesion in the left maxillary canine was initially treated with endodontic therapy. Following the endodontic treatment, the circumferential, infrabony defect was treated using platelet-rich plasma and an alloplastic bone substitute. At the end of three months, there was a gain in the clinical attachment level and reduction in probing depth. Radiographic evidence showed that there was significant bony fill. The results were maintained at the time of recall nine months later. PMID:20407658
Kokkinos, Petros A; Koutsoukos, Petros G; Deligianni, Despina D
2012-06-01
Hydroxyapatite (HA) has been widely used as a bone substitute in dental, maxillofacial and orthopaedic surgery and as osteoconductive bone substitute or precoating of pedicle screws and cages in spine surgery. The aim of the present study was to investigate the osteoblastic adhesion strength on HA substrata with different surface topography and biochemistry (pre-adsorption of fibronectin) after blocking of specific integrin subunits with monoclonal antibodies. Stoichiometric HA was prepared by precipitation followed by ageing and characterized by SEM, EDX, powder XRD, Raman spectroscopy, TGA, and specific surface area analysis. Human bone marrow derived osteoblasts were cultured on HA disc-shaped substrata which were sintered and polished resulting in two surface roughness grades. For attachment evaluation, cells were incubated with monoclonal antibodies and seeded for 2 h on the substrata. Cell detachment strength was determined using a rotating disc device. Cell detachment strength was surface roughness, fibronectin preadsorption and intergin subunit sensitive.
A process for the development of strontium hydroxyapatite
NASA Astrophysics Data System (ADS)
Zahra, N.; Fayyaz, M.; Iqbal, W.; Irfan, M.; Alam, S.
2014-06-01
A procedure for the preparation of Strontium Hydroxyapatite is adapted to produce high purity and better homogeneity ceramic with good Crystallinity. The strontium substituted bone cement has potential for use in orthopedic surgeries. Ionic Strontium (Sr) in humans shares the same physiological pathway as calcium and can be deposited in the mineral structure of the bone. In the present study, a novel concept of preparing Sr-contained Hydroxyapatite bone cement by using a precipitation method is proposed to get an ideal biomaterial that possesses potential degradability and more excellent pharmacological effect. Chemical analysis, Fourier Transform Infra Red analysis and Thermogravimetric/ Differential Scanning Calorimetric studies were conducted on prepared Strontium Hydroxyapatite sample to characterize the incorporation of 15% Sr2+ into the crystal lattice of Hydroxyapatite. Strontium was quantitatively incorporated into Hydroxyapatite where its substitution for calcium provoked a linear shift of the infrared absorption bands of the hydroxyl and phosphate groups. Thus, the formation of Sr-HAp was confirmed by Chemical Analysis, FT-IR and TGA/DSC results.
Artificial gravity - The evolution of variable gravity research
NASA Technical Reports Server (NTRS)
Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard
1987-01-01
The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.
In vitro culture of large bone substitutes in a new bioreactor: importance of the flow direction.
Olivier, V; Hivart, Ph; Descamps, M; Hardouin, P
2007-09-01
New biomaterials combined with osteogenic cells are now being developed as an alternative to autogeneous bone grafts when the skeletal defect reaches a critical size. Yet, the size issue appears to be a key obstacle in the development of bone tissue engineering. Bioreactors are needed to allow the in vitro expansion of cells inside large bulk materials under appropriate conditions. However, no bioreactor has yet been designed for large-scale 3D structures and custom-made scaffolds. In this study, we evaluate the efficiency of a new bioreactor for the in vitro development of large bone substitutes, ensuring the perfusion of large ceramic scaffolds by the nutritive medium. The survival and proliferation of cells inside the scaffolds after 7 and 28 days in this dynamic culture system and the impact of the direction of the flow circulation are evaluated. The follow-up of glucose consumption, DNA quantification and microscopic evaluation all confirmed cell survival and proliferation for a sample under dynamic culture conditions, whereas static culture leads to the death of cells inside the scaffolds. Two directions of flow perfusion were assayed; the convergent direction leads to enhanced results compared to divergent flow.
NASA Astrophysics Data System (ADS)
Matković, Ivo; Maltar-Strmečki, Nadica; Babić-Ivančić, Vesna; Dutour Sikirić, Maja; Noethig-Laslo, Vesna
2012-10-01
β-TCP based materials are frequently used as dental implants. Due to their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, the current literature provides little information about effects of the γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this work five different bone graft substitution materials, composed of synthetic beta tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) present in the market were characterized by electron paramagnetic resonance (EPR) spectroscopy, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Paramagnetic species Mn2+, Fe3+, trapped H-atoms and CO2- radicals were detected in the biphasic material (60% HAP, 40% β-TCP), while in β-TCP materials only Mn2+ andor trapped hydrogen atoms were detected. EPR analysis revealed the details of the structure of these materials at the atomic level. The results have shown that EPR spectroscopy is a method which can be used to improve the quality control of bone graft materials after syntering, processing and sterilization procedure.
Protein-free formation of bone-like apatite: New insights into the key role of carbonation
Deymier, Alix C.; Nair, Arun K.; Depalle, Baptiste; Qin, Zhao; Arcot, Kashyap; Drouet, Christophe; Yoder, Claude H.; Buehler, Markus J.; Thomopoulos, Stavros; Genin, Guy M.; Pasteris, Jill D.
2017-01-01
The nanometer-sized plate-like morphology of bone mineral is necessary for proper bone mechanics and physiology. However, mechanisms regulating the morphology of these mineral nanocrystals remain unclear. The dominant hypothesis attributes the size and shape regulation to organic-mineral interactions. Here, we present data supporting the hypothesis that physicochemical effects of carbonate integration within the apatite lattice control the morphology, size, and mechanics of bioapatite mineral crystals. Carbonated apatites synthesized in the absence of organic molecules presented plate-like morphologies and nanoscale crystallite dimensions. Experimentally-determined crystallite size, lattice spacing, solubility and atomic order were modified by carbonate concentration. Molecular dynamics (MD) simulations and density functional theory (DFT) calculations predicted changes in surface energy and elastic moduli with carbonate concentration. Combining these results with a scaling law predicted the experimentally observed scaling of size and energetics with carbonate concentration. The experiments and models describe a clear mechanism by which crystal dimensions are controlled by carbonate substitution. Furthermore, the results demonstrate that carbonate substitution is sufficient to drive the formation of bone-like crystallites. This new understanding points to pathways for biomimetic synthesis of novel, nanostructured biomaterials. PMID:28279923
Synthesis of bioactive organic-inorganic nanohybrid for bone repair through sol-gel processing.
Miyazaki, Toshiki; Ohtsuki, Chikara; Tanihara, Masao
2003-12-01
So-called bioactive ceramics have been attractive because they form bone-like apatite on their surfaces to bond directly to living bone when implanted in bony defects. However, they are much more brittle and much less flexible than natural bone. Organic-inorganic hybrids consisting of flexible organic polymers and the essential constituents of the bioactive ceramics (i.e., Si-OH groups and Ca2+ ions) are useful as novel bone substitutes, because of their bioactivity and mechanical properties analogous to those of natural bone. In the present study, organic-inorganic nanohybrids were synthesized from hydroxyethylmethacrylate (HEMA) and methacryloxypropyltrimethoxysilane (MPS), as well as various calcium salts. Bioactivity of the synthesized hybrids was assessed in vitro by examining their acceptance of apatite deposition in simulated body fluid (Kokubo solution). The prepared hybrids formed apatite in Kokubo solution when they were modified with calcium chloride (CaCl2) at 5 or 10 mol% of the total of MPS and HEMA. Deposition of a kind of calcium phosphate was observed for the hybrids modified with calcium acetate (Ca(CH3COO)2), although it could not be identified with apatite. The addition of glycerol up to 10 mol% of the total of MPS and HEMA or water up to 20 mol% as plasticizers did not appreciably decrease the acceptance of apatite formation of the hybrids. These findings allow wide selectivity in the design of bioactive nanohybrids developed by organic modification of the Si-OH group and calcium ion through sol-gel processing. Such nanohybrids have potential as novel bone substitutes with both high bioactivity and high flexibility.
Rapid prototyped porous nickel–titanium scaffolds as bone substitutes
Hoffmann, Waldemar; Bormann, Therese; Rossi, Antonella; Müller, Bert; Schumacher, Ralf; Martin, Ivan; Wendt, David
2014-01-01
While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used titanium. PMID:25383165
Liu, Jinyi; Schmidlin, Patrick R; Philipp, Alexander; Hild, Nora; Tawse-Smith, Andrew; Duncan, Warwick
2016-07-01
Electrospun cotton wool-like nanocomposite (ECWN) is a novel synthetic bone substitute that incorporates amorphous calcium phosphate nanoparticles into a biodegradable synthetic copolymer poly(lactide-co-glycolide). The objectives of this study were to develop a tooth extraction socket model in sheep for bone graft research and to compare ECWN and bovine-derived xenograft (BX) in this model. Sixteen cross-bred female sheep were used. Bilateral mandibular premolars were extracted atraumatically. Second and third premolar sockets were filled (Latin-square allocation) with BX, ECWN or left unfilled. Resorbable collagen membranes were placed over BX and selected ECWN grafted sockets. Eight sheep per time period were sacrificed after 8 and 16 weeks. Resin-embedded undemineralised sections were analysed for descriptive histology and histomorphometric analyses. At 8 weeks, there were with no distinct differences in healing among the different sites. At 16 weeks, osseous healing followed a fine trabecular pattern in ECWN sites. Non-grafted sites showed thick trabeculae separated by large areas of fibrovascular connective tissue. In BX grafted sites, xenograft particles were surrounded by newly formed bone or fibrovascular connective tissue. There were no statistically significant differences in bone formation across the four groups. However, ECWN sites had significantly less residual graft material than BX sites at 16 weeks (P = 0.048). This first description of a tooth extraction socket model in sheep supports the utility of this model for bone graft research. The results of this study suggested that the novel material ECWN did not impede bone ingrowth into sockets and showed evidence of material resorption. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
2004-04-15
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.
2004-04-15
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.
Honda, Takato; Lee, Chi-Yu; Honjo, Ken; Furukubo-Tokunaga, Katsuo
2016-01-01
The larval brain of Drosophila melanogaster provides an excellent system for the study of the neurocircuitry mechanism of memory. Recent development of neurogenetic techniques in fruit flies enables manipulations of neuronal activities in freely behaving animals. This protocol describes detailed steps for artificial induction of olfactory associative memory in Drosophila larvae. In this protocol, the natural reward signal is substituted by thermogenetic activation of octopaminergic neurons in the brain. In parallel, the odor signal is substituted by optogenetic activation of a specific class of olfactory receptor neurons. Association of reward and odor stimuli is achieved with the concomitant application of blue light and heat that leads to activation of both sets of neurons in living transgenic larvae. Given its operational simplicity and robustness, this method could be utilized to further our knowledge on the neurocircuitry mechanism of memory in the fly brain. PMID:27445732
Li, Sha; Tan, Hor Yue; Wang, Ning; Hong, Ming; Li, Lei; Cheung, Fan; Feng, Yibin
2016-01-01
Bear bile has been a well-known Chinese medicine for thousands of years. Because of the endangered species protection, the concept on substitutes for bear bile was proposed decades ago. Based on their chemical composition and pharmacologic actions, artificial bear bile, bile from other animals, synthetic compounds, and medicinal plants may be the promising candidates to replace bear bile for the similar therapeutic purpose. Accumulating research evidence has indicated that these potential substitutes for bear bile have displayed the same therapeutic effects as bear bile. However, stopping the use of bear bile is a challenging task. In this review, we extensively searched PubMed and CNKI for literatures, focusing on comparative studies between bear bile and its substitutes for the treatment of liver diseases. Recent research progress in potential substitutes for bear bile in the last decade is summarized, and a strategy for the use of substitutes for bear bile is discussed carefully. PMID:27087822
Jensen, Simon S; Bosshardt, Dieter D; Gruber, Reinhard; Buser, Daniel
2014-11-01
Contour augmentation around early-placed implants (Type 2 placement) using autogenous bone chips combined with deproteinized bovine bone mineral (DBBM) and a collagen barrier membrane has been documented to predictably provide esthetically satisfactory clinical outcomes. In addition, recent data from cone beam computed tomography studies have shown the augmented volume to be stable long-term. However, no human histologic data are available to document the tissue reactions to this bone augmentation procedure. Over an 8-year period, 12 biopsies were harvested 14 to 80 months after implant placement with simultaneous contour augmentation in 10 patients. The biopsies were subjected to histologic and histomorphometric analysis. The biopsies consisted of 32.0% ± 9.6% DBBM particles and 40.6% ± 14.6% mature bone. 70.3% ± 14.5% of the DBBM particle surfaces were covered with bone. On the remaining surface, multinucleated giant cells with varying intensity of tartrate-resistant acid phosphatase staining were regularly present. No signs of inflammation were visible, and no tendency toward a decreasing volume fraction of DBBM over time was observed. The present study confirms previous findings that osseointegrated DBBM particles do not tend to undergo substitution over time. This low substitution rate may be the reason behind the clinically and radiographically documented long-term stability of contour augmentation using a combination of autogenous bone chips, DBBM particles, and a collagen membrane.
NASA Astrophysics Data System (ADS)
Iwase, Satoshi; Sugenoya, Junichi; Sato, Maki; Shimizu, Yuuki; Kanikowska, Dominika; Nishimura, Nooki; Takada, Hiroki; Takada, Masumi; Mano, Tadaki; Ishida, Koji; Akima, Hiroshi; Katayama, Keisho; Hirayanagi, Kaname; Shiozawa, Tomoki; Yajima, Katzuyoshi; Watanabe, Yoriko; Suzuki, Satomi; Fukunnaga, Tetsuo; Masuo, Yoshihisa
2008-06-01
Effectiveness of centrifuge-induced artificial gravity and ergometric exercise as a countermeasure to space deconditioning, including cardiovascular deconditioning, myatrophy, and osteoporosis, induced by 20 days of head-down bedrest., was examined in 12 healthy men in 2006, and 8 healthy men in 2007. Bedrest was performed with 2300 kcal of diet. Water intake was recommended more than the urine volume in a previous day. A new protocol for artificial gravity with ergometric exercise was adopted, with 1.6 G of artificial gravity at heart level and 60 W of exercise every day in 2006, and every other day in 2007. The load was suspended when subjects complained all-out, and was continued until 30 min cumulative total load time. Gravity was stepped up by 0.2 G or exercise load was stepped up by 15 W alternately when the subject endured the load for 5 min. Gravity tolerance was examined by using centrifuge, and anti-G score was determined before and after the bedrest. Not all result has been analyzed, however, effectiveness of artificial gravity with ergometric exercise was evidenced in orthostatic tolerance, physical fitness, cardiac function, myatrophy, and bone metabolism in everyday protocol, but not in every other day protocol. We concluded this everyday protocol was effective in cardiovascular deconditioning myatrophy, and bone metabolism.
Integrating-Sphere Measurements for Determining Optical Properties of Tissue-Engineered Oral Mucosa
NASA Astrophysics Data System (ADS)
Ionescu, A. M.; Cardona, J. C.; Garzón, I.; Oliveira, A. C.; Ghinea, R.; Alaminos, M.; Pérez, M. M.
2015-02-01
Surgical procedures carried out in the oral and maxillofacial region can result in large tissue defects. Accounting for the shortage of oral mucosa to replace the excised tissues, different models of an organotypic substitute of the oral mucosa generated by tissue engineering have recently been proposed. In this work, the propagation of light radiation through artificial human oral mucosa substitutes based on fibrin-agarose scaffolds (fibrin, fibrin-0.1% agarose, fibrin-0.2%agarose) is investigated, and their optical properties are determined using the inverse adding-doubling (IAD) method based on integrating-sphere measurements. Similar values for the absorption and scattering coefficients between the fibrin and fibrin-0.1% agarose bioengineered tissues and the native oral mucosa were found. These results suggest the adequacy of these biomaterials for potential clinical use in human oral mucosa applications. These optical properties represent useful references and data for applications requiring the knowledge of the light transport through this type of tissues, applications used in clinical practice. It also provides a new method of information analysis for the quality control of the development of the artificial nanostructured oral mucosa substitutes and its comparison with native oral mucosa tissues.
Payne, A N; Chassard, C; Lacroix, C
2012-09-01
The Western diet, comprised of highly refined carbohydrates and fat but reduced complex plant polysaccharides, has been attributed to the prevalence of obesity. A concomitant rise in the consumption of fructose and sugar substitutes such as sugar alcohols, artificial sweeteners, even rare sugars, has mirrored this trend, as both probable contributor and solution to the epidemic. Acknowledgement of the gut microbiota as a factor involved in obesity has sparked much controversy as to the cause and consequence of this relationship. Dietary intakes are a known modulator of gut microbial phylogeny and metabolic activity, frequently exploited to stimulate beneficial bacteria, promoting health benefits. Comparably little research exists on the impact of 'unconscious' dietary modulation on the resident commensal community mediated by increased fructose and sugar substitute consumption. This review highlights mechanisms of potential host and gut microbial fructose and sugar substitute metabolism. Evidence is presented suggesting these sugar compounds, particularly fructose, condition the microbiota, resulting in acquisition of a westernized microbiome with altered metabolic capacity. Disturbances in host-microbe interactions resulting from fructose consumption are also explored. © 2012 The Authors. obesity reviews © 2012 International Association for the Study of Obesity.
Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair
Agarwal, Rachit; García, Andrés J.
2015-01-01
Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair. PMID:25861724
Vandewalle, Sara; Van Caenegem, Eva; Craen, Margarita; Taes, Youri; Kaufman, Jean-Marc; T'Sjoen, Guy
2018-03-28
Sex steroids are essential for sexual maturation, linear growth and bone development. However, there is no consensus on the optimal timing, dosage and dosage interval of testosterone therapy to induce pubertal development and achieve a normal adult height and bone mass in children with hypogonadism. A monozygotic monochorial male twin pair, of which one boy was diagnosed with anorchia at birth due to testicular regression syndrome was followed from the age of 3 until the age of 18 years. Low dose testosterone substitution (testosterone esters 25 mg/2 weeks) was initiated in the affected twin based on the start of pubertal development in the healthy twin and then gradually increased accordingly. Both boys were followed until age 18 and were compared as regards to linear growth, sexual maturation, bone maturation and bone development. Before puberty induction both boys had a similar weight and height. During puberty, a slightly faster weight and height gain was observed in the affected twin. Both boys ended up however, with a similar and normal (near) adult height and weight and experienced a normal development of secondary sex characteristics. At the age of 17 and 18 years, bone mineral density, body composition and volumetric bone parameters at the forearm and calf were evaluated in both boys. The affected boy had a higher lean mass and muscle cross-sectional area. The bone mineral density at the lumbar spine and whole body was similar. Trabecular and cortical volumetric bone parameters were comparable. At one cortical site (proximal radius), however, the affected twin had a smaller periosteal and endosteal circumference with a thicker cortex. In conclusion, a low dose testosterone substitution in bilateral anorchia led to a normal onset of pubertal development and (near) adult height. Furthermore, there was no difference in bone mineral density at the age of 17 and 18 years.
Perceptual drifts of real and artificial limbs in the rubber hand illusion.
Fuchs, Xaver; Riemer, Martin; Diers, Martin; Flor, Herta; Trojan, Jörg
2016-04-22
In the rubber hand illusion (RHI), transient embodiment of an artificial hand is induced. An often-used indicator for this effect is the "proprioceptive drift", a localization bias of the real hand towards the artificial hand. This measure suggests that the real hand is attracted by the artificial hand. Principles of multisensory integration, however, rather suggest that conflicting sensory information is combined in a "compromise" fashion and that hands should rather be attracted towards each other. Here, we used a new variant of the RHI paradigm in which participants pointed at the artificial hand. Our results indicate that the perceived positions of the real and artificial hand converge towards each other: in addition to the well-known drift of the real hand towards the artificial hand, we also found an opposite drift of the artificial hand towards the real hand. Our results contradict the notion of perceptual substitution of the real hand by the artificial hand. Rather, they are in line with the view that vision and proprioception are fused into an intermediate percept. This is further evidence that the perception of our body is a flexible multisensory construction that is based on integration principles.
Artificial Gravity as a Bone Loss Countermeasure in Simulated Weightlessness
NASA Technical Reports Server (NTRS)
Smith, S. M.; Zwart, S. R.; Crawford, G. E.; Gillman, P. L.; LeBlanc, A.; Shackelford, L. C.; Heer, M. A.
2007-01-01
The impact of microgravity on the human body is a significant concern for space travelers. We report here initial results from a pilot study designed to explore the utility of artificial gravity (AG) as a countermeasure to the effects of microgravity, specifically to bone loss. After an initial phase of adaptation and testing, 15 male subjects underwent 21 days of 6 head-down bed rest to simulate the deconditioning associated with space flight. Eight of the subjects underwent 1 h of centrifugation (AG, 1 gz at the heart, 2.5 gz at the feet) each day for 21 days, while 7 of the subjects served as untreated controls (CN). Blood and urine were collected before, during, and after bed rest for bone marker determinations. At this point, preliminary data are available on the first 8 subjects (6 AG, and 2 CN). Comparing the last week of bed rest to before bed rest, urinary excretion of the bone resorption marker n-telopeptide increased 95 plus or minus 59% (mean plus or minus SD) in CN but only 32 plus or minus 26% in the AG group. Similar results were found for another resorption marker, helical peptide (increased 57 plus or minus 0% and 35 plus or minus 13% in CN and AG respectively). Bone-specific alkaline phosphatase, a bone formation marker, did not change during bed rest. At this point, sample analyses are continuing, including calcium tracer kinetic studies. These initial data demonstrate the potential effectiveness of short-radius, intermittent AG as a countermeasure to the bone deconditioning that occurs during bed rest.
NASA Astrophysics Data System (ADS)
Rusu, Laura-Cristina; Negrutiu, Meda Lavinia; Sinescu, Cosmin; Hoinoiu, Bogdan; Zaharia, Cristian; Ardelean, Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.
2014-01-01
The osteoconductive materials are important in bone regeneration procedures. Three dimensional (3D) reconstructions were obtained from the analysis. The aim of this study is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on two artificial matrixes inserted in previously artificially induced defects. For this study, under strict supervision 20 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were IngeniOss (for ten samples) and 4Bone(for the other ten samples). These materials were inserted into the induced defects. The femurs were investigated at 1 month, after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The scanning procedure is similar to that used in any CM, where the fast scanning is en-face (line rate) and the scanning in depth is much slower (at the frame rate). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The results showed open interfaces due to the insufficient healing process, as well as closed interfaces due to a new bone formation inside the defect. The conclusion of this study is that TD-OCT can act as a valuable tool in the investigation of the interface between the old bone and the one that has been newly created due to the osteoinductive process. The TD-OCT has proven a valuable tool for the non-invasive evaluation of the matrix bone interfaces.
Thian, E S; Konishi, T; Kawanobe, Y; Lim, P N; Choong, C; Ho, B; Aizawa, M
2013-02-01
Hydroxyapatite (HA) is a synthetic biomaterial and has been found to promote new bone formation when implanted in a bone defect site. However, its use is often limited due to its slow osteointegration rate and low antibacterial activity, particularly where HA has to be used for long term biomedical applications. This work will describe the synthesis and detailed characterization of zinc-substituted HA (ZnHA) as an alternative biomaterial to HA. ZnHA containing 1.6 wt% Zn was synthesized via a co-precipitation reaction between calcium hydroxide, orthophosphoric acid and zinc nitrate hexahydrate. Single-phase ZnHA particles with a rod-like morphology measuring ~50 nm in length and ~15 nm in width, were obtained and characterized using transmission electron microscopy and X-ray diffraction. The substitution of Zn into HA resulted in a decrease in both the a- and c-axes of the unit cell parameters, thereby causing the HA crystal structure to alter. In vitro cell culture work showed that ZnHA possessed enhanced bioactivity since an increase in the growth of human adipose-derived mesenchymal stem cells along with the bone cell differentiation markers, were observed. In addition, antibacterial work demonstrated that ZnHA exhibited antimicrobial capability since there was a significant decrease in the number of viable Staphylococcus aureus bacteria after in contact with ZnHA.
Nanostructured thick 3D nanofibrous scaffold can induce bone.
Eap, Sandy; Morand, David; Clauss, François; Huck, Olivier; Stoltz, Jean-François; Lutz, Jean-Christophe; Gottenberg, Jacques-Eric; Benkirane-Jessel, Nadia; Keller, Laetitia; Fioretti, Florence
2015-01-01
Designing unique nanostructured biomimetic materials is a new challenge in modern regenerative medicine. In order to develop functional substitutes for damaged organs or tissues, several methods have been used to create implants able to regenerate robust and durable bone. Electrospinning produces nonwoven scaffolds based on polymer nanofibers mimicking the fibrillar organization of bone extracellular matrix. Here, we describe a biomimetic 3D thick nanofibrous scaffold obtained by electrospinning of the biodegradable, bioresorbable and FDA-approved polymer, poly(ε-caprolactone). Such scaffold presents a thickness reaching one centimeter. We report here the demonstration that the designed nanostructured implant is able to induce in vivo bone regeneration.
3D printed porous ceramic scaffolds for bone tissue engineering: a review.
Wen, Yu; Xun, Sun; Haoye, Meng; Baichuan, Sun; Peng, Chen; Xuejian, Liu; Kaihong, Zhang; Xuan, Yang; Jiang, Peng; Shibi, Lu
2017-08-22
This study summarizes the recent research status and development of three-dimensional (3D)-printed porous ceramic scaffolds in bone tissue engineering. Recent literature on 3D-printed porous ceramic scaffolds was reviewed. Compared with traditional processing and manufacturing technologies, 3D-printed porous ceramic scaffolds have obvious advantages, such as enhancement of the controllability of the structure or improvement of the production efficiency. More sophisticated scaffolds were fabricated by 3D printing technology. 3D printed bioceramics have broad application prospects in bone tissue engineering. Through understanding the advantages and limitations of different 3D-printing approaches, new classes of bone graft substitutes can be developed.
Jokanović, Vukoman; Čolović, Božana; Marković, Dejan; Petrović, Milan; Soldatović, Ivan; Antonijević, Djordje; Milosavljević, Petar; Sjerobabin, Nikola; Sopta, Jelena
2017-05-24
This study examined the potential of a new porous calcium hydroxyapatite scaffold covered with poly (lactide-co-glycolide) (PLGA) as a bone substitute, identifying its advantages over Geistlich Bio-Oss®, considered the gold standard, in in vivo biofunctionality investigations. Structural and morphological properties of the new scaffold were analyzed by scanning electron and atomic force microscopy. The biofunctionality assays were performed on New Zealand white rabbits using new scaffold for filling full-thickness defects of critical size. The evaluated parameters were: the presence of macrophages, giant cells, monoocytes, plasma cells, granulocytes, neoangiogenesis, fibroplasia, and the percentage of mineralization. Parallel biofunctionality assays were performed using Geistlich Bio-Oss®. The appearance of bone defects 12 weeks after the new scaffold implantation showed the presence of a small number of typical immune response cells. Furthermore, significantly reduced number of capillary buds, low intensity of fibroplasia and high degree of mineralization in a lamellar pattern indicated that the inflammation process has been almost completely overcome and that the new bone formed was in the final phase of remodeling. All biofunctionality assays proved the new scaffold's suitability as a bone substitute for applications in maxillofacial surgery. It showed numerous biological advantages over Geistlich Bio-Oss® which was reflected mainly as a lower number of giant cells surrounding implanted material and higher degree of mineralization in new formed bone.
Li, Xinning; Xu, Jianwen; Filion, Tera M; Ayers, David C; Song, Jie
2013-08-01
Bone grafts are widely used in orthopaedic procedures. Autografts are limited by donor site morbidity while allografts are known for considerable infection and failure rates. A synthetic composite bone graft substitute poly(2-hydroxyethyl methacrylate)-nanocrystalline hydroxyapatite (pHEMA-nHA) was previously developed to stably press-fit in and functionally repair critical-sized rat femoral segmental defects when it was preabsorbed with a single low dose of 300 ng recombinant human bone morphogenetic protein-2/7 (rhBMP-2/7). To facilitate clinical translation of pHEMA-nHA as a synthetic structural bone graft substitute, we examined its ability to encapsulate and release rhBMP-2 and the antibiotic vancomycin. We analyzed the compressive behavior and microstructure of pHEMA-nHA as a function of vancomycin incorporation doses using a dynamic mechanical analyzer and a scanning electron microscope. In vitro release of vancomycin was monitored by ultraviolet-visible spectroscopy. Release of rhBMP-2 from pHEMA-nHA-vancomycin was determined by ELISA. Bioactivity of the released vancomycin and rhBMP-2 was examined by bacterial inhibition and osteogenic transdifferentiation capabilities in cell culture, respectively. Up to 4.8 wt% of vancomycin was incorporated into pHEMA-nHA without compromising its structural integrity and compressive modulus. Encapsulated vancomycin was released in a dose-dependent and sustained manner in phosphate-buffered saline over 2 weeks, and the released vancomycin inhibited Escherichia coli culture. The pHEMA-nHA-vancomycin composite released preabsorbed rhBMP-2 in a sustained manner over 8 days and locally induced osteogenic transdifferentiation of C2C12 cells in culture. pHEMA-nHA can encapsulate and deliver vancomycin and rhBMP-2 in a sustained and localized manner with reduced loading doses. The elasticity, osteoconductivity, and rhBMP-2/vancomycin delivery characteristics of pHEMA-nHA may benefit orthopaedic reconstructions or fusions with enhanced safety and efficiency and reduced infection risk.
Bone Regeneration of Hydroxyapatite with Granular Form or Porous Scaffold in Canine Alveolar Sockets
JANG, SEOK JIN; KIM, SE EUN; HAN, TAE SUNG; SON, JUN SIK; KANG, SEONG SOO; CHOI, SEOK HWA
2017-01-01
This study was undertaken to assess bone regeneration using hydroxyapatite (HA). The primary focus was comparison of bone regeneration between granular HA (gHA) forms and porous HA (pHA) scaffold. The extracted canine alveolar sockets were divided with three groups: control, gHA and pHA. Osteogenic effect in the gHA and pHA groups showed bone-specific surface and bone mineral density to be significantly higher than that of the control group (p<0.01). Bone volume fraction, bone mineral density, and amount of connective tissue related to disturbing osseointegration of the gHA group was higher than in the pHA group. Quantity of new bone formation of the pHA group was higher than that of the gHA group. This study demonstrated that gHA and pHA are potentially good bone substitutes for alveolar socket healing. For new bone formation during 8 weeks' post-implantation, HA with porous scaffold was superior to the granular form of HA. PMID:28438860
Pneumaticos, Spyros G; Triantafyllopoulos, Georgios K; Basdra, Efthimia K; Papavassiliou, Athanasios G
2010-01-01
Abstract Several conditions in clinical orthopaedic practice can lead to the development of a diaphyseal segmental bone defect, which cannot heal without intervention. Segmental bone defects have been traditionally treated with bone grafting and/or distraction osteogenesis, methods that have many advantages, but also major drawbacks, such as limited availability, risk of disease transmission and prolonged treatment. In order to overcome such limitations, biological treatments have been developed based on specific pathways of bone physiology and healing. Bone tissue engineering is a dynamic field of research, combining osteogenic cells, osteoinductive factors, such as bone morphogenetic proteins, and scaffolds with osteoconductive and osteoinductive attributes, to produce constructs that could be used as bone graft substitutes for the treatment of segmental bone defects. Scaffolds are usually made of ceramic or polymeric biomaterials, or combinations of both in composite materials. The purpose of the present review is to discuss in detail the molecular and cellular basis for the development of bone tissue engineering constructs. PMID:20345845
* Hypoxia Biomimicry to Enhance Monetite Bone Defect Repair.
Drager, Justin; Ramirez-GarciaLuna, Jose Luis; Kumar, Abhishek; Gbureck, Uwe; Harvey, Edward J; Barralet, Jake E
2017-12-01
Tissue hypoxia is a critical driving force for angiogenic and osteogenic responses in bone regeneration and is, at least partly, under the control of the Hypoxia Inducible Factor-1α (HIF-1α) pathway. Recently, the widely used iron chelator deferoxamine (DFO) has been found to elevate HIF-1α levels independent of oxygen concentrations, thereby, creating an otherwise normal environment that mimics the hypoxic state. This has the potential to augment the biological properties of inorganic scaffolds without the need of recombinant growth factors. This pilot study investigates the effect of local delivery of DFO on bone formation and osseointegration of an anatomically matched bone graft substitute, in the treatment of segmental bone defects. Three-dimensional printing was used to create monetite grafts, which were implanted into 10 mm midshaft ulnar defects in eight rabbits. Starting postoperative day 4, one graft site in each animal was injected with 600 μL (200 μM) of DFO every 48 h for six doses. Saline was injected in the contralateral limb as a control. At 8 weeks, micro-CT and histology were used to determine new bone growth, vascularity, and assess osseointegration. Six animals completed the protocol. Bone metric analysis using micro-CT showed a significantly greater amount of new bone formed (19.5% vs. 13.65% p = 0.042) and an increase in bone-implant contact area (63.1 mm 2 vs. 33.2 mm 2 p = 0.03) in the DFO group compared with control. Vascular channel volume was significantly greater in the DFO group (20.9% vs. 16.2% p = 0.004). Histology showed increased bone formation within the osteotomy gap, more bone integrated with the graft surface as well as more matured soft tissue callus in the DFO group. This study demonstrates a significant increase in new bone formation after delivery of DFO in a rabbit long bone defect bridged by a 3D-printed bioresorbable bone graft substitute. Given the safety, ease of handling, and low expense of this medication, the results of this study support further investigation into the use of iron chelators in creating a biomimetic environment for bone healing in segmental bone loss.
Tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs
NASA Astrophysics Data System (ADS)
Licausi, M. P.; Igual Muñoz, A.; Amigó Borrás, V.
2013-10-01
Titanium and its alloys has been widely used for the design of dental implants because of its biocompatibility, mechanical properties and corrosion resistance. The powder-metallurgy process is a promising alternative to the casting fabrication process of titanium alloys for bone implants design as the porous structure mimics the natural bone structures, allowing the bone to grow into the pores which results in a better fixation of the artificial implant. However, under in vivo conditions the implants are subjected to tribocorrosion phenomenon, which consists in the degradation mechanisms due to the combined effect of wear and corrosion. The aim of this study is to evaluate the tribocorrosion behaviour of cast and sintered Ti6Al4V biomedical alloy for dental applications using the cast material as reference. Titanium samples were tested in artificial human saliva solution with three different pHs (3, 6, 9) and in an acidic saliva with 1000 ppm fluorides (AS-3-1000F-) by different electrochemical techniques (potentiodynamic curves, potentiostatic tests and tribo-electrochemical tests). Cast and sintered titanium alloys exhibit the same tribocorrosion mechanisms in AS independently of the pH which consists in plastic deformation with passive dissolution, but the addition of fluorides to the acidified solution changes the degradation mechanism towards active dissolution of the titanium alloys.
Hess, Ricarda; Jaeschke, Anna; Neubert, Holger; Hintze, Vera; Moeller, Stephanie; Schnabelrauch, Matthias; Wiesmann, Hans-Peter; Hart, David A; Scharnweber, Dieter
2012-12-01
In vivo, bone formation is a complex, tightly regulated process, influenced by multiple biochemical and physical factors. To develop a vital bone tissue engineering construct, all of these individual components have to be considered and integrated to gain an in vivo-like stimulation of target cells. The purpose of the present studies was to investigate the synergistic role of defined biochemical and physical microenvironments with respect to osteogenic differentiation of human mesenchymal stem cells (MSCs). Biochemical microenvironments have been designed using artificial extracellular matrices (aECMs), containing collagen I (coll) and glycosaminoglycans (GAGs) like chondroitin sulfate (CS), or a high-sulfated hyaluronan derivative (sHya), formulated as coatings on three-dimensional poly(caprolactone-co-lactide) (PCL) scaffolds. As part of the physical microenvironment, cells were exposed to pulsed electric fields via transformer-like coupling (TC). Results showed that aECM containing sHya enhanced osteogenic differentiation represented by increases in ALP activity and gene-expression (RT-qPCR) of several bone-related proteins (RUNX-2, ALP, OPN). Electric field stimulation alone did not influence cell proliferation, but osteogenic differentiation was enhanced if osteogenic supplements were provided, showing synergistic effects by the combination of sHya and electric fields. These results will improve the understanding of bone regeneration processes and support the development of effective tissue engineered bone constructs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Polyphosphazene/Nano-Hydroxyapatite Composite Microsphere Scaffolds for Bone Tissue Engineering
Nukavarapu, Syam P.; Kumbar, Sangamesh G.; Brown, Justin L.; Krogman, Nicholas R.; Weikel, Arlin L.; Hindenlang, Mark D.; Nair, Lakshmi S.; Allcock, Harry R; Laurencin, Cato T.
2009-01-01
The non-toxic, neutral degradation products of amino acid ester polyphosphazenes make them ideal candidates for in vivo orthopaedic applications. The quest for new osteocompatible materials for load bearing tissue engineering applications has led us to investigate mechanically competent amino acid ester substituted polyphosphazenes. In this study, we have synthesized three biodegradable polyphosphazenes substituted with side groups namely leucine, valine and phenylalanine ethyl esters. Of these polymers, the phenylalanine ethyl ester substituted polyphosphazene showed the highest glass transition temperature (41.6 °C) and hence was chosen as a candidate material for forming composite microspheres with 100 nm sized hydroxyapatite (nHAp). The fabricated composite microspheres were sintered into a three-dimensional (3-D) porous scaffold by adopting a dynamic solvent sintering approach. The composite microsphere scaffolds showed compressive moduli of 46–81 MPa with mean pore diameters in the range of 86–145 µm. The three-dimensional polyphosphazene-nHAp composite microsphere scaffolds showed good osteoblast cell adhesion, proliferation and alkaline phosphatase expression, and are potential suitors for bone tissue engineering applications. PMID:18517248
Control of bone remodelling by applied dynamic loads
NASA Technical Reports Server (NTRS)
Lanyon, L. E.; Rubin, C. T.
1984-01-01
The data showing the relationship between bone mass and peak strain magnitude prepared and submitted for publication. The data from experiments relating remodelling activity with static or dynamic loads were prepared and submitted for publication. Development of programs to relate the location of remodelling activity with he natural and artificial dynamic strain distributions continued. Experiments on the effect of different strain rates on the remodelling response continued.
Crystal imperfection studies of pure and silicon substituted hydroxyapatite using Raman and XRD.
Zou, Shuo; Huang, Jie; Best, Serena; Bonfield, William
2005-12-01
Hydroxyapatite (HA) is important in biomedical applications because of its chemical similarity to the mineral content of bone and its consequent bioactivity. Silicon substitution into the hydroxyapatite crystal lattice was found to enhance its bioactivity both in vitro and in vivo [1, 2]. However, the mechanism for the enhancement is still not well understood. In this paper, the crystal imperfections introduced by silicon substitution were studied using XRD and Raman spectroscopy. It was found that silicon substitution did not introduce microstrain, but deceased the crystal size in the hk0 direction. Three new vibration modes and peak broadening were observed in Raman spectra following silicon incorporation. The imperfections introduced by silicon substitution may play a role in enhancing bioactivity. A phenomenological relationship between the width of the PO4 v1 peak and crystal size was established.
Hwang, Kyoung-Sub; Choi, Jae-Won; Kim, Jae-Hun; Chung, Ho Yun; Jin, Songwan; Shim, Jin-Hyung; Yun, Won-Soo; Jeong, Chang-Mo; Huh, Jung-Bo
2017-04-17
The purpose of this study was to compare bone regeneration and space maintaining ability of three-dimensional (3D) printed bone grafts with conventional biphasic calcium phosphate (BCP). After mixing polycaprolactone (PCL), poly (lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) in a 4:4:2 ratio, PCL/PLGA/β-TCP particulate bone grafts were fabricated using 3D printing technology. Fabricated particulate bone grafts were mixed with atelocollagen to produce collagen-based PCL/PLGA/β-TCP composite block bone grafts. After formation of calvarial defects 8 mm in diameter, PCL/PLGA/β-TCP composite block bone grafts and BCP were implanted into bone defects of 32 rats. Although PCL/PLGA/β-TCP composite block bone grafts were not superior in bone regeneration ability compared to BCP, the results showed relatively similar performance. Furthermore, PCL/PLGA/β-TCP composite block bone grafts showed better ability to maintain bone defects and to support barrier membranes than BCP. Therefore, within the limitations of this study, PCL/PLGA/β-TCP composite block bone grafts could be considered as an alternative to synthetic bone grafts available for clinical use.
Igeta, Kazuki; Kuwamura, Yuta; Horiuchi, Naohiro; Nozaki, Kosuke; Shiraishi, Daichi; Aizawa, Mamoru; Hashimoto, Kazuaki; Yamashita, Kimihiro; Nagai, Akiko
2017-04-01
Synthetic hydroxyapatite (HAp) is used clinically as a material for bone prostheses owing to its good bone-bonding ability; however, it does not contribute to bone remodeling. Carbonate-substituted hydroxyapatite (CAp) has greater bioresorption capacity than HAp while having similar bone-bonding potential, and is therefore considered as a next promising material for bone prostheses. However, the effects of the CAp instability on inflammatory and immune responses are unknown in detail. Here, we show that the surface layer of CAp is more hydrated than that of HAp and induces changes in the shape and function of macrophage-like cells. HAp and CAp were synthesized by wet method and molded into disks. The carbonate content of CAp disks was 6.2% as determined by Fourier transform (FT) infrared spectral analysis. Diffuse reflectance infrared FT analysis confirmed that physisorbed water and surface hydroxyl groups (OH - ) were increased whereas structural OH - was decreased on the CAp as compared to the HAp surface. The degree of hydroxylation in CAp was comparable to that in bone-apatite structures, and the CAp surface exhibited greater hydrophilicity and solubility than HAp. We investigated immune responses to these materials by culturing RAW264 cells (macrophage precursors) on their surfaces. Cell spreading on the CAp disk was suppressed and the secretion level of inflammatory cytokines was reduced as compared to cells grown on HAp. These results indicate that the greater surface hydration of CAp surface can attenuate adverse inflammatory responses to implanted bone prostheses composed of this material. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1063-1070, 2017. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Qiao, Wei; Liu, Quan; Li, Zhipeng; Zhang, Hanqing; Chen, Zhuofan
2017-12-01
As the main inorganic component of xenogenic bone graft material, bone-derived biological apatite (BAp) has been widely used in implant dentistry, oral and maxillofacial surgery and orthopedics. However, BAp produced via calcination of animal bones still suffers from some drawbacks, such as insufficient mechanical strength and inadequate degradation rate, which impede its application. Fluoride is known to play important roles in both physiological and pathological processes of human hard tissues for its double effects on bones and teeth. In order to understand the effects of fluoride on the properties of BAp, as well as the mechanism behind them, porcine bone derived hydroxyapatite (PHAp) was prepared via thermal treatment, which was then fluoride incorporated at a series concentrations of sodium fluoride, and noted as 0.25-FPHAp, 0.50-FPHAp, and 0.75-FPHAp respectively. The physicochemical characteristics of the materials, including crystal morphology, crystallinity, functional groups, elemental composition, compressive strength, porosity and solubility, were then determined. The biological properties, such as protein adsorption and cell attachment, were also evaluated. It was found that the spheroid-like crystals of PHAp were changed into rod-like after fluoride substitution, resulting in a fluoride concentration-dependent increase in compressive strength, as well as a decreased porosity and solubility of the apatite. However, even though the addition of fluoride was demonstrated to enhance protein adsorption and cell attachment of the materials, the most favorable results were intriguingly achieved in FPHAp with the least fluoride content. Collectively, low level of fluoride incorporation is proposed promising for the modification of clinically used BAp based bone substitute materials, because of its being able to maintain a good balance between physicochemical and biological properties of the apatite.
Kruppke, Benjamin; Farack, Jana; Wagner, Alena-Svenja; Beckmann, Sarah; Heinemann, Christiane; Glenske, Kristina; Rößler, Sina; Wiesmann, Hans-Peter; Wenisch, Sabine; Hanke, Thomas
2016-03-01
Calcium phosphate phases are increasingly used for bone tissue substitution, and the load bearing properties of these inherently brittle biomaterials are increased by inclusion of organic components. Monetite prepared using mineralization of gelatine pre-structured through phosphate leads to a significantly increased biaxial strength and indirect tensile strength compared to gelatine-free monetite. Besides the mechanical properties, degradation in physiological solutions and osteoblast and osteoclast cell response were investigated. Human bone marrow stromal cells (hBMSCs) showed considerably higher proliferation rates on the gelatine modified monetite than on polystyrene reference material in calcium-free as well as standard cell culture medium (α-MEM). Osteogenic differentiation on the material was comparable to polystyrene in both medium types. Osteoclast-like cells derived from monocytes were able to actively resorb the biomaterial. Osteoblastic differentiation and perhaps even more important the cellular resorption of the biomaterial indicate that it can be actively involved in the bone remodeling process. Thus the behavior of osteoblasts and osteoclasts as well as the adequate degradation and mechanical properties are strong indicators for bone biocompatibility, although in vivo studies are still required to prove this. New and unique? A low temperature precipitationprocessforcalcium anhydrous hydrogen phosphateallows for the first time to produce monolithic compact composites of monetite and gelatine. The composite is degradable and resorbable. To prove that, the question arises: what is bone biocompatibility? The reaction of both mayor cell types of bone represents this biocompatibility. Therefore, human bone marrow stromal cells were seeded revealing the materials pro-osteogenic properties. Monocyte cultivation, becoming recently focus of interest, revealed the capability of the biomaterial to be actively resorbed by derived osteoclast-like cells. Not new but necessary ismechanical characterization, which is often only investigated as uniaxial property. Here, a biaxial method is applied, to characterize the materials properties closer to its application loads. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Faruq, Omar; Kim, Boram; Padalhin, Andrew R; Lee, Gun Hee; Lee, Byong-Taek
2017-10-01
An ideal bone substitute should be made of biocompatible materials that mimic the structure, characteristics, and functions of natural bone. Many researchers have worked on the fabrication of different bone scaffold systems including ceramic-polymer hybrid system. In the present study, we incorporated hyaluronic acid-gelatin hydrogel to micro-channeled biphasic calcium phosphate granules as a carrier to improve cell attachment and proliferation through highly interconnected porous structure. This hybrid system is composed of ceramic biphasic calcium phosphate granules measuring 1 mm in diameter with seven holes and hyaluronic acid-gelatin hydrogel. This combination of biphasic calcium phosphate and hyaluronic acid-gelatin retained suitable characteristics for bone regeneration. The resulting scaffold had a porosity of 56% with a suitable pore sizes. The mechanical strength of biphasic calcium phosphate granule increased after loading hyaluronic acid-gelatin from 4.26 ± 0.43 to 6.57 ± 0.25 MPa, which is highly recommended for cancellous bone substitution. Swelling and degradation rates decreased in the hybrid scaffold compared to hydrogel due to the presence of granules in hybrid scaffold. In vitro cytocompatibility studies were observed by preosteoblasts (MC3T3-E1) cell line and the result revealed that biphasic calcium phosphate/hyaluronic acid-gelatin significantly increased cell growth and proliferation compared to biphasic calcium phosphate granules. Analysis of micro-computed tomography data and stained tissue sections from the implanted samples showed that the hybrid scaffold had good osseointegration and better bone formation in the scaffold one and two months postimplantation. Histological section confirmed the formation of dense collagenous tissue and new bone in biphasic calcium phosphate/hyaluronic acid-gelatin scaffolds at two months. Our study demonstrated that such hybrid biphasic calcium phosphate/hyaluronic acid-gelatin scaffold is a promising system for bone regeneration.
Safety and efficacy of use of demineralised bone matrix in orthopaedic and trauma surgery.
Dinopoulos, Haralampos T H; Giannoudis, Peter V
2006-11-01
Demineralised bone matrix (DBM) acts as an osteoconductive, and possibly as an osteoinductive, material. It is widely used in orthopaedic, neurosurgical, plastic and dental areas. More than 500,000 bone grafting procedures with DBM are performed annually in the US. It does not offer structural support, but it is well suited for filling bone defects and cavities. The osteoinductive nature of DBM is presumably attributed to the presence of matrix-associated bone morphogenetic proteins (BMPs) and growth factors, which are made available to the host environment by the demineralisation process. Clinical results have not been uniformly favourable; however, a variable clinical response is attributed partly to nonuniform processing methods found among numerous bone banks and commercial suppliers. DBMs remain reasonably safe and effective products. The ultimate safe bone-graft substitute, one that is osteoconductive, osteoinductive, osteogenic and mechanically strong, remains elusive.
The Association Between Artificial Sweeteners and Obesity.
Pearlman, Michelle; Obert, Jon; Casey, Lisa
2017-11-21
The purpose of this paper is to review the epidemiology of obesity and the evolution of artificial sweeteners; to examine the latest research on the effects of artificial sweeteners on the host microbiome, the gut-brain axis, glucose homeostasis, and energy consumption; and to discuss how all of these changes ultimately contribute to obesity. Although artificial sweeteners were developed as a sugar substitute to help reduce insulin resistance and obesity, data in both animal models and humans suggest that the effects of artificial sweeteners may contribute to metabolic syndrome and the obesity epidemic. Artificial sweeteners appear to change the host microbiome, lead to decreased satiety, and alter glucose homeostasis, and are associated with increased caloric consumption and weight gain. Artificial sweeteners are marketed as a healthy alternative to sugar and as a tool for weight loss. Data however suggests that the intended effects do not correlate with what is seen in clinical practice. Future research should focus on the newer plant-based sweeteners, incorporate extended study durations to determine the long-term effects of artificial sweetener consumption, and focus on changes in the microbiome, as that seems to be one of the main driving forces behind nutrient absorption and glucose metabolism.
Higuchi, Takashi; Yamamoto, Norio; Shirai, Toshiharu; Hayashi, Katsuhiro; Takeuchi, Akihiko; Kimura, Hiroaki; Miwa, Shinji; Abe, Kensaku; Taniguchi, Yuta; Tsuchiya, Hiroyuki
2018-05-01
Simple bone cysts (SBCs) are benign lesions of unknown etiology. Because of its high relapse rate, they occasionally need a long period of treatment and restriction of activities in children and adolescent. Although various treatment modalities with variable differing outcomes have been described in the literature, no consensus has been reached regarding the standard treatment. The purpose of this study was to evaluate the outcome of a minimally invasive technique that uses a ceramic hydroxyapatite cannulated pin (HA pin) for the treatment of SBCs.Between 1998 and 2015, we have treated 75 patients with SBCs either with continuous decompression by inserting HA pins after curettage and multiple drilling (group 1, n = 39 patients) or with calcium phosphate cement (CPC) filling after curettage (group 2, n = 36 patients). These patients were retrospectively analyzed for recurrence-free survival (RFS) and factors implicated in SBC recurrence.Seventy-five patients (50 man and 25 females) with a mean age of 17.5 ± 11.6 years and a histopathologically confirmed diagnosis of SBCs were included. The mean follow-up period was 33 ± 25.3 months. RFS were 88% at 1 year and 81% at 5 years. Residual or progressing cysts were observed in 12 patients after the surgery and 10 of them underwent additional surgery. Recurrence rate was significantly higher in patients under the age of 10 years (P = .01), in long bone cysts (P = .01), and in active phase cysts (P = .003) (log-rank test). Multivariate analysis results revealed that age less than 10 years was an independent risk factor of recurrence (P = .04). No significant difference in recurrence rate was observed between groups 1 and 2. However, the mean operating time was significantly shorter in group 1. (62.4 ± 25.6 vs 110.5 ± 48.4 minutes in group 2).Continuous decompression using HA pin is a less invasive surgical technique for the treatment of SBCs compared with CPC filling and has a high healing rate. The relapse rate was still high when the cysts were caused in children aged less than 10 years, located in the long bone, or remained adjacent to the epiphysis. Level 3, Retrospective comparative study.
Influence of artificial sweetener on human blood glucose concentration.
Skokan, Ilse; Endler, P Christian; Wulkersdorfer, Beatrix; Magometschnigg, Dieter; Spranger, Heinz
2007-10-05
Artificial sweeteners, such as saccharin or cyclamic acid are synthetically manufactured sweetenings. Known for their low energetic value they serve especially diabetic and adipose patients as sugar substitutes. It has been hypothesized that the substitution of sugar with artificial sweeteners may induce a decrease of the blood glucose. The aim of this study was to determine the reliability of this hypothesis by comparing the influence of regular table sugar and artificial sweeteners on the blood glucose concentration. In this pilot-study 16 patients were included suffering from adiposity, pre-diabetes and hypertension. In the sense of a cross-over design, three test trials were performed at intervals of several weeks. Each trial was followed by a test free interval. Within one test trial each patient consumed 150 ml test solution (water) that contained either 6 g of table sugar ("Kandisin") with sweetener free serving as control group. Tests were performed within 1 hr after lunch to ensure conditions comparable to patients having a desert. Every participant had to determine their blood glucose concentration immediately before and 5, 15, 30 and 60 minutes after the intake of the test solution. For statistics an analysis of variance was performed. The data showed no significant changes in the blood glucose concentration. Neither the application of sugar (F(4;60) = 1.645; p = .175) nor the consumption of an artificial sweetener (F(2.068;31.023) = 1.551; p > .05) caused significant fluctuations in the blood sugar levels. Over a time frame of 60 minutes in the control group a significant decrease of the blood sugar concentration was found (F(2.457;36.849) = 4.005; p = .020) as a physiological reaction during lunch digestion.
Gottschalk, Hilton P; Bednar, Michael S; Moor, Molly; Light, Terry R
2012-10-01
To describe a case series of congenital metacarpal synostosis treated with longitudinal osteotomy and bone graft substitute interposition. We retrospectively reviewed charts of all patients with metacarpal synostosis treated with a longitudinal osteotomy and bone graft substitute interposition at 2 institutions. Radiographic and clinical appearances were analyzed at initial diagnosis, intraoperatively, and at last follow-up. A total of 10 patients (14 hands) met the inclusion criteria. Six patients (8 hands) demonstrated ring-little finger metacarpal synostosis and 4 patients (6 hands) had a middle-ring finger metacarpal synostosis. The median age at operation was 5 years (range, 2-16 y). Follow-up ranged from 1 to 14 years (average, 3 y). Associated hand anomalies included polydactyly, symbrachydactyly, and clinodactyly. Before surgery, the little finger proximal phalanx was angulated away from the middle finger metacarpal on average 46° (range, 26°-60°), and the angulation between the middle and the ring fingers averaged 43° (range, 26°-50°). Postoperative correction at 1 year was statistically significant for both ring-little finger metacarpal synostosis, average 23° (range, 10°-30°), and middle-ring finger metacarpal synostosis, average 16° (range, 5°-44°). Recurrence of digital abduction was evident in 2 patients who had middle-ring finger metacarpal synostosis. Metacarpal synostosis is an uncommon congenital hand anomaly characterized by the coalescence of 2 adjacent metacarpals. In the most common form, the ring and little finger metacarpals are associated with abduction of the small finger in an awkward position. Use of the described technique is safe and effective, yet concerns remain regarding mild persistent angulation and risk of recurrence. Congenital metacarpal synostosis may be effectively treated with a longitudinal osteotomy, realignment of component metacarpals, and interposition of bone graft substitute. When the procedure is performed at a young age, we recommend follow-up until skeletal maturity to identify recurrence of the deformity. Therapeutic IV. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Fuentes, Elena; Sáenz de Viteri, Virginia; Igartua, Amaya; Martinetti, Roberta; Dolcini, Laura; Barandika, Gotzone
2010-01-01
The knowledge of the mechanical response of bones and their substitutes is pertinent to numerous medical problems. Understanding the effects of mechanical influence on the body is the first step toward developing innovative treatment and rehabilitation concepts for orthopedic disorders. This was a comparative study of 5 synthetic scaffolds based on porous calcium phosphates and natural bones, with regard to their microstructural, chemical, and mechanical characterizations. The structural and chemical characterizations of the scaffolds were examined by means of X-ray diffraction, scanning electron microscopy, and X-ray spectroscopy analysis. The mechanical characterization of bones and bone graft biomaterials was carried out through compression tests using samples with noncomplex geometry. Analysis of the chemical composition, surface features, porosity, and compressive strength indicates that hydroxyapatite-based materials and trabecular bone have similar properties.
Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite
Friederichs, Robert J.; Chappell, Helen F.; Shepherd, David V.; Best, Serena M.
2015-01-01
Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100°C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. PMID:26040597
Cell Culturing of Cytoskeleton
NASA Technical Reports Server (NTRS)
2004-01-01
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.
Cell Culturing of Cytoskeleton
NASA Technical Reports Server (NTRS)
2004-01-01
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.
Demir Oğuz, Öznur; Ege, Duygu
2018-04-14
In this study, a novel injectable bone substitute (IBS) was prepared by incorporating a bioceramic powder in a polymeric solution comprising of methylcellulose (MC), gelatin and citric acid. Methylcellulose was utilized as the polymeric matrix due to its thermoresponsive properties and biocompatibility. 2.5 wt % gelatin and 3 wt % citric acid were added to the MC to adjust the rheological properties of the prepared IBS. Then, 0, 20, 30 and 50 wt % of the bioceramic component comprising tetracalcium phosphate/hydroxyapatite (TTCP/HA), dicalcium phosphate dehydrate (DCPD) and calcium sulfate dehydrate (CSD) were added into the prepared polymeric component. The prepared IBS samples had a chewing gum-like consistency. IBS samples were investigated in terms of their chemical structure, rheological characteristics, and mechanical properties. After that, in vitro degradation studies were carried out by measurement of pH and % remaining weight. Viscoelastic characteristics of the samples indicated that all of the prepared IBS were injectable and they hardened at approximately 37 °C. Moreover, with increasing wt % of the bioceramic component, the degradation rate of the samples significantly reduced and the mechanical properties were improved. Therefore, the experimental results indicated that the P50 mix may be a promising candidates to fill bone defects and assist bone recovery for non-load bearing applications.
2018-01-01
In this study, a novel injectable bone substitute (IBS) was prepared by incorporating a bioceramic powder in a polymeric solution comprising of methylcellulose (MC), gelatin and citric acid. Methylcellulose was utilized as the polymeric matrix due to its thermoresponsive properties and biocompatibility. 2.5 wt % gelatin and 3 wt % citric acid were added to the MC to adjust the rheological properties of the prepared IBS. Then, 0, 20, 30 and 50 wt % of the bioceramic component comprising tetracalcium phosphate/hydroxyapatite (TTCP/HA), dicalcium phosphate dehydrate (DCPD) and calcium sulfate dehydrate (CSD) were added into the prepared polymeric component. The prepared IBS samples had a chewing gum-like consistency. IBS samples were investigated in terms of their chemical structure, rheological characteristics, and mechanical properties. After that, in vitro degradation studies were carried out by measurement of pH and % remaining weight. Viscoelastic characteristics of the samples indicated that all of the prepared IBS were injectable and they hardened at approximately 37 °C. Moreover, with increasing wt % of the bioceramic component, the degradation rate of the samples significantly reduced and the mechanical properties were improved. Therefore, the experimental results indicated that the P50 mix may be a promising candidates to fill bone defects and assist bone recovery for non-load bearing applications. PMID:29662018
Yokoyama, Atsuro; Yamamoto, Satoru; Kawasaki, Takao; Kohgo, Takao; Nakasu, Masanori
2002-02-01
We developed a calcium phosphate cement that could be molded into any desired shape due to its chewing-gum-like consistency after mixing. The powder component of the cement consists of alpha-tricalcium phosphate and tetracalcium phosphate, which were made by decomposition of hydroxyapatite ceramic blocks. The liquid component consists of citric acid, chitosan and glucose solution. In this study, we used 20% citric acid (group 20) and 45% citric acid (group 45). The mechanical properties and biocompatibility of this new cement were investigated. The setting times of cements were 5.5 min, in group 20 and 6.4 min, in group 45. When incubated in physiological saline, the cements were transformed to hydroxyapatite at 3, and 6 weeks, the compressive strengths were 15.6 and 20.7 MPa, in group 45 and group 20, respectively. The inflammatory response around the cement implanted on the bone and in the subcutaneous tissue in rats was more prominent in group 45 than in group 20 at 1 week after surgery. After 4 weeks, the inflammation disappeared and the cement had bound to bone in both groups. These results indicate that this new calcium phosphate cement is a suitable bone substitute material and that the concentration of citric acid in the liquid component affects its mechanical properties and biocompatibility.
NASA Technical Reports Server (NTRS)
Schultheis, Lester W.
1999-01-01
We report initial data from a suspended rat model that quantitatively relates chronic partial weightbearing to bone loss. Chronic partial weightbearing is our simulation of the effect of limited artificial gravity aboard spacecraft or reduced planetary gravity. Preliminary analysis of bone by PQCT, histomorphometry, mechanical testing and biochemistry suggest that chronic exposure to half of Earth gravity is insufficient to prevent severe bone loss. The effect of episodic full weightbearing activity (Earth Gravity) on rats otherwise at 50% weightbearing was also explored. This has similarity to treatment by an Earth G-rated centrifuge on a spacecraft that normally maintained artificial gravity at half of Earth G. Our preliminary evidence, using the above techniques to analyze bone, indicate that 2 hours daily of full weightbearing was insufficient to prevent the bone loss observed in 50% weightbearing animals. The effectiveness of partial weightbearing and episodic full weightbearing as potential countermeasures to bone loss in spaceflight was compared with treatment by ibandronate. Ibandronate, a long-acting potent bisphosphonate proved more effective in preventing bone loss and associated functionality based upon structure than our first efforts at mechanical countermeasures. The effectiveness of ibandronate was notable by each of the testing methods we used to study bone from gross structure and strength to tissue and biochemistry. These results appear to be independent of generalized systemic stress imposed by the suspension paradigm. Preliminary evidence does not suggest that blood levels of vitamin D were affected by our countermeasures. Despite the modest theraputic benefit of mechanical countermeasures of partial weightbearing and episodic full weightbearing, we know that some appropriate mechanical signal maintains bone mass in Earth gravity. Moreover, the only mechanism that correctly assigns bone mass and strength to oppose regionally specific force applied to bone is mechanical, a process based upon bone strain. Substantial evidence indicates that the specifics of dynamic loading i.e. time-varying forces are critical. Bone strain history is a predictor of the effect that mechanical conditions have on bone structure mass and strength. Using servo-controlled force plates on suspended rats with implanted strain gauges we manipulated impact forces of ambulation in the frequency (Fourier) domain. Our results indicate that high frequency components of impact forces are particularly potent in producing bone strain independent of the magnitude of the peak force or peak energy applied to the leg. Because a servo-system responds to forces produced by the rat's own muscle activity during ambulation, the direction of ground-reaction loads act on bone through the rat's own musculature. This is in distinction to passive vibration of the floor where forces reach bone through the natural filters of soft tissue and joints. Passive vibration may also be effective, but it may or may not increase bone in the appropriate architectural pattern to oppose the forces of normal ambulatory activity. Effectiveness of high frequency mechanical stimulation in producing regional (muscle directed) bone response will be limited by 1. the sensitivity of bone to a particular range of frequencies and 2. the inertia of the muscles, limiting their response to external forces by increasing tension along insertions. We have begun mathematical modeling of normal ambulatory activity. Effectiveness of high frequency mechanical stimulation in producing regional (muscle directed) bone response will be limited by 1. the sensitivity of bone to a particular range of frequencies and 2. the inertia of the muscles, limiting their response to external forces by increasing tension along insertions. We have begun mathematical modeling of the rat forelimb as a transfer function between impact force and bone strain to predict optimal dynamic loading conditions for this system. We plan additional studies of mechanical counter-measures that incorporate improved dynamic loading, features relevant to anticipated evaluation of artificial gravity, exercise regimens and exposure to Martian gravity, The combination of mechanical countermeasures with ibandronate will also be investigated for signs of synergy.
Möhlhenrich, S C; Abouridouane, M; Heussen, N; Hölzle, F; Klocke, F; Modabber, A
2016-11-01
The aim of this study was to investigate the influence of bone density and drilling protocol on heat generation during implant bed preparation. Ten single and 10 gradual implant sites with diameters of 2.8, 3.5, and 4.2mm were prepared in four artificial bone blocks (density types I-IV; D1-D4). Drilling was done at constant speed (1500rpm) and with external irrigation (50ml/min); vertical speed was set at 2mm/s. An infrared camera was used for temperature measurements. Significantly higher temperatures for single drilling were found between 2.8-mm drills in D1 (P=0.0014) and D4 (P<0.0001) and between 3.5-mm drills in D3 (P=0.0087) and D4 (P<0.0001), as well as between 4.2-mm drills in D1 (P<0.0001) and D4 (P=0.0014). Low bone density led to a thermal decrease after single drilling and a thermal increase after gradual drilling. Burs with a large diameter always showed a higher temperature generation. In comparisons between 2.8- and 4.2-mm diameters for both single and gradual drills, significant differences (P<0.001) were noted for bone types II, III, and IV. Single drilling could generate more heat than traditional sequential drilling, and bone density, as well as drill diameter, influenced thermal increases. Particularly in lower-density bone, conventional sequential drilling seems to raise the temperature less. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Ol'khovych, N V; Gryshchenko, O M; Pichkur, N O; Nedoboĭ, A M; Trofimova, N S; Ivanova, T P; Gorovenko, N G
2011-01-01
The analysis of efficiency of treatment of 17 patients with Gaucher disease (GD) in Ukraine who had received fermento-substitution therapy for 2 years and more was conducted on the basis of clinical and laboratory monitoring data. Regular infusions of recombinant glucocerebroside reduced signs of hepatosplenomegaly and pancytopenia, reduced a bone pain and a bone crisis at the majority of patients with GD I type that led to considerable improvement of health state and improvement of patients life quality. Efficiency of treatment depended on regularity of drug administration, dosage and severity level of the disease at the start of the therapy. Adult patients were not seen to have corrections of bones and neurologic disorders after the treatment that confirmed necessity of an early initiation of the treatment, before formation of irreversible changes in these organs and systems. Chitiotriodase activity in blood plasma is the most complex laboratory indicator which displays activity of pathological process in patients with GD, therefore it is necessary to use it for an estimation of treatment efficiency to correct a recombinant glucocerebroside dosage.
Boos, Anja M; Loew, Johanna S; Deschler, Gloria; Arkudas, Andreas; Bleiziffer, Oliver; Gulle, Heinz; Dragu, Adrian; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P
2011-06-01
Bone tissue engineering approaches increasingly focus on the use of mesenchymal stem cells (MSC). In most animal transplantation models MSC are isolated and expanded before auto cell transplantation which might be critical for clinical application in the future. Hence this study compares the potential of directly auto-transplanted versus in vitro expanded MSC with or without bone morphogenetic protein-2 (BMP-2) to induce bone formation in a large volume ceramic bone substitute in the sheep model. MSC were isolated from bone marrow aspirates and directly auto-transplanted or expanded in vitro and characterized using fluorescence activated cell sorting (FACS) and RT-PCR analysis before subcutaneous implantation in combination with BMP-2 and β-tricalcium phosphate/hydroxyapatite (β-TCP/HA) granules. Constructs were explanted after 1 to 12 weeks followed by histological and RT-PCR evaluation. Sheep MSC were CD29(+), CD44(+) and CD166(+) after selection by Ficoll gradient centrifugation, while directly auto-transplanted MSC-populations expressed CD29 and CD166 at lower levels. Both, directly auto-transplanted and expanded MSC, were constantly proliferating and had a decreasing apoptosis over time in vivo. Directly auto-transplanted MSC led to de novo bone formation in a heterotopic sheep model using a β-TCP/HA matrix comparable to the application of 60 μg/ml BMP-2 only or implantation of expanded MSC. Bone matrix proteins were up-regulated in constructs following direct auto-transplantation and in expanded MSC as well as in BMP-2 constructs. Up-regulation was detected using immunohistology methods and RT-PCR. Dense vascularization was demonstrated by CD31 immunohistology staining in all three groups. Ectopic bone could be generated using directly auto-transplanted or expanded MSC with β-TCP/HA granules alone. Hence BMP-2 stimulation might become dispensable in the future, thus providing an attractive, clinically feasible approach to bone tissue engineering. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer
NASA Astrophysics Data System (ADS)
Ma, Hongshi; Li, Tao; Huan, Zhiguang; Zhang, Meng; Yang, Zezheng; Wang, Jinwu; Chang, Jiang; Wu, Chengtie
2018-04-01
The challenges in bone tumor therapy are how to repair the large bone defects induced by surgery and kill all possible residual tumor cells. Compared to cancellous bone defect regeneration, cortical bone defect regeneration has a higher demand for bone substitute materials. To the best of our knowledge, there are currently few bifunctional biomaterials with an ultra-high strength for both tumor therapy and cortical bone regeneration. Here, we designed Fe-CaSiO3 composite scaffolds (30CS) via 3D printing technique. First, the 30CS composite scaffolds possessed a high compressive strength that provided sufficient mechanical support in bone cortical defects; second, synergistic photothermal and ROS therapies achieved an enhanced tumor therapeutic effect in vitro and in vivo. Finally, the presence of CaSiO3 in the composite scaffolds improved the degradation performance, stimulated the proliferation and differentiation of rBMSCs, and further promoted bone formation in vivo. Such 30CS scaffolds with a high compressive strength can function as versatile and efficient biomaterials for the future regeneration of cortical bone defects and the treatment of bone cancer.
[Guided bone regeneration: general survey].
Cosyn, Jan; De Bruyn, Hugo
2009-01-01
The principle of 'guided bone regeneration' was first described in 1988 on the basis of animal-experimental data. Six weeks after transmandibular defects had been created and protected by non-resorbable teflonmembranes, complete bone regeneration was found. The technique was based on the selective repopulation of the wound: every infiltration of cells outside the neighbouring bone tissue was prevented by the application of the membrane. Additional animal experiments showed that guided bone regeneration was a viable treatment option for local bone defects surrounding dental implants. Clinical practice, however, showed that premature membrane exposure was a common complication, which was responsible for a tremendous reduction in regenerated bone volume. In addition, a second surgical intervention was always necessary to remove the membrane. As a result, resorbable alternatives were developed. Since these are less rigid, bone fillers are usually used simultaneously. These comprise autogenous bone chips and bone substitutes from allogenic or xenogenic origine. Also alloplastic materials could be used for this purpose. Based on their characteristics this article provides an overview of the biomaterials that could be considered for guided bone regeneration. Specific attention goes to their application in clinical practice.
Natural Polymer-Cell Bioconstructs for Bone Tissue Engineering.
Titorencu, Irina; Albu, Madalina Georgiana; Nemecz, Miruna; Jinga, Victor V
2017-01-01
The major goal of bone tissue engineering is to develop bioconstructs which substitute the functionality of damaged natural bone structures as much as possible if critical-sized defects occur. Scaffolds that mimic the structure and composition of bone tissue and cells play a pivotal role in bone tissue engineering applications. First, composition, properties and in vivo synthesis of bone tissue are presented for the understanding of bone formation. Second, potential sources of osteoprogenitor cells have been investigated for their capacity to induce bone repair and regeneration. Third, taking into account that the main property to qualify one scaffold as a future bioconstruct for bone tissue engineering is the biocompatibility, the assessments which prove it are reviewed in this paper. Forth, various types of natural polymer- based scaffolds consisting in proteins, polysaccharides, minerals, growth factors etc, are discussed, and interaction between scaffolds and cells which proved bone tissue engineering concept are highlighted. Finally, the future perspectives of natural polymer-based scaffolds for bone tissue engineering are considered. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Mendoza-Barrera, C.; Meléndez-Lira, M.; Altuzar, V.; Tomás, S. A.
2003-01-01
We report the effect of the addition of an epidermal growth factor to a Ricinus communis-based biopolymer in the healing of a rat tibia model. Bone repair and osteointegration after a period of three weeks were evaluated employing photoacoustic spectroscopy and x-ray diffraction. A parallel study was performed at 1, 2, 3, 4, 5, 6, 7, and 8 weeks with energy dispersive x-ray spectroscopy. We conclude that the use of an epidermal growth factor (group EGF) in vivo accelerates the process of bony repair in comparison with other groups, and that the employment of the Ricinus communis-based biopolymer as a bone substitute decreases bone production.
NASA Astrophysics Data System (ADS)
Biswas, Abhijit; Ovaert, Timothy C.; Slaboch, Constance; Zhao, He; Bayer, Ilker S.; Biris, Alexandru S.; Wang, Tao
2011-07-01
We demonstrate tunable mechanical properties of bone-inspired bionanocomposite scaffolds while maintaining the required viscoelasticity. Mechanical properties such as hardness and elastic modulus of the bionanocomposite scaffolds were controlled by varying mineral concentrations of the bioscaffold. In particular, higher calcium and oxygen contents in the bioscaffold resulted in a significant enhancement in hardness and modulus of the bionanocomposite. Moreover, the phosphorous content appeared to be a determining factor in the hardness and mechanical properties of the bionanocomposites. These results open up the possibility of designing new engineered biocompatible nanoscaffolds with desired and tunable biomimetic functions and biomechanical properties with significant potential for advanced bone tissue engineering platforms and bone substitutes.
Lim, Poon Nian; Wang, Zuyong; Chang, Lei; Konishi, Toshiisa; Choong, Cleo; Ho, Bow; Thian, Eng San
2017-01-01
Prevention of infection and enhanced osseointegration are closely related, and required for a successful orthopaedic implant, which necessitate implant designs to consider both criteria in tandem. A multi-material coating containing 1:1 ratio of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite as the top functional layer, and hydroxyapatite as the base layer, was produced via the drop-on-demand micro-dispensing technique, as a strategic approach in the fight against infection along with the promotion of bone tissue regeneration. The homogeneous distribution of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite micro-droplets at alternate position in silicon-substituted hydroxyapatite-silver-substituted hydroxyapatite/hydroxyapatite coating delayed the exponential growth of Staphylococcus aureus for up to 24 h, and gave rise to up-regulated expression of alkaline phosphatase activity, type I collagen and osteocalcin as compared to hydroxyapatite and silver-substituted hydroxyapatite coatings. Despite containing reduced amounts of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite micro-droplets over the coated area than silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite coatings, silicon-substituted hydroxyapatite-silver-substituted hydroxyapatite/hydroxyapatite coating exhibited effective antibacterial property with enhanced bioactivity. By exhibiting good controllability of distributing silicon-substituted hydroxyapatite, silver-substituted hydroxyapatite and hydroxyapatite micro-droplets, it was demonstrated that drop-on-demand micro-dispensing technique was capable in harnessing the advantages of silver-substituted hydroxyapatite, silicon-substituted hydroxyapatite and hydroxyapatite to produce a multi-material coating along with enhanced bioactivity and reduced infection.
Can artificial techniques supply morally neutral human embryos for research?
Cheshire, William P; Jones, Nancy L
2005-01-01
Amidst controversy surrounding research on human embryos, biotechnology has conceived a substitute in the artificial human embryo. We examine the claim that novel embryos constructed artificially should be exempt from ethical restraints appropriate for research on embryos that come into being through natural processes. Morally relevant differences in intrinsic value depend on the sense in which the entity may be artificial, whether in regard to constituent matter, genetic or cellular form, generative means, or intended purpose. Considering each of these Aristotelian categories from a physicalist viewpoint, technology can achieve only limited degrees of artificiality because redesigned embryos still retain most of their natural features and relationships. From an essentialist viewpoint, the very limits of technology preclude the capability of manipulating the fundamental nature or essence of the individual who, even at the embryonic stage of life, cannot be made to be artificial through and through. A human may possess artificially contributed attributes but cannot be an artificial being. Classification of novel human organisms as artificial, therefore, is insufficient grounds by which to relinquish the principle that human moral status should be recognized for all living beings of human origin. In uncertain cases, at least the possibility of special human moral status should be considered present in organisms that are derived asexually, are developmentally defective, or are otherwise technologically altered.
Cytotoxicity investigation of a new hydroxyapatite scaffold with improved structural design.
Sjerobabin, Nikola; Čolović, Božana; Petrović, Milan; Marković, Dejan; Živković, Slavoljub; Jokanović, Vukoman
2016-01-01
Biodegradable porous scaffolds are found to be very promising bone substitutes, acting as a temporary physical support to guide new tissue regeneration, until the entire scaffold is totally degraded and replaced by the new tissue. The aim of this study was to investigate cytotoxicity of a synthesized calcium hydroxyapatitebased scaffold, named ALBO-OS, with high porosity and optimal topology. The ALBO-OS scaffold was synthesized by the method of polymer foam template. The analysis of pore geometry and scaffold walls’ topography was made by scanning electron microscope (SEM). The biological investigations assumed the examinations of ALBO-OS cytotoxicity to mouse L929 fibroblasts, using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) and lactate dehydrogenase (LDH) tests and inverse phase microscopy. The SEM analysis showed high porosity with fair pore distribution and interesting morphology from the biological standpoint. The biological investigations showed that the material is not cytotoxic to L929 cells. Comparison of ALBO-OS with Bio-Oss, as the global gold standard as a bone substitute, showed similar results in MTT test, while LDH test showed significantly higher rate of cell multiplication with ALBO-OS. The scaffold design from the aspect of pore size, distribution, and topology seems to be very convenient for cell adhesion and occupation, which makes it a promising material as a bone substitute. The results of biological assays proved that ALBO-OS is not cytotoxic for L929 fibroblasts. In comparison with Bio-Oss, similar or even better results were obtained.
NASA Astrophysics Data System (ADS)
Ho, Gideon; Barbenel, Joseph; Grant, M. Helen
2009-05-01
Fibroblast-populated collagen lattices (FPCL) are widely used in tissue-engineered artificial skin substitutes, but their main drawback is that interaction of fibroblasts and matrix causes contraction of the lattice, reducing it to about 20% of its original area. The effect of low-level laser treatment (LLLT) on the behavior of 3T3 fibroblasts seeded in collagen lattices containing 20% chondroitin-6-sulphate was investigated to determine whether LLLT could control the contraction of FPCL. A He-Ne laser was used at 632.8 nm to deliver a 5-mW continuous wave with fluences from 1 to 4 J/cm2. Laser treatment at 3 J/cm2 increased contraction of collagen lattices in the absence of cells but decreased contraction of cell seeded lattices over a 7-day period. The effect was energy dependent and was not observed at 1, 2, or 4 J/cm2. There was no alteration in fibroblast viability, morphology, or mitochondrial membrane potential after any laser treatments, but the distribution of actin fibers within the cells and collagen fibers in the matrices was disturbed at 3 J/cm2. These effects contribute to the decrease in contraction observed. LLLT may offer a means to control contraction of FPCL used as artificial skin substitutes.
Constructing general partial differential equations using polynomial and neural networks.
Zjavka, Ladislav; Pedrycz, Witold
2016-01-01
Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kontani, Satoru; Nakamura, Akinobu; Tokumi, Hiroshi; Hirose, Genjirou
2014-01-01
A 83 years old woman was slipped and injured with right femoral neck fracture. After three days from the fracture, she underwent an artificial head bone replacement operation. Immediately after surgery, she complained of chest discomfort, nausea and dyspnea. A few hours later, she became comatose. Brain CT showed no abnormality and clinical diagnosis of heart failure was made without pulmonary embolism on enhanced chest CT. Magnetic resonance imaging (MRI) of the brain next day showed multiple small patchy hyperintense lesion in bilateral hemispheres on diffusion-weighted images (DWI), producing a "star field pattern''. Based on Criteria of Gurd, this patient had one major criterion and four minor criteria. And according to the Criteria of Schonfeld, this patient had 5 points, consistent with clinical diagnosis of fat embolism. Because of these criteria, she was diagnosed as cerebral fat embolism syndrome. We started supported care and edaravon. Two weeks after surgery, her condition recovered and remaind to stuporous state even six month after surgery. We experienced a typical case of cerebral fat embolism, after bone surgery with diagnostic findings on MRI-DWI. Diagnosis of cerebral fat embolism syndrome requires a history of long bone fracture and/or replacing surgery with typical finding on MRI images, such as "star field pattern''.
Reconstruction of Long Bone Infections Using the Induced Membrane Technique: Tips and Tricks.
Mauffrey, Cyril; Hake, Mark E; Chadayammuri, Vivek; Masquelet, Alain-Charles
2016-06-01
The management of posttraumatic long bone osteomyelitis remains a challenging clinical problem. A systematic approach is necessary, beginning with eradication of the infected bone and soft tissue. There are a number of options for reconstruction of the remaining bone defect, including the induced membrane technique developed by Masquelet. We describe our technique for the 2-stage treatment of long bone osteomyelitis. The first stage involves a radical debridement, stabilization of the bone with either external fixation or an antibiotic-coated intramedullary nail, and placement of a polymethylmethacrylate spacer. The second stage includes excision of the spacer and placement of autologous bone graft. Various resection methods, fixation strategies, antibiotic additives, and types of bone grafts or substitutes can be used. The purpose of our technical article is to share our personal experience and describe several nuances that are critical for the success of this treatment strategy. Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Culbert, A A; Lowe, M P; Atkinson, M; Byers, P H; Wallis, G A; Kadler, K E
1995-01-01
We identified two infants with lethal (type II) osteogenesis imperfecta (OI) who were heterozygous for mutations in the COL1A1 gene that resulted in substitutions of aspartic acid for glycine at position 220 and arginine for glycine at position 664 in the product of one COL1A1 allele in each individual. In normal age- and site-matched bone, approximately 70% (by number) of the collagen fibrils were encrusted with plate-like crystallites of hydroxyapatite. In contrast, approximately 5% (by number) of the collagen fibrils in the probands' bone contained crystallites. In contrast with normal bone, the c-axes of hydroxyapatite crystallites were sometimes poorly aligned with the long axis of fibrils obtained from OI bone. Chemical analysis showed that the OI samples contained normal amounts of calcium. The probands' bone samples contained type I collagen, overmodified type I collagen and elevated levels of type III and V collagens. On the basis of biochemical and morphological data, the fibrils in the OI samples were co-polymers of normal and mutant collagen. The results are consistent with a model of fibril mineralization in which the presence of abnormal type I collagen prevents normal collagen in the same fibril from incorporating hydroxyapatite crystallites. Images Figure 1 Figure 2 Figure 3 PMID:7487936
Colangelo, Francesco; Cioffi, Raffaele
2013-07-25
In this work, three different samples of solid industrial wastes cement kiln dust (CKD), granulated blast furnace slag and marble sludge were employed in a cold bonding pelletization process for the sustainable production of artificial aggregates. The activating action of CKD components on the hydraulic behavior of the slag was explored by evaluating the neo-formed phases present in several hydrated pastes. Particularly, the influence of free CaO and sulfates amount in the two CKD samples on slag reactivity was evaluated. Cold bonded artificial aggregates were characterized by determining physical and mechanical properties of two selected size fractions of the granules for each studied mixture. Eighteen types of granules were employed in C28/35 concrete manufacture where coarser natural aggregate were substituted with the artificial ones. Finally, lightweight concretes were obtained, proving the suitability of the cold bonding pelletization process in artificial aggregate sustainable production.
Colangelo, Francesco; Cioffi, Raffaele
2013-01-01
In this work, three different samples of solid industrial wastes cement kiln dust (CKD), granulated blast furnace slag and marble sludge were employed in a cold bonding pelletization process for the sustainable production of artificial aggregates. The activating action of CKD components on the hydraulic behavior of the slag was explored by evaluating the neo-formed phases present in several hydrated pastes. Particularly, the influence of free CaO and sulfates amount in the two CKD samples on slag reactivity was evaluated. Cold bonded artificial aggregates were characterized by determining physical and mechanical properties of two selected size fractions of the granules for each studied mixture. Eighteen types of granules were employed in C28/35 concrete manufacture where coarser natural aggregate were substituted with the artificial ones. Finally, lightweight concretes were obtained, proving the suitability of the cold bonding pelletization process in artificial aggregate sustainable production. PMID:28811427
Somasundaram, K; Huber, C P; Babu, V; Zadeh, H
2013-04-01
The aim of our study is to analyse the results of our surgical technique for the treatment of proximal humeral fractures and fracture dislocations using locking plates in conjunction with calcium sulphate bone-substitute augmentation and tuberosity repair using high-strength sutures. We used the extended deltoid-splitting approach for fracture patterns involving displacement of both lesser and greater tuberosities and for fracture-dislocations. Optimal surgical management of proximal humeral fractures remains controversial. Locking plates have become a popular method of fixation. However, failure of fixation may occur if they are used as the sole method of fixation in comminuted fractures, especially in osteopenic bone. We retrospectively analysed 22 proximal humeral fractures in 21 patients; 10 were male and 11 female with an average age of 64.6 years (range 37-77). Average follow-up was 24 months. Eleven of these fractures were exposed by the extended deltoid-splitting approach. Fractures were classified according to Neer and Hertel systems. Preoperative radiographs and computed tomography (CT) scans in three- and four-part fractures were done to assess the displacement and medial calcar length for predicting the humeral head vascularity. According to the Neer classification, there were five two-part, six three-part, five four-part fractures and six fracture-dislocations (two anterior and four posterior). Results were assessed clinically with disabilities of the arm, shoulder and hand (DASH) scores, modified Constant and Murley scores and serial postoperative radiographs. The mean DASH score was 16.18 and the modified Constant and Murley score was 64.04 at the last follow-up. Eighteen out of twenty-two cases achieved good clinical outcome. All the fractures united with no evidence of infection, failure of fixation, malunion, tuberosity failure, avascular necrosis or adverse reaction to calcium sulphate bone substitute. There was no evidence of axillary nerve injury. Four patients had a longer recovery period due to stiffness, associated wrist fracture and elbow dislocation. The CaSO4 bone substitute was replaced by normal appearing trabecular bone texture at an average of 6 months in all patients. In our experience, we have found the use of locking plates, calcium sulphate bone substitute and tuberosity repair with high-strength sutures to be a safe and reliable method of internal fixation for complex proximal humeral fractures and fracture-dislocations. Furthermore, we have also found the use of the extended deltoid-splitting approach to be safe and to provide excellent exposure facilitating accurate reduction for fixation of the fracture patterns involving displacement of both lesser and greater tuberosities and for fracture-dislocations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Choi, Jisoo; Shin, Dong-Ah; Kim, Sohee
2017-03-15
A three-dimensional finite element model of intact lumbar spine was constructed and four surgical finite element models implanted with ball-and-socket artificial discs with four different radii of curvature were compared. To investigate biomechanical effects of the curvature of ball-and-socket artificial disc using finite element analysis. Total disc replacement (TDR) has been accepted as an alternative treatment because of its advantages over spinal fusion methods in degenerative disc disease. However, the influence of the curvature of artificial ball-and-socket discs has not been fully understood. Four surgical finite element models with different radii of curvature of ball-and-socket artificial discs were constructed. The range of motion (ROM) increased with decreasing radius of curvature in extension, flexion, and lateral bending, whereas it increased with increasing radius of curvature in axial torsion. The facet contact force was minimum with the largest radius of curvature in extension, flexion, and lateral bending, whereas it was maximum with the largest radius in axial torsion. It was also affected by the disc placement, more with posterior placement than anterior placement. The stress in L4 cancellous bone increased when the radius of curvature was too large or small. The geometry of ball-and-socket artificial disc significantly affects the ROM, facet contact force, and stress in the cancellous bone at the surgical level. The implication is that in performing TDR, the ball-and-socket design may not be ideal, as ROM and facet contact force are sensitive to the disc design, which may be exaggerated by the individual difference of anatomical geometry. N/A.
Artificial Neural Networks Equivalent to Fuzzy Algebra T-Norm Conjunction Operators
NASA Astrophysics Data System (ADS)
Iliadis, L. S.; Spartalis, S. I.
2007-12-01
This paper describes the construction of three Artificial Neural Networks with fuzzy input and output, imitating the performance of fuzzy algebra conjunction operators. More specifically, it is applied over the results of a previous research effort that used T-Norms in order to produce a characteristic torrential risk index that unified the partial risk indices for the area of Xanthi. Each one of the three networks substitutes a T-Norm and consequently they can be used as equivalent operators. This means that ANN performing Fuzzy Algebra operations can be designed and developed.
3D bioactive composite scaffolds for bone tissue engineering.
Turnbull, Gareth; Clarke, Jon; Picard, Frédéric; Riches, Philip; Jia, Luanluan; Han, Fengxuan; Li, Bin; Shu, Wenmiao
2018-09-01
Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed.
Kawai, Tadashi; Suzuki, Osamu; Matsui, Keiko; Tanuma, Yuji; Takahashi, Tetsu; Kamakura, Shinji
2017-05-01
Recently it was reported that the implantation of octacalcium phosphate (OCP) and collagen composite (OCP-collagen) was effective at promoting bone healing in small bone defects after cystectomy in humans. In addition, OCP-collagen promoted bone regeneration in a critical-sized bone defect of a rodent or canine model. In this study, OCP-collagen was implanted into a human mandibular bone defect with a longer axis of approximately 40 mm, which was diagnosed as a residual cyst with apical periodontitis. The amount of OCP-collagen implanted was about five times greater than the amounts implanted in previous clinical cases. Postoperative wound healing was satisfactory and no infection or allergic reactions occurred. The OCP-collagen-treated lesion was gradually filled with radio-opaque figures, and the alveolar region occupied the whole of the bone defect 12 months after implantation. This study suggests that OCP-collagen could be a useful bone substitute material for repairing large bone defects in humans that might not heal spontaneously. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Hirata, Eri; Ménard-Moyon, Cécilia; Venturelli, Enrica; Takita, Hiroko; Watari, Fumio; Bianco, Alberto; Yokoyama, Atsuro
2013-11-01
Multi-walled carbon nanotubes (MWCNTs) were functionalized with fibroblast growth factor (FGF) and the advantages of their use as scaffolds for bone augmentation were evaluated in vitro and in vivo. The activity of FGF was assessed by measuring the effect on the proliferation of rat bone marrow stromal cells (RBMSCs). The presence of FGF enhanced the proliferation of RBMSCs and the FGF covalently conjugated to the nanotubes (FGF-CNT) showed the same effect as FGF alone. In addition, FGF-CNT coated sponges were implanted between the parietal bone and the periosteum of rats and the formation of new bone was investigated. At day 14 after implantation, a larger amount of newly formed bone was clearly observed in most pores of FGF-CNT coated sponges. These findings indicated that MWCNTs accelerated new bone formation in response to FGF, as well as the integration of particles into new bone during its formation. Scaffolds coated with FGF-CNT could be considered as promising novel substituting materials for bone regeneration in future tissue engineering applications.
In vivo bone regeneration using a novel porous bioactive composite
NASA Astrophysics Data System (ADS)
Xie, En; Hu, Yunyu; Chen, Xiaofeng; Bai, Xuedong; Li, Dan; Ren, Li; Zhang, Ziru
2008-11-01
Many commercial bone graft substitutes (BGS) and experimental bone tissue engineering scaffolds have been developed for bone repair and regeneration. This study reports the in vivo bone regeneration using a newly developed porous bioactive and resorbable composite that is composed of bioactive glass (BG), collagen (COL), hyaluronic acid (HYA) and phosphatidylserine (PS), BG-COL-HYA-PS. The composite was prepared by a combination of sol-gel and freeze-drying methods. A rabbit radius defect model was used to evaluate bone regeneration at time points of 2, 4 and 8 weeks. Techniques including radiography, histology, and micro-CT were applied to characterize the new bone formation. 8 weeks results showed that (1) nearly complete bone regeneration was achieved for the BG-COL-HYA-PS composite that was combined with a bovine bone morphogenetic protein (BMP); (2) partial bone regeneration was achieved for the BG-COL-HYA-PS composites alone; and (3) control remained empty. This study demonstrated that the novel BG-COL-HYA-PS, with or without the grafting of BMP incorporation, is a promising BGS or a tissue engineering scaffold for non-load bearing orthopaedic applications.
Bone regenerative medicine: classic options, novel strategies, and future directions
2014-01-01
This review analyzes the literature of bone grafts and introduces tissue engineering as a strategy in this field of orthopedic surgery. We evaluated articles concerning bone grafts; analyzed characteristics, advantages, and limitations of the grafts; and provided explanations about bone-tissue engineering technologies. Many bone grafting materials are available to enhance bone healing and regeneration, from bone autografts to graft substitutes; they can be used alone or in combination. Autografts are the gold standard for this purpose, since they provide osteogenic cells, osteoinductive growth factors, and an osteoconductive scaffold, all essential for new bone growth. Autografts carry the limitations of morbidity at the harvesting site and limited availability. Allografts and xenografts carry the risk of disease transmission and rejection. Tissue engineering is a new and developing option that had been introduced to reduce limitations of bone grafts and improve the healing processes of the bone fractures and defects. The combined use of scaffolds, healing promoting factors, together with gene therapy, and, more recently, three-dimensional printing of tissue-engineered constructs may open new insights in the near future. PMID:24628910
Composite Bone Models in Orthopaedic Surgery Research and Education
Elfar, John; Stanbury, Spencer; Menorca, Ron Martin Garcia; Reed, Jeffrey Douglas
2014-01-01
Composite bone models are increasingly used in orthopaedic biomechanics research and surgical education—applications that traditionally relied on cadavers. Cadaver bones are suboptimal for myriad reasons, including issues of cost, availability, preservation, and inconsistency between specimens. Further, cadaver samples disproportionately represent the elderly, whose bone quality may not be representative of the greater orthopaedic population. The current fourth-generation composite bone models provide an accurate reproduction of the biomechanical properties of human bone when placed under bending, axial, and torsional loads. The combination of glass fiber and epoxy resin components into a single phase has enabled manufacturing by injection molding. The high anatomic fidelity of the cadaver-based molds and negligible shrinkage properties of the epoxy resin results in a process that allows for excellent definition of anatomic detail in the cortical wall and optimized consistency of features between models. Recent biomechanical studies of composites have validated their use as a suitable substitute for cadaver specimens. PMID:24486757
Composite bone models in orthopaedic surgery research and education.
Elfar, John; Menorca, Ron Martin Garcia; Reed, Jeffrey Douglas; Stanbury, Spencer
2014-02-01
Composite bone models are increasingly used in orthopaedic biomechanics research and surgical education-applications that traditionally relied on cadavers. Cadaver bones are suboptimal for many reasons, including issues of cost, availability, preservation, and inconsistency between specimens. Further, cadaver samples disproportionately represent the elderly, whose bone quality may not be representative of the greater orthopaedic population. The current fourth-generation composite bone models provide an accurate reproduction of the biomechanical properties of human bone when placed under bending, axial, and torsional loads. The combination of glass fiber and epoxy resin components into a single phase has enabled manufacturing by injection molding. The high level of anatomic fidelity of the cadaver-based molds and negligible shrinkage properties of the epoxy resin results in a process that allows for excellent definition of anatomic detail in the cortical wall and optimized consistency of features between models. Recent biomechanical studies of composites have validated their use as a suitable substitute for cadaver specimens.
Yun, Pil-Young; Um, In-Woong; Lee, Hyo-Jung; Yi, Yang-Jin; Bae, Ji-Hyun; Lee, Junho
2014-01-01
This case series evaluated the clinical efficacy of autogenous tooth bone graft material (AutoBT) in alveolar ridge preservation of an extraction socket. Thirteen patients who received extraction socket graft using AutoBT followed by delayed implant placements from Nov. 2008 to Aug. 2010 were evaluated. A total of fifteen implants were placed. The primary and secondary stability of the placed implants were an average of 58 ISQ and 77.9 ISQ, respectively. The average amount of crestal bone loss around the implant was 0.05 mm during an average of 22.5 months (from 12 to 34 months) of functional loading. Newly formed tissues were evident from the 3-month specimen. Within the limitations of this case, autogenous tooth bone graft material can be a favorable bone substitute for extraction socket graft due to its good bone remodeling and osteoconductivity. PMID:25551013
Keller, Laetitia; Idoux-Gillet, Ysia; Wagner, Quentin; Eap, Sandy; Brasse, David; Schwinté, Pascale; Arruebo, Manuel; Benkirane-Jessel, Nadia
2017-01-01
In tissue engineering, it is still rare today to see clinically transferable strategies for tissue-engineered graft production that conclusively offer better tissue regeneration than the already existing technologies, decreased recovery times, and less risk of complications. Here a novel tissue-engineering concept is presented for the production of living bone implants combining 1) a nanofibrous and microporous implant as cell colonization matrix and 2) 3D bone cell spheroids. This combination, double 3D implants, shows clinical relevant thicknesses for the treatment of an early stage of bone lesions before the need of bone substitutes. The strategy presented here shows a complete closure of a defect in nude mice calvaria after only 31 days. As a novel strategy for bone regenerative nanomedicine, it holds great promises to enhance the therapeutic efficacy of living bone implants. PMID:28138241
Porous polymethylmethacrylate as bone substitute in the craniofacial area.
Bruens, Marco L; Pieterman, Herman; de Wijn, Joost R; Vaandrager, J Michael
2003-01-01
In craniofacial surgery, alloplastic materials are used for correcting bony defects. Porous polymethylmethacrylate (PMMA) is a biocompatible and nondegradable bone cement. Porous PMMA is formed by the classic bone cement formulation of methylmethacrylate liquid and PMMA powder in which an aqueous biodegradable carboxymethylcellulose gel is dispersed to create pores in the cement when cured. Pores give bone the opportunity to grow in, resulting in a better fixation of the prostheses. We evaluated the long-term results (n = 14), up to 20 years, of augmentations and defect fillings in the craniofacial area, with special interest in possible side effects and bone ingrowth. The evaluation consisted of a questionnaire, a physical examination, and a computed tomography (CT) scan. There were no side effects that could be ascribed to the porous PMMA. Twelve CT scans showed bone ingrowth into the prostheses, proving the validity behind the concept of porous PMMA.
Jiang, Jia; Wan, Fang; Yang, Jianjun; Hao, Wei; Wang, Yaxian; Yao, Jinrong; Shao, Zhengzhong; Zhang, Peng; Chen, Jun; Zhou, Liang; Chen, Shiyi
2014-01-01
Application of artificial ligament in anterior cruciate ligament reconstruction is one of the research focuses of sports medicine but the biological tendon-bone healing still remains a problem. The preliminary study of hydroxyapatite (HAP) coating on the polyethylene terephthalate (PET) surface could effectively induce the osteoblast differentiation, but the tendon-bone healing was still not stable. As a green synthesis process, the biomimetic mineralization can simulate the natural bone growth in vitro and in vivo. HAP crystals were grown under the guide of silk fibroin (SF) PET surface by biomimetic route. Several techniques including scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy were utilized for proving the introduction of both SF and HAP. The viability and osseointegration of bone marrow stromal cells on the surface of three kinds of ligament, including PET group (non-coating group), PET+SF group (SF-coating group), and PET+SF+HAP group (combined HAP- and SF-coating group), were analyzed by CCK-8 assays and alkaline phosphatase (ALP) detection. Seventy-two mature male New Zealand rabbits were randomly divided into three groups. Among them, 36 rabbits were sacrificed for mechanical testing, and histological examination for the others. The SF and SF+HAP were successfully coated on the surface of PET fiber. The CCK-8 assay showed that the cell proliferation on PET+SF+HAP group was better than the other two groups from 24 to 120 hours. After 14 days of culture, the cells in the PET+SF+HAP group delivered higher levels of ALP than the other two groups. After 3 days of culture, the expression level of integrin β1 in the PET+SF+HAP group and PET+SF group were higher than in the PET group. The mean load to failure and the stiffness value of the PET+SF+HAP group were both higher than the other two groups. Hematoxylin and eosin staining showed that new bone tissue formation was only found in the PET+SF+HAP group 8 weeks postoperatively. Masson staining showed that in the PET+SF+HAP group 8 weeks postoperatively, the PET fibers were almost completely encircled by collagen. Histomorphometric analysis showed that the width of the graft-bone interface in the PET+SF+HAP group was narrower than that in the other two groups 4 and 8 weeks postoperatively. The mRNA level of BMP-7 in the PET+SF+HAP groups was significantly higher than those in the other two groups 4 and 8 weeks postoperatively. The study showed that the combined SF and HAP coating by biomimetic route on the surface of PET artificial ligament could induce graft osseointegration in the bone tunnel, providing theoretical and experimental foundation for manufacturing novel artificial ligaments meeting the clinical needs.
Jiang, Jia; Wan, Fang; Yang, Jianjun; Hao, Wei; Wang, Yaxian; Yao, Jinrong; Shao, Zhengzhong; Zhang, Peng; Chen, Jun; Zhou, Liang; Chen, Shiyi
2014-01-01
Background Application of artificial ligament in anterior cruciate ligament reconstruction is one of the research focuses of sports medicine but the biological tendon–bone healing still remains a problem. The preliminary study of hydroxyapatite (HAP) coating on the polyethylene terephthalate (PET) surface could effectively induce the osteoblast differentiation, but the tendon–bone healing was still not stable. As a green synthesis process, the biomimetic mineralization can simulate the natural bone growth in vitro and in vivo. Methods HAP crystals were grown under the guide of silk fibroin (SF) PET surface by biomimetic route. Several techniques including scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy were utilized for proving the introduction of both SF and HAP. The viability and osseointegration of bone marrow stromal cells on the surface of three kinds of ligament, including PET group (non-coating group), PET+SF group (SF-coating group), and PET+SF+HAP group (combined HAP- and SF-coating group), were analyzed by CCK-8 assays and alkaline phosphatase (ALP) detection. Seventy-two mature male New Zealand rabbits were randomly divided into three groups. Among them, 36 rabbits were sacrificed for mechanical testing, and histological examination for the others. Results The SF and SF+HAP were successfully coated on the surface of PET fiber. The CCK-8 assay showed that the cell proliferation on PET+SF+HAP group was better than the other two groups from 24 to 120 hours. After 14 days of culture, the cells in the PET+SF+HAP group delivered higher levels of ALP than the other two groups. After 3 days of culture, the expression level of integrin β1 in the PET+SF+HAP group and PET+SF group were higher than in the PET group. The mean load to failure and the stiffness value of the PET+SF+HAP group were both higher than the other two groups. Hematoxylin and eosin staining showed that new bone tissue formation was only found in the PET+SF+HAP group 8 weeks postoperatively. Masson staining showed that in the PET+SF+HAP group 8 weeks postoperatively, the PET fibers were almost completely encircled by collagen. Histomorphometric analysis showed that the width of the graft–bone interface in the PET+SF+HAP group was narrower than that in the other two groups 4 and 8 weeks postoperatively. The mRNA level of BMP-7 in the PET+SF+HAP groups was significantly higher than those in the other two groups 4 and 8 weeks postoperatively. Conclusion The study showed that the combined SF and HAP coating by biomimetic route on the surface of PET artificial ligament could induce graft osseointegration in the bone tunnel, providing theoretical and experimental foundation for manufacturing novel artificial ligaments meeting the clinical needs. PMID:25302023
Aggressive intraosseous lipoma of the intermediate phalanges of the thumb.
Hashimoto, Kazuhiko; Nishimura, Shunji; Kakinoki, Ryosuke; Akagi, Masao
2018-07-01
Intraosseous lipomas occurring in the bones of the upper limbs are very rare. The tumor often occurs in long bones, especially the calcaneus. Usually patients with intraosseous lipomas present with mild clinical features. Thus far, bone destruction caused by the tumor has not been reported. The present study reported a case of an aggressive intraosseous lipoma that developed in the intermediate phalanges of the thumb. This is an extremely rare case with extraosseous development, which occurred at a rare site. A 47-year old woman presented to us with right thumb pain and swelling. Computed tomography and magnetic resonance imaging revealed a mass extending to the outer edge of the phalangeal bone. The patient was treated with surgery the remove the tumor. Artificial bone was used to refill the area due to the lack of cancellous bone. During the clinical management of lipomas, it is important to consider that intraosseous lipomas may spread out of the bone; moreover, the tumor should be removed immediately to help reduce the possibility of bone destruction.
Zhong, Zhenyu; Ma, Jun
2017-09-01
Zinc substituted hydroxyapatite/silk fibroin composite coatings were deposited on titanium substrates at room temperature by electrophoretic deposition. Microscopic characterization of the synthesized composite nanoparticles revealed that the particle size ranged 50-200 nm, which increased a little after zinc substitution. The obtained coatings maintained the phase of hydroxyapatite and they could induce fast apatite formation in simulated body fluid, indicating high bone activity. The cell culturing results showed that the biomimetic hydroxyapatite coatings could regulate adhesion, spreading, and proliferation of osteoblastic cells. Furthermore, the biological behavior of the zinc substituted hydroxyapatite coatings was found to be better than the bare titanium without coatings and hydroxyapatite coatings without zinc, increasing MC3T1-E1 cell differentiation in alkaline phosphatase expression.
Artificial Bone and Teeth through Controlled Ice Growth in Colloidal Suspensions
NASA Astrophysics Data System (ADS)
Tomsia, Antoni P.; Saiz, Eduardo; Deville, Sylvain
2007-06-01
The formation of regular patterns is a common feature of many solidification processes involving cast materials. We describe here how regular patterns can be obtained in porous alumina and hydroxyapatite (HAP) by controlling the freezing of ceramic slurries followed by subsequent ice sublimation and sintering, leading to multilayered porous ceramic structures with homogeneous and well-defined architecture. These porous materials can be infiltrated with a second phase of choice to yield biomimetic nacre-like composites with improved mechanical properties, which could be used for artificial bone and teeth applications. Proper control of the solidification patterns provides powerful means of control over the final functional properties. We discuss the relationships between the experimental results, ice growth fundamentals, the physics of ice and the interaction between inert particles and the solidification front during directional freezing.
Artificial Bone and Teeth through Controlled Ice Growth in Colloidal Suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomsia, Antoni P.; Saiz, Eduardo; Deville, Sylvain
2007-06-14
The formation of regular patterns is a common feature of many solidification processes involving cast materials. We describe here how regular patterns can be obtained in porous alumina and hydroxyapatite (HAP) by controlling the freezing of ceramic slurries followed by subsequent ice sublimation and sintering, leading to multilayered porous ceramic structures with homogeneous and well-defined architecture. These porous materials can be infiltrated with a second phase of choice to yield biomimetic nacre-like composites with improved mechanical properties, which could be used for artificial bone and teeth applications. Proper control of the solidification patterns provides powerful means of control over themore » final functional properties. We discuss the relationships between the experimental results, ice growth fundamentals, the physics of ice and the interaction between inert particles and the solidification front during directional freezing.« less
Space flight and bone formation.
Doty, St B
2004-12-01
Major physiological changes which occur during spaceflight include bone loss, muscle atrophy, cardiovascular and immune response alterations. When trying to determine the reason why bone loss occurs during spaceflight, one must remember that all these other changes in physiology and metabolism may also have impact on the skeletal system. For bone, however, the role of normal weight bearing is a major concern and we have found no adequate substitute for weight bearing which can prevent bone loss. During the study of this problem, we have learned a great deal about bone physiology and increased our knowledge about how normal bone is formed and maintained. Presently, we do not have adequate ground based models which can mimic the tissue loss that occurs in spaceflight but this condition closely resembles the bone loss seen with osteoporosis. Although a normal bone structure will respond to application of mechanical force and weight bearing by forming new bone, a weakened osteoporotic bone may have a tendency to fracture. The study of the skeletal system during weightless conditions will eventually produce preventative measures and form a basis for protecting the crew during long term space flight. The added benefit from these studies will be methods to treat bone loss conditions which occur here on earth.
Kinoshita, Yukihiko; Maeda, Hatsuhiko
2013-01-01
Autogenous bone grafting remains a gold standard for the reconstruction critical-sized bone defects in the craniomaxillofacial region. Nevertheless, this graft procedure has several disadvantages such as restricted availability, donor-site morbidity, and limitations in regard to fully restoring the complicated three-dimensional structures in the craniomaxillofacial bone. The ultimate goal of craniomaxillofacial bone reconstruction is the regeneration of the physiological bone that simultaneously fulfills both morphological and functional restorations. Developments of tissue engineering in the last two decades have brought such a goal closer to reality. In bone tissue engineering, the scaffolds are fundamental, elemental and mesenchymal stem cells/osteoprogenitor cells and bioactive factors. A variety of scaffolds have been developed and used as spacemakers, biodegradable bone substitutes for transplanting to the new bone, matrices of drug delivery system, or supporting structures enhancing adhesion, proliferation, and matrix production of seeded cells according to the circumstances of the bone defects. However, scaffolds to be clinically completely satisfied have not been developed yet. Development of more functional scaffolds is required to be applied widely to cranio-maxillofacial bone defects. This paper reviews recent trends of scaffolds for crania-maxillofacial bone tissue engineering, including our studies. PMID:24163634
Space flight and bone formation
NASA Technical Reports Server (NTRS)
Doty, St B.
2004-01-01
Major physiological changes which occur during spaceflight include bone loss, muscle atrophy, cardiovascular and immune response alterations. When trying to determine the reason why bone loss occurs during spaceflight, one must remember that all these other changes in physiology and metabolism may also have impact on the skeletal system. For bone, however, the role of normal weight bearing is a major concern and we have found no adequate substitute for weight bearing which can prevent bone loss. During the study of this problem, we have learned a great deal about bone physiology and increased our knowledge about how normal bone is formed and maintained. Presently, we do not have adequate ground based models which can mimic the tissue loss that occurs in spaceflight but this condition closely resembles the bone loss seen with osteoporosis. Although a normal bone structure will respond to application of mechanical force and weight bearing by forming new bone, a weakened osteoporotic bone may have a tendency to fracture. The study of the skeletal system during weightless conditions will eventually produce preventative measures and form a basis for protecting the crew during long term space flight. The added benefit from these studies will be methods to treat bone loss conditions which occur here on earth.
Hydroxyapatite substituted by transition metals: experiment and theory.
Zilm, M E; Chen, L; Sharma, V; McDannald, A; Jain, M; Ramprasad, R; Wei, M
2016-06-28
Bioceramics are versatile materials for hard tissue engineering. Hydroxyapatite (HA) is a widely studied biomaterial for bone grafting and tissue engineering applications. The crystal structure of HA allows for a wide range of substitutions, which allows for tailoring materials properties. Transition metals and lanthanides are of interest since substitution in HA can result in magnetic properties. In this study, experimental results were compared to theoretical calculations of HA substituted with a transition metal. Calculation of a 10 atomic percent substitution of a transition metal ion Mn(2+), Fe(2+), and Co(2+) substituted HA samples lead to magnetic moments of 5, 4, and 3 Bohr magnetons, respectively. Hydroxyapatite substituted by transition metals (MHA) was fabricated through an ion exchange procedure and characterized with X-ray diffraction, Fourier transform infra-red spectroscopy (FTIR), X-ray photoelectron spectroscopy, and vibrating sample magnetometer, and results were compared to theoretical calculations. All the substitutions resulted in phase-pure M(2+)HA with lattice parameters and FTIR spectra in good agreement with calculations. Magnetic measurements revealed that the substitution of Mn(2+) has the greatest effect on the magnetic properties of HA followed by the substitution of Fe(2+) and then Co(2+). The present work underlines the power of synergistic theoretical-experimental work in guiding the rational design of materials.
Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review
Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga
2015-01-01
In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes. PMID:26703750
Bianchi, Laura; Gagliardi, Assunta; Maruelli, Silvia; Besio, Roberta; Landi, Claudia; Gioia, Roberta; Kozloff, Kenneth M.; Khoury, Basma M.; Coucke, Paul J.; Symoens, Sofie; Marini, Joan C.; Rossi, Antonio; Bini, Luca; Forlino, Antonella
2015-01-01
Osteogenesis imperfecta (OI) is a heritable bone disease with dominant and recessive transmission. It is characterized by a wide spectrum of clinical outcomes ranging from very mild to lethal in the perinatal period. The intra- and inter-familiar OI phenotypic variability in the presence of an identical molecular defect is still puzzling to the research field. We used the OI murine model Brtl+/− to investigate the molecular basis of OI phenotypic variability. Brtl+/− resembles classical dominant OI and shows either a moderately severe or a lethal outcome associated with the same Gly349Cys substitution in the α1 chain of type I collagen. A systems biology approach was used. We took advantage of proteomic pathway analysis to functionally link proteins differentially expressed in bone and skin of Brtl+/− mice with different outcomes to define possible phenotype modulators. The skin/bone and bone/skin hybrid networks highlighted three focal proteins: vimentin, stathmin and cofilin-1, belonging to or involved in cytoskeletal organization. Abnormal cytoskeleton was indeed demonstrated by immunohistochemistry to occur only in tissues from Brtl+/− lethal mice. The aberrant cytoskeleton affected osteoblast proliferation, collagen deposition, integrin and TGF-β signaling with impairment of bone structural properties. Finally, aberrant cytoskeletal assembly was detected in fibroblasts obtained from lethal, but not from non-lethal, OI patients carrying an identical glycine substitution. Our data demonstrated that compromised cytoskeletal assembly impaired both cell signaling and cellular trafficking in mutant lethal mice, altering bone properties. These results point to the cytoskeleton as a phenotypic modulator and potential novel target for OI treatment. PMID:26264579
[Novel artificial lamina for prevention of epidural adhesions after posterior cervical laminectomy].
Lü, Chaoliang; Song, Yueming; Liu, Hao; Liu, Limin; Gong, Quan; Li, Tao; Zeng, Jiancheng; Kong, Qingquan; Pei, Fuxing; Tu, Chongqi; Duan, Hong
2013-07-01
To evaluate the application of artificial lamina of multi-amino-acid copolymer (MAACP)/nano-hydroxyapatite (n-HA) in prevention of epidural adhesion and compression of scar tissue after posterior cervical laminectomy. Fifteen 2-year-old male goats [weighing, (30 +/- 2) kg] were randomly divided into experimental group (n=9) and control group (n=6). In the experimental group, C4 laminectomy was performed, followed by MAACP/n-HA artificial lamina implantations; in the control group, only C4 laminectomy was performed. At 4, 12, and 24 weeks after operation, 2, 2, and 5 goats in the experimental group and 2, 2, and 2 goats in the control group were selected for observation of wound infection, artificial laminar fragmentation and displacement, and its shape; Rydell's degree of adhesion criteria was used to evaluate the adhesion degree between 2 groups. X-ray and CT images were observed; at 24 weeks after operation, CT scan was used to measure the spinal canal area and the sagittal diameter of C3, C4, and C5 vertebrea, 2 normal goats served as normal group; and MRI was used to assess adhesion and compression of scar tissue on the dura and the nerve root. Then goats were sacrificed and histological observation was carried out. After operation, the wound healed well; no toxicity or elimination reaction was observed. According to Rydell's degree of adhesion criteria, adhesion in the experimental group was significantly slighter than that in the control group (Z= -2.52, P=0.00). X-ray and CT scan showed that no dislocation of artificial lamina occurred, new cervical bone formed in the defect, and bony spinal canal was rebuilt in the experimental group. Defects of C4 vertebral plate and spinous process were observed in the control group. At 24 weeks, the spinal canal area and sagittal diameter of C4 in the experimental group and normal group were significantly larger than those in the control group (P < 0.05), but no significant difference was found between experimental group and normal group (P > 0.05). MRI showed cerebrospinal fluid signal was unobstructed and no soft tissue projected into the spinal canal in the experimental group; scar tissue projected into the spinal canal and the dura were compressed by scar tissue in the control group. HE staining and Masson trichrome staining showed that artificial lamina had no obvious degradation with high integrity, some new bone formed at interface between the artificial material and bone in the experimental group; fibrous tissue grew into defect in the control group. The MAACP/n-HA artificial lamina could maintaine good biomechanical properties for a long time in vivo and could effectively prevent the epidural scar from growing in the lamina defect area.
Material nanosizing effect on living organisms: non-specific, biointeractive, physical size effects
Watari, Fumio; Takashi, Noriyuki; Yokoyama, Atsuro; Uo, Motohiro; Akasaka, Tsukasa; Sato, Yoshinori; Abe, Shigeaki; Totsuka, Yasunori; Tohji, Kazuyuki
2009-01-01
Nanosizing effects of materials on biological organisms was investigated by biochemical cell functional tests, cell proliferation and animal implantation testing. The increase in specific surface area causes the enhancement of ionic dissolution and serious toxicity for soluble, stimulative materials. This effect originates solely from materials and enhances the same functions as those in a macroscopic size as a catalyst. There are other effects that become prominent, especially for non-soluble, biocompatible materials such as Ti. Particle size dependence showed the critical size for the transition of behaviour is at approximately 100 μm, 10 μm and 200 nm. This effect has its origin in the biological interaction process between both particles and cells/tissue. Expression of superoxide anions, cytokines tumour necrosis factor-α and interleukin-1β from neutrophils was increased with the decrease in particle size and especially pronounced below 10 μm, inducing phagocytosis to cells and inflammation of tissue, although inductively coupled plasma chemical analysis showed no dissolution from Ti particles. Below 200 nm, stimulus decreases, then particles invade into the internal body through the respiratory or digestive systems and diffuse inside the body. Although macroscopic hydroxyapatite, which exhibits excellent osteoconductivity, is not replaced with natural bone, nanoapatite composites induce both phagocytosis of composites by osteoclasts and new bone formation by osteoblasts when implanted in bone defects. The progress of this bioreaction results in the conversion of functions to bone substitution. Although macroscopic graphite is non-cell adhesive, carbon nanotubes (CNTs) are cell adhesive. The adsorption of proteins and nano-meshwork structure contribute to the excellent cell adhesion and growth on CNTs. Non-actuation of the immune system except for a few innate immunity processes gives the non-specific nature to the particle bioreaction and restricts reaction to the size-sensitive phagocytosis. Materials larger than cell size, approximately 10 μm, behave inertly, but those smaller become biointeractive and induce the intrinsic functions of living organisms. This bioreaction process causes the conversion of functions such as from biocompatibility to stimulus in Ti-abraded particles, from non-bone substitutional to bone substitutional in nanoapatite and from non-cell adhesive to cell adhesive CNTs. The insensitive nature permits nanoparticles that are less than 200 nm to slip through body defence systems and invade directly into the internal body. PMID:19364724
Bae, Sang-Woo; Lee, Kang-Woog; Park, Jae-Hyun; Lee, JunHee; Jung, Cho-Rok; Yu, JunJie; Kim, Hwi-Yool; Kim, Dae-Hyun
2018-05-31
Tracheal resection has limited applicability. Although various tracheal replacement strategies were performed using artificial prosthesis, synthetic stents and tissue transplantation, the best method in tracheal reconstruction remains to be identified. Recent advances in tissue engineering enabled 3D bioprinting using various biocompatible materials including living cells, thereby making the product clinically applicable. Moreover, clinical interest in mesenchymal stem cell has dramatically increased. Here, rabbit bone marrow-derived mesenchymal stem cells (bMSC) and rabbit respiratory epithelial cells were cultured. The chondrogenic differentiation level of bMSC cultured in regular media (MSC) and that in chondrogenic media (d-MSC) were compared. Dual cell-containing artificial trachea were manufactured using a 3D bioprinting method with epithelial cells and undifferentiated bMSC (MSC group, n = 6) or with epithelial cells and chondrogenic-differentiated bMSC (d-MSC group, n = 6). d-MSC showed a relatively higher level of glycosaminoglycan (GAG) accumulation and chondrogenic marker gene expression than MSC in vitro. Neo-epithelialization and neo-vascularization were observed in all groups in vivo but neo-cartilage formation was only noted in d-MSC. The epithelial cells in the 3D bioprinted artificial trachea were effective in respiratory epithelium regeneration. Chondrogenic-differentiated bMSC had more neo-cartilage formation potential in a short period. Nevertheless, the cartilage formation was observed only in a localized area.
Electrospun nanofibrous 3D scaffold for bone tissue engineering.
Eap, Sandy; Ferrand, Alice; Palomares, Carlos Mendoza; Hébraud, Anne; Stoltz, Jean-François; Mainard, Didier; Schlatter, Guy; Benkirane-Jessel, Nadia
2012-01-01
Tissue engineering aims at developing functional substitutes for damaged tissues by mimicking natural tissues. In particular, tissue engineering for bone regeneration enables healing of some bone diseases. Thus, several methods have been developed in order to produce implantable biomaterial structures that imitate the constitution of bone. Electrospinning is one of these methods. This technique produces nonwoven scaffolds made of nanofibers which size and organization match those of the extracellular matrix. Until now, seldom electrospun scaffolds were produced with thickness exceeding one millimeter. This article introduces a new kind of electrospun membrane called 3D scaffold of thickness easily exceeding one centimeter. The manufacturing involves a solution of poly(ε-caprolactone) in DMF/DCM system. The aim is to establish parameters for electrospinning in order to characterize these 3D scaffolds and, establish whether such scaffolds are potentially interesting for bone regeneration.
Application of X-ray synchrotron microscopy instrumentation in biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasperini, F. M.; Pereira, G. R.; Granjeiro, J. M.
2011-07-01
X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazilmore » working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)« less
Oyane, Ayako; Kawashita, Masakazu; Nakanishi, Kazuki; Kokubo, Tadashi; Minoda, Masahiko; Miyamoto, Takeaki; Nakamura, Takashi
2003-05-01
An ethylene-vinyl alcohol copolymer (EVOH) was treated with a silane coupling agent and calcium silicate solutions, and then soaked in a simulated body fluid (SBF) with ion concentrations approximately equal to those of human blood plasma. A smooth and uniform bonelike apatite layer was successfully formed on both the EVOH plate and the EVOH-knitted fibers in SBF within 2 days. Part of the structure of the resulting apatite-EVOH fiber composite was similar to that of natural bone. If this kind of composite can be fabricated into a three-dimensional structure similar to natural bone, the resultant composite is expected to exhibit both mechanical properties analogous to those of natural bone and bone-bonding ability. Hence, it has great potential as a bone substitute. Copyright 2003 Elsevier Science Ltd.
Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite.
Friederichs, Robert J; Chappell, Helen F; Shepherd, David V; Best, Serena M
2015-07-06
Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100 °C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Jiang, JingLe; Marathe, Amar R.; Keene, Jennifer C.; Taylor, Dawn M.
2016-01-01
Background Custom-fitted skull replacement pieces are often used after a head injury or surgery to replace damaged bone. Chronic brain recordings are beneficial after injury/surgery for monitoring brain health and seizure development. Embedding electrodes directly in these artificial skull replacement pieces would be a novel, low-risk way to perform chronic brain monitoring in these patients. Similarly, embedding electrodes directly in healthy skull would be a viable minimally-invasive option for many other neuroscience and neurotechnology applications requiring chronic brain recordings. New Method We demonstrate a preclinical testbed that can be used for refining electrode designs embedded in artificial skull replacement pieces or for embedding directly into the skull itself. Options are explored to increase the surface area of the contacts without increasing recording contact diameter to maximize recording resolution. Results Embedding electrodes in real or artificial skull allows one to lower electrode impedance without increasing the recording contact diameter by making use of conductive channels that extend into the skull. The higher density of small contacts embedded in the artificial skull in this testbed enables one to optimize electrode spacing for use in real bone. Comparison with Existing Methods For brain monitoring applications, skull-embedded electrodes fill a gap between electroencephalograms recorded on the scalp surface and the more invasive epidural or subdural electrode sheets. Conclusions Embedding electrodes into the skull or in skull replacement pieces may provide a safe, convenient, minimally-invasive alternative for chronic brain monitoring. The manufacturing methods described here will facilitate further testing of skull-embedded electrodes in animal models. PMID:27979758
Jiang, JingLe; Marathe, Amar R; Keene, Jennifer C; Taylor, Dawn M
2017-02-01
Custom-fitted skull replacement pieces are often used after a head injury or surgery to replace damaged bone. Chronic brain recordings are beneficial after injury/surgery for monitoring brain health and seizure development. Embedding electrodes directly in these artificial skull replacement pieces would be a novel, low-risk way to perform chronic brain monitoring in these patients. Similarly, embedding electrodes directly in healthy skull would be a viable minimally-invasive option for many other neuroscience and neurotechnology applications requiring chronic brain recordings. We demonstrate a preclinical testbed that can be used for refining electrode designs embedded in artificial skull replacement pieces or for embedding directly into the skull itself. Options are explored to increase the surface area of the contacts without increasing recording contact diameter to maximize recording resolution. Embedding electrodes in real or artificial skull allows one to lower electrode impedance without increasing the recording contact diameter by making use of conductive channels that extend into the skull. The higher density of small contacts embedded in the artificial skull in this testbed enables one to optimize electrode spacing for use in real bone. For brain monitoring applications, skull-embedded electrodes fill a gap between electroencephalograms recorded on the scalp surface and the more invasive epidural or subdural electrode sheets. Embedding electrodes into the skull or in skull replacement pieces may provide a safe, convenient, minimally-invasive alternative for chronic brain monitoring. The manufacturing methods described here will facilitate further testing of skull-embedded electrodes in animal models. Published by Elsevier B.V.
Fedorová, P; Srnec, R; Pěnčík, J; Dvořák, M; Krbec, M; Nečas, A
2015-01-01
PURPOSE OF THE STUDY Recent trends in the experimental surgical management of a partial anterior cruciate ligament (ACL) rupture in animals show repair of an ACL lesion using novel biomaterials both for biomechanical reinforcement of a partially unstable knee and as suitable scaffolds for bone marrow stem cell therapy in a partial ACL tear. The study deals with mechanical testing of the newly developed ultra-high-molecular-weight polyethylene (UHMWPE) biomaterial anchored to bone with Hexalon biodegradable ACL/PCL screws, as a new possibility of intra-articular reinforcement of a partial ACL tear. MATERIAL AND METHODS Two groups of ex vivo pig knee models were prepared and tested as follows: the model of an ACL tear stabilised with UHMWPE biomaterial using a Hexalon ACL/PCL screw (group 1; n = 10) and the model of an ACL tear stabilised with the traditional, and in veterinary medicine used, extracapsular technique involving a monofilament nylon fibre, a clamp and a Securos bone anchor (group 2; n = 11). The models were loaded at a standing angle of 100° and the maximum load (N) and shift (mm) values were recorded. RESULTS In group 1 the average maximal peak force was 167.6 ± 21.7 N and the shift was on average 19.0 ± 4.0 mm. In all 10 specimens, the maximum load made the UHMWPE implant break close to its fixation to the femur but the construct/fixation never failed at the site where the material was anchored to the bone. In group 2, the average maximal peak force was 207.3 ± 49.2 N and the shift was on average 24.1 ± 9.5 mm. The Securos stabilisation failed by pullout of the anchor from the femoral bone in nine out of 11 cases; the monofilament fibre ruptured in two cases. CONCLUSIONS It can be concluded that a UHMWPE substitute used in ex-vivo pig knee models has mechanical properties comparable with clinically used extracapsular Securos stabilisation and, because of its potential to carry stem cells and bioactive substances, it can meet the requirements for an implant appropriate to the unique technique of protecting a partial ACL tear. In addition, it has no critical point of ACL substitute failure at the site of its anchoring to the bone (compared to the previously used PET/PCL substitute). Key words: knee stabilisation, stifle surgery, ultra-high-molecular-weight polyethylene, UHMWPE, nylon monofilament thread, biodegradable screw, bone anchor.
A Guide for Emergency Evacuation Management and Operations
1981-02-01
such as scrambled eggs (A.M. meal) and hash or stew (P.M. meal). Frequent cold meals are possible. Some relocation guidance indicates that...cheese; and nuts) 4 lbs. with bone Eggs 6 eggs Milk (fresh) 7 pints (If fresh fluid milk is not available, see Exhibit 20.2 for acceptable substitutes...Unit Equivalent Unit Substitute Foods Meat and Meat 1/2 lb. Cereal and cereal products Alternates 1/4 lb. Food fats and oils 12 Eggs 1 lb. boneless 2-3
An Injectable Method for Posterior Lateral Spine Fusion
2013-09-01
any problems that would prevent us from reaching our proposed goals. We have begun to establish optimal parameters for encapsulation of the MSCs...783–799 (2009). 3. U. Heise, J. F. Osborn, and F. Duwe, “ Hydroxyapatite ceramic as a bone substitute,” Int. Orthop. 14(3), 329–338 (1990). 4. H...gel and porous hydroxyapatite for posterolateral lumbar spine fusion,” Spine 30(10), 1134–1138 (2005). 9. M. R. Urist, “Bone: formation by
Liu, Beilei; Chen, Liangjian; Shao, Chunsheng; Zhang, Fuqiang; Zhou, Kechao; Cao, Jun; Zhang, Dou
2016-04-01
Osteoblasts growing into bone substitute is an important step of bone regeneration. This study prepared porous hydroxyapatite (HA)/BaTiO3 piezoelectric composites with porosity of 40%, 50% and 60% by ice-templating method. Effects of HA/BaTiO3 composites with different porosities, with and without polarizing treatment on adhesion, proliferation and differentiation of osteoblasts were investigated in vitro. Results revealed that cell densities of the porous groups were significantly higher than those of the dense group (p<0.05), so did the alkaline phosphate (ALP) and bone gla protein (BGP) activities. Porosity of 50% group exhibited higher ALP activity and BGP activity than those of the 40% and 60% groups. Scanning electron microscopy (SEM) observations revealed that osteoblasts adhered and stretched better on porous HA/BaTiO3 than on the dense one, especially HA/BaTiO3 with porosity of 50% and 60%. However, there was no significant difference in the cell morphology, cell densities, ALP and BGP activities between the polarized group and the non-polarized group (p>0.05). The absence of mechanical loading on the polarized samples may account for this. The results indicated that hierarchically porous HA/BaTiO3 played a favorable part in osteoblasts proliferation, differentiation and adhesion process and is a promising bone substitute material. Copyright © 2015. Published by Elsevier B.V.
Wilson, C. E.; van Blitterswijk, C. A.; Verbout, A. J.; de Bruijn, J. D.
2010-01-01
Calcium phosphate ceramics, commonly applied as bone graft substitutes, are a natural choice of scaffolding material for bone tissue engineering. Evidence shows that the chemical composition, macroporosity and microporosity of these ceramics influences their behavior as bone graft substitutes and bone tissue engineering scaffolds but little has been done to optimize these parameters. One method of optimization is to place focus on a particular parameter by normalizing the influence, as much as possible, of confounding parameters. This is difficult to accomplish with traditional fabrication techniques. In this study we describe a design based rapid prototyping method of manufacturing scaffolds with virtually identical macroporous architectures from different calcium phosphate ceramic compositions. Beta-tricalcium phosphate, hydroxyapatite (at two sintering temperatures) and biphasic calcium phosphate scaffolds were manufactured. The macro- and micro-architectures of the scaffolds were characterized as well as the influence of the manufacturing method on the chemistries of the calcium phosphate compositions. The structural characteristics of the resulting scaffolds were remarkably similar. The manufacturing process had little influence on the composition of the materials except for the consistent but small addition of, or increase in, a beta-tricalcium phosphate phase. Among other applications, scaffolds produced by the method described provide a means of examining the influence of different calcium phosphate compositions while confidently excluding the influence of the macroporous structure of the scaffolds. PMID:21069558
You, Ling; Weikang, Xu; Lifeng, Yang; Changyan, Liang; Yongliang, Lin; Xiaohui, Wei; Bin, Xu
2018-05-04
Trauma or infections associated critical bone defects lead to a huge economic burden in the healthcare system worldwide. Recent advances in tissue engineering have led to potential new strategies for the repair, replacement, and regeneration of bone defects, especially in biomaterials and decellularization protocols from xenogenic tissues. However, the complexity in bone structure and mechanical environment limits the synthesis of artificial bone with biomaterials. Thus, the purpose of our study is to develop a natural bone scaffold with great immunocompatibility. We combined decellularization techniques base on SC-CO 2 to decellularize bovine bone. In order to study the immune response of mice to materials, the histology, spleen index, immune cells contents and in vitro proliferative performance, cytokine and immunoglobulin light chain expression of mice were characterized. Compared with the fresh bone group, the immune responses of decellularized group were significantly reduced. In conclusion, decellularization via this method can achieve a decellularized scaffold with great immunocompatibility. Our findings suggest the potential of using decellularized BB as a scaffold for bone bioengineering.
USDA-ARS?s Scientific Manuscript database
An assay was developed to investigate the small hive beetle’s (Aethina tumida) potential for survival and reproduction when providing artificial food resources in managed European honey bees (Apis mellifera). Supplemental feeding is done to maintain the health of the hive, initiate comb building, ex...
Ohba, Seigo; Sumita, Yoshinori; Umebayashi, Mayumi; Yoshimura, Hitoshi; Yoshida, Hisato; Matsuda, Shinpei; Kimura, Hideki; Asahina, Izumi; Sano, Kazuo
2016-01-01
The aim of this study was to assess newly formed onlay bone on mouse calvarial bone using a new artificial bone material, a hydroxyapatite/collagen composite, with total blood or platelet-rich plasma. The hydroxyapatite/collagen composite material with normal saline, total blood or platelet-rich plasma was transplanted on mouse calvarial bone. The mice were sacrificed and the specimens were harvested four weeks after surgery. The newly formed bone area was measured on hematoxylin and eosin stained specimens using Image J software. The hydroxyapatite/collagen composite materials with total blood or platelet-rich plasma induced a significantly greater amount of newly formed bone than that with normal saline. Moreover, bone marrow was observed four weeks after surgery in the transplanted materials with total blood or platelet-rich plasma but not with normal saline. However, there were no significant differences in the amount of newly formed bone between materials used with total blood versus platelet-rich plasma. The hydroxyapatite/collagen composite material was valid for onlay bone augmentation and this material should be soaked in total blood or platelet-rich plasma prior to transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dacquin, Romain; Starbuck, Michael; Schinke, Thorsten; Karsenty, Gérard
2002-06-01
Cell- and time-specific gene inactivation should enhance our knowledge of bone biology. Implementation of this technique requires construction of transgenic mouse lines expressing Cre recombinase in osteoblasts, the bone forming cell. We tested several promoter fragments for their ability to drive efficient Cre expression in osteoblasts. In the first mouse transgenic line, the Cre gene was placed under the control of the 2.3-kb proximal fragment of the alpha1(I)-collagen promoter, which is expressed at high levels in osteoblasts throughout their differentiation. Transgenic mice expressing this transgene in bone were bred with the ROSA26 reporter (R26R) strain in which the ROSA26 locus is targeted with a conditional LacZ reporter cassette. In R26R mice, Cre expression and subsequent Cre-mediated recombination lead to expression of the LacZ reporter gene, an event that can be monitored by LacZ staining. LacZ staining was detected in virtually all osteoblasts of alpha1(I)-Cre;R26R mice indicating that homologous recombination occurred in these cells. No other cell type stained blue. In the second line studied, the 1.3-kb fragment of osteocalcin gene 2 (OG2) promoter, which is active in differentiated osteoblasts, was used to drive Cre expression. OG2-Cre mice expressed Cre specifically in bone. However, cross of OG2-Cre mice with R26R mice did not lead to any detectable LacZ staining in osteoblasts. Lastly, we tested a more active artificial promoter derived from the OG2 promoter. The artificial OG2-Cre transgene was expressed by reverse transcriptase-polymerase chain reaction in cartilage and bone samples. After cross of the artificial OG2-Cre mice with R26R mice, we detected a LacZ staining in articular chondrocytes but not in osteoblasts. Our data suggest that the only promoter able to drive Cre expression at a level sufficient to induce recombination in osteoblasts is the alpha1(I)-collagen promoter. Copyright 2002 Wiley-Liss, Inc.
Seifi, Massoud; Arayesh, Ali; Shamloo, Nafise; Hamedi, Roya
2015-01-01
Orthodontically induced inflammatory root resorption (OIIRR) is considered to be an important sequel associated with orthodontic tooth movement (OTM). OTM after Socket preservation enhances the periodontal condition before orthodontic space closure. The purpose of this study is to investigate the histologic effects of NanoBone®, a new highly nonsintered porous nano-crystalline hydroxyapatite bone on root resorption following OTM. This experimental study was conducted on four male dogs. In each dog, four defects were created at the mesial aspects of the maxillary and mandibular first premolars. The defects were filled with NanoBone®. We used the NiTi closed coil for mesial movement of the first premolar tooth. When the experimental teeth moved approximately halfway into the defects, after two months, the animals were sacrificed and we harvested the area of interest. The first premolar root and adjacent tissues were histologically evaluated. The three-way ANOVA statistical test was used for comparison. The mean root resorption in the synthetic bone substitute group was 22.87 ± 11.25×10(-4)mm(2) in the maxilla and 21.41 ± 11.25×10(-4)mm(2) in the mandible. Statistically, there was no significant difference compared to the control group (p>0.05). The use of a substitution graft in the nano particle has some positive effects in accessing healthy periodontal tissue following orthodontic procedures without significant influence on root resorption (RR). Histological evaluation in the present study showed osteoblastic activity and remodeling environment of nanoparticles in NanoBone®.
Seifi, Massoud; Arayesh, Ali; Shamloo, Nafise; Hamedi, Roya
2015-01-01
Objective Orthodontically induced inflammatory root resorption (OIIRR) is considered to be an important sequel associated with orthodontic tooth movement (OTM). OTM after Socket preservation enhances the periodontal condition before orthodontic space closure. The purpose of this study is to investigate the histologic effects of NanoBone®, a new highly nonsintered porous nano-crystalline hydroxyapatite bone on root resorption following OTM. Materials and Methods This experimental study was conducted on four male dogs. In each dog, four defects were created at the mesial aspects of the maxillary and mandibular first premolars. The defects were filled with NanoBone®. We used the NiTi closed coil for mesial movement of the first premolar tooth. When the experimental teeth moved approximately halfway into the defects, after two months, the animals were sacrificed and we harvested the area of interest. The first premolar root and adjacent tissues were histologically evaluated. The three-way ANOVA statistical test was used for comparison. Results The mean root resorption in the synthetic bone substitute group was 22.87 ± 11.25×10-4mm2 in the maxilla and 21.41 ± 11.25×10-4mm2 in the mandible. Statistically, there was no significant difference compared to the control group (p>0.05). Conclusion The use of a substitution graft in the nano particle has some positive effects in accessing healthy periodontal tissue following orthodontic procedures without significant influence on root resorption (RR). Histological evaluation in the present study showed osteoblastic activity and remodeling environment of nanoparticles in NanoBone®. PMID:25685742
Kadlec, Karol; Adamska, Katarzyna; Okulus, Zuzanna; Voelkel, Adam
2016-10-14
The novel technique for ceramic biomaterials surface characterisation was proposed. The examined bone substitute materials were two orthophosphates: hydroxyapatite, β-tricalcium phosphate and the mixture of these two - biphasic calcium phosphate. The aim of this work was characterisation of the ceramic biomaterials surface expressed via the values of parameters e, s, a, b, v considered in linear free energy relationship. The values of these parameters reflect the ability of stationary phase to occur in different types of interactions. The sorption phenomena occurring on the bone substitute materials surface are responsible for the process of the multiplication of the osteoblasts. Thus the detailed description of this phenomena may contribute to the better understanding of bone loss regeneration mechanism. The data required for characterisation by using LFER model was collected by means of inverse liquid chromatography with the use of five different mobile phases: 98% ethanol, ethanol/water (50/50), water, 0.2M NaCl and SBF. The determination of the ceramic orthophosphates surface properties in SBF solution allowed to observe the behaviour of biomaterials in "natural environment" - in living organism. Copyright © 2016 Elsevier B.V. All rights reserved.
2009-01-01
Background Cellular reactions to alloplastic bone substitute materials (BSM) are a subject of interest in basic research. In regenerative dentistry, these bone grafting materials are routinely combined with enamel matrix derivatives (EMD) in order to additionally enhance tissue regeneration. Materials and methods The aim of this study was to evaluate the proliferative activity of human osteogenic cells after incubation over a period of seven days with commercial BSM of various origin and chemical composition. Special focus was placed on the potential additional benefit of EMD on cellular proliferation. Results Except for PerioGlas®, osteogenic cell proliferation was significantly promoted by the investigated BSM. The application of EMD alone also resulted in significantly increased cellular proliferation. However, a combination of BSM and EMD resulted in only a moderate additional enhancement of osteogenic cell proliferation. Conclusion The application of most BSM, as well as the exclusive application of EMD demonstrated a positive impact on the proliferation of human osteogenic cells in vitro. In order to increase the benefit from substrate combination (BSM + EMD), further studies on the interactions between BSM and EMD are needed. PMID:19909545
Aziz, Mina Sr; Tsuji, Matthew Rs; Nicayenzi, Bruce; Crookshank, Meghan C; Bougherara, Habiba; Schemitsch, Emil H; Zdero, Radovan
2014-05-01
During orthopedic surgery, screws are inserted by "subjective feel" in humeri for fracture fixation, that is, stopping torque, while trying to prevent accidental over-tightening that causes screw-bone interface failure, that is, stripping torque. However, no studies exist on stopping torque, stripping torque, or stopping/stripping torque ratio in human or artificial humeri. This study evaluated five types of humeri, namely, human fresh-frozen (n = 19), human embalmed (n = 18), human dried (n = 15), artificial "normal" (n = 13), and artificial "osteoporotic" (n = 13). An orthopedic surgeon used a torque screwdriver to insert 3.5-mm-diameter cortical screws into humeral shafts and 6.5-mm-diameter cancellous screws into humeral heads by "subjective feel" to obtain stopping and stripping torques. The five outcome measures were raw and normalized stopping torque, raw and normalized stripping torque, and stopping/stripping torque ratio. Normalization was done as raw torque/screw-bone interface area. For "gold standard" fresh-frozen humeri, cortical screw tests yielded averages of 1312 N mm (raw stopping torque), 30.4 N/mm (normalized stopping torque), 1721 N mm (raw stripping torque), 39.0 N/mm (normalized stripping torque), and 82% (stopping/stripping torque ratio). Similarly, fresh-frozen humeri gave cancellous screw average results of 307 N mm (raw stopping torque), 0.9 N/mm (normalized stopping torque), 392 N mm (raw stripping torque), 1.2 N/mm (normalized stripping torque), and 79% (stopping/stripping torque ratio). Of the five cortical screw parameters for fresh-frozen humeri versus other groups, statistical equivalence (p ≥ 0.05) occurred in four cases (embalmed), three cases (dried), four cases (artificial "normal"), and four cases (artificial "osteoporotic"). Of the five cancellous screw parameters for fresh-frozen humeri versus other groups, statistical equivalence (p ≥ 0.05) occurred in five cases (embalmed), one case (dried), one case (artificial "normal"), and zero cases (artificial "osteoporotic"). Stopping/stripping torque ratios were relatively constant for all groups at 77%-88% (cortical screws) and 79%-92% (cancellous screws). © IMechE 2014.
Xia, Zeyang; Chen, Jie
2014-01-01
Objectives To develop an artificial tooth–periodontal ligament (PDL)–bone complex (ATPBC) that simulates clinical crown displacement. Material and Methods An ATPBC was created. It had a socket hosting a tooth with a thin layer of silicon mixture in between for simulating the PDL. The complex was attached to a device that allows applying a controlled force to the crown and measuring the resulting crown displacement. Crown displacements were compared to previously published data for validation. Results The ATPBC that had a PDL made of two types of silicones, 50% gasket sealant No. 2 and 50% RTV 587 silicone, with a thickness of 0.3 mm, simulated the PDL well. The mechanical behaviors (1) force-displacement relationship, (2) stress relaxation, (3) creep, and (4) hysteresis were validated by the published results. Conclusion The ATPBC simulated the crown displacement behavior reported from biological studies well. PMID:22970752
Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels
NASA Astrophysics Data System (ADS)
Lu, Yuan; Feng, Min; Shao, Bin; Zuo, Xu
2014-05-01
Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.
1989-11-13
The guardian of an incompetent patient appealed a lower court's decision dismissing the guardian's petition to withdraw artificially administered nutrition and hydration from the patient. The Illinois Supreme Court ruled that the guardian could exercise the right to refuse artificial nutrition and hydration on behalf of the patient under certain conditions. The patient must be terminally ill and diagnosed as irreversibly comatose. The patient's attending physician and two other consulting physicians must concur in this diagnosis. Also, a court order is required for the guardian to withdraw life support. The court further ruled that specific express intent is helpful in determining whether to withdraw artificial sustenance, but it is not necessary for exercising the guardian's substituted judgement. The Illinois Supreme Court reversed the lower court's dismissal and remanded the case for further proceedings.
NASA Technical Reports Server (NTRS)
Moacanin, J.; Scherer, K.; Toronto, A.; Lawson, D.; Terranova, T.; Yavrouian, A.; Astle, L.; Harvey, S.; Kaaelble, D. H.
1979-01-01
A series of hybrid fluorochemicals of general structure R(1)R(2)R(3)CR(4) was prepared where the R(i)'s (i=1,2,3) is a saturated fluoroalkyl group of formula C sub N F sub 2n+1, and R(4) is an alkyl group C sub n H sub 2n+1 or a related moiety containing amino, ether, or ester functions but no CF bonds. Compounds of this class containing approximately eight to twenty carbons total have physical properties suitable for use as the oxygen carrying phase of fluorochemical emulsion artificial blood. The chemical synthesis, and physical and biological testing of pure single isomers of the proposed artificial blood candidate compounds are included. Significant results are given.