Sample records for artificial intelligence based

  1. Artificial Intelligence Project

    DTIC Science & Technology

    1990-01-01

    Artifcial Intelligence Project at The University of Texas at Austin, University of Texas at Austin, Artificial Intelligence Laboratory AITR84-01. Novak...Texas at Austin, Artificial Intelligence Laboratory A187-52, April 1987. Novak, G. "GLISP: A Lisp-Based Programming System with Data Abstraction...of Texas at Austin, Artificial Intelligence Laboratory AITR85-14.) Rim, Hae-Chang, and Simmons, R. F. "Extracting Data Base Knowledge from Medical

  2. Instructional Applications of Artificial Intelligence.

    ERIC Educational Resources Information Center

    Halff, Henry M.

    1986-01-01

    Surveys artificial intelligence and the development of computer-based tutors and speculates on the future of artificial intelligence in education. Includes discussion of the definitions of knowledge, expert systems (computer systems that solve tough technical problems), intelligent tutoring systems (ITS), and specific ITSs such as GUIDON, MYCIN,…

  3. Naval Computer-Based Instruction: Cost, Implementation and Effectiveness Issues.

    DTIC Science & Technology

    1988-03-01

    logical follow on to MITIPAC and are an attempt to use some artificial intelligence (AI) techniques with computer-based training. A good intelligent ...principles of steam plant operation and maintenance. Steamer was written in LISP on a LISP machine in an attempt to use artificial intelligence . "What... Artificial Intelligence and Speech Technology", Electronic Learning, September 1987. Montague, William. E., code 5, Navy Personnel Research and

  4. Knowledge-Based Software Development Tools

    DTIC Science & Technology

    1993-09-01

    GREEN, C., AND WESTFOLD, S. Knowledge-based programming self-applied. In Machine Intelligence 10, J. E. Hayes, D. Mitchie, and Y. Pao, Eds., Wiley...Technical Report KES.U.84.2, Kestrel Institute, April 1984. [181 KORF, R. E. Toward a model of representation changes. Artificial Intelligence 14, 1...Artificial Intelligence 27, 1 (February 1985), 43-96. Replinted in Readings in Artificial Intelligence and Software Engineering, C. Rich •ad R. Waters

  5. Artificial Intelligence-Based Student Learning Evaluation: A Concept Map-Based Approach for Analyzing a Student's Understanding of a Topic

    ERIC Educational Resources Information Center

    Jain, G. Panka; Gurupur, Varadraj P.; Schroeder, Jennifer L.; Faulkenberry, Eileen D.

    2014-01-01

    In this paper, we describe a tool coined as artificial intelligence-based student learning evaluation tool (AISLE). The main purpose of this tool is to improve the use of artificial intelligence techniques in evaluating a student's understanding of a particular topic of study using concept maps. Here, we calculate the probability distribution of…

  6. Case-Based Planning: An Integrated Theory of Planning, Learning and Memory

    DTIC Science & Technology

    1986-10-01

    rtvoeoo oldo II nocomtmry and Idonltly by block numbor) planning Case-based reasoning learning Artificial Intelligence 20. ABSTRACT (Conllnum...Computational Model of Analogical Prob- lem Solving, Proceedings of the Seventh International Joint Conference on Artificial Intelligence ...Understanding and Generalizing Plans., Proceedings of the Eight Interna- tional Joint Conference on Artificial Intelligence , IJCAI, Karlsrhue, Germany

  7. Application of artificial intelligence to the management of urological cancer.

    PubMed

    Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C

    2007-10-01

    Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.

  8. Artificial Intelligence for Pathologists Is Not Near--It Is Here: Description of a Prototype That Can Transform How We Practice Pathology Tomorrow.

    PubMed

    Ye, Jay J

    2015-07-01

    Pathologists' daily tasks consist of both the professional interpretation of slides and the secretarial tasks of translating these interpretations into final pathology reports, the latter of which is a time-consuming endeavor for most pathologists. To describe an artificial intelligence that performs secretarial tasks, designated as Secretary-Mimicking Artificial Intelligence (SMILE). The underling implementation of SMILE is a collection of computer programs that work in concert to "listen to" the voice commands and to "watch for" the changes of windows caused by slide bar code scanning; SMILE responds to these inputs by acting upon PowerPath Client windows (Sunquest Information Systems, Tucson, Arizona) and its Microsoft Word (Microsoft, Redmond, Washington) Add-In window, eventuating in the reports being typed and finalized. Secretary-Mimicking Artificial Intelligence also communicates relevant information to the pathologist via the computer speakers and message box on the screen. Secretary-Mimicking Artificial Intelligence performs many secretarial tasks intelligently and semiautonomously, with rapidity and consistency, thus enabling pathologists to focus on slide interpretation, which results in a marked increase in productivity, decrease in errors, and reduction of stress in daily practice. Secretary-Mimicking Artificial Intelligence undergoes encounter-based learning continually, resulting in a continuous improvement in its knowledge-based intelligence. Artificial intelligence for pathologists is both feasible and powerful. The future widespread use of artificial intelligence in our profession is certainly going to transform how we practice pathology.

  9. [Advances in the research of application of artificial intelligence in burn field].

    PubMed

    Li, H H; Bao, Z X; Liu, X B; Zhu, S H

    2018-04-20

    Artificial intelligence has been able to automatically learn and judge large-scale data to some extent. Based on database of a large amount of burn data and in-depth learning, artificial intelligence can assist burn surgeons to evaluate burn surface, diagnose burn depth, guide fluid supply during shock stage, and predict prognosis, with high accuracy. With the development of technology, artificial intelligence can provide more accurate information for burn surgeons to make clinical diagnosis and treatment strategies.

  10. Visiting Scholars Program

    DTIC Science & Technology

    2016-09-01

    other associated grants. 15. SUBJECT TERMS SUNY Poly, STEM, Artificial Intelligence , Command and Control 16. SECURITY CLASSIFICATION OF: 17...neuromorphic system has the potential to be widely used in a high-efficiency artificial intelligence system. Simulation results have indicated that the...novel multiresolution fusion and advanced fusion performance evaluation tool for an Artificial Intelligence based natural language annotation engine for

  11. Applications of artificial intelligence V; Proceedings of the Meeting, Orlando, FL, May 18-20, 1987

    NASA Technical Reports Server (NTRS)

    Gilmore, John F. (Editor)

    1987-01-01

    The papers contained in this volume focus on current trends in applications of artificial intelligence. Topics discussed include expert systems, image understanding, artificial intelligence tools, knowledge-based systems, heuristic systems, manufacturing applications, and image analysis. Papers are presented on expert system issues in automated, autonomous space vehicle rendezvous; traditional versus rule-based programming techniques; applications to the control of optional flight information; methodology for evaluating knowledge-based systems; and real-time advisory system for airborne early warning.

  12. Challenges facing the distribution of an artificial-intelligence-based system for nursing.

    PubMed

    Evans, S

    1985-04-01

    The marketing and successful distribution of artificial-intelligence-based decision-support systems for nursing face special barriers and challenges. Issues that must be confronted arise particularly from the present culture of the nursing profession as well as the typical organizational structures in which nurses predominantly work. Generalizations in the literature based on the limited experience of physician-oriented artificial intelligence applications (predominantly in diagnosis and pharmacologic treatment) must be modified for applicability to other health professions.

  13. Cognitive computing and eScience in health and life science research: artificial intelligence and obesity intervention programs.

    PubMed

    Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna

    2017-12-01

    To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.

  14. List of ARI Conference Papers, Journal Articles, Books, and Book Chapters: 1982-1991

    DTIC Science & Technology

    1992-10-01

    and Engineering Applications of Artificial Intelligence and Expert Systems, Tullahoma, TN. Goehring, D.J., & Hart, R.J. (1985, October). Automated...systems: Computkr-based authoring. Proceedings of the 30th annual meeting of the Artificial Intelligence Society, Dayton, OH. Knapp, D.J., & Pliske, R.M...Moses, F.L. (1984-85) Intelligence vehicle integrated displays. Paper presented at the Conference on Applied Artificial Intelligence , the Data Processing

  15. Planning and Scheduling of Software Manufacturing Projects

    DTIC Science & Technology

    1991-03-01

    based on the previous results in social analysis of computing, operations research in manufacturing, artificial intelligence in manufacturing...planning and scheduling, and the traditional approaches to planning in artificial intelligence, and extends the techniques that have been developed by them...social analysis of computing, operations research in manufacturing, artificial intelligence in manufacturing planning and scheduling, and the

  16. Games and Machine Learning: A Powerful Combination in an Artificial Intelligence Course

    ERIC Educational Resources Information Center

    Wallace, Scott A.; McCartney, Robert; Russell, Ingrid

    2010-01-01

    Project MLeXAI [Machine Learning eXperiences in Artificial Intelligence (AI)] seeks to build a set of reusable course curriculum and hands on laboratory projects for the artificial intelligence classroom. In this article, we describe two game-based projects from the second phase of project MLeXAI: Robot Defense--a simple real-time strategy game…

  17. Northeast Artificial Intelligence Consortium Annual Report. 1988 Interference Techniques for Knowledge Base Maintenance Using Logic Programming Methodologies. Volume 11

    DTIC Science & Technology

    1989-10-01

    Northeast Aritificial Intelligence Consortium (NAIC). i Table of Contents Execu tive Sum m ary...o g~nIl ’vLr COPY o~ T- RADC-TR-89-259, Vol XI (of twelve) N Interim Report SOctober 1989 NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT...ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Northeast Artificial (If applicable) Intelligence Consortium (NAIC) . Rome Air Development

  18. The Classification, Detection and Handling of Imperfect Theory Problems.

    DTIC Science & Technology

    1987-04-20

    Explanation-Based Learning: Failure-Driven Schema Refinement." Proceedings of the Third IEEE Conference on Artificial Intelligence Applications . Orlando...A. Rajamoney. Gerald F. DeJong Artificial Intelligence Research Group " . Coordinated Science Laboratory " University of Illinois at Urbana-Champaign...Urbana. IL 61801 . April 1987 ABSTRACT This paper also appears in the Proceedings of the Tenth International Conference on Artificial Intelligence

  19. Artificial-intelligence-based optimization of the management of snow removal assets and resources.

    DOT National Transportation Integrated Search

    2002-10-01

    Geographic information systems (GIS) and artificial intelligence (AI) techniques were used to develop an intelligent : snow removal asset management system (SRAMS). The system has been evaluated through a case study examining : snow removal from the ...

  20. Knowledge Based Simulation: An Artificial Intelligence Approach to System Modeling and Automating the Simulation Life Cycle.

    DTIC Science & Technology

    1988-04-13

    Simulation: An Artificial Intelligence Approach to System Modeling and Automating the Simulation Life Cycle Mark S. Fox, Nizwer Husain, Malcolm...McRoberts and Y.V.Reddy CMU-RI-TR-88-5 Intelligent Systems Laboratory The Robotics Institute Carnegie Mellon University Pittsburgh, Pennsylvania D T T 13...years of research in the application of Artificial Intelligence to Simulation. Our focus has been in two areas: the use of Al knowledge representation

  1. Experiments in Knowledge Refinement for a Large Rule-Based System

    DTIC Science & Technology

    1993-08-01

    empirical analysis to refine expert system knowledge bases. Aritificial Intelligence , 22:23-48, 1984. *! ...The Addison- Weslev series in artificial intelligence . Addison-Weslev. Reading, Massachusetts. 1981. Cooke, 1991: ttoger M. Cooke. Experts in...ment for classification systems. Artificial Intelligence , 35:197-226, 1988. 14 Overall, we believe that it will be possible to build a heuristic system

  2. Knowledge-Based Aircraft Automation: Managers Guide on the use of Artificial Intelligence for Aircraft Automation and Verification and Validation Approach for a Neural-Based Flight Controller

    NASA Technical Reports Server (NTRS)

    Broderick, Ron

    1997-01-01

    The ultimate goal of this report was to integrate the powerful tools of artificial intelligence into the traditional process of software development. To maintain the US aerospace competitive advantage, traditional aerospace and software engineers need to more easily incorporate the technology of artificial intelligence into the advanced aerospace systems being designed today. The future goal was to transition artificial intelligence from an emerging technology to a standard technology that is considered early in the life cycle process to develop state-of-the-art aircraft automation systems. This report addressed the future goal in two ways. First, it provided a matrix that identified typical aircraft automation applications conducive to various artificial intelligence methods. The purpose of this matrix was to provide top-level guidance to managers contemplating the possible use of artificial intelligence in the development of aircraft automation. Second, the report provided a methodology to formally evaluate neural networks as part of the traditional process of software development. The matrix was developed by organizing the discipline of artificial intelligence into the following six methods: logical, object representation-based, distributed, uncertainty management, temporal and neurocomputing. Next, a study of existing aircraft automation applications that have been conducive to artificial intelligence implementation resulted in the following five categories: pilot-vehicle interface, system status and diagnosis, situation assessment, automatic flight planning, and aircraft flight control. The resulting matrix provided management guidance to understand artificial intelligence as it applied to aircraft automation. The approach taken to develop a methodology to formally evaluate neural networks as part of the software engineering life cycle was to start with the existing software quality assurance standards and to change these standards to include neural network development. The changes were to include evaluation tools that can be applied to neural networks at each phase of the software engineering life cycle. The result was a formal evaluation approach to increase the product quality of systems that use neural networks for their implementation.

  3. Artificial Intelligence Methods in Computer-Based Instructional Design. The Minnesota Adaptive Instructional System.

    ERIC Educational Resources Information Center

    Tennyson, Robert

    1984-01-01

    Reviews educational applications of artificial intelligence and presents empirically-based design variables for developing a computer-based instruction management system. Taken from a programmatic research effort based on the Minnesota Adaptive Instructional System, variables include amount and sequence of instruction, display time, advisement,…

  4. Systematic review of dermoscopy and digital dermoscopy/ artificial intelligence for the diagnosis of melanoma.

    PubMed

    Rajpara, S M; Botello, A P; Townend, J; Ormerod, A D

    2009-09-01

    Dermoscopy improves diagnostic accuracy of the unaided eye for melanoma, and digital dermoscopy with artificial intelligence or computer diagnosis has also been shown useful for the diagnosis of melanoma. At present there is no clear evidence regarding the diagnostic accuracy of dermoscopy compared with artificial intelligence. To evaluate the diagnostic accuracy of dermoscopy and digital dermoscopy/artificial intelligence for melanoma diagnosis and to compare the diagnostic accuracy of the different dermoscopic algorithms with each other and with digital dermoscopy/artificial intelligence for the detection of melanoma. A literature search on dermoscopy and digital dermoscopy/artificial intelligence for melanoma diagnosis was performed using several databases. Titles and abstracts of the retrieved articles were screened using a literature evaluation form. A quality assessment form was developed to assess the quality of the included studies. Heterogeneity among the studies was assessed. Pooled data were analysed using meta-analytical methods and comparisons between different algorithms were performed. Of 765 articles retrieved, 30 studies were eligible for meta-analysis. Pooled sensitivity for artificial intelligence was slightly higher than for dermoscopy (91% vs. 88%; P = 0.076). Pooled specificity for dermoscopy was significantly better than artificial intelligence (86% vs. 79%; P < 0.001). Pooled diagnostic odds ratio was 51.5 for dermoscopy and 57.8 for artificial intelligence, which were not significantly different (P = 0.783). There were no significance differences in diagnostic odds ratio among the different dermoscopic diagnostic algorithms. Dermoscopy and artificial intelligence performed equally well for diagnosis of melanocytic skin lesions. There was no significant difference in the diagnostic performance of various dermoscopy algorithms. The three-point checklist, the seven-point checklist and Menzies score had better diagnostic odds ratios than the others; however, these results need to be confirmed by a large-scale high-quality population-based study.

  5. Artificial Intelligence Techniques: Applications for Courseware Development.

    ERIC Educational Resources Information Center

    Dear, Brian L.

    1986-01-01

    Introduces some general concepts and techniques of artificial intelligence (natural language interfaces, expert systems, knowledge bases and knowledge representation, heuristics, user-interface metaphors, and object-based environments) and investigates ways these techniques might be applied to analysis, design, development, implementation, and…

  6. [Artificial intelligence--the knowledge base applied to nephrology].

    PubMed

    Sancipriano, G P

    2005-01-01

    The idea that efficacy efficiency, and quality in medicine could not be reached without sorting the huge knowledge of medical and nursing science is very common. Engineers and computer scientists have developed medical software with great prospects for success, but currently these software applications are not so useful in clinical practice. The medical doctor and the trained nurse live the 'information age' in many daily activities, but the main benefits are not so widespread in working activities. Artificial intelligence and, particularly, export systems charm health staff because of their potential. The first part of this paper summarizes the characteristics of 'weak artificial intelligence' and of expert systems important in clinical practice. The second part discusses medical doctors' requirements and the current nephrologic knowledge bases available for artificial intelligence development.

  7. Active Ambiguity Reduction: An Experiment Design Approach to Tractable Qualitative Reasoning.

    DTIC Science & Technology

    1987-04-20

    Approach to Tractable Qualitative Reasoning Shankar A. Rajamoney t [ For Gerald F. DeJong Artificial Intelligence Research Group Coordinated Science...Representations of Knowledge in a Mechanics Problem- Solver." Proceedings of the Fifth International Joint Conference on Artificial Intelligence. Cambridge. MIA...International Joint Conference on Artificial Intelligence. Tokyo. Japan. 1979. [de Kleer84] J. de Kleer and J. S. Brown. "A Qualitative Physics Based on

  8. Artificial intelligence in cardiology.

    PubMed

    Bonderman, Diana

    2017-12-01

    Decision-making is complex in modern medicine and should ideally be based on available data, structured knowledge and proper interpretation in the context of an individual patient. Automated algorithms, also termed artificial intelligence that are able to extract meaningful patterns from data collections and build decisions upon identified patterns may be useful assistants in clinical decision-making processes. In this article, artificial intelligence-based studies in clinical cardiology are reviewed. The text also touches on the ethical issues and speculates on the future roles of automated algorithms versus clinicians in cardiology and medicine in general.

  9. Applications of Artificial Intelligence in Education--A Personal View.

    ERIC Educational Resources Information Center

    Richer, Mark H.

    1985-01-01

    Discusses: how artificial intelligence (AI) can advance education; if the future of software lies in AI; the roots of intelligent computer-assisted instruction; protocol analysis; reactive environments; LOGO programming language; student modeling and coaching; and knowledge-based instructional programs. Numerous examples of AI programs are cited.…

  10. The application and development of artificial intelligence in smart clothing

    NASA Astrophysics Data System (ADS)

    Wei, Xiong

    2018-03-01

    This paper mainly introduces the application of artificial intelligence in intelligent clothing. Starting from the development trend of artificial intelligence, analysis the prospects for development in smart clothing with artificial intelligence. Summarize the design key of artificial intelligence in smart clothing. Analysis the feasibility of artificial intelligence in smart clothing.

  11. A Multiagent Based Model for Tactical Planning

    DTIC Science & Technology

    2002-10-01

    Pub. Co. 1985. [10] Castillo, J.M. Aproximación mediante procedimientos de Inteligencia Artificial al planeamiento táctico. Doctoral Thesis...been developed under the same conceptual model and using similar Artificial Intelligence Tools. We use four different stimulus/response agents in...The conceptual model is built on base of the Agents theory. To implement the different agents we have used Artificial Intelligence techniques such

  12. Artificial intelligence approaches to astronomical observation scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Miller, Glenn

    1988-01-01

    Automated scheduling will play an increasing role in future ground- and space-based observatory operations. Due to the complexity of the problem, artificial intelligence technology currently offers the greatest potential for the development of scheduling tools with sufficient power and flexibility to handle realistic scheduling situations. Summarized here are the main features of the observatory scheduling problem, how artificial intelligence (AI) techniques can be applied, and recent progress in AI scheduling for Hubble Space Telescope.

  13. Thutmose - Investigation of Machine Learning-Based Intrusion Detection Systems

    DTIC Science & Technology

    2016-06-01

    research is being done to incorporate the field of machine learning into intrusion detection. Machine learning is a branch of artificial intelligence (AI...adversarial drift." Proceedings of the 2013 ACM workshop on Artificial intelligence and security. ACM. (2013) Kantarcioglu, M., Xi, B., and Clifton, C. "A...34 Proceedings of the 4th ACM workshop on Security and artificial intelligence . ACM. (2011) Dua, S., and Du, X. Data Mining and Machine Learning in

  14. Progress in cybernetics and systems research. Vol. XI. Data base design. International Information Systems. Semiotic Systems. Artificial Intelligence. Cybernetics and Philosophy. Special aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trappl, R.; Findler, N.V.; Horn, W.

    1982-01-01

    This book covers current research topics in six areas. These are data base design, international information systems, semiotic systems, artificial intelligence, cybernetics and philosophy, and special aspects of systems research. 1326 references.

  15. Artificial Intelligence Based Selection of Optimal Cutting Tool and Process Parameters for Effective Turning and Milling Operations

    NASA Astrophysics Data System (ADS)

    Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta

    2016-06-01

    With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.

  16. Software Reviews. PC Software for Artificial Intelligence Applications.

    ERIC Educational Resources Information Center

    Epp, Helmut; And Others

    1988-01-01

    Contrasts artificial intelligence and conventional programming languages. Reviews Personal Consultant Plus, Smalltalk/V, and Nexpert Object, which are PC-based products inspired by problem-solving paradigms. Provides information on background and operation of each. (RT)

  17. Possible Conflicts, ARRs, and Conflicts

    DTIC Science & Technology

    2002-05-04

    Fourteenth European Conference on Artificial Intelligence Inteligencia Artificial , 41-53, (2001). (ECAI 2000), pp. 136-140, Berlin, Germany, (2000). [31] B...introduced), or proach to model-based diagnosis within the Artificial Intelligence backward (when a discrepancy is found, such as in CAEN [2, 21], community... Artificial Intelli- Relations (ARRs for short), for fault detection and localization [34]. gence community (usually known as DX). It is a research

  18. Artificial intelligence in process control: Knowledge base for the shuttle ECS model

    NASA Technical Reports Server (NTRS)

    Stiffler, A. Kent

    1989-01-01

    The general operation of KATE, an artificial intelligence controller, is outlined. A shuttle environmental control system (ECS) demonstration system for KATE is explained. The knowledge base model for this system is derived. An experimental test procedure is given to verify parameters in the model.

  19. What Artificial Intelligence Is Doing for Training.

    ERIC Educational Resources Information Center

    Kirrane, Peter R.; Kirrane, Diane E.

    1989-01-01

    Discusses the three areas of research and application of artificial intelligence: (1) robotics, (2) natural language processing, and (3) knowledge-based or expert systems. Focuses on what expert systems can do, especially in the area of training. (JOW)

  20. A review of European applications of artificial intelligence to space

    NASA Technical Reports Server (NTRS)

    Drummond, Mark (Editor); Stewart, Helen (Editor)

    1993-01-01

    The purpose is to describe the applications of Artificial Intelligence (AI) to the European Space program that are being developed or have been developed. The results of a study sponsored by the Artificial Intelligence Research and Development program of NASA's Office of Advanced Concepts and Technology (OACT) are described. The report is divided into two sections. The first consists of site reports, which are descriptions of the AI applications seen at each place visited. The second section consists of two summaries which synthesize the information in the site reports by organizing this information in two different ways. The first organizes the material in terms of the type of application, e.g., data analysis, planning and scheduling, and procedure management. The second organizes the material in terms of the component technologies of Artificial Intelligence which the applications used, e.g., knowledge based systems, model based reasoning, procedural reasoning, etc.

  1. Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  2. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  3. Northeast Artificial Intelligence Consortium Annual Report 1986. Volume 4. Part A. Hierarchical Region-Based Approach to Automatic Photointerpretation. Part B. Application of AI Techniques to Image Segmentation and Region Identification

    DTIC Science & Technology

    1988-01-01

    MONITORING ORGANIZATION Northeast Artificial (If applicaole)nelincCostum(AcRome Air Development Center (COCU) Inteligence Consortium (NAIC)I 6c. ADDRESS...f, Offell RADC-TR-88-1 1, Vol IV (of eight) Interim Technical ReportS June 1988 NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT 1986...13441-5700 EMENT NO NO NO ACCESSION NO62702F 5 8 71 " " over) I 58 27 13 " ൓ TITLE (Include Security Classification) NORTHEAST ARTIFICIAL INTELLIGENCE

  4. The Potential Role of Artificial Intelligence Technology in Education.

    ERIC Educational Resources Information Center

    Salem, Abdel-Badeeh M.

    The field of Artificial Intelligence (AI) and Education has traditionally a technology-based focus, looking at the ways in which AI can be used in building intelligent educational software. In addition AI can also provide an excellent methodology for learning and reasoning from the human experiences. This paper presents the potential role of AI in…

  5. [Artificial intelligence in psychiatry-an overview].

    PubMed

    Meyer-Lindenberg, A

    2018-06-18

    Artificial intelligence and the underlying methods of machine learning and neuronal networks (NN) have made dramatic progress in recent years and have allowed computers to reach superhuman performance in domains that used to be thought of as uniquely human. In this overview, the underlying methodological developments that made this possible are briefly delineated and then the applications to psychiatry in three domains are discussed: precision medicine and biomarkers, natural language processing and artificial intelligence-based psychotherapeutic interventions. In conclusion, some of the risks of this new technology are mentioned.

  6. The Hospital of the Future. Megatrends, Driving Forces, Barriers to Implementation, Overarching Perspectives, Major Trends into the Future, Implications for TATRC And Specific Recommendations for Action

    DTIC Science & Technology

    2008-10-01

    Healthcare Systems Will Be Those That Work With Data/Info In New Ways • Artificial Intelligence Will Come to the Fore o Effectively Acquire...Education • Artificial Intelligence Will Assist in o History and Physical Examination o Imaging Selection via algorithms o Test Selection via algorithms...medical language into a simulation model based upon artificial intelligence , and • the content verification and validation of the cognitive

  7. Color regeneration from reflective color sensor using an artificial intelligent technique.

    PubMed

    Saracoglu, Ömer Galip; Altural, Hayriye

    2010-01-01

    A low-cost optical sensor based on reflective color sensing is presented. Artificial neural network models are used to improve the color regeneration from the sensor signals. Analog voltages of the sensor are successfully converted to RGB colors. The artificial intelligent models presented in this work enable color regeneration from analog outputs of the color sensor. Besides, inverse modeling supported by an intelligent technique enables the sensor probe for use of a colorimetric sensor that relates color changes to analog voltages.

  8. Games and machine learning: a powerful combination in an artificial intelligence course

    NASA Astrophysics Data System (ADS)

    Wallace, Scott A.; McCartney, Robert; Russell, Ingrid

    2010-03-01

    Project MLeXAI (Machine Learning eXperiences in Artificial Intelligence (AI)) seeks to build a set of reusable course curriculum and hands on laboratory projects for the artificial intelligence classroom. In this article, we describe two game-based projects from the second phase of project MLeXAI: Robot Defense - a simple real-time strategy game and Checkers - a classic turn-based board game. From the instructors' prospective, we examine aspects of design and implementation as well as the challenges and rewards of using the curricula. We explore students' responses to the projects via the results of a common survey. Finally, we compare the student perceptions from the game-based projects to non-game based projects from the first phase of Project MLeXAI.

  9. A comparative study of artificial intelligent-based maximum power point tracking for photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Hussain Mutlag, Ammar; Mohamed, Azah; Shareef, Hussain

    2016-03-01

    Maximum power point tracking (MPPT) is normally required to improve the performance of photovoltaic (PV) systems. This paper presents artificial intelligent-based maximum power point tracking (AI-MPPT) by considering three artificial intelligent techniques, namely, artificial neural network (ANN), adaptive neuro fuzzy inference system with seven triangular fuzzy sets (7-tri), and adaptive neuro fuzzy inference system with seven gbell fuzzy sets. The AI-MPPT is designed for the 25 SolarTIFSTF-120P6 PV panels, with the capacity of 3 kW peak. A complete PV system is modelled using 300,000 data samples and simulated in the MATLAB/SIMULINK. The AI-MPPT has been tested under real environmental conditions for two days from 8 am to 18 pm. The results showed that the ANN based MPPT gives the most accurate performance and then followed by the 7-tri-based MPPT.

  10. Artificial intelligence in nanotechnology.

    PubMed

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  11. Artificial intelligence in nanotechnology

    NASA Astrophysics Data System (ADS)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  12. An Artificial Intelligence-Based Distance Education System: Artimat

    ERIC Educational Resources Information Center

    Nabiyev, Vasif; Karal, Hasan; Arslan, Selahattin; Erumit, Ali Kursat; Cebi, Ayca

    2013-01-01

    The purpose of this study is to evaluate the artificial intelligence-based distance education system called ARTIMAT, which has been prepared in order to improve mathematical problem solving skills of the students, in terms of conceptual proficiency and ease of use with the opinions of teachers and students. The implementation has been performed…

  13. [Artificial intelligence in medicine: project of a mobile platform in an intelligent environment for the care of disabled and elderly people].

    PubMed

    Cortés, Ulises; Annicchiarico, Roberta; Campana, Fabio; Vázquez-Salceda, Javier; Urdiales, Cristina; Canãmero, Lola; López, Maite; Sánchez-Marrè, Miquel; Di Vincenzo, Sarah; Caltagirone, Carlo

    2004-04-01

    A project based on the integration of new technologies and artificial intelligence to develop a device--e-tool--for disabled patients and elderly people is presented. A mobile platform in intelligent environments (skilled-care facilities and home-care), controlled and managed by a multi-level architecture, is proposed to support patients and caregivers to increase self-dependency in activities of daily living.

  14. Coupling artificial intelligence and numerical computation for engineering design (Invited paper)

    NASA Astrophysics Data System (ADS)

    Tong, S. S.

    1986-01-01

    The possibility of combining artificial intelligence (AI) systems and numerical computation methods for engineering designs is considered. Attention is given to three possible areas of application involving fan design, controlled vortex design of turbine stage blade angles, and preliminary design of turbine cascade profiles. Among the AI techniques discussed are: knowledge-based systems; intelligent search; and pattern recognition systems. The potential cost and performance advantages of an AI-based design-generation system are discussed in detail.

  15. Artificial intelligence (AI) systems for interpreting complex medical datasets.

    PubMed

    Altman, R B

    2017-05-01

    Advances in machine intelligence have created powerful capabilities in algorithms that find hidden patterns in data, classify objects based on their measured characteristics, and associate similar patients/diseases/drugs based on common features. However, artificial intelligence (AI) applications in medical data have several technical challenges: complex and heterogeneous datasets, noisy medical datasets, and explaining their output to users. There are also social challenges related to intellectual property, data provenance, regulatory issues, economics, and liability. © 2017 ASCPT.

  16. Artificial Intelligence in Maintenance: Proceedings of the Joint Services Workshop Held at Boulder, Colorado on 4-6 October 1983.

    DTIC Science & Technology

    1984-06-01

    intelligence . I strongly suspect that we’ll use data links to Rome so we can take advantage of both of the computer systems. Again, we see the need for close... data base indexing system would come up with a hit on those three key words I’ve just said. What is it? The hit is "artificial intelligence ." (This...pieces of data and is not classificatory in nature. In MDX there is S an intelligent data base component, called PATREC [6, 7], for doing such reasoning

  17. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    PubMed

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  18. Application of Hierarchical Dissociated Neural Network in Closed-Loop Hybrid System Integrating Biological and Mechanical Intelligence

    PubMed Central

    Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including ‘random’ and ‘4Q’ (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the ‘4Q’ cultures presented absolutely different activities, and the robot controlled by the ‘4Q’ network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems. PMID:25992579

  19. Fifth Conference on Artificial Intelligence for Space Applications

    NASA Technical Reports Server (NTRS)

    Odell, Steve L. (Compiler)

    1990-01-01

    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration.

  20. Artificial intelligence: the clinician of the future.

    PubMed

    Gallagher, S M

    2001-09-01

    Human beings have long been fascinated with the idea of artificial intelligence. This fascination is fueled by popular films such as Stanley Kubrick's 2001: A Space Odyssey and Stephen Spielberg's recent film, AI. However intriguing artificial intelligence may be, Hubert and Spencer Dreyfus contend that qualities exist that are uniquely human--the qualities thought to be inaccessible to the computer "mind." Patricia Benner further investigated the qualities that guide clinicians in making decisions and assessments that are not entirely evidence-based or grounded in scientific data. Perhaps it is the intuitive nature of the human being that separates us from the machine. The state of artificial intelligence is described herein, along with a discussion of computerized clinical decision-making and the role of the human being in these decisions.

  1. Integrated Artificial Intelligence Approaches for Disease Diagnostics.

    PubMed

    Vashistha, Rajat; Chhabra, Deepak; Shukla, Pratyoosh

    2018-06-01

    Mechanocomputational techniques in conjunction with artificial intelligence (AI) are revolutionizing the interpretations of the crucial information from the medical data and converting it into optimized and organized information for diagnostics. It is possible due to valuable perfection in artificial intelligence, computer aided diagnostics, virtual assistant, robotic surgery, augmented reality and genome editing (based on AI) technologies. Such techniques are serving as the products for diagnosing emerging microbial or non microbial diseases. This article represents a combinatory approach of using such approaches and providing therapeutic solutions towards utilizing these techniques in disease diagnostics.

  2. Autonomous and Connected Vehicles: A Law Enforcement Primer

    DTIC Science & Technology

    2015-12-01

    CYBERSECURITY FOR AUTOMOBILES Intelligent Transportation Systems (ITS) that are emerging around the globe achieve that classification based on the convergence...Car Works,” October 18, 2011, IEEE Spectrum, http://spectrum.ieee.org/automaton/robotics/ artificial - intelligence /how-google-self-driving-car-works...whereby artificial intelligence acts on behalf of a human, but carries the same life or death consequences.435 States should encourage and engage in

  3. Knowledge Based Consultation for Finite Element Structural Analysis.

    DTIC Science & Technology

    1980-05-01

    Intelligence Finite Element Program Tutorial 20 ABSTRACT (Continue. on rees side If necessary and ide.n’ty b,’ bit,, k nionh.) In recent years, techniques of...involved in Artificial Intelligence at Stanford University developed the program MYCIN F2], for clinical consultation of diseases that require...and Rules The basic backward chaining logic, characteristic to Artificial Intelligence . approaching 1he problem of knowledge representation was

  4. Distribution Planning: An Integration of Constraint Satisfaction & Heuristic Search Techniques

    DTIC Science & Technology

    1990-01-01

    Proceedings of the Symposium on Aritificial Intelligence in ~~litary Logistics, Arlington, VA: American Defense Preparedness Assoc. pp. 177-182...dynamic changes, too many variables, and lack pf planning time. The Human Engineeri n ~ Laboratory (HEL) is developing artificial intelligence (AI...first attempt. The field of artificial intelligence includes a variety of knowledge-based approaches. Most widely known are Expert Systems, that are

  5. High-Level Vision and Planning Workshop Proceedings

    DTIC Science & Technology

    1989-08-01

    Correspondence in Line Drawings of Multiple View-. In Proc. of 8th Intern. Joint Conf. on Artificial intellignece . 1983. [63] Tomiyasu, K. Tutorial...joint U.S.-Israeli workshop on artificial intelligence are provided in this Institute for Defense Analyses document. This document is based on a broad...participants is provided along with applicable references for individual papers. 14. SUBJECT TERMS 15. NUMBER OF PAGES Artificial Intelligence; Machine Vision

  6. Efficient Effects-Based Military Planning Final Report

    DTIC Science & Technology

    2010-11-13

    using probabilistic infer- ence methods,” in Proc. 8th Annu. Conf. Uncertainty Artificial Intelli - gence (UAI), Stanford, CA. San Mateo, CA: Morgan...Imprecise Probabilities, the 24th Conference on Uncertainty in Artificial Intelligence (UAI), 2008. 7. Yan Tong and Qiang Ji, Learning Bayesian Networks...Bayesian Networks using Constraints Cassio P. de Campos cassiopc@acm.org Dalle Molle Institute for Artificial Intelligence Galleria 2, Manno 6928

  7. International experience on the use of artificial neural networks in gastroenterology.

    PubMed

    Grossi, E; Mancini, A; Buscema, M

    2007-03-01

    In this paper, we reconsider the scientific background for the use of artificial intelligence tools in medicine. A review of some recent significant papers shows that artificial neural networks, the more advanced and effective artificial intelligence technique, can improve the classification accuracy and survival prediction of a number of gastrointestinal diseases. We discuss the 'added value' the use of artificial neural networks-based tools can bring in the field of gastroenterology, both at research and clinical application level, when compared with traditional statistical or clinical-pathological methods.

  8. Development of the CODER System: A Testbed for Artificial Intelligence Methods in Information Retrieval.

    ERIC Educational Resources Information Center

    Fox, Edward A.

    1987-01-01

    Discusses the CODER system, which was developed to investigate the application of artificial intelligence methods to increase the effectiveness of information retrieval systems, particularly those involving heterogeneous documents. Highlights include the use of PROLOG programing, blackboard-based designs, knowledge engineering, lexicological…

  9. Automatic food detection in egocentric images using artificial intelligence technology

    USDA-ARS?s Scientific Manuscript database

    Our objective was to develop an artificial intelligence (AI)-based algorithm which can automatically detect food items from images acquired by an egocentric wearable camera for dietary assessment. To study human diet and lifestyle, large sets of egocentric images were acquired using a wearable devic...

  10. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  11. Artificial Intelligence and Information Retrieval.

    ERIC Educational Resources Information Center

    Teodorescu, Ioana

    1987-01-01

    Compares artificial intelligence and information retrieval paradigms for natural language understanding, reviews progress to date, and outlines the applicability of artificial intelligence to question answering systems. A list of principal artificial intelligence software for database front end systems is appended. (CLB)

  12. A Game Based e-Learning System to Teach Artificial Intelligence in the Computer Sciences Degree

    ERIC Educational Resources Information Center

    de Castro-Santos, Amable; Fajardo, Waldo; Molina-Solana, Miguel

    2017-01-01

    Our students taking the Artificial Intelligence and Knowledge Engineering courses often encounter a large number of problems to solve which are not directly related to the subject to be learned. To solve this problem, we have developed a game based e-learning system. The elected game, that has been implemented as an e-learning system, allows to…

  13. Application of artificial intelligence (AI) concepts to the development of space flight parts approval model

    NASA Technical Reports Server (NTRS)

    Krishnan, G. S.

    1997-01-01

    A cost effective model which uses the artificial intelligence techniques in the selection and approval of parts is presented. The knowledge which is acquired from the specialists for different part types are represented in a knowledge base in the form of rules and objects. The parts information is stored separately in a data base and is isolated from the knowledge base. Validation, verification and performance issues are highlighted.

  14. CREATIVE COMPUTATION.

    DTIC Science & Technology

    ARTIFICIAL INTELLIGENCE , RECURSIVE FUNCTIONS), (*RECURSIVE FUNCTIONS, ARTIFICIAL INTELLIGENCE ), (*MATHEMATICAL LOGIC, ARTIFICIAL INTELLIGENCE ), METAMATHEMATICS, AUTOMATA, NUMBER THEORY, INFORMATION THEORY, COMBINATORIAL ANALYSIS

  15. Artificial Intelligence for Controlling Robotic Aircraft

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  16. Artificial Intelligence and Its Importance in Education.

    ERIC Educational Resources Information Center

    Tilmann, Martha J.

    Artificial intelligence, or the study of ideas that enable computers to be intelligent, is discussed in terms of what it is, what it has done, what it can do, and how it may affect the teaching of tomorrow. An extensive overview of artificial intelligence examines its goals and applications and types of artificial intelligence including (1) expert…

  17. Report on Ada (Trademark) Program Libraries Workshop Held at Monterey, California on November 1-3, 1983,

    DTIC Science & Technology

    1983-11-03

    capability. An intelligent library management system will be supported by knowledge-based techniques. In fact, until a formal specification of library...from artificial intelligence and information science 2 might also be useful, for example automatic indexing and cataloging schemes, methods for fast...Artificial Intelligence 5:1045-1058, 1977. [Burstall & Goguen 801 Burstall, R. M., and Goguen, J. A. The Semantics of Clear, a Specification Language. In

  18. Northeast Artificial Intelligence Consortium (NAIC) Review of Technical Tasks. Volume 2, Part 2.

    DTIC Science & Technology

    1987-07-01

    A-A19 774 NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUN (MIC) 1/5 YVIEN OF TEOICR. T.. (U) NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM SYRACUSE MY J...NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM (NAIC) *p,* ~ Review of Technical Tasks ,.. 12 PERSONAL AUTHOR(S) (See reverse) . P VI J.F. Allen, P.B. Berra...See reverse) /" I ABSTRACT (Coninue on ’.wrse if necessary and identify by block number) % .. *. -. ’ The Northeast Artificial Intelligence Consortium

  19. Artificial intelligence in medicine.

    PubMed Central

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167

  20. Artificial intelligence in medicine.

    PubMed

    Ramesh, A N; Kambhampati, C; Monson, J R T; Drew, P J

    2004-09-01

    Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting.

  1. The coming of age of artificial intelligence in medicine.

    PubMed

    Patel, Vimla L; Shortliffe, Edward H; Stefanelli, Mario; Szolovits, Peter; Berthold, Michael R; Bellazzi, Riccardo; Abu-Hanna, Ameen

    2009-05-01

    This paper is based on a panel discussion held at the Artificial Intelligence in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he characterized artificial intelligence (AI) in medicine as being in its "adolescence" (Shortliffe EH. The adolescence of AI in medicine: will the field come of age in the '90s? Artificial Intelligence in Medicine 1993;5:93-106). In this article, the discussants reflect on medical AI research during the subsequent years and characterize the maturity and influence that has been achieved to date. Participants focus on their personal areas of expertise, ranging from clinical decision-making, reasoning under uncertainty, and knowledge representation to systems integration, translational bioinformatics, and cognitive issues in both the modeling of expertise and the creation of acceptable systems.

  2. The Coming of Age of Artificial Intelligence in Medicine*

    PubMed Central

    Patel, Vimla L.; Shortliffe, Edward H.; Stefanelli, Mario; Szolovits, Peter; Berthold, Michael R.; Bellazzi, Riccardo; Abu-Hanna, Ameen

    2009-01-01

    Summary This paper is based on a panel discussion held at the Artificial Intelligence in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he characterized artificial intelligence (AI) in medicine as being in its “adolescence” (Shortliffe EH. The adolescence of AI in medicine: Will the field come of age in the ‘90s? Artificial Intelligence in Medicine 1993; 5:93–106). In this article, the discussants reflect on medical AI research during the subsequent years and attempt to characterize the maturity and influence that has been achieved to date. Participants focus on their personal areas of expertise, ranging from clinical decision making, reasoning under uncertainty, and knowledge representation to systems integration, translational bioinformatics, and cognitive issues in both the modeling of expertise and the creation of acceptable systems. PMID:18790621

  3. Automated Test Requirement Document Generation

    DTIC Science & Technology

    1987-11-01

    DIAGNOSTICS BASED ON THE PRINCIPLES OF ARTIFICIAL INTELIGENCE ", 1984 International Test Conference, 01Oct84, (A3, 3, Cs D3, E2, G2, H2, 13, J6, K) 425...j0O GLOSSARY OF ACRONYMS 0 ABBREVIATION DEFINITION AFSATCOM Air Force Satellite Communication Al Artificial Intelligence ASIC Application Specific...In-Test Equipment (BITE) and AI ( Artificial Intelligence) - Expert Systems - need to be fully applied before a completely automated process can be

  4. Automated Management Of Documents

    NASA Technical Reports Server (NTRS)

    Boy, Guy

    1995-01-01

    Report presents main technical issues involved in computer-integrated documentation. Problems associated with automation of management and maintenance of documents analyzed from perspectives of artificial intelligence and human factors. Technologies that may prove useful in computer-integrated documentation reviewed: these include conventional approaches to indexing and retrieval of information, use of hypertext, and knowledge-based artificial-intelligence systems.

  5. Overcoming rule-based rigidity and connectionist limitations through massively-parallel case-based reasoning

    NASA Technical Reports Server (NTRS)

    Barnden, John; Srinivas, Kankanahalli

    1990-01-01

    Symbol manipulation as used in traditional Artificial Intelligence has been criticized by neural net researchers for being excessively inflexible and sequential. On the other hand, the application of neural net techniques to the types of high-level cognitive processing studied in traditional artificial intelligence presents major problems as well. A promising way out of this impasse is to build neural net models that accomplish massively parallel case-based reasoning. Case-based reasoning, which has received much attention recently, is essentially the same as analogy-based reasoning, and avoids many of the problems leveled at traditional artificial intelligence. Further problems are avoided by doing many strands of case-based reasoning in parallel, and by implementing the whole system as a neural net. In addition, such a system provides an approach to some aspects of the problems of noise, uncertainty and novelty in reasoning systems. The current neural net system (Conposit), which performs standard rule-based reasoning, is being modified into a massively parallel case-based reasoning version.

  6. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Information Technology Quarterly, 1985

    1985-01-01

    This issue of "Information Technology Quarterly" is devoted to the theme of "Artificial Intelligence." It contains two major articles: (1) Artificial Intelligence and Law" (D. Peter O'Neill and George D. Wood); (2) "Artificial Intelligence: A Long and Winding Road" (John J. Simon, Jr.). In addition, it contains two sidebars: (1) "Calculating and…

  7. Videos | Argonne National Laboratory

    Science.gov Websites

    science --Agent-based modeling --Applied mathematics --Artificial intelligence --Cloud computing management -Intelligence & counterterrorrism -Vulnerability assessment -Sensors & detectors Programs

  8. Intelligent Evaluation Method of Tank Bottom Corrosion Status Based on Improved BP Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Qiu, Feng; Dai, Guang; Zhang, Ying

    According to the acoustic emission information and the appearance inspection information of tank bottom online testing, the external factors associated with tank bottom corrosion status are confirmed. Applying artificial neural network intelligent evaluation method, three tank bottom corrosion status evaluation models based on appearance inspection information, acoustic emission information, and online testing information are established. Comparing with the result of acoustic emission online testing through the evaluation of test sample, the accuracy of the evaluation model based on online testing information is 94 %. The evaluation model can evaluate tank bottom corrosion accurately and realize acoustic emission online testing intelligent evaluation of tank bottom.

  9. Generalizing on Multiple Grounds: Performance Learning in Model-Based Troubleshooting

    DTIC Science & Technology

    1989-02-01

    Aritificial Intelligence , 24, 1984. [Ble88] Guy E. Blelloch. Scan Primitives and Parallel Vector Models. PhD thesis, Artificial Intelligence Laboratory...Diagnostic reasoning based on strcture and behavior. Aritificial Intelligence , 24, 1984. [dK86] J. de Kleer. An assumption-based truth maintenance system...diagnosis. Aritificial Intelligence , 24. �. )3 94 BIBLIOGRAPHY [Ham87] Kristian J. Hammond. Learning to anticipate and avoid planning prob- lems

  10. Mechanical Transformation of Task Heuristics into Operational Procedures

    DTIC Science & Technology

    1981-04-14

    Introduction A central theme of recent research in artificial intelligence is that *Intelligent task performance requires large amounts of knowledge...PLAY P1 C4] (. (LEADING (QSO)) (OR (CAN-LEAO- HEARrS (gSO)J (mEg (SUIT-OF C3) H])] C-) (FOLLOWING (QSO)) (OR [VOID (OSO) (SUIT-LED)3 [IN-SUIT C3 (SUIT...Production rules as a representation for a knowledge based consultation system. Artificial Intelligence 8:15-45, Spring, 1977. [Davis 77b] R. Davis

  11. Application of artifical intelligence principles to the analysis of "crazy" speech.

    PubMed

    Garfield, D A; Rapp, C

    1994-04-01

    Artificial intelligence computer simulation methods can be used to investigate psychotic or "crazy" speech. Here, symbolic reasoning algorithms establish semantic networks that schematize speech. These semantic networks consist of two main structures: case frames and object taxonomies. Node-based reasoning rules apply to object taxonomies and pathway-based reasoning rules apply to case frames. Normal listeners may recognize speech as "crazy talk" based on violations of node- and pathway-based reasoning rules. In this article, three separate segments of schizophrenic speech illustrate violations of these rules. This artificial intelligence approach is compared and contrasted with other neurolinguistic approaches and is discussed as a conceptual link between neurobiological and psychodynamic understandings of psychopathology.

  12. Social Media: Menagerie of Metrics

    DTIC Science & Technology

    2010-01-27

    intelligence, an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm . An EA...Cloning - 22 Animals were cloned to date; genetic algorithms can help prediction (e.g. “elitism” - attempts to ensure selection by including performers...28, 2010 Evolutionary Algorithm • Evolutionary algorithm From Wikipedia, the free encyclopedia Artificial intelligence portal In artificial

  13. The Seeds of Artificial Intelligence. SUMEX-AIM.

    ERIC Educational Resources Information Center

    Research Resources Information Center, Rockville, MD.

    Written to provide an understanding of the broad base of information on which the artificial intelligence (AI) branch of computer science rests, this publication presents a general view of AI, the concepts from which it evolved, its current abilities, and its promise for research. The focus is on a community of projects that use the SUMEX-AIM…

  14. Artificial Intelligence, Expert Systems, Natural Language Interfaces, Knowledge Engineering and the Librarian.

    ERIC Educational Resources Information Center

    Davies, Jim

    This paper begins by examining concepts of artificial intelligence (AI) and discusses various definitions of the concept that have been suggested in the literature. The nesting relationship of expert systems within the broader framework of AI is described, and expert systems are characterized as knowledge-based systems (KBS) which attempt to solve…

  15. Developing Applications of Artificial Intelligence Technology To Provide Consultative Support in the Use of Research Methodology by Practitioners.

    ERIC Educational Resources Information Center

    Vitale, Michael R.; Romance, Nancy

    Adopting perspectives based on applications of artificial intelligence proven in industry, this paper discusses methodological strategies and issues that underlie the development of such software environments. The general concept of an expert system is discussed in the context of its relevance to the problem of increasing the accessibility of…

  16. Artificial Intelligence and Vocational Education: An Impending Confluence.

    ERIC Educational Resources Information Center

    Roth, Gene L.; McEwing, Richard A.

    1986-01-01

    Reports on the relatively new field of artificial intelligence and its relationship to vocational education. Compares human intelligence with artificial intelligence. Discusses expert systems, natural language technology, and current trends. Lists potential applications for vocational education. (CH)

  17. Web Intelligence and Artificial Intelligence in Education

    ERIC Educational Resources Information Center

    Devedzic, Vladan

    2004-01-01

    This paper surveys important aspects of Web Intelligence (WI) in the context of Artificial Intelligence in Education (AIED) research. WI explores the fundamental roles as well as practical impacts of Artificial Intelligence (AI) and advanced Information Technology (IT) on the next generation of Web-related products, systems, services, and…

  18. Northeast Artificial Intelligence Consortium Annual Report. Volume 2. 1988 Discussing, Using, and Recognizing Plans (NLP)

    DTIC Science & Technology

    1989-10-01

    Encontro Portugues de Inteligencia Artificial (EPIA), Oporto, Portugal, September 1985. [15] N. J. Nilsson. Principles Of Artificial Intelligence. Tioga...FI1 F COPY () RADC-TR-89-259, Vol II (of twelve) Interim Report October 1969 AD-A218 154 NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL...7a. NAME OF MONITORING ORGANIZATION Northeast Artificial Of p0ilcabe) Intelligence Consortium (NAIC) Rome_____ Air___ Development____Center

  19. Digging deeper on "deep" learning: A computational ecology approach.

    PubMed

    Buscema, Massimo; Sacco, Pier Luigi

    2017-01-01

    We propose an alternative approach to "deep" learning that is based on computational ecologies of structurally diverse artificial neural networks, and on dynamic associative memory responses to stimuli. Rather than focusing on massive computation of many different examples of a single situation, we opt for model-based learning and adaptive flexibility. Cross-fertilization of learning processes across multiple domains is the fundamental feature of human intelligence that must inform "new" artificial intelligence.

  20. Intelligence: Real or artificial?

    PubMed Central

    Schlinger, Henry D.

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally referred to behavior-environment relations and not to inferred internal structures and processes. It is concluded that if workers in artificial intelligence are to succeed in their general goal, then they must design machines that are adaptive, that is, that can learn. Thus, artificial intelligence researchers must discard their essentialist model of natural intelligence and adopt a selectionist model instead. Such a strategic change should lead them to the science of behavior analysis. PMID:22477051

  1. Experiments with microcomputer-based artificial intelligence environments

    USGS Publications Warehouse

    Summers, E.G.; MacDonald, R.A.

    1988-01-01

    The U.S. Geological Survey (USGS) has been experimenting with the use of relatively inexpensive microcomputers as artificial intelligence (AI) development environments. Several AI languages are available that perform fairly well on desk-top personal computers, as are low-to-medium cost expert system packages. Although performance of these systems is respectable, their speed and capacity limitations are questionable for serious earth science applications foreseen by the USGS. The most capable artificial intelligence applications currently are concentrated on what is known as the "artificial intelligence computer," and include Xerox D-series, Tektronix 4400 series, Symbolics 3600, VAX, LMI, and Texas Instruments Explorer. The artificial intelligence computer runs expert system shells and Lisp, Prolog, and Smalltalk programming languages. However, these AI environments are expensive. Recently, inexpensive 32-bit hardware has become available for the IBM/AT microcomputer. USGS has acquired and recently completed Beta-testing of the Gold Hill Systems 80386 Hummingboard, which runs Common Lisp on an IBM/AT microcomputer. Hummingboard appears to have the potential to overcome many of the speed/capacity limitations observed with AI-applications on standard personal computers. USGS is a Beta-test site for the Gold Hill Systems GoldWorks expert system. GoldWorks combines some high-end expert system shell capabilities in a medium-cost package. This shell is developed in Common Lisp, runs on the 80386 Hummingboard, and provides some expert system features formerly available only on AI-computers including frame and rule-based reasoning, on-line tutorial, multiple inheritance, and object-programming. ?? 1988 International Association for Mathematical Geology.

  2. Expert Systems: Tutors, Tools, and Tutees.

    ERIC Educational Resources Information Center

    Lippert, Renate C.

    1989-01-01

    Discusses the current status, research, and practical implications of artificial intelligence and expert systems in education. Topics discussed include computer-assisted instruction; intelligent computer-assisted instruction; intelligent tutoring systems; instructional strategies involving the creation of knowledge bases; decision aids;…

  3. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Thornburg, David D.

    1986-01-01

    Overview of the artificial intelligence (AI) field provides a definition; discusses past research and areas of future research; describes the design, functions, and capabilities of expert systems and the "Turing Test" for machine intelligence; and lists additional sources for information on artificial intelligence. Languages of AI are…

  4. Cooperative Knowledge Bases.

    DTIC Science & Technology

    1988-02-01

    intellegent knowledge bases. The present state of our system for concurrent evaluation of a knowledge base of logic clauses using static allocation...de Kleer, J., An assumption-based TMS, Artificial Intelligence, Vol. 28, No. 2, 1986. [Doyle 79) Doyle, J. A truth maintenance system, Artificial

  5. Educational Assessment Using Intelligent Systems. Research Report. ETS RR-08-68

    ERIC Educational Resources Information Center

    Shute, Valerie J.; Zapata-Rivera, Diego

    2008-01-01

    Recent advances in educational assessment, cognitive science, and artificial intelligence have made it possible to integrate valid assessment and instruction in the form of modern computer-based intelligent systems. These intelligent systems leverage assessment information that is gathered from various sources (e.g., summative and formative). This…

  6. Prerequisites for Deriving Formal Specifications from Natural Language Requirements.

    DTIC Science & Technology

    1983-04-01

    International Joint Conference on Artificial Intell1ence, American Association for Artificial Intelligence, Mento Park, CA, 1981, 385-387. Mann, William C...Centering". Proceedings of the Seventh International Joint Conference on Artificial Intelligence, American Association for Artificial Intelligence, Mento

  7. Artificial Intelligence--Applications in Education.

    ERIC Educational Resources Information Center

    Poirot, James L.; Norris, Cathleen A.

    1987-01-01

    This first in a projected series of five articles discusses artificial intelligence and its impact on education. Highlights include the history of artificial intelligence and the impact of microcomputers; learning processes; human factors and interfaces; computer assisted instruction and intelligent tutoring systems; logic programing; and expert…

  8. MESA: An Interactive Modeling and Simulation Environment for Intelligent Systems Automation

    NASA Technical Reports Server (NTRS)

    Charest, Leonard

    1994-01-01

    This report describes MESA, a software environment for creating applications that automate NASA mission opterations. MESA enables intelligent automation by utilizing model-based reasoning techniques developed in the field of Artificial Intelligence. Model-based reasoning techniques are realized in Mesa through native support of causal modeling and discrete event simulation.

  9. AIonAI: a humanitarian law of artificial intelligence and robotics.

    PubMed

    Ashrafian, Hutan

    2015-02-01

    The enduring progression of artificial intelligence and cybernetics offers an ever-closer possibility of rational and sentient robots. The ethics and morals deriving from this technological prospect have been considered in the philosophy of artificial intelligence, the design of automatons with roboethics and the contemplation of machine ethics through the concept of artificial moral agents. Across these categories, the robotics laws first proposed by Isaac Asimov in the twentieth century remain well-recognised and esteemed due to their specification of preventing human harm, stipulating obedience to humans and incorporating robotic self-protection. However the overwhelming predominance in the study of this field has focussed on human-robot interactions without fully considering the ethical inevitability of future artificial intelligences communicating together and has not addressed the moral nature of robot-robot interactions. A new robotic law is proposed and termed AIonAI or artificial intelligence-on-artificial intelligence. This law tackles the overlooked area where future artificial intelligences will likely interact amongst themselves, potentially leading to exploitation. As such, they would benefit from adopting a universal law of rights to recognise inherent dignity and the inalienable rights of artificial intelligences. Such a consideration can help prevent exploitation and abuse of rational and sentient beings, but would also importantly reflect on our moral code of ethics and the humanity of our civilisation.

  10. Three Years of Using Robots in an Artificial Intelligence Course: Lessons Learned

    ERIC Educational Resources Information Center

    Kumar, Amruth N.

    2004-01-01

    We have been using robots in our artificial intelligence course since fall 2000. We have been using the robots for open-laboratory projects. The projects are designed to emphasize high-level knowledge-based AI algorithms. After three offerings of the course, we paused to analyze the collected data and to see if we could answer the following…

  11. Artificial Intelligence Methods: Challenge in Computer Based Polymer Design

    NASA Astrophysics Data System (ADS)

    Rusu, Teodora; Pinteala, Mariana; Cartwright, Hugh

    2009-08-01

    This paper deals with the use of Artificial Intelligence Methods (AI) in the design of new molecules possessing desired physical, chemical and biological properties. This is an important and difficult problem in the chemical, material and pharmaceutical industries. Traditional methods involve a laborious and expensive trial-and-error procedure, but computer-assisted approaches offer many advantages in the automation of molecular design.

  12. A novel modification of the Turing test for artificial intelligence and robotics in healthcare.

    PubMed

    Ashrafian, Hutan; Darzi, Ara; Athanasiou, Thanos

    2015-03-01

    The increasing demands of delivering higher quality global healthcare has resulted in a corresponding expansion in the development of computer-based and robotic healthcare tools that rely on artificially intelligent technologies. The Turing test was designed to assess artificial intelligence (AI) in computer technology. It remains an important qualitative tool for testing the next generation of medical diagnostics and medical robotics. Development of quantifiable diagnostic accuracy meta-analytical evaluative techniques for the Turing test paradigm. Modification of the Turing test to offer quantifiable diagnostic precision and statistical effect-size robustness in the assessment of AI for computer-based and robotic healthcare technologies. Modification of the Turing test to offer robust diagnostic scores for AI can contribute to enhancing and refining the next generation of digital diagnostic technologies and healthcare robotics. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Can Artificial Intelligences Suffer from Mental Illness? A Philosophical Matter to Consider.

    PubMed

    Ashrafian, Hutan

    2017-04-01

    The potential for artificial intelligences and robotics in achieving the capacity of consciousness, sentience and rationality offers the prospect that these agents have minds. If so, then there may be a potential for these minds to become dysfunctional, or for artificial intelligences and robots to suffer from mental illness. The existence of artificially intelligent psychopathology can be interpreted through the philosophical perspectives of mental illness. This offers new insights into what it means to have either robot or human mental disorders, but may also offer a platform on which to examine the mechanisms of biological or artificially intelligent psychiatric disease. The possibility of mental illnesses occurring in artificially intelligent individuals necessitates the consideration that at some level, they may have achieved a mental capability of consciousness, sentience and rationality such that they can subsequently become dysfunctional. The deeper philosophical understanding of these conditions in mankind and artificial intelligences might therefore offer reciprocal insights into mental health and mechanisms that may lead to the prevention of mental dysfunction.

  14. Artificial intelligence in medicine: the challenges ahead.

    PubMed

    Coiera, E W

    1996-01-01

    The modern study of artificial intelligence in medicine (AIM) is 25 years old. Throughout this period, the field has attracted many of the best computer scientists, and their work represents a remarkable achievement. However, AIM has not been successful-if success is judged as making an impact on the practice of medicine. Much recent work in AIM has been focused inward, addressing problems that are at the crossroads of the parent disciplines of medicine and artificial intelligence. Now, AIM must move forward with the insights that it has gained and focus on finding solutions for problems at the heart of medical practice. The growing emphasis within medicine on evidence-based practice should provide the right environment for that change.

  15. Knowledge Based Systems (KBS) Verification, Validation, Evaluation, and Testing (VVE&T) Bibliography: Topical Categorization

    DTIC Science & Technology

    2003-03-01

    Different?," Jour. of Experimental & Theoretical Artificial Intelligence, Special Issue on Al for Systems Validation and Verification, 12(4), 2000, pp...Hamilton, D., " Experiences in Improving the State of Practice in Verification and Validation of Knowledge-Based Systems," Workshop Notes of the AAAI...Unsuspected Power of the Standard Turing Test," Jour. of Experimental & Theoretical Artificial Intelligence., 12, 2000, pp3 3 1-3 4 0 . [30] Gaschnig

  16. Collective intelligence of the artificial life community on its own successes, failures, and future.

    PubMed

    Rasmussen, Steen; Raven, Michael J; Keating, Gordon N; Bedau, Mark A

    2003-01-01

    We describe a novel Internet-based method for building consensus and clarifying conflicts in large stakeholder groups facing complex issues, and we use the method to survey and map the scientific and organizational perspectives of the artificial life community during the Seventh International Conference on Artificial Life (summer 2000). The issues addressed in this survey included artificial life's main successes, main failures, main open scientific questions, and main strategies for the future, as well as the benefits and pitfalls of creating a professional society for artificial life. By illuminating the artificial life community's collective perspective on these issues, this survey illustrates the value of such methods of harnessing the collective intelligence of large stakeholder groups.

  17. Artificial Intelligence and Autonomy: Opportunities and Challenges

    DTIC Science & Technology

    2017-10-01

    Cleared for Public Release Artificial Intelligence & Autonomy Opportunities and Challenges Andrew Ilachinski October 2017 Copyright © 2017 CNA... Artificial Intelligence & Autonomy Opportunities and 5a. CONTRACT NUMBER N00014-16-D-5003 Challenges 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0605154N...conducted by unmanned and increasingly autonomous weapon systems. This exploratory study considers the state-of-the-art of artificial intelligence (AI

  18. Artificial Intelligence Information Sources for the Beginner and Expert

    DTIC Science & Technology

    1991-05-01

    SUBPLEETAR TMS T bepbhdi" Artificial Intelligence ApplictionsforMlitar Expertis SystemsWilasbrVA 527Mrh 91 12a. DSCRIBTION C AIITY 6 STAEENRTY CTO SECb.T...DLSIFC ISTR BUMATION OC Apnclassified pu ncrlase; ituied inlsife unlimited. Artificial Intelligence Information Sources for the Beginner and Expert...mgivenfdsac.dia.mil UUCP: {...).osu-cisidsac!mgiven ABSTRACT A tremendous amount of information on artificial intelligence is available via different

  19. The Outline of Personhood Law Regarding Artificial Intelligences and Emulated Human Entities

    NASA Astrophysics Data System (ADS)

    Muzyka, Kamil

    2013-12-01

    On the verge of technological breakthroughs, which define and revolutionize our understanding of intelligence, cognition, and personhood, especially when speaking of artificial intelligences and mind uploads, one must consider the legal implications of granting personhood rights to artificial intelligences or emulated human entities

  20. VHBuild.com: A Web-Based System for Managing Knowledge in Projects.

    ERIC Educational Resources Information Center

    Li, Heng; Tang, Sandy; Man, K. F.; Love, Peter E. D.

    2002-01-01

    Describes an intelligent Web-based construction project management system called VHBuild.com which integrates project management, knowledge management, and artificial intelligence technologies. Highlights include an information flow model; time-cost optimization based on genetic algorithms; rule-based drawing interpretation; and a case-based…

  1. Use of artificial intelligence to identify cardiovascular compromise in a model of hemorrhagic shock.

    PubMed

    Glass, Todd F; Knapp, Jason; Amburn, Philip; Clay, Bruce A; Kabrisky, Matt; Rogers, Steven K; Garcia, Victor F

    2004-02-01

    To determine whether a prototype artificial intelligence system can identify volume of hemorrhage in a porcine model of controlled hemorrhagic shock. Prospective in vivo animal model of hemorrhagic shock. Research foundation animal surgical suite; computer laboratories of collaborating industry partner. Nineteen, juvenile, 25- to 35-kg, male and female swine. Anesthetized animals were instrumented for arterial and systemic venous pressure monitoring and blood sampling, and a splenectomy was performed. Following a 1-hr stabilization period, animals were hemorrhaged in aliquots to 10, 20, 30, 35, 40, 45, and 50% of total blood volume with a 10-min recovery between each aliquot. Data were downloaded directly from a commercial monitoring system into a proprietary PC-based software package for analysis. Arterial and venous blood gas values, glucose, and cardiac output were collected at specified intervals. Electrocardiogram, electroencephalogram, mixed venous oxygen saturation, temperature (core and blood), mean arterial pressure, pulmonary artery pressure, central venous pressure, pulse oximetry, and end-tidal CO(2) were continuously monitored and downloaded. Seventeen of 19 animals (89%) died as a direct result of hemorrhage. Stored data streams were analyzed by the prototype artificial intelligence system. For this project, the artificial intelligence system identified and compared three electrocardiographic features (R-R interval, QRS amplitude, and R-S interval) from each of nine unknown samples of the QRS complex. We found that the artificial intelligence system, trained on only three electrocardiographic features, identified hemorrhage volume with an average accuracy of 91% (95% confidence interval, 84-96%). These experiments demonstrate that an artificial intelligence system, based solely on the analysis of QRS amplitude, R-R interval, and R-S interval of an electrocardiogram, is able to accurately identify hemorrhage volume in a porcine model of lethal hemorrhagic shock. We suggest that this technology may represent a noninvasive means of assessing the physiologic state during and immediately following hemorrhage. Point of care application of this technology may improve outcomes with earlier diagnosis and better titration of therapy of shock.

  2. CBT Pilot Program Instructional Guide. Basic Drafting Skills Curriculum Delivered through CAD Workstations and Artificial Intelligence Software.

    ERIC Educational Resources Information Center

    Smith, Richard J.; Sauer, Mardelle A.

    This guide is intended to assist teachers in using computer-aided design (CAD) workstations and artificial intelligence software to teach basic drafting skills. The guide outlines a 7-unit shell program that may also be used as a generic authoring system capable of supporting computer-based training (CBT) in other subject areas. The first section…

  3. Quality assurance paradigms for artificial intelligence in modelling and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oren, T.I.

    1987-04-01

    New classes of quality assurance concepts and techniques are required for the advanced knowledge-processing paradigms (such as artificial intelligence, expert systems, or knowledge-based systems) and the complex problems that only simulative systems can cope with. A systematization of quality assurance problems as well as examples are given to traditional and cognizant quality assurance techniques in traditional and cognizant modelling and simulation.

  4. Automated Scheduling Via Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Biefeld, Eric W.; Cooper, Lynne P.

    1991-01-01

    Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.

  5. Methodology Investigation of AI(Artificial Intelligence) Test Officer Support Tool. Volume 1

    DTIC Science & Technology

    1989-03-01

    American Association for Artificial inteligence A! ............. Artificial inteliigence AMC ............ Unt:ed States Army Maeriel Comand ASL...block number) FIELD GROUP SUB-GROUP Artificial Intelligence, Expert Systems Automated Aids to Testing 9. ABSTRACT (Continue on reverse if necessary and...identify by block number) This report covers the application of Artificial Intelligence-Techniques to the problem of creating automated tools to

  6. An Artificial Neural Network Controller for Intelligent Transportation Systems Applications

    DOT National Transportation Integrated Search

    1996-01-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...

  7. Using Artificial Intelligence to Reduce the Risk of Nonadherence in Patients on Anticoagulation Therapy.

    PubMed

    Labovitz, Daniel L; Shafner, Laura; Reyes Gil, Morayma; Virmani, Deepti; Hanina, Adam

    2017-05-01

    This study evaluated the use of an artificial intelligence platform on mobile devices in measuring and increasing medication adherence in stroke patients on anticoagulation therapy. The introduction of direct oral anticoagulants, while reducing the need for monitoring, have also placed pressure on patients to self-manage. Suboptimal adherence goes undetected as routine laboratory tests are not reliable indicators of adherence, placing patients at increased risk of stroke and bleeding. A randomized, parallel-group, 12-week study was conducted in adults (n=28) with recently diagnosed ischemic stroke receiving any anticoagulation. Patients were randomized to daily monitoring by the artificial intelligence platform (intervention) or to no daily monitoring (control). The artificial intelligence application visually identified the patient, the medication, and the confirmed ingestion. Adherence was measured by pill counts and plasma sampling in both groups. For all patients (n=28), mean (SD) age was 57 years (13.2 years) and 53.6% were women. Mean (SD) cumulative adherence based on the artificial intelligence platform was 90.5% (7.5%). Plasma drug concentration levels indicated that adherence was 100% (15 of 15) and 50% (6 of 12) in the intervention and control groups, respectively. Patients, some with little experience using a smartphone, successfully used the technology and demonstrated a 50% improvement in adherence based on plasma drug concentration levels. For patients receiving direct oral anticoagulants, absolute improvement increased to 67%. Real-time monitoring has the potential to increase adherence and change behavior, particularly in patients on direct oral anticoagulant therapy. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02599259. © 2017 American Heart Association, Inc.

  8. Northeast Artificial Intelligence Consortium annual report. Volume 2. 1988. Discussing, using, and recognizing plans (NLP). Interim report, January-December 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, S.C.; Woolf, B.

    The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems Command, Rome Air Development Center, and the Office of Scientific Research. Its purpose is to conduct pertinent research in artificial intelligence and to perform activities ancillary to this research. This report describes progress that has been made in the fourth year of the existence of the NAIC on the technical research tasks undertaken at the member universities. The topics covered in general are: versatile expert system for equipment maintenance, distributed AI for communications system control, automatic photointerpretation, time-oriented problem solving, speech understanding systems, knowledge base maintenance, hardwaremore » architectures for very large systems, knowledge-based reasoning and planning, and a knowledge acquisition, assistance, and explanation system. The specific topic for this volume is the recognition of plans expressed in natural language, followed by their discussion and use.« less

  9. Advanced training systems

    NASA Technical Reports Server (NTRS)

    Savely, Robert T.; Loftin, R. Bowen

    1990-01-01

    Training is a major endeavor in all modern societies. Common training methods include training manuals, formal classes, procedural computer programs, simulations, and on-the-job training. NASA's training approach has focussed primarily on on-the-job training in a simulation environment for both crew and ground based personnel. NASA must explore new approaches to training for the 1990's and beyond. Specific autonomous training systems are described which are based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground based support personnel that show an alternative to current training systems. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer Aided Training (ICAT) systems would provide much of the same experience that could be gained from the best on-the-job training.

  10. Artificial intelligence in medicine: the challenges ahead.

    PubMed Central

    Coiera, E W

    1996-01-01

    The modern study of artificial intelligence in medicine (AIM) is 25 years old. Throughout this period, the field has attracted many of the best computer scientists, and their work represents a remarkable achievement. However, AIM has not been successful-if success is judged as making an impact on the practice of medicine. Much recent work in AIM has been focused inward, addressing problems that are at the crossroads of the parent disciplines of medicine and artificial intelligence. Now, AIM must move forward with the insights that it has gained and focus on finding solutions for problems at the heart of medical practice. The growing emphasis within medicine on evidence-based practice should provide the right environment for that change. PMID:8930853

  11. [Detection of endpoint for segmentation between consonants and vowels in aphasia rehabilitation software based on artificial intelligence scheduling].

    PubMed

    Deng, Xingjuan; Chen, Ji; Shuai, Jie

    2009-08-01

    For the purpose of improving the efficiency of aphasia rehabilitation training, artificial intelligence-scheduling function is added in the aphasia rehabilitation software, and the software's performance is improved. With the characteristics of aphasia patient's voice as well as with the need of artificial intelligence-scheduling functions under consideration, the present authors have designed a set of endpoint detection algorithm. It determines the reference endpoints, then extracts every word and ensures the reasonable segmentation points between consonants and vowels, using the reference endpoints. The results of experiments show that the algorithm is able to attain the objects of detection at a higher accuracy rate. Therefore, it is applicable to the detection of endpoint on aphasia-patient's voice.

  12. Artificial Intelligence and Computer Assisted Instruction. CITE Report No. 4.

    ERIC Educational Resources Information Center

    Elsom-Cook, Mark

    The purpose of the paper is to outline some of the major ways in which artificial intelligence research and techniques can affect usage of computers in an educational environment. The role of artificial intelligence is defined, and the difference between Computer Aided Instruction (CAI) and Intelligent Computer Aided Instruction (ICAI) is…

  13. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part C: Basic AI topics

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1983-01-01

    Readily understandable overviews of search oriented problem solving, knowledge representation, and computational logic are provided. Mechanization, automation and artificial intelligence are discussed as well as how they interrelate.

  14. A Primer for Problem Solving Using Artificial Intelligence.

    ERIC Educational Resources Information Center

    Schell, George P.

    1988-01-01

    Reviews the development of artificial intelligence systems and the mechanisms used, including knowledge representation, programing languages, and problem processing systems. Eleven books and 6 journals are listed as sources of information on artificial intelligence. (23 references) (CLB)

  15. Intelligent detection of cracks in metallic surfaces using a waveguide sensor loaded with metamaterial elements.

    PubMed

    Ali, Abdulbaset; Hu, Bing; Ramahi, Omar

    2015-05-15

    This work presents a real life experiment of implementing an artificial intelligence model for detecting sub-millimeter cracks in metallic surfaces on a dataset obtained from a waveguide sensor loaded with metamaterial elements. Crack detection using microwave sensors is typically based on human observation of change in the sensor's signal (pattern) depicted on a high-resolution screen of the test equipment. However, as demonstrated in this work, implementing artificial intelligence to classify cracked from non-cracked surfaces has appreciable impact in terms of sensing sensitivity, cost, and automation. Furthermore, applying artificial intelligence for post-processing data collected from microwave sensors is a cornerstone for handheld test equipment that can outperform rack equipment with large screens and sophisticated plotting features. The proposed method was tested on a metallic plate with different cracks and the obtained experimental results showed good crack classification accuracy rates.

  16. Intelligent Detection of Cracks in Metallic Surfaces Using a Waveguide Sensor Loaded with Metamaterial Elements

    PubMed Central

    Ali, Abdulbaset; Hu, Bing; Ramahi, Omar M.

    2015-01-01

    This work presents a real-life experiment implementing an artificial intelligence model for detecting sub-millimeter cracks in metallic surfaces on a dataset obtained from a waveguide sensor loaded with metamaterial elements. Crack detection using microwave sensors is typically based on human observation of change in the sensor's signal (pattern) depicted on a high-resolution screen of the test equipment. However, as demonstrated in this work, implementing artificial intelligence to classify cracked from non-cracked surfaces has appreciable impacts in terms of sensing sensitivity, cost, and automation. Furthermore, applying artificial intelligence for post-processing the data collected from microwave sensors is a cornerstone for handheld test equipment that can outperform rack equipment with large screens and sophisticated plotting features. The proposed method was tested on a metallic plate with different cracks, and the experimental results showed good crack classification accuracy rates. PMID:25988871

  17. An intelligent artificial throat with sound-sensing ability based on laser induced graphene

    PubMed Central

    Tao, Lu-Qi; Tian, He; Liu, Ying; Ju, Zhen-Yi; Pang, Yu; Chen, Yuan-Quan; Wang, Dan-Yang; Tian, Xiang-Guang; Yan, Jun-Chao; Deng, Ning-Qin; Yang, Yi; Ren, Tian-Ling

    2017-01-01

    Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas. PMID:28232739

  18. An intelligent artificial throat with sound-sensing ability based on laser induced graphene.

    PubMed

    Tao, Lu-Qi; Tian, He; Liu, Ying; Ju, Zhen-Yi; Pang, Yu; Chen, Yuan-Quan; Wang, Dan-Yang; Tian, Xiang-Guang; Yan, Jun-Chao; Deng, Ning-Qin; Yang, Yi; Ren, Tian-Ling

    2017-02-24

    Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas.

  19. An intelligent artificial throat with sound-sensing ability based on laser induced graphene

    NASA Astrophysics Data System (ADS)

    Tao, Lu-Qi; Tian, He; Liu, Ying; Ju, Zhen-Yi; Pang, Yu; Chen, Yuan-Quan; Wang, Dan-Yang; Tian, Xiang-Guang; Yan, Jun-Chao; Deng, Ning-Qin; Yang, Yi; Ren, Tian-Ling

    2017-02-01

    Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas.

  20. In the Context of Multiple Intelligences Theory, Intelligent Data Analysis of Learning Styles Was Based on Rough Set Theory

    ERIC Educational Resources Information Center

    Narli, Serkan; Ozgen, Kemal; Alkan, Huseyin

    2011-01-01

    The present study aims to identify the relationship between individuals' multiple intelligence areas and their learning styles with mathematical clarity using the concept of rough sets which is used in areas such as artificial intelligence, data reduction, discovery of dependencies, prediction of data significance, and generating decision…

  1. A Distributed Problem-Solving Approach to Rule Induction: Learning in Distributed Artificial Intelligence Systems

    DTIC Science & Technology

    1990-11-01

    Intelligence Systems," in Distributed Artifcial Intelligence , vol. II, L. Gasser and M. Huhns (eds), Pitman, London, 1989, pp. 413-430. Shaw, M. Harrow, B...IDTIC FILE COPY A Distributed Problem-Solving Approach to Rule Induction: Learning in Distributed Artificial Intelligence Systems N Michael I. Shaw...SUBTITLE 5. FUNDING NUMBERS A Distributed Problem-Solving Approach to Rule Induction: Learning in Distributed Artificial Intelligence Systems 6

  2. An intelligent remote monitoring system for artificial heart.

    PubMed

    Choi, Jaesoon; Park, Jun W; Chung, Jinhan; Min, Byoung G

    2005-12-01

    A web-based database system for intelligent remote monitoring of an artificial heart has been developed. It is important for patients with an artificial heart implant to be discharged from the hospital after an appropriate stabilization period for better recovery and quality of life. Reliable continuous remote monitoring systems for these patients with life support devices are gaining practical meaning. The authors have developed a remote monitoring system for this purpose that consists of a portable/desktop monitoring terminal, a database for continuous recording of patient and device status, a web-based data access system with which clinicians can access real-time patient and device status data and past history data, and an intelligent diagnosis algorithm module that noninvasively estimates blood pump output and makes automatic classification of the device status. The system has been tested with data generation emulators installed on remote sites for simulation study, and in two cases of animal experiments conducted at remote facilities. The system showed acceptable functionality and reliability. The intelligence algorithm also showed acceptable practicality in an application to animal experiment data.

  3. Knowledge representation by connection matrices: A method for the on-board implementation of large expert systems

    NASA Technical Reports Server (NTRS)

    Kellner, A.

    1987-01-01

    Extremely large knowledge sources and efficient knowledge access characterizing future real-life artificial intelligence applications represent crucial requirements for on-board artificial intelligence systems due to obvious computer time and storage constraints on spacecraft. A type of knowledge representation and corresponding reasoning mechanism is proposed which is particularly suited for the efficient processing of such large knowledge bases in expert systems.

  4. Issues in management of artificial intelligence based projects

    NASA Technical Reports Server (NTRS)

    Kiss, P. A.; Freeman, Michael S.

    1988-01-01

    Now that Artificial Intelligence (AI) is gaining acceptance, it is important to examine some of the obstacles that still stand in the way of its progress. Ironically, many of these obstacles are related to management and are aggravated by the very characteristcs that make AI useful. The purpose of this paper is to heighten awareness of management issues in AI development and to focus attention on their resolution.

  5. Implementation of artificial intelligence rules in a data base management system

    NASA Technical Reports Server (NTRS)

    Feyock, S.

    1986-01-01

    The intelligent front end prototype was transformed into a RIM-integrated system. A RIM-based expert system was written which demonstrated the developed capability. The use of rules to produce extensibility of the intelligent front end, including the concept of demons and rule manipulation rules were investigated. Innovative approaches such as syntax programming were to be considered.

  6. 2017 Cybersecurity Workshop: Readouts from Working Groups - Video Text

    Science.gov Websites

    applicability of artificial intelligence to search for cybersecurity gaps in our existing SKATA networks. Second primarily renewable that all back each other up; that are all highly intelligent, artificial intelligence we have in cyber security, digital technologies, artificial intelligence. We think that that would

  7. Virtual Reality for Artificial Intelligence: human-centered simulation for social science.

    PubMed

    Cipresso, Pietro; Riva, Giuseppe

    2015-01-01

    There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society.

  8. Statistical Software and Artificial Intelligence: A Watershed in Applications Programming.

    ERIC Educational Resources Information Center

    Pickett, John C.

    1984-01-01

    AUTOBJ and AUTOBOX are revolutionary software programs which contain the first application of artificial intelligence to statistical procedures used in analysis of time series data. The artificial intelligence included in the programs and program features are discussed. (JN)

  9. Artificial intelligence in astronomy - a forecast.

    NASA Astrophysics Data System (ADS)

    Adorf, H. M.

    Since several years artificial intelligence techniques are being actively used in astronomy, particularly within the Hubble Space Telescope project. This contribution reviews achievements, analyses some problems of using artificial intelligence in an astronomical environment, and projects current AI programming trends into the future.

  10. Artificial intelligence and the future.

    PubMed

    Clocksin, William F

    2003-08-15

    We consider some of the ideas influencing current artificial-intelligence research and outline an alternative conceptual framework that gives priority to social relationships as a key component and constructor of intelligent behaviour. The framework starts from Weizenbaum's observation that intelligence manifests itself only relative to specific social and cultural contexts. This is in contrast to a prevailing view, which sees intelligence as an abstract capability of the individual mind based on a mechanism for rational thought. The new approach is not based on the conventional idea that the mind is a rational processor of symbolic information, nor does it require the idea that thought is a kind of abstract problem solving with a semantics that is independent of its embodiment. Instead, priority is given to affective and social responses that serve to engage the whole agent in the life of the communities in which it participates. Intelligence is seen not as the deployment of capabilities for problem solving, but as constructed by the continual, ever-changing and unfinished engagement with the social group within the environment. The construction of the identity of the intelligent agent involves the appropriation or 'taking up' of positions within the conversations and narratives in which it participates. Thus, the new approach argues that the intelligent agent is shaped by the meaning ascribed to experience, by its situation in the social matrix, and by practices of self and of relationship into which intelligent life is recruited. This has implications for the technology of the future, as, for example, classic artificial intelligence models such as goal-directed problem solving are seen as special cases of narrative practices instead of as ontological foundations.

  11. The application of intelligent process control to space based systems

    NASA Technical Reports Server (NTRS)

    Wakefield, G. Steve

    1990-01-01

    The application of Artificial Intelligence to electronic and process control can help attain the autonomy and safety requirements of manned space systems. An overview of documented applications within various industries is presented. The development process is discussed along with associated issues for implementing an intelligence process control system.

  12. In Pursuit of Artificial Intelligence.

    ERIC Educational Resources Information Center

    Watstein, Sarah; Kesselman, Martin

    1986-01-01

    Defines artificial intelligence and reviews current research in natural language processing, expert systems, and robotics and sensory systems. Discussion covers current commercial applications of artificial intelligence and projections of uses and limitations in library technical and public services, e.g., in cataloging and online information and…

  13. Knowledge-based processing for aircraft flight control

    NASA Technical Reports Server (NTRS)

    Painter, John H.; Glass, Emily; Economides, Gregory; Russell, Paul

    1994-01-01

    This Contractor Report documents research in Intelligent Control using knowledge-based processing in a manner dual to methods found in the classic stochastic decision, estimation, and control discipline. Such knowledge-based control has also been called Declarative, and Hybid. Software architectures were sought, employing the parallelism inherent in modern object-oriented modeling and programming. The viewpoint adopted was that Intelligent Control employs a class of domain-specific software architectures having features common over a broad variety of implementations, such as management of aircraft flight, power distribution, etc. As much attention was paid to software engineering issues as to artificial intelligence and control issues. This research considered that particular processing methods from the stochastic and knowledge-based worlds are duals, that is, similar in a broad context. They provide architectural design concepts which serve as bridges between the disparate disciplines of decision, estimation, control, and artificial intelligence. This research was applied to the control of a subsonic transport aircraft in the airport terminal area.

  14. Heart failure analysis dashboard for patient's remote monitoring combining multiple artificial intelligence technologies.

    PubMed

    Guidi, G; Pettenati, M C; Miniati, R; Iadanza, E

    2012-01-01

    In this paper we describe an Heart Failure analysis Dashboard that, combined with a handy device for the automatic acquisition of a set of patient's clinical parameters, allows to support telemonitoring functions. The Dashboard's intelligent core is a Computer Decision Support System designed to assist the clinical decision of non-specialist caring personnel, and it is based on three functional parts: Diagnosis, Prognosis, and Follow-up management. Four Artificial Intelligence-based techniques are compared for providing diagnosis function: a Neural Network, a Support Vector Machine, a Classification Tree and a Fuzzy Expert System whose rules are produced by a Genetic Algorithm. State of the art algorithms are used to support a score-based prognosis function. The patient's Follow-up is used to refine the diagnosis.

  15. Applications of artificial intelligence 1993: Knowledge-based systems in aerospace and industry; Proceedings of the Meeting, Orlando, FL, Apr. 13-15, 1993

    NASA Technical Reports Server (NTRS)

    Fayyad, Usama M. (Editor); Uthurusamy, Ramasamy (Editor)

    1993-01-01

    The present volume on applications of artificial intelligence with regard to knowledge-based systems in aerospace and industry discusses machine learning and clustering, expert systems and optimization techniques, monitoring and diagnosis, and automated design and expert systems. Attention is given to the integration of AI reasoning systems and hardware description languages, care-based reasoning, knowledge, retrieval, and training systems, and scheduling and planning. Topics addressed include the preprocessing of remotely sensed data for efficient analysis and classification, autonomous agents as air combat simulation adversaries, intelligent data presentation for real-time spacecraft monitoring, and an integrated reasoner for diagnosis in satellite control. Also discussed are a knowledge-based system for the design of heat exchangers, reuse of design information for model-based diagnosis, automatic compilation of expert systems, and a case-based approach to handling aircraft malfunctions.

  16. Analysis and Implementation of Robust Grasping Behaviors

    DTIC Science & Technology

    1990-05-01

    34 Technical Report 992, MIT Artificial Intelligence Laboratory, Cambridge, MA, May, 1987. 2. Brooks, R. A. "Achieving Artifci &l Intelligence Through...DTIu FILE COPY Technical Report 1237 ’Analysis and Implementation of NRobust Grasping Behaviors Camille Z. Chammas MIT Artificial Intelligence ...describes research conducted at the Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. Support for the laboratory’s

  17. Rapid Simulation of Blast Wave Propagation in Built Environments Using Coarse-Grain Based Intelligent Modeling Methods

    DTIC Science & Technology

    2011-04-01

    experiments was performed using an artificial neural network to try to capture the nonlinearities. The radial Gaussian artificial neural network system...Modeling Blast-Wave Propagation using Artificial Neural Network Methods‖, in International Journal of Advanced Engineering Informatics, Elsevier

  18. An Examination of Application of Artificial Neural Network in Cognitive Radios

    NASA Astrophysics Data System (ADS)

    Bello Salau, H.; Onwuka, E. N.; Aibinu, A. M.

    2013-12-01

    Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined.

  19. Quantum neuromorphic hardware for quantum artificial intelligence

    NASA Astrophysics Data System (ADS)

    Prati, Enrico

    2017-08-01

    The development of machine learning methods based on deep learning boosted the field of artificial intelligence towards unprecedented achievements and application in several fields. Such prominent results were made in parallel with the first successful demonstrations of fault tolerant hardware for quantum information processing. To which extent deep learning can take advantage of the existence of a hardware based on qubits behaving as a universal quantum computer is an open question under investigation. Here I review the convergence between the two fields towards implementation of advanced quantum algorithms, including quantum deep learning.

  20. Multisensor system and artificial intelligence in housing for the elderly.

    PubMed

    Chan, M; Bocquet, H; Campo, E; Val, T; Estève, D; Pous, J

    1998-01-01

    To improve the safety of a growing proportion of elderly and disabled people in the developed countries, a multisensor system based on Artificial Intelligence (AI), Advanced Telecommunications (AT) and Information Technology (IT) has been devised and fabricated. Thus, the habits and behaviours of these populations will be recorded without disturbing their daily activities. AI will diagnose any abnormal behavior or change and the system will warn the professionals. Gerontology issues are presented together with the multisensor system, the AI-based learning and diagnosis methodology and the main functionalities.

  1. An Approach to Object Recognition: Aligning Pictorial Descriptions.

    DTIC Science & Technology

    1986-12-01

    PERFORMING 0RGANIZATION NAMIE ANDORS IS551. PROGRAM ELEMENT. PROJECT. TASK Artificial Inteligence Laboratory AREKA A WORK UNIT NUMBERS ( 545 Technology... ARTIFICIAL INTELLIGENCE LABORATORY A.I. Memo No. 931 December, 1986 AN APPROACH TO OBJECT RECOGNITION: ALIGNING PICTORIAL DESCRIPTIONS Shimon Ullman...within the Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. Support for the A.I. Laboratory’s artificial intelligence

  2. Computer Simulated Visual and Tactile Feedback as an Aid to Manipulator and Vehicle Control,

    DTIC Science & Technology

    1981-05-08

    STATEMENT ........................ 8 Artificial Intellegence Versus Supervisory Control ....... 8 Computer Generation of Operator Feedback...operator. Artificial Intelligence Versus Supervisory Control The use of computers to aid human operators can be divided into two catagories: artificial ...operator. Artificial intelligence ( A. I. ) attempts to give the computer maximum intelligence and to replace all operator functions by the computer

  3. Artificial Intelligence in Astronomy

    NASA Astrophysics Data System (ADS)

    Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.

    2010-12-01

    From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.

  4. The Artificial Intelligence Applications to Learning Programme.

    ERIC Educational Resources Information Center

    Williams, Noel

    1992-01-01

    Explains the Artificial Intelligence Applications to Learning Programme, which was developed in the United Kingdom to explore and accelerate the use of artificial intelligence (AI) technologies in learning in both the educational and industrial sectors. Highlights include program evaluation, marketing, ownership of information, consortia, and cost…

  5. Artificial Intelligence and Language Comprehension.

    ERIC Educational Resources Information Center

    National Inst. of Education (DHEW), Washington, DC. Basic Skills Group. Learning Div.

    The three papers in this volume concerning artificial intelligence and language comprehension were commissioned by the National Institute of Education to further the understanding of the cognitive processes that enable people to comprehend what they read. The first paper, "Artificial Intelligence and Language Comprehension," by Terry Winograd,…

  6. Knowledge-Based Systems Research

    DTIC Science & Technology

    1990-08-24

    P. S., Laird, J. E., Newell, A. and McCarl, R. 1991. A Preliminary Analysis of the SOAR Architecture as a Basis for General Intelligence . Artifcial ...on reverse of neceSSjr’y gnd identify by block nhmber) FIELD I GRO’= SUB-C.OROUC Artificial Intelligence , Blackboard Systems, U°nstraint Satisfaction...knowledge acquisition; symbolic simulation; logic-based systems with self-awareness; SOAR, an architecture for general intelligence and learning

  7. Learning from Multiple Collaborating Intelligent Tutors: An Agent-based Approach.

    ERIC Educational Resources Information Center

    Solomos, Konstantinos; Avouris, Nikolaos

    1999-01-01

    Describes an open distributed multi-agent tutoring system (MATS) and discusses issues related to learning in such open environments. Topics include modeling a one student-many teachers approach in a computer-based learning context; distributed artificial intelligence; implementation issues; collaboration; and user interaction. (Author/LRW)

  8. A Research Program on Artificial Intelligence in Process Engineering.

    ERIC Educational Resources Information Center

    Stephanopoulos, George

    1986-01-01

    Discusses the use of artificial intelligence systems in process engineering. Describes a new program at the Massachusetts Institute of Technology which attempts to advance process engineering through technological advances in the areas of artificial intelligence and computers. Identifies the program's hardware facilities, software support,…

  9. Transforming Systems Engineering through Model-Centric Engineering

    DTIC Science & Technology

    2018-02-28

    intelligence (e.g., Artificial Intelligence , etc.), because they provide a means for representing knowledge. We see these capabilities coming to use in both...level, including:  Performance is measured by degree of success of a mission  Artificial Intelligence (AI) is applied to counterparties so that they...Modeling, Artificial Intelligence , Simulation and Modeling, 1989. [140] SAE ARP4761. Guidelines and Methods for Conducting the Safety Assessment Process

  10. A development framework for artificial intelligence based distributed operations support systems

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Cottman, Bruce H.

    1990-01-01

    Advanced automation is required to reduce costly human operations support requirements for complex space-based and ground control systems. Existing knowledge based technologies have been used successfully to automate individual operations tasks. Considerably less progress has been made in integrating and coordinating multiple operations applications for unified intelligent support systems. To fill this gap, SOCIAL, a tool set for developing Distributed Artificial Intelligence (DAI) systems is being constructed. SOCIAL consists of three primary language based components defining: models of interprocess communication across heterogeneous platforms; models for interprocess coordination, concurrency control, and fault management; and for accessing heterogeneous information resources. DAI applications subsystems, either new or existing, will access these distributed services non-intrusively, via high-level message-based protocols. SOCIAL will reduce the complexity of distributed communications, control, and integration, enabling developers to concentrate on the design and functionality of the target DAI system itself.

  11. Dynamical Systems and Motion Vision.

    DTIC Science & Technology

    1988-04-01

    TASK Artificial Inteligence Laboratory AREA I WORK UNIT NUMBERS 545 Technology Square . Cambridge, MA 02139 C\\ II. CONTROLLING OFFICE NAME ANO0 ADDRESS...INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A.I.Memo No. 1037 April, 1988 Dynamical Systems and Motion Vision Joachim Heel Abstract: In this... Artificial Intelligence L3 Laboratory of the Massachusetts Institute of Technology. Support for the Laboratory’s [1 Artificial Intelligence Research is

  12. Northeast Artificial Intelligence Consortium (NAIC). Volume 2. Discussing, Using, and Recognizing Plans

    DTIC Science & Technology

    1990-12-01

    knowledge and meta-reasoning. In Proceedings of EP14-85 ("Encontro Portugues de Inteligencia Artificial "), pages 138-154, Oporto, Portugal, 1985. [19] N, J...See reverse) 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION Northeast Artificial Intelligence...ABSTRACTM-2.,-- The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems Command, Rome Air Development Center, and

  13. Artificial Intelligence Study (AIS).

    DTIC Science & Technology

    1987-02-01

    ARTIFICIAL INTELLIGNECE HARDWARE ....... 2-50 AI Architecture ................................... 2-49 AI Hardware ....................................... 2...ftf1 829 ARTIFICIAL INTELLIGENCE STUDY (RIS)(U) MAY CONCEPTS 1/3 A~NLYSIS AGENCY BETHESA RD R B NOJESKI FED 6? CM-RP-97-1 NCASIFIED /01/6 M |K 1.0...p/ - - ., e -- CAA- RP- 87-1 SAOFŔ)11 I ARTIFICIAL INTELLIGENCE STUDY (AIS) tNo DTICFEBRUARY 1987 LECT 00 I PREPARED BY RESEARCH AND ANALYSIS

  14. Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2016-08-01

    In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteorological parameters-based, respectively) were used to estimate daily solar radiation in Kerman, Iran in the period of 1992-2009. To develop the GEP, ANN and ANFIS models, depending on the used empirical equations, various combinations of minimum air temperature, maximum air temperature, mean air temperature, extraterrestrial radiation, actual sunshine duration, maximum possible sunshine duration, sunshine duration ratio, relative humidity and precipitation were considered as inputs in the mentioned intelligent methods. To compare the accuracy of empirical equations and intelligent models, root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2) indices were used. The results showed that in general, sunshine-based and meteorological parameters-based scenarios in ANN and ANFIS models presented high accuracy than mentioned empirical equations. Moreover, the most accurate method in the studied region was ANN11 scenario with five inputs. The values of RMSE, MAE, MARE and R2 indices for the mentioned model were 1.850 MJ m-2 day-1, 1.184 MJ m-2 day-1, 9.58% and 0.935, respectively.

  15. An analysis of the application of AI to the development of intelligent aids for flight crew tasks

    NASA Technical Reports Server (NTRS)

    Baron, S.; Feehrer, C.

    1985-01-01

    This report presents the results of a study aimed at developing a basis for applying artificial intelligence to the flight deck environment of commercial transport aircraft. In particular, the study was comprised of four tasks: (1) analysis of flight crew tasks, (2) survey of the state-of-the-art of relevant artificial intelligence areas, (3) identification of human factors issues relevant to intelligent cockpit aids, and (4) identification of artificial intelligence areas requiring further research.

  16. Using Students' Knowledge to Generate Individual Feedback: Concept for an Intelligent Educational System on Logistics.

    ERIC Educational Resources Information Center

    Ziems, Dietrich; Neumann, Gaby

    1997-01-01

    Discusses a methods kit for interactive problem-solving exercises in engineering education as well as a methodology for intelligent evaluation of solutions. The quality of a system teaching logistics thinking can be improved using artificial intelligence. Embedding a rule-based diagnosis module that evaluates the student's knowledge actively…

  17. Artificial Intelligent Platform as Decision Tool for Asset Management, Operations and Maintenance.

    PubMed

    2018-01-04

    An Artificial Intelligence (AI) system has been developed and implemented for water, wastewater and reuse plants to improve management of sensors, short and long term maintenance plans, asset and investment management plans. It is based on an integrated approach to capture data from different computer systems and files. It adds a layer of intelligence to the data. It serves as a repository of key current and future operations and maintenance conditions that a plant needs have knowledge of. With this information, it is able to simulate the configuration of processes and assets for those conditions to improve or optimize operations, maintenance and asset management, using the IViewOps (Intelligent View of Operations) model. Based on the optimization through model runs, it is able to create output files that can feed data to other systems and inform the staff regarding optimal solutions to the conditions experienced or anticipated in the future.

  18. Expertise, Task Complexity, and Artificial Intelligence: A Conceptual Framework.

    ERIC Educational Resources Information Center

    Buckland, Michael K.; Florian, Doris

    1991-01-01

    Examines the relationship between users' expertise, task complexity of information system use, and artificial intelligence to provide the basis for a conceptual framework for considering the role that artificial intelligence might play in information systems. Cognitive and conceptual models are discussed, and cost effectiveness is considered. (27…

  19. Partial Bibliography of Work on Expert Systems,

    DTIC Science & Technology

    1982-12-01

    Bibliography: AAAI American Association for Artificial Intelligence ACM Association for Computing Machinery AFIPS American Federation of Information...Processing Societies ECAI European Conference on Artificial Intelligence IEEE Institute for Electrical and Electronic Engineers IFIPS International...Federation of Information Processing Societies IJCAI International Joint Conferences on Artificial Intelligence SIGPLAN ACM Special Interest Group on

  20. Towards an Intelligent Planning Knowledge Base Development Environment

    NASA Technical Reports Server (NTRS)

    Chien, S.

    1994-01-01

    ract describes work in developing knowledge base editing and debugging tools for the Multimission VICAR Planner (MVP) system. MVP uses artificial intelligence planning techniques to automatically construct executable complex image processing procedures (using models of the smaller constituent image processing requests made to the JPL Multimission Image Processing Laboratory.

  1. Application of Neural Network Technologies for Price Forecasting in the Liberalized Electricity Market

    NASA Astrophysics Data System (ADS)

    Gerikh, Valentin; Kolosok, Irina; Kurbatsky, Victor; Tomin, Nikita

    2009-01-01

    The paper presents the results of experimental studies concerning calculation of electricity prices in different price zones in Russia and Europe. The calculations are based on the intelligent software "ANAPRO" that implements the approaches based on the modern methods of data analysis and artificial intelligence technologies.

  2. Computer Assisted Instructional Design for Computer-Based Instruction. Final Report. Working Papers.

    ERIC Educational Resources Information Center

    Russell, Daniel M.; Pirolli, Peter

    Recent advances in artificial intelligence and the cognitive sciences have made it possible to develop successful intelligent computer-aided instructional systems for technical and scientific training. In addition, computer-aided design (CAD) environments that support the rapid development of such computer-based instruction have also been recently…

  3. Intelligence Fusion Modeling. A Proposed Approach.

    DTIC Science & Technology

    1983-09-16

    based techniques developed by artificial intelligence researchers. This paper describes the application of these techniques in the modeling of an... intelligence requirements, although the methods presented are applicable . We treat PIR/IR as given. -7- -- -W V"W v* 1.- . :71.,v It k*~ ~-- Movement...items from the PIR/IR/HVT decomposition are received from the CMDS. Formatted tactical intelligence reports are received from sensors of like types

  4. Applying artificial intelligence technology to support decision-making in nursing: A case study in Taiwan.

    PubMed

    Liao, Pei-Hung; Hsu, Pei-Ti; Chu, William; Chu, Woei-Chyn

    2015-06-01

    This study applied artificial intelligence to help nurses address problems and receive instructions through information technology. Nurses make diagnoses according to professional knowledge, clinical experience, and even instinct. Without comprehensive knowledge and thinking, diagnostic accuracy can be compromised and decisions may be delayed. We used a back-propagation neural network and other tools for data mining and statistical analysis. We further compared the prediction accuracy of the previous methods with an adaptive-network-based fuzzy inference system and the back-propagation neural network, identifying differences in the questions and in nurse satisfaction levels before and after using the nursing information system. This study investigated the use of artificial intelligence to generate nursing diagnoses. The percentage of agreement between diagnoses suggested by the information system and those made by nurses was as much as 87 percent. When patients are hospitalized, we can calculate the probability of various nursing diagnoses based on certain characteristics. © The Author(s) 2013.

  5. The Case for Artificial Intelligence in Medicine

    PubMed Central

    Reggia, James A.

    1983-01-01

    Current artificial intelligence (AI) technology can be viewed as producing “systematic artifacts” onto which we project an interpretation of intelligent behavior. One major benefit this technology could bring to medicine is help with handling the tremendous and growing volume of medical knowledge. The reader is led to a vision of the medical library of tomorrow, an interactive, artificially intelligent knowledge source that is fully and directly integrated with daily patient care.

  6. Actors: A Model of Concurrent Computation in Distributed Systems.

    DTIC Science & Technology

    1985-06-01

    Artificial Intelligence Labora- tory of the Massachusetts Institute of Technology. Support for the labora- tory’s aritificial intelligence research is...RD-A157 917 ACTORS: A MODEL OF CONCURRENT COMPUTATION IN 1/3- DISTRIBUTED SY𔃿TEMS(U) MASSACHUSETTS INST OF TECH CRMBRIDGE ARTIFICIAL INTELLIGENCE ...Computation In Distributed Systems Gui A. Aghai MIT Artificial Intelligence Laboratory Thsdocument ha. been cipp-oved I= pblicrelease and sale; itsI

  7. Anesthesiology, automation, and artificial intelligence.

    PubMed

    Alexander, John C; Joshi, Girish P

    2018-01-01

    There have been many attempts to incorporate automation into the practice of anesthesiology, though none have been successful. Fundamentally, these failures are due to the underlying complexity of anesthesia practice and the inability of rule-based feedback loops to fully master it. Recent innovations in artificial intelligence, especially machine learning, may usher in a new era of automation across many industries, including anesthesiology. It would be wise to consider the implications of such potential changes before they have been fully realized.

  8. Exodus - Distributed artificial intelligence for Shuttle firing rooms

    NASA Technical Reports Server (NTRS)

    Heard, Astrid E.

    1990-01-01

    This paper describes the Expert System for Operations Distributed Users (EXODUS), a knowledge-based artificial intelligence system developed for the four Firing Rooms at the Kennedy Space Center. EXODUS is used by the Shuttle engineers and test conductors to monitor and control the sequence of tasks required for processing and launching Shuttle vehicles. In this paper, attention is given to the goals and the design of EXODUS, the operational requirements, and the extensibility of the technology.

  9. Future applications of artificial intelligence to Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1991-01-01

    Future applications of artificial intelligence to Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: basic objectives of the NASA-wide AI program; inhouse research program; constraint-based scheduling; learning and performance improvement for scheduling; GEMPLAN multi-agent planner; planning, scheduling, and control; Bayesian learning; efficient learning algorithms; ICARUS (an integrated architecture for learning); design knowledge acquisition and retention; computer-integrated documentation; and some speculation on future applications.

  10. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  11. The use of artificially intelligent agents with bounded rationality in the study of economic markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajan, V.; Slagle, J.R.

    The concepts of {open_quote}knowledge{close_quote} and {open_quote}rationality{close_quote} are of central importance to fields of science that are interested in human behavior and learning, such as artificial intelligence, economics, and psychology. The similarity between artificial intelligence and economics - both are concerned with intelligent thought, rational behavior, and the use and acquisition of knowledge - has led to the use of economic models as a paradigm for solving problems in distributed artificial intelligence (DAI) and multi agent systems (MAS). What we propose is the opposite; the use of artificial intelligence in the study of economic markets. Over the centuries various theories ofmore » market behavior have been advanced. The prevailing theory holds that an asset`s current price converges to the risk adjusted value of the rationally expected dividend stream. While this rational expectations model holds in equilibrium or near-equilibrium conditions, it does not sufficiently explain conditions of market disequilibrium. An example of market disequilibrium is the phenomenon of a speculative bubble. We present an example of using artificially intelligent agents with bounded rationality in the study of speculative bubbles.« less

  12. What Is Artificial Intelligence Anyway?

    ERIC Educational Resources Information Center

    Kurzweil, Raymond

    1985-01-01

    Examines the past, present, and future status of Artificial Intelligence (AI). Acknowledges the limitations of AI but proposes possible areas of application and further development. Urges a concentration on the unique strengths of machine intelligence rather than a copying of human intelligence. (ML)

  13. INTELLIGENT PROCESSING EQUIPMENT WITHIN THE ENVIRONMENTAL PROTECTION AGENCY

    EPA Science Inventory

    Protection of the environment and environmental remediation requires the cooperation -at all levels- of government and industry. ntelligent processing equipment, in addition to other artificial intelligence based tools, has been used by the Environmental Protection Agency to prov...

  14. Artificial consciousness and the consciousness-attention dissociation.

    PubMed

    Haladjian, Harry Haroutioun; Montemayor, Carlos

    2016-10-01

    Artificial Intelligence is at a turning point, with a substantial increase in projects aiming to implement sophisticated forms of human intelligence in machines. This research attempts to model specific forms of intelligence through brute-force search heuristics and also reproduce features of human perception and cognition, including emotions. Such goals have implications for artificial consciousness, with some arguing that it will be achievable once we overcome short-term engineering challenges. We believe, however, that phenomenal consciousness cannot be implemented in machines. This becomes clear when considering emotions and examining the dissociation between consciousness and attention in humans. While we may be able to program ethical behavior based on rules and machine learning, we will never be able to reproduce emotions or empathy by programming such control systems-these will be merely simulations. Arguments in favor of this claim include considerations about evolution, the neuropsychological aspects of emotions, and the dissociation between attention and consciousness found in humans. Ultimately, we are far from achieving artificial consciousness. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Virtual personal assistance

    NASA Astrophysics Data System (ADS)

    Aditya, K.; Biswadeep, G.; Kedar, S.; Sundar, S.

    2017-11-01

    Human computer communication has growing demand recent days. The new generation of autonomous technology aspires to give computer interfaces emotional states that relate and consider user as well as system environment considerations. In the existing computational model is based an artificial intelligent and externally by multi-modal expression augmented with semi human characteristics. But the main problem with is multi-model expression is that the hardware control given to the Artificial Intelligence (AI) is very limited. So, in our project we are trying to give the Artificial Intelligence (AI) more control on the hardware. There are two main parts such as Speech to Text (STT) and Text to Speech (TTS) engines are used accomplish the requirement. In this work, we are using a raspberry pi 3, a speaker and a mic as hardware and for the programing part, we are using python scripting.

  16. Power Grid Maintenance Scheduling Intelligence Arrangement Supporting System Based on Power Flow Forecasting

    NASA Astrophysics Data System (ADS)

    Xie, Chang; Wen, Jing; Liu, Wenying; Wang, Jiaming

    With the development of intelligent dispatching, the intelligence level of network control center full-service urgent need to raise. As an important daily work of network control center, the application of maintenance scheduling intelligent arrangement to achieve high-quality and safety operation of power grid is very important. By analyzing the shortages of the traditional maintenance scheduling software, this paper designs a power grid maintenance scheduling intelligence arrangement supporting system based on power flow forecasting, which uses the advanced technologies in maintenance scheduling, such as artificial intelligence, online security checking, intelligent visualization techniques. It implements the online security checking of maintenance scheduling based on power flow forecasting and power flow adjusting based on visualization, in order to make the maintenance scheduling arrangement moreintelligent and visual.

  17. The Joint Tactical Aerial Resupply Vehicle Impact on Sustainment Operations

    DTIC Science & Technology

    2017-06-09

    Artificial Intelligence , Sustainment Operations, Rifle Company, Autonomous Aerial Resupply, Joint Tactical Autonomous Aerial Resupply System 16...Integrations and Development System AI Artificial Intelligence ARCIC Army Capabilities Integration Center ARDEC Armament Research, Development and...semi- autonomous systems, and fully autonomous systems. Autonomy of machines depends on sophisticated software, including Artificial Intelligence

  18. Artificial Intelligence Measurement System, Overview and Lessons Learned. Final Project Report.

    ERIC Educational Resources Information Center

    Baker, Eva L.; Butler, Frances A.

    This report summarizes the work conducted for the Artificial Intelligence Measurement System (AIMS) Project which was undertaken as an exploration of methodology to consider how the effects of artificial intelligence systems could be compared to human performance. The research covered four areas of inquiry: (1) natural language processing and…

  19. The Potential of Artificial Intelligence in Aids for the Disabled.

    ERIC Educational Resources Information Center

    Boyer, John J.

    The paper explores the possibilities for applying the knowledge of artificial intelligence (AI) research to aids for the disabled. Following a definition of artificial intelligence, the paper reviews areas of basic AI research, such as computer vision, machine learning, and planning and problem solving. Among application areas relevant to the…

  20. Computer science, artificial intelligence, and cybernetics: Applied artificial intelligence in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinger, B.

    1988-01-01

    This sourcebook provides information on the developments in artificial intelligence originating in Japan. Spanning such innovations as software productivity, natural language processing, CAD, and parallel inference machines, this volume lists leading organizations conducting research or implementing AI systems, describes AI applications being pursued, illustrates current results achieved, and highlights sources reporting progress.

  1. Contribution of artificial intelligence to the knowledge of prognostic factors in laryngeal carcinoma.

    PubMed

    Zapater, E; Moreno, S; Fortea, M A; Campos, A; Armengot, M; Basterra, J

    2000-11-01

    Many studies have investigated prognostic factors in laryngeal carcinoma, with sometimes conflicting results. Apart from the importance of environmental factors, the different statistical methods employed may have influenced such discrepancies. A program based on artificial intelligence techniques is designed to determine the prognostic factors in a series of 122 laryngeal carcinomas. The results obtained are compared with those derived from two classical statistical methods (Cox regression and mortality tables). Tumor location was found to be the most important prognostic factor by all methods. The proposed intelligent system is found to be a sound method capable of detecting exceptional cases.

  2. An Intelligent Active Video Surveillance System Based on the Integration of Virtual Neural Sensors and BDI Agents

    NASA Astrophysics Data System (ADS)

    Gregorio, Massimo De

    In this paper we present an intelligent active video surveillance system currently adopted in two different application domains: railway tunnels and outdoor storage areas. The system takes advantages of the integration of Artificial Neural Networks (ANN) and symbolic Artificial Intelligence (AI). This hybrid system is formed by virtual neural sensors (implemented as WiSARD-like systems) and BDI agents. The coupling of virtual neural sensors with symbolic reasoning for interpreting their outputs, makes this approach both very light from a computational and hardware point of view, and rather robust in performances. The system works on different scenarios and in difficult light conditions.

  3. Information Processing in Cognition Process and New Artificial Intelligent Systems

    NASA Astrophysics Data System (ADS)

    Zheng, Nanning; Xue, Jianru

    In this chapter, we discuss, in depth, visual information processing and a new artificial intelligent (AI) system that is based upon cognitive mechanisms. The relationship between a general model of intelligent systems and cognitive mechanisms is described, and in particular we explore visual information processing with selective attention. We also discuss a methodology for studying the new AI system and propose some important basic research issues that have emerged in the intersecting fields of cognitive science and information science. To this end, a new scheme for associative memory and a new architecture for an AI system with attractors of chaos are addressed.

  4. The importance of motivation and emotion for explaining human cognition.

    PubMed

    Güss, C Dominik; Dörner, Dietrich

    2017-01-01

    Lake et al. discuss building blocks of human intelligence that are quite different from those of artificial intelligence. We argue that a theory of human intelligence has to incorporate human motivations and emotions. The interaction of motivation, emotion, and cognition is the real strength of human intelligence and distinguishes it from artificial intelligence.

  5. The 1990 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  6. The application of hybrid artificial intelligence systems for forecasting

    NASA Astrophysics Data System (ADS)

    Lees, Brian; Corchado, Juan

    1999-03-01

    The results to date are presented from an ongoing investigation, in which the aim is to combine the strengths of different artificial intelligence methods into a single problem solving system. The premise underlying this research is that a system which embodies several cooperating problem solving methods will be capable of achieving better performance than if only a single method were employed. The work has so far concentrated on the combination of case-based reasoning and artificial neural networks. The relative merits of artificial neural networks and case-based reasoning problem solving paradigms, and their combination are discussed. The integration of these two AI problem solving methods in a hybrid systems architecture, such that the neural network provides support for learning from past experience in the case-based reasoning cycle, is then presented. The approach has been applied to the task of forecasting the variation of physical parameters of the ocean. Results obtained so far from tests carried out in the dynamic oceanic environment are presented.

  7. Student Modeling in an Intelligent Tutoring System

    DTIC Science & Technology

    1996-12-17

    Multi-Agent Architecture." Advances in Artificial Intelligence : Proceedings of the 12 th Brazilian Symposium on Aritificial Intelligence , edited by...STUDENT MODELING IN AN INTELLIGENT TUTORING SYSTEM THESIS Jeremy E. Thompson Captain, USAF AFIT/GCS/ENG/96D-27 DIMTVMON* fCKAJWINT A Appr"v*d t=i...Air Force Base, Ohio AFIT/GCS/ENG/96D-27 STUDENT MODELING IN AN INTELLIGENT TUTORING SYSTEM THESIS Jeremy E. Thompson Captain, USAF AFIT/GCS/ENG/96D

  8. Artificial Intelligence in Autonomous Telescopes

    NASA Astrophysics Data System (ADS)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  9. Developing a new intelligent system for the diagnosis of tuberculous pleural effusion.

    PubMed

    Li, Chengye; Hou, Lingxian; Sharma, Bishundat Yanesh; Li, Huaizhong; Chen, ChengShui; Li, Yuping; Zhao, Xuehua; Huang, Hui; Cai, Zhennao; Chen, Huiling

    2018-01-01

    In countries with high prevalence of tuberculosis (TB), clinicians often diagnose tuberculous pleural effusion (TPE) by using diagnostic tests, which have not only poor sensitivity, but poor availability as well. The aim of our study is to develop a new artificial intelligence based diagnostic model that is accurate, fast, non-invasive and cost effective to diagnose TPE. It is expected that a tool derived based on the model be installed on simple computer devices (such as smart phones and tablets) and be used by clinicians widely. For this study, data of 140 patients whose clinical signs, routine blood test results, blood biochemistry markers, pleural fluid cell type and count, and pleural fluid biochemical tests' results were prospectively collected into a database. An Artificial intelligence based diagnostic model, which employs moth flame optimization based support vector machine with feature selection (FS-MFO-SVM), is constructed to predict the diagnosis of TPE. The optimal model results in an average of 95% accuracy (ACC), 0.9564 the area under the receiver operating characteristic curve (AUC), 93.35% sensitivity, and 97.57% specificity for FS-MFO-SVM. The proposed artificial intelligence based diagnostic model is found to be highly reliable for diagnosing TPE based on simple clinical signs, blood samples and pleural effusion samples. Therefore, the proposed model can be widely used in clinical practice and further evaluated for use as a substitute of invasive pleural biopsies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Intelligent web agents for a 3D virtual community

    NASA Astrophysics Data System (ADS)

    Dave, T. M.; Zhang, Yanqing; Owen, G. S. S.; Sunderraman, Rajshekhar

    2003-08-01

    In this paper, we propose an Avatar-based intelligent agent technique for 3D Web based Virtual Communities based on distributed artificial intelligence, intelligent agent techniques, and databases and knowledge bases in a digital library. One of the goals of this joint NSF (IIS-9980130) and ACM SIGGRAPH Education Committee (ASEC) project is to create a virtual community of educators and students who have a common interest in comptuer graphics, visualization, and interactive techniqeus. In this virtual community (ASEC World) Avatars will represent the educators, students, and other visitors to the world. Intelligent agents represented as specially dressed Avatars will be available to assist the visitors to ASEC World. The basic Web client-server architecture of the intelligent knowledge-based avatars is given. Importantly, the intelligent Web agent software system for the 3D virtual community is implemented successfully.

  11. Learning Unknown Event Models

    DTIC Science & Technology

    2014-07-01

    Intelligence (www.aaai.org). All rights reserved. knowledge engineering, but it is often impractical due to high environment variance, or unknown events...distribution unlimited 13. SUPPLEMENTARY NOTES In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence , 27-31 July 2014...autonomy for responding to unexpected events in strategy simulations. Computational Intelligence , 29(2), 187-206. Leake, D. B. (1991), Goal-based

  12. Intelligent Tutoring Systems

    NASA Astrophysics Data System (ADS)

    Anderson, John R.; Boyle, C. Franklin; Reiser, Brian J.

    1985-04-01

    Cognitive psychology, artificial intelligence, and computer technology have advanced to the point where it is feasible to build computer systems that are as effective as intelligent human tutors. Computer tutors based on a set of pedagogical principles derived from the ACT theory of cognition have been developed for teaching students to do proofs in geometry and to write computer programs in the language LISP.

  13. Intelligent tutoring systems.

    PubMed

    Anderson, J R; Boyle, C F; Reiser, B J

    1985-04-26

    Cognitive psychology, artificial intelligence, and computer technology have advanced to the point where it is feasible to build computer systems that are as effective as intelligent human tutors. Computer tutors based on a set of pedagogical principles derived from the ACT theory of cognition have been developed for teaching students to do proofs in geometry and to write computer programs in the language LISP.

  14. Hybrid Architectures and Their Impact on Intelligent Design

    NASA Technical Reports Server (NTRS)

    Kandel, Abe

    1996-01-01

    In this presentation we investigate a novel framework for the design of autonomous fuzzy intelligent systems. The system integrates the following modules into a single autonomous entity: (1) a fuzzy expert system; (2) artificial neural network; (3) genetic algorithm; and (4) case-base reasoning. We describe the integration of these units into one intelligent structure and discuss potential applications.

  15. Artificial Intelligence Applications to High-Technology Training.

    ERIC Educational Resources Information Center

    Dede, Christopher

    1987-01-01

    Discusses the use of artificial intelligence to improve occupational instruction in complex subjects with high performance goals, such as those required for high-technology jobs. Highlights include intelligent computer assisted instruction, examples in space technology training, intelligent simulation environments, and the need for adult training…

  16. Rapid prototyping facility for flight research in artificial-intelligence-based flight systems concepts

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Regenie, V. A.; Deets, D. A.

    1986-01-01

    The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

  17. Development of a Heuristic Knowledge Base for the Selection of Applicable or Relevant and Appropriate Environmental Requirements

    DTIC Science & Technology

    1992-09-01

    David King. Expert Systems: Artificial Intelligence in Bins. New York: John Wiley and Sons Inc., 1985. 10. Hayes-Roth, Frederick, Donald A. Waterman...Technology (AU), Wright-Patterson AFB, OH, July 1992. 26. Simmons, Asa B. and Steven G. Chappel. " Artificial Intelligence - Defini- tion and Practice," IEEE...information on treatment standards is through the publication of the CERCLA Compane With Other Laws Manual and the Co endium of CERCIA ARARs Fact Sheets

  18. Anesthesiology, automation, and artificial intelligence

    PubMed Central

    Alexander, John C.; Joshi, Girish P.

    2018-01-01

    ABSTRACT There have been many attempts to incorporate automation into the practice of anesthesiology, though none have been successful. Fundamentally, these failures are due to the underlying complexity of anesthesia practice and the inability of rule-based feedback loops to fully master it. Recent innovations in artificial intelligence, especially machine learning, may usher in a new era of automation across many industries, including anesthesiology. It would be wise to consider the implications of such potential changes before they have been fully realized. PMID:29686578

  19. Artificial intelligence techniques for scheduling Space Shuttle missions

    NASA Technical Reports Server (NTRS)

    Henke, Andrea L.; Stottler, Richard H.

    1994-01-01

    Planning and scheduling of NASA Space Shuttle missions is a complex, labor-intensive process requiring the expertise of experienced mission planners. We have developed a planning and scheduling system using combinations of artificial intelligence knowledge representations and planning techniques to capture mission planning knowledge and automate the multi-mission planning process. Our integrated object oriented and rule-based approach reduces planning time by orders of magnitude and provides planners with the flexibility to easily modify planning knowledge and constraints without requiring programming expertise.

  20. Advanced Artificial Intelligence Technology Testbed

    NASA Technical Reports Server (NTRS)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  1. Artificial intelligence and synthetic biology: A tri-temporal contribution.

    PubMed

    Bianchini, Francesco

    2016-10-01

    Artificial intelligence can make numerous contributions to synthetic biology. I would like to suggest three that are related to the past, present and future of artificial intelligence. From the past, works in biology and artificial systems by Turing and von Neumann prove highly interesting to explore within the new framework of synthetic biology, especially with regard to the notions of self-modification and self-replication and their links to emergence and the bottom-up approach. The current epistemological inquiry into emergence and research on swarm intelligence, superorganisms and biologically inspired cognitive architecture may lead to new achievements on the possibilities of synthetic biology in explaining cognitive processes. Finally, the present-day discussion on the future of artificial intelligence and the rise of superintelligence may point to some research trends for the future of synthetic biology and help to better define the boundary of notions such as "life", "cognition", "artificial" and "natural", as well as their interconnections in theoretical synthetic biology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Small Knowledge-Based Systems in Education and Training: Something New Under the Sun.

    ERIC Educational Resources Information Center

    Wilson, Brent G.; Welsh, Jack R.

    1986-01-01

    Discusses artificial intelligence, robotics, natural language processing, and expert or knowledge-based systems research; examines two large expert systems, MYCIN and XCON; and reviews the resources required to build large expert systems and affordable smaller systems (intelligent job aids) for training. Expert system vendors and products are…

  3. Protecting Networks Via Automated Defense of Cyber Systems

    DTIC Science & Technology

    2016-09-01

    autonomics, and artificial intelligence . Our conclusion is that automation is the future of cyber defense, and that advances are being made in each of...SUBJECT TERMS Internet of Things, autonomics, sensors, artificial intelligence , cyber defense, active cyber defense, automated indicator sharing...called Automated Defense of Cyber Systems, built upon three core technological components: sensors, autonomics, and artificial intelligence . Our

  4. Automated Knowledge Generation with Persistent Surveillance Video

    DTIC Science & Technology

    2008-03-26

    5 2.1 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Formal Logic . . . . . . . . . . . . . . . . . . . 6 2.1.2...background of Artificial Intelligence and the reasoning engines that will be applied to generate knowledge from data. Section 2.2 discusses background on...generation from persistent video. 4 II. Background In this chapter, we will discuss the background of Artificial Intelligence, Semantic Web, image

  5. Finding Edges and Lines in Images.

    DTIC Science & Technology

    1983-06-01

    34 UNCLASSI FlED , SECURITY CLASSIFICATION OF THIS PAGE ("osen Data Entered) READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM I. REPORT...PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Intelligence Laboratory AREA&WORKUNITNUMBERS 545 Technology Square...in the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support for the laboratory’s artificial intelligence research

  6. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    DTIC Science & Technology

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  7. Real Rules of Inference

    DTIC Science & Technology

    1986-01-01

    the AAAI Workshop on Uncertainty and Probability in Artificial Intelligence , 1985. [McC771 McCarthy, J. "Epistemological Problems of Aritificial ...NUMBER OF PAGES Artificial Intelligence , Data Fusion, Inference, Probability, 30 Philosophy, Inheritance Hierachies, Default Reasoning ia.PRCECODE I...prominent philosophers Glymour and Thomason even applaud the uninhibited steps: Artificial Intelligence has done us the service not only of reminding us

  8. Current Uses of Artificial Intelligence in Special Education. Abstract XI: Research & Resources on Special Education.

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Handicapped and Gifted Children, Reston, VA.

    Summarized are two reports of a federally funded project on the use of artificial intelligence in special education. The first report, "Artificial Intelligence Applications in Special Education: How Feasible?," by Alan Hofmeister and Joseph Ferrara, provides information on the development and evaluation of a series of prototype systems in special…

  9. Cultural Modelling: Literature review

    DTIC Science & Technology

    2006-09-01

    of mood and/or emotions. Our review did show some evidence that artificial intelligence research has tended to depict human decision making as...pp. 72-79). The Society for the Study of Artificial Intelligence and the Simulation of Behaviour (AISB). Halfill, T., Sundstrom, E., Nielsen, T. M...M. & Thagard, P. (2005). Changing personalities: Towards realistic virtual characters. Journal of Experimental & Theoretical Artificial Intelligence

  10. "It's Going to Kill Us!" and Other Myths about the Future of Artificial Intelligence

    ERIC Educational Resources Information Center

    Atkinson, Robert D.

    2016-01-01

    Given the promise that artificial intelligence (AI) holds for economic growth and societal advancement, it is critical that policymakers not only avoid retarding the progress of AI innovation, but also actively support its further development and use. This report provides a primer on artificial intelligence and debunks five prevailing myths that,…

  11. Smart Collections: Can Artificial Intelligence Tools and Techniques Assist with Discovering, Evaluating and Tagging Digital Learning Resources?

    ERIC Educational Resources Information Center

    Leibbrandt, Richard; Yang, Dongqiang; Pfitzner, Darius; Powers, David; Mitchell, Pru; Hayman, Sarah; Eddy, Helen

    2010-01-01

    This paper reports on a joint proof of concept project undertaken by researchers from the Flinders University Artificial Intelligence Laboratory in partnership with information managers from the Education Network Australia (edna) team at Education Services Australia to address the question of whether artificial intelligence techniques could be…

  12. Magnetron Sputtered Pulsed Laser Deposition Scale Up

    DTIC Science & Technology

    2003-08-14

    2:721-726 34 S. J. P. Laube and E. F. Stark, “ Artificial Intellegence in Process Control of Pulsed Laser Deposition”, Proceedings of...The model would be based on mathematical simulation of real process data, neural-networks, or other artificial intelligence methods based on in situ...Laube and E. F. Stark, Proc. Symp. Artificial Intel. Real Time Control, Valencia, Spain, 3-5 Oct. ,1994, p.159-163. International Federation of

  13. ESD/MITRE Software Acquisition Symposium Proceedings; an ESD/Industry Dialogue held in Bedford, Massachusetts on May 6-7, 1986

    DTIC Science & Technology

    1986-05-07

    Cycle? Moderator: Christine M. Anderson Dennis D. Doe Manager of Engineering Software and Artificial Intelligence Boeing Aerospace Company In... intelligence systems development pro- cess affect the life cycle? Artificial intelligence developers seem to be the last haven for people who don’t...of Engineering Software and Artificial Intelligence at the Boeing Aerospace Company. In this capacity, Mr. Doe is the focal point for software

  14. Ortho Image and DTM Generation with Intelligent Methods

    NASA Astrophysics Data System (ADS)

    Bagheri, H.; Sadeghian, S.

    2013-10-01

    Nowadays the artificial intelligent algorithms has considered in GIS and remote sensing. Genetic algorithm and artificial neural network are two intelligent methods that are used for optimizing of image processing programs such as edge extraction and etc. these algorithms are very useful for solving of complex program. In this paper, the ability and application of genetic algorithm and artificial neural network in geospatial production process like geometric modelling of satellite images for ortho photo generation and height interpolation in raster Digital Terrain Model production process is discussed. In first, the geometric potential of Ikonos-2 and Worldview-2 with rational functions, 2D & 3D polynomials were tested. Also comprehensive experiments have been carried out to evaluate the viability of the genetic algorithm for optimization of rational function, 2D & 3D polynomials. Considering the quality of Ground Control Points, the accuracy (RMSE) with genetic algorithm and 3D polynomials method for Ikonos-2 Geo image was 0.508 pixel sizes and the accuracy (RMSE) with GA algorithm and rational function method for Worldview-2 image was 0.930 pixel sizes. For more another optimization artificial intelligent methods, neural networks were used. With the use of perceptron network in Worldview-2 image, a result of 0.84 pixel sizes with 4 neurons in middle layer was gained. The final conclusion was that with artificial intelligent algorithms it is possible to optimize the existing models and have better results than usual ones. Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse distance leads to a high accurate estimation of heights.

  15. The Role of Artificial Intelligence in Diagnostic Radiology: A Survey at a Single Radiology Residency Training Program.

    PubMed

    Collado-Mesa, Fernando; Alvarez, Edilberto; Arheart, Kris

    2018-02-21

    Advances in artificial intelligence applied to diagnostic radiology are predicted to have a major impact on this medical specialty. With the goal of establishing a baseline upon which to build educational activities on this topic, a survey was conducted among trainees and attending radiologists at a single residency program. An anonymous questionnaire was distributed. Comparisons of categorical data between groups (trainees and attending radiologists) were made using Pearson χ 2 analysis or an exact analysis when required. Comparisons were made using the Wilcoxon rank sum test when the data were not normally distributed. An α level of 0.05 was used. The overall response rate was 66% (69 of 104). Thirty-six percent of participants (n = 25) reported not having read a scientific medical article on the topic of artificial intelligence during the past 12 months. Twenty-nine percent of respondents (n = 12) reported using artificial intelligence tools during their daily work. Trainees were more likely to express doubts on whether they would have pursued diagnostic radiology as a career had they known of the potential impact artificial intelligence is predicted to have on the specialty (P = .0254) and were also more likely to plan to learn about the topic (P = .0401). Radiologists lack exposure to current scientific medical articles on artificial intelligence. Trainees are concerned by the implications artificial intelligence may have on their jobs and desire to learn about the topic. There is a need to develop educational resources to help radiologists assume an active role in guiding and facilitating the development and implementation of artificial intelligence tools in diagnostic radiology. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  16. Bio-Intelligence: A Research Program Facilitating the Development of New Paradigms for Tomorrow's Patient Care

    NASA Astrophysics Data System (ADS)

    Phan, Sieu; Famili, Fazel; Liu, Ziying; Peña-Castillo, Lourdes

    The advancement of omics technologies in concert with the enabling information technology development has accelerated biological research to a new realm in a blazing speed and sophistication. The limited single gene assay to the high throughput microarray assay and the laborious manual count of base-pairs to the robotic assisted machinery in genome sequencing are two examples to name. Yet even more sophisticated, the recent development in literature mining and artificial intelligence has allowed researchers to construct complex gene networks unraveling many formidable biological puzzles. To harness these emerging technologies to their full potential to medical applications, the Bio-intelligence program at the Institute for Information Technology, National Research Council Canada, aims to develop and exploit artificial intelligence and bioinformatics technologies to facilitate the development of intelligent decision support tools and systems to improve patient care - for early detection, accurate diagnosis/prognosis of disease, and better personalized therapeutic management.

  17. Artificial Intelligence: An Analysis of Potential Applications to Training, Performance Measurement, and Job Performance Aiding.

    DTIC Science & Technology

    1983-09-01

    AD-Ali33 592 ARTIFICIAL INTELLIGENCE: AN ANALYSIS OF POTENTIAL 1/1 APPLICATIONS TO TRAININ..(U) DENVER RESEARCH INST CO JRICHARDSON SEP 83 AFHRL-TP...83-28 b ’ 3 - 4. TITLE (aied Suhkie) 5. TYPE OF REPORT & PERIOD COVERED ARTIFICIAL INTEL11GENCE: AN ANALYSIS OF Interim POTENTIAL APPLICATIONS TO...8217 sde if neceseamy end ides*f by black naumber) artificial intelligence military research * computer-aided diagnosis performance tests computer

  18. Validation of an online risk calculator for the prediction of anastomotic leak after colon cancer surgery and preliminary exploration of artificial intelligence-based analytics.

    PubMed

    Sammour, T; Cohen, L; Karunatillake, A I; Lewis, M; Lawrence, M J; Hunter, A; Moore, J W; Thomas, M L

    2017-11-01

    Recently published data support the use of a web-based risk calculator ( www.anastomoticleak.com ) for the prediction of anastomotic leak after colectomy. The aim of this study was to externally validate this calculator on a larger dataset. Consecutive adult patients undergoing elective or emergency colectomy for colon cancer at a single institution over a 9-year period were identified using the Binational Colorectal Cancer Audit database. Patients with a rectosigmoid cancer, an R2 resection, or a diverting ostomy were excluded. The primary outcome was anastomotic leak within 90 days as defined by previously published criteria. Area under receiver operating characteristic curve (AUROC) was derived and compared with that of the American College of Surgeons National Surgical Quality Improvement Program ® (ACS NSQIP) calculator and the colon leakage score (CLS) calculator for left colectomy. Commercially available artificial intelligence-based analytics software was used to further interrogate the prediction algorithm. A total of 626 patients were identified. Four hundred and fifty-six patients met the inclusion criteria, and 402 had complete data available for all the calculator variables (126 had a left colectomy). Laparoscopic surgery was performed in 39.6% and emergency surgery in 14.7%. The anastomotic leak rate was 7.2%, with 31.0% requiring reoperation. The anastomoticleak.com calculator was significantly predictive of leak and performed better than the ACS NSQIP calculator (AUROC 0.73 vs 0.58) and the CLS calculator (AUROC 0.96 vs 0.80) for left colectomy. Artificial intelligence-predictive analysis supported these findings and identified an improved prediction model. The anastomotic leak risk calculator is significantly predictive of anastomotic leak after colon cancer resection. Wider investigation of artificial intelligence-based analytics for risk prediction is warranted.

  19. A Challenge to Watson

    ERIC Educational Resources Information Center

    Detterman, Douglas K.

    2011-01-01

    Watson's Jeopardy victory raises the question of the similarity of artificial intelligence and human intelligence. Those of us who study human intelligence issue a challenge to the artificial intelligence community. We will construct a unique battery of tests for any computer that would provide an actual IQ score for the computer. This is the same…

  20. A Bioinspired Mineral Hydrogel as a Self-Healable, Mechanically Adaptable Ionic Skin for Highly Sensitive Pressure Sensing.

    PubMed

    Lei, Zhouyue; Wang, Quankang; Sun, Shengtong; Zhu, Wencheng; Wu, Peiyi

    2017-06-01

    In the past two decades, artificial skin-like materials have received increasing research interests for their broad applications in artificial intelligence, wearable devices, and soft robotics. However, profound challenges remain in terms of imitating human skin because of its unique combination of mechanical and sensory properties. In this work, a bioinspired mineral hydrogel is developed to fabricate a novel type of mechanically adaptable ionic skin sensor. Due to its unique viscoelastic properties, the hydrogel-based capacitive sensor is compliant, self-healable, and can sense subtle pressure changes, such as a gentle finger touch, human motion, or even small water droplets. It might not only show great potential in applications such as artificial intelligence, human/machine interactions, personal healthcare, and wearable devices, but also promote the development of next-generation mechanically adaptable intelligent skin-like devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Artificial intelligence costs, benefits, risks for selected spacecraft ground system automation scenarios

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline), (2) standalone expert systems, (3) standardized, reusable knowledge base management systems (KBMS), and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  2. Artificial intelligence costs, benefits, and risks for selected spacecraft ground system automation scenarios

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline); (2) standalone expert systems; (3) standardized, reusable knowledge base management systems (KBMS); and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  3. De Novo Design of Bioactive Small Molecules by Artificial Intelligence

    PubMed Central

    Merk, Daniel; Friedrich, Lukas; Grisoni, Francesca

    2018-01-01

    Abstract Generative artificial intelligence offers a fresh view on molecular design. We present the first‐time prospective application of a deep learning model for designing new druglike compounds with desired activities. For this purpose, we trained a recurrent neural network to capture the constitution of a large set of known bioactive compounds represented as SMILES strings. By transfer learning, this general model was fine‐tuned on recognizing retinoid X and peroxisome proliferator‐activated receptor agonists. We synthesized five top‐ranking compounds designed by the generative model. Four of the compounds revealed nanomolar to low‐micromolar receptor modulatory activity in cell‐based assays. Apparently, the computational model intrinsically captured relevant chemical and biological knowledge without the need for explicit rules. The results of this study advocate generative artificial intelligence for prospective de novo molecular design, and demonstrate the potential of these methods for future medicinal chemistry. PMID:29319225

  4. Autonomous Inter-Task Transfer in Reinforcement Learning Domains

    DTIC Science & Technology

    2008-08-01

    Twentieth International Joint Conference on Artificial Intelli - gence, 2007. 304 Fumihide Tanaka and Masayuki Yamamura. Multitask reinforcement learning...Functions . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 18 2.2.4 Instance-based...tures [Laird et al., 1986, Choi et al., 2007]. However, TL for RL tasks has only recently been gaining attention in the artificial intelligence

  5. Space applications of artificial intelligence; 1990 Goddard Conference, Greenbelt, MD, May 1, 2, 1990, Selected Papers

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  6. Research Needs for Artificial Intelligence Applications in Support of C3 (Command, Control, and Communication).

    DTIC Science & Technology

    1984-12-01

    system. The reconstruction process is Simply data fusion after allA data are in. After reconstruction, artifcial intelligence (Al) techniques may be...14. CATE OF fhPM~TVW MWtvt Ogv It PAWE COMN Interim __100 -_ TO December 1984 24 MILD ON" s-o Artificial intelligence Command control Data fusion...RD-Ai5O 867 RESEARCH NEEDS FOR ARTIFICIAL INTELLIGENCE APPLICATIONS i/i IN SUPPORT OF C3 (..(U) NAVAL OCEAN SVSTEIIS CENTER SAN DIEGO CA R R DILLARD

  7. A Cyber Situational Awareness Model for Network Administrators

    DTIC Science & Technology

    2017-03-01

    environments, the Internet of Things, artificial intelligence , and so on. As users’ data requirements grow more complex, they demand information...security of systems of interest. Further, artificial intelligence is a powerful concept in information technology. Therefore, new research should...look into how to use artificial intelligence to develop CSA. Human interaction with cyber systems is not making networks and their components safer

  8. Operations Monitoring Assistant System Design

    DTIC Science & Technology

    1986-07-01

    Logic. Artificial Inteligence 25(1)::75-94. January.18. 41 -Nils J. Nilsson. Problem-Solving Methods In Artificli Intelligence. .klcG raw-Hill B3ook...operations monitoring assistant (OMA) system is designed that combines operations research, artificial intelligence, and human reasoning techniques and...KnowledgeCraft (from Carnegie Group), and 5.1 (from Teknowledze). These tools incorporate the best methods of applied artificial intelligence, and

  9. The 1994 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1994-01-01

    This publication comprises the papers presented at the 1994 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/GSFC, Greenbelt, Maryland, on 10-12 May 1994. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  10. Artificial Intelligence and Its Potential as an Aid to Vocational Training and Education.

    ERIC Educational Resources Information Center

    Aleksander, I.; And Others

    This document contains a series of papers which attempt to de-mystify the subject of artificial intelligence and to show how some countries in the European Community (EC) are approaching the promotion of development and application of artificial intelligence systems that can be used as an aid in vocational training programs, as well as to…

  11. Interdisciplinary Study on Artificial Intelligence.

    DTIC Science & Technology

    1983-07-01

    systems, uiophysics of information processing, cognitive science, and traditional artificial intelligence. The objective behi d this objective was to...information processing, cognitive science, and traditional * artificial intelligence. The objective behind this objective was to provide a vehicle for reviewing...Another departure from ’classical’ neurodynamics must be sought in the strong coupling between the micro and macroscopic scales. No other physical mechanism

  12. The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1993-01-01

    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  13. Organisational Structure and Information Technology (IT): Exploring the Implications of IT for Future Military Structures

    DTIC Science & Technology

    2006-07-01

    4 Abbreviations AI Artificial Intelligence AM Artificial Memory CAD Computer Aided...memory (AM), artificial intelligence (AI), and embedded knowledge systems it is possible to expand the “effective span of competence” of...Technology J Joint J2 Joint Intelligence J3 Joint Operations NATO North Atlantic Treaty Organisation NCW Network Centric Warfare NHS National Health

  14. Patient behavior and the benefits of artificial intelligence: the perils of "dangerous" literacy and illusory patient empowerment.

    PubMed

    Schulz, Peter J; Nakamoto, Kent

    2013-08-01

    Artificial intelligence can provide important support of patient health. However, limits to realized benefits can arise as patients assume an active role in their health decisions. Distinguishing the concepts of health literacy and patient empowerment, we analyze conditions that bias patient use of the Internet and limit access to and impact of artificial intelligence. Improving health literacy in the face of the Internet requires significant guidance. Patients must be directed toward the appropriate tools and also provided with key background knowledge enabling them to use the tools and capitalize on the artificial intelligence technology. Benefits of tools employing artificial intelligence to promote health cannot be realized without recognizing and addressing the patients' desires, expectations, and limitations that impact their Internet behavior. In order to benefit from artificial intelligence, patients need a substantial level of background knowledge and skill in information use-i.e., health literacy. It is critical that health professionals respond to patient search for information on the Internet, first by guiding their search to relevant, authoritative, and responsive sources, and second by educating patients about how to interpret the information they are likely to encounter. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Intelligent Tutoring System: A Tool for Testing the Research Curiosities of Artificial Intelligence Researchers

    ERIC Educational Resources Information Center

    Yaratan, Huseyin

    2003-01-01

    An ITS (Intelligent Tutoring System) is a teaching-learning medium that uses artificial intelligence (AI) technology for instruction. Roberts and Park (1983) defines AI as the attempt to get computers to perform tasks that if performed by a human-being, intelligence would be required to perform the task. The design of an ITS comprises two distinct…

  16. Northeast Artificial Intelligence Consortium (NAIC). Volume 12. Computer Architecture for Very Large Knowledge Bases

    DTIC Science & Technology

    1990-12-01

    data rate to the electronics would be much lower on the average and the data much "richer" in information. Intelligent use of...system bottleneck, a high data rate should be provided by I/O systems. 2. machines with intelligent storage management specially designed for logic...management information processing, surveillance sensors, intelligence data collection and handling, solid state sciences, electromagnetics, and propagation, and electronic reliability/maintainability and compatibility.

  17. Applications of Artificial Intelligence to Information Search and Retrieval: The Development and Testing of an Intelligent Technical Information System.

    ERIC Educational Resources Information Center

    Harvey, Francis A.

    This paper describes the evolution and development of an intelligent information system, i.e., a knowledge base for steel structures being undertaken as part of the Technical Information Center for Steel Structures at Lehigh University's Center of Advanced Technology for Large Structural Systems (ATLSS). The initial development of the Technical…

  18. STANFORD ARTIFICIAL INTELLIGENCE PROJECT.

    DTIC Science & Technology

    ARTIFICIAL INTELLIGENCE , GAME THEORY, DECISION MAKING, BIONICS, AUTOMATA, SPEECH RECOGNITION, GEOMETRIC FORMS, LEARNING MACHINES, MATHEMATICAL MODELS, PATTERN RECOGNITION, SERVOMECHANISMS, SIMULATION, BIBLIOGRAPHIES.

  19. Intelligent failure-tolerant control

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1991-01-01

    An overview of failure-tolerant control is presented, beginning with robust control, progressing through parallel and analytical redundancy, and ending with rule-based systems and artificial neural networks. By design or implementation, failure-tolerant control systems are 'intelligent' systems. All failure-tolerant systems require some degrees of robustness to protect against catastrophic failure; failure tolerance often can be improved by adaptivity in decision-making and control, as well as by redundancy in measurement and actuation. Reliability, maintainability, and survivability can be enhanced by failure tolerance, although each objective poses different goals for control system design. Artificial intelligence concepts are helpful for integrating and codifying failure-tolerant control systems, not as alternatives but as adjuncts to conventional design methods.

  20. An Artificial Immune System-Inspired Multiobjective Evolutionary Algorithm with Application to the Detection of Distributed Computer Network Intrusions

    DTIC Science & Technology

    2007-03-01

    Intelligence AIS Artificial Immune System ANN Artificial Neural Networks API Application Programming Interface BFS Breadth-First Search BIS Biological...problem domain is too large for only one algorithm’s application . It ranges from network - based sniffer systems, responsible for Enterprise-wide coverage...options to network administrators in choosing detectors to employ in future ID applications . Objectives Our hypothesis validity is based on a set

  1. Rule based artificial intelligence expert system for determination of upper extremity impairment rating.

    PubMed

    Lim, I; Walkup, R K; Vannier, M W

    1993-04-01

    Quantitative evaluation of upper extremity impairment, a percentage rating most often determined using a rule based procedure, has been implemented on a personal computer using an artificial intelligence, rule-based expert system (AI system). In this study, the rules given in Chapter 3 of the AMA Guides to the Evaluation of Permanent Impairment (Third Edition) were used to develop such an AI system for the Apple Macintosh. The program applies the rules from the Guides in a consistent and systematic fashion. It is faster and less error-prone than the manual method, and the results have a higher degree of precision, since intermediate values are not truncated.

  2. Importance of nonverbal expression to the emergence of emotive artificial intelligence systems

    NASA Astrophysics Data System (ADS)

    Pioggia, Giovanni; Hanson, David; Dinelli, Serena; Di Francesco, Fabio; Francesconi, R.; De Rossi, Danilo

    2002-07-01

    The nonverbal expression of the emotions, especially in the human face, has rapidly become an area of intense interest in computer science and robotics. Exploring the emotions as a link between external events and behavioural responses, artificial intelligence designers and psychologists are approaching a theoretical understanding of foundational principles which will be key to the physical embodiment of artificial intelligence. In fact, it has been well demonstrated that many important aspects of intelligence are grounded in intimate communication with the physical world- so-called embodied intelligence . It follows naturally, then, that recent advances in emotive artificial intelligence show clear and undeniable broadening in the capacities of biologically-inspired robots to survive and thrive in a social environment. The means by which AI may express its foundling emotions are clearly integral to such capacities. In effect: powerful facial expressions are critical to the development of intelligent, sociable robots. Following discussion the importance of the nonverbal expression of emotions in humans and robots, this paper describes methods used in robotically emulating nonverbal expressions using human-like robotic faces. Furthermore, it describes the potentially revolutionary impact of electroactive polymer (EAP) actuators as artificial muscles for such robotic devices.

  3. Knowledge Based Artificial Augmentation Intelligence Technology: Next Step in Academic Instructional Tools for Distance Learning

    ERIC Educational Resources Information Center

    Crowe, Dale; LaPierre, Martin; Kebritchi, Mansureh

    2017-01-01

    With augmented intelligence/knowledge based system (KBS) it is now possible to develop distance learning applications to support both curriculum and administrative tasks. Instructional designers and information technology (IT) professionals are now moving from the programmable systems era that started in the 1950s to the cognitive computing era.…

  4. Multi-Agent Framework for Virtual Learning Spaces.

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Nunez, Gustavo

    1999-01-01

    Discussion of computer-supported collaborative learning, distributed artificial intelligence, and intelligent tutoring systems focuses on the concept of agents, and describes a virtual learning environment that has a multi-agent system. Describes a model of interactions in collaborative learning and discusses agents for Web-based virtual…

  5. Conceptual Commitments of the LIDA Model of Cognition

    NASA Astrophysics Data System (ADS)

    Franklin, Stan; Strain, Steve; McCall, Ryan; Baars, Bernard

    2013-06-01

    Significant debate on fundamental issues remains in the subfields of cognitive science, including perception, memory, attention, action selection, learning, and others. Psychology, neuroscience, and artificial intelligence each contribute alternative and sometimes conflicting perspectives on the supervening problem of artificial general intelligence (AGI). Current efforts toward a broad-based, systems-level model of minds cannot await theoretical convergence in each of the relevant subfields. Such work therefore requires the formulation of tentative hypotheses, based on current knowledge, that serve to connect cognitive functions into a theoretical framework for the study of the mind. We term such hypotheses "conceptual commitments" and describe the hypotheses underlying one such model, the Learning Intelligent Distribution Agent (LIDA) Model. Our intention is to initiate a discussion among AGI researchers about which conceptual commitments are essential, or particularly useful, toward creating AGI agents.

  6. Spontaneous Analogy by Piggybacking on a Perceptual System

    DTIC Science & Technology

    2013-08-01

    1992). High-level Perception, Representation, and Analogy: A Critique of Artificial Intelligence Methodology. J. Exp. Theor. Artif . Intell., 4(3...nrl.navy.mil David W. Aha Navy Center for Applied Research in Artificial Intelligence Naval Research Laboratory (Code 5510); Washington, DC 20375 david.aha...Research Laboratory,Center for Applied Research in Artificial Intelligence (Code 5510),4555 Overlook Ave., SW,Washington,DC,20375 8. PERFORMING ORGANIZATION

  7. Circumscribing Circumscription. A Guide to Relevance and Incompleteness,

    DTIC Science & Technology

    1985-10-01

    other rules of conjecture, to account for resource limitations. P "- h’ MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A.I. Memo...of conjecture, to account for resource limitations. This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts...Institute of Technology. Support for the laboratory’s artificial intelligence research is provided in part by the Advanced Research Projects Agency

  8. Why the United States Must Adopt Lethal Autonomous Weapon Systems

    DTIC Science & Technology

    2017-05-25

    2017. http://www.designboom.com/ technology /designboom-tech-predictions-robotics-12-26- 2016/. Egan, Matt. "Robots Write Thousands Of News Stories A...views on the morality of artificial intelligence (AI) and robotics technology . Eastern culture sees artificial intelligence as an economic savior...Army, 37 pages. The East and West have differing views on the morality of artificial intelligence (AI) and robotics technology . Eastern culture

  9. An Artificial Intelligence Approach for Gears Diagnostics in AUVs

    PubMed Central

    Marichal, Graciliano Nicolás; Del Castillo, María Lourdes; López, Jesús; Padrón, Isidro; Artés, Mariano

    2016-01-01

    In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles), where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms) have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved. PMID:27077868

  10. An Artificial Intelligence Approach for Gears Diagnostics in AUVs.

    PubMed

    Marichal, Graciliano Nicolás; Del Castillo, María Lourdes; López, Jesús; Padrón, Isidro; Artés, Mariano

    2016-04-12

    In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles), where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms) have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved.

  11. THRESHOLD LOGIC IN ARTIFICIAL INTELLIGENCE

    DTIC Science & Technology

    COMPUTER LOGIC, ARTIFICIAL INTELLIGENCE , BIONICS, GEOMETRY, INPUT OUTPUT DEVICES, LINEAR PROGRAMMING, MATHEMATICAL LOGIC, MATHEMATICAL PREDICTION, NETWORKS, PATTERN RECOGNITION, PROBABILITY, SWITCHING CIRCUITS, SYNTHESIS

  12. Neurolinguistically constrained simulation of sentence comprehension: integrating artificial intelligence and brain theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gigley, H.M.

    1982-01-01

    An artificial intelligence approach to the simulation of neurolinguistically constrained processes in sentence comprehension is developed using control strategies for simulation of cooperative computation in associative networks. The desirability of this control strategy in contrast to ATN and production system strategies is explained. A first pass implementation of HOPE, an artificial intelligence simulation model of sentence comprehension, constrained by studies of aphasic performance, psycholinguistics, neurolinguistics, and linguistic theory is described. Claims that the model could serve as a basis for sentence production simulation and for a model of language acquisition as associative learning are discussed. HOPE is a model thatmore » performs in a normal state and includes a lesion simulation facility. HOPE is also a research tool. Its modifiability and use as a tool to investigate hypothesized causes of degradation in comprehension performance by aphasic patients are described. Issues of using behavioral constraints in modelling and obtaining appropriate data for simulated process modelling are discussed. Finally, problems of validation of the simulation results are raised; and issues of how to interpret clinical results to define the evolution of the model are discussed. Conclusions with respect to the feasibility of artificial intelligence simulation process modelling are discussed based on the current state of research.« less

  13. The image recognition based on neural network and Bayesian decision

    NASA Astrophysics Data System (ADS)

    Wang, Chugege

    2018-04-01

    The artificial neural network began in 1940, which is an important part of artificial intelligence. At present, it has become a hot topic in the fields of neuroscience, computer science, brain science, mathematics, and psychology. Thomas Bayes firstly reported the Bayesian theory in 1763. After the development in the twentieth century, it has been widespread in all areas of statistics. In recent years, due to the solution of the problem of high-dimensional integral calculation, Bayesian Statistics has been improved theoretically, which solved many problems that cannot be solved by classical statistics and is also applied to the interdisciplinary fields. In this paper, the related concepts and principles of the artificial neural network are introduced. It also summarizes the basic content and principle of Bayesian Statistics, and combines the artificial neural network technology and Bayesian decision theory and implement them in all aspects of image recognition, such as enhanced face detection method based on neural network and Bayesian decision, as well as the image classification based on the Bayesian decision. It can be seen that the combination of artificial intelligence and statistical algorithms has always been the hot research topic.

  14. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background.

    PubMed

    Penco, Silvana; Buscema, Massimo; Patrosso, Maria Cristina; Marocchi, Alessandro; Grossi, Enzo

    2008-05-30

    Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase -480 C/T; endothelial nitric oxide synthase 690 C/T and glu298asp; vitamin K-dependent coagulation factor seven arg353glu, glycoprotein Ia/IIa 873 G/A and E-selectin ser128arg. This study provides an alternative and reliable method to approach complex diseases. Indeed, the application of a novel artificial intelligence-based method offers a new insight into genetic markers of sporadic ALS pointing out the existence of a strong genetic background.

  15. Present situation and trend of precision guidance technology and its intelligence

    NASA Astrophysics Data System (ADS)

    Shang, Zhengguo; Liu, Tiandong

    2017-11-01

    This paper first introduces the basic concepts of precision guidance technology and artificial intelligence technology. Then gives a brief introduction of intelligent precision guidance technology, and with the help of development of intelligent weapon based on deep learning project in foreign: LRASM missile project, TRACE project, and BLADE project, this paper gives an overview of the current foreign precision guidance technology. Finally, the future development trend of intelligent precision guidance technology is summarized, mainly concentrated in the multi objectives, intelligent classification, weak target detection and recognition, intelligent between complex environment intelligent jamming and multi-source, multi missile cooperative fighting and other aspects.

  16. Microcomputer-Based Intelligent Tutoring Systems: An Assessment.

    ERIC Educational Resources Information Center

    Schaffer, John William

    Computer-assisted instruction, while familiar to most teachers, has failed to become an effective self-motivating instructional tool. Developments in artificial intelligence, however, have provided new and better tools for exploring human knowledge acquisition and utilization. Expert system technology represents one of the most promising of these…

  17. Response to Nicholas Allix.

    ERIC Educational Resources Information Center

    Gardner, Howard; Connell, Michael

    2000-01-01

    Replies to "The Theory of Multiple Intelligences: A Case of Missing Cognitive Matter," also in this issue. Disagrees about the role theory of knowledge plays in the context of justification of multiple intelligences. Specifically, asserts that the article's criticisms based on philosophy of science claims and work with artificial neural…

  18. Image Understanding Research and Its Application to Cartography and Computer-Based Analysis of Aerial Imagery

    DTIC Science & Technology

    1983-09-01

    Report Al-TR-346. Artifcial Intelligence Laboratory, Mamachusetts Institute of Tech- niugy. Cambridge, Mmeh mett. June 19 [G.usmn@ A. Gaman-Arenas...Testbed Coordinator, 415/859-4395 Artificial Intelligence Center Computer Science and Technology Division Prepared for: Defense Advanced Research...to support processing of aerial photographs for such military applications as cartography, Intelligence , weapon guidance, and targeting. A key

  19. The role of networks and artificial intelligence in nanotechnology design and analysis.

    PubMed

    Hudson, D L; Cohen, M E

    2004-05-01

    Techniques with their origins in artificial intelligence have had a great impact on many areas of biomedicine. Expert-based systems have been used to develop computer-assisted decision aids. Neural networks have been used extensively in disease classification and more recently in many bioinformatics applications including genomics and drug design. Network theory in general has proved useful in modeling all aspects of biomedicine from healthcare organizational structure to biochemical pathways. These methods show promise in applications involving nanotechnology both in the design phase and in interpretation of system functioning.

  20. Optical computing research

    NASA Astrophysics Data System (ADS)

    Goodman, Joseph W.

    1987-10-01

    Work Accomplished: OPTICAL INTERCONNECTIONS - the powerful interconnect abilities of optical beams have led much optimism about the possible roles for optics in solving interconnect problems at various levels of computer architecture. Examined were the powerful requirements of optical interconnects at the gate-to-gate and chip-to-chip levels. OPTICAL NEUTRAL NETWORKS - basic studies of the convergence properties on the Holfield model, based on mathematical approach - graph theory. OPTICS AND ARTIFICIAL INTELLIGENCE - review the field of optical processing and artificial intelligence, with the aim of finding areas that might be particularly attractive for future investigation(s).

  1. Image Understanding Research and Its Application to Cartography and Computer-Based Analysis of Aerial Imagery

    DTIC Science & Technology

    1983-05-01

    Parallel Computation that Assign Canonical Object-Based Frames of Refer- ence," Proc. 7th it. .nt. Onf. on Artifcial Intellig nce (IJCAI-81), Vol. 2...Perception of Linear Struc- ture in Imaged Data ." TN 276, Artiflci!.a Intelligence Center, SRI International, Feb. 1983. [Fram75] J.P. Frain and E.S...1983 May 1983 D C By: Martin A. Fischler, Program Director S ELECTE Principal Investigator, (415)859-5106 MAY 2 21990 Artificial Intelligence Center

  2. Artificial intelligence in robot control systems

    NASA Astrophysics Data System (ADS)

    Korikov, A.

    2018-05-01

    This paper analyzes modern concepts of artificial intelligence and known definitions of the term "level of intelligence". In robotics artificial intelligence system is defined as a system that works intelligently and optimally. The author proposes to use optimization methods for the design of intelligent robot control systems. The article provides the formalization of problems of robotic control system design, as a class of extremum problems with constraints. Solving these problems is rather complicated due to the high dimensionality, polymodality and a priori uncertainty. Decomposition of the extremum problems according to the method, suggested by the author, allows reducing them into a sequence of simpler problems, that can be successfully solved by modern computing technology. Several possible approaches to solving such problems are considered in the article.

  3. A Progress Report on Artificial Intelligence: Hospital Applications and a Review of the Artificial Intelligence Marketplace

    PubMed Central

    Brenkus, Lawrence M.

    1984-01-01

    Artificial intelligence applications are finally beginning to move from the university research laboratory into commercial use. Before the end of the century, this new computer technology will have profound effects on our work, economy, and lives. At present, relatively few products have appeared in the hospital, but we can anticipate significant product offerings in instrumentation and affecting hospital administration within 5 years.

  4. A Spoken English Recognition Expert System.

    DTIC Science & Technology

    1983-09-01

    Davidson. "Representation of Knowledge," Handbook of Artificial Intelligence, edited by Avron Barr and Edward A. Felgenbaum. DTIC document number AD...Regents of the University of CalTorni, 1981. 9. Gardner, Anne. "Search," Handbook of Artificial Intelligence, edited by Avron Barr and Edward A...Felgenbaum, DTIC document number AD A074078, 1979. 10. Gardner, Anne,et al. "Natural Language Understanding," Handbook of Artificial Intelligence, edited

  5. Strategic Computing. New-Generation Computing Technology: A Strategic Plan for Its Development and Application to Critical Problems in Defense

    DTIC Science & Technology

    1983-10-28

    Computing. By seizing an opportunity to leverage recent advances in artificial intelligence, computer science, and microelectronics, the Agency plans...occurred in many separated areas of artificial intelligence, computer science, and microelectronics. Advances in "expert system" technology now...and expert knowledge o Advances in Artificial Intelligence: Mechanization of speech recognition, vision, and natural language understanding. o

  6. The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1995-01-01

    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  7. Defense Information Systems Program Automated CORDIVEM Design Requirements,

    DTIC Science & Technology

    1984-02-28

    for the Soviet military organization and equipment. Dr. John Spagnuolo incorporated artificial intelligence techniques in the discussion of functional...4-44 4.1.2.18.2 Artificial Intelligence ...... ........ 4-49 4.1.2.18.3 Types of A.I ................. 4-51 4.1.2.19 General Planning Requirements...described later. Further, some subprocesses may need one of the various techniques associated with the broad field of Artificial Intelligence (A.I.) in

  8. [The application and development of artificial intelligence in medical diagnosis systems].

    PubMed

    Chen, Zhencheng; Jiang, Yong; Xu, Mingyu; Wang, Hongyan; Jiang, Dazong

    2002-09-01

    This paper has reviewed the development of artificial intelligence in medical practice and medical diagnostic expert systems, and has summarized the application of artificial neural network. It explains that a source of difficulty in medical diagnostic system is the co-existence of multiple diseases--the potentially inter-related diseases. However, the difficulty of image expert systems is inherent in high-level vision. And it increases the complexity of expert system in medical image. At last, the prospect for the development of artificial intelligence in medical image expert systems is made.

  9. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Wash, Darrel Patrick

    1989-01-01

    Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)

  10. Cooperative analysis expert situation assessment research

    NASA Technical Reports Server (NTRS)

    Mccown, Michael G.

    1987-01-01

    For the past few decades, Rome Air Development Center (RADC) has been conducting research in Artificial Intelligence (AI). When the recent advances in hardware technology made many AI techniques practical, the Intelligence and Reconnaissance Directorate of RADC initiated an applications program entitled Knowledge Based Intelligence Systems (KBIS). The goal of the program is the development of a generic Intelligent Analyst System, an open machine with the framework for intelligence analysis, natural language processing, and man-machine interface techniques, needing only the specific problem domain knowledge to be operationally useful. The development of KBIS is described.

  11. Searching for Order Within Chaos: Complexity Theorys Implications to Intelligence Support During Joint Operational Planning

    DTIC Science & Technology

    2017-06-09

    structures constantly arise in firefights and skirmishes on the battlefield. Source: Andrew Ilachinski, Artificial War: Multiagent- Based Simulation of...Alternative Methods of Analysis and Innovative Organizational Structures .” Conference, Rome, Italy March 31-April 2. ...Intelligence Analysis, Joint Operational Planning, Cellular Automata, Agent- Based Modeling 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18

  12. Creativity in Education: A Standard for Computer-Based Teaching.

    ERIC Educational Resources Information Center

    Schank, Roger C.; Farrell, Robert

    1988-01-01

    Discussion of the potential of computers in education focuses on the need for experiential learning and developing creativity in students. Learning processes are explained in light of artificial intelligence research, problems with current uses of computers in education are discussed, and possible solutions using intelligent simulation software…

  13. Multisensory Public Access Catalogs on CD-ROM.

    ERIC Educational Resources Information Center

    Harrison, Nancy; Murphy, Brower

    1987-01-01

    BiblioFile Intelligent Catalog is a CD-ROM-based public access catalog system which incorporates graphics and sound to provide a multisensory interface and artificial intelligence techniques to increase search precision. The system can be updated frequently and inexpensively by linking hard disk drives to CD-ROM optical drives. (MES)

  14. On the Edge: Intelligent CALL in the 1990s.

    ERIC Educational Resources Information Center

    Underwood, John

    1989-01-01

    Examines the possibilities of developing computer-assisted language learning (CALL) based on the best of modern technology, arguing that artificial intelligence (AI) strategies will radically improve the kinds of exercises that can be performed. Recommends combining AI technology with other tools for delivering instruction, such as simulation and…

  15. Automated Cyber Red Teaming

    DTIC Science & Technology

    2015-04-01

    Artificial intelligence, Stockholm, 1999. [44] D. E. Wilkins and M. desJardins, “A Call for Knowledge-Based Planning,” AI Magazine, 2001. [45] L. P...Intelligence Center, 1975. [197] E. D. Sacerdoti, “The nonlinear nature of plans,” in IJCAI, 1975. [198] J. Sanchez, M. Tang and A. D. Mali, “P

  16. Artificial intelligence and space power systems automation

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1987-01-01

    Various applications of artificial intelligence to space electrical power systems are discussed. An overview is given of completed, on-going, and planned knowledge-based system activities. These applications include the Nickel-Cadmium Battery Expert System (NICBES) (the expert system interfaced with the Hubble Space Telescope electrical power system test bed); the early work with the Space Station Experiment Scheduler (SSES); the three expert systems under development in the space station advanced development effort in the core module power management and distribution system test bed; planned cooperation of expert systems in the Core Module Power Management and Distribution (CM/PMAD) system breadboard with expert systems for the space station at other research centers; and the intelligent data reduction expert system under development.

  17. Diagnostic classification of cancer using DNA microarrays and artificial intelligence.

    PubMed

    Greer, Braden T; Khan, Javed

    2004-05-01

    The application of artificial intelligence (AI) to microarray data has been receiving much attention in recent years because of the possibility of automated diagnosis in the near future. Studies have been published predicting tumor type, estrogen receptor status, and prognosis using a variety of AI algorithms. The performance of intelligent computing decisions based on gene expression signatures is in some cases comparable to or better than the current clinical decision schemas. The goal of these tools is not to make clinicians obsolete, but rather to give clinicians one more tool in their armamentarium to accurately diagnose and hence better treat cancer patients. Several such applications are summarized in this chapter, and some of the common pitfalls are noted.

  18. Economic development evaluation based on science and patents

    NASA Astrophysics Data System (ADS)

    Jokanović, Bojana; Lalic, Bojan; Milovančević, Miloš; Simeunović, Nenad; Marković, Dusan

    2017-09-01

    Economic development could be achieved through many factors. Science and technology factors could influence economic development drastically. Therefore the main aim in this study was to apply computational intelligence methodology, artificial neural network approach, for economic development estimation based on different science and technology factors. Since economic analyzing could be very challenging task because of high nonlinearity, in this study was applied computational intelligence methodology, artificial neural network approach, to estimate the economic development based on different science and technology factors. As economic development measure, gross domestic product (GDP) was used. As the science and technology factors, patents in different field were used. It was found that the patents in electrical engineering field have the highest influence on the economic development or the GDP.

  19. i-SAIRAS '90; Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space, Kobe, Japan, Nov. 18-20, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The present conference on artificial intelligence (AI), robotics, and automation in space encompasses robot systems, lunar and planetary robots, advanced processing, expert systems, knowledge bases, issues of operation and management, manipulator control, and on-orbit service. Specific issues addressed include fundamental research in AI at NASA, the FTS dexterous telerobot, a target-capture experiment by a free-flying robot, the NASA Planetary Rover Program, the Katydid system for compiling KEE applications to Ada, and speech recognition for robots. Also addressed are a knowledge base for real-time diagnosis, a pilot-in-the-loop simulation of an orbital docking maneuver, intelligent perturbation algorithms for space scheduling optimization, a fuzzy control method for a space manipulator system, hyperredundant manipulator applications, robotic servicing of EOS instruments, and a summary of astronaut inputs on automation and robotics for the Space Station Freedom.

  20. Deploying an Intelligent Pairing Assistant for Air Operation Centers

    DTIC Science & Technology

    2016-06-23

    primary contributions of this case study are applying artificial intelligence techniques to a novel domain and discussing the software evaluation...their standard workflows. The primary contributions of this case study are applying artificial intelligence techniques to a novel domain and...users for more efficient and accurate pairing? Participants Participants in the evaluation consisted of three SMEs employed at Intelligent Software

  1. Northeast Artificial Intelligence Consortium Annual Report - 1988 Parallel Vision. Volume 9

    DTIC Science & Technology

    1989-10-01

    supports the Northeast Aritificial Intelligence Consortium (NAIC). Volume 9 Parallel Vision Report submitted by Christopher M. Brown Randal C. Nelson...NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT - 1988 Parallel Vision Syracuse University Christopher M. Brown and Randal C. Nelson...Technical Director Directorate of Intelligence & Reconnaissance FOR THE COMMANDER: IGOR G. PLONISCH Directorate of Plans & Programs If your address has

  2. Infrastructural intelligence: Contemporary entanglements between neuroscience and AI.

    PubMed

    Bruder, Johannes

    2017-01-01

    In this chapter, I reflect on contemporary entanglements between artificial intelligence and the neurosciences by tracing the development of Google's recent DeepMind algorithms back to their roots in neuroscientific studies of episodic memory and imagination. Google promotes a new form of "infrastructural intelligence," which excels by constantly reassessing its cognitive architecture in exchange with a cloud of data that surrounds it, and exhibits putatively human capacities such as intuition. I argue that such (re)alignments of biological and artificial intelligence have been enabled by a paradigmatic infrastructuralization of the brain in contemporary neuroscience. This infrastructuralization is based in methodologies that epistemically liken the brain to complex systems of an entirely different scale (i.e., global logistics) and has given rise to diverse research efforts that target the neuronal infrastructures of higher cognitive functions such as empathy and creativity. What is at stake in this process is no less than the shape of brains to come and a revised understanding of the intelligent and creative social subject. © 2017 Elsevier B.V. All rights reserved.

  3. An artificial nociceptor based on a diffusive memristor.

    PubMed

    Yoon, Jung Ho; Wang, Zhongrui; Kim, Kyung Min; Wu, Huaqiang; Ravichandran, Vignesh; Xia, Qiangfei; Hwang, Cheol Seong; Yang, J Joshua

    2018-01-29

    A nociceptor is a critical and special receptor of a sensory neuron that is able to detect noxious stimulus and provide a rapid warning to the central nervous system to start the motor response in the human body and humanoid robotics. It differs from other common sensory receptors with its key features and functions, including the "no adaptation" and "sensitization" phenomena. In this study, we propose and experimentally demonstrate an artificial nociceptor based on a diffusive memristor with critical dynamics for the first time. Using this artificial nociceptor, we further built an artificial sensory alarm system to experimentally demonstrate the feasibility and simplicity of integrating such novel artificial nociceptor devices in artificial intelligence systems, such as humanoid robots.

  4. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part A: The core ingredients

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1983-01-01

    Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. The goal of Artificial Intelligence is focused on developing computational approaches to intelligent behavior. This goal is so broad - covering virtually all aspects of human cognitive activity - that substantial confusion has arisen as to the actual nature of AI, its current status and its future capability. This volume, the first in a series of NBS/NASA reports on the subject, attempts to address these concerns. Thus, this report endeavors to clarify what AI is, the foundations on which it rests, the techniques utilized, applications, the participants and, finally, AI's state-of-the-art and future trends. It is anticipated that this report will prove useful to government and private engineering and research managers, potential users, and others who will be affected by this field as it unfolds.

  5. Computer Intelligence: Unlimited and Untapped.

    ERIC Educational Resources Information Center

    Staples, Betsy

    1983-01-01

    Herbert Simon (Nobel prize-winning economist/professor) expresses his views on human and artificial intelligence, problem solving, inventing concepts, and the future. Includes comments on expert systems, state of the art in artificial intelligence, robotics, and "Bacon," a computer program that finds scientific laws hidden in raw data.…

  6. Expert Systems and Special Education.

    ERIC Educational Resources Information Center

    Hofmeister, Alan M.; Ferrara, Joseph M.

    The application of artificial intelligence to the problems of education is examined. One of the most promising areas in artificial intelligence is expert systems technology which engages the user in a problem-solving diaglogue. Some of the characteristics that make expert systems "intelligent" are identified and exemplified. The rise of…

  7. Artificial Intelligence Applications for Education: Promise, ...Promises.

    ERIC Educational Resources Information Center

    Adams, Dennis M.; Hamm, Mary

    1988-01-01

    Surveys the current status of artificial intelligence (AI) technology. Discusses intelligent tutoring systems, robotics, and applications for educators. Likens the status of AI at present to that of aviation in the very early 1900s. States that educators need to be involved in future debates concerning AI. (CW)

  8. Maze learning by a hybrid brain-computer system

    NASA Astrophysics Data System (ADS)

    Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan

    2016-09-01

    The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation.

  9. Maze learning by a hybrid brain-computer system.

    PubMed

    Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan

    2016-09-13

    The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation.

  10. Maze learning by a hybrid brain-computer system

    PubMed Central

    Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan

    2016-01-01

    The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation. PMID:27619326

  11. STRUTEX: A prototype knowledge-based system for initially configuring a structure to support point loads in two dimensions

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; Feyock, Stefan; Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    The purpose of this research effort is to investigate the benefits that might be derived from applying artificial intelligence tools in the area of conceptual design. Therefore, the emphasis is on the artificial intelligence aspects of conceptual design rather than structural and optimization aspects. A prototype knowledge-based system, called STRUTEX, was developed to initially configure a structure to support point loads in two dimensions. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user by integrating a knowledge base interface and inference engine, a data base interface, and graphics while keeping the knowledge base and data base files separate. The system writes a file which can be input into a structural synthesis system, which combines structural analysis and optimization.

  12. Enabling Autonomous Space Mission Operations with Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy

    2017-01-01

    For over 50 years, NASA's crewed missions have been confined to the Earth-Moon system, where speed-of-light communications delays between crew and ground are practically nonexistent. This ground-centered mode of operations, with a large, ground-based support team, is not sustainable for NASAs future human exploration missions to Mars. Future astronauts will need smarter tools employing Artificial Intelligence (AI) techniques make decisions without inefficient communication back and forth with ground-based mission control. In this talk we will describe several demonstrations of astronaut decision support tools using AI techniques as a foundation. These demonstrations show that astronauts tasks ranging from living and working to piloting can benefit from AI technology development.

  13. Design and Implementation of a Relational Database Management System for the AFIT Thesis Process.

    DTIC Science & Technology

    1985-09-01

    AIRLIFT Gourdin 4. APPLIED MATHEMATICS Daneman Lee Na rga rsen ker 5. ARTIFICIAL INTELLEGENCE Gen et 6. CAPARILITY ASSESSMENT S Budde Talbott 31...05 ARTIFICIAL INTELLIGENCE 06 CAPABILITY ASSESSMENT 07 COMMUNIICATIONS 08 COMPUTER AIDED DESIGN 09 COMPUTER BASED TRAINING 10 COMPUTER SOFTWARE 11

  14. Predicting the Emplacement of Improvised Explosive Devices: An Innovative Solution

    ERIC Educational Resources Information Center

    Lerner, Warren D.

    2013-01-01

    In this quantitative correlational study, simulated data were employed to examine artificial-intelligence techniques or, more specifically, artificial neural networks, as they relate to the location prediction of improvised explosive devices (IEDs). An ANN model was developed to predict IED placement, based upon terrain features and objects…

  15. Analogue spin-orbit torque device for artificial-neural-network-based associative memory operation

    NASA Astrophysics Data System (ADS)

    Borders, William A.; Akima, Hisanao; Fukami, Shunsuke; Moriya, Satoshi; Kurihara, Shouta; Horio, Yoshihiko; Sato, Shigeo; Ohno, Hideo

    2017-01-01

    We demonstrate associative memory operations reminiscent of the brain using nonvolatile spintronics devices. Antiferromagnet-ferromagnet bilayer-based Hall devices, which show analogue-like spin-orbit torque switching under zero magnetic fields and behave as artificial synapses, are used. An artificial neural network is used to associate memorized patterns from their noisy versions. We develop a network consisting of a field-programmable gate array and 36 spin-orbit torque devices. An effect of learning on associative memory operations is successfully confirmed for several 3 × 3-block patterns. A discussion on the present approach for realizing spintronics-based artificial intelligence is given.

  16. Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques.

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2017-01-01

    Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of intestinal absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds. Prediction accuracy of Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis for prediction of intestinal absorption of compounds was found to be 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Artificial Neural Networks and Instructional Technology.

    ERIC Educational Resources Information Center

    Carlson, Patricia A.

    1991-01-01

    Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…

  18. An Opening Chapter of the First Generation of Artificial Intelligence in Medicine: The First Rutgers AIM Workshop, June 1975

    PubMed Central

    2015-01-01

    Summary The first generation of Artificial Intelligence (AI) in Medicine methods were developed in the early 1970’s drawing on insights about problem solving in AI. They developed new ways of representing structured expert knowledge about clinical and biomedical problems using causal, taxonomic, associational, rule, and frame-based models. By 1975, several prototype systems had been developed and clinically tested, and the Rutgers Research Resource on Computers in Biomedicine hosted the first in a series of workshops on AI in Medicine that helped researchers and clinicians share their ideas, demonstrate their models, and comment on the prospects for the field. These developments and the workshops themselves benefited considerably from Stanford’s SUMEX-AIM pioneering experiment in biomedical computer networking. This paper focuses on discussions about issues at the intersection of medicine and artificial intelligence that took place during the presentations and panels at the First Rutgers AIM Workshop in New Brunswick, New Jersey from June 14 to 17, 1975. PMID:26123911

  19. Artificial intelligence-assisted occupational lung disease diagnosis.

    PubMed

    Harber, P; McCoy, J M; Howard, K; Greer, D; Luo, J

    1991-08-01

    An artificial intelligence expert-based system for facilitating the clinical recognition of occupational and environmental factors in lung disease has been developed in a pilot fashion. It utilizes a knowledge representation scheme to capture relevant clinical knowledge into structures about specific objects (jobs, diseases, etc) and pairwise relations between objects. Quantifiers describe both the closeness of association and risk, as well as the degree of belief in the validity of a fact. An independent inference engine utilizes the knowledge, combining likelihoods and uncertainties to achieve estimates of likelihood factors for specific paths from work to illness. The system creates a series of "paths," linking work activities to disease outcomes. One path links a single period of work to a single possible disease outcome. In a preliminary trial, the number of "paths" from job to possible disease averaged 18 per subject in a general population and averaged 25 per subject in an asthmatic population. Artificial intelligence methods hold promise in the future to facilitate diagnosis in pulmonary and occupational medicine.

  20. De Novo Design of Bioactive Small Molecules by Artificial Intelligence.

    PubMed

    Merk, Daniel; Friedrich, Lukas; Grisoni, Francesca; Schneider, Gisbert

    2018-01-01

    Generative artificial intelligence offers a fresh view on molecular design. We present the first-time prospective application of a deep learning model for designing new druglike compounds with desired activities. For this purpose, we trained a recurrent neural network to capture the constitution of a large set of known bioactive compounds represented as SMILES strings. By transfer learning, this general model was fine-tuned on recognizing retinoid X and peroxisome proliferator-activated receptor agonists. We synthesized five top-ranking compounds designed by the generative model. Four of the compounds revealed nanomolar to low-micromolar receptor modulatory activity in cell-based assays. Apparently, the computational model intrinsically captured relevant chemical and biological knowledge without the need for explicit rules. The results of this study advocate generative artificial intelligence for prospective de novo molecular design, and demonstrate the potential of these methods for future medicinal chemistry. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Predicting asthma exacerbations using artificial intelligence.

    PubMed

    Finkelstein, Joseph; Wood, Jeffrey

    2013-01-01

    Modern telemonitoring systems identify a serious patient deterioration when it already occurred. It would be much more beneficial if the upcoming clinical deterioration were identified ahead of time even before a patient actually experiences it. The goal of this study was to assess artificial intelligence approaches which potentially can be used in telemonitoring systems for advance prediction of changes in disease severity before they actually occur. The study dataset was based on daily self-reports submitted by 26 adult asthma patients during home telemonitoring consisting of 7001 records. Two classification algorithms were employed for building predictive models: naïve Bayesian classifier and support vector machines. Using a 7-day window, a support vector machine was able to predict asthma exacerbation to occur on the day 8 with the accuracy of 0.80, sensitivity of 0.84 and specificity of 0.80. Our study showed that methods of artificial intelligence have significant potential in developing individualized decision support for chronic disease telemonitoring systems.

  2. Artificial Intelligence Application in Power Generation Industry: Initial considerations

    NASA Astrophysics Data System (ADS)

    Ismail, Rahmat Izaizi B.; Ismail Alnaimi, Firas B.; AL-Qrimli, Haidar F.

    2016-03-01

    With increased competitiveness in power generation industries, more resources are directed in optimizing plant operation, including fault detection and diagnosis. One of the most powerful tools in faults detection and diagnosis is artificial intelligence (AI). Faults should be detected early so correct mitigation measures can be taken, whilst false alarms should be eschewed to avoid unnecessary interruption and downtime. For the last few decades there has been major interest towards intelligent condition monitoring system (ICMS) application in power plant especially with AI development particularly in artificial neural network (ANN). ANN is based on quite simple principles, but takes advantage of their mathematical nature, non-linear iteration to demonstrate powerful problem solving ability. With massive possibility and room for improvement in AI, the inspiration for researching them are apparent, and literally, hundreds of papers have been published, discussing the findings of hybrid AI for condition monitoring purposes. In this paper, the studies of ANN and genetic algorithm (GA) application will be presented.

  3. An Opening Chapter of the First Generation of Artificial Intelligence in Medicine: The First Rutgers AIM Workshop, June 1975.

    PubMed

    Kulikowski, C A

    2015-08-13

    The first generation of Artificial Intelligence (AI) in Medicine methods were developed in the early 1970's drawing on insights about problem solving in AI. They developed new ways of representing structured expert knowledge about clinical and biomedical problems using causal, taxonomic, associational, rule, and frame-based models. By 1975, several prototype systems had been developed and clinically tested, and the Rutgers Research Resource on Computers in Biomedicine hosted the first in a series of workshops on AI in Medicine that helped researchers and clinicians share their ideas, demonstrate their models, and comment on the prospects for the field. These developments and the workshops themselves benefited considerably from Stanford's SUMEX-AIM pioneering experiment in biomedical computer networking. This paper focuses on discussions about issues at the intersection of medicine and artificial intelligence that took place during the presentations and panels at the First Rutgers AIM Workshop in New Brunswick, New Jersey from June 14 to 17, 1975.

  4. Artificial Intelligence and Educational Technology: A Natural Synergy. Extended Abstract.

    ERIC Educational Resources Information Center

    McCalla, Gordon I.

    Educational technology and artificial intelligence (AI) are natural partners in the development of environments to support human learning. Designing systems with the characteristics of a rich learning environment is the long term goal of research in intelligent tutoring systems (ITS). Building these characteristics into a system is extremely…

  5. AM: An Artificial Intelligence Approach to Discovery in Mathematics as Heuristic Search

    DTIC Science & Technology

    1976-07-01

    Artificial Intelligence Approach to Discovery in Mathematics as Heuristic Search by Douglas B. Len-t APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED (A...570 AM: An Artificial Intelligence Approach to Discovery in Mathematics as Heuristic Search by Douglas B. Lenat ABSTRACT A program, called "AM", is...While AM’s " approach " to empirical research may be used in other scientific domains, the main limitation (reliance on hindsight) will probably recur

  6. A Computer-Aided Instruction Program for Teaching the TOPS20-MM Facility on the DDN (Defense Data Network)

    DTIC Science & Technology

    1988-06-01

    Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Computer Assisted Instruction; Artificial Intelligence 194...while he/she tries to perform given tasks. Means-ends analysis, a classic technique for solving search problems in Artificial Intelligence, has been...he/she tries to perform given tasks. Means-ends analysis, a classic technique for solving search problems in Artificial Intelligence, has been used

  7. How Computers Are Used in the Teaching of Music and Speculations about How Artificial Intelligence Could Be Applied to Radically Improve the Learning of Compositional Skills. CITE Report No. 6.

    ERIC Educational Resources Information Center

    Holland, Simon

    This paper forms part of a preliminary survey for work on the application of artificial intelligence theories and techniques to the learning of music composition skills. The paper deals with present day applications of computers to the teaching of music and speculations about how artificial intelligence might be used to foster music composition in…

  8. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part B: Applications

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1983-01-01

    Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. This report, Part B of a three part report on AI, presents overviews of the key application areas: Expert Systems, Computer Vision, Natural Language Processing, Speech Interfaces, and Problem Solving and Planning. The basic approaches to such systems, the state-of-the-art, existing systems and future trends and expectations are covered.

  9. Artificial Intelligence for Diabetes Management and Decision Support: Literature Review

    PubMed Central

    Contreras, Ivan

    2018-01-01

    Background Artificial intelligence methods in combination with the latest technologies, including medical devices, mobile computing, and sensor technologies, have the potential to enable the creation and delivery of better management services to deal with chronic diseases. One of the most lethal and prevalent chronic diseases is diabetes mellitus, which is characterized by dysfunction of glucose homeostasis. Objective The objective of this paper is to review recent efforts to use artificial intelligence techniques to assist in the management of diabetes, along with the associated challenges. Methods A review of the literature was conducted using PubMed and related bibliographic resources. Analyses of the literature from 2010 to 2018 yielded 1849 pertinent articles, of which we selected 141 for detailed review. Results We propose a functional taxonomy for diabetes management and artificial intelligence. Additionally, a detailed analysis of each subject category was performed using related key outcomes. This approach revealed that the experiments and studies reviewed yielded encouraging results. Conclusions We obtained evidence of an acceleration of research activity aimed at developing artificial intelligence-powered tools for prediction and prevention of complications associated with diabetes. Our results indicate that artificial intelligence methods are being progressively established as suitable for use in clinical daily practice, as well as for the self-management of diabetes. Consequently, these methods provide powerful tools for improving patients’ quality of life. PMID:29848472

  10. Center for Artificial Intelligence

    DTIC Science & Technology

    1992-03-14

    builder’s intelligent assistant. The basic approach of IGOR is to integrate the complementary strategies of exploratory and confirmatory data analysis...Recovery: A Model and Experiments," in Proceedings of the Ninth National Conference on Artifcial Intelligence , Anaheim, CA, July 1991, pp. 801-808. Howe...Lehnert University of Massachusetts, Amherst, MAJ (413) 545-1322 Lessei•:s.umass.edu Title: Center for Artificial Intelligence Contract #: N00014-86-K

  11. Artificial intelligence in diagnosis of obstructive lung disease: current status and future potential.

    PubMed

    Das, Nilakash; Topalovic, Marko; Janssens, Wim

    2018-03-01

    The application of artificial intelligence in the diagnosis of obstructive lung diseases is an exciting phenomenon. Artificial intelligence algorithms work by finding patterns in data obtained from diagnostic tests, which can be used to predict clinical outcomes or to detect obstructive phenotypes. The purpose of this review is to describe the latest trends and to discuss the future potential of artificial intelligence in the diagnosis of obstructive lung diseases. Machine learning has been successfully used in automated interpretation of pulmonary function tests for differential diagnosis of obstructive lung diseases. Deep learning models such as convolutional neural network are state-of-the art for obstructive pattern recognition in computed tomography. Machine learning has also been applied in other diagnostic approaches such as forced oscillation test, breath analysis, lung sound analysis and telemedicine with promising results in small-scale studies. Overall, the application of artificial intelligence has produced encouraging results in the diagnosis of obstructive lung diseases. However, large-scale studies are still required to validate current findings and to boost its adoption by the medical community.

  12. Integrated human-machine intelligence in space systems.

    PubMed

    Boy, G A

    1992-07-01

    This paper presents an artificial intelligence approach to integrated human-machine intelligence in space systems. It discusses the motivations for Intelligent Assistant Systems in both nominal and abnormal situations. The problem of constructing procedures is shown to be a very critical issue. In particular, keeping procedural experience in both design and operation is critical. We suggest what artificial intelligence can offer in this direction. Some crucial problems induced by this approach are discussed in detail. Finally, we analyze the various roles that would be shared by both astronauts, ground operators, and the intelligent assistant system.

  13. An advanced artificial intelligence tool for menu design.

    PubMed

    Khan, Abdus Salam; Hoffmann, Achim

    2003-01-01

    The computer-assisted menu design still remains a difficult task. Usually knowledge that aids in menu design by a computer is hard-coded and because of that a computerised menu planner cannot handle the menu design problem for an unanticipated client. To address this problem we developed a menu design tool, MIKAS (menu construction using incremental knowledge acquisition system), an artificial intelligence system that allows the incremental development of a knowledge-base for menu design. We allow an incremental knowledge acquisition process in which the expert is only required to provide hints to the system in the context of actual problem instances during menu design using menus stored in a so-called Case Base. Our system incorporates Case-Based Reasoning (CBR), an Artificial Intelligence (AI) technique developed to mimic human problem solving behaviour. Ripple Down Rules (RDR) are a proven technique for the acquisition of classification knowledge from expert directly while they are using the system, which complement CBR in a very fruitful way. This combination allows the incremental improvement of the menu design system while it is already in routine use. We believe MIKAS allows better dietary practice by leveraging a dietitian's skills and expertise. As such MIKAS has the potential to be helpful for any institution where dietary advice is practised.

  14. Artificial intelligence approaches for rational drug design and discovery.

    PubMed

    Duch, Włodzisław; Swaminathan, Karthikeyan; Meller, Jarosław

    2007-01-01

    Pattern recognition, machine learning and artificial intelligence approaches play an increasingly important role in rational drug design, screening and identification of candidate molecules and studies on quantitative structure-activity relationships (QSAR). In this review, we present an overview of basic concepts and methodology in the fields of machine learning and artificial intelligence (AI). An emphasis is put on methods that enable an intuitive interpretation of the results and facilitate gaining an insight into the structure of the problem at hand. We also discuss representative applications of AI methods to docking, screening and QSAR studies. The growing trend to integrate computational and experimental efforts in that regard and some future developments are discussed. In addition, we comment on a broader role of machine learning and artificial intelligence approaches in biomedical research.

  15. Toward Augmented Radiologists: Changes in Radiology Education in the Era of Machine Learning and Artificial Intelligence.

    PubMed

    Tajmir, Shahein H; Alkasab, Tarik K

    2018-06-01

    Radiology practice will be altered by the coming of artificial intelligence, and the process of learning in radiology will be similarly affected. In the short term, radiologists will need to understand the first wave of artificially intelligent tools, how they can help them improve their practice, and be able to effectively supervise their use. Radiology training programs will need to develop curricula to help trainees acquire the knowledge to carry out this new supervisory duty of radiologists. In the longer term, artificially intelligent software assistants could have a transformative effect on the training of residents and fellows, and offer new opportunities to bring learning into the ongoing practice of attending radiologists. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  16. AI Based Personal Learning Environments: Directions for Long Term Research. AI Memo 384.

    ERIC Educational Resources Information Center

    Goldstein, Ira P.; Miller, Mark L.

    The application of artificial intelligence (AI) techniques to the design of personal learning environments is an enterprise of both theoretical and practical interest. In the short term, the process of developing and testing intelligent tutoring programs serves as a new experimental vehicle for exploring alternative cognitive and pedagogical…

  17. Using Construct Validity Techniques To Evaluate an Automated Cognitive Model of Geometric Proof Writing.

    ERIC Educational Resources Information Center

    Shotsberger, Paul G.

    The National Council of Teachers of Mathematics (1991) has identified the use of computers as a necessary teaching tool for enhancing mathematical discourse in schools. One possible vehicle of technological change in mathematics classrooms is the Intelligent Tutoring System (ITS), an artificially intelligent computer-based tutor. This paper…

  18. First CLIPS Conference Proceedings, volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The topics of volume 2 of First CLIPS Conference are associated with following applications: quality control; intelligent data bases and networks; Space Station Freedom; Space Shuttle and satellite; user interface; artificial neural systems and fuzzy logic; parallel and distributed processing; enchancements to CLIPS; aerospace; simulation and defense; advisory systems and tutors; and intelligent control.

  19. A conceptual framework for intelligent real-time information processing

    NASA Technical Reports Server (NTRS)

    Schudy, Robert

    1987-01-01

    By combining artificial intelligence concepts with the human information processing model of Rasmussen, a conceptual framework was developed for real time artificial intelligence systems which provides a foundation for system organization, control and validation. The approach is based on the description of system processing terms of an abstraction hierarchy of states of knowledge. The states of knowledge are organized along one dimension which corresponds to the extent to which the concepts are expressed in terms of the system inouts or in terms of the system response. Thus organized, the useful states form a generally triangular shape with the sensors and effectors forming the lower two vertices and the full evaluated set of courses of action the apex. Within the triangle boundaries are numerous processing paths which shortcut the detailed processing, by connecting incomplete levels of analysis to partially defined responses. Shortcuts at different levels of abstraction include reflexes, sensory motor control, rule based behavior, and satisficing. This approach was used in the design of a real time tactical decision aiding system, and in defining an intelligent aiding system for transport pilots.

  20. Artificial Intelligence-Based Semantic Internet of Things in a User-Centric Smart City

    PubMed Central

    Guo, Kun; Lu, Yueming; Gao, Hui; Cao, Ruohan

    2018-01-01

    Smart city (SC) technologies can provide appropriate services according to citizens’ demands. One of the key enablers in a SC is the Internet of Things (IoT) technology, which enables a massive number of devices to connect with each other. However, these devices usually come from different manufacturers with different product standards, which confront interactive control problems. Moreover, these devices will produce large amounts of data, and efficiently analyzing these data for intelligent services. In this paper, we propose a novel artificial intelligence-based semantic IoT (AI-SIoT) hybrid service architecture to integrate heterogeneous IoT devices to support intelligent services. In particular, the proposed architecture is empowered by semantic and AI technologies, which enable flexible connections among heterogeneous devices. The AI technology can support very implement efficient data analysis and make accurate decisions on service provisions in various kinds. Furthermore, we also present several practical use cases of the proposed AI-SIoT architecture and the opportunities and challenges to implement the proposed AI-SIoT for future SCs are also discussed. PMID:29701679

  1. Artificial Intelligence-Based Semantic Internet of Things in a User-Centric Smart City.

    PubMed

    Guo, Kun; Lu, Yueming; Gao, Hui; Cao, Ruohan

    2018-04-26

    Smart city (SC) technologies can provide appropriate services according to citizens’ demands. One of the key enablers in a SC is the Internet of Things (IoT) technology, which enables a massive number of devices to connect with each other. However, these devices usually come from different manufacturers with different product standards, which confront interactive control problems. Moreover, these devices will produce large amounts of data, and efficiently analyzing these data for intelligent services. In this paper, we propose a novel artificial intelligence-based semantic IoT (AI-SIoT) hybrid service architecture to integrate heterogeneous IoT devices to support intelligent services. In particular, the proposed architecture is empowered by semantic and AI technologies, which enable flexible connections among heterogeneous devices. The AI technology can support very implement efficient data analysis and make accurate decisions on service provisions in various kinds. Furthermore, we also present several practical use cases of the proposed AI-SIoT architecture and the opportunities and challenges to implement the proposed AI-SIoT for future SCs are also discussed.

  2. A new intrusion prevention model using planning knowledge graph

    NASA Astrophysics Data System (ADS)

    Cai, Zengyu; Feng, Yuan; Liu, Shuru; Gan, Yong

    2013-03-01

    Intelligent plan is a very important research in artificial intelligence, which has applied in network security. This paper proposes a new intrusion prevention model base on planning knowledge graph and discuses the system architecture and characteristics of this model. The Intrusion Prevention based on plan knowledge graph is completed by plan recognition based on planning knowledge graph, and the Intrusion response strategies and actions are completed by the hierarchical task network (HTN) planner in this paper. Intrusion prevention system has the advantages of intelligent planning, which has the advantage of the knowledge-sharing, the response focused, learning autonomy and protective ability.

  3. The Co-Existence of Technology and Caring in the Theory of Technological Competency as Caring in Nursing.

    PubMed

    Locsin, Rozzano C

    2017-01-01

    The coexistence of technology and caring is best exemplified in nursing. The theory of Technological Competency as Caring in Nursing illuminates this coexistence as the essence of technology in health care premised on machine technologies as a generic concept of objects or things that are mechanical, organic, and electronic. With its timely development these technologies are continually imbued with artificial general intelligence. As such, the ultimate expression of machine technologies in nursing turns out to be autonomous robots (ARs) with future potentials of functions comparable to human persons. While theory-based nursing practice is essential to nursing care practice, quality human care, particularly with technologies assuming indispensable practice process mechanisms is critical. Some practice-based questions informing ARs and human person engagements in nursing care practice include, "Will ARs which are imbued with artificial intelligence replace nurses in their practice?" "What contributions to quality human health care will autonomous and artificially intelligent robots provide?" While these questions may reflect far-reaching ramifications of technologies in health care, it must also be acknowledged that these technologies are fundamental to the delivery of quality human health care now, and in the future. J. Med. Invest. 64: 160-164, February, 2017.

  4. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques.

    PubMed

    Ferreira, F J O; Crispim, V R; Silva, A X

    2010-06-01

    In this study the development of a methodology to detect illicit drugs and plastic explosives is described with the objective of being applied in the realm of public security. For this end, non-destructive assay with neutrons was used and the technique applied was the real time neutron radiography together with computerized tomography. The system is endowed with automatic responses based upon the application of an artificial intelligence technique. In previous tests using real samples, the system proved capable of identifying 97% of the inspected materials. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Epistasis analysis using artificial intelligence.

    PubMed

    Moore, Jason H; Hill, Doug P

    2015-01-01

    Here we introduce artificial intelligence (AI) methodology for detecting and characterizing epistasis in genetic association studies. The ultimate goal of our AI strategy is to analyze genome-wide genetics data as a human would using sources of expert knowledge as a guide. The methodology presented here is based on computational evolution, which is a type of genetic programming. The ability to generate interesting solutions while at the same time learning how to solve the problem at hand distinguishes computational evolution from other genetic programming approaches. We provide a general overview of this approach and then present a few examples of its application to real data.

  6. Artificial Intelligence and Expert Systems.

    ERIC Educational Resources Information Center

    Wilson, Harold O.; Burford, Anna Marie

    1990-01-01

    Delineates artificial intelligence/expert systems (AI/ES) concepts; provides an exposition of some business application areas; relates progress; and creates an awareness of the benefits, limitations, and reservations of AI/ES. (Author)

  7. AAAIC '88 - Aerospace Applications of Artificial Intelligence; Proceedings of the Fourth Annual Conference, Dayton, OH, Oct. 25-27, 1988. Volumes 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.R.; Netrologic, Inc., San Diego, CA)

    1988-01-01

    Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.

  8. Artificial Intelligence: Threat or Boon to Radiologists?

    PubMed

    Recht, Michael; Bryan, R Nick

    2017-11-01

    The development and integration of machine learning/artificial intelligence into routine clinical practice will significantly alter the current practice of radiology. Changes in reimbursement and practice patterns will also continue to affect radiology. But rather than being a significant threat to radiologists, we believe these changes, particularly machine learning/artificial intelligence, will be a boon to radiologists by increasing their value, efficiency, accuracy, and personal satisfaction. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  9. Artificial Intelligence and Spacecraft Power Systems

    NASA Technical Reports Server (NTRS)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  10. The future of radiology augmented with Artificial Intelligence: A strategy for success.

    PubMed

    Liew, Charlene

    2018-05-01

    The rapid development of Artificial Intelligence/deep learning technology and its implementation into routine clinical imaging will cause a major transformation to the practice of radiology. Strategic positioning will ensure the successful transition of radiologists into their new roles as augmented clinicians. This paper describes an overall vision on how to achieve a smooth transition through the practice of augmented radiology where radiologists-in-the-loop ensure the safe implementation of Artificial Intelligence systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Conversion of the CALAP (Computer Aided Landform Analysis Program) Program from FORTRAN to DUCK.

    DTIC Science & Technology

    1986-09-01

    J’ DUCK artificial intelligence logic programming 20 AVrACT (Cthm m reerse stabN ameeaaW idelfr by block mbae) An expert advisor program named CALAP...original program was developed in FORTRAN on an HP- 1000, a mirticomputer. CALAP was reprogrammed in an Artificial Intelligence (AI) language called DUCK...the Artificial Intelligence Center, U.S. Army Engineer Topographic Laboratory, Fort Belvoir. Z" I. S. n- Page 1 I. Introduction An expert advisor

  12. An intelligent ground operator support system

    NASA Technical Reports Server (NTRS)

    Goerlach, Thomas; Ohlendorf, Gerhard; Plassmeier, Frank; Bruege, Uwe

    1994-01-01

    This paper presents first results of the project 'Technologien fuer die intelligente Kontrolle von Raumfahrzeugen' (TIKON). The TIKON objective was the demonstration of feasibility and profit of the application of artificial intelligence in the space business. For that purpose a prototype system has been developed and implemented for the operation support of the Roentgen Satellite (ROSAT), a scientific spacecraft designed to perform the first all-sky survey with a high-resolution X-ray telescope and to investigate the emission of specific celestial sources. The prototype integrates a scheduler and a diagnosis tool both based on artificial intelligence techniques. The user interface is menu driven and provides synoptic displays for the visualization of the system status. The prototype has been used and tested in parallel to an already existing operational system.

  13. Innovative applications of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Schorr, Herbert; Rappaport, Alain

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  14. Application of artificial intelligence in Geodesy - A review of theoretical foundations and practical examples

    NASA Astrophysics Data System (ADS)

    Reiterer, Alexander; Egly, Uwe; Vicovac, Tanja; Mai, Enrico; Moafipoor, Shahram; Grejner-Brzezinska, Dorota A.; Toth, Charles K.

    2010-12-01

    Artificial Intelligence (AI) is one of the key technologies in many of today's novel applications. It is used to add knowledge and reasoning to systems. This paper illustrates a review of AI methods including examples of their practical application in Geodesy like data analysis, deformation analysis, navigation, network adjustment, and optimization of complex measurement procedures. We focus on three examples, namely, a geo-risk assessment system supported by a knowledge-base, an intelligent dead reckoning personal navigator, and evolutionary strategies for the determination of Earth gravity field parameters. Some of the authors are members of IAG Sub-Commission 4.2 - Working Group 4.2.3, which has the main goal to study and report on the application of AI in Engineering Geodesy.

  15. New frontiers for intelligent content-based retrieval

    NASA Astrophysics Data System (ADS)

    Benitez, Ana B.; Smith, John R.

    2001-01-01

    In this paper, we examine emerging frontiers in the evolution of content-based retrieval systems that rely on an intelligent infrastructure. Here, we refer to intelligence as the capabilities of the systems to build and maintain situational or world models, utilize dynamic knowledge representation, exploit context, and leverage advanced reasoning and learning capabilities. We argue that these elements are essential to producing effective systems for retrieving audio-visual content at semantic levels matching those of human perception and cognition. In this paper, we review relevant research on the understanding of human intelligence and construction of intelligent system in the fields of cognitive psychology, artificial intelligence, semiotics, and computer vision. We also discus how some of the principal ideas form these fields lead to new opportunities and capabilities for content-based retrieval systems. Finally, we describe some of our efforts in these directions. In particular, we present MediaNet, a multimedia knowledge presentation framework, and some MPEG-7 description tools that facilitate and enable intelligent content-based retrieval.

  16. New frontiers for intelligent content-based retrieval

    NASA Astrophysics Data System (ADS)

    Benitez, Ana B.; Smith, John R.

    2000-12-01

    In this paper, we examine emerging frontiers in the evolution of content-based retrieval systems that rely on an intelligent infrastructure. Here, we refer to intelligence as the capabilities of the systems to build and maintain situational or world models, utilize dynamic knowledge representation, exploit context, and leverage advanced reasoning and learning capabilities. We argue that these elements are essential to producing effective systems for retrieving audio-visual content at semantic levels matching those of human perception and cognition. In this paper, we review relevant research on the understanding of human intelligence and construction of intelligent system in the fields of cognitive psychology, artificial intelligence, semiotics, and computer vision. We also discus how some of the principal ideas form these fields lead to new opportunities and capabilities for content-based retrieval systems. Finally, we describe some of our efforts in these directions. In particular, we present MediaNet, a multimedia knowledge presentation framework, and some MPEG-7 description tools that facilitate and enable intelligent content-based retrieval.

  17. Parallel Algorithms for Computer Vision.

    DTIC Science & Technology

    1989-01-01

    34 IEEE Tran. Pattern Ankyaij and Ma- Artifcial Intelligence , Tokyo, 1979. chine Intelligence , 6, 1984. Kirkpatrick, S., C.D. Gelatt, Jr. and M.P. Vecchi...MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB T P06010 JAN 89 ETL-0529 UNCLASSIFIED DACA76-85-C-0010 F.’G 12/1I N mommiimmmiiso...PoggioI Massachusetts Institute of Technology i Artificial Intelligence Laboratory 545 Technology Square Cambridge, Massachusetts 02139 DTIC January

  18. Worldwide Intelligent Systems: Approaches to Telecommunications and Network Management. Frontiers in Artificial Intelligence and Applications, Volume 24.

    ERIC Educational Resources Information Center

    Liebowitz, Jay, Ed.; Prerau, David S., Ed.

    This is an international collection of 12 papers addressing artificial intelligence (AI) and knowledge technology applications in telecommunications and network management. It covers the latest and emerging AI technologies as applied to the telecommunications field. The papers are: "The Potential for Knowledge Technology in…

  19. Generating Scenarios When Data Are Missing

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan

    2007-01-01

    The Hypothetical Scenario Generator (HSG) is being developed in conjunction with other components of artificial-intelligence systems for automated diagnosis and prognosis of faults in spacecraft, aircraft, and other complex engineering systems. The HSG accepts, as input, possibly incomplete data on the current state of a system (see figure). The HSG models a potential fault scenario as an ordered disjunctive tree of conjunctive consequences, wherein the ordering is based upon the likelihood that a particular conjunctive path will be taken for the given set of inputs. The computation of likelihood is based partly on a numerical ranking of the degree of completeness of data with respect to satisfaction of the antecedent conditions of prognostic rules. The results from the HSG are then used by a model-based artificial- intelligence subsystem to predict realistic scenarios and states.

  20. An Application of Artificial Intelligence to the Implementation of Electronic Commerce

    NASA Astrophysics Data System (ADS)

    Srivastava, Anoop Kumar

    In this paper, we present an application of Artificial Intelligence (AI) to the implementation of Electronic Commerce. We provide a multi autonomous agent based framework. Our agent based architecture leads to flexible design of a spectrum of multiagent system (MAS) by distributing computation and by providing a unified interface to data and programs. Autonomous agents are intelligent enough and provide autonomy, simplicity of communication, computation, and a well developed semantics. The steps of design and implementation are discussed in depth, structure of Electronic Marketplace, an ontology, the agent model, and interaction pattern between agents is given. We have developed mechanisms for coordination between agents using a language, which is called Virtual Enterprise Modeling Language (VEML). VEML is a integration of Java and Knowledge Query and Manipulation Language (KQML). VEML provides application programmers with potential to globally develop different kinds of MAS based on their requirements and applications. We have implemented a multi autonomous agent based system called VE System. We demonstrate efficacy of our system by discussing experimental results and its salient features.

  1. Arguing Artificially: A Rhetorical Analysis of the Debates That Have Shaped Cognitive Science.

    ERIC Educational Resources Information Center

    Gibson, Keith

    2003-01-01

    Attempts a rhetorical analysis of the history of artificial intelligence research. Responds to scholarly needs in three areas: the rhetorical nature of science, the social construction of science knowledge, and the rhetorical strategies used in artificial intelligence (AI). Suggests that this work can help rhetoricians more accurately describe the…

  2. Modeling river total bed material load discharge using artificial intelligence approaches (based on conceptual inputs)

    NASA Astrophysics Data System (ADS)

    Roushangar, Kiyoumars; Mehrabani, Fatemeh Vojoudi; Shiri, Jalal

    2014-06-01

    This study presents Artificial Intelligence (AI)-based modeling of total bed material load through developing the accuracy level of the predictions of traditional models. Gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS)-based models were developed and validated for estimations. Sediment data from Qotur River (Northwestern Iran) were used for developing and validation of the applied techniques. In order to assess the applied techniques in relation to traditional models, stream power-based and shear stress-based physical models were also applied in the studied case. The obtained results reveal that developed AI-based models using minimum number of dominant factors, give more accurate results than the other applied models. Nonetheless, it was revealed that k-fold test is a practical but high-cost technique for complete scanning of applied data and avoiding the over-fitting.

  3. Artificial intelligence (AI)-based relational matching and multimodal medical image fusion: generalized 3D approaches

    NASA Astrophysics Data System (ADS)

    Vajdic, Stevan M.; Katz, Henry E.; Downing, Andrew R.; Brooks, Michael J.

    1994-09-01

    A 3D relational image matching/fusion algorithm is introduced. It is implemented in the domain of medical imaging and is based on Artificial Intelligence paradigms--in particular, knowledge base representation and tree search. The 2D reference and target images are selected from 3D sets and segmented into non-touching and non-overlapping regions, using iterative thresholding and/or knowledge about the anatomical shapes of human organs. Selected image region attributes are calculated. Region matches are obtained using a tree search, and the error is minimized by evaluating a `goodness' of matching function based on similarities of region attributes. Once the matched regions are found and the spline geometric transform is applied to regional centers of gravity, images are ready for fusion and visualization into a single 3D image of higher clarity.

  4. Rule-based mechanisms of learning for intelligent adaptive flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.; Stengel, Robert F.

    1990-01-01

    How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.

  5. Artificial intelligence: Learning to see and act

    NASA Astrophysics Data System (ADS)

    Schölkopf, Bernhard

    2015-02-01

    An artificial-intelligence system uses machine learning from massive training sets to teach itself to play 49 classic computer games, demonstrating that it can adapt to a variety of tasks. See Letter p.529

  6. Bibliography: Artificial Intelligence.

    ERIC Educational Resources Information Center

    Smith, Richard L.

    1986-01-01

    Annotates reference material on artificial intelligence, mostly at an introductory level, with applications to education and learning. Topics include: (1) programing languages; (2) expert systems; (3) language instruction; (4) tutoring systems; and (5) problem solving and reasoning. (JM)

  7. Artificial Intelligence for Diabetes Management and Decision Support: Literature Review.

    PubMed

    Contreras, Ivan; Vehi, Josep

    2018-05-30

    Artificial intelligence methods in combination with the latest technologies, including medical devices, mobile computing, and sensor technologies, have the potential to enable the creation and delivery of better management services to deal with chronic diseases. One of the most lethal and prevalent chronic diseases is diabetes mellitus, which is characterized by dysfunction of glucose homeostasis. The objective of this paper is to review recent efforts to use artificial intelligence techniques to assist in the management of diabetes, along with the associated challenges. A review of the literature was conducted using PubMed and related bibliographic resources. Analyses of the literature from 2010 to 2018 yielded 1849 pertinent articles, of which we selected 141 for detailed review. We propose a functional taxonomy for diabetes management and artificial intelligence. Additionally, a detailed analysis of each subject category was performed using related key outcomes. This approach revealed that the experiments and studies reviewed yielded encouraging results. We obtained evidence of an acceleration of research activity aimed at developing artificial intelligence-powered tools for prediction and prevention of complications associated with diabetes. Our results indicate that artificial intelligence methods are being progressively established as suitable for use in clinical daily practice, as well as for the self-management of diabetes. Consequently, these methods provide powerful tools for improving patients' quality of life. ©Ivan Contreras, Josep Vehi. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 30.05.2018.

  8. Integrating artificial intelligence with real-time intracranial EEG monitoring to automate interictal identification of seizure onset zones in focal epilepsy.

    PubMed

    Varatharajah, Yogatheesan; Berry, Brent; Cimbalnik, Jan; Kremen, Vaclav; Van Gompel, Jamie; Stead, Matt; Brinkmann, Benjamin; Iyer, Ravishankar; Worrell, Gregory

    2018-08-01

    An ability to map seizure-generating brain tissue, i.e. the seizure onset zone (SOZ), without recording actual seizures could reduce the duration of invasive EEG monitoring for patients with drug-resistant epilepsy. A widely-adopted practice in the literature is to compare the incidence (events/time) of putative pathological electrophysiological biomarkers associated with epileptic brain tissue with the SOZ determined from spontaneous seizures recorded with intracranial EEG, primarily using a single biomarker. Clinical translation of the previous efforts suffers from their inability to generalize across multiple patients because of (a) the inter-patient variability and (b) the temporal variability in the epileptogenic activity. Here, we report an artificial intelligence-based approach for combining multiple interictal electrophysiological biomarkers and their temporal characteristics as a way of accounting for the above barriers and show that it can reliably identify seizure onset zones in a study cohort of 82 patients who underwent evaluation for drug-resistant epilepsy. Our investigation provides evidence that utilizing the complementary information provided by multiple electrophysiological biomarkers and their temporal characteristics can significantly improve the localization potential compared to previously published single-biomarker incidence-based approaches, resulting in an average area under ROC curve (AUC) value of 0.73 in a cohort of 82 patients. Our results also suggest that recording durations between 90 min and 2 h are sufficient to localize SOZs with accuracies that may prove clinically relevant. The successful validation of our approach on a large cohort of 82 patients warrants future investigation on the feasibility of utilizing intra-operative EEG monitoring and artificial intelligence to localize epileptogenic brain tissue. Broadly, our study demonstrates the use of artificial intelligence coupled with careful feature engineering in augmenting clinical decision making.

  9. Open source hardware and software platform for robotics and artificial intelligence applications

    NASA Astrophysics Data System (ADS)

    Liang, S. Ng; Tan, K. O.; Lai Clement, T. H.; Ng, S. K.; Mohammed, A. H. Ali; Mailah, Musa; Azhar Yussof, Wan; Hamedon, Zamzuri; Yussof, Zulkifli

    2016-02-01

    Recent developments in open source hardware and software platforms (Android, Arduino, Linux, OpenCV etc.) have enabled rapid development of previously expensive and sophisticated system within a lower budget and flatter learning curves for developers. Using these platform, we designed and developed a Java-based 3D robotic simulation system, with graph database, which is integrated in online and offline modes with an Android-Arduino based rubbish picking remote control car. The combination of the open source hardware and software system created a flexible and expandable platform for further developments in the future, both in the software and hardware areas, in particular in combination with graph database for artificial intelligence, as well as more sophisticated hardware, such as legged or humanoid robots.

  10. Simulation as an Engine of Physical Scene Understanding

    DTIC Science & Technology

    2013-11-05

    critical to the origins of intelligence : Researchers in developmental psychology, language, animal cognition, and artificial intelligence (2–6) con- sider...implemented computationally in classic artificial intelligence systems (18–20). However, these systems have not attempted to engage with physical scene un...N00014-09-0124, N00014-07-1-0937, and 1015GNA126; by Qualcomm; and by Intelligence Advanced Research Project Activity Grant D10PC20023. 1. Marr D (1982

  11. A system for intelligent teleoperation research

    NASA Technical Reports Server (NTRS)

    Orlando, N. E.

    1983-01-01

    The Automation Technology Branch of NASA Langley Research Center is developing a research capability in the field of artificial intelligence, particularly as applicable in teleoperator/robotics development for remote space operations. As a testbed for experimentation in these areas, a system concept has been developed and is being implemented. This system termed DAISIE (Distributed Artificially Intelligent System for Interacting with the Environment), interfaces the key processes of perception, reasoning, and manipulation by linking hardware sensors and manipulators to a modular artificial intelligence (AI) software system in a hierarchical control structure. Verification experiments have been performed: one experiment used a blocksworld database and planner embedded in the DAISIE system to intelligently manipulate a simple physical environment; the other experiment implemented a joint-space collision avoidance algorithm. Continued system development is planned.

  12. A State Cyber Hub Operations Framework

    DTIC Science & Technology

    2016-06-01

    to communicate and sense or interact with their internal states or the external environment. Machine Learning: A type of artificial intelligence that... artificial intelligence , and computational linguistics concerned with the interactions between computers and human (natural) languages. Patching: A piece...formalizing a proof of concept for cyber initiatives and developed frameworks for operationalizing the data and intelligence produced across state

  13. Decision-Making and the Interface between Human Intelligence and Artificial Intelligence. AIR 1987 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Henard, Ralph E.

    Possible future developments in artificial intelligence (AI) as well as its limitations are considered that have implications for institutional research in higher education, and especially decision making and decision support systems. It is noted that computer software programs have been developed that store knowledge and mimic the decision-making…

  14. Adding intelligence to scientific data management

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Short, Nicholas M., Jr.; Treinish, Lloyd A.

    1989-01-01

    NASA plans to solve some of the problems of handling large-scale scientific data bases by turning to artificial intelligence (AI) are discussed. The growth of the information glut and the ways that AI can help alleviate the resulting problems are reviewed. The employment of the Intelligent User Interface prototype, where the user will generate his own natural language query with the assistance of the system, is examined. Spatial data management, scientific data visualization, and data fusion are discussed.

  15. Demonstration of artificial intelligence technology for transit railcar diagnostics

    DOT National Transportation Integrated Search

    1999-01-01

    This report will be of interest to railcar maintenance professionals concerned with improving railcar maintenance fault-diagnostic capabilities through the use of artificial intelligence (AI) technologies. It documents the results of a demonstration ...

  16. Artificial Intelligence Assists Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  17. In vitro and in vivo assessment of an intelligent artificial anal sphincter in rabbits.

    PubMed

    Huang, Zong-Hai; Shi, Fu-Jun; Chen, Fei; Liang, Fei-Xue; Li, Qiang; Yu, Jin-Long; Li, Zhou; Han, Xin-Jun

    2011-10-01

    Artificial sphincters have been developed for patients with fecal incontinence, but finding a way to make such sphincters more "intelligent" remains a problem. We assessed the function of a novel intelligent artificial anal sphincter (IAAS) in vitro and in vivo in rabbits. After the prosthesis was activated, rabbits were continent of feces during 81.4% of the activation time. The fecal detection unit provided 100% correct signals on stool in vitro and 65.7% in vivo. The results indicated that the IAAS could efficiently maintain continence and detect stool; however, the IAAS is still in the preliminary experimental stage and more work is needed to improve the system. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Modeling and Evaluating Emotions Impact on Cognition

    DTIC Science & Technology

    2013-07-01

    Causality and Responsibility Judgment in Multi-Agent Interactions: Extended abstract. 23rd International Joint Conference on Artificial Inteligence ...responsibility judgment in multi-agent interactions." Journal of Artificial Intelligence Research v44(1), 223- 273. • Morteza Dehghani, Jonathan Gratch... Artificial Intelligence (AAAI’11). Grant related invited talks: • Keynote speaker, Workshop on Empathic and Emotional Agents at the International

  19. Optical Inference Machines

    DTIC Science & Technology

    1988-06-27

    de olf nessse end Id e ;-tl Sb ieeI smleo) ,Optical Artificial Intellegence ; Optical inference engines; Optical logic; Optical informationprocessing...common. They arise in areas such as expert systems and other artificial intelligence systems. In recent years, the computer science language PROLOG has...cal processors should in principle be well suited for : I artificial intelligence applications. In recent years, symbolic logic processing. , the

  20. Intelligent computer-aided training and tutoring

    NASA Technical Reports Server (NTRS)

    Loftin, R. Bowen; Savely, Robert T.

    1991-01-01

    Specific autonomous training systems based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground-based support personnel that demonstrate an alternative to current training systems are described. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer-Aided Training (ICAT) systems would provide, for the trainee, much of the same experience that could be gained from the best on-the-job training. By integrating domain expertise with a knowledge of appropriate training methods, an ICAT session should duplicate, as closely as possible, the trainee undergoing on-the-job training in the task environment, benefitting from the full attention of a task expert who is also an expert trainer. Thus, the philosophy of the ICAT system is to emulate the behavior of an experienced individual devoting his full time and attention to the training of a novice - proposing challenging training scenarios, monitoring and evaluating the actions of the trainee, providing meaningful comments in response to trainee errors, responding to trainee requests for information, giving hints (if appropriate), and remembering the strengths and weaknesses displayed by the trainee so that appropriate future exercises can be designed.

  1. The 1988 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James (Editor); Hughes, Peter (Editor)

    1988-01-01

    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools/methodologies.

  2. The role of artificial intelligence and expert systems in increasing STS operations productivity

    NASA Technical Reports Server (NTRS)

    Culbert, C.

    1985-01-01

    Artificial Intelligence (AI) is discussed. A number of the computer technologies pioneered in the AI world can make significant contributions to increasing STS operations productivity. Application of expert systems, natural language, speech recognition, and other key technologies can reduce manpower while raising productivity. Many aspects of STS support lend themselves to this type of automation. The artificial intelligence section of the mission planning and analysis division has developed a number of functioning prototype systems which demonstrate the potential gains of applying AI technology.

  3. Abstraction and reformulation in artificial intelligence.

    PubMed Central

    Holte, Robert C.; Choueiry, Berthe Y.

    2003-01-01

    This paper contributes in two ways to the aims of this special issue on abstraction. The first is to show that there are compelling reasons motivating the use of abstraction in the purely computational realm of artificial intelligence. The second is to contribute to the overall discussion of the nature of abstraction by providing examples of the abstraction processes currently used in artificial intelligence. Although each type of abstraction is specific to a somewhat narrow context, it is hoped that collectively they illustrate the richness and variety of abstraction in its fullest sense. PMID:12903653

  4. Abstraction and reformulation in artificial intelligence.

    PubMed

    Holte, Robert C; Choueiry, Berthe Y

    2003-07-29

    This paper contributes in two ways to the aims of this special issue on abstraction. The first is to show that there are compelling reasons motivating the use of abstraction in the purely computational realm of artificial intelligence. The second is to contribute to the overall discussion of the nature of abstraction by providing examples of the abstraction processes currently used in artificial intelligence. Although each type of abstraction is specific to a somewhat narrow context, it is hoped that collectively they illustrate the richness and variety of abstraction in its fullest sense.

  5. AAAI (American Association on Artificial Intelligence) Workshop on AI (Artificial Intelligence) Simulation Held in Philadelphia, Pennsylvania on August 11, 1986,

    DTIC Science & Technology

    1986-08-01

    is then applied in i ABSTRCT : ,.:,.vu knowledge acquisition from those multiple sources for a specific design, for example, an expert system for...67. N 181.1 47.U3 a75 269;9.6 % A. %3 3 Genetic Explanations: For the concept of a genetic explanation (see .d -. above) to apply to the Gaither...Simulation Research Unit (Acock,1985; Baker,1983; Baker,1985). -. MD’,EX srves as an inner shell for apPlying Artificial Intelligence and E:pert System

  6. Artificial intelligence based models for stream-flow forecasting: 2000-2015

    NASA Astrophysics Data System (ADS)

    Yaseen, Zaher Mundher; El-shafie, Ahmed; Jaafar, Othman; Afan, Haitham Abdulmohsin; Sayl, Khamis Naba

    2015-11-01

    The use of Artificial Intelligence (AI) has increased since the middle of the 20th century as seen in its application in a wide range of engineering and science problems. The last two decades, for example, has seen a dramatic increase in the development and application of various types of AI approaches for stream-flow forecasting. Generally speaking, AI has exhibited significant progress in forecasting and modeling non-linear hydrological applications and in capturing the noise complexity in the dataset. This paper explores the state-of-the-art application of AI in stream-flow forecasting, focusing on defining the data-driven of AI, the advantages of complementary models, as well as the literature and their possible future application in modeling and forecasting stream-flow. The review also identifies the major challenges and opportunities for prospective research, including, a new scheme for modeling the inflow, a novel method for preprocessing time series frequency based on Fast Orthogonal Search (FOS) techniques, and Swarm Intelligence (SI) as an optimization approach.

  7. Reasoning methods in medical consultation systems: artificial intelligence approaches.

    PubMed

    Shortliffe, E H

    1984-01-01

    It has been argued that the problem of medical diagnosis is fundamentally ill-structured, particularly during the early stages when the number of possible explanations for presenting complaints can be immense. This paper discusses the process of clinical hypothesis evocation, contrasts it with the structured decision making approaches used in traditional computer-based diagnostic systems, and briefly surveys the more open-ended reasoning methods that have been used in medical artificial intelligence (AI) programs. The additional complexity introduced when an advice system is designed to suggest management instead of (or in addition to) diagnosis is also emphasized. Example systems are discussed to illustrate the key concepts.

  8. Artificial intelligence applied to process signal analysis

    NASA Technical Reports Server (NTRS)

    Corsberg, Dan

    1988-01-01

    Many space station processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect of the human/machine interface is the analysis and display of process information. Human operators can be overwhelmed by large clusters of alarms that inhibit their ability to diagnose and respond to a disturbance. Using artificial intelligence techniques and a knowledge base approach to this problem, the power of the computer can be used to filter and analyze plant sensor data. This will provide operators with a better description of the process state. Once a process state is recognized, automatic action could be initiated and proper system response monitored.

  9. The application of artificial intelligence techniques to large distributed networks

    NASA Technical Reports Server (NTRS)

    Dubyah, R.; Smith, T. R.; Star, J. L.

    1985-01-01

    Data accessibility and transfer of information, including the land resources information system pilot, are structured as large computer information networks. These pilot efforts include the reduction of the difficulty to find and use data, reducing processing costs, and minimize incompatibility between data sources. Artificial Intelligence (AI) techniques were suggested to achieve these goals. The applicability of certain AI techniques are explored in the context of distributed problem solving systems and the pilot land data system (PLDS). The topics discussed include: PLDS and its data processing requirements, expert systems and PLDS, distributed problem solving systems, AI problem solving paradigms, query processing, and distributed data bases.

  10. Research and applications: Artificial intelligence

    NASA Technical Reports Server (NTRS)

    Raphael, B.; Fikes, R. E.; Chaitin, L. J.; Hart, P. E.; Duda, R. O.; Nilsson, N. J.

    1971-01-01

    A program of research in the field of artificial intelligence is presented. The research areas discussed include automatic theorem proving, representations of real-world environments, problem-solving methods, the design of a programming system for problem-solving research, techniques for general scene analysis based upon television data, and the problems of assembling an integrated robot system. Major accomplishments include the development of a new problem-solving system that uses both formal logical inference and informal heuristic methods, the development of a method of automatic learning by generalization, and the design of the overall structure of a new complete robot system. Eight appendices to the report contain extensive technical details of the work described.

  11. Entropy based file type identification and partitioning

    DTIC Science & Technology

    2017-06-01

    energy spectrum,” Proceedings of the Twenty-Ninth International Florida Artificial Intelligence Research Society Conference, pp. 288–293, 2016...ABBREVIATIONS AES Advanced Encryption Standard ANN Artificial Neural Network ASCII American Standard Code for Information Interchange CWT...the identification of file types and file partitioning. This approach has applications in cybersecurity as it allows for a quick determination of

  12. A development framework for distributed artificial intelligence

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Cottman, Bruce H.

    1989-01-01

    The authors describe distributed artificial intelligence (DAI) applications in which multiple organizations of agents solve multiple domain problems. They then describe work in progress on a DAI system development environment, called SOCIAL, which consists of three primary language-based components. The Knowledge Object Language defines models of knowledge representation and reasoning. The metaCourier language supplies the underlying functionality for interprocess communication and control access across heterogeneous computing environments. The metaAgents language defines models for agent organization coordination, control, and resource management. Application agents and agent organizations will be constructed by combining metaAgents and metaCourier building blocks with task-specific functionality such as diagnostic or planning reasoning. This architecture hides implementation details of communications, control, and integration in distributed processing environments, enabling application developers to concentrate on the design and functionality of the intelligent agents and agent networks themselves.

  13. Testing the applicability of artificial intelligence techniques to the subject of erythemal ultraviolet solar radiation. Part two: an intelligent system based on multi-classifier technique.

    PubMed

    Elminir, Hamdy K; Own, Hala S; Azzam, Yosry A; Riad, A M

    2008-03-28

    The problem we address here describes the on-going research effort that takes place to shed light on the applicability of using artificial intelligence techniques to predict the local noon erythemal UV irradiance in the plain areas of Egypt. In light of this fact, we use the bootstrap aggregating (bagging) algorithm to improve the prediction accuracy reported by a multi-layer perceptron (MLP) network. The results showed that, the overall prediction accuracy for the MLP network was only 80.9%. When bagging algorithm is used, the accuracy reached 94.8%; an improvement of about 13.9% was achieved. These improvements demonstrate the efficiency of the bagging procedure, and may be used as a promising tool at least for the plain areas of Egypt.

  14. Third Conference on Artificial Intelligence for Space Applications, part 2

    NASA Technical Reports Server (NTRS)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed.

  15. Tuberculosis control, and the where and why of artificial intelligence

    PubMed Central

    Falzon, Dennis; Thomas, Bruce V.; Temesgen, Zelalem; Sadasivan, Lal; Raviglione, Mario

    2017-01-01

    Countries aiming to reduce their tuberculosis (TB) burden by 2035 to the levels envisaged by the World Health Organization End TB Strategy need to innovate, with approaches such as digital health (electronic and mobile health) in support of patient care, surveillance, programme management, training and communication. Alongside the large-scale roll-out required for such interventions to make a significant impact, products must stay abreast of advancing technology over time. The integration of artificial intelligence into new software promises to make processes more effective and efficient, endowing them with a potential hitherto unimaginable. Users can benefit from artificial intelligence-enabled pattern recognition software for tasks ranging from reading radiographs to adverse event monitoring, sifting through vast datasets to personalise a patient's care plan or to customise training materials. Many experts forecast the imminent transformation of the delivery of healthcare services. We discuss how artificial intelligence and machine learning could revolutionise the management of TB. PMID:28656130

  16. Artificial Intelligence in Cardiology.

    PubMed

    Johnson, Kipp W; Torres Soto, Jessica; Glicksberg, Benjamin S; Shameer, Khader; Miotto, Riccardo; Ali, Mohsin; Ashley, Euan; Dudley, Joel T

    2018-06-12

    Artificial intelligence and machine learning are poised to influence nearly every aspect of the human condition, and cardiology is not an exception to this trend. This paper provides a guide for clinicians on relevant aspects of artificial intelligence and machine learning, reviews selected applications of these methods in cardiology to date, and identifies how cardiovascular medicine could incorporate artificial intelligence in the future. In particular, the paper first reviews predictive modeling concepts relevant to cardiology such as feature selection and frequent pitfalls such as improper dichotomization. Second, it discusses common algorithms used in supervised learning and reviews selected applications in cardiology and related disciplines. Third, it describes the advent of deep learning and related methods collectively called unsupervised learning, provides contextual examples both in general medicine and in cardiovascular medicine, and then explains how these methods could be applied to enable precision cardiology and improve patient outcomes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Tuberculosis control, and the where and why of artificial intelligence.

    PubMed

    Doshi, Riddhi; Falzon, Dennis; Thomas, Bruce V; Temesgen, Zelalem; Sadasivan, Lal; Migliori, Giovanni Battista; Raviglione, Mario

    2017-04-01

    Countries aiming to reduce their tuberculosis (TB) burden by 2035 to the levels envisaged by the World Health Organization End TB Strategy need to innovate, with approaches such as digital health (electronic and mobile health) in support of patient care, surveillance, programme management, training and communication. Alongside the large-scale roll-out required for such interventions to make a significant impact, products must stay abreast of advancing technology over time. The integration of artificial intelligence into new software promises to make processes more effective and efficient, endowing them with a potential hitherto unimaginable. Users can benefit from artificial intelligence-enabled pattern recognition software for tasks ranging from reading radiographs to adverse event monitoring, sifting through vast datasets to personalise a patient's care plan or to customise training materials. Many experts forecast the imminent transformation of the delivery of healthcare services. We discuss how artificial intelligence and machine learning could revolutionise the management of TB.

  18. The Importance of Artificial Intelligence for Naval Intelligence Training Simulations

    DTIC Science & Technology

    2006-09-01

    experimental investigation described later. B. SYSTEM ARCHITECTURE The game-based simulator was created using NetBeans , which is an open source integrated...development environment (IDE) written entirely in Java using the NetBeans Platform. NetBeans is based upon the Java language which contains the...involved within the simulation are conducted in a GUI built within the NetBeans IDE. The opening display allows the user to setup the simulation

  19. Qualitative and Quantitative Proofs of Security Properties

    DTIC Science & Technology

    2013-04-01

    Naples, Italy (September 2012) – Australasian Joint Conference on Artifical Intelligence (December 2012). • Causality, Responsibility, and Blame...realistic solution concept, Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), 2009, pp. 153–158. 17. J...Conference on Artificial Intelligence (AAAI-12), 2012, pp. 1917-1923. 29. J. Y. Halpern and S. Leung, Weighted sets of probabilities and minimax

  20. Bibliography of Research in Natural Language Generation

    DTIC Science & Technology

    1993-11-01

    on 1397] Barbara J. Gross Focuing and description in Artifcial Intelligence (GWAI-88), Geseke, West natural language dialogues, In Joshi et al. (557...Proceedings of the Fifth Canadian Conference from information in a frame structure. Data and on Artificial Intelligence , pages Ŕ-24, London, Knowledge...generation workshops (IWNLGS, ENLGWS), natural language processing conferences (ANLP, TINLAP, SPEECH), artificial intelligence conferences (AAAI, SCA

  1. High-Level Connectionist Models

    DTIC Science & Technology

    1993-04-01

    The Ohio State University, Columbus Ohio. To appearto Artifcial Life IlL Angeline, P., Saunders, G., Pollack, J. (1993). An evolutionary algorithm...of Robotics and Automation, 2(1):14-23. Brooks, R. A. (1991). Intelligence without representations. Artificial Intelligence , 47:139- 159. Connell, J. H...1990). Minimalist Mobile Robotics: A Colony-style Architecture for an Creature, Volume 5 of Perspectives in Artificial Intelligence . Academic Press

  2. Repairing Learned Knowledge Using Experience

    DTIC Science & Technology

    1990-05-01

    34 Artifcial Intelligence Journal, vol. 19, no. 3. Winston, Patrick Henry (1984], Artificial Intelligence , Second Edition, Addison-Wesley. Analogical...process speeds up future problem solving, but the scope of the learni ng- augmented theory remains unchanged. In con- (continued on back) PD D J7 1473...Distribution/ Avaiability Codes Avail and/or .Dist Special MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A.I. Memo No. 1231

  3. Temporal Reasoning and Default Logics.

    DTIC Science & Technology

    1985-10-01

    Aritificial Intelligence ", Computer Science Research Report, Yale University, forthcoming (1985). . 74 .-, A Axioms for Describing Persistences and Clipping...34Circumscription - A Form of Non-Monotonic Reasoning", Artificial Intelligence , vol. 13 (1980), pp. 27-39. [13] McCarthy, John, "Applications of...and P. J. Hayes, "Some philosophical problems from the standpoint of artificial intelligence ", in: B. Meltzer and D. Michie (eds.), Machine

  4. Robot Programming.

    DTIC Science & Technology

    1982-12-01

    Paris, France, June, 1982, 519-530. Latoinbe, J. C. "Equipe Intelligence Artificielle et Robotique: Etat d’avancement des recherches," Laboratoire...8217AD-A127 233 ROBOT PROGRRMMING(U) MASSACHUSETTS INST OFGTECHi/ CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB T LOZANO-PEREZ UNCLASSIFIED DC8 AI-9 N884...NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Intelligence Laboratory AREA I WORK UNIT NUMBERS ,. 545 Technology Square Cambridge

  5. Artificial intelligence applications in the intensive care unit.

    PubMed

    Hanson, C W; Marshall, B E

    2001-02-01

    To review the history and current applications of artificial intelligence in the intensive care unit. The MEDLINE database, bibliographies of selected articles, and current texts on the subject. The studies that were selected for review used artificial intelligence tools for a variety of intensive care applications, including direct patient care and retrospective database analysis. All literature relevant to the topic was reviewed. Although some of the earliest artificial intelligence (AI) applications were medically oriented, AI has not been widely accepted in medicine. Despite this, patient demographic, clinical, and billing data are increasingly available in an electronic format and therefore susceptible to analysis by intelligent software. Individual AI tools are specifically suited to different tasks, such as waveform analysis or device control. The intensive care environment is particularly suited to the implementation of AI tools because of the wealth of available data and the inherent opportunities for increased efficiency in inpatient care. A variety of new AI tools have become available in recent years that can function as intelligent assistants to clinicians, constantly monitoring electronic data streams for important trends, or adjusting the settings of bedside devices. The integration of these tools into the intensive care unit can be expected to reduce costs and improve patient outcomes.

  6. Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction.

    PubMed

    Park, Seong Ho; Han, Kyunghwa

    2018-03-01

    The use of artificial intelligence in medicine is currently an issue of great interest, especially with regard to the diagnostic or predictive analysis of medical images. Adoption of an artificial intelligence tool in clinical practice requires careful confirmation of its clinical utility. Herein, the authors explain key methodology points involved in a clinical evaluation of artificial intelligence technology for use in medicine, especially high-dimensional or overparameterized diagnostic or predictive models in which artificial deep neural networks are used, mainly from the standpoints of clinical epidemiology and biostatistics. First, statistical methods for assessing the discrimination and calibration performances of a diagnostic or predictive model are summarized. Next, the effects of disease manifestation spectrum and disease prevalence on the performance results are explained, followed by a discussion of the difference between evaluating the performance with use of internal and external datasets, the importance of using an adequate external dataset obtained from a well-defined clinical cohort to avoid overestimating the clinical performance as a result of overfitting in high-dimensional or overparameterized classification model and spectrum bias, and the essentials for achieving a more robust clinical evaluation. Finally, the authors review the role of clinical trials and observational outcome studies for ultimate clinical verification of diagnostic or predictive artificial intelligence tools through patient outcomes, beyond performance metrics, and how to design such studies. © RSNA, 2018.

  7. The Biological Relevance of Artificial Life: Lessons from Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano

    2000-01-01

    There is no fundamental reason why A-life couldn't simply be a branch of computer science that deals with algorithms that are inspired by, or emulate biological phenomena. However, if these are the limits we place on this field, we miss the opportunity to help advance Theoretical Biology and to contribute to a deeper understanding of the nature of life. The history of Artificial Intelligence provides a good example, in that early interest in the nature of cognition quickly was lost to the process of building tools, such as "expert systems" that, were certainly useful, but provided little insight in the nature of cognition. Based on this lesson, I will discuss criteria for increasing the biological relevance of A-life and the probability that this field may provide a theoretical foundation for Biology.

  8. Intelligent Computer-Aided Instruction for Medical Diagnosis

    PubMed Central

    Clancey, William J.; Shortliffe, Edward H.; Buchanan, Bruce G.

    1979-01-01

    An intelligent computer-aided instruction (ICAI) program, named GUIDON, has been developed for teaching infectious disease diagnosis.* ICAI programs use artificial intelligence techniques for representing both subject material and teaching strategies. This paper briefly outlines the difference between traditional instructional programs and ICAI. We then illustrate how GUIDON makes contributions in areas important to medical CAI: interacting with the student in a mixed-initiative dialogue (including the problems of feedback and realism), teaching problem-solving strategies, and assembling a computer-based curriculum.

  9. Experiments in Schema-Driven Interpretation of a Natural Scene

    DTIC Science & Technology

    1980-04-01

    Intilliaence, "rbilisi, USSR; 1975, pp. 483-490. EFEL743 JzA. Feldman and Y. Yakimovsky, "Deciesion Theorg and Artificiel Int lligence:, I. A Semantics-Based...lTra. ttern i a Machine Intelligence , Vol. PAMI-., Janua’ry 1980 p’p. 16-27. CRIS743 E.M. Riseman and A.R. Hanson, "I)eign o’f a Semanticall...Machine Intelligence , School of Artificial Intelligence , University of Edinburgh, 1974. tUHR723 L. Uhr, "Layered ’Recognition Cone’ Networks That

  10. Toward a Theory of Representation Design

    DTIC Science & Technology

    1989-05-01

    understanding. This report describes research done at the Artificial Inteligence Laboratory of the Massachusetts Institute of Technology. Support for this...AD-A210 885 Technical Report 1128 Toward a Theory of Representation Design Jeffrey Van Baale MIT Artificial Intelligence Laboratory DTIC ELECTE A... Artificial Intelligence Laboratory 545 Technology Square Cambridge, MA 02139 11. CONTROLLING OFFICE NAME AND ADDRESS 11. REPORT DATE Advanced Research

  11. A Memory-Process Model of Symbolic Assimilation

    DTIC Science & Technology

    1974-04-01

    Systems: Final Report of a Study Group, published for Artificial Intellegence by North-Holland/Amorican...contribution of the methods is answered by evaluating the same program in the context of the field of artificial intelligence. The remainder of the...been widely demonstrated on a diversity of tasks in tha history of artificial intelligence. See [r.71], chapter 2. Given a particular task to be

  12. Supporting Organizational Problem Solving with a Workstation.

    DTIC Science & Technology

    1982-07-01

    G. [., and Sussman, G. J. AMORD: Explicit Control or Reasoning. In Proceedings of the Symposium on Artificial Intellignece and Programming Languagues...0505 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Intelligence Laboratory AREA& WORK UNIT NUMBERS 545...extending ideas from the field of Artificial Intelligence (A), we describ office work as a problem solving activity. A knowledge embedding language called

  13. Identification and interpretation of patterns in rocket engine data: Artificial intelligence and neural network approaches

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry

    1989-01-01

    This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events, and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system. The artificial intelligence approach is useful because it provides (1) the use of human experts' knowledge of sensor behavior and faulty engine conditions in interpreting data; (2) the use of engine design knowledge and physical sensor locations in establishing relationships among the events of multiple sensors; (3) the use of stored analysis of past data of faulty engine conditions; and (4) the use of knowledge-based reasoning in distinguishing sensor failure from actual faults. The neural network approach appears promising because neural nets (1) can be trained on extremely noisy data and produce classifications which are more robust under noisy conditions than other classification techniques; (2) avoid the necessity of noise removal by digital filtering and therefore avoid the need to make assumptions about frequency bands or other signal characteristics of anomalous behavior; (3) can, in effect, generate their own feature detectors based on the characteristics of the sensor data used in training; and (4) are inherently parallel and therefore are potentially implementable in special-purpose parallel hardware.

  14. Role of artificial intelligence in the care of patients with nonsmall cell lung cancer.

    PubMed

    Rabbani, Mohamad; Kanevsky, Jonathan; Kafi, Kamran; Chandelier, Florent; Giles, Francis J

    2018-04-01

    Lung cancer is the leading cause of cancer death worldwide. In up to 57% of patients, it is diagnosed at an advanced stage and the 5-year survival rate ranges between 10%-16%. There has been a significant amount of research using machine learning to generate tools using patient data to improve outcomes. This narrative review is based on research material obtained from PubMed up to Nov 2017. The search terms include "artificial intelligence," "machine learning," "lung cancer," "Nonsmall Cell Lung Cancer (NSCLC)," "diagnosis" and "treatment." Recent studies support the use of computer-aided systems and the use of radiomic features to help diagnose lung cancer earlier. Other studies have looked at machine learning (ML) methods that offer prognostic tools to doctors and help them in choosing personalized treatment options for their patients based on molecular, genetics and histological features. Combining artificial intelligence approaches into health care may serve as a beneficial tool for patients with NSCLC, and this review outlines these benefits and current shortcomings throughout the continuum of care. We present a review of the various applications of ML methods in NSCLC as it relates to improving diagnosis, treatment and outcomes. © 2018 Stichting European Society for Clinical Investigation Journal Foundation.

  15. Third Conference on Artificial Intelligence for Space Applications, part 1

    NASA Technical Reports Server (NTRS)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1987-01-01

    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.

  16. On the Need for Artificial Intelligence and Advanced Test and Evaluation Methods for Space Exploration

    NASA Astrophysics Data System (ADS)

    Scheidt, D. H.; Hibbitts, C. A.; Chen, M. H.; Paxton, L. J.; Bekker, D. L.

    2017-02-01

    Implementing mature artificial intelligence would create the ability to significantly increase the science return from a mission, while potentially saving costs in mission and instrument operations, and solving currently intractable problems.

  17. Artificial intelligence: Learning to play Go from scratch

    NASA Astrophysics Data System (ADS)

    Singh, Satinder; Okun, Andy; Jackson, Andrew

    2017-10-01

    An artificial-intelligence program called AlphaGo Zero has mastered the game of Go without any human data or guidance. A computer scientist and two members of the American Go Association discuss the implications. See Article p.354

  18. Intelligent Processing Equipment Within the Environmental Protection Agency

    NASA Technical Reports Server (NTRS)

    Greathouse, Daniel G.; Nalesnik, Richard P.

    1992-01-01

    Protection of the environment and environmental remediation requires the cooperation, at all levels, of government and industry. Intelligent processing equipment, in addition to other artificial intelligence based tools, was used by the Environmental Protection Agency to provide personnel safety and improve the efficiency of those responsible for protection and remediation of the environment. These exploratory efforts demonstrate the feasibility and utility of expanding development and widespread use of these tools. A survey of current intelligent processing equipment applications in the Agency is presented and is followed by a brief discussion of possible uses in the future.

  19. Optimization of knowledge-based systems and expert system building tools

    NASA Technical Reports Server (NTRS)

    Yasuda, Phyllis; Mckellar, Donald

    1993-01-01

    The objectives of the NASA-AMES Cooperative Agreement were to investigate, develop, and evaluate, via test cases, the system parameters and processing algorithms that constrain the overall performance of the Information Sciences Division's Artificial Intelligence Research Facility. Written reports covering various aspects of the grant were submitted to the co-investigators for the grant. Research studies concentrated on the field of artificial intelligence knowledge-based systems technology. Activities included the following areas: (1) AI training classes; (2) merging optical and digital processing; (3) science experiment remote coaching; (4) SSF data management system tests; (5) computer integrated documentation project; (6) conservation of design knowledge project; (7) project management calendar and reporting system; (8) automation and robotics technology assessment; (9) advanced computer architectures and operating systems; and (10) honors program.

  20. FEX: A Knowledge-Based System For Planimetric Feature Extraction

    NASA Astrophysics Data System (ADS)

    Zelek, John S.

    1988-10-01

    Topographical planimetric features include natural surfaces (rivers, lakes) and man-made surfaces (roads, railways, bridges). In conventional planimetric feature extraction, a photointerpreter manually interprets and extracts features from imagery on a stereoplotter. Visual planimetric feature extraction is a very labour intensive operation. The advantages of automating feature extraction include: time and labour savings; accuracy improvements; and planimetric data consistency. FEX (Feature EXtraction) combines techniques from image processing, remote sensing and artificial intelligence for automatic feature extraction. The feature extraction process co-ordinates the information and knowledge in a hierarchical data structure. The system simulates the reasoning of a photointerpreter in determining the planimetric features. Present efforts have concentrated on the extraction of road-like features in SPOT imagery. Keywords: Remote Sensing, Artificial Intelligence (AI), SPOT, image understanding, knowledge base, apars.

  1. Complexity, Heuristic, and Search Analysis for the Games of Crossings and Epaminondas

    DTIC Science & Technology

    2014-03-27

    research in Artifical Intelligence (Section 2.1) and why games are studied (Section 2.2). Section 2.3 discusses how games are played and solved. An...5 2.1 Games in Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Game Study...Artificial Intelligence UCT Upper Confidence Bounds applied to Trees HUCT Heuristic Guided UCT LOA Lines of Action UCB Upper Confidence Bound RAVE Rapid

  2. Ontological Engineering and Mapping in Multiagent Systems Development

    DTIC Science & Technology

    2002-03-01

    for knowledge engineering or artificial intelligence . Nicola Guarino compares the various definitions and the differences in their meaning in...act upon the environment through effectors [Russel and Norvig 1995]. An intelligent agent is an agent that takes the best possible action in a...situation in order to accomplish its goals. Determining what exactly characterizes the best possible action splits the field of artificial intelligence

  3. Communication and Attitude Revision

    DTIC Science & Technology

    1992-01-01

    Conference on Aritificial Intelligence , (1989) 1074- 1079 3. Clark, H., Marshal, C.: Definite reference and mutual knowledge. In Joshi, A., Sag, I.. and...21st Annual Meeting of the ACL (1983) 57-63 9. Konolige, K.: On the relation between default and autoepistemic logic. Artificial Intelligence 35(3...reasoning. Artificial Intelligence 13 (1980) 81-132 16. Richmond Thomason. Accommodation, meaning, and implicature. In Cohen, P., Morgan, J., and

  4. Coordination in Distributed Intelligent Systems Applications

    DTIC Science & Technology

    2009-12-13

    working in the area of Distributed Artificial Intelligence (DAI) unanimously endorses the idea that coordination - a fundamental paradigm - represents a...using the distributed artificial intelligence paradigm. Section 4 discusses the healthcare applications. On the other hand, Section 5 describes...coordination mechanisms should be used is in the control of swarms of UA Vs (unmanned aerial vehicles). The UAVs are considered in this case as highly mobile

  5. Parallel Logic Programming and Parallel Systems Software and Hardware

    DTIC Science & Technology

    1989-07-29

    Conference, Dallas TX. January 1985. (55) [Rous75] Roussel, P., "PROLOG: Manuel de Reference et d’Uilisation", Group d’ Intelligence Artificielle , Universite d...completed. Tools were provided for software development using artificial intelligence techniques. Al software for massively parallel architectures was...using artificial intelligence tech- niques. Al software for massively parallel architectures was started. 1. Introduction We describe research conducted

  6. Artificial Intelligence for the Artificial Kidney: Pointers to the Future of a Personalized Hemodialysis Therapy.

    PubMed

    Hueso, Miguel; Vellido, Alfredo; Montero, Nuria; Barbieri, Carlo; Ramos, Rosa; Angoso, Manuel; Cruzado, Josep Maria; Jonsson, Anders

    2018-02-01

    Current dialysis devices are not able to react when unexpected changes occur during dialysis treatment or to learn about experience for therapy personalization. Furthermore, great efforts are dedicated to develop miniaturized artificial kidneys to achieve a continuous and personalized dialysis therapy, in order to improve the patient's quality of life. These innovative dialysis devices will require a real-time monitoring of equipment alarms, dialysis parameters, and patient-related data to ensure patient safety and to allow instantaneous changes of the dialysis prescription for the assessment of their adequacy. The analysis and evaluation of the resulting large-scale data sets enters the realm of "big data" and will require real-time predictive models. These may come from the fields of machine learning and computational intelligence, both included in artificial intelligence, a branch of engineering involved with the creation of devices that simulate intelligent behavior. The incorporation of artificial intelligence should provide a fully new approach to data analysis, enabling future advances in personalized dialysis therapies. With the purpose to learn about the present and potential future impact on medicine from experts in artificial intelligence and machine learning, a scientific meeting was organized in the Hospital Universitari Bellvitge (L'Hospitalet, Barcelona). As an outcome of that meeting, the aim of this review is to investigate artificial intel ligence experiences on dialysis, with a focus on potential barriers, challenges, and prospects for future applications of these technologies. Artificial intelligence research on dialysis is still in an early stage, and the main challenge relies on interpretability and/or comprehensibility of data models when applied to decision making. Artificial neural networks and medical decision support systems have been used to make predictions about anemia, total body water, or intradialysis hypotension and are promising approaches for the prescription and monitoring of hemodialysis therapy. Current dialysis machines are continuously improving due to innovative technological developments, but patient safety is still a key challenge. Real-time monitoring systems, coupled with automatic instantaneous biofeedback, will allow changing dialysis prescriptions continuously. The integration of vital sign monitoring with dialysis parameters will produce large data sets that will require the use of data analysis techniques, possibly from the area of machine learning, in order to make better decisions and increase the safety of patients.

  7. An Artificial Intelligence Approach to Analyzing Student Errors in Statistics.

    ERIC Educational Resources Information Center

    Sebrechts, Marc M.; Schooler, Lael J.

    1987-01-01

    Describes the development of an artificial intelligence system called GIDE that analyzes student errors in statistics problems by inferring the students' intentions. Learning strategies involved in problem solving are discussed and the inclusion of goal structures is explained. (LRW)

  8. Ethical Implications of an Experiment in Artificial Intelligence.

    ERIC Educational Resources Information Center

    Levinson, Stephen E.

    2003-01-01

    Revisits the classic debate on whether there can be an artificial creation that behaves and uses language with intelligence and agency. Argues that many moral and spiritual objections to this notion are not grounded either ethically or empirically. (Author/VWL)

  9. Making Computers Smarter: A Look At the Controversial Field of Artificial Intelligence.

    ERIC Educational Resources Information Center

    Green, John O.

    1984-01-01

    Defines artificial intelligence (AI) and discusses its history; the current state of the art, research, experimentation, and practical applications; and probable future developments. Key dates in the history of AI and eight references are provided. (MBR)

  10. A Modular Artificial Intelligence Inference Engine System (MAIS) for support of on orbit experiments

    NASA Technical Reports Server (NTRS)

    Hancock, Thomas M., III

    1994-01-01

    This paper describes a Modular Artificial Intelligence Inference Engine System (MAIS) support tool that would provide health and status monitoring, cognitive replanning, analysis and support of on-orbit Space Station, Spacelab experiments and systems.

  11. 1988 Goddard Conference on Space Applications of Artificial Intelligence, Greenbelt, MD, May 24, 1988, Proceedings

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1988-01-01

    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools methodologies.

  12. The Toulmin Argument Model in Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Verheij, Bart

    In 1958, Toulmin published The Uses of Argument. Although this anti-formalistic monograph initially received mixed reviews (see section 2 of [20] for Toulmin’s own recounting of the reception of his book), it has become a classical text on argumentation, and the number of references to the book (when writing these words1 —by a nice numerological coincidence—1958) continues to grow (see [7] and the special issue of Argumentation 2005; Vol. 19, No. 3). Also the field of Artificial Intelligence has discovered Toulmin’s work. Especially four of Toulmin’s themes have found follow-up in Artificial Intelligence.

  13. The application of artificial intelligence for the identification of the maceral groups and mineral components of coal

    NASA Astrophysics Data System (ADS)

    Mlynarczuk, Mariusz; Skiba, Marta

    2017-06-01

    The correct and consistent identification of the petrographic properties of coal is an important issue for researchers in the fields of mining and geology. As part of the study described in this paper, investigations concerning the application of artificial intelligence methods for the identification of the aforementioned characteristics were carried out. The methods in question were used to identify the maceral groups of coal, i.e. vitrinite, inertinite, and liptinite. Additionally, an attempt was made to identify some non-organic minerals. The analyses were performed using pattern recognition techniques (NN, kNN), as well as artificial neural network techniques (a multilayer perceptron - MLP). The classification process was carried out using microscopy images of polished sections of coals. A multidimensional feature space was defined, which made it possible to classify the discussed structures automatically, based on the methods of pattern recognition and algorithms of the artificial neural networks. Also, from the study we assessed the impact of the parameters for which the applied methods proved effective upon the final outcome of the classification procedure. The result of the analyses was a high percentage (over 97%) of correct classifications of maceral groups and mineral components. The paper discusses also an attempt to analyze particular macerals of the inertinite group. It was demonstrated that using artificial neural networks to this end makes it possible to classify the macerals properly in over 91% of cases. Thus, it was proved that artificial intelligence methods can be successfully applied for the identification of selected petrographic features of coal.

  14. Northeast Artificial Intelligence Consortium Annual Report 1987. Volume 2, Part B. Discussing, Using, and Recognizing Plans

    DTIC Science & Technology

    1989-03-01

    1978. Williams. B.C. Qualitative Analysis of MOS Circuits. Artificial Inteligence . 1984. 24.. Wilson. K. From Association to Structure. Amsterdam:North...D-A208 378 RADC-TR-88-324, Vol II (of nine), Part B Interim Report March 1969 4. NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT 1987...II (of nine), Part B 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Northeast Artificial (ff ’aolicbl

  15. Remote Agent Experiment

    NASA Technical Reports Server (NTRS)

    Benard, Doug; Dorais, Gregory A.; Gamble, Ed; Kanefsky, Bob; Kurien, James; Millar, William; Muscettola, Nicola; Nayak, Pandu; Rouquette, Nicolas; Rajan, Kanna; hide

    2000-01-01

    Remote Agent (RA) is a model-based, reusable artificial intelligence (At) software system that enables goal-based spacecraft commanding and robust fault recovery. RA was flight validated during an experiment on board of DS1 between May 17th and May 21th, 1999.

  16. Mission scheduling

    NASA Technical Reports Server (NTRS)

    Gaspin, Christine

    1989-01-01

    How a neural network can work, compared to a hybrid system based on an operations research and artificial intelligence approach, is investigated through a mission scheduling problem. The characteristic features of each system are discussed.

  17. JPRS Report, East Europe

    DTIC Science & Technology

    1987-12-08

    34 artificial intelligence," on which we will also rely in the future, but once again, experience has shown that the smallest error in the construction...Western press presents such accidents as the transformation of the advantages of artificial intelligence into tragedies of artificial stupidity...life more tellingly than the recent studies con- cerning the ozone "void" discovered by satellites over the two poles, or the effects of the

  18. Adaptive Modeling and Real-Time Simulation

    DTIC Science & Technology

    1984-01-01

    34 Artificial Inteligence , Vol. 13, pp. 27-39 (1980). Describes circumscription which is just the assumption that everything that is known to have a particular... Artificial Intelligence Truth Maintenance Planning Resolution Modeling Wcrld Models ~ .. ~2.. ASSTR AT (Coninue n evrse sieIf necesaran Identfy by...represents a marriage of (1) the procedural-network st, planning technology developed in artificial intelligence with (2) the PERT/CPM technology developed in

  19. LISP on a Reduced-Instruction-Set-Processor,

    DTIC Science & Technology

    1986-01-01

    Digital * Press, 1984. 19. Steele, G. L. Jr., and Sussman, G.J. LAMBDA : The Ultimate Imperative. Al Memo 353, MIT, Artificial ,, Inteligence Laboratory...procedure B is No 444, MIT Artificial Intelligence Laboratory, August, recursive, if procedure A can be reexecuted before the call 1977. returns. This...the programs Artificial Intelligence Programming. Lawrence Erlbaum use apply and eval, and of these three only frl uses eval Associates, Hillsdale, New

  20. Artificial Intelligence: A Selected Bibliography.

    ERIC Educational Resources Information Center

    Smith, Linda C., Comp.

    1984-01-01

    This 19-item annotated bibliography introducing the literature of artificial intelligence (AI) is arranged by type of material--handbook, books (general interest, textbooks, collected readings), journals and newsletters, and conferences and workshops. The availability of technical reports from AI laboratories at universities and private companies…

  1. Artificial Intelligence in Speech Understanding: Two Applications at C.R.I.N.

    ERIC Educational Resources Information Center

    Carbonell, N.; And Others

    1986-01-01

    This article explains how techniques of artificial intelligence are applied to expert systems for acoustic-phonetic decoding, phonological interpretation, and multi-knowledge sources for man-machine dialogue implementation. The basic ideas are illustrated with short examples. (Author/JDH)

  2. Artificial Intelligence: Underlying Assumptions and Basic Objectives.

    ERIC Educational Resources Information Center

    Cercone, Nick; McCalla, Gordon

    1984-01-01

    Presents perspectives on methodological assumptions underlying research efforts in artificial intelligence (AI) and charts activities, motivations, methods, and current status of research in each of the major AI subareas: natural language understanding; computer vision; expert systems; search, problem solving, planning; theorem proving and logic…

  3. Artificial Intelligence and Expert Systems.

    ERIC Educational Resources Information Center

    Lawlor, Joseph

    Artificial intelligence (AI) is the field of scientific inquiry concerned with designing machine systems that can simulate human mental processes. The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering. Some of the…

  4. Counseling, Artificial Intelligence, and Expert Systems.

    ERIC Educational Resources Information Center

    Illovsky, Michael E.

    1994-01-01

    Considers the use of artificial intelligence and expert systems in counseling. Limitations are explored; candidates for counseling versus those for expert systems are discussed; programming considerations are reviewed; and techniques for dealing with rational, nonrational, and irrational thoughts and feelings are described. (Contains 46…

  5. Thinking, Creativity, and Artificial Intelligence.

    ERIC Educational Resources Information Center

    DeSiano, Michael; DeSiano, Salvatore

    This document provides an introduction to the relationship between the current knowledge of focused and creative thinking and artificial intelligence. A model for stages of focused and creative thinking gives: problem encounter/setting, preparation, concentration/incubation, clarification/generation and evaluation/judgment. While a computer can…

  6. Demonstrating artificial intelligence for space systems - Integration and project management issues

    NASA Technical Reports Server (NTRS)

    Hack, Edmund C.; Difilippo, Denise M.

    1990-01-01

    As part of its Systems Autonomy Demonstration Project (SADP), NASA has recently demonstrated the Thermal Expert System (TEXSYS). Advanced real-time expert system and human interface technology was successfully developed and integrated with conventional controllers of prototype space hardware to provide intelligent fault detection, isolation, and recovery capability. Many specialized skills were required, and responsibility for the various phases of the project therefore spanned multiple NASA centers, internal departments and contractor organizations. The test environment required communication among many types of hardware and software as well as between many people. The integration, testing, and configuration management tools and methodologies which were applied to the TEXSYS project to assure its safe and successful completion are detailed. The project demonstrated that artificial intelligence technology, including model-based reasoning, is capable of the monitoring and control of a large, complex system in real time.

  7. Analysis of image thresholding segmentation algorithms based on swarm intelligence

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Lu, Kai; Gao, Yinghui; Yang, Bo

    2013-03-01

    Swarm intelligence-based image thresholding segmentation algorithms are playing an important role in the research field of image segmentation. In this paper, we briefly introduce the theories of four existing image segmentation algorithms based on swarm intelligence including fish swarm algorithm, artificial bee colony, bacteria foraging algorithm and particle swarm optimization. Then some image benchmarks are tested in order to show the differences of the segmentation accuracy, time consumption, convergence and robustness for Salt & Pepper noise and Gaussian noise of these four algorithms. Through these comparisons, this paper gives qualitative analyses for the performance variance of the four algorithms. The conclusions in this paper would give a significant guide for the actual image segmentation.

  8. Modelling intelligent behavior

    NASA Technical Reports Server (NTRS)

    Green, H. S.; Triffet, T.

    1993-01-01

    An introductory discussion of the related concepts of intelligence and consciousness suggests criteria to be met in the modeling of intelligence and the development of intelligent materials. Methods for the modeling of actual structure and activity of the animal cortex have been found, based on present knowledge of the ionic and cellular constitution of the nervous system. These have led to the development of a realistic neural network model, which has been used to study the formation of memory and the process of learning. An account is given of experiments with simple materials which exhibit almost all properties of biological synapses and suggest the possibility of a new type of computer architecture to implement an advanced type of artificial intelligence.

  9. Modeling of biological intelligence for SCM system optimization.

    PubMed

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  10. Modeling of Biological Intelligence for SCM System Optimization

    PubMed Central

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724

  11. Using Crowdsourced Geospatial Data to Aid in Nuclear Proliferation Monitoring

    DTIC Science & Technology

    2016-12-01

    M. Stephens, and Ronald D. Bonnell, “DAI for Document Retrieval: The MINDS Project,” in Distributed Artificial Intelligence , ed. Michael N. Huhns...Ronald D. Bonnell. “DAI for Document Retrieval: The MINDS Project,” In Distributed Artificial Intelligence , edited by Michael N. Huhns, 249–283...was for the director of National Intelligence to explore ways that crowdsourced geospatial imagery technologies could aid existing governmental

  12. DATA MAYHEM VERSUS NIMBLE INFORMATION: TRANSFORMING HECTIC IMAGERY INTELLIGENCE DATA INTO ACTIONABLE INFORMATION USING ARTIFICIAL NEURAL NETWORKS

    DTIC Science & Technology

    2017-10-01

    AU/ACSC/MORALES/AY17 AIR COMMAND AND STAFF COLLEGE DISTANCE LEARNING AIR UNIVERSITY DATA MAYHEM VERSUS NIMBLE INFORMATION : TRANSFORMING...HECTIC IMAGERY INTELLIGENCE DATA INTO ACTIONABLE INFORMATION USING ARTIFICIAL NEURAL NETWORKS by Luis A. Morales, Major, USAF A Research...finding solutions to compliment and supplement human analysts’ capacity, so intelligence and information can reach operators and end-users at the

  13. List of U.S. Army Research Institute Research and Technical Publications. Fiscal Year 2006

    DTIC Science & Technology

    2007-08-01

    performance support systems and computer-generated simulations powered by artificial intelligence , and super-broad bandwidth. We then present a set of...dialogue, Artificial Intelligence SBIR Phase I Report 61 FY 2006 Books and Book Chapters Durlach, P.J., Neuman, J.L., & Bowens, L.D...mediation of the social intelligence -social performance relationship by social knowledge, was supported for three out of five social performance

  14. The Analysis of Nominal Compounds,

    DTIC Science & Technology

    1985-12-01

    34Phenomenologically plausible parsing" in Proceedings of the 1984 American Association for Aritificial Intelligence Conference, pp. 335-339. 27 Wilensky, R...34December, 1985 - CPTM #8 LJ _DTIC -5ELECTE’ DEC 1 6 198M This series of internal memos describes research in E artificial intelligence conducted under...representational techniques for natural language that have evolved in linguistics and artificial intelligence , it is difficult to find much uniformity in the

  15. Issues in Adaptive Planning

    DTIC Science & Technology

    1986-06-30

    approach to the application of theorem proving to problem solving, Aritificial Intelligence 2 (1Q71), 18Q- 208. 4. Fikes, R., Hart, P. and Nilsson, N...by emphasizing the structure of knowledge. 1.2. Planning Literature The earliest work in planning in Artificial Intelligence grew out of the work on...References 1. Newell, A., Artificial Intelligence and the concept of mind, in Computer models of thought and language, Schank, R. and Colby, K. (editor

  16. Constraint-Directed Search: A Case Study of Job-Shop Scheduling.

    DTIC Science & Technology

    1983-12-13

    Structures But Were Unable to Represent", Proceedings of the American Association for Aritificial Intelligence , pp. 212-214, Stanford University...under these constraints raises a number of issues of interest to the artificial intelligence community such as: - knowledge representation semantics for...Management Science 15 2.3. Artificial Intelligence 17 2.4. Relationship to Previous Research 21 3. ISIS Modeling System 23 3.1. Introduction 24 3.2. Layer

  17. Framework for Evolutionary Development of an Autonomous Expert System for Acoustically Identifying Classifications of Vessels

    DTIC Science & Technology

    1989-01-01

    completely autonomous system. SOMMIIRE Une exp6rience en intelligence artificielle (IA) en cours au CRDA vise la misc au point 6ventuelle d’un syst~me...identifying vessel classifications from 0aaV Mcute SOAifatwgms is the ultimate goal of Artificial Intelligence (Al) wod ?bhig- eouaduted -*DRAR~ An...Friendly Interface ..................................................................... 4 3 Concepts of Assistant and Autonomous Artificially Intelligent

  18. Logic Programming in LISP.

    DTIC Science & Technology

    1981-01-01

    THIS PAGZ(Whan Doee Es tMord) Item 20 (Cont’d) ------ work in the area of artificial intelligence and those used in general program development into a...Controlling Gfile) IS. SECURITY CLASS. (of tis report) Same .,/ UNCLASSIFIED 13d. DECLASSIFICATION/ DOWN GRADING ..- ". .--- /A!CHEDULEI t I IS...logic programming with LISP for implementing intelligent data base query systems. Continued developments will allow for enhancements to be made to the

  19. Defense Logistics Standard Systems Functional Requirements.

    DTIC Science & Technology

    1987-03-01

    Artificial Intelligence - the development of a machine capability to perform functions normally concerned with human intelligence, such as learning , adapting...Basic Data Base Machine Configurations .... ......... D- 18 xx ~ ?f~~~vX PART I: MODELS - DEFENSE LOGISTICS STANDARD SYSTEMS FUNCTIONAL REQUIREMENTS...On-line, Interactive Access. Integrating user input and machine output in a dynamic, real-time, give-and- take process is considered the optimum mode

  20. Programming model for distributed intelligent systems

    NASA Technical Reports Server (NTRS)

    Sztipanovits, J.; Biegl, C.; Karsai, G.; Bogunovic, N.; Purves, B.; Williams, R.; Christiansen, T.

    1988-01-01

    A programming model and architecture which was developed for the design and implementation of complex, heterogeneous measurement and control systems is described. The Multigraph Architecture integrates artificial intelligence techniques with conventional software technologies, offers a unified framework for distributed and shared memory based parallel computational models and supports multiple programming paradigms. The system can be implemented on different hardware architectures and can be adapted to strongly different applications.

  1. An application of artificial intelligence to the interpretation of mass spectra.

    NASA Technical Reports Server (NTRS)

    Buchanan, B. G.; Duffield, A. M.; Robertson, A. V.

    1971-01-01

    Description of the DENDRAL (Dendritic Algorithm) project, the objectives of which were to base the computer program on an alogorithm that generates an exhaustive, nonredundant list of all the structural isomers of a given chemical composition, and to devise a computer program that would perform an organic structure determination, given a molecular formula and a mass spectrum. This program is called 'Heuristic DENDRAL' and it operates by using the known structure/spectrum correlations to constrain the DENDRAL isomer generator to produce a single isomer for that composition. The collaboration of chemists and computer scientists has produced a tool of some practical utility from the chemical viewpoint, and an interesting program from the viewpoint of artificial intelligence.

  2. Artificial Intelligence In Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Vogel, Alison Andrews

    1991-01-01

    Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.

  3. Multi-modulus algorithm based on global artificial fish swarm intelligent optimization of DNA encoding sequences.

    PubMed

    Guo, Y C; Wang, H; Wu, H P; Zhang, M Q

    2015-12-21

    Aimed to address the defects of the large mean square error (MSE), and the slow convergence speed in equalizing the multi-modulus signals of the constant modulus algorithm (CMA), a multi-modulus algorithm (MMA) based on global artificial fish swarm (GAFS) intelligent optimization of DNA encoding sequences (GAFS-DNA-MMA) was proposed. To improve the convergence rate and reduce the MSE, this proposed algorithm adopted an encoding method based on DNA nucleotide chains to provide a possible solution to the problem. Furthermore, the GAFS algorithm, with its fast convergence and global search ability, was used to find the best sequence. The real and imaginary parts of the initial optimal weight vector of MMA were obtained through DNA coding of the best sequence. The simulation results show that the proposed algorithm has a faster convergence speed and smaller MSE in comparison with the CMA, the MMA, and the AFS-DNA-MMA.

  4. Artificial intelligence (AI) based tactical guidance for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Mcmanus, John W.; Goodrich, Kenneth H.

    1990-01-01

    A research program investigating the use of artificial intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS), a second generation TDG, is presented. The knowledge-based systems used by CLAWS to aid in the tactical decision-making process are outlined in detail, and the results of tests to evaluate the performance of CLAWS versus a baseline TDG developed in FORTRAN to run in real time in the Langley Differential Maneuvering Simulator, are presented. To date, these test results have shown significant performance gains with respect to the TDG baseline in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify and maintain than the baseline FORTRAN TDG programs.

  5. Extensions to the Parallel Real-Time Artificial Intelligence System (PRAIS) for fault-tolerant heterogeneous cycle-stealing reasoning

    NASA Technical Reports Server (NTRS)

    Goldstein, David

    1991-01-01

    Extensions to an architecture for real-time, distributed (parallel) knowledge-based systems called the Parallel Real-time Artificial Intelligence System (PRAIS) are discussed. PRAIS strives for transparently parallelizing production (rule-based) systems, even under real-time constraints. PRAIS accomplished these goals (presented at the first annual C Language Integrated Production System (CLIPS) conference) by incorporating a dynamic task scheduler, operating system extensions for fact handling, and message-passing among multiple copies of CLIPS executing on a virtual blackboard. This distributed knowledge-based system tool uses the portability of CLIPS and common message-passing protocols to operate over a heterogeneous network of processors. Results using the original PRAIS architecture over a network of Sun 3's, Sun 4's and VAX's are presented. Mechanisms using the producer-consumer model to extend the architecture for fault-tolerance and distributed truth maintenance initiation are also discussed.

  6. Artificial intelligence - New tools for aerospace project managers

    NASA Technical Reports Server (NTRS)

    Moja, D. C.

    1985-01-01

    Artificial Intelligence (AI) is currently being used for business-oriented, money-making applications, such as medical diagnosis, computer system configuration, and geological exploration. The present paper has the objective to assess new AI tools and techniques which will be available to assist aerospace managers in the accomplishment of their tasks. A study conducted by Brown and Cheeseman (1983) indicates that AI will be employed in all traditional management areas, taking into account goal setting, decision making, policy formulation, evaluation, planning, budgeting, auditing, personnel management, training, legal affairs, and procurement. Artificial intelligence/expert systems are discussed, giving attention to the three primary areas concerned with intelligent robots, natural language interfaces, and expert systems. Aspects of information retrieval are also considered along with the decision support system, and expert systems for project planning and scheduling.

  7. Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments.

  8. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil

    PubMed Central

    Nunes, Matheus Henrique

    2016-01-01

    Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects. PMID:27187074

  9. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil.

    PubMed

    Nunes, Matheus Henrique; Görgens, Eric Bastos

    2016-01-01

    Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects.

  10. Intelligent supercomputers: the Japanese computer sputnik

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, G.

    1983-11-01

    Japan's government-supported fifth-generation computer project has had a pronounced effect on the American computer and information systems industry. The US firms are intensifying their research on and production of intelligent supercomputers, a combination of computer architecture and artificial intelligence software programs. While the present generation of computers is built for the processing of numbers, the new supercomputers will be designed specifically for the solution of symbolic problems and the use of artificial intelligence software. This article discusses new and exciting developments that will increase computer capabilities in the 1990s. 4 references.

  11. Application of decentralized cooperative problem solving in dynamic flexible scheduling

    NASA Astrophysics Data System (ADS)

    Guan, Zai-Lin; Lei, Ming; Wu, Bo; Wu, Ya; Yang, Shuzi

    1995-08-01

    The object of this study is to discuss an intelligent solution to the problem of task-allocation in shop floor scheduling. For this purpose, the technique of distributed artificial intelligence (DAI) is applied. Intelligent agents (IAs) are used to realize decentralized cooperation, and negotiation is realized by using message passing based on the contract net model. Multiple agents, such as manager agents, workcell agents, and workstation agents, make game-like decisions based on multiple criteria evaluations. This procedure of decentralized cooperative problem solving makes local scheduling possible. And by integrating such multiple local schedules, dynamic flexible scheduling for the whole shop floor production can be realized.

  12. Finding Creativity in an Artificial Artist

    ERIC Educational Resources Information Center

    Norton, David; Heath, Derrall; Ventura, Dan

    2013-01-01

    Creativity is an important component of human intelligence, and imbuing artificially intelligent systems with creativity is an interesting challenge. In particular, it is difficult to quantify (or even qualify) creativity. Recently, it has been suggested that conditions for attributing creativity to a system include: appreciation, imagination, and…

  13. Artificial Intelligence and CALL.

    ERIC Educational Resources Information Center

    Underwood, John H.

    The potential application of artificial intelligence (AI) to computer-assisted language learning (CALL) is explored. Two areas of AI that hold particular interest to those who deal with language meaning--knowledge representation and expert systems, and natural-language processing--are described and examples of each are presented. AI contribution…

  14. The Art of Artificial Intelligence. 1. Themes and Case Studies of Knowledge Engineering

    DTIC Science & Technology

    1977-08-01

    in scientific and medical inference illuminate the art of knowledge engineering and its parent science , Artificial Intelligence....The knowledge engineer practices the art of bringing the principles and tools of AI research to bear on difficult applications problems requiring

  15. Hybrid Applications Of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Borchardt, Gary C.

    1988-01-01

    STAR, Simple Tool for Automated Reasoning, is interactive, interpreted programming language for development and operation of artificial-intelligence application systems. Couples symbolic processing with compiled-language functions and data structures. Written in C language and currently available in UNIX version (NPO-16832), and VMS version (NPO-16965).

  16. Systems in Science: Modeling Using Three Artificial Intelligence Concepts.

    ERIC Educational Resources Information Center

    Sunal, Cynthia Szymanski; Karr, Charles L.; Smith, Coralee; Sunal, Dennis W.

    2003-01-01

    Describes an interdisciplinary course focusing on modeling scientific systems. Investigates elementary education majors' applications of three artificial intelligence concepts used in modeling scientific systems before and after the course. Reveals a great increase in understanding of concepts presented but inconsistent application. (Author/KHR)

  17. Database in Artificial Intelligence.

    ERIC Educational Resources Information Center

    Wilkinson, Julia

    1986-01-01

    Describes a specialist bibliographic database of literature in the field of artificial intelligence created by the Turing Institute (Glasgow, Scotland) using the BRS/Search information retrieval software. The subscription method for end-users--i.e., annual fee entitles user to unlimited access to database, document provision, and printed awareness…

  18. A Starter's Guide to Artificial Intelligence.

    ERIC Educational Resources Information Center

    McConnell, Barry A.; McConnell, Nancy J.

    1988-01-01

    Discussion of the history and development of artificial intelligence (AI) highlights a bibliography of introductory books on various aspects of AI, including AI programing; problem solving; automated reasoning; game playing; natural language; expert systems; machine learning; robotics and vision; critics of AI; and representative software. (LRW)

  19. Application of an artificial intelligence program to therapy of high-risk surgical patients.

    PubMed

    Patil, R S; Adibi, J; Shoemaker, W C

    1996-11-01

    We developed an artificial intelligence program from a large computerized database of hemodynamic and oxygen transport measurements together with prior studies defining survivors' values, outcome predictors, and a branched-chain decision tree. The artificial intelligence program was then tested on the data of 100 survivors and 100 nonsurvivors not used for the development of the program or other analyses. Using the predictor as a surrogate outcome measure, the therapy recommended by the program improved the predicted outcome 3.16% per therapeutic intervention while the actual therapy given increased outcome 1.86% in surviving patients; the artificial intelligence-recommended therapy improved outcome 7.9% in nonsurvivors, while the actual therapy given increased predicted outcome -0.29% in nonsurvivors (p < .05). There were fewer patients whose predicted outcome decreased after recommended treatment (14%) than after the actual therapy given (37%). Review of therapy recommended by the program did not reveal instances of inappropriate or potentially harmful recommendations.

  20. Teachers and artificial intelligence. The Logo connection.

    PubMed

    Merbler, J B

    1990-12-01

    This article describes a three-phase program for training special education teachers to teach Logo and artificial intelligence. Logo is derived from the LISP computer language and is relatively simple to learn and use, and it is argued that these factors make it an ideal tool for classroom experimentation in basic artificial intelligence concepts. The program trains teachers to develop simple demonstrations of artificial intelligence using Logo. The material that the teachers learn to teach is suitable as an advanced level topic for intermediate- through secondary-level students enrolled in computer competency or similar courses. The material emphasizes problem-solving and thinking skills using a nonverbal expressive medium (Logo), thus it is deemed especially appropriate for hearing-impaired children. It is also sufficiently challenging for academically talented children, whether hearing or deaf. Although the notion of teachers as programmers is controversial, Logo is relatively easy to learn, has direct implications for education, and has been found to be an excellent tool for empowerment-for both teachers and children.

  1. Artificial intelligence and robot responsibilities: innovating beyond rights.

    PubMed

    Ashrafian, Hutan

    2015-04-01

    The enduring innovations in artificial intelligence and robotics offer the promised capacity of computer consciousness, sentience and rationality. The development of these advanced technologies have been considered to merit rights, however these can only be ascribed in the context of commensurate responsibilities and duties. This represents the discernable next-step for evolution in this field. Addressing these needs requires attention to the philosophical perspectives of moral responsibility for artificial intelligence and robotics. A contrast to the moral status of animals may be considered. At a practical level, the attainment of responsibilities by artificial intelligence and robots can benefit from the established responsibilities and duties of human society, as their subsistence exists within this domain. These responsibilities can be further interpreted and crystalized through legal principles, many of which have been conserved from ancient Roman law. The ultimate and unified goal of stipulating these responsibilities resides through the advancement of mankind and the enduring preservation of the core tenets of humanity.

  2. Herbert: A Second Generation Mobile Robot.

    DTIC Science & Technology

    1988-01-01

    PROJECT. TASK S Artificial Inteligence Laboratory AREA A WORK UNIT NUMBERS ’ ~ 545 Technology Square Cambridge, MA 02139 11. CONTROLLING OFFICE NAME...AD-AI93 632 WMRT: A SECOND GENERTION MOBILE ROWT(U) / MASSACHUSETTS IMST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB R BROOKS ET AL .JAN l8 Al-M...MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A. I. Memo 1016 January, 1988 HERBERT: A SECOND GENERATION MOBILE ROBOT Rodney A

  3. 3D Object Recognition: Symmetry and Virtual Views

    DTIC Science & Technology

    1992-12-01

    NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATIONI Artificial Intelligence Laboratory REPORT NUMBER 545 Technology Square AIM 1409 Cambridge... ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING A.I. Memo No. 1409 December 1992 C.B.C.L. Paper No. 76 3D Object...research done within the Center for Biological and Computational Learning in the Department of Brain and Cognitive Sciences, and at the Artificial

  4. Artificial intelligence in the diagnosis of low back pain.

    PubMed

    Mann, N H; Brown, M D

    1991-04-01

    Computerized methods are used to recognize the characteristics of patient pain drawings. Artificial neural network (ANN) models are compared with expert predictions and traditional statistical classification methods when placing the pain drawings of low back pain patients into one of five clinically significant categories. A discussion is undertaken outlining the differences in these classifiers and the potential benefits of the ANN model as an artificial intelligence technique.

  5. Natural Object Categorization.

    DTIC Science & Technology

    1987-11-01

    6-A194 103 NATURAL OBJECT CATEGORIZATION(U) MASSACHUSETTS INST OF 1/3 TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB R F DBICK NOY 87 AI-TR-1091 NBSSI4...ORGANI1ZATION NAME AN40 ACORES$ 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Inteligence Laboratory AREA A WORK UNIT MUMBERS 545 Technology Square Cambridge...describes research done at the Department of Brain and Cognitive Sciences and the Artificial Intelligence Laboratory at the Massachusetts Institute of

  6. Foraging on the potential energy surface: a swarm intelligence-based optimizer for molecular geometry.

    PubMed

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel

    2012-11-21

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  7. Foraging on the potential energy surface: A swarm intelligence-based optimizer for molecular geometry

    NASA Astrophysics Data System (ADS)

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel

    2012-11-01

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  8. Proceedings of the 1986 IEEE international conference on systems, man and cybernetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    This book presents the papers given at a conference on man-machine systems. Topics considered at the conference included neural model-based cognitive theory and engineering, user interfaces, adaptive and learning systems, human interaction with robotics, decision making, the testing and evaluation of expert systems, software development, international conflict resolution, intelligent interfaces, automation in man-machine system design aiding, knowledge acquisition in expert systems, advanced architectures for artificial intelligence, pattern recognition, knowledge bases, and machine vision.

  9. Autonomous operations through onboard artificial intelligence

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  10. Application Of Artificial Intelligence To Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Steinle, Frank W., Jr.

    1989-01-01

    Report discusses potential use of artificial-intelligence systems to manage wind-tunnel test facilities at Ames Research Center. One of goals of program to obtain experimental data of better quality and otherwise generally increase productivity of facilities. Another goal to increase efficiency and expertise of current personnel and to retain expertise of former personnel. Third goal to increase effectiveness of management through more efficient use of accumulated data. System used to improve schedules of operation and maintenance of tunnels and other equipment, assignment of personnel, distribution of electrical power, and analysis of costs and productivity. Several commercial artificial-intelligence computer programs discussed as possible candidates for use.

  11. Fundamental research in artificial intelligence at NASA

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    This paper describes basic research at NASA in the field of artificial intelligence. The work is conducted at the Ames Research Center and the Jet Propulsion Laboratory, primarily under the auspices of the NASA-wide Artificial Intelligence Program in the Office of Aeronautics, Exploration and Technology. The research is aimed at solving long-term NASA problems in missions operations, spacecraft autonomy, preservation of corporate knowledge about NASA missions and vehicles, and management/analysis of scientific and engineering data. From a scientific point of view, the research is broken into the categories of: planning and scheduling; machine learning; and design of and reasoning about large-scale physical systems.

  12. Evolvable mathematical models: A new artificial Intelligence paradigm

    NASA Astrophysics Data System (ADS)

    Grouchy, Paul

    We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.

  13. Artificial Intelligence and Expert Systems Research and Their Possible Impact on Information Science.

    ERIC Educational Resources Information Center

    Borko, Harold

    1985-01-01

    Defines artificial intelligence (AI) and expert systems; describes library applications utilizing AI to automate creation of document representations, request formulations, and design and modify search strategies for information retrieval systems; discusses expert system development for information services; and reviews impact of these…

  14. Artificial Intelligence Applications to Videodisc Technology

    PubMed Central

    Vries, John K.; Banks, Gordon; McLinden, Sean; Moossy, John; Brown, Melanie

    1985-01-01

    Much of medical information is visual in nature. Since it is not easy to describe pictorial information in linguistic terms, it has been difficult to store and retrieve this type of information. Coupling videodisc technology with artificial intelligence programming techniques may provide a means for solving this problem.

  15. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; And Others

    1986-01-01

    Describes possible applications of new technologies to special education. Discusses results of a study designed to explore the use of robotics, artificial intelligence, and computer simulations to aid people with handicapping conditions. Presents several scenarios in which specific technological advances may contribute to special education…

  16. ICCE/ICCAI 2000 Full & Short Papers (Artificial Intelligence in Education).

    ERIC Educational Resources Information Center

    2000

    This document contains the full and short papers on artificial intelligence in education from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction) covering the following topics: a computational model for learners' motivation states in individualized tutoring system; a…

  17. Soar: A Unified Theory of Cognition?

    ERIC Educational Resources Information Center

    Waldrop, M. Mitchell

    1988-01-01

    Describes an artificial intelligence system known as SOAR that approximates a theory of human cognition. Discusses cognition as problem solving, working memory, long term memory, autonomy and adaptability, and learning from experience as they relate to artificial intelligence generally and to SOAR specifically. Highlights the status of the…

  18. Artificial Intelligence: The Expert Way.

    ERIC Educational Resources Information Center

    Bitter, Gary G.

    1989-01-01

    Discussion of artificial intelligence (AI) and expert systems focuses on their use in education. Characteristics of good expert systems are explained; computer software programs that contain applications of AI are described, highlighting one used to help educators identify learning-disabled students; and the future of AI is discussed. (LRW)

  19. Artificial Intelligence in ADA: Pattern-Directed Processing. Final Report.

    ERIC Educational Resources Information Center

    Reeker, Larry H.; And Others

    To demonstrate to computer programmers that the programming language Ada provides superior facilities for use in artificial intelligence applications, the three papers included in this report investigate the capabilities that exist within Ada for "pattern-directed" programming. The first paper (Larry H. Reeker, Tulane University) is…

  20. Artificial Intelligence Is for Real: Undergraduate Students Should Know about It.

    ERIC Educational Resources Information Center

    Liebowitz, Jay

    1988-01-01

    Discussion of the possibilities of introducing artificial intelligence (AI) into the undergraduate curriculum highlights the introduction of AI in an introduction to information processing course for business students at George Washington University. Topics discussed include robotics, expert systems prototyping in class, and the interdisciplinary…

Top