Science.gov

Sample records for artificial intelligence technology

  1. Advanced Artificial Intelligence Technology Testbed

    NASA Technical Reports Server (NTRS)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  2. Resources in Technology: Introduction to Artificial Intelligence.

    ERIC Educational Resources Information Center

    Technology Teacher, 1987

    1987-01-01

    Introduces the concept of artificial intelligence, discusses where it is currently used, and describes an expert computer system that can be used in the technology laboratory. Included is a learning activity that describes ideas for using intelligent computers as problem-solving tools. (Author/CH)

  3. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Information Technology Quarterly, 1985

    1985-01-01

    This issue of "Information Technology Quarterly" is devoted to the theme of "Artificial Intelligence." It contains two major articles: (1) Artificial Intelligence and Law" (D. Peter O'Neill and George D. Wood); (2) "Artificial Intelligence: A Long and Winding Road" (John J. Simon, Jr.). In addition, it contains two sidebars: (1) "Calculating and…

  4. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Information Technology Quarterly, 1985

    1985-01-01

    This issue of "Information Technology Quarterly" is devoted to the theme of "Artificial Intelligence." It contains two major articles: (1) Artificial Intelligence and Law" (D. Peter O'Neill and George D. Wood); (2) "Artificial Intelligence: A Long and Winding Road" (John J. Simon, Jr.). In addition, it contains two sidebars: (1) "Calculating and…

  5. Artificial Intelligence Applications to High-Technology Training.

    ERIC Educational Resources Information Center

    Dede, Christopher

    1987-01-01

    Discusses the use of artificial intelligence to improve occupational instruction in complex subjects with high performance goals, such as those required for high-technology jobs. Highlights include intelligent computer assisted instruction, examples in space technology training, intelligent simulation environments, and the need for adult training…

  6. The Potential Role of Artificial Intelligence Technology in Education.

    ERIC Educational Resources Information Center

    Salem, Abdel-Badeeh M.

    The field of Artificial Intelligence (AI) and Education has traditionally a technology-based focus, looking at the ways in which AI can be used in building intelligent educational software. In addition AI can also provide an excellent methodology for learning and reasoning from the human experiences. This paper presents the potential role of AI in…

  7. Artificial Intelligence and Educational Technology: A Natural Synergy. Extended Abstract.

    ERIC Educational Resources Information Center

    McCalla, Gordon I.

    Educational technology and artificial intelligence (AI) are natural partners in the development of environments to support human learning. Designing systems with the characteristics of a rich learning environment is the long term goal of research in intelligent tutoring systems (ITS). Building these characteristics into a system is extremely…

  8. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Waltz, David L.

    1982-01-01

    Describes kinds of results achieved by computer programs in artificial intelligence. Topics discussed include heuristic searches, artificial intelligence/psychology, planning program, backward chaining, learning (focusing on Winograd's blocks to explore learning strategies), concept learning, constraint propagation, language understanding…

  9. Artificial intelligence and nuclear power. Report by the Technology Transfer Artificial Intelligence Task Team

    SciTech Connect

    Not Available

    1985-06-01

    The Artificial Intelligence Task Team was organized to review the status of Artificial Intelligence (AI) technology, identify guidelines for AI work, and to identify work required to allow the nuclear industry to realize maximum benefit from this technology. The state of the nuclear industry was analyzed to determine where the application of AI technology could be of greatest benefit. Guidelines and criteria were established to focus on those particular problem areas where AI could provide the highest possible payoff to the industry. Information was collected from government, academic, and private organizations. Very little AI work is now being done to specifically support the nuclear industry. The AI Task Team determined that the establishment of a Strategic Automation Initiative (SAI) and the expansion of the DOE Technology Transfer program would ensure that AI technology could be used to develop software for the nuclear industry that would have substantial financial payoff to the industry. The SAI includes both long and short term phases. The short-term phase includes projects which would demonstrate that AI can be applied to the nuclear industry safely, and with substantial financial benefit. The long term phase includes projects which would develop AI technologies with specific applicability to the nuclear industry that would not be developed by people working in any other industry.

  10. Computers for artificial intelligence a technology assessment and forecast

    SciTech Connect

    Miller, R.K.

    1986-01-01

    This study reviews the development and current state-of-the-art in computers for artificial intelligence, including LISP machines, AI workstations, professional and engineering workstations, minicomputers, mainframes, and supercomputers. Major computer systems for AI applications are reviewed. The use of personal computers for expert system development is discussed, and AI software for the IBM PC, Texas Instrument Professional Computer, and Apple MacIntosh is presented. Current research aimed at developing a new computer for artificial intelligence is described, and future technological developments are discussed.

  11. Massachusetts Institute of Technology Artificial Intelligence Laboratory Bibliography.

    ERIC Educational Resources Information Center

    Massachusetts Inst. of Tech., Cambridge. Artificial Intelligence Lab.

    Massachusetts Institute of Technology (MIT) presents a bibliography of more than 350 reports, theses, and papers from its artificial intelligence laboratory. Title, author, and identification number are given for all items, and most also have a date and contract number. Some items are no longer available, and others may be obtained from National…

  12. Artificial intelligence technologies for power system operations. Final report

    SciTech Connect

    Talukdar, S.N.; Cardozo, E.

    1986-01-01

    Researchers in this study examined the potential of artificial intelligence (AI) technologies for improving problem-solving strategies in 16 power system operations. To demonstrate the use of AI in the area they considered most promising, contingency selection-security assessment, they also developed two programs - one to simulate network protection schemes, the other to diagnose faults.

  13. JPRS Report, Science & Technology, Japan, 7th Artificial Intelligence Symposium.

    DTIC Science & Technology

    1988-09-14

    294030 JPRS-JST-88-020 14 SEPTEMBER 1988 ■■■■■I ■■■■■fl FOREIGN BROADCAST INFORMATION SERVICE , JPRS Report— Science & Technology Japan...INSPECTED 6 SPRINGFIELD, VA. 22161 JPRS-JST-88-020 14 SEPTEMBER 1988 SCIENCE & TECHNOLOGY JAPAN 7th ARTIFICIAL INTELLIGENCE SYMPOSIUM...43063809a Tokyo DAINANAKAI CHISHIKI KOGAKU SYMPOSIUM in Japanese 22-23 Mar 88 pp 1-6 [Article by Shigenbu Kobayashi, Tokyo Institute of Technology , and

  14. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Thornburg, David D.

    1986-01-01

    Overview of the artificial intelligence (AI) field provides a definition; discusses past research and areas of future research; describes the design, functions, and capabilities of expert systems and the "Turing Test" for machine intelligence; and lists additional sources for information on artificial intelligence. Languages of AI are…

  15. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Thornburg, David D.

    1986-01-01

    Overview of the artificial intelligence (AI) field provides a definition; discusses past research and areas of future research; describes the design, functions, and capabilities of expert systems and the "Turing Test" for machine intelligence; and lists additional sources for information on artificial intelligence. Languages of AI are…

  16. Artificial Intelligence,

    DTIC Science & Technology

    PATTERN RECOGNITION, * ARTIFICIAL INTELLIGENCE , *TEXTBOOKS, COMPUTER PROGRAMMING, MATHEMATICAL LOGIC, ROBOTS, PROBLEM SOLVING, STATISTICAL ANALYSIS, GAME THEORY, NATURAL LANGUAGE, SELF ORGANIZING SYSTEMS.

  17. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Smith, Linda C.; And Others

    1988-01-01

    A series of articles focuses on artificial intelligence research and development to enhance information systems and services. Topics discussed include knowledge base designs, expert system development tools, natural language processing, expert systems for reference services, and the role that artificial intelligence concepts should have in…

  18. Natural language processing in psychiatry. Artificial intelligence technology and psychopathology.

    PubMed

    Garfield, D A; Rapp, C; Evens, M

    1992-04-01

    The potential benefit of artificial intelligence (AI) technology as a tool of psychiatry has not been well defined. In this essay, the technology of natural language processing and its position with regard to the two main schools of AI is clearly outlined. Past experiments utilizing AI techniques in understanding psychopathology are reviewed. Natural language processing can automate the analysis of transcripts and can be used in modeling theories of language comprehension. In these ways, it can serve as a tool in testing psychological theories of psychopathology and can be used as an effective tool in empirical research on verbal behavior in psychopathology.

  19. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Wash, Darrel Patrick

    1989-01-01

    Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)

  20. The application of artificial intelligence technology to aeronautical system design

    NASA Technical Reports Server (NTRS)

    Bouchard, E. E.; Kidwell, G. H.; Rogan, J. E.

    1988-01-01

    This paper describes the automation of one class of aeronautical design activity using artificial intelligence and advanced software techniques. Its purpose is to suggest concepts, terminology, and approaches that may be useful in enhancing design automation. By understanding the basic concepts and tasks in design, and the technologies that are available, it will be possible to produce, in the future, systems whose capabilities far exceed those of today's methods. Some of the tasks that will be discussed have already been automated and are in production use, resulting in significant productivity benefits. The concepts and techniques discussed are applicable to all design activity, though aeronautical applications are specifically presented.

  1. The application of artificial intelligence technology to aeronautical system design

    NASA Technical Reports Server (NTRS)

    Bouchard, E. E.; Kidwell, G. H.; Rogan, J. E.

    1988-01-01

    This paper describes the automation of one class of aeronautical design activity using artificial intelligence and advanced software techniques. Its purpose is to suggest concepts, terminology, and approaches that may be useful in enhancing design automation. By understanding the basic concepts and tasks in design, and the technologies that are available, it will be possible to produce, in the future, systems whose capabilities far exceed those of today's methods. Some of the tasks that will be discussed have already been automated and are in production use, resulting in significant productivity benefits. The concepts and techniques discussed are applicable to all design activity, though aeronautical applications are specifically presented.

  2. Artificial Intelligence.

    PubMed

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve.

  3. Advanced aerospace composite material structural design using artificial intelligent technology

    SciTech Connect

    Sun, S.H.; Chen, J.L.; Hwang, W.C.

    1993-12-31

    Due to the complexity in the prediction of property and behavior, composite material has not substituted for metal widely yet, though it has high specific-strength and high specific-modulus that are more important in the aerospace industry. In this paper two artificial intelligent techniques, the expert systems and neural network technology, were introduced to the structural design of composite material. Expert System which has good ability in symbolic processing can helps us to solve problem by saving experience and knowledge. It is, therefore, a reasonable way to combine expert system technology to tile composite structural design. The development of a prototype expert system to help designer during the process of composite structural design is presented. Neural network is a network similar to people`s brain that can simulate the thinking way of people and has the ability of learning from the training data by adapting the weights of network. Because of the bottleneck in knowledge acquisition processes, the application of neural network and its learning ability to strength design of composite structures are presented. Some examples are in this paper to demonstrate the idea.

  4. Web Intelligence and Artificial Intelligence in Education

    ERIC Educational Resources Information Center

    Devedzic, Vladan

    2004-01-01

    This paper surveys important aspects of Web Intelligence (WI) in the context of Artificial Intelligence in Education (AIED) research. WI explores the fundamental roles as well as practical impacts of Artificial Intelligence (AI) and advanced Information Technology (IT) on the next generation of Web-related products, systems, services, and…

  5. Web Intelligence and Artificial Intelligence in Education

    ERIC Educational Resources Information Center

    Devedzic, Vladan

    2004-01-01

    This paper surveys important aspects of Web Intelligence (WI) in the context of Artificial Intelligence in Education (AIED) research. WI explores the fundamental roles as well as practical impacts of Artificial Intelligence (AI) and advanced Information Technology (IT) on the next generation of Web-related products, systems, services, and…

  6. Artificial intelligence and robotics

    SciTech Connect

    Peden, I.C.; Braddock, J.V.; Brown, W.; Langendorf, R.M.

    1982-09-01

    This report examines the state-of-the-art in artificial intelligence and robotics technologies and their potential in terms of Army needs. Assessment includes battlefield technology, research and technology insertions, management considerations and recommendations related to research and development personnel, and recommendations regarding the Army's involvement in the automated plant.

  7. The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1995-01-01

    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  8. Artificial intelligence in nanotechnology.

    PubMed

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  9. Artificial intelligence in nanotechnology

    NASA Astrophysics Data System (ADS)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  10. Artificial intelligence within AFSC

    NASA Technical Reports Server (NTRS)

    Gersh, Mark A.

    1990-01-01

    Information on artificial intelligence research in the Air Force Systems Command is given in viewgraph form. Specific research that is being conducted at the Rome Air Development Center, the Space Technology Center, the Human Resources Laboratory, the Armstrong Aerospace Medical Research Laboratory, the Armamant Laboratory, and the Wright Research and Development Center is noted.

  11. Prediction of shipboard electromagnetic interference (EMI) problems using artificial intelligence (AI) technology

    NASA Technical Reports Server (NTRS)

    Swanson, David J.

    1990-01-01

    The electromagnetic interference prediction problem is characteristically ill-defined and complicated. Severe EMI problems are prevalent throughout the U.S. Navy, causing both expected and unexpected impacts on the operational performance of electronic combat systems onboard ships. This paper focuses on applying artificial intelligence (AI) technology to the prediction of ship related electromagnetic interference (EMI) problems.

  12. Keeping Pace with New Technology: An Introduction to Robotics, FORTH, and Artificial Intelligence.

    ERIC Educational Resources Information Center

    Reck, Gene

    A course was developed to introduce students at a community college to four major areas of emphasis in emerging technologies: FORTH programming language, elementary electronic theory, robotics, and artificial intelligence. After a needs assessment indicated the importance of such a course, a pretest focusing on the four areas was given to students…

  13. Keeping Pace with New Technology: An Introduction to Robotics, FORTH, and Artificial Intelligence.

    ERIC Educational Resources Information Center

    Reck, Gene

    A course was developed to introduce students at a community college to four major areas of emphasis in emerging technologies: FORTH programming language, elementary electronic theory, robotics, and artificial intelligence. After a needs assessment indicated the importance of such a course, a pretest focusing on the four areas was given to students…

  14. Installation and evaluation of a nuclear power plant operator advisor based on artificial intelligence technology

    SciTech Connect

    Hajek, B.K.; Miller, D.W.

    1989-06-20

    This report discusses the following topics on a Nuclear Power Plant operator advisor based on artificial Intelligence Technology; Workstation conversion; Software Conversion; V V Program Development Development; Simulator Interface Development; Knowledge Base Expansion; Dynamic Testing; Database Conversion; Installation at the Perry Simulator; Evaluation of Operator Interaction; Design of Man-Machine Interface; and Design of Maintenance Facility.

  15. Artificial Intelligence and Robotics.

    DTIC Science & Technology

    1984-02-01

    D-Ai42 488 ARTIFICIAL INEELLIGENCE AND ROBOTICS (U) MASSACHUSETTS i/1 INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB M BRADY FEB 84 AI-M-756...Subtile) S. TYPE OF REPORT A PERIOD COVERED Artificial Intelligence and Robotics 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(*) S. CONTRACT OR GRANT NUMBER...Identify by block niiniber) -. Since Robotics is the field concerned with the connection of perception to action, Artificial Intelligence must have a

  16. Artificial intelligence at CSM

    SciTech Connect

    Braun, G.; Jones, J.E.

    1985-08-01

    The recent developments in artificial intelligence have been cited as being the most significant technological advancement in computer science in the twentieth century. Machines that can mimic human reasoning will have a great impact upon our civilization. The way we think, learn, and work will be changed in a profound way. It is for these reasons that the Colorado School of Mines, in order to maintain its reputation of quality engineering education, has entered the AI field. CSM presently is evaluating artificial intelligence for applications in the mineral industries; decision support systems, process control, machine vision, data acquisition and analysis, etc. Future plans are to move AI out of the research laboratories and into the curriculum. An understanding of the concepts and unlimited power of the application of AI will enhance the engineering methods of Mines graduates. 6 references.

  17. Intelligent Assistance without Artificial Intelligence

    DTIC Science & Technology

    1986-09-01

    Software Objects 4 Ponur 2: Expeftmntal and Pub~c Databases 9 If -𔄁-7~~,- 5 - bnitefignit Assisftanc without Artficial Intel~lgencO ’WIL Kaiseirl...production-qlualty software eng**"eeringevimnmen that provide seemin~gly Intelligent assistance without equirling new breakthoughs In Al research. Themre...8217.cance of SMILF as an example of Intelligent assistance without artificial intelligence . * 2 . ~2 Aichlbtscmr S 1BEi Utended for use by small torns

  18. Intelligence: Real or artificial?

    PubMed Central

    Schlinger, Henry D.

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally referred to behavior-environment relations and not to inferred internal structures and processes. It is concluded that if workers in artificial intelligence are to succeed in their general goal, then they must design machines that are adaptive, that is, that can learn. Thus, artificial intelligence researchers must discard their essentialist model of natural intelligence and adopt a selectionist model instead. Such a strategic change should lead them to the science of behavior analysis. PMID:22477051

  19. STANFORD ARTIFICIAL INTELLIGENCE PROJECT.

    DTIC Science & Technology

    ARTIFICIAL INTELLIGENCE , GAME THEORY, DECISION MAKING, BIONICS, AUTOMATA, SPEECH RECOGNITION, GEOMETRIC FORMS, LEARNING MACHINES, MATHEMATICAL MODELS, PATTERN RECOGNITION, SERVOMECHANISMS, SIMULATION, BIBLIOGRAPHIES.

  20. Artificial intelligence: Recent developments

    SciTech Connect

    Not Available

    1987-01-01

    This book presents the papers given at a conference on artificial intelligence. Topics considered at the conference included knowledge representation for expert systems, the use of robots in underwater vehicles for resource management, precision logic, an expert system for arc welding, data base management, a knowledge based approach to fault trees, and computer-aided manufacturing using simulation combined with artificial intelligence.

  1. Application of Artificial Intelligence technology to the analysis and synthesis of reliable software systems

    NASA Technical Reports Server (NTRS)

    Wild, Christian; Eckhardt, Dave

    1987-01-01

    The development of a methodology for the production of highly reliable software is one of the greatest challenges facing the computer industry. Meeting this challenge will undoubtably involve the integration of many technologies. This paper describes the use of Artificial Intelligence technologies in the automated analysis of the formal algebraic specifications of abstract data types. These technologies include symbolic execution of specifications using techniques of automated deduction and machine learning through the use of examples. On-going research into the role of knowledge representation and problem solving in the process of developing software is also discussed.

  2. Application of Artificial Intelligence technology to the analysis and synthesis of reliable software systems

    NASA Technical Reports Server (NTRS)

    Wild, Christian; Eckhardt, Dave

    1987-01-01

    The development of a methodology for the production of highly reliable software is one of the greatest challenges facing the computer industry. Meeting this challenge will undoubtably involve the integration of many technologies. This paper describes the use of Artificial Intelligence technologies in the automated analysis of the formal algebraic specifications of abstract data types. These technologies include symbolic execution of specifications using techniques of automated deduction and machine learning through the use of examples. On-going research into the role of knowledge representation and problem solving in the process of developing software is also discussed.

  3. Applying artificial intelligence technology to support decision-making in nursing: A case study in Taiwan.

    PubMed

    Liao, Pei-Hung; Hsu, Pei-Ti; Chu, William; Chu, Woei-Chyn

    2015-06-01

    This study applied artificial intelligence to help nurses address problems and receive instructions through information technology. Nurses make diagnoses according to professional knowledge, clinical experience, and even instinct. Without comprehensive knowledge and thinking, diagnostic accuracy can be compromised and decisions may be delayed. We used a back-propagation neural network and other tools for data mining and statistical analysis. We further compared the prediction accuracy of the previous methods with an adaptive-network-based fuzzy inference system and the back-propagation neural network, identifying differences in the questions and in nurse satisfaction levels before and after using the nursing information system. This study investigated the use of artificial intelligence to generate nursing diagnoses. The percentage of agreement between diagnoses suggested by the information system and those made by nurses was as much as 87 percent. When patients are hospitalized, we can calculate the probability of various nursing diagnoses based on certain characteristics. © The Author(s) 2013.

  4. Heidegger and artificial intelligence

    SciTech Connect

    Diaz, G.

    1987-01-01

    The discipline of Artificial Intelligence, in its quest for machine intelligence, showed great promise as long as its areas of application were limited to problems of a scientific and situation neutral nature. The attempts to move beyond these problems to a full simulation of man's intelligence has faltered and slowed it progress, largely because of the inability of Artificial Intelligence to deal with human characteristic, such as feelings, goals, and desires. This dissertation takes the position that an impasse has resulted because Artificial Intelligence has never been properly defined as a science: its objects and methods have never been identified. The following study undertakes to provide such a definition, i.e., the required ground for Artificial Intelligence. The procedure and methods employed in this study are based on Heidegger's philosophy and techniques of analysis as developed in Being and Time. Results of this study show that both the discipline of Artificial Intelligence and the concerns of Heidegger in Being and Time have the same object; fundamental ontology. The application of Heidegger's conclusions concerning fundamental ontology unites the various aspects of Artificial Intelligence and provides the articulation which shows the parts of this discipline and how they are related.

  5. Artificial intelligence in medicine.

    PubMed Central

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167

  6. Artificial intelligence in medicine.

    PubMed

    Ramesh, A N; Kambhampati, C; Monson, J R T; Drew, P J

    2004-09-01

    Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting.

  7. Artificial Intelligence and Robotics.

    DTIC Science & Technology

    1982-09-20

    8217’AD-A122 414 ARTIFICIAL INTELLIGENCE AND ROBOTICS (.) ARMY SCIENCE 1/j 13OARD WA SH INGTON Od I C PEDEN ET AL. 20 SEP 82 UNCLASSIFIED F/G 15/3 NL LEE...AND ACQUISITION WASHINGTON, D. C. 20310 A RMY CIENCE BOARD AD HOC SUBGROUP REPORT ON ARTIFICIAL INTELLIGENCE AND ROBOTICS SEPTEMBER 1982 DTIC DEC 1 5...TITLE (aid Subtitle) S TYPE OF REPORT & PERIOD COVERED Army Science Board AHSG Report Final Artificial Intelligence and Robotics S. PERFORMING ORG

  8. Artificial intelligence and statistics

    SciTech Connect

    Gale, W.A.

    1987-01-01

    This book explores the possible applications of artificial intelligence in statistics and conversely, statistics in artificial intelligence. It is a collection of seventeen papers written by leaders in the field. Most of the papers were prepared for the Workshop on Artificial Intelligence and Statistics held in April 1985 and sponsored by ATandT Bell Laboratories. The book is divided into six parts: uncertainly propagation, clustering and learning, expert systems, environments for supporting statistical strategy, knowledge acquisition, and strategy. The editor ties the collection together in the first chapter by providing an overview of AI and statistics, discussing the Workshop, and exploring future research in the field.

  9. Invitation to artificial intelligence

    SciTech Connect

    D'heedene, R.N.

    1983-02-01

    Artificial intelligence (AI) is intelligence displayed by non-living objects, that is, machines. The possibility of creating intelligent machines has been a motivating force behind a great deal of computing machine development. The methods of AI are not only of historical interest, but are powerful in themselves. Artificial intelligence therefore deserves a prominent place in the undergraduate computer science curriculum. This paper discusses the pedagogical advantages of emphasizing AI in upper level courses, reasons for its present neglect, and the importance of introducing ai study. 5 references.

  10. Artificial intelligence and intelligent tutoring systems

    SciTech Connect

    Livergood, N.D.

    1989-01-01

    As a species we have evolved by increasing our mental and physical powers through the deliberate development and use of instruments that amplify our inherent capabilities. Whereas hereditarily given instincts predetermine the actions of lower animal forms, human existence begins with freedom. As humans we can choose what actions we will perform. We have invented a technology called education to prepare ourselves for life. At present, our educational structures and procedures are failing to prepare us efficiently for the demands of modern life. One of the most important new technologies, in relation to human development, is the digital computer. This dissertation proposes that artificial intelligence maintain a highly critical technological awareness. Artificial intelligence, because of its origin as a politically sponsored field of investigation, must strive for constant awareness of its place within the larger political-economic world and its possible misuse by factions intent on manipulation and control. Computerized models of the human mind could be used in developing progressively more sophisticated brainwashing systems. Intelligent tutoring systems comprise an important new technology within the field of artificial intelligence. This dissertation explores specification and design procedures, functions and issues in developing intelligent tutoring systems.

  11. Bibliography: Artificial Intelligence.

    ERIC Educational Resources Information Center

    Smith, Richard L.

    1986-01-01

    Annotates reference material on artificial intelligence, mostly at an introductory level, with applications to education and learning. Topics include: (1) programing languages; (2) expert systems; (3) language instruction; (4) tutoring systems; and (5) problem solving and reasoning. (JM)

  12. Introduction to artificial intelligence

    NASA Technical Reports Server (NTRS)

    Cheeseman, P.; Gevarter, W.

    1986-01-01

    This paper presents an introductory view of Artificial Intelligence (AI). In addition to defining AI, it discusses the foundations on which it rests, research in the field, and current and potential applications.

  13. Artificial Intelligence Study (AIS).

    DTIC Science & Technology

    1987-02-01

    ARTIFICIAL INTELLIGNECE HARDWARE ....... 2-50 AI Architecture ................................... 2-49 AI Hardware ....................................... 2...system: The synergy between discrete-event simulation and the approaches that programmers take to develop artifical - intelligence software took some...dated 28 October 1986 Subject: Army Artifical Intelligence Training Available at Fort Gordon) has indicated the availability of the following training

  14. Artificial intelligence: Human effects

    SciTech Connect

    Yazdani, M.; Narayanan, A.

    1984-01-01

    This book presents an up-to-date study of the interaction between the fast-growing discipline of artificial intelligence and other human endeavors. The volume explores the scope and limitations of computing, and presents a history of the debate on the possibility of machines achieving intelligence. The authors offer a state-of-the-art survey of Al, concentrating on the ''mind'' (language understanding) and the ''body'' (robotics) of intelligent computing systems.

  15. Artificial Intelligence and Vocational Education: An Impending Confluence.

    ERIC Educational Resources Information Center

    Roth, Gene L.; McEwing, Richard A.

    1986-01-01

    Reports on the relatively new field of artificial intelligence and its relationship to vocational education. Compares human intelligence with artificial intelligence. Discusses expert systems, natural language technology, and current trends. Lists potential applications for vocational education. (CH)

  16. Artificial Intelligence and Vocational Education: An Impending Confluence.

    ERIC Educational Resources Information Center

    Roth, Gene L.; McEwing, Richard A.

    1986-01-01

    Reports on the relatively new field of artificial intelligence and its relationship to vocational education. Compares human intelligence with artificial intelligence. Discusses expert systems, natural language technology, and current trends. Lists potential applications for vocational education. (CH)

  17. Increasing your artificial intelligence quotient

    SciTech Connect

    Hickingbottom-brown, B.

    1984-01-01

    Practical applications of artificial intelligence technology are now beginning to surface. They will change the way HRD professionals do their work and, in fact, may determine what work they do. The most notable features of AI are discussed, with particular reference to the impact of expert systems. 10 references.

  18. Artificial intelligence in hematology.

    PubMed

    Zini, Gina

    2005-10-01

    Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems.

  19. Introducing artificial intelligence

    SciTech Connect

    Simons, G.L.

    1985-01-01

    This book is an introduction to the field of artificial intelligence. The volume sets Al in a broad context of historical attitudes, imaginative insights, and ideas about intelligence in general. The author offers a wide-ranging survey of Al concerns, including cognition, knowledge engineering, problem inference, speech understanding, and perception. He also discusses expert systems, LISP, smart robots, and other Al products, and provides a listing of all major Al systems.

  20. Applications Of Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Trivedi, Mohan M.; Gilmore, John F.

    1986-03-01

    Intelligence evolves out of matter, so said the Sankhya philosophers of ancient India. The discipline of artificial intelligence (Al), which was established some 30 years ago, has confirmed the validity of the above assertion. Recently, a number of AI applications have been successfully demonstrated, generating a great deal of excitement and interest in scientific and technical circles. In this special issue of Optical Engineering a representative set of applications that incorporate Al principles is presented.

  1. Artificial intelligence in cardiology.

    PubMed

    Bonderman, Diana

    2017-10-04

    Decision-making is complex in modern medicine and should ideally be based on available data, structured knowledge and proper interpretation in the context of an individual patient. Automated algorithms, also termed artificial intelligence that are able to extract meaningful patterns from data collections and build decisions upon identified patterns may be useful assistants in clinical decision-making processes. In this article, artificial intelligence-based studies in clinical cardiology are reviewed. The text also touches on the ethical issues and speculates on the future roles of automated algorithms versus clinicians in cardiology and medicine in general.

  2. The Artificial Intelligence Applications to Learning Programme.

    ERIC Educational Resources Information Center

    Williams, Noel

    1992-01-01

    Explains the Artificial Intelligence Applications to Learning Programme, which was developed in the United Kingdom to explore and accelerate the use of artificial intelligence (AI) technologies in learning in both the educational and industrial sectors. Highlights include program evaluation, marketing, ownership of information, consortia, and cost…

  3. Artificial Intelligence and CALL.

    ERIC Educational Resources Information Center

    Underwood, John H.

    The potential application of artificial intelligence (AI) to computer-assisted language learning (CALL) is explored. Two areas of AI that hold particular interest to those who deal with language meaning--knowledge representation and expert systems, and natural-language processing--are described and examples of each are presented. AI contribution…

  4. Artificial Intelligence Project

    DTIC Science & Technology

    1990-01-01

    Computer Science, New Delhi, India , December 1986. (Also University of Texas, Artificial Intelligence Laboratory AITR-41, August 1987). Kumar, V. and...the Tenth ICAI ) A187-55 Expert Systems for Monitoring and Control, D. Dvorak, May 1987. Many large-scale industrial processes and services are

  5. Artificial intelligence and psychiatry.

    PubMed

    Servan-Schreiber, D

    1986-04-01

    This paper provides a brief historical introduction to the new field of artificial intelligence and describes some applications to psychiatry. It focuses on two successful programs: a model of paranoid processes and an expert system for the pharmacological management of depressive disorders. Finally, it reviews evidence in favor of computerized psychotherapy and offers speculations on the future development of research in this area.

  6. Artificial intelligence. Second edition

    SciTech Connect

    Winston, P.H.

    1984-01-01

    This book introduces the basic concepts of the field of artificial intelligence. It contains material covering the latest advances in control, representation, language, vision, and problem solving. Problem solving in design and analysis systems is addressed. Mitcell's version-space learning procedure, Morevec's reduced-images stereo procedure, and the Strips problem solver are covered.

  7. Artificial Intelligence and CALL.

    ERIC Educational Resources Information Center

    Underwood, John H.

    The potential application of artificial intelligence (AI) to computer-assisted language learning (CALL) is explored. Two areas of AI that hold particular interest to those who deal with language meaning--knowledge representation and expert systems, and natural-language processing--are described and examples of each are presented. AI contribution…

  8. Artificial intelligence technology assessment for the US Army Depot System Command

    SciTech Connect

    Pennock, K A

    1991-07-01

    This assessment of artificial intelligence (AI) has been prepared for the US Army's Depot System Command (DESCOM) by Pacific Northwest Laboratory. The report describes several of the more promising AI technologies, focusing primarily on knowledge-based systems because they have been more successful in commercial applications than any other AI technique. The report also identifies potential Depot applications in the areas of procedural support, scheduling and planning, automated inspection, training, diagnostics, and robotic systems. One of the principal objectives of the report is to help decisionmakers within DESCOM to evaluate AI as a possible tool for solving individual depot problems. The report identifies a number of factors that should be considered in such evaluations. 22 refs.

  9. Artificial intelligence and the future.

    PubMed

    Clocksin, William F

    2003-08-15

    We consider some of the ideas influencing current artificial-intelligence research and outline an alternative conceptual framework that gives priority to social relationships as a key component and constructor of intelligent behaviour. The framework starts from Weizenbaum's observation that intelligence manifests itself only relative to specific social and cultural contexts. This is in contrast to a prevailing view, which sees intelligence as an abstract capability of the individual mind based on a mechanism for rational thought. The new approach is not based on the conventional idea that the mind is a rational processor of symbolic information, nor does it require the idea that thought is a kind of abstract problem solving with a semantics that is independent of its embodiment. Instead, priority is given to affective and social responses that serve to engage the whole agent in the life of the communities in which it participates. Intelligence is seen not as the deployment of capabilities for problem solving, but as constructed by the continual, ever-changing and unfinished engagement with the social group within the environment. The construction of the identity of the intelligent agent involves the appropriation or 'taking up' of positions within the conversations and narratives in which it participates. Thus, the new approach argues that the intelligent agent is shaped by the meaning ascribed to experience, by its situation in the social matrix, and by practices of self and of relationship into which intelligent life is recruited. This has implications for the technology of the future, as, for example, classic artificial intelligence models such as goal-directed problem solving are seen as special cases of narrative practices instead of as ontological foundations.

  10. Rapid and accurate intraoperative pathological diagnosis by artificial intelligence with deep learning technology.

    PubMed

    Zhang, Jing; Song, Yanlin; Xia, Fan; Zhu, Chenjing; Zhang, Yingying; Song, Wenpeng; Xu, Jianguo; Ma, Xuelei

    2017-09-01

    Frozen section is widely used for intraoperative pathological diagnosis (IOPD), which is essential for intraoperative decision making. However, frozen section suffers from some drawbacks, such as time consuming and high misdiagnosis rate. Recently, artificial intelligence (AI) with deep learning technology has shown bright future in medicine. We hypothesize that AI with deep learning technology could help IOPD, with a computer trained by a dataset of intraoperative lesion images. Evidences supporting our hypothesis included the successful use of AI with deep learning technology in diagnosing skin cancer, and the developed method of deep-learning algorithm. Large size of the training dataset is critical to increase the diagnostic accuracy. The performance of the trained machine could be tested by new images before clinical use. Real-time diagnosis, easy to use and potential high accuracy were the advantages of AI for IOPD. In sum, AI with deep learning technology is a promising method to help rapid and accurate IOPD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Economics and artificial intelligence

    SciTech Connect

    Roos, J.L.

    1987-01-01

    This volume gives a overview of artificial intelligence and the use of computers in economics. Areas covered include statistics and macro economic forecasting, the use of automated techniques for economic studies and decision-making processes. The book looks at how much computers are used in business, and how far they will affect the design of markets and the structure of organizations in the future.

  12. Instructional Applications of Artificial Intelligence.

    ERIC Educational Resources Information Center

    Halff, Henry M.

    1986-01-01

    Surveys artificial intelligence and the development of computer-based tutors and speculates on the future of artificial intelligence in education. Includes discussion of the definitions of knowledge, expert systems (computer systems that solve tough technical problems), intelligent tutoring systems (ITS), and specific ITSs such as GUIDON, MYCIN,…

  13. Instructional Applications of Artificial Intelligence.

    ERIC Educational Resources Information Center

    Halff, Henry M.

    1986-01-01

    Surveys artificial intelligence and the development of computer-based tutors and speculates on the future of artificial intelligence in education. Includes discussion of the definitions of knowledge, expert systems (computer systems that solve tough technical problems), intelligent tutoring systems (ITS), and specific ITSs such as GUIDON, MYCIN,…

  14. The Use of Video Technology for the Fast-Prototyping of Artificially Intelligent Software.

    ERIC Educational Resources Information Center

    Klein, Gary L.

    This paper describes the use of video to provide a screenplay depiction of a proposed artificial intelligence software system. Advantages of such use are identified: (1) the video can be used to provide a clear conceptualization of the proposed system; (2) it can illustrate abstract technical concepts; (3) it can simulate the functions of the…

  15. THRESHOLD LOGIC IN ARTIFICIAL INTELLIGENCE

    DTIC Science & Technology

    COMPUTER LOGIC, ARTIFICIAL INTELLIGENCE , BIONICS, GEOMETRY, INPUT OUTPUT DEVICES, LINEAR PROGRAMMING, MATHEMATICAL LOGIC, MATHEMATICAL PREDICTION, NETWORKS, PATTERN RECOGNITION, PROBABILITY, SWITCHING CIRCUITS, SYNTHESIS

  16. Artificial Intelligence Applications for Education: Promise, ...Promises.

    ERIC Educational Resources Information Center

    Adams, Dennis M.; Hamm, Mary

    1988-01-01

    Surveys the current status of artificial intelligence (AI) technology. Discusses intelligent tutoring systems, robotics, and applications for educators. Likens the status of AI at present to that of aviation in the very early 1900s. States that educators need to be involved in future debates concerning AI. (CW)

  17. Artificial Intelligence Applications for Education: Promise, ...Promises.

    ERIC Educational Resources Information Center

    Adams, Dennis M.; Hamm, Mary

    1988-01-01

    Surveys the current status of artificial intelligence (AI) technology. Discusses intelligent tutoring systems, robotics, and applications for educators. Likens the status of AI at present to that of aviation in the very early 1900s. States that educators need to be involved in future debates concerning AI. (CW)

  18. Parallel multi-computers and artificial intelligence

    SciTech Connect

    Uhr, L.

    1986-01-01

    This book examines the present state and future direction of multicomputer parallel architectures for artificial intelligence research and development of artificial intelligence applications. The book provides a survey of the large variety of parallel architectures, describing the current state of the art and suggesting promising architectures to produce artificial intelligence systems such as intelligence systems such as intelligent robots. This book integrates artificial intelligence and parallel processing research areas and discusses parallel processing from the viewpoint of artificial intelligence.

  19. Artificial intelligence approaches to astronomical observation scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Miller, Glenn

    1988-01-01

    Automated scheduling will play an increasing role in future ground- and space-based observatory operations. Due to the complexity of the problem, artificial intelligence technology currently offers the greatest potential for the development of scheduling tools with sufficient power and flexibility to handle realistic scheduling situations. Summarized here are the main features of the observatory scheduling problem, how artificial intelligence (AI) techniques can be applied, and recent progress in AI scheduling for Hubble Space Telescope.

  20. Artificial intelligence in medicine.

    PubMed

    Hamet, Pavel; Tremblay, Johanne

    2017-04-01

    Artificial Intelligence (AI) is a general term that implies the use of a computer to model intelligent behavior with minimal human intervention. AI is generally accepted as having started with the invention of robots. The term derives from the Czech word robota, meaning biosynthetic machines used as forced labor. In this field, Leonardo Da Vinci's lasting heritage is today's burgeoning use of robotic-assisted surgery, named after him, for complex urologic and gynecologic procedures. Da Vinci's sketchbooks of robots helped set the stage for this innovation. AI, described as the science and engineering of making intelligent machines, was officially born in 1956. The term is applicable to a broad range of items in medicine such as robotics, medical diagnosis, medical statistics, and human biology-up to and including today's "omics". AI in medicine, which is the focus of this review, has two main branches: virtual and physical. The virtual branch includes informatics approaches from deep learning information management to control of health management systems, including electronic health records, and active guidance of physicians in their treatment decisions. The physical branch is best represented by robots used to assist the elderly patient or the attending surgeon. Also embodied in this branch are targeted nanorobots, a unique new drug delivery system. The societal and ethical complexities of these applications require further reflection, proof of their medical utility, economic value, and development of interdisciplinary strategies for their wider application. Copyright © 2017. Published by Elsevier Inc.

  1. A Primer on Artificial Intelligence.

    ERIC Educational Resources Information Center

    Leal, Ralph A.

    A survey of literature on recent advances in the field of artificial intelligence provides a comprehensive introduction to this field for the non-technical reader. Important areas covered are: (1) definitions, (2) the brain and thinking, (3) heuristic search, and (4) programing languages used in the research of artificial intelligence. Some…

  2. Artificial Intelligence and Language Comprehension.

    ERIC Educational Resources Information Center

    National Inst. of Education (DHEW), Washington, DC. Basic Skills Group. Learning Div.

    The three papers in this volume concerning artificial intelligence and language comprehension were commissioned by the National Institute of Education to further the understanding of the cognitive processes that enable people to comprehend what they read. The first paper, "Artificial Intelligence and Language Comprehension," by Terry Winograd,…

  3. In Pursuit of Artificial Intelligence.

    ERIC Educational Resources Information Center

    Watstein, Sarah; Kesselman, Martin

    1986-01-01

    Defines artificial intelligence and reviews current research in natural language processing, expert systems, and robotics and sensory systems. Discussion covers current commercial applications of artificial intelligence and projections of uses and limitations in library technical and public services, e.g., in cataloging and online information and…

  4. What Is Artificial Intelligence Anyway?

    ERIC Educational Resources Information Center

    Kurzweil, Raymond

    1985-01-01

    Examines the past, present, and future status of Artificial Intelligence (AI). Acknowledges the limitations of AI but proposes possible areas of application and further development. Urges a concentration on the unique strengths of machine intelligence rather than a copying of human intelligence. (ML)

  5. What Is Artificial Intelligence Anyway?

    ERIC Educational Resources Information Center

    Kurzweil, Raymond

    1985-01-01

    Examines the past, present, and future status of Artificial Intelligence (AI). Acknowledges the limitations of AI but proposes possible areas of application and further development. Urges a concentration on the unique strengths of machine intelligence rather than a copying of human intelligence. (ML)

  6. Improving designer productivity. [artificial intelligence

    NASA Technical Reports Server (NTRS)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting these challenges.

  7. Improving designer productivity. [artificial intelligence

    NASA Technical Reports Server (NTRS)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting these challenges.

  8. Innovative applications of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Schorr, Herbert; Rappaport, Alain

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  9. Innovative applications of artificial intelligence

    SciTech Connect

    Schorr, H.; Rappaport, A.

    1989-01-01

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  10. Artificial intelligence: Principles and applications

    SciTech Connect

    Yazdami, M.

    1985-01-01

    The book covers the principles of AI, the main areas of application, as well as considering some of the social implications. The applications chapters have a common format structured as follows: definition of the topic; approach with conventional computing techniques; why 'intelligence' would provide a better approach; and how AI techniques would be used and the limitations. The contents discussed are: Principles of artificial intelligence; AI programming environments; LISP, list processing and pattern-making; AI programming with POP-11; Computer processing of natural language; Speech synthesis and recognition; Computer vision; Artificial intelligence and robotics; The anatomy of expert systems - Forsyth; Machine learning; Memory models of man and machine; Artificial intelligence and cognitive psychology; Breaking out of the chinese room; Social implications of artificial intelligence; and Index.

  11. Heart failure analysis dashboard for patient's remote monitoring combining multiple artificial intelligence technologies.

    PubMed

    Guidi, G; Pettenati, M C; Miniati, R; Iadanza, E

    2012-01-01

    In this paper we describe an Heart Failure analysis Dashboard that, combined with a handy device for the automatic acquisition of a set of patient's clinical parameters, allows to support telemonitoring functions. The Dashboard's intelligent core is a Computer Decision Support System designed to assist the clinical decision of non-specialist caring personnel, and it is based on three functional parts: Diagnosis, Prognosis, and Follow-up management. Four Artificial Intelligence-based techniques are compared for providing diagnosis function: a Neural Network, a Support Vector Machine, a Classification Tree and a Fuzzy Expert System whose rules are produced by a Genetic Algorithm. State of the art algorithms are used to support a score-based prognosis function. The patient's Follow-up is used to refine the diagnosis.

  12. Knowledge Based Artificial Augmentation Intelligence Technology: Next Step in Academic Instructional Tools for Distance Learning

    ERIC Educational Resources Information Center

    Crowe, Dale; LaPierre, Martin; Kebritchi, Mansureh

    2017-01-01

    With augmented intelligence/knowledge based system (KBS) it is now possible to develop distance learning applications to support both curriculum and administrative tasks. Instructional designers and information technology (IT) professionals are now moving from the programmable systems era that started in the 1950s to the cognitive computing era.…

  13. Interdisciplinary Study on Artificial Intelligence.

    DTIC Science & Technology

    1983-07-01

    systems, uiophysics of information processing, cognitive science, and traditional artificial intelligence. The objective behi d this objective was to...information processing, cognitive science, and traditional * artificial intelligence. The objective behind this objective was to provide a vehicle for reviewing...Another departure from ’classical’ neurodynamics must be sought in the strong coupling between the micro and macroscopic scales. No other physical mechanism

  14. Applying artificial intelligence to astronomical databases - A survey of applicable technology

    NASA Technical Reports Server (NTRS)

    Rosenthal, Donald A.

    1988-01-01

    AI technologies which are relevant to astronomical data bases are reviewed, including intelligent interfaces, internal representations, and data analysis. The natural language query system developed for the Hubble Space Telescope and the technique of goal directed queries are considered. Two technologies which might lead to the development of pictorial interfaces are presented: one based on Bayesian probabilities, the other on associative memories. The development of a data analysis system which can discover classes of data within a data base without any information other than the data itself is examined. A prototype data analysis assistant to automatically develop and implement plans for data reduction is described.

  15. Applying artificial intelligence to astronomical databases - A survey of applicable technology

    NASA Technical Reports Server (NTRS)

    Rosenthal, Donald A.

    1988-01-01

    AI technologies which are relevant to astronomical data bases are reviewed, including intelligent interfaces, internal representations, and data analysis. The natural language query system developed for the Hubble Space Telescope and the technique of goal directed queries are considered. Two technologies which might lead to the development of pictorial interfaces are presented: one based on Bayesian probabilities, the other on associative memories. The development of a data analysis system which can discover classes of data within a data base without any information other than the data itself is examined. A prototype data analysis assistant to automatically develop and implement plans for data reduction is described.

  16. Artificial Intelligence and Information Management

    NASA Astrophysics Data System (ADS)

    Fukumura, Teruo

    After reviewing the recent popularization of the information transmission and processing technologies, which are supported by the progress of electronics, the authors describe that by the introduction of the opto-electronics into the information technology, the possibility of applying the artificial intelligence (AI) technique to the mechanization of the information management has emerged. It is pointed out that althuogh AI deals with problems in the mental world, its basic methodology relies upon the verification by evidence, so the experiment on computers become indispensable for the study of AI. The authors also describe that as computers operate by the program, the basic intelligence which is concerned in AI is that expressed by languages. This results in the fact that the main tool of AI is the logical proof and it involves an intrinsic limitation. To answer a question “Why do you employ AI in your problem solving”, one must have ill-structured problems and intend to conduct deep studies on the thinking and the inference, and the memory and the knowledge-representation. Finally the authors discuss the application of AI technique to the information management. The possibility of the expert-system, processing of the query, and the necessity of document knowledge-base are stated.

  17. Artificial Intelligence and Its Importance in Education.

    ERIC Educational Resources Information Center

    Tilmann, Martha J.

    Artificial intelligence, or the study of ideas that enable computers to be intelligent, is discussed in terms of what it is, what it has done, what it can do, and how it may affect the teaching of tomorrow. An extensive overview of artificial intelligence examines its goals and applications and types of artificial intelligence including (1) expert…

  18. Artificial Intelligence and Its Importance in Education.

    ERIC Educational Resources Information Center

    Tilmann, Martha J.

    Artificial intelligence, or the study of ideas that enable computers to be intelligent, is discussed in terms of what it is, what it has done, what it can do, and how it may affect the teaching of tomorrow. An extensive overview of artificial intelligence examines its goals and applications and types of artificial intelligence including (1) expert…

  19. A Research Program on Artificial Intelligence in Process Engineering.

    ERIC Educational Resources Information Center

    Stephanopoulos, George

    1986-01-01

    Discusses the use of artificial intelligence systems in process engineering. Describes a new program at the Massachusetts Institute of Technology which attempts to advance process engineering through technological advances in the areas of artificial intelligence and computers. Identifies the program's hardware facilities, software support,…

  20. A Research Program on Artificial Intelligence in Process Engineering.

    ERIC Educational Resources Information Center

    Stephanopoulos, George

    1986-01-01

    Discusses the use of artificial intelligence systems in process engineering. Describes a new program at the Massachusetts Institute of Technology which attempts to advance process engineering through technological advances in the areas of artificial intelligence and computers. Identifies the program's hardware facilities, software support,…

  1. Fundamental research in artificial intelligence at NASA

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    This paper describes basic research at NASA in the field of artificial intelligence. The work is conducted at the Ames Research Center and the Jet Propulsion Laboratory, primarily under the auspices of the NASA-wide Artificial Intelligence Program in the Office of Aeronautics, Exploration and Technology. The research is aimed at solving long-term NASA problems in missions operations, spacecraft autonomy, preservation of corporate knowledge about NASA missions and vehicles, and management/analysis of scientific and engineering data. From a scientific point of view, the research is broken into the categories of: planning and scheduling; machine learning; and design of and reasoning about large-scale physical systems.

  2. Fundamental research in artificial intelligence at NASA

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    This paper describes basic research at NASA in the field of artificial intelligence. The work is conducted at the Ames Research Center and the Jet Propulsion Laboratory, primarily under the auspices of the NASA-wide Artificial Intelligence Program in the Office of Aeronautics, Exploration and Technology. The research is aimed at solving long-term NASA problems in missions operations, spacecraft autonomy, preservation of corporate knowledge about NASA missions and vehicles, and management/analysis of scientific and engineering data. From a scientific point of view, the research is broken into the categories of: planning and scheduling; machine learning; and design of and reasoning about large-scale physical systems.

  3. Applications of artificial intelligence and expert systems

    SciTech Connect

    Not Available

    1987-01-01

    This book contains over 30 papers. Some of the titles are: operating systems for CD/ROM; the impact of optical storage technology on education; the future of expert systems in the financial services industry; the future of compact disk/DC-1 explosive ordinance disposal rendered safe information system; and will artificial intelligence improve computer based training (CBT) development process.

  4. Artificial Intelligence Applications to Fire Management

    Treesearch

    Don J. Latham

    1987-01-01

    Artificial intelligence could be used in Forest Service fire management and land-use planning to a larger degree than is now done. Robots, for example, could be programmed to monitor for fire and insect activity, to keep track of wildlife, and to do elementary thinking about the environment. Catching up with the fast-changing technology is imperative.

  5. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  6. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Mehta, U. B.

    1984-01-01

    Some aspects of artificial intelligence are considered and questions are speculated on, including how knowledge-based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use 'expert' systems and how expert systems may speed the design and development process. The anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements are examined for using artificial intelligence in computational fluid dynamics and aerodynamics. Considering two of the essentials of computational aerodynamics - reasoniing and calculating - it is believed that a substantial part of the reasoning can be achieved with artificial intelligence, with computers being used as reasoning machines to set the stage for calculating. Expert systems will probably be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  7. Training Applications of Artificial Intelligence.

    DTIC Science & Technology

    1987-03-23

    nearifest tLer,sclvCs in ELO r operatii.L costs in the life C’VclE Of the ef’uijjteft. E F re\\ lously rcntione6 ey~ arrle of usingF the 1lirefineer...Ibid., p. 35. 4. Avron Barr and Edward Feigenbaum, The Handbook of Artificial Intelligence, Vol. 1, p. 2. 5. Wissam W. Ahmed, "Theories of Artificial...Barr, Avron and Geigenbaum, Edward A. ed. The Handbook of Arti- ficial Intelligence. Vol. 1. Stanford: heuristech Press. 1981. Gevartner, William B

  8. Installation and evaluation of a nuclear power plant Operator Advisor based on artificial intelligence technology

    SciTech Connect

    Hajek, B.K.; Miller, D.W.

    1993-02-01

    The Artificial Intelligence Group in the Nuclear Engineering Program has designed and built an Operator Advisor (OA), an AI system to monitor nuclear power plant parameters, detect component and system malfunctions, dispose their causes, and provide the plant operators with the correct procedures for mitigating the consequences of the malfunctions. It then monitors performance of the procedures, and provides backup steps when specific operator actions fail. The OA has been implemented on Sun 4 workstations in Common Lisp, and has been interfaced to run in real time on the Perry Nuclear Power Plant full-function simulator in the plant training department. The eventual goal for a fully functioning Operator Advisor would be to have reactor operators receive direction for all plant operations. Such a goal requires considerable testing of the system within limited malfunction boundaries, an extensive Verification Validation (V V) effort, a large knowledge base development effort, and development of tools as part of the system to automate its maintenance. Clearly, these efforts are beyond the scope of the feasibility effort expended during this project period. However, as a result of this project, we have an AI based platform upon which a complete system can be built.

  9. Engaging older adults with dementia in creative occupations using artificially intelligent assistive technology.

    PubMed

    Leuty, Valerie; Boger, Jennifer; Young, Laurel; Hoey, Jesse; Mihailidis, Alex

    2013-01-01

    Engagement in creative occupations has been shown to promote well-being for older adults with dementia. Providing access to such occupations is often difficult, as successful participation requires face-time with a person who is knowledgeable in facilitating engagement as well as access to any required resources, such as an arts studio. In response, a computer-based device, the Engaging Platform for Art Development (ePAD), was created to with the aim of enabling more independent access to art creation, ePAD is a an artificially intelligent touch-screen device that estimates a client's level of engagement and provides prompts to encourage engagement if the client becomes disengaged. ePAD is customizable such that an art therapist can choose themes and tools that they feel reflect their client's needs and preferences. This article presents a mixed-methods study that evaluated ePAD's usability by six older adult (with mild-to-moderate dementia) and art therapist dyads. Usability measures suggest that all participants found ePAD engaging but did not find prompts effective. Future development of ePAD includes improving the prompts, implementing the recommendations made by participants in this research, and long-term testing in more naturalistic art therapy contexts.

  10. Artificial Intelligence Databases: A Survey and Comparison.

    ERIC Educational Resources Information Center

    Stern, David

    1990-01-01

    Identifies and describes online databases containing references to materials on artificial intelligence, robotics, and expert systems, and compares them in terms of scope and usage. Recommendations for conducting online searches on artificial intelligence and related fields are offered. (CLB)

  11. Introducing artificial intelligence

    SciTech Connect

    Simons, G.L.

    1984-01-01

    This book describes the background to AI, explores some characteristic objectives and methods, and indicates some of the practical ramifications for expert, robotic and other types of systems. Following a brief discussion of the nature of intelligence, the recent history of AI is outlined. Characteristic activities of AI systems are explored in Part II. Here it is emphasized that AI systems are not only concerned with ''thought'' but with ''action''-it is an obvious requirement of intelligent commercial and other systems that they behave with competence in a real-world environment. Finally some of the current and future uses of AI systems are explored.

  12. Research and applications: Artificial intelligence

    NASA Technical Reports Server (NTRS)

    Chaitin, L. J.; Duda, R. O.; Johanson, P. A.; Raphael, B.; Rosen, C. A.; Yates, R. A.

    1970-01-01

    The program is reported for developing techniques in artificial intelligence and their application to the control of mobile automatons for carrying out tasks autonomously. Visual scene analysis, short-term problem solving, and long-term problem solving are discussed along with the PDP-15 simulator, LISP-FORTRAN-MACRO interface, resolution strategies, and cost effectiveness.

  13. Artificial Intelligence Assists Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  14. Hybrid Applications Of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Borchardt, Gary C.

    1988-01-01

    STAR, Simple Tool for Automated Reasoning, is interactive, interpreted programming language for development and operation of artificial-intelligence application systems. Couples symbolic processing with compiled-language functions and data structures. Written in C language and currently available in UNIX version (NPO-16832), and VMS version (NPO-16965).

  15. Artificial Intelligence: The Expert Way.

    ERIC Educational Resources Information Center

    Bitter, Gary G.

    1989-01-01

    Discussion of artificial intelligence (AI) and expert systems focuses on their use in education. Characteristics of good expert systems are explained; computer software programs that contain applications of AI are described, highlighting one used to help educators identify learning-disabled students; and the future of AI is discussed. (LRW)

  16. Artificial Intelligence: The Expert Way.

    ERIC Educational Resources Information Center

    Bitter, Gary G.

    1989-01-01

    Discussion of artificial intelligence (AI) and expert systems focuses on their use in education. Characteristics of good expert systems are explained; computer software programs that contain applications of AI are described, highlighting one used to help educators identify learning-disabled students; and the future of AI is discussed. (LRW)

  17. Parellel processing and artificial intelligence

    SciTech Connect

    Reeve, M.

    1989-01-01

    This book reports on parallel processing and artificial intelligence. Topics covered include: Myths and realities about neural computing architectures; Bulk-synchronous parallel computers; Information management in Linda; Information-driven parallel pattern recognition through communicating processes - a case study of classification of wallpaper groups; and Fault tolerant transputer network for image processing.

  18. Thinking, Creativity, and Artificial Intelligence.

    ERIC Educational Resources Information Center

    DeSiano, Michael; DeSiano, Salvatore

    This document provides an introduction to the relationship between the current knowledge of focused and creative thinking and artificial intelligence. A model for stages of focused and creative thinking gives: problem encounter/setting, preparation, concentration/incubation, clarification/generation and evaluation/judgment. While a computer can…

  19. Applications of artificial intelligence III

    SciTech Connect

    Gilmore, J.F.

    1986-01-01

    This book presents the papers given at a conference on expert systems and artificial intelligence. Topics considered at the conference included an expert system for computer performance management, real-time image understanding, knowledge-based systems, textured image segmentation, knowledge representation, pattern recognition, robotics, and the computer-aided design of integrated circuits.

  20. Artificial Intelligence Assists Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  1. Artificial Intelligence and Expert Systems.

    ERIC Educational Resources Information Center

    Lawlor, Joseph

    Artificial intelligence (AI) is the field of scientific inquiry concerned with designing machine systems that can simulate human mental processes. The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering. Some of the…

  2. Computer vision and artificial intelligence in mammography.

    PubMed

    Vyborny, C J; Giger, M L

    1994-03-01

    The revolution in digital computer technology that has made possible new and sophisticated imaging techniques may next influence the interpretation of radiologic images. In mammography, computer vision and artificial intelligence techniques have been used successfully to detect or to characterize abnormalities on digital images. Radiologists supplied with this information often perform better at mammographic detection or characterization tasks in observer studies than do unaided radiologists. This technology therefore could decrease errors in mammographic interpretation that continue to plague human observers.

  3. Artificial Intelligence in Education.

    ERIC Educational Resources Information Center

    Ruyle, Kim E.

    Expert systems have made remarkable progress in areas where the knowledge of an expert can be codified and represented, and these systems have many potentially useful applications in education. Expert systems seem "intelligent" because they do not simply repeat a set of predetermined questions during a consultation session, but will have…

  4. Assistive Technology as an artificial intelligence opportunity: Case study of letter-based, head movement driven communication.

    PubMed

    Miksztai-Réthey, Brigitta; Faragó, Kinga Bettina

    2015-01-01

    We studied an artificial intelligent assisted interaction between a computer and a human with severe speech and physical impairments (SSPI). In order to speed up AAC, we extended a former study of typing performance optimization using a framework that included head movement controlled assistive technology and an onscreen writing device. Quantitative and qualitative data were collected and analysed with mathematical methods, manual interpretation and semi-supervised machine video annotation. As the result of our research, in contrast to the former experiment's conclusions, we found that our participant had at least two different typing strategies. To maximize his communication efficiency, a more complex assistive tool is suggested, which takes the different methods into consideration.

  5. Installation and evaluation of a nuclear power plant operator advisor based on artificial intelligence technology. Interim progress report and second year development plan

    SciTech Connect

    Hajek, B.K.; Miller, D.W.

    1989-06-20

    This report discusses the following topics on a Nuclear Power Plant operator advisor based on artificial Intelligence Technology; Workstation conversion; Software Conversion; V&V Program Development Development; Simulator Interface Development; Knowledge Base Expansion; Dynamic Testing; Database Conversion; Installation at the Perry Simulator; Evaluation of Operator Interaction; Design of Man-Machine Interface; and Design of Maintenance Facility.

  6. Artificial intelligence and simulation

    SciTech Connect

    Holmes, W.M.

    1985-01-01

    The research and development of AI are discussed. Papers are presented on an expert system for chemical process control, an ocean surveillance information fusion expert system, a distributed intelligence system and aircraft pilotage, a procedure for speeding innovation by transferring scientific knowledge more quickly, and syntax programming, expert systems, and real-time fault diagnosis. Consideration is given to an expert system for modeling NASA flight control room usage, simulating aphasia, a method for single neuron recognition of letters, numbers, faces, and certain types of concepts, integrating AI and control system approach, testing an expert system for manufacturing, and the human memory.

  7. Neuroscience-Inspired Artificial Intelligence.

    PubMed

    Hassabis, Demis; Kumaran, Dharshan; Summerfield, Christopher; Botvinick, Matthew

    2017-07-19

    The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent times, however, communication and collaboration between the two fields has become less commonplace. In this article, we argue that better understanding biological brains could play a vital role in building intelligent machines. We survey historical interactions between the AI and neuroscience fields and emphasize current advances in AI that have been inspired by the study of neural computation in humans and other animals. We conclude by highlighting shared themes that may be key for advancing future research in both fields. Copyright © 2017. Published by Elsevier Inc.

  8. Laboratory robotics and artificial intelligence.

    PubMed

    Isenhour, T L; Marshall, J C

    1990-09-01

    Intelligent robots, which incorporate artificial intelligence in their controlling software, are the next step in bringing the laboratory robot to its full potential. The areas currently under study in our laboratory are improved user interfaces for laboratory robotics, the integration of object-oriented databases into robot control programs, and strategies to optimize multi-step procedures. The ultimate goal of this work is the Standard Robotics Method. The Standard Robotics Method we envision would allow a robotic method to be transferred from one laboratory to another.

  9. Artificial intelligence: Principles and applications

    SciTech Connect

    Yazdani, M.

    1986-01-01

    Following the Japanese announcement that they intend to devise, make, and market, in the 1990s, computers incorporating a level of intelligence, a vast amount of energy and expense has been diverted at the field of Artificial Intelligence. Workers for the past 25 years in this discipline have tried to reproduce human behavior on computers and this book presents their achievements and the problems. Subjects include: computer vision, speech processing, robotics, natural language processing expert systems and machine learning. The book also attempts to show the general principles behind the various applications and finally attempts to show their implications for other human endeavors such as philosophy, psychology, and the development of modern society.

  10. Ten Problems in Artificial Intelligence.

    DTIC Science & Technology

    1987-01-01

    REPORT NUMBER -9 dVT ACCES~iIVN NO𔃻 3 RCCIPIENT’S CATALOG NUMGER 4. TITLE (and Subtile) S YEOF REPORT A PERIOO COvEREC Ten ~ .i in Arti’Ficiz1...7 AD-F1183 552 TEN PROBLEMS IN RTIFICIL INTELLIGENCE(U) VLE UNIV j’ N UN HVEN CT DEPT OF COMPUTER SCIENCE RSCHANK ET AL. JAN 8? VALEU/CSD/RR-514...IET VI Ten Problems in Artificial Intelligence Roger C. Schank Christopher C. Owens YALEU/CSD/RR #514 January 1987 I~~~. -- ’ -.... e"- . .I YALE

  11. Application of artificial intelligence to the management of urological cancer.

    PubMed

    Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C

    2007-10-01

    Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.

  12. Automated Scheduling Via Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Biefeld, Eric W.; Cooper, Lynne P.

    1991-01-01

    Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.

  13. Automated Scheduling Via Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Biefeld, Eric W.; Cooper, Lynne P.

    1991-01-01

    Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.

  14. Programming methodology of artificial intelligence

    SciTech Connect

    Johnson, C.K.

    1980-01-01

    Some of the non-numerical methods developed in the branch of computer science known as artificial intelligence (AI) have been designed specifically for the task of encoding empirical rules of good judgment into a form suitable for machine reasoning. This article summarizes the production-rule technique, one of the principal AI programming techniqes currently used in the knowledge engineering area of AI. An illustrative application involving the interpretation of protein electron-density maps is also described. 4 figures, 1 table.

  15. Artificial Intelligence--Applications in Education.

    ERIC Educational Resources Information Center

    Poirot, James L.; Norris, Cathleen A.

    1987-01-01

    This first in a projected series of five articles discusses artificial intelligence and its impact on education. Highlights include the history of artificial intelligence and the impact of microcomputers; learning processes; human factors and interfaces; computer assisted instruction and intelligent tutoring systems; logic programing; and expert…

  16. A Progress Report on Artificial Intelligence: Hospital Applications and a Review of the Artificial Intelligence Marketplace

    PubMed Central

    Brenkus, Lawrence M.

    1984-01-01

    Artificial intelligence applications are finally beginning to move from the university research laboratory into commercial use. Before the end of the century, this new computer technology will have profound effects on our work, economy, and lives. At present, relatively few products have appeared in the hospital, but we can anticipate significant product offerings in instrumentation and affecting hospital administration within 5 years.

  17. Implications of VISIDEPtm For Artificial Intelligence Applications

    NASA Astrophysics Data System (ADS)

    McLaurin, A. P.; Jones, Edwin R.; Cathey, LeConte

    1987-04-01

    VISIDF is a system for generating true three-dimensional displays on flat-screened devices. Hodges and McAllister, in their article, state clearly that this system is the autostereoscopic alternative to PLZT shutter systems for computer-generated graphic appli-cations. This opens the door to consideration of the system as a component of vision for artificial intelligence applications. In order to understand the potentials of VISIDEP one must, in fact, accept several fundamental assumptions. These are: 1. Perception is an intelligent activity rather than purely stimulus/response. 2. Binocular depth cues are of greater importance to accurate depth interpretation than monocular cues. 3. Depth perception does not require object identification. Each of these assumptions is essential to the application of VISIDEP research in practical operations requiring depth interpretation. The relationships between human vision and perception and the parallax induction generated by VISIDEP technology offer depth in real time to artificial intelligence. Through machine operations on incoming data, the perception of depth is generated in much the same way as the stereoptic data enter the human being, thus providing rapidly quantifiable depth interpretation which is very accurate, perhaps more accurate that human perception of depth. The analysis of a mechanical system in relationship to human approaches to depth perceptions offers the potential of many applications of visually competent artificial intelligence. An additional factor is that the system under discussion is user friendly for human operators as well as requiring minimal reconfiguration of existing equipment and relatively simple software.

  18. Artificial Intelligence: An Analysis of the Technology for Training. Training and Development Research Center Project Number Fourteen.

    ERIC Educational Resources Information Center

    Sayre, Scott Alan

    The ultimate goal of the science of artificial intelligence (AI) is to establish programs that will use algorithmic computer techniques to imitate the heuristic thought processes of humans. Most AI programs, especially expert systems, organize their knowledge into three specific areas: data storage, a rule set, and a control structure. Limitations…

  19. Third Conference on Artificial Intelligence for Space Applications, part 2

    NASA Technical Reports Server (NTRS)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed.

  20. Intelligent Tutoring System: A Tool for Testing the Research Curiosities of Artificial Intelligence Researchers

    ERIC Educational Resources Information Center

    Yaratan, Huseyin

    2003-01-01

    An ITS (Intelligent Tutoring System) is a teaching-learning medium that uses artificial intelligence (AI) technology for instruction. Roberts and Park (1983) defines AI as the attempt to get computers to perform tasks that if performed by a human-being, intelligence would be required to perform the task. The design of an ITS comprises two distinct…

  1. Applications of artificial intelligence/robotics

    SciTech Connect

    Brown, D.R.; Fowler, D.V.; Park, W.T.; Robinson, A.E.

    1982-01-01

    One hundred applications of artificial intelligence technology and robotics in army combat and combat support that may be possible and worthwhile are identified. These possible applications have been divided into ten categories, and one example in each category has been examined in detail. Research and development plans have been developed showing the basic and applied research that would be needed to make the applications possible. Although the number of possible applications is large, the number of key technology elements is relatively small, and many of the same technology elements are required in many different applications. 19 references.

  2. Artificial intelligence and science education

    NASA Astrophysics Data System (ADS)

    Good, Ron

    Artificial intelligence (AI) is defined and related to intelligent computer-assisted instruction (ICAI) and science education. Modeling the student, the teacher, and the natural environment are discussed as important parts of ICAI and the concept of microworlds as a powerful tool for science education is presented. Optimistic predictions about ICAI are tempered with the complex, persistent problems of: 1) teaching and learning as a soft or fuzzy knowledge base, 2) natural language processing, and 3) machine learning. The importance of accurate diagnosis of a student's learning state, including misconceptions and naive theories about nature, is stressed and related to the importance of accurate diagnosis by a physician. Based on the cognitive science/AI paradigm, a revised model of the well-known Karplus/Renner learning cycle is proposed.

  3. Research and applications: Artificial intelligence

    NASA Technical Reports Server (NTRS)

    Raphael, B.; Duda, R. O.; Fikes, R. E.; Hart, P. E.; Nilsson, N. J.; Thorndyke, P. W.; Wilber, B. M.

    1971-01-01

    Research in the field of artificial intelligence is discussed. The focus of recent work has been the design, implementation, and integration of a completely new system for the control of a robot that plans, learns, and carries out tasks autonomously in a real laboratory environment. The computer implementation of low-level and intermediate-level actions; routines for automated vision; and the planning, generalization, and execution mechanisms are reported. A scenario that demonstrates the approximate capabilities of the current version of the entire robot system is presented.

  4. Epistasis analysis using artificial intelligence.

    PubMed

    Moore, Jason H; Hill, Doug P

    2015-01-01

    Here we introduce artificial intelligence (AI) methodology for detecting and characterizing epistasis in genetic association studies. The ultimate goal of our AI strategy is to analyze genome-wide genetics data as a human would using sources of expert knowledge as a guide. The methodology presented here is based on computational evolution, which is a type of genetic programming. The ability to generate interesting solutions while at the same time learning how to solve the problem at hand distinguishes computational evolution from other genetic programming approaches. We provide a general overview of this approach and then present a few examples of its application to real data.

  5. Artificial Intelligence in Autonomous Telescopes

    NASA Astrophysics Data System (ADS)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  6. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part A: The core ingredients

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1983-01-01

    Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. The goal of Artificial Intelligence is focused on developing computational approaches to intelligent behavior. This goal is so broad - covering virtually all aspects of human cognitive activity - that substantial confusion has arisen as to the actual nature of AI, its current status and its future capability. This volume, the first in a series of NBS/NASA reports on the subject, attempts to address these concerns. Thus, this report endeavors to clarify what AI is, the foundations on which it rests, the techniques utilized, applications, the participants and, finally, AI's state-of-the-art and future trends. It is anticipated that this report will prove useful to government and private engineering and research managers, potential users, and others who will be affected by this field as it unfolds.

  7. Artificial intelligence applications in the nuclear industry

    SciTech Connect

    Majumdar, D.

    1988-10-01

    This is a state-of-the-art review of artificial intelligence (AI) applications in the nuclear industry. It was initiated as a result of the American Nuclear Society-sponsored conference on ''Artificial Intelligence and Other Innovative Computer Applications in the Nuclear Industry,'' held in Snowbird, Utah, August 1987. This conference brought together a large number of international experts and showed extensive worldwide applications of expert systems in the nuclear industry. This document is a postconference review and a reflection on the current status and the future of AI in the nuclear industry. Because artificial intelligence techniques can analyze large and complex arrays of information, develop smaller sets of higher-level conclusions, incorporate human expertise, and present information suitable for human intelligence, it is very appropriate for applications in complex nuclear power plant operation. Some advances have already been made in several areas. However, among the many applications in the nuclear industry, there does not appear to be any outstanding application to date such as the ones found in the medical or geological fields. What comes out clearly is that the nuclear industry is experimenting in many areas with the expert system technology and determining its usefulness for the industry. On the international scene, the United States is the current leader in knowledge and applications, followed by Japan and France. However, the Japanese appear to have embraced the AI concept more wholeheartedly. This review encompasses a large number of areas including fault diagnosis, reactor control, plant operation, alarm filtering, accident management, robotics, probabilistic risk assessment, and the human element of expert systems. The potential for useful application of AI technology in the nuclear industry is shown to be promising. 383 refs., 13 figs., 11 tabs.

  8. Northeast Artificial Intelligence Consortium (NAIC). Volume 1. Executive Summary

    DTIC Science & Technology

    1990-12-01

    Consortium ( NAIC ) I Volker Weiss and James F. Brule" APPROVED FORPUL/RELEAS" DI/UTION UN.IMI/ED This effort was funded partially by the Laboratory...PERFORMING ORGANIZATION Northeast Artificial Intelligence Consortium ( NAIC ) REPORT NUMBER Science & Technology Center, Rm 2-296 N/A 111 College...Approved for public release; distribution unlimited. 13. ABSTRACT(MPau* = w" The Northeast Artificial Intelligence Consortium ( NAIC ) was created by the Air

  9. Artificial Intelligence in Education: An Exploration.

    ERIC Educational Resources Information Center

    Cumming, Geoff

    1998-01-01

    Gives a brief outline of the development of Artificial Intelligence in Education (AIED) which includes psychology, education, cognitive science, computer science, and artificial intelligence. Highlights include learning environments; learner modeling; a situated approach to learning; and current examples of AIED research. (LRW)

  10. Artificial Intelligence in Education: An Exploration.

    ERIC Educational Resources Information Center

    Cumming, Geoff

    1998-01-01

    Gives a brief outline of the development of Artificial Intelligence in Education (AIED) which includes psychology, education, cognitive science, computer science, and artificial intelligence. Highlights include learning environments; learner modeling; a situated approach to learning; and current examples of AIED research. (LRW)

  11. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part B: Applications

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1983-01-01

    Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. This report, Part B of a three part report on AI, presents overviews of the key application areas: Expert Systems, Computer Vision, Natural Language Processing, Speech Interfaces, and Problem Solving and Planning. The basic approaches to such systems, the state-of-the-art, existing systems and future trends and expectations are covered.

  12. Artificial intelligence for subject interviewing

    SciTech Connect

    Tonn, B.E.; Goeltz, R.; Arrowood, L.; Hake, K.

    1990-01-01

    This paper has two goals: to discuss, in general terms, issues related to applying artificial intelligence (AI) techniques to computerized interviewing; and to describe two AI-based interviewing systems developed at Oak Ridge National Laboratory. With respect to the former, AI techniques can be used effectively to collect data of complex representation, provide flexibility in collecting data, and improve data validity through real-time reviews. One AI system, ARK, elicits subjects' beliefs on an open-ended range of issues and topics through menu-driven, dialogue-based interactions. The other system, LES, elicits, uncertainty assessments related to events, statements and propositions and tailors questions for subjects to explore their uncertainty processing heuristics.

  13. Research and applications: Artificial intelligence

    NASA Technical Reports Server (NTRS)

    Raphael, B.; Fikes, R. E.; Chaitin, L. J.; Hart, P. E.; Duda, R. O.; Nilsson, N. J.

    1971-01-01

    A program of research in the field of artificial intelligence is presented. The research areas discussed include automatic theorem proving, representations of real-world environments, problem-solving methods, the design of a programming system for problem-solving research, techniques for general scene analysis based upon television data, and the problems of assembling an integrated robot system. Major accomplishments include the development of a new problem-solving system that uses both formal logical inference and informal heuristic methods, the development of a method of automatic learning by generalization, and the design of the overall structure of a new complete robot system. Eight appendices to the report contain extensive technical details of the work described.

  14. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; And Others

    The report describes three advanced technologies--robotics, artificial intelligence, and computer simulation--and identifies the ways in which they might contribute to special education. A hybrid methodology was employed to identify existing technology and forecast future needs. Following this framework, each of the technologies is defined,…

  15. Economic reasoning and artificial intelligence.

    PubMed

    Parkes, David C; Wellman, Michael P

    2015-07-17

    The field of artificial intelligence (AI) strives to build rational agents capable of perceiving the world around them and taking actions to advance specified goals. Put another way, AI researchers aim to construct a synthetic homo economicus, the mythical perfectly rational agent of neoclassical economics. We review progress toward creating this new species of machine, machina economicus, and discuss some challenges in designing AIs that can reason effectively in economic contexts. Supposing that AI succeeds in this quest, or at least comes close enough that it is useful to think about AIs in rationalistic terms, we ask how to design the rules of interaction in multi-agent systems that come to represent an economy of AIs. Theories of normative design from economics may prove more relevant for artificial agents than human agents, with AIs that better respect idealized assumptions of rationality than people, interacting through novel rules and incentive systems quite distinct from those tailored for people. Copyright © 2015, American Association for the Advancement of Science.

  16. Synthesizing cellular intelligence and artificial intelligence for bioprocesses.

    PubMed

    Patnaik, P R

    2006-01-01

    Microbial processes operated under realistic conditions are difficult to describe by mechanistic models, thereby limiting their optimization and control. Responses of living cells to their environment suggest that they possess some "innate intelligence". Such responses have been modeled by a cybernetic approach. Furthermore, the overall behavior of a bioreactor containing a population of cells may be described and controlled through artificial intelligence methods. Therefore, it seems logical to combine cybernetic models with artificial intelligence to evolve an integrated intelligence-based strategy that is physiologically more faithful than the current approaches. This possibility is discussed, together with practical considerations favoring a hybrid approach that includes some mathematical modeling.

  17. Robotics and artificial intelligence: Jewish ethical perspectives.

    PubMed

    Rappaport, Z H

    2006-01-01

    In 16th Century Prague, Rabbi Loew created a Golem, a humanoid made of clay, to protect his community. When the Golem became too dangerous to his surroundings, he was dismantled. This Jewish theme illustrates some of the guiding principles in its approach to the moral dilemmas inherent in future technologies, such as artificial intelligence and robotics. Man is viewed as having received the power to improve upon creation and develop technologies to achieve them, with the proviso that appropriate safeguards are taken. Ethically, not-harming is viewed as taking precedence over promoting good. Jewish ethical thinking approaches these novel technological possibilities with a cautious optimism that mankind will derive their benefits without coming to harm.

  18. Artificial intelligence for analyzing orthopedic trauma radiographs.

    PubMed

    Olczak, Jakub; Fahlberg, Niklas; Maki, Atsuto; Razavian, Ali Sharif; Jilert, Anthony; Stark, André; Sköldenberg, Olof; Gordon, Max

    2017-07-06

    Background and purpose - Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and the technology is believed to be the next technological revolution. So far it has never been applied in an orthopedic setting, and in this study we sought to determine the feasibility of using deep learning for skeletal radiographs. Methods - We extracted 256,000 wrist, hand, and ankle radiographs from Danderyd's Hospital and identified 4 classes: fracture, laterality, body part, and exam view. We then selected 5 openly available deep learning networks that were adapted for these images. The most accurate network was benchmarked against a gold standard for fractures. We furthermore compared the network's performance with 2 senior orthopedic surgeons who reviewed images at the same resolution as the network. Results - All networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view. The final accuracy for fractures was estimated at 83% for the best performing network. The network performed similarly to senior orthopedic surgeons when presented with images at the same resolution as the network. The 2 reviewer Cohen's kappa under these conditions was 0.76. Interpretation - This study supports the use for orthopedic radiographs of artificial intelligence, which can perform at a human level. While current implementation lacks important features that surgeons require, e.g. risk of dislocation, classifications, measurements, and combining multiple exam views, these problems have technical solutions that are waiting to be implemented for orthopedics.

  19. The Outline of Personhood Law Regarding Artificial Intelligences and Emulated Human Entities

    NASA Astrophysics Data System (ADS)

    Muzyka, Kamil

    2013-12-01

    On the verge of technological breakthroughs, which define and revolutionize our understanding of intelligence, cognition, and personhood, especially when speaking of artificial intelligences and mind uploads, one must consider the legal implications of granting personhood rights to artificial intelligences or emulated human entities

  20. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part C: Basic AI topics

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1983-01-01

    Readily understandable overviews of search oriented problem solving, knowledge representation, and computational logic are provided. Mechanization, automation and artificial intelligence are discussed as well as how they interrelate.

  1. Artificial Intelligence and the Future Classroom.

    ERIC Educational Resources Information Center

    Green, John O.

    1984-01-01

    Discusses how the power and potential of the computer may shape the classroom of the future by presenting a scenario of a classroom in the year 2001. The role of artificial intelligence in this environment is considered. (JN)

  2. Artificial Intelligence and the Future Classroom.

    ERIC Educational Resources Information Center

    Green, John O.

    1984-01-01

    Discusses how the power and potential of the computer may shape the classroom of the future by presenting a scenario of a classroom in the year 2001. The role of artificial intelligence in this environment is considered. (JN)

  3. What Artificial Intelligence Is Doing for Training.

    ERIC Educational Resources Information Center

    Kirrane, Peter R.; Kirrane, Diane E.

    1989-01-01

    Discusses the three areas of research and application of artificial intelligence: (1) robotics, (2) natural language processing, and (3) knowledge-based or expert systems. Focuses on what expert systems can do, especially in the area of training. (JOW)

  4. What Artificial Intelligence Is Doing for Training.

    ERIC Educational Resources Information Center

    Kirrane, Peter R.; Kirrane, Diane E.

    1989-01-01

    Discusses the three areas of research and application of artificial intelligence: (1) robotics, (2) natural language processing, and (3) knowledge-based or expert systems. Focuses on what expert systems can do, especially in the area of training. (JOW)

  5. Artificial Intelligence, Robots and Education: Selected Sources.

    ERIC Educational Resources Information Center

    Kissinger, Pat

    1987-01-01

    This annotated bibliography describes 12 books, 10 ERIC publications, and 7 periodical articles about artificial intelligence and robotics that were selected by the author as resources for educators. (CLB)

  6. Artificial intelligence: Learning to see and act

    NASA Astrophysics Data System (ADS)

    Schölkopf, Bernhard

    2015-02-01

    An artificial-intelligence system uses machine learning from massive training sets to teach itself to play 49 classic computer games, demonstrating that it can adapt to a variety of tasks. See Letter p.529

  7. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; And Others

    1986-01-01

    Describes possible applications of new technologies to special education. Discusses results of a study designed to explore the use of robotics, artificial intelligence, and computer simulations to aid people with handicapping conditions. Presents several scenarios in which specific technological advances may contribute to special education…

  8. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; And Others

    1986-01-01

    Describes possible applications of new technologies to special education. Discusses results of a study designed to explore the use of robotics, artificial intelligence, and computer simulations to aid people with handicapping conditions. Presents several scenarios in which specific technological advances may contribute to special education…

  9. Artificial Intelligence and Spacecraft Power Systems

    NASA Technical Reports Server (NTRS)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  10. Artificial Intelligence and Spacecraft Power Systems

    NASA Technical Reports Server (NTRS)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  11. Artificial Intelligence for Controlling Robotic Aircraft

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  12. Artificial intelligence approaches to software engineering

    NASA Technical Reports Server (NTRS)

    Johannes, James D.; Macdonald, James R.

    1988-01-01

    Artificial intelligence approaches to software engineering are examined. The software development life cycle is a sequence of not so well-defined phases. Improved techniques for developing systems have been formulated over the past 15 years, but pressure continues to attempt to reduce current costs. Software development technology seems to be standing still. The primary objective of the knowledge-based approach to software development presented in this paper is to avoid problem areas that lead to schedule slippages, cost overruns, or software products that fall short of their desired goals. Identifying and resolving software problems early, often in the phase in which they first occur, has been shown to contribute significantly to reducing risks in software development. Software development is not a mechanical process but a basic human activity. It requires clear thinking, work, and rework to be successful. The artificial intelligence approaches to software engineering presented support the software development life cycle through the use of software development techniques and methodologies in terms of changing current practices and methods. These should be replaced by better techniques that that improve the process of of software development and the quality of the resulting products. The software development process can be structured into well-defined steps, of which the interfaces are standardized, supported and checked by automated procedures that provide error detection, production of the documentation and ultimately support the actual design of complex programs.

  13. [Biological versus artificial intelligence: a critical approach].

    PubMed

    Sanvito, W L

    1995-09-01

    After brief considerations about intelligence, a comparative study between biologic and artificial intelligence is made. The specialists in Artificial Intelligence found that intelligence is purely a matter of physical symbol manipulation. The enterprise of Artificial Intelligence aims to understand what we might call Brain Intelligence in terms of concepts and techniques of engineering. However the philosophers believed that computer-machine can have syntax, but can never have semantics. In other words, that they can follow rules, such as those of arithmetic or grammar, but not understand what to us are meanings of symbols, such as words. In the present paper it is stressed that brain/mind complex constitutes a monolithic systemic that functions with emergent properties at several levels of hierarchical organization. These hierarchical levels are non-reducible to one another. They are at least three (neuronal, functional, and semantic), and they function within an interactional plan. The brain/mind complex, which transform informations in meanings, deals with problems by means of both logical and non-logical mechanisms; while logic allows the mind to arrange the elements for reasoning, the non-logical mechanisms (fuzzy logic, heuristics, insights) allows the mind to develop strategies to find solutions. The model for construction of the "intelligent machine" is the operating way of the brain/mind complex, which does not always use logical processes. The role of information science in Artificial Intelligence is to search for knowledge itself (virtual knowledge), rather than to simply attempt a logico-mathematical formalization of knowledge.

  14. A review of European applications of artificial intelligence to space

    NASA Technical Reports Server (NTRS)

    Drummond, Mark (Editor); Stewart, Helen (Editor)

    1993-01-01

    The purpose is to describe the applications of Artificial Intelligence (AI) to the European Space program that are being developed or have been developed. The results of a study sponsored by the Artificial Intelligence Research and Development program of NASA's Office of Advanced Concepts and Technology (OACT) are described. The report is divided into two sections. The first consists of site reports, which are descriptions of the AI applications seen at each place visited. The second section consists of two summaries which synthesize the information in the site reports by organizing this information in two different ways. The first organizes the material in terms of the type of application, e.g., data analysis, planning and scheduling, and procedure management. The second organizes the material in terms of the component technologies of Artificial Intelligence which the applications used, e.g., knowledge based systems, model based reasoning, procedural reasoning, etc.

  15. Using a computer-based simulation with an artificial intelligence component and discovery learning to formulate training needs for a new technology

    SciTech Connect

    Hillis, D.R.

    1992-01-01

    A computer-based simulation with an artificial intelligence component and discovery learning was investigated as a method to formulate training needs for new or unfamiliar technologies. Specifically, the study examined if this simulation method would provide for the recognition of applications and knowledge/skills which would be the basis for establishing training needs. The study also examined the effect of field-dependence/independence on recognition of applications and knowledge/skills. A pretest-posttest control group experimental design involving fifty-eight college students from an industrial technology program was used. The study concluded that the simulation was effective in developing recognition of applications and the knowledge/skills for a new or unfamiliar technology. And, the simulation's effectiveness for providing this recognition was not limited by an individual's field-dependence/independence.

  16. Intelligent machines: An introductory perspective of artificial intelligence and robotics

    SciTech Connect

    Gevarter, W.B.

    1985-01-01

    This book provides an integrated view of the many diverse aspects of the fields of artificial intelligence (AI) and robotics. It incorporates a summary of the basic concepts utilized in each of the many technical areas; a review of the state-of-the-art; research developments and needs, an indiction of the organizations involved; applications; and a 5-10 year forecast of emerging technology. AI and robotics terms are introduced and immediately defined. The book is designed in a modular format with each chapter essentially complete unto itself. It features extensive use of diagrams, charts, tables that illustrate the concepts and provide material in an easy-to-understand form. Simple illustrative examples clarify and make concrete ideas and material presented. It features an extensive glossary of AI terms and many sets of references and sources of further information.

  17. Clinical Note Creation, Binning, and Artificial Intelligence.

    PubMed

    Deliberato, Rodrigo Octávio; Celi, Leo Anthony; Stone, David J

    2017-08-03

    The creation of medical notes in software applications poses an intrinsic problem in workflow as the technology inherently intervenes in the processes of collecting and assembling information, as well as the production of a data-driven note that meets both individual and healthcare system requirements. In addition, the note writing applications in currently available electronic health records (EHRs) do not function to support decision making to any substantial degree. We suggest that artificial intelligence (AI) could be utilized to facilitate the workflows of the data collection and assembly processes, as well as to support the development of personalized, yet data-driven assessments and plans. ©Rodrigo Octávio Deliberato, Leo Anthony Celi, David J Stone. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 03.08.2017.

  18. Artificial intelligence in a mission operations and satellite test environment

    NASA Technical Reports Server (NTRS)

    Busse, Carl

    1988-01-01

    A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.

  19. Artificial intelligence and robot responsibilities: innovating beyond rights.

    PubMed

    Ashrafian, Hutan

    2015-04-01

    The enduring innovations in artificial intelligence and robotics offer the promised capacity of computer consciousness, sentience and rationality. The development of these advanced technologies have been considered to merit rights, however these can only be ascribed in the context of commensurate responsibilities and duties. This represents the discernable next-step for evolution in this field. Addressing these needs requires attention to the philosophical perspectives of moral responsibility for artificial intelligence and robotics. A contrast to the moral status of animals may be considered. At a practical level, the attainment of responsibilities by artificial intelligence and robots can benefit from the established responsibilities and duties of human society, as their subsistence exists within this domain. These responsibilities can be further interpreted and crystalized through legal principles, many of which have been conserved from ancient Roman law. The ultimate and unified goal of stipulating these responsibilities resides through the advancement of mankind and the enduring preservation of the core tenets of humanity.

  20. Tuberculosis control, and the where and why of artificial intelligence.

    PubMed

    Doshi, Riddhi; Falzon, Dennis; Thomas, Bruce V; Temesgen, Zelalem; Sadasivan, Lal; Migliori, Giovanni Battista; Raviglione, Mario

    2017-04-01

    Countries aiming to reduce their tuberculosis (TB) burden by 2035 to the levels envisaged by the World Health Organization End TB Strategy need to innovate, with approaches such as digital health (electronic and mobile health) in support of patient care, surveillance, programme management, training and communication. Alongside the large-scale roll-out required for such interventions to make a significant impact, products must stay abreast of advancing technology over time. The integration of artificial intelligence into new software promises to make processes more effective and efficient, endowing them with a potential hitherto unimaginable. Users can benefit from artificial intelligence-enabled pattern recognition software for tasks ranging from reading radiographs to adverse event monitoring, sifting through vast datasets to personalise a patient's care plan or to customise training materials. Many experts forecast the imminent transformation of the delivery of healthcare services. We discuss how artificial intelligence and machine learning could revolutionise the management of TB.

  1. Tuberculosis control, and the where and why of artificial intelligence

    PubMed Central

    Falzon, Dennis; Thomas, Bruce V.; Temesgen, Zelalem; Sadasivan, Lal; Raviglione, Mario

    2017-01-01

    Countries aiming to reduce their tuberculosis (TB) burden by 2035 to the levels envisaged by the World Health Organization End TB Strategy need to innovate, with approaches such as digital health (electronic and mobile health) in support of patient care, surveillance, programme management, training and communication. Alongside the large-scale roll-out required for such interventions to make a significant impact, products must stay abreast of advancing technology over time. The integration of artificial intelligence into new software promises to make processes more effective and efficient, endowing them with a potential hitherto unimaginable. Users can benefit from artificial intelligence-enabled pattern recognition software for tasks ranging from reading radiographs to adverse event monitoring, sifting through vast datasets to personalise a patient's care plan or to customise training materials. Many experts forecast the imminent transformation of the delivery of healthcare services. We discuss how artificial intelligence and machine learning could revolutionise the management of TB. PMID:28656130

  2. Artificial intelligence: contemporary applications and future compass.

    PubMed

    Khanna, Sunali

    2010-08-01

    The clinical use of information technology in the dental profession has increased substantially in the past 10 to 20 years. In most developing countries an insufficiency of medical and dental specialists has increased the mortality of patients suffering from various diseases. Employing technology, especially artificial intelligence technology, in medical and dental application could reduce cost, time, human expertise and medical error. This approach has the potential to revolutionise the dental public health scenario in developing countries. Clinical decision support systems (CDSS) are computer programs that are designed to provide expert support for health professionals. The applications in dental sciences vary from dental emergencies to differential diagnosis of orofacial pain, radiographic interpretations, analysis of facial growth in orthodontia to prosthetic dentistry. However, despite the recognised need for CDSS, the implementation of these systems has been limited and slow. This can be attributed to lack of formal evaluation of the systems, challenges in developing standard representations, cost and practitioner scepticism about the value and feasibility of CDSS. Increasing public awareness of safety and quality has accelerated the adoption of generic knowledge based CDSS. Information technology applications for dental practice continue to develop rapidly and will hopefully contribute to reduce the morbidity and mortality of oral and maxillofacial diseases and in turn impact patient care.

  3. Artificial intelligence: the clinician of the future.

    PubMed

    Gallagher, S M

    2001-09-01

    Human beings have long been fascinated with the idea of artificial intelligence. This fascination is fueled by popular films such as Stanley Kubrick's 2001: A Space Odyssey and Stephen Spielberg's recent film, AI. However intriguing artificial intelligence may be, Hubert and Spencer Dreyfus contend that qualities exist that are uniquely human--the qualities thought to be inaccessible to the computer "mind." Patricia Benner further investigated the qualities that guide clinicians in making decisions and assessments that are not entirely evidence-based or grounded in scientific data. Perhaps it is the intuitive nature of the human being that separates us from the machine. The state of artificial intelligence is described herein, along with a discussion of computerized clinical decision-making and the role of the human being in these decisions.

  4. Modeling the effects of light and sucrose on in vitro propagated plants: a multiscale system analysis using artificial intelligence technology.

    PubMed

    Gago, Jorge; Martínez-Núñez, Lourdes; Landín, Mariana; Flexas, Jaume; Gallego, Pedro P

    2014-01-01

    Plant acclimation is a highly complex process, which cannot be fully understood by analysis at any one specific level (i.e. subcellular, cellular or whole plant scale). Various soft-computing techniques, such as neural networks or fuzzy logic, were designed to analyze complex multivariate data sets and might be used to model large such multiscale data sets in plant biology. In this study we assessed the effectiveness of applying neuro-fuzzy logic to modeling the effects of light intensities and sucrose content/concentration in the in vitro culture of kiwifruit on plant acclimation, by modeling multivariate data from 14 parameters at different biological scales of organization. The model provides insights through application of 14 sets of straightforward rules and indicates that plants with lower stomatal aperture areas and higher photoinhibition and photoprotective status score best for acclimation. The model suggests the best condition for obtaining higher quality acclimatized plantlets is the combination of 2.3% sucrose and photonflux of 122-130 µmol m(-2) s(-1). Our results demonstrate that artificial intelligence models are not only successful in identifying complex non-linear interactions among variables, by integrating large-scale data sets from different levels of biological organization in a holistic plant systems-biology approach, but can also be used successfully for inferring new results without further experimental work.

  5. Modeling the Effects of Light and Sucrose on In Vitro Propagated Plants: A Multiscale System Analysis Using Artificial Intelligence Technology

    PubMed Central

    Gago, Jorge; Martínez-Núñez, Lourdes; Landín, Mariana; Flexas, Jaume; Gallego, Pedro P.

    2014-01-01

    Background Plant acclimation is a highly complex process, which cannot be fully understood by analysis at any one specific level (i.e. subcellular, cellular or whole plant scale). Various soft-computing techniques, such as neural networks or fuzzy logic, were designed to analyze complex multivariate data sets and might be used to model large such multiscale data sets in plant biology. Methodology and Principal Findings In this study we assessed the effectiveness of applying neuro-fuzzy logic to modeling the effects of light intensities and sucrose content/concentration in the in vitro culture of kiwifruit on plant acclimation, by modeling multivariate data from 14 parameters at different biological scales of organization. The model provides insights through application of 14 sets of straightforward rules and indicates that plants with lower stomatal aperture areas and higher photoinhibition and photoprotective status score best for acclimation. The model suggests the best condition for obtaining higher quality acclimatized plantlets is the combination of 2.3% sucrose and photonflux of 122–130 µmol m−2 s−1. Conclusions Our results demonstrate that artificial intelligence models are not only successful in identifying complex non-linear interactions among variables, by integrating large-scale data sets from different levels of biological organization in a holistic plant systems-biology approach, but can also be used successfully for inferring new results without further experimental work. PMID:24465829

  6. Installation and evaluation of a nuclear power plant Operator Advisor based on artificial intelligence technology. Final report

    SciTech Connect

    Hajek, B.K.; Miller, D.W.

    1993-02-01

    The Artificial Intelligence Group in the Nuclear Engineering Program has designed and built an Operator Advisor (OA), an AI system to monitor nuclear power plant parameters, detect component and system malfunctions, dispose their causes, and provide the plant operators with the correct procedures for mitigating the consequences of the malfunctions. It then monitors performance of the procedures, and provides backup steps when specific operator actions fail. The OA has been implemented on Sun 4 workstations in Common Lisp, and has been interfaced to run in real time on the Perry Nuclear Power Plant full-function simulator in the plant training department. The eventual goal for a fully functioning Operator Advisor would be to have reactor operators receive direction for all plant operations. Such a goal requires considerable testing of the system within limited malfunction boundaries, an extensive Verification & Validation (V&V) effort, a large knowledge base development effort, and development of tools as part of the system to automate its maintenance. Clearly, these efforts are beyond the scope of the feasibility effort expended during this project period. However, as a result of this project, we have an AI based platform upon which a complete system can be built.

  7. Application Of Artificial Intelligence To Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Steinle, Frank W., Jr.

    1989-01-01

    Report discusses potential use of artificial-intelligence systems to manage wind-tunnel test facilities at Ames Research Center. One of goals of program to obtain experimental data of better quality and otherwise generally increase productivity of facilities. Another goal to increase efficiency and expertise of current personnel and to retain expertise of former personnel. Third goal to increase effectiveness of management through more efficient use of accumulated data. System used to improve schedules of operation and maintenance of tunnels and other equipment, assignment of personnel, distribution of electrical power, and analysis of costs and productivity. Several commercial artificial-intelligence computer programs discussed as possible candidates for use.

  8. Abstraction and reformulation in artificial intelligence.

    PubMed Central

    Holte, Robert C.; Choueiry, Berthe Y.

    2003-01-01

    This paper contributes in two ways to the aims of this special issue on abstraction. The first is to show that there are compelling reasons motivating the use of abstraction in the purely computational realm of artificial intelligence. The second is to contribute to the overall discussion of the nature of abstraction by providing examples of the abstraction processes currently used in artificial intelligence. Although each type of abstraction is specific to a somewhat narrow context, it is hoped that collectively they illustrate the richness and variety of abstraction in its fullest sense. PMID:12903653

  9. Application Of Artificial Intelligence To Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Steinle, Frank W., Jr.

    1989-01-01

    Report discusses potential use of artificial-intelligence systems to manage wind-tunnel test facilities at Ames Research Center. One of goals of program to obtain experimental data of better quality and otherwise generally increase productivity of facilities. Another goal to increase efficiency and expertise of current personnel and to retain expertise of former personnel. Third goal to increase effectiveness of management through more efficient use of accumulated data. System used to improve schedules of operation and maintenance of tunnels and other equipment, assignment of personnel, distribution of electrical power, and analysis of costs and productivity. Several commercial artificial-intelligence computer programs discussed as possible candidates for use.

  10. A Primer for Problem Solving Using Artificial Intelligence.

    ERIC Educational Resources Information Center

    Schell, George P.

    1988-01-01

    Reviews the development of artificial intelligence systems and the mechanisms used, including knowledge representation, programing languages, and problem processing systems. Eleven books and 6 journals are listed as sources of information on artificial intelligence. (23 references) (CLB)

  11. Artificial intelligence: Deep neural reasoning

    NASA Astrophysics Data System (ADS)

    Jaeger, Herbert

    2016-10-01

    The human brain can solve highly abstract reasoning problems using a neural network that is entirely physical. The underlying mechanisms are only partially understood, but an artificial network provides valuable insight. See Article p.471

  12. Dynamic Restructuring Of Problems In Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.

    1992-01-01

    "Dynamic tradeoff evaluation" (DTE) denotes proposed method and procedure for restructuring problem-solving strategies in artificial intelligence to satisfy need for timely responses to changing conditions. Detects situations in which optimal problem-solving strategies cannot be pursued because of real-time constraints, and effects tradeoffs among nonoptimal strategies in such way to minimize adverse effects upon performance of system.

  13. Artificial Intelligence: Underlying Assumptions and Basic Objectives.

    ERIC Educational Resources Information Center

    Cercone, Nick; McCalla, Gordon

    1984-01-01

    Presents perspectives on methodological assumptions underlying research efforts in artificial intelligence (AI) and charts activities, motivations, methods, and current status of research in each of the major AI subareas: natural language understanding; computer vision; expert systems; search, problem solving, planning; theorem proving and logic…

  14. Portable AI Lab for Teaching Artificial Intelligence.

    ERIC Educational Resources Information Center

    Rosner, Michael; Baj, Fabio.

    1993-01-01

    Describes the Portable AI Lab, a computing environment containing artificial intelligence (AI) tools, examples, and documentation for use with university AI courses. Two modules of the lab are highlighted: the automated theorem proving module and the natural language processing module, which includes augmented transition networks. (23 references)…

  15. How Artificial Intelligence Impacts Industrial Education.

    ERIC Educational Resources Information Center

    Ruyle, Kim E.

    1986-01-01

    Explores an artificial intelligence expert system authoring tool called EXSYS. Describes the system, which consists of an instruction manual and several floppy disks containing a rule editor for creating, editing, and experimenting with an expert system, a runtime program for running any existing EXSYS expert system, and several tutorial and…

  16. A Starter's Guide to Artificial Intelligence.

    ERIC Educational Resources Information Center

    McConnell, Barry A.; McConnell, Nancy J.

    1988-01-01

    Discussion of the history and development of artificial intelligence (AI) highlights a bibliography of introductory books on various aspects of AI, including AI programing; problem solving; automated reasoning; game playing; natural language; expert systems; machine learning; robotics and vision; critics of AI; and representative software. (LRW)

  17. Artificial Intelligence, Computational Thinking, and Mathematics Education

    ERIC Educational Resources Information Center

    Gadanidis, George

    2017-01-01

    Purpose: The purpose of this paper is to examine the intersection of artificial intelligence (AI), computational thinking (CT), and mathematics education (ME) for young students (K-8). Specifically, it focuses on three key elements that are common to AI, CT and ME: agency, modeling of phenomena and abstracting concepts beyond specific instances.…

  18. Dynamic Restructuring Of Problems In Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.

    1992-01-01

    "Dynamic tradeoff evaluation" (DTE) denotes proposed method and procedure for restructuring problem-solving strategies in artificial intelligence to satisfy need for timely responses to changing conditions. Detects situations in which optimal problem-solving strategies cannot be pursued because of real-time constraints, and effects tradeoffs among nonoptimal strategies in such way to minimize adverse effects upon performance of system.

  19. Counseling, Artificial Intelligence, and Expert Systems.

    ERIC Educational Resources Information Center

    Illovsky, Michael E.

    1994-01-01

    Considers the use of artificial intelligence and expert systems in counseling. Limitations are explored; candidates for counseling versus those for expert systems are discussed; programming considerations are reviewed; and techniques for dealing with rational, nonrational, and irrational thoughts and feelings are described. (Contains 46…

  20. A Starter's Guide to Artificial Intelligence.

    ERIC Educational Resources Information Center

    McConnell, Barry A.; McConnell, Nancy J.

    1988-01-01

    Discussion of the history and development of artificial intelligence (AI) highlights a bibliography of introductory books on various aspects of AI, including AI programing; problem solving; automated reasoning; game playing; natural language; expert systems; machine learning; robotics and vision; critics of AI; and representative software. (LRW)

  1. Artificial intelligence for medical decision making.

    PubMed

    Kumar, A A; Vasudevan, C

    1990-07-01

    Artificial intelligence techniques find extensive applications in medical decision making and other aspects of health care. A number of successful expert systems have been developed in various disciplines of medicine. This paper gives an overview of expert system techniques, describes some practical systems, and discusses the relevance of such systems in clinical diagnosis and management of diseases.

  2. Northeast Artificial Intelligence Consortium (NAIC). Volume 4. Distributed Artificial Intelligence for Communications Network Management

    DTIC Science & Technology

    1990-12-01

    MANAGEMENT Northeast Artificial Intelligence Consortium (NAIC) Robert A. Meyer and Susan E. Conry APPROVED FOR PUBLIC RELE45E; DIS7T.SUTION UNLM 1IT7ED This...FUNDING NUMBERS DISTRIBUTED ARTIFICIAL INTELLIGENCE FOR COMMUNICATIONS C - F30602-85-C-0008 NETWORK MANAGEMENT PE - 62702F PR - 5581 & (S)TA - 2 7 Robert ...Proceedings of the International Conference on Distributed Computing Systems, May 1986. [47] L. Wos, R. Overbeek , E. Lusk, and J. Boyle. Automated Reasoning

  3. Intelligent structures technology

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.

    1991-01-01

    Viewgraphs on intelligent structures technology are presented. Topics covered include: embedding electronics; electrical and mechanical compatibility; integrated circuit chip packaged for embedding; embedding devices within composite structures; test of embedded circuit in G/E coupon; temperature/humidity/bias test; single-chip microcomputer control experiment; and structural shape determination.

  4. Artificial Intelligence Applications to Information Warfare.

    DTIC Science & Technology

    2007-11-02

    still is work to be done, intelligent agents may someday manage the information flow, be the core technology in network firewalls, and contribute to overall network security through continuous Red Team vulnerability assessments.

  5. Using artificial intelligence to automate remittance processing.

    PubMed

    Adams, W T; Snow, G M; Helmick, P M

    1998-06-01

    The consolidated business office of the Allegheny Health Education Research Foundation (AHERF), a large integrated healthcare system based in Pittsburgh, Pennsylvania, sought to improve its cash-related business office activities by implementing an automated remittance processing system that uses artificial intelligence. The goal was to create a completely automated system whereby all monies it processed would be tracked, automatically posted, analyzed, monitored, controlled, and reconciled through a central database. Using a phased approach, the automated payment system has become the central repository for all of the remittances for seven of the hospitals in the AHERF system and has allowed for the complete integration of these hospitals' existing billing systems, document imaging system, and intranet, as well as the new automated payment posting, and electronic cash tracking and reconciling systems. For such new technology, which is designed to bring about major change, factors contributing to the project's success were adequate planning, clearly articulated objectives, marketing, end-user acceptance, and post-implementation plan revision.

  6. The Application of Artificial Intelligence to Contract Management.

    DTIC Science & Technology

    1984-08-01

    INTELLIGENCE 2.1 Definition of Artificial Intelligence. .. .. ... .... 7 2.2 History of Artificial Intelligence. .. .. .. ... .... 8 V2.3 Approaches to...Ig d. not by nuebtb hua aror fot.Itelligence hoeeiOoNoesl eie ineteeeit opeieciei 8 2.2 History of Artificial Intelligence Al is a very young field...down into individual components but must be evaluated as a complete sentence. Some examples of propositions are: the truck has four wheels, the poodle

  7. The role of artificial intelligence and expert systems in increasing STS operations productivity

    NASA Technical Reports Server (NTRS)

    Culbert, C.

    1985-01-01

    Artificial Intelligence (AI) is discussed. A number of the computer technologies pioneered in the AI world can make significant contributions to increasing STS operations productivity. Application of expert systems, natural language, speech recognition, and other key technologies can reduce manpower while raising productivity. Many aspects of STS support lend themselves to this type of automation. The artificial intelligence section of the mission planning and analysis division has developed a number of functioning prototype systems which demonstrate the potential gains of applying AI technology.

  8. The role of artificial intelligence and expert systems in increasing STS operations productivity

    NASA Technical Reports Server (NTRS)

    Culbert, C.

    1985-01-01

    Artificial Intelligence (AI) is discussed. A number of the computer technologies pioneered in the AI world can make significant contributions to increasing STS operations productivity. Application of expert systems, natural language, speech recognition, and other key technologies can reduce manpower while raising productivity. Many aspects of STS support lend themselves to this type of automation. The artificial intelligence section of the mission planning and analysis division has developed a number of functioning prototype systems which demonstrate the potential gains of applying AI technology.

  9. Projective simulation for artificial intelligence

    PubMed Central

    Briegel, Hans J.; De las Cuevas, Gemma

    2012-01-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation. PMID:22590690

  10. Projective simulation for artificial intelligence

    NASA Astrophysics Data System (ADS)

    Briegel, Hans J.; de Las Cuevas, Gemma

    2012-05-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.

  11. Projective simulation for artificial intelligence.

    PubMed

    Briegel, Hans J; De las Cuevas, Gemma

    2012-01-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.

  12. Artificial intelligence in medicine: the challenges ahead.

    PubMed

    Coiera, E W

    1996-01-01

    The modern study of artificial intelligence in medicine (AIM) is 25 years old. Throughout this period, the field has attracted many of the best computer scientists, and their work represents a remarkable achievement. However, AIM has not been successful-if success is judged as making an impact on the practice of medicine. Much recent work in AIM has been focused inward, addressing problems that are at the crossroads of the parent disciplines of medicine and artificial intelligence. Now, AIM must move forward with the insights that it has gained and focus on finding solutions for problems at the heart of medical practice. The growing emphasis within medicine on evidence-based practice should provide the right environment for that change.

  13. Artificial intelligence - NASA. [robotics for Space Station

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.

    1985-01-01

    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  14. Artificial intelligence - NASA. [robotics for Space Station

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.

    1985-01-01

    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  15. Artificial intelligence in medicine: the challenges ahead.

    PubMed Central

    Coiera, E W

    1996-01-01

    The modern study of artificial intelligence in medicine (AIM) is 25 years old. Throughout this period, the field has attracted many of the best computer scientists, and their work represents a remarkable achievement. However, AIM has not been successful-if success is judged as making an impact on the practice of medicine. Much recent work in AIM has been focused inward, addressing problems that are at the crossroads of the parent disciplines of medicine and artificial intelligence. Now, AIM must move forward with the insights that it has gained and focus on finding solutions for problems at the heart of medical practice. The growing emphasis within medicine on evidence-based practice should provide the right environment for that change. PMID:8930853

  16. Exodus - Distributed artificial intelligence for Shuttle firing rooms

    NASA Technical Reports Server (NTRS)

    Heard, Astrid E.

    1990-01-01

    This paper describes the Expert System for Operations Distributed Users (EXODUS), a knowledge-based artificial intelligence system developed for the four Firing Rooms at the Kennedy Space Center. EXODUS is used by the Shuttle engineers and test conductors to monitor and control the sequence of tasks required for processing and launching Shuttle vehicles. In this paper, attention is given to the goals and the design of EXODUS, the operational requirements, and the extensibility of the technology.

  17. Exodus - Distributed artificial intelligence for Shuttle firing rooms

    NASA Technical Reports Server (NTRS)

    Heard, Astrid E.

    1990-01-01

    This paper describes the Expert System for Operations Distributed Users (EXODUS), a knowledge-based artificial intelligence system developed for the four Firing Rooms at the Kennedy Space Center. EXODUS is used by the Shuttle engineers and test conductors to monitor and control the sequence of tasks required for processing and launching Shuttle vehicles. In this paper, attention is given to the goals and the design of EXODUS, the operational requirements, and the extensibility of the technology.

  18. Artificial intelligence for turboprop engine maintenance

    SciTech Connect

    1995-01-01

    Long-term maintenance operations, causing the unit to out of action, may seem economical - but they result in reduced operating readiness. Offsetting that concern, careless, hurried maintenance reduces margins of safety and reliability. Any tool that improves maintenance without causing a sharp increase in cost is valuable. Artificial intelligence (AI) is one of the tools. Expert system and neural networks are two different areas of AI that show promise for turboprop engine maintenance.

  19. Flang: A language for artificial intelligence

    SciTech Connect

    Mantsivoda, A.V.

    1994-05-01

    Logic programming - an area of informatics combining mathematical logic, artificial intelligence, and programming - has undergone considerably accelerated development in the past few years. The Prolog language - the principal representative of logic programming - is gaining ever-increasing popularity for the solution of practical problems. The appearance of the Warren abstract machine has greatly increased the effectiveness of Prolog. Nevertheless, a number of serious difficulties remain in logic programming.

  20. Applications of artificial intelligence in Japan

    SciTech Connect

    Honda, N.; Ohsato, A.

    1988-01-01

    This article presents a comprehensive report on the recent research and development of artificial intelligence (AI) in Japan, focusing especially on industrial applications. First, historical background of AI research and the future trends of AI Marketing in Japan are reported. Then, industrial applications of AI are introduced with respect to three fields: expert systems, machine translation, and applications of fuzzy set theory. Finally, problems for future research projects are outlined. 21 references.

  1. Artificial Intelligence Software Acquisition Program. Volume 1.

    DTIC Science & Technology

    1987-12-01

    Definition To date, many Artificial Intelligence ( AI ) systems have been developed in university and other. research environments with relatively few...for AI systems which had either completed development or were well underway towards completing a prototype. During the Phase I data collection activity...conducting the AI /KBS system case studies. The questionnaire, contained in Appendix B, is divided into four parts: 1. Introduction 2. Background 3

  2. Artificial intelligence techniques for cancer treatment planning.

    PubMed

    Ardizzone, E; Bonadonna, F; Gaglio, S; Marcenò, R; Nicolini, C; Ruggiero, C; Sorbello, F

    1988-01-01

    An artificial intelligence system, NEWCHEM, for the development of new oncology therapies is described. This system takes into account the most recent advances in molecular and cellular biology and in cell-drug interaction, and aims to guide experimentation in the design of new optimal protocols. Further work is being carried out, aimed to embody in the system all the basic knowledge of biology, physiopathology and pharmacology, to reason qualitatively from first principles so as to be able to suggest cancer therapies.

  3. Dictionary of Artificial Intelligence and robotics

    SciTech Connect

    Rosenberg, J.M.

    1986-01-01

    A compilation of over 4000 terms and their definitions relevant to artificial intelligence and robotics. It includes multiple and alternative meanings, abbreviations, acronyms, and foreign expressions. This text supplies both general and specialized entries and cites the relationship between robotics, AI, and computer control terms where applicable. Groups entries containing mutual concepts are together alphabetically, by their common term. It also identifies archaic terms and their preferred alternatives.

  4. Encyclopedia of artificial intelligence: 2 Vol. set

    SciTech Connect

    Shapiro, S.C.

    1987-01-01

    Drawing on the fields of computer science, electrical engineering, linguistics, mathematics, philosophy, psychology, and physiology, this one-volume encyclopedia brings together the core of knowledge on artificial intelligence. It provides an overview of how to program computers to emulate human behavior, offering a wide range of techniques for speech and visual generation, problem-solving and more. Over 250 entries are organized alphabetically, cross-referenced and indexed.

  5. Applications of artificial intelligence to scientific research

    NASA Technical Reports Server (NTRS)

    Prince, Mary Ellen

    1986-01-01

    Artificial intelligence (AI) is a growing field which is just beginning to make an impact on disciplines other than computer science. While a number of military and commercial applications were undertaken in recent years, few attempts were made to apply AI techniques to basic scientific research. There is no inherent reason for the discrepancy. The characteristics of the problem, rather than its domain, determines whether or not it is suitable for an AI approach. Expert system, intelligent tutoring systems, and learning programs are examples of theoretical topics which can be applied to certain areas of scientific research. Further research and experimentation should eventurally make it possible for computers to act as intelligent assistants to scientists.

  6. Teachers and artificial intelligence. The Logo connection.

    PubMed

    Merbler, J B

    1990-12-01

    This article describes a three-phase program for training special education teachers to teach Logo and artificial intelligence. Logo is derived from the LISP computer language and is relatively simple to learn and use, and it is argued that these factors make it an ideal tool for classroom experimentation in basic artificial intelligence concepts. The program trains teachers to develop simple demonstrations of artificial intelligence using Logo. The material that the teachers learn to teach is suitable as an advanced level topic for intermediate- through secondary-level students enrolled in computer competency or similar courses. The material emphasizes problem-solving and thinking skills using a nonverbal expressive medium (Logo), thus it is deemed especially appropriate for hearing-impaired children. It is also sufficiently challenging for academically talented children, whether hearing or deaf. Although the notion of teachers as programmers is controversial, Logo is relatively easy to learn, has direct implications for education, and has been found to be an excellent tool for empowerment-for both teachers and children.

  7. Artificial Intelligence and Computer Assisted Instruction. CITE Report No. 4.

    ERIC Educational Resources Information Center

    Elsom-Cook, Mark

    The purpose of the paper is to outline some of the major ways in which artificial intelligence research and techniques can affect usage of computers in an educational environment. The role of artificial intelligence is defined, and the difference between Computer Aided Instruction (CAI) and Intelligent Computer Aided Instruction (ICAI) is…

  8. Artificial Intelligence and Computer Assisted Instruction. CITE Report No. 4.

    ERIC Educational Resources Information Center

    Elsom-Cook, Mark

    The purpose of the paper is to outline some of the major ways in which artificial intelligence research and techniques can affect usage of computers in an educational environment. The role of artificial intelligence is defined, and the difference between Computer Aided Instruction (CAI) and Intelligent Computer Aided Instruction (ICAI) is…

  9. Artificial Intelligence and Waveform Diversity

    DTIC Science & Technology

    2003-10-04

    computers have could place a null in its antenna pattern to reduce the been doubling approximately every 18 months. Today’s affect of the jammer . This...deployed in space where fixing EMI problems is not links using Bluetooth or 802.11 technologies can be feasible. Using software tools for guiding EM

  10. Air Quality Forecasting through Different Statistical and Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Mishra, D.; Goyal, P.

    2014-12-01

    Urban air pollution forecasting has emerged as an acute problem in recent years because there are sever environmental degradation due to increase in harmful air pollutants in the ambient atmosphere. In this study, there are different types of statistical as well as artificial intelligence techniques are used for forecasting and analysis of air pollution over Delhi urban area. These techniques are principle component analysis (PCA), multiple linear regression (MLR) and artificial neural network (ANN) and the forecasting are observed in good agreement with the observed concentrations through Central Pollution Control Board (CPCB) at different locations in Delhi. But such methods suffers from disadvantages like they provide limited accuracy as they are unable to predict the extreme points i.e. the pollution maximum and minimum cut-offs cannot be determined using such approach. Also, such methods are inefficient approach for better output forecasting. But with the advancement in technology and research, an alternative to the above traditional methods has been proposed i.e. the coupling of statistical techniques with artificial Intelligence (AI) can be used for forecasting purposes. The coupling of PCA, ANN and fuzzy logic is used for forecasting of air pollutant over Delhi urban area. The statistical measures e.g., correlation coefficient (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA) of the proposed model are observed in better agreement with the all other models. Hence, the coupling of statistical and artificial intelligence can be use for the forecasting of air pollutant over urban area.

  11. Artificial Intelligence Applications to Testability.

    DTIC Science & Technology

    1984-10-01

    Paul Haton , Speech Recognition and Understanding, 1982 IEEE Pattern Recogni- .. tion, 570-581 Technical overview paper with details Phil Hayes, Eugene...Computers That Think Like Experts, Paul Kinnucan, High Technology, 3anuary 1984, pg. 30-42. 29. Adaptive Fault Isolation With Learning, W. R. Simpson, 3...34.’......--:..- *’ ..’ *.- ’....’." ..".. . . . . . .: . . . : : :: :: : . 32. Design for Testability Using Logic Programming, Paul W. Horstman, 1983 Inter. Test Conf., pg. 706-713

  12. Artificial Intelligence for VHSIC Systems Design (AIVD) User Reference Manual

    DTIC Science & Technology

    1988-12-01

    AD-A259 518 C;ý I RESEARCH TRIANGLE INSTITUTE ARTIFICIAL INTELLIGENCE FOR IVHSIC SYSTEMS DESIGN (AIVD) DTIC USER REFERENCE MANUAL * ScELECTE fl2...Report 14. SUBJECT TERMS IS. MUMBER OF PAGES VHSIC, Software/hardware codesign, Artificial Intelligence graph transformation, ADAS 14. PRICE CODE 17... ARTIFICIAL INTELLIGENCE FOR I VHSIC SYSTEMS DESIGN (AIVD) USER REFERENCE MANUAL December 1988 I Department of the Army ,,’ U.S. Army Electronics Research

  13. Artificial Intelligence Information Sources for the Beginner and Expert

    DTIC Science & Technology

    1991-05-01

    SUBPLEETAR TMS T bepbhdi" Artificial Intelligence ApplictionsforMlitar Expertis SystemsWilasbrVA 527Mrh 91 12a. DSCRIBTION C AIITY 6 STAEENRTY CTO SECb.T...DLSIFC ISTR BUMATION OC Apnclassified pu ncrlase; ituied inlsife unlimited. Artificial Intelligence Information Sources for the Beginner and Expert...mgivenfdsac.dia.mil UUCP: {...).osu-cisidsac!mgiven ABSTRACT A tremendous amount of information on artificial intelligence is available via different

  14. Worldwide Intelligent Systems: Approaches to Telecommunications and Network Management. Frontiers in Artificial Intelligence and Applications, Volume 24.

    ERIC Educational Resources Information Center

    Liebowitz, Jay, Ed.; Prerau, David S., Ed.

    This is an international collection of 12 papers addressing artificial intelligence (AI) and knowledge technology applications in telecommunications and network management. It covers the latest and emerging AI technologies as applied to the telecommunications field. The papers are: "The Potential for Knowledge Technology in…

  15. Digital Intelligence Fostered by Technology

    ERIC Educational Resources Information Center

    Adams, Nan B.

    2004-01-01

    Through interaction with digital technologies for work, play, and communication, the pattern for intellectual development is being altered. The multiple intelligences theoretical framework developed by Gardner (1983) is easily employed to provide evidence that yet another intelligence, digital intelligence, has emerged. In a postmodern pluralistic…

  16. Non-Newtonian Aspects of Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Zak, Michail

    2016-05-01

    The challenge of this work is to connect physics with the concept of intelligence. By intelligence we understand a capability to move from disorder to order without external resources, i.e., in violation of the second law of thermodynamics. The objective is to find such a mathematical object described by ODE that possesses such a capability. The proposed approach is based upon modification of the Madelung version of the Schrodinger equation by replacing the force following from quantum potential with non-conservative forces that link to the concept of information. A mathematical formalism suggests that a hypothetical intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such properties like self-image, self-awareness, self-supervision, etc. that are typical for Livings. However since this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does not belong to the physics matter as we know it: the modern physics should be complemented with the concept of the information force that represents a bridge to intelligent particle. As a follow-up of the proposed concept, the following question is addressed: can artificial intelligence (AI) system composed only of physical components compete with a human? The answer is proven to be negative if the AI system is based only on simulations, and positive if digital devices are included. It has been demonstrated that there exists such a quantum neural net that performs simulations combined with digital punctuations. The universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics by moving from disorder to order without external resources. This advanced capability is illustrated by examples. In conclusion, a mathematical machinery of the perception that is the fundamental part of a cognition process as well as intelligence is introduced and discussed.

  17. Artificial intelligence and space power systems automation

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1987-01-01

    Various applications of artificial intelligence to space electrical power systems are discussed. An overview is given of completed, on-going, and planned knowledge-based system activities. These applications include the Nickel-Cadmium Battery Expert System (NICBES) (the expert system interfaced with the Hubble Space Telescope electrical power system test bed); the early work with the Space Station Experiment Scheduler (SSES); the three expert systems under development in the space station advanced development effort in the core module power management and distribution system test bed; planned cooperation of expert systems in the Core Module Power Management and Distribution (CM/PMAD) system breadboard with expert systems for the space station at other research centers; and the intelligent data reduction expert system under development.

  18. A development framework for distributed artificial intelligence

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Cottman, Bruce H.

    1989-01-01

    The authors describe distributed artificial intelligence (DAI) applications in which multiple organizations of agents solve multiple domain problems. They then describe work in progress on a DAI system development environment, called SOCIAL, which consists of three primary language-based components. The Knowledge Object Language defines models of knowledge representation and reasoning. The metaCourier language supplies the underlying functionality for interprocess communication and control access across heterogeneous computing environments. The metaAgents language defines models for agent organization coordination, control, and resource management. Application agents and agent organizations will be constructed by combining metaAgents and metaCourier building blocks with task-specific functionality such as diagnostic or planning reasoning. This architecture hides implementation details of communications, control, and integration in distributed processing environments, enabling application developers to concentrate on the design and functionality of the intelligent agents and agent networks themselves.

  19. A development framework for distributed artificial intelligence

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Cottman, Bruce H.

    1989-01-01

    The authors describe distributed artificial intelligence (DAI) applications in which multiple organizations of agents solve multiple domain problems. They then describe work in progress on a DAI system development environment, called SOCIAL, which consists of three primary language-based components. The Knowledge Object Language defines models of knowledge representation and reasoning. The metaCourier language supplies the underlying functionality for interprocess communication and control access across heterogeneous computing environments. The metaAgents language defines models for agent organization coordination, control, and resource management. Application agents and agent organizations will be constructed by combining metaAgents and metaCourier building blocks with task-specific functionality such as diagnostic or planning reasoning. This architecture hides implementation details of communications, control, and integration in distributed processing environments, enabling application developers to concentrate on the design and functionality of the intelligent agents and agent networks themselves.

  20. AIonAI: a humanitarian law of artificial intelligence and robotics.

    PubMed

    Ashrafian, Hutan

    2015-02-01

    The enduring progression of artificial intelligence and cybernetics offers an ever-closer possibility of rational and sentient robots. The ethics and morals deriving from this technological prospect have been considered in the philosophy of artificial intelligence, the design of automatons with roboethics and the contemplation of machine ethics through the concept of artificial moral agents. Across these categories, the robotics laws first proposed by Isaac Asimov in the twentieth century remain well-recognised and esteemed due to their specification of preventing human harm, stipulating obedience to humans and incorporating robotic self-protection. However the overwhelming predominance in the study of this field has focussed on human-robot interactions without fully considering the ethical inevitability of future artificial intelligences communicating together and has not addressed the moral nature of robot-robot interactions. A new robotic law is proposed and termed AIonAI or artificial intelligence-on-artificial intelligence. This law tackles the overlooked area where future artificial intelligences will likely interact amongst themselves, potentially leading to exploitation. As such, they would benefit from adopting a universal law of rights to recognise inherent dignity and the inalienable rights of artificial intelligences. Such a consideration can help prevent exploitation and abuse of rational and sentient beings, but would also importantly reflect on our moral code of ethics and the humanity of our civilisation.

  1. Artificial intelligence and expert systems in-flight software testing

    NASA Technical Reports Server (NTRS)

    Demasie, M. P.; Muratore, J. F.

    1991-01-01

    The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.

  2. Artificial intelligence and expert systems in-flight software testing

    NASA Technical Reports Server (NTRS)

    Demasie, M. P.; Muratore, J. F.

    1991-01-01

    The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.

  3. Artificial intelligence applied to process signal analysis

    NASA Technical Reports Server (NTRS)

    Corsberg, Dan

    1988-01-01

    Many space station processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect of the human/machine interface is the analysis and display of process information. Human operators can be overwhelmed by large clusters of alarms that inhibit their ability to diagnose and respond to a disturbance. Using artificial intelligence techniques and a knowledge base approach to this problem, the power of the computer can be used to filter and analyze plant sensor data. This will provide operators with a better description of the process state. Once a process state is recognized, automatic action could be initiated and proper system response monitored.

  4. Quantum neuromorphic hardware for quantum artificial intelligence

    NASA Astrophysics Data System (ADS)

    Prati, Enrico

    2017-08-01

    The development of machine learning methods based on deep learning boosted the field of artificial intelligence towards unprecedented achievements and application in several fields. Such prominent results were made in parallel with the first successful demonstrations of fault tolerant hardware for quantum information processing. To which extent deep learning can take advantage of the existence of a hardware based on qubits behaving as a universal quantum computer is an open question under investigation. Here I review the convergence between the two fields towards implementation of advanced quantum algorithms, including quantum deep learning.

  5. Probabilistic machine learning and artificial intelligence.

    PubMed

    Ghahramani, Zoubin

    2015-05-28

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  6. Application of artificial intelligence to robotic vision

    SciTech Connect

    Chao, P.S.; Frick, P.A.

    1983-01-01

    A brief introduction to artificial intelligence (AI) and the general vision process is provided. Two samples of AI researchers' work toward general computer vision are given. The first is a model-based vision system while the second is based on results of studies on human vision. The current state of machine vision in industrial robotics is demonstrated using a well known vision algorithm developed at SRI International. A part of a prototype robotic assembly project with vision is sketched to show the application of some AI tools to practical work. 8 references.

  7. Probabilistic machine learning and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Ghahramani, Zoubin

    2015-05-01

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  8. Artificial intelligence applied to process signal analysis

    NASA Technical Reports Server (NTRS)

    Corsberg, Dan

    1988-01-01

    Many space station processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect of the human/machine interface is the analysis and display of process information. Human operators can be overwhelmed by large clusters of alarms that inhibit their ability to diagnose and respond to a disturbance. Using artificial intelligence techniques and a knowledge base approach to this problem, the power of the computer can be used to filter and analyze plant sensor data. This will provide operators with a better description of the process state. Once a process state is recognized, automatic action could be initiated and proper system response monitored.

  9. Artificial intelligence applications at the ICPP

    SciTech Connect

    Johnson, C.E.

    1989-08-02

    Westinghouse Idaho Nuclear Company (WINCO) initiated an aggressive program for artificial intelligence (AI) expert system implementations in 1985. The first expert system, Safety Analysis Methods Advisor (SAMA) was completed in 1986 to help operational safety analysts select analysis methodologies for safety analysis reports. The SAMA expert system was implemented as a rule-based system using a commercial expert system shell. The major benefit of the system is for training new safety analysts. The first successful implementation launched three other expert system projects: a process alarm filtering system, a process control advisor, and a mass spectrometer trouble-shooting advisor. This paper describes the current status of these projects. (GHH)

  10. Beyond Artificial Intelligence toward Engineered Psychology

    NASA Astrophysics Data System (ADS)

    Bozinovski, Stevo; Bozinovska, Liljana

    This paper addresses the field of Artificial Intelligence, road it went so far and possible road it should go. The paper was invited by the Conference of IT Revolutions 2008, and discusses some issues not emphasized in AI trajectory so far. The recommendations are that the main focus should be personalities rather than programs or agents, that genetic environment should be introduced in reasoning about personalities, and that limbic system should be studied and modeled. Engineered Psychology is proposed as a road to go. Need for basic principles in psychology are discussed and a mathematical equation is proposed as fundamental law of engineered and human psychology.

  11. Accelerating artificial intelligence with reconfigurable computing

    NASA Astrophysics Data System (ADS)

    Cieszewski, Radoslaw

    Reconfigurable computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated by placing the computationally intense portions of an algorithm into reconfigurable hardware. Reconfigurable computing combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be changed over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware. Reconfigurable systems therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Such a field, where there is many different algorithms which can be accelerated, is an artificial intelligence. This paper presents example hardware implementations of Artificial Neural Networks, Genetic Algorithms and Expert Systems.

  12. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1991-01-01

    Significant advances have occurred during the last decade in intelligent systems technologies (a.k.a. knowledge-based systems, KBS) including research, feasibility demonstrations, and technology implementations in operational environments. Evaluation and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent systems technologies can be realized for Automated Rendezvous and Capture applications. The successful implementation of these technologies involve a complex system infrastructure integrating the requirements of transportation, vehicle checkout and health management, and communication systems without compromise to systems reliability and performance. The resources that must be invoked to accomplish these tasks include remote ground operations and control, built-in system fault management and control, and intelligent robotics. To ensure long-term evolution and integration of new validated technologies over the lifetime of the vehicle, system interfaces must also be addressed and integrated into the overall system interface requirements. An approach for defining and evaluating the system infrastructures including the testbed currently being used to support the on-going evaluations for the evolutionary Space Station Freedom Data Management System is presented and discussed. Intelligent system technologies discussed include artificial intelligence (real-time replanning and scheduling), high performance computational elements (parallel processors, photonic processors, and neural networks), real-time fault management and control, and system software development tools for rapid prototyping capabilities.

  13. Artificial intelligence. Fears of an AI pioneer.

    PubMed

    Russell, Stuart; Bohannon, John

    2015-07-17

    From the enraged robots in the 1920 play R.U.R. to the homicidal computer H.A.L. in 2001: A Space Odyssey, science fiction writers have embraced the dark side of artificial intelligence (AI) ever since the concept entered our collective imagination. Sluggish progress in AI research, especially during the “AI winter” of the 1970s and 1980s, made such worries seem far-fetched. But recent breakthroughs in machine learning and vast improvements in computational power have brought a flood of research funding— and fresh concerns about where AI may lead us. One researcher now speaking up is Stuart Russell, a computer scientist at the University of California, Berkeley, who with Peter Norvig, director of research at Google, wrote the premier AI textbook, Artificial Intelligence: A Modern Approach, now in its third edition. Last year, Russell joined the Centre for the Study of Existential Risk at Cambridge University in the United Kingdom as an AI expert focusing on “risks that could lead to human extinction.” Among his chief concerns, which he aired at an April meeting in Geneva, Switzerland, run by the United Nations, is the danger of putting military drones and weaponry under the full control of AI systems. This interview has been edited for clarity and brevity.

  14. Predicting asthma exacerbations using artificial intelligence.

    PubMed

    Finkelstein, Joseph; Wood, Jeffrey

    2013-01-01

    Modern telemonitoring systems identify a serious patient deterioration when it already occurred. It would be much more beneficial if the upcoming clinical deterioration were identified ahead of time even before a patient actually experiences it. The goal of this study was to assess artificial intelligence approaches which potentially can be used in telemonitoring systems for advance prediction of changes in disease severity before they actually occur. The study dataset was based on daily self-reports submitted by 26 adult asthma patients during home telemonitoring consisting of 7001 records. Two classification algorithms were employed for building predictive models: naïve Bayesian classifier and support vector machines. Using a 7-day window, a support vector machine was able to predict asthma exacerbation to occur on the day 8 with the accuracy of 0.80, sensitivity of 0.84 and specificity of 0.80. Our study showed that methods of artificial intelligence have significant potential in developing individualized decision support for chronic disease telemonitoring systems.

  15. Marine litter prediction by artificial intelligence.

    PubMed

    Balas, Can Elmar; Ergin, Aysen; Williams, Allan T; Koc, Levent

    2004-03-01

    Artificial intelligence techniques of neural network and fuzzy systems were applied as alternative methods to determine beach litter grading, based on litter surveys of the Antalya coastline (the Turkish Riviera). Litter measurements were categorized and assessed by artificial intelligence techniques, which lead to a new litter categorization system. The constructed neural network satisfactorily predicted the grading of the Antalya beaches and litter categories based on the number of litter items in the general litter category. It has been concluded that, neural networks could be used for high-speed predictions of litter items and beach grading, when the characteristics of the main litter category was determined by field studies. This can save on field effort when fast and reliable estimations of litter categories are required for management or research studies of beaches--especially those concerned with health and safety, and it has economic implications. The main advantages in using fuzzy systems are that they consider linguistic adjectival definitions, e.g. many/few, etc. As a result, additional information inherent in linguistic comments/refinements and judgments made during field studies can be incorporated in grading systems.

  16. Artificial Intelligence Research Branch future plans

    NASA Technical Reports Server (NTRS)

    Stewart, Helen (Editor)

    1992-01-01

    This report contains information on the activities of the Artificial Intelligence Research Branch (FIA) at NASA Ames Research Center (ARC) in 1992, as well as planned work in 1993. These activities span a range from basic scientific research through engineering development to fielded NASA applications, particularly those applications that are enabled by basic research carried out in FIA. Work is conducted in-house and through collaborative partners in academia and industry. All of our work has research themes with a dual commitment to technical excellence and applicability to NASA short, medium, and long-term problems. FIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at the Jet Propulsion Laboratory (JPL) and AI applications groups throughout all NASA centers. This report is organized along three major research themes: (1) Planning and Scheduling: deciding on a sequence of actions to achieve a set of complex goals and determining when to execute those actions and how to allocate resources to carry them out; (2) Machine Learning: techniques for forming theories about natural and man-made phenomena; and for improving the problem-solving performance of computational systems over time; and (3) Research on the acquisition, representation, and utilization of knowledge in support of diagnosis design of engineered systems and analysis of actual systems.

  17. Artificial intelligence analysis of paraspinal power spectra.

    PubMed

    Oliver, C W; Atsma, W J

    1996-10-01

    OBJECTIVE: As an aid to discrimination of sufferers with back pain an artificial intelligence neural network was constructed to differentiate paraspinal power spectra. DESIGN: Clinical investigation using surface electromyography. METHOD: The surface electromyogram power spectra from 60 subjects, 33 non-back-pain sufferers and 27 chronic back pain sufferers were used to construct a back propagation neural network that was then tested. Subjects were placed on a test frame in 30 degrees of lumbar forward flexion. An isometric load of two-thirds maximum voluntary contraction was held constant for 30 s whilst surface electromyograms were recorded at the level of the L(4-5). Paraspinal power spectra were calculated and loaded into the input layer of a three-layer back propagation network. The neural network classified the spectra into normal or back pain type. RESULTS: The back propagation neural was shown to have satisfactory convergence with a specificity of 79% and a sensitivity of 80%. CONCLUSIONS: Artificial intelligence neural networks appear to be a useful method of differentiating paraspinal power spectra in back-pain sufferers.

  18. The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1993-01-01

    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  19. Expertise, Task Complexity, and Artificial Intelligence: A Conceptual Framework.

    ERIC Educational Resources Information Center

    Buckland, Michael K.; Florian, Doris

    1991-01-01

    Examines the relationship between users' expertise, task complexity of information system use, and artificial intelligence to provide the basis for a conceptual framework for considering the role that artificial intelligence might play in information systems. Cognitive and conceptual models are discussed, and cost effectiveness is considered. (27…

  20. The Potential of Artificial Intelligence in Aids for the Disabled.

    ERIC Educational Resources Information Center

    Boyer, John J.

    The paper explores the possibilities for applying the knowledge of artificial intelligence (AI) research to aids for the disabled. Following a definition of artificial intelligence, the paper reviews areas of basic AI research, such as computer vision, machine learning, and planning and problem solving. Among application areas relevant to the…

  1. The Potential of Artificial Intelligence in Aids for the Disabled.

    ERIC Educational Resources Information Center

    Boyer, John J.

    The paper explores the possibilities for applying the knowledge of artificial intelligence (AI) research to aids for the disabled. Following a definition of artificial intelligence, the paper reviews areas of basic AI research, such as computer vision, machine learning, and planning and problem solving. Among application areas relevant to the…

  2. The 1994 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1994-01-01

    This publication comprises the papers presented at the 1994 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/GSFC, Greenbelt, Maryland, on 10-12 May 1994. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  3. Space Communication Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    NASA Technical Reports Server (NTRS)

    Shahidi, Anoosh K.; Schlegelmilch, Richard F.; Petrik, Edward J.; Walters, Jerry L.

    1992-01-01

    A software application to assist end-users of the high burst rate (HBR) link evaluation terminal (LET) for satellite communications is being developed. The HBR LET system developed at NASA Lewis Research Center is an element of the Advanced Communications Technology Satellite (ACTS) Project. The HBR LET is divided into seven major subsystems, each with its own expert. Programming scripts, test procedures defined by design engineers, set up the HBR LET system. These programming scripts are cryptic, hard to maintain and require a steep learning curve. These scripts were developed by the system engineers who will not be available for the end-users of the system. To increase end-user productivity a friendly interface needs to be added to the system. One possible solution is to provide the user with adequate documentation to perform the needed tasks. With the complexity of this system the vast amount of documentation needed would be overwhelming and the information would be hard to retrieve. With limited resources, maintenance is another reason for not using this form of documentation. An advanced form of interaction is being explored using current computer techniques. This application, which incorporates a combination of multimedia and artificial intelligence (AI) techniques to provided end-users with an intelligent interface to the HBR LET system, is comprised of an intelligent assistant, intelligent tutoring, and hypermedia documentation. The intelligent assistant and tutoring systems address the critical programming needs of the end-user.

  4. Challenges in applying artificial intelligence methodologies to military operations

    SciTech Connect

    Arrowood, L.F.; Hilliard, M.R.; Hwang, H.L.; Emrich, M.L.

    1986-01-01

    Artificial intelligence methodologies are being applied to support decision making at all levels of military operations. Applications being studied include assessing force readiness, reliability and capability; planning complex missions; and integrating data from multiple sources. Unclassified research is addressing the considerable challenges presented by supporting such decision making in time-sensitive environments. We examine current efforts to utilize artificial intelligence in the military, discuss difficulties which need to be resolved before intelligent systems can become fully operational, and identify potential applications of artificial intelligence for the Military Airlift Command of the US Air Force.

  5. The Biological Relevance of Artificial Life: Lessons from Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano

    2000-01-01

    There is no fundamental reason why A-life couldn't simply be a branch of computer science that deals with algorithms that are inspired by, or emulate biological phenomena. However, if these are the limits we place on this field, we miss the opportunity to help advance Theoretical Biology and to contribute to a deeper understanding of the nature of life. The history of Artificial Intelligence provides a good example, in that early interest in the nature of cognition quickly was lost to the process of building tools, such as "expert systems" that, were certainly useful, but provided little insight in the nature of cognition. Based on this lesson, I will discuss criteria for increasing the biological relevance of A-life and the probability that this field may provide a theoretical foundation for Biology.

  6. The Biological Relevance of Artificial Life: Lessons from Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano

    2000-01-01

    There is no fundamental reason why A-life couldn't simply be a branch of computer science that deals with algorithms that are inspired by, or emulate biological phenomena. However, if these are the limits we place on this field, we miss the opportunity to help advance Theoretical Biology and to contribute to a deeper understanding of the nature of life. The history of Artificial Intelligence provides a good example, in that early interest in the nature of cognition quickly was lost to the process of building tools, such as "expert systems" that, were certainly useful, but provided little insight in the nature of cognition. Based on this lesson, I will discuss criteria for increasing the biological relevance of A-life and the probability that this field may provide a theoretical foundation for Biology.

  7. The 1990 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  8. Virtual Reality for Artificial Intelligence: human-centered simulation for social science.

    PubMed

    Cipresso, Pietro; Riva, Giuseppe

    2015-01-01

    There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society.

  9. Artificial intelligence techniques for embryo and oocyte classification.

    PubMed

    Manna, Claudio; Nanni, Loris; Lumini, Alessandra; Pappalardo, Sebastiana

    2013-01-01

    One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in the capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. This work concentrates the efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a set of Levenberg-Marquardt neural networks trained using textural descriptors (the local binary patterns). The proposed system was tested on two data sets of 269 oocytes and 269 corresponding embryos from 104 women and compared with other machine learning methods already proposed in the past for similar classification problems. Although the results are only preliminary, they show an interesting classification performance. This technique may be of particular interest in those countries where legislation restricts embryo selection. One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in our capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. In this work, we concentrate our efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology

  10. Artificial intelligence in the materials processing laboratory

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1990-01-01

    Materials science and engineering provides a vast arena for applications of artificial intelligence. Advanced materials research is an area in which challenging requirements confront the researcher, from the drawing board through production and into service. Advanced techniques results in the development of new materials for specialized applications. Hand-in-hand with these new materials are also requirements for state-of-the-art inspection methods to determine the integrity or fitness for service of structures fabricated from these materials. Two problems of current interest to the Materials Processing Laboratory at UAH are an expert system to assist in eddy current inspection of graphite epoxy components for aerospace and an expert system to assist in the design of superalloys for high temperature applications. Each project requires a different approach to reach the defined goals. Results to date are described for the eddy current analysis, but only the original concepts and approaches considered are given for the expert system to design superalloys.

  11. Artificial Intelligence Software Engineering (AISE) model

    NASA Technical Reports Server (NTRS)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a committee on standards for Artificial Intelligence. Presented are the initial efforts of one of the working groups of that committee. A candidate model is presented for the development life cycle of knowledge based systems (KBSs). The intent is for the model to be used by the aerospace community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are shown and detailed as are the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  12. Artificial Intelligence In Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Vogel, Alison Andrews

    1991-01-01

    Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.

  13. Artificial Intelligence In Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Vogel, Alison Andrews

    1991-01-01

    Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.

  14. Artificial Intelligence Software Engineering (AISE) model

    NASA Technical Reports Server (NTRS)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a committee on standards for Artificial Intelligence. Presented are the initial efforts of one of the working groups of that committee. A candidate model is presented for the development life cycle of knowledge based systems (KBSs). The intent is for the model to be used by the aerospace community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are shown and detailed as are the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  15. Chemogenomics: a discipline at the crossroad of high throughput technologies, biomarker research, combinatorial chemistry, genomics, cheminformatics, bioinformatics and artificial intelligence.

    PubMed

    Maréchal, Eric

    2008-09-01

    Chemogenomics is the study of the interaction of functional biological systems with exogenous small molecules, or in broader sense the study of the intersection of biological and chemical spaces. Chemogenomics requires expertises in biology, chemistry and computational sciences (bioinformatics, cheminformatics, large scale statistics and machine learning methods) but it is more than the simple apposition of each of these disciplines. Biological entities interacting with small molecules can be isolated proteins or more elaborate systems, from single cells to complete organisms. The biological space is therefore analyzed at various postgenomic levels (genomic, transcriptomic, proteomic or any phenotypic level). The space of small molecules is partially real, corresponding to commercial and academic collections of compounds, and partially virtual, corresponding to the chemical space possibly synthesizable. Synthetic chemistry has developed novel strategies allowing a physical exploration of this universe of possibilities. A major challenge of cheminformatics is to charter the virtual space of small molecules using realistic biological constraints (bioavailability, druggability, structural biological information). Chemogenomics is a descendent of conventional pharmaceutical approaches, since it involves the screening of chemolibraries for their effect on biological targets, and benefits from the advances in the corresponding enabling technologies and the introduction of new biological markers. Screening was originally motivated by the rigorous discovery of new drugs, neglecting and throwing away any molecule that would fail to meet the standards required for a therapeutic treatment. It is now the basis for the discovery of small molecules that might or might not be directly used as drugs, but which have an immense potential for basic research, as probes to explore an increasing number of biological phenomena. Concerns about the environmental impact of chemical industry

  16. Automated information-analytical system for thunderstorm monitoring and early warning alarms using modern physical sensors and information technologies with elements of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Boldyreff, Anton S.; Bespalov, Dmitry A.; Adzhiev, Anatoly Kh.

    2017-05-01

    Methods of artificial intelligence are a good solution for weather phenomena forecasting. They allow to process a large amount of diverse data. Recirculation Neural Networks is implemented in the paper for the system of thunderstorm events prediction. Large amounts of experimental data from lightning sensors and electric field mills networks are received and analyzed. The average recognition accuracy of sensor signals is calculated. It is shown that Recirculation Neural Networks is a promising solution in the forecasting of thunderstorms and weather phenomena, characterized by the high efficiency of the recognition elements of the sensor signals, allows to compress images and highlight their characteristic features for subsequent recognition.

  17. Amplify scientific discovery with artificial intelligence

    SciTech Connect

    Gil, Yolanda; Greaves, Mark T.; Hendler, James; Hirsch, Hyam

    2014-10-10

    Computing innovations have fundamentally changed many aspects of scientific inquiry. For example, advances in robotics, high-end computing, networking, and databases now underlie much of what we do in science such as gene sequencing, general number crunching, sharing information between scientists, and analyzing large amounts of data. As computing has evolved at a rapid pace, so too has its impact in science, with the most recent computing innovations repeatedly being brought to bear to facilitate new forms of inquiry. Recently, advances in Artificial Intelligence (AI) have deeply penetrated many consumer sectors, including for example Apple’s Siri™ speech recognition system, real-time automated language translation services, and a new generation of self-driving cars and self-navigating drones. However, AI has yet to achieve comparable levels of penetration in scientific inquiry, despite its tremendous potential in aiding computers to help scientists tackle tasks that require scientific reasoning. We contend that advances in AI will transform the practice of science as we are increasingly able to effectively and jointly harness human and machine intelligence in the pursuit of major scientific challenges.

  18. Artificial Intelligence/Robotics Applications to Navy Aircraft Maintenance.

    DTIC Science & Technology

    1984-06-01

    AD-A143 219 ARTIFICIAL INTELLIGENCE/ROBOTICS APPLICATIONS TO NAVV T7T AIRCRAFT HAINTENANCE(U) SRI INTERNATIONAL HENLO PARK CA D R BROWN ET AL...34^! * -.’.-. v.’: ;- • ’_*-••.-. - - m i i • i >«••»......» i 0> CO < Final Report ARTIFICIAL INTELLIGENCE/ROBOTICS APPLICATIONS TO NAVY...8217• . . i * • ’ * ’ ** ’.- *_» "-_ _* _- _• -J> . „• „ (ss3 QB e 25 f//w/ Report ARTIFICIAL INTELLIGENCE/ROBOTICS APPLICATIONS TO NAVY

  19. Autonomous operations through onboard artificial intelligence

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  20. Autonomous operations through onboard artificial intelligence

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  1. Artificial Neural Networks and Instructional Technology.

    ERIC Educational Resources Information Center

    Carlson, Patricia A.

    1991-01-01

    Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…

  2. Artificial Neural Networks and Instructional Technology.

    ERIC Educational Resources Information Center

    Carlson, Patricia A.

    1991-01-01

    Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…

  3. Technology, Intelligence, and TRUST

    DTIC Science & Technology

    2007-01-01

    single email or message. The collections team does not have to make an either/or decision about whom to send its intercept or interrogation report...International security studies at the George C. Marshall Center for european security studies in Garmisch- Partenkirchen, Germany. he is a career ... career as an intelligence officer, I was told on numerous occasions, “Trust us, when the balloon goes up, you’ll get all the intelligence you need

  4. Software Reviews. PC Software for Artificial Intelligence Applications.

    ERIC Educational Resources Information Center

    Epp, Helmut; And Others

    1988-01-01

    Contrasts artificial intelligence and conventional programming languages. Reviews Personal Consultant Plus, Smalltalk/V, and Nexpert Object, which are PC-based products inspired by problem-solving paradigms. Provides information on background and operation of each. (RT)

  5. An Artificial Intelligence Approach to Analyzing Student Errors in Statistics.

    ERIC Educational Resources Information Center

    Sebrechts, Marc M.; Schooler, Lael J.

    1987-01-01

    Describes the development of an artificial intelligence system called GIDE that analyzes student errors in statistics problems by inferring the students' intentions. Learning strategies involved in problem solving are discussed and the inclusion of goal structures is explained. (LRW)

  6. Third Conference on Artificial Intelligence for Space Applications, part 1

    NASA Technical Reports Server (NTRS)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1987-01-01

    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.

  7. The Roles of Artificial Intelligence in Education: Current Progress and Future Prospects

    ERIC Educational Resources Information Center

    McArthur, David; Lewis, Matthew; Bishary, Miriam

    2005-01-01

    This report begins by summarizing current applications of ideas from artificial intelligence (Al) to education. It then uses that summary to project various future applications of Al--and advanced technology in general--to education, as well as highlighting problems that will confront the wide­ scale implementation of these technologies in the…

  8. Artificial Intelligence: Threat or Boon to Radiologists?

    PubMed

    Recht, Michael; Bryan, R Nick

    2017-08-19

    The development and integration of machine learning/artificial intelligence into routine clinical practice will significantly alter the current practice of radiology. Changes in reimbursement and practice patterns will also continue to affect radiology. But rather than being a significant threat to radiologists, we believe these changes, particularly machine learning/artificial intelligence, will be a boon to radiologists by increasing their value, efficiency, accuracy, and personal satisfaction. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  9. Implementing Artificial Intelligence Behaviors in a Virtual World

    NASA Technical Reports Server (NTRS)

    Krisler, Brian; Thome, Michael

    2012-01-01

    In this paper, we will present a look at the current state of the art in human-computer interface technologies, including intelligent interactive agents, natural speech interaction and gestural based interfaces. We describe our use of these technologies to implement a cost effective, immersive experience on a public region in Second Life. We provision our Artificial Agents as a German Shepherd Dog avatar with an external rules engine controlling the behavior and movement. To interact with the avatar, we implemented a natural language and gesture system allowing the human avatars to use speech and physical gestures rather than interacting via a keyboard and mouse. The result is a system that allows multiple humans to interact naturally with AI avatars by playing games such as fetch with a flying disk and even practicing obedience exercises using voice and gesture, a natural seeming day in the park.

  10. Modelling fuel cell performance using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Ogaji, S. O. T.; Singh, R.; Pilidis, P.; Diacakis, M.

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed.

  11. [Artificial intelligence applied to radiation oncology].

    PubMed

    Bibault, J-E; Burgun, A; Giraud, P

    2017-05-01

    Performing randomised comparative clinical trials in radiation oncology remains a challenge when new treatment modalities become available. One of the most recent examples is the lack of phase III trials demonstrating the superiority of intensity-modulated radiation therapy in most of its current indications. A new paradigm is developing that consists in the mining of large databases to answer clinical or translational issues. Beyond national databases (such as SEER or NCDB), that often lack the necessary level of details on the population studied or the treatments performed, electronic health records can be used to create detailed phenotypic profiles of any patients. In parallel, the Record-and-Verify Systems used in radiation oncology precisely document the planned and performed treatments. Artificial Intelligence and machine learning algorithms can be used to incrementally analyse these data in order to generate hypothesis to better personalize treatments. This review discusses how these methods have already been used in previous studies. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  12. Vibration energy harvester optimization using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Hadas, Z.; Ondrusek, C.; Kurfurst, J.; Singule, V.

    2011-06-01

    This paper deals with an optimization study of a vibration energy harvester. This harvester can be used as autonomous source of electrical energy for remote or wireless applications, which are placed in environment excited by ambient mechanical vibrations. The ambient energy of vibrations is usually on very low level but the harvester can be used as alternative source of energy for electronic devices with an expected low level of power consumption of several mW. The optimized design of the vibration energy harvester was based on previous development and the sensitivity of harvester design was improved for effective harvesting from mechanical vibrations in aeronautic applications. The vibration energy harvester is a mechatronic system which generates electrical energy from ambient vibrations due to precision tuning up generator parameters. The optimization study for maximization of harvested power or minimization of volume and weight are the main goals of our development. The optimization study of such complex device is complicated therefore artificial intelligence methods can be used for tuning up optimal harvester parameters.

  13. Applications of artificial intelligence to mission planning

    NASA Technical Reports Server (NTRS)

    Ford, Donnie R.; Rogers, John S.; Floyd, Stephen A.

    1990-01-01

    The scheduling problem facing NASA-Marshall mission planning is extremely difficult for several reasons. The most critical factor is the computational complexity involved in developing a schedule. The size of the search space is large along some dimensions and infinite along others. It is because of this and other difficulties that many of the conventional operation research techniques are not feasible or inadequate to solve the problems by themselves. Therefore, the purpose is to examine various artificial intelligence (AI) techniques to assist conventional techniques or to replace them. The specific tasks performed were as follows: (1) to identify mission planning applications for object oriented and rule based programming; (2) to investigate interfacing AI dedicated hardware (Lisp machines) to VAX hardware; (3) to demonstrate how Lisp may be called from within FORTRAN programs; (4) to investigate and report on programming techniques used in some commercial AI shells, such as Knowledge Engineering Environment (KEE); and (5) to study and report on algorithmic methods to reduce complexity as related to AI techniques.

  14. Artificial intelligence in mitral valve analysis.

    PubMed

    Jeganathan, Jelliffe; Knio, Ziyad; Amador, Yannis; Hai, Ting; Khamooshian, Arash; Matyal, Robina; Khabbaz, Kamal R; Mahmood, Feroze

    2017-01-01

    Echocardiographic analysis of mitral valve (MV) has become essential for diagnosis and management of patients with MV disease. Currently, the various software used for MV analysis require manual input and are prone to interobserver variability in the measurements. The aim of this study is to determine the interobserver variability in an automated software that uses artificial intelligence for MV analysis. Retrospective analysis of intraoperative three-dimensional transesophageal echocardiography data acquired from four patients with normal MV undergoing coronary artery bypass graft surgery in a tertiary hospital. Echocardiographic data were analyzed using the eSie Valve Software (Siemens Healthcare, Mountain View, CA, USA). Three examiners analyzed three end-systolic (ES) frames from each of the four patients. A total of 36 ES frames were analyzed and included in the study. A multiple mixed-effects ANOVA model was constructed to determine if the examiner, the patient, and the loop had a significant effect on the average value of each parameter. A Bonferroni correction was used to correct for multiple comparisons, and P = 0.0083 was considered to be significant. Examiners did not have an effect on any of the six parameters tested. Patient and loop had an effect on the average parameter value for each of the six parameters as expected (P < 0.0083 for both). We were able to conclude that using automated analysis, it is possible to obtain results with good reproducibility, which only requires minimal user intervention.

  15. Applications of Artificial Intelligence in Education--A Personal View.

    ERIC Educational Resources Information Center

    Richer, Mark H.

    1985-01-01

    Discusses: how artificial intelligence (AI) can advance education; if the future of software lies in AI; the roots of intelligent computer-assisted instruction; protocol analysis; reactive environments; LOGO programming language; student modeling and coaching; and knowledge-based instructional programs. Numerous examples of AI programs are cited.…

  16. Applications of Artificial Intelligence in Education--A Personal View.

    ERIC Educational Resources Information Center

    Richer, Mark H.

    1985-01-01

    Discusses: how artificial intelligence (AI) can advance education; if the future of software lies in AI; the roots of intelligent computer-assisted instruction; protocol analysis; reactive environments; LOGO programming language; student modeling and coaching; and knowledge-based instructional programs. Numerous examples of AI programs are cited.…

  17. Artificial Intelligence, Language and the Study of Knowledge.

    ERIC Educational Resources Information Center

    Goldstein, Ira; And Others

    This paper studies the relationship of artificial intelligence (AI) to the study of language and the representation of the underlying knowledge that supports the comprehension process. It develops the view that intelligence is based on the ability to use large amounts of diverse kinds of knowledge in procedural ways, rather than on the possession…

  18. Artificial Intelligence, Language and the Study of Knowledge.

    ERIC Educational Resources Information Center

    Goldstein, Ira; And Others

    This paper studies the relationship of artificial intelligence (AI) to the study of language and the representation of the underlying knowledge that supports the comprehension process. It develops the view that intelligence is based on the ability to use large amounts of diverse kinds of knowledge in procedural ways, rather than on the possession…

  19. Artificial Intelligence in the Allocation of Maintenance Resources for Intelligence Systems

    DTIC Science & Technology

    1987-09-01

    Scheduling: An Investigation in Constraint- Directed Reasoning," Proceedings of the Second National Conference on Artiicial Intelligence , 1982, pp. 155-158... Intelligence in the allocation of 5. Report Date maintenance resources for intelligence systems Sept 87 publication 6. 7. Author(s) 8. Performing...Sponsori 13. Type of Report & Period Covered SAME Final AD-A 197 557 14. 15. Supplerr Presented at conference of Artificial Intelligence East 1987 16

  20. Biologically inspired technologies using artificial muscles

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2005-01-01

    After billions of years of evolution, nature developed inventions that work, which are appropriate for the intended tasks and that last. The evolution of nature led to the introduction of highly effective and power efficient biological mechanisms that are scalable from micron to many meters in size. Imitating these mechanisms offers enormous potentials for the improvement of our life and the tools we use. Humans have always made efforts to imitate nature and we are increasingly reaching levels of advancement where it becomes significantly easier to imitate, copy, and adapt biological methods, processes and systems. Some of the biomimetic technologies that have emerged include artificial muscles, artificial intelligence, and artificial vision to which significant advances in materials science, mechanics, electronics, and computer science have contributed greatly. One of the newest fields of biomimetics is the electroactive polymers (EAP) that are also known as artificial muscles. To take advantage of these materials, efforts are made worldwide to establish a strong infrastructure addressing the need for comprehensive analytical modeling of their operation mechanism and develop effective processing and characterization techniques. The field is still in its emerging state and robust materials are not readily available however in recent years significant progress has been made and commercial products have already started to appear. This paper covers the state-of-the-art and challenges to making artificial muscles and their potential biomimetic applications.

  1. Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  2. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  3. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  4. Artificial Intelligence and Its Use in Cost Type analyses with an Example in Cost Performance Measurement.

    DTIC Science & Technology

    1985-01-01

    7-Ai6i 817 ARTIFICIAL INTELLIGENCE AND ITS USE IN COST TYE1/I ANALYSES WdITH ANt EXAMPLE IN COST PERFORMANCE I MERSUREMENT(U) DEFENSE SYSTEMS...INTELLIGENCE-THE EMERGING TECHNOLOGY/ NATURAL LANGUAGE PROCESSORS K ~ With the advent of ARTIFICAL INTELLEGENCE (AI), we are entering into a new era of...language processor which is commerically available is INTELLECT, by Artifical Intellegence Incorporated, Waltham, Mass. To illustrate what a natural

  5. Artificial Intelligence in Mitral Valve Analysis

    PubMed Central

    Jeganathan, Jelliffe; Knio, Ziyad; Amador, Yannis; Hai, Ting; Khamooshian, Arash; Matyal, Robina; Khabbaz, Kamal R; Mahmood, Feroze

    2017-01-01

    Background: Echocardiographic analysis of mitral valve (MV) has become essential for diagnosis and management of patients with MV disease. Currently, the various software used for MV analysis require manual input and are prone to interobserver variability in the measurements. Aim: The aim of this study is to determine the interobserver variability in an automated software that uses artificial intelligence for MV analysis. Settings and Design: Retrospective analysis of intraoperative three-dimensional transesophageal echocardiography data acquired from four patients with normal MV undergoing coronary artery bypass graft surgery in a tertiary hospital. Materials and Methods: Echocardiographic data were analyzed using the eSie Valve Software (Siemens Healthcare, Mountain View, CA, USA). Three examiners analyzed three end-systolic (ES) frames from each of the four patients. A total of 36 ES frames were analyzed and included in the study. Statistical Analysis: A multiple mixed-effects ANOVA model was constructed to determine if the examiner, the patient, and the loop had a significant effect on the average value of each parameter. A Bonferroni correction was used to correct for multiple comparisons, and P = 0.0083 was considered to be significant. Results: Examiners did not have an effect on any of the six parameters tested. Patient and loop had an effect on the average parameter value for each of the six parameters as expected (P < 0.0083 for both). Conclusion: We were able to conclude that using automated analysis, it is possible to obtain results with good reproducibility, which only requires minimal user intervention. PMID:28393769

  6. Intelligent Agent Integration Technology

    DTIC Science & Technology

    1998-04-01

    and Manipulation Language (KQML) specification under the DARPA-sponsored Knowledge Sharing Initiative and the developing of a scaleable and an... Shared Communication Ontology ’$" 10.3 IMPLEMENTATION 151 10.3.1 Intelligent Resource Agent Architecture ^ 10.3.2 Application to K-12 Education 153...DARPA-sponsored Knowledge Sharing Initiative, the developing a scaleable and an efficient implementation of information system components for

  7. Artificial intelligence-methods in decision and control systems

    SciTech Connect

    Lirov, Y.V.

    1987-01-01

    Artificial intelligence methods were applied to the design and implementation of some decision and control systems. A so-called semantic approach to control and decisions was developed and artificial intelligence methods were used to provide a realizable implementation. These concepts were tested using applications from robust identification and control of time-varying systems, intelligent navigation, and intelligent simulation of differential games. An aspect of a generalized travelling-salesman problem was solved and intelligent simulation of differential games was implemented in Prolog using an example system for automated learning by tactical decision systems in air combat. These implementations were successful and provide several advantages over traditional approaches. The limitations of these concepts were identified and suggestions for future work are made.

  8. Artificial-intelligence methods in decision and control systems

    SciTech Connect

    Lirov, Y.V.

    1987-01-01

    Artificial-intelligence methods were applied to the design and implementation of some decision and control systems. A so-called semantic approach to control and decisions was developed and artificial-intelligence methods were used to provide a realizable implementation. These concepts were tested using applications from robust identification and control of time-varying systems, intelligent navigation, and intelligent simulation of differential games. An aspect of a generalized traveling-salesman problem was solved, and intelligent simulation of differential games was implemented in Prolog using an example system for automated learning by tactical decision systems in air combat. These implementations were successful and provide several advantages over traditional approaches. The limitations of these concepts were identified and suggestions for future work are made.

  9. Artificial intelligence for multi-mission planetary operations

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.; Lawson, Denise L.; James, Mark L.

    1990-01-01

    A brief introduction is given to an automated system called the Spacecraft Health Automated Reasoning Prototype (SHARP). SHARP is designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for evaluation of the prototype in a real-time operations setting during the Voyager spacecraft encounter with Neptune in August, 1989. The preliminary results of the SHARP project and plans for future application of the technology are discussed.

  10. Research on architecture of intelligent design platform for artificial neural network expert system

    NASA Astrophysics Data System (ADS)

    Gu, Honghong

    2017-09-01

    Based on the review of the development and current situation of CAD technology, the necessity of combination of artificial neural network and expert system, and then present an intelligent design system based on artificial neural network. Moreover, it discussed the feasibility of realization of a design-oriented expert system development tools on the basis of above combination. In addition, knowledge representation strategy and method and the solving process are given in this paper.

  11. Space Communications Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    NASA Technical Reports Server (NTRS)

    Shahidi, Anoosh

    1991-01-01

    A software application to assis end-users of the Link Evaluation Terminal (LET) for satellite communication is being developed. This software application incorporates artificial intelligence (AI) techniques and will be deployed as an interface to LET. The high burst rate (HBR) LET provides 30 GHz transmitting/20 GHz receiving, 220/110 Mbps capability for wideband communications technology experiments with the Advanced Communications Technology Satellite (ACTS). The HBR LET and ACTS are being developed at the NASA Lewis Research Center. The HBR LET can monitor and evaluate the integrity of the HBR communications uplink and downlink to the ACTS satellite. The uplink HBR transmission is performed by bursting the bit-pattern as a modulated signal to the satellite. By comparing the transmitted bit pattern with the received bit pattern, HBR LET can determine the bit error rate BER) under various atmospheric conditions. An algorithm for power augmentation is applied to enhance the system's BER performance at reduced signal strength caused by adverse conditions. Programming scripts, defined by the design engineer, set up the HBR LET terminal by programming subsystem devices through IEEE488 interfaces. However, the scripts are difficult to use, require a steep learning curve, are cryptic, and are hard to maintain. The combination of the learning curve and the complexities involved with editing the script files may discourage end-users from utilizing the full capabilities of the HBR LET system. An intelligent assistant component of SCAILET that addresses critical end-user needs in the programming of the HBR LET system as anticipated by its developers is described. A close look is taken at the various steps involved in writing ECM software for a C&P, computer and at how the intelligent assistant improves the HBR LET system and enhances the end-user's ability to perform the experiments.

  12. Artificial intelligence for the CTA Observatory scheduler

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Colomer, Pau; Campreciós, Jordi; Coiffard, Thierry; de Oña, Emma; Pedaletti, Giovanna; Torres, Diego F.; Garcia-Piquer, Alvaro

    2014-08-01

    The Cherenkov Telescope Array (CTA) project will be the next generation ground-based very high energy gamma-ray instrument. The success of the precursor projects (i.e., HESS, MAGIC, VERITAS) motivated the construction of this large infrastructure that is included in the roadmap of the ESFRI projects since 2008. CTA is planned to start the construction phase in 2015 and will consist of two arrays of Cherenkov telescopes operated as a proposal-driven open observatory. Two sites are foreseen at the southern and northern hemispheres. The CTA observatory will handle several observation modes and will have to operate tens of telescopes with a highly efficient and reliable control. Thus, the CTA planning tool is a key element in the control layer for the optimization of the observatory time. The main purpose of the scheduler for CTA is the allocation of multiple tasks to one single array or to multiple sub-arrays of telescopes, while maximizing the scientific return of the facility and minimizing the operational costs. The scheduler considers long- and short-term varying conditions to optimize the prioritization of tasks. A short-term scheduler provides the system with the capability to adapt, in almost real-time, the selected task to the varying execution constraints (i.e., Targets of Opportunity, health or status of the system components, environment conditions). The scheduling procedure ensures that long-term planning decisions are correctly transferred to the short-term prioritization process for a suitable selection of the next task to execute on the array. In this contribution we present the constraints to CTA task scheduling that helped classifying it as a Flexible Job-Shop Problem case and finding its optimal solution based on Artificial Intelligence techniques. We describe the scheduler prototype that uses a Guarded Discrete Stochastic Neural Network (GDSN), for an easy representation of the possible long- and short-term planning solutions, and Constraint

  13. United States Army Training and Doctrine Command (TRADOC) - artificial intelligence and robotics symposium

    SciTech Connect

    Not Available

    1985-01-01

    Various papers on artificial intelligence and robotics and their applications for the US Army are presented. Topics include US Army robotics development directions; mobile robots for surveillance, reconnaissance, and manipulative missions in hazardous environments; technology development in intelligent machine systems; control of a multi-robot process line using AI; land vehicles; remote control weapons platforms; expert systems for logistic analysis. Also addressed are software architecture for real-time, embedded expert systems; knowledge integrity maintenance; embedding AI systems into command and control; a natural language understanding system for maneuver control; and a design of a generic intelligent trainer.

  14. A Framework for Intelligent Instructional Systems: An Artificial Intelligence Machine Learning Approach.

    ERIC Educational Resources Information Center

    Becker, Lee A.

    1987-01-01

    Presents and develops a general model of the nature of a learning system and a classification for learning systems. Highlights include the relationship between artificial intelligence and cognitive psychology; computer-based instructional systems; intelligent instructional systems; and the role of the learner's knowledge base in an intelligent…

  15. Artificial Life in Quantum Technologies

    NASA Astrophysics Data System (ADS)

    Alvarez-Rodriguez, Unai; Sanz, Mikel; Lamata, Lucas; Solano, Enrique

    2016-02-01

    We develop a quantum information protocol that models the biological behaviours of individuals living in a natural selection scenario. The artificially engineered evolution of the quantum living units shows the fundamental features of life in a common environment, such as self-replication, mutation, interaction of individuals, and death. We propose how to mimic these bio-inspired features in a quantum-mechanical formalism, which allows for an experimental implementation achievable with current quantum platforms. This study paves the way for the realization of artificial life and embodied evolution with quantum technologies.

  16. Artificial Life in Quantum Technologies

    PubMed Central

    Alvarez-Rodriguez, Unai; Sanz, Mikel; Lamata, Lucas; Solano, Enrique

    2016-01-01

    We develop a quantum information protocol that models the biological behaviours of individuals living in a natural selection scenario. The artificially engineered evolution of the quantum living units shows the fundamental features of life in a common environment, such as self-replication, mutation, interaction of individuals, and death. We propose how to mimic these bio-inspired features in a quantum-mechanical formalism, which allows for an experimental implementation achievable with current quantum platforms. This study paves the way for the realization of artificial life and embodied evolution with quantum technologies. PMID:26853918

  17. Artificial Life in Quantum Technologies.

    PubMed

    Alvarez-Rodriguez, Unai; Sanz, Mikel; Lamata, Lucas; Solano, Enrique

    2016-02-08

    We develop a quantum information protocol that models the biological behaviours of individuals living in a natural selection scenario. The artificially engineered evolution of the quantum living units shows the fundamental features of life in a common environment, such as self-replication, mutation, interaction of individuals, and death. We propose how to mimic these bio-inspired features in a quantum-mechanical formalism, which allows for an experimental implementation achievable with current quantum platforms. This study paves the way for the realization of artificial life and embodied evolution with quantum technologies.

  18. Artificial intelligence and its impact on combat aircraft

    NASA Technical Reports Server (NTRS)

    Ott, Lawrence M.; Abbot, Kathy; Kleider, Alfred; Moon, D.; Retelle, John

    1987-01-01

    As the threat becomes more sophisticated and weapon systems more complex to meet the threat, the need for machines to assist the pilot in the assessment of information becomes paramount. This is particularly true in real-time, high stress situations. The advent of artificial intelligence (AI) technology offers the opportunity to make quantum advances in the application of machine technology. However, if AI systems are to find their way into combat aircraft, they must meet certain criteria. The systems must be responsive, reliable, easy to use, flexible, and understandable. These criteria are compared with the current status used in a combat airborne application. Current AI systems deal with nonreal time applications and require significant user interaction. On the other hand, aircraft applications require real time, minimum human interaction systems. In order to fill the gap between where technology is now and where it must be for aircraft applications, considerable government research is ongoing in NASA, DARPA, and three services. The ongoing research is briefly summarized. Finally, recognizing that AI technology is in its embryonic stage, and the aircraft needs are very demanding, a number of issues arise. These issues are delineated and findings are provided where appropriate.

  19. The Coming of Age of Artificial Intelligence in Medicine*

    PubMed Central

    Patel, Vimla L.; Shortliffe, Edward H.; Stefanelli, Mario; Szolovits, Peter; Berthold, Michael R.; Bellazzi, Riccardo; Abu-Hanna, Ameen

    2009-01-01

    Summary This paper is based on a panel discussion held at the Artificial Intelligence in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he characterized artificial intelligence (AI) in medicine as being in its “adolescence” (Shortliffe EH. The adolescence of AI in medicine: Will the field come of age in the ‘90s? Artificial Intelligence in Medicine 1993; 5:93–106). In this article, the discussants reflect on medical AI research during the subsequent years and attempt to characterize the maturity and influence that has been achieved to date. Participants focus on their personal areas of expertise, ranging from clinical decision making, reasoning under uncertainty, and knowledge representation to systems integration, translational bioinformatics, and cognitive issues in both the modeling of expertise and the creation of acceptable systems. PMID:18790621

  20. [Artificial intelligence--the knowledge base applied to nephrology].

    PubMed

    Sancipriano, G P

    2005-01-01

    The idea that efficacy efficiency, and quality in medicine could not be reached without sorting the huge knowledge of medical and nursing science is very common. Engineers and computer scientists have developed medical software with great prospects for success, but currently these software applications are not so useful in clinical practice. The medical doctor and the trained nurse live the 'information age' in many daily activities, but the main benefits are not so widespread in working activities. Artificial intelligence and, particularly, export systems charm health staff because of their potential. The first part of this paper summarizes the characteristics of 'weak artificial intelligence' and of expert systems important in clinical practice. The second part discusses medical doctors' requirements and the current nephrologic knowledge bases available for artificial intelligence development.

  1. Artificial intelligence approaches for rational drug design and discovery.

    PubMed

    Duch, Włodzisław; Swaminathan, Karthikeyan; Meller, Jarosław

    2007-01-01

    Pattern recognition, machine learning and artificial intelligence approaches play an increasingly important role in rational drug design, screening and identification of candidate molecules and studies on quantitative structure-activity relationships (QSAR). In this review, we present an overview of basic concepts and methodology in the fields of machine learning and artificial intelligence (AI). An emphasis is put on methods that enable an intuitive interpretation of the results and facilitate gaining an insight into the structure of the problem at hand. We also discuss representative applications of AI methods to docking, screening and QSAR studies. The growing trend to integrate computational and experimental efforts in that regard and some future developments are discussed. In addition, we comment on a broader role of machine learning and artificial intelligence approaches in biomedical research.

  2. Robotics and artificial intelligence across the Atlantic and Pacific

    SciTech Connect

    Schlussel, K.

    1983-08-01

    World research and develoments in robotics and artificial intelligence have received significant attention in the past few years. While the United States has both an active and advanced program in robotics and artificial intelligence, other countries have been working and organizing their activities and are starting to produce some interesting results. The paper presents some highlights of foreign efforts in robotics and artificial intelligence research and development. It is not the purpose of this paper to be all inclusive of every foreign robotics program, but to give a sample of selective developments and briefly examine the international cooperation of many programs. Projects in western Europe, Japan, and the eastern bloc countries are discussed. 31 references.

  3. The coming of age of artificial intelligence in medicine.

    PubMed

    Patel, Vimla L; Shortliffe, Edward H; Stefanelli, Mario; Szolovits, Peter; Berthold, Michael R; Bellazzi, Riccardo; Abu-Hanna, Ameen

    2009-05-01

    This paper is based on a panel discussion held at the Artificial Intelligence in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he characterized artificial intelligence (AI) in medicine as being in its "adolescence" (Shortliffe EH. The adolescence of AI in medicine: will the field come of age in the '90s? Artificial Intelligence in Medicine 1993;5:93-106). In this article, the discussants reflect on medical AI research during the subsequent years and characterize the maturity and influence that has been achieved to date. Participants focus on their personal areas of expertise, ranging from clinical decision-making, reasoning under uncertainty, and knowledge representation to systems integration, translational bioinformatics, and cognitive issues in both the modeling of expertise and the creation of acceptable systems.

  4. AI (artificial intelligence) as the ultimate enhancer of protocol design

    SciTech Connect

    Cohen, D.; Finnegan, J.

    1987-04-24

    Most computer-communication protocols do not use the available resources very efficiently. For example, they pay expensive performance penalties in order to achieve reliable connections. This paper demonstrates how standard artificial-intelligence techniques applied to message transmission can result in vast improvements by making those mechanisms smart. Such an Expert System, coupled with various heuristics common in the communication domain, yields high-performance reliable connections for message interchange. This protocol is the first serious use of AI techniques to result in significant and substantial improvement of communication technology. The protocol is designed to maximize the well known CIQ - Communication Intelligence Quotient -- function. The CIQ is defined as the radio of the amount of information conveyed by a communication transaction (e.g., a message) and the amount of resources consumed in successfully communicating it. The new protocol is called HighQ, because it is designed to achieve a very high CIQ in message communication. The authors start by defining CIQ, the objective function that we wish to optimize. Then it is shown how conventional optimization techniques provide slight benefit the really large gains require sophisticated AI techniques and their use drastically minimizes the transmission cost, even eliminating it in some cases.

  5. Training Software in Artificial-Intelligence Computing Techniques

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna; Rogstad, Eric; Chalfant, Eugene

    2005-01-01

    The Artificial Intelligence (AI) Toolkit is a computer program for training scientists, engineers, and university students in three soft-computing techniques (fuzzy logic, neural networks, and genetic algorithms) used in artificial-intelligence applications. The program promotes an easily understandable tutorial interface, including an interactive graphical component through which the user can gain hands-on experience in soft-computing techniques applied to realistic example problems. The tutorial provides step-by-step instructions on the workings of soft-computing technology, whereas the hands-on examples allow interaction and reinforcement of the techniques explained throughout the tutorial. In the fuzzy-logic example, a user can interact with a robot and an obstacle course to verify how fuzzy logic is used to command a rover traverse from an arbitrary start to the goal location. For the genetic algorithm example, the problem is to determine the minimum-length path for visiting a user-chosen set of planets in the solar system. For the neural-network example, the problem is to decide, on the basis of input data on physical characteristics, whether a person is a man, woman, or child. The AI Toolkit is compatible with the Windows 95,98, ME, NT 4.0, 2000, and XP operating systems. A computer having a processor speed of at least 300 MHz, and random-access memory of at least 56MB is recommended for optimal performance. The program can be run on a slower computer having less memory, but some functions may not be executed properly.

  6. Artificial intelligence (AI) systems for interpreting complex medical datasets.

    PubMed

    Altman, R B

    2017-05-01

    Advances in machine intelligence have created powerful capabilities in algorithms that find hidden patterns in data, classify objects based on their measured characteristics, and associate similar patients/diseases/drugs based on common features. However, artificial intelligence (AI) applications in medical data have several technical challenges: complex and heterogeneous datasets, noisy medical datasets, and explaining their output to users. There are also social challenges related to intellectual property, data provenance, regulatory issues, economics, and liability. © 2017 ASCPT.

  7. Fifth Conference on Artificial Intelligence for Space Applications

    NASA Technical Reports Server (NTRS)

    Odell, Steve L. (Compiler)

    1990-01-01

    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration.

  8. Intelligent Maintenance Training Technology

    DTIC Science & Technology

    1988-03-31

    Psychology Knowledge Systems Laboratory University of California Stanford University Berkeley, CA 94720 701 Welch Road Palo Alto, CA 94304 Dr. Milton S ...David S . Surmon James Wogulis 0 Behavioral Technology Laboratories Department of Psychology University of Southern California Sponsored by Office of...Munro Quentin A. Pizzini David S . Surmon James Wogulis March 1988 U Technical Report No. 110 Behavioral Technology Laboratories University of Southern

  9. The 1988 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James (Editor); Hughes, Peter (Editor)

    1988-01-01

    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools/methodologies.

  10. Artificial intelligence and large scale computation: A physics perspective

    NASA Astrophysics Data System (ADS)

    Hogg, Tad; Huberman, B. A.

    1987-12-01

    We study the macroscopic behavior of computation and examine both emergent collective phenomena and dynamical aspects with an emphasis on software issues, which are at the core of large scale distributed computation and artificial intelligence systems. By considering large systems, we exhibit novel phenomena which cannot be foreseen from examination of their smaller counterparts. We review both the symbolic and connectionist views of artificial intelligence, provide a number of examples which display these phenomena, and resort to statistical mechanics, dynamical systems theory and the theory of random graphs to elicit the range of possible behaviors.

  11. Bionics: A Step toward Artificial Intelligence Systems

    ERIC Educational Resources Information Center

    Dutton, Robert E.

    1970-01-01

    Recent developments and future prospects in the borrowing of biological principles to build problem solving relationships between human intelligence and the information storage and manipulation capacities of computers. Twenty-one references. (LY)

  12. Bionics: A Step toward Artificial Intelligence Systems

    ERIC Educational Resources Information Center

    Dutton, Robert E.

    1970-01-01

    Recent developments and future prospects in the borrowing of biological principles to build problem solving relationships between human intelligence and the information storage and manipulation capacities of computers. Twenty-one references. (LY)

  13. Artificial intelligence and synthetic biology: A tri-temporal contribution.

    PubMed

    Bianchini, Francesco

    2016-10-01

    Artificial intelligence can make numerous contributions to synthetic biology. I would like to suggest three that are related to the past, present and future of artificial intelligence. From the past, works in biology and artificial systems by Turing and von Neumann prove highly interesting to explore within the new framework of synthetic biology, especially with regard to the notions of self-modification and self-replication and their links to emergence and the bottom-up approach. The current epistemological inquiry into emergence and research on swarm intelligence, superorganisms and biologically inspired cognitive architecture may lead to new achievements on the possibilities of synthetic biology in explaining cognitive processes. Finally, the present-day discussion on the future of artificial intelligence and the rise of superintelligence may point to some research trends for the future of synthetic biology and help to better define the boundary of notions such as "life", "cognition", "artificial" and "natural", as well as their interconnections in theoretical synthetic biology.

  14. Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments.

  15. A novel modification of the Turing test for artificial intelligence and robotics in healthcare.

    PubMed

    Ashrafian, Hutan; Darzi, Ara; Athanasiou, Thanos

    2015-03-01

    The increasing demands of delivering higher quality global healthcare has resulted in a corresponding expansion in the development of computer-based and robotic healthcare tools that rely on artificially intelligent technologies. The Turing test was designed to assess artificial intelligence (AI) in computer technology. It remains an important qualitative tool for testing the next generation of medical diagnostics and medical robotics. Development of quantifiable diagnostic accuracy meta-analytical evaluative techniques for the Turing test paradigm. Modification of the Turing test to offer quantifiable diagnostic precision and statistical effect-size robustness in the assessment of AI for computer-based and robotic healthcare technologies. Modification of the Turing test to offer robust diagnostic scores for AI can contribute to enhancing and refining the next generation of digital diagnostic technologies and healthcare robotics. Copyright © 2014 John Wiley & Sons, Ltd.

  16. The socio-organizational age of artificial intelligence in medicine.

    PubMed

    Stefanelli, M

    2001-08-01

    The increasing pressure on Health Care Organizations (HCOs) to ensure efficiency and cost-effectiveness, balancing quality of care and cost containment, will drive them towards a more effective management of medical knowledge derived from research findings. The relation between science and health services has until recently been too casual. The primary job of medical research has been to understand the mechanisms of disease and produce new treatments, not to worry about the effectiveness of the new treatments or their implementation. As a result many new treatments have taken years to become part of routine practice, ineffective treatments have been widely used, and medicine has been opinion rather than evidence based. This results in suboptimal care for patients. Knowledge management technology may provide effective approaches in speeding up the diffusion of innovative medical procedures whose clinical effectiveness have been proved: the most interesting one is represented by computer-based utilization of evidence-based clinical guidelines. As researchers in Artificial Intelligence in Medicine (AIM), we are committed to foster the strategic transition from opinion to evidence-based decision making. Reviews of the effectiveness of various methods of guideline dissemination show that the most predictable impact is achieved when the guideline is made accessible through computer-based and patient specific reminders that are integrated into the clinician's workflow. However, the traditional single doctor-patient relationship is being replaced by one in which the patient is managed by a team of health care professionals, each specializing in one aspect of care. Such shared care depends critically on the ability to share patient-specific information and medical knowledge easily among them. Strategically there is a need to take a more clinical process view of health care delivery and to identify the appropriate organizational and information infrastructures to support

  17. Use of artificial intelligence in supervisory control

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron; Erickson, Jon D.

    1989-01-01

    Viewgraphs describing the design and testing of an intelligent decision support system called OFMspert are presented. In this expert system, knowledge about the human operator is represented through an operator/system model referred to as the OFM (Operator Function Model). OFMspert uses the blackboard model of problem solving to maintain a dynamic representation of operator goals, plans, tasks, and actions given previous operator actions and current system state. Results of an experiment to assess OFMspert's intent inferencing capability are outlined. Finally, the overall design philosophy for an intelligent tutoring system (OFMTutor) for operators of complex dynamic systems is summarized.

  18. Artificial evolution: a new path for artificial intelligence?

    PubMed

    Husbands, P; Harvey, I; Cliff, D; Miller, G

    1997-06-01

    Recently there have been a number of proposals for the use of artificial evolution as a radically new approach to the development of control systems for autonomous robots. This paper explains the artificial evolution approach, using work at Sussex to illustrate it. The paper revolves around a case study on the concurrent evolution of control networks and visual sensor morphologies for a mobile robot. Wider intellectual issues surrounding the work are discussed, as is the use of more abstract evolutionary simulations as a new potentially useful tool in theoretical biology.

  19. An Artificial Intelligence-Based Distance Education System: Artimat

    ERIC Educational Resources Information Center

    Nabiyev, Vasif; Karal, Hasan; Arslan, Selahattin; Erumit, Ali Kursat; Cebi, Ayca

    2013-01-01

    The purpose of this study is to evaluate the artificial intelligence-based distance education system called ARTIMAT, which has been prepared in order to improve mathematical problem solving skills of the students, in terms of conceptual proficiency and ease of use with the opinions of teachers and students. The implementation has been performed…

  20. Evolution and Revolution in Artificial Intelligence in Education

    ERIC Educational Resources Information Center

    Roll, Ido; Wylie, Ruth

    2016-01-01

    The field of Artificial Intelligence in Education (AIED) has undergone significant developments over the last twenty-five years. As we reflect on our past and shape our future, we ask two main questions: What are our major strengths? And, what new opportunities lay on the horizon? We analyse 47 papers from three years in the history of the…

  1. Artificial Intelligence: Is the Future Now for A.I.?

    ERIC Educational Resources Information Center

    Ramaswami, Rama

    2009-01-01

    In education, artificial intelligence (AI) has not made much headway. In the one area where it would seem poised to lend the most benefit--assessment--the reliance on standardized tests, intensified by the demands of the No Child Left Behind Act of 2001, which holds schools accountable for whether students pass statewide exams, precludes its use.…

  2. Systems in Science: Modeling Using Three Artificial Intelligence Concepts.

    ERIC Educational Resources Information Center

    Sunal, Cynthia Szymanski; Karr, Charles L.; Smith, Coralee; Sunal, Dennis W.

    2003-01-01

    Describes an interdisciplinary course focusing on modeling scientific systems. Investigates elementary education majors' applications of three artificial intelligence concepts used in modeling scientific systems before and after the course. Reveals a great increase in understanding of concepts presented but inconsistent application. (Author/KHR)

  3. Application of artificial intelligence to risk analysis for forested ecosystems

    Treesearch

    Daniel L. Schmoldt

    2001-01-01

    Forest ecosystems are subject to a variety of natural and anthropogenic disturbances that extract a penalty from human population values. Such value losses (undesirable effects) combined with their likelihoods of occurrence constitute risk. Assessment or prediction of risk for various events is an important aid to forest management. Artificial intelligence (AI)...

  4. A Course in Artificial Intelligence in Process Engineering.

    ERIC Educational Resources Information Center

    Venkatasubramanian, V.

    1986-01-01

    Describes a course on artificial intelligence (AI) in process engineering taught at Columbia University to chemical engineering students, using an AI methodology known as Knowledge-Based Expert Systems (KBES). Provides a description of the course, the lecture topics, and a synopsis of some of the student projects. (TW)

  5. Artificial Intelligence in Business: Technocrat Jargon or Quantum Leap?

    ERIC Educational Resources Information Center

    Burford, Anna M.; Wilson, Harold O.

    This paper addresses the characteristics and applications of artificial intelligence (AI) as a subsection of computer science, and briefly describes the most common types of AI programs: expert systems, natural language, and neural networks. Following a brief presentation of the historical background, the discussion turns to an explanation of how…

  6. The 1992 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1992-01-01

    The purpose of this conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers fall into the following areas: planning and scheduling, control, fault monitoring/diagnosis and recovery, information management, tools, neural networks, and miscellaneous applications.

  7. Artificial Intelligence: Themes in the Second Decade. Memo Number 67.

    ERIC Educational Resources Information Center

    Feigenbaum, Edward A.

    The text of an invited address on artificial intelligence (AI) research over the 1963-1968 period is presented. A survey of recent studies on the computer simulation of intellective processes emphasizes developments in heuristic programing, problem-solving and closely related learning models. Progress and problems in these areas are indicated by…

  8. New directions for Artificial Intelligence (AI) methods in optimum design

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat

    1989-01-01

    Developments and applications of artificial intelligence (AI) methods in the design of structural systems is reviewed. Principal shortcomings in the current approach are emphasized, and the need for some degree of formalism in the development environment for such design tools is underscored. Emphasis is placed on efforts to integrate algorithmic computations in expert systems.

  9. Artificial Intelligence and the High School Computer Curriculum.

    ERIC Educational Resources Information Center

    Dillon, Richard W.

    1993-01-01

    Describes a four-part curriculum that can serve as a model for incorporating artificial intelligence (AI) into the high school computer curriculum. The model includes examining questions fundamental to AI, creating and designing an expert system, language processing, and creating programs that integrate machine vision with robotics and…

  10. Artificial Intelligence Models for Human Problem-Solving.

    ERIC Educational Resources Information Center

    Goldin, Gerald A.; Luger, George F.

    A theory that there is a correspondence between Piagetian conservation operations and groups of symmetry transformations, and that these symmetry transformations may be used in explaining human problem solving behaviors, is developed in this paper. Current research in artificial intelligence is briefly reviewed, then details of the symmetry…

  11. Artificial Intelligence in ADA: Pattern-Directed Processing. Final Report.

    ERIC Educational Resources Information Center

    Reeker, Larry H.; And Others

    To demonstrate to computer programmers that the programming language Ada provides superior facilities for use in artificial intelligence applications, the three papers included in this report investigate the capabilities that exist within Ada for "pattern-directed" programming. The first paper (Larry H. Reeker, Tulane University) is…

  12. Teaching Artificial Intelligence and Expert Systems: Concepts in Library Curricula.

    ERIC Educational Resources Information Center

    Kranch, Douglas A.

    1992-01-01

    Survey of institutions offering a bachelor's or higher degree in library science showed that the higher the level of the program, the more likely that artificial intelligence/expert systems (AI/ES) courses would be offered. Study concludes that all master's and doctoral level programs should include AI/ES units, and that greater emphasis should be…

  13. An Artificial Intelligence Course for Liberal Arts Students.

    ERIC Educational Resources Information Center

    Skala, Helen

    1988-01-01

    Outlines a course in artificial intelligence for liberal arts students that has no programing prerequisites. Topics and projects included in the course are described, including problem solving; natural language; expert systems; image understanding, or character recognition; and robotic systems. (28 references) (Author/LRW)

  14. Artificial Intelligence in Business: Technocrat Jargon or Quantum Leap?

    ERIC Educational Resources Information Center

    Burford, Anna M.; Wilson, Harold O.

    This paper addresses the characteristics and applications of artificial intelligence (AI) as a subsection of computer science, and briefly describes the most common types of AI programs: expert systems, natural language, and neural networks. Following a brief presentation of the historical background, the discussion turns to an explanation of how…

  15. Social Studies and Emerging Paradigms: Artificial Intelligence and Consciousness Education.

    ERIC Educational Resources Information Center

    Braun, Joseph A., Jr.

    1987-01-01

    Asks three questions: (1) Are machines capable of thinking as people do? (2) How is the thinking of computers similar and different from human thinking? and (3) What exactly is thinking? Examines research in artificial intelligence. Describes the theory and research of consciousness education and discusses an emerging paradigm for human thinking…

  16. Artificial intelligence techniques for the control of cancer cells.

    PubMed

    Nicolini, C; Gaglio, S; Ruggiero, C

    1989-04-01

    NEWCHEM, an artificial intelligence system for the control of cancer cell growth, is described. This system takes into account the most recent advances in molecular and cellular biology and in cell-drug interaction, and aims to develop optimal strategies for the selective control of cancer cell through qualitative reasoning from first principles at cellular level.

  17. Artificial Intelligence: Themes in the Second Decade. Memo Number 67.

    ERIC Educational Resources Information Center

    Feigenbaum, Edward A.

    The text of an invited address on artificial intelligence (AI) research over the 1963-1968 period is presented. A survey of recent studies on the computer simulation of intellective processes emphasizes developments in heuristic programing, problem-solving and closely related learning models. Progress and problems in these areas are indicated by…

  18. Magical Stories: Blending Virtual Reality and Artificial Intelligence.

    ERIC Educational Resources Information Center

    McLellan, Hilary

    Artificial intelligence (AI) techniques and virtual reality (VR) make possible powerful interactive stories, and this paper focuses on examples of virtual characters in three dimensional (3-D) worlds. Waldern, a virtual reality game designer, has theorized about and implemented software design of virtual teammates and opponents that incorporate AI…

  19. Proceedings of the third conference on artificial intelligence applications

    SciTech Connect

    Not Available

    1987-01-01

    This book presents the papers given at a conference on artificial intelligence. Topics considered at the conference included a knowledge-based imaging system for electromagnetic testing, natural language processing, diagnostic techniques, knowledge acquisition, manufacturing, real-time programming, robotics, search, uncertainty, design, planning, and software.

  20. An Artificial Intelligence Course for Liberal Arts Students.

    ERIC Educational Resources Information Center

    Skala, Helen

    1988-01-01

    Outlines a course in artificial intelligence for liberal arts students that has no programing prerequisites. Topics and projects included in the course are described, including problem solving; natural language; expert systems; image understanding, or character recognition; and robotic systems. (28 references) (Author/LRW)

  1. Artificial Intelligence and the High School Computer Curriculum.

    ERIC Educational Resources Information Center

    Dillon, Richard W.

    1993-01-01

    Describes a four-part curriculum that can serve as a model for incorporating artificial intelligence (AI) into the high school computer curriculum. The model includes examining questions fundamental to AI, creating and designing an expert system, language processing, and creating programs that integrate machine vision with robotics and…

  2. Reflections on the relationship between artificial intelligence and operations research

    NASA Technical Reports Server (NTRS)

    Fox, Mark S.

    1989-01-01

    Historically, part of Artificial Intelligence's (AI's) roots lie in Operations Research (OR). How AI has extended the problem solving paradigm developed in OR is explored. In particular, by examining how scheduling problems are solved using OR and AI, it is demonstrated that AI extends OR's model of problem solving through the opportunistic use of knowledge, problem reformulation and learning.

  3. Artificial Intelligence: Is the Future Now for A.I.?

    ERIC Educational Resources Information Center

    Ramaswami, Rama

    2009-01-01

    In education, artificial intelligence (AI) has not made much headway. In the one area where it would seem poised to lend the most benefit--assessment--the reliance on standardized tests, intensified by the demands of the No Child Left Behind Act of 2001, which holds schools accountable for whether students pass statewide exams, precludes its use.…

  4. Evolution and Revolution in Artificial Intelligence in Education

    ERIC Educational Resources Information Center

    Roll, Ido; Wylie, Ruth

    2016-01-01

    The field of Artificial Intelligence in Education (AIED) has undergone significant developments over the last twenty-five years. As we reflect on our past and shape our future, we ask two main questions: What are our major strengths? And, what new opportunities lay on the horizon? We analyse 47 papers from three years in the history of the…

  5. Systems in Science: Modeling Using Three Artificial Intelligence Concepts.

    ERIC Educational Resources Information Center

    Sunal, Cynthia Szymanski; Karr, Charles L.; Smith, Coralee; Sunal, Dennis W.

    2003-01-01

    Describes an interdisciplinary course focusing on modeling scientific systems. Investigates elementary education majors' applications of three artificial intelligence concepts used in modeling scientific systems before and after the course. Reveals a great increase in understanding of concepts presented but inconsistent application. (Author/KHR)

  6. The Seeds of Artificial Intelligence. SUMEX-AIM.

    ERIC Educational Resources Information Center

    Research Resources Information Center, Rockville, MD.

    Written to provide an understanding of the broad base of information on which the artificial intelligence (AI) branch of computer science rests, this publication presents a general view of AI, the concepts from which it evolved, its current abilities, and its promise for research. The focus is on a community of projects that use the SUMEX-AIM…

  7. Ethical Implications of an Experiment in Artificial Intelligence.

    ERIC Educational Resources Information Center

    Levinson, Stephen E.

    2003-01-01

    Revisits the classic debate on whether there can be an artificial creation that behaves and uses language with intelligence and agency. Argues that many moral and spiritual objections to this notion are not grounded either ethically or empirically. (Author/VWL)

  8. Second Conference on Artificial Intelligence for Space Applications

    NASA Technical Reports Server (NTRS)

    Dollman, Thomas (Compiler)

    1988-01-01

    The proceedings of the conference are presented. This second conference on Artificial Intelligence for Space Applications brings together a diversity of scientific and engineering work and is intended to provide an opportunity for those who employ AI methods in space applications to identify common goals and to discuss issues of general interest in the AI community.

  9. The Army’s Activities in Artificial Intelligence/Robotics,

    DTIC Science & Technology

    1982-08-27

    approach is to cast artificial intelligence as advanced computer software applicable to classes of nondeterministic problems such as natural language ...Semi-autonomous RPV target aquisition system - Unattended Forward observer et - - Expert maintenance systems - Manufacturing (GOCO, GOGO plants...Automated message analysis and distribution - Semi-autonomous air defense systems - Natural language query to C31 data bases - Computer-assisted

  10. Intelligent Mobile Technologies

    NASA Technical Reports Server (NTRS)

    Alena, Rick; Gilbaugh, Bruce; Glass, Brian; Swanson, Keith (Technical Monitor)

    2000-01-01

    Testing involves commercial radio equipment approved for export and use in Canada. Testing was conducted in the Canadian High Arctic, where hilly terrain provided the worst-case testing. SFU and Canadian governmental agencies made significant technical contributions. The only technical data related to radio testing was exchanged with SFU. Test protocols are standard radio tests performed by communication technicians worldwide. The Joint Fields Operations objectives included the following: (1) to provide Internet communications services for field science work and mobile exploration systems; (2) to evaluate the range and throughput of three different medium-range radio link technologies for providing coverage of the crater area; and (3) to demonstrate collaborative software such as NetMeeting with multi-point video for exchange of scientific information between remote node and base-base camp and science centers as part of communications testing.

  11. Artificial intelligence - New tools for aerospace project managers

    NASA Technical Reports Server (NTRS)

    Moja, D. C.

    1985-01-01

    Artificial Intelligence (AI) is currently being used for business-oriented, money-making applications, such as medical diagnosis, computer system configuration, and geological exploration. The present paper has the objective to assess new AI tools and techniques which will be available to assist aerospace managers in the accomplishment of their tasks. A study conducted by Brown and Cheeseman (1983) indicates that AI will be employed in all traditional management areas, taking into account goal setting, decision making, policy formulation, evaluation, planning, budgeting, auditing, personnel management, training, legal affairs, and procurement. Artificial intelligence/expert systems are discussed, giving attention to the three primary areas concerned with intelligent robots, natural language interfaces, and expert systems. Aspects of information retrieval are also considered along with the decision support system, and expert systems for project planning and scheduling.

  12. The Bright, Artificial Intelligence-Augmented Future of Neuroimaging Reading.

    PubMed

    Hainc, Nicolin; Federau, Christian; Stieltjes, Bram; Blatow, Maria; Bink, Andrea; Stippich, Christoph

    2017-01-01

    Radiologists are among the first physicians to be directly affected by advances in computer technology. Computers are already capable of analyzing medical imaging data, and with decades worth of digital information available for training, will an artificial intelligence (AI) one day signal the end of the human radiologist? With the ever increasing work load combined with the looming doctor shortage, radiologists will be pushed far beyond their current estimated 3 s allotted time-of-analysis per image; an AI with super-human capabilities might seem like a logical replacement. We feel, however, that AI will lead to an augmentation rather than a replacement of the radiologist. The AI will be relied upon to handle the tedious, time-consuming tasks of detecting and segmenting outliers while possibly generating new, unanticipated results that can then be used as sources of medical discovery. This will affect not only radiologists but all physicians and also researchers dealing with medical imaging. Therefore, we must embrace future technology and collaborate interdisciplinary to spearhead the next revolution in medicine.

  13. Methodology Investigation of AI(Artificial Intelligence) Test Officer Support Tool. Volume 1

    DTIC Science & Technology

    1989-03-01

    American Association for Artificial inteligence A! ............. Artificial inteliigence AMC ............ Unt:ed States Army Maeriel Comand ASL...block number) FIELD GROUP SUB-GROUP Artificial Intelligence, Expert Systems Automated Aids to Testing 9. ABSTRACT (Continue on reverse if necessary and...identify by block number) This report covers the application of Artificial Intelligence-Techniques to the problem of creating automated tools to

  14. Performance evaluation of artificial intelligence classifiers for the medical domain.

    PubMed

    Smith, A E; Nugent, C D; McClean, S I

    2002-01-01

    The application of artificial intelligence systems is still not widespread in the medical field, however there is an increasing necessity for these to handle the surfeit of information available. One drawback to their implementation is the lack of criteria or guidelines for the evaluation of these systems. This is the primary issue in their acceptability to clinicians, who require them for decision support and therefore need evidence that these systems meet the special safety-critical requirements of the domain. This paper shows evidence that the most prevalent form of intelligent system, neural networks, is generally not being evaluated rigorously regarding classification precision. A taxonomy of the types of evaluation tests that can be carried out, to gauge inherent performance of the outputs of intelligent systems has been assembled, and the results of this presented in a clear and concise form, which should be applicable to all intelligent classifiers for medicine.

  15. Artificial Intelligence Applied to the Command, Control, Communications, and Intelligence of the U.S. Central Command.

    DTIC Science & Technology

    1983-06-06

    these components will be presented. 4.17 °°,. CHAPTER III FOOTNOTES 1. Arron Barr and Edward A. Feigenbaum, eds., Te Handbook gf Artificial Inteligence ol...RD-R137 205 ARTIFICIAL INTELLIGENCE APPLIED TO THE COMIMAND CONTROL i/i COMMUNICATIONS RND..(U) ARMY WAR COLL CARLISLE BARRACKS U PA J N ENVART 06...appropriate mlitary servic or *swesmment aency. ARTIFICIAL INTELLIGENCE APPLIED TO THE COMMAND, CONTROL, COMMUNICATIONS, AND INTELLIGENCE OF THE U.S. CENTRAL

  16. Artificial pigs in space: using artificial intelligence and artificial life techniques to design animal housing.

    PubMed

    Stricklin, W R; de Bourcier, P; Zhou, J Z; Gonyou, H W

    1998-10-01

    Computer simulations have been used by us since the early 1970s to gain an understanding of the spacing and movement patterns of confined animals. The work has progressed from the early stages, in which we used randomly positioned points, to current investigations of animats (computer-simulated animals), which show low levels of learning via artificial neural networks. We have determined that 1) pens of equal floor area but of different shape result in different spatial and movement patterns for randomly positioned and moving animats; 2) when group size increases under constant density, freedom of movement approaches an asymptote at approximately six animats; 3) matching the number of animats with the number of corners results in optimal freedom of movement for small groups of animats; and 4) perimeter positioning occurs in groups of animats that maximize their distance to first- and second-nearest neighbors. Recently, we developed animats that move, compete for social dominance, and are motivated to obtain resources (food, resting sites, etc.). We are currently developing an animat that learns its behavior from the spatial and movement data collected on live pigs. The animat model is then used to pretest pen designs, followed by new pig spatial data fed into the animat model, resulting in a new pen design to be tested, and the steps are repeated. We believe that methodologies from artificial-life and artificial intelligence can contribute to the understanding of basic animal behavior principles, as well as to the solving of problems in production agriculture in areas such as animal housing design.

  17. Teaching artificial intelligence to read electropherograms.

    PubMed

    Taylor, Duncan; Powers, David

    2016-11-01

    Electropherograms are produced in great numbers in forensic DNA laboratories as part of everyday criminal casework. Before the results of these electropherograms can be used they must be scrutinised by analysts to determine what the identified data tells us about the underlying DNA sequences and what is purely an artefact of the DNA profiling process. A technique that lends itself well to such a task of classification in the face of vast amounts of data is the use of artificial neural networks. These networks, inspired by the workings of the human brain, have been increasingly successful in analysing large datasets, performing medical diagnoses, identifying handwriting, playing games, or recognising images. In this work we demonstrate the use of an artificial neural network which we train to 'read' electropherograms and show that it can generalise to unseen profiles. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Integrating artificial and human intelligence into tablet production process.

    PubMed

    Gams, Matjaž; Horvat, Matej; Ožek, Matej; Luštrek, Mitja; Gradišek, Anton

    2014-12-01

    We developed a new machine learning-based method in order to facilitate the manufacturing processes of pharmaceutical products, such as tablets, in accordance with the Process Analytical Technology (PAT) and Quality by Design (QbD) initiatives. Our approach combines the data, available from prior production runs, with machine learning algorithms that are assisted by a human operator with expert knowledge of the production process. The process parameters encompass those that relate to the attributes of the precursor raw materials and those that relate to the manufacturing process itself. During manufacturing, our method allows production operator to inspect the impacts of various settings of process parameters within their proven acceptable range with the purpose of choosing the most promising values in advance of the actual batch manufacture. The interaction between the human operator and the artificial intelligence system provides improved performance and quality. We successfully implemented the method on data provided by a pharmaceutical company for a particular product, a tablet, under development. We tested the accuracy of the method in comparison with some other machine learning approaches. The method is especially suitable for analyzing manufacturing processes characterized by a limited amount of data.

  19. Artificial intelligence and robotics in high throughput post-genomics.

    PubMed

    Laghaee, Aroosha; Malcolm, Chris; Hallam, John; Ghazal, Peter

    2005-09-15

    The shift of post-genomics towards a systems approach has offered an ever-increasing role for artificial intelligence (AI) and robotics. Many disciplines (e.g. engineering, robotics, computer science) bear on the problem of automating the different stages involved in post-genomic research with a view to developing quality assured high-dimensional data. We review some of the latest contributions of AI and robotics to this end and note the limitations arising from the current independent, exploratory way in which specific solutions are being presented for specific problems without regard to how these could be eventually integrated into one comprehensible integrated intelligent system.

  20. An application of artificial intelligence theory to reconfigurable flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.

    1987-01-01

    Artificial intelligence techniques were used along with statistical hpyothesis testing and modern control theory, to help the pilot cope with the issues of information, knowledge, and capability in the event of a failure. An intelligent flight control system is being developed which utilizes knowledge of cause and effect relationships between all aircraft components. It will screen the information available to the pilots, supplement his knowledge, and most importantly, utilize the remaining flight capability of the aircraft following a failure. The list of failure types the control system will accommodate includes sensor failures, actuator failures, and structural failures.

  1. Learning comunication strategies for distributed artificial intelligence

    NASA Astrophysics Data System (ADS)

    Kinney, Michael; Tsatsoulis, Costas

    1992-08-01

    We present a methodology that allows collections of intelligent system to automatically learn communication strategies, so that they can exchange information and coordinate their problem solving activity. In our methodology communication between agents is determined by the agents themselves, which consider the progress of their individual problem solving activities compared to the communication needs of their surrounding agents. Through learning, communication lines between agents might be established or disconnected, communication frequencies modified, and the system can also react to dynamic changes in the environment that might force agents to cease to exist or to be added. We have established dynamic, quantitative measures of the usefulness of a fact, the cost of a fact, the work load of an agent, and the selfishness of an agent (a measure indicating an agent's preference between transmitting information versus performing individual problem solving), and use these values to adapt the communication between intelligent agents. In this paper we present the theoretical foundations of our work together with experimental results and performance statistics of networks of agents involved in cooperative problem solving activities.

  2. Northeast Artificial Intelligence Consortium Annual Report. Volume 2. 1988 Discussing, Using, and Recognizing Plans (NLP)

    DTIC Science & Technology

    1989-10-01

    Encontro Portugues de Inteligencia Artificial (EPIA), Oporto, Portugal, September 1985. [15] N. J. Nilsson. Principles Of Artificial Intelligence. Tioga...FI1 F COPY () RADC-TR-89-259, Vol II (of twelve) Interim Report October 1969 AD-A218 154 NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL...7a. NAME OF MONITORING ORGANIZATION Northeast Artificial Of p0ilcabe) Intelligence Consortium (NAIC) Rome_____ Air___ Development____Center

  3. Utilization of artificial intelligence techniques for the Space Station power system

    NASA Technical Reports Server (NTRS)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  4. Utilization of artificial intelligence techniques for the Space Station power system

    NASA Technical Reports Server (NTRS)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  5. Artificial Intelligence based technique for BTS placement

    NASA Astrophysics Data System (ADS)

    Alenoghena, C. O.; Emagbetere, J. O.; Aibinu, A. M.

    2013-12-01

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out.

  6. [Artificial intelligence in medicine: project of a mobile platform in an intelligent environment for the care of disabled and elderly people].

    PubMed

    Cortés, Ulises; Annicchiarico, Roberta; Campana, Fabio; Vázquez-Salceda, Javier; Urdiales, Cristina; Canãmero, Lola; López, Maite; Sánchez-Marrè, Miquel; Di Vincenzo, Sarah; Caltagirone, Carlo

    2004-04-01

    A project based on the integration of new technologies and artificial intelligence to develop a device--e-tool--for disabled patients and elderly people is presented. A mobile platform in intelligent environments (skilled-care facilities and home-care), controlled and managed by a multi-level architecture, is proposed to support patients and caregivers to increase self-dependency in activities of daily living.

  7. Synthetic biology routes to bio-artificial intelligence

    PubMed Central

    Zaikin, Alexey; Saka, Yasushi; Romano, M. Carmen; Giuraniuc, Claudiu V.; Kanakov, Oleg; Laptyeva, Tetyana

    2016-01-01

    The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular ‘teachers’ and ‘students’ is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI). PMID:27903825

  8. Artificial Intelligence Application in Power Generation Industry: Initial considerations

    NASA Astrophysics Data System (ADS)

    Ismail, Rahmat Izaizi B.; Ismail Alnaimi, Firas B.; AL-Qrimli, Haidar F.

    2016-03-01

    With increased competitiveness in power generation industries, more resources are directed in optimizing plant operation, including fault detection and diagnosis. One of the most powerful tools in faults detection and diagnosis is artificial intelligence (AI). Faults should be detected early so correct mitigation measures can be taken, whilst false alarms should be eschewed to avoid unnecessary interruption and downtime. For the last few decades there has been major interest towards intelligent condition monitoring system (ICMS) application in power plant especially with AI development particularly in artificial neural network (ANN). ANN is based on quite simple principles, but takes advantage of their mathematical nature, non-linear iteration to demonstrate powerful problem solving ability. With massive possibility and room for improvement in AI, the inspiration for researching them are apparent, and literally, hundreds of papers have been published, discussing the findings of hybrid AI for condition monitoring purposes. In this paper, the studies of ANN and genetic algorithm (GA) application will be presented.

  9. Evaluation of artificial intelligence based models for chemical biodegradability prediction.

    PubMed

    Baker, James R; Gamberger, Dragan; Mihelcic, James R; Sabljić, Aleksandar

    2004-12-31

    This study presents a review of biodegradability modeling efforts including a detailed assessment of two models developed using an artificial intelligence based methodology. Validation results for these models using an independent, quality reviewed database, demonstrate that the models perform well when compared to another commonly used biodegradability model, against the same data. The ability of models induced by an artificial intelligence methodology to accommodate complex interactions in detailed systems, and the demonstrated reliability of the approach evaluated by this study, indicate that the methodology may have application in broadening the scope of biodegradability models. Given adequate data for biodegradability of chemicals under environmental conditions, this may allow for the development of future models that include such things as surface interface impacts on biodegradability for example.

  10. An artificial neural network controller for intelligent transportation systems applications

    SciTech Connect

    Vitela, J.E.; Hanebutte, U.R.; Reifman, J.

    1996-04-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems applications. The AICC is based on a simple nonlinear model of the vehicle dynamics. A Neural Network Controller (NNC) code developed at Argonne National Laboratory to control discrete dynamical systems was used for this purpose. In order to test the NNC, an AICC-simulator containing graphical displays was developed for a system of two vehicles driving in a single lane. Two simulation cases are shown, one involving a lead vehicle with constant velocity and the other a lead vehicle with varying acceleration. More realistic vehicle dynamic models will be considered in future work.

  11. The mind and the machine: Philosophical aspects of artificial intelligence

    SciTech Connect

    Torrance, S.

    1984-01-01

    What light do current developments in computing shed on philosophical and psychological understanding of the human mind. A group of authors from philosophy, artificial intelligence, linguistics, psychology, and computing provide answers in one of the first texts to bring together a wide range of disciplines into a single area of general international concern. Drawing heavily on current research, the topics discussed are relevant to the growth of public interest in artificial intelligence, expert systems, and fifth generation computers. Topics considered include thought experiments and conceptual investigations, remarks on the language of thought, machines and mind: the functional sphere and epistemological circles, machines, self-control and internationality, linguistic theory, computational models of reasoning, a computer scientist's view of meaning, and learning as a non-deterministic but exact logical process.

  12. Artificial intelligence for Space Station automation: Crew safety, productivity, autonomy, augmented capability

    NASA Technical Reports Server (NTRS)

    Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Geldberg, J.

    1986-01-01

    Artificial intelligence (AI) R&D projects for the successful and efficient operation of the Space Station are described. The book explores the most advanced AI-based technologies, reviews the results of concept design studies to determine required AI capabilities, details demonstrations that would indicate the existence of these capabilities, and develops an R&D plan leading to such demonstrations. Particular attention is given to teleoperation and robotics, sensors, expert systems, computers, planning, and man-machine interface.

  13. Artificial intelligence for Space Station automation: crew safety, productivity, autonomy, augmented capability

    SciTech Connect

    Firschein, O.; Georgeff, M.P.; Park, W.; Cheeseman, P.C.; Geldberg, J.

    1986-01-01

    Artificial intelligence (AI) RandD projects for the successful and efficient operation of the Space Station are described. The book explores the most advanced AI-based technologies, reviews the results of concept design studies to determine required AI capabilities, details demonstrations that would indicate the existence of these capabilities, and develops an RandD plan leading to such demonstrations. Particular attention is given to teleoperation and robotics, sensors, expert systems, computers, planning, and man-machine interface. 293 references.

  14. Artificial intelligence issues related to automated computing operations

    NASA Technical Reports Server (NTRS)

    Hornfeck, William A.

    1989-01-01

    Large data processing installations represent target systems for effective applications of artificial intelligence (AI) constructs. The system organization of a large data processing facility at the NASA Marshall Space Flight Center is presented. The methodology and the issues which are related to AI application to automated operations within a large-scale computing facility are described. Problems to be addressed and initial goals are outlined.

  15. Future applications of artificial intelligence to Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1991-01-01

    Future applications of artificial intelligence to Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: basic objectives of the NASA-wide AI program; inhouse research program; constraint-based scheduling; learning and performance improvement for scheduling; GEMPLAN multi-agent planner; planning, scheduling, and control; Bayesian learning; efficient learning algorithms; ICARUS (an integrated architecture for learning); design knowledge acquisition and retention; computer-integrated documentation; and some speculation on future applications.

  16. Design Issues in Parallel Architectures for Artificial Intelligence.

    DTIC Science & Technology

    1983-11-01

    control-driven, data-driven, and demand-driven styles of computation. In a related development, investigation of a shared financial account example...actors with changing local states. While working with the shared financial account example. we implemented a new approach to actor state changes...Lab, 1970. [’Theriault &1.1 Theriault.. D. b1rnies in the fleqign and Implementation of Act-2. Technic0l Reprt 728, MIT Artificial Intelligence Laboratory, June, 1983. IDAT.I

  17. The 1991 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1991-01-01

    The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in this proceeding fall into the following areas: Planning and scheduling, fault monitoring/diagnosis/recovery, machine vision, robotics, system development, information management, knowledge acquisition and representation, distributed systems, tools, neural networks, and miscellaneous applications.

  18. Robotic air vehicle. Blending artificial intelligence with conventional software

    NASA Technical Reports Server (NTRS)

    Mcnulty, Christa; Graham, Joyce; Roewer, Paul

    1987-01-01

    The Robotic Air Vehicle (RAV) system is described. The program's objectives were to design, implement, and demonstrate cooperating expert systems for piloting robotic air vehicles. The development of this system merges conventional programming used in passive navigation with Artificial Intelligence techniques such as voice recognition, spatial reasoning, and expert systems. The individual components of the RAV system are discussed as well as their interactions with each other and how they operate as a system.

  19. [I, Robot: artificial intelligence, uniqueness and self-consciousness].

    PubMed

    Agrest, Martín

    2008-01-01

    The cinematographic version of the science fiction classical book by Isaac Asimov (I, Robot) is used as a starting point, from the Artificial Intelligence perspective, in order to analyze what it is to have a self. Uniqueness or the exchange impossibility and the continuity of being one self are put forward to understand the movie's characters as well as the possibilities of feeling self conscious.

  20. Experiments with microcomputer-based artificial intelligence environments

    SciTech Connect

    Summers, E.G.; MacDonald, R.A.

    1988-11-01

    The US Geological Survey (USGS) has been experimenting with the use of relatively inexpensive microcomputers as artificial intelligence (AI) development environments. Several AI languages are available that perform fairly well on desk-top personal computers, as are low-to-medium cost expert system packages. Although performance of these systems is respectable, their speed and capacity limitations are questionable for serious earth science applications foreseen by the USGS. The most capable artificial intelligence applications currently are concentrated on what is known as the artificial intelligence computer, and include Xerox D-series, Tektronix 4400 series, Symbolics 3600, VAX, LMI, and Texas Instruments Explorer. The artificial intelligence computer runs expert system shells and Lisp, Prolog, and Smalltalk programming languages. However, these AI environments are expensive. Recently inexpensive 32-bit hardware has become available for the IBM/AT microcomputer. USGS has acquired and recently completed Beta-testing of the Golf Hill Systems 80386 Hummingboard, which runs Common Lisp on an IBM/AT microcomputer. Hummingboard appears to have the potential to overcome many of the speed/capacity limitations observed with AI-applications on standard personal computers. USGS is a Beta-test site for the Gold Hill Systems GoldWorks expert system. GoldWorks combines some high-end expert system shell capabilities in a medium-cost package. This shell is developed in Common Lisp, runs on the 80386 Hummingboard, and provides some expert system features formerly available only on AI-computers including frame and rule-based reasoning, on-line tutorial, multiple inheritance, and object-programming.

  1. Advanced Methods of Online Searching for Artificial Intelligence Information

    DTIC Science & Technology

    1991-05-01

    wide basis. It will be shown how these networks are used in discussion groups, mailing lists, file transfers, mailservers , and databases. 14ru RMs 15...in discussion groups, mailing lists, file transfers, mailservers , and databases. INTRODUCTION A person working in artificial intelligence today has...34 one, and get either the file "internet.library" (ASCII format) or "internet.library.ps" (in Postscript format). LIDO mailserver The University of

  2. Artificial intelligence programming languages for computer aided manufacturing

    NASA Technical Reports Server (NTRS)

    Rieger, C.; Samet, H.; Rosenberg, J.

    1979-01-01

    Eight Artificial Intelligence programming languages (SAIL, LISP, MICROPLANNER, CONNIVER, MLISP, POP-2, AL, and QLISP) are presented and surveyed, with examples of their use in an automated shop environment. Control structures are compared, and distinctive features of each language are highlighted. A simple programming task is used to illustrate programs in SAIL, LISP, MICROPLANNER, and CONNIVER. The report assumes reader knowledge of programming concepts, but not necessarily of the languages surveyed.

  3. Artificial intelligence, expert systems, computer vision, and natural language processing

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1984-01-01

    An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.

  4. Application of temporal LNC logic in artificial intelligence

    NASA Astrophysics Data System (ADS)

    Adamek, Marek; Mulawka, Jan

    2016-09-01

    This paper presents the temporal logic inference engine developed in our university. It is an attempt to demonstrate implementation and practical application of temporal logic LNC developed in Cardinal Stefan Wyszynski University in Warsaw.1 The paper describes the fundamentals of LNC logic, architecture and implementation of inference engine. The practical application is shown by providing the solution for popular in Artificial Intelligence problem of Missionaries and Cannibals in terms of LNC logic. Both problem formulation and inference engine are described in details.

  5. Application of Artificial Intelligence to Improve Aircraft Survivability.

    DTIC Science & Technology

    1985-12-01

    AD-A164 172 APPLICATION OF ARTIFICIAL INTELLIGENCE TO IMPROVE 1/1 AIRCRAFT SURVASRILITY(U) NAVAL POSTGRADUATE SCHOOL UNCR7SIFEDMONTEREY CA N L DECKER...4 5- * . . . . . . 5~5~ * . . - -- &:~~-::-~&~ S.- ~ ~ S. . ~ ~.’ ~ VV ~ NAVAL POSTGRADUATE SCHOOL Monterey, California DTIC FEB 1406 D4 THESIS... School 6 7 Naval Postgraduate School 6C ADDRESS (City, State. and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) Monterey, California 93943-5100

  6. Issues in management of artificial intelligence based projects

    NASA Technical Reports Server (NTRS)

    Kiss, P. A.; Freeman, Michael S.

    1988-01-01

    Now that Artificial Intelligence (AI) is gaining acceptance, it is important to examine some of the obstacles that still stand in the way of its progress. Ironically, many of these obstacles are related to management and are aggravated by the very characteristcs that make AI useful. The purpose of this paper is to heighten awareness of management issues in AI development and to focus attention on their resolution.

  7. Experiments with microcomputer-based artificial intelligence environments

    USGS Publications Warehouse

    Summers, E.G.; MacDonald, R.A.

    1988-01-01

    The U.S. Geological Survey (USGS) has been experimenting with the use of relatively inexpensive microcomputers as artificial intelligence (AI) development environments. Several AI languages are available that perform fairly well on desk-top personal computers, as are low-to-medium cost expert system packages. Although performance of these systems is respectable, their speed and capacity limitations are questionable for serious earth science applications foreseen by the USGS. The most capable artificial intelligence applications currently are concentrated on what is known as the "artificial intelligence computer," and include Xerox D-series, Tektronix 4400 series, Symbolics 3600, VAX, LMI, and Texas Instruments Explorer. The artificial intelligence computer runs expert system shells and Lisp, Prolog, and Smalltalk programming languages. However, these AI environments are expensive. Recently, inexpensive 32-bit hardware has become available for the IBM/AT microcomputer. USGS has acquired and recently completed Beta-testing of the Gold Hill Systems 80386 Hummingboard, which runs Common Lisp on an IBM/AT microcomputer. Hummingboard appears to have the potential to overcome many of the speed/capacity limitations observed with AI-applications on standard personal computers. USGS is a Beta-test site for the Gold Hill Systems GoldWorks expert system. GoldWorks combines some high-end expert system shell capabilities in a medium-cost package. This shell is developed in Common Lisp, runs on the 80386 Hummingboard, and provides some expert system features formerly available only on AI-computers including frame and rule-based reasoning, on-line tutorial, multiple inheritance, and object-programming. ?? 1988 International Association for Mathematical Geology.

  8. Issues in the Evaluation of Artificial Intelligence Systems in Medicine

    PubMed Central

    Miller, Perry L.

    1985-01-01

    The paper discusses the underlying issues in the evaluation of computer systems which apply artificial intelligence in medicine (AIM). Three different levels of evaluation are described: 1) the subjective evaluation of the research contribution of a developmental prototype, 2) the validation of a system's knowledge and performance, 3) the evaluation of the clinical efficacy of an operational system. The paper outlines a number of evaluation issues at each level, and discusses how previous AIM evaluations fit into this framework.

  9. Artificial intelligence programming languages for computer aided manufacturing

    NASA Technical Reports Server (NTRS)

    Rieger, C.; Samet, H.; Rosenberg, J.

    1979-01-01

    Eight Artificial Intelligence programming languages (SAIL, LISP, MICROPLANNER, CONNIVER, MLISP, POP-2, AL, and QLISP) are presented and surveyed, with examples of their use in an automated shop environment. Control structures are compared, and distinctive features of each language are highlighted. A simple programming task is used to illustrate programs in SAIL, LISP, MICROPLANNER, and CONNIVER. The report assumes reader knowledge of programming concepts, but not necessarily of the languages surveyed.

  10. Artificial intelligence, expert systems, computer vision, and natural language processing

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1984-01-01

    An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.

  11. Artificial intelligence in medical diagnosis: the INTERNIST/CADUCEUS approach.

    PubMed

    Banks, G

    1986-01-01

    The development of computers has provided a potential tool to assist in the management of the information explosion in medicine. The field of medical diagnosis is intellectually challenging and has attracted the attention of computer scientists interested in building expert systems using artificial intelligence techniques. This paper reviews some of the problems of medical diagnosis and discusses examples of programs representing different approaches to solving these problems. The programs developed in our laboratory, INTERNIST-1/CADUCEUS, are discussed in some detail.

  12. Distinct Neurocognitive Strategies for Comprehensions of Human and Artificial Intelligence

    PubMed Central

    Ge, Jianqiao; Han, Shihui

    2008-01-01

    Although humans have inevitably interacted with both human and artificial intelligence in real life situations, it is unknown whether the human brain engages homologous neurocognitive strategies to cope with both forms of intelligence. To investigate this, we scanned subjects, using functional MRI, while they inferred the reasoning processes conducted by human agents or by computers. We found that the inference of reasoning processes conducted by human agents but not by computers induced increased activity in the precuneus but decreased activity in the ventral medial prefrontal cortex and enhanced functional connectivity between the two brain areas. The findings provide evidence for distinct neurocognitive strategies of taking others' perspective and inhibiting the process referenced to the self that are specific to the comprehension of human intelligence. PMID:18665211

  13. Distinct neurocognitive strategies for comprehensions of human and artificial intelligence.

    PubMed

    Ge, Jianqiao; Han, Shihui

    2008-07-30

    Although humans have inevitably interacted with both human and artificial intelligence in real life situations, it is unknown whether the human brain engages homologous neurocognitive strategies to cope with both forms of intelligence. To investigate this, we scanned subjects, using functional MRI, while they inferred the reasoning processes conducted by human agents or by computers. We found that the inference of reasoning processes conducted by human agents but not by computers induced increased activity in the precuneus but decreased activity in the ventral medial prefrontal cortex and enhanced functional connectivity between the two brain areas. The findings provide evidence for distinct neurocognitive strategies of taking others' perspective and inhibiting the process referenced to the self that are specific to the comprehension of human intelligence.

  14. Artificial intelligence and engineering curricula - are changes needed

    SciTech Connect

    Jenkins, J.P.

    1988-01-01

    The purpose of this paper is to identify the expected impact of artificial intelligence (AI) on curricula and training courses. From this examination, new elements are proposed for the academic preparation and training of engineers who will evaluate and use these systems and capabilities. Artificial intelligence, from an operational viewpoint, begins with a set of rules governing the operation of logic, implemented via computer software and userware. These systems apply logic and experience to handling problems in an intelligent approach, especially when the number of alternatives to problem solution is beyond the scope of the human user. Usually, AI applications take the form of expert systems. An expert system embodies in the computer the knowledge-based component of an expert, such as domain knowledge and reasoning techniques, in such a form that the system can offer intelligent advice and, on demand, justify its own line of reasoning. Two languages predominate, LISP and Prolog. The AI user may interface with the knowledge base via one of these languages or by means of menu displays, cursor selections, or other conventional user interface methods.

  15. Artificial Intelligence and the Brave New World of Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Devinney, E.; Guinan, E.; Bradstreet, D.; DeGeorge, M.; Giammarco, J.; Alcock, C.; Engle, S.

    2005-12-01

    The explosive growth of observational capabilities and information technology over the past decade has brought astronomy to a tipping point - we are going to be deluged by a virtual fire hose (more like Niagara Falls!) of data. An important component of this deluge will be newly discovered eclipsing binary stars (EBs) and other valuable variable stars. As exploration of the Local Group Galaxies grows via current and new ground-based and satellite programs, the number of EBs is expected to grow explosively from some 10,000 today to 8 million as GAIA comes online. These observational advances will present a unique opportunity to study the properties of EBs formed in galaxies with vastly different dynamical, star formation, and chemical histories than our home Galaxy. Thus the study of these binaries (e.g., from light curve analyses) is expected to provide clues about the star formation rates and dynamics of their host galaxies as well as the possible effects of varying chemical abundance on stellar evolution and structure. Additionally, minimal-assumption-based distances to Local Group objects (and possibly 3-D mapping within these objects) shall be returned. These huge datasets of binary stars will provide tests of current theories (or suggest new theories) regarding binary star formation and evolution. However, these enormous data will far exceed the capabilities of analysis via human examination. To meet the daunting challenge of successfully mining this vast potential of EBs and variable stars for astrophysical results with minimum human intervention, we are developing new data processing techniques and methodologies. Faced with an overwhelming volume of data, our goal is to integrate technologies of Machine Learning and Pattern Processing (Artificial Intelligence [AI]) into the data processing pipelines of the major current and future ground- and space-based observational programs. Data pipelines of the future will have to carry us from observations to

  16. MEMS technologies for artificial retinas

    NASA Astrophysics Data System (ADS)

    Mokwa, Wilfried

    2010-02-01

    The mostly cause of blindness in the developed countries is a degeneration of the retina. For restoring this loss of vision one possible approach is the substitution of the lost functions by means of an electronic implant. This approach is based on MEMS technologies. It has been shown that electrical stimulation of retinal ganglion cells yield visual sensations1. Therefore, an artificial retina for blind humans based on this concept seems to be feasible. Besides electrical stimulation of retinal ganglion cells also the direct electrical stimulation of the optic nerve2 and the visual cortex3 have been under investigation. This paper wants to give an overview about the activities on the retinal ganglion cell stimulation.

  17. Intelligent Systems Technologies for Ops

    NASA Technical Reports Server (NTRS)

    Smith, Ernest E.; Korsmeyer, David J.

    2012-01-01

    As NASA supports International Space Station assembly complete operations through 2020 (or later) and prepares for future human exploration programs, there is additional emphasis in the manned spaceflight program to find more efficient and effective ways of providing the ground-based mission support. Since 2006 this search for improvement has led to a significant cross-fertilization between the NASA advanced software development community and the manned spaceflight operations community. A variety of mission operations systems and tools have been developed over the past decades as NASA has operated the Mars robotic missions, the Space Shuttle, and the International Space Station. NASA Ames Research Center has been developing and applying its advanced intelligent systems research to mission operations tools for both unmanned Mars missions operations since 2001 and to manned operations with NASA Johnson Space Center since 2006. In particular, the fundamental advanced software development work under the Exploration Technology Program, and the experience and capabilities developed for mission operations systems for the Mars surface missions, (Spirit/Opportunity, Phoenix Lander, and MSL) have enhanced the development and application of advanced mission operation systems for the International Space Station and future spacecraft. This paper provides an update on the status of the development and deployment of a variety of intelligent systems technologies adopted for manned mission operations, and some discussion of the planned work for Autonomous Mission Operations in future human exploration. We discuss several specific projects between the Ames Research Center and the Johnson Space Centers Mission Operations Directorate, and how these technologies and projects are enhancing the mission operations support for the International Space Station, and supporting the current Autonomous Mission Operations Project for the mission operation support of the future human exploration

  18. Simulated Classrooms and Artificial Students: The Potential Effects of New Technologies on Teacher Education.

    ERIC Educational Resources Information Center

    Brown, Abbie Howard

    1999-01-01

    Describes and discusses how simulation activities can be used in teacher education to augment the traditional field-experience approach, focusing on artificial intelligence, virtual reality, and intelligent tutoring systems. Includes an overview of simulation as a teaching and learning strategy and specific examples of high-technology simulations…

  19. Exploring expressivity and emotion with artificial voice and speech technologies.

    PubMed

    Pauletto, Sandra; Balentine, Bruce; Pidcock, Chris; Jones, Kevin; Bottaci, Leonardo; Aretoulaki, Maria; Wells, Jez; Mundy, Darren P; Balentine, James

    2013-10-01

    Emotion in audio-voice signals, as synthesized by text-to-speech (TTS) technologies, was investigated to formulate a theory of expression for user interface design. Emotional parameters were specified with markup tags, and the resulting audio was further modulated with post-processing techniques. Software was then developed to link a selected TTS synthesizer with an automatic speech recognition (ASR) engine, producing a chatbot that could speak and listen. Using these two artificial voice subsystems, investigators explored both artistic and psychological implications of artificial speech emotion. Goals of the investigation were interdisciplinary, with interest in musical composition, augmentative and alternative communication (AAC), commercial voice announcement applications, human-computer interaction (HCI), and artificial intelligence (AI). The work-in-progress points towards an emerging interdisciplinary ontology for artificial voices. As one study output, HCI tools are proposed for future collaboration.

  20. An artificial ecosystem model used in the study of social, economic and technological dynamics: An artificial electrical energy market

    SciTech Connect

    Arjona, D.

    1998-07-01

    This paper will present the artificial ecosystem as a tool, in the development of multi agent models for the simulation of economic and technological dynamics (as well as other possible applications). This tool is based on the mechanics of an artificial society and consists of autonomous artificial agents that interact with individuals that have different characteristics and behavior and other that have a similar conduct to their own. Initial conditions are assumed not to be controllable, however they can be influenced. The importance of the concept of the ecosystem is in understanding great units in the light of their own components which are relevant for the analysis and become interdependent among themselves and with other essential components that hold the total operation of the system. Ideas for the development of a simulation model based on autonomous intelligent agents are presented. These agents will have a brain that is based on artificial intelligence technologies. The Sand Kings Simulation Model, an artificial ecosystem model developed by the author, is described as well as the application of artificial intelligence to this artificial life model. An application to a real life problem is also offered as an artificial energy market that is currently being developed by the author is described.

  1. Northeast Artificial Intelligence Consortium (NAIC). Volume 4. Distributed artificial intelligence for communications network management. Final report, Sep 84-Dec 89

    SciTech Connect

    Meyer, R.A.; Conry, S.E.

    1990-12-01

    The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems Command, Rome Air Development Center, and the office of Scientific Research. Its purpose was to conduct pertinent research in artificial intelligence and to perform activities ancillary to this research. This report describes progress during the existence of the NAIC on the technical research tasks undertaken at the member universities. The topics covered in general are: versatile expert system for equipment maintenance, distributed AI for communications system control, automatic photointerpretation, time-oriented problem solving, speech understanding systems, knowledge base maintenance, hardware architectures for very large systems, knowledge based reasoning and planning, and a knowledge acquisition, assistance, and explanation system. The specific topic for this volume is the use of knowledge based systems for communications network management and control via an architecture for a diversely distributed multi-agent system.

  2. Northeast Artificial Intelligence Consortium (NAIC). Volume 8. Artificial intelligence applications to speech recognition. Final report, Sep 84-Dec 89

    SciTech Connect

    Rhody, H.; Biles, J.

    1990-12-01

    The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems Command, Rome Air Development Center, and the Office of Scientific Research. Its purpose was to conduct pertinent research in artificial intelligence and to perform activities ancillary to this research. This report describes progress during the existence of the NAIC of the technical research tasks undertaken at the member universities. The topics covered in general are: versatile expert system for equipment maintenance, distributed AI for communications system control, automatic photointerpretation, time-oriented problem solving, speech understanding systems, knowledge based maintenance, hardware architectures for very large systems, knowledge based reasoning and planning, and a knowledge acquisition, assistance, and explanation system. The specific topic for this volume is the design and implementation of a knowledge-based system to read speech spectrograms.

  3. Artificial neural network intelligent method for prediction

    NASA Astrophysics Data System (ADS)

    Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi

    2017-09-01

    Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.

  4. Artificial intelligence in IVF: a need.

    PubMed

    Siristatidis, Charalampos; Pouliakis, Abraham; Chrelias, Charalampos; Kassanos, Dimitrios

    2011-08-01

    Predicting the outcome of in-vitro fertilization (IVF) treatment is an extremely semantic issue in reproductive medicine. Discrepancies in results among reproductive centres still exist making the construction of new systems capable to foresee the desired outcome a necessity. As such, artificial neural networks (ANNs) represent a combination of a learning, self-adapting, and predicting machine. In this review hypothesis paper we summarize the past efforts of the ANNs systems to predict IVF outcomes. This will be considered together with other statistical models, such as the ensemble techniques, Classification And Regression Tree (CART) and regression analysis techniques, discriminant analysis, and case based reasoning systems. We also summarize the various inputs that have been employed as parameters in these studies to predict the IVF outcome. Finally, we report our attempt to construct a new ANN architecture based on the Learning Vector Quantizer promising good generalization: a system filled by a complete data set of our IVF unit, formulated parameters most commonly used in similar studies, trained by a network expert, and evaluated in terms of predictive power.

  5. Artificial Intelligence Applications for Nuclear Survivability Validation

    DTIC Science & Technology

    1992-11-01

    Speech recognition USAF: Flight simulator support General Devices: Engine Problem Diagnosis Eaton: Multi-axle truck brake control BC Hydro : Power...ENGRG ATTN: SLCHD-TL- WRF ATTN: LTC P J ENGSTROM ATTN: SLCHD-TN DEPUTY UNDER SECRETARY OF DEFENSE ATTN: SLC’S-;M-TL RESEARCH & ADVANCED TECHNOLOGY

  6. A Target Prioritization Aid Using Artificial Intelligence.

    DTIC Science & Technology

    1983-12-06

    symbolic in nature, traditional data automation techniques encounter problems when attempting to represent a targeter’s knowledge. ( Callero , 1981) In the...Technology Corporation, August 1983. Callero , M., D. Gorlin, F. Hayes-Roth, L. Jamison. Toward an Expert Aid for Tactical Air Targeting. Santa Monica

  7. Computer Vision for Artificially Intelligent Robotic Systems

    NASA Astrophysics Data System (ADS)

    Ma, Chialo; Ma, Yung-Lung

    1987-04-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts -- position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed bye the main control unit. In Pulse-Echo Signal Process Unit, we ultilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by u law coding method, and this data together with delay time T, angle information OH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main

  8. Hybrid Intelligent Perception System: Intelligent perception through combining Artificial Neural Networks and an Expert System

    SciTech Connect

    Glover, C.W.; Spelt, P.F.

    1990-01-01

    This paper presents a report of work-in-progress on a project to combine Artificial Neural Networks (ANNs) and Expert Systems (ESs) into a hybrid, self-improving pattern recognition system. The purpose of this project is to explore methods of combining multiple classifiers into a Hybrid Intelligent Perception (HIP) System. The central research issue to be addressed for a multiclassifier hybrid system is whether such a system can perform better than the two classifiers taken by themselves. ANNs and ESs have different strengths and weaknesses, which are being exploited in this project in such a way that they are complementary to each other: Strengths in one system make up for weaknesses in the other, and vice versa. There is presently considerable interest in the AI community in ways to exploit the strengths of these methodologies to produce an intelligent system which is more robust and flexible than one using either technology alone. Perception, which involves both data-driven (bottom-up) and concept-driven (top-down) processing, is a process which seems especially well-suited to displaying the capabilities of such a hybrid system. This work has been funded for the past six months by an Oak Ridge National Laboratory seed grant, and most of the system components are operating in both the PC and the hypercube computer environments. Here we report on the efforts to develop the low-level ANNs and a graphic representation of their knowledge, and discuss ways of using an ES to integrate and supervise the entire system. 11 refs., 3 figs.

  9. Artificial intelligence costs, benefits, and risks for selected spacecraft ground system automation scenarios

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline); (2) standalone expert systems; (3) standardized, reusable knowledge base management systems (KBMS); and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  10. Artificial intelligence costs, benefits, risks for selected spacecraft ground system automation scenarios

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline), (2) standalone expert systems, (3) standardized, reusable knowledge base management systems (KBMS), and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  11. Artificial intelligence costs, benefits, and risks for selected spacecraft ground system automation scenarios

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline); (2) standalone expert systems; (3) standardized, reusable knowledge base management systems (KBMS); and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  12. Perspectives on Research in Artificial Intelligence and Artificial General Intelligence Relevant to DoD

    DTIC Science & Technology

    2017-01-01

    Intelligence (AI) is conventionally, if loosely, defined as intelligence exhibited by machines . Operationally, it can be defined as those areas of R&D...Knowledge Representation and Reasoning (KRR). The field of Machine Learning (ML) is a foundational basis for AI. While this is not a complete list, it...researchers or total funding, that seeks to build machines that can successfully perform any task that a human might do. Where AI is oriented around

  13. Robotics and artificial intelligence for hazardous environments

    SciTech Connect

    Spelt, P.F.

    1993-04-01

    In our technological society, hazardous materials including toxic chemicals, flammable, explosive, and radioactive substances, and biological agents, are used and handled routinely. Each year, many workers who handle these substances are accidently contaminated, in some cases resulting in injury, death, or chronic disabilities. If these hazardous materials could be handled remotely, either with a teleoperated robot (operated by a worker in a safe location) or by an autonomous robot, then human suffering and economic costs of accidental exposures could be dramatically reduced. At present, it is still difficult for commercial robotic technology to completely replace humans involved in performing complex work tasks in hazardous environments. The robotics efforts at the Center for Engineering Systems Advanced Research represent a significant effort at contributing to the advancement of robotics for use in hazardous environments. While this effort is very broad-based, ranging from dextrous manipulation to mobility and integrated sensing, the technical portion of this paper will focus on machine learning and the high-level decision making needed for autonomous robotics.

  14. Robotics and artificial intelligence for hazardous environments

    SciTech Connect

    Spelt, P.F.

    1993-01-01

    In our technological society, hazardous materials including toxic chemicals, flammable, explosive, and radioactive substances, and biological agents, are used and handled routinely. Each year, many workers who handle these substances are accidently contaminated, in some cases resulting in injury, death, or chronic disabilities. If these hazardous materials could be handled remotely, either with a teleoperated robot (operated by a worker in a safe location) or by an autonomous robot, then human suffering and economic costs of accidental exposures could be dramatically reduced. At present, it is still difficult for commercial robotic technology to completely replace humans involved in performing complex work tasks in hazardous environments. The robotics efforts at the Center for Engineering Systems Advanced Research represent a significant effort at contributing to the advancement of robotics for use in hazardous environments. While this effort is very broad-based, ranging from dextrous manipulation to mobility and integrated sensing, the technical portion of this paper will focus on machine learning and the high-level decision making needed for autonomous robotics.

  15. The role of artificial intelligence in design possibilities and pitfalls

    SciTech Connect

    Middleton, R.H.; Rees, D.; Esat, I.; Phillips, G.

    1996-12-31

    Design is often considered a human-only activity requiring a creativity and intelligence not available to computers. In recent years CAD and related technologies have become widespread, improvements in AI technology are enabling computers to assist in areas of the design process that were previously inaccessible. This paper looks at the role which AI is playing in design. The potential future uses of this technology, as well as possible problems which may arise are also considered.

  16. The Intelligent Technologies of Electronic Information System

    NASA Astrophysics Data System (ADS)

    Li, Xianyu

    2017-08-01

    Based upon the synopsis of system intelligence and information services, this paper puts forward the attributes and the logic structure of information service, sets forth intelligent technology framework of electronic information system, and presents a series of measures, such as optimizing business information flow, advancing data decision capability, improving information fusion precision, strengthening deep learning application and enhancing prognostic and health management, and demonstrates system operation effectiveness. This will benefit the enhancement of system intelligence.

  17. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  18. An Artificial Intelligence Approach for Gears Diagnostics in AUVs.

    PubMed

    Marichal, Graciliano Nicolás; Del Castillo, María Lourdes; López, Jesús; Padrón, Isidro; Artés, Mariano

    2016-04-12

    In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles), where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms) have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved.

  19. An Artificial Intelligence Approach for Gears Diagnostics in AUVs

    PubMed Central

    Marichal, Graciliano Nicolás; Del Castillo, María Lourdes; López, Jesús; Padrón, Isidro; Artés, Mariano

    2016-01-01

    In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles), where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms) have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved. PMID:27077868

  20. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  1. The Heuristic of George Polya and Its Relation to Artificial Intelligence

    DTIC Science & Technology

    1981-07-01

    episodic memory. Psychological Review, 1973, 80, 352-373. Waterman, D. & Newell, A. Protocol analysis as a task for artficial intelligence . Artificial...THE HEURISTIC OF GEORGE POLYA AND ITS RELATION TO ARTIFICIAL INTELLIGENCE Allen Newell July 1981 DEPARTMENT of COMPUTER SCIENCE DT1C...81 11 03 196 ^JjJ CMU-CS-81- 133 THE ÜEURISTIC OF GEORGE POLYA AND ITS RELATION TO ARTIFICIAL INTELLIGENCE 10 i Allen/Newell TÄsr s

  2. Intelligence, Information Technology, and Information Warfare.

    ERIC Educational Resources Information Center

    Davies, Philip H. J.

    2002-01-01

    Addresses the use of information technology for intelligence and information warfare in the context of national security and reviews the status of clandestine collection. Discusses hacking, human agent collection, signal interception, covert action, counterintelligence and security, and communications between intelligence producers and consumers…

  3. Intelligence, Information Technology, and Information Warfare.

    ERIC Educational Resources Information Center

    Davies, Philip H. J.

    2002-01-01

    Addresses the use of information technology for intelligence and information warfare in the context of national security and reviews the status of clandestine collection. Discusses hacking, human agent collection, signal interception, covert action, counterintelligence and security, and communications between intelligence producers and consumers…

  4. Artificial intelligence support for scientific model-building

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1992-01-01

    Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.

  5. A Novel Artificial Intelligence System for Endotracheal Intubation.

    PubMed

    Carlson, Jestin N; Das, Samarjit; De la Torre, Fernando; Frisch, Adam; Guyette, Francis X; Hodgins, Jessica K; Yealy, Donald M

    2016-01-01

    Adequate visualization of the glottic opening is a key factor to successful endotracheal intubation (ETI); however, few objective tools exist to help guide providers' ETI attempts toward the glottic opening in real-time. Machine learning/artificial intelligence has helped to automate the detection of other visual structures but its utility with ETI is unknown. We sought to test the accuracy of various computer algorithms in identifying the glottic opening, creating a tool that could aid successful intubation. We collected a convenience sample of providers who each performed ETI 10 times on a mannequin using a video laryngoscope (C-MAC, Karl Storz Corp, Tuttlingen, Germany). We recorded each attempt and reviewed one-second time intervals for the presence or absence of the glottic opening. Four different machine learning/artificial intelligence algorithms analyzed each attempt and time point: k-nearest neighbor (KNN), support vector machine (SVM), decision trees, and neural networks (NN). We used half of the videos to train the algorithms and the second half to test the accuracy, sensitivity, and specificity of each algorithm. We enrolled seven providers, three Emergency Medicine attendings, and four paramedic students. From the 70 total recorded laryngoscopic video attempts, we created 2,465 time intervals. The algorithms had the following sensitivity and specificity for detecting the glottic opening: KNN (70%, 90%), SVM (70%, 90%), decision trees (68%, 80%), and NN (72%, 78%). Initial efforts at computer algorithms using artificial intelligence are able to identify the glottic opening with over 80% accuracy. With further refinements, video laryngoscopy has the potential to provide real-time, direction feedback to the provider to help guide successful ETI.

  6. Artificial intelligence in sports on the example of weight training.

    PubMed

    Novatchkov, Hristo; Baca, Arnold

    2013-01-01

    The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key pointsArtificial intelligence is a promising field for sport-related analysis.Implementations integrating pattern recognition techniques enable the automatic evaluation of data

  7. Artificial Intelligence in Sports on the Example of Weight Training

    PubMed Central

    Novatchkov, Hristo; Baca, Arnold

    2013-01-01

    The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key points Artificial intelligence is a promising field for sport-related analysis. Implementations integrating pattern recognition techniques enable the automatic evaluation of data

  8. Patient behavior and the benefits of artificial intelligence: the perils of "dangerous" literacy and illusory patient empowerment.

    PubMed

    Schulz, Peter J; Nakamoto, Kent

    2013-08-01

    Artificial intelligence can provide important support of patient health. However, limits to realized benefits can arise as patients assume an active role in their health decisions. Distinguishing the concepts of health literacy and patient empowerment, we analyze conditions that bias patient use of the Internet and limit access to and impact of artificial intelligence. Improving health literacy in the face of the Internet requires significant guidance. Patients must be directed toward the appropriate tools and also provided with key background knowledge enabling them to use the tools and capitalize on the artificial intelligence technology. Benefits of tools employing artificial intelligence to promote health cannot be realized without recognizing and addressing the patients' desires, expectations, and limitations that impact their Internet behavior. In order to benefit from artificial intelligence, patients need a substantial level of background knowledge and skill in information use-i.e., health literacy. It is critical that health professionals respond to patient search for information on the Internet, first by guiding their search to relevant, authoritative, and responsive sources, and second by educating patients about how to interpret the information they are likely to encounter. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms.

    PubMed

    Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel

    2015-12-04

    In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced.

  10. A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms

    PubMed Central

    Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel

    2015-01-01

    In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced. PMID:26690164

  11. Artificial intelligence techniques for scheduling Space Shuttle missions

    NASA Technical Reports Server (NTRS)

    Henke, Andrea L.; Stottler, Richard H.

    1994-01-01

    Planning and scheduling of NASA Space Shuttle missions is a complex, labor-intensive process requiring the expertise of experienced mission planners. We have developed a planning and scheduling system using combinations of artificial intelligence knowledge representations and planning techniques to capture mission planning knowledge and automate the multi-mission planning process. Our integrated object oriented and rule-based approach reduces planning time by orders of magnitude and provides planners with the flexibility to easily modify planning knowledge and constraints without requiring programming expertise.

  12. Artificial intelligence in medicine: humans need not apply?

    PubMed

    Diprose, William; Buist, Nicholas

    2016-05-06

    Artificial intelligence (AI) is a rapidly growing field with a wide range of applications. Driven by economic constraints and the potential to reduce human error, we believe that over the coming years AI will perform a significant amount of the diagnostic and treatment decision-making traditionally performed by the doctor. Humans would continue to be an important part of healthcare delivery, but in many situations, less expensive fit-for-purpose healthcare workers could be trained to 'fill the gaps' where AI are less capable. As a result, the role of the doctor as an expensive problem-solver would become redundant.

  13. Using artificial intelligence to control fluid flow computations

    NASA Technical Reports Server (NTRS)

    Gelsey, Andrew

    1992-01-01

    Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.

  14. The role of artificial intelligence techniques in scheduling systems

    NASA Technical Reports Server (NTRS)

    Geoffroy, Amy L.; Britt, Daniel L.; Gohring, John R.

    1990-01-01

    Artificial Intelligence (AI) techniques provide good solutions for many of the problems which are characteristic of scheduling applications. However, scheduling is a large, complex heterogeneous problem. Different applications will require different solutions. Any individual application will require the use of a variety of techniques, including both AI and conventional software methods. The operational context of the scheduling system will also play a large role in design considerations. The key is to identify those places where a specific AI technique is in fact the preferable solution, and to integrate that technique into the overall architecture.

  15. The application of artificial intelligence techniques to large distributed networks

    NASA Technical Reports Server (NTRS)

    Dubyah, R.; Smith, T. R.; Star, J. L.

    1985-01-01

    Data accessibility and transfer of information, including the land resources information system pilot, are structured as large computer information networks. These pilot efforts include the reduction of the difficulty to find and use data, reducing processing costs, and minimize incompatibility between data sources. Artificial Intelligence (AI) techniques were suggested to achieve these goals. The applicability of certain AI techniques are explored in the context of distributed problem solving systems and the pilot land data system (PLDS). The topics discussed include: PLDS and its data processing requirements, expert systems and PLDS, distributed problem solving systems, AI problem solving paradigms, query processing, and distributed data bases.

  16. Effect of altering local protein fluctuations using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2017-03-01

    The fluctuations in Arg111, a significantly fluctuating residue in cathepsin K, were locally regulated by modifying Arg111 to Gly111. The binding properties of 15 dipeptides in the modified protein were analyzed by molecular simulations, and modeled as decision trees using artificial intelligence. The decision tree of the modified protein significantly differed from that of unmodified cathepsin K, and the Arg-to-Gly modification exerted a remarkable effect on the peptide binding properties. By locally regulating the fluctuations of a protein, we may greatly alter the original functions of the protein, enabling novel applications in several fields.

  17. Artificial intelligence program in a computer application supporting reactor operations

    SciTech Connect

    Stratton, R.C.; Town, G.G.

    1985-01-01

    Improving nuclear reactor power plant operability is an ever-present concern for the nuclear industry. The definition of plant operability involves a complex interaction of the ideas of reliability, safety, and efficiency. This paper presents observations concerning the issues involved and the benefits derived from the implementation of a computer application which combines traditional computer applications with artificial intelligence (AI) methodologies. A system, the Component Configuration Control System (CCCS), is being installed to support nuclear reactor operations at the Experimental Breeder Reactor II.

  18. Fourth Conference on Artificial Intelligence for Space Applications

    NASA Technical Reports Server (NTRS)

    Odell, Stephen L. (Compiler); Denton, Judith S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming.

  19. Artificial Intelligence For A Safer And More Efficient Car Driving

    NASA Astrophysics Data System (ADS)

    Adorni, Giovanni

    1989-03-01

    In this paper a project, PROMETHEUS, is described in which fourteen of Europe's leading car manufacturers are to join with approximately forty research institutes and governmental agencies to make the traffic of Europe safer, more efficient and more economical. PROMETHEUS project is divided into seven areas. In this paper one of the seven areas, PRO-ART, is described. PRO-ART is aimed at clarifying the need for and the principles of the artificial intelligence to be used in the next generation automobile. After a brief description of the overhall project, the description of the seven years PRO-ART Italian research programme will be given.

  20. Outlier Detection with a Hybrid Artificial Intelligence Method

    NASA Astrophysics Data System (ADS)

    Mejía-Lavalle, Manuel; Obregón, Ricardo Gómez; Vivar, Atlántida Sánchez

    We propose a simple and efficient hybrid artificial intelligence method to detect exceptional data. The proposed method includes a novel end-user explanation feature. After various attempts, the best design was based on an unsupervised learning schema, which uses an hybrid adaptation of the Artificial Neural Network paradigms, the Case Based Reasoning methodology, the Data Mining area, and the Expert System shells. In our method, the cluster that contains the smaller number of instances is considered as outlier data. The method provides an explanation to the end user about why this cluster is exceptional regarding to the data universe. The proposed method has been tested and compared successfully not only with well-known academic data, but also with a real and very large financial database that contains attributes with numerical and categorical values.

  1. Using Artificial Intelligence to Reduce the Risk of Nonadherence in Patients on Anticoagulation Therapy.

    PubMed

    Labovitz, Daniel L; Shafner, Laura; Reyes Gil, Morayma; Virmani, Deepti; Hanina, Adam

    2017-05-01

    This study evaluated the use of an artificial intelligence platform on mobile devices in measuring and increasing medication adherence in stroke patients on anticoagulation therapy. The introduction of direct oral anticoagulants, while reducing the need for monitoring, have also placed pressure on patients to self-manage. Suboptimal adherence goes undetected as routine laboratory tests are not reliable indicators of adherence, placing patients at increased risk of stroke and bleeding. A randomized, parallel-group, 12-week study was conducted in adults (n=28) with recently diagnosed ischemic stroke receiving any anticoagulation. Patients were randomized to daily monitoring by the artificial intelligence platform (intervention) or to no daily monitoring (control). The artificial intelligence application visually identified the patient, the medication, and the confirmed ingestion. Adherence was measured by pill counts and plasma sampling in both groups. For all patients (n=28), mean (SD) age was 57 years (13.2 years) and 53.6% were women. Mean (SD) cumulative adherence based on the artificial intelligence platform was 90.5% (7.5%). Plasma drug concentration levels indicated that adherence was 100% (15 of 15) and 50% (6 of 12) in the intervention and control groups, respectively. Patients, some with little experience using a smartphone, successfully used the technology and demonstrated a 50% improvement in adherence based on plasma drug concentration levels. For patients receiving direct oral anticoagulants, absolute improvement increased to 67%. Real-time monitoring has the potential to increase adherence and change behavior, particularly in patients on direct oral anticoagulant therapy. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02599259. © 2017 American Heart Association, Inc.

  2. Demonstrating artificial intelligence for space systems - Integration and project management issues

    NASA Technical Reports Server (NTRS)

    Hack, Edmund C.; Difilippo, Denise M.

    1990-01-01

    As part of its Systems Autonomy Demonstration Project (SADP), NASA has recently demonstrated the Thermal Expert System (TEXSYS). Advanced real-time expert system and human interface technology was successfully developed and integrated with conventional controllers of prototype space hardware to provide intelligent fault detection, isolation, and recovery capability. Many specialized skills were required, and responsibility for the various phases of the project therefore spanned multiple NASA centers, internal departments and contractor organizations. The test environment required communication among many types of hardware and software as well as between many people. The integration, testing, and configuration management tools and methodologies which were applied to the TEXSYS project to assure its safe and successful completion are detailed. The project demonstrated that artificial intelligence technology, including model-based reasoning, is capable of the monitoring and control of a large, complex system in real time.

  3. Demonstrating artificial intelligence for space systems - Integration and project management issues

    NASA Technical Reports Server (NTRS)

    Hack, Edmund C.; Difilippo, Denise M.

    1990-01-01

    As part of its Systems Autonomy Demonstration Project (SADP), NASA has recently demonstrated the Thermal Expert System (TEXSYS). Advanced real-time expert system and human interface technology was successfully developed and integrated with conventional controllers of prototype space hardware to provide intelligent fault detection, isolation, and recovery capability. Many specialized skills were required, and responsibility for the various phases of the project therefore spanned multiple NASA centers, internal departments and contractor organizations. The test environment required communication among many types of hardware and software as well as between many people. The integration, testing, and configuration management tools and methodologies which were applied to the TEXSYS project to assure its safe and successful completion are detailed. The project demonstrated that artificial intelligence technology, including model-based reasoning, is capable of the monitoring and control of a large, complex system in real time.

  4. Use of artificial intelligence to identify cardiovascular compromise in a model of hemorrhagic shock.

    PubMed

    Glass, Todd F; Knapp, Jason; Amburn, Philip; Clay, Bruce A; Kabrisky, Matt; Rogers, Steven K; Garcia, Victor F

    2004-02-01

    To determine whether a prototype artificial intelligence system can identify volume of hemorrhage in a porcine model of controlled hemorrhagic shock. Prospective in vivo animal model of hemorrhagic shock. Research foundation animal surgical suite; computer laboratories of collaborating industry partner. Nineteen, juvenile, 25- to 35-kg, male and female swine. Anesthetized animals were instrumented for arterial and systemic venous pressure monitoring and blood sampling, and a splenectomy was performed. Following a 1-hr stabilization period, animals were hemorrhaged in aliquots to 10, 20, 30, 35, 40, 45, and 50% of total blood volume with a 10-min recovery between each aliquot. Data were downloaded directly from a commercial monitoring system into a proprietary PC-based software package for analysis. Arterial and venous blood gas values, glucose, and cardiac output were collected at specified intervals. Electrocardiogram, electroencephalogram, mixed venous oxygen saturation, temperature (core and blood), mean arterial pressure, pulmonary artery pressure, central venous pressure, pulse oximetry, and end-tidal CO(2) were continuously monitored and downloaded. Seventeen of 19 animals (89%) died as a direct result of hemorrhage. Stored data streams were analyzed by the prototype artificial intelligence system. For this project, the artificial intelligence system identified and compared three electrocardiographic features (R-R interval, QRS amplitude, and R-S interval) from each of nine unknown samples of the QRS complex. We found that the artificial intelligence system, trained on only three electrocardiographic features, identified hemorrhage volume with an average accuracy of 91% (95% confidence interval, 84-96%). These experiments demonstrate that an artificial intelligence system, based solely on the analysis of QRS amplitude, R-R interval, and R-S interval of an electrocardiogram, is able to accurately identify hemorrhage volume in a porcine model of lethal

  5. Synthetic biology routes to bio-artificial intelligence.

    PubMed

    Nesbeth, Darren N; Zaikin, Alexey; Saka, Yasushi; Romano, M Carmen; Giuraniuc, Claudiu V; Kanakov, Oleg; Laptyeva, Tetyana

    2016-11-30

    The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular 'teachers' and 'students' is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI). © 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

  6. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    PubMed

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Artificial Intelligence Techniques for Automatic Screening of Amblyogenic Factors

    PubMed Central

    Van Eenwyk, Jonathan; Agah, Arvin; Giangiacomo, Joseph; Cibis, Gerhard

    2008-01-01

    Purpose To develop a low-cost automated video system to effectively screen children aged 6 months to 6 years for amblyogenic factors. Methods In 1994 one of the authors (G.C.) described video vision development assessment, a digitizable analog video-based system combining Brückner pupil red reflex imaging and eccentric photorefraction to screen young children for amblyogenic factors. The images were analyzed manually with this system. We automated the capture of digital video frames and pupil images and applied computer vision and artificial intelligence to analyze and interpret results. The artificial intelligence systems were evaluated by a tenfold testing method. Results The best system was the decision tree learning approach, which had an accuracy of 77%, compared to the “gold standard” specialist examination with a “refer/do not refer” decision. Criteria for referral were strabismus, including microtropia, and refractive errors and anisometropia considered to be amblyogenic. Eighty-two percent of strabismic individuals were correctly identified. High refractive errors were also correctly identified and referred 90% of the time, as well as significant anisometropia. The program was less correct in identifying more moderate refractive errors, below +5 and less than −7. Conclusions Although we are pursuing a variety of avenues to improve the accuracy of the automated analysis, the program in its present form provides acceptable cost benefits for detecting ambylogenic factors in children aged 6 months to 6 years. PMID:19277222

  8. An advanced artificial intelligence tool for menu design.

    PubMed

    Khan, Abdus Salam; Hoffmann, Achim

    2003-01-01

    The computer-assisted menu design still remains a difficult task. Usually knowledge that aids in menu design by a computer is hard-coded and because of that a computerised menu planner cannot handle the menu design problem for an unanticipated client. To address this problem we developed a menu design tool, MIKAS (menu construction using incremental knowledge acquisition system), an artificial intelligence system that allows the incremental development of a knowledge-base for menu design. We allow an incremental knowledge acquisition process in which the expert is only required to provide hints to the system in the context of actual problem instances during menu design using menus stored in a so-called Case Base. Our system incorporates Case-Based Reasoning (CBR), an Artificial Intelligence (AI) technique developed to mimic human problem solving behaviour. Ripple Down Rules (RDR) are a proven technique for the acquisition of classification knowledge from expert directly while they are using the system, which complement CBR in a very fruitful way. This combination allows the incremental improvement of the menu design system while it is already in routine use. We believe MIKAS allows better dietary practice by leveraging a dietitian's skills and expertise. As such MIKAS has the potential to be helpful for any institution where dietary advice is practised.

  9. On working through: a model from artificial intelligence.

    PubMed

    Galatzer-Levy, R M

    1988-01-01

    Working through is centrally important to clinical psychoanalysis. It is inadequately explained in analytic theory. An artificial intelligence model of the process is proposed. Models of problem solving show that the complexity of necessary computation is an important determinant of how a problem is solved. Not optimal, but only good enough solutions are usually found. The quality of solutions depends on the time and resources available. Generally it is far easier to use existing methods than to develop new approaches. When problems must be solved in an emergency fashion, as in trauma, poor solutions are likely to emerge. In studying the annealing of metals and other complex optimization problems, a process, the Boltzman algorithm, was discovered, which continues the search for better solutions while gradually developing a coherent structure of the overall solution. The algorithm provides a model both for psychoanalytic working through and for the normally ongoing process of psychological development and reworking whose deficiency is characteristic of much psychopathology. Working through in the analytic situation is the reactivation of this normal process, and a good analytic outcome is achieved when the process can continue without the analyst. Properties of the Boltzman algorithm clarify such concepts as "optimal" frustration and anxiety which correspond to working in the area where the stable but not rigid structures emerge in the algorithms operation. These studies are an example of how computer science and artificial intelligence are a potentially rich source for psychoanalytic theory.

  10. Artificial intelligence-assisted occupational lung disease diagnosis.

    PubMed

    Harber, P; McCoy, J M; Howard, K; Greer, D; Luo, J

    1991-08-01

    An artificial intelligence expert-based system for facilitating the clinical recognition of occupational and environmental factors in lung disease has been developed in a pilot fashion. It utilizes a knowledge representation scheme to capture relevant clinical knowledge into structures about specific objects (jobs, diseases, etc) and pairwise relations between objects. Quantifiers describe both the closeness of association and risk, as well as the degree of belief in the validity of a fact. An independent inference engine utilizes the knowledge, combining likelihoods and uncertainties to achieve estimates of likelihood factors for specific paths from work to illness. The system creates a series of "paths," linking work activities to disease outcomes. One path links a single period of work to a single possible disease outcome. In a preliminary trial, the number of "paths" from job to possible disease averaged 18 per subject in a general population and averaged 25 per subject in an asthmatic population. Artificial intelligence methods hold promise in the future to facilitate diagnosis in pulmonary and occupational medicine.

  11. Natural and Artificial Intelligence, Language, Consciousness, Emotion, and Anticipation

    NASA Astrophysics Data System (ADS)

    Dubois, Daniel M.

    2010-11-01

    The classical paradigm of the neural brain as the seat of human natural intelligence is too restrictive. This paper defends the idea that the neural ectoderm is the actual brain, based on the development of the human embryo. Indeed, the neural ectoderm includes the neural crest, given by pigment cells in the skin and ganglia of the autonomic nervous system, and the neural tube, given by the brain, the spinal cord, and motor neurons. So the brain is completely integrated in the ectoderm, and cannot work alone. The paper presents fundamental properties of the brain as follows. Firstly, Paul D. MacLean proposed the triune human brain, which consists to three brains in one, following the species evolution, given by the reptilian complex, the limbic system, and the neo-cortex. Secondly, the consciousness and conscious awareness are analysed. Thirdly, the anticipatory unconscious free will and conscious free veto are described in agreement with the experiments of Benjamin Libet. Fourthly, the main section explains the development of the human embryo and shows that the neural ectoderm is the whole neural brain. Fifthly, a conjecture is proposed that the neural brain is completely programmed with scripts written in biological low-level and high-level languages, in a manner similar to the programmed cells by the genetic code. Finally, it is concluded that the proposition of the neural ectoderm as the whole neural brain is a breakthrough in the understanding of the natural intelligence, and also in the future design of robots with artificial intelligence.

  12. Artificial Intelligence Measurement System, Overview and Lessons Learned. Final Project Report.

    ERIC Educational Resources Information Center

    Baker, Eva L.; Butler, Frances A.

    This report summarizes the work conducted for the Artificial Intelligence Measurement System (AIMS) Project which was undertaken as an exploration of methodology to consider how the effects of artificial intelligence systems could be compared to human performance. The research covered four areas of inquiry: (1) natural language processing and…

  13. Games and Machine Learning: A Powerful Combination in an Artificial Intelligence Course

    ERIC Educational Resources Information Center

    Wallace, Scott A.; McCartney, Robert; Russell, Ingrid

    2010-01-01

    Project MLeXAI [Machine Learning eXperiences in Artificial Intelligence (AI)] seeks to build a set of reusable course curriculum and hands on laboratory projects for the artificial intelligence classroom. In this article, we describe two game-based projects from the second phase of project MLeXAI: Robot Defense--a simple real-time strategy game…

  14. "It's Going to Kill Us!" and Other Myths about the Future of Artificial Intelligence

    ERIC Educational Resources Information Center

    Atkinson, Robert D.

    2016-01-01

    Given the promise that artificial intelligence (AI) holds for economic growth and societal advancement, it is critical that policymakers not only avoid retarding the progress of AI innovation, but also actively support its further development and use. This report provides a primer on artificial intelligence and debunks five prevailing myths that,…

  15. Games and Machine Learning: A Powerful Combination in an Artificial Intelligence Course

    ERIC Educational Resources Information Center

    Wallace, Scott A.; McCartney, Robert; Russell, Ingrid

    2010-01-01

    Project MLeXAI [Machine Learning eXperiences in Artificial Intelligence (AI)] seeks to build a set of reusable course curriculum and hands on laboratory projects for the artificial intelligence classroom. In this article, we describe two game-based projects from the second phase of project MLeXAI: Robot Defense--a simple real-time strategy game…

  16. Artificial Intelligence and Its Potential as an Aid to Vocational Training and Education.

    ERIC Educational Resources Information Center

    Aleksander, I.; And Others

    This document contains a series of papers which attempt to de-mystify the subject of artificial intelligence and to show how some countries in the European Community (EC) are approaching the promotion of development and application of artificial intelligence systems that can be used as an aid in vocational training programs, as well as to…

  17. Artificial intelligence and design: Opportunities, research problems and directions

    NASA Technical Reports Server (NTRS)

    Amarel, Saul

    1990-01-01

    The issues of industrial productivity and economic competitiveness are of major significance in the U.S. at present. By advancing the science of design, and by creating a broad computer-based methodology for automating the design of artifacts and of industrial processes, we can attain dramatic improvements in productivity. It is our thesis that developments in computer science, especially in Artificial Intelligence (AI) and in related areas of advanced computing, provide us with a unique opportunity to push beyond the present level of computer aided automation technology and to attain substantial advances in the understanding and mechanization of design processes. To attain these goals, we need to build on top of the present state of AI, and to accelerate research and development in areas that are especially relevant to design problems of realistic complexity. We propose an approach to the special challenges in this area, which combines 'core work' in AI with the development of systems for handling significant design tasks. We discuss the general nature of design problems, the scientific issues involved in studying them with the help of AI approaches, and the methodological/technical issues that one must face in developing AI systems for handling advanced design tasks. Looking at basic work in AI from the perspective of design automation, we identify a number of research problems that need special attention. These include finding solution methods for handling multiple interacting goals, formation problems, problem decompositions, and redesign problems; choosing representations for design problems with emphasis on the concept of a design record; and developing approaches for the acquisition and structuring of domain knowledge with emphasis on finding useful approximations to domain theories. Progress in handling these research problems will have major impact both on our understanding of design processes and their automation, and also on several fundamental questions

  18. Artificial intelligence and design: Opportunities, research problems and directions

    NASA Technical Reports Server (NTRS)

    Amarel, Saul

    1990-01-01

    The issues of industrial productivity and economic competitiveness are of major significance in the U.S. at present. By advancing the science of design, and by creating a broad computer-based methodology for automating the design of artifacts and of industrial processes, we can attain dramatic improvements in productivity. It is our thesis that developments in computer science, especially in Artificial Intelligence (AI) and in related areas of advanced computing, provide us with a unique opportunity to push beyond the present level of computer aided automation technology and to attain substantial advances in the understanding and mechanization of design processes. To attain these goals, we need to build on top of the present state of AI, and to accelerate research and development in areas that are especially relevant to design problems of realistic complexity. We propose an approach to the special challenges in this area, which combines 'core work' in AI with the development of systems for handling significant design tasks. We discuss the general nature of design problems, the scientific issues involved in studying them with the help of AI approaches, and the methodological/technical issues that one must face in developing AI systems for handling advanced design tasks. Looking at basic work in AI from the perspective of design automation, we identify a number of research problems that need special attention. These include finding solution methods for handling multiple interacting goals, formation problems, problem decompositions, and redesign problems; choosing representations for design problems with emphasis on the concept of a design record; and developing approaches for the acquisition and structuring of domain knowledge with emphasis on finding useful approximations to domain theories. Progress in handling these research problems will have major impact both on our understanding of design processes and their automation, and also on several fundamental questions

  19. Artificial Intelligence in Sports Biomechanics: New Dawn or False Hope?

    PubMed Central

    Bartlett, Roger

    2006-01-01

    This article reviews developments in the use of Artificial Intelligence (AI) in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements (‘techniques’) and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics. Key Points Expert Systems remain almost unused in sports biomechanics, unlike in the similar discipline of gait analysis. Artificial Neural Networks, particularly Kohonen Maps, have been used, although their full value remains unclear. Other AI applications, including Evolutionary Computation, have received little attention. PMID:24357939

  20. Artificial intelligence in sports biomechanics: new dawn or false hope?

    PubMed

    Bartlett, Roger

    2006-12-15

    This article reviews developments in the use of Artificial Intelligence (AI) in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques') and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics. Key PointsExpert Systems remain almost unused in sports biomechanics, unlike in the similar discipline of gait analysis.Artificial Neural Networks, particularly Kohonen Maps, have been used, although their full value remains unclear.Other AI applications, including Evolutionary Computation, have received little attention.

  1. Space applications of artificial intelligence; 1990 Goddard Conference, Greenbelt, MD, May 1, 2, 1990, Selected Papers

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  2. Knowledge Based Simulation: An Artificial Intelligence Approach to System Modeling and Automating the Simulation Life Cycle.

    DTIC Science & Technology

    1988-04-13

    Simulation: An Artificial Intelligence Approach to System Modeling and Automating the Simulation Life Cycle Mark S. Fox, Nizwer Husain, Malcolm...McRoberts and Y.V.Reddy CMU-RI-TR-88-5 Intelligent Systems Laboratory The Robotics Institute Carnegie Mellon University Pittsburgh, Pennsylvania D T T 13...years of research in the application of Artificial Intelligence to Simulation. Our focus has been in two areas: the use of Al knowledge representation

  3. Space applications of artificial intelligence; 1990 Goddard Conference, Greenbelt, MD, May 1, 2, 1990, Selected Papers

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  4. A Model for Comparing Game Theory and Artificial Intelligence Decision Making Processes

    DTIC Science & Technology

    1989-12-01

    Matrix 7.5 Summary This chapter discussed an initial comparison of the game theory and artiicial intelligence decision techniques. The measure of...00 DTIC V ELECTE INJ DEC 15 1989 ID A MODEL FOR COMPARING C;.GME THEORY AND ARTIFICIAL INTELLIGENCE DECISION MAKING PROCESSES THESIS ’A Paul R. Andr...lic release: distribution unlii ted A F IT/;SO/ENS,/89D- 1 A MODEL FOR COMPARING GAME THEORY AND ARTIFICIAL INTELLIGENCE DECISION MAKING PROCESSES

  5. Knowledge-Based Aircraft Automation: Managers Guide on the use of Artificial Intelligence for Aircraft Automation and Verification and Validation Approach for a Neural-Based Flight Controller

    NASA Technical Reports Server (NTRS)

    Broderick, Ron

    1997-01-01

    The ultimate goal of this report was to integrate the powerful tools of artificial intelligence into the traditional process of software development. To maintain the US aerospace competitive advantage, traditional aerospace and software engineers need to more easily incorporate the technology of artificial intelligence into the advanced aerospace systems being designed today. The future goal was to transition artificial intelligence from an emerging technology to a standard technology that is considered early in the life cycle process to develop state-of-the-art aircraft automation systems. This report addressed the future goal in two ways. First, it provided a matrix that identified typical aircraft automation applications conducive to various artificial intelligence methods. The purpose of this matrix was to provide top-level guidance to managers contemplating the possible use of artificial intelligence in the development of aircraft automation. Second, the report provided a methodology to formally evaluate neural networks as part of the traditional process of software development. The matrix was developed by organizing the discipline of artificial intelligence into the following six methods: logical, object representation-based, distributed, uncertainty management, temporal and neurocomputing. Next, a study of existing aircraft automation applications that have been conducive to artificial intelligence implementation resulted in the following five categories: pilot-vehicle interface, system status and diagnosis, situation assessment, automatic flight planning, and aircraft flight control. The resulting matrix provided management guidance to understand artificial intelligence as it applied to aircraft automation. The approach taken to develop a methodology to formally evaluate neural networks as part of the software engineering life cycle was to start with the existing software quality assurance standards and to change these standards to include neural network

  6. Validating a UAV artificial intelligence control system using an autonomous test case generator

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy; Huber, Justin

    2013-05-01

    The validation of safety-critical applications, such as autonomous UAV operations in an environment which may include human actors, is an ill posed problem. To confidence in the autonomous control technology, numerous scenarios must be considered. This paper expands upon previous work, related to autonomous testing of robotic control algorithms in a two dimensional plane, to evaluate the suitability of similar techniques for validating artificial intelligence control in three dimensions, where a minimum level of airspeed must be maintained. The results of human-conducted testing are compared to this automated testing, in terms of error detection, speed and testing cost.

  7. Artificial Intelligence: An Analysis of Potential Applications to Training, Performance Measurement, and Job Performance Aiding.

    DTIC Science & Technology

    1983-09-01

    AD-Ali33 592 ARTIFICIAL INTELLIGENCE: AN ANALYSIS OF POTENTIAL 1/1 APPLICATIONS TO TRAININ..(U) DENVER RESEARCH INST CO JRICHARDSON SEP 83 AFHRL-TP...83-28 b ’ 3 - 4. TITLE (aied Suhkie) 5. TYPE OF REPORT & PERIOD COVERED ARTIFICIAL INTEL11GENCE: AN ANALYSIS OF Interim POTENTIAL APPLICATIONS TO...8217 sde if neceseamy end ides*f by black naumber) artificial intelligence military research * computer-aided diagnosis performance tests computer

  8. Evolvable mathematical models: A new artificial Intelligence paradigm

    NASA Astrophysics Data System (ADS)

    Grouchy, Paul

    We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.

  9. A development framework for artificial intelligence based distributed operations support systems

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Cottman, Bruce H.

    1990-01-01

    Advanced automation is required to reduce costly human operations support requirements for complex space-based and ground control systems. Existing knowledge based technologies have been used successfully to automate individual operations tasks. Considerably less progress has been made in integrating and coordinating multiple operations applications for unified intelligent support systems. To fill this gap, SOCIAL, a tool set for developing Distributed Artificial Intelligence (DAI) systems is being constructed. SOCIAL consists of three primary language based components defining: models of interprocess communication across heterogeneous platforms; models for interprocess coordination, concurrency control, and fault management; and for accessing heterogeneous information resources. DAI applications subsystems, either new or existing, will access these distributed services non-intrusively, via high-level message-based protocols. SOCIAL will reduce the complexity of distributed communications, control, and integration, enabling developers to concentrate on the design and functionality of the target DAI system itself.

  10. Applications of Some Artificial Intelligence Methods to Satellite Soundings

    NASA Technical Reports Server (NTRS)

    Munteanu, M. J.; Jakubowicz, O.

    1985-01-01

    Hard clustering of temperature profiles and regression temperature retrievals were used to refine the method using the probabilities of membership of each pattern vector in each of the clusters derived with discriminant analysis. In hard clustering the maximum probability is taken and the corresponding cluster as the correct cluster are considered discarding the rest of the probabilities. In fuzzy partitioned clustering these probabilities are kept and the final regression retrieval is a weighted regression retrieval of several clusters. This method was used in the clustering of brightness temperatures where the purpose was to predict tropopause height. A further refinement is the division of temperature profiles into three major regions for classification purposes. The results are summarized in the tables total r.m.s. errors are displayed. An approach based on fuzzy logic which is intimately related to artificial intelligence methods is recommended.

  11. An intercomparison of artificial intelligence approaches for polar scene identification

    NASA Technical Reports Server (NTRS)

    Tovinkere, V. R.; Penaloza, M.; Logar, A.; Lee, J.; Weger, R. C.; Berendes, T. A.; Welch, R. M.

    1993-01-01

    The following six different artificial-intelligence (AI) approaches to polar scene identification are examined: (1) a feed forward back propagation neural network, (2) a probabilistic neural network, (3) a hybrid neural network, (4) a 'don't care' feed forward perception model, (5) a 'don't care' feed forward back propagation neural network, and (6) a fuzzy logic based expert system. The ten classes into which six AVHRR local-coverage arctic scenes were classified were: water, solid sea ice, broken sea ice, snow-covered mountains, land, stratus over ice, stratus over water, cirrus over water, cumulus over water, and multilayer cloudiness. It was found that 'don't care' back propagation neural network produced the highest accuracies. This approach has also low CPU requirement.

  12. Artificial intelligence for breast cancer screening: Opportunity or hype?

    PubMed

    Houssami, Nehmat; Lee, Christoph I; Buist, Diana S M; Tao, Dacheng

    2017-09-19

    Interpretation of mammography for breast cancer (BC) screening can confer a mortality benefit through early BC detection, can miss a cancer that is present or fast growing, or can result in false-positives. Efforts to improve screening outcomes have mostly focused on intensifying imaging practices (double instead of single-reading, more frequent screens, or supplemental imaging) that may add substantial resource expenditures and harms associated with population screening. Less attention has been given to making mammography screening practice 'smarter' or more efficient. Artificial intelligence (AI) is capable of advanced learning using large complex datasets and has the potential to perform tasks such as image interpretation. With both highly-specific capabilities, and also possible un-intended (and poorly understood) consequences, this viewpoint considers the promise and current reality of AI in BC detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Artificial Intelligence Tools for Data Mining in Large Astronomical Databases

    NASA Astrophysics Data System (ADS)

    Longo, Giuseppe; Donalek, Ciro; Raiconi, Giancarlo; Staiano, Antonino; Tagliaferri, Roberto; Pasian, Fabio; Sessa, Salvatore; Smareglia, Riccardo; Volpicelli, Alfredo

    The federation of heterogeneous large astronomical databases foreseen in the framework of the AVO and NVO projects will pose unprecedented data mining and visualization problems which may find a rather natural and user friendly answer in artificial intelligence (A.I.) tools based on neural networks, fuzzy-C sets or genetic algorithms. We shortly describe some tools implemented by the AstroNeural collaboration (Napoli-Salerno) aimed to perform complex tasks such as, for instance, unsupervised and supervised clustering and time series analysis. Two very different applications to the analysis of photometric redshifts of galaxies in the Sloan Early Data Release and to the telemetry of the TNG (telescopio nazionale Galileo) are also discussed as template cases.

  14. Artificial intelligence (AI) based tactical guidance for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Mcmanus, John W.; Goodrich, Kenneth H.

    1990-01-01

    A research program investigating the use of artificial intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS), a second generation TDG, is presented. The knowledge-based systems used by CLAWS to aid in the tactical decision-making process are outlined in detail, and the results of tests to evaluate the performance of CLAWS versus a baseline TDG developed in FORTRAN to run in real time in the Langley Differential Maneuvering Simulator, are presented. To date, these test results have shown significant performance gains with respect to the TDG baseline in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify and maintain than the baseline FORTRAN TDG programs.

  15. Artificial intelligence applications in space and SDI: A survey

    NASA Technical Reports Server (NTRS)

    Fiala, Harvey E.

    1988-01-01

    The purpose of this paper is to survey existing and planned Artificial Intelligence (AI) applications to show that they are sufficiently advanced for 32 percent of all space applications and SDI (Space Defense Initiative) software to be AI-based software. To best define the needs that AI can fill in space and SDI programs, this paper enumerates primary areas of research and lists generic application areas. Current and planned NASA and military space projects in AI will be reviewed. This review will be largely in the selected area of expert systems. Finally, direct applications of AI to SDI will be treated. The conclusion covers the importance of AI to space and SDI applications, and conversely, their importance to AI.

  16. Estimation of mechanical properties of nanomaterials using artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, V.; Garg, A.; Wong, C. H.; Tai, K.

    2014-09-01

    Computational modeling tools such as molecular dynamics (MD), ab initio, finite element modeling or continuum mechanics models have been extensively applied to study the properties of carbon nanotubes (CNTs) based on given input variables such as temperature, geometry and defects. Artificial intelligence techniques can be used to further complement the application of numerical methods in characterizing the properties of CNTs. In this paper, we have introduced the application of multi-gene genetic programming (MGGP) and support vector regression to formulate the mathematical relationship between the compressive strength of CNTs and input variables such as temperature and diameter. The predictions of compressive strength of CNTs made by these models are compared to those generated using MD simulations. The results indicate that MGGP method can be deployed as a powerful method for predicting the compressive strength of the carbon nanotubes.

  17. Application of Artificial Intelligence for Bridge Deterioration Model

    PubMed Central

    Chen, Zhang; Wu, Yangyang; Sun, Lijun

    2015-01-01

    The deterministic bridge deterioration model updating problem is well established in bridge management, while the traditional methods and approaches for this problem require manual intervention. An artificial-intelligence-based approach was presented to self-updated parameters of the bridge deterioration model in this paper. When new information and data are collected, a posterior distribution was constructed to describe the integrated result of historical information and the new gained information according to Bayesian theorem, which was used to update model parameters. This AI-based approach is applied to the case of updating parameters of bridge deterioration model, which is the data collected from bridges of 12 districts in Shanghai from 2004 to 2013, and the results showed that it is an accurate, effective, and satisfactory approach to deal with the problem of the parameter updating without manual intervention. PMID:26601121

  18. Application of Artificial Intelligence to Reservoir Characterization - An Interdisciplinary Approach

    SciTech Connect

    Kelkar, B.G.; Gamble, R.F.; Kerr, D.R.; Thompson, L.G.; Shenoi, S.

    2000-01-12

    The primary goal of this project is to develop a user-friendly computer program to integrate geological and engineering information using Artificial Intelligence (AI) methodology. The project is restricted to fluvially dominated deltaic environments. The static information used in constructing the reservoir description includes well core and log data. Using the well core and the log data, the program identifies the marker beds, and the type of sand facies, and in turn, develops correlation's between wells. Using the correlation's and sand facies, the program is able to generate multiple realizations of sand facies and petrophysical properties at interwell locations using geostatistical techniques. The generated petrophysical properties are used as input in the next step where the production data are honored. By adjusting the petrophysical properties, the match between the simulated and the observed production rates is obtained.

  19. The use of artificial intelligence for safeguarding fuel reprocessing plants

    SciTech Connect

    Wachter, J.W.; Forgy, C.L.

    1987-01-01

    Recorded process data from the ''Minirun'' campaigns conducted at the Barnwell Nuclear Fuel Plant (BNFP) in Barnwell, South Carolina during 1980 to 1981 have been utilized to study the suitability of computer-based Artificial Intelligence (AI) methods for process monitoring for safeguards purposes. The techniques of knowledge engineering were used to formulate the decision-making software which operates on the process data customarily used for process operations. The OPS5 AI language was used to construct an Expert System for this purpose. Such systems are able to form reasoned conclusions from incomplete, inaccurate or otherwise ''fuzzy'' data, and to explain the reasoning that led to them. The programs were tested using minirun data taken during simulated diversions ranging in size from 1 to 20 L of solution that had been monitored previously using conventional procedural techniques. 13 refs., 3 figs.

  20. Application of Artificial Intelligence for Bridge Deterioration Model.

    PubMed

    Chen, Zhang; Wu, Yangyang; Li, Li; Sun, Lijun

    2015-01-01

    The deterministic bridge deterioration model updating problem is well established in bridge management, while the traditional methods and approaches for this problem require manual intervention. An artificial-intelligence-based approach was presented to self-updated parameters of the bridge deterioration model in this paper. When new information and data are collected, a posterior distribution was constructed to describe the integrated result of historical information and the new gained information according to Bayesian theorem, which was used to update model parameters. This AI-based approach is applied to the case of updating parameters of bridge deterioration model, which is the data collected from bridges of 12 districts in Shanghai from 2004 to 2013, and the results showed that it is an accurate, effective, and satisfactory approach to deal with the problem of the parameter updating without manual intervention.