Science.gov

Sample records for artificial muscles reality

  1. Electroactive Polymers (EAP) as Artificial Muscles: Reality and Challenges

    SciTech Connect

    Bar-Cohen, Yoseph

    2003-04-30

    Human with bionic muscles is synonymous with science fiction or a superhuman actor in a TV series. With bionic muscles, the character is portrayed as capable of strength and speeds that are far superior to human. Recent development in EAP with large electrically induced strain may one day be used to make such bionics possible. Meanwhile, as this technology evolves novel mechanisms that are biologically inspired are starting to emerge, where EAP materials are providing actuation with lifelike response and more flexible configurations. Even though the actuation force and robustness require further improvement, there have been already several reported successes. In this seminar the current and future efforts will be reviewed.

  2. Electroactive Polymers as Artificial Muscles - Reality and Challenges

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    2001-01-01

    Electroactive Polymers (EAPs) are emerging as effective displacement actuators. These materials offer the closest resemblance of biological muscle potentially enabling unique capabilities changing the paradigm about robots construction. Under a NASA task, several EAP driven mechanisms were developed including dust wiper, gripper, and robotic arm EAP are inducing a low actuation force limiting the applications that can use their current capability. In recognition of this limitation a series of international forums were established including SPIE conference, Webhub, Newsletter, and Newsgroup. A challenge was posed to the EAP community to have an arm wrestling between robot that is equipped with EAP actuators and human.

  3. An artificial muscle computer

    NASA Astrophysics Data System (ADS)

    Marc O'Brien, Benjamin; Alexander Anderson, Iain

    2013-03-01

    We have built an artificial muscle computer based on Wolfram's "2, 3" Turing machine architecture, the simplest known universal Turing machine. Our computer uses artificial muscles for its instruction set, output buffers, and memory write and addressing mechanisms. The computer is very slow and large (0.15 Hz, ˜1 m3); however by using only 13 artificial muscle relays, it is capable of solving any computable problem given sufficient memory, time, and reliability. The development of this computer shows that artificial muscles can think—paving the way for soft robots with reflexes like those seen in nature.

  4. Onion artificial muscles

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Chun; Shih, Wen-Pin; Chang, Pei-Zen; Lai, Hsi-Mei; Chang, Shing-Yun; Huang, Pin-Chun; Jeng, Huai-An

    2015-05-01

    Artificial muscles are soft actuators with the capability of either bending or contraction/elongation subjected to external stimulation. However, there are currently no artificial muscles that can accomplish these actions simultaneously. We found that the single layered, latticed microstructure of onion epidermal cells after acid treatment became elastic and could simultaneously stretch and bend when an electric field was applied. By modulating the magnitude of the voltage, the artificial muscle made of onion epidermal cells would deflect in opposing directions while either contracting or elongating. At voltages of 0-50 V, the artificial muscle elongated and had a maximum deflection of -30 μm; at voltages of 50-1000 V, the artificial muscle contracted and deflected 1.0 mm. The maximum force response is 20 μN at 1000 V.

  5. Artificial muscles on heat

    NASA Astrophysics Data System (ADS)

    McKay, Thomas G.; Shin, Dong Ki; Percy, Steven; Knight, Chris; McGarry, Scott; Anderson, Iain A.

    2014-03-01

    Many devices and processes produce low grade waste heat. Some of these include combustion engines, electrical circuits, biological processes and industrial processes. To harvest this heat energy thermoelectric devices, using the Seebeck effect, are commonly used. However, these devices have limitations in efficiency, and usable voltage. This paper investigates the viability of a Stirling engine coupled to an artificial muscle energy harvester to efficiently convert heat energy into electrical energy. The results present the testing of the prototype generator which produced 200 μW when operating at 75°C. Pathways for improved performance are discussed which include optimising the electronic control of the artificial muscle, adjusting the mechanical properties of the artificial muscle to work optimally with the remainder of the system, good sealing, and tuning the resonance of the displacer to minimise the power required to drive it.

  6. A two dimensional artificial reality

    NASA Technical Reports Server (NTRS)

    Krueger, Myron W.

    1991-01-01

    The current presumption is that it is necessary to don goggles, gloves and a data suit to experience artificial reality. However, there is another technology that offers an alternative or complement to the encumbering techniques associated with NASA. In VIDEOPLACE, your image appears in a 2D graphic world created by a computer. The VIDEOPLACE computer can analyze a person's image in 1/30 second and can detect when an object is touched. Thus, it can generate a graphic or auditory response to an illusory contact. VIDEOPLACE technology exists in two formats: the VIDEODESK and the VIDEOPLACE. In the VIDEODESK environment, the image of your hands can be used to perform the normal mouse functions, such as menuing and drawing. In addition, you have the advantage of multipoint control. For instance, you can use the thumbs and forefingers of each hand as control points for a spline curve. Perhaps most important, the image of your hands can be compressed and transmitted to a colleague over an ISDN voice channel to appear on the remote screen superimposed over identical information. Likewise, the image of your colleague's hands can appear on both screens. The result is that the two of you can use your hands to point to features on your respective screens as you speak, exactly as you would if you were sitting together. In the VIDEOPLACE environment, you can interact with graphic creatures and the images of other people in other locations in a graphic world. Your whole body can be moved, scaled and rotated in real-time without regard to the laws of physics. Thus, VIDEOPLACE can be used to create a fantasy world in which the laws of cause and effect are composed by an artist.

  7. New twist on artificial muscles

    PubMed Central

    Haines, Carter S.; Li, Na; Spinks, Geoffrey M.; Aliev, Ali E.; Di, Jiangtao; Baughman, Ray H.

    2016-01-01

    Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy. PMID:27671626

  8. Fuel-Powered Artificial Muscles

    NASA Astrophysics Data System (ADS)

    Ebron, Von Howard; Yang, Zhiwei; Seyer, Daniel J.; Kozlov, Mikhail E.; Oh, Jiyoung; Xie, Hui; Razal, Joselito; Hall, Lee J.; Ferraris, John P.; MacDiarmid, Alan G.; Baughman, Ray H.

    2006-03-01

    Artificial muscles and electric motors found in autonomous robots and prosthetic limbs are typically battery-powered, which severely restricts the duration of their performance and can necessitate long inactivity during battery recharge. To help solve these problems, we demonstrated two types of artificial muscles that convert the chemical energy of high-energy-density fuels to mechanical energy. The first type stores electrical charge and uses changes in stored charge for mechanical actuation. In contrast with electrically powered electrochemical muscles, only half of the actuator cycle is electrochemical. The second type of fuel-powered muscle provides a demonstrated actuator stroke and power density comparable to those of natural skeletal muscle and generated stresses that are over a hundred times higher.

  9. Electrically controllable artificial PAN muscles

    NASA Astrophysics Data System (ADS)

    Salehpoor, Karim; Shahinpoor, Mohsen; Mojarrad, Mehran

    1996-02-01

    Artificial muscles made with polyacrylonitrile (PAN) fibers are traditionally activated in electrolytic solution by changing the pH of the solution by the addition of acids and/or bases. This usually consumes a considerable amount of weak acids or bases. Furthermore, the synthetic muscle (PAN) itself has to be impregnated with an acid or a base and must have an appropriate enclosure or provision for waste collection after actuation. This work introduces a method by which the PAN muscle may be elongated or contracted in an electric field. We believe this is the first time that this has been achieved with PAN fibers as artificial muscles. In this new development the PAN muscle is first put in close contact with one of the two platinum wires (electrodes) immersed in an aqueous solution of sodium chloride. Applying an electric voltage between the two wires changes the local acidity of the solution in the regions close to the platinum wires. This is because of the ionization of sodium chloride molecules and the accumulation of Na+ and Cl- ions at the negative and positive electrode sites, respectively. This ion accumulation, in turn, is accompanied by a sharp increase and decrease of the local acidity in regions close to either of the platinum wires, respectively. An artificial muscle, in close contact with the platinum wire, because of the change in the local acidity will contract or expand depending on the polarity of the electric field. This scheme allows the experimenter to use a fixed flexible container of an electrolytic solution whose local pH can be modulated by an imposed electric field while the produced ions are basically trapped to stay in the neighborhood of a given electrode. This method of artificial muscle activation has several advantages. First, the need to use a large quantity of acidic or alkaline solutions is eliminated. Second, the use of a compact PAN muscular system is facilitated for applications in active musculoskeletal structures. Third, the

  10. Torsional Carbon Nanotube Artificial Muscles

    NASA Astrophysics Data System (ADS)

    Foroughi, Javad; Spinks, Geoffrey M.; Wallace, Gordon G.; Oh, Jiyoung; Kozlov, Mikhail E.; Fang, Shaoli; Mirfakhrai, Tissaphern; Madden, John D. W.; Shin, Min Kyoon; Kim, Seon Jeong; Baughman, Ray H.

    2011-10-01

    Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.

  11. Artificial muscle: facts and fiction.

    PubMed

    Schaub, Marcus C

    2011-01-01

    Mechanical devices are sought to support insufficient or paralysed striated muscles including the failing heart. Nickel-titanium alloys (nitinol) present the following two properties: (i) super-elasticity, and (ii) the potential to assume different crystal structures depending on temperature and/or stress. Starting from the martensite state nitinol is able to resume the austenite form (state of low potential energy and high entropy) even against an external resistance. This one-way shape change is deployed in self-expanding vascular stents. Heating induces the force generating transformation from martensite to the austenite state while cooling induces relaxation back to the martensite state. This two-way shape change oscillating between the two states may be used in cyclically contracting support devices of silicon-coated nitinol wires. Such a contractile device sutured to the right atrium has been tested in vitro in a bench model and in vivo in sheep. The contraction properties of natural muscles, specifically of the myocardium, and the tight correlation with ATP production by oxidative phosphorylation in the mitochondria is briefly outlined. Force development by the nitinol device cannot be smoothly regulated as in natural muscle. Its mechanical impact is forced onto the natural muscle regardless of the actual condition with regard to metabolism and Ca2+-homeostasis. The development of artificial muscle on the basis of nitinol wires is still in its infancy. The nitinol artificial muscle will have to prove its viability in the various clinical settings. PMID:22183715

  12. Artificial muscle: facts and fiction.

    PubMed

    Schaub, Marcus C

    2011-12-19

    Mechanical devices are sought to support insufficient or paralysed striated muscles including the failing heart. Nickel-titanium alloys (nitinol) present the following two properties: (i) super-elasticity, and (ii) the potential to assume different crystal structures depending on temperature and/or stress. Starting from the martensite state nitinol is able to resume the austenite form (state of low potential energy and high entropy) even against an external resistance. This one-way shape change is deployed in self-expanding vascular stents. Heating induces the force generating transformation from martensite to the austenite state while cooling induces relaxation back to the martensite state. This two-way shape change oscillating between the two states may be used in cyclically contracting support devices of silicon-coated nitinol wires. Such a contractile device sutured to the right atrium has been tested in vitro in a bench model and in vivo in sheep. The contraction properties of natural muscles, specifically of the myocardium, and the tight correlation with ATP production by oxidative phosphorylation in the mitochondria is briefly outlined. Force development by the nitinol device cannot be smoothly regulated as in natural muscle. Its mechanical impact is forced onto the natural muscle regardless of the actual condition with regard to metabolism and Ca2+-homeostasis. The development of artificial muscle on the basis of nitinol wires is still in its infancy. The nitinol artificial muscle will have to prove its viability in the various clinical settings.

  13. Magical Stories: Blending Virtual Reality and Artificial Intelligence.

    ERIC Educational Resources Information Center

    McLellan, Hilary

    Artificial intelligence (AI) techniques and virtual reality (VR) make possible powerful interactive stories, and this paper focuses on examples of virtual characters in three dimensional (3-D) worlds. Waldern, a virtual reality game designer, has theorized about and implemented software design of virtual teammates and opponents that incorporate AI…

  14. Artificial Muscle Kits for the Classroom

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Commonly referred to as "artificial muscles," electroactive polymer (EAP) materials are lightweight strips of highly flexible plastic that bend or stretch when subjected to electric voltage. EAP materials may prove to be a substitution for conventional actuation components such as motors and gears. Since the materials behave similarly to biological muscles, this emerging technology has the potential to develop improved prosthetics and biologically-inspired robots, and may even one day replace damaged human muscles. The practical application of artificial muscles provides a challenge, however, since the material requires improved effectiveness and durability before it can fulfill its potential.

  15. Biologically inspired toys using artificial muscles

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    2001-01-01

    Recent developments in electroactive polymers, so-called artificial muscles, could one day be used to make bionics possible. Meanwhile, as this technology evolves novel mechanisms are expected to emerge that are biologically inspired.

  16. Biomimetic actuators using electroactive polymers (EAP) as artificial muscles

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2006-01-01

    Evolution has resolved many of nature's challenges leading to lasting solutions with maximal performance and effective use of resources. Nature's inventions have always inspired human achievements leading to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems and many other benefits. The field of mimicking nature is known as Biomimetics and one of its topics includes electroactive polymers that gain the moniker artificial muscles. Integrating EAP with embedded sensors, self-repair and many other capabilities that are used in composite materials can add greatly to the capability of smart biomimetic systems. Such development would enable fascinating possibilities potentially turning science fiction ideas into engineering reality.

  17. Biologically inspired technologies using artificial muscles

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2005-01-01

    One of the newest fields of biomimetics is the electroactive polymers (EAP) that are also known as artificial muscles. To take advantage of these materials, efforts are made worldwide to establish a strong infrastructure addressing the need for comprehensive analytical modeling of their response mechanism and develop effective processing and characterization techniques. The field is still in its emerging state and robust materials are still not readily available however in recent years significant progress has been made and commercial products have already started to appear. This paper covers the current state of- the-art and challenges to making artificial muscles and their potential biomimetic applications.

  18. Artificial muscle using nonlinear elastomers

    NASA Astrophysics Data System (ADS)

    Ratna, Banahalli

    2002-03-01

    Anisotropic freestanding films or fibers of nematic elastomers from laterally attached side-chain polymers show muscle-like mechanical properties. The orientational order of the liquid crystal side groups imposes a conformational anisotropy in the polymer backbone. When a large change in the order parameter occurs, as at the nematic-isotropic phase transition, there is a concomitant loss of order in the backbone which results in a contraction of the film in the direction of the director orientation. The crosslinked network imposes a symmetry-breaking field on the nematic and drives the nematic-isotropic transition towards a critical point with the application of external stress. Isostrain studies on these nonlinear elastomers, show that there are large deviations from ideal classical rubber elasticity and the contributions from total internal energy to the elastic restoring force cannot be ignored. The liquid crystal elastomers exhibiting anisoptopic contraction/extension coupled with a graded strain response to an applied external stimulus provide an excellent framework for mimicking muscular action. Liquid crystal elastomers by their very chemical nature have a number of ‘handles’ such as the liquid crystalline phase range, density of crosslinking, flexibility of the backbone, coupling between the backbone and the mesogen and the coupling between the mesogen and the external stimulus, that can be tuned to optimize the mechanical properties. We have demonstrated actuation in nematic elastomers under thermal and optical stimuli. We have been able to dope the elastomers with dyes to make them optically active. We have also doped them with carbon nanotubes in order to increase the thermal and electrical conductivity of the elastomer.

  19. Biothermal sensing of a torsional artificial muscle

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Ho; Kim, Tae Hyeob; Lima, Márcio D.; Baughman, Ray H.; Kim, Seon Jeong

    2016-02-01

    Biomolecule responsive materials have been studied intensively for use in biomedical applications as smart systems because of their unique property of responding to specific biomolecules under mild conditions. However, these materials have some challenging drawbacks that limit further practical application, including their speed of response and mechanical properties, because most are based on hydrogels. Here, we present a fast, mechanically robust biscrolled twist-spun carbon nanotube yarn as a torsional artificial muscle through entrapping an enzyme linked to a thermally sensitive hydrogel, poly(N-isopropylacrylamide), utilizing the exothermic catalytic reaction of the enzyme. The induced rotation reached an equilibrated angle in less than 2 min under mild temperature conditions (25-37 °C) while maintaining the mechanical properties originating from the carbon nanotubes. This biothermal sensing of a torsional artificial muscle offers a versatile platform for the recognition of various types of biomolecules by replacing the enzyme, because an exothermic reaction is a general property accompanying a biochemical transformation.Biomolecule responsive materials have been studied intensively for use in biomedical applications as smart systems because of their unique property of responding to specific biomolecules under mild conditions. However, these materials have some challenging drawbacks that limit further practical application, including their speed of response and mechanical properties, because most are based on hydrogels. Here, we present a fast, mechanically robust biscrolled twist-spun carbon nanotube yarn as a torsional artificial muscle through entrapping an enzyme linked to a thermally sensitive hydrogel, poly(N-isopropylacrylamide), utilizing the exothermic catalytic reaction of the enzyme. The induced rotation reached an equilibrated angle in less than 2 min under mild temperature conditions (25-37 °C) while maintaining the mechanical properties

  20. Ion-exchange polymer artificial muscle and actuating system

    NASA Astrophysics Data System (ADS)

    Vial, Dominique; Tondu, Bertrand; Lopez, Pierre; Aurelle, Yves; Ricard, Alain

    1996-04-01

    Chemomechanical transformations are used to produce a mechanical force from a reversible chemical reaction in order to generate artificial muscular contraction, on the model of the biological muscle. The design and experimentation of an original artificial muscle using an ion-exchange polymer which reacts inside a soft envelope, derived from research on pneumatic artificial McKibben muscle, is presented. Then a chemomechanical actuator constituted of two artificial muscles has been conceived: first results are shown on position control in open-loop mode.

  1. Biothermal sensing of a torsional artificial muscle.

    PubMed

    Lee, Sung-Ho; Kim, Tae Hyeob; Lima, Márcio D; Baughman, Ray H; Kim, Seon Jeong

    2016-02-14

    Biomolecule responsive materials have been studied intensively for use in biomedical applications as smart systems because of their unique property of responding to specific biomolecules under mild conditions. However, these materials have some challenging drawbacks that limit further practical application, including their speed of response and mechanical properties, because most are based on hydrogels. Here, we present a fast, mechanically robust biscrolled twist-spun carbon nanotube yarn as a torsional artificial muscle through entrapping an enzyme linked to a thermally sensitive hydrogel, poly(N-isopropylacrylamide), utilizing the exothermic catalytic reaction of the enzyme. The induced rotation reached an equilibrated angle in less than 2 min under mild temperature conditions (25-37 °C) while maintaining the mechanical properties originating from the carbon nanotubes. This biothermal sensing of a torsional artificial muscle offers a versatile platform for the recognition of various types of biomolecules by replacing the enzyme, because an exothermic reaction is a general property accompanying a biochemical transformation. PMID:26806884

  2. Biomimetic soft robots with artificial muscles

    NASA Astrophysics Data System (ADS)

    Nakabo, Yoshihiro; Mukai, Toshiharu; Asaka, Kinji

    2004-02-01

    An artificial muscle is an ionic polymer-metal composite (IPMC) which is made out of a high polymer gel film whose surface is plated with gold. Our goal is to realize bio-inspired soft robots, for example, a snake-like swimming robot or multi-degree-of-freedom (DOF) micro-robot manipulator. To realize a snake-like or a multi-DOF bending motion, we cut electrodes on the surface of the actuator in order to control each segment individually. We have developed a variety of motions from this patterned actuator including a snake-like motion. We have also proposed kinematic modeling of the manipulator which simply describes various multi-DOF motions of the artificial muscle. This model is applied to visual feedback control of the manipulator system using a Jacobian control method. For the feedback control, we have developed a visual sensing system using a 1ms high-speed vision system which has a fast enough response to capture the fast actuator motion. We have also made the device swim freely forward and backward by finding the optimal voltage, phase and frequency. In this report, we show some results from simulations of the proposed manipulator control method and experimental results from visual sensing of the bending motion and snake-like swimming of the actuator.

  3. Biomimetic artificial sphincter muscles: status and challenges

    NASA Astrophysics Data System (ADS)

    Leung, Vanessa; Fattorini, Elisa; Karapetkova, Maria; Osmani, Bekim; Töpper, Tino; Weiss, Florian; Müller, Bert

    2016-04-01

    Fecal incontinence is the involuntary loss of bowel content and affects more than 12% of the adult population, including 45% of retirement home residents. Severe fecal incontinence is often treated by implanting an artificial sphincter. Currently available implants, however, have long-term reoperation rates of 95% and definitive explantation rates of 40%. These statistics show that the implants fail to reproduce the capabilities of the natural sphincter and that the development of an adaptive, biologically inspired implant is required. Dielectric elastomer actuators (DEA) are being developed as artificial muscles for a biomimetic sphincter, due to their suitable response time, reaction forces, and energy consumption. However, at present the operation voltage of DEAs is too high for artificial muscles implanted in the human body. To reduce the operating voltage to tens of volts, we are using microfabrication to reduce the thickness of the elastomer layer to the nanometer level. Two microfabrication methods are being investigated: molecular beam deposition and electrospray deposition. This communication covers the current status and a perspective on the way forward, including the long-term prospects of constructing a smart sphincter from low-voltage sensors and actuators based on nanometer-thin dielectric elastomer films. As DEA can also provide sensory feedback, a biomimetic sphincter can be designed in accordance with the geometrical and mechanical parameters of its natural counterpart. The availability of such technology will enable fast pressure adaption comparable to the natural feedback mechanism, so that tissue atrophy and erosion can be avoided while maintaining continence du ring daily activities.

  4. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    NASA Astrophysics Data System (ADS)

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  5. Microbial-powered artificial muscles for autonomous robots

    NASA Astrophysics Data System (ADS)

    Ieropoulos, Ioannis; Anderson, Iain A.; Gisby, Todd; Wang, Cheng-Hung; Rossiter, Jonathan

    2009-03-01

    We consider the embodiment of a microbial fuel cell using artificial muscle actuators. The microbial fuel cell digests organic matter and generates electricity. This energy is stored in a capacitor bank until it is discharged to power one of two complimentary artificial muscle technologies: the dielectric elastomer actuator and the ionic-polymer metal composite. We study the ability of the fuel cell to generate useful actuation and consider appropriate configurations to maximally exploit both of these artificial muscle technologies. A prototype artificial sphincter is implemented using a dielectric elastomer actuator. Stirrer and cilia mechanisms motivate experimentation using ionic polymer metal composite actuators. The ability of the fuel cell to drive both of these technologies opens up new possibilities for truly biomimetic soft artificial robotic organisms.

  6. An artificial reality environment for remote factory control and monitoring

    NASA Technical Reports Server (NTRS)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    Work has begun on the merger of two well known systems, VEOS (HITLab) and CLIPS (NASA). In the recent past, the University of Massachusetts Lowell developed a parallel version of NASA CLIPS, called P-CLIPS. This modification allows users to create smaller expert systems which are able to communicate with each other to jointly solve problems. With the merger of a VEOS message system, PCLIPS-V can now act as a group of entities working within VEOS. To display the 3D virtual world we have been using a graphics package called HOOPS, from Ithaca Software. The artificial reality environment we have set up contains actors and objects as found in our Lincoln Logs Factory of the Future project. The environment allows us to view and control the objects within the virtual world. All communication between the separate CLIPS expert systems is done through VEOS. A graphical renderer generates camera views on X-Windows devices; Head Mounted Devices are not required. This allows more people to make use of this technology. We are experimenting with different types of virtual vehicles to give the user a sense that he or she is actually moving around inside the factory looking ahead through windows and virtual monitors.

  7. Electrochromic artificial muscles based on nanoporous metal-polymer composites

    NASA Astrophysics Data System (ADS)

    Detsi, E.; Onck, P. R.; De Hosson, J. T. M.

    2013-11-01

    This work shows that a nano-coating of electrochromic polymer grown onto the ligaments of nanoporous gold causes reversible dimensional and color changes during electrochemical actuation. This combination of electromechanical and optical properties opens additional avenues for the applications of artificial muscles, i.e., a metallic muscle exhibits its progress during work by changing color that can be detected by optical means.

  8. Design of a biped robot actuated by pneumatic artificial muscles.

    PubMed

    Liu, Yixiang; Zang, Xizhe; Liu, Xinyu; Wang, Lin

    2015-01-01

    High compliant legs are essential for the efficient versatile locomotion and shock absorbency of humans. This study proposes a biped robot actuated by pneumatic artificial muscles to mimic human locomotion. On the basis of the musculoskeletal architecture of human lower limbs, each leg of the biped robot is modeled as a system of three segments, namely, hip joint, knee joint, and ankle joint, and eleven muscles, including both monoarticular and biarticular muscles. Each rotational joint is driven by a pair of antagonistic muscles, enabling joint compliance to be tuned by operating the pressure inside the muscles. Biarticular muscles play an important role in transferring power between joints. Walking simulations verify that biarticular muscles contribute to joint compliance and can absorb impact energy when the robot makes an impact upon ground contact. PMID:26406072

  9. Design of a biped robot actuated by pneumatic artificial muscles.

    PubMed

    Liu, Yixiang; Zang, Xizhe; Liu, Xinyu; Wang, Lin

    2015-01-01

    High compliant legs are essential for the efficient versatile locomotion and shock absorbency of humans. This study proposes a biped robot actuated by pneumatic artificial muscles to mimic human locomotion. On the basis of the musculoskeletal architecture of human lower limbs, each leg of the biped robot is modeled as a system of three segments, namely, hip joint, knee joint, and ankle joint, and eleven muscles, including both monoarticular and biarticular muscles. Each rotational joint is driven by a pair of antagonistic muscles, enabling joint compliance to be tuned by operating the pressure inside the muscles. Biarticular muscles play an important role in transferring power between joints. Walking simulations verify that biarticular muscles contribute to joint compliance and can absorb impact energy when the robot makes an impact upon ground contact.

  10. Application requirements of artificial muscles for swimming robots

    NASA Astrophysics Data System (ADS)

    Kerrebrock, Peter A.; Anderson, Jamie M.; Parry, Joel R.

    2001-07-01

    In the near future, we will find biomimetic undersea robots in the forefront of unmanned underwater applications due to their ability to operate in new, challenging, and highly dynamic environments such as rivers, surf, and turbulent pipe flow. In particular, fish-like vehicles (FLVs) have emerged as a viable technology for highly maneuverable, efficient and stealthy platforms. Attempts to produce fish-like motion using conventional mechanical means have proven difficult, however, resulting in complex and unreliable machines, especially when compared to the simplicity of a rotating propeller and conventional control surfaces. To take full advantage of fish-like propulsion, a new actuation strategy is needed, to which artificial muscles may be uniquely suited. Some artificial muscles are made of materials with relatively low specific gravity (compared to conventional mechanical systems), and so will be nearly neutrally buoyant in underwater applications. This is critical in FLV actuation, as correct longitudinal mass distribution is required to avoid stability problems. Additionally, some artificial muscle formulations require water, sometimes including an electrolyte, which is easily provided in underwater applications. Finally, for stealthy applications, artificial muscles may provide acoustically quiet actuation due to their suppleness and reduced number of interconnecting mechanical components. In this paper, we suggest artificial muscle-based actuation strategies for FLVs, based on experience with the Vorticity Control Unmanned Undersea Vehicle (VCUUV), an eight-foot long autonomous robotic tuna. Recently developed artificial muscles are surveyed and evaluated as to their suitability for fish-like propulsion. Requirements for force, power, and strain as well as implementation issues are discussed.

  11. Rotating turkeys and self-commutating artificial muscle motors

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; McKay, Thomas G.; Gisby, Todd A.; Anderson, Iain A.

    2012-02-01

    Electrostatic motors—first used by Benjamin Franklin to rotisserie a turkey—are making a comeback in the form of high energy density dielectric elastomer artificial muscles. We present a self-commutated artificial muscle motor that uses dielectric elastomer switches in the place of bulky external electronics. The motor simply requires a DC input voltage to rotate a shaft (0.73 Nm/kg, 0.24 Hz) and is a step away from hard metallic electromagnetic motors towards a soft, light, and printable future.

  12. Artificial muscle: the human chimera is the future.

    PubMed

    Tozzi, P

    2011-12-14

    Severe heart failure and cerebral stroke are broadly associated with the impairment of muscular function that conventional treatments struggle to restore. New technologies enable the construction of "smart" materials that could be of great help in treating diseases where the main problem is muscle weakness. These materials "behave" similarly to biological systems, because the material directly converts energy, for example electrical energy into movement. The extension and contraction occur silently like in natural muscles. The real challenge is to transfer this amazing technology into devices that restore or replace the mechanical function of failing muscle. Cardiac assist devices based on artificial muscle technology could envelope a weak heart and temporarily improve its systolic function, or, if placed on top of the atrium, restore the atrial kick in chronic atrial fibrillation. Artificial sphincters could be used to treat urinary incontinence after prostatectomy or faecal incontinence associated with stomas. Artificial muscles can restore the ability of patients with facial paralysis due to stroke or nerve injury to blink. Smart materials could be used to construct an artificial oesophagus including peristaltic movement and lower oesophageal sphincter function to replace the diseased oesophagus thereby avoiding the need for laparotomy to mobilise stomach or intestine. In conclusion, in the near future, smart devices will integrate with the human body to fill functional gaps due to organ failure, and so create a human chimera.

  13. An Artificial Tendon with Durable Muscle Interface

    PubMed Central

    Melvin, Alan; Litsky, Alan; Mayerson, Joel; Witte, David; Melvin, David; Juncosa-Melvin, Natalia

    2010-01-01

    A coupling mechanism that can permanently fix a forcefully contracting muscle to a bone anchor or any totally inert prosthesis would meet a serious need in orthopaedics. Our group developed the OrthoCoupler™ device to satisfy these demands. The objective of this study was to test OrthoCoupler’s performance in vitro and in vivo in the goat semitendinosus tendon model. For in vitro evaluation, 40 samples were fatigue-tested, cycling at 10 load levels, n=4 each. For in vivo evaluation, the semitendinosus tendon was removed bilaterally in 8 goats. Left sides were reattached with an OrthoCoupler, and right sides were reattached using the Krackow stitch with #5 braided polyester sutures. Specimens were harvested 60 days post-surgery and assigned for biomechanics and histology. Fatigue strength of the devices in vitro was several times the contractile force of the semitendinosus muscle. The in vivo devices were built equivalent to two of the in vitro devices, providing an additional safety factor. In strength testing at necropsy, suture controls pulled out at 120.5 ± 68.3 N, whereas each OrthoCoupler was still holding after the muscle tore, remotely, at 298±111.3N (mean ± SD)(p<0.0003). Muscle tear strength was reached with the fiber-muscle composite produced in healing still soundly intact. This technology may be of value for orthopaedic challenges in oncology, revision arthroplasty, tendon transfer, and sports-injury reconstruction. PMID:19639642

  14. Climbing robot actuated by meso-hydraulic artificial muscles

    NASA Astrophysics Data System (ADS)

    Bryant, Matthew; Fitzgerald, Jason; Miller, Samuel; Saltzman, Jonah; Kim, Sangkyu; Lin, Yong; Garcia, Ephrahim

    2014-03-01

    This paper presents the design, construction, experimental characterization, and system testing of a legged, wall-climbing robot actuated by meso-scale hydraulic artificial muscles. While small wall-climbing robots have seen increased research attention in recent years, most authors have primarily focused on designs for the gripping and adhesion of the robot to the wall, while using only standard DC servo-motors for actuation. This project seeks to explore and demonstrate a different actuation mechanism that utilizes hydraulic artificial muscles. A four-limb climbing robot platform that includes a full closed-loop hydraulic power and control system, custom hydraulic artificial muscles for actuation, an on-board microcontroller and RF receiver for control, and compliant claws with integrated sensing for gripping a variety of wall surfaces has been constructed and is currently being tested to investigate this actuation method. On-board power consumption data-logging during climbing operation, analysis of the robot kinematics and climbing behavior, and artificial muscle force-displacement characterization are presented to investigate and this actuation method.

  15. Variable recruitment in bundles of miniature pneumatic artificial muscles.

    PubMed

    DeLaHunt, Sylvie A; Pillsbury, Thomas E; Wereley, Norman M

    2016-01-01

    The natural compliance and force generation properties of pneumatic artificial muscles (PAMs) allow them to operate like human muscles in anthropomorphic robotic manipulators. Traditionally, manipulators use a single PAM or multiple PAMs actuated in unison in place of a human muscle. However, these standard manipulators can experience significant efficiency losses when operated outside their target performance ranges at low actuation pressures. This study considers the application of a variable recruitment control strategy to a parallel bundle of miniature PAMs as an attempt to mimic the selective recruitment of motor units in a human muscle. Bundles of miniature PAMs are experimentally characterized, their actuation behavior is modeled, and the efficiency gains and losses associated with the application of a variable recruitment control strategy are assessed. This bio-inspired control strategy allows muscle bundles to operate the fewest miniature PAMs necessary to achieve a desired performance objective, improving the muscle bundle's operating efficiency over larger ranges of force generation and displacement. The study also highlights the need for improved PAM fabrication techniques to facilitate the production of identical miniature PAMs for inclusion in muscle bundles. PMID:27623216

  16. Control approach development for variable recruitment artificial muscles

    NASA Astrophysics Data System (ADS)

    Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew

    2016-04-01

    This study characterizes hybrid control approaches for the variable recruitment of fluidic artificial muscles with double acting (antagonistic) actuation. Fluidic artificial muscle actuators have been explored by researchers due to their natural compliance, high force-to-weight ratio, and low cost of fabrication. Previous studies have attempted to improve system efficiency of the actuators through variable recruitment, i.e. using discrete changes in the number of active actuators. While current variable recruitment research utilizes manual valve switching, this paper details the current development of an online variable recruitment control scheme. By continuously controlling applied pressure and discretely controlling the number of active actuators, operation in the lowest possible recruitment state is ensured and working fluid consumption is minimized. Results provide insight into switching control scheme effects on working fluids, fabrication material choices, actuator modeling, and controller development decisions.

  17. Carbon Nanotube Yarn-Based Glucose Sensing Artificial Muscle.

    PubMed

    Lee, Junghan; Ko, Sachan; Kwon, Cheong Hoon; Lima, Márcio D; Baughman, Ray H; Kim, Seon Jeong

    2016-04-01

    Boronic acid (BA), known to be a reversible glucose-sensing material, is conjugated to a nanogel (NG) derived from hyaluronic acid biopolymer and used as a guest material for a carbon multiwalled nanotube (MWNT) yarn. By exploiting the swelling/deswelling of the NG that originates from the internal anionic charge changes resulting from BA binding to glucose, a NG MWNT yarn artificial muscle is obtained that provides reversible torsional actuation that can be used for glucose sensing. This actuator shows a short response time and high sensitivity (in the 5-100 × 10(-3) m range) for monitoring changes in glucose concentration in physiological buffer, without using any additional auxiliary substances or an electrical power source. It may be possible to apply the glucose-sensing MWNT yarn muscles as implantable glucose sensors that automatically release drugs when needed or as an artificial pancreas. PMID:26929006

  18. Artificial-life researchers try to create social reality.

    PubMed

    Flam, F

    1994-08-12

    Some scientists, among them cosmologist Stephen Hawking, argue that computer viruses are alive. A better case might be made for many of the self-replicating silicon-based creatures featured at the fourth Conference on Artificial Life, held on 5 to 8 July in Boston. Researchers from computer science, biology, and other disciplines presented computer programs that, among other things, evolved cooperative strategies in a selfish world and recreated themselves in ever more complex forms. PMID:17782127

  19. Artificial-life researchers try to create social reality.

    PubMed

    Flam, F

    1994-08-12

    Some scientists, among them cosmologist Stephen Hawking, argue that computer viruses are alive. A better case might be made for many of the self-replicating silicon-based creatures featured at the fourth Conference on Artificial Life, held on 5 to 8 July in Boston. Researchers from computer science, biology, and other disciplines presented computer programs that, among other things, evolved cooperative strategies in a selfish world and recreated themselves in ever more complex forms.

  20. Development of a Simple Structured Artificial Muscle Using SMA Wire

    SciTech Connect

    Ibuki, Ryuta; Maruyama, Shigenao; Komiya, Atsuki

    2006-05-05

    Artificial heart muscle using SMA wire is developed to assist weaken heartbeat. Simple structure design was adopted for large output force, large displacement and rapid cyclic motion of the actuator. The actuator was designed and fabricated from the viewpoint of heat transfer. Moving performance of the actuator was experimentally measured under 10N of loading condition. Under the maximum efficiency condition, the actuator shows cyclic motion with 1mm of displacement and time period of about 2 seconds in one cycle.

  1. Virtual Reality for Artificial Intelligence: human-centered simulation for social science.

    PubMed

    Cipresso, Pietro; Riva, Giuseppe

    2015-01-01

    There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society. PMID:26799903

  2. Virtual Reality for Artificial Intelligence: human-centered simulation for social science.

    PubMed

    Cipresso, Pietro; Riva, Giuseppe

    2015-01-01

    There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society.

  3. EAP application to artificial tactile feel display of virtual reality

    NASA Astrophysics Data System (ADS)

    Konyo, Masashi; Tadokoro, Satoshi; Takamori, Toshi; Oguro, Keisuke

    2001-07-01

    A tactile feel display device for virtual reality was developed using Nafion-Platinum composite type EAP actuator (known as IPMC or ICPF). Conventional tactile displays can hardly express tactile human feeling of the fine touch of the surface of a cloth, because their mechanisms cannot excite minute distributed stimuli on human skin. We propose a new ciliary device using ICPF actuators. The ICPF has sufficient softness, utilizing the passive material property, that complex control is not required. The low drive voltage is safe enough for the touch of fingers. Its simple operation mechanism allows miniaturization for practical equipments. The developed device was designed with a number of cilia consisting of ICPF actuators, where a cilium is 2 mm wide and 5 mm long. An ICPF membrane is cut into pectination, and only the cilium part is plated and has a function of an actuator. An inclined configuration of the cilia produces variety of stimuli to human skin controlling frequencies. We tried to display both pressure and vibration at the same time using modulated low and high frequencies. The result clearly shows that over 80% of the subjects sensed some special tactile feeling. A comparison with real material samples shows that this display can present a subtle distinction of tactile feeling of cloth, especially like a towel and denim.

  4. Variable recruitment fluidic artificial muscles: modeling and experiments

    NASA Astrophysics Data System (ADS)

    Bryant, Matthew; Meller, Michael A.; Garcia, Ephrahim

    2014-07-01

    We investigate taking advantage of the lightweight, compliant nature of fluidic artificial muscles to create variable recruitment actuators in the form of artificial muscle bundles. Several actuator elements at different diameter scales are packaged to act as a single actuator device. The actuator elements of the bundle can be connected to the fluidic control circuit so that different groups of actuator elements, much like individual muscle fibers, can be activated independently depending on the required force output and motion. This novel actuation concept allows us to save energy by effectively impedance matching the active size of the actuators on the fly based on the instantaneous required load. This design also allows a single bundled actuator to operate in substantially different force regimes, which could be valuable for robots that need to perform a wide variety of tasks and interact safely with humans. This paper proposes, models and analyzes the actuation efficiency of this actuator concept. The analysis shows that variable recruitment operation can create an actuator that reduces throttling valve losses to operate more efficiently over a broader range of its force-strain operating space. We also present preliminary results of the design, fabrication and experimental characterization of three such bioinspired variable recruitment actuator prototypes.

  5. Artificial muscles of dielectric elastomers attached to artificial tendons of functionalized carbon fibers

    NASA Astrophysics Data System (ADS)

    Ye, Zhihang; Faisal, Md. Shahnewaz Sabit; Asmatulu, Ramazan; Chen, Zheng

    2014-03-01

    Dielectric elastomers are soft actuation materials with promising applications in robotics and biomedical de- vices. In this paper, a bio-inspired artificial muscle actuator with artificial tendons is developed for robotic arm applications. The actuator uses dielectric elastomer as artificial muscle and functionalized carbon fibers as artificial tendons. A VHB 4910 tape is used as the dielectric elastomer and PDMS is used as the bonding material to mechanically connect the carbon fibers to the elastomer. Carbon fibers are highly popular for their high electrical conductivities, mechanical strengths, and bio-compatibilities. After the acid treatments for the functionalization of carbon fibers (500 nm - 10 μm), one end of carbon fibers is spread into the PDMS material, which provides enough bonding strength with other dielectric elastomers, while the other end is connected to a DC power supply. To characterize the actuation capability of the dielectric elastomer and electrical conductivity of carbon fibers, a diaphragm actuator is fabricated, where the carbon fibers are connected to the actuator. To test the mechanical bonding between PDMS and carbon fibers, specimens of PDMS bonded with carbon fibers are fabricated. Experiments have been conducted to verify the actuation capability of the dielectric elastomer and mechanical bonding of PDMS with carbon fibers. The energy efficiency of the dielectric elastomer increases as the load increases, which can reach above 50%. The mechanical bonding is strong enough for robotic arm applications.

  6. Design and optimization of multi-class series-parallel linear electromagnetic array artificial muscle.

    PubMed

    Li, Jing; Ji, Zhenyu; Shi, Xuetao; You, Fusheng; Fu, Feng; Liu, Ruigang; Xia, Junying; Wang, Nan; Bai, Jing; Wang, Zhanxi; Qin, Xiansheng; Dong, Xiuzhen

    2014-01-01

    Skeletal muscle exhibiting complex and excellent precision has evolved for millions of years. Skeletal muscle has better performance and simpler structure compared with existing driving modes. Artificial muscle may be designed by analyzing and imitating properties and structure of skeletal muscle based on bionics, which has been focused on by bionic researchers, and a structure mode of linear electromagnetic array artificial muscle has been designed in this paper. Half sarcomere is the minimum unit of artificial muscle and electromagnetic model has been built. The structural parameters of artificial half sarcomere actuator were optimized to achieve better movement performance. Experimental results show that artificial half sarcomere actuator possesses great motion performance such as high response speed, great acceleration, small weight and size, robustness, etc., which presents a promising application prospect of artificial half sarcomere actuator.

  7. Dynamics and Thermodynamics of Artificial Muscles Based on Nematic Gels

    NASA Astrophysics Data System (ADS)

    Hébert, M.; Kant, R.; de Gennes, P.-G.

    1997-07-01

    A scheme based on nemato-mechanical conversion has been proposed for potential artificial muscle applications (de Gennes P.-G., Hébert M. and Kant R., to appear in Macromol. Symp. (1996)). As the temperature in a nematic gel is reduced through the transition temperature, strong uniaxial deformation is encountered. We briefly expose the dynamics of contraction/elongation in this system. Work and dissipative losses are calculated for an operating cycle to get an approximative expression of the ratio work/losses, which can then be compared with real muscular efficiencies.

  8. Development of a linear induction motor based artificial muscle system.

    PubMed

    Gruber, A; Arguello, E; Silva, R

    2013-01-01

    We present the design of a linear induction motor based on electromagnetic interactions. The engine is capable of producing a linear movement from electricity. The design consists of stators arranged in parallel, which produce a magnetic field sufficient to displace a plunger along its axial axis. Furthermore, the winding has a shell and cap of ferromagnetic material that amplifies the magnetic field. This produces a force along the length of the motor that is similar to that of skeletal muscle. In principle, the objective is to use the engine in the development of an artificial muscle system for prosthetic applications, but it could have multiple applications, not only in the medical field, but in other industries.

  9. Development of a linear induction motor based artificial muscle system.

    PubMed

    Gruber, A; Arguello, E; Silva, R

    2013-01-01

    We present the design of a linear induction motor based on electromagnetic interactions. The engine is capable of producing a linear movement from electricity. The design consists of stators arranged in parallel, which produce a magnetic field sufficient to displace a plunger along its axial axis. Furthermore, the winding has a shell and cap of ferromagnetic material that amplifies the magnetic field. This produces a force along the length of the motor that is similar to that of skeletal muscle. In principle, the objective is to use the engine in the development of an artificial muscle system for prosthetic applications, but it could have multiple applications, not only in the medical field, but in other industries. PMID:24111159

  10. Biodegradable and edible gelatine actuators for use as artificial muscles

    NASA Astrophysics Data System (ADS)

    Chambers, L. D.; Winfield, J.; Ieropoulos, I.; Rossiter, J.

    2014-03-01

    The expense and use of non-recyclable materials often requires the retrieval and recovery of exploratory robots. Therefore, conventional materials such as plastics and metals in robotics can be limiting. For applications such as environmental monitoring, a fully biodegradable or edible robot may provide the optimum solution. Materials that provide power and actuation as well as biodegradability provide a compelling dimension to future robotic systems. To highlight the potential of novel biodegradable and edible materials as artificial muscles, the actuation of a biodegradable hydrogel was investigated. The fabricated gelatine based polymer gel was inexpensive, easy to handle, biodegradable and edible. The electro-mechanical performance was assessed using two contactless, parallel stainless steel electrodes immersed in 0.1M NaOH solution and fixed 40 mm apart with the strip actuator pinned directly between the electrodes. The actuation displacement in response to a bias voltage was measured over hydration/de-hydration cycles. Long term (11 days) and short term (1 hour) investigations demonstrated the bending behaviour of the swollen material in response to an electric field. Actuation voltage was low (<10 V) resulting in a slow actuation response with large displacement angles (<55 degrees). The stability of the immersed material decreased within the first hour due to swelling, however, was recovered on de-hydrating between actuations. The controlled degradation of biodegradable and edible artificial muscles could help to drive the development of environmentally friendly robotics.

  11. Pneumatic artificial muscle actuators for compliant robotic manipulators

    NASA Astrophysics Data System (ADS)

    Robinson, Ryan Michael

    Robotic systems are increasingly being utilized in applications that require interaction with humans. In order to enable safe physical human-robot interaction, light weight and compliant manipulation are desirable. These requirements are problematic for many conventional actuation systems, which are often heavy, and typically use high stiffness to achieve high performance, leading to large impact forces upon collision. However, pneumatic artificial muscles (PAMs) are actuators that can satisfy these safety requirements while offering power-to-weight ratios comparable to those of conventional actuators. PAMs are extremely lightweight actuators that produce force in response to pressurization. These muscles demonstrate natural compliance, but have a nonlinear force-contraction profile that complicates modeling and control. This body of research presents solutions to the challenges associated with the implementation of PAMs as actuators in robotic manipulators, particularly with regard to modeling, design, and control. An existing PAM force balance model was modified to incorporate elliptic end geometry and a hyper-elastic constitutive relationship, dramatically improving predictions of PAM behavior at high contraction. Utilizing this improved model, two proof-of-concept PAM-driven manipulators were designed and constructed; design features included parallel placement of actuators and a tendon-link joint design. Genetic algorithm search heuristics were employed to determine an optimal joint geometry; allowing a manipulator to achieve a desired torque profile while minimizing the required PAM pressure. Performance of the manipulators was evaluated in both simulation and experiment employing various linear and nonlinear control strategies. These included output feedback techniques, such as proportional-integral-derivative (PID) and fuzzy logic, a model-based control for computed torque, and more advanced controllers, such as sliding mode, adaptive sliding mode, and

  12. Ultrathin Alvarez lens system actuated by artificial muscles.

    PubMed

    Petsch, S; Grewe, A; Köbele, L; Sinzinger, S; Zappe, H

    2016-04-01

    A key feature of Alvarez lenses is that they may be tuned in focal length using lateral rather than axial translation, thus reducing the overall length of a focus-tunable optical system. Nevertheless the bulk of classical microsystems actuators limits further miniaturization. We present here a new, ultrathin focus-tunable Alvarez lens fabricated using molding techniques and actuated using liquid crystal elastomer (LCE) artificial muscle actuators. The large deformation generated by the LCE actuators permits the integration of the actuators in-plane with the mechanical and optical system and thus reduces the device thickness to only 1.6 mm. Movement of the Alvarez lens pair of 178 μm results in a focal length change of 3.3 mm, based on an initial focal length of 28.4 mm. This design is of considerable interest for realization of ultraflat focus-tunable and zoom systems. PMID:27139677

  13. Sensing and Tactile Artificial Muscles from Reactive Materials

    PubMed Central

    Conzuelo, Laura Valero; Arias-Pardilla, Joaquín; Cauich-Rodríguez, Juan V.; Smit, Mascha Afra; Otero, Toribio Fernández

    2010-01-01

    Films of conducting polymers can be oxidized and reduced in a reversible way. Any intermediate oxidation state determines an electrochemical equilibrium. Chemical or physical variables acting on the film may modify the equilibrium potential, so that the film acts as a sensor of the variable. The working potential of polypyrrole/DBSA (Dodecylbenzenesulfonic acid) films, oxidized or reduced under constant currents, changes as a function of the working conditions: electrolyte concentration, temperature or mechanical stress. During oxidation, the reactive material is a sensor of the ambient, the consumed electrical energy being the sensing magnitude. Devices based on any of the electrochemical properties of conducting polymers must act simultaneously as sensors of the working conditions. Artificial muscles, as electrochemical actuators constituted by reactive materials, respond to the ambient conditions during actuation. In this way, they can be used as actuators, sensing the surrounding conditions during actuation. Actuating and sensing signals are simultaneously included by the same two connecting wires. PMID:22319265

  14. Nanothorn electrodes for ionic polymer-metal composite artificial muscles

    NASA Astrophysics Data System (ADS)

    Palmre, Viljar; Pugal, David; Kim, Kwang J.; Leang, Kam K.; Asaka, Kinji; Aabloo, Alvo

    2014-08-01

    Ionic polymer-metal composites (IPMCs) have recently received tremendous interest as soft biomimetic actuators and sensors in various bioengineering and human affinity applications, such as artificial muscles and actuators, aquatic propulsors, robotic end-effectors, and active catheters. Main challenges in developing biomimetic actuators are the attainment of high strain and actuation force at low operating voltage. Here we first report a nanostructured electrode surface design for IPMC comprising platinum nanothorn assemblies with multiple sharp tips. The newly developed actuator with the nanostructured electrodes shows a new way to achieve highly enhanced electromechanical performance over existing flat-surfaced electrodes. We demonstrate that the formation and growth of the nanothorn assemblies at the electrode interface lead to a dramatic improvement (3- to 5-fold increase) in both actuation range and blocking force at low driving voltage (1-3 V). These advances are related to the highly capacitive properties of nanothorn assemblies, increasing significantly the charge transport during the actuation process.

  15. A potential material to cut down infection caused by application of artificial muscles.

    PubMed

    Wang, Jiang-Ning; Li, Xiao-Rong; Wang, De-Cheng

    2013-04-01

    Artificial muscles are so important that can be used to cure prosthetic limbs. A new kind of taurine Schiff base sodium was synthesized by a series of chemical reactions, which may be applied to strengthen antibacterial activity of artificial muscle. The bioactivity of this material was screened by cytotoxicity test, antibacterial test, and thermal gravity test and so on. All results told us that this material had low toxicity, high antibacterial activity and thermal stability. Combine our deep studies on pharmacological activity of the active material with our knowledge on artificial muscles; we want to know if we can put this material into the content of artificial muscle, in order to strengthen its antimicrobial activity, so that the pains of the patients who were applied artificial muscle would be relieved.

  16. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis.

    PubMed

    Gordon, Keith E; Sawicki, Gregory S; Ferris, Daniel P

    2006-01-01

    We developed a powered ankle-foot orthosis that uses artificial pneumatic muscles to produce active plantar flexor torque. The purpose of this study was to quantify the mechanical performance of the orthosis during human walking. Three subjects walked at a range of speeds wearing ankle-foot orthoses with either one or two artificial muscles working in parallel. The orthosis produced similar total peak plantar flexor torque and network across speeds independent of the number of muscles used. The orthosis generated approximately 57% of the peak ankle plantar flexor torque during stance and performed approximately 70% of the positive plantar flexor work done during normal walking. Artificial muscle bandwidth and force-length properties were the two primary factors limiting torque production. The lack of peak force and work differences between single and double muscle conditions can be explained by force-length properties. Subjects altered their ankle kinematics between conditions resulting in changes in artificial muscle length. In the double muscle condition greater plantar flexion yielded shorter artificial muscles lengths and decreased muscle forces. This finding emphasizes the importance of human testing in the design and development of robotic exoskeleton devices for assisting human movement. The results of this study outline the mechanical performance limitations of an ankle-foot orthosis powered by artificial pneumatic muscles. This orthosis could be valuable for gait rehabilitation and for studies investigating neuromechanical control of human walking. PMID:16023126

  17. Variable modulus cellular structures using pneumatic artificial muscles

    NASA Astrophysics Data System (ADS)

    Pontecorvo, Michael E.; Niemiec, Robert J.; Gandhi, Farhan S.

    2014-04-01

    This paper presents a novel variable modulus cellular structure based on a hexagonal unit cell with pneumatic artificial muscle (PAM) inclusions. The cell considered is pin-jointed, loaded in the horizontal direction, with three PAMs (one vertical PAM and two horizontal PAMs) oriented in an "H" configuration between the vertices of the cell. A method for calculation of the hexagonal cell modulus is introduced, as is an expression for the balance of tensile forces between the horizontal and vertical PAMs. An aluminum hexagonal unit cell is fabricated and simulation of the hexagonal cell with PAM inclusions is then compared to experimental measurement of the unit cell modulus in the horizontal direction with all three muscles pressurized to the same value over a pressure range up to 758 kPa. A change in cell modulus by a factor of 1.33 and a corresponding change in cell angle of 0.41° are demonstrated experimentally. A design study via simulation predicts that differential pressurization of the PAMs up to 2068 kPa can change the cell modulus in the horizontal direction by a factor of 6.83 with a change in cell angle of only 2.75°. Both experiment and simulation show that this concept provides a way to decouple the length change of a PAM from the change in modulus to create a structural unit cell whose in-plane modulus in a given direction can be tuned based on the orientation of PAMs within the cell and the pressure supplied to the individual muscles.

  18. Cutting the fat: artificial muscle oscillators for lighter, cheaper, and slimmer devices

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Rosset, Samuel; Shea, Herbert R.; Anderson, Iain A.

    2012-04-01

    Artificial muscles based on dielectric elastomers show enormous promise for a wide range of applications and are slowly moving from the lab to industry. One problem for industrial uptake is the expensive, rigid, heavy and bulky high voltage driver, sensor and control circuitry that artificial muscle devices currently require. One recent development, the Dielectric Elastomer Switch(es) (DES), shows promise for substantially reducing auxiliary circuitry and helping to mature the technology. DES are piezoresistive elements that can be used to form logic, driver, and sensor circuitry. One particularly useful feature of DES is their ability to embed oscillatory behaviour directly into an artificial muscle device. In this paper we will focus on how DES oscillators can break down the barriers to industrial adoption for artificial muscle devices. We have developed an improved artificial muscle ring oscillator and applied it to form a mechanosensitive conveyor. The free running oscillator ran at 4.4 Hz for 1056 cycles before failing due to electrode degradation. With better materials artificial muscle oscillators could open the door to robots with increased power to weight ratios, simple-to-control peristaltic pumps, and commercially viable artificial muscle motors.

  19. Soft shape-adaptive gripping device made from artificial muscle

    NASA Astrophysics Data System (ADS)

    Hamburg, E.; Vunder, V.; Johanson, U.; Kaasik, F.; Aabloo, A.

    2016-04-01

    We report on a multifunctional four-finger gripper for soft robotics, suitable for performing delicate manipulation tasks. The gripping device is comprised of separately driven gripping and lifting mechanisms, both made from a separate single piece of smart material - ionic capacitive laminate (ICL) also known as artificial muscle. Compared to other similar devices the relatively high force output of the ICL material allows one to construct a device able to grab and lift objects exceeding multiple times its own weight. Due to flexible design of ICL grips, the device is able to adapt the complex shapes of different objects and allows grasping single or multiple objects simultaneously without damage. The performance of the gripper is evaluated in two different configurations: a) the ultimate grasping strength of the gripping hand; and b) the maximum lifting force of the lifting actuator. The ICL is composed of three main layers: a porous membrane consisting of non-ionic polymer poly(vinylidene fluoride-co-hexafluoropropene) (PVdF-HFP), ionic liquid 1-ethyl-3-methylimidazolium trifluoromethane-sulfonate (EMITFS), and a reinforcing layer of woven fiberglass cloth. Both sides of the membrane are coated with a carbonaceous electrode. The electrodes are additionally covered with thin gold layers, serving as current collectors. Device made of this material operates silently, requires low driving voltage (<3 V), and is suitable for performing tasks in open air environment.

  20. An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces.

    PubMed

    Vilimek, Miloslav

    2014-01-01

    This paper presents the use of an artificial neural network (NN) approach for predicting the muscle forces around the elbow joint. The main goal was to create an artificial NN which could predict the musculotendon forces for any general muscle without significant errors. The input parameters for the network were morphological and anatomical musculotendon parameters, plus an activation level experimentally measured during a flexion/extension movement in the elbow. The muscle forces calculated by the 'Virtual Muscle System' provide the output. The cross-correlation coefficient expressing the ability of an artificial NN to predict the "true" force was in the range 0.97-0.98. A sensitivity analysis was used to eliminate the less sensitive inputs, and the final number of inputs for a sufficient prediction was nine. A variant of an artificial NN for a single specific muscle was also studied. The artificial NN for one specific muscle gives better results than a network for general muscles. This method is a good alternative to other approaches to calculation of muscle force.

  1. Polypyrrol/chitosan hydrogel hybrid microfiber as sensing artificial muscle

    NASA Astrophysics Data System (ADS)

    Ismail, Yahya A.; Martínez, Jose G.; Al Harrasi, Ahmad S.; Kim, Seon J.; Fernández Otero, Toribio F.

    2011-04-01

    An electrochemical actuator demands that it should act as a sensor of the working conditions for its efficient application in devices. Actuation and sensing characteristics of a biopolymer/conducting polymer hybrid microfiber artificial muscle fabricated through wet spinning of a chitosan solution followed by in situ chemical polymerization with pyrrol employing bis(triflouro methane sulfonyl) imide as dopant and ferric chloride as a catalyst is presented. The polypyrrol/chitosan hybrid microfiber was investigated by FTIR, scanning electron microscopy (SEM), electrical conductivity measurement, cyclic voltammetric and chronopotentiometric methods. The electrochemical measurements related to the sensing abilities were performed as a function of applied current, concentration and temperature keeping two of the variables constant at a given time using NaCl as electrolyte. Cyclic voltammograms confirmed that the electro activity is imparted by polypyrrol (pPy). The fiber showed an electrical conductivity of 3.21x10-1 Scm-1and an average linear electrochemical actuation strain of 0.54%. The chronopotentiometric responses during the oxidation/reduction processes of the microfiber for the different anodic/cathodic currents and the linear fit observed for the consumed electrical energy during the reaction for various applied currents suggested that it can act as a sensor of applied current. The chronopotentiometric responses and the linear fit of consumed electrical energy at different temperatures suggested that the actuator can act as a temperature sensor. Similarly a semi logarithmic dependence of the consumed electrical energy with concentration of the electrolyte during reaction is suggestive of its applicability as a concentration sensor. The demand that an electrochemical actuator to be a sensor of the working conditions, for its efficient application in devices is thus verified in this material.

  2. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    NASA Astrophysics Data System (ADS)

    Hocking, Erica G.; Wereley, Norman M.

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30-80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible.

  3. The effect of virtual reality-based eccentric training on lower extremity muscle activation and balance in stroke patients.

    PubMed

    Park, Seung Kyu; Yang, Dae Jung; Uhm, Yo Han; Heo, Jae Won; Kim, Je Ho

    2016-07-01

    [Purpose] The purpose of this study was to examine the effect of virtual reality-based eccentric training on lower extremity muscle activity and balance in stroke patients. [Subjects and Methods] Thirty stroke patients participated, with 15 patients allotted to each of two eccentric training groups: one using a slow velocity (group I) and one using a fast velocity (group II). The virtual reality-based eccentric training was performed by the patients for 30 minutes once a day, 5 days a week, for 8 weeks using an Eccentron system. Surface electromyography was used to measure the lower extremity muscle activity, while a BioRescue was used to measure balancing ability. [Results] A significant difference in lower extremity muscle activation and balance ability was observed in group I compared with group II. [Conclusion] This study showed that virtual reality-based eccentric training using a slow velocity is effective for improving lower extremity muscle activity and balance in stroke patients. PMID:27512263

  4. The effect of virtual reality-based eccentric training on lower extremity muscle activation and balance in stroke patients

    PubMed Central

    Park, Seung Kyu; Yang, Dae Jung; Uhm, Yo Han; Heo, Jae Won; Kim, Je Ho

    2016-01-01

    [Purpose] The purpose of this study was to examine the effect of virtual reality-based eccentric training on lower extremity muscle activity and balance in stroke patients. [Subjects and Methods] Thirty stroke patients participated, with 15 patients allotted to each of two eccentric training groups: one using a slow velocity (group I) and one using a fast velocity (group II). The virtual reality-based eccentric training was performed by the patients for 30 minutes once a day, 5 days a week, for 8 weeks using an Eccentron system. Surface electromyography was used to measure the lower extremity muscle activity, while a BioRescue was used to measure balancing ability. [Results] A significant difference in lower extremity muscle activation and balance ability was observed in group I compared with group II. [Conclusion] This study showed that virtual reality-based eccentric training using a slow velocity is effective for improving lower extremity muscle activity and balance in stroke patients. PMID:27512263

  5. In vivo generation of a mature and functional artificial skeletal muscle

    PubMed Central

    Fuoco, Claudia; Rizzi, Roberto; Biondo, Antonella; Longa, Emanuela; Mascaro, Anna; Shapira-Schweitzer, Keren; Kossovar, Olga; Benedetti, Sara; Salvatori, Maria L; Santoleri, Sabrina; Testa, Stefano; Bernardini, Sergio; Bottinelli, Roberto; Bearzi, Claudia; Cannata, Stefano M; Seliktar, Dror; Cossu, Giulio; Gargioli, Cesare

    2015-01-01

    Extensive loss of skeletal muscle tissue results in mutilations and severe loss of function. In vitro-generated artificial muscles undergo necrosis when transplanted in vivo before host angiogenesis may provide oxygen for fibre survival. Here, we report a novel strategy based upon the use of mouse or human mesoangioblasts encapsulated inside PEG-fibrinogen hydrogel. Once engineered to express placental-derived growth factor, mesoangioblasts attract host vessels and nerves, contributing to in vivo survival and maturation of newly formed myofibres. When the graft was implanted underneath the skin on the surface of the tibialis anterior, mature and aligned myofibres formed within several weeks as a complete and functional extra muscle. Moreover, replacing the ablated tibialis anterior with PEG-fibrinogen-embedded mesoangioblasts also resulted in an artificial muscle very similar to a normal tibialis anterior. This strategy opens the possibility for patient-specific muscle creation for a large number of pathological conditions involving muscle tissue wasting. PMID:25715804

  6. Flexible adaptation to an artificial recurrent connection from muscle to peripheral nerve in man.

    PubMed

    Kato, Kenji; Sasada, Syusaku; Nishimura, Yukio

    2016-02-01

    Controlling a neuroprosthesis requires learning a novel input-output transformation; however, how subjects incorporate this into limb control remains obscure. To elucidate the underling mechanisms, we investigated the motor adaptation process to a novel artificial recurrent connection (ARC) from a muscle to a peripheral nerve in healthy humans. In this paradigm, the ulnar nerve was electrically stimulated in proportion to the activation of the flexor carpi ulnaris (FCU), which is ulnar-innervated and monosynaptically innervated from Ia afferents of the FCU, defined as the "homonymous muscle," or the palmaris longus (PL), which is not innervated by the ulnar nerve and produces similar movement to the FCU, defined as the "synergist muscle." The ARC boosted the activity of the homonymous muscle and wrist joint movement during a visually guided reaching task. Participants could control muscle activity to utilize the ARC for the volitional control of wrist joint movement and then readapt to the absence of the ARC to either input muscle. Participants reduced homonymous muscle recruitment with practice, regardless of the input muscle. However, the adaptation process in the synergist muscle was dependent on the input muscle. The activity of the synergist muscle decreased when the input was the homonymous muscle, whereas it increased when it was the synergist muscle. This reorganization of the neuromotor map, which was maintained as an aftereffect of the ARC, was observed only when the input was the synergist muscle. These findings demonstrate that the ARC induced reorganization of neuromotor map in a targeted and sustainable manner. PMID:26631144

  7. Flexible adaptation to an artificial recurrent connection from muscle to peripheral nerve in man.

    PubMed

    Kato, Kenji; Sasada, Syusaku; Nishimura, Yukio

    2016-02-01

    Controlling a neuroprosthesis requires learning a novel input-output transformation; however, how subjects incorporate this into limb control remains obscure. To elucidate the underling mechanisms, we investigated the motor adaptation process to a novel artificial recurrent connection (ARC) from a muscle to a peripheral nerve in healthy humans. In this paradigm, the ulnar nerve was electrically stimulated in proportion to the activation of the flexor carpi ulnaris (FCU), which is ulnar-innervated and monosynaptically innervated from Ia afferents of the FCU, defined as the "homonymous muscle," or the palmaris longus (PL), which is not innervated by the ulnar nerve and produces similar movement to the FCU, defined as the "synergist muscle." The ARC boosted the activity of the homonymous muscle and wrist joint movement during a visually guided reaching task. Participants could control muscle activity to utilize the ARC for the volitional control of wrist joint movement and then readapt to the absence of the ARC to either input muscle. Participants reduced homonymous muscle recruitment with practice, regardless of the input muscle. However, the adaptation process in the synergist muscle was dependent on the input muscle. The activity of the synergist muscle decreased when the input was the homonymous muscle, whereas it increased when it was the synergist muscle. This reorganization of the neuromotor map, which was maintained as an aftereffect of the ARC, was observed only when the input was the synergist muscle. These findings demonstrate that the ARC induced reorganization of neuromotor map in a targeted and sustainable manner.

  8. High performance electrochemical and electrothermal artificial muscles from twist-spun carbon nanotube yarn

    NASA Astrophysics Data System (ADS)

    Lee, Jae Ah; Baughman, Ray H.; Kim, Seon Jeong

    2015-04-01

    High performance torsional and tensile artificial muscles are described, which utilize thermally- or electrochemically-induced volume changes of twist-spun, guest-filled, carbon nanotube (CNT) yarns. These yarns were prepared by incorporating twist in carbon nanotube sheets drawn from spinnable CNT forests. Inserting high twist into the CNT yarn results in yarn coiling, which can dramatically amplify tensile stroke and work capabilities compared with that for the non-coiled twisted yarn. When electrochemically driven in a liquid electrolyte, these artificial muscles can generate a torsional rotation per muscle length that is over 1000 times higher than for previously reported torsional muscles. All-solid-state torsional electrochemical yarn muscles have provided a large torsional muscle stroke (53° per mm of yarn length) and a tensile stroke of up to 1.3% when lifting loads that are ~25 times heavier than can be lifted by the same diameter human skeletal muscle. Over a million torsional and tensile actuation cycles have been demonstrated for thermally powered CNT hybrid yarns muscles filled with paraffin wax, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. At lower actuation rates, these thermally powered muscles provide tensile strokes of over 10%.

  9. Bending response of an artificial muscle in high-pressure water environments

    NASA Astrophysics Data System (ADS)

    Nakabo, Yoshihiro; Takagi, Kentaro; Mukai, Toshiharu; Yoshida, Hiroshi; Asaka, Kinji

    2005-05-01

    Ionic Polymer-Metal Composites (IPMCs) are soft actuators, generally referred to as "artificial muscles" which are made out of high polymer gel films of perfluorosulfonic acid chemically plated with gold. These composites bend by applying a low voltage between electrodes on both sides. The actuator is soft and works in water. It bends silently, responds quickly and has a long life. In our previous work, snake-like swimming robots and a 3DOF 2-D manipulator have been developed. In this research we have investigated the bending response of an IPMC artificial muscle in high-pressure water environments, with future applications in deep-sea actuators and robots. The artificial muscles have an advantage over electric motors because they do not need sealing from water, which is difficult in high-pressure water environments. Bending responses of artificial muscles were measured at three different pressure levels, 30MPa, 70MPa and 100MPa. The maximum pressure, 100MPa is the same pressure as the deepest ocean on earth, (10,000m.) From experiments, there was found to be almost no difference with that at normal water pressure of 1Pa. We present detailed results of responses of these artificial muscles including current responses and videos of bending motion with respect to combinations of several different input voltages, frequencies and wave patterns.

  10. A reconfigurable robot with tensegrity structure using nylon artificial muscle

    NASA Astrophysics Data System (ADS)

    Wu, Lianjun; de Andrade, Monica Jung; Brahme, Tarang; Tadesse, Yonas; Baughman, Ray H.

    2016-04-01

    This paper describes the design and experimental investigation of a self-reconfigurable icosahedral robot for locomotion. The robot consists of novel and modular tensegrity structures, which can potentially maneuver in unstructured environments while carrying a payload. Twisted and Coiled Polymer (TCP) muscles were utilized to actuate the tensegrity structure as needed. The tensegrity system has rigid struts and flexible TCP muscles that allow keeping a payload in the central region. The TCP muscles provide large actuation stroke, high mechanical power per fiber mass and can undergo millions of highly reversible cycles. The muscles are electrothermally driven, and, upon stimulus, the heated muscles reconfigure the shape of the tensegrity structure. Here, we present preliminary experimental results that determine the rolling motion of the structure.

  11. Carbon-based torsional and tensile artificial muscles driven by thermal expansion (presentation video)

    NASA Astrophysics Data System (ADS)

    Haines, Carter S.; Lima, Márcio D.; Li, Na; Spinks, Geoffrey M.; Foroughi, Javad; Madden, John D. W.; Kim, Shi-Hyeong; Fang, Shaoli; Jung de Andrade, Monica; Göktepe, Fatma; Göktepe, Ozer; Mirvakili, Seyed M.; Naficy, Sina; Lepró, Xavier; Oh, Jiyoung; Kozlov, Mikhail E.; Kim, Seon Jeong; Xu, Xiuru; Swedlove, Benjamin J.; Wallace, Gordon G.; Baughman, Ray H.

    2014-03-01

    High-performance artificial muscles have been produced from fibers having highly anisotropic thermal expansion. Inserting twist into these precursor fibers enables thermally-driven torsional actuation and can cause the formation of helical coils. Such coiled structures provide giant-stroke tensile actuation exceeding the 20% in-vivo contraction of natural muscles. This contraction is highly reversible, with over one million cycles demonstrated, and can occur without the hysteresis that plagues competing shape-memory and piezoelectric muscles. Several materials and composites are investigated, including low-cost, commercially-available muscle precursors, potentially facilitating thermally-responsive textiles that change porosity to provide wearer comfort.

  12. Controllable rectification of the axial expansion in the thermally driven artificial muscle

    NASA Astrophysics Data System (ADS)

    Yue, Donghua; Zhang, Xingyi; Yong, Huadong; Zhou, Jun; Zhou, You-He

    2015-09-01

    At present, the concept of artificial muscle twisted by polymers or fibers has become a hot issue in the field of intelligent material research according to its distinguishing advantages, e.g., high energy density, large-stroke, non-hysteresis, and inexpensive. The axial thermal expansion coefficient is an important parameter which can affect its demanding applications. In this letter, a device with high accuracy capacitive sensor is constructed to measure the axial thermal expansion coefficient of the twisted carbon fibers and yarns of Kevlar, and a theoretical model based on the thermal elasticity and the geometrical features of the twisted structure are also presented to predict the axial expansion coefficient. It is found that the calculated results take good agreements with the experimental data. According to the present experiment and analyses, a method to control the axial thermal expansion coefficient of artificial muscle is proposed. Moreover, the mechanism of this kind of thermally driven artificial muscle is discussed.

  13. Human-like android face equipped with EAP artificial muscles to endow expressivity

    NASA Astrophysics Data System (ADS)

    Pioggia, Giovanni; Di Francesco, Fabio; Geraci, C.; Chiarelli, P.; De Rossi, Danilo

    2001-07-01

    Electroactive polymer artificial muscles (EAP) can be used to mimic human muscles. In an attempt to exploit these properties we are developing in our laboratory a human-like android unit able to replicate human facial expressions. The android is equipped with linear actuators and is made up of a multisensing acquisition system able to assess rheological and organoleptic properties of food. After the data analysis, the android looks like a man who tastes similar substances. It develops expressions mimicking human responses to the same foodstuff. In this paper we will present the design and relevant features of the artificial muscles and the performance of the android. Human anatomy and mechanical studies were needed to construct the carbon fiber composite holding structure. Location and electromechanical characteristics of EAP actuators were investigated. The system holds sensors, artificial skin and actuators to obtain suitable expressions, implementing the chewing phase, performed by a dedicated actuator, from the expressive phase achieved through multiactuator synergistic drive.

  14. Vibration control of an artificial muscle manipulator with a magnetorheological fluid brake

    NASA Astrophysics Data System (ADS)

    Tomori, H.; Midorikawa, Y.; Nakamura, T.

    2013-02-01

    Recently, proposed applications of robots require them to contact human safely. Therefore, we focus on pneumatic rubber artificial muscle. This actuator is flexible, light, and has high-power density. However, because the artificial muscle is flexible, it vibrates when there is a high load. Therefore, we paid attention to the magnetorheological (MR) fluid. We propose a control method of the MR brake considering energy of the manipulator system. By this control method, MR brake dissipates energy leading to vibration of the manipulator. In this paper, we calculated the energy and controlled the MR brake. And, we deliberated the proposal method by simulation using the dynamic model of the manipulator, and experiment.

  15. Reality

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    The first of the three worlds to be discussed is Reality. This whole level is devoted to this world consisting of consultants, subject-matter experts, and disciplines related to the domain and subject of the game. After a short introduction where I show—amongst many other things—a virtual reproduction and game interpretation of Magritte's famous painting of a pipe, I explain by using my experiences from Levee Patroller and drawing upon other examples, four relevant aspects from this world that designers need to consider. The first concerns defining the problem. This is quite hard, especially because at many times, different problem definitions can be conceived. When a problem is finally defined, the second aspect, the factors which are involved with the problem, need to be found and elaborated on. If designers start to relate the factors to each other, they are preoccupied with the third aspect, the relationships. To picture this well, it helps to draw a diagram. Mostly, games are not static and that is why the process needs to be taken into account as well. After considering this fourth aspect, the “model of reality” can be said to be complete. To judge this model and the eventual game, Reality has its own criteria of which I discuss flexibility, fidelity, and validity.

  16. A top-down multi-scale modeling for actuation response of polymeric artificial muscles

    NASA Astrophysics Data System (ADS)

    Yang, Qianxi; Li, Guoqiang

    2016-07-01

    A class of innovative artificial muscles made of high-strength polymeric fibers such as fishing lines or sewing threads have been discovered recently. These muscles are fabricated by a simple "twist-insertion" procedure, which have attracted increasing attention due to their low cost and readily availability, giant tensile stroke, record energy density, and easy controllability. In the present paper, we established a multi-scale modeling framework for the thermomechanical actuation responses by a top-down strategy, spanning from macro-scale helical spring analysis down to molecular level chain interaction study. Comparison between modeling results and experimental results exhibited excellent agreement. The effect of the micro-, meso- and macro-scale parameters on the actuation responses of the artificial muscle was further discussed through a parametric study per the validated model. This work helps understand the physical origin behind the remarkable tensile actuation behavior of the twisted-then-coiled polymeric artificial muscles and also provides inspirations for optimal design of advanced artificial muscles made by twist-insertion procedure.

  17. Effects of virtual reality-based ankle exercise on the dynamic balance, muscle tone, and gait of stroke patients.

    PubMed

    Yom, Changho; Cho, Hwi-Young; Lee, ByoungHee

    2015-03-01

    [Purpose] The purpose of this study was to investigate the therapeutic effects of virtual reality-based ankle exercise on the dynamic balance, muscle tone, and gait ability of stroke subjects. [Subjects and Methods] Twenty persons who were in the chronic stroke subjects of this study and they were included and assigned to two groups: experimental (VRAE; Virtual Reality-based Ankle Exercise group) (n=10) and control groups (n=10). The VRAE group performed virtual environment system ankle exercise, and the control group watched a video. Both groups performed their respective interventions for 30 minutes per day, 5 times per week over a 6-week period. To confirm the effects of the intervention, dynamic balance, muscle tone, and spatiotemporal gait were evaluated. [Results] The results showed that the dynamic balance and muscle tone was significantly more improved after the intervention compared to before in the VRAE group (dynamic balance: 5.50±2.57; muscle tone: 0.90±0.39), and the improvements were more significant than those in the control (dynamic balance: 1.22±2.05; muscle tone: 0.10±0.21). Spatiotemporal gait measures were significantly more increased in the paretic limb after the intervention compared to before in the VRAE group and the improvements were more significant than those in the control group. [Conclusion] This study demonstrated that virtual reality-based ankle exercise effectively improves the dynamic balance, muscle tone, and gait ability of stroke patients.

  18. Artificial Muscle Devices: Innovations and Prospects for Fecal Incontinence Treatment.

    PubMed

    Fattorini, Elisa; Brusa, Tobia; Gingert, Christian; Hieber, Simone E; Leung, Vanessa; Osmani, Bekim; Dominietto, Marco D; Büchler, Philippe; Hetzer, Franc; Müller, Bert

    2016-05-01

    Fecal incontinence describes the involuntary loss of bowel content, which is responsible for stigmatization and social exclusion. It affects about 45% of retirement home residents and overall more than 12% of the adult population. Severe fecal incontinence can be treated by the implantation of an artificial sphincter. Currently available implants, however, are not part of everyday surgery due to long-term re-operation rates of 95% and definitive explantation rates of 40%. Such figures suggest that the implants fail to reproduce the capabilities of the natural sphincter. This article reviews the artificial sphincters on the market and under development, presents their physical principles of operation and critically analyzes their performance. We highlight the geometrical and mechanical parameters crucial for the design of an artificial fecal sphincter and propose more advanced mechanisms of action for a biomimetic device with sensory feedback. Dielectric electro-active polymer actuators are especially attractive because of their versatility, response time, reaction forces, and energy consumption. The availability of such technology will enable fast pressure adaption comparable to the natural feedback mechanism, so that tissue atrophy and erosion can be avoided while maintaining continence during daily activities. PMID:26926695

  19. Bio-inspired artificial muscle structure for integrated sensing and actuation

    NASA Astrophysics Data System (ADS)

    Ye, Zhihang; Faisal, Md. Shahnewaz Sabit; Asmatulu, Ramazan; Chen, Zheng

    2015-04-01

    In this paper, a novel artificial muscle/tendon structure is developed for achieving bio-inspired actuation and self-sensing. The hybrid structure consists of a dielectric elastomer (DE) material connected with carbon fibers, which incorporates the built-in sensing and actuation capability of DE and mechanical, electrical interfacing capability of carbon fibers. DEs are light weight artificial muscles that can generate compliant actuation with low power consumption. Carbon fibers act as artificial tendon due to their high electro-conductivity and mechanical strength. PDMS material is used to electrically and mechanically connect the carbon fibers with the DE material. A strip actuator was fabricated to verify the structure design and characterize its actuation and sensing capabilities. A 3M VHB 4905 tape was used as the DE material. To make compliant electrodes on the VHB tape, carbon black was sprayed on the surface of VHB tape. To join the carbon fibers to the VHB tape, PDMS was used as bonding material. Experiments have been conducted to characterize the actuation and sensing capabilities. The actuation tests have shown that the energy efficiency of artificial muscle can reach up to 0.7% and the strain can reach up to 1%. The sensing tests have verified that the structure is capable of self-sensing through the electrical impedance measurement.

  20. Biologically inspired hexapedal robot using field-effect electroactive elastomer artificial muscles

    NASA Astrophysics Data System (ADS)

    Eckerle, Joseph; Stanford, Scott; Marlow, John; Schmidt, Roger; Oh, Seajin; Low, Thomas; Shastri, Subramanian V.

    2001-06-01

    Small, autonomous mobile robots are needed for applications such as reconnaissance over difficult terrain or internal inspection of large industrial systems. Previous work in experimental biology and with legged robots has revealed the advantages of using leg actuators with inherent compliance for robust, autonomous locomotion over uneven terrain. Recently developed field-effect electroactive elastomer artificial muscle actuators offer such compliance as well as attractive performance parameters such as force/weight and efficiency, so we developed a small (670 g) six-legged robot, FLEX, using AM actuators. Electrically, AM actuators are a capacitive, high-impedance load similar to piezoelectrics, which makes them difficult to rive optimally with conventional circuitry. Still, we were able to devise a modular, microprocessor-based control system capable of driving 12 muscles with up to 5,000 V, operating form an on- board battery. The artificial muscle actuators had excellent compliance and peak performance, but suffered from poor uniformity and degradation over time. FLEX is the first robot of its kind. While there is room for improvement in some of the robot systems such as actuators and their drivers, this work has validated the idea of using artificial muscle actuators in biologically inspired walking robots.

  1. Contribution to the mechanics of worm-like motion systems and artificial muscles.

    PubMed

    Steigenberger, J

    2003-08-01

    In this paper the author presents a mathematical model of a device that can be seen as a segment of an artificial worm (following the paradigm "earthworm") and as an artificial muscle as well. Confining considerations to statics, the model shows up as an ordinary parameter-dependent boundary value problem. It is tackled numerically in various particular forms by means of Maple and thus gives a good view of the segment's behavior during inflation and under longitudinal load. Segments of maximal volume present a useful preliminary stage of the investigations. PMID:14586816

  2. Interference between normal vibrato and artificial stimulation of laryngeal muscles at near-vibrato rates.

    PubMed

    Titze, I R; Solomon, N P; Luschei, E S; Hirano, M

    1994-09-01

    A stabilized tremor hypothesis for vocal vibrato is investigated. The stabilizer is assumed to be a mechanical oscillator that may contain reflex loops. Artificial stimulation of the cricothyroid muscle in one subject showed a well-defined resonance curve of this peripheral oscillator at approximately 5.0 Hz. Combined artificial stimulation with natural vibrato showed that the vibrato could be entrained by a peripheral stimulus, provided the two frequencies are separated by no more than approximately +/- 0.5 Hz. This suggests that vibrato frequencies are not "hard-wired" centrally, even though a collection of centrally generated tremors may serve as excitation to the peripheral oscillator. PMID:7987423

  3. Electroactive artificial muscle: nonionic polymer gels and elastomers

    NASA Astrophysics Data System (ADS)

    Hirai, Toshihiro; Uddin, Md. Zulhash; Zheng, Jianming; Watanabe, Masashi; Shirai, Hirofusa

    2003-10-01

    Non-ionic dielectric polymers have not been considered adequate for electroactive actuator materials because of their poor reaction to the electric field. As electroactive polymeric materials, the polyelectrolytes and conductive polymers have been investigated intensively, since they can show large deformation in aqueous media or in the presence of water as an additive. In this paper, the author will show the non-ionic polymeric materials can be used as electrically active materials. The electrically induced deformation phenomena that will be shown are contraction and relaxation, bending by solvent drag in the gel, crawling deformation, and "electrotactic" amoeba-like creep deformation. And the controlling factors of bending of elatomers. The materials that will be treated in this presentation covers from highly swollen dielectric gels through plasticized polymers to non-solvent type elastomers. Characteristics of the actuations are particularly large deformation or huge strain under much smaller energy dissipation compared to the conventional polyelectrolyte or conductive polymer actuators. Applications of the materials for pumping, valve, artificial pupil etc. will be demonstrated.

  4. The use of artificial neural networks to predict the muscle behavior

    NASA Astrophysics Data System (ADS)

    Kutilek, Patrik; Viteckova, Slavka; Svoboda, Zdenĕk; Smrcka, Pavel

    2013-09-01

    The aim of this article is to introduce methods of prediction of muscle behavior of the lower extremities based on artificial neural networks, which can be used for medical purposes. Our work focuses on predicting muscletendon forces and moments during human gait with the use of angle-time diagram. A group of healthy children and children with cerebral palsy were measured using a Vicon MoCap system. The kinematic data was recorded and the OpenSim software system was used to identify the joint angles, muscle-tendon forces and joint muscle moment, which are presented graphically with time diagrams. The musculus gastrocnemius medialis that is often studied in the context of cerebral palsy have been chosen to study the method of prediction. The diagrams of mean muscle-tendon force and mean moment are plotted and the data about the force-time and moment-time dependencies are used for training neural networks. The new way of prediction of muscle-tendon forces and moments based on neural networks was tested. Neural networks predicted the muscle forces and moments of healthy children and children with cerebral palsy. The designed method of prediction by neural networks could help to identify the difference between muscle behavior of healthy subjects and diseased subjects.

  5. Electrostriction in field-structured composites: Basis for a fast artificial muscle?

    SciTech Connect

    Martin, J.E.; Anderson, R.A.

    1999-09-01

    The electrostriction of composites consisting of dielectric particles embedded in a gel or elastomer is discussed. It is shown that when these particles are organized by a uniaxial field before gelation, the resulting {ital field-structured} composites are expected to exhibit enhanced electrostriction in a uniform field applied along the same axis as the structuring field. The associated stresses might be large enough to form the basis of a polymer-based fast artificial muscle. {copyright} {ital 1999 American Institute of Physics.}

  6. Development of a McKibben artificial muscle using a shape-memory polymer

    NASA Astrophysics Data System (ADS)

    Takashima, Kazuto; Rossiter, Jonathan; Mukai, Toshiharu

    2010-04-01

    When McKibben artificial muscle actuators are applied to robotic joints, the joints are driven by pairs of actuators located antagonistically to increase the joint stiffness. However, the force for shape fixity is not large. Therefore, the objective of this study is to develop a McKibben artificial muscle using a shape-memory polymer (SMP). SMPs can be deformed above their glass transition temperature (Tg) by applying a small load. They maintain their shape after they have been cooled to below Tg. They then return to the predefined shape when heated above Tg. Exploiting these characteristics, we coated the braided mesh shell of a commercial McKibben artificial muscle and made a prototype of the actuator using the SMP. When this new actuator is warmed above Tg, the SMP deforms. Then, when the internal bladder is pressurized, the actuator shortens and/or produces a load. After the actuator becomes the desirable length, the actuator is cooled to below Tg and the SMP is fixed in a rigid state even without the air supply. Consequently, this actuator can maintain its length more rigidly and accurately. The experimental results conducted on this prototype confirm the feasibility of this new actuator.

  7. Artificial Muscles Based on Electroactive Polymers as an Enabling Tool in Biomimetics

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    2007-01-01

    Evolution has resolved many of nature's challenges leading to working and lasting solutions that employ principles of physics, chemistry, mechanical engineering, materials science, and many other fields of science and engineering. Nature's inventions have always inspired human achievements leading to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems, and many other benefits. Some of the technologies that have emerged include artificial intelligence, artificial vision, and artificial muscles, where the latter is the moniker for electroactive polymers (EAPs). To take advantage of these materials and make them practical actuators, efforts are made worldwide to develop capabilities that are critical to the field infrastructure. Researchers are developing analytical model and comprehensive understanding of EAP materials response mechanism as well as effective processing and characterization techniques. The field is still in its emerging state and robust materials are still not readily available; however, in recent years, significant progress has been made and commercial products have already started to appear. In the current paper, the state-of-the-art and challenges to artificial muscles as well as their potential application to biomimetic mechanisms and devices are described and discussed.

  8. Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk.

    PubMed

    Chun, Kyoung-Yong; Hyeong Kim, Shi; Kyoon Shin, Min; Hoon Kwon, Cheong; Park, Jihwang; Tae Kim, Youn; Spinks, Geoffrey M; Lima, Márcio D; Haines, Carter S; Baughman, Ray H; Jeong Kim, Seon

    2014-01-01

    Torsional artificial muscles generating fast, large-angle rotation have been recently demonstrated, which exploit the helical configuration of twist-spun carbon nanotube yarns. These wax-infiltrated, electrothermally powered artificial muscles are torsionally underdamped, thereby experiencing dynamic oscillations that complicate positional control. Here, using the strategy spiders deploy to eliminate uncontrolled spinning at the end of dragline silk, we have developed ultrafast hybrid carbon nanotube yarn muscles that generated a 9,800 r.p.m. rotation without noticeable oscillation. A high-loss viscoelastic material, comprising paraffin wax and polystyrene-poly(ethylene-butylene)-polystyrene copolymer, was used as yarn guest to give an overdamped dynamic response. Using more than 10-fold decrease in mechanical stabilization time, compared with previous nanotube yarn torsional muscles, dynamic mirror positioning that is both fast and accurate is demonstrated. Scalability to provide constant volumetric torsional work capacity is demonstrated over a 10-fold change in yarn cross-sectional area, which is important for upscaled applications. PMID:24557457

  9. Effect of voluntary vs. artificial activation on the relationship of muscle torque to speed

    NASA Technical Reports Server (NTRS)

    Dudley, Gary A.; Harris, Robert T.; Duvoisin, Marc R.; Hather, Bruce M.; Buchanan, Paul

    1990-01-01

    The suggestion by Phillips and Petrofsky (1980) and Wickiewicz et al. (1984) that artificial activation of the knee extensor muscles should result in greater relative changes in torque than those evident with maximal voluntary activation is examined by investigating the speed-torque relationship of the right knee extensor muscle group in eight human subjects in whom activation was achieved by 'maximal' voluntary effort or by electrical stimulation. Torque was measured at a specific knee angle during isokinetic concentric or eccentric actions at velocities between 0.17 and 3.66 rad/s and during isometric actions. It is shown that, with artificial activation, the relative changes in both eccentric and concentric torque were greater as the speed increased; the speed-torque relationship was independed of the extent of activation and was similar to that of an isolated muscle. On the other hand, activation by the central nervous system during maximal effort depended on the speed and the type of muscle action performed.

  10. Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk

    NASA Astrophysics Data System (ADS)

    Chun, Kyoung-Yong; Hyeong Kim, Shi; Kyoon Shin, Min; Hoon Kwon, Cheong; Park, Jihwang; Tae Kim, Youn; Spinks, Geoffrey M.; Lima, Márcio D.; Haines, Carter S.; Baughman, Ray H.; Jeong Kim, Seon

    2014-02-01

    Torsional artificial muscles generating fast, large-angle rotation have been recently demonstrated, which exploit the helical configuration of twist-spun carbon nanotube yarns. These wax-infiltrated, electrothermally powered artificial muscles are torsionally underdamped, thereby experiencing dynamic oscillations that complicate positional control. Here, using the strategy spiders deploy to eliminate uncontrolled spinning at the end of dragline silk, we have developed ultrafast hybrid carbon nanotube yarn muscles that generated a 9,800 r.p.m. rotation without noticeable oscillation. A high-loss viscoelastic material, comprising paraffin wax and polystyrene-poly(ethylene-butylene)-polystyrene copolymer, was used as yarn guest to give an overdamped dynamic response. Using more than 10-fold decrease in mechanical stabilization time, compared with previous nanotube yarn torsional muscles, dynamic mirror positioning that is both fast and accurate is demonstrated. Scalability to provide constant volumetric torsional work capacity is demonstrated over a 10-fold change in yarn cross-sectional area, which is important for upscaled applications.

  11. Multi-functional dielectric elastomer artificial muscles for soft and smart machines

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Gisby, Todd A.; McKay, Thomas G.; O'Brien, Benjamin M.; Calius, Emilio P.

    2012-08-01

    Dielectric elastomer (DE) actuators are popularly referred to as artificial muscles because their impressive actuation strain and speed, low density, compliant nature, and silent operation capture many of the desirable physical properties of muscle. Unlike conventional robots and machines, whose mechanisms and drive systems rapidly become very complex as the number of degrees of freedom increases, groups of DE artificial muscles have the potential to generate rich motions combining many translational and rotational degrees of freedom. These artificial muscle systems can mimic the agonist-antagonist approach found in nature, so that active expansion of one artificial muscle is taken up by passive contraction in the other. They can also vary their stiffness. In addition, they have the ability to produce electricity from movement. But departing from the high stiffness paradigm of electromagnetic motors and gearboxes leads to new control challenges, and for soft machines to be truly dexterous like their biological analogues, they need precise control. Humans control their limbs using sensory feedback from strain sensitive cells embedded in muscle. In DE actuators, deformation is inextricably linked to changes in electrical parameters that include capacitance and resistance, so the state of strain can be inferred by sensing these changes, enabling the closed loop control that is critical for a soft machine. But the increased information processing required for a soft machine can impose a substantial burden on a central controller. The natural solution is to distribute control within the mechanism itself. The octopus arm is an example of a soft actuator with a virtually infinite number of degrees of freedom (DOF). The arm utilizes neural ganglia to process sensory data at the local "arm" level and perform complex tasks. Recent advances in soft electronics such as the piezoresistive dielectric elastomer switch (DES) have the potential to be fully integrated with actuators

  12. Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle.

    PubMed

    Schmitt, S; Haeufle, D F B; Blickhan, R; Günther, M

    2012-09-01

    The biological muscle is a powerful, flexible and versatile actuator. Its intrinsic characteristics determine the way how movements are generated and controlled. Robotic and prosthetic applications expect to profit from relying on bio-inspired actuators which exhibit natural (muscle-like) characteristics. As of today, when constructing a technical actuator, it is not possible to copy the exact molecular structure of a biological muscle. Alternatively, the question may be put how its characteristics can be realized with known mechanical components. Recently, a mechanical construct for an artificial muscle was proposed, which exhibits hyperbolic force-velocity characteristics. In this paper, we promote the constructing concept which is made by substantiating the mechanical design of biological muscle by a simple model, proving the feasibility of its real-world implementation, and checking their output both for mutual consistency and agreement with biological measurements. In particular, the relations of force, enthalpy rate and mechanical efficiency versus contraction velocity of both the construct's technical implementation and its numerical model were determined in quick-release experiments. All model predictions for these relations and the hardware results are now in good agreement with the biological literature. We conclude that the construct represents a mechanical concept of natural actuation, which is suitable for laying down some useful suggestions when designing bio-inspired actuators.

  13. The Artificial Gravity Bed Rest Pilot Project: Effects on Knee Extensor and Plantar Flexor Muscle Groups

    NASA Technical Reports Server (NTRS)

    Caiozzo, V. J.; Haddad, F.; Lee, S.; Baker, M.; Baldwin, K. M.

    2007-01-01

    The goal of this project was to examine the effects of artificial gravity (2.5 g) on skeletal muscle strength and key anabolic/catabolic markers known to regulate muscle mass. Two groups of subjects were selected for study: 1) a 21 day-bed rest (BR) control (C) group (N=7); and 2) an AG group (N=8), which was exposed to 21 days of bed-rest plus daily 1 hr exposures to AG (2.5 g). This particular experiment was part of an integrated AG Pilot Project sponsored by NASA/Johnson Space Center. The in vivo torque-velocity relationships of the knee extensors and plantar flexors of the ankle were determined pre and post treatment. Also, pre- and post treatment biopsy samples were obtained from both the vastus lateralis and soleus muscles and were used, in part, for a series of analyses on gene expression (mRNA abundance) of key factors implicated in the anabolic versus catabolic state of the muscle. Post/Pre toque-velocity determinations revealed greater decrements in knee extensor performance in the C versus AG group (P less than 0.04). The plantar flexor muscle group of the AG subjects actually demonstrated a net gain in torque-velocity relationship; whereas, in the C group the overall post/pre responses declined (AG vs C; P less than 0.001). Measurements of muscle fiber cross-sectional area (for both muscles) demonstrated a loss of approx. 20% in the C group while no losses were evident in the AG group. RT-PCR analyses of muscle biopsy specimens demonstrated that markers of growth and cytoskeletal integrity (IGF-1, IGF-1 BP4, mechano growth factor, total RNA, and pro-collagen 3a) were higher in the AG group, whereas catabolic markers (myostatin and atrogen) were elevated in the C group. Importantly, these patterns were seen in both muscles. Based on these observations we conclude that paradigms of AG have the potential to maintain the functional, biochemical, and structural homeostasis of skeletal muscle in the face of chronic unloading states. These findings also

  14. Effective Young's modulus of the artificial muscle twisted by fishing lines: Analysis and experiment

    NASA Astrophysics Data System (ADS)

    Yue, Donghua; Zhang, Xingyi; Zhou, Jun; Zhou, You-He

    2015-09-01

    Artificial muscles transformed by fishing lines or sewing thread, have distinguished advantages, e. g., fast, scalable, nonhysteretic, and long-life, which have been proposed by Haines et al. [Science 343, 868 (2014)]. In this paper, we present a geometrical model to predict the effective Young's modulus of the basic structure that is twisted by three fishing lines with the same diameter. Moreover, series of experiments are carried out to verify the present model, and it is found the theoretical calculations take good agreements with the experimental results.

  15. Propulsion System with Pneumatic Artificial Muscles for Powering Ankle-Foot Orthosis

    NASA Astrophysics Data System (ADS)

    Veneva, Ivanka; Vanderborght, Bram; Lefeber, Dirk; Cherelle, Pierre

    2013-12-01

    The aim of this paper is to present the design of device for control of new propulsion system with pneumatic artificial muscles. The propulsion system can be used for ankle joint articulation, for assisting and rehabilitation in cases of injured ankle-foot complex, stroke patients or elderly with functional weakness. Proposed device for control is composed by microcontroller, generator for muscles contractions and sensor system. The microcontroller receives the control signals from sensors and modulates ankle joint flex- ion and extension during human motion. The local joint control with a PID (Proportional-Integral Derivative) position feedback directly calculates desired pressure levels and dictates the necessary contractions. The main goal is to achieve an adaptation of the system and provide the necessary joint torque using position control with feedback.

  16. Determination of five nitroimidazole residues in artificial porcine muscle tissue samples by capillary electrophoresis.

    PubMed

    Lin, Yingyun; Su, Yan; Liao, Xiulin; Yang, Na; Yang, Xiupei; Choi, Martin M F

    2012-01-15

    A capillary electrophoresis (CE) method with ultraviolet detection has been developed for simultaneous detection and quantification of five nitroimidazoles including benzoylmetronidazole, dimetridazole, metronidazole, ronidazole, and secnidazole in porcine muscles. Nitroimidazoles in samples were extracted by ethyl acetate with subsequent clean-up by a strong cation exchange solid phase extraction column. The clean extracts were subjected to CE separation with optimal experimental conditions: pH 3.0 running buffer containing 25mM sodium phosphate and 0.10mM tetrabutylammonium bromide, 5s hydrodynamic injection at 0.5psi and 28kV separation voltage. The nitroimidazoles could be monitored and detected at 320nm within 18min. The limits of detection were below 1.0μg/kg and limits of quantification were lower than 3.2μg/kg for all nitroimidazoles in the muscle samples. The recoveries and relative standard deviations were 85.4-96.0, 83.5-92.5, 1.3-3.9, and 1.1-4.2%, respectively for the intra-day and inter-day analyses. The proposed CE method has been successfully applied to determine nitroimidazoles in artificial porcine muscle samples with good accuracy and recovery, demonstrating that it has potential for detection and quantification of multi-nitroimidazole residue in real muscle samples. PMID:22265553

  17. Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire

    NASA Astrophysics Data System (ADS)

    Takashima, Kazuto; Sugitani, Kazuhiro; Morimoto, Naohiro; Sakaguchi, Seiya; Noritsugu, Toshiro; Mukai, Toshiharu

    2014-12-01

    Shape-memory polymer (SMP) can be deformed by applying a small load above its glass transition temperature (Tg). Shape-memory polymer maintains its shape after it has cooled below Tg and returns to a predefined shape when subsequently heated above Tg. The reversible change in the elastic modulus between the glassy and rubbery states of an SMP can be on the order of several hundred times. Based on the change in stiffness of the SMP in relation to the change in temperature, the present study attempts to evaluate the application of the SMP to soft actuators of a robot. In order to control the temperature of the SMP, we developed an SMP sheet with an embedded electrical heating wire. We formed a uniform, thin SMP sheet without air bubbles using a heat press. The SMP sheet with a heating wire can be heated quickly and can be maintained at a constant temperature. Moreover, the effects of the embedded wire on the mechanical properties in bending and tensile tests were small. Then, we applied the SMP sheet with the embedded electrical heating wire to a pneumatic artificial rubber muscle. The enhanced versatility of SMP sheet applications is demonstrated through a series of experiments conducted using a prototype. The initial shape and bending displacement of the pneumatic artificial rubber muscle can be changed by controlling the temperature of the SMP sheet.

  18. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy.

    PubMed

    Quarta, Marco; Brett, Jamie O; DiMarco, Rebecca; De Morree, Antoine; Boutet, Stephane C; Chacon, Robert; Gibbons, Michael C; Garcia, Victor A; Su, James; Shrager, Joseph B; Heilshorn, Sarah; Rando, Thomas A

    2016-07-01

    A promising therapeutic strategy for diverse genetic disorders involves transplantation of autologous stem cells that have been genetically corrected ex vivo. A major challenge in such approaches is a loss of stem cell potency during culture. Here we describe an artificial niche for maintaining muscle stem cells (MuSCs) in vitro in a potent, quiescent state. Using a machine learning method, we identified a molecular signature of quiescence and used it to screen for factors that could maintain mouse MuSC quiescence, thus defining a quiescence medium (QM). We also engineered muscle fibers that mimic the native myofiber of the MuSC niche. Mouse MuSCs maintained in QM on engineered fibers showed enhanced potential for engraftment, tissue regeneration and self-renewal after transplantation in mice. An artificial niche adapted to human cells similarly extended the quiescence of human MuSCs in vitro and enhanced their potency in vivo. Our approach for maintaining quiescence may be applicable to stem cells isolated from other tissues. PMID:27240197

  19. Position control of fishing line artificial muscles (coiled polymer actuators) from nylon thread

    NASA Astrophysics Data System (ADS)

    Arakawa, Takeshi; Takagi, Kentaro; Tahara, Kenji; Asaka, Kinji

    2016-04-01

    Recently, fishing line artificial muscle has been developed and is paid much attention due to the properties such as large contraction, light weight and extremely low cost. Typical fishing line artificial muscle is made from Nylon thread and made by just twisting the polymer. In this paper, because of the structure of the actuator, such actuators may be named as coiled polymer actuators (CPAs). In this paper, a CPA is fabricated from commercial Nylon fishing line and Ni-Cr alloy (Nichrome) wire is wound around it. The CPA contracts by the Joule heat generated by applied voltage to the Nichrome wire. For designing the control system, a simple model is proposed. According to the physical principle of the actuator, two first-order transfer functions are introduced to represent the actuator model. One is a system from the input power to the temperature and the other is a system from the temperature to the deformation. From the system identification result, it is shown that the dominant dynamics is the system from the input power to the temperature. Using the developed model, position control of the voltage-driven CPA is discussed. Firstly, the static nonlinearity from the voltage to the power is eliminated. Then, a 2-DOF PID controller which includes an inversion-based feed forward controller and a PID controller are designed. In order to demonstrate the proposed controller, experimental verification is shown.

  20. Improvement of McKibben Artificial Muscle with Long Stroke Motion and Its Application

    NASA Astrophysics Data System (ADS)

    Akagi, Tetsuya; Dohta, Shujiro; Kuno, Hiroaki; Ihara, Michinori

    The actuators required for a wearable system need to be flexible so as not to injure the body. The purpose of this study is to develop a flexible and lightweight actuator which can be safe enough to be attached to the human body. In the previous study, a new type of McKibben artificial muscle that had a long stroke of more than 80 % of its original length was proposed and tested. However, the damages on the tube of the actuator were found. They are caused by a large friction between the slide stage and the tube. Therefore, the life time of the actuator becomes shorter. In this paper, the improved McKibben actuator which consists of a McKibben artificial muscle on the market (FESTO Co. Ltd.), steel balls as a cylinder head and two pairs of slide stages is proposed and tested. The slide stage has steel balls set on the inner bore of the stage to decrease the friction. The steel ball in the McKibben actuator is held by two pairs of slide stages from both sides of the ball. As a result, the minimum driving pressure of the improved actuator decreases about 68 % compared with that of the previous one. The actuator can realize both pushing and pulling motion even if it has flexibility. By using these properties of the actuator, the various rehabilitation devices were proposed and tested.

  1. EDITORIAL: Artificial Muscles: Selected papers from the 5th World Congress on Biomimetics, Artificial Muscles and Nano-Bio (Osaka, Japan, 25-27 November 2009) Artificial Muscles: Selected papers from the 5th World Congress on Biomimetics, Artificial Muscles and Nano-Bio (Osaka, Japan, 25-27 November 2009)

    NASA Astrophysics Data System (ADS)

    Shahinpoor, Mohsen

    2011-12-01

    The 5th World Congress on Biomimetics, Artificial Muscles and Nano-Bio and the 4th International Conference on Artificial Muscles were held in Osaka, Japan, 23-27 November 2009. This special section of Smart Materials and Structures is devoted to a selected number of research papers presented at this international conference and congress. Of the 76 or so papers presented at the conference, only 10 papers were finally selected, reviewed and accepted for this special section, following the regular reviewing procedures of the journal. This special section is focused on polymeric artificial muscles, electroactive polymers, multifunctional nanocomposites and their applications. In particular, an electromechanical model for self-sensing ionic polymer-metal composite actuating devices with patterned surface electrodes is presented which discusses the concept of creating self-sensing ionic polymer-metal composite (IPMC) actuating devices with patterned surface electrodes where actuator and sensor elements are separated by a grounded shielding electrode. Eventually, an electromechanical model of the device is also proposed and validated. Following that, there is broad coverage of polytetrahydrofurane-polyethylene oxide-PEDOT conducting interpenetrating polymer networks (IPNs) for high speed actuators. The conducting polymer (poly(3,4-ethylenedioxythiophene)) is incorporated within the IPNs, which are synthesized from polyethylene oxide (PEO)/polytetrahydrofurane (PTHF) networks. PEO/PTHF IPNs are prepared using poly(ethylene glycol) methacrylate and dimethacrylate and hydroxythelechelic PTHF as starting materials. The conducting IPN actuators are prepared by oxidative polymerization of 3,4-ethylenedioxithiophene (EDOT) using FeCl3 as an oxidizing agent within the PEO/PTHF IPN host matrix. Subsequently, giant and reversible magnetorheology of carrageenan/iron oxide magnetic gels are discussed and the effect of magnetic fields on the viscoelastic properties

  2. Recent advances in ionic polymer conductor composite materials as distributed nanosensors, nanoactuators, and artificial muscles (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Shahinpoor, Mohsen

    2005-05-01

    Recent advances in ionic polymer conductor composites (IPCC) and ionic polymer metal composites (IPMC) as biomimetic distributed nanosensors, nanoactuators, nanotransducers and artificial muscles are briefly discussed in this paper. These advances include brief reproduction of some of these advances that appeared in a new book and a recent set of 4 review articles published in the International Journal of Smart Materials and Structures, advances in manufacturing, force optimization, modeling and simulation and new products developed by Environmental Robots Incorporated, as well as numerous potential applications using Ionic Polymer-Metal Composites (IPMC's) as distributed nanosensors, nanotransducers, nanoactuators and artificial muscles. It is certainly clear that the extent of applications of IPCC's and IPMC's go beyond the scope of this paper or the space allocated to this paper. However, this paper will present the breadth and the depth of all such applications of IPCC's and IPMC's as biomimetic robotic distributed nanosensors, nanoactuators, nanotransducers and artificial/synthetic muscles.

  3. Towards artificial molecular motor-based electroactive/photoactive biomimetic muscles

    NASA Astrophysics Data System (ADS)

    Huang, Tony Jun

    2007-04-01

    Artificial molecular motors have recently attracted considerable interest from the nanoscience and nanoengineering community. These molecular-scale systems utilize a 'bottom-up' technology centered around the design and manipulation of molecular assemblies, and are potentially capable of delivering efficient actuations at dramatically reduced length scales when compared to traditional microscale actuators. When stimulated by light, electricity, or chemical reagents, a group of artificial molecular motors called bistable rotaxanes - which are composed of mutually recognizable and intercommunicating ring and dumbbell-shaped components - experience relative internal motions of their components just like the moving parts of macroscopic machines. Bistable rotaxanes' ability to precisely and cooperatively control mechanical motions at the molecular level reveals the potential of engineering systems that operate with the same elegance, efficiency, and complexity as biological motors function within the human body. We are in a process of developing a new class of bistable rotaxane-based electroactive/photoactive biomimetic muscles with unprecedented performance (strain: 40-60%, operating frequency: up to 1 MHz, energy density: ~50 J/cm 3, multi-stimuli: chemical, electricity, light). As a substantial step towards this longterm objective, we have proven, for the first time, that rotaxanes are mechanically switchable in condensed phases on solid substrates. We have further developed a rotaxane-powered microcantilever actuator utilizing an integrated approach that combines "bottom-up" assembly of molecular functionality with "top-down" micro/nano fabrication. By harnessing the nanoscale mechanical motion from artificial molecular machines and eliciting a nanomechanical response in a microscale device, this system mimics natural skeletal muscle and provides a key component for the development of nanoelectromechanical system (NEMS).

  4. Cardiomyopathy induced by artificial cardiac pacing: myth or reality sustained by evidence?

    PubMed Central

    Ferrari, Andrés Di Leoni; Borges, Anibal Pires; Albuquerque, Luciano Cabral; Sussenbach, Carolina Pelzer; da Rosa, Priscila Raupp; Piantá, Ricardo Medeiros; Wiehe, Mario; Goldani, Marco Antônio

    2014-01-01

    Implantable cardiac pacing systems are a safe and effective treatment for symptomatic irreversible bradycardia. Under the proper indications, cardiac pacing might bring significant clinical benefit. Evidences from literature state that the action of the artificial pacing system, mainly when the ventricular lead is located at the apex of the right ventricle, produces negative effects to cardiac structure (remodeling, dilatation) and function (dissinchrony). Patients with previously compromised left ventricular function would benefit the least with conventional right ventricle apical pacing, and are exposed to the risk of developing higher incidence of morbidity and mortality for heart failure. However, after almost 6 decades of cardiac pacing, just a reduced portion of patients in general would develop these alterations. In this context, there are not completely clear some issues related to cardiac pacing and the development of this cardiomyopathy. Causality relationships among QRS widening with a left bundle branch block morphology, contractility alterations within the left ventricle, and certain substrates or clinical (previous systolic dysfunction, structural heart disease, time from implant) or electrical conditions (QRS duration, percentage of ventricular stimulation) are still subjecte of debate. This review analyses contemporary data regarding this new entity, and discusses alternatives of how to use cardiac pacing in this context, emphasizing cardiac resynchronization therapy. PMID:25372916

  5. EDITORIAL: Artificial Muscles: Selected papers from the 5th World Congress on Biomimetics, Artificial Muscles and Nano-Bio (Osaka, Japan, 25-27 November 2009) Artificial Muscles: Selected papers from the 5th World Congress on Biomimetics, Artificial Muscles and Nano-Bio (Osaka, Japan, 25-27 November 2009)

    NASA Astrophysics Data System (ADS)

    Shahinpoor, Mohsen

    2011-12-01

    The 5th World Congress on Biomimetics, Artificial Muscles and Nano-Bio and the 4th International Conference on Artificial Muscles were held in Osaka, Japan, 23-27 November 2009. This special section of Smart Materials and Structures is devoted to a selected number of research papers presented at this international conference and congress. Of the 76 or so papers presented at the conference, only 10 papers were finally selected, reviewed and accepted for this special section, following the regular reviewing procedures of the journal. This special section is focused on polymeric artificial muscles, electroactive polymers, multifunctional nanocomposites and their applications. In particular, an electromechanical model for self-sensing ionic polymer-metal composite actuating devices with patterned surface electrodes is presented which discusses the concept of creating self-sensing ionic polymer-metal composite (IPMC) actuating devices with patterned surface electrodes where actuator and sensor elements are separated by a grounded shielding electrode. Eventually, an electromechanical model of the device is also proposed and validated. Following that, there is broad coverage of polytetrahydrofurane-polyethylene oxide-PEDOT conducting interpenetrating polymer networks (IPNs) for high speed actuators. The conducting polymer (poly(3,4-ethylenedioxythiophene)) is incorporated within the IPNs, which are synthesized from polyethylene oxide (PEO)/polytetrahydrofurane (PTHF) networks. PEO/PTHF IPNs are prepared using poly(ethylene glycol) methacrylate and dimethacrylate and hydroxythelechelic PTHF as starting materials. The conducting IPN actuators are prepared by oxidative polymerization of 3,4-ethylenedioxithiophene (EDOT) using FeCl3 as an oxidizing agent within the PEO/PTHF IPN host matrix. Subsequently, giant and reversible magnetorheology of carrageenan/iron oxide magnetic gels are discussed and the effect of magnetic fields on the viscoelastic properties

  6. Synthesis of nanoscaled platinum particles (NSPP): their role in performance improvement of ionic polymer-metal composite (IPMC) artificial muscles

    NASA Astrophysics Data System (ADS)

    Kim, Kwang J.; Shahinpoor, Mohsen

    2001-07-01

    In this work the synthesis of nano-scaled platinum particles by a chemical reducing technique within an ion-exchange membrane has been performed. It is desirable to gain a fundamental knowledge and understanding of the properties of small nano-scaled platinum particles within ion-exchange membranes, which can affect the performance of Ionic Polymer-Metal Composite (IPMC) artificial muscles. In IPMC artificial muscle applications, the finite size of platinum particles is believed to strongly influence their properties. This might be related to a platinum surface effect originating from the electronic surface states of platinum particles that differ from the bulk states. In order to address this issue, we have attempted to synthesize small platinum particles having different size distributions by using protective agents. Further, we have characterized them as well. For IPMC artificial muscles, the presence of such nano-scale platinum particles minimizes the solvent- leakage from the surface electrodes. This in turn improves their performance dramatically. A successfully fabricated IPMC artificial muscle with nano-Platinum particles has shown a significantly improved force density as much as 100% than that of the conventional IPMC.

  7. Development and Analysis of Bending Actuator Using McKibben Artificial Muscle

    NASA Astrophysics Data System (ADS)

    Zhao, Feifei; Dohta, Shujiro; Akagi, Tetsuya

    Recent years, the number of nuclear families is rapidly growing. So the development of a human-friendly-robot which can take care of human daily life is strongly desired. This robot has to work just like a human, so, it is needed to have a dexterous soft hand in the robot. Therefore, we have developed an artificial soft gripper. This robot hand which has five fingers is made of silicone rubber. We also developed the hand which could be used to achieve several works just like a human hand. For example, it can grasp some objects that have the different shape and stiffness. Since it is made of silicone rubber, there is little damage to the object. However, the finger could not generate a larger force, less than 3N. In addition, it needs a skill and time to make the finger. In this study, we proposed and tested a bending actuator that could be easily constructed by putting the McKibben artificial muscle into the flexible tube. We also investigated the generated force and bending angle of the actuator. As a result, the generated force of the actuator was improved about 8.5 times as large as previous one. We also improved the bending actuator by changing the tube and the slit of the flexible tube. And the analytical model for the bending actuator was proposed and the calculated results were compared with the experimental ones.

  8. Dynamics of a pneumatic artificial muscle actuation system driving a trailing edge flap

    NASA Astrophysics Data System (ADS)

    Woods, Benjamin K. S.; Kothera, Curt S.; Wang, Gang; Wereley, Norman M.

    2014-09-01

    This study presents a time domain dynamic model of an antagonistic pneumatic artificial muscle (PAM) driven trailing edge flap (TEF) system for next generation active helicopter rotors. Active rotor concepts are currently being widely researched in the rotorcraft community as a means to provide a significant leap forward in performance through primary aircraft control, vibration mitigation and noise reduction. Recent work has shown PAMs to be a promising candidate for active rotor actuation due to their combination of high force, large stroke, light weight, and suitable bandwidth. When arranged into biologically inspired agonist/antagonist muscle pairs they can produce bidirectional torques for effectively driving a TEF. However, there are no analytical dynamic models in the literature that can accurately capture the behavior of such systems across the broad range of frequencies required for this demanding application. This work combines mechanical, pneumatic, and aerodynamic component models into a global flap system model developed for the Bell 407 rotor system. This model can accurately predict pressure, force, and flap angle response to pneumatic control valve inputs over a range of operating frequencies from 7 to 35 Hz (1/rev to 5/rev for the Bell 407) and operating pressures from 30 to 90 psi.

  9. Synthesis and cyclic force characterization of helical polypyrrole actuators for artificial facial muscles

    NASA Astrophysics Data System (ADS)

    Tadesse, Yonas; Grange, Robert W.; Priya, Shashank

    2009-08-01

    This study focuses on the synthesis and characterization of thick and thin film polypyrrole (PPy)-metal composite actuators for application as artificial muscles in facial robotics. The fabrication method consists of three steps based upon the approach proposed by Ding et al (2003 Synth. Met. 138 391-8): (i) winding the conductive spiral structure around the platinum (Pt) wire core, (ii) deposition of PPy film on the Pt wire core, and (iii) removal of the Pt wire core. This approach yielded good performance from the synthesized actuators, but was complex to implement due to the difficulty in implementing the third step. To overcome the problem of mechanical damage occurring during withdrawal of the Pt wire, the core was replaced with a dispensable gold coated polylactide fiber that could be etched at the end of deposition step. Experimental results indicate that thin film actuators perform better in terms of response time and blocking force. A unique muscle-like structure with smoothly varying cross-section was grown by combining layer by layer deposition with changes in position and orientation of the counter electrode in reference to the working electrode.

  10. New horizons for orthotic and prosthetic technology: artificial muscle for ambulation

    NASA Astrophysics Data System (ADS)

    Herr, Hugh M.; Kornbluh, Roy D.

    2004-07-01

    The rehabilitation community is at the threshold of a new age in which orthotic and prosthetic devices will no longer be separate, lifeless mechanisms, but intimate extensions of the human body-structurally, neurologically, and dynamically. In this paper we discuss scientific and technological advances that promise to accelerate the merging of body and machine, including the development of actuator technologies that behave like muscle and control methodologies that exploit principles of biological movement. We present a state-of-the-art device for leg rehabilitation: a powered ankle-foot orthosis for stroke, cerebral palsy, or multiple sclerosis patients. The device employs a forcecontrollable actuator and a biomimetic control scheme that automatically modulates ankle impedance and motive torque to satisfy patient-specific gait requirements. Although the device has some clinical benefits, problems still remain. The force-controllable actuator comprises an electric motor and a mechanical transmission, resulting in a heavy, bulky, and noisy mechanism. As a resolution of this difficulty, we argue that electroactive polymer-based artificial muscle technologies may offer considerable advantages to the physically challenged, allowing for joint impedance and motive force controllability, noise-free operation, and anthropomorphic device morphologies.

  11. Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications?

    PubMed

    Carpi, Federico; Kornbluh, Roy; Sommer-Larsen, Peter; Alici, Gursel

    2011-12-01

    Electroactive polymer (EAP) actuators are electrically responsive materials that have several characteristics in common with natural muscles. Thus, they are being studied as 'artificial muscles' for a variety of biomimetic motion applications. EAP materials are commonly classified into two major families: ionic EAPs, activated by an electrically induced transport of ions and/or solvent, and electronic EAPs, activated by electrostatic forces. Although several EAP materials and their properties have been known for many decades, they have found very limited applications. Such a trend has changed recently as a result of an effective synergy of at least three main factors: key scientific breakthroughs being achieved in some of the existing EAP technologies; unprecedented electromechanical properties being discovered in materials previously developed for different purposes; and higher concentration of efforts for industrial exploitation. As an outcome, after several years of basic research, today the EAP field is just starting to undergo transition from academia into commercialization, with significant investments from large companies. This paper presents a brief overview on the full range of EAP actuator types and the most significant areas of interest for applications. It is hoped that this overview can instruct the reader on how EAPs can enable bioinspired motion systems.

  12. Cerebellar-inspired algorithm for adaptive control of nonlinear dielectric elastomer-based artificial muscle

    PubMed Central

    Assaf, Tareq; Rossiter, Jonathan M.; Porrill, John

    2016-01-01

    Electroactive polymer actuators are important for soft robotics, but can be difficult to control because of compliance, creep and nonlinearities. Because biological control mechanisms have evolved to deal with such problems, we investigated whether a control scheme based on the cerebellum would be useful for controlling a nonlinear dielectric elastomer actuator, a class of artificial muscle. The cerebellum was represented by the adaptive filter model, and acted in parallel with a brainstem, an approximate inverse plant model. The recurrent connections between the two allowed for direct use of sensory error to adjust motor commands. Accurate tracking of a displacement command in the actuator's nonlinear range was achieved by either semi-linear basis functions in the cerebellar model or semi-linear functions in the brainstem corresponding to recruitment in biological muscle. In addition, allowing transfer of training between cerebellum and brainstem as has been observed in the vestibulo-ocular reflex prevented the steady increase in cerebellar output otherwise required to deal with creep. The extensibility and relative simplicity of the cerebellar-based adaptive-inverse control scheme suggests that it is a plausible candidate for controlling this type of actuator. Moreover, its performance highlights important features of biological control, particularly nonlinear basis functions, recruitment and transfer of training. PMID:27655667

  13. Characterization of bacterial artificial chromosome transgenic mice expressing mCherry fluorescent protein substituted for the murine smooth muscle-alpha-actin gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Smooth muscle a actin (SMA) is a cytoskeletal protein expressed by mesenchymal and smooth muscle cell types, including mural cells(vascular smooth muscle cells and pericytes). Using Bacterial Artificial Chromosome (BAC) recombineering technology, we generated transgenic reporter mice that express a ...

  14. PREFACE: Biomimetics, Artificial Muscles & Nano-Bio 2007: Scientists Meet Doctors

    NASA Astrophysics Data System (ADS)

    Fernández Otero, Toribio

    2008-02-01

    invaded by a new virus. A very expensive trial and error (still pseudo-alchemic) procedure has to be initiated to try to enable ill people to get better. Nowadays models from chemical kinetics do not include any quantification of either changes to the molecular interactions inside the system during reaction or structural information about the conformational changes brought about by enzymes or reactive proteins. From our point of view this is one the most important scientific challenges for the 21st century, involving responses to questions related to life, health and illness. Those responses, due to the magnitude of the challenge, can only be obtained by cooperative work involving chemists, physicist, engineers, biologists and clinicians. Figure Figure showing the full distance inside the universe. Small and large systems are submitted as `constant physical' interactions affording quite predictive models. Life is based on chemistry giving rise to simultaneous changes on all the molecular interactions included in the system: their interpretation is outside current chemical or physical models. Most technological advances developed by human beings are inspired by biological systems, organs, or mechanisms present in living creatures. The main difference between human technology and natural organs is the changes in chemical composition occurring inside the wet natural organ during actuation: they are reactive, soft and wet materials. Our artificial machines are constructed of dry materials that maintain a constant composition under actuation. This is the context proposed for the consecutive World Congresses on Biomimetics, Artificial Muscles & Nano-Bio and more specifically for the IVth Congress held in Torre Pacheco, Spain, 6-9 November 2007. The papers selected for this volume of Journal of Physics: Conference Series includes: dry and wet materials, chemically reactive or physically reactive materials, organic and inorganic materials, macroscopic films and nanoparticles

  15. Effect of bladder wall thickness on miniature pneumatic artificial muscle performance.

    PubMed

    Pillsbury, Thomas E; Kothera, Curt S; Wereley, Norman M

    2015-09-28

    Pneumatic artificial muscles (PAMs) are actuators known for their high power to weight ratio, natural compliance and light weight. Due to these advantages, PAMs have been used for orthotic devices and robotic limbs. Small scale PAMs have the same advantages, as well as requiring greatly reduced volumes with potential application to prostheses and small scale robotics. The bladder of a PAM affects common actuator performance metrics, specifically: blocked force, free contraction, hysteresis, and dead-band pressure. This paper investigates the effect that bladder thickness has on static actuation performance of small scale PAMs. Miniature PAMs were fabricated with a range of bladder thicknesses to quantify the change in common actuator performance metrics specifically: blocked force, free contraction, and dead-band pressure. These PAMs were then experimentally characterized in quasi-static conditions, where results showed that increasing bladder wall thickness decreases blocked force and free contraction, while dead-band pressure increases. A nonlinear model was then applied to determine the structure of the stress-strain relationship that enables accurate modeling and the minimum number of terms. Two nonlinear models are compared and the identified parameters are analyzed to study the effect of the bladder thickness on the model.

  16. Modeling of a corrugated dielectric elastomer actuator for artificial muscle applications

    NASA Astrophysics Data System (ADS)

    Kadooka, Kevin; Taya, Minoru; Naito, Keishi; Saito, Makoto

    2015-04-01

    Dielectric elastomer actuators have many advantages, including light weight, simplicity, high energy density, and silent operation. These features make them suitable to replace conventional actuators and transducers, especially in artificial muscle applications where large contractile strains are necessary for lifelike motions. This paper will introduce the concept of a corrugated dielectric elastomer actuator (DEA), which consists of dielectric elastomer (DE) laminated to a thin elastic layer to induce bending motion at each of the corrugations, resulting in large axial deformation. The location of the DE and elastic layers can be configured to provide tensile or compressive axial strain. Such corrugated DE actuators are also highly scalable: linking multiple actuators in series results in greater deformation, whereas multiple actuators in parallel results in larger force output. Analytical closed-form solutions based on linear elasticity were derived for the displacement and force output of curved unimorph and corrugated DEA, both consisting of an arbitrary number of lamina. A total strain energy analysis and Castigiliano's theorem were used to predict the nonlinear force-displacement behavior of the corrugated actuator. Curved unimorph and corrugated DEA were fabricated using VHB F9469PC as the DE material. Displacement of the actuators observed during testing agreed well with the modeling results. Large contractile strain (25.5%) was achieved by the corrugated DEA. Future work includes investigating higher performance DE materials such as plasticized PVDF terpolymers, processed by thin film deposition methods.

  17. Artificial muscle actuators for haptic displays: system design to match the dynamics and tactile sensitivity of the human fingerpad

    NASA Astrophysics Data System (ADS)

    Biggs, S. James; Hitchcock, Roger N.

    2010-04-01

    Electroactive Polymer Artificial Muscles (EPAMTM) based on dielectric elastomers have the bandwidth and the energy density required to make haptic displays that are both responsive and compact. Recent work at Artificial Muscle Inc. has been directed toward the development of thin, high-fidelity haptic modules for mobile handsets. The modules provide the brief tactile "click" that confirms key press, and the steady state "bass" effects that enhance gaming and music. To design for these capabilities we developed a model of the physical system comprised of the actuator, handset, and user. Output of the physical system was passed through a transfer function to covert vibration into an estimate of the intensity of the user's haptic sensation. A model of fingertip impedance versus button press force is calibrated to data, as is impedance of the palm holding a handset. An energy-based model of actuator performance is derived and calibrated, and the actuator geometry is tuned for good haptic performance.

  18. An Attempt to Make a Large-Scale Stacked-Type Electrostatic Actuator for Artificial Muscles of Robots

    NASA Astrophysics Data System (ADS)

    Ito, Makoto; Saneyoshi, Keiji

    This research introduces the structure and the prototypes of a large-scale stacked-type electrostatic actuator (LSEA) which developed as an artificial muscle of robots. LSEA is lightweight and can have large force and long stroke. In addition, the structure can prevent the gaps between the facing electrodes from overextending. We also measured the spring property and the generative force by measuring the force as a function of stretch length.

  19. Design and simulative experiment of an innovative trailing edge morphing mechanism driven by artificial muscles embedded in skin

    NASA Astrophysics Data System (ADS)

    Li, Hongda; Liu, Long; Xiao, Tianhang; Ang, Haisong

    2016-09-01

    In this paper, conceptual design of a tailing edge morphing mechanism developed based on a new kind of artificial muscle embedded in skin, named Driving Skin, is proposed. To demonstrate the feasibility of this conceptual design, an experiment using ordinary fishing lines to simulate the function of artificial muscles was designed and carried out. Some measures were designed to ensure measurement accuracy. The experiment result shows that the contraction ratio and force required by the morphing mechanism can be satisfied by the new artificial muscles, and a relationship between contraction ratios and morphing angles can be found. To demonstrate the practical application feasibility of this conceptual design, a wing section using ordinary ropes to simulate the function of the Driving Skin mechanism was designed and fabricated. The demonstration wing section, extremely light in weight and capable of changing thickness, performs well, with a -30^\\circ /+30^\\circ morphing angle achieved. The trailing edge morphing mechanism is efficient in re-contouring the wing profile.

  20. Development and characterization of self-healing carbon fabric/ionomer composite through stitched polymeric artificial muscle

    NASA Astrophysics Data System (ADS)

    Gabriel, Mark Joseph

    Typical cracks in composite materials are hard to detect, because they may be very small or occur inside the material. This study investigates the development and characterization of carbon fiber and an ionomer, self-healing, laminate composite, enhanced with stitched artificial muscle elements. Although the carbon fiber is used as a structural reinforcement, the carbon fiber can also act as a resistive heating element in order to activate the healing elements in a Close-Then-Heal (CTH) approach. However in this study, hot air in an oven was used to activate the, SurlynRTM 8940, self-healing matrix. Artificial muscle was prepared from commercial fishing line to stitch reinforce the carbon laminate composite in the Z plane. Holes were drilled into the final composite and the muscle was stitched into the composite for active reinforcement. Differential scanning calorimetry was used to characterize the matrix and fishing line properties. The resulting smart composite was subjected to low velocity impact tests and consequential damage before healing in an oven, followed by three point bending flexure tests. Cracks in the carbon fiber reinforcement formed more easily than expected after impact because the holes were drilled to facilitate the muscle stitching. The matrix material could heal, but the reinforcement carbon could not. Several equipment issues and failures limited the amount of samples that could be created to continue testing with new parameters.

  1. A New Approach to Improve Cognition, Muscle Strength, and Postural Balance in Community-Dwelling Elderly with a 3-D Virtual Reality Kayak Program.

    PubMed

    Park, Junhyuck; Yim, JongEun

    2016-01-01

    Aging is usually accompanied with deterioration of physical abilities, such as muscular strength, sensory sensitivity, and functional capacity. Recently, intervention methods with virtual reality have been introduced, providing an enjoyable therapy for elderly. The aim of this study was to investigate whether a 3-D virtual reality kayak program could improve the cognitive function, muscle strength, and balance of community-dwelling elderly. Importantly, kayaking involves most of the upper body musculature and needs the balance control. Seventy-two participants were randomly allocated into the kayak program group (n = 36) and the control group (n = 36). The two groups were well matched with respect to general characteristics at baseline. The participants in both groups performed a conventional exercise program for 30 min, and then the 3-D virtual reality kayak program was performed in the kayak program group for 20 min, two times a week for 6 weeks. Cognitive function was measured using the Montreal Cognitive Assessment. Muscle strength was measured using the arm curl and handgrip strength tests. Standing and sitting balance was measured using the Good Balance system. The post-test was performed in the same manner as the pre-test; the overall outcomes such as cognitive function (p < 0.05), muscle strength (p < 0.05), and balance (standing and sitting balance, p < 0.05) were significantly improved in kayak program group compared to the control group. We propose that the 3-D virtual reality kayak program is a promising intervention method for improving the cognitive function, muscle strength, and balance of elderly.

  2. The effects of training by virtual reality or gym ball on pelvic floor muscle strength in postmenopausal women: a randomized controlled trial

    PubMed Central

    Martinho, Natalia M.; Silva, Valéria R.; Marques, Joseane; Carvalho, Leonardo C.; Iunes, Denise H.; Botelho, Simone

    2016-01-01

    ABSTRACT Objective To evaluate the effectiveness of abdominopelvic training by virtual reality compared to pelvic floor muscle training (PFMT) using a gym ball (a previously tested and efficient protocol) on postmenopausal women’s pelvic floor muscle (PFM) strength. Method A randomized controlled trial was conducted with 60 postmenopausal women, randomly allocated into two groups: Abdominopelvic training by virtual reality – APT_VR (n=30) and PFMT using a gym ball – PFMT_GB (n=30). Both types of training were supervised by the same physical therapist, during 10 sessions each, for 30 minutes. The participants’ PFM strength was evaluated by digital palpation and vaginal dynamometry, considering three different parameters: maximum strength, average strength and endurance. An intention-to-treat approach was used to analyze the participants according to original groups. Results No significant between-group differences were observed in most analyzed parameters. The outcome endurance was higher in the APT_VR group (p=0.003; effect size=0.89; mean difference=1.37; 95% CI=0.46 to 2.28). Conclusion Both protocols have improved the overall PFM strength, suggesting that both are equally beneficial and can be used in clinical practice. Muscle endurance was higher in patients who trained using virtual reality. PMID:27437716

  3. Selected papers from the 7th International Conference on Biomimetics, Artificial Muscles and Nano-bio (BAMN2013)

    NASA Astrophysics Data System (ADS)

    Shahinpoor, Mohsen; Oh, Ilkwon

    2014-07-01

    The 7th International Congress on Biomimetics, Artificial Muscles and Nano-Bio was held on the magnificent and beautiful Jeju Island in Korea on 26-30 August 2013. In June 2007, the volcanic island and lava tube cave systems were designated as UNESCO World Natural Heritage Sites for their natural beauty and unique geographical values. The aim of the congress was to offer high-level lectures, extensive discussions and communications covering the state-of-the-art on biomimetics, artificial muscles, and nano-bio technologies providing an overview of their potential applications in the industrial, biomedical, scientific and robotic fields. This conference provided a necessary platform for an ongoing dialogue between researchers from different areas (chemistry, physics, biology, medicine, engineering, robotics, etc) within biomimetics, artificial muscle and nano-bio technologies. This special issue of Smart Materials and Structures is devoted to a selected number of research papers that were presented at BAMN2013. Of the 400 or so papers and over 220 posters presented at this international congress, 15 papers were finally received, reviewed and accepted for this special issue, following the regular peer review procedures of the journal. The special issue covers polymeric artificial muscles, electroactive polymers, multifunctional nanocomposites, and their applications. In particular, electromechanical performance and other characteristics of ionic polymer-metal composites (IPMCs) fabricated with various commercially available ion exchange membranes are discussed. Additionally, the control of free-edge interlaminar stresses in composite laminates using piezoelectric actuators is elaborated on. Further, the electrode effects of a cellulose-based electroactive paper energy harvester are described. Next, a flexible tactile-feedback touch screen using transparent ferroelectric polymer film vibrators is discussed. A broad coverage of bio-applications of IPMC transducers is

  4. Selected papers from the 7th International Conference on Biomimetics, Artificial Muscles and Nano-bio (BAMN2013)

    NASA Astrophysics Data System (ADS)

    Shahinpoor, Mohsen; Oh, Ilkwon

    2014-07-01

    The 7th International Congress on Biomimetics, Artificial Muscles and Nano-Bio was held on the magnificent and beautiful Jeju Island in Korea on 26-30 August 2013. In June 2007, the volcanic island and lava tube cave systems were designated as UNESCO World Natural Heritage Sites for their natural beauty and unique geographical values. The aim of the congress was to offer high-level lectures, extensive discussions and communications covering the state-of-the-art on biomimetics, artificial muscles, and nano-bio technologies providing an overview of their potential applications in the industrial, biomedical, scientific and robotic fields. This conference provided a necessary platform for an ongoing dialogue between researchers from different areas (chemistry, physics, biology, medicine, engineering, robotics, etc) within biomimetics, artificial muscle and nano-bio technologies. This special issue of Smart Materials and Structures is devoted to a selected number of research papers that were presented at BAMN2013. Of the 400 or so papers and over 220 posters presented at this international congress, 15 papers were finally received, reviewed and accepted for this special issue, following the regular peer review procedures of the journal. The special issue covers polymeric artificial muscles, electroactive polymers, multifunctional nanocomposites, and their applications. In particular, electromechanical performance and other characteristics of ionic polymer-metal composites (IPMCs) fabricated with various commercially available ion exchange membranes are discussed. Additionally, the control of free-edge interlaminar stresses in composite laminates using piezoelectric actuators is elaborated on. Further, the electrode effects of a cellulose-based electroactive paper energy harvester are described. Next, a flexible tactile-feedback touch screen using transparent ferroelectric polymer film vibrators is discussed. A broad coverage of bio-applications of IPMC transducers is

  5. Challenges to the Transition of IPMC Artificial Muscle Actuators to Practical Application

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Leary, Sean; Oguro, Keisuke; Tadokoro, Satoshi; Harrison, Joycelyn; Smith, Joseph; Su, Ji

    1999-01-01

    Ion-exchange membrane metallic composites (IPMC), which were first reported in 1992, are one of the electroactive materials (EAP) with potential applications as artificial muscle actuators. The recent introduction of perfluorocarboxylate-gold composite with tetra-n-butylammonium and Lithium cations instead of sodium made the most significant improvement of the material electroactivity. Under less than 3 volts, IPMC with the new constituents is capable of bending beyond a complete loop. Taking into account the fact that IMPC materials do not induce a significant force, the authors are extensively seeking applications for these bending EAP. Some of the applications that were demonstrated include dust-wiper, catheter guide, miniature motor, robotic-gripper, micro-manipulator, etc. Generally, space applications are the most demanding in terms of operating conditions, robustness and durability, and the co-authors of this paper are jointly addressing the associated challenges. Specifically, a dust-wiper is being developed for the Nanorover's infrared camera window of the MUSES-CN mission. This joint NASA and the Japanese space agency mission, is scheduled to be launch from Kagoshima, Japan, in January 2002, to explore the surface of a small near-Earth asteroid. Several issues that are critical to the operation of IPMC are addressed including the operation in vacuum, low temperatures, and the effect of the electromechanical characteristic of the IPMC on its actuation capability. Highly efficient IPMC materials, mechanical modeling, unique elements and protective coating were introduced by the authors and are making a high probability the success of the IPMC actuated dust-wiper.

  6. Fabrication and characterization of fluidic artificial muscles having millimeter-scale diameters

    NASA Astrophysics Data System (ADS)

    Hocking, Erica G.; Wereley, Norman M.

    2012-04-01

    This study presents the manufacturing process, experimental characterization, and analytical modeling of fluidic artificial muscles (FAMs) with millimeter-scale diameters. First, a fabrication method was developed to consistently deliver low-cost, high-performance, miniature FAMs using commercially available materials. The quasi-static behavior of these FAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in) using compressed air as the working fluid. Tests were carried out at several discrete actuation pressures ranging from 207 kPa (30 psi) to 552 kPa (80 psi) in order to demonstrate the full evolution of force with displacement over a broad spectrum of operating pressures. The results of these tests also revealed the blocked force and free contraction capabilities of the FAM at each internal pressure. When pressurized to 552 kPa (80 psi), the actuator was capable of delivering a maximum blocked force of 132.9 N (29.87 lb) and a maximum free contraction of ΔL/L0 = 0.0688. Furthermore, it is the goal of this work to compare the data from these experiments to previously developed models for full-scale PAMs. Using two formulations, one derived using a force balance approach and the other obtained using virtual work methods, the experimental data was validated against existing analytical models. With the inclusion of correction factors to account for physical phenomena encountered during testing, comparison between the models and the experimental results indicate that the improved models accurately predict the behavior of these miniature FAMs at low contractions.

  7. PREFACE: Biomimetics, Artificial Muscles & Nano-Bio 2007: Scientists Meet Doctors

    NASA Astrophysics Data System (ADS)

    Fernández Otero, Toribio

    2008-02-01

    invaded by a new virus. A very expensive trial and error (still pseudo-alchemic) procedure has to be initiated to try to enable ill people to get better. Nowadays models from chemical kinetics do not include any quantification of either changes to the molecular interactions inside the system during reaction or structural information about the conformational changes brought about by enzymes or reactive proteins. From our point of view this is one the most important scientific challenges for the 21st century, involving responses to questions related to life, health and illness. Those responses, due to the magnitude of the challenge, can only be obtained by cooperative work involving chemists, physicist, engineers, biologists and clinicians. Figure Figure showing the full distance inside the universe. Small and large systems are submitted as `constant physical' interactions affording quite predictive models. Life is based on chemistry giving rise to simultaneous changes on all the molecular interactions included in the system: their interpretation is outside current chemical or physical models. Most technological advances developed by human beings are inspired by biological systems, organs, or mechanisms present in living creatures. The main difference between human technology and natural organs is the changes in chemical composition occurring inside the wet natural organ during actuation: they are reactive, soft and wet materials. Our artificial machines are constructed of dry materials that maintain a constant composition under actuation. This is the context proposed for the consecutive World Congresses on Biomimetics, Artificial Muscles & Nano-Bio and more specifically for the IVth Congress held in Torre Pacheco, Spain, 6-9 November 2007. The papers selected for this volume of Journal of Physics: Conference Series includes: dry and wet materials, chemically reactive or physically reactive materials, organic and inorganic materials, macroscopic films and nanoparticles

  8. Artificial selection for high activity favors mighty mini-muscles in house mice.

    PubMed

    Houle-Leroy, Philippe; Guderley, Helga; Swallow, John G; Garland, Theodore

    2003-02-01

    After 14 generations of selection for voluntary wheel running, mice from the four replicate selected lines ran, on average, twice as many revolutions per day as those from the four unselected control lines. To examine whether the selected lines followed distinct strategies in the correlated responses of the size and metabolic capacities of the hindlimb muscles, we examined mice from selected lines, housed for 8 wk in cages with access to running wheels that were either free to rotate ("wheel access" group) or locked ("sedentary"). Thirteen of twenty individuals in one selected line (line 6) and two of twenty in another (line 3) showed a marked reduction ( approximately 50%) in total hindlimb muscle mass, consistent with the previously described expression of a small-muscle phenotype. Individuals with these "mini-muscles" were not significantly smaller in total body mass compared with line-mates with normal-sized muscles. Access to free wheels did not affect the relative mass of the mini-muscles, but did result in typical mammalian training effects for mitochondrial enzyme activities. Individuals with mini-muscles showed a higher mass-specific muscle aerobic capacity as revealed by the maximal in vitro rates of citrate synthase and cytochrome c oxidase. Moreover, these mice showed the highest activities of hexokinase and carnitine palmitoyl transferase. Females with mini-muscles showed the highest levels of phosphofructokinase, and males with mini-muscles the highest levels of pyruvate dehydrogenase. As shown by total muscle enzyme contents, the increase in mass-specific aerobic capacity almost completely compensated for the reduction caused by the "loss" of muscle mass. Moreover, the mini-muscle mice exhibited the lowest contents of lactate dehydrogenase and glycogen phosphorylase. Interestingly, metabolic capacities of mini-muscled mice resemble those of muscles after endurance training. Overall, our results demonstrate that during selection for voluntary wheel

  9. Examination of mitral regurgitation with a goat heart model for the development of intelligent artificial papillary muscle.

    PubMed

    Shiraishi, Y; Yambe, T; Yoshizawa, M; Hashimoto, H; Yamada, A; Miura, H; Hashem, M; Kitano, T; Shiga, T; Homma, D

    2012-01-01

    Annuloplasty for functional mitral or tricuspid regurgitation has been made for surgical restoration of valvular diseases. However, these major techniques may sometimes be ineffective because of chamber dilation and valve tethering. We have been developing a sophisticated intelligent artificial papillary muscle (PM) by using an anisotropic shape memory alloy fiber for an alternative surgical reconstruction of the continuity of the mitral structural apparatus and the left ventricular myocardium. This study exhibited the mitral regurgitation with regard to the reduction in the PM tension quantitatively with an originally developed ventricular simulator using isolated goat hearts for the sophisticated artificial PM. Aortic and mitral valves with left ventricular free wall portions of isolated goat hearts (n=9) were secured on the elastic plastic membrane and statically pressurized, which led to valvular leaflet-papillary muscle positional change and central mitral regurgitation. PMs were connected to the load cell, and the relationship between the tension of regurgitation and PM tension were measured. Then we connected the left ventricular specimen model to our hydraulic ventricular simulator and achieved hemodynamic simulation with the controlled tension of PMs. PMID:23367454

  10. Efficiency testing of hydraulic artificial muscles with variable recruitment using a linear dynamometer

    NASA Astrophysics Data System (ADS)

    Chipka, Jordan B.; Meller, Michael A.; Garcia, Ephrahim

    2015-03-01

    When a task calls for consistent, large amounts of power output, hydraulic actuation is a popular choice. However, for certain systems that require short bursts of high power, followed by a period of low power, the inefficiencies of hydraulics become apparent. One system that fits this description is a legged robot. McKibben muscles prove to be a wise choice for use on legged robots due to their light weight, high force capability, and inherent compliance. Variable recruitment, another novel concept for hydraulic actuation, offers the ability to further improve efficiency for hydraulic systems. This paper will discuss the efficiency characterization of variable recruitment McKibben muscles intended for use on a bipedal robot, but will focus on the novel test apparatus to do so. This device is a hydraulic linear dynamometer that will be controlled such that the muscles experience similar force-stroke levels to what will be required on a bipedal robot. The position of the dynamometer's drive cylinder will be controlled so that the muscles experience the proper position trajectory that will be needed on the robot. The pressure of the muscles will be controlled such that the force they experience will mimic the forces that occur on the robot while walking. Hence, these dynamic tests will ensure that the muscle bundles will meet the force-stroke requirements for the given robot. Once these muscle bundles are integrated onto the walking robot, the power savings of variable recruitment McKibben muscle bundles compared to the traditional hydraulic system will be demonstrated.

  11. Cardiac supporting device using artificial rubber muscle: preliminary study to active dynamic cardiomyoplasty.

    PubMed

    Saito, Yoshiaki; Suzuki, Yasuyuki; Goto, Takeshi; Daitoku, Kazuyuki; Minakawa, Masahito; Fukuda, Ikuo

    2015-12-01

    Dynamic cardiomyoplasty is a surgical treatment that utilizes the patient's skeletal muscle to support circulation. To overcome the limitations of autologous skeletal muscles in dynamic cardiomyoplasty, we studied the use of a wrapped-type cardiac supporting device using pneumatic muscles. Four straight rubber muscles (Fluidic Muscle, FESTO, Esslingen, Germany) were used and connected to pressure sensors, solenoid valves, a controller and an air compressor. The driving force was compressed air. A proportional-integral-derivative system was employed to control the device movement. An overflow-type mock circulation system was used to analyze the power and the controllability of this new device. The device worked powerfully with pumped flow against afterload of 88 mmHg, and the beating rate and contraction/dilatation time were properly controlled using simple software. Maximum pressure inside the ventricle and maximum output were 187 mmHg and 546.5 ml/min, respectively, in the setting of 50 beats per minute, a contraction/dilatation ratio of 1:2, a preload of 18 mmHg, and an afterload of 88 mmHg. By changing proportional gain, contraction speed could be modulated. This study showed the efficacy and feasibility of a pneumatic muscle for use in a cardiac supporting device.

  12. Synthesis of an air-working trilayer artificial muscle using a conductive cassava starch biofilm (manihot esculenta, cranz) and polypyrrole (PPy)

    NASA Astrophysics Data System (ADS)

    Núñez D, Y. E.; Arrieta A, Á. A.; Segura B, J. A.; Bertel H, S. D.

    2016-02-01

    In this study, a methodology for obtaining a conductive cassava starch biofilm doped with lithium perchlorate (LiClO4) is shown, as well as the electrochemical technique for the synthesis of polypyrrole films, which are used for developing the trilayer artificial muscle PPy/Biopolymer/PPy designed to operate in air. Furthermore, results from the trilayer movement using chronoamperometric techniques are shown.

  13. Validation of Mitochondrial Gene Delivery in Liver and Skeletal Muscle via Hydrodynamic Injection Using an Artificial Mitochondrial Reporter DNA Vector.

    PubMed

    Yasuzaki, Yukari; Yamada, Yuma; Ishikawa, Takuya; Harashima, Hideyoshi

    2015-12-01

    For successful mitochondrial transgene expression, two independent processes, i.e., developing a mitochondrial gene delivery system and construction of DNA vector to achieve mitochondrial gene expression, are required. To date, very few studies dealing with mitochondrial gene delivery have been reported and, in most cases, transgene expression was not validated, because the construction of a reporter DNA vector for mitochondrial gene expression is the bottleneck. In this study, mitochondrial transgene expression by the in vivo mitochondrial gene delivery of an artificial mitochondrial reporter DNA vector via hydrodynamic injection is demonstrated. In the procedure, a large volume of naked plasmid DNA (pDNA) is rapidly injected. We designed and constructed pHSP-mtLuc (CGG) as a mitochondrial reporter DNA vector that possesses a mitochondrial heavy strand promoter (HSP) and an artificial mitochondrial genome with the reporter NanoLuc (Nluc) luciferase gene that records adjustments to the mitochondrial codon system. We delivered the pDNA into mouse liver mitochondria by hydrodynamic injection, and detected exogenous mRNA in the liver using reverse transcription PCR analysis. The hydrodynamic injection of pHSP-mtLuc (CGG) resulted in the expression of the Nluc luciferase protein in liver and skeletal muscle. Our mitochondrial transgene expression reporter system would contribute to mitochondrial gene therapy and further studies directed at mitochondrial molecular biology.

  14. Exercise training reverses impaired skeletal muscle metabolism induced by artificial selection for low aerobic capacity.

    PubMed

    Lessard, Sarah J; Rivas, Donato A; Stephenson, Erin J; Yaspelkis, Ben B; Koch, Lauren G; Britton, Steven L; Hawley, John A

    2011-01-01

    We have used a novel model of genetically imparted endurance exercise capacity and metabolic health to study the genetic and environmental contributions to skeletal muscle glucose and lipid metabolism. We hypothesized that metabolic abnormalities associated with low intrinsic running capacity would be ameliorated by exercise training. Selective breeding for 22 generations resulted in rat models with a fivefold difference in intrinsic aerobic capacity. Low (LCR)- and high (HCR)-capacity runners remained sedentary (SED) or underwent 6 wk of exercise training (EXT). Insulin-stimulated glucose transport, insulin signal transduction, and rates of palmitate oxidation were lower in LCR SED vs. HCR SED (P < 0.05). Decreases in glucose and lipid metabolism were associated with decreased β₂-adrenergic receptor (β₂-AR), and reduced expression of Nur77 target proteins that are critical regulators of muscle glucose and lipid metabolism [uncoupling protein-3 (UCP3), fatty acid transporter (FAT)/CD36; P < 0.01 and P < 0.05, respectively]. EXT reversed the impairments to glucose and lipid metabolism observed in the skeletal muscle of LCR, while increasing the expression of β₂-AR, Nur77, GLUT4, UCP3, and FAT/CD36 (P < 0.05) in this tissue. However, no metabolic improvements were observed following exercise training in HCR. Our results demonstrate that metabolic impairments resulting from genetic factors (low intrinsic aerobic capacity) can be overcome by an environmental intervention (exercise training). Furthermore, we identify Nur77 as a potential mechanism for improved skeletal muscle metabolism in response to EXT.

  15. Ionic Polymer-Metal Composites (IPMCs) as Biomimetic Sensors, Actuators and Artificial Muscles: A Review

    NASA Technical Reports Server (NTRS)

    Shahinpoor, M.; Bar-Cohen, Y.; Simpson, J. O.; Smith, J.

    1998-01-01

    This paper presents an introduction to ionic polymer-metal composites and some mathematical modeling pertaining to them. It further discusses a number of recent findings in connection with ion-exchange polymer-metal composites (IPMCS) as biomimetic sensors and actuators. Strips of these composites can undergo large bending and flapping displacement if an electric field is imposed across their thickness. Thus, in this sense they are large motion actuators. Conversely by bending the composite strip, either quasi-statically or dynamically, a voltage is produced across the thickness of the strip. Thus, they are also large motion sensors. The output voltage can be calibrated for a standard size sensor and correlated to the applied loads or stresses. They can be manufactured and cut in any size and shape. In this paper first the sensing capability of these materials is reported. The preliminary results show the existence of a linear relationship between the output voltage and the imposed displacement for almost all cases. Furthermore, the ability of these IPMCs as large motion actuators and robotic manipulators is presented. Several muscle configurations are constructed to demonstrate the capabilities of these IPMC actuators. This paper further identifies key parameters involving the vibrational and resonance characteristics of sensors and actuators made with IPMCS. When the applied signal frequency varies, so does the displacement up to a critical frequency called the resonant frequency where maximum deformation is observed, beyond which the actuator response is diminished. A data acquisition system was used to measure the parameters involved and record the results in real time basis. Also the load characterizations of the IPMCs were measured and it was shown that these actuators exhibit good force to weight characteristics in the presence of low applied voltages. Finally reported are the cryogenic properties of these muscles for potential utilization in an outer space

  16. Simple and strong: twisted silver painted nylon artificial muscle actuated by Joule heating

    NASA Astrophysics Data System (ADS)

    Mirvakili, Seyed M.; Rafie Ravandi, Ali; Hunter, Ian W.; Haines, Carter S.; Li, Na; Foroughi, Javad; Naficy, Sina; Spinks, Geoffrey M.; Baughman, Ray H.; Madden, John D. W.

    2014-03-01

    Highly oriented nylon and polyethylene fibres shrink in length when heated and expand in diameter. By twisting and then coiling monofilaments of these materials to form helical springs, the anisotropic thermal expansion has recently been shown to enable tensile actuation of up to 49% upon heating. Joule heating, by passing a current through a conductive coating on the surface of the filament, is a convenient method of controlling actuation. In previously reported work this has been done using highly flexible carbon nanotube sheets or commercially available silver coated fibres. In this work silver paint is used as the Joule heating element at the surface of the muscle. Up to 29% linear actuation is observed with energy and power densities reaching 840 kJ m-3 (528 J kg-1) and 1.1 kW kg-1 (operating at 0.1 Hz, 4% strain, 1.4 kg load). This simple coating method is readily accessible and can be applied to any polymer filament. Effective use of this technique relies on uniform coating to avoid temperature gradients.

  17. Dynamic bending of bionic flexible body driven by pneumatic artificial muscles(PAMs) for spinning gait of quadruped robot

    NASA Astrophysics Data System (ADS)

    Lei, Jingtao; Yu, Huangying; Wang, Tianmiao

    2016-01-01

    The body of quadruped robot is generally developed with the rigid structure. The mobility of quadruped robot depends on the mechanical properties of the body mechanism. It is difficult for quadruped robot with rigid structure to achieve better mobility walking or running in the unstructured environment. A kind of bionic flexible body mechanism for quadruped robot is proposed, which is composed of one bionic spine and four pneumatic artificial muscles(PAMs). This kind of body imitates the four-legged creatures' kinematical structure and physical properties, which has the characteristic of changeable stiffness, lightweight, flexible and better bionics. The kinematics of body bending is derived, and the coordinated movement between the flexible body and legs is analyzed. The relationship between the body bending angle and the PAM length is obtained. The dynamics of the body bending is derived by the floating coordinate method and Lagrangian method, and the driving force of PAM is determined. The experiment of body bending is conducted, and the dynamic bending characteristic of bionic flexible body is evaluated. Experimental results show that the bending angle of the bionic flexible body can reach 18°. An innovation body mechanism for quadruped robot is proposed, which has the characteristic of flexibility and achieve bending by changing gas pressure of PAMs. The coordinated movement of the body and legs can achieve spinning gait in order to improve the mobility of quadruped robot.

  18. Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings

    NASA Astrophysics Data System (ADS)

    Barrett, Ronald M.; Barrett, Cassandra M.

    2014-07-01

    This paper is centered on a new form of adaptive material which functions much in the same way as skeletal muscle tissue, is structurally modeled on plant actuator cells and capable of rapidly expanding or shrinking by as much as an order of magnitude in prescribed directions. Rapid changes of plant cell shape and sizes are often initiated via ion-transport driven fluid migration and resulting turgor pressure variation. Certain plant cellular structures like those in Mimosa pudica (sensitive plant), Albizia julibrissin (Mimosa tree), or Dionaea muscipula (Venus Flytrap) all exhibit actuation physiology which employs such turgor pressure manipulation. The paper begins with dynamic micrographs of a sectioned basal articulation joint from A. julibrissin. These figures show large cellular dimensional changes as the structure undergoes foliage articulation. By mimicking such structures in aircraft flight control mechanisms, extremely lightweight pneumatic control surface actuators can be designed. This paper shows several fundamental layouts of such surfaces with actuator elements made exclusively from FAA-certifiable materials, summarizes their structural mechanics and shows actuator power and energy densities that are higher than nearly all classes of conventional adaptive materials available today. A sample flap structure is shown to possess the ability to change its shape and structural stiffness as its cell pressures are manipulated, which in turn changes the surface lift-curve slope when exposed to airflows. Because the structural stiffness can be altered, it is also shown that the commanded section lift-curve slope can be similarly controlled between 1.2 and 6.2 rad-1. Several aircraft weight reduction principles are also shown to come into play as the need to concentrate loads to pass through point actuators is eliminated. The paper concludes with a summary of interrelated performance and airframe-level improvements including enhanced gust rejection, load

  19. Artificial gravity as a countermeasure to microgravity: a pilot study examining the effects on knee extensor and plantar flexor muscle groups

    PubMed Central

    Caiozzo, V. J.; Haddad, F.; Lee, S.; Baker, M.; Paloski, William; Baldwin, K. M.

    2009-01-01

    The goal of this project was to examine the effects of artificial gravity (AG) on skeletal muscle strength and key anabolic/catabolic markers known to regulate muscle mass. Two groups of subjects were selected for study: 1) a 21 day-bed rest (BR) group (n = 7) and 2) an AG group (n = 8), which was subjected to 21 days of 6° head-down tilt bed rest plus daily 1-h exposures to AG (2.5 G at the feet). Centrifugation was produced using a short-arm centrifuge with the foot plate ∼220 cm from the center of rotation. The torque-velocity relationships of the knee extensors and plantar flexors of the ankle were determined pre- and posttreatment. Muscle biopsy samples obtained from the vastus lateralis and soleus muscles were used for a series of gene expression analyses (mRNA abundance) of key factors implicated in the anabolic vs. catabolic state of the muscle. Post/pre torque-velocity determinations revealed greater decrements in knee extensor performance in the BR vs. AG group (P < 0.04). The plantar flexors of the AG subjects actually demonstrated a net gain in the torque-velocity relationship, whereas in the BR group, the responses declined (AG vs. BR, P < 0.001). Muscle fiber cross-sectional area decreased by ∼20% in the BR group, whereas no losses were evident in the AG group. RT-PCR analyses of muscle biopsy specimens demonstrated that markers of growth and cytoskeletal integrity were higher in the AG group, whereas catabolic markers were elevated in the BR group. Importantly, these patterns were seen in both muscles. We conclude that paradigms of AG have the potential to maintain the functional, biochemical, and structural homeostasis of skeletal muscle in the face of chronic unloading. PMID:19286573

  20. Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting.

    PubMed

    Arjmand, N; Ekrami, O; Shirazi-Adl, A; Plamondon, A; Parnianpour, M

    2013-05-31

    Two artificial neural networks (ANNs) are constructed, trained, and tested to map inputs of a complex trunk finite element (FE) model to its outputs for spinal loads and muscle forces. Five input variables (thorax flexion angle, load magnitude, its anterior and lateral positions, load handling technique, i.e., one- or two-handed static lifting) and four model outputs (L4-L5 and L5-S1 disc compression and anterior-posterior shear forces) for spinal loads and 76 model outputs (forces in individual trunk muscles) are considered. Moreover, full quadratic regression equations mapping input-outputs of the model developed here for muscle forces and previously for spine loads are used to compare the relative accuracy of these two mapping tools (ANN and regression equations). Results indicate that the ANNs are more accurate in mapping input-output relationships of the FE model (RMSE= 20.7 N for spinal loads and RMSE= 4.7 N for muscle forces) as compared to regression equations (RMSE= 120.4 N for spinal loads and RMSE=43.2 N for muscle forces). Quadratic regression equations map up to second order variations of outputs with inputs while ANNs capture higher order variations too. Despite satisfactory achievement in estimating overall muscle forces by the ANN, some inadequacies are noted including assigning force to antagonistic muscles with no activity in the optimization algorithm of the FE model or predicting slightly different forces in bilateral pair muscles in symmetric lifting activities. Using these user-friendly tools spine loads and trunk muscle forces during symmetric and asymmetric static lifts can be easily estimated.

  1. Multi-scale finite element analyses for stress and strain evaluations of braid fibril artificial blood vessel and smooth muscle cell.

    PubMed

    Nakamachi, Eiji; Uchida, Takahiro; Kuramae, Hiroyuki; Morita, Yusuke

    2014-08-01

    In this study, we developed a multi-scale finite element (FE) analysis code to obtain the stress and strain that occurred in the smooth muscle cell (SMC) at micro-scale, which was seeded in the real fabricated braid fibril artificial blood vessel. This FE code can predict the dynamic response of stress under the blood pressure loading. We try to establish a computer-aided engineering (CAE)-driven scaffold design technique for the blood vessel regeneration. Until now, there occurred the great progresses for the endothelial cell activation and intima layer regeneration in the blood vessel regeneration study. However, there remains the difficulty of the SMC activation and media layer regeneration. Therefore, many researchers are now studying to elucidate the fundamental mechanism of SMC activation and media layer regeneration by using the biomechanical technique. As the numerical tool, we used the dynamic-explicit FE code PAM-CRASH, ESI Ltd. For the material models, the nonlinear viscoelastic constitutive law was adapted for the human blood vessel, SMC and the extra-cellular matrix, and the elastic law for the polyglycolic acid (PGA) fiber. Through macro-FE and micro-FE analyses of fabricated braid fibril tubes by using PGA fiber under the combined conditions of the orientation angle and the pitch of fiber, we searched an appropriate structure for the stress stimulation for SMC functionalization. Objectives of this study are indicated as follows: 1. to analyze the stress and strain of the human blood vessel and SMC, and 2. to calculate stress and strain of the real fabricated braid fibril artificial blood vessel and SMC to search an appropriate PGA fiber structure under combined conditions of PGA fiber numbers, 12 and 24, and the helical orientation angles of fiber, 15, 30, 45, 60, and 75 degrees. Finally, we found a braid fibril tube, which has an angle of 15 degree and 12 PGA fibers, as a most appropriate artificial blood vessel for SMC functionalization.

  2. The relationship between ciliary muscle fatigue and the type of artificial light used to illuminate the area of visual work.

    PubMed

    Leśnik, H; Poborc-Godlewska, J

    1993-01-01

    The relationship between the degree of eye fatigue resulting from visual work and type of light source used to illuminate the field of work was assessed. The tests were performed using artificial light sources: fluorescent lamps, incandescent lamps, high pressure mercury (vapour) and high pressure sodium (vapour) lamps. The assessment was performed on two groups of 10 women each, of which one included women without, and the other with, refraction errors. On the basis of changes of nearer vision point and dispersing lens tolerance, it was found that sodium light produced the highest visual fatigue in the test women, especially in those with refraction errors.

  3. Embedding speech into virtual realities

    NASA Technical Reports Server (NTRS)

    Bohn, Christian-Arved; Krueger, Wolfgang

    1993-01-01

    In this work a speaker-independent speech recognition system is presented, which is suitable for implementation in Virtual Reality applications. The use of an artificial neural network in connection with a special compression of the acoustic input leads to a system, which is robust, fast, easy to use and needs no additional hardware, beside a common VR-equipment.

  4. Biologically inspired robots as artificial inspectors

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2002-06-01

    Imagine an inspector conducting an NDE on an aircraft where you notice something is different about him - he is not real but rather he is a robot. Your first reaction would probably be to say 'it's unbelievable but he looks real' just as you would react to an artificial flower that is a good imitation. This science fiction scenario could become a reality at the trend in the development of biologically inspired technologies, and terms like artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. For many years, the trend has been to automate processes in order to increase the efficiency of performing redundant tasks where various systems have been developed to deal with specific production line requirements. Realizing that some parts are too complex or delicate to handle in small quantities with a simple automatic system, robotic mechanisms were developed. Aircraft inspection has benefitted from this evolving technology where manipulators and crawlers are developed for rapid and reliable inspection. Advancement in robotics towards making them autonomous and possibly look like human, can potentially address the need to inspect structures that are beyond the capability of today's technology with configuration that are not predetermined. The operation of these robots may take place at harsh or hazardous environments that are too dangerous for human presence. Making such robots is becoming increasingly feasible and in this paper the state of the art will be reviewed.

  5. Extended healing validation of an artificial tendon to connect the quadriceps muscle to the Tibia: 180-day study.

    PubMed

    Melvin, Alan J; Litsky, Alan S; Mayerson, Joel L; Stringer, Keith; Juncosa-Melvin, Natalia

    2012-07-01

    Whenever a tendon or its bone insertion is disrupted or removed, existing surgical techniques provide a temporary connection or scaffolding to promote healing, but the interface of living to non-living materials soon breaks down under the stress of these applications, if it must bear the load more than acutely. Patients are thus disabled whose prostheses, defect size, or mere anatomy limit the availability or outcomes of such treatments. Our group developed the OrthoCoupler™ device to join skeletal muscle to prosthetic or natural structures without this interface breakdown. In this study, the goat knee extensor mechanism (quadriceps tendon, patella, and patellar tendon) was removed from the right hind limb in 16 goats. The device connected the quadriceps muscle to a stainless steel bone plate on the tibia. Mechanical testing and histology specimens were collected from each operated leg and contralateral unoperated control legs at 180 days. Maximum forces in the operated leg (vs. unoperated) were 1,400 ± 93 N (vs. 1,179 ± 61 N), linear stiffnesses were 33 ± 3 N/mm (vs. 37 ± 4 N/mm), and elongations at failure were 92.1 ± 5.3 mm (vs. 68.4 ± 3.8 mm; mean ± SEM). Higher maximum forces (p = 0.02) and elongations at failure (p=0.008) of legs with the device versus unoperated controls were significant; linear stiffnesses were not (p=0.3). We believe this technology will yield improved procedures for clinical challenges in orthopedic oncology, revision arthroplasty, tendon transfer, and tendon injury reconstruction.

  6. Extended Healing Validation of an Artificial Tendon to Connect the Quadriceps Muscle to the Tibia: 180-day Study

    PubMed Central

    Melvin, Alan J.; Litsky, Alan S.; Mayerson, Joel L.; Stringer, Keith; Juncosa-Melvin, Natalia

    2011-01-01

    Whenever a tendon or its bone insertion is disrupted or removed, existing surgical techniques provide a temporary connection or scaffolding to promote healing, but the interface of living to nonliving materials soon breaks down under the stress of these applications, if it must bear the load more than acutely. Patients are thus disabled whose prostheses, defect size, or mere anatomy limit the availability or outcomes of such treatments. Our group developed the OrthoCoupler™ device to join skeletal muscle to prosthetic or natural structures without this interface breakdown. In this study, the goat knee extensor mechanism (quadriceps tendon, patella, and patellar tendon) was removed from the right hind limb in 16 goats. The device connected the quadriceps muscle to a stainless steel bone plate on the tibia. Mechanical testing and histology specimens were collected from each operated leg and contra lateral unoperated control legs at 180 days. Maximum forces in the operated leg (vs. unoperated) were 1400± 93N (vs. 1179± 61 N), linear stiffnesses were 33± 3 N/mm (vs. 37 ± 4N/mm), and elongations at failure were 92.1 ± 5.3 mm (vs. 68.4 ± 3.8 mm; mean ± SEM). Higher maximum forces (p = 0.02) and elongations at failure (p = 0.008) of legs with the device versus unoperated controls were significant; linear stiffnesses were not (p = 0.3). We believe this technology will yield improved procedures for clinical challenges in orthopaedic oncology, revision arthroplasty, tendon transfer, and tendon injury reconstruction. PMID:22179930

  7. Virtual Reality.

    ERIC Educational Resources Information Center

    Newby, Gregory B.

    1993-01-01

    Discusses the current state of the art in virtual reality (VR), its historical background, and future possibilities. Highlights include applications in medicine, art and entertainment, science, business, and telerobotics; and VR for information science, including graphical display of bibliographic data, libraries and books, and cyberspace.…

  8. Alternate Realities

    NASA Astrophysics Data System (ADS)

    Jones, Robert

    2010-02-01

    Two identical learners, observing different example input, or the same examples, but in different order, can form different categories and so judge newer/later input differently. (Machine Learning, T. Mitchell, McGraw Hill, 1997 and Asa H., R. Jones, Trans. Kansas Acad. Sci., vol 109, # 3/4, pg 159, 2006) It seems certain that each of us experiences a somewhat different reality, the question is just how widely these realities can vary one from another. Perhaps 4% of people exhibit synesthesia, perceiving letters or numbers as colored, numbers and dates as having personalities or occupying locations in space. (Synesthesia, R. Cytowic, MIT Press, 2002) The Sapir- Whorf hypothesis claims that a speakers language influences his category structure and the way he thinks. (Language, thought, and reality, B. Whorf, MIT Press, 1956) Those who are skillful at mathematics may know an additional language and be able to think thoughts that the layman can not. The philosophers Plato and Descartes claimed to have had, at certain moments in their lives, a new view of the world, its basic constituents, and its rules which were totally different from our conventional view of reality. (Reflections on Kurt Godel, H. Wang, MIT Press, 1987, pg. 46) Fairly large scale differences are experienced by those who believe in (make use of) concepts like spirit(s), soul(s), god(s), life after death, platonism or Everett's many worlds interpretation of quantum mechanics (The Physics of Immortality, F. Tipler, Doubleday, 1994, pg. 176) )

  9. Artificial gravity.

    PubMed

    Scott, William B

    2005-04-25

    NASA's Artificial Gravity program consists of a team of researchers from Wyle Laboratories, NASA Johnson Space Center, and the University of Texas Medical Branch (UTMB). The short-radius centrifuge (SRC), built by Wyle Laboratories, will be integrated with UTMB's conducted bedrest studies, which mimic the detrimental effects of weightlessness (or microgravity). Bedrest subjects will be spun on the SRC at various accelerations and for various time periods, while being monitored medically. Parameters such as bone loss, muscle atrophy, balance control, and oxygen consumption will then be compared in order to research ways of mitigating the impact on astronauts' physiology. Other potential benefits from these studies extend to population groups on Earth, such as bedridden patients. PMID:15852559

  10. Intelligent virtual reality in the setting of fuzzy sets

    NASA Technical Reports Server (NTRS)

    Dockery, John; Littman, David

    1992-01-01

    The authors have previously introduced the concept of virtual reality worlds governed by artificial intelligence. Creation of an intelligent virtual reality was further proposed as a universal interface for the handicapped. This paper extends consideration of intelligent virtual realty to a context in which fuzzy set principles are explored as a major tool for implementing theory in the domain of applications to the disabled.

  11. Virtual reality and hallucination: a technoetic perspective

    NASA Astrophysics Data System (ADS)

    Slattery, Diana R.

    2008-02-01

    Virtual Reality (VR), especially in a technologically focused discourse, is defined by a class of hardware and software, among them head-mounted displays (HMDs), navigation and pointing devices; and stereoscopic imaging. This presentation examines the experiential aspect of VR. Putting "virtual" in front of "reality" modifies the ontological status of a class of experience-that of "reality." Reality has also been modified [by artists, new media theorists, technologists and philosophers] as augmented, mixed, simulated, artificial, layered, and enhanced. Modifications of reality are closely tied to modifications of perception. Media theorist Roy Ascott creates a model of three "VR's": Verifiable Reality, Virtual Reality, and Vegetal (entheogenically induced) Reality. The ways in which we shift our perceptual assumptions, create and verify illusions, and enter "the willing suspension of disbelief" that allows us entry into imaginal worlds is central to the experience of VR worlds, whether those worlds are explicitly representational (robotic manipulations by VR) or explicitly imaginal (VR artistic creations). The early rhetoric surrounding VR was interwoven with psychedelics, a perception amplified by Timothy Leary's presence on the historic SIGGRAPH panel, and the Wall Street Journal's tag of VR as "electronic LSD." This paper discusses the connections-philosophical, social-historical, and psychological-perceptual between these two domains.

  12. Morphine: Myths and Reality

    MedlinePlus

    ... and Families Take the Quiz Morphine: Myths and Reality February, 2013 The mere mention of “Morphine” can ... due to misinformation and lack of training. The reality is that Morphine (and other opiates that work ...

  13. Your Muscles

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Your Muscles KidsHealth > For Kids > Your Muscles Print A A ... and skeletal (say: SKEL-uh-tul) muscle. Smooth Muscles Smooth muscles — sometimes also called involuntary muscles — are ...

  14. Rhetoric as Reality Construction.

    ERIC Educational Resources Information Center

    Kneupper, Charles W.

    This essay provides an analytic development of a philosophy of rhetoric which focuses its concern on social reality. According to this philosophy, the activity of the human mind invents symbolic constructions of reality. Primary socialization is interpreted as a rhetorical process which tends to maintain prevailing reality constructions.…

  15. Confronting an Augmented Reality

    ERIC Educational Resources Information Center

    Munnerley, Danny; Bacon, Matt; Wilson, Anna; Steele, James; Hedberg, John; Fitzgerald, Robert

    2012-01-01

    How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself ? In this article, we seek to initiate a discussion that focuses on these questions, and…

  16. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Waltz, David L.

    1982-01-01

    Describes kinds of results achieved by computer programs in artificial intelligence. Topics discussed include heuristic searches, artificial intelligence/psychology, planning program, backward chaining, learning (focusing on Winograd's blocks to explore learning strategies), concept learning, constraint propagation, language understanding…

  17. Artificial Limbs

    MedlinePlus

    ... you are missing an arm or leg, an artificial limb can sometimes replace it. The device, which is ... activities such as walking, eating, or dressing. Some artificial limbs let you function nearly as well as before.

  18. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Information Technology Quarterly, 1985

    1985-01-01

    This issue of "Information Technology Quarterly" is devoted to the theme of "Artificial Intelligence." It contains two major articles: (1) Artificial Intelligence and Law" (D. Peter O'Neill and George D. Wood); (2) "Artificial Intelligence: A Long and Winding Road" (John J. Simon, Jr.). In addition, it contains two sidebars: (1) "Calculating and…

  19. Augmented reality: a review.

    PubMed

    Berryman, Donna R

    2012-01-01

    Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries.

  20. Augmented reality: a review.

    PubMed

    Berryman, Donna R

    2012-01-01

    Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries. PMID:22559183

  1. Biologically inspired robotic inspectors: the engineering reality and future outlook (Keynote address)

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2005-04-01

    Human errors have long been recognized as a major factor in the reliability of nondestructive evaluation results. To minimize such errors, there is an increasing reliance on automatic inspection tools that allow faster and consistent tests. Crawlers and various manipulation devices are commonly used to perform variety of inspection procedures that include C-scan with contour following capability to rapidly inspect complex structures. The emergence of robots has been the result of the need to deal with parts that are too complex to handle by a simple automatic system. Economical factors are continuing to hamper the wide use of robotics for inspection applications however technology advances are increasingly changing this paradigm. Autonomous robots, which may look like human, can potentially address the need to inspect structures with configuration that are not predetermined. The operation of such robots that mimic biology may take place at harsh or hazardous environments that are too dangerous for human presence. Biomimetic technologies such as artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. Inspired by science fiction, making biomimetic robots is increasingly becoming an engineering reality and in this paper the state-of-the-art will be reviewed and the outlook for the future will be discussed.

  2. All-silicone prestrain-locked interpenetrating polymer network elastomers: free-standing silicone artificial muscles with improved performance and robustness

    NASA Astrophysics Data System (ADS)

    Brochu, P.; Stoyanov, H.; Niu, X.; Pei, Q.

    2013-05-01

    We present a novel all-silicone prestrain-locked interpenetrating polymer network (all-S-IPN) elastomer for use as a muscle-like actuator. The elastomer is fabricated using a combination of two silicones: a soft room temperature vulcanizing (RTV) silicone that serves as the host elastomer matrix, and a more rigid high temperature vulcanizing (HTV) silicone that acts to preserve the prestrain in the host network. In our novel S-IPN fabrication procedure we co-dissolve the RTV and HTV silicones in a common solvent, cast thin films, and allow the RTV silicone to cure before applying prestrain and finally curing the HTV silicone to lock in the prestrain. The free-standing prestrain-locked silicones show a performance improvement over standard free-standing silicone films, with a linear strain of 25% and an area strain of 45% when tested in a diaphragm configuration. We show that the process can also be used to improve electrode adhesion and stability as well as improve the interlayer adhesion in multilayer actuators. We demonstrate that, when coupled with carbon nanotube electrodes, fault-tolerance through self-clearing can be observed. We use the fault-tolerance and improved interlayer adhesion to demonstrate stable long-life (>30 000 cycles at >20% strain) actuation and repeated high-performance actuation (>500 cycles at ∼40% strain) of prestrained free-standing multilayer actuators driving a load.

  3. Artificial intelligence

    SciTech Connect

    Firschein, O.

    1984-01-01

    This book presents papers on artificial intelligence. Topics considered include knowledge engineering, expert systems, applications of artificial intelligence to scientific reasoning, planning and problem solving, error recovery in robots through failure reason analysis, programming languages, natural language, speech recognition, map-guided interpretation of remotely-sensed imagery, and image understanding architectures.

  4. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Thornburg, David D.

    1986-01-01

    Overview of the artificial intelligence (AI) field provides a definition; discusses past research and areas of future research; describes the design, functions, and capabilities of expert systems and the "Turing Test" for machine intelligence; and lists additional sources for information on artificial intelligence. Languages of AI are also briefly…

  5. Illusion and Reality.

    ERIC Educational Resources Information Center

    Hamilton, Virginia

    The fiction writer uses language to create the illusion of reality. A work of fiction is an illusion of life in which characters attempt to transform basic reality by casting their desires and views upon it, thus creating internal conflict between elements of the real and the unreal. Characters must sort out through experiences that enable them to…

  6. Virtual Reality: An Overview.

    ERIC Educational Resources Information Center

    Franchi, Jorge

    1994-01-01

    Highlights of this overview of virtual reality include optics; interface devices; virtual worlds; potential applications, including medicine and archaeology; problems, including costs; current research and development; future possibilities; and a listing of vendors and suppliers of virtual reality products. (Contains 11 references.) (LRW)

  7. Learning in Virtual Reality.

    ERIC Educational Resources Information Center

    Bricken, William

    The essence of the computer revolution is yet to come, for computers are essentially generators of realities. Virtual reality (VR) is the next step in the evolutionary path; the user is placed inside the image and becomes a participant within the computational space. A VR computer generates a direct experience of the computational environment. The…

  8. Muscle Cramps

    MedlinePlus

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur after exercise or at night, ... to several minutes. It is a very common muscle problem. Muscle cramps can be caused by nerves ...

  9. Muscle Disorders

    MedlinePlus

    Your muscles help you move and help your body work. Different types of muscles have different jobs. There are many problems that can affect muscles. Muscle disorders can cause weakness, pain or even ...

  10. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy: disuse and neurogenic. Disuse atrophy is caused by not using the muscles enough . This type of atrophy can often be ...

  11. Muscle biopsy

    MedlinePlus

    ... the removal of a small piece of muscle tissue for examination. ... dystrophy Myopathic changes (destruction of the muscle) Necrosis (tissue death) of muscle Necrotizing vasculitis Traumatic muscle damage Polymyositis Additional conditions ...

  12. Virtual Reality as Treatment for Fear of Flying: A Review of Recent Research

    ERIC Educational Resources Information Center

    Price, Matthew; Anderson, Page; Rothbaum, Barbara O.

    2008-01-01

    Virtual reality exposure has recently emerged as an important tool for exposure therapy in the treatment of fear of flying. There have been numerous empirical studies that have evaluated the effectiveness of virtual reality exposure as compared to other treatments including in vivo exposure, progressive muscle relaxation, cognitive therapy,…

  13. Thermodynamics in 'Manifest Reality'

    SciTech Connect

    Hankey, Alex

    2010-12-22

    D'Espagnat's proof that the universe is not a 'strongly objective reality' demands that all physical processes are reconsidered in that light. D'Espagnat suggests a 'Veiled Reality' as a suitable alternative. The most economical way to achieve that is to demand that 'information production' at a quantum level creates the basis for self-consistent perception of a world of macroscopic, 'manifest' entities, as opposed to self-existent objects. Such a 'manifest reality' fulfils both Wheeler's attempt at an 'IT-from-BIT' programme, and Zeilinger's suggestion that 'information is primary'.

  14. Better than reality

    NASA Astrophysics Data System (ADS)

    Cartwright, Jon

    2016-04-01

    Can you learn optics better using a simulation than you can in real life? Jon Cartwright explores how scientists are forgoing reality by replacing mirrors and lenses with virtual facilities and classrooms.

  15. Virtual Reality Lab Assistant

    NASA Technical Reports Server (NTRS)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  16. Skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  17. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  18. Artificial rearing.

    PubMed

    Dominguez, Hector D; Thomas, Jennifer D

    2008-01-01

    Prenatal alcohol exposure disrupts development, leading to a range of effects referred to as fetal alcohol spectrum disorders (FASD). FASDs include physical, central nervous system, and behavioral alterations. Animal model systems are used to study the relationship between alcohol-related central nervous system damage and behavioral alterations, risk factors for FASD, mechanisms of alcohol-induced damage, as well as treatments and interventions. When using a rodent model, it is important to recognize that the timing of brain development relative to birth differs between humans and rodents. Thus, to model alcohol exposure during the third trimester equivalent, rats must be exposed during early postnatal development (postnatal days 4-9). Artificial rearing is one experimental paradigm that is used to expose neonatal rats to alcohol during this period of brain development. Neonatal rat pups are housed in an artificial rearing environment and automatically fed a milk diet substitute via an intragastric cannula to ensure adequate growth during the treatment period. Alcohol is delivered in the milk diet. This chapter provides a description of the methods needed for this administrative technique, including preparation of the artificial rearing environment, gastrostomy surgery, and care of artificially reared rat pups.

  19. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Wash, Darrel Patrick

    1989-01-01

    Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)

  20. Muscle disorder

    MedlinePlus

    Myopathic changes; Myopathy; Muscle problem ... Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs ...

  1. Optimal haptic feedback control of artificial muscles

    NASA Astrophysics Data System (ADS)

    Chen, Daniel; Besier, Thor; Anderson, Iain; McKay, Thomas

    2014-03-01

    As our population ages, and trends in obesity continue to grow, joint degenerative diseases like osteoarthritis (OA) are becoming increasingly prevalent. With no cure currently in sight, the only effective treatments for OA are orthopaedic surgery and prolonged rehabilitation, neither of which is guaranteed to succeed. Gait retraining has tremendous potential to alter the contact forces in the joints due to walking, reducing the risk of one developing hip and knee OA. Dielectric Elastomer Actuators (DEAs) are being explored as a potential way of applying intuitive haptic feedback to alter a patient's walking gait. The main challenge with the use of DEAs in this application is producing large enough forces and strains to induce sensation when coupled to a patient's skin. A novel controller has been proposed to solve this issue. The controller uses simultaneous capacitive self-sensing and actuation which will optimally apply a haptic sensation to the patient's skin independent of variability in DEAs and patient geometries.

  2. Extending applications of dielectric elastomer artificial muscle

    NASA Astrophysics Data System (ADS)

    Chiba, Seiki; Waki, Mikio; Kornbluh, Roy; Pelrine, Ron

    2007-04-01

    Dielectric elastomers have demonstrated high energy density and high strains as well as high electromechanical efficiency and fast speeds of response. These properties, combined with their projected low cost make them attractive for a variety of actuator applications including linear actuators, diaphragm pumps, rotary motors, and haptic displays. Dielectric elastomers have also been shown to offer high energy density, high efficiency, and large strains when operated as generators. Dielectric elastomers have reached a stage of development where standardized products can be applied to new applications. In some cases, dielectric elastomer devices are improvements over existing devices. In other cases, however, dielectric elastomers can enable new types of devices that cannot be made with existing technologies, such as new types of loudspeakers and power generating devices. A new dipole loudspeaker system was developed using a commercially available push-pull diaphragm configuration. This same transducer configuration was used to develop a new power generating system. This generator system enables a power generation of 0.06 to 0.12 W by manually displacing the device by 5 to 6 mm once a second. By introducing a voltage step-down conversion circuit, the device was able to power wireless communications, allowing the control of devices separated by a distance of a few meters. These two devices are examples of the new applications that are enabled as the dielectric elastomer technology commercially emerges. Future improvements to dielectric elastomers could enable new capabilities in clean electrical power generation from ocean waves, for example.

  3. EAP as artificial muscles - progress and challenges

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2004-01-01

    During the last decade and a half new polymers have emerged that respond to electrical stimulation with a significant shape or size change. This capability of electroactive polymer (EAP) materials is attracting the attention of engineers and scientists from many different disciplines.

  4. Virtual reality systems

    NASA Technical Reports Server (NTRS)

    Johnson, David W.

    1992-01-01

    Virtual realities are a type of human-computer interface (HCI) and as such may be understood from a historical perspective. In the earliest era, the computer was a very simple, straightforward machine. Interaction was human manipulation of an inanimate object, little more than the provision of an explicit instruction set to be carried out without deviation. In short, control resided with the user. In the second era of HCI, some level of intelligence and control was imparted to the system to enable a dialogue with the user. Simple context sensitive help systems are early examples, while more sophisticated expert system designs typify this era. Control was shared more equally. In this, the third era of the HCI, the constructed system emulates a particular environment, constructed with rules and knowledge about 'reality'. Control is, in part, outside the realm of the human-computer dialogue. Virtual reality systems are discussed.

  5. Factory of Realities: On the Emergence of Virtual Spatiotemporal Structures

    NASA Astrophysics Data System (ADS)

    Zapatrin, Romàn R.

    The ubiquitous nature of modern Information Retrieval (IR) and Virtual World give rise to new realities. To what extent are these `realities' real? Which `physics' should be applied to quantitatively describe them? In this chapter, I dwell on few examples. The first is adaptive neural networks, which are not networks and not neural, but still provide service similar to classical artificial neural networks (ANNs) in extended fashion. The second is the emergence of objects looking like Einsteinian space-time, which describe the behavior of an Internet surfer like geodesic motion. The third is the demonstration of nonclassical and even stronger-than-quantum probabilities in IR, their use...

  6. Virtual reality welder training

    NASA Astrophysics Data System (ADS)

    White, Steven A.; Reiners, Dirk; Prachyabrued, Mores; Borst, Christoph W.; Chambers, Terrence L.

    2010-01-01

    This document describes the Virtual Reality Simulated MIG Lab (sMIG), a system for Virtual Reality welder training. It is designed to reproduce the experience of metal inert gas (MIG) welding faithfully enough to be used as a teaching tool for beginning welding students. To make the experience as realistic as possible it employs physically accurate and tracked input devices, a real-time welding simulation, real-time sound generation and a 3D display for output. Thanks to being a fully digital system it can go beyond providing just a realistic welding experience by giving interactive and immediate feedback to the student to avoid learning wrong movements from day 1.

  7. Feasibility of using combined EMG and kinematic signals for prosthesis control: A simulation study using a virtual reality environment.

    PubMed

    Blana, Dimitra; Kyriacou, Theocharis; Lambrecht, Joris M; Chadwick, Edward K

    2016-08-01

    Transhumeral amputation has a significant effect on a person's independence and quality of life. Myoelectric prostheses have the potential to restore upper limb function, however their use is currently limited due to lack of intuitive and natural control of multiple degrees of freedom. The goal of this study was to evaluate a novel transhumeral prosthesis controller that uses a combination of kinematic and electromyographic (EMG) signals recorded from the person's proximal humerus. Specifically, we trained a time-delayed artificial neural network to predict elbow flexion/extension and forearm pronation/supination from six proximal EMG signals, and humeral angular velocity and linear acceleration. We evaluated this scheme with ten able-bodied subjects offline, as well as in a target-reaching task presented in an immersive virtual reality environment. The offline training had a target of 4° for flexion/extension and 8° for pronation/supination, which it easily exceeded (2.7° and 5.5° respectively). During online testing, all subjects completed the target-reaching task with path efficiency of 78% and minimal overshoot (1.5%). Thus, combining kinematic and muscle activity signals from the proximal humerus can provide adequate prosthesis control, and testing in a virtual reality environment can provide meaningful data on controller performance. PMID:26190031

  8. Virtual reality for emergency training

    SciTech Connect

    Altinkemer, K.

    1995-12-31

    Virtual reality is a sequence of scenes generated by a computer as a response to the five different senses. These senses are sight, sound, taste, touch, smell. Other senses that can be used in virtual reality include balance, pheromonal, and immunological senses. Many application areas include: leisure and entertainment, medicine, architecture, engineering, manufacturing, and training. Virtual reality is especially important when it is used for emergency training and management of natural disasters including earthquakes, floods, tornados and other situations which are hard to emulate. Classical training methods for these extraordinary environments lack the realistic surroundings that virtual reality can provide. In order for virtual reality to be a successful training tool the design needs to include certain aspects; such as how real virtual reality should be and how much fixed cost is entailed in setting up the virtual reality trainer. There are also pricing questions regarding the price per training session on virtual reality trainer, and the appropriate training time length(s).

  9. Artificial Intelligence.

    PubMed

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve.

  10. Artificial Intelligence.

    PubMed

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve. PMID:26957450

  11. Artificial vision.

    PubMed

    Zarbin, M; Montemagno, C; Leary, J; Ritch, R

    2011-09-01

    A number treatment options are emerging for patients with retinal degenerative disease, including gene therapy, trophic factor therapy, visual cycle inhibitors (e.g., for patients with Stargardt disease and allied conditions), and cell transplantation. A radically different approach, which will augment but not replace these options, is termed neural prosthetics ("artificial vision"). Although rewiring of inner retinal circuits and inner retinal neuronal degeneration occur in association with photoreceptor degeneration in retinitis pigmentosa (RP), it is possible to create visually useful percepts by stimulating retinal ganglion cells electrically. This fact has lead to the development of techniques to induce photosensitivity in cells that are not light sensitive normally as well as to the development of the bionic retina. Advances in artificial vision continue at a robust pace. These advances are based on the use of molecular engineering and nanotechnology to render cells light-sensitive, to target ion channels to the appropriate cell type (e.g., bipolar cell) and/or cell region (e.g., dendritic tree vs. soma), and on sophisticated image processing algorithms that take advantage of our knowledge of signal processing in the retina. Combined with advances in gene therapy, pathway-based therapy, and cell-based therapy, "artificial vision" technologies create a powerful armamentarium with which ophthalmologists will be able to treat blindness in patients who have a variety of degenerative retinal diseases.

  12. Curriculum: Managed Visual Reality.

    ERIC Educational Resources Information Center

    Gueulette, David G.

    This paper explores the association between the symbolized and the actualized, beginning with the prehistoric notion of a "reality double," in which no practical difference exists between pictorial representations, visual symbols, and real-life events and situations. Alchemists of the Middle Ages, with their paradoxical vision of the universe…

  13. JFK: Image and Reality.

    ERIC Educational Resources Information Center

    Giglio, James N.

    1995-01-01

    Investigates the relationship between the reality of the John F. Kennedy White House, its portrayal in the press, and its reception by the public. The manipulated press coverage accurately caught the charm, work ethic, and idealism of the young president but failed to record the sexual escapades, ill health, and marital discord. (MJP)

  14. Virtual Reality in the Classroom.

    ERIC Educational Resources Information Center

    Pantelidis, Veronica S.

    1993-01-01

    Considers the concept of virtual reality; reviews its history; describes general uses of virtual reality, including entertainment, medicine, and design applications; discusses classroom uses of virtual reality, including a software program called Virtus WalkThrough for use with a computer monitor; and suggests future possibilities. (34 references)…

  15. Constructing Meaning with Virtual Reality.

    ERIC Educational Resources Information Center

    Iaonnou-Georgiou, Sophie

    2002-01-01

    Presents a constructivist rationale for introducing virtual reality in language learning and teaching and describes various virtual reality environments that are available. Ways of implementing constuctivist learning through virtual reality are suggested as well as basic guidelines for successful implementation in the classroom. (Author/VWL)

  16. Artificial Intelligence

    SciTech Connect

    Shirai, Y.; Tsujii, Jun-ichi

    1985-01-01

    Based on the Japanese 5th Generation Computer Program, this volume provides coverage of the fundamental concepts and various techniques in the different applications of Artificial Intelligence. Also presented are the methods which can be used to put these concepts and techniques into practice. Explanations are presented of all the basic topics in the field, including the representation of problems; searching techniques; the control of problem solving; programming languages for Al, such as LISP, PLANNER, CONNIVER, and PROLOG; the representation and utilization of knowledge; and the approach to human intelligence.

  17. Experiments in mixed reality

    NASA Astrophysics Data System (ADS)

    Krum, David M.; Sadek, Ramy; Kohli, Luv; Olson, Logan; Bolas, Mark

    2010-01-01

    As part of the Institute for Creative Technologies and the School of Cinematic Arts at the University of Southern California, the Mixed Reality lab develops technologies and techniques for presenting realistic immersive training experiences. Such experiences typically place users within a complex ecology of social actors, physical objects, and collections of intents, motivations, relationships, and other psychological constructs. Currently, it remains infeasible to completely synthesize the interactivity and sensory signatures of such ecologies. For this reason, the lab advocates mixed reality methods for training and conducts experiments exploring such methods. Currently, the lab focuses on understanding and exploiting the elasticity of human perception with respect to representational differences between real and virtual environments. This paper presents an overview of three projects: techniques for redirected walking, displays for the representation of virtual humans, and audio processing to increase stress.

  18. Augmented reality system

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng

    2010-08-01

    In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.

  19. The Fabric of Reality

    NASA Astrophysics Data System (ADS)

    Whitaker, Andrew

    David Deutsch, The Fabric of Reality (London: Allen Lane, 1997), x+390 pp., ISBN 0-713-990619, hardback. David Deutsch's popular book, The Fabric of Reality, has already won acclaim as a sustained and comprehensible explanation of his own worldview, which encompasses his four main strands of quantum physics, epistemology, computation and evolution, as well as the many connections between them. Deutsch is a strong opponent of reductionism, and the latter three strands are 'high level' theories compared to quantum physics; but all four are to be regarded as fundamental because they are the theories that provide the deepest explanations. Deutsch considers that his worldview may be called the first genuine Theory of Everything; it would stand in strong contrast to the reductionist theories given that title at present. In fact he believes his approach may enable us to unify and explain not just science, but philosophy, logic, mathematics, ethics, politics and aesthetics.

  20. Models of Reality.

    SciTech Connect

    Brown-VanHoozer, S. A.

    1999-06-02

    Conscious awareness of our environment is based on a feedback loop comprised of sensory input transmitted to the central nervous system leading to construction of our ''model of the world,'' (Lewis et al, 1982). We then assimilate the neurological model at the unconscious level into information we can later consciously consider useful in identifying belief systems and behaviors for designing diverse systems. Thus, we can avoid potential problems based on our open-to-error perceived reality of the world. By understanding how our model of reality is organized, we allow ourselves to transcend content and develop insight into how effective choices and belief systems are generated through sensory derived processes. These are the processes which provide the designer the ability to meta model (build a model of a model) the user; consequently, matching the mental model of the user with that of the designer's and, coincidentally, forming rapport between the two participants. The information shared between the participants is neither assumed nor generalized, it is closer to equivocal; thus minimizing error through a sharing of each other's model of reality. How to identify individual mental mechanisms or processes, how to organize the individual strategies of these mechanisms into useful patterns, and to formulate these into models for success and knowledge based outcomes is the subject of the discussion that follows.

  1. LOCALITY AND REALITY

    SciTech Connect

    Stapp, Henry P.

    1980-02-01

    Einstein's principle that no signal travels faster than suggests that observations in one spacetime region should not depend on whether or not a radioactive decay is detected in a spacelike separated region. This locality property is incompatible with the predictions of quantum theory, and this incompatibility holds independently of the questions of realism, objective reality, and hidden variables. It holds both in the pragmatic quantum theory of Bohr and in realistic frameworks. It is shown here to hold in a completed realistic quantum theory that reconciles Einstein's demand for a description of reality itself with Bohr's contention that quantum theory is complete. This completed realistic quantum theory has no hidden variables, and no objective reality in which observable attributes can become definite independently of observers. The, theory is described in some detail, with particular attention to those aspects related to the question of locality. This completed realistic quantum theory is in principle more comprehensive than Bohr.' s pragmatic quantum theory because it is not limited in principle by the requirement that the observed system be physically separated from the observing one. Applications are discussed.

  2. Achieving Presence through Evoked Reality

    PubMed Central

    Pillai, Jayesh S.; Schmidt, Colin; Richir, Simon

    2013-01-01

    The sense of “Presence” (evolving from “telepresence”) has always been associated with virtual reality research and is still an exceptionally mystifying constituent. Now the study of presence clearly spans over various disciplines associated with cognition. This paper attempts to put forth a concept that argues that it’s an experience of an “Evoked Reality (ER)” (illusion of reality) that triggers an “Evoked Presence (EP)” (sense of presence) in our minds. A Three Pole Reality Model is proposed to explain this phenomenon. The poles range from Dream Reality to Simulated Reality with Primary (Physical) Reality at the center. To demonstrate the relationship between ER and EP, a Reality-Presence Map is developed. We believe that this concept of ER and the proposed model may have significant applications in the study of presence, and in exploring the possibilities of not just virtual reality but also what we call “reality.” PMID:23550234

  3. Artificial rheotaxis

    PubMed Central

    Palacci, Jérémie; Sacanna, Stefano; Abramian, Anaïs; Barral, Jérémie; Hanson, Kasey; Grosberg, Alexander Y.; Pine, David J.; Chaikin, Paul M.

    2015-01-01

    Motility is a basic feature of living microorganisms, and how it works is often determined by environmental cues. Recent efforts have focused on developing artificial systems that can mimic microorganisms, in particular their self-propulsion. We report on the design and characterization of synthetic self-propelled particles that migrate upstream, known as positive rheotaxis. This phenomenon results from a purely physical mechanism involving the interplay between the polarity of the particles and their alignment by a viscous torque. We show quantitative agreement between experimental data and a simple model of an overdamped Brownian pendulum. The model notably predicts the existence of a stagnation point in a diverging flow. We take advantage of this property to demonstrate that our active particles can sense and predictably organize in an imposed flow. Our colloidal system represents an important step toward the realization of biomimetic microsystems with the ability to sense and respond to environmental changes. PMID:26601175

  4. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  5. Authoring Immersive Mixed Reality Experiences

    NASA Astrophysics Data System (ADS)

    Misker, Jan M. V.; van der Ster, Jelle

    Creating a mixed reality experience is a complicated endeavour. From our practice as a media lab in the artistic domain we found that engineering is “only” a first step in creating a mixed reality experience. Designing the appearance and directing the user experience are equally important for creating an engaging, immersive experience. We found that mixed reality artworks provide a very good test bed for studying these topics. This chapter details three steps required for authoring mixed reality experiences: engineering, designing and directing. We will describe a platform (VGE) for creating mixed reality environments that incorporates these steps. A case study (EI4) is presented in which this platform was used to not only engineer the system, but in which an artist was given the freedom to explore the artistic merits of mixed reality as an artistic medium, which involved areas such as the look and feel, multimodal experience and interaction, immersion as a subjective emotion and game play scenarios.

  6. Nylon-muscle-actuated robotic finger

    NASA Astrophysics Data System (ADS)

    Wu, Lianjun; Jung de Andrade, Monica; Rome, Richard S.; Haines, Carter; Lima, Marcio D.; Baughman, Ray H.; Tadesse, Yonas

    2015-04-01

    This paper describes the design and experimental analysis of novel artificial muscles, made of twisted and coiled nylon fibers, for powering a biomimetic robotic hand. The design is based on circulating hot and cold water to actuate the artificial muscles and obtain fast finger movements. The actuation system consists of a spring and a coiled muscle within a compliant silicone tube. The silicone tube provides a watertight, expansible compartment within which the coiled muscle contracts when heated and expands when cooled. The fabrication and characterization of the actuating system are discussed in detail. The performance of the coiled muscle fiber in embedded conditions and the related characteristics of the actuated robotic finger are described.

  7. Facing quantum mechanical reality.

    PubMed

    Rohrlich, F

    1983-09-23

    Two recent precision experiments provide conclusive evidence against any local hidden variables theory and in favor of standard quantum mechanics. Therefore the epistemology and the ontology of quantum mechanics must now be taken more seriously than ever before. The consequences of the standard interpretation of quantum mechanics are summarized in nontechnical language. The implications of the finiteness of Planck's constant (h > 0) for the quantum world are as strange as the implications of the finiteness of the speed of light (c < infinity for space and time in relativity theory. Both lead to realities beyond our common experience that cannot be rejected.

  8. Kaleidoscopes of reality.

    PubMed

    Franquemont, Sharon

    2014-01-01

    This article addresses the broad context of shifting definitions of how knowledge and reality can be described, including the transition from positivism to postpositivism in the 20th century. It provides an exploration of ways of knowing, from ancient Greek and yogic traditions to Barbara Carper's Fundamental Patterns of Knowing in Nursing (1978). It examines three reported components of modern care (intuition, cultural knowing, and spirituality) which are simultaneously present and absent in nursing. It concludes with an imaginative exploration of how nursing might be changed by transdisciplinary scholarship and education, new knowledge creation through interactive online communities, and the emergence of collective wisdom.

  9. Dissociation in virtual reality: depersonalization and derealization

    NASA Astrophysics Data System (ADS)

    Garvey, Gregory P.

    2010-01-01

    This paper looks at virtual worlds such as Second Life7 (SL) as possible incubators of dissociation disorders as classified by the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition3 (also known as the DSM-IV). Depersonalization is where "a person feels that he or she has changed in some way or is somehow unreal." Derealization when "the same beliefs are held about one's surroundings." Dissociative Identity Disorder (DID), previously known as multiple personality disorder fits users of Second Life who adopt "in-world" avatars and in effect, enact multiple distinct identities or personalities (known as alter egos or alters). Select questions from the Structured Clinical Interview for Depersonalization (SCI-DER)8 will be discussed as they might apply to the user's experience in Second Life. Finally I would like to consider the hypothesis that rather than a pathological disorder, dissociation is a normal response to the "artificial reality" of Second Life.

  10. Image-based panoramic virtual reality system

    NASA Astrophysics Data System (ADS)

    Ritchey, Kurtis J.

    1992-06-01

    An extensive family of advanced virtual reality-telepresence systems and components have been developed. The purpose of these systems and components is to facilitate recording, processing, display, and interaction with audio and video signal(s) representing a scene or subject of three-dimensions (3-D). An overview of the systems currently available for license includes: a color video camera with real-time simultaneous spherical FOV coverage; a similar camera for recording various sides of a 3-D subject; an image based system for real-time processing and distribution of said camera based images onto 3-D wireframes; resultant camcorders are generally referred to as virtual reality/telepresence 'VRT camcorders'TM; a 'VIDEOROOM'TM large theater display system in which the floor, walls, and ceiling form a continuous display about the viewer for display of said images; 'INaVISION'TM a HMD system for viewing the same said images; and interactive control devices for manipulating said 3-D image and audio signal(s). Applications, to include visual and auditory simulation, host vehicle control, remote vehicle control, video teleconferencing, and so on, are feasible applications for the above technology. Rough costs of systems and components, photographs of a prototype system, and component illustrations are provided. Future directions of R&D are presented (i.e., Project HEAVEN: Humankind Eternal-Life Artificial-Intelligence Virtual Environment Network).

  11. Artificial intelligence in medical diagnosis.

    PubMed

    Szolovits, P; Patil, R S; Schwartz, W B

    1988-01-01

    In an attempt to overcome limitations inherent in conventional computer-aided diagnosis, investigators have created programs that simulate expert human reasoning. Hopes that such a strategy would lead to clinically useful programs have not been fulfilled, but many of the problems impeding creation of effective artificial intelligence programs have been solved. Strategies have been developed to limit the number of hypotheses that a program must consider and to incorporate pathophysiologic reasoning. The latter innovation permits a program to analyze cases in which one disorder influences the presentation of another. Prototypes embodying such reasoning can explain their conclusions in medical terms that can be reviewed by the user. Despite these advances, further major research and developmental efforts will be necessary before expert performance by the computer becomes a reality.

  12. The Reality-Therapy Diet

    ERIC Educational Resources Information Center

    Strear, Sally

    1977-01-01

    Describes a weight-loss program for 40 obese junior high school students who were divided into five groups, two using reality therapy, two using conventional counseling, and one control group. Reality therapy was shown to be the more effective method of treatment. (Author)

  13. Phenomenalistic Reality: The Developmental Perspective.

    ERIC Educational Resources Information Center

    Subbotsky, Eugene

    2000-01-01

    Extends William James' classification of phenomenalistic reality (PR) and analyzes PR using empirical data available in developmental psychology; focuses on the relation of PR to a human subject; to rational constructions; and to the idea of truth. Concludes that the development of phenomenalistic reality is qualitatively different from the…

  14. When Rural Reality Goes Virtual.

    ERIC Educational Resources Information Center

    Husain, Dilshad D.

    1998-01-01

    In rural towns where sparse population and few business are barriers, virtual reality may be the only way to bring work-based learning to students. A partnership between a small-town high school, the Ohio Supercomputer Center, and a high-tech business will enable students to explore the workplace using virtual reality. (JOW)

  15. About Television Reality and Performance.

    ERIC Educational Resources Information Center

    Howard, Brice

    The author presents the argument that television reality is a new kind of performance in our environment: we don't respond to it and it doesn't acknowledge our presence. The images and sounds of television reality are "its", and our human organisms must be disconcerted by these "its" occuring in the privacy of our homes. We are being taught to…

  16. Ultimate Realities: Deterministic and Evolutionary

    ERIC Educational Resources Information Center

    Moxley, Roy A.

    2007-01-01

    References to ultimate reality commonly turn up in the behavioral literature as references to determinism. However, this determinism is often difficult to interpret. There are different kinds of determinisms as well as different kinds of ultimate realities for a behaviorist to consider. To clarify some of the issues involved, the views of ultimate…

  17. Not a "reality" show.

    PubMed

    Wrong, Terence; Baumgart, Erica

    2013-01-01

    The authors of the preceding articles raise legitimate questions about patient and staff rights and the unintended consequences of allowing ABC News to film inside teaching hospitals. We explain why we regard their fears as baseless and not supported by what we heard from individuals portrayed in the filming, our decade-long experience making medical documentaries, and the full un-aired context of the scenes shown in the broadcast. The authors don't and can't know what conversations we had, what documents we reviewed, and what protections we put in place in each televised scene. Finally, we hope to correct several misleading examples cited by the authors as well as their offhand mischaracterization of our program as a "reality" show. PMID:23631336

  18. Virtual reality at work

    NASA Technical Reports Server (NTRS)

    Brooks, Frederick P., Jr.

    1991-01-01

    The utility of virtual reality computer graphics in telepresence applications is not hard to grasp and promises to be great. When the virtual world is entirely synthetic, as opposed to real but remote, the utility is harder to establish. Vehicle simulators for aircraft, vessels, and motor vehicles are proving their worth every day. Entertainment applications such as Disney World's StarTours are technologically elegant, good fun, and economically viable. Nevertheless, some of us have no real desire to spend our lifework serving the entertainment craze of our sick culture; we want to see this exciting technology put to work in medicine and science. The topics covered include the following: testing a force display for scientific visualization -- molecular docking; and testing a head-mounted display for scientific and medical visualization.

  19. Not a "reality" show.

    PubMed

    Wrong, Terence; Baumgart, Erica

    2013-01-01

    The authors of the preceding articles raise legitimate questions about patient and staff rights and the unintended consequences of allowing ABC News to film inside teaching hospitals. We explain why we regard their fears as baseless and not supported by what we heard from individuals portrayed in the filming, our decade-long experience making medical documentaries, and the full un-aired context of the scenes shown in the broadcast. The authors don't and can't know what conversations we had, what documents we reviewed, and what protections we put in place in each televised scene. Finally, we hope to correct several misleading examples cited by the authors as well as their offhand mischaracterization of our program as a "reality" show.

  20. Augmented Virtual Reality Laboratory

    NASA Technical Reports Server (NTRS)

    Tully-Hanson, Benjamin

    2015-01-01

    Real time motion tracking hardware has for the most part been cost prohibitive for research to regularly take place until recently. With the release of the Microsoft Kinect in November 2010, researchers now have access to a device that for a few hundred dollars is capable of providing redgreenblue (RGB), depth, and skeleton data. It is also capable of tracking multiple people in real time. For its original intended purposes, i.e. gaming, being used with the Xbox 360 and eventually Xbox One, it performs quite well. However, researchers soon found that although the sensor is versatile, it has limitations in real world applications. I was brought aboard this summer by William Little in the Augmented Virtual Reality (AVR) Lab at Kennedy Space Center to find solutions to these limitations.

  1. Anaerobic threshold in total artificial heart animals.

    PubMed

    Chiang, B Y; Pantalos, G; Burns, G L; Long, J W; Khanwilkar, P S; Everett, S D; Mohammad, S F; Olsen, D B

    1994-01-01

    The anaerobic threshold represents an objective measure of functional capacity and is useful in assessment of pulmonary and cardiovascular dysfunction. This study determined the anaerobic threshold in total artificial heart animals and evaluated the performance of the total artificial heart system. Five animals with total artificial hearts were put under incremental exercise testing after exercise training. The intensity of exercise ranged from 2.0 to 4.5 km/hr, with an increment of 0.5 km/hr every 3 min. The anaerobic threshold was 6.72 +/- 0.84 ml/kg/min as detected by the lactate method, and 6.48 +/- 0.79 by the CO2 method. The value of the anaerobic threshold in total artificial heart animals implies that the performance capacity of a total artificial heart is not sufficient to meet the oxygen requirements of vigorously exercising skeletal muscle. The protocol does not allow for driving parameter changes during exercise, and this situation, combined with the manual mode of the control system used, was inadequate to allow the total artificial heart animals to exercise more vigorously. Using an automatic control mode might be helpful, as well as considering the relationship between indices of oxygen metabolism, such as oxygen delivery, oxygen consumption, and oxygen extraction rate, in the control algorithms in total artificial heart control systems.

  2. Spatial orientation and dynamics in virtual reality systems - Lessons from flight simulation

    NASA Technical Reports Server (NTRS)

    Mccauley, Michael E.; Sharkey, Thomas J.

    1991-01-01

    Artificial representations of virtual worlds are becoming more common due to advances in the technology of image generation and display systems. Application areas include flight simulation, mission rehearsal, teleoperator systems, and virtual reality systems. System developers should be forewarned that some proportion of users will experience perceptual anomalies and symptoms of motion sickness as a result of travel through virtual space.

  3. Reality of auditory verbal hallucinations

    PubMed Central

    Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-01-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency. PMID:19620178

  4. Surgery applications of virtual reality

    NASA Technical Reports Server (NTRS)

    Rosen, Joseph

    1994-01-01

    Virtual reality is a computer-generated technology which allows information to be displayed in a simulated, bus lifelike, environment. In this simulated 'world', users can move and interact as if they were actually a part of that world. This new technology will be useful in many different fields, including the field of surgery. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations, simulate and perform surgical procedures (telesurgery), and predict the outcomes of surgery. The authors of this paper describe the basic components of a virtual reality surgical system. These components include: the virtual world, the virtual tools, the anatomical model, the software platform, the host computer, the interface, and the head-coupled display. In the chapter they also review the progress towards using virtual reality for surgical training, planning, telesurgery, and predicting outcomes. Finally, the authors present a training system being developed for the practice of new procedures in abdominal surgery.

  5. Ultimate Realities: Deterministic and Evolutionary

    PubMed Central

    Moxley, Roy A

    2007-01-01

    References to ultimate reality commonly turn up in the behavioral literature as references to determinism. However, this determinism is often difficult to interpret. There are different kinds of determinisms as well as different kinds of ultimate realities for a behaviorist to consider. To clarify some of the issues involved, the views of ultimate realities are treated as falling along a continuum, with extreme views of complete indeterminism and complete determinism at either end and various mixes in between. Doing so brings into play evolutionary realities and the movement from indeterminism to determinism, as in Peirce's evolutionary cosmology. In addition, this framework helps to show how the views of determinism by B. F. Skinner and other behaviorists have shifted over time. PMID:22478489

  6. Grade Inflation: Metaphor and Reality

    ERIC Educational Resources Information Center

    Kamber, Richard; Biggs, Mary

    2003-01-01

    Grade inflation has become a general term for teachers and administrators in recent times and is an ambiguous denomination which needs to be identified. The allegory and reality of grade inflation is discussed.

  7. Augmented Reality Binoculars.

    PubMed

    Oskiper, Taragay; Sizintsev, Mikhail; Branzoi, Vlad; Samarasekera, Supun; Kumar, Rakesh

    2015-05-01

    In this paper we present an augmented reality binocular system to allow long range high precision augmentation of live telescopic imagery with aerial and terrain based synthetic objects, vehicles, people and effects. The inserted objects must appear stable in the display and must not jitter and drift as the user pans around and examines the scene with the binoculars. The design of the system is based on using two different cameras with wide field of view and narrow field of view lenses enclosed in a binocular shaped shell. Using the wide field of view gives us context and enables us to recover the 3D location and orientation of the binoculars much more robustly, whereas the narrow field of view is used for the actual augmentation as well as to increase precision in tracking. We present our navigation algorithm that uses the two cameras in combination with an inertial measurement unit and global positioning system in an extended Kalman filter and provides jitter free, robust and real-time pose estimation for precise augmentation. We have demonstrated successful use of our system as part of information sharing example as well as a live simulated training system for observer training, in which fixed and rotary wing aircrafts, ground vehicles, and weapon effects are combined with real world scenes. PMID:26357208

  8. Virtual reality via photogrammetry

    NASA Astrophysics Data System (ADS)

    Zahrt, John D.; Papcun, George; Childers, Randy A.; Rubin, Naama

    1996-03-01

    We wish to walk into a photograph just as Alice walked into the looking glass. From a mathematical perspective, this problem is exceedingly ill-posed (e.g. Is that a large, distant object or a small, nearby object?). A human expert can supply a large amount of a priori information that can function as mathematical constraints. The constrained problem can then be attacked with photogrammetry to obtain a great deal of quantitative information which is otherwise only qualitatively apparent. The user determines whether the object to be analyzed contains two or three vanishing points, then selects an appropriate number of points from the photon to enable the code to compute the locations of the vanishing points. Using this information and the standard photogrammetric geometric algorithms, the location of the camera, relative to the structure, is determined. The user must also enter information regarding an absolute sense of scale. As the vectors from the camera to the various points chosen from the photograph are determined, the vector components (coordinates) are handed to a virtual reality software package. Once the objects are entered, the appropriate surfaces of the 3D object are `wallpapered' with the surface from the photograph. The user is then able to move through the virtual scene. A video will demonstrate our work.

  9. Science and Ultimate Reality

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Davies, Paul C. W.; Harper, Charles L., Jr.

    2004-06-01

    This preview of the future of physics comprises contributions from recognized authorities inspired by the pioneering work of John Wheeler. Quantum theory represents a unifying theme within the book, as it relates to the topics of the nature of physical reality, cosmic inflation, the arrow of time, models of the universe, superstrings, quantum gravity and cosmology. Attempts to formulate a final unification theory of physics are also considered, along with the existence of hidden dimensions of space, hidden cosmic matter, and the strange world of quantum technology. John Archibald Wheeler is one of the most influential scientists of the twentieth century. His extraordinary career has spanned momentous advances in physics, from the birth of the nuclear age to the conception of the quantum computer. Famous for coining the term "black hole," Professor Wheeler helped lay the foundations for the rebirth of gravitation as a mainstream branch of science, triggering the explosive growth in astrophysics and cosmology that followed. His early contributions to physics include the S matrix, the theory of nuclear rotation (with Edward Teller), the theory of nuclear fission (with Niels Bohr), action-at-a-distance electrodynamics (with Richard Feynman), positrons as backward-in-time electrons, the universal Fermi interaction (with Jayme Tiomno), muonic atoms, and the collective model of the nucleus. His inimitable style of thinking, quirky wit, and love of the bizarre have inspired generations of physicists.

  10. Virtual reality and psychotherapy.

    PubMed

    Botella, Cristina; Quero, Soledad; Baños, Rosa M; Perpiñá, Conxa; García Palacios, Azucena; Riva, Giuseppe

    2004-01-01

    Virtual Reality (VR) is a new technology consisting on a graphic environment in which the user, not only has the feeling of being physically present in a virtual world, but he/she can interact with it. The first VR workstations were designed for big companies in order to create environments that simulate certain situations to train professionals. However, at this moment a great expansion of this technology is taking place in several fields, including the area of health. Especially interesting for us is the use of VR as a therapeutic tool in the treatment of psychological disorders. Compared to the traditional treatments, VR has many advantages (e.g., it is a protected environment for the patient, he/she can re-experience many times the feared situation, etc.). There are already data on the effectiveness of this technology in the treatment of different psychological disorders; here anxiety disorders, eating disorders and sexual disorders are reviewed. Finally, this chapter ends with some words about the limitations of VR and future perspectives.

  11. 100 Years of Reality Learning

    ERIC Educational Resources Information Center

    Zimpher, Nancy L.; Wright Ron, D.

    2006-01-01

    One may have heard of reality TV, but what about reality learning? The latter is probably a term one hasn't seen much, although it is in many ways a clearer and more concise name for a concept that in 2006 marks its 100th anniversary: cooperative education, or "co-op." Co-op, a break-through idea pioneered at the University of Cincinnati by Herman…

  12. Trends in Artificial Intelligence.

    ERIC Educational Resources Information Center

    Hayes, Patrick

    1978-01-01

    Discusses the foundations of artificial intelligence as a science and the types of answers that may be given to the question, "What is intelligence?" The paradigms of artificial intelligence and general systems theory are compared. (Author/VT)

  13. Artificial life and Piaget.

    PubMed

    Mueller, Ulrich; Grobman, K H.

    2003-04-01

    Artificial life provides important theoretical and methodological tools for the investigation of Piaget's developmental theory. This new method uses artificial neural networks to simulate living phenomena in a computer. A recent study by Parisi and Schlesinger suggests that artificial life might reinvigorate the Piagetian framework. We contrast artificial life with traditional cognitivist approaches, discuss the role of innateness in development, and examine the relation between physiological and psychological explanations of intelligent behaviour.

  14. Polymer-based actuators for virtual reality devices

    NASA Astrophysics Data System (ADS)

    Bolzmacher, Christian; Hafez, Moustapha; Benali Khoudja, Mohamed; Bernardoni, Paul; Dubowsky, Steven

    2004-07-01

    Virtual Reality (VR) is gaining more importance in our society. For many years, VR has been limited to the entertainment applications. Today, practical applications such as training and prototyping find a promising future in VR. Therefore there is an increasing demand for low-cost, lightweight haptic devices in virtual reality (VR) environment. Electroactive polymers seem to be a potential actuation technology that could satisfy these requirements. Dielectric polymers developed the past few years have shown large displacements (more than 300%). This feature makes them quite interesting for integration in haptic devices due to their muscle-like behaviour. Polymer actuators are flexible and lightweight as compared to traditional actuators. Using stacks with several layers of elatomeric film increase the force without limiting the output displacement. The paper discusses some design methods for a linear dielectric polymer actuator for VR devices. Experimental results of the actuator performance is presented.

  15. Geological myths and reality

    NASA Astrophysics Data System (ADS)

    Ostrihansky, Lubor

    2014-05-01

    Myths are the result of man's attempts to explain noteworthy features of his environment stemming from unfounded imagination. It is unbelievable that in 21st century the explanation of evident lithospheric plates movements and origin of forces causing this movement is still bound to myths, They are the myth about mantle convection, myth about Earth's expansion, myth about mantle heterogeneities causing the movement of plates and myth about mantle plumes. From 1971 to 1978 I performed extensive study (Ostřihanský 1980) about the terrestrial heat flow and radioactive heat production of batholiths in the Bohemian Massive (Czech Republic). The result, gained by extrapolation of the heat flow and heat production relationship, revealed the very low heat flow from the mantle 17.7mW m-2 close to the site of the Quarterly volcano active only 115,000 - 15,000 years ago and its last outbreak happened during Holocene that is less than 10,000 years ago. This volcano Komorní Hůrka (Kammerbühls) was known by J. W. Goethe investigation and the digging of 300 m long gallery in the first half of XIX century to reach the basaltic plug and to confirm the Stromboli type volcano. In this way the 19th century myth of neptunists that basalt was a sedimentary deposit was disproved in spite that famous poet and scientist J.W.Goethe inclined to neptunists. For me the result of very low heat flow and the vicinity of almost recent volcanoes in the Bohemian Massive meant that I refused the hypothesis of mantle convection and I focused my investigation to external forces of tides and solar heat, which evoke volcanic effects, earthquakes and the plate movement. To disclose reality it is necessary to present calculation of acting forces using correct mechanism of their action taking into account tectonic characteristics of geologic unites as the wrench tectonics and the tectonic of planets and satellites of the solar system, realizing an exceptional behavior of the Earth as quickly rotating

  16. Colour gamuts in polychromatic dielectric elastomer artificial chromatophores

    NASA Astrophysics Data System (ADS)

    Rossiter, Jonathan; Conn, Andrew; Cerruto, Antonio; Winters, Amy; Roke, Calum

    2014-03-01

    Chromatophores are the colour changing organelles in the skins of animals including fish and cephalopods. The ability of cephalopods in particular to rapidly change their colouration in response to environmental changes, for example to camouflage against a new background, and in social situations, for example to attract a mate or repel a rival, is extremely attractive for engineering, medical, active clothing and biomimetic robotic applications. The rapid response of these chromatophores is possible by the direct coupling of fast acting muscle and pigmented saccules. In artificial chromatophores we are able to mimic this structure using electroactive polymer artificial muscles. In contrast to prior research which has demonstrated monochromatic artificial chromatophores, here we consider a novel multi-colour, multi-layer, artificial chromatophore structure inspired by the complex dermal chromatophore unit in nature and which exploits dielectric elastomer artificial muscles as the electroactive actuation mechanism. We investigate the optical properties of this chromatophore unit and explore the range of colours and effects that a single unit and a matrix of chromatophores can produce. The colour gamut of the multi-colour chromatophore is analysed and shows its suitability for practical display and camouflage applications. It is demonstrated how, by varying actuator strain and chromatophore base colour, the gamut can be shifted through colour space, thereby tuning the artificial chromatophore to a specific environment or application.

  17. Virtual sound for virtual reality

    SciTech Connect

    Blattner, M.M. ||; Papp, A.L. III |

    1993-02-01

    The computational limitations of real-time interactive computing do not meet our requirements for producing realistic images for virtual reality in a convincing manner. Regardless of the real-time restrictions on virtual reality interfaces, the representations can be no better than the graphics. Computer graphics is still limited in its ability to generate complex objects such as landscapes and humans. Nevertheless, useful and convincing visualizations are made through a variety of techniques. The central theme of this article is that a similar situation is true with sound for virtual reality. It is beyond our abilityto create interactive soundscapes that create a faithful reproduction of real world sounds, however, by choosing one`s application carefully and using sound to enhance a display rather than only mimic real-world scenes, a very effective use of sound can be made.

  18. Virtual sound for virtual reality

    SciTech Connect

    Blattner, M.M. Cancer Center, Houston, TX . Dept. of Biomathematics Lawrence Livermore National Lab., CA California Univ., Davis, CA ); Papp, A.L. III Lawrence Livermore National Lab., CA )

    1993-02-01

    The computational limitations of real-time interactive computing do not meet our requirements for producing realistic images for virtual reality in a convincing manner. Regardless of the real-time restrictions on virtual reality interfaces, the representations can be no better than the graphics. Computer graphics is still limited in its ability to generate complex objects such as landscapes and humans. Nevertheless, useful and convincing visualizations are made through a variety of techniques. The central theme of this article is that a similar situation is true with sound for virtual reality. It is beyond our abilityto create interactive soundscapes that create a faithful reproduction of real world sounds, however, by choosing one's application carefully and using sound to enhance a display rather than only mimic real-world scenes, a very effective use of sound can be made.

  19. Augmented Reality Tower Technology Assessment

    NASA Technical Reports Server (NTRS)

    Reisman, Ronald J.; Brown, David M.

    2009-01-01

    Augmented Reality technology may help improve Air Traffic Control Tower efficiency and safety during low-visibility conditions. This paper presents the assessments of five off-duty controllers who shadow-controlled' with an augmented reality prototype in their own facility. Initial studies indicated unanimous agreement that this technology is potentially beneficial, though the prototype used in the study was not adequate for operational use. Some controllers agreed that augmented reality technology improved situational awareness, had potential to benefit clearance, control, and coordination tasks and duties and could be very useful for acquiring aircraft and weather information, particularly aircraft location, heading, and identification. The strongest objections to the prototype used in this study were directed at aircraft registration errors, unacceptable optical transparency, insufficient display performance in sunlight, inadequate representation of the static environment and insufficient symbology.

  20. Computational Virtual Reality (VR) as a human-computer interface in the operation of telerobotic systems

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.

    1995-01-01

    This presentation focuses on the application of computer graphics or 'virtual reality' (VR) techniques as a human-computer interface tool in the operation of telerobotic systems. VR techniques offer very valuable task realization aids for planning, previewing and predicting robotic actions, operator training, and for visual perception of non-visible events like contact forces in robotic tasks. The utility of computer graphics in telerobotic operation can be significantly enhanced by high-fidelity calibration of virtual reality images to actual TV camera images. This calibration will even permit the creation of artificial (synthetic) views of task scenes for which no TV camera views are available.

  1. Augmented Reality Comes to Physics

    NASA Astrophysics Data System (ADS)

    Buesing, Mark; Cook, Michael

    2013-04-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as Tagwhat and Star Chart (a must for astronomy class). The yellow line marking first downs in a televised football game2 and the enhanced puck that makes televised hockey easier to follow3 both use augmented reality to do the job.

  2. The role of presence in virtual reality exposure therapy

    PubMed Central

    Price, Matthew; Anderson, Page

    2013-01-01

    A growing body of literature suggests that virtual reality is a successful tool for exposure therapy in the treatment of anxiety disorders. Virtual reality (VR) researchers posit the construct of presence, defined as the interpretation of an artificial stimulus as if it were real, to be a presumed factor that enables anxiety to be felt during virtual reality exposure therapy (VRE). However, a handful of empirical studies on the relation between presence and anxiety in VRE have yielded mixed findings. The current study tested the following hypotheses about the relation between presence and anxiety in VRE with a clinical sample of fearful flyers: (1) presence is related to in-session anxiety; (2) presence mediates the extent that pre-existing (pre-treatment) anxiety is experienced during exposure with VR; (3) presence is positively related to the amount of phobic elements included within the virtual environment; (4) presence is related to treatment outcome. Results supported presence as a factor that contributes to the experience of anxiety in the virtual environment as well as a relation between presence and the phobic elements, but did not support a relation between presence and treatment outcome. The study suggests that presence may be a necessary but insufficient requirement for successful VRE. PMID:17145164

  3. Virtual Reality: The Promise of the Future.

    ERIC Educational Resources Information Center

    Lanier, Jaron

    1992-01-01

    Defines virtual reality and describes the equipment or clothing necessary to achieve the illusion of being in a virtual world. Recent developments with this technology and current virtual reality applications are discussed, including experiential prototyping, telepresence, and educational applications. (MES)

  4. Virtual Realities and the Future of Text.

    ERIC Educational Resources Information Center

    Marcus, Stephen

    1992-01-01

    Discusses issues surrounding virtual reality and "virtual books." Suggests that those who are exploring the territory of virtual realities are already helping to expand and enrich expectations and visions for integrating technology into reading and writing. (RS)

  5. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  6. Virtual reality and stereoscopic telepresence

    SciTech Connect

    Mertens, E.P.

    1994-12-01

    Virtual reality technology is commonly thought to have few, if any, applications beyond the national research laboratories, the aerospace industry, and the entertainment world. A team at Westinghouse Hanford Company (WHC) is developing applications for virtual reality technology that make it a practical, viable, portable, and cost-effective business and training tool. The technology transfer is particularly applicable to the waste management industry and has become a tool that can serve the entire work force spectrum, from industrial sites to business offices. For three and a half years, a small team of WHC personnel has been developing an effective and practical method of bringing virtual reality technology to the job site. The applications are practical, the results are repeatable, and the equipment costs are within the range of present-day office machines. That combination can evolve into a competitive advantage for commercial business interests. The WHC team has contained system costs by using commercially available equipment and personal computers to create effective virtual reality work stations for less than $20,000.

  7. Augmented Reality Comes to Physics

    ERIC Educational Resources Information Center

    Buesing, Mark; Cook, Michael

    2013-01-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as…

  8. Virtual Reality and Engineering Education.

    ERIC Educational Resources Information Center

    Pantelidis, Veronica S.

    1997-01-01

    Virtual Reality (VR) offers benefits to engineering education. This article defines VR and describes types; outlines reasons for using VR in engineering education; provides guidelines for using VR; presents a model for determining when to use VR; discusses VR applications; and describes hardware and software needed for a low-budget VR and…

  9. Children's Perceptions of Television Reality.

    ERIC Educational Resources Information Center

    Nikken, Peter; Peeters, Allerd L.

    1988-01-01

    Describes study conducted with Dutch preschool and elementary school students to determine their perception of reality when watching Sesame Street on television. Variables studied include age, communication skills, and socioeconomic backgrounds, and data are analyzed using factor analysis and multiple regression analysis. (13 references) (LRW)

  10. Telemedicine, virtual reality, and surgery

    NASA Technical Reports Server (NTRS)

    Mccormack, Percival D.; Charles, Steve

    1994-01-01

    Two types of synthetic experience are covered: virtual reality (VR) and surgery, and telemedicine. The topics are presented in viewgraph form and include the following: geometric models; physiological sensors; surgical applications; virtual cadaver; VR surgical simulation; telesurgery; VR Surgical Trainer; abdominal surgery pilot study; advanced abdominal simulator; examples of telemedicine; and telemedicine spacebridge.

  11. Bringing Reality into the Classroom

    ERIC Educational Resources Information Center

    Heck, Andre

    2009-01-01

    Technology offers ample opportunities to bring reality into the classroom. Students and teachers nowadays have many tools to work in an authentic way with real data in mathematics and science education. However, much research and development are still needed to create a consistent learning trajectory out of the many exciting single activities.…

  12. Education and the Reality Principle.

    ERIC Educational Resources Information Center

    Bettelheim, Bruno

    1979-01-01

    All education is based on a middle-class morality that finds its psychoanalytic equivalent in a reality principle which insists that present pleasure must be largely foregone for greater gains in the future. Schools, however, have yet to develop ways to teach low-income students this middle-class value. (Author/GC)

  13. Rural Stress: Myths and Realities.

    ERIC Educational Resources Information Center

    Hansen, Thomas D.; McIntire, Walter G.

    A comparison between the common myths of "rural existence" and the documented realities of rural living explodes the myth that rural living is generally stress free, shows that life stress in rural settings can have deleterious effects on the function of individual and family, and provides a basis for exploring some implications of rural stress…

  14. Virtual reality and planetary exploration

    NASA Astrophysics Data System (ADS)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  15. Education Hell: Rhetoric vs. Reality

    ERIC Educational Resources Information Center

    Bracey, Gerald W.

    2009-01-01

    Are America's schools broken? "Education Hell: Rhetoric vs. Reality" seeks to address misconceptions about America's schools by taking on the credo "what can be measured matters." To the contrary, Dr. Bracey makes a persuasive case that much of what matters cannot be assessed on a multiple choice test. The challenge for educators is to deal…

  16. Myths and Realities About Crime.

    ERIC Educational Resources Information Center

    National Criminal Justice Information and Statistics Service (Dept. of Justice/LEAA), Washington, DC.

    Selected findings are presented from the National Prisoner Statistics (NPS) program, a survey of both inmates in state and federal prisons, and the National Crime Survey (NCS), a survey of victims of crime. Certain conventional beliefs or myths about the nature of crime in the United States are challenged by providing the statistical realities.…

  17. Muscle strain (image)

    MedlinePlus

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  18. Perceived Reality in Television Effects Research.

    ERIC Educational Resources Information Center

    Potter, W. James

    1988-01-01

    Reviews literature dealing with perceived reality in the television effects process from a construct validation perspective. Topics discussed include variables that influence the degree to which individuals perceive reality in televised messages, relationships with attribute variables, influence of reality perception on viewers' behavior and…

  19. Immersive virtual reality simulations in nursing education.

    PubMed

    Kilmon, Carol A; Brown, Leonard; Ghosh, Sumit; Mikitiuk, Artur

    2010-01-01

    This article explores immersive virtual reality as a potential educational strategy for nursing education and describes an immersive learning experience now being developed for nurses. This pioneering project is a virtual reality application targeting speed and accuracy of nurse response in emergency situations requiring cardiopulmonary resuscitation. Other potential uses and implications for the development of virtual reality learning programs are discussed. PMID:21086871

  20. Virtual Reality and the Virtual Library.

    ERIC Educational Resources Information Center

    Oppenheim, Charles

    1993-01-01

    Explains virtual reality, including proper and improper uses of the term, and suggests ways that libraries might be affected by it. Highlights include elements of virtual reality systems; possible virtual reality applications, including architecture, the chemical industry, transport planning, armed forces, and entertainment; and the virtual…

  1. Ciliary muscle contraction force and trapezius muscle activity during manual tracking of a moving visual target.

    PubMed

    Domkin, Dmitry; Forsman, Mikael; Richter, Hans O

    2016-06-01

    Previous studies have shown an association of visual demands during near work and increased activity of the trapezius muscle. Those studies were conducted under stationary postural conditions with fixed gaze and artificial visual load. The present study investigated the relationship between ciliary muscle contraction force and trapezius muscle activity across individuals during performance of a natural dynamic motor task under free gaze conditions. Participants (N=11) tracked a moving visual target with a digital pen on a computer screen. Tracking performance, eye refraction and trapezius muscle activity were continuously measured. Ciliary muscle contraction force was computed from eye accommodative response. There was a significant Pearson correlation between ciliary muscle contraction force and trapezius muscle activity on the tracking side (0.78, p<0.01) and passive side (0.64, p<0.05). The study supports the hypothesis that high visual demands, leading to an increased ciliary muscle contraction during continuous eye-hand coordination, may increase trapezius muscle tension and thus contribute to the development of musculoskeletal complaints in the neck-shoulder area. Further experimental studies are required to clarify whether the relationship is valid within each individual or may represent a general personal trait, when individuals with higher eye accommodative response tend to have higher trapezius muscle activity. PMID:26746010

  2. The Possibility of Muscle Tissue Reconstruction Using Shape Memory Alloys

    PubMed Central

    Higa, Masaru; Amae, Shintaro; Yambe, Tomoyuki; Okuyama, Takeshi; Takagi, Toshiyuki; Matsuki, Hidetoshi

    2005-01-01

    Severe dysfunction of muscle tissues can be treated by transplantation but the success rate is still not high enough. One possibility instead is to replace the dysfunctional muscle with artificial muscles. This article introduces a unique approach using shape memory alloys (SMAs) to replace the anal sphincter muscle for solving the problem of fecal incontinence. The use of SMAs that exhibit a two-way shape memory effect allows the device to function like a sphincter muscle and facilitates simple design. In this article, we will give a brief introduction to the functional material—SMA—together with its medical applications, and will follow this with a description of the recent progress in research and development of an SMA-based artificial sphincter. The possibility of its commercialization will also be discussed. PMID:19521522

  3. Hybrid Reality Lab Capabilities - Video 2

    NASA Technical Reports Server (NTRS)

    Delgado, Francisco J.; Noyes, Matthew

    2016-01-01

    Our Hybrid Reality and Advanced Operations Lab is developing incredibly realistic and immersive systems that could be used to provide training, support engineering analysis, and augment data collection for various human performance metrics at NASA. To get a better understanding of what Hybrid Reality is, let's go through the two most commonly known types of immersive realities: Virtual Reality, and Augmented Reality. Virtual Reality creates immersive scenes that are completely made up of digital information. This technology has been used to train astronauts at NASA, used during teleoperation of remote assets (arms, rovers, robots, etc.) and other activities. One challenge with Virtual Reality is that if you are using it for real time-applications (like landing an airplane) then the information used to create the virtual scenes can be old (i.e. visualized long after physical objects moved in the scene) and not accurate enough to land the airplane safely. This is where Augmented Reality comes in. Augmented Reality takes real-time environment information (from a camera, or see through window, and places digitally created information into the scene so that it matches with the video/glass information). Augmented Reality enhances real environment information collected with a live sensor or viewport (e.g. camera, window, etc.) with the information-rich visualization provided by Virtual Reality. Hybrid Reality takes Augmented Reality even further, by creating a higher level of immersion where interactivity can take place. Hybrid Reality takes Virtual Reality objects and a trackable, physical representation of those objects, places them in the same coordinate system, and allows people to interact with both objects' representations (virtual and physical) simultaneously. After a short period of adjustment, the individuals begin to interact with all the objects in the scene as if they were real-life objects. The ability to physically touch and interact with digitally created

  4. Bio-inspired Hybrid Carbon Nanotube Muscles.

    PubMed

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D; Baughman, Ray H; Kang, Tong Mook; Kim, Seon Jeong

    2016-01-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems. PMID:27220918

  5. Bio-inspired Hybrid Carbon Nanotube Muscles

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong

    2016-05-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems.

  6. Bio-inspired Hybrid Carbon Nanotube Muscles

    PubMed Central

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong

    2016-01-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems. PMID:27220918

  7. Artificial insemination in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Artificial insemination is a relative simple yet powerful tool geneticists can employ for the propagation of economically important traits in livestock and poultry. In this chapter, we address the fundamental methods of the artificial insemination of poultry, including semen collection, semen evalu...

  8. Artificial intelligence: Recent developments

    SciTech Connect

    Not Available

    1987-01-01

    This book presents the papers given at a conference on artificial intelligence. Topics considered at the conference included knowledge representation for expert systems, the use of robots in underwater vehicles for resource management, precision logic, an expert system for arc welding, data base management, a knowledge based approach to fault trees, and computer-aided manufacturing using simulation combined with artificial intelligence.

  9. Capillary muscle

    PubMed Central

    Cohen, Caroline; Mouterde, Timothée; Quéré, David; Clanet, Christophe

    2015-01-01

    The contraction of a muscle generates a force that decreases when increasing the contraction velocity. This “hyperbolic” force–velocity relationship has been known since the seminal work of A. V. Hill in 1938 [Hill AV (1938) Proc R Soc Lond B Biol Sci 126(843):136–195]. Hill’s heuristic equation is still used, and the sliding-filament theory for the sarcomere [Huxley H, Hanson J (1954) Nature 173(4412):973–976; Huxley AF, Niedergerke R (1954) Nature 173(4412):971–973] suggested how its different parameters can be related to the molecular origin of the force generator [Huxley AF (1957) Prog Biophys Biophys Chem 7:255–318; Deshcherevskiĭ VI (1968) Biofizika 13(5):928–935]. Here, we develop a capillary analog of the sarcomere obeying Hill’s equation and discuss its analogy with muscles. PMID:25944938

  10. A new method of artificial latent fingerprint creation using artificial sweat and inkjet printer.

    PubMed

    Hong, Sungwook; Hong, Ingi; Han, Aleum; Seo, Jin Yi; Namgung, Juyoung

    2015-12-01

    In order to study fingerprinting in the field of forensic science, it is very important to have two or more latent fingerprints with identical chemical composition and intensity. However, it is impossible to obtain identical fingerprints, in reality, because fingerprinting comes out slightly differently every time. A previous research study had proposed an artificial fingerprint creation method in which inkjet ink was replaced with amino acids and sodium chloride solution: the components of human sweat. But, this method had some drawbacks: divalent cations were not added while formulating the artificial sweat solution, and diluted solutions were used for creating weakly deposited latent fingerprint. In this study, a method was developed for overcoming the drawbacks of the methods used in the previous study. Several divalent cations were added in this study because the amino acid-ninhydrin (or some of its analogues) complex is known to react with divalent cations to produce a photoluminescent product; and, similarly, the amino acid-1,2-indanedione complex is known to be catalyzed by a small amount of zinc ions to produce a highly photoluminescent product. Also, in this study, a new technique was developed which enables to adjust the intensity when printing the latent fingerprint patterns. In this method, image processing software is used to control the intensity of the master fingerprint patterns, which adjusts the printing intensity of the latent fingerprints. This new method opened the way to produce a more realistic artificial fingerprint in various strengths with one artificial sweat working solution. PMID:26555502

  11. A new method of artificial latent fingerprint creation using artificial sweat and inkjet printer.

    PubMed

    Hong, Sungwook; Hong, Ingi; Han, Aleum; Seo, Jin Yi; Namgung, Juyoung

    2015-12-01

    In order to study fingerprinting in the field of forensic science, it is very important to have two or more latent fingerprints with identical chemical composition and intensity. However, it is impossible to obtain identical fingerprints, in reality, because fingerprinting comes out slightly differently every time. A previous research study had proposed an artificial fingerprint creation method in which inkjet ink was replaced with amino acids and sodium chloride solution: the components of human sweat. But, this method had some drawbacks: divalent cations were not added while formulating the artificial sweat solution, and diluted solutions were used for creating weakly deposited latent fingerprint. In this study, a method was developed for overcoming the drawbacks of the methods used in the previous study. Several divalent cations were added in this study because the amino acid-ninhydrin (or some of its analogues) complex is known to react with divalent cations to produce a photoluminescent product; and, similarly, the amino acid-1,2-indanedione complex is known to be catalyzed by a small amount of zinc ions to produce a highly photoluminescent product. Also, in this study, a new technique was developed which enables to adjust the intensity when printing the latent fingerprint patterns. In this method, image processing software is used to control the intensity of the master fingerprint patterns, which adjusts the printing intensity of the latent fingerprints. This new method opened the way to produce a more realistic artificial fingerprint in various strengths with one artificial sweat working solution.

  12. Computer aided mechanogenesis of skeletal muscle organs from single cells in vitro

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Swasdison, Somporn; Karlisch, Patricia

    1990-01-01

    Complex mechanical forces generated in the growing embryo play an important role in organogenesis. Computerized application of similar forces to differentiating skeletal muscle myoblasts in vitro generate three dimensional artificial muscle organs. These organs contain parallel networks of long unbranched myofibers organized into fascicle-like structures. Tendon development is initiated and the muscles are capable of performing directed, functional work. Kinetically engineered organs provide a new method for studying the growth and development of normal and diseased skeletal muscle.

  13. Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro

    NASA Technical Reports Server (NTRS)

    Vanderburgh, Herman H.; Swasdison, Somporn; Karlisch, Patricia

    1991-01-01

    Complex mechanical forces generated in the growing embryo play an important role in organogenesis. Computerized application of similar forces to differentiating skeletal muscle myoblasts in vitro generate three dimensional artificial muscle organs. These organs contain parallel networks of long unbranched myofibers organized into fascicle-like structures. Tendon development is initiated and the muscles are capable of performing directed, functional work. Kinetically engineered organs provide a new method for studying the growth and development of normal and diseased skeletal muscle.

  14. Simulated maintenance a virtual reality

    SciTech Connect

    Lirvall, P.

    1995-10-01

    The article describes potential applications of personal computer-based virtual reality software. The applications are being investigated by Atomic Energy of Canada Limited`s (AECL) Chalk River Laboratories for the Canadian deuterium-uranium (Candu) reactor. Objectives include: (1) reduction of outage duration and improved safety, (2) cost-effective and safe maintenance of equipment, (3) reduction of exposure times and identification of overexposure situations, (4) cost-effective training in a virtual control room simulator, (5) human factors evaluation of design interface, and (6) visualization of conceptual and detailed designs of critical nuclear field environments. A demonstration model of a typical reactor control room, the use of virtual reality in outage planning, and safety issues are outlined.

  15. Virtual Reality: You Are There

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Telepresence or "virtual reality," allows a person, with assistance from advanced technology devices, to figuratively project himself into another environment. This technology is marketed by several companies, among them Fakespace, Inc., a former Ames Research Center contractor. Fakespace developed a teleoperational motion platform for transmitting sounds and images from remote locations. The "Molly" matches the user's head motion and, when coupled with a stereo viewing device and appropriate software, creates the telepresence experience. Its companion piece is the BOOM-the user's viewing device that provides the sense of involvement in the virtual environment. Either system may be used alone. Because suits, gloves, headphones, etc. are not needed, a whole range of commercial applications is possible, including computer-aided design techniques and virtual reality visualizations. Customers include Sandia National Laboratories, Stanford Research Institute and Mattel Toys.

  16. Nursing as textually mediated reality.

    PubMed

    Cheek, J; Rudge, T

    1994-11-01

    Nursing and nursing practice both construct and are in turn constructed by the context in which they operate. Texts plays a central part in that construction. As such, nursing and nursing practice can be considered to represent a reality that is textually mediated. This paper explores the notion of nursing as a textually mediated reality and offers the reader the possibility of engaging in reflection on what implications this has for nursing and their own nursing practice. The analyses provided draw on aspects of the work of both Foucault and Derrida. Foucault's notion of discourse provides a vehicle for the exploration of nursing as textually mediated, as does Derrida's concept of binary oppositions. The paper thus illustrates some of the possibilities afforded nursing by poststructural analyses. In particular it does this by exploring one of the central textual constructions, impacting on the way that nursing and nursing practice are conceptualized, the mind/body binary opposition. PMID:7850620

  17. Augmented reality building operations tool

    SciTech Connect

    Brackney, Larry J.

    2014-09-09

    A method (700) for providing an augmented reality operations tool to a mobile client (642) positioned in a building (604). The method (700) includes, with a server (660), receiving (720) from the client (642) an augmented reality request for building system equipment (612) managed by an energy management system (EMS) (620). The method (700) includes transmitting (740) a data request for the equipment (612) to the EMS (620) and receiving (750) building management data (634) for the equipment (612). The method (700) includes generating (760) an overlay (656) with an object created based on the building management data (634), which may be sensor data, diagnostic procedures, or the like. The overlay (656) is configured for concurrent display on a display screen (652) of the client (642) with a real-time image of the building equipment (612). The method (700) includes transmitting (770) the overlay (656) to the client (642).

  18. Virtual Reality Enhanced Instructional Learning

    ERIC Educational Resources Information Center

    Nachimuthu, K.; Vijayakumari, G.

    2009-01-01

    Virtual Reality (VR) is a creation of virtual 3D world in which one can feel and sense the world as if it is real. It is allowing engineers to design machines and Educationists to design AV [audiovisual] equipment in real time but in 3-dimensional hologram as if the actual material is being made and worked upon. VR allows a least-cost (energy…

  19. Simulated Classrooms and Artificial Students: The Potential Effects of New Technologies on Teacher Education.

    ERIC Educational Resources Information Center

    Brown, Abbie Howard

    1999-01-01

    Describes and discusses how simulation activities can be used in teacher education to augment the traditional field-experience approach, focusing on artificial intelligence, virtual reality, and intelligent tutoring systems. Includes an overview of simulation as a teaching and learning strategy and specific examples of high-technology simulations…

  20. Direct Manipulation in Virtual Reality

    NASA Technical Reports Server (NTRS)

    Bryson, Steve

    2003-01-01

    Virtual Reality interfaces offer several advantages for scientific visualization such as the ability to perceive three-dimensional data structures in a natural way. The focus of this chapter is direct manipulation, the ability for a user in virtual reality to control objects in the virtual environment in a direct and natural way, much as objects are manipulated in the real world. Direct manipulation provides many advantages for the exploration of complex, multi-dimensional data sets, by allowing the investigator the ability to intuitively explore the data environment. Because direct manipulation is essentially a control interface, it is better suited for the exploration and analysis of a data set than for the publishing or communication of features found in that data set. Thus direct manipulation is most relevant to the analysis of complex data that fills a volume of three-dimensional space, such as a fluid flow data set. Direct manipulation allows the intuitive exploration of that data, which facilitates the discovery of data features that would be difficult to find using more conventional visualization methods. Using a direct manipulation interface in virtual reality, an investigator can, for example, move a data probe about in space, watching the results and getting a sense of how the data varies within its spatial volume.

  1. Comparison between two methods for diagnosis of trichinellosis: trichinoscopy and artificial digestion.

    PubMed

    Vignau, M L; del Valle Guardis, M; Risso, M A; Eiras, D F

    1997-01-01

    Two direct methods for the diagnosis of trichinellosis were compared: trichinoscopy and artificial digestion. Muscles from 17 wistar rats, orally infected with 500 Trichinella spiralis encysted larvae were examined. From each of the following muscles: diaphragm, tongue, masseters, intercostals, triceps brachialis and cuadriceps femoralis, 648,440 larvae from 1 g samples were recovered. The linear correlation between trichinoscopy and artificial digestion was very high and significant (r = 0.94, p < 0.0001), showing that both methods for the detection of muscular larvae did not differ significantly. In both methods, significant differences were found in the distribution of larvae per gramme of muscle.

  2. Artificial Gravity and the Architecture of Orbital Habitats

    NASA Astrophysics Data System (ADS)

    Hall, T. W.

    This paper examines the rationale, requirements, limitations and implications of artificial gravity in the design of orbital habitats. Long-term exposure to weightlessness leads to a chain-reaction of undesirable physiological adaptations. There is both theoretical and experimental evidence that artificial gravity can substitute for natural gravity to maintain health in orbit. Aerospace medical scientists have conducted many studies during the past forty years to determine the comfort boundaries for artificial gravity. They express comfort in terms of centripetal acceleration, head-to-foot gravity gradient, angular velocity, tangential velocity, cross-coupled head rotations and the Coriolis effects of relative motion in rotating environments. A review of the literature reveals the uncertainty in these boundaries and suggests that “comfort” in artificial gravity depends as well on other aspects of environmental design, beyond the basic rotational parametres. Artificial gravity is distinct from both Earth-normal gravity and weightlessness. The goal of architectural design for artificial gravity is not to mimic Earth but rather to help the inhabitants adapt to the realities of their rotating environment.

  3. Artificial intelligence in medicine.

    PubMed Central

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167

  4. Muscle-like actuators? A comparison between three electroactive polymers

    NASA Astrophysics Data System (ADS)

    Meijer, Kenneth; Rosenthal, Marc S.; Full, Robert J.

    2001-07-01

    Muscles fulfill several functions within an animal's body. During locomotion they propel and control the limbs in unstructured environments. Therefore, the functional workspace of muscle needs to be represented by variables describing energy management (i.e. power output, efficiency) as well as control aspects (i.e. stiffness, damping). Muscles in the animal kingdom vary greatly with respect to those variables. To study if ElectroActive Polymer's (EAP) can be considered as artificial muscles we are making a direct comparison between the contractile properties of EAP's and biological muscle. We have measured the functional workspace of EAP actuators using the same setup and techniques that we use to test biological muscle. We evaluated the properties of three different EAP materials; the acrylic and silicone dielectric elastomers developed at SRI International and the high-energy electron-irradiated co-polymers (p(VDF-TrFE)) developed at the MRL laboratory at Penn State University. Initial results indicate that the EAP materials partly capture the functional workspace of natural muscle and sometimes even exceed the capabilities of muscle. Based on the data we have collected it seems that both EAP technologies have characteristics that could qualify them as artificial muscles.

  5. Learning from nature: constructing integrated graphene-based artificial nacre.

    PubMed

    Cheng, Qunfeng; Duan, Jianli; Zhang, Qi; Jiang, Lei

    2015-03-24

    Natural nacre supplies a number of properties that can be used in designing high-performance bioinspired materials. Likewise, due to the extraordinary properties of graphene, a series of bioinspired graphene-based materials have recently been demonstrated. Compared to other approaches for constructing graphene-based materials, bioinspired concepts result in high-loading graphene, and the resultant high-performance graphene-based artificial nacres demonstrate isotropic mechanical and electrical properties. In this Perspective, we describe how to construct integrated graphene-based artificial nacre through the synergistic relationship between interface interactions and building blocks. These integrated graphene-based artificial nacres show promising applications in many fields, such as aerospace, flexible supercapacitor electrodes, artificial muscle, and tissue engineering. PMID:25763684

  6. Artificial Sweeteners and Cancer

    MedlinePlus

    ... artificial sweeteners and cancer? Saccharin Studies in laboratory rats during the early 1970s linked saccharin with the ... cause cancer in laboratory animals .” Subsequent studies in rats showed an increased incidence of urinary bladder cancer ...

  7. Intelligence: Real or artificial?

    PubMed Central

    Schlinger, Henry D.

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally referred to behavior-environment relations and not to inferred internal structures and processes. It is concluded that if workers in artificial intelligence are to succeed in their general goal, then they must design machines that are adaptive, that is, that can learn. Thus, artificial intelligence researchers must discard their essentialist model of natural intelligence and adopt a selectionist model instead. Such a strategic change should lead them to the science of behavior analysis. PMID:22477051

  8. Introduction to artificial intelligence

    SciTech Connect

    Charniak, E.; McDermott, D.

    1985-01-01

    This book is an introduction on artificial intelligence. Topics include reasoning under uncertainty, robot plans, language understanding, and learning. The history of the field as well as intellectual ties to related disciplines are presented.

  9. REALITY OF AUDITORY HALLUCINATIONS IN SCHIZOPHRENIA

    PubMed Central

    Ramanathan, A.

    1982-01-01

    SUMMARY 25 untreated urban living schizophrenics fulfilling the criteria of Feighner et al., having Schneiderian auditory hallucination were studied with the aim of examining the experienced reality of auditory hallucination and the influence on this reality of certain variables. It was found that the hallucinations were more real than unreal. Duration of illness, presence of anxiety prior to hallucination, reality testing ability, duration of each episode of hallucination, and socio-economic status scores influenced the reality negatively. The number of hallucinating days per mouth, position of voice outside sensory range, psychotocism scores, insight scores (higher scores for poorer insight) and duration of hallucination influenced the reality positively. The variables explained 72% of the variations in reality of hallucinations. Findings are discussed and suggestions for future studies are offered. PMID:21965885

  10. 30526 artificial lift

    SciTech Connect

    Not Available

    1989-01-01

    This book focuses on the four major methods of artificial lift: sucker-rod pumping, gas lift, electrical submersible pumping (ESP) and hydraulic pumping. Though more than 80% of artificially lifted wells worldwide are rod-pumped, the large majority of these wells are low-volume, stripper-type producers. For this reason, sucker-rod pumping papers comprise less than 40% of the 26 SPE papers selected.

  11. Physics of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Bukley, Angie; Paloski, William; Clement, Gilles

    2006-01-01

    This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.

  12. Heidegger and artificial intelligence

    SciTech Connect

    Diaz, G.

    1987-01-01

    The discipline of Artificial Intelligence, in its quest for machine intelligence, showed great promise as long as its areas of application were limited to problems of a scientific and situation neutral nature. The attempts to move beyond these problems to a full simulation of man's intelligence has faltered and slowed it progress, largely because of the inability of Artificial Intelligence to deal with human characteristic, such as feelings, goals, and desires. This dissertation takes the position that an impasse has resulted because Artificial Intelligence has never been properly defined as a science: its objects and methods have never been identified. The following study undertakes to provide such a definition, i.e., the required ground for Artificial Intelligence. The procedure and methods employed in this study are based on Heidegger's philosophy and techniques of analysis as developed in Being and Time. Results of this study show that both the discipline of Artificial Intelligence and the concerns of Heidegger in Being and Time have the same object; fundamental ontology. The application of Heidegger's conclusions concerning fundamental ontology unites the various aspects of Artificial Intelligence and provides the articulation which shows the parts of this discipline and how they are related.

  13. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide.

    PubMed

    Cui, Wei; Li, Mingzhu; Liu, Jiyang; Wang, Ben; Zhang, Chuck; Jiang, Lei; Cheng, Qunfeng

    2014-09-23

    Demands of the strong integrated materials have substantially increased across various industries. Inspired by the relationship of excellent integration of mechanical properties and hierarchical nano/microscale structure of the natural nacre, we have developed a strategy for fabricating the strong integrated artificial nacre based on graphene oxide (GO) sheets by dopamine cross-linking via evaporation-induced assembly process. The tensile strength and toughness simultaneously show 1.5 and 2 times higher than that of natural nacre. Meanwhile, the artificial nacre shows high electrical conductivity. This type of strong integrated artificial nacre has great potential applications in aerospace, flexible supercapacitor electrodes, artificial muscle, and tissue engineering. PMID:25106494

  14. Muscle strain treatment

    MedlinePlus

    Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...

  15. Eye muscle repair - discharge

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000111.htm Eye muscle repair - discharge To use the sharing features on ... enable JavaScript. You or your child had eye muscle repair surgery to correct eye muscle problems that ...

  16. Virtual reality and virtual bodies

    NASA Astrophysics Data System (ADS)

    Richards, Catherine; Korba, Larry W.; Shaw, Christopher D.; Green, Mark

    1994-04-01

    There are many ways to produce the sense of `presence' or telepresence in the user of virtual reality. For example attempting to increase the realism of the visual environment is a commonly accepted strategy. In contrast, this paper explores a way for the user to feel present in an unrealistic virtual body. It investigates an unusual approach, proprioceptive illusions. Proprioceptive or body illusions are used to generate and explore the experience of virtuality and presence outside of the normal body limits. These projects are realized in art installations.

  17. Webizing mobile augmented reality content

    NASA Astrophysics Data System (ADS)

    Ahn, Sangchul; Ko, Heedong; Yoo, Byounghyun

    2014-01-01

    This paper presents a content structure for building mobile augmented reality (AR) applications in HTML5 to achieve a clean separation of the mobile AR content and the application logic for scaling as on the Web. We propose that the content structure contains the physical world as well as virtual assets for mobile AR applications as document object model (DOM) elements and that their behaviour and user interactions are controlled through DOM events by representing objects and places with a uniform resource identifier. Our content structure enables mobile AR applications to be seamlessly developed as normal HTML documents under the current Web eco-system.

  18. Virtual reality in laparoscopic surgery.

    PubMed

    Uranüs, Selman; Yanik, Mustafa; Bretthauer, Georg

    2004-01-01

    Although the many advantages of laparoscopic surgery have made it an established technique, training in laparoscopic surgery posed problems not encountered in conventional surgical training. Virtual reality simulators open up new perspectives for training in laparoscopic surgery. Under realistic conditions in real time, trainees can tailor their sessions with the VR simulator to suit their needs and goals, and can repeat exercises as often as they wish. VR simulators reduce the number of experimental animals needed for training purposes and are suited to the pursuit of research in laparoscopic surgery. PMID:15747974

  19. Virtual reality in laparoscopic surgery.

    PubMed

    Uranüs, Selman; Yanik, Mustafa; Bretthauer, Georg

    2004-01-01

    Although the many advantages of laparoscopic surgery have made it an established technique, training in laparoscopic surgery posed problems not encountered in conventional surgical training. Virtual reality simulators open up new perspectives for training in laparoscopic surgery. Under realistic conditions in real time, trainees can tailor their sessions with the VR simulator to suit their needs and goals, and can repeat exercises as often as they wish. VR simulators reduce the number of experimental animals needed for training purposes and are suited to the pursuit of research in laparoscopic surgery.

  20. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    NASA-Ames is intensively developing virtual-reality (VR) capabilities that can extend and augment computer-generated and remote spatial environments. VR is envisioned not only as a basis for improving human/machine interactions involved in planetary exploration, but also as a medium for the more widespread sharing of the experience of exploration, thereby broadening the support-base for the lunar and planetary-exploration endeavors. Imagery representative of Mars are being gathered for VR presentation at such terrestrial sites as Antarctica and Death Valley.

  1. Advancements in stem cells treatment of skeletal muscle wasting

    PubMed Central

    Meregalli, Mirella; Farini, Andrea; Sitzia, Clementina; Torrente, Yvan

    2014-01-01

    Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders, in which progressive muscle wasting and weakness is often associated with exhaustion of muscle regeneration potential. Although physiological properties of skeletal muscle tissue are now well known, no treatments are effective for these diseases. Muscle regeneration was attempted by means transplantation of myogenic cells (from myoblast to embryonic stem cells) and also by interfering with the malignant processes that originate in pathological tissues, such as uncontrolled fibrosis and inflammation. Taking into account the advances in the isolation of new subpopulation of stem cells and in the creation of artificial stem cell niches, we discuss how these emerging technologies offer great promises for therapeutic approaches to muscle diseases and muscle wasting associated with aging. PMID:24575052

  2. Augmented reality in medical education?

    PubMed

    Kamphuis, Carolien; Barsom, Esther; Schijven, Marlies; Christoph, Noor

    2014-09-01

    Learning in the medical domain is to a large extent workplace learning and involves mastery of complex skills that require performance up to professional standards in the work environment. Since training in this real-life context is not always possible for reasons of safety, costs, or didactics, alternative ways are needed to achieve clinical excellence. Educational technology and more specifically augmented reality (AR) has the potential to offer a highly realistic situated learning experience supportive of complex medical learning and transfer. AR is a technology that adds virtual content to the physical real world, thereby augmenting the perception of reality. Three examples of dedicated AR learning environments for the medical domain are described. Five types of research questions are identified that may guide empirical research into the effects of these learning environments. Up to now, empirical research mainly appears to focus on the development, usability and initial implementation of AR for learning. Limited review results reflect the motivational value of AR, its potential for training psychomotor skills and the capacity to visualize the invisible, possibly leading to enhanced conceptual understanding of complex causality.

  3. Medical applications of virtual reality.

    PubMed

    Satava, R M

    1995-06-01

    Medical applications for virtual reality (VR) are just beginning to emerge. These include VR surgical simulators, telepresence surgery, complex medical database visualization, and rehabilitation. These applications are mediated through the computer interface and as such are the embodiment of VR as an integral part of the paradigm shift in the field of medicine. The Green Telepresence Surgery System consists of two components, the surgical workstation and remote worksite. At the remote site there is a 3-D camera system and responsive manipulators with sensory input. At the workstation there is a 3-D monitor and dexterous handles with force feedback. The VR surgical simulator is a stylized recreation of the human abdomen with several essential organs. Using a helmet mounted display and DataGlove, a person can learn anatomy from a new perspective by 'flying' inside and around the organs, or can practice surgical procedures with a scalpel and clamps. Database visualization creates 3-D images of complex medical data for new perspectives in analysis. Rehabilitation medicine permits impaired individuals to explore worlds not otherwise available to them, allows accurate assessment and therapy for their disabilities, and helps architects understand their critical needs in public or personal space. And to support these advanced technologies, the operating room and hospital of the future will be first designed and tested in virtual reality, bringing together the full power of the digital physician.

  4. Augmented reality in medical education?

    PubMed

    Kamphuis, Carolien; Barsom, Esther; Schijven, Marlies; Christoph, Noor

    2014-09-01

    Learning in the medical domain is to a large extent workplace learning and involves mastery of complex skills that require performance up to professional standards in the work environment. Since training in this real-life context is not always possible for reasons of safety, costs, or didactics, alternative ways are needed to achieve clinical excellence. Educational technology and more specifically augmented reality (AR) has the potential to offer a highly realistic situated learning experience supportive of complex medical learning and transfer. AR is a technology that adds virtual content to the physical real world, thereby augmenting the perception of reality. Three examples of dedicated AR learning environments for the medical domain are described. Five types of research questions are identified that may guide empirical research into the effects of these learning environments. Up to now, empirical research mainly appears to focus on the development, usability and initial implementation of AR for learning. Limited review results reflect the motivational value of AR, its potential for training psychomotor skills and the capacity to visualize the invisible, possibly leading to enhanced conceptual understanding of complex causality. PMID:24464832

  5. Muscle shape consistency and muscle volume prediction of thigh muscles.

    PubMed

    Mersmann, F; Bohm, S; Schroll, A; Boeth, H; Duda, G; Arampatzis, A

    2015-04-01

    The present study investigated the applicability of a muscle volume prediction method using only the muscle length (L(M)), the maximum anatomical cross-sectional area (ACSA(max)), and a muscle-specific shape factor (p) on the quadriceps vastii. L(M), ACSA(max), muscle volume, and p were obtained from magnetic resonance images of the vastus intermedius (VI), lateralis (VL), and medialis (VM) of female (n = 20) and male (n = 17) volleyball athletes. The average p was used to predict muscle volumes (V(p)) using the equation V(p)  = p × ACSA(max)  × L(M). Although there were significant differences in the muscle dimensions between male and female athletes, p was similar and on average 0.582, 0.658, 0.543 for the VI, VL, and VM, respectively. The position of ACSA(max) showed low variability and was at 57%, 60%, and 81% of the thigh length for VI, VL, and VM. Further, there were no significant differences between measured and predicted muscle volumes with root mean square differences of 5-8%. These results suggest that the muscle shape of the quadriceps vastii is independent of muscle dimensions or sex and that the prediction method could be sensitive enough to detect changes in muscle volume related to degeneration, atrophy, or hypertrophy.

  6. Homopolar artificial gravity generator based on frame-dragging

    NASA Astrophysics Data System (ADS)

    Tajmar, M.

    2010-05-01

    Space exploration is linked in many ways to the generation and challenges of artificial gravity. Space stations and drag-free satellite platforms are used to provide microgravity environments for scientific experiments. On the other hand, microgravity or reduced gravity environments such as on Moon and Mars are known to put limits for long-term human presence. Large centrifuges in space may provide Earth-like gravity environments during long-term travels, however, such technology certainly has its limits to provide similar environments for human outposts on other moons and planets. One can imagine a different technology using a prediction out of Einstein's general relativity theory which is called frame-dragging. In principle, frame-dragging might be used to generate artificial gravitational fields similar to electric fields generated by time-varying or moving magnetic fields. We will show that it is also possible to generate constant artificial gravitational fields that could provide microgravity or artificial gravity environments. Although such technology is possible in principle, the field strengths calculated from Einstein's theory are too small to be useful so far. However, recently detected anomalies around low-temperature spinning matter as well as fly-by anomalies point to possible enhancement mechanisms that might make an artificial gravity generator based on frame-dragging a reality in the future.

  7. Ionic electroactive polymer artificial muscles in space applications

    NASA Astrophysics Data System (ADS)

    Punning, Andres; Kim, Kwang J.; Palmre, Viljar; Vidal, Frédéric; Plesse, Cédric; Festin, Nicolas; Maziz, Ali; Asaka, Kinji; Sugino, Takushi; Alici, Gursel; Spinks, Geoff; Wallace, Gordon; Must, Indrek; Põldsalu, Inga; Vunder, Veiko; Temmer, Rauno; Kruusamäe, Karl; Torop, Janno; Kaasik, Friedrich; Rinne, Pille; Johanson, Urmas; Peikolainen, Anna-Liisa; Tamm, Tarmo; Aabloo, Alvo

    2014-11-01

    A large-scale effort was carried out to test the performance of seven types of ionic electroactive polymer (IEAP) actuators in space-hazardous environmental factors in laboratory conditions. The results substantiate that the IEAP materials are tolerant to long-term freezing and vacuum environments as well as ionizing Gamma-, X-ray, and UV radiation at the levels corresponding to low Earth orbit (LEO) conditions. The main aim of this material behaviour investigation is to understand and predict device service time for prolonged exposure to space environment.

  8. Ionic electroactive polymer artificial muscles in space applications.

    PubMed

    Punning, Andres; Kim, Kwang J; Palmre, Viljar; Vidal, Frédéric; Plesse, Cédric; Festin, Nicolas; Maziz, Ali; Asaka, Kinji; Sugino, Takushi; Alici, Gursel; Spinks, Geoff; Wallace, Gordon; Must, Indrek; Põldsalu, Inga; Vunder, Veiko; Temmer, Rauno; Kruusamäe, Karl; Torop, Janno; Kaasik, Friedrich; Rinne, Pille; Johanson, Urmas; Peikolainen, Anna-Liisa; Tamm, Tarmo; Aabloo, Alvo

    2014-01-01

    A large-scale effort was carried out to test the performance of seven types of ionic electroactive polymer (IEAP) actuators in space-hazardous environmental factors in laboratory conditions. The results substantiate that the IEAP materials are tolerant to long-term freezing and vacuum environments as well as ionizing Gamma-, X-ray, and UV radiation at the levels corresponding to low Earth orbit (LEO) conditions. The main aim of this material behaviour investigation is to understand and predict device service time for prolonged exposure to space environment. PMID:25372857

  9. Kirigami artificial muscles with complex biologically inspired morphologies

    NASA Astrophysics Data System (ADS)

    Sareh, Sina; Rossiter, Jonathan

    2013-01-01

    In this paper we present bio-inspired smart structures which exploit the actuation of flexible ionic polymer composites and the kirigami design principle. Kirigami design is used to convert planar actuators into active 3D structures capable of large out-of-plane displacement and that replicate biological mechanisms. Here we present the burstbot, a fluid control and propulsion mechanism based on the atrioventricular cuspid valve, and the vortibot, a spiral actuator based on Vorticella campanula, a ciliate protozoa. Models derived from biological counterparts are used as a platform for design optimization and actuator performance measurement. The symmetric and asymmetric fluid interactions of the burstbot are investigated and the effectiveness in fluid transport applications is demonstrated. The vortibot actuator is geometrically optimized as a camera positioner capable of 360° scanning. Experimental results for a one-turn spiral actuator show complex actuation derived from a single degree of freedom control signal.

  10. Androids: application of EAP as artificial muscles to entertainment industry

    NASA Technical Reports Server (NTRS)

    Hanson, D.; Pioggia, G.; Bar-Cohen, Yoseph; de Rossi, D.

    2001-01-01

    The classic movie Metropolis (1926), which is nowadays considered a cinema milestone, has shown the possibility to build robots called androids that are science and fiction run together to realize a dream: the human-like robot. In that movie, Dr. Rotwang transforms a simple and cold calculating robot into the body of a beautiful woman. Robots have often been depicted as metal creatures with cold steel bodies, but there is no reason why metals should be the only kind of material for construction of robots. The authors examined the issues related to applying electroactive polymers materials (EAP) to the entertainment industry. EAP are offering attractive characteristics with the potential to produce more realistic models of living creatures at significantly lower cost. This paper seeks to elucidate how EAP might infiltrate and ultimately revolutionize entertainment, showing some applicative examples.

  11. Ionic electroactive polymer artificial muscles in space applications.

    PubMed

    Punning, Andres; Kim, Kwang J; Palmre, Viljar; Vidal, Frédéric; Plesse, Cédric; Festin, Nicolas; Maziz, Ali; Asaka, Kinji; Sugino, Takushi; Alici, Gursel; Spinks, Geoff; Wallace, Gordon; Must, Indrek; Põldsalu, Inga; Vunder, Veiko; Temmer, Rauno; Kruusamäe, Karl; Torop, Janno; Kaasik, Friedrich; Rinne, Pille; Johanson, Urmas; Peikolainen, Anna-Liisa; Tamm, Tarmo; Aabloo, Alvo

    2014-11-05

    A large-scale effort was carried out to test the performance of seven types of ionic electroactive polymer (IEAP) actuators in space-hazardous environmental factors in laboratory conditions. The results substantiate that the IEAP materials are tolerant to long-term freezing and vacuum environments as well as ionizing Gamma-, X-ray, and UV radiation at the levels corresponding to low Earth orbit (LEO) conditions. The main aim of this material behaviour investigation is to understand and predict device service time for prolonged exposure to space environment.

  12. Biomimetic robots using EAP as artificial muscles - progress and challenges

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2004-01-01

    Biology offers a great model for emulation in areas ranging from tools, computational algorithms, materials science, mechanisms and information technology. In recent years, the field of biomimetics, namely mimicking biology, has blossomed with significant advances enabling the reverse engineering of many animals' functions and implementation of some of these capabilities.

  13. Electroactive Polymers as Artificial Muscles: Capabilities, Potentials and Challenges

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2000-01-01

    The low density and the relative ease of shaping made polymers highly attractive materials and they are increasingly being chosen for aerospace applications. Polymer matrix composite materials significantly impacted the construction of high performance aircraft components and structures. In recent years, the resilience characteristics of polymers made them attractive to the emerging field of inflatable structures. Balloons were used to cushion the deployment of the Mars Pathfinder lander on July 4, 1997, paving the way for the recent large number of related initiatives. Inflatable structures are now being used to construct a rover, aerial vehicles, telescopes, radar antennas, and others. Some of these applications have reached space flight experiments, whereas others are now at advanced stages of development.

  14. Artificial muscles harvesting sensational power using self-sensing

    NASA Astrophysics Data System (ADS)

    McKay, Thomas G.; Gisby, Todd A.; Anderson, Iain A.

    2014-03-01

    Dielectric elastomer Generator(s) (DEG) are highly suited to harvesting from environmental sources because they are light weight, low cost, and can be coupled directly to rectilinear motions and harvest energy efficiently over a wide frequency range. Because of these benefits, simple and low cost generators could be enabled using DEG. Electrical energy is produced on relaxation of a stretched, charged DEG: like-charges are compressed together and opposite-charges are pushed apart, resulting in an increased voltage. The manner in which the DEG charge state is controlled greatly influences the amount of energy that is produced. For instance, the highest energy density ever demonstrated for DEG is 550 mJ/g, whereas the theoretical energy density of DEG has been reported as high as 1700 mJ/g if driven close to their failure limits. The discrepancy between realised and theoretical energy production highlights that large performance gains can be achieved through smarter charge control that drives the generator close to its failure limits. To do so safely, we need to be able to monitor the real-time electromechanical state of the DEG. This paper discusses the potential of self-sensing for providing feedback on the generator's electromechanical state. Then we discuss our capacitive self-sensing method which we have demonstrated to track the displacement of a Danfoss Polypower generator as it was cyclically stretched and harvested energy.

  15. Augmented Reality for Close Quarters Combat

    ScienceCinema

    None

    2016-07-12

    Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.

  16. Enhancing Education through Mobile Augmented Reality

    ERIC Educational Resources Information Center

    Joan, D. R. Robert

    2015-01-01

    In this article, the author has discussed about the Mobile Augmented Reality and enhancing education through it. The aim of the present study was to give some general information about mobile augmented reality which helps to boost education. Purpose of the current study reveals the mobile networks which are used in the institution campus as well…

  17. Location-Based Learning through Augmented Reality

    ERIC Educational Resources Information Center

    Chou, Te-Lien; Chanlin, Lih-Juan

    2014-01-01

    A context-aware and mixed-reality exploring tool cannot only effectively provide an information-rich environment to users, but also allows them to quickly utilize useful resources and enhance environment awareness. This study integrates Augmented Reality (AR) technology into smartphones to create a stimulating learning experience at a university…

  18. Exploring the Realities of Television with Children.

    ERIC Educational Resources Information Center

    Morison, Patricia; And Others

    A study proposing reality and fantasy discrimination of television content as a classificatory ability sought to identify differences between subjects who were able to make sophisticated reality-fantasy judgements and those who were not, and factors which might contribute to a subject's sophistication in discrimination. Open-ended and structured…

  19. Children and the Perceived Reality of Television

    ERIC Educational Resources Information Center

    Greenberg, Bradley S.; Reeves, Byron

    1976-01-01

    Childrens' perceptions of reality in television are examined as an intervening variable between exposure to the medium and the effect of TV messages. Among the findings of this study are that perceptions of the reality of TV increase as the specificity of content increases. (Author/AM)

  20. Reality Therapy for the 21st Century.

    ERIC Educational Resources Information Center

    Wubbolding, Robert E.

    This book serves as a comprehensive and practical guide to reality therapy, and extends its principles and practices beyond the initial descriptions. A central theme of this edition is that reality therapy is a method inherently designed for the exigencies of the 21st century. It contains 22 types of self-evaluations counselors can use to shorten…

  1. Visualizing Compound Rotations with Virtual Reality

    ERIC Educational Resources Information Center

    Flanders, Megan; Kavanagh, Richard C.

    2013-01-01

    Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…

  2. "Madame Bovary": Illusion and Reality. [Lesson Plan].

    ERIC Educational Resources Information Center

    Carangelo, Audrey

    Based on Gustave Flaubert's novel "Madame Bovary," this lesson plan presents activities designed to help students explore the theme of "illusion versus reality" in the novel; identify and list alternate themes in the novel; and cite specific examples of illusion versus reality from the novel. It includes objectives, materials, procedures,…

  3. Augmented Reality for Close Quarters Combat

    SciTech Connect

    2013-09-20

    Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.

  4. Rescuing Reality: Viewer interpretation of Television Recreations.

    ERIC Educational Resources Information Center

    Sullivan, David B.; Dobkin, Bethami A.

    While contemporary communication perspectives often make a distinction between reality and the televised presentation of reality, viewers may find this distinction difficult to maintain. Television is imbued with perceived objectivity. The use of recreations in popular television programming requires a reconceptualization of how viewers perceive…

  5. Virtual Reality--Learning by Immersion.

    ERIC Educational Resources Information Center

    Dunning, Jeremy

    1998-01-01

    Discusses the use of virtual reality in educational software. Topics include CAVE (Computer-Assisted Virtual Environments); cost-effective virtual environment tools including QTVR (Quick Time Virtual Reality); interactive exercises; educational criteria for technology-based educational tools; and examples of screen displays. (LRW)

  6. Artificial intelligence in nanotechnology.

    PubMed

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  7. Artificial gravity experiment satellites

    NASA Astrophysics Data System (ADS)

    Harada, Tadashi

    1992-07-01

    An overview of the conceptual study of an artificial gravity experiment satellite based on the assumption of a launch by the H-2 launch vehicle with a target launch date in the Year 2000 is presented. While many satellites provided with artificial gravity have been reported in relation to a manned Mars exploration spacecraft mission, the review has been conducted on missions and test subjects only for experimental purposes. Mission requirements were determined based on the results of reviews on the mission, test subjects, and model missions. The system baseline and development plan were based on the results of a study on conceptual structure and scale of the system, including measures to generate artificial gravity. Approximate scale of the system and arm length, mission orbit, visibility of the operation orbit from ground stations in Japan, and satellite attitude on the mission orbit are outlined.

  8. Artificial vision workbench.

    PubMed

    Frenger, P

    1997-01-01

    Machine vision is an important component of medical systems engineering. Inexpensive miniature solid state cameras are now available. This paper describes how these devices can be used as artificial retinas, to take snapshots and moving pictures in monochrome or color. Used in pairs, they produce a stereoscopic field of vision and enable depth perception. Macular and peripheral vision can be simulated electronically. This paper also presents the author's design of an artificial orbit for this synthetic eye. The orbit supports the eye, protects it, and provides attachment points for the ocular motion control system. Convergence and image fusion can be produced, and saccades simulated, along with the other ocular motions. The use of lenses, filters, irises and focusing mechanisms are also discussed. Typical camera-computer interfaces are described, including the use of "frame grabbers" and analog-to-digital image conversion. Software programs for eye positioning, image manipulation, feature extraction and object recognition are discussed, including the application of artificial neural networks.

  9. Artificial intelligence in nanotechnology

    NASA Astrophysics Data System (ADS)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  10. Artificial human vision.

    PubMed

    Dowling, Jason

    2005-01-01

    Can vision be restored to the blind? As early as 1929 it was discovered that stimulating the visual cortex of an individual led to the perception of spots of light, known as phosphenes [1] . The aim of artificial human vision systems is to attempt to utilize the perception of phosphenes to provide a useful substitute for normal vision. Currently, four locations for electrical stimulation are being investigated; behind the retina (subretinal), in front of the retina (epiretinal), the optic nerve and the visual cortex (using intra- and surface electrodes). This review discusses artificial human vision technology and requirements, and reviews the current development projects.

  11. CARDIAC MUSCLE

    PubMed Central

    Sommer, Joachim R.; Johnson, Edward A.

    1968-01-01

    With light and electron microscopy a comparison has been made of the morphology of ventricular (V) and Purkinje (P) fibers of the hearts of guinea pig, rabbit, cat, dog, goat, and sheep. The criteria, previously established for the rabbit heart, that V fibers are distinguished from P fibers by the respective presence and absence of transverse tubules is shown to be true for all animals studied. No evidence was found of a permanent connection between the sarcoplasmic reticulum and the extracellular space. The sarcoplasmic reticulum (SR) of V fibers formed couplings with the sarcolemma of a transverse tubule (interior coupling) and with the peripheral sarcolemma (peripheral coupling), whereas in P fibers the SR formed only peripheral couplings. The forms of the couplings were identical. The significance, with respect to excitation-contraction coupling, of the difference in the form of the couplings in cardiac versus skeletal muscle is discussed together with the electrophysiological implications of the differing geometries of bundles of P fibers from different animals. PMID:5645545

  12. Marshall Engineers Use Virtual Reality

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  13. [Sweeteners: between myth and reality].

    PubMed

    Clarisse, Muriel; Di Vetta, Véronique; Giusti, Vittorio

    2009-03-25

    As the prevalence of obesity and diabetes are continually increasing, the use of "false sugars" otherwise known as sweeteners, and their associated health issues are being more and more discussed. A higher sugared power, less calories as well as a moderated or non-existent effect on blood sugar would lead to believe that sweeteners are helpful. However, we CANNOT say that they are THE solution as they can contain calories, may have some undesired effects, and moreover they ease the conscience without actually allowing a weight loss with their sole use. They are to be used with judgment, wittingly and especially when comparing sweetened products. The sweetener myth is often far from reality. It is therefore important to give our patients the means to analyze their dietary intake with regard to their sweeteners ingestion.

  14. Opening the mind to reality.

    PubMed

    Covington, C

    2000-01-01

    The author shows, through the use of clinical material, how an early failure in love can give rise to a severely crippling superego. The experience of a hateful relation with the mother is not simply internalized as a persecuting internal object, but is grafted onto the very roots of superego formation. As a result, the development of other parts of the psyche are affected--specifically the relation between the ago and self and the development of sexuality. The alienation between ego and self impairs thinking and the perception of external reality, which is modified and denied in the service of maintaining a pathological superego. By allowing the patient's hateful feelings to come out in the transference, without making him feel guilty, he is then able to risk expressing his loving feelings without the fear of rejection or abandonment. Through this process, the pathological superego can be dismantled and a more benign superego constructed. PMID:10697949

  15. Allergy vaccines: dreams and reality.

    PubMed

    Crameri, Reto

    2007-12-01

    Allergy, extrinsic asthma and atopic eczema derive from deregulated immune responses against innocuous antigens. The incidence of atopic diseases is actually affecting approximately 30% of the population in industrialized countries. Although much progress has been achieved in the development of efficient symptomatic treatments for allergic diseases, the only curative treatment remains allergen-specific immunotherapy. In contrast to classical vaccines, which elicit strong host immune responses after one or a few injections, allergen-specific immunotherapy might require a long treatment time of 3-5 years with up to 80 injections to confer some protection. The reality is that 'allergy vaccines' achieve beneficial effects through immunomodulation, which takes a long time to establish. The dream would be to develop highly efficient allergy vaccines able to cure the disease with a few injections.

  16. Towards a separable ``empirical reality''?

    NASA Astrophysics Data System (ADS)

    D'Espagnat, Bernard

    1990-10-01

    “To be” or “to be found”? Some contributions relative to this modern variant of Hamlet's question are presented here. They aim at better apprehending the differences between the points of view of the physicists who consider that present-day quantum measurement theories do reach their objective and those who deny they do. It is pointed out that these two groups have different interpretations of the verbs “to be” and “to have” and of the criterion for truth. These differences are made explicit. A notion of “empirical reality” is constructed within the representation of which the physicists of the first named group can consistently uphold their claim. A detailed way of sharpening this definition so as to make empirical reality free of nonlocal actions at a distance is also described.

  17. Newton's Principia: Myth and Reality

    NASA Astrophysics Data System (ADS)

    Smith, George

    2016-03-01

    Myths about Newton's Principia abound. Some of them, such as the myth that the whole book was initially developed using the calculus and then transformed into a geometric mathematics, stem from remarks he made during the priority controversy with Leibniz over the calculus. Some of the most persistent, and misleading, arose from failures to read the book with care. Among the latter are the myth that he devised his theory of gravity in order to explain the already established ``laws'' of Kepler, and that in doing so he took himself to be establishing that Keplerian motion is ``absolute,'' if not with respect to ``absolute space,'' then at least with respect to the fixed stars taken as what came later to be known as an inertial frame. The talk will replace these two myths with the reality of what Newton took himself to have established.

  18. Synergistic toughening of graphene oxide-molybdenum disulfide-thermoplastic polyurethane ternary artificial nacre.

    PubMed

    Wan, Sijie; Li, Yuchen; Peng, Jingsong; Hu, Han; Cheng, Qunfeng; Jiang, Lei

    2015-01-27

    Inspired by the ternary structure of natural nacre, robust ternary artificial nacre is constructed through synergistic toughening of graphene oxide (GO) and molybdenum disulfide (MoS2) nanosheets via a vacuum-assisted filtration self-assembly process. The synergistic toughening effect from high mechanical properties of GO and lubrication of MoS2 nanosheets is successfully demonstrated. Meanwhile, the artificial nacre shows high electrical conductivity. This approach for constructing robust artificial nacre by synergistic effect from GO and MoS2 provides a creative opportunity for designing and fabricating integrated artificial nacre in the near future, and this kind of ternary artificial nacre has great potential applications in aerospace, flexible supercapacitor electrodes, artificial muscle, and tissue engineering.

  19. Synergistic toughening of graphene oxide-molybdenum disulfide-thermoplastic polyurethane ternary artificial nacre.

    PubMed

    Wan, Sijie; Li, Yuchen; Peng, Jingsong; Hu, Han; Cheng, Qunfeng; Jiang, Lei

    2015-01-27

    Inspired by the ternary structure of natural nacre, robust ternary artificial nacre is constructed through synergistic toughening of graphene oxide (GO) and molybdenum disulfide (MoS2) nanosheets via a vacuum-assisted filtration self-assembly process. The synergistic toughening effect from high mechanical properties of GO and lubrication of MoS2 nanosheets is successfully demonstrated. Meanwhile, the artificial nacre shows high electrical conductivity. This approach for constructing robust artificial nacre by synergistic effect from GO and MoS2 provides a creative opportunity for designing and fabricating integrated artificial nacre in the near future, and this kind of ternary artificial nacre has great potential applications in aerospace, flexible supercapacitor electrodes, artificial muscle, and tissue engineering. PMID:25559751

  20. Regeneration and Maintenance of Intestinal Smooth Muscle Phenotypes

    NASA Astrophysics Data System (ADS)

    Walthers, Christopher M.

    Tissue engineering is an emerging field of biomedical engineering that involves growing artificial organs to replace those lost to disease or injury. Within tissue engineering, there is a demand for artificial smooth muscle to repair tissues of the digestive tract, bladder, and vascular systems. Attempts to develop engineered smooth muscle tissues capable of contracting with sufficient strength to be clinically relevant have so far proven unsatisfactory. The goal of this research was to develop and sustain mature, contractile smooth muscle. Survival of implanted SMCs is critical to sustain the benefits of engineered smooth muscle. Survival of implanted smooth muscle cells was studied with layered, electrospun polycaprolactone implants with lasercut holes ranging from 0--25% porosity. It was found that greater angiogenesis was associated with increased survival of implanted cells, with a large increase at a threshold between 20% and 25% porosity. Heparan sulfate coatings improved the speed of blood vessel infiltration after 14 days of implantation. With these considerations, thicker engineered tissues may be possible. An improved smooth muscle tissue culture technique was utilized. Contracting smooth muscle was produced in culture by maintaining the native smooth muscle tissue organization, specifically by sustaining intact smooth muscle strips rather than dissociating tissue in to isolated smooth muscle cells. Isolated cells showed a decrease in maturity and contained fewer enteric neural and glial cells. Muscle strips also exhibited periodic contraction and regular fluctuation of intracellular calclium. The muscle strip maturity persisted after implantation in omentum for 14 days on polycaprolactone scaffolds. A low-cost, disposable bioreactor was developed to further improve maturity of cultured smooth muscle cells in an environment of controlled cyclical stress.The bioreactor consistently applied repeated mechanical strain with controllable inputs for strain

  1. Virtual reality in surgery and medicine.

    PubMed

    Chinnock, C

    1994-01-01

    This report documents the state of development of enhanced and virtual reality-based systems in medicine. Virtual reality systems seek to simulate a surgical procedure in a computer-generated world in order to improve training. Enhanced reality systems seek to augment or enhance reality by providing improved imaging alternatives for specific patient data. Virtual reality represents a paradigm shift in the way we teach and evaluate the skills of medical personnel. Driving the development of virtual reality-based simulators is laparoscopic abdominal surgery, where there is a perceived need for better training techniques; within a year, systems will be fielded for second-year residency students. Further refinements over perhaps the next five years should allow surgeons to evaluate and practice new techniques in a simulator before using them on patients. Technical developments are rapidly improving the realism of these machines to an amazing degree, as well as bringing the price down to affordable levels. In the next five years, many new anatomical models, procedures, and skills are likely to become available on simulators. Enhanced reality systems are generally being developed to improve visualization of specific patient data. Three-dimensional (3-D) stereovision systems for endoscopic applications, head-mounted displays, and stereotactic image navigation systems are being fielded now, with neurosurgery and laparoscopic surgery being major driving influences. Over perhaps the next five years, enhanced and virtual reality systems are likely to merge. This will permit patient-specific images to be used on virtual reality simulators or computer-generated landscapes to be input into surgical visualization instruments. Percolating all around these activities are developments in robotics and telesurgery. An advanced information infrastructure eventually will permit remote physicians to share video, audio, medical records, and imaging data with local physicians in real time

  2. Database in Artificial Intelligence.

    ERIC Educational Resources Information Center

    Wilkinson, Julia

    1986-01-01

    Describes a specialist bibliographic database of literature in the field of artificial intelligence created by the Turing Institute (Glasgow, Scotland) using the BRS/Search information retrieval software. The subscription method for end-users--i.e., annual fee entitles user to unlimited access to database, document provision, and printed awareness…

  3. Micromachined Artificial Haircell

    NASA Technical Reports Server (NTRS)

    Liu, Chang (Inventor); Engel, Jonathan (Inventor); Chen, Nannan (Inventor); Chen, Jack (Inventor)

    2010-01-01

    A micromachined artificial sensor comprises a support coupled to and movable with respect to a substrate. A polymer, high-aspect ratio cilia-like structure is disposed on and extends out-of-plane from the support. A strain detector is disposed with respect to the support to detect movement of the support.

  4. Artificial limb connection

    NASA Technical Reports Server (NTRS)

    Owens, L. J.

    1974-01-01

    Connection simplifies and eases donning and removing artificial limb; eliminates harnesses and clamps; and reduces skin pressures by allowing bone to carry all tensile and part of compressive loads between prosthesis and stump. Because connection is modular, it is easily modified to suit individual needs.

  5. Terahertz Artificial Dielectric Lens

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  6. Artificial Gravity Research Plan

    NASA Technical Reports Server (NTRS)

    Gilbert, Charlene

    2014-01-01

    This document describes the forward working plan to identify what countermeasure resources are needed for a vehicle with an artificial gravity module (intermittent centrifugation) and what Countermeasure Resources are needed for a rotating transit vehicle (continuous centrifugation) to minimize the effects of microgravity to Mars Exploration crewmembers.

  7. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  8. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-03-14

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  9. Artificial intelligence within AFSC

    NASA Technical Reports Server (NTRS)

    Gersh, Mark A.

    1990-01-01

    Information on artificial intelligence research in the Air Force Systems Command is given in viewgraph form. Specific research that is being conducted at the Rome Air Development Center, the Space Technology Center, the Human Resources Laboratory, the Armstrong Aerospace Medical Research Laboratory, the Armamant Laboratory, and the Wright Research and Development Center is noted.

  10. Artificial Intelligence and CALL.

    ERIC Educational Resources Information Center

    Underwood, John H.

    The potential application of artificial intelligence (AI) to computer-assisted language learning (CALL) is explored. Two areas of AI that hold particular interest to those who deal with language meaning--knowledge representation and expert systems, and natural-language processing--are described and examples of each are presented. AI contribution…

  11. The Artificial Planet

    NASA Astrophysics Data System (ADS)

    Glover, D. R.

    An interim milestone for interstellar space travel is proposed: the artificial planet. Interstellar travel will require breakthroughs in the areas of propulsion systems, energy systems, construction of large space structures, protection from space & radiation effects, space agriculture, closed environmental & life support systems, and many other areas. Many difficult problems can be attacked independently of the propulsion and energy challenges through a project to establish an artificial planet in our solar system. Goals of the project would include construction of a large space structure, development of space agriculture, demonstration of closed environmental & life support systems over long time periods, selection of gravity level for long-term spacecraft, demonstration of a self-sufficient colony, and optimization of space colony habitat. The artificial planet would use solar energy as a power source. The orbital location will be selected to minimize effects of the Earth, yet be close enough for construction, supply, and rescue operations. The artificial planet would start out as a construction station and evolve over time to address progressive goals culminating in a self-sufficient space colony.

  12. Artificial intelligence. Second edition

    SciTech Connect

    Winston, P.H.

    1984-01-01

    This book introduces the basic concepts of the field of artificial intelligence. It contains material covering the latest advances in control, representation, language, vision, and problem solving. Problem solving in design and analysis systems is addressed. Mitcell's version-space learning procedure, Morevec's reduced-images stereo procedure, and the Strips problem solver are covered.

  13. Terahertz Artificial Dielectric Lens

    PubMed Central

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  14. Augmented reality for biomedical wellness sensor systems

    NASA Astrophysics Data System (ADS)

    Jenkins, Jeffrey; Szu, Harold

    2013-05-01

    Due to the commercial move and gaming industries, Augmented Reality (AR) technology has matured. By definition of AR, both artificial and real humans can be simultaneously present and realistically interact among one another. With the help of physics and physiology, we can build in the AR tool together with real human day-night webcam inputs through a simple interaction of heat transfer -getting hot, action and reaction -walking or falling, as well as the physiology -sweating due to activity. Knowing the person age, weight and 3D coordinates of joints in the body, we deduce the force, the torque, and the energy expenditure during real human movements and apply to an AR human model. We wish to support the physics-physiology AR version, PPAR, as a BMW surveillance tool for senior home alone (SHA). The functionality is to record senior walking and hand movements inside a home environment. Besides the fringe benefit of enabling more visits from grand children through AR video games, the PP-AR surveillance tool may serve as a means to screen patients in the home for potential falls at points around in house. Moreover, we anticipate PP-AR may help analyze the behavior history of SHA, e.g. enhancing the Smartphone SHA Ubiquitous Care Program, by discovering early symptoms of candidate Alzheimer-like midnight excursions, or Parkinson-like trembling motion for when performing challenging muscular joint movements. Using a set of coordinates corresponding to a set of 3D positions representing human joint locations, we compute the Kinetic Energy (KE) generated by each body segment over time. The Work is then calculated, and converted into calories. Using common graphics rendering pipelines, one could invoke AR technology to provide more information about patients to caretakers. Alerts to caretakers can be prompted by a patient's departure from their personal baseline, and the patient's time ordered joint information can be loaded to a graphics viewer allowing for high

  15. Skeletal muscle is a biological example of a linear electroactive actuator

    NASA Astrophysics Data System (ADS)

    Lieber, Richard L.

    1999-05-01

    Skeletal muscle represents a classic biological example of a structure-function relationship. This paper reviews basic muscle anatomy and demonstrates how molecular motion on the order of nm distances is converted into the macroscopic movements that are possible with skeletal muscle. Muscle anatomy provides a structural basis for understanding the basic mechanical properties of skeletal muscle -- namely, the length-tension relationship and the force-velocity relationships. The length-tension relationship illustrates that muscle force generation is extremely length dependent due to the interdigitation of the contractile filaments. The force-velocity relationship is characterized by a rapid force drop in muscle with increasing shortening velocity and a rapid rise in force when muscles are forced to lengthen. Finally, muscle architecture -- the number and arrangement of muscle fibers -- has a profound effect on the magnitude of muscle force generated and the magnitude of muscle excursion. These concepts demonstrate the elegant manner in which muscle acts as a biologically regenerating linear motor. These concepts can be used in developing artificial muscles as well as in performing surgical reconstructive procedures with various donor muscles.

  16. Artificial Gravity: Effects on Bone Turnover

    NASA Technical Reports Server (NTRS)

    Heer, M.; Zwart, S /R.; Baecker, N.; Smith, S. M.

    2007-01-01

    The impact of microgravity on the human body is a significant concern for space travelers. Since mechanical loading is a main reason for bone loss, artificial gravity might be an effective countermeasure to the effects of microgravity. In a 21-day 6 head-down tilt bed rest (HDBR) pilot study carried out by NASA, USA, the utility of artificial gravity (AG) as a countermeasure to immobilization-induced bone loss was tested. Blood and urine were collected before, during, and after bed rest for bone marker determinations. Bone mineral density was determined by DXA and pQCT before and after bed rest. Urinary excretion of bone resorption markers (n-telopeptide and helical peptide) were increased from pre-bed rest, but there was no difference between the control and the AG group. The same was true for serum c-telopeptide measurements. Bone formation markers were affected by bed rest and artificial gravity. While bone-specific alkaline phosphatase tended to be lower in the AG group during bed rest (p = 0.08), PINP, another bone formation marker, was significantly lower in AG subjects than CN before and during bed rest. PINP was lower during bed rest in both groups. For comparison, artificial gravity combined with ergometric exercise was tested in a 14-day HDBR study carried out in Japan (Iwase et al. J Grav Physiol 2004). In that study, an exercise regime combined with AG was able to significantly mitigate the bed rest-induced increase in the bone resorption marker deoxypyridinoline. While further study is required to more clearly differentiate bone and muscle effects, these initial data demonstrate the potential effectiveness of short-radius, intermittent AG as a countermeasure to the bone deconditioning that occurs during bed rest and spaceflight. Future studies will need to optimize not only the AG prescription (intensity and duration), but will likely need to include the use of exercise or other combined treatments.

  17. Modelling muscle spindle dynamics for a proprioceptive prosthesis.

    PubMed

    Williams, Ian; Constandinou, Timothy G

    2013-01-01

    Muscle spindles are found throughout our skeletal muscle tissue and continuously provide us with a sense of our limbs' position and motion (proprioception). This paper advances a model for generating artificial muscle spindle signals for a prosthetic limb, with the aim of one day providing amputees with a sense of feeling in their artificial limb. By utilising the Opensim biomechanical modelling package the relationship between a joint's angle and the length of surrounding muscles is estimated for a prosthetic limb. This is then applied to the established Mileusnic model to determine the associated muscle spindle firing pattern. This complete system model is then reduced to allow for a computationally efficient hardware implementation. This reduction is achieved with minimal impact on accuracy by selecting key mono-articular muscles and fitting equations to relate joint angle to muscle length. Parameter values fitting the Mileusnic model to human spindles are then proposed and validated against previously published human neural recordings. Finally, a model for fusimotor signals is also proposed based on data previously recorded from reduced animal experiments.

  18. Preservative solution for skeletal muscle biopsy samples

    PubMed Central

    Kurt, Yasemin Gulcan; Kurt, Bulent; Ozcan, Omer; Topal, Turgut; Kilic, Abdullah; Muftuoglu, Tuba; Acikel, Cengizhan; Sener, Kenan; Sahiner, Fatih; Yigit, Nuri; Aydin, Ibrahim; Alay, Semih; Ekinci, Safak

    2015-01-01

    Context: Muscle biopsy samples must be frozen with liquid nitrogen immediately after excision and maintained at -80°C until analysis. Because of this requirement for tissue processing, patients with neuromuscular diseases often have to travel to centers with on-site muscle pathology laboratories for muscle biopsy sample excision to ensure that samples are properly preserved. Aim: Here, we developed a preservative solution and examined its protectiveness on striated muscle tissues for a minimum of the length of time that would be required to reach a specific muscle pathology laboratory. Materials and Methods: A preservative solution called Kurt-Ozcan (KO) solution was prepared. Eight healthy Sprague-Dawley rats were sacrificed; striated muscle tissue samples were collected and divided into six different groups. Muscle tissue samples were separated into groups for morphological, enzyme histochemical, molecular, and biochemical analysis. Statistical method used: Chi-square and Kruskal Wallis tests. Results: Samples kept in the KO and University of Wisconsin (UW) solutions exhibited very good morphological scores at 3, 6, and 18 hours, but artificial changes were observed at 24 hours. Similar findings were observed for the evaluated enzyme activities. There were no differences between the control group and the samples kept in the KO or UW solution at 3, 6, and 18 hours for morphological, enzyme histochemical, and biochemical features. The messenger ribonucleic acid (mRNA) of β-actin gene was protected up to 6 hours in the KO and UW solutions. Conclusion: The KO solution protects the morphological, enzyme histochemical, and biochemical features of striated muscle tissue of healthy rats for 18 hours and preserves the mRNA for 6 hours. PMID:26019417

  19. Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro.

    PubMed

    Vandenburgh, H H; Swasdison, S; Karlisch, P

    1991-10-01

    Complex mechanical forces generated in the growing embryo play an important role in organogenesis. Computerized mechanical application of similar forces to differentiating skeletal muscle myoblasts in vitro generate three-dimensional artificial muscle organs. These organs contain parallel networks of long unbranched myofibers organized into fascicle-like structures. Tendon development is initiated and the muscles are capable of performing directed, functional work. Kinetically engineered organs provide a new method for studying the growth and development of normal and diseased tissue.

  20. Augmented reality-assisted skull base surgery.

    PubMed

    Cabrilo, I; Sarrafzadeh, A; Bijlenga, P; Landis, B N; Schaller, K

    2014-12-01

    Neuronavigation is widely considered as a valuable tool during skull base surgery. Advances in neuronavigation technology, with the integration of augmented reality, present advantages over traditional point-based neuronavigation. However, this development has not yet made its way into routine surgical practice, possibly due to a lack of acquaintance with these systems. In this report, we illustrate the usefulness and easy application of augmented reality-based neuronavigation through a case example of a patient with a clivus chordoma. We also demonstrate how augmented reality can help throughout all phases of a skull base procedure, from the verification of neuronavigation accuracy to intraoperative image-guidance.

  1. High-rate artificial lift

    SciTech Connect

    Clegg, J.D.

    1988-03-01

    This paper summarizes the major considerations in the selection, design, installation, operation, or repair of high-rate artificial-lift systems. The major types of artificial lift - sucker-rod pumps, gas-lift systems, electrical submersible pumps, hydraulic pumps and jets, and hydraulic turbine-driven pumps - will be discussed. An extensive bibliography of artificial-lift papers is included.

  2. Artificial Intelligence and Information Retrieval.

    ERIC Educational Resources Information Center

    Teodorescu, Ioana

    1987-01-01

    Compares artificial intelligence and information retrieval paradigms for natural language understanding, reviews progress to date, and outlines the applicability of artificial intelligence to question answering systems. A list of principal artificial intelligence software for database front end systems is appended. (CLB)

  3. Myoelectric control of artificial limb inspired by quantum information processing

    NASA Astrophysics Data System (ADS)

    Siomau, Michael; Jiang, Ning

    2015-03-01

    Precise and elegant coordination of a prosthesis across many degrees of freedom represents a significant challenge to efficient rehabilitation of people with limb deficiency. Processing the electrical neural signals collected from the surface of the remnant muscles of the stump is a common way to initiate and control the different movements available to the artificial limb. Based on the assumption that there are distinguishable and repeatable signal patterns among different types of muscular activation, the problem of prosthesis control reduces to one of pattern recognition. Widely accepted classical methods for pattern recognition, however, cannot provide simultaneous and proportional control of the artificial limb. Here we show that, in principle, quantum information processing of the neural signals allows us to overcome the above-mentioned difficulties, suggesting a very simple scheme for myoelectric control of artificial limb with advanced functionalities.

  4. Artificial heartbeat: design and fabrication of a biologically inspired pump.

    PubMed

    Walters, Peter; Lewis, Amy; Stinchcombe, Andrew; Stephenson, Robert; Ieropoulos, Ioannis

    2013-12-01

    We present a biologically inspired actuator exhibiting a novel pumping action. The design of the 'artificial heartbeat' actuator is inspired by physical principles derived from the structure and function of the human heart. The actuator employs NiTi artificial muscles and is powered by electrical energy generated by microbial fuel cells (MFCs). We describe the design and fabrication of the actuator and report the results of tests conducted to characterize its performance. This is the first artificial muscle-driven pump to be powered by MFCs fed on human urine. Results are presented in terms of the peak pumping pressure generated by the actuator, as well as for the volume of fluid transferred, when the actuator was powered by energy stored in a capacitor bank, which was charged by 24 MFCs fed on urine. The results demonstrate the potential for the artificial heartbeat actuator to be employed as a fluid circulation pump in future generations of MFC-powered robots ('EcoBots') that extract energy from organic waste. We also envisage that the actuator could in the future form part of a bio-robotic artwork or 'bio-automaton' that could help increase public awareness of research in robotics, bio-energy and biologically inspired design. PMID:24200747

  5. Expression of the dermatomyositis autoantigen Mi-2 in regenerating muscle

    PubMed Central

    Mammen, Andrew L.; Casciola-Rosen, Livia A.; Hall, John C.; Christopher-Stine, Lisa; Corse, Andrea M.; Rosen, Antony

    2010-01-01

    Objective Autoantibodies against the chromatin remodeler Mi-2 are found in a distinct subset of patients with dermatomyositis (DM). Previous quantitative immunoblotting experiments demonstrated that Mi-2 protein is up-regulated in DM muscle. We undertook this study to define the population of cells expressing high levels of Mi-2 in DM muscle and to explore the regulation and functional role of Mi-2 during muscle regeneration. Methods We analyzed the expression of Mi-2 in human muscle biopsy specimens using immunofluorescence. Then, we used cardiotoxin (CTX) to induce muscle injury and repair in the mouse; Mi-2 expression during muscle regeneration was studied in this model by immunofluorescence and immunoblotting analysis. Finally, we utilized a cell culture system of muscle differentiation to artificially modulate Mi-2 levels during myoblast proliferation and differentiation. Results In DM muscle, increased Mi-2 expression is preferentially found in myofibers within fascicles affected by perifascicular atrophy, particularly in the centralized nuclei of small perifascicular muscle fibers expressing markers of regeneration. In the mouse, Mi-2 is dramatically and persistently up-regulated during muscle regeneration in vivo. Premature silencing of Mi-2 with RNAi in vitro resulted in accelerated myoblast differentiation. Conclusions Mi-2 expression is markedly up-regulated during muscle regeneration in the mouse model. It is also up-regulated in DM myofibers expressing markers of regeneration. In vitro studies suggest that this protein may play a role in modulating the kinetics of myoblast differentiation. We propose that high levels of Mi-2 expression in DM muscle biopsies reflect the presence of incompletely differentiated muscle cells. PMID:19950298

  6. Unusual fibularis (peroneus) muscle.

    PubMed

    Fabrizio, Philip A

    2015-10-01

    Routine dissection has identified a previously unrecorded fibularis (peroneus) muscle in a 74-year-old male cadaver. The anomalous fibularis muscle was found lying immediately antero-medial to the fibularis longus (FL) muscle of the left leg. The anomalous muscle arose from the muscle belly of the FL in the proximal 1/2 of the leg. The muscle belly gave way to a long slender tendon that continued distally behind the lateral malleolus and inserted onto the superficial aspect of the inferior fibular retinaculum. The current finding and clinical significance are discussed.

  7. Perception of Gender Equality on Television and in Social Reality.

    ERIC Educational Resources Information Center

    Zemach, Tamar; Cohen, Akiba A.

    1986-01-01

    This study examined differential perceptions of men and women as they appear on television (symbolic reality) and in real life (social reality). The marked tendency of television viewers to regard symbolic reality as more stereotypic than social reality for most traits, roles, and occupations was especially true for heavier viewers. (Author/MBR)

  8. Artificial intelligence at CSM

    SciTech Connect

    Braun, G.; Jones, J.E.

    1985-08-01

    The recent developments in artificial intelligence have been cited as being the most significant technological advancement in computer science in the twentieth century. Machines that can mimic human reasoning will have a great impact upon our civilization. The way we think, learn, and work will be changed in a profound way. It is for these reasons that the Colorado School of Mines, in order to maintain its reputation of quality engineering education, has entered the AI field. CSM presently is evaluating artificial intelligence for applications in the mineral industries; decision support systems, process control, machine vision, data acquisition and analysis, etc. Future plans are to move AI out of the research laboratories and into the curriculum. An understanding of the concepts and unlimited power of the application of AI will enhance the engineering methods of Mines graduates. 6 references.

  9. STS-133 Crew Trains in Virtual Reality

    NASA Video Gallery

    In this episode of NASA "Behind the Scenes," STS-133 Pilot Eric Boe and space station Flight Director Royce Renfrew discuss how the virtual reality laboratory at the Johnson Space Center is helping...

  10. Computer Vision Assisted Virtual Reality Calibration

    NASA Technical Reports Server (NTRS)

    Kim, W.

    1999-01-01

    A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.

  11. Virtual Reality in Education: Defining Researchable Issues.

    ERIC Educational Resources Information Center

    Hedburg, John; Alexander, Shirley

    1994-01-01

    Discusses situated learning and virtual reality, focusing on the pedagogical aspects of the technology and its importance in achieving a learning environment which challenges and supports effective learning. (AEF)

  12. Exploring the Realities of Television with Children.

    ERIC Educational Resources Information Center

    Morison, Patricia; And Others

    1979-01-01

    Examines first- , third- , and sixth-grade children's abilities to discriminate between the reality and fantasy of television programs. Lengthy clinical interviews were conducted with each of 36 children, including viewing and discussion of 12 videotaped program segments. (SW)

  13. Reflective Teachers: Tensions between Abstractions and Realities.

    ERIC Educational Resources Information Center

    Wildman, Terry M.; Niles, Jerome A.

    1987-01-01

    The teacher as reflective practitioner of rhetoric of teacher education reform is balanced against the realities of promoting teacher reflection. Crucial conditions to promote reflection are identified. (Author/MT)

  14. Augmented Reality Simulations on Handheld Computers

    ERIC Educational Resources Information Center

    Squire, Kurt; Klopfer, Eric

    2007-01-01

    Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…

  15. Measurements on the reality of the wavefunction

    NASA Astrophysics Data System (ADS)

    Ringbauer, M.; Duffus, B.; Branciard, C.; Cavalcanti, E. G.; White, A. G.; Fedrizzi, A.

    2015-03-01

    Quantum mechanics is an outstandingly successful description of nature, underpinning fields from biology through chemistry to physics. At its heart is the quantum wavefunction, the central tool for describing quantum systems. Yet it is still unclear what the wavefunction actually is: does it merely represent our limited knowledge of a system, or is it in direct correspondence to reality? Recent no-go theorems argued that if there was any objective reality, then the wavefunction must be real. However, that conclusion relied on debatable assumptions. Here we follow a different approach without these assumptions and experimentally bound the degree to which knowledge interpretations can explain quantum phenomena. Using single photons, we find that no knowledge interpretation can fully explain the limited distinguishability of non-orthogonal quantum states in three and four dimensions. Assuming that a notion of objective reality exists, our results thus strengthen the view that the wavefunction should directly correspond to this reality.

  16. Protective Measurement and Quantum Reality

    NASA Astrophysics Data System (ADS)

    Gao, Shan

    2015-01-01

    1. Protective measurements: an introduction Shan Gao; Part I. Fundamentals and Applications: 2. Protective measurements of the wave function of a single system Lev Vaidman; 3. Protective measurement, postselection and the Heisenberg representation Yakir Aharonov and Eliahu Cohen; 4. Protective and state measurement: a review Gennaro Auletta; 5. Determination of the stationary basis from protective measurement on a single system Lajos Diósi; 6. Weak measurements, the energy-momentum tensor and the Bohm approach Robert Flack and Basil J. Hiley; Part II. Meanings and Implications: 7. Measurement and metaphysics Peter J. Lewis; 8. Protective measurements and the explanatory gambit Michael Dickson; 9. Realism and instrumentalism about the wave function: how should we choose? Mauro Dorato and Frederico Laudisa; 10. Protective measurements and the PBR theorem Guy Hetzroni and Daniel Rohrlich; 11. The roads not taken: empty waves, waveform collapse and protective measurement in quantum theory Peter Holland; 12. Implications of protective measurements on de Broglie–Bohm trajectories Aurelien Drezet; 13. Entanglement, scaling, and the meaning of the wave function in protective measurement Maximilian Schlosshauer and Tangereen V. B. Claringbold; 14. Protective measurements and the nature of the wave function within the primitive ontology approach Vincent Lam; 15. Reality and meaning of the wave function Shan Gao; Index.

  17. Protective Measurement and Quantum Reality

    NASA Astrophysics Data System (ADS)

    Gao, Shan

    2015-01-01

    1. Protective measurements: an introduction Shan Gao; Part I. Fundamentals and Applications: 2. Protective measurements of the wave function of a single system Lev Vaidman; 3. Protective measurement, postselection and the Heisenberg representation Yakir Aharonov and Eliahu Cohen; 4. Protective and state measurement: a review Gennaro Auletta; 5. Determination of the stationary basis from protective measurement on a single system Lajos Diósi; 6. Weak measurements, the energy-momentum tensor and the Bohm approach Robert Flack and Basil J. Hiley; Part II. Meanings and Implications: 7. Measurement and metaphysics Peter J. Lewis; 8. Protective measurements and the explanatory gambit Michael Dickson; 9. Realism and instrumentalism about the wave function: how should we choose? Mauro Dorato and Frederico Laudisa; 10. Protective measurements and the PBR theorem Guy Hetzroni and Daniel Rohrlich; 11. The roads not taken: empty waves, waveform collapse and protective measurement in quantum theory Peter Holland; 12. Implications of protective measurements on de Broglie-Bohm trajectories Aurelien Drezet; 13. Entanglement, scaling, and the meaning of the wave function in protective measurement Maximilian Schlosshauer and Tangereen V. B. Claringbold; 14. Protective measurements and the nature of the wave function within the primitive ontology approach Vincent Lam; 15. Reality and meaning of the wave function Shan Gao; Index.

  18. Engineering applications of virtual reality

    NASA Astrophysics Data System (ADS)

    Smith, James R.; Grimes, Robert V.; Plant, Tony A.

    1996-04-01

    This paper addresses some of the practical applications, advantages and difficulties associated with the engineering applications of virtual reality. The paper tracks actual investigative work in progress on this subject at the BNR research lab in RTP, NC. This work attempts to demonstrate the actual value added to the engineering process by using existing 3D CAD data for interactive information navigation and evaluation of design concepts and products. Specifically, the work includes translation of Parametric Technology's Pro/ENGINEER models into a virtual world to evaluate potential attributes such as multiple concept exploration and product installation assessment. Other work discussed in this paper includes extensive evaluation of two new tools, VRML and SGI's/Template Graphics' WebSpace for navigation through Pro/ENGINEER models with links to supporting technical documentation and data. The benefits of using these tolls for 3D interactive navigation and exploration throughout three key phases of the physical design process is discussed in depth. The three phases are Design Concept Development, Product Design Evaluation and Product Design Networking. The predicted values added include reduced time to `concept ready', reduced prototype iterations, increased `design readiness' and shorter manufacturing introduction cycles.

  19. Wireless Augmented Reality Prototype (WARP)

    NASA Technical Reports Server (NTRS)

    Devereaux, A. S.

    1999-01-01

    Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.

  20. [Masked hypertension: myth or reality?].

    PubMed

    Mallion, Jean-Michel; Ormezzano, Olivier; Barone-Rochette, Gilles; Neuder, Yannick; Salvat, Muriel; Baguet, Jean-Philippe

    2008-06-01

    Masked hypertension is also referred as reverse white coat hypertension. Masked hypertension is diagnosed in subjects who have normal clinic blood pressure (BP) <140/90 mmHg and elevated ambulatory BP or home BP, with daytime systolic BP> or = 135 mmHg or daytime diastolic BP > or = 85 mmHg. Its prevalence varies between 10 to at least 47% and differs substantially according to the reference population and the specific criteria.Subjects with masked hypertension have been shown to have more extensive target organ damage, specifically, a higher prevalence of carotid atherosclerosis and of left ventricular cardiac hypertrophy. Longitudinal studies of patients with masked hypertension show higher levels of cardiovascular morbidity and mortality than in reference populations. These studies show that ambulatory or home BP measurements predict risk much better than the usual clinical measurements and that those who are found to be hypertensive by ambulatory or home measurements have greater risks than those who are not. Who should be tested for masked hypertension? Our reference study shows that 3 characteristics are most likely to predict masked hypertension: male sex, age over 60 years, and office systolic BP of more than 130 mmHg. Masked hypertension is indeed a reality. Individual patients should be tested and treated, based on the physician's clinical judgment.

  1. Augmented reality: past, present, future

    NASA Astrophysics Data System (ADS)

    Inzerillo, Laura

    2013-03-01

    A great opportunity has permitted to carry out a cultural, historical, architectural and social research with great impact factor on the international cultural interest. We are talking about the realization of a museum whose the main theme is the visit and the discovery of a monument of great prestige: the monumental building the "Steri" in Palermo. The museum is divided into sub themes including the one above all, that has aroused the international interest so much that it has been presented the instance to include the museum in the cultural heritage of UNESCO. It is the realization of a museum path that regards the cells of the Inquisition, which are located just inside of some buildings of the monumental building. The project, as a whole, is faced, in a total view, between the various competences implicated: historic, chemic, architectonic, topographic, drawing, representation, virtual communication, informatics. The birth of the museum will be a sum of the results of all these disciplines involved. Methodology, implementation, fruition, virtual museum, goals, 2D graphic restitution, effects on the cultural heritage and landscape environmental, augmented reality, Surveying 2D and 3D, hi-touch screen, Photogrammetric survey, Photographic survey, representation, drawing 3D and more than this has been dealt with this research.

  2. Making youth involvement a reality.

    PubMed

    Hawkins, C

    1995-01-01

    The Youth Consultation and Youth Task Force meeting, convened in London, England, in 1995 by the International Planned Parenthood Federation (IPPF), addressed ways to involve young people in youth programs and to make youth empowerment a reality. Vision 2000, IPPF's strategic plan, designated youth as one of its six priority areas. Despite differences in the situations in various countries, the concern that young people are initiating sexual activity without adequate knowledge or access to contraception was widespread. Youth involvement was viewed as a prerequisite for program development and operation, but mechanisms must be established for this process. Capacity building and training, gender issues, support for youth-run programs, creating a positive image of youth, and advocacy for improved access to both formal and informal education were identified as key concerns. The task force also identified quality criteria for youth projects and formulated proposals for their operationalization. These criteria are: 1) engage young people at all stages of the project; 2) sensitize, train, and educate operational staff on issues of working with young people; 3) build safe empowerment processes into the project; 4) be realistic in terms of expectations; and 5) encourage leadership renewal, development, and continuity. Participants agreed to foster closer links with other nongovernmental organizations doing youth work and to use the criteria developed to improve existing projects and develop new ones.

  3. Natural and artificial tanning.

    PubMed

    Clore, E R

    1995-01-01

    Although sunlight is beneficial to provide light and warmth and aids the body in the formation of vitamin D, tanning is potentially damaging to an individual's health. The incidence of skin cancer and retinal damage from both natural and artificial light is on the rise. This article explores the concept of tanning, types of ultraviolet rays and related health hazards. Health care provider interventions for prevention and client education are also emphasized.

  4. Whither Artificial Reproduction?

    PubMed Central

    Percival-Smith, Robin

    1985-01-01

    Artificial reproduction now offers sub fertile couples a number of options which raise scientific and ethical questions. This article discusses the Canadian and British experiences in formulating regulations and legislation in this important field. Current work on mammalian embryo research foretells the direction which human research will take. This article stresses the need for family physicians' participation in the ethical decisions that accompany these new developments. PMID:21274181

  5. Artificial intelligence in parallel

    SciTech Connect

    Waldrop, M.M.

    1984-08-10

    The current rage in the Artificial Intelligence (AI) community is parallelism: the idea is to build machines with many independent processors doing many things at once. The upshot is that about a dozen parallel machines are now under development for AI alone. As might be expected, the approaches are diverse yet there are a number of fundamental issues in common: granularity, topology, control, and algorithms.

  6. Introducing artificial intelligence

    SciTech Connect

    Simons, G.L.

    1985-01-01

    This book is an introduction to the field of artificial intelligence. The volume sets Al in a broad context of historical attitudes, imaginative insights, and ideas about intelligence in general. The author offers a wide-ranging survey of Al concerns, including cognition, knowledge engineering, problem inference, speech understanding, and perception. He also discusses expert systems, LISP, smart robots, and other Al products, and provides a listing of all major Al systems.

  7. Artificial vision workbench.

    PubMed

    Frenger, P

    1997-01-01

    Machine vision is an important component of medical systems engineering. Inexpensive miniature solid state cameras are now available. This paper describes how these devices can be used as artificial retinas, to take snapshots and moving pictures in monochrome or color. Used in pairs, they produce a stereoscopic field of vision and enable depth perception. Macular and peripheral vision can be simulated electronically. This paper also presents the author's design of an artificial orbit for this synthetic eye. The orbit supports the eye, protects it, and provides attachment points for the ocular motion control system. Convergence and image fusion can be produced, and saccades simulated, along with the other ocular motions. The use of lenses, filters, irises and focusing mechanisms are also discussed. Typical camera-computer interfaces are described, including the use of "frame grabbers" and analog-to-digital image conversion. Software programs for eye positioning, image manipulation, feature extraction and object recognition are discussed, including the application of artificial neural networks. PMID:9731383

  8. [Liver and artificial liver].

    PubMed

    Chamuleau, R A

    1998-06-01

    Despite good results of orthotopic liver transplantation in patients with fulminant hepatic failure the need still exists for an effective and safe artificial liver, able to temporarily take over the complex liver function so as to bridge the gap with transplantation or regeneration. Attempts to develop non-biological artificial livers have failed, mostly when controlled clinical trials were performed. In the last decade several different types of bioartificial livers have been devised, in which the biocomponent consists of freshly isolated porcine hepatocytes or a human hepatoblastoma cell line. The majority use semipermeable hollow fibers known from artificial kidney devices. The liver cells may lie either inside or outside the lumen of these fibers. In vitro analysis of liver function and animal experimental work showing that the bioartificial liver increases survival justify clinical application. Bioartificial livers are connected to patients extracorporeally by means of plasmapheresis circuit for periods of about 6 hours. In different trials about 40 patients with severe liver failure have been treated. No important adverse effects have not been reported in these phase I trials. Results of controlled studies are urgently needed. As long as no satisfactory immortalised human liver cell line with good function is available, porcine hepatocytes will remain the first choice, provided transmission of porcine pathogens to man is prevented. PMID:9752034

  9. Human Muscle Fiber

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The stimulus of gravity affects RNA production, which helps maintain the strength of human muscles on Earth (top), as seen in this section of muscle fiber taken from an astronaut before spaceflight. Astronauts in orbit and patients on Earth fighting muscle-wasting diseases need countermeasures to prevent muscle atrophy, indicated here with white lipid droplets (bottom) in the muscle sample taken from the same astronaut after spaceflight. Kerneth Baldwin of the University of California, Irvine, is conducting research on how reducing the stimulus of gravity affects production of the RNA that the body uses as a blueprint for making muscle proteins. Muscle proteins are what give muscles their strength, so when the RNA blueprints aren't available for producing new proteins to replace old ones -- a situation that occurs in microgravity -- the muscles atrophy. When the skeletal muscle system is exposed to microgravity during spaceflight, the muscles undergo a reduced mass that translates to a reduction in strength. When this happens, muscle endurance decreases and the muscles are more prone to injury, so individuals could have problems in performing extravehicular activity [space walks] or emergency egress because their bodies are functionally compromised.

  10. Muscle strain injuries.

    PubMed

    Garrett, W E

    1996-01-01

    One of the most common injuries seen in the office of the practicing physician is the muscle strain. Until recently, little data were available on the basic science and clinical application of this basic science for the treatment and prevention of muscle strains. Studies in the last 10 years represent action taken on the direction of investigation into muscle strain injuries from the laboratory and clinical fronts. Findings from the laboratory indicate that certain muscles are susceptible to strain injury (muscles that cross multiple joints or have complex architecture). These muscles have a strain threshold for both passive and active injury. Strain injury is not the result of muscle contraction alone, rather, strains are the result of excessive stretch or stretch while the muscle is being activated. When the muscle tears, the damage is localized very near the muscle-tendon junction. After injury, the muscle is weaker and at risk for further injury. The force output of the muscle returns over the following days as the muscle undertakes a predictable progression toward tissue healing. Current imaging studies have been used clinically to document the site of injury to the muscle-tendon junction. The commonly injured muscles have been described and include the hamstring, the rectus femoris, gastrocnemius, and adductor longus muscles. Injuries inconsistent with involvement of a single muscle-tendon junction proved to be at tendinous origins rather than within the muscle belly. Important information has also been provided regarding injuries with poor prognosis, which are potentially repairable surgically, including injuries to the rectus femoris muscle, the hamstring origin, and the abdominal wall. Data important to the management of common muscle injuries have been published. The risks of reinjury have been documented. The early efficacy and potential for long-term risks of nonsteroidal antiinflammatory agents have been shown. New data can also be applied to the field

  11. Virtual Reality at the PC Level

    NASA Technical Reports Server (NTRS)

    Dean, John

    1998-01-01

    The main objective of my research has been to incorporate virtual reality at the desktop level; i.e., create virtual reality software that can be run fairly inexpensively on standard PC's. The standard language used for virtual reality on PC's is VRML (Virtual Reality Modeling Language). It is a new language so it is still undergoing a lot of changes. VRML 1.0 came out only a couple years ago and VRML 2.0 came out around last September. VRML is an interpreted language that is run by a web browser plug-in. It is fairly flexible in terms of allowing you to create different shapes and animations. Before this summer, I knew very little about virtual reality and I did not know VRML at all. I learned the VRML language by reading two books and experimenting on a PC. The following topics are presented: CAD to VRML, VRML 1.0 to VRML 2.0, VRML authoring tools, VRML browsers, finding virtual reality applications, the AXAF project, the VRML generator program, web communities and future plans.

  12. Virtual reality training improves balance function.

    PubMed

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-09-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.

  13. Experimental Evidence for Mixed Reality States

    NASA Astrophysics Data System (ADS)

    Gintautas, Vadas; Hubler, Alfred

    2008-03-01

    We present experimental data on the limiting behavior of an inter-reality system: a virtual pendulum with a bi-directional instantaneous coupling to its real-world counterpart [Gintautas & Hubler, Phys.Rev.E 75, 057201 (2007)]. The data show that if the physical parameters of the simplified virtual system are close to the parameters of the real system, there is a phase transition from an uncorrelated dual reality state to a mixed reality state in which the motion of the two pendulums is highly correlated. As virtual systems better approximate real ones, even weak couplings in inter-reality systems may induce sudden transitions to mixed reality states. This phenomenon may be typical for systems with instantaneous coupling and was recently featured on the tip sheet of the American Physical Society [http://www.aps.org/about/tipsheets/tip68.cfm ]. We show that mixed reality states in physical systems are related to out-of- body experiences of humans in 3D-video feedback systems [H. H. Ehrsson, The Experimental Induction of Out-of-Body Experiences. Science 317, 1048 (2007)].

  14. Functional brain networks involved in reality monitoring.

    PubMed

    Metzak, Paul D; Lavigne, Katie M; Woodward, Todd S

    2015-08-01

    Source monitoring refers to the recollection of variables that specify the context and conditions in which a memory episode was encoded. This process involves using the qualitative and quantitative features of a memory trace to distinguish its source. One specific class of source monitoring is reality monitoring, which involves distinguishing internally generated from externally generated information, that is, memories of imagined events from real events. The purpose of the present study was to identify functional brain networks that underlie reality monitoring, using an alternative type of source monitoring as a control condition. On the basis of previous studies on self-referential thinking, it was expected that a medial prefrontal cortex (mPFC) based network would be more active during reality monitoring than the control condition, due to the requirement to focus on a comparison of internal (self) and external (other) source information. Two functional brain networks emerged from this analysis, one reflecting increasing task-related activity, and one reflecting decreasing task-related activity. The second network was mPFC based, and was characterized by task-related deactivations in areas resembling the default-mode network; namely, the mPFC, middle temporal gyri, lateral parietal regions, and the precuneus, and these deactivations were diminished during reality monitoring relative to source monitoring, resulting in higher activity during reality monitoring. This result supports previous research suggesting that self-referential thinking involves the mPFC, but extends this to a network-level interpretation of reality monitoring.

  15. Virtual reality training improves balance function

    PubMed Central

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-01-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651

  16. Applying Space Technology to Enhance Control of an Artificial Arm for Children and Adults With Amputations

    NASA Technical Reports Server (NTRS)

    Atkins, Diane J.

    1998-01-01

    The first single function myoelectric prosthetic hand was introduced in the 1960's. This hand was controlled by the electric fields generated by muscle contractions in the residual limb of the amputee user. Electrodes and amplifiers, embedded in the prosthetic socket, measured these electric fields across the skin, which increase in amplitude as the individual contracts their muscle. When the myoelectric signal reached a certain threshold amplitude, the control unit activated a motor which opened or closed a hand-like prosthetic terminal device with a pincher grip. Late in the 1990's, little has changed. Most current myoelectric prostheses still operate in this same, single-function way. To better understand the limitations of the current single-function myoelectric hand and the needs of those who use them, The Institute for Rehabilitation and Research (TIRR), sponsored by the National Institutes of Health (NUH), surveyed approximately 2,500 individuals with upper limb loss [1]. When asked to identify specific features of their current myoelectric prostheses that needed improvement, the survey respondents overwhelmingly identified the lack of wrist and finger movement, as well as poor control capability. However, simply building a mechanism with individual finger and wrist motion is not enough. In the 1960's and 1970's, engineers built a number of more dexterous prosthetic hands. Unfortunately, these were rejected during clinical trials due to a difficult and distracting control interface. The goal of this project, "Applying Space Technology to Enhance Control of an Artificial Arm for Children and Adults with Amputations," was to lay the foundation for a multi-function, intuitive myoelectric control system which requires no conscious thought to move the hand. We built an extensive myoelectric signal database for six motions from ten amputee volunteers, We also tested a control system based on new artificial intelligence techniques on the data from two of these

  17. Healthy Muscles Matter

    MedlinePlus

    ... keep my muscles more healthy? Definitions What can go wrong? Injuries Almost everyone has had sore muscles ... If you have been inactive, “start low and go slow” by gradually increasing how often and how ...

  18. Eye muscle repair - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100062.htm Eye muscle repair - series—Normal anatomy To use the sharing ... the eyeball to the eye socket. The external muscles of the eye are found behind the conjunctiva. ...

  19. Exercising with a Muscle Disease

    MedlinePlus

    ... are: • cramping in muscles (probably related to insufficient energy supply for muscles) • pain in muscles • weakness of exercised muscles • dark urine that looks like cola, following exercise (seek ...

  20. Transmissible encephalopathies: speculations and realities.

    PubMed

    Manuelidis, Laura

    2003-01-01

    Virtually all transmissible encephalopathies (TSEs), such as scrapie, CJD, and BSE, are caused by a type of infectious particle that remains enigmatic. The language of prion theory supersedes the reality of what is, and what is not known. This review questions the predictive value, consistency and accuracy of this now dominant assumption. Many people believe the normal cellular prion protein (PrP) self-converts into an infectious amyloid protein or prion. Although the amyloidogenic capacity of proteins is well established, the concept of an infectious protein without nucleic acid was "revolutionary." Diverse experiments have repeatedly shown, however, that this protein alone, in any form, is incapable of reproducing transmissible infection. In contrast, the infectious agent copurifies with many other molecules, including nucleic acids, while it separates from the majority of PrP. The infectious particle has a homogeneous viral size of ~25 nm, and infectivity is markedly reduced by conditions that disrupt viral core components but do not disrupt multimers of PrP amyloid. Additionally, the infectious agent replicates to high levels before any PrP abnormalities can be detected. Hence, we initially proposed that PrP changes are part of the host's pathologic response to high levels of infectious agent, but not the agent itself. Newer data clarifying a role for myeloid cells in the spread of infection, the unique character of two different agent strains propagated in a single animal, and the demonstration of long nucleic acids in a variety of simplified high titer preparations continue to raise serious questions for the prion hypothesis. Moreover, the epidemic spread of TSEs, and the activation of host innate immune mechanisms by infection, further indicate these agents are recognizably foreign, and probably viral.

  1. Muscle Session Summary

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth; Feeback, Daniel

    1999-01-01

    Presentations from the assembled group of investigators involved in specific research projeects related to skeletal muscle in space flight can categorized in thematic subtopics: regulation of contractile protein phenotypes, muscle growth and atrophy, muscle structure: injury, recovery,and regeneration, metabolism and fatigue, and motor control and loading factors.

  2. Artificial proprioceptive feedback for myoelectric control.

    PubMed

    Pistohl, Tobias; Joshi, Deepak; Ganesh, Gowrishankar; Jackson, Andrew; Nazarpour, Kianoush

    2015-05-01

    The typical control of myoelectric interfaces, whether in laboratory settings or real-life prosthetic applications, largely relies on visual feedback because proprioceptive signals from the controlling muscles are either not available or very noisy. We conducted a set of experiments to test whether artificial proprioceptive feedback, delivered noninvasively to another limb, can improve control of a two-dimensional myoelectrically-controlled computer interface. In these experiments, participants were required to reach a target with a visual cursor that was controlled by electromyogram signals recorded from muscles of the left hand, while they were provided with an additional proprioceptive feedback on their right arm by moving it with a robotic manipulandum. Provision of additional artificial proprioceptive feedback improved the angular accuracy of their movements when compared to using visual feedback alone but did not increase the overall accuracy quantified with the average distance between the cursor and the target. The advantages conferred by proprioception were present only when the proprioceptive feedback had similar orientation to the visual feedback in the task space and not when it was mirrored, demonstrating the importance of congruency in feedback modalities for multi-sensory integration. Our results reveal the ability of the human motor system to learn new inter-limb sensory-motor associations; the motor system can utilize task-related sensory feedback, even when it is available on a limb distinct from the one being actuated. In addition, the proposed task structure provides a flexible test paradigm by which the effectiveness of various sensory feedback and multi-sensory integration for myoelectric prosthesis control can be evaluated.

  3. Hiding the squid: patterns in artificial cephalopod skin

    PubMed Central

    Fishman, Aaron; Rossiter, Jonathan; Homer, Martin

    2015-01-01

    Cephalopods employ their chromomorphic skins for rapid and versatile active camouflage and signalling effects. This is achieved using dense networks of pigmented, muscle-driven chromatophore cells which are neurally stimulated to actuate and affect local skin colouring. This allows cephalopods to adopt numerous dynamic and complex skin patterns, most commonly used to blend into the environment or to communicate with other animals. Our ultimate goal is to create an artificial skin that can mimic such pattern generation techniques, and that could produce a host of novel and compliant devices such as cloaking suits and dynamic illuminated clothing. This paper presents the design, mathematical modelling and analysis of a dynamic biomimetic pattern generation system using bioinspired artificial chromatophores. The artificial skin is made from electroactive dielectric elastomer: a soft, planar-actuating smart material that we show can be effective at mimicking the actuation of biological chromatophores. The proposed system achieves dynamic pattern generation by imposing simple local rules into the artificial chromatophore cells so that they can sense their surroundings in order to manipulate their actuation. By modelling sets of artificial chromatophores in linear arrays of cells, we explore the capability of the system to generate a variety of dynamic pattern types. We show that it is possible to mimic patterning seen in cephalopods, such as the passing cloud display, and other complex dynamic patterning. PMID:26063823

  4. Hiding the squid: patterns in artificial cephalopod skin.

    PubMed

    Fishman, Aaron; Rossiter, Jonathan; Homer, Martin

    2015-07-01

    Cephalopods employ their chromomorphic skins for rapid and versatile active camouflage and signalling effects. This is achieved using dense networks of pigmented, muscle-driven chromatophore cells which are neurally stimulated to actuate and affect local skin colouring. This allows cephalopods to adopt numerous dynamic and complex skin patterns, most commonly used to blend into the environment or to communicate with other animals. Our ultimate goal is to create an artificial skin that can mimic such pattern generation techniques, and that could produce a host of novel and compliant devices such as cloaking suits and dynamic illuminated clothing. This paper presents the design, mathematical modelling and analysis of a dynamic biomimetic pattern generation system using bioinspired artificial chromatophores. The artificial skin is made from electroactive dielectric elastomer: a soft, planar-actuating smart material that we show can be effective at mimicking the actuation of biological chromatophores. The proposed system achieves dynamic pattern generation by imposing simple local rules into the artificial chromatophore cells so that they can sense their surroundings in order to manipulate their actuation. By modelling sets of artificial chromatophores in linear arrays of cells, we explore the capability of the system to generate a variety of dynamic pattern types. We show that it is possible to mimic patterning seen in cephalopods, such as the passing cloud display, and other complex dynamic patterning.

  5. Evaluating Virtual Reality and Augmented Reality Training for Industrial Maintenance and Assembly Tasks

    ERIC Educational Resources Information Center

    Gavish, Nirit; Gutiérrez, Teresa; Webel, Sabine; Rodríguez, Jorge; Peveri, Matteo; Bockholt, Uli; Tecchia, Franco

    2015-01-01

    The current study evaluated the use of virtual reality (VR) and augmented reality (AR) platforms, developed within the scope of the SKILLS Integrated Project, for industrial maintenance and assembly (IMA) tasks training. VR and AR systems are now widely regarded as promising training platforms for complex and highly demanding IMA tasks. However,…

  6. Student Interns' Socially Constructed Work Realities: Narrowing the Work Expectation-Reality Gap

    ERIC Educational Resources Information Center

    Barnett, Kathy

    2012-01-01

    New employees, including college students, often experience expectation-reality gaps about work, making the assimilation process more difficult for all. This qualitative study explores the role of the internship in narrowing the work expectation-reality gap. This article addresses two research questions: (a) What do students learn about work…

  7. ARSC: Augmented Reality Student Card--An Augmented Reality Solution for the Education Field

    ERIC Educational Resources Information Center

    El Sayed, Neven A. M.; Zayed, Hala H.; Sharawy, Mohamed I.

    2011-01-01

    Augmented Reality (AR) is the technology of adding virtual objects to real scenes through enabling the addition of missing information in real life. As the lack of resources is a problem that can be solved through AR, this paper presents and explains the usage of AR technology we introduce Augmented Reality Student Card (ARSC) as an application of…

  8. Regarding Reality: Some Consequences of Two Incapacities

    PubMed Central

    Edelman, Shimon

    2011-01-01

    By what empirical means can a person determine whether he or she is presently awake or dreaming? Any conceivable test addressing this question, which is a special case of the classical metaphysical doubting of reality, must be statistical (for the same reason that empirical science is, as noted by Hume). Subjecting the experienced reality to any kind of statistical test (for instance, a test for bizarreness) requires, however, that a set of baseline measurements be available. In a dream, or in a simulation, any such baseline data would be vulnerable to tampering by the same processes that give rise to the experienced reality, making the outcome of a reality test impossible to trust. Moreover, standard cryptographic defenses against such tampering cannot be relied upon, because of the potentially unlimited reach of reality modification within a dream, which may range from the integrity of the verification keys to the declared outcome of the entire process. In the face of this double predicament, the rational course of action is to take reality at face value. The predicament also has some intriguing corollaries. In particular, even the most revealing insight that a person may gain into the ultimate nature of reality (for instance, by attaining enlightenment in the Buddhist sense) is ultimately unreliable, for the reasons just mentioned. At the same time, to adhere to this principle, one has to be aware of it, which may not be possible in various states of reduced or altered cognitive function such as dreaming or religious experience. Thus, a subjectively enlightened person may still lack the one truly important piece of the puzzle concerning his or her existence. PMID:21716920

  9. Plasmonic nanostructures: artificial molecules.

    PubMed

    Wang, Hui; Brandl, Daniel W; Nordlander, Peter; Halas, Naomi J

    2007-01-01

    This Account describes a new paradigm for the relationship between the geometry of metallic nanostructures and their optical properties. While the interaction of light with metallic nanoparticles is determined by their collective electronic or plasmon response, a compelling analogy exists between plasmon resonances of metallic nanoparticles and wave functions of simple atoms and molecules. Based on this insight, an entire family of plasmonic nanostructures, artificial molecules, has been developed whose optical properties can be understood within this picture: nanoparticles (nanoshells, nanoeggs, nanomatryushkas, nanorice), multi-nanoparticle assemblies (dimers, trimers, quadrumers), and a nanoparticle-over-metallic film, an electromagnetic analog of the spinless Anderson model. PMID:17226945

  10. Artificial mismatch hybridization

    DOEpatents

    Guo, Zhen; Smith, Lloyd M.

    1998-01-01

    An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.

  11. Substitutional Reality System: A Novel Experimental Platform for Experiencing Alternative Reality

    PubMed Central

    Suzuki, Keisuke; Wakisaka, Sohei; Fujii, Naotaka

    2012-01-01

    We have developed a novel experimental platform, referred to as a substitutional reality (SR) system, for studying the conviction of the perception of live reality and related metacognitive functions. The SR system was designed to manipulate people's reality by allowing them to experience live scenes (in which they were physically present) and recorded scenes (which were recorded and edited in advance) in an alternating manner without noticing a reality gap. All of the naïve participants (n = 21) successfully believed that they had experienced live scenes when recorded scenes had been presented. Additional psychophysical experiments suggest the depth of visual objects does not affect the perceptual discriminability between scenes, and the scene switch during head movement enhance substitutional performance. The SR system, with its reality manipulation, is a novel and affordable method for studying metacognitive functions and psychiatric disorders. PMID:22724058

  12. Glucocorticoids and Skeletal Muscle.

    PubMed

    Bodine, Sue C; Furlow, J David

    2015-01-01

    Glucocorticoids are known to regulate protein metabolism in skeletal muscle, producing a catabolic effect that is opposite that of insulin. In many catabolic diseases, such as sepsis, starvation, and cancer cachexia, endogenous glucocorticoids are elevated contributing to the loss of muscle mass and function. Further, exogenous glucocorticoids are often given acutely and chronically to treat inflammatory conditions such as asthma, chronic obstructive pulmonary disease, and rheumatoid arthritis, resulting in muscle atrophy. This chapter will detail the nature of glucocorticoid-induced muscle atrophy and discuss the mechanisms thought to be responsible for the catabolic effects of glucocorticoids on muscle. PMID:26215994

  13. Oxidative Metabolism in Muscle

    NASA Astrophysics Data System (ADS)

    Ferrari, M.; Binzoni, T.; Quaresima, V.

    1997-06-01

    Oxidative metabolism is the dominant source of energy for skeletal muscle. Near-infrared spectroscopy allows the non-invasive measurement of local oxygenation, blood flow and oxygen consumption. Although several muscle studies have been made using various near-infrared optical techniques, it is still difficult to interpret the local muscle metabolism properly. The main findings of near-infrared spectroscopy muscle studies in human physiology and clinical medicine are summarized. The advantages and problems of near-infrared spectroscopy measurements, in resting and exercising skeletal muscles studies, are discussed through some representative examples.

  14. The Reality of Negative Refraction

    NASA Astrophysics Data System (ADS)

    Smith, David

    2004-03-01

    Negative refraction, a phenomenon first hypothesized by Victor Veselago in 1968 to occur in materials whose permittivity and permeability are simultaneously negative, has now been confirmed in several independent studies. These experiments demonstrate that it is indeed possible to design and fabricate an artificial material - now known as a "metamaterial" - having an index-of-refraction that is negative over some finite band of frequencies. The positive confirmations of the phenomenon of negative refraction represent an important first step. As applications are considered that take advantage of negative index materials, the ability to meet the needed specifications is the next step, since the viability of applications is ultimately tied to the quality, reproducibility and cost of the underlying materials. Some of the more striking or exotic wave propagation behavior predicted to occur in negative index materials, such as reflectionless compact lenses, near-field refocusing, "perfect" lensing, phase compensation and novel wave-guiding phenomena - place challenging demands on the material parameters. In this talk, I will discuss our efforts to fabricate and characterize negative index metamaterials, and how the current material limitations impact a variety of proposed applications.

  15. Effects of innovative virtual reality game and EMG biofeedback on neuromotor control in cerebral palsy.

    PubMed

    Yoo, Ji Won; Lee, Dong Ryul; Sim, Yon Ju; You, Joshua H; Kim, Cheol J

    2014-01-01

    Sensorimotor control dysfunction or dyskinesia is a hallmark of neuromuscular impairment in children with cerebral palsy (CP), and is often implicated in reaching and grasping deficiencies due to a neuromuscular imbalance between the triceps and biceps. To mitigate such muscle imbalances, an innovative electromyography (EMG)-virtual reality (VR) biofeedback system were designed to provide accurate information about muscle activation and motivation. However, the clinical efficacy of this approach has not yet been determined in children with CP. The purpose of this study was to investigate the effectiveness of a combined EMG biofeedback and VR (EMG-VR biofeedback) intervention system to improve muscle imbalance between triceps and biceps during reaching movements in children with spastic CP. Raw EMG signals were recorded at a sampling rate of 1,000 Hz, band-pass filtered between 20-450 Hz, and notch-filtered at 60 Hz during elbow flexion and extension movements. EMG data were then processed using MyoResearch Master Edition 1.08 XP software. All participants underwent both interventions consisting of the EMG-VR biofeedback combination and EMG biofeedback alone. EMG analysis resulted in improved muscle activation in the underactive triceps while decreasing overactive or hypertonic biceps in the EMG-VR biofeedback compared with EMG biofeedback. The muscle imbalance ratio between the triceps and biceps was consistently improved. The present study is the first clinical trial to provide evidence for the additive benefits of VR intervention for enhancing the upper limb function of children with spastic CP.

  16. Effects of innovative virtual reality game and EMG biofeedback on neuromotor control in cerebral palsy.

    PubMed

    Yoo, Ji Won; Lee, Dong Ryul; Sim, Yon Ju; You, Joshua H; Kim, Cheol J

    2014-01-01

    Sensorimotor control dysfunction or dyskinesia is a hallmark of neuromuscular impairment in children with cerebral palsy (CP), and is often implicated in reaching and grasping deficiencies due to a neuromuscular imbalance between the triceps and biceps. To mitigate such muscle imbalances, an innovative electromyography (EMG)-virtual reality (VR) biofeedback system were designed to provide accurate information about muscle activation and motivation. However, the clinical efficacy of this approach has not yet been determined in children with CP. The purpose of this study was to investigate the effectiveness of a combined EMG biofeedback and VR (EMG-VR biofeedback) intervention system to improve muscle imbalance between triceps and biceps during reaching movements in children with spastic CP. Raw EMG signals were recorded at a sampling rate of 1,000 Hz, band-pass filtered between 20-450 Hz, and notch-filtered at 60 Hz during elbow flexion and extension movements. EMG data were then processed using MyoResearch Master Edition 1.08 XP software. All participants underwent both interventions consisting of the EMG-VR biofeedback combination and EMG biofeedback alone. EMG analysis resulted in improved muscle activation in the underactive triceps while decreasing overactive or hypertonic biceps in the EMG-VR biofeedback compared with EMG biofeedback. The muscle imbalance ratio between the triceps and biceps was consistently improved. The present study is the first clinical trial to provide evidence for the additive benefits of VR intervention for enhancing the upper limb function of children with spastic CP. PMID:25227075

  17. How to teach artificial organs.

    PubMed

    Zapanta, Conrad M; Borovetz, Harvey S; Lysaght, Michael J; Manning, Keefe B

    2011-01-01

    Artificial organs education is often an overlooked field for many bioengineering and biomedical engineering students. The purpose of this article is to describe three different approaches to teaching artificial organs. This article can serve as a reference for those who wish to offer a similar course at their own institutions or incorporate these ideas into existing courses. Artificial organ classes typically fulfill several ABET (Accreditation Board for Engineering and Technology) criteria, including those specific to bioengineering and biomedical engineering programs.

  18. Microscopic artificial swimmers.

    PubMed

    Dreyfus, Rémi; Baudry, Jean; Roper, Marcus L; Fermigier, Marc; Stone, Howard A; Bibette, Jérôme

    2005-10-01

    Microorganisms such as bacteria and many eukaryotic cells propel themselves with hair-like structures known as flagella, which can exhibit a variety of structures and movement patterns. For example, bacterial flagella are helically shaped and driven at their bases by a reversible rotary engine, which rotates the attached flagellum to give a motion similar to that of a corkscrew. In contrast, eukaryotic cells use flagella that resemble elastic rods and exhibit a beating motion: internally generated stresses give rise to a series of bends that propagate towards the tip. In contrast to this variety of swimming strategies encountered in nature, a controlled swimming motion of artificial micrometre-sized structures has not yet been realized. Here we show that a linear chain of colloidal magnetic particles linked by DNA and attached to a red blood cell can act as a flexible artificial flagellum. The filament aligns with an external uniform magnetic field and is readily actuated by oscillating a transverse field. We find that the actuation induces a beating pattern that propels the structure, and that the external fields can be adjusted to control the velocity and the direction of motion. PMID:16208366

  19. Microscopic artificial swimmers.

    PubMed

    Dreyfus, Rémi; Baudry, Jean; Roper, Marcus L; Fermigier, Marc; Stone, Howard A; Bibette, Jérôme

    2005-10-01

    Microorganisms such as bacteria and many eukaryotic cells propel themselves with hair-like structures known as flagella, which can exhibit a variety of structures and movement patterns. For example, bacterial flagella are helically shaped and driven at their bases by a reversible rotary engine, which rotates the attached flagellum to give a motion similar to that of a corkscrew. In contrast, eukaryotic cells use flagella that resemble elastic rods and exhibit a beating motion: internally generated stresses give rise to a series of bends that propagate towards the tip. In contrast to this variety of swimming strategies encountered in nature, a controlled swimming motion of artificial micrometre-sized structures has not yet been realized. Here we show that a linear chain of colloidal magnetic particles linked by DNA and attached to a red blood cell can act as a flexible artificial flagellum. The filament aligns with an external uniform magnetic field and is readily actuated by oscillating a transverse field. We find that the actuation induces a beating pattern that propels the structure, and that the external fields can be adjusted to control the velocity and the direction of motion.

  20. The total artificial heart

    PubMed Central

    Cook, Jason A.; Shah, Keyur B.; Quader, Mohammed A.; Cooke, Richard H.; Kasirajan, Vigneshwar; Rao, Kris K.; Smallfield, Melissa C.; Tchoukina, Inna

    2015-01-01

    The total artificial heart (TAH) is a form of mechanical circulatory support in which the patient’s native ventricles and valves are explanted and replaced by a pneumatically powered artificial heart. Currently, the TAH is approved for use in end-stage biventricular heart failure as a bridge to heart transplantation. However, with an increasing global burden of cardiovascular disease and congestive heart failure, the number of patients with end-stage heart failure awaiting heart transplantation now far exceeds the number of available hearts. As a result, the use of mechanical circulatory support, including the TAH and left ventricular assist device (LVAD), is growing exponentially. The LVAD is already widely used as destination therapy, and destination therapy for the TAH is under investigation. While most patients requiring mechanical circulatory support are effectively treated with LVADs, there is a subset of patients with concurrent right ventricular failure or major structural barriers to LVAD placement in whom TAH may be more appropriate. The history, indications, surgical implantation, post device management, outcomes, complications, and future direction of the TAH are discussed in this review. PMID:26793338

  1. Microscopic artificial swimmers

    NASA Astrophysics Data System (ADS)

    Dreyfus, Rémi; Baudry, Jean; Roper, Marcus L.; Fermigier, Marc; Stone, Howard A.; Bibette, Jérôme

    2005-10-01

    Microorganisms such as bacteria and many eukaryotic cells propel themselves with hair-like structures known as flagella, which can exhibit a variety of structures and movement patterns. For example, bacterial flagella are helically shaped and driven at their bases by a reversible rotary engine, which rotates the attached flagellum to give a motion similar to that of a corkscrew. In contrast, eukaryotic cells use flagella that resemble elastic rods and exhibit a beating motion: internally generated stresses give rise to a series of bends that propagate towards the tip. In contrast to this variety of swimming strategies encountered in nature, a controlled swimming motion of artificial micrometre-sized structures has not yet been realized. Here we show that a linear chain of colloidal magnetic particles linked by DNA and attached to a red blood cell can act as a flexible artificial flagellum. The filament aligns with an external uniform magnetic field and is readily actuated by oscillating a transverse field. We find that the actuation induces a beating pattern that propels the structure, and that the external fields can be adjusted to control the velocity and the direction of motion.

  2. Development of artificial empathy.

    PubMed

    Asada, Minoru

    2015-01-01

    We have been advocating cognitive developmental robotics to obtain new insight into the development of human cognitive functions by utilizing synthetic and constructive approaches. Among the different emotional functions, empathy is difficult to model, but essential for robots to be social agents in our society. In my previous review on artificial empathy (Asada, 2014b), I proposed a conceptual model for empathy development beginning with emotional contagion to envy/schadenfreude along with self/other differentiation. In this article, the focus is on two aspects of this developmental process, emotional contagion in relation to motor mimicry, and cognitive/affective aspects of the empathy. It begins with a summary of the previous review (Asada, 2014b) and an introduction to affective developmental robotics as a part of cognitive developmental robotics focusing on the affective aspects. This is followed by a review and discussion on several approaches for two focused aspects of affective developmental robotics. Finally, future issues involved in the development of a more authentic form of artificial empathy are discussed. PMID:25498950

  3. Development of artificial empathy.

    PubMed

    Asada, Minoru

    2015-01-01

    We have been advocating cognitive developmental robotics to obtain new insight into the development of human cognitive functions by utilizing synthetic and constructive approaches. Among the different emotional functions, empathy is difficult to model, but essential for robots to be social agents in our society. In my previous review on artificial empathy (Asada, 2014b), I proposed a conceptual model for empathy development beginning with emotional contagion to envy/schadenfreude along with self/other differentiation. In this article, the focus is on two aspects of this developmental process, emotional contagion in relation to motor mimicry, and cognitive/affective aspects of the empathy. It begins with a summary of the previous review (Asada, 2014b) and an introduction to affective developmental robotics as a part of cognitive developmental robotics focusing on the affective aspects. This is followed by a review and discussion on several approaches for two focused aspects of affective developmental robotics. Finally, future issues involved in the development of a more authentic form of artificial empathy are discussed.

  4. [Artificial neural networks in Neurosciences].

    PubMed

    Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María

    2011-11-01

    This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.

  5. Typogenetics: an artificial genetic system.

    PubMed

    Varetto, L

    1993-01-21

    Cellular automata are now used to model various natural phenomena. In particular, they provide a logical universe in which artificial cells can be embedded in the form of propagating virtual automata. In this paper, we propose a molecular automaton which is an attempt to implement the "molecular logic of the living state" in an artificial biochemistry. This automaton is an artificial genetic system composed of two classes of interacting artificial molecules. It was shown to be self-replicating and to possess features that are analogous to those of the postulated prebiotic molecular systems. PMID:8474250

  6. Effectiveness of the Virtual Reality System Toyra on Upper Limb Function in People with Tetraplegia: A Pilot Randomized Clinical Trial.

    PubMed

    Dimbwadyo-Terrer, I; Gil-Agudo, A; Segura-Fragoso, A; de los Reyes-Guzmán, A; Trincado-Alonso, F; Piazza, S; Polonio-López, B

    2016-01-01

    The aim of this study was to investigate the effects of a virtual reality program combined with conventional therapy in upper limb function in people with tetraplegia and to provide data about patients' satisfaction with the virtual reality system. Thirty-one people with subacute complete cervical tetraplegia participated in the study. Experimental group received 15 sessions with Toyra(®) virtual reality system for 5 weeks, 30 minutes/day, 3 days/week in addition to conventional therapy, while control group only received conventional therapy. All patients were assessed at baseline, after intervention, and at three-month follow-up with a battery of clinical, functional, and satisfaction scales. Control group showed significant improvements in the manual muscle test (p = 0,043, partial η (2) = 0,22) in the follow-up evaluation. Both groups demonstrated clinical, but nonsignificant, changes to their arm function in 4 of the 5 scales used. All patients showed a high level of satisfaction with the virtual reality system. This study showed that virtual reality added to conventional therapy produces similar results in upper limb function compared to only conventional therapy. Moreover, the gaming aspects incorporated in conventional rehabilitation appear to produce high motivation during execution of the assigned tasks. This trial is registered with EudraCT number 2015-002157-35.

  7. The Effects of Augmented Reality-based Otago Exercise on Balance, Gait, and Falls Efficacy of Elderly Women.

    PubMed

    Yoo, Ha-Na; Chung, Eunjung; Lee, Byoung-Hee

    2013-07-01

    [Purpose] The purpose of this study was to determine the effects of augmented reality-based Otago exercise on balance, gait, and falls efficacy of elderly women. [Subjects] The subjects were 21 elderly women, who were randomly divided into two groups: an augmented reality-based Otago exercise group of 10 subjects and an Otago exercise group of 11 subjects. [Methods] All subjects were evaluated for balance (Berg Balance Scale, BBS), gait parameters (velocity, cadence, step length, and stride length), and falls efficacy. Within 12 weeks, Otago exercise for muscle strengthening and balance training was conducted three times, for a period of 60 minutes each, and subjects in the experimental group performed augmented reality-based Otago exercise. [Results] Following intervention, the augmented reality-based Otago exercise group showed significant increases in BBS, velocity, cadence, step length (right side), stride length (right side and left side) and falls efficacy. [Conclusion] The results of this study suggest the feasibility and suitability of this augmented reality-based Otago exercise for elderly women.

  8. Effectiveness of the Virtual Reality System Toyra on Upper Limb Function in People with Tetraplegia: A Pilot Randomized Clinical Trial

    PubMed Central

    Dimbwadyo-Terrer, I.; Gil-Agudo, A.; Segura-Fragoso, A.; de los Reyes-Guzmán, A.; Trincado-Alonso, F.; Piazza, S.; Polonio-López, B.

    2016-01-01

    The aim of this study was to investigate the effects of a virtual reality program combined with conventional therapy in upper limb function in people with tetraplegia and to provide data about patients' satisfaction with the virtual reality system. Thirty-one people with subacute complete cervical tetraplegia participated in the study. Experimental group received 15 sessions with Toyra® virtual reality system for 5 weeks, 30 minutes/day, 3 days/week in addition to conventional therapy, while control group only received conventional therapy. All patients were assessed at baseline, after intervention, and at three-month follow-up with a battery of clinical, functional, and satisfaction scales. Control group showed significant improvements in the manual muscle test (p = 0,043, partial η2 = 0,22) in the follow-up evaluation. Both groups demonstrated clinical, but nonsignificant, changes to their arm function in 4 of the 5 scales used. All patients showed a high level of satisfaction with the virtual reality system. This study showed that virtual reality added to conventional therapy produces similar results in upper limb function compared to only conventional therapy. Moreover, the gaming aspects incorporated in conventional rehabilitation appear to produce high motivation during execution of the assigned tasks. This trial is registered with EudraCT number 2015-002157-35. PMID:26885511

  9. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    PubMed Central

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  10. Transportation planning: A virtual reality

    SciTech Connect

    Bradley, J.; Hefele, J.; Dolin, R.M.

    1994-07-01

    An important factor in the development of any base technology is generating it in such a way that these technologies will continue to be useful through systems upgrades and implementation philosophy metamorphoses. Base technologies of traffic engineering including transportation modeling, traffic impact forecasting, traffic operation management, emergency situation routing and re-routing, and signal systems optimization should all be designed with the future in mind. Advanced Traffic Engineering topics, such as Intelligent Vehicle Highway Systems, are designed with advanced engineering concepts such as rules-based design and artificial intelligence. All aspects of development of base technologies must include Total Quality Engineering as the primary factor in order to succeed. This philosophy for development of base technologies for the County of Los Alamos is being developed leveraging the resources of the Center for Advanced Engineering Technology (CAET) at the Los Alamos National Laboratory. The mission of the CAET is to develop next-generation engineering technology that supports the Los Alamos National Laboratory`s mission and to transfer that technology to industry and academia. The CAET`s goal is to promote industrial, academic, and government interactions in diverse areas of engineering technology, such as, design, analysis, manufacturing, virtual enterprise, robotics, telepresence, rapid prototyping, and virtual environment technology. The Center is expanding, enhancing, and increasing core competencies at the Los Alamos National Laboratory. The CAET has three major thrust areas: development of base technologies, virtual environment technology applications, and educational outreach and training. Virtual environment technology immerses a user in a nonexistent or augmented environment for research or training purposes. Virtual environment technology illustrates the axiom, ``The best way to learn is by doing.``

  11. Empirical impression technique for artificial eye fitting.

    PubMed

    LeGrand, J A; Hughes, M O

    1990-01-01

    Using an impression of the anophthalmic socket to facilitate the design of an artificial eye is common practice today. The Modified Impression technique was described in the American Journal of Ophthalmology, February 1969, by Lee Allen and Howard E. Webster. It is a highly successful method that involves taking an impression of the socket using an impression tray, then making a wax casting of the impression, and final modifications to the anterior aspect of the wax model. A different technique has been in use in our office and elsewhere for more than 15 years, also with a high degree of success. We've dubbed it the "Empirical/Impression" method. It involves similar steps to the Modified Impression system, but in different order: first a wax model of the anterior aspect of the eye is designed and modified; second, an impression is made of the socket, using this wax model as an impression tray. The primary advantage of this method is efficiency. It involves one less laboratory procedure, hence making a "one-day custom eye" a reality. Although this process can be used in almost any case, the Modified Impression technique may work better for certain highly irregular sockets where "reading" the fornices by empirical means may be difficult. Either method requires a highly skilled and experienced fitter to make appropriate modifications to the anterior aspect of the prosthesis.

  12. Decreased hydrogen peroxide production and mitochondrial respiration in skeletal muscle but not cardiac muscle of the green-striped burrowing frog, a natural model of muscle disuse.

    PubMed

    Reilly, Beau D; Hickey, Anthony J R; Cramp, Rebecca L; Franklin, Craig E

    2014-04-01

    Suppression of disuse-induced muscle atrophy has been associated with altered mitochondrial reactive oxygen species (ROS) production in mammals. However, despite extended hindlimb immobility, aestivating animals exhibit little skeletal muscle atrophy compared with artificially immobilised mammalian models. Therefore, we studied mitochondrial respiration and ROS (H2O2) production in permeabilised muscle fibres of the green-striped burrowing frog, Cyclorana alboguttata. Mitochondrial respiration within saponin-permeabilised skeletal and cardiac muscle fibres was measured concurrently with ROS production using high-resolution respirometry coupled to custom-made fluorometers. After 4 months of aestivation, C. alboguttata had significantly depressed whole-body metabolism by ~70% relative to control (active) frogs, and mitochondrial respiration in saponin-permeabilised skeletal muscle fibres decreased by almost 50% both in the absence of ADP and during oxidative phosphorylation. Mitochondrial ROS production showed up to an 88% depression in aestivating skeletal muscle when malate, succinate and pyruvate were present at concentrations likely to reflect those in vivo. The percentage ROS released per O2 molecule consumed was also ~94% less at these concentrations, indicating an intrinsic difference in ROS production capacities during aestivation. We also examined mitochondrial respiration and ROS production in permeabilised cardiac muscle fibres and found that aestivating frogs maintained respiratory flux and ROS production at control levels. These results show that aestivating C. alboguttata has the capacity to independently regulate mitochondrial function in skeletal and cardiac muscles. Furthermore, this work indicates that ROS production can be suppressed in the disused skeletal muscle of aestivating frogs, which may in turn protect against potential oxidative damage and preserve skeletal muscle structure during aestivation and following arousal. PMID:24311816

  13. Effect of ski simulator training on kinematic and muscle activation of the lower extremities

    PubMed Central

    Moon, Jeheon; Koo, Dohoon; Kim, Kitae; Shin, Insik; Kim, Hyeyoung; Kim, Jinhae

    2015-01-01

    [Purpose] This study aimed to verify the effectiveness of an augmented reality-based ski simulator through analyzing the changes in movement patterns as well as the engagement of major muscles of the lower body. [Subjects] Seven subjects participated in the study. All were national team-level athletes studying at “K” Sports University in Korea who exhibited comparable performance levels and had no record of injuries in the preceding 6 months (Age 23.4 ± 3.8 years; Height 172.6 ± 12.1 cm; Weight 72.3 ± 16.2 kg; Experience 12.3 ± 4.8 years). [Methods] A reality-based ski simulator developed by a Korean manufacturer was used for the study. Three digital video cameras and a wireless electromyography system were used to perform 3-dimensional motion analysis and measure muscle activation level. [Results] Left hip angulation was found to increase as the frequency of the turns increased. Electromyography data revealed that the activation level of the quadriceps group’s extension muscles and the biceps femoris group’s flexing muscles had a crossing pattern. [Conclusion] Sustained training using an augmented reality-based ski simulator resulted in movements that extended the lower body joints, which is thought to contribute to increasing muscle fatigue. PMID:26357449

  14. Effect of ski simulator training on kinematic and muscle activation of the lower extremities.

    PubMed

    Moon, Jeheon; Koo, Dohoon; Kim, Kitae; Shin, Insik; Kim, Hyeyoung; Kim, Jinhae

    2015-08-01

    [Purpose] This study aimed to verify the effectiveness of an augmented reality-based ski simulator through analyzing the changes in movement patterns as well as the engagement of major muscles of the lower body. [Subjects] Seven subjects participated in the study. All were national team-level athletes studying at "K" Sports University in Korea who exhibited comparable performance levels and had no record of injuries in the preceding 6 months (Age 23.4 ± 3.8 years; Height 172.6 ± 12.1 cm; Weight 72.3 ± 16.2 kg; Experience 12.3 ± 4.8 years). [Methods] A reality-based ski simulator developed by a Korean manufacturer was used for the study. Three digital video cameras and a wireless electromyography system were used to perform 3-dimensional motion analysis and measure muscle activation level. [Results] Left hip angulation was found to increase as the frequency of the turns increased. Electromyography data revealed that the activation level of the quadriceps group's extension muscles and the biceps femoris group's flexing muscles had a crossing pattern. [Conclusion] Sustained training using an augmented reality-based ski simulator resulted in movements that extended the lower body joints, which is thought to contribute to increasing muscle fatigue.

  15. Theoretical Hill-Type Muscle and Stability: Numerical Model and Application

    PubMed Central

    Schmitt, S.; Günther, M.; Rupp, T.; Bayer, A.; Häufle, D.

    2013-01-01

    The construction of artificial muscles is one of the most challenging developments in today's biomedical science. The application of artificial muscles is focused both on the construction of orthotics and prosthetics for rehabilitation and prevention purposes and on building humanoid walking machines for robotics research. Research in biomechanics tries to explain the functioning and design of real biological muscles and therefore lays the fundament for the development of functional artificial muscles. Recently, the hyperbolic Hill-type force-velocity relation was derived from simple mechanical components. In this contribution, this theoretical yet biomechanical model is transferred to a numerical model and applied for presenting a proof-of-concept of a functional artificial muscle. Additionally, this validated theoretical model is used to determine force-velocity relations of different animal species that are based on the literature data from biological experiments. Moreover, it is shown that an antagonistic muscle actuator can help in stabilising a single inverted pendulum model in favour of a control approach using a linear torque generator. PMID:24319495

  16. Theoretical Hill-type muscle and stability: numerical model and application.

    PubMed

    Schmitt, S; Günther, M; Rupp, T; Bayer, A; Häufle, D

    2013-01-01

    The construction of artificial muscles is one of the most challenging developments in today's biomedical science. The application of artificial muscles is focused both on the construction of orthotics and prosthetics for rehabilitation and prevention purposes and on building humanoid walking machines for robotics research. Research in biomechanics tries to explain the functioning and design of real biological muscles and therefore lays the fundament for the development of functional artificial muscles. Recently, the hyperbolic Hill-type force-velocity relation was derived from simple mechanical components. In this contribution, this theoretical yet biomechanical model is transferred to a numerical model and applied for presenting a proof-of-concept of a functional artificial muscle. Additionally, this validated theoretical model is used to determine force-velocity relations of different animal species that are based on the literature data from biological experiments. Moreover, it is shown that an antagonistic muscle actuator can help in stabilising a single inverted pendulum model in favour of a control approach using a linear torque generator. PMID:24319495

  17. Insights into skeletal muscle development and applications in regenerative medicine.

    PubMed

    Tran, T; Andersen, R; Sherman, S P; Pyle, A D

    2013-01-01

    Embryonic and postnatal development of skeletal muscle entails highly regulated processes whose complexity continues to be deconstructed. One key stage of development is the satellite cell, whose niche is composed of multiple cell types that eventually contribute to terminally differentiated myotubes. Understanding these developmental processes will ultimately facilitate treatments of myopathies such as Duchenne muscular dystrophy (DMD), a disease characterized by compromised cell membrane structure, resulting in severe muscle wasting. One theoretical approach is to use pluripotent stem cells in a therapeutic setting to help replace degenerated muscle tissue. This chapter discusses key myogenic developmental stages and their regulatory pathways; artificial myogenic induction in pluripotent stem cells; advantages and disadvantages of DMD animal models; and therapeutic approaches targeting DMD. Furthermore, skeletal muscle serves as an excellent paradigm for understanding general cell fate decisions throughout development.

  18. The effect of glycerol treatment on crab muscle fibres.

    PubMed

    Papir, D

    1973-04-01

    1. Membrane constants of the closer muscle of the ghost crab, Ocypoda cursor, were determined before and after treatment in hypertonic glycerol solution and return to an artificial sea-water (A.S.W.) solution.2. Muscle contraction was abolished after return of the muscle to A.S.W.3. The membrane capacitance was reduced from 29.0 muF/cm(2) to 10.5 muF/cm(2).4. Other passive properties of the muscle membrane, not dependent on capacitance, were not changed.5. The presynaptic nerve, transmitter release, post-synaptic sensitivity to transmitter and ionic mechanisms of synaptic action were unaffected by glycerol treatment.6. More than 60% of the membrane capacitance/unit area is contributed by the complex tubular system.7. The tubular system in crustacea is necessary for excitation-contraction coupling.

  19. Automated muscle wrapping using finite element contact detection.

    PubMed

    Favre, Philippe; Gerber, Christian; Snedeker, Jess G

    2010-07-20

    Realistic muscle path representation is essential to musculoskeletal modeling of joint function. Algorithms predicting these muscle paths typically rely on a labor intensive predefinition of via points or underlying geometries to guide wrapping for given joint positions. While muscle wrapping using anatomically precise three-dimensional (3D) finite element (FE) models of bone and muscle has been achieved, computational expense and pre-processing associated with this approach exclude its use in applications such as subject-specific modeling. With the intention of combining advantageous features of both approaches, an intermediate technique relying on contact detection capabilities of commercial FE packages is presented. We applied the approach to the glenohumeral joint, and validated the method by comparison against existing experimental data. Individual muscles were modeled as a straight series of deformable beam elements and bones as anatomically precise 3D rigid bodies. Only the attachment locations and a default orientation of the undeformed muscle segment were pre-defined. The joint was then oriented in a static position of interest. The muscle segment free end was then moved along the shortest Euclidean path to its origin on the scapula, wrapping the muscle along bone surfaces by relying on software contact detection. After wrapping for a given position, the resulting moment arm was computed as the perpendicular distance from the line of action vector to the humeral head center of rotation. This approach reasonably predicted muscle length and moment arm for 27 muscle segments when compared to experimental measurements over a wide range of shoulder motion. Artificial via points or underlying contact geometries were avoided, contact detection and multiobject wrapping on the bone surfaces were automatic, and low computational cost permitted wrapping of individual muscles within seconds on a standard desktop PC. These advantages may be valuable for both general

  20. Wet Artificial Life: The Construction of Artificial Living Systems

    NASA Astrophysics Data System (ADS)

    Fellermann, Harold

    The creation of artificial cell-like entities - chemical systems that are able to self-replicate and evolve - requires the integration of containers, metabolism, and information. In this chapter, we present possible candidates for these subsystems and the experimental achievements made toward their replication. The discussion focuses on several suggested designs to create artificial cells from nonliving material that are currently being pursued both experimentally and theoretically in several laboratories around the world. One particular approach toward wet artificial life is presented in detail. Finally, the evolutionary advantage of cellular aggregates over naked replicator systems and the evolutionary potential of the various approaches are discussed. The enormous progress toward man-made artificial cells nourishes the hope that wet artificial life might be achieved within the next several years.

  1. Unsupported standing with minimized ankle muscle fatigue.

    PubMed

    Mihelj, Matjaz; Munih, Marko

    2004-08-01

    In the past, limited unsupported standing has been restored in patients with thoracic spinal cord injury through open-loop functional electrical stimulation of paralyzed knee extensor muscles and the support of intact arm musculature. Here an optimal control system for paralyzed ankle muscles was designed that enables the subject to stand without hand support in a sagittal plane. The paraplegic subject was conceptualized as an underactuated double inverted pendulum structure with an active degree of freedom in the upper trunk and a passive degree of freedom in the paralyzed ankle joints. Control system design is based on the minimization of a cost function that estimates the effort of ankle joint muscles via observation of the ground reaction force position, relative to ankle joint axis. Furthermore, such a control system integrates voluntary upper trunk activity and artificial control of ankle joint muscles, resulting in a robust standing posture. Figures are shown for the initial simulation study, followed by disturbance tests on an intact volunteer and several laboratory trials with a paraplegic person. Benefits of the presented methodology are prolonged standing sessions and in the fact that the subject is able to maintain voluntary control over upper body orientation in space, enabling simple functional standing. PMID:15311817

  2. Unsupported standing with minimized ankle muscle fatigue.

    PubMed

    Mihelj, Matjaz; Munih, Marko

    2004-08-01

    In the past, limited unsupported standing has been restored in patients with thoracic spinal cord injury through open-loop functional electrical stimulation of paralyzed knee extensor muscles and the support of intact arm musculature. Here an optimal control system for paralyzed ankle muscles was designed that enables the subject to stand without hand support in a sagittal plane. The paraplegic subject was conceptualized as an underactuated double inverted pendulum structure with an active degree of freedom in the upper trunk and a passive degree of freedom in the paralyzed ankle joints. Control system design is based on the minimization of a cost function that estimates the effort of ankle joint muscles via observation of the ground reaction force position, relative to ankle joint axis. Furthermore, such a control system integrates voluntary upper trunk activity and artificial control of ankle joint muscles, resulting in a robust standing posture. Figures are shown for the initial simulation study, followed by disturbance tests on an intact volunteer and several laboratory trials with a paraplegic person. Benefits of the presented methodology are prolonged standing sessions and in the fact that the subject is able to maintain voluntary control over upper body orientation in space, enabling simple functional standing.

  3. Artificial urinary conduit construction using tissue engineering methods

    PubMed Central

    Pokrywczyńska, Marta; Drewa, Tomasz

    2014-01-01

    Introduction Incontinent urinary diversion using an ileal conduit is the most popular method used by urologists after bladder cystectomy resulting from muscle invasive bladder cancer. The use of gastrointestinal tissue is related to a series of complications with the necessity of surgical procedure extension which increases the time of surgery. Regenerative medicine together with tissue engineering techniques gives hope for artificial urinary conduit construction de novo without affecting the ileum. Material and methods In this review we analyzed history of urinary diversion together with current attempts in urinary conduit construction using tissue engineering methods. Based on literature and our own experience we presented future perspectives related to the artificial urinary conduit construction. Results A small number of papers in the field of tissue engineered urinary conduit construction indicates that this topic requires more attention. Three main factors can be distinguished to resolve this topic: proper scaffold construction along with proper regeneration of both the urothelium and smooth muscle layers. Conclusions Artificial urinary conduit has a great chance to become the first commercially available product in urology constructed by regenerative medicine methods. PMID:25914849

  4. The ethics of reality medical television.

    PubMed

    Krakower, Thalia Margalit; Montello, Martha; Mitchell, Christine; Truog, Robert D

    2013-01-01

    Reality medical television, an increasingly popular genre, depicts private medical moments between patients and healthcare providers. Journalists aim to educate and inform the public, while the participants in their documentaries-providers and patients-seek to heal and be healed. When journalists and healthcare providers work together at the bedside, moral problems precipitate. During the summer of 2010, ABC aired a documentary, Boston Med, featuring several Boston hospitals. We examine the ethical issues that arise when journalism and medicine intersect. We provide a framework for evaluating the potential benefits and harms of reality medical television, highlighting critical issues such as informed consent, confidentiality, and privacy. PMID:23631335

  5. The ethics of reality medical television.

    PubMed

    Krakower, Thalia Margalit; Montello, Martha; Mitchell, Christine; Truog, Robert D

    2013-01-01

    Reality medical television, an increasingly popular genre, depicts private medical moments between patients and healthcare providers. Journalists aim to educate and inform the public, while the participants in their documentaries-providers and patients-seek to heal and be healed. When journalists and healthcare providers work together at the bedside, moral problems precipitate. During the summer of 2010, ABC aired a documentary, Boston Med, featuring several Boston hospitals. We examine the ethical issues that arise when journalism and medicine intersect. We provide a framework for evaluating the potential benefits and harms of reality medical television, highlighting critical issues such as informed consent, confidentiality, and privacy.

  6. Artificial sweeteners - a review.

    PubMed

    Chattopadhyay, Sanchari; Raychaudhuri, Utpal; Chakraborty, Runu

    2014-04-01

    Now a days sugar free food are very much popular because of their less calorie content. So food industry uses various artificial sweeteners which are low in calorie content instead of high calorie sugar. U.S. Food and Drug Administration has approved aspartame, acesulfame-k, neotame, cyclamate and alitame for use as per acceptable daily intake (ADI) value. But till date, breakdown products of these sweeteners have controversial health and metabolic effects. On the other hand, rare sugars are monosaccharides and have no known health effects because it does not metabolize in our body, but shows same sweet taste and bulk property as sugar. Rare sugars have no such ADI value and are mainly produced by using bioreactor and so inspite of high demand, rare sugars cannot be produced in the desired quantities. PMID:24741154

  7. Artificial Quantum Thermal Bath

    NASA Astrophysics Data System (ADS)

    Shabani, Alireza; Neven, Hartmut

    In this talk, we present a theory for engineering the temperature of a quantum system different from its ambient temperature, that is basically an analog version of the quantum metropolis algorithm. We define criteria for an engineered quantum bath that, when couples to a quantum system with Hamiltonian H, drives the system to the equilibrium state e/- H / T Tr (e - H / T) with a tunable parameter T. For a system of superconducting qubits, we propose a circuit-QED approximate realization of such an engineered thermal bath consisting of driven lossy resonators. We consider an artificial thermal bath as a simulator for many-body physics or a controllable temperature knob for a hybrid quantum-thermal annealer.

  8. A programmable artificial retina

    SciTech Connect

    Bernard, T.M. ); Zavidovique, B.Y. . Electrical Engineering Dept. Perception System Lab., Arcueil ); Devos, F.J. . Dept. of Integrated Circuits and Systems)

    1993-07-01

    An artificial retina is a device that intimately associates an imager with processing facilities on a monolithic circuit. Yet, except for simple environments and applications, analog hardware will not suffice to process and compact the raw image flow from the photosensitive array. To solve this output problem, an on-chip array of bare Boolean processors with halftoning facilities might be used, providing versatility from programmability. By setting the pixel memory size to 3 b, the authors have demonstrated both the technological practicality and the computational efficiency of this programmable Boolean retina concept. Using semi-static shifting structures together with some interaction circuitry, a minimal retina Boolean processor can be built with less than 30 transistors and controlled by as few as 6 global clock signals. The successful design, integration, and test of such a 65x76 Boolean retina on a 50-mm[sup 2] CMOS 2-[mu]m circuit are presented.

  9. Artificial Stem Cell Niches

    PubMed Central

    Lutolf, Matthias P.; Blau, Helen M.

    2011-01-01

    Stem cells are characterized by their dual ability to reproduce themselves (self-renew) and specialize (differentiate), yielding a plethora of daughter cells that maintain and regenerate tissues. In contrast to their embryonic counterparts, adult stem cells retain their unique functions only if they are in intimate contact with an instructive microenvironment, termed stem cell niche. In these niches, stem cells integrate a complex array of molecular signals that, in concert with induced cell-intrinsic regulatory networks, control their function and balance their numbers in response to physiologic demands. This progress report provides a perspective on how advanced materials technologies could be used (i) to engineer and systematically analyze specific aspects of functional stem cells niches in a controlled fashion in vitro and (ii) to target stem cell niches in vivo. Such “artificial niches” constitute potent tools for elucidating stem cell regulatory mechanisms with the capacity to directly impact the development of novel therapeutic strategies for tissue regeneration. PMID:20882496

  10. Artificial sweeteners - a review.

    PubMed

    Chattopadhyay, Sanchari; Raychaudhuri, Utpal; Chakraborty, Runu

    2014-04-01

    Now a days sugar free food are very much popular because of their less calorie content. So food industry uses various artificial sweeteners which are low in calorie content instead of high calorie sugar. U.S. Food and Drug Administration has approved aspartame, acesulfame-k, neotame, cyclamate and alitame for use as per acceptable daily intake (ADI) value. But till date, breakdown products of these sweeteners have controversial health and metabolic effects. On the other hand, rare sugars are monosaccharides and have no known health effects because it does not metabolize in our body, but shows same sweet taste and bulk property as sugar. Rare sugars have no such ADI value and are mainly produced by using bioreactor and so inspite of high demand, rare sugars cannot be produced in the desired quantities.

  11. Compact artificial hand

    NASA Technical Reports Server (NTRS)

    Wiker, G. A.; Mann, W. A. (Inventor)

    1979-01-01

    A relatively simple, compact artificial hand, is described which includes hooks pivotally mounted on first frame to move together and apart. The first frame is rotatably mounted on a second frame to enable "turning at the wrist" movement without limitation. The second frame is pivotally mounted on a third frame to permit 'flexing at the wrist' movement. A hook-driving motor is fixed to the second frame but has a shaft that drives a speed reducer on the first frame which, in turn, drives the hooks. A second motor mounted on the second frame, turns a gear on the first frame to rotate the first frame and the hooks thereon. A third motor mounted on the third frame, turns a gear on a second frame to pivot it.

  12. Potential perils of peri-Pokémon perambulation: the dark reality of augmented reality?

    PubMed Central

    Joseph, Bellal; Armstrong, David G.

    2016-01-01

    Recently, the layering of augmented reality information on top of smartphone applications has created unprecedented user engagement and popularity. One augmented reality-based entertainment application, Pokémon Go (Pokémon Company, Tokyo, Japan) has become the most rapidly downloaded in history. This technology holds tremendous promise to promote ambulatory activity. However, there exists the obvious potential for distraction-related morbidity. We report two cases, presenting simultaneously to our trauma center, with injuries sustained secondary to gameplay with this augmented reality-based application. PMID:27713831

  13. Artificial Intelligence and Language Comprehension.

    ERIC Educational Resources Information Center

    National Inst. of Education (DHEW), Washington, DC. Basic Skills Group. Learning Div.

    The three papers in this volume concerning artificial intelligence and language comprehension were commissioned by the National Institute of Education to further the understanding of the cognitive processes that enable people to comprehend what they read. The first paper, "Artificial Intelligence and Language Comprehension," by Terry Winograd,…

  14. Instructional Applications of Artificial Intelligence.

    ERIC Educational Resources Information Center

    Halff, Henry M.

    1986-01-01

    Surveys artificial intelligence and the development of computer-based tutors and speculates on the future of artificial intelligence in education. Includes discussion of the definitions of knowledge, expert systems (computer systems that solve tough technical problems), intelligent tutoring systems (ITS), and specific ITSs such as GUIDON, MYCIN,…

  15. Generalized Adaptive Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  16. Artificial Ligaments: Promise or Panacea?

    ERIC Educational Resources Information Center

    Lubell, Adele

    1987-01-01

    The Food and Drug Administration has approved a prosthetic ligament for limited use in persons with damaged anterior cruciate ligaments (ACL). This article addresses ligament repair, ACL tears, current treatment, development of the Gore-Tex artificial ligament, other artificial ligaments in process, and arguments for and against their use.…

  17. In Pursuit of Artificial Intelligence.

    ERIC Educational Resources Information Center

    Watstein, Sarah; Kesselman, Martin

    1986-01-01

    Defines artificial intelligence and reviews current research in natural language processing, expert systems, and robotics and sensory systems. Discussion covers current commercial applications of artificial intelligence and projections of uses and limitations in library technical and public services, e.g., in cataloging and online information and…

  18. A Primer on Artificial Intelligence.

    ERIC Educational Resources Information Center

    Leal, Ralph A.

    A survey of literature on recent advances in the field of artificial intelligence provides a comprehensive introduction to this field for the non-technical reader. Important areas covered are: (1) definitions, (2) the brain and thinking, (3) heuristic search, and (4) programing languages used in the research of artificial intelligence. Some…

  19. The language of artificial intelligence

    SciTech Connect

    Berk, A.A.

    1984-01-01

    This is a guide to LISP. It clarifies data structures and recursion via examples and practical explanations, uses BASIC as a reference point throughout (enabling comparisons with LISP), and stresses artificial intelligence applications. Contents: Introduction to Artificial Intelligence. The Fundamentals of LISP. Functions. Conditionals and Loops. Further LISP Processing. Recursion. More Advanced Uses of Functions. LISP Programming and AI. Standard LISP Functions.

  20. Muscle development and obesity

    PubMed Central

    2008-01-01

    The formation of skeletal muscle from the epithelial somites involves a series of events triggered by temporally and spatially discrete signals resulting in the generation of muscle fibers which vary in their contractile and metabolic nature. The fiber type composition of muscles varies between individuals and it has now been found that there are differences in fiber type proportions between lean and obese animals and humans. Amongst the possible causes of obesity, it has been suggested that inappropriate prenatal environments may ‘program’ the fetus and may lead to increased risks for disease in adult life. The characteristics of muscle are both heritable and plastic, giving the tissue some ability to adapt to signals and stimuli both pre and postnatally. Given that muscle is a site of fatty acid oxidation and carbohydrate metabolism and that its development can be changed by prenatal events, it is interesting to examine the possible relationship between muscle development and the risk of obesity. PMID:19279728

  1. Conservative smoothing versus artificial viscosity

    SciTech Connect

    Guenther, C.; Hicks, D.L.; Swegle, J.W.

    1994-08-01

    This report was stimulated by some recent investigations of S.P.H. (Smoothed Particle Hydrodynamics method). Solid dynamics computations with S.P.H. show symptoms of instabilities which are not eliminated by artificial viscosities. Both analysis and experiment indicate that conservative smoothing eliminates the instabilities in S.P.H. computations which artificial viscosities cannot. Questions were raised as to whether conservative smoothing might smear solutions more than artificial viscosity. Conservative smoothing, properly used, can produce more accurate solutions than the von Neumann-Richtmyer-Landshoff artificial viscosity which has been the standard for many years. The authors illustrate this using the vNR scheme on a test problem with known exact solution involving a shock collision in an ideal gas. They show that the norms of the errors with conservative smoothing are significantly smaller than the norms of the errors with artificial viscosity.

  2. Muscle Changes in Aging

    PubMed Central

    Siparsky, Patrick N.; Kirkendall, Donald T.; Garrett, William E.

    2014-01-01

    Muscle physiology in the aging athlete is complex. Sarcopenia, the age-related decrease in lean muscle mass, can alter activity level and affect quality of life. This review addresses the microscopic and macroscopic changes in muscle with age, recognizes contributing factors including nutrition and changes in hormone levels, and identifies potential pharmacologic agents in clinical trial that may aid in the battle of this complex, costly, and disabling problem. Level of Evidence: Level 5. PMID:24427440

  3. The Application of Virtual Reality on Distance Education

    NASA Astrophysics Data System (ADS)

    Zhan, Zehui

    The features and classifications of Virtual Reality Techniques have been summarized and recommendation of applying Virtual Reality on distance education has been made. Future research is needed on the design and implementation of virtual classroom and courseware.

  4. Characterizing the Peano fluidic muscle and the effects of its geometry properties on its behavior

    NASA Astrophysics Data System (ADS)

    Veale, Allan Joshua; Xie, Sheng Quan; Anderson, Iain Alexander

    2016-06-01

    In this work, we explore the basic static and dynamic behavior of a hydraulically actuated Peano muscle and how its geometry affects key static and dynamic performance metrics. The Peano muscle, or pouch motor is a fluid powered artificial muscle. Similar to McKibben pneumatic artificial muscles (PAMs), it has the ability to generate the high forces of biological muscles with the low threshold pressure of pleated PAMs, but in a slim, easily distributed form. We found that Peano muscles have similar characteristics to other PAMs, but produce lower free-strains. A test rig capable of measuring high-speed flow rates with a Venturi tube revealed that their efficiency peaks at about 40% during highly dynamic movements. Peano muscles with more tubes and of a greater size do not move faster. Also, their muscle tubes should have an aspect ratio of at least 1:3 and channel width greater than 20% to maximize performance. These findings suggest that finite element modeling be used to optimize more complex Peano muscle geometries.

  5. Modeling of the energy savings of variable recruitment McKibben muscle bundles

    NASA Astrophysics Data System (ADS)

    Meller, Michael A.; Chipka, Jordan B.; Bryant, Matthew J.; Garcia, Ephrahim

    2015-03-01

    McKibben artificial muscles are often utilized in mobile robotic applications that require compliant and light weight actuation capable of producing large forces. In order to increase the endurance of these mobile robotic platforms, actuation efficiency must be addressed. Since pneumatic systems are rarely more than 30% efficient due to the compressibility of the working fluid, the McKibben muscles are hydraulically powered. Additionally, these McKibben artificial muscles utilize an inelastic bladder to reduce the energy losses associated with elastic energy storage in the usual rubber tube bladders. The largest energy losses in traditional valve-controlled hydraulic systems are found in the valving implementation to match the required loads. This is performed by throttling, which results in large pressure drops over the control valves and significant fluid power being wasted as heat. This paper discusses how these throttling losses are reduced by grouping multiple artificial muscles to form a muscle bundle where, like in skeletal muscle, more elements that make up the muscle bundle are recruited to match the load. This greatly lessens the pressure drops by effectively changing the actuator area, leading to much higher efficiencies over a broader operation envelope. Simulations of several different loading scenarios are discussed that reveal the benefits of such an actuation scheme.

  6. MUSCLE INJURIES IN ATHLETES

    PubMed Central

    Barroso, Guilherme Campos; Thiele, Edilson Schwansee

    2015-01-01

    This article had the aim of demonstrating the physiology, diagnosis and treatment of muscle injuries, focusing on athletes and their demands and expectations. Muscle injuries are among the most common complaints in orthopedic practice, occurring both among athletes and among non-athletes. These injuries present a challenge for specialists, due to the slow recovery, during which time athletes are unable to take part in training and competitions, and due to frequent sequelae and recurrences of the injuries. Most muscle injuries (between 10% and 55% of all injuries) occur during sports activities. The muscles most commonly affected are the ischiotibial, quadriceps and gastrocnemius. These muscles go across two joints and are more subject to acceleration and deceleration forces. The treatment for muscle injuries varies from conservative treatment to surgery. New procedures are being used, like the hyperbaric chamber and the use of growth factors. However, there is still a high rate of injury recurrence. Muscle injury continues to be a topic of much controversy. New treatments are being researched and developed, but prevention through muscle strengthening, stretching exercises and muscle balance continues to be the best “treatment”. PMID:27027021

  7. Effects of X-irradiation on artificial blood vessel wall degradation by invasive tumor cells

    SciTech Connect

    Heisel, M.A.; Laug, W.E.; Stowe, S.M.; Jones, P.A.

    1984-06-01

    Artificial vessel wall cultures, constructed by growing arterial endothelial cells on preformed layers of rat smooth muscle cells, were used to evaluate the effects of X-irradiation on tumor cell-induced tissue degradation. Bovine endothelial cells had radiation sensitivities similar to those of rat smooth muscle cells. Preirradiation of smooth muscle cells, before the addition of human fibrosarcoma (HT 1080) cells, did not increase the rate of degradation and destruction by the invasive cells. However, the degradation rate was decreased if the cultures were irradiated after the addition of HT 1080 cells. The presence of bovine endothelial cells markedly inhibited the destructive abilities of fibrosarcoma cells, but preirradiation of artificial vessel walls substantially decreased their capabilities to resist HT 1080-induced lysis. These findings suggest that the abilities of blood vessels to limit extravasation may be compromised by ionizing radiation.

  8. Effects of X-irradiation on artificial blood vessel wall degradation by invasive tumor cells.

    PubMed

    Heisel, M A; Laug, W E; Stowe, S M; Jones, P A

    1984-06-01

    Artificial vessel wall cultures, constructed by growing arterial endothelial cells on preformed layers of rat smooth muscle cells, were used to evaluate the effects of X-irradiation on tumor cell-induced tissue degradation. Bovine endothelial cells had radiation sensitivities similar to those of rat smooth muscle cells. Preirradiation of smooth muscle cells, before the addition of human fibrosarcoma (HT 1080) cells, did not increase the rate of degradation and destruction by the invasive cells. However, the degradation rate was decreased if the cultures were irradiated after the addition of HT 1080 cells. The presence of bovine endothelial cells markedly inhibited the destructive abilities of fibrosarcoma cells, but preirradiation of artificial vessel walls substantially decreased their capabilities to resist HT 1080-induced lysis. These findings suggest that the abilities of blood vessels to limit extravasation may be compromised by ionizing radiation.

  9. Corporal Punishment: Legalities, Realities, and Implications.

    ERIC Educational Resources Information Center

    Hinchey, Patricia H.

    2003-01-01

    Presents a quiz that will help readers determine the reliability of their own perceptions relating to corporal punishment in schools. Discusses U.S. Courts and corporal punishment, worldwide and nationwide legality, and the realities of corporal punishment in the United States. Discusses implications for what teachers can do to address corporal…

  10. Intelligent Augmented Reality Training for Motherboard Assembly

    ERIC Educational Resources Information Center

    Westerfield, Giles; Mitrovic, Antonija; Billinghurst, Mark

    2015-01-01

    We investigate the combination of Augmented Reality (AR) with Intelligent Tutoring Systems (ITS) to assist with training for manual assembly tasks. Our approach combines AR graphics with adaptive guidance from the ITS to provide a more effective learning experience. We have developed a modular software framework for intelligent AR training…

  11. Applications of Virtual Reality to Nuclear Safeguards

    SciTech Connect

    Stansfield, S.

    1998-11-03

    This paper explores two potential applications of Virtual Reality (VR) to international nuclear safeguards: training and information organization and navigation. The applications are represented by two existing prototype systems, one for training nuclear weapons dismantlement and one utilizing a VR model to facilitate intuitive access to related sets of information.

  12. Virtual Reality Calibration for Telerobotic Servicing

    NASA Technical Reports Server (NTRS)

    Kim, W.

    1994-01-01

    A virtual reality calibration technique of matching a virtual environment of simulated graphics models in 3-D geometry and perspective with actual camera views of the remote site task environment has been developed to enable high-fidelity preview/predictive displays with calibrated graphics overlay on live video.

  13. Corporal Punishment: Legalities, Realities, and Implications

    ERIC Educational Resources Information Center

    Hinchey, Patricia H.

    2004-01-01

    Most teachers appear to assume that the status of corporal punishment in their own school or state is a national standard--a perception that is far from contemporary reality. The author of this article asserts lawmakers and courts have failed to ensure that schools are safe places for the children entrusted to our care. Those children cannot…

  14. NASA employee utilizes Virtual Reality (VR) equipment

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Bebe Ly of the Information Systems Directorate's Software Technology Branch at JSC gives virtual reality a try. The stero video goggles and headphones allow her to see and hear in a computer-generated world and the gloves allow her to move around and grasp objects.

  15. Personalized augmented reality for anatomy education.

    PubMed

    Ma, Meng; Fallavollita, Pascal; Seelbach, Ina; Von Der Heide, Anna Maria; Euler, Ekkehard; Waschke, Jens; Navab, Nassir

    2016-05-01

    Anatomy education is a challenging but vital element in forming future medical professionals. In this work, a personalized and interactive augmented reality system is developed to facilitate education. This system behaves as a "magic mirror" which allows personalized in-situ visualization of anatomy on the user's body. Real-time volume visualization of a CT dataset creates the illusion that the user can look inside their body. The system comprises a RGB-D sensor as a real-time tracking device to detect the user moving in front of a display. In addition, the magic mirror system shows text information, medical images, and 3D models of organs that the user can interact with. Through the participation of 7 clinicians and 72 students, two user studies were designed to respectively assess the precision and acceptability of the magic mirror system for education. The results of the first study demonstrated that the average precision of the augmented reality overlay on the user body was 0.96 cm, while the results of the second study indicate 86.1% approval for the educational value of the magic mirror, and 91.7% approval for the augmented reality capability of displaying organs in three dimensions. The usefulness of this unique type of personalized augmented reality technology has been demonstrated in this paper.

  16. Shared-Reality Development in Childhood.

    PubMed

    Higgins, E Tory

    2016-07-01

    Many significant changes occur during human childhood, including cognitive, social-cognitive, and socioemotional changes. This article reviews some key phenomena associated with some of these changes and attempts to capture them within a single conceptual umbrella-changes in children's shared realities with others Shared reality is the experience that you have an inner state about something (e.g., a feeling or belief or concern about something) that is shared by others (a person or group). Four phases of shared-reality development are proposed: Phase 1 (6-12 months) shared feelings; Phase 2 (18-24 months) shared practices; Phase 3 (3-5 years) shared self-guides; Phase 4 (9-13 years) shared coordinated roles In each phase, a new way that children interact with and relate to others emerges, and the emergence of each new shared-reality mode has significant self-regulatory and social consequences. These consequences include both major benefits for children and potential costs-trade-offs of being human. PMID:27474136

  17. Shared-Reality Development in Childhood.

    PubMed

    Higgins, E Tory

    2016-07-01

    Many significant changes occur during human childhood, including cognitive, social-cognitive, and socioemotional changes. This article reviews some key phenomena associated with some of these changes and attempts to capture them within a single conceptual umbrella-changes in children's shared realities with others Shared reality is the experience that you have an inner state about something (e.g., a feeling or belief or concern about something) that is shared by others (a person or group). Four phases of shared-reality development are proposed: Phase 1 (6-12 months) shared feelings; Phase 2 (18-24 months) shared practices; Phase 3 (3-5 years) shared self-guides; Phase 4 (9-13 years) shared coordinated roles In each phase, a new way that children interact with and relate to others emerges, and the emergence of each new shared-reality mode has significant self-regulatory and social consequences. These consequences include both major benefits for children and potential costs-trade-offs of being human.

  18. Surgery, virtual reality, and the future.

    PubMed

    Vosburgh, Kirby G; Golby, Alexandra; Pieper, Steven D

    2013-01-01

    MMVR has provided the leading forum for the multidisciplinary interaction and development of the use of Virtual Reality (VR) techniques in medicine, particularly in surgical practice. Here we look back at the foundations of our field, focusing on the use of VR in Surgery and similar interventional procedures, sum up the current status, and describe the challenges and opportunities going forward.

  19. CARE: Creating Augmented Reality in Education

    ERIC Educational Resources Information Center

    Latif, Farzana

    2012-01-01

    This paper explores how Augmented Reality using mobile phones can enhance teaching and learning in education. It specifically examines its application in two cases, where it is identified that the agility of mobile devices and the ability to overlay context specific resources offers opportunities to enhance learning that would not otherwise exist.…

  20. Get Real: Augmented Reality for the Classroom

    ERIC Educational Resources Information Center

    Mitchell, Rebecca; DeBay, Dennis

    2012-01-01

    Kids love augmented reality (AR) simulations because they are like real-life video games. AR simulations allow students to learn content while collaborating face to face and interacting with a multimedia-enhanced version of the world around them. Although the technology may seem advanced, AR software makes it easy to develop content-based…

  1. Design Principles for Augmented Reality Learning

    ERIC Educational Resources Information Center

    Dunleavy, Matt

    2014-01-01

    Augmented reality is an emerging technology that utilizes mobile, context-aware devices (e.g., smartphones, tablets) that enable participants to interact with digital information embedded within the physical environment. This overview of design principles focuses on specific strategies that instructional designers can use to develop AR learning…

  2. Myths of Poverty--Realities for Students

    ERIC Educational Resources Information Center

    Armstrong, Alice

    2010-01-01

    A full stomach and clear mind are prerequisites for learning. Many children who live in poverty have neither. And the number of children who might be considered "food challenged" is growing at an alarming rate. This economic reality translates into ever-growing challenges for the public education system, which already struggles to provide all the…

  3. Children and the Perceived Reality of Television.

    ERIC Educational Resources Information Center

    Greenberg, Bradley S.; Reeves, Byron

    Based on previous research findings and original data from school children in grades 3-6, this study examines children's perceptions of reality in television as an intervening variable between exposure to the medium and the effect of television messages. The specific focus of the current research was to isolate and identify factors which have…

  4. Publicizing Public-School Realities for Survival

    ERIC Educational Resources Information Center

    Cook, Glenn

    2004-01-01

    In characterizing urban public schools, the public does not appreciate that the complexities of urban education cannot be reduced to a few short facts. Instead, the public often works from perception based on nostalgia, rumor, and what is on the newspapers and on television. In this paper, the author discusses public school realities in an effort…

  5. Models of Reality: Shaping Thought and Action.

    ERIC Educational Resources Information Center

    Richardson, Jacques, Ed.

    The 21 essays in this two-part book provide conceptual and operational understanding of the nature of models as representations of reality and as tools for description, analysis, interpretation, and forecasting. Topic areas addressed in part 1 (concept) include: the nature of models; the earth as a system; the determination of form; some…

  6. Virtual Reality Training Environments: Contexts and Concerns.

    ERIC Educational Resources Information Center

    Harmon, Stephen W.; Kenney, Patrick J.

    1994-01-01

    Discusses the contexts where virtual reality (VR) training environments might be appropriate; examines the advantages and disadvantages of VR as a training technology; and presents a case study of a VR training environment used at the NASA Johnson Space Center in preparation for the repair of the Hubble Space Telescope. (AEF)

  7. Introduction to augmented and virtual reality

    NASA Astrophysics Data System (ADS)

    Caudell, Thomas P.

    1995-12-01

    This paper introduces the field of augmented reality as a prolog to the body of papers in the remainder of this session. I describe the use of head-mounted display technologies to improve the efficiency and quality of human workers in their performance of engineering design, manufacturing, construction, testing, and maintenance activities. This technology is used to `augment' the visual field of the wearer with information necessary in the performance of the current task. The enabling technology is head-up (see-through) display head sets (HUDsets) combined with head position sensing, real world registration systems, and database access software. A primary difference between virtual reality (VR) and `augmented reality' (AR) is in the complexity of the perceived graphical objects. In AR systems, only simple wire frames, template outlines, designators, and text is displayed. An immediate result of this difference is that augmented reality systems can be driven by standard and inexpensive microprocessors. Many research issues must be addressed before this technology can be widely used, including tracking and registration, human 3D perception and reasoning, and human task performance issues.

  8. Evaluation of Virtual Reality Training Using Affect

    ERIC Educational Resources Information Center

    Tichon, Jennifer

    2012-01-01

    Training designed to support and strengthen higher-order mental abilities now often involves immersion in Virtual Reality (VR) where dangerous real world scenarios can be safely replicated. However, despite the growing popularity of VR to train cognitive skills such as decision-making and situation awareness, methods for evaluating their use rely…

  9. Music Videos: On Reality and Representation.

    ERIC Educational Resources Information Center

    Tee, Ernie

    Music videos from the past few years have become a prominent phenomenon in our culture. They are critically compared by a small or large section of the public with the structures of, and relations within, social reality. These videos are considered to portray real situations that are, according to the standards of western culture, severely…

  10. Virtual Reality: Visualization in Three Dimensions.

    ERIC Educational Resources Information Center

    McLellan, Hilary

    Virtual reality is a newly emerging tool for scientific visualization that makes possible multisensory, three-dimensional modeling of scientific data. While the emphasis is on visualization, the other senses are added to enhance what the scientist can visualize. Researchers are working to extend the sensory range of what can be perceived in…

  11. Educating Students for the New Market Realities.

    ERIC Educational Resources Information Center

    Strom, Kimberley; Gingerich, Wallace J.

    1993-01-01

    Implications of new market realities for social work practice are examined, including changing fields, increased credentialing and third part reimbursement, and cost-containment measures. It is suggested that social work educators can prepare students better by supplementing existing course content with material that reflects shifting conditions…

  12. Virtual Reality: A New Learning Environment.

    ERIC Educational Resources Information Center

    Ferrington, Gary; Loge, Kenneth

    1992-01-01

    Discusses virtual reality (VR) technology and its possible uses in military training, medical education, industrial design and development, the media industry, and education. Three primary applications of VR in the learning process--visualization, simulation, and construction of virtual worlds--are described, and pedagogical and moral issues are…

  13. Strategic Retrieval in a Reality Monitoring Task

    ERIC Educational Resources Information Center

    Rosburg, Timm; Mecklinger, Axel; Johansson, Mikael

    2011-01-01

    Strategic recollection refers to control processes that allow the retrieval of information that is relevant for a specific situation. These processes can be studied in memory exclusion tasks, which require the retrieval of particular kinds of episodic information. In the current study, we investigated strategic recollection in reality monitoring…

  14. Perceived Reality and the Cultivation Hypothesis.

    ERIC Educational Resources Information Center

    Potter, W. James

    1986-01-01

    Tested cultivation hypothesis by studying relationships between amount of television viewing by high school students and college students and their estimates of chances of victimization and causes of death. Stepwise multiple regression analyses were performed to determine importance of perceived reality, demographic, and televison viewing measures…

  15. Dystopian Reality, Utopian Thought and Educational Practice

    ERIC Educational Resources Information Center

    Papastephanou, Marianna

    2008-01-01

    The significance of utopian thought for education can be made evident through reconceptualizing utopia and approaching it alongside the notion of dystopia. Awareness of dystopian elements of reality radicalizes the kind of critique that assists utopian thought and makes engagement with it more pressing. Awareness of the lurking danger of future…

  16. Virtual Reality: Is It for Real?

    ERIC Educational Resources Information Center

    Dowding, Tim J.

    1994-01-01

    Defines virtual reality and describes its application to psychomotor skills training. A description of a system that could be used to teach a college course in physical therapy, including the use of miniature computer workstation, sensory gloves, a programmable mannequin, and other existing technology, is provided. (Contains 10 references.) (KRN)

  17. Perception Is Reality: Your Strengths Matter

    ERIC Educational Resources Information Center

    Jackson, Donna V.

    2011-01-01

    Perception is reality. While you perceive yourself to be an effective leader even under stress, do your colleagues share this perception of you? Your perception of effective leadership may be shared by others who work with you. People in leadership may see a relationship between "leaders in title" and "leaders in action" from their own…

  18. Click Here For Reality: Enhancing Student Engagement

    ERIC Educational Resources Information Center

    Eisner, Susan P.

    2007-01-01

    This paper presents three initiatives designed to advance undergraduate learning outcomes by enhancing student engagement through active, reality-based learning. The Team Challenge, Management Consultant Simulation, and Bookstore Adventure are described. This paper continues a stream of research conducted by its author in recent years to identify,…

  19. Education Policy Rhetoric and Reality Gap: A Reflection

    ERIC Educational Resources Information Center

    Tee, Ng Pak

    2008-01-01

    Purpose: This paper aims to discuss why there is often a gulf of difference between policy rhetoric and reality. In particular, the paper seeks to explore issues with the policy rhetoric, implementation process and the lens through which reality is perceived, explaining why these issues can open up a policy rhetoric-reality gap. This article also…

  20. Mother Tongue and Education in Africa: Publicising the Reality

    ERIC Educational Resources Information Center

    Kioko, Angelina N.; Ndung'u, Ruth W.; Njoroge, Martin C.; Mutiga, Jayne

    2014-01-01

    Varied realities surround the use of mother tongue education in Africa. These realities are entrenched in the attitudes and misconceptions that have gone unchallenged due to inadequate literature on the successful use of mother tongues in the classroom and beyond. The realities discussed in this paper include the frustrations of children…