Science.gov

Sample records for artificial rumen rusitec

  1. [Effect of monensin (USA, Czechoslovakia, Bulgaria) on fermentation of animal feed in an artificial rumen (Rusitec)].

    PubMed

    Jalc, D; Baran, M; Petkov, A I; Oblakov, N C; Enev, E I

    1992-01-01

    An experiment was made with the Rumen Simulation Technique (Rusitec) in which the fermentation of a mixed ration of hay (12.8 g/d) and bruised barley (3.2 g/d) was compared with the fermentation of the same diet in the presence of 5 mg monensin/d from the USA, CSFR and Bulgaria. The fermentation of the mixed ration was significantly affected by all three kinds of monensin. The digestibility of dry matter (DM) in the rations declined in the presence of monensin from 48% to 40% (tab. I). The digestibility of detergent fibre, cellulose and hemicellulose also declined in the presence of monensin (tab. I). The production of methane decreased (-70%) and CO2 production dropped too, but this decrease could be accounted for by the changes in the production of volatile fatty acids and redistribution of metabolic hydrogen (tab. I). Monensin decreased the production of total volatile fatty acids (-21%), the production of acetic (-35%), n-butyric, n-valeric and isovaleric acids (tab. II) and increased the production of propionic acid (+60%). The production, utilization and recovery of metabolic hydrogen were significantly increased in the presence of all three kinds of monensin (tab. IV). The end products of fermentation were affected by an addition of monensin to the mixed ration. All three kinds of monensin increased energic efficiency of volatile fatty acids, decreased adenosinetriphosphate (ATP) production, the amounts of fermented hexose, organic matter fermented and utilization of glucose (tab. III).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1641932

  2. GC analysis of essential oils in the rumen fluid after incubation of Thuja orientalis twigs in the Rusitec system.

    PubMed

    Chizzola, R; Hochsteiner, W; Hajek, S

    2004-02-01

    Methods for the chemical analysis of toxic plant substances in the rumen of ruminants are of importance for the diagnosis of intoxications with poisonous plants. The present work establishes a method to estimate monoterpene components of the essential oil of thuja (Thuja orientalis, Cupressaceae) in these types of samples. Alpha-thujone, which is regarded as the toxic principle, is present at a concentration of 50-60% in the essential oil. The rumen simulation technique (Rusitec) was used to simulate natural digestion. Chopped twigs of thuja were subjected to rumen content in a closed container with an overflow device. The flow of saliva was simulated by the continuous addition of a buffer solution. Samples for analysis were taken from the overflow at 24 and 48 h. A further sample was taken from the remaining liquid fraction of the rumen content in the container at 48 h. The essential oils were extracted with hexane and concentrated. A quantitative determination was done by capillary gas chromatography. Together in the three fractions analysed this resulted in total mean recoveries of 6.8% for alpha-thujone, 5.3% for beta-thujone, 18.9% for fenchone and 27.8% for camphor. The observation that the thujones were recovered to a lesser extent than other oil components is evidence of their fast decomposition in the rumen medium. Under these circumstances the calculated detection limit is 100-200 g thuja twigs in cows with rumen volumes of 60-100 litres. The main essential oil degradation products found in the rumen fluid of all three fractions in the Rusitec system were discovered to be iso-3-thujanol, neo-3-thujanol, carvomenthol and carvomenthone.

  3. Microbial thiamin metabolism in the rumen simulating fermenter (RUSITEC): the effect of acidogenic conditions, a high sulfur level and added thiamin.

    PubMed

    Alves de Oliveira, L; Jean-Blain, C; Komisarczuk-Bony, S; Durix, A; Durier, C

    1997-10-01

    The effects of acidogenic conditions, a high S level and the addition of thiamin on the rumen microbial metabolism of thiamin were investigated in vitro in a semi-continuous fermenter (RUSITEC), using a factorial design. Acidogenic conditions were obtained by simultaneously increasing the starch: cellulose ratio and the amount of solid substrate fed, and by decreasing the buffering capacity of the liquid phase of the fermenter. S in the form of sulfate was supplied at two levels, one corresponding to a control amount of S (2 g/kg dietary DM), the second to an excess (5 g/kg DM) which is sufficient to trigger cerebrocortical necrosis (CCN) when used in vivo. Acidogenic conditions decreased the pH of the fermenters, CH4 production and cellulose digestibility, increased the short-chain fatty acid production, but had no effect on thiamin production. The high S level enhanced the production of sulfide considerably, had no effect ont he microbial metabolism of energy and N, and decreased thiamin production (326 v. 266 nmol/d). The added thiamin was rapidly converted into phosphorylated compounds which largely decreased the apparent synthesis of this vitamin by the rumen microflora. The total thiamin flow was increased by added thiamin. In no case was thiaminase activity in the fermenter liquid phase significantly modified. The high level of S induced only a limited decrease of total thiamin flow. Consequently, it is unlikely that the investigated factors could be considered to be high risk factors for the thiamin-dependent CCN. PMID:9389886

  4. Effects of replacing dietary starch with neutral detergent-soluble fibre on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC).

    PubMed

    Zhao, X H; Liu, C J; Liu, Y; Li, C Y; Yao, J H

    2013-12-01

    A rumen simulation technique (RUSITEC) apparatus with eight 800 ml fermenters was used to investigate the effects of replacing dietary starch with neutral detergent-soluble fibre (NDSF) by inclusion of sugar beet pulp in diets on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria. Experimental diets contained 12.7, 16.4, 20.1 or 23.8% NDSF substituted for starch on a dry matter basis. The experiment was conducted over two independent 15-day incubation periods with the last 8 days used for data collection. There was a tendency that 16.4% NDSF in the diet increased the apparent disappearance of organic matter (OM) and neutral detergent fibre (NDF). Increasing dietary NDSF level increased carboxymethylcellulase and xylanase activity in the solid fraction and apparent disappearance of acid detergent fibre (ADF) but reduced the 16S rDNA copy numbers of Ruminococcus albus in both liquid and solid fractions and R. flavefaciens in the solid fraction. The apparent disappearance of dietary nitrogen (N) was reduced by 29.6% with increased dietary NDSF. Substituting NDSF for starch appeared to increase the ratios of acetate/propionate and methane/volatile fatty acids (VFA) (mol/mol). Replacing dietary starch with NDSF reduced the daily production of ammonia-N and increased the growth of the solid-associated microbial pellets (SAM). Total microbial N flow and efficiency of microbial synthesis (EMS), expressed as g microbial N/kg OM fermented, tended to increase with increased dietary NDSF, but the numerical increase did not continue as dietary NDSF exceeded 20.1% of diet DM. Results suggested that substituting NDSF for starch up to 16.4% of diet DM increased digestion of nutrients (except for N) and microbial synthesis, and further increases (from 16.4% to 23.8%) in dietary NDSF did not repress microbial synthesis but did significantly reduce digestion of dietary N.

  5. [The effect of cadmium on the protozoan population and rumen fermentation of feed in an artificial rumen].

    PubMed

    Jalc, D; Kisidayová, S; Siroka, P; Sviatko, P

    1994-01-01

    In our experiment, the effects of 5, 10 and 20 mg cadmium per kg dry matter (DM) on protozoan population and rumen fermentation of feed ration consisting of 11.7 g DM of hay and 2.8 g DM of barley (80: 20%) were followed in artificial rumen (Rusitec). The results of the experiment showed that the addition of 5 and 10 mg cadmium per kg DM less significantly (P < 0.05) decreased the digestibility of DM, organic matter and neutral detergent fibre and significantly (P < 0.01) decreased the digestibility of cellulose of feed ration. It is interesting that the addition of 20 mg cadmium per kg DM did not influence these parameters. Although the total gas production showed a tendency of decrease due to the influence of the addition of 5, 10 and 20 mg cadmium/kg DM, methane and CO2 production was not altered. However, cadmium significantly influenced the production of individual volatile fatty acids-VFA's (mmol/day). The addition of 5, 10 and 20 mg cadmium per kg DM significantly increased acetic acid production (by 10-20%) and decreased propionic acid production (by 18-30%). Therefore, the acetate: propionate ratio was significantly increased (from 1.57 to 2.45-2.60) by the addition of cadmium. The production of n-valeric and iso-valeric acids was also significantly decreased in comparison with the control. The decrease of individual VFA's was more significant at the higher amount of cadmium added into the fermentation system. The proportions of individual VFA's in total VFA production expressed in molar % showed a similar character. The changes in the production of individual VFA's due to the influence of the addition of 5, 10 and 20 mg cadmium per kg DM caused a decrease in energetic efficiency of VFA's (P < 0.001) in comparison with the control. The other parameters of rumen fermentation - utilization of glucose, adenosine triphosphate (ATP) production, fermented hexose, fermented amino acids and fermented organic matter (OMF) were not influenced by the cadmium addition

  6. A Metagenomics Approach to Evaluate the Impact of Dietary Supplementation with Ascophyllum nodosum or Laminaria digitata on Rumen Function in Rusitec Fermenters

    PubMed Central

    Belanche, Alejandro; Jones, Eleanor; Parveen, Ifat; Newbold, Charles J.

    2016-01-01

    There is an increasing need to identify alternative feeds for livestock that do not compete with foods for humans. Seaweed might provide such a resource, but there is limited information available on its value as an animal feed. Here we use a multi-omics approach to investigate the value of two brown seaweeds, Ascophyllum nodosum (ASC) and Laminaria digitata (LAM), as alternative feeds for ruminants. These seaweeds were supplemented at 5% inclusion rate into a control diet (CON) in a rumen simulation fermenter. The seaweeds had no substantial effect on rumen fermentation, feed degradability or methane emissions. Concentrations of total bacteria, anaerobic fungi, biodiversity indices and abundances of the main bacterial and methanogen genera were also unaffected. However, species-specific effects of brown seaweed on the rumen function were noted: ASC promoted a substantial decrease in N degradability (−24%) due to its high phlorotannins content. Canonical correspondence analysis of the bacterial community revealed that low N availability led to a change in the structure of the bacterial community. ASC also decreased the concentration of Escherichia coli O157:H7 post-inoculation. In contrast, LAM which has a much lower phlorotannin content did not cause detrimental effects on N degradability nor modified the structure of the bacterial community in comparison to CON. This adaptation of the microbial community to LAM diets led to a greater microbial ability to digest xylan (+70%) and carboxy-methyl-cellulose (+41%). These differences among brown seaweeds resulted in greater microbial protein synthesis (+15%) and non-ammonia N flow (+11%) in LAM than in ASC diets and thus should led to a greater amino acid supply to the intestine of the animal. In conclusion, it was demonstrated that incorporation of brown seaweed into the diet can be considered as a suitable nutritional strategy for ruminants; however, special care must be taken with those seaweeds with high

  7. A Metagenomics Approach to Evaluate the Impact of Dietary Supplementation with Ascophyllum nodosum or Laminaria digitata on Rumen Function in Rusitec Fermenters.

    PubMed

    Belanche, Alejandro; Jones, Eleanor; Parveen, Ifat; Newbold, Charles J

    2016-01-01

    There is an increasing need to identify alternative feeds for livestock that do not compete with foods for humans. Seaweed might provide such a resource, but there is limited information available on its value as an animal feed. Here we use a multi-omics approach to investigate the value of two brown seaweeds, Ascophyllum nodosum (ASC) and Laminaria digitata (LAM), as alternative feeds for ruminants. These seaweeds were supplemented at 5% inclusion rate into a control diet (CON) in a rumen simulation fermenter. The seaweeds had no substantial effect on rumen fermentation, feed degradability or methane emissions. Concentrations of total bacteria, anaerobic fungi, biodiversity indices and abundances of the main bacterial and methanogen genera were also unaffected. However, species-specific effects of brown seaweed on the rumen function were noted: ASC promoted a substantial decrease in N degradability (-24%) due to its high phlorotannins content. Canonical correspondence analysis of the bacterial community revealed that low N availability led to a change in the structure of the bacterial community. ASC also decreased the concentration of Escherichia coli O157:H7 post-inoculation. In contrast, LAM which has a much lower phlorotannin content did not cause detrimental effects on N degradability nor modified the structure of the bacterial community in comparison to CON. This adaptation of the microbial community to LAM diets led to a greater microbial ability to digest xylan (+70%) and carboxy-methyl-cellulose (+41%). These differences among brown seaweeds resulted in greater microbial protein synthesis (+15%) and non-ammonia N flow (+11%) in LAM than in ASC diets and thus should led to a greater amino acid supply to the intestine of the animal. In conclusion, it was demonstrated that incorporation of brown seaweed into the diet can be considered as a suitable nutritional strategy for ruminants; however, special care must be taken with those seaweeds with high

  8. Fortification of dried distillers grains plus solubles with grape seed meal in the diet modulates methane mitigation and rumen microbiota in Rusitec.

    PubMed

    Khiaosa-Ard, R; Metzler-Zebeli, B U; Ahmed, S; Muro-Reyes, A; Deckardt, K; Chizzola, R; Böhm, J; Zebeli, Q

    2015-04-01

    The role of dried distillers grains plus solubles (DDGS) and associative effects of different levels of grape seed meal (GSM) fortified in DDGS, used as both protein and energy sources in the diet, on ruminal fermentation and microbiota were investigated using rumen-simulation technique. All diets consisted of hay and concentrate mixture with a ratio of 48:52 [dry matter (DM) basis], but were different in the concentrate composition. The control diet contained soybean meal (13.5% of diet DM) and barley grain (37%), whereas DDGS treatments, unfortified DDGS (19.5% of diet DM), or DDGS fortified with GSM, either at 1, 5, 10, or 20% were used entirely in place of soybean meal and part of barley grain at a 19.5 to 25% inclusion level. All diets had similar DM, organic matter, and crude protein contents, but consisted of increasing neutral detergent fiber and decreasing nonfiber carbohydrates levels with DDGS-GSM inclusion. Compared with the soy-based control diet, the unfortified DDGS treatment elevated ammonia concentration (19.1%) of rumen fluid associated with greater crude protein degradation (~19.5%). Methane formation decreased with increasing GSM fortification levels (≥ 5%) in DDGS by which the methane concentration significantly decreased by 18.9 to 23.4 and 12.8 to 17.6% compared with control and unfortified DDGS, respectively. Compared with control, unfortified DDGS decreased butyrate proportion, and GSM fortification in the diet further decreased this variable. The proportions of genus Prevotella and Clostridium cluster XIVa were enhanced by the presence of DDGS without any associative effect of GSM fortification. The abundance of methanogenic archaea was similar, but their composition differed among treatments; whereas Methanosphaera spp. remained unchanged, proportion of Methanobrevibacter spp. decreased in DDGS-based diets, being the lowest with 20% GSM inclusion. The abundance of Ruminococcus flavefaciens, anaerobic fungi, and protozoa were decreased

  9. Ruminal methane inhibition potential of various pure compounds in comparison with garlic oil as determined with a rumen simulation technique (Rusitec).

    PubMed

    Soliva, Carla R; Amelchanka, Sergej L; Duval, Stéphane M; Kreuzer, Michael

    2011-07-01

    Ruminants represent an important source of methane (CH(4)) emissions; therefore, CH(4) mitigation by diet supplementation is a major goal in the current ruminant research. The objective of the present study was to use a rumen simulation technique to evaluate the CH(4)-mitigating potential of pure compounds in comparison with that achieved with garlic oil, a known anti-methanogenic supplement. A basal diet (15 g DM/d) consisting of ryegrass hay, barley and soyabean meal (1:0·7:0·3) was incubated with the following additives: none (negative control); garlic oil (300 mg/l incubation liquid; positive control); allyl isothiocyanate (75 mg/l); lovastatin (150 mg/l); chenodeoxycholic acid (150 mg/l); 3-azido-propionic acid ethyl ester (APEE, 150 mg/l); levulinic acid (300 mg/l); 4-[(pyridin-2-ylmethyl)-amino]-benzoic acid (PABA, 300 mg/l). Fermentation profiles (SCFA, microbial counts and N turnover) and H(2) and CH(4) formation were determined. Garlic oil, allyl isothiocyanate, lovastatin and the synthetic compound APEE decreased the absolute daily CH(4) formation by 91, 59, 42 and 98 %, respectively. The corresponding declines in CH(4) emitted per mmol of SCFA were 87, 32, 40 and 99 %, respectively, compared with the negative control; the total SCFA concentration was unaffected. Garlic oil decreased protozoal numbers and increased bacterial counts, while chenodeoxycholic acid completely defaunated the incubation liquid. In vitro, neutral-detergent fibre disappearance was lower following chenodeoxycholic acid and PABA treatments (- 26 and - 18 %, respectively). In conclusion, garlic oil and APEE were extremely efficient at mitigating CH(4) without noticeably impairing microbial nutrient fermentation. Other promising substances were allyl isothiocyanate and lovastatin. PMID:21554814

  10. [The effect of monensin on the fermentation of feed with different proportions of hay and concentrate in an artificial rumen (rumen simulation technic)].

    PubMed

    Jalc, D; Baran, M; Vendrák, T; Siroka, P

    1991-01-01

    An experiment was conducted with rumen pouch (RUSITEC--Rumen Simulation Technique). In four fermentation vessels (V), percent proportions of hay and barley were as follows: V1--40:60, V2 - 60:40, V3--80:20 and V4--100:0. Every day 5 mg of monensin dissolved in 1 ml 96% ethanol were added to each fermentation vessel. All diets were isonitrogenous, and after an addition of urea the crude protein (CP) content made 13% in each diet. The experiment lasted 12 days: so called steady state period took the first six days when the fermentation conditions were stabilized. Monensin reduced dry matter digestibility, production of total volatile fatty acids, acetic acid, n-butyric and isovaleric acids and acetate: propionate proportion, and it increased the production of propionic and n-valeric acids. The production of methane and CO2 decreased. The higher proportion of hay in diets decreased dry matter digestibility, digestibility of detergent fibre, total and individual volatile fatty acids, CO2, methane energy yield of volatile fatty acids (E), glucose utilization, production of adenosine triphosphate and production of fermented hexoses. The production, utilization and recovery of metabolic hydrogen also decreased. The effectiveness of microbial matter synthesis (YATP = 11.3) was highest during the fermentation of feed containing 60% hay and 40% barley. PMID:1926680

  11. Description of the structural diversity of rumen microbial communities in vitro using single-strand conformation polymorphism profiles.

    PubMed

    Boguhn, Jeannette; Strobel, Egbert; Witzig, Maren; Tebbe, Christoph C; Rodehutscord, Markus

    2008-12-01

    Changes of the rumen microbial community structure, as it can be established with a rumen simulation technique (RUSITEC) were studied using PCR and single-strand conformation polymorphism (SSCP) of small subunit rDNA genes (SSU rDNA). Four total mixed rations were incubated and two ammonia levels in the artificial saliva were applied. Three replicated vessels were used for each treatment. Mixed microbial fractions were isolated by stepwise centrifugation from the liquid fraction (reference microbes, RM) and from the solids of the feed residues (solid-associated microbes, SAM). PCR-primers targeting archaea, fibrobacter, clostridia, and bacteria, respectively, were applied to represent the individual taxonomic groups by SSCP profiles. These SSCP profiles were converted into a binary matrix and distances among treatments were visualised by non-metric multidimensional scaling. Between replicates belonging to one treatment only small differences were found, indicating a high reproducibility of the RUSITEC and the chosen SSCP method. The ammonia concentration seems to be affecting the SSCP profiles. Great differences occurred between RM and SAM, especially for profiles targeting bacteria and clostridia. Differences in the profiles of RM were also found between mixed rations that contained the same feedstuffs in different ratios and between rations with similar nutrient content but based on different feedstuffs. In conclusion, the PCR-SSCP-based technique in conjunction with non-metric multidimensional scaling was sufficiently sensitive to detect and compare changes in composition of rumen microbial community structure in vitro as affected by diet and other environmental factors.

  12. Assessment of the effects of cinnamon leaf oil on rumen microbial fermentation using two continuous culture systems.

    PubMed

    Fraser, G R; Chaves, A V; Wang, Y; McAllister, T A; Beauchemin, K A; Benchaar, C

    2007-05-01

    Two continuous culture (CC) systems, the rumen simulation technique (Rusitec) and a dual-flow (DF) fermenter, were used to evaluate effects of the essential oil from cinnamon leaf (CIN) on rumen microbial fermentation. Incubations (d 1 through 8 for adaptation and d 9 through 16 for sampling) were conducted concurrently in the 2 systems, with CIN added at 0 (control) and 500 mg/L of rumen fluid culture. Eight Rusitec (920 mL; dilution rate = 2.9%/h) and 6 DF (1,300 mL; dilution rate = 6.3%/h) fermenters were randomly assigned to treatment. Inoculum was prepared from 4 ruminally cannulated lactating Holstein cows fed a total mixed ration consisting of 51% forage and 49% concentrate (dry matter basis). Ruminal pH, total volatile fatty acid (VFA) concentration, and diet digestibility were reduced by CIN addition in the Rusitec but were not affected by CIN administration in the DF. The addition of CIN in the Rusitec decreased apparent N disappearance, NH3-N concentration, and molar proportions of branched-chain VFA. In contrast, in the DF no effect of CIN was observed on apparent N degradation, NH3-N concentration, and molar proportion of branched-chain VFA. In the Rusitec, the molar proportion of acetate was similar between treatments on d 9 and 13, but was lower from d 10 to 12 and higher on d 14 to 16 with CIN than with control (interaction of treatment x sampling day). The molar proportion of acetate remained unaffected by CIN addition in the DF. In both CC systems, the molar proportion of propionate was decreased whereas that of butyrate was increased by CIN addition. In the DF, CIN decreased microbial N flow and efficiency of microbial protein synthesis. Protozoa numbers were lower with CIN than with control in both CC fermenters. In the Rusitec, CIN increased 15N enrichment in total bacterial fractions, but no effect was observed on the production of microbial N. This study showed that CIN exhibited antimicrobial activity in both CC systems, but the effects were

  13. Effect of ruminal microflora on the biotransformation of netobimin, albendazole, albendazole sulfoxide, and albendazole sulfoxide enantiomers in an artificial rumen.

    PubMed

    Capece, B P; Calsamiglia, S; Castells, G; Arboix, M; Cristòfol, C

    2001-05-01

    The effect of ruminal flora on the disposition of benzimidazole anthelmintic drugs was studied in dual-flow continuous-culture fermenters (artificial rumens). Six 1,320-mL artificial rumens were inoculated with ruminal fluid and fermentation conditions were maintained constant at 39 degrees C, pH 6.4, solid dilution rate of 5%/h, and liquid dilution rate of 10%/h to simulate standard ruminal fermentation conditions. The study was repeated in two consecutive periods. Two hours after the inoculation of rumen fluid, the fermenters were fed 30 g of a 60:40 forage:concentrate ration. Within each period two fermenters per treatment were immediately dosed with 104 mg of netobimin, 52 mg of albendazole, or 39 mg of albendazole sulfoxide. Concentrations of netobimin, albendazole, albendazole sulfoxide and its enantiomers, and albendazole sulfone were analyzed by high performance liquid chromatography at 0.25, 0.5, 1, 2, 4, 6, and 8 h after dosage. Reductive metabolism by the ruminal bacteria was observed, favoring the production of albendazole, the most potent anthelmintic molecule. No differences in the production or consumption of albendazole sulfoxide enantiomers were observed, indicating that the ruminal bacteria metabolism was not enantioselective. Because benzimidazole anthelmintic drugs are generally administered orally, the ruminal flora play an important role in the bioavailability of these drugs. In our study, increased concentrations of albendazole in the three treatments, due to reductive ruminal biotransformation, suggests that ruminal biotransformation may improve the efficacy of orally administered netobimin, albendazole, and albendazole sulfoxide.

  14. Eremophila glabra reduces methane production and methanogen populations when fermented in a Rusitec.

    PubMed

    Li, XiXi; Durmic, Zoey; Liu, ShiMin; McSweeney, Chris S; Vercoe, Philip E

    2014-10-01

    Eremophila glabra Juss. (Scrophulariaceae), a native Australian shrub, has been demonstrated to have low methanogenic potential in a batch in vitro fermentation system. The present study aimed to test longer-term effects of E. glabra on rumen fermentation characteristics, particularly methane production and the methanogen population, when included as a component of a fermentation substrate in an in vitro continuous culture system (Rusitec). E. glabra was included at 150, 250, 400 g/kg DM (EG15, EG25, and EG40) with an oaten chaff and lupin-based substrate (control). Overall, the experiment lasted 33 days, with 12 days of acclimatization, followed by two periods during which fermentation characteristics (total gas, methane and VFA productions, dry matter disappearance, pH) were measured. The number of copies of genes specifically associated with total bacteria and cellulolytic bacteria (16S rRNA gene) and total ruminal methanogenic archaeal organisms (the methyl coenzyme M reductase A gene (mcrA)) was also measured during this time using quantitative real-time PCR. Total gas production, methane and volatile fatty acid concentrations were significantly reduced with addition of E. glabra. At the end of the experiment, the overall methane reduction was 32% and 45% for EG15 and EG25 respectively, compared to the control, and the reduction was in a dose-dependent manner. Total bacterial numbers did not change, but the total methanogen population decreased by up to 42.1% (EG40) when compared to the control substrate. The Fibrobacter succinogenes population was reduced at all levels of E. glabra, while Ruminococcus albus was reduced only by EG40. Our results indicate that replacing a portion of a fibrous substrate with E. glabra maintained a significant reduction in methane production and methanogen populations over three weeks in vitro, with some minor inhibition on overall fermentation at the lower inclusion levels.

  15. Rumen transfaunation.

    PubMed

    DePeters, E J; George, L W

    2014-12-01

    The aim of this invited mini-review is to summarize the rumen transfaunation literature. Rumen transfaunation using the cud from a healthy donor animal to treat a sick recipient animal was practiced long before our understanding of rumen microorganisms. Around the mid-1900 s, scientists began to explore the benefits of rumen transfaunation and the associated microbial populations. Rumen transfaunation has been used clinically to treat indigestion and to enhance the return of normal rumen function following surgical correction of a left-displaced abomasum. Rumen transfaunation was also used to introduce unique rumen microorganisms into animals that were exposed to toxic compounds in plants. Rumen liquor contains chemical constituents that likely contribute to the beneficial effects of re-establishing a normal reticulo-rumen anaerobic fermentation. Recommendations for collecting rumen fluid, storage and volumes transferred are discussed. Rumen transfaunation is a common practice to treat indigestion on dairy and livestock operations. The support of a healthy microbial community in the digestive tract is also used for humans. Fecal microbiota transplantation has been used to treat digestive disorders in humans. Rumen transfaunation, although not widely studied with respect to mode of action, is an effective, practical, and easy method to treat simple indigestion of ruminants.

  16. Rumen Metagenomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rumen microbiome plays a critical role in normal physiology and nutrition of ruminants. Alterations in the rumen microbiome have important physiological and pathological implications. The advent of next-generation sequencing technologies and rapid development of computational tools and reference...

  17. Rumen Microbiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ruminant animals such as cattle, sheep, and goats are able to digest low-quality fibrous feedstuffs because they maintain a mutually beneficial relationship with microorganisms resident in their forestomach, the rumen. Ruminal microorganisms are bacteria, protozoa, fungi, and viruses that live in a...

  18. Application of rumen microorganisms for anaerobic bioconversion of lignocellulosic biomass.

    PubMed

    Yue, Zheng-Bo; Li, Wen-Wei; Yu, Han-Qing

    2013-01-01

    Rumen in the mammalian animals is a natural cellulose-degrading system and the microorganisms inside have been found to be able to effectively digest lignocellulosic biomass. Furthermore, methane or volatile fatty acids, which could be further converted to other biofuels, are the two major products in such a system. This paper offers an overview of recent development in the application of rumen microorganisms for lignocellulosic biomass conversion. Application of recent molecular tools in the analysis of rumen microbial community, progress in the development of artificial rumen reactors, the latest research results about characterizing rumen-dominated anaerobic digestion process and energy products are summarized. Also, the potential application of such a rumen-dominated process is discussed.

  19. Changes in Rumen Microbial Community Composition during Adaption to an In Vitro System and the Impact of Different Forages.

    PubMed

    Lengowski, Melanie B; Zuber, Karin H R; Witzig, Maren; Möhring, Jens; Boguhn, Jeannette; Rodehutscord, Markus

    2016-01-01

    This study examined ruminal microbial community composition alterations during initial adaption to and following incubation in a rumen simulation system (Rusitec) using grass or corn silage as substrates. Samples were collected from fermenter liquids at 0, 2, 4, 12, 24, and 48 h and from feed residues at 0, 24, and 48 h after initiation of incubation (period 1) and on day 13 (period 2). Microbial DNA was extracted and real-time qPCR was used to quantify differences in the abundance of protozoa, methanogens, total bacteria, Fibrobacter succinogenes, Ruminococcus albus, Ruminobacter amylophilus, Prevotella bryantii, Selenomonas ruminantium, and Clostridium aminophilum. We found that forage source and sampling time significantly influenced the ruminal microbial community. The gene copy numbers of most microbial species (except C. aminophilum) decreased in period 1; however, adaption continued through period 2 for several species. The addition of fresh substrate in period 2 led to increasing copy numbers of all microbial species during the first 2-4 h in the fermenter liquid except protozoa, which showed a postprandial decrease. Corn silage enhanced the growth of R. amylophilus and F. succinogenes, and grass silage enhanced R. albus, P. bryantii, and C. aminophilum. No effect of forage source was detected on total bacteria, protozoa, S. ruminantium, or methanogens or on total gas production, although grass silage enhanced methane production. This study showed that the Rusitec provides a stable system after an adaption phase that should last longer than 48 h, and that the forage source influenced several microbial species. PMID:26928330

  20. Changes in Rumen Microbial Community Composition during Adaption to an In Vitro System and the Impact of Different Forages

    PubMed Central

    Lengowski, Melanie B.; Zuber, Karin H. R.; Witzig, Maren; Möhring, Jens; Boguhn, Jeannette; Rodehutscord, Markus

    2016-01-01

    This study examined ruminal microbial community composition alterations during initial adaption to and following incubation in a rumen simulation system (Rusitec) using grass or corn silage as substrates. Samples were collected from fermenter liquids at 0, 2, 4, 12, 24, and 48 h and from feed residues at 0, 24, and 48 h after initiation of incubation (period 1) and on day 13 (period 2). Microbial DNA was extracted and real-time qPCR was used to quantify differences in the abundance of protozoa, methanogens, total bacteria, Fibrobacter succinogenes, Ruminococcus albus, Ruminobacter amylophilus, Prevotella bryantii, Selenomonas ruminantium, and Clostridium aminophilum. We found that forage source and sampling time significantly influenced the ruminal microbial community. The gene copy numbers of most microbial species (except C. aminophilum) decreased in period 1; however, adaption continued through period 2 for several species. The addition of fresh substrate in period 2 led to increasing copy numbers of all microbial species during the first 2–4 h in the fermenter liquid except protozoa, which showed a postprandial decrease. Corn silage enhanced the growth of R. amylophilus and F. succinogenes, and grass silage enhanced R. albus, P. bryantii, and C. aminophilum. No effect of forage source was detected on total bacteria, protozoa, S. ruminantium, or methanogens or on total gas production, although grass silage enhanced methane production. This study showed that the Rusitec provides a stable system after an adaption phase that should last longer than 48 h, and that the forage source influenced several microbial species. PMID:26928330

  1. Symbiosis and Rumen Protozoa

    ERIC Educational Resources Information Center

    Dillon, Raymond D.

    1970-01-01

    Protozoa inhabiting the rumen of large grazing animals can be used to illustrate symbiotic animal associations. Gives a key to the ciliates most commonly found, several drawings, and a chart relating rumen fauna to the phylogenetic tree of the hosts. (EB)

  2. The rumen plasmidome

    PubMed Central

    Mizrahi, Itzhak

    2012-01-01

    Plasmids are episomally replicating genetic elements which carry backbone genes that are important for their replication and maintenance within their host, and accessory genes that might confer an advantage to their host in its ecological niche. As such, they are often perceived as a powerful evolutionary force, which horizontally introduces new traits into bacterial cells and genomes. In our recent publication “Insight into the rumen plasmidome” we characterized the metagenomic plasmid population of the bovine rumen microbial ecological niche. The rumen is the first compartment of the digestive tract of ruminants; it functions as a pre-gastric anaerobic fermentation chamber, where plant fibers are degraded and converted into chemical compounds which are subsequently absorbed and digested by the animal. PMID:23061023

  3. From rumen to industry.

    PubMed

    Sauer, Michael; Marx, Hans; Mattanovich, Diethard

    2012-09-10

    The rumen is one of the most complicated and most fascinating microbial ecosystems in nature. A wide variety of microbial species, including bacteria, fungi and protozoa act together to bioconvert (ligno)cellulosic plant material into compounds, which can be taken up and metabolized by the ruminant. Thus, the rumen perfectly resembles a solution to a current industrial problem: the biorefinery, which aims at the bioconversion of lignocellulosic material into fuels and chemicals. We suggest to intensify the studies of the ruminal microbial ecosystem from an industrial microbiologists point of view in order to make use of this rich source of organisms and enzymes.

  4. Rumen management during aphagia.

    PubMed

    Shakespeare, A S

    2008-09-01

    Ruminants that for any reason are unable to eat enough to survive can be supported via rumen fistulation. To successfully accomplish this task, an understanding of rumen physiology is necessary. Some adaptation and modification of the normal physiological processes will be necessary because the extended time normally required to ingest food will, for obvious practical reasons, be reduced to a few minutes repeated once to three times a day. The physiology of significance to aphagic or dysphagic animals is discussed and relevant examples of clinical cases are used to illustrate practical applications.

  5. Control of rumen methanogenesis.

    PubMed

    Van Nevel, C J; Demeyer, D I

    1996-09-01

    During the last decades, considerable research on methane production in the rumen and its inhibition has been carried out. Initially, as methane production represents a significant loss of gross energy in the feed (2-15%), the ultimate goal of such intervention in rumen fermentation was an increase in feed efficiency. A second reason favouring research on methane inhibition is its role in the global warming phenomenon and in the destruction of the ozone layer. In this review, the authors describe briefly several interventions for reducing methane emission by ruminants. The objective can be reached by intervention at the dietary level by ration manipulation (composition, feeding level) or by the use of additives or supplements. Examples of additives are polyhalogenated compounds, ionophores and other antibiotics. Supplementation of the ration with lipids also lowered methanogenesis. More biotechnological interventions, e.g., defaunation, probiotics and introduction of reductive acetogenesis in the rumen, are also mentioned. It can be concluded that drastic inhibition of methane production is not unequivocally successful as a result of several factors, such as: instantaneous inhibition often followed by restoration of methanogenesis due to adaptation of the microbes or degradation of the additive, toxicity for the host animal, negative effects on overall digestion and productive performance. Therefore, methanogenesis and its inhibition cannot be considered as a separate part of rumen fermentation and its consequences on the animal should be taken into account.

  6. Influence of sodium fumarate addition on rumen fermentation in vitro.

    PubMed

    López, S; Valdés, C; Newbold, C J; Wallace, R J

    1999-01-01

    The influence of sodium fumarate on rumen fermentation was investigated in vitro using batch and semi-continuous cultures of mixed rumen micro-organisms taken from three sheep receiving a basal diet of hay, barley, molasses, fish meal and a mineral-vitamin supplement (500, 299.5, 100, 91 and 9.5 g/kg DM respectively). Batch cultures consisted of 10 ml strained rumen fluid in 40 ml anaerobic buffer containing 200 mg of the same feed given to the sheep. Sodium fumarate was added to achieve a final concentration of 0, 5 or 10 mmol/l, as a result of the addition of 0, 250 or 500 mumol, equivalent to 0, 200 and 400 g/kg feed. CH4 production at 24 h (360 mumol in the control cultures) fell (P < 0.05) by 18 and 22 mumol respectively (SED 7.5). Total gas production was increased by the addition of fumarate without significant accumulation of H2. Substantial increases in acetate production (92 and 194 mumol; SED 26.7, P < 0.01) were accompanied by increases in propionate formation (212 and 396 mumol; SED 13.0, P < 0.001). Longer-term effects of fumarate supplementation on ruminal fermentation and CH4 production were investigated using the rumen simulation technique (Rusitec). Eight vessels were given 20 g basal diet/d, and half of them received a supplement of fumarate (disodium salt) over a period of 19 d. The response to the daily addition of 6.25 mmol sodium fumarate was a decrease in CH4 production of 1.2 mmol (SED 0.39, P < 0.05), equivalent to the consumption of 4.8 mmol H2, and an increase in propionate production of 4.9 mmol (from 10.4 to 15.3 (SED 1.05) mmol/d, P < 0.01). The inhibition of CH4 production did not decline during the period of time that fumarate was added to the vessels. Thus, the decrease in CH4 corresponded well to the fraction of the fumarate that was converted to propionate. Fumarate had no significant (P > 0.05) effect on total bacterial numbers or on the number of methanogenic archaea, but numbers of cellulolytic bacteria were increased (8.8 v

  7. Increasing Alfalfa Rumen Bypass Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa has one of the highest crude protein contents among forage crops, but is is rapidly and extensively degraded by rumen microorganisms. To examine differential protein digestion, three distinct varieties of alfalfa, grown from single plants, were subjected to fermentation in the rumen of a ca...

  8. Studies on the absorption of sodium and chloride from the rumen of sheep.

    PubMed

    Martens, H; Blume, I

    1987-01-01

    The net absorption of Na and Cl from the temporarily isolated rumen of sheep was studied using an artificial ruminal fluid with different Na and K and constant Cl concentrations. The net absorption of Na and Cl was linearly correlated. The net absorption of Cl was abolished and a small net secretion was observed when no sodium was in the artificial rumen fluid. The net absorption of Na was significantly reduced under chloride free conditions. It is concluded that the active transport of Na and Cl is coupled. The mechanism of an Na-Cl cotransport can not be deduced from these studies.

  9. The effect of diet, intraruminal pH and osmolarity on sodium, chloride and magnesium absorption from the temporarily isolated and washed reticulo-rumen of sheep.

    PubMed

    Gaebel, G; Martens, H; Suendermann, M; Galfi, P

    1987-10-01

    Six mature sheep fitted with rumen fistulae underwent four consecutive feeding periods, of 15 weeks each, i.e. (1) hay only; (2) 36% hay, 64% concentrate; (3) 10% hay, 90% concentrate; and (4) hay only again. The net absorption of sodium, chloride and magnesium from the washed rumen filled with artificial rumen fluids was tested during each feeding period. The artificial rumen fluids varied either in osmolarity (315 and 422 mosmol l-1) or in pH (6.78 and 4.79). Further, the surface area of rumen papillae was determined. The feeding of increasing proportions of concentrate resulted in an increase of the surface area of rumen papillae and in an elevated net absorption of sodium, chloride and magnesium. Hypertonicity (422 mosmol l-1) of the artificial rumen fluid caused net influx of water into the rumen but did not influence net absorption of the electrolytes irrespective of the feeding regimen. When the pH was lowered this led to a decrease in net absorption of sodium, chloride and magnesium and in transmural potential difference. The extent of the pH-induced decrease in net ion transport and potential difference was less in sheep receiving high-concentrate diets. When only hay was fed after the period of feeding 90% concentrate diets the surface area of the papillae, the absorptive capacity of the rumen epithelium and the resistance against low pH returned to control levels. The findings show a reversible adaptive response of rumen epithelial functions to different diets.

  10. Insights into the bovine rumen plasmidome.

    PubMed

    Brown Kav, Aya; Sasson, Goor; Jami, Elie; Doron-Faigenboim, Adi; Benhar, Itai; Mizrahi, Itzhak

    2012-04-01

    Plasmids are self-replicating genetic elements capable of mobilization between different hosts. Plasmids often serve as mediators of lateral gene transfer, a process considered to be a strong and sculpting evolutionary force in microbial environments. Our aim was to characterize the overall plasmid population in the environment of the bovine rumen, which houses a complex and dense microbiota that holds enormous significance for humans. We developed a procedure for the isolation of total rumen plasmid DNA, termed rumen plasmidome, and subjected it to deep sequencing using the Illumina paired-end protocol and analysis using public and custom-made bioinformatics tools. A large number of plasmidome contigs aligned with plasmids of rumen bacteria isolated from different locations and at various time points, suggesting that not only the bacterial taxa, but also their plasmids, are defined by the ecological niche. The bacterial phylum distribution of the plasmidome was different from that of the rumen bacterial taxa. Nevertheless, both shared a dominance of the phyla Firmicutes, Bacteroidetes, and Proteobacteria. Evidently, the rumen plasmidome is of a highly mosaic nature that can cross phyla. Interestingly, when we compared the functional profile of the rumen plasmidome to two plasmid databases and two recently published rumen metagenomes, it became apparent that the rumen plasmidome codes for functions, which are enriched in the rumen ecological niche and could confer advantages to their hosts, suggesting that the functional profiles of mobile genetic elements are associated with their environment, as has been previously implied for viruses. PMID:22431592

  11. Metagenomic Insights into the Fibrolytic Microbiome in Yak Rumen

    PubMed Central

    Song, Lei; Liu, Di; Liu, Li; Chen, Furong; Wang, Min; Li, Jiabao; Zeng, Xiaowei; Dong, Zhiyang; Hu, Songnian; Li, Lingyan; Xu, Jian; Huang, Li; Dong, Xiuzhu

    2012-01-01

    The rumen hosts one of the most efficient microbial systems for degrading plant cell walls, yet the predominant cellulolytic proteins and fibrolytic mechanism(s) remain elusive. Here we investigated the cellulolytic microbiome of the yak rumen by using a combination of metagenome-based and bacterial artificial chromosome (BAC)-based functional screening approaches. Totally 223 fibrolytic BAC clones were pyrosequenced and 10,070 ORFs were identified. Among them 150 were annotated as the glycoside hydrolase (GH) genes for fibrolytic proteins, and the majority (69%) of them were clustered or linked with genes encoding related functions. Among the 35 fibrolytic contigs of >10 Kb in length, 25 were derived from Bacteroidetes and four from Firmicutes. Coverage analysis indicated that the fibrolytic genes on most Bacteroidetes-contigs were abundantly represented in the metagenomic sequences, and they were frequently linked with genes encoding SusC/SusD-type outer-membrane proteins. GH5, GH9, and GH10 cellulase/hemicellulase genes were predominant, but no GH48 exocellulase gene was found. Most (85%) of the cellulase and hemicellulase proteins possessed a signal peptide; only a few carried carbohydrate-binding modules, and no cellulosomal domains were detected. These findings suggest that the SucC/SucD-involving mechanism, instead of one based on cellulosomes or the free-enzyme system, serves a major role in lignocellulose degradation in yak rumen. Genes encoding an endoglucanase of a novel GH5 subfamily occurred frequently in the metagenome, and the recombinant proteins encoded by the genes displayed moderate Avicelase in addition to endoglucanase activities, suggesting their important contribution to lignocellulose degradation in the exocellulase-scarce rumen. PMID:22808161

  12. Metagenomic insights into the fibrolytic microbiome in yak rumen.

    PubMed

    Dai, Xin; Zhu, Yaxin; Luo, Yingfeng; Song, Lei; Liu, Di; Liu, Li; Chen, Furong; Wang, Min; Li, Jiabao; Zeng, Xiaowei; Dong, Zhiyang; Hu, Songnian; Li, Lingyan; Xu, Jian; Huang, Li; Dong, Xiuzhu

    2012-01-01

    The rumen hosts one of the most efficient microbial systems for degrading plant cell walls, yet the predominant cellulolytic proteins and fibrolytic mechanism(s) remain elusive. Here we investigated the cellulolytic microbiome of the yak rumen by using a combination of metagenome-based and bacterial artificial chromosome (BAC)-based functional screening approaches. Totally 223 fibrolytic BAC clones were pyrosequenced and 10,070 ORFs were identified. Among them 150 were annotated as the glycoside hydrolase (GH) genes for fibrolytic proteins, and the majority (69%) of them were clustered or linked with genes encoding related functions. Among the 35 fibrolytic contigs of >10 Kb in length, 25 were derived from Bacteroidetes and four from Firmicutes. Coverage analysis indicated that the fibrolytic genes on most Bacteroidetes-contigs were abundantly represented in the metagenomic sequences, and they were frequently linked with genes encoding SusC/SusD-type outer-membrane proteins. GH5, GH9, and GH10 cellulase/hemicellulase genes were predominant, but no GH48 exocellulase gene was found. Most (85%) of the cellulase and hemicellulase proteins possessed a signal peptide; only a few carried carbohydrate-binding modules, and no cellulosomal domains were detected. These findings suggest that the SucC/SucD-involving mechanism, instead of one based on cellulosomes or the free-enzyme system, serves a major role in lignocellulose degradation in yak rumen. Genes encoding an endoglucanase of a novel GH5 subfamily occurred frequently in the metagenome, and the recombinant proteins encoded by the genes displayed moderate Avicelase in addition to endoglucanase activities, suggesting their important contribution to lignocellulose degradation in the exocellulase-scarce rumen. PMID:22808161

  13. Studies of rumen function in an in vitro continuous culture system.

    PubMed

    Merry, R J; Smith, R H; McAllan, A B

    1987-06-01

    An in vitro continuous culture system to simulate processes in the rumen is described. This comprises a culture vessel (Fig. 2) fed continuously with pelleted solid feed (Fig. 1); artificial saliva also enters the vessel while effluent leaves it continuously in two streams, one is filtered and the other simply overflows (Fig. 1). In this way liquid and solid turnover times may be manipulated independently; in a trial experiment the former and latter were 6.3% and 3.4% per hour respectively. In four replicated experiments a steady-state was achieved in 5-6 days with a feed of barley, tapioca, fishmeal, urea and straw and maintained for a further 7 to 14 days. During a steady-state period, rumen characteristics in terms of protozoal count, pH, redox potential, total volatile fatty acid concentration and ammonia concentration were stable and similar to those found in the rumens of animals given similar diets. Flows of microbial N compounds were assessed by infused Na2H32PO4 with the artificial saliva and estimating the 32P label incorporated in bacterial fractions. The system demonstrably provided a satisfactory means for studying many aspects of rumen function.

  14. Passive mechanical properties of ovine rumen tissue

    NASA Astrophysics Data System (ADS)

    Waite, Stephen J.; Cater, John E.; Walker, Cameron G.; Amirapu, Satya; Waghorn, Garry C.; Suresh, Vinod

    2016-05-01

    Mechanical and structural properties of ovine rumen tissue have been determined using uniaxial tensile testing of tissue from four animals at five rumen locations and two orientations. Animal and orientation did not have a significant effect on the stress-strain response, but there was a significant difference between rumen locations. Histological studies showed two orthogonal muscle layers in all regions except the reticulum, which has a more isotropic structure. A quasi-linear viscoelastic model was fitted to the relaxation stage for each region. Model predictions of the ramp stage had RMS errors of 13-24% and were within the range of the experimental data.

  15. PCR detection of uncultured rumen bacteria.

    PubMed

    Rosero, Jaime A; Strosová, Lenka; Mrázek, Jakub; Fliegerová, Kateřina; Kopečný, Jan

    2012-07-01

    16S rRNA sequences of ruminal uncultured bacterial clones from public databases were phylogenetically examined. The sequences were found to form two unique clusters not affiliated with any known bacterial species: cluster of unidentified sequences of free floating rumen fluid uncultured bacteria (FUB) and cluster of unidentified sequences of bacteria associated with rumen epithelium (AUB). A set of PCR primers targeting 16S rRNA of ruminal free uncultured bacteria and rumen epithelium adhering uncultured bacteria was designed based on these sequences. FUB primers were used for relative quantification of uncultured bacteria in ovine rumen samples. The effort to increase the population size of FUB group has been successful in sulfate reducing broth and culture media supplied with cellulose.

  16. Growth and survival of rumen fungi.

    PubMed

    Trinci, A P; Lowe, S E; Milne, A; Theodorou, M K

    1988-01-01

    The life cycle and growth kinetics of an anaerobic rumen fungus (Neocallimastix R1) in liquid and solid media are described, together with its response to light, temperature and oxygen. These results are discussed in relation to the survival of rumen fungi in saliva and faeces of sheep, and the possible routes for the transfer of anaerobic fungi between ruminants. The thallus and life cycle of Neocallimastix R1 are compared with those of aerobic chytrids.

  17. Rumen microbial ecology in mule deer.

    PubMed

    Pearson, H A

    1969-06-01

    Mule deer rumen microbial populations from animals in the natural habitat in Utah and from captive deer fed various rations were studied. The microorganisms were characterized on the basis of morphology and Gram reaction. Rumen samples contained 13 identifiable types of bacteria and one genus of ciliate protozoa (Entodinium). Highest rumen bacterial populations were produced on rations containing barley. No differences in proportions of ruminal bacteria in the various morphological groups could be detected when animals were fed either natural browse plants or alfalfa hay. The total numbers of bacteria were similar for animals feeding on controlled diets of browse or hay and those in the natural habitat. Numbers of some bacterial types were directly related to ciliate protozoal numbers, whereas others were inversely related. Highest rumen ciliate protozoal populations were observed on rations containing barley. No differences in protozoal populations were noted between diets containing only browse or hay. Seasonal variations were noted in ciliate protozoal numbers from deer feeding in the natural habitat. The total number of ciliate protozoa decreased in the fall and winter and remained low until spring. There were indications that salt in the deer diet favorably affected rumen ciliate protozoa. Rather than revealing direct deer management applications, this study serves to stimulate and illuminate new approaches to research in range and wildlife nutrition.

  18. Rumen motility during induced hyper- and hypocalcaemia.

    PubMed

    Jørgensen, R J; Nyengaard, N R; Hara, S; Enemark, J M; Andersen, P H

    1998-01-01

    Rumen motility was recorded on an experimental cow by means of telemetric signal transfer from strain gauge force transducers fixed surgically on the peritoneal surface of the rumen wall in the left flank. The normocalcaemic cow was given a standard milk fever treatment with calcium borogluconate (400 ml with 14 mg Ca/ml) intravenously. Transient clinical signs were: decreased rumination, muscle ticks, salivation and a heart rate reduction of 20%. Rectal temperature remained unaltered. Frequency of rumen contractions was reduced up to 40% whereas amplitude of contractions did not deviate from baseline values. Hypocalcaemia was induced in a second experiment by iv infusion of Na2EDTA. At 0.60 mmol/l ionized blood calcium periods of no motility were recorded whereas inactivity of rumen activity was persistent at 0.55 mmol/l ionized blood calcium. The cow went down at 0.45-0.48 mmol/l ionized blood calcium at which point the heart rate was increased by 40%. The high sensitivity of the method employed allowed the conclusion that already at a concentration of ionized blood calcium at 1.0 mmol/l both frequency and amplitude of rumen contractions decreased rapidly although eating behaviour and rumination appeared unaffected during the short term observation periods. Implications of this finding towards health and production in transition cows are discussed.

  19. Role of live yeasts in rumen ecosystem.

    PubMed

    Oeztuerk, Hakan; Sagmanligil, Vedat

    2009-07-01

    For many years, ruminant nutritionists and microbiologists have been interested in manipulating the microbial ecosystem of the rumen to improve production efficiency by domestic ruminants. Antibiotic ionophores have been used successfully for this purpose. However, the use of antibiotics in animal feeds has been banned in the European Union since January 2006 due to the risk of spreading antibiotic resistance. For this reason, scientists have become interested in evaluating other alternatives to control specific microbial populations to modulate rumen fermentation. Dietary supplements of live yeast preparations, based on Saccharomyces cerevisiae, have been reported to improve health and productivity of ruminants. In contrast to antimicrobial agents, live yeasts offer a natural alternative to manipulate animal performance. This review discusses the modes of action of live yeasts in rumen ecosystem and their subsequent effects on animal performance. PMID:19753793

  20. Ultrasonographic Examination of the Rumen in Healthy Cows

    PubMed Central

    Imran, Sheikh; Kumar, Adarsh; Tyagi, S. P.; Kumar, Amit; Sharma, Shivali

    2011-01-01

    10 healthy Indian Jersey/Red Sindhi crossbred nonpregnant cows were subjected to transabdominal ultrasonography to develop baseline topographical data of the rumen. The wall of the rumen could be identified as a thick echogenic line adjacent to the left abdominal wall from left flank to 8th intercostal space. The motility pattern of rumen was characterized by approximately 1 contraction every minute. The mean amplitude of the ruminal contraction was 3.2 cm. Ultrasonography of the rumen in healthy cows is a useful adjunct to the noninvasive diagnostic investigation of the rumen. PMID:21547228

  1. The requirements for rumen-degradable protein per unit of fermentable organic matter differ between fibrous feed sources.

    PubMed

    Soliva, Carla R; Amelchanka, Sergej L; Kreuzer, Michael

    2015-01-01

    Ruminant feed evaluation systems use constant minimum requirements of rumen-degradable protein (RDP) and often relate this to apparently degradable organic matter (OM). However, studies with tropical forages indicate that RDP: apparently degraded OM might not be constant across high-fiber diets. This was tested with semi-continuous ruminal cultures (Rusitec) using dried contrasting low-protein fiber sources: brachiaria hay (high in fiber, medium lignified), apple pomace (medium in fiber, highly lignified), and sugar beet pulp (medium in fiber and lignification). Each feed was incubated at 14 g dry matter day(-1) with 0, 0.85, 1.7, 3.4, 6.8, 13.6, or 27.2 mg g(-1) urea. The amount of urea needed to reach a similar basal concentration of ammonia in the incubation fluid was tested for each feed in advance. Apparent fiber and OM degradability were determined after 48 h of incubation. Data was evaluated by regressions and analysis of variance. The response curve of incubation fluid ammonia to urea supplementation was similar in slope in all feeds. Plateaus in apparent OM degradability in relation to ammonia concentration were determined. The ammonia concentration where apparent OM and fiber degradability reached 95% of maximum was approached in the order of pomace < pulp < hay. With regard to fiber degradability, a plateau was reached at ≥ 80 g kg(-1) crude protein only with hay and pomace, whilst a linear relationship existed between RDP and OM degradation for pulp. In hay the ratio RDP: OM degraded was equal to 1.6 but was only 1.0 in the other feeds. There was no obvious lack of branched short-chain fatty acids at low RDP. Thus, the hypothesis was confirmed but the demand for RDP seems even higher in tropical forage compared to food industrial byproducts. The efficiency of urea to promote apparent OM and fiber degradation was also variable. Thus, it seems that minimum thresholds of either RDP or ruminal ammonia concentration may not be reflected appropriately by

  2. The requirements for rumen-degradable protein per unit of fermentable organic matter differ between fibrous feed sources

    PubMed Central

    Soliva, Carla R.; Amelchanka, Sergej L.; Kreuzer, Michael

    2015-01-01

    Ruminant feed evaluation systems use constant minimum requirements of rumen-degradable protein (RDP) and often relate this to apparently degradable organic matter (OM). However, studies with tropical forages indicate that RDP: apparently degraded OM might not be constant across high-fiber diets. This was tested with semi-continuous ruminal cultures (Rusitec) using dried contrasting low-protein fiber sources: brachiaria hay (high in fiber, medium lignified), apple pomace (medium in fiber, highly lignified), and sugar beet pulp (medium in fiber and lignification). Each feed was incubated at 14 g dry matter day−1 with 0, 0.85, 1.7, 3.4, 6.8, 13.6, or 27.2 mg g−1 urea. The amount of urea needed to reach a similar basal concentration of ammonia in the incubation fluid was tested for each feed in advance. Apparent fiber and OM degradability were determined after 48 h of incubation. Data was evaluated by regressions and analysis of variance. The response curve of incubation fluid ammonia to urea supplementation was similar in slope in all feeds. Plateaus in apparent OM degradability in relation to ammonia concentration were determined. The ammonia concentration where apparent OM and fiber degradability reached 95% of maximum was approached in the order of pomace < pulp < hay. With regard to fiber degradability, a plateau was reached at ≥ 80 g kg−1 crude protein only with hay and pomace, whilst a linear relationship existed between RDP and OM degradation for pulp. In hay the ratio RDP: OM degraded was equal to 1.6 but was only 1.0 in the other feeds. There was no obvious lack of branched short-chain fatty acids at low RDP. Thus, the hypothesis was confirmed but the demand for RDP seems even higher in tropical forage compared to food industrial byproducts. The efficiency of urea to promote apparent OM and fiber degradation was also variable. Thus, it seems that minimum thresholds of either RDP or ruminal ammonia concentration may not be reflected appropriately by

  3. [Extracorporeal perfusion of the sheep rumen].

    PubMed

    Leng, L; Bajo, M; Várady, J; Szányiová, M

    1977-06-01

    We constructed a modified perfusion apparatus and elaborated a method of extracorporal perfusion of the rumen of sheep. As perfusates we used the bovine plasma diluted in a ratio of 1:1 of an isotonic sodium chloride (NaCl) solution and the whole autologous blood. Transaminases GOT and GPT, ammonia and pH were determined in the perfusate. The different perfusions were evaluated according to previously determined perfusion conditions and criteria. A subject for discussion is the question of suitability of the parameters under examination for judging the state of the perfused organ. The described method is suitable for the study of metabolical processes in the rumen wal.

  4. Ultrasonography of the rumen of dairy cows

    PubMed Central

    2013-01-01

    Background This study describes the ultrasonographic findings of the rumen in 45 healthy dairy cows. Results The cows were scanned on both sides using a 5.0 MHz transducer. The dorsal visible margin of the rumen ran parallel to the lung from cranioventral to caudodorsal. It was furthest from the dorsal midline at the 9th intercostal space (48.3 ± 9.24 cm) and closest at the 12th intercostal space (22.4 ± 3.27 cm). The longitudinal groove, which could be clearly identified at all examination sites because it appeared as a triangular notch, formed the ventral margin of the dorsal sac of the rumen. The dorsal sac of the rumen was largest at the caudal flank (40.3 ± 6.33 cm), where it was adjacent to the abdominal wall. The ventral sac of the rumen extended across the ventral midline into the right hemiabdomen and its ventral margin had a largely horizontal craniocaudal course. The height of the ventral sac of the rumen exceeded that of the dorsal sac at all examination sites; the maximum height was measured at the 12th intercostal space (62.6 ± 9.53 cm). The dorsal gas cap, characterised ultrasonographically by typical reverberation artifacts, was visible in all cows from the 12th intercostal space to the caudal flank. It was largest at the 12th intercostal space (20.5 ± 7.03 cm). The transition from the gas cap to the fibre mat was marked by the abrupt cessation of the reverberation artifacts. It was not possible to differentiate a fibre mat and a ventral fluid phase. The rumen could be imaged from the right side in 21 cows (47%). Conclusions Ultrasonography is well suited for the detailed examination of the rumen of cows. The reference values obtained from this study add to the diagnostic tools that are available for the assessment of bovine patients. PMID:23497545

  5. Medium Without Rumen Fluid for Nonselective Enumeration and Isolation of Rumen Bacteria

    PubMed Central

    Caldwell, Daniel R.; Bryant, Marvin P.

    1966-01-01

    Colony counts which approximated those in a habitat-simulating, rumen fluid-agar medium (RFM) were obtained in medium 10, a medium identical to the RFM except for the replacement of rumen fluid with 1.5 × 10-6m hemin, 0.2% Trypticase, 0.05% yeast extract, and a 6.6 × 10-2m volatile fatty acid mixture qualitatively and quantitatively similar to that in rumen fluid. Single deletion of Trypticase, yeast extract, or the volatile fatty acid mixture from medium 10 significantly reduced colony counts. Colony counts were also reduced when medium 10 was modified to contain higher concentrations of Trypticase or volatile fatty acids. Significant differences were found between colony counts obtained from diluted rumen contents of animals fed a cracked corn-urea diet, and the colony counts obtained from animals fed either a cracked corn-soyean oil meal or an alfalfa hay-grain diet. Qualitative differences were found between the predominant bacterial strains isolated from rumen contents of animals fed cracked corn diets and strains isolated from animals fed alfalfa hay-grain. Regardless of differences in the predominant flora associated with diet, medium 10 and the RFM supported growth of similar bacterial populations. The results show that medium 10 is suitable for enumeration and isolation of many predominant rumen bacteria. PMID:5970467

  6. Insights into Abundant Rumen Ureolytic Bacterial Community Using Rumen Simulation System.

    PubMed

    Jin, Di; Zhao, Shengguo; Wang, Pengpeng; Zheng, Nan; Bu, Dengpan; Beckers, Yves; Wang, Jiaqi

    2016-01-01

    Urea, a non-protein nitrogen for dairy cows, is rapidly hydrolyzed to ammonia by urease produced by ureolytic bacteria in the rumen, and the ammonia is used as nitrogen for rumen bacterial growth. However, there is limited knowledge with regard to the ureolytic bacteria community in the rumen. To explore the ruminal ureolytic bacterial community, urea, or acetohydroxamic acid (AHA, an inhibitor of urea hydrolysis) were supplemented into the rumen simulation systems. The bacterial 16S rRNA genes were sequenced by Miseq high-throughput sequencing and used to reveal the ureoltyic bacteria by comparing different treatments. The results revealed that urea supplementation significantly increased the ammonia concentration, and AHA addition inhibited urea hydrolysis. Urea supplementation significantly increased the richness of bacterial community and the proportion of ureC genes. The composition of bacterial community following urea or AHA supplementation showed no significant difference compared to the groups without supplementation. The abundance of Bacillus and unclassified Succinivibrionaceae increased significantly following urea supplementation. Pseudomonas, Haemophilus, Neisseria, Streptococcus, and Actinomyces exhibited a positive response to urea supplementation and a negative response to AHA addition. Results retrieved from the NCBI protein database and publications confirmed that the representative bacteria in these genera mentioned above had urease genes or urease activities. Therefore, the rumen ureolytic bacteria were abundant in the genera of Pseudomonas, Haemophilus, Neisseria, Streptococcus, Actinomyces, Bacillus, and unclassified Succinivibrionaceae. Insights into abundant rumen ureolytic bacteria provide the regulation targets to mitigate urea hydrolysis and increase efficiency of urea nitrogen utilization in ruminants. PMID:27446045

  7. Insights into Abundant Rumen Ureolytic Bacterial Community Using Rumen Simulation System

    PubMed Central

    Jin, Di; Zhao, Shengguo; Wang, Pengpeng; Zheng, Nan; Bu, Dengpan; Beckers, Yves; Wang, Jiaqi

    2016-01-01

    Urea, a non-protein nitrogen for dairy cows, is rapidly hydrolyzed to ammonia by urease produced by ureolytic bacteria in the rumen, and the ammonia is used as nitrogen for rumen bacterial growth. However, there is limited knowledge with regard to the ureolytic bacteria community in the rumen. To explore the ruminal ureolytic bacterial community, urea, or acetohydroxamic acid (AHA, an inhibitor of urea hydrolysis) were supplemented into the rumen simulation systems. The bacterial 16S rRNA genes were sequenced by Miseq high-throughput sequencing and used to reveal the ureoltyic bacteria by comparing different treatments. The results revealed that urea supplementation significantly increased the ammonia concentration, and AHA addition inhibited urea hydrolysis. Urea supplementation significantly increased the richness of bacterial community and the proportion of ureC genes. The composition of bacterial community following urea or AHA supplementation showed no significant difference compared to the groups without supplementation. The abundance of Bacillus and unclassified Succinivibrionaceae increased significantly following urea supplementation. Pseudomonas, Haemophilus, Neisseria, Streptococcus, and Actinomyces exhibited a positive response to urea supplementation and a negative response to AHA addition. Results retrieved from the NCBI protein database and publications confirmed that the representative bacteria in these genera mentioned above had urease genes or urease activities. Therefore, the rumen ureolytic bacteria were abundant in the genera of Pseudomonas, Haemophilus, Neisseria, Streptococcus, Actinomyces, Bacillus, and unclassified Succinivibrionaceae. Insights into abundant rumen ureolytic bacteria provide the regulation targets to mitigate urea hydrolysis and increase efficiency of urea nitrogen utilization in ruminants. PMID:27446045

  8. Maximizing efficiency of rumen microbial protein production

    PubMed Central

    Hackmann, Timothy J.; Firkins, Jeffrey L.

    2015-01-01

    Rumen microbes produce cellular protein inefficiently partly because they do not direct all ATP toward growth. They direct some ATP toward maintenance functions, as long-recognized, but they also direct ATP toward reserve carbohydrate synthesis and energy spilling (futile cycles that dissipate heat). Rumen microbes expend ATP by vacillating between (1) accumulation of reserve carbohydrate after feeding (during carbohydrate excess) and (2) mobilization of that carbohydrate thereafter (during carbohydrate limitation). Protozoa account for most accumulation of reserve carbohydrate, and in competition experiments, protozoa accumulated nearly 35-fold more reserve carbohydrate than bacteria. Some pure cultures of bacteria spill energy, but only recently have mixed rumen communities been recognized as capable of the same. When these communities were dosed glucose in vitro, energy spilling could account for nearly 40% of heat production. We suspect that cycling of glycogen (a major reserve carbohydrate) is a major mechanism of spilling; such cycling has already been observed in single-species cultures of protozoa and bacteria. Interconversions of short-chain fatty acids (SCFA) may also expend ATP and depress efficiency of microbial protein production. These interconversions may involve extensive cycling of intermediates, such as cycling of acetate during butyrate production in certain butyrivibrios. We speculate this cycling may expend ATP directly or indirectly. By further quantifying the impact of reserve carbohydrate accumulation, energy spilling, and SCFA interconversions on growth efficiency, we can improve prediction of microbial protein production and guide efforts to improve efficiency of microbial protein production in the rumen. PMID:26029197

  9. Lyophilization of rumen fluid for use in culture media.

    PubMed Central

    Dehority, B A; Tirabasso, P A

    1989-01-01

    The supernatant from centrifugation at 1,000 x g of strained rumen fluid was lyophilized, and the residue and sublimate fractions were used to replace fresh rumen fluid in a complete roll tube medium for enumeration of total rumen bacteria. Most of the growth-supporting nutrients in fresh rumen fluid were found in the residue fraction. With one exception, no significant differences were found in total bacterial numbers either by roll tube or most-probable-number procedures when lyophilized rumen fluid residue was substituted for fresh rumen fluid. Lyophilized rumen fluid residue was stable for at least 5 months at room temperature. Rumen fluid supernatant from centrifugation at 1,000 x g had a mean density of 1.005 +/- 0.03 g/ml and contained 1.56% +/- 0.30% dry matter. On the basis of these values, 15.68 mg of lyophilized rumen fluid residue is equivalent to 1 ml of rumen fluid supernatant from centrifugation at 1,000 x g. PMID:2619310

  10. Influence of weaning method on health status and rumen development in dairy calves.

    PubMed

    Roth, B A; Keil, N M; Gygax, L; Hillmann, E

    2009-02-01

    In the artificial rearing of dairy calves, the same feeding plan is applied to all animals during the milk-feeding period, with individual differences attributable to development or health status rarely considered. The aim of this study was 1) to analyze whether the parameters of feeding behavior automatically recorded by a feeding computer and weight gain are suitable for predicting the health status and rumen development of male dairy calves, and 2) to compare a conventional weaning method (end of milk provision at 12 wk of age, n = 23 calves) with a concentrate-dependent weaning method (with reduction in the milk amount depending on the consumption of concentrate, n = 24). The health status of each animal was evaluated daily by a scoring list (health score), and body temperature was measured automatically during each milk intake. In addition, the number of veterinary treatments per calf was recorded. Rumen development was assessed by measuring rumen papillae in 8 rumen areas after slaughter (n = 24, half of each treatment group). During the milk-feeding period, body temperature was elevated (>/=39.5 degrees C) on 40.8 and 43.2% of all days for calves on the concentrate-dependent weaning method and the conventional weaning method, respectively. Hay and concentrate intake (but not milk intake) and weight gain were clearly affected by health status. In addition, health score and the probability of being treated by a veterinarian were significantly related to decreases in concentrate consumption. During the milk-feeding period, increased body temperature, an increased number of veterinary treatments, and decreases in milk consumption were all associated with reduced weight gain. Calves on the concentrate-dependent weaning method were weaned at an average age of 76 d, which was significantly shorter than the age at the end of milk provision for conventionally fed calves (84 d). Weight gain and health status did not differ between treatment groups. Weight gain was

  11. The Role of Ciliate Protozoa in the Rumen

    PubMed Central

    Newbold, Charles J.; de la Fuente, Gabriel; Belanche, Alejandro; Ramos-Morales, Eva; McEwan, Neil R.

    2015-01-01

    First described in 1843, Rumen protozoa with their striking appearance were assumed to be important for the welfare of their host. However, despite contributing up to 50% of the bio-mass in the rumen, the role of protozoa in rumen microbial ecosystem remains unclear. Phylogenetic analysis of 18S rDNA libraries generated from the rumen of cattle, sheep, and goats has revealed an unexpected diversity of ciliated protozoa although variation in gene copy number between species makes it difficult to obtain absolute quantification. Despite repeated attempts it has proven impossible to maintain rumen protozoa in axenic culture. Thus it has been difficult to establish conclusively a role of ciliate protozoa in rumen fiber degradation. The development of techniques to clone and express ciliate genes in λ phage, together with bioinformatic indices to confirm the ciliate origin of the genes has allowed the isolation and characterization of fibrolytic genes from rumen protozoa. Elimination of the ciliate protozoa increases microbial protein supply by up to 30% and reduces methane production by up to 11%. Our recent findings suggest that holotrich protozoa play a disproportionate role in supporting methanogenesis whilst the small Entodinium are responsible for much of the bacterial protein turnover. As yet no method to control protozoa in the rumen that is safe and practically applicable has been developed, however a range of plant extract capable of controlling if not completely eliminating rumen protozoa have been described. PMID:26635774

  12. The Role of Ciliate Protozoa in the Rumen.

    PubMed

    Newbold, Charles J; de la Fuente, Gabriel; Belanche, Alejandro; Ramos-Morales, Eva; McEwan, Neil R

    2015-01-01

    First described in 1843, Rumen protozoa with their striking appearance were assumed to be important for the welfare of their host. However, despite contributing up to 50% of the bio-mass in the rumen, the role of protozoa in rumen microbial ecosystem remains unclear. Phylogenetic analysis of 18S rDNA libraries generated from the rumen of cattle, sheep, and goats has revealed an unexpected diversity of ciliated protozoa although variation in gene copy number between species makes it difficult to obtain absolute quantification. Despite repeated attempts it has proven impossible to maintain rumen protozoa in axenic culture. Thus it has been difficult to establish conclusively a role of ciliate protozoa in rumen fiber degradation. The development of techniques to clone and express ciliate genes in λ phage, together with bioinformatic indices to confirm the ciliate origin of the genes has allowed the isolation and characterization of fibrolytic genes from rumen protozoa. Elimination of the ciliate protozoa increases microbial protein supply by up to 30% and reduces methane production by up to 11%. Our recent findings suggest that holotrich protozoa play a disproportionate role in supporting methanogenesis whilst the small Entodinium are responsible for much of the bacterial protein turnover. As yet no method to control protozoa in the rumen that is safe and practically applicable has been developed, however a range of plant extract capable of controlling if not completely eliminating rumen protozoa have been described.

  13. Determining the culturability of the rumen bacterial microbiome.

    PubMed

    Creevey, Christopher J; Kelly, William J; Henderson, Gemma; Leahy, Sinead C

    2014-09-01

    The goal of the Hungate1000 project is to generate a reference set of rumen microbial genome sequences. Toward this goal we have carried out a meta-analysis using information from culture collections, scientific literature, and the NCBI and RDP databases and linked this with a comparative study of several rumen 16S rRNA gene-based surveys. In this way we have attempted to capture a snapshot of rumen bacterial diversity to examine the culturable fraction of the rumen bacterial microbiome. Our analyses have revealed that for cultured rumen bacteria, there are many genera without a reference genome sequence. Our examination of culture-independent studies highlights that there are few novel but many uncultured taxa within the rumen bacterial microbiome. Taken together these results have allowed us to compile a list of cultured rumen isolates that are representative of abundant, novel and core bacterial species in the rumen. In addition, we have identified taxa, particularly within the phylum Bacteroidetes, where further cultivation efforts are clearly required. This information is being used to guide the isolation efforts and selection of bacteria from the rumen microbiota for sequencing through the Hungate1000. PMID:24986151

  14. Determining the culturability of the rumen bacterial microbiome

    PubMed Central

    Creevey, Christopher J; Kelly, William J; Henderson, Gemma; Leahy, Sinead C

    2014-01-01

    The goal of the Hungate1000 project is to generate a reference set of rumen microbial genome sequences. Toward this goal we have carried out a meta-analysis using information from culture collections, scientific literature, and the NCBI and RDP databases and linked this with a comparative study of several rumen 16S rRNA gene-based surveys. In this way we have attempted to capture a snapshot of rumen bacterial diversity to examine the culturable fraction of the rumen bacterial microbiome. Our analyses have revealed that for cultured rumen bacteria, there are many genera without a reference genome sequence. Our examination of culture-independent studies highlights that there are few novel but many uncultured taxa within the rumen bacterial microbiome. Taken together these results have allowed us to compile a list of cultured rumen isolates that are representative of abundant, novel and core bacterial species in the rumen. In addition, we have identified taxa, particularly within the phylum Bacteroidetes, where further cultivation efforts are clearly required. This information is being used to guide the isolation efforts and selection of bacteria from the rumen microbiota for sequencing through the Hungate1000. PMID:24986151

  15. The Role of Ciliate Protozoa in the Rumen.

    PubMed

    Newbold, Charles J; de la Fuente, Gabriel; Belanche, Alejandro; Ramos-Morales, Eva; McEwan, Neil R

    2015-01-01

    First described in 1843, Rumen protozoa with their striking appearance were assumed to be important for the welfare of their host. However, despite contributing up to 50% of the bio-mass in the rumen, the role of protozoa in rumen microbial ecosystem remains unclear. Phylogenetic analysis of 18S rDNA libraries generated from the rumen of cattle, sheep, and goats has revealed an unexpected diversity of ciliated protozoa although variation in gene copy number between species makes it difficult to obtain absolute quantification. Despite repeated attempts it has proven impossible to maintain rumen protozoa in axenic culture. Thus it has been difficult to establish conclusively a role of ciliate protozoa in rumen fiber degradation. The development of techniques to clone and express ciliate genes in λ phage, together with bioinformatic indices to confirm the ciliate origin of the genes has allowed the isolation and characterization of fibrolytic genes from rumen protozoa. Elimination of the ciliate protozoa increases microbial protein supply by up to 30% and reduces methane production by up to 11%. Our recent findings suggest that holotrich protozoa play a disproportionate role in supporting methanogenesis whilst the small Entodinium are responsible for much of the bacterial protein turnover. As yet no method to control protozoa in the rumen that is safe and practically applicable has been developed, however a range of plant extract capable of controlling if not completely eliminating rumen protozoa have been described. PMID:26635774

  16. Progress in the development of vaccines against rumen methanogens.

    PubMed

    Wedlock, D N; Janssen, P H; Leahy, S C; Shu, D; Buddle, B M

    2013-06-01

    Vaccination against rumen methanogens offers a practical approach to reduce methane emissions in livestock, particularly ruminants grazing on pasture. Although successful vaccination strategies have been reported for reducing the activity of the rumen-dwelling organism Streptococcus bovis in sheep and S. bovis and Lactobacillus spp. in cattle, earlier approaches using vaccines based on whole methanogen cells to reduce methane production in sheep have produced less promising results. An anti-methanogen vaccine will need to have broad specificity against methanogens commonly found in the rumen and induce antibody in saliva resulting in delivery of sufficiently high levels of antibodies to the rumen to reduce methanogen activity. Our approach has focussed on identifying surface and membrane-associated proteins that are conserved across a range of rumen methanogens. The identification of potential vaccine antigens has been assisted by recent advances in the knowledge of rumen methanogen genomes. Methanogen surface proteins have been shown to be immunogenic in ruminants and vaccination of sheep with these proteins induced specific antibody responses in saliva and rumen contents. Current studies are directed towards identifying key candidate antigens and investigating the level and types of salivary antibodies produced in sheep and cattle vaccinated with methanogen proteins, stability of antibodies in the rumen and their impact on rumen microbial populations. In addition, there is a need to identify adjuvants that stimulate high levels of salivary antibody and are suitable for formulating with protein antigens to produce a low-cost and effective vaccine.

  17. The giraffe (Giraffa camelopardalis) rumen microbiome.

    PubMed

    Roggenbuck, Michael; Sauer, Cathrine; Poulsen, Morten; Bertelsen, Mads F; Sørensen, Søren J

    2014-10-01

    Recent studies have shown that wild ruminants are sources of previously undescribed microorganisms, knowledge of which can improve our understanding of the complex microbial interactions in the foregut. Here, we investigated the microbial community of seven wild-caught giraffes (Giraffa camelopardalis), three of which were fed natural browse and four were fed Boskos pellets, leafy alfalfa hay, and cut savanna browse, by characterizing the 16S rRNA gene diversity using 454 FLX high-throughput sequencing. The microbial community composition varied according to diet, but differed little between the ruminal fluid and solid fraction. The giraffe rumen contained large levels of the phyla of Firmicutes and Bacteroidetes independent of diet, while Prevotella, Succinclasticium, and Methanobrevibacter accounted for the largest abundant taxonomic assigned genera. However, up to 21% of the generated sequences could not been assigned to any known bacterial phyla, and c. 70% not to genus, revealing that the giraffe rumen hosts a variety of previously undescribed bacteria.

  18. The giraffe (Giraffa camelopardalis) rumen microbiome.

    PubMed

    Roggenbuck, Michael; Sauer, Cathrine; Poulsen, Morten; Bertelsen, Mads F; Sørensen, Søren J

    2014-10-01

    Recent studies have shown that wild ruminants are sources of previously undescribed microorganisms, knowledge of which can improve our understanding of the complex microbial interactions in the foregut. Here, we investigated the microbial community of seven wild-caught giraffes (Giraffa camelopardalis), three of which were fed natural browse and four were fed Boskos pellets, leafy alfalfa hay, and cut savanna browse, by characterizing the 16S rRNA gene diversity using 454 FLX high-throughput sequencing. The microbial community composition varied according to diet, but differed little between the ruminal fluid and solid fraction. The giraffe rumen contained large levels of the phyla of Firmicutes and Bacteroidetes independent of diet, while Prevotella, Succinclasticium, and Methanobrevibacter accounted for the largest abundant taxonomic assigned genera. However, up to 21% of the generated sequences could not been assigned to any known bacterial phyla, and c. 70% not to genus, revealing that the giraffe rumen hosts a variety of previously undescribed bacteria. PMID:25087453

  19. The rumen plasmidome: A genetic communication hub for the rumen microbiome.

    PubMed

    Mizrahi, Itzhak

    2012-05-01

    Plasmids are episomally replicating genetic elements which carry backbone genes that are important for their replication and maintenance within their host, and accessory genes that might confer an advantage to their host in its ecological niche. As such, they are often perceived as a powerful evolutionary force, which horizontally introduces new traits into bacterial cells and genomes. In our recent publication "Insight into the rumen plasmidome" we characterized the metagenomic plasmid population of the bovine rumen microbial ecological niche. The rumen is the first compartment of the digestive tract of ruminants; it functions as a pre-gastric anaerobic fermentation chamber, where plant fibers are degraded and converted into chemical compounds which are subsequently absorbed and digested by the animal. PMID:23061023

  20. Ion transport across an isolated preparation of sheep rumen epithelium.

    PubMed

    Ferreira, H G; Harrison, F A; Keynes, R D; Zurich, L

    1972-04-01

    1. The fluxes of isotopically labelled sodium, potassium and chloride passing in each direction across isolated sheets of rumen epithelium from the sheep have been measured under short-circuit conditions.2. With both sides of the epithelium bathed in chloride Ringer the mean sodium fluxes were 2.85 mumole/cm(2).hr from rumen to blood and 1.28 mumole/cm(2).hr in the reverse direction. In sulphate Ringer the sodium fluxes were 1.64 mumole/cm(2).hr from rumen to blood and 0.54 mumole/cm(2).hr from blood to rumen.3. In chloride Ringer the mean potassium fluxes were 0.18 mumole/cm(2).hr from rumen to blood and 0.54 mumole/cm(2).hr from blood to rumen. In sulphate Ringer the potassium fluxes were 0.07 mumole/cm(2).hr from rumen to blood and 0.35 mumole/cm(2).hr from blood to rumen.4. In chloride Ringer the mean chloride fluxes were 4.89 mumole/cm(2).hr from rumen to blood and 3.78 mumole/cm(2).hr from blood to rumen.5. In chloride Ringer the mean value of the short-circuit current was 13 muA/cm(2), corresponding to a flux of 0.49 muequiv/cm(2).hr. When sulphate was substituted for chloride, the short-circuit current was increased by about 40%, and the net flux of sodium from rumen to blood fell by 30%.6. Neither the sodium nor the chloride fluxes changed significantly when the epithelium was temporarily open-circuited.

  1. The large bowel--a supplementary rumen?

    PubMed

    Argenzio, R A; Stevens, C E

    1984-01-01

    The rumen and the mammalian large intestine are similar in many respects. Microbial protein appears to be synthesized and degraded in the digesta of both organs in a comparable manner. The VFA end-products of carbohydrate fermentation are produced in similar concentrations. Digesta pH is maintained with buffer added by the saliva or ileal fluid, HCO3 released into the lumen and rapid absorption of the organic acids. VFA are absorbed at equivalent rates by rumen epithelium and large intestinal mucosa. Over-production of VFA produces similar adverse effects. There is a considerable amount of species variation in the relative length and volume as well as the extent of sacculation of the large intestine. The caecum is the primary site for retention of digesta and microbial fermentation in the large intestine of rabbits, rodents and a few other species. However, the proximal colon is the major site of retention and fermentation in most mammals. Absorptions of Na and VFA appear to account for absorption of most of the water removed during passage of digesta through the large intestine. A relatively slow rate of Na absorption and release of HCO3 appears to provide the fluid and buffering capacity needed for efficient microbial digestion in the rumen and in the large intestine of some species. A more rapid absorption of Na by the large intestine of other species would aid in the conservation of Na and water. The many similarities between the large intestine and the rumen suggest that further comparison can provide additional information on both the function and diseases of these two organs. The rumen has proved to be accessible to a variety of procedures useful for the study of microbial digestive processes and its epithelium has provided a non-glandular tissue for studies of inorganic ion transport as well as the transport and metabolism of VFA. Comparative studies of the large intestine also can provide a better understanding of the functions and malfunctions of the

  2. Metagenome Sequencing of the Greater Kudu (Tragelaphus strepsiceros) Rumen Microbiome.

    PubMed

    Dube, Anita N; Moyo, Freeman; Dhlamini, Zephaniah

    2015-01-01

    Ruminant herbivores utilize a symbiotic relationship with microorganisms in their rumen to exploit fibrous foods for nutrition. We report the metagenome sequences of the greater kudu (Tragelaphus strepsiceros) rumen digesta, revealing a diverse community of microbes and some novel hydrolytic enzymes.

  3. Study of methanogen communities associated with different rumen protozoal populations.

    PubMed

    Belanche, Alejandro; de la Fuente, Gabriel; Newbold, Charles J

    2014-12-01

    Protozoa-associated methanogens (PAM) are considered one of the most active communities in the rumen methanogenesis. This experiment investigated whether methanogens are sequestrated within rumen protozoa, and structural differences between rumen free-living methanogens and PAM. Rumen protozoa were harvested from totally faunated sheep, and six protozoal fractions (plus free-living microorganisms) were generated by sequential filtration. Holotrich-monofaunated sheep were also used to investigate the holotrich-associated methanogens. Protozoal size determined the number of PAM as big protozoa had 1.7-3.3 times more methanogen DNA than smaller protozoa, but also more endosymbiotic bacteria (2.2- to 3.5-fold times). Thus, similar abundance of methanogens with respect to total bacteria were observed across all protozoal fractions and free-living microorganisms, suggesting that methanogens are not accumulated within rumen protozoa in a greater proportion to that observed in the rumen as a whole. All rumen methanogen communities had similar diversity (22.2 ± 3.4 TRFs). Free-living methanogens composed a conserved community (67% similarity within treatment) in the rumen with similar diversity but different structures than PAM (P < 0.05). On the contrary, PAM constituted a more variable community (48% similarity), which differed between holotrich and total protozoa (P < 0.001). Thus, PAM constitutes a community, which requires further investigation as part of methane mitigation strategies.

  4. Metagenome Sequencing of the Greater Kudu (Tragelaphus strepsiceros) Rumen Microbiome

    PubMed Central

    Dube, Anita N.; Moyo, Freeman

    2015-01-01

    Ruminant herbivores utilize a symbiotic relationship with microorganisms in their rumen to exploit fibrous foods for nutrition. We report the metagenome sequences of the greater kudu (Tragelaphus strepsiceros) rumen digesta, revealing a diverse community of microbes and some novel hydrolytic enzymes. PMID:26272573

  5. Potential opportunities and problems for genetically altered rumen microorganisms.

    PubMed

    Russell, J B; Wilson, D B

    1988-02-01

    Rumen microbiologists are beginning to use genetic engineering techniques, and researchers should carefully consider both the potentials and limitations of using this technology to manipulate the rumen microbial ecosystem. Despite encouraging rhetoric, it is difficult to identify specific examples where genetic engineering would enhance ruminal performance. Many practical problems (lactic acidosis, deamination, etc.) might be better served by genetic engineering approaches that delete rather than add genes. The difficulty with this approach is that a highly selective means of preventing wild types from recolonizing the rumen would be needed. The addition of specific genes is confounded by 1) the fact that the rumen microorganisms are already adapted to the rumen, 2) the diversity of species inhabiting the rumen and 3) the complexity of interactions among these species. Aspects such as increased rates of cellulose digestion and changes in amino acid composition of the microflora are particularly sensitive to these biological constraints. Genetic engineering has, however, the potential to alleviate new limitations that humans have imposed on the rumen (detoxification, resistance to low pH, the digestion of novel feed materials, etc). A particular strategy of moving acid-resistant cellulose genes into noncellulytic, but acid-resistant, rumen bacteria is described.

  6. Metagenome Sequencing of the Greater Kudu (Tragelaphus strepsiceros) Rumen Microbiome.

    PubMed

    Dube, Anita N; Moyo, Freeman; Dhlamini, Zephaniah

    2015-01-01

    Ruminant herbivores utilize a symbiotic relationship with microorganisms in their rumen to exploit fibrous foods for nutrition. We report the metagenome sequences of the greater kudu (Tragelaphus strepsiceros) rumen digesta, revealing a diverse community of microbes and some novel hydrolytic enzymes. PMID:26272573

  7. Study of methanogen communities associated with different rumen protozoal populations

    PubMed Central

    Belanche, Alejandro; de la Fuente, Gabriel; Newbold, Charles J

    2014-01-01

    Protozoa-associated methanogens (PAM) are considered one of the most active communities in the rumen methanogenesis. This experiment investigated whether methanogens are sequestrated within rumen protozoa, and structural differences between rumen free-living methanogens and PAM. Rumen protozoa were harvested from totally faunated sheep, and six protozoal fractions (plus free-living microorganisms) were generated by sequential filtration. Holotrich-monofaunated sheep were also used to investigate the holotrich-associated methanogens. Protozoal size determined the number of PAM as big protozoa had 1.7–3.3 times more methanogen DNA than smaller protozoa, but also more endosymbiotic bacteria (2.2- to 3.5-fold times). Thus, similar abundance of methanogens with respect to total bacteria were observed across all protozoal fractions and free-living microorganisms, suggesting that methanogens are not accumulated within rumen protozoa in a greater proportion to that observed in the rumen as a whole. All rumen methanogen communities had similar diversity (22.2 ± 3.4 TRFs). Free-living methanogens composed a conserved community (67% similarity within treatment) in the rumen with similar diversity but different structures than PAM (P < 0.05). On the contrary, PAM constituted a more variable community (48% similarity), which differed between holotrich and total protozoa (P < 0.001). Thus, PAM constitutes a community, which requires further investigation as part of methane mitigation strategies. PMID:25195951

  8. Factors stimulating migration of holotrich protozoa into the rumen.

    PubMed

    Murphy, M R; Drone, P E; Woodford, S T

    1985-05-01

    The effects of feeding and various reticular infusions on ruminal holotrich concentrations were studied in an attempt to identify possible factors stimulating their migration into the rumen. It was concluded that glucose entering the reticulo-rumen shortly after feeding could stimulate migration of holotrich protozoa.

  9. Role of rumen butyrate in regulation of nitrogen utilization and urea nitrogen kinetics in growing sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate, a major rumen VFA, has been indirectly linked to enhancement of urea recycling based on increased expression of urea transporter (UT-B) in the rumen epithelia of steers fed a rumen butyrate-enhancing diet. Two studies were conducted to quantify the effect of elevated rumen butyrate concent...

  10. Rumen modulatory effect of thyme, clove and peppermint oils in vitro using buffalo rumen liquor

    PubMed Central

    Roy, Debashis; Tomar, S. K.; Kumar, Vinod

    2015-01-01

    Aim: The present study was conducted to examine the rumen modulatory effect of thyme, clove and peppermint oils on rumen fermentation pattern in vitro using roughage based diet. Materials and Methods: Thyme, clove and peppermint oils were tested at concentration of 0, 30, 300 and 600 mg/l (ppm) of total culture fluid using in vitro gas production technique in wheat straw based diet (concentrate: Wheat straw 50:50). Different in vitro parameters e.g., total gas production, methane production, nutrient degradability, volatile fatty acid (VFA) production and ammonia nitrogen concentration were studied using buffalo rumen liquor. Results: Thyme oil at higher dose level (600 ppm) reduced (p<0.05) total gas production, feed degradability and ammonia nitrogen (NH3-N) concentration whereas total VFA concentration was significantly lower (p>0.05) in 300 and 600 ppm dose levels. 600 ppm dose level of clove oil reduced (p<0.05) total gas production, feed degradability, total VFA and acetate to propionate ratio. Methane production was significantly reduced (p<0.05) in 300 and 600 ppm dose levels of clove and peppermint oil. Conclusion: Right combination of these essential oils may prove to enhance performance of animals by reducing methane production and inhibiting protein degradation in rumen. PMID:27047073

  11. Reponses of sheep to a vaccination of entodinial or mixed rumen protozoal antigens to reduce rumen protozoal numbers.

    PubMed

    Williams, Yvette J; Rea, Suzanne M; Popovski, Sam; Pimm, Carolyn L; Williams, Andrew J; Toovey, Andrew F; Skillman, Lucy C; Wright, André-Denis G

    2008-01-01

    Two rumen protozoa vaccine formulations containing either whole fixed Entodinium or mixed rumen protozoa cells were tested on Merino sheep with the aim of decreasing the number and/or activity of protozoa in the rumen. Negative control (no antigen) and positive control (Tetrahymena corlissi antigens) treatments were also included in the experiment. Blood and saliva were sampled to measure the specific immune response. Protozoal numbers in the rumen were monitored by microscopic counts. Vaccination with protozoal formulations resulted in the presence of specific IgG in plasma and saliva, but saliva titres were low. Titres after secondary vaccination were higher (P 0.05) by the vaccination and there was also no difference (P>0.05) between treatments in rumen fluid ammonia-N concentration or wool growth. In vitro studies investigated the binding ability of the antibodies and estimated the amount of antibody required to reduce cell numbers in the rumen. The studies showed that the antibodies did bind to and reduced protozoa numbers, but the amount of antibody generated by vaccination was not enough to produce results in an in vivo system. It is suggested that the vaccine could be improved if specific protozoal antigens are determined and isolated and that improved understanding of the actions of protozoa antibodies in rumen fluid and the relationships between levels of antibodies and numbers of protozoa in the rumen is needed.

  12. Absorption and exchange of water across rumen epithelium.

    PubMed

    Dobson, A; Sellers, A F; Gatewood, V H

    1976-11-01

    The osmotic pressure of solutions in the ventral sac of the rumen of the conscious cow was varied with Na Cl or mannitol. The mucosal blood flow measured by HTO clearance was minimal when the lumen contained an isotonic solution and rose threefold when the rumen was hypo- or hypertonic to plasma by 150 mosmol/kg. Thus osmotic gradients actoss the rumen epithelium stimulated mucosal blood flow. Using osmotic gradients small enough to avoid blood flow stimulation, the net water flow could be enhanced by butyrate, a chemical stimulator of blood flow. Thus water movement was partially limited by blood flow. This implied an appreciable change in osmotic pressure of the capillary blood toward that of the rumen contents. The relative importance of blood flow, membrane permeability, and solute uptake on water transport was assessed. The osmotic pressure in the rumen was stationary when the rumen solution was distinctly hypotonic to plasma. The absorbate in the absence of an osmotic gradient was thus hypertonic. The net uptake of solute increased rapidly when the solution in the lumen was hypertonic to plasma. This gave rise to a more rapid rate of change of osmotic pressure in the rumen under this condition.

  13. Identity of rumen fluke in deer.

    PubMed

    O'Toole, Ailis; Browne, John A; Hogan, Sean; Bassière, Thomas; DeWaal, Theo; Mulcahy, Grace; Zintl, Annetta

    2014-11-01

    As evidence is growing that in many temperate areas paramphistome infections are becoming more common and widespread, this study was undertaken to determine the role of deer as reservoirs for rumen fluke infections in livestock. A total of 144 deer faecal samples (88 from fallow deer, 32 from red deer and 24 samples from sika, sika/red deer hybrids) were screened for the presence of fluke eggs. Based on the ITS-2 rDNA locus plus flanking 5.8S and 28S sequences (ITS-2+), fluke eggs were identified to species level. Our results indicate that, of the 3 deer species, fallow deer had the highest fluke infection rates. Two rumen fluke species, Calicophoron daubneyi and Paramphistomum leydeni, with morphologically distinct eggs, were identified. Concurrent infections of the two paramphistome species and liver fluke, Fasciola hepatica, were common. Considering the comparatively low egg burdens observed in this study, it is unlikely that deer represent a significant source of infection for Irish livestock.

  14. Identity of rumen fluke in deer.

    PubMed

    O'Toole, Ailis; Browne, John A; Hogan, Sean; Bassière, Thomas; DeWaal, Theo; Mulcahy, Grace; Zintl, Annetta

    2014-11-01

    As evidence is growing that in many temperate areas paramphistome infections are becoming more common and widespread, this study was undertaken to determine the role of deer as reservoirs for rumen fluke infections in livestock. A total of 144 deer faecal samples (88 from fallow deer, 32 from red deer and 24 samples from sika, sika/red deer hybrids) were screened for the presence of fluke eggs. Based on the ITS-2 rDNA locus plus flanking 5.8S and 28S sequences (ITS-2+), fluke eggs were identified to species level. Our results indicate that, of the 3 deer species, fallow deer had the highest fluke infection rates. Two rumen fluke species, Calicophoron daubneyi and Paramphistomum leydeni, with morphologically distinct eggs, were identified. Concurrent infections of the two paramphistome species and liver fluke, Fasciola hepatica, were common. Considering the comparatively low egg burdens observed in this study, it is unlikely that deer represent a significant source of infection for Irish livestock. PMID:25127736

  15. Isolation and in vitro cultivation of the fibrolytic rumen ciliate Eremoplastron (Eudiplodinium) dilobum.

    PubMed

    Miltko, Renata; Pietrzak, Marta; Bełżecki, Grzegorz; Wereszka, Krzysztof; Michałowski, Tadeusz; Hackstein, Johannes H P

    2015-02-01

    The rumen ciliate Eremoplastron dilobum was isolated from sheep rumen fluid and cultivated in vitro as a species population. Four different salt solutions were used to prepare the culture media. However, only the "Artificial rumen fluid" composed of (g/L): K2HPO4-3.48, NaHCO3-2.1, NaCl-0.76, CaCl2×6H2O-0.33, CH3COONa-6.12, MgCl2×6H2O-0.3, Na2HPO4-1.71, NaHPO4×H2O-1.01 and distilled water enabled cultivation of this species for over 56 weeks. The protozoa were able to grow in a medium consisting of culture salt solution and powdered meadow hay (0.6mg/ml per d). The addition of wheat gluten did not increase the population density of E. dilobum whereas the supplemented crystalline cellulose and/or barley flour improved the growth of ciliates (P<0.05). The influence of xylan depended on its dose. The enzymatic studies confirmed the fibrolytic and amylolytic abilities of ciliates. Neither the solubility nor the increase of the supplemented dose of purified protein influenced the density of the ciliate population. The recommended food consisted of meadow hay, wheat gluten, crystalline cellulose and barley flour when supplied in the proportions of 0.6, 0.16, 0.12 and 0.12mg/mL per day. We observed morphological variation of the ciliates, involving partial or complete reduction of the caudal lobes.

  16. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Waltz, David L.

    1982-01-01

    Describes kinds of results achieved by computer programs in artificial intelligence. Topics discussed include heuristic searches, artificial intelligence/psychology, planning program, backward chaining, learning (focusing on Winograd's blocks to explore learning strategies), concept learning, constraint propagation, language understanding…

  17. Artificial Limbs

    MedlinePlus

    ... you are missing an arm or leg, an artificial limb can sometimes replace it. The device, which is ... activities such as walking, eating, or dressing. Some artificial limbs let you function nearly as well as before.

  18. Increased blood concentration of isopropanol in ketotic dairy cows and isopropanol production from acetone in the rumen.

    PubMed

    Sato, Hiroshi

    2009-08-01

    To evaluate acetone and isopropanol metabolism in bovine ketosis, the blood concentrations of isopropanol, acetone, plasma 3-hydroxybutyrate (3-HB) and other metabolites were analyzed in 12 healthy controls and 15 ketotic dairy cows including fatty liver and inferior prognosis after laparotomy for displaced abomasum. In ruminal fluid taken from 6 ketotic cows, ruminal isopropanol and acetone were also analyzed. Ketotic cows showed higher concentrations of isopropanol, acetone, 3-HB and nonesterified fatty acid, and higher activities of aspartate transaminase and gamma-glutamyl transferase than control cows. Blood samples had higher concentration of isopropanol accompanied by increased acetone. In the ketotic cows, acetone was detected not only in blood but also in ruminal fluid, while higher ruminal isopropanol did not necessarily accompany its elevation in the blood. Using 2 steers with rumen cannula, all ruminal content was emptied and then substituted with artificial saliva to evaluate the importance of ruminal microbes in isopropanol production. Under each condition of intact and emptied rumen, acetone was infused into the rumen and blood isopropanol was analyzed. The elevation in the blood isopropanol concentration after acetone infusion was markedly inhibited by the emptying. Here, increased blood concentrations of isopropanol and acetone were observed in ketotic cows, and the importance of ruminal microbes in isopropanol production was confirmed.

  19. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Information Technology Quarterly, 1985

    1985-01-01

    This issue of "Information Technology Quarterly" is devoted to the theme of "Artificial Intelligence." It contains two major articles: (1) Artificial Intelligence and Law" (D. Peter O'Neill and George D. Wood); (2) "Artificial Intelligence: A Long and Winding Road" (John J. Simon, Jr.). In addition, it contains two sidebars: (1) "Calculating and…

  20. Comparison of techniques for measurement of rumen pH in lactating dairy cows.

    PubMed

    Duffield, T; Plaizier, J C; Fairfield, A; Bagg, R; Vessie, G; Dick, P; Wilson, J; Aramini, J; McBride, B

    2004-01-01

    Subacute rumen acidosis is thought to be a common condition in early lactating dairy cattle; however, diagnosis is difficult. There are currently only two techniques available for measuring rumen pH under field conditions: rumenocentesis and oral stomach tube. Sixteen rumen-fistulated cows were sampled in four sites of the rumen (cranial-ventral, caudal-ventral, central, and cranial-dorsal) with a rumen cannula. Rumen pH results were compared to those obtained at the same time with rumenocentesis and with an oro-ruminal (Geishauser) probe. Rumen fluid was obtained between 6 and 12 wk of lactation. Samples were analyzed for pH, lactate, bicarbonate, sodium, potassium, and chloride. Rumen pH results were also compared to those obtained from 24-h continuous rumen pH measurement using indwelling rumen pH probes. Oro-ruminal probe samples had the highest pH values and the highest bicarbonate concentrations. Rumenocentesis samples had the lowest pH values and the lowest bicarbonate concentrations. Small differences in electrolyte concentrations were noted among rumen fluid collection techniques in the different rumen sites. The highest correlations of rumen pH were obtained between rumenocentesis and rumen cannulation (cranial-ventral), and between rumen cannulation (cranial-ventral) and the 24-h indwelling pH meter. Compared with samples obtained from the cranial-ventral rumen, rumenocentesis was more sensitive than the oro-ruminal probe in the measurement of low rumen pH; both techniques were moderately specific. The most accurate field technique was rumenocentesis. Improved field techniques are required for better on-farm diagnosis of subacute rumen acidosis.

  1. Methanogens: methane producers of the rumen and mitigation strategies.

    PubMed

    Hook, Sarah E; Wright, André-Denis G; McBride, Brian W

    2010-01-01

    Methanogens are the only known microorganisms capable of methane production, making them of interest when investigating methane abatement strategies. A number of experiments have been conducted to study the methanogen population in the rumen of cattle and sheep, as well as the relationship that methanogens have with other microorganisms. The rumen methanogen species differ depending on diet and geographical location of the host, as does methanogenesis, which can be reduced by modifying dietary composition, or by supplementation of monensin, lipids, organic acids, or plant compounds within the diet. Other methane abatement strategies that have been investigated are defaunation and vaccines. These mitigation methods target the methanogen population of the rumen directly or indirectly, resulting in varying degrees of efficacy. This paper describes the methanogens identified in the rumens of cattle and sheep, as well as a number of methane mitigation strategies that have been effective in vivo.

  2. [Methanogens and manipulation of methane production in the rumen].

    PubMed

    Guo, Yan-qiu; Hu, Wei-lian; Liu, Jian-xin

    2005-02-01

    Methanogens belong to the kingdom of Euryarchaeota in the domain of Archaea. They are characterized by their ability to produce methane under anaerobic conditions. Methane production in the rumen represents a loss of energy for the host animal, and, in addition, methane eructated by ruminants may contribute to a greenhouse effect or global warming. Reduction or elimination of methanogenesis in the rumen has been touted as a way of improving animal production and may marginally benefit to control of anthropogenic release of methane. More and more scientists focus on ruminal methanogens and methanogenesis recently. Authors summarized the manipulation of methanogenesis in the rumen, including defaunation, feed formulation, adding electron acceptors and stimulation of acetogens. The characteristics of methanogenic Archaea and the recent knowledge of the methanogenesis in the rumen were also reviewed in this article.

  3. [The course of rumen fermentation during alkalosis in cows].

    PubMed

    Zawadzki, W; Hejłasz, Z; Nicpoń, J

    1991-01-01

    The aim of the study was the investigation of rumen fermentation during alkalosis in cows. The study comprised some parameters of rumen fermentation, such as: pH, ammonia and volatile fatty acids (VFA) levels, also relationship between VFA, numbers of population of protozoa and bacteria, total production of gases in vitro particularly CO2 and CH4, amounts of lactic and total protein in rumen fluid and non-glucogenic/glucogenic ratio (NGGR) in the VFA mixture. On the basis of obtained results the amounts of fermented hexose, cell yield, ATP produced and hydrogen utilization were calculated. During alkalosis there was observed significant fall of VFA production, especially acetic and butyric acids, also lower production of gases, particularly CH4--probably as a result of selective reduction of methanogenic strain bacteria. The levelling of value of rumen pattern of fermentation occurred after the beginning of lactation probably as a result of metabolism products excretion together with milk. PMID:1842617

  4. Dynamics of protozoa in the rumen of sheep.

    PubMed

    Leng, R A

    1982-09-01

    Protozoa were labelled by incubating 100 ml rumen fluid with [14C]choline for 1 h. The protozoa were concentrated by centrifugation and then washed with rumen fluid. This reduced residual 14C in the fluid medium to insignificant amounts while still retaining the viability of the labelled protozoa. Washing procedures using formal saline (40 g formaldehyde/1 saline (9 g sodium chloride/1)) and saline were developed to isolate protozoa for estimation of specific radioactivity. 2. The protozoal pool in freshly-collected rumen fluid incubated in vitro retained 90% of the radioactivity for up to 6 h following addition of 14C-labelled protozoa produced as indicated previously. The specific radioactivity of protozoa did not change during the incubation period. 3. Protozoa labelled with [14C]choline and then stored until they died rapidly lost 14C to methane when they were incubated in rumen fluid or were injected into the rumen. Some [14C]choline was salvaged under these conditions by the live protozoa present as they apparently incorporated up to 13% of the label from the dead protozoa. However, protozoal debris from the injected solution could also have been present in the isolated protozoa. 4. The in vitro results suggested that the protozoal preparations were viable, and that the incorporated choline did not have a turnover in excess of the turnover of nitrogen (i.e. specific radioactivity remained constant with time in vitro) suggesting that the dilution of specific radioactivity of protozoa following mixing of a 14C-labelled dose of protozoa represented the rate of irreversible loss and also replacement of protozoa in the rumen. 5. 14C-labelled protozoa had a half-life in the rumen which was greater than that of rumen fluid and in six animals the protozoal replacement rate was 1-4.1 mg N/min. 6. Losses of 14C from labelled protozoa in the rumen in methane or via abomasal digesta were 65 and 35% respectively. 7. The results suggest that protozoal growth may be as high

  5. Rumen metabolism and absorption of a /sup 14/C-labelled elastomeric copolymer and its value as a roughage substitute for cattle

    SciTech Connect

    Bartley, E.E.; Meyer, R.M.; Call, E.P.

    1981-05-01

    Several synthetic elastomeric and plastomeric polymers were tested for suitability as artificial roughages. They were fed to rumenfistulated cattle fed grain only. Several of the polymers were regurgitated, remasticated and reswallowed, and they formed thin strands of intermeshed fiber that produced a large, loosely woven hay-like mass that floated on the rumen contents. An elastomeric polymer consisting of copolymers of 80 to 90% ethylene and 10 to 20% propylene, with a tensile strength at yield of 45.7 kg/cm2, a hardness of 30 units (Shore D hardness scale) and a tensile strength at 300% elongation of 51.0 kg/cm2, was selected for further testing. The copolymer was fed at about 90 g/head daily for 127 days to cattle fed grain only. At slaughter, rumens contained an average of 8.0 kg copolymer (dry basis). Cattle fed the copolymer had healthier rumen papillae and epithelia of the abomasum and small intestines than did control animals fed grain only. Using /sup 14/C-labeled copolymer, we found that the copolymer was not degraded by rumen microorganisms or acid-pepsin solution. When /sup 14/C-labeled copolymer was fed to milking cows, no /sup 14/C activity was found in milk, blood or urine. Upon slaughter, about 100% of the /sup 14/C activity was recovered from digesta and feces. We concluded that the copolymer was not absorbed from the digestive tract.

  6. [The composition of rumen fluid of cattle collected from fistulas using ultrasound].

    PubMed

    Höltershinken, M; Vlizlo, V; Mertens, M; Scholz, H

    1992-05-01

    Concentrations of rumen fluid characteristics were compared between rumen fluid which was taken by standardized conditions via stomach tube and via rumen fistula respectively depending on time after feeding (2.5 or 9 hours ppr.). The results were as follows: Differences (%) of the characteristics of rumen fluid taken via stomach tube to that by rumen fistula: [table: see text] Other investigations showed that the admixture of saliva to rumen fluid resulted in a degradation of the concentrations especially of VFA. The pH was not appreciable changed. The consequences for veterinary practitioners are discussed.

  7. Resistance of Soil-Bound Prions to Rumen Digestion

    PubMed Central

    Saunders, Samuel E.; Bartelt-Hunt, Shannon L.; Bartz, Jason C.

    2012-01-01

    Before prion uptake and infection can occur in the lower gastrointestinal system, ingested prions are subjected to anaerobic digestion in the rumen of cervids and bovids. The susceptibility of soil-bound prions to rumen digestion has not been evaluated previously. In this study, prions from infectious brain homogenates as well as prions bound to a range of soils and soil minerals were subjected to in vitro rumen digestion, and changes in PrP levels were measured via western blot. Binding to clay appeared to protect noninfectious hamster PrPc from complete digestion, while both unbound and soil-bound infectious PrPSc proved highly resistant to rumen digestion. In addition, no change in intracerebral incubation period was observed following active rumen digestion of unbound hamster HY TME prions and HY TME prions bound to a silty clay loam soil. These results demonstrate that both unbound and soil-bound prions readily survive rumen digestion without a reduction in infectivity, further supporting the potential for soil-mediated transmission of chronic wasting disease (CWD) and scrapie in the environment. PMID:22937149

  8. [The effect of methanol extracts of sawdust on the digestion of cellulose, hay and wheat bran in vitro].

    PubMed

    Jalc, D; Zelenák, I; Bucko, J; Vendrák, T; Siroka, P

    1990-07-01

    An experiment was treated to investigate the effects of an extract of conditioned beech sawdust (80% methanol extraction) on the in vitro digestion of cellulose and on the digestion of hay and wheat bran diet (80 to 20%) in a artificial rumen (Rusitec). The addition of 10, 25, 50, 75 mg of extract to 0.25 g cellulose reduced significantly its digestibility from 94.5 to 92.9%; 90.4; 85.2; 82.1 and 80.1%, respectively. The addition of 0.6, 1.5 and 3.0 g of extract to 14 g diet DM in Rusitec decreased the digestibility from 49.6 to 41.8%. Gas (CO2, H2, CH4) production increased as well as the production of total volatile fatty acids: acetic, propionic, n-butyric and isobutyric, glucose utilization and ATP production were also better. The addition of extracts did not influence significantly the effectiveness of microbial proteosynthesis (YATP). The methanol extract of conditioned beech sawdust contained reducing sugars (saccharides), besides the phenolic substances (syringaldehyde and vanillin); these sugars influenced diet fermentation in Rusitec. PMID:2087799

  9. Using rumen probes to examine effects of conjugated linoleic acids and dietary concentrate proportion on rumen pH and rumen temperature of periparturient dairy cows.

    PubMed

    Petzold, M; Meyer, U; Spilke, J; Dänicke, S

    2014-08-01

    The study aimed to examine the influence of supplemented conjugated linoleic acids (CLA) to periparturient cows receiving different concentrate proportions antepartum on rumen pH (RpH) and rumen temperature (RT). Twenty pregnant German Holstein cows were equipped with rumen probes for continuous RpH and RT measurement in a frequency of 15 min to investigate effects of dietary concentrate and CLA around parturition and the impact of parturition itself on RpH and RT. Cows had ad libitum access to partial mixed rations, 3 weeks prior to calving until day 7 post-partum. Antepartum, cows received 100 g/day control fat (CON) or CLA supplement, either in low (20%; CON-20, CLA-20) or high concentrate diet (60%; CON-60, CLA-60). Post-partum, concentrate proportion was adjusted to 50% while fat supplementation continued. Compared with adapted feeding, high concentrate proportions antepartum tended to increase DMI and reduced RpH. Groups CON-60 and CLA-60 spent more than 4 h per day below RpH 5.6 during late pregnancy, indicating the presence of subacute rumen acidosis (SARA). The RT remained unaffected antepartum. Before calving, cows spent less time below RpH 5.6 and SARA could be detected in each group post-partum. Mean RpH increased slightly antepartum, whereas few hours before parturition a sharp decrease in RpH could be observed, accompanied with increased RT. Overall, it seems that CLA supplementation influences RpH and RT. Bearing in mind that rumen parameters fluctuate during day and herd level must be known, rumen probes for continuous RpH and RT measurement could be a useful management tool for animal health surveillance and may also help to predict parturition.

  10. Changes in rumen bacterial community composition following feeding of silage inoculated with a commercial silage inoculant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some silage inoculants yield an increase in milk production without increasing fiber digestibility, possibly through altering the rumen microflora. We hypothesized that silage treated with a commercial inoculant (Lactobacillus plantarum, LP) would improve milk production and would alter rumen bacter...

  11. Improving rumen ecology and microbial population by dried rumen digesta in beef cattle.

    PubMed

    Cherdthong, Anusorn; Wanapat, Metha; Saenkamsorn, Anuthida; Supapong, Chanadol; Anantasook, Nirawan; Gunun, Pongsatorn

    2015-06-01

    Four Thai native beef cattle with initial body weight (BW) of 91.8 ± 4.75 kg were randomly assigned according to a 4 × 4 Latin square design to receive four concentrates replacement levels of soybean meal (SBM) by dried rumen digesta (DRD) at 0, 33, 67, and 100 % on dry matter (DM) basis. All cattle were fed rice straw ad libitum while additional concentrate was fed at 0.5 % BW daily. The experiment was conducted for four periods of 21 days. Rumen fluid was analyzed for predominant cellulolytic bacterial population by using real-time PCR technique. Increasing levels of DRD did not alter total feed intake, ruminal pH and temperature, and plasma urea nitrogen (P > 0.05). Protozoa and fungal population were not differed by DRD supplementation while population of bacteria at 4 h post feeding was increased when SBM was replaced with DRD at 66 and 100 % DM. Population of total bacteria and R. flavefaciens at 4 h post feeding were significantly highest with inclusion of 100 % of DRD in the ration. The experimental diets has no effect on excretion and absorption of purine derivatives (P > 0.05), while microbial crude protein and efficiency of microbial N synthesis were significantly increased with DRD inclusion in the diet and highest with 100 % DRD replacement (P > 0.05). Replacement of SBM by DRD at 100 % DM improved the rumen ecology and microbial population in beef cattle fed on rice straw.

  12. Rumen fluid metabolomics analysis associated with feed efficiency on crossbred steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rumen plays a central role in the efficiency of digestion in ruminants. To identify potential differences in rumen function that lead to differences in feed efficiency, rumen metabolomic analysis by ultra-performance liquid chromatography/ time-of-flight mass spectrometry (MS) and multivariate/u...

  13. Instability and apparent lack of metabolism of phomopsin A during incubation with ovine rumen fluid.

    PubMed

    Vogel, P

    1988-06-01

    To investigate the stability and possible metabolism of phomopsin A in rumen fluid, phomopsin A was incubated in ovine rumen fluid - buffer mixtures for 24 h. High performance liquid chromatographic analysis of extracted incubation mixtures demonstrated that although phomopsin A was degraded, metabolism by rumen microorganisms appears not to be important during 24 h incubation.

  14. Board-invited review: Rumen microbiology: Leading the way in microbial ecology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robert Hungate, considered the father of rumen microbiology, was the first to initiate a systematic exploration of the microbial ecosystem of the rumen, but he was not alone. The techniques he developed to isolate and identify cellulose-digesting bacteria from the rumen have had a major impact not ...

  15. Artificial intelligence

    SciTech Connect

    Firschein, O.

    1984-01-01

    This book presents papers on artificial intelligence. Topics considered include knowledge engineering, expert systems, applications of artificial intelligence to scientific reasoning, planning and problem solving, error recovery in robots through failure reason analysis, programming languages, natural language, speech recognition, map-guided interpretation of remotely-sensed imagery, and image understanding architectures.

  16. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Thornburg, David D.

    1986-01-01

    Overview of the artificial intelligence (AI) field provides a definition; discusses past research and areas of future research; describes the design, functions, and capabilities of expert systems and the "Turing Test" for machine intelligence; and lists additional sources for information on artificial intelligence. Languages of AI are also briefly…

  17. Different forms of rumen dystonia in dairy cows.

    PubMed

    Sederevicius, A; Kantautaité, J

    1993-01-01

    Four naturally occurring main forms of rumen dystonia of alimentary origin were observed in cattle: acidotic conditions; microflora inactivity; acidosis, and alkalosis. The following disturbances in the metabolism of carbohydrates, protein and energy were observed: 1. Acidotic conditions in rumen--ruminal pH, total and protein nitrogen decreased, whereas the total amount of VFA and the reduction activity of bacteria increased. 2. Inactivity of rumen microflora--significant changes of pH of rumen fluid were not observed, but the total number and activity of infusoria decreased. Fermentation of glucose, digestibility of cellulose, and reduction activity of bacteria decreased, whereas the amount of non-protein nitrogen increased. 3. Acidosis--ruminal pH, reduction activity of bacteria, and total number of VFA decreased. The percentage ratio between VFA changed--acetic acid concentration decreased, the concentration of valeric and caproic acids increased. The amount of total and non-protein nitrogen increased. 4. Alkalosis--ruminal pH increased, reduction activity of bacteria, fermentation of glucose, and concentration of VFA decreased. The amount of total and non-protein nitrogen increased. This investigation of different forms of rumen dystonia of alimentary origin is believed to be useful for the development of more effective treating methods and measures.

  18. Fluid absorption from the rumen during rehydration in sheep.

    PubMed

    Dahlborn, K; Holtenius, K

    1990-01-01

    Water movements across the rumen wall were studied during rehydration in four fistulated sheep. The animals were dehydrated for 48 h which increased total plasma protein, plasma osmolality, plasma Na+, arginine vasopressin and plasma renin activity. Two series of experiments were performed: Expt I with no food available during rehydration, and Expt II where the animals were fed hay. On the rehydration day, a fluid marker (cobalt-EDTA) was administered into the rumen. To avoid water outflow from the rumen a stopper was inserted into the reticulo-omasal orifice. When the animals were provided with water they immediately drank 9 l. The water offered contained the same marker concentration (Co2+) as in the rumen liquid. In Expt I, Co2+ concentration increased after drinking, and remained elevated until the stopper was removed. The highest value was obtained after 20 min, and this corresponded to at least a 11 water absorption in individual animals. In Expt II, the sheep immediately started to eat following drinking and the inflow of saliva caused a dilution of the marker. Plasma osmolality and Na+ concentration decreased in both experiments indicating that water absorption occurred in both experiments. Removal of the stopper did not cause any significant changes in the parameters measured. Vasopressin concentration fell immediately on the sight of water, and then continued to decrease. It is concluded that in the sheep, voluntary drinking is followed by an immediate and substantial absorption of water from the rumen.

  19. Ruminococcal cellulosome systems from rumen to human.

    PubMed

    Ben David, Yonit; Dassa, Bareket; Borovok, Ilya; Lamed, Raphael; Koropatkin, Nicole M; Martens, Eric C; White, Bryan A; Bernalier-Donadille, Annick; Duncan, Sylvia H; Flint, Harry J; Bayer, Edward A; Moraïs, Sarah

    2015-09-01

    A cellulolytic fiber-degrading bacterium, Ruminococcus champanellensis, was isolated from human faecal samples, and its genome was recently sequenced. Bioinformatic analysis of the R. champanellensis genome revealed numerous cohesin and dockerin modules, the basic elements of the cellulosome, and manual sequencing of partially sequenced genomic segments revealed two large tandem scaffoldin-coding genes that form part of a gene cluster. Representative R. champanellensis dockerins were tested against putative cohesins, and the results revealed three different cohesin-dockerin binding profiles which implied two major types of cellulosome architectures: (i) an intricate cell-bound system and (ii) a simplistic cell-free system composed of a single cohesin-containing scaffoldin. The cell-bound system can adopt various enzymatic architectures, ranging from a single enzyme to a large enzymatic complex comprising up to 11 enzymes. The variety of cellulosomal components together with adaptor proteins may infer a very tight regulation of its components. The cellulosome system of the human gut bacterium R. champanellensis closely resembles that of the bovine rumen bacterium Ruminococcus flavefaciens. The two species contain orthologous gene clusters comprising fundamental components of cellulosome architecture. Since R. champanellensis is the only human colonic bacterium known to degrade crystalline cellulose, it may thus represent a keystone species in the human gut.

  20. The use of intragastric nutrition to study saliva secretion and the relationship between rumen osmotic pressure and water transport.

    PubMed

    Zhao, G Y; Durić, M; Macleod, N A; Orskov, E R; Hovell, F D; Feng, Y L

    1995-02-01

    Four sheep sustained by intragastric nutrition were used to study saliva secretion and the relationship between osmotic pressure in the rumen and net water transport across the rumen wall. Different concentrations of buffer were infused into the rumen to change the rumen osmotic pressure. Salivary secretion was estimated from entrance of P into the rumen. Net water transport across the rumen wall was calculated as the difference between water inflow and water outflow from the rumen. A negative linear relationship between the rumen osmotic pressure (X, mOsm/kg) and the water absorption across the rumen wall (Y, ml/h) was found: Y = (394 SE 8.3)-(1.22 SE 0.03) X, r2 0.83, (P < 0.001), and a positive linear relationship was found between the rumen osmotic pressure (X, mOsm/kg) and the outflow rate of rumen fluid (Y, ml/h): Y = (34.0 SE 8.0) + (0.97 SE 0.03) X, r2 0.56, (P < 0.001). The implication is that rumen osmotic pressure can be a key factor in the control of the net water transport across the rumen wall, the outflow of rumen fluid to omasum and the rumen liquid dilution rate. A method is suggested by which salivary secretion in sheep may be calculated from the water balance in the rumen.

  1. Observations on the potential across the rumen of the sheep.

    PubMed

    Ferreira, H G; Harrison, F A; Keynes, R D; Nauss, A H

    1966-12-01

    1. The electric potential difference between rumen contents and jugular venous blood was measured in anaesthetized sheep. In order to investigate the effect on the potential of changing the ionic concentrations within the rumen, the digesta were removed from the rumen and various salt solutions were substituted. The reticulo-rumen sac was isolated before the experiment by ligation of the oesophagus and the reticulo-omasal junction. 2. The observation of Dobson & Phillipson (1958) that the rumen contents are normally of the order of 30 mV negative to the blood was confirmed. 3. For potassium concentrations between 25 and 100 mM the potential at constant [Na+] varied linearly with log [K+]. With sulphate as the anion, the slope for a 10-fold concentration change was 39.7 +/- 3.0 mV when [Na+] was around 50 mM. The slope showed a tendency to increase when [Na+] was lowered, and to decrease when [Na+] was raised. 4. When chloride was substituted for sulphate, both the slope and the absolute size of the potential were slightly reduced. 5. When the sodium concentration was varied at constant [K+], the potential increased as an approximately linear function of [Na+]. At around 10 mM-K the mean slope was 0-32 +/- 0.07 mV/mM; at the highest potassium concentrations it fell to 0-13 +/- 0 05 mV/mM. 6. In most of these experiments isotonicity was maintained with sucrose. The results of a few tests in which Li+ was substituted for Na+ or K+ suggested that the rumen epithelium behaves in a relatively inert fashion towards this ion.

  2. Rumen microbial communities influence metabolic phenotypes in lambs

    PubMed Central

    Morgavi, Diego P.; Rathahao-Paris, Estelle; Popova, Milka; Boccard, Julien; Nielsen, Kristian F.; Boudra, Hamid

    2015-01-01

    The rumen microbiota is an essential part of ruminants shaping their nutrition and health. Despite its importance, it is not fully understood how various groups of rumen microbes affect host-microbe relationships and functions. The aim of the study was to simultaneously explore the rumen microbiota and the metabolic phenotype of lambs for identifying host-microbe associations and potential biomarkers of digestive functions. Twin lambs, separated in two groups after birth were exposed to practices (isolation and gavage with rumen fluid with protozoa or protozoa-depleted) that differentially restricted the acquisition of microbes. Rumen microbiota, fermentation parameters, digestibility and growth were monitored for up to 31 weeks of age. Microbiota assembled in isolation from other ruminants lacked protozoa and had low bacterial and archaeal diversity whereas digestibility was not affected. Exposure to adult sheep microbiota increased bacterial and archaeal diversity independently of protozoa presence. For archaea, Methanomassiliicoccales displaced Methanosphaera. Notwithstanding, protozoa induced differences in functional traits such as digestibility and significantly shaped bacterial community structure, notably Ruminococcaceae and Lachnospiraceae lower up to 6 folds, Prevotellaceae lower by ~40%, and Clostridiaceae and Veillonellaceae higher up to 10 folds compared to microbiota without protozoa. An orthogonal partial least squares-discriminant analysis of urinary metabolome matched differences in microbiota structure. Discriminant metabolites were mainly involved in amino acids and protein metabolic pathways while a negative interaction was observed between methylotrophic methanogens Methanomassiliicoccales and trimethylamine N-oxide. These results stress the influence of gut microbes on animal phenotype and show the potential of metabolomics for monitoring rumen microbial functions. PMID:26528248

  3. Rumen microbial communities influence metabolic phenotypes in lambs.

    PubMed

    Morgavi, Diego P; Rathahao-Paris, Estelle; Popova, Milka; Boccard, Julien; Nielsen, Kristian F; Boudra, Hamid

    2015-01-01

    The rumen microbiota is an essential part of ruminants shaping their nutrition and health. Despite its importance, it is not fully understood how various groups of rumen microbes affect host-microbe relationships and functions. The aim of the study was to simultaneously explore the rumen microbiota and the metabolic phenotype of lambs for identifying host-microbe associations and potential biomarkers of digestive functions. Twin lambs, separated in two groups after birth were exposed to practices (isolation and gavage with rumen fluid with protozoa or protozoa-depleted) that differentially restricted the acquisition of microbes. Rumen microbiota, fermentation parameters, digestibility and growth were monitored for up to 31 weeks of age. Microbiota assembled in isolation from other ruminants lacked protozoa and had low bacterial and archaeal diversity whereas digestibility was not affected. Exposure to adult sheep microbiota increased bacterial and archaeal diversity independently of protozoa presence. For archaea, Methanomassiliicoccales displaced Methanosphaera. Notwithstanding, protozoa induced differences in functional traits such as digestibility and significantly shaped bacterial community structure, notably Ruminococcaceae and Lachnospiraceae lower up to 6 folds, Prevotellaceae lower by ~40%, and Clostridiaceae and Veillonellaceae higher up to 10 folds compared to microbiota without protozoa. An orthogonal partial least squares-discriminant analysis of urinary metabolome matched differences in microbiota structure. Discriminant metabolites were mainly involved in amino acids and protein metabolic pathways while a negative interaction was observed between methylotrophic methanogens Methanomassiliicoccales and trimethylamine N-oxide. These results stress the influence of gut microbes on animal phenotype and show the potential of metabolomics for monitoring rumen microbial functions. PMID:26528248

  4. [Progesterone transport across the wall of the rumen of sheep].

    PubMed

    Borisenkov, M F; Vaĭkishnoraĭte, M A; Kaneva, A M

    2003-09-01

    Data on content of fiber, lignin and progesterone in reticulo-ruminal chyme and progesterone in blood serum and saliva of sheep throughout the reproductive cycle and at intramuscular injection of progesterone, are presented. A direct correlation between concentration of progesterone in blood and chyme was revealed. 1.5% of progesterone entered the reticulo-rumen with saliva. Transport of hormone through the wall of forestomach is the main way of progesterone entering the reticulo-rumen. The transport is carried out against the gradient of hormone concentration. Possible participation of progesterone adsorption on lignin in explanation of this transport, is discussed.

  5. [Lignocellulose degrading bacteria and their genes encoding cellulase/hemicellulase in rumen--a review].

    PubMed

    Chen, Furong; Zhu, Yaxin; Dong, Xiuzhu; Liu, Lihua; Huang, Li; Dai, Xin

    2010-08-01

    Rumen of ruminant animals is known as a natural reactor involved in highly efficient lignocelluloses degradation. Rumen fibrolytic microbes have attracted an increasing attention for their potential value in biofuel research. Studies on rumen microbes have traditionally entailed the isolation of fibrolytic bacteria and subsequent analysis of fibrolytic enzymes. Developments in genomic and metagenomic approaches have made it possible to isolate directly genes and gene clusters encoding fibrolytic activities from rumen samples, permitting a global analysis of mechanisms of degradation of lignocellulose in rumen. Research in this field shows that lignocellulose degradation in rumen is a complex process involving a number of different microbes and is effected by a huge array of hydrolytic enzymes in a concerted fashion. This review briefly summarizes results from recent studies, especially metagenomic studies, on lignocellulose degradation in rumen.

  6. Modeling the distribution of ciliate protozoa in the reticulo-rumen using linear programming.

    PubMed

    Hook, S E; Dijkstra, J; Wright, A-D G; McBride, B W; France, J

    2012-01-01

    The flow of ciliate protozoa from the reticulo-rumen is significantly less than expected given the total density of rumen protozoa present. To maintain their numbers in the reticulo-rumen, protozoa can be selectively retained through association with feed particles and the rumen wall. Few mathematical models have been designed to model rumen protozoa in both the free-living and attached phases, and the data used in the models were acquired using classical techniques. It has therefore become necessary to provide an updated model that more accurately represents these microorganisms and incorporates the recent literature on distribution, sequestration, and generation times. This paper represents a novel approach to synthesizing experimental data on rumen microorganisms in a quantitative and structured manner. The development of a linear programming model of rumen protozoa in an approximate steady state will be described and applied to data from healthy ruminants consuming commonly fed diets. In the model, protozoa associated with the liquid phase and protozoa attached to particulate matter or sequestered against the rumen wall are distinguished. Growth, passage, death, and transfer of protozoa between both pools are represented. The results from the model application using the contrasting diets of increased forage content versus increased starch content indicate that the majority of rumen protozoa, 63 to 90%, are found in the attached phase, either attached to feed particles or sequestered on the rumen wall. A slightly greater proportion of protozoa are found in the attached phase in animals fed a hay diet compared with a starch diet. This suggests that experimental protocols that only sample protozoa from the rumen fluid could be significantly underestimating the size of the protozoal population of the rumen. Further data are required on the distribution of ciliate protozoa in the rumen of healthy animals to improve model development, but the model described herein

  7. [Absorption of amino acids from the perfused ovine rumen].

    PubMed

    L' Leng; Tomás, J; Várady, J; Szányiová, M

    1978-06-01

    The experiments with extracoroporeal perfusion of sheep rumen were performed [Leng et al., 1977]. Bovine plasma, diluted in a 1:1ratio with an isotonic solution of sodium chloride, was used for four perfusions, and autologous blood was used for two perfusions in the course of 150 minutes. After 60 minutes perfusion 20 g enzymatic casein hydrolyzate were applied to the rumen. The levels of free amino acids in the perfusate were recorded after 60 minutes' perfusion [the first phase of perfusion] and at the end of the experiment [the second phase]. The levels of lysine, aspartic acid and glutamic acid increased after perfusions with bovine plasma during the first phase, the levels of glutamic acid, phenylalanine, and in one case of alanine, increased after perfusions with autologus blood. Simultaneously the level of valine decreased after perfusions with bovine plasma, and after perfusions with blood the levels of arginine and valine, and/or lysine, dropped. During the second phase of perfusion, the levels of all the observed amino acids except methionine [bovine plasma], and/or orginine and methionine [blood] rose in the perfusate. The experiments showed that the level of amino acids in the rumen content presented a decisive factor affecting amino acid absorption from the rumen into the blood. Transformation of the amino acids during their passage through the remen wall may be assumed, and glutamic acid is one of the chief products of this process.

  8. The microbial composition and metabolic potential of the ovine rumen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rumen is efficient at biotransforming nitroaromatic explosive compounds, such as TNT, RDX, and HMX, which have been used widely in US military munitions. These compounds are present in > 4,000 military items, from large bombs to very small igniters. However, their manufacturing processes have g...

  9. Low protein silage associated with rumen impaction in suckler cows.

    PubMed

    2016-04-23

    Rumen impaction associated with low protein diets in a suckler cowCampylobacteriosis in suckler cowsPlant toxicity in ewesListerial encephalitis in ewes ITALIC! Chorioptes bovis-associated infertility in ramsThese are among matters discussed in the disease surveillance report for January 2016 from SAC Consulting: Veterinary Services (SAC C VS).

  10. Cellulase from Ruminococcus albus and mixed rumen microorganisms.

    PubMed

    Leatherwood, J M

    1965-09-01

    Cellulase in the cultural filtrates of Ruminococcus albus and cellulase extracted from mixed rumen microorganisms were investigated with acid-swollen cellulose and carboxymethylcellulose as substrates. Maximal activity occurred at approximately pH 5.8 and 47 C. Apparent Michaelis constants (K(m)) varied between 0.53 and 0.02% carboxymethylcellulose, depending on the level of activity and the method of assay. R. albus cellulase has a lower K(m) value than the enzyme extracted from mixed rumen microorganisms. Antisera from rabbits immunized with a cellulase preparation from R. albus inhibited the cellulolytic activity of both systems. Based on the relative degree of inhibition, approximately 20% of the cellulase of the mixed rumen microorganisms was immunologically similar to R. albus cellulase. Ratios of activity in different assay techniques showed the two sources of activity to be similar in the mechanisms of degradation. However, glucose is the main product of cellulose degradation by mixed rumen microorganisms, and cellobiose is the product of degradation by R. albus.

  11. Exploring the sheep rumen microbiome for carbohydrate-active enzymes.

    PubMed

    Lopes, Lucas Dantas; de Souza Lima, André Oliveira; Taketani, Rodrigo Gouvêa; Darias, Phillip; da Silva, Lília Raquel Fé; Romagnoli, Emiliana Manesco; Louvandini, Helder; Abdalla, Adibe Luiz; Mendes, Rodrigo

    2015-07-01

    The rumen is a complex ecosystem enriched for microorganisms able to degrade biomass during the animal's digestion process. The recovery of new enzymes from naturally evolved biomass-degrading microbial communities is a promising strategy to overcome the inefficient enzymatic plant destruction in industrial production of biofuels. In this context, this study aimed to describe the bacterial composition and functions in the sheep rumen microbiome, focusing on carbohydrate-active enzymes (CAE). Here, we used phylogenetic profiling analysis (inventory of 16S rRNA genes) combined with metagenomics to access the rumen microbiome of four sheep and explore its potential to identify fibrolytic enzymes. The bacterial community was dominated by Bacteroidetes and Firmicutes, followed by Proteobacteria. As observed for other ruminants, Prevotella was the dominant genus in the microbiome, comprising more than 30 % of the total bacterial community. Multivariate analysis of the phylogenetic profiling data and chemical parameters showed a positive correlation between the abundance of Prevotellaceae (Bacteroidetes phylum) and organic matter degradability. A negative correlation was observed between Succinivibrionaceae (Proteobacteria phylum) and methane production. An average of 2 % of the shotgun metagenomic reads was assigned to putative CAE when considering nine protein databases. In addition, assembled contigs allowed recognition of 67 putative partial CAE (NCBI-Refseq) representing 12 glycosyl hydrolase families (Pfam database). Overall, we identified a total of 28 lignocellulases, 22 amylases and 9 other putative CAE, showing the sheep rumen microbiome as a promising source of new fibrolytic enzymes.

  12. Rumen microbiome from steers differing in feed efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cattle rumen has a diverse microbial ecosystem that is essential for the host to digest plant material. Extremes in body weight (BW) gain in mice and humans have been associated with different intestinal microbial populations. The objective of this study was to characterize the microbiome of th...

  13. Exploring the sheep rumen microbiome for carbohydrate-active enzymes.

    PubMed

    Lopes, Lucas Dantas; de Souza Lima, André Oliveira; Taketani, Rodrigo Gouvêa; Darias, Phillip; da Silva, Lília Raquel Fé; Romagnoli, Emiliana Manesco; Louvandini, Helder; Abdalla, Adibe Luiz; Mendes, Rodrigo

    2015-07-01

    The rumen is a complex ecosystem enriched for microorganisms able to degrade biomass during the animal's digestion process. The recovery of new enzymes from naturally evolved biomass-degrading microbial communities is a promising strategy to overcome the inefficient enzymatic plant destruction in industrial production of biofuels. In this context, this study aimed to describe the bacterial composition and functions in the sheep rumen microbiome, focusing on carbohydrate-active enzymes (CAE). Here, we used phylogenetic profiling analysis (inventory of 16S rRNA genes) combined with metagenomics to access the rumen microbiome of four sheep and explore its potential to identify fibrolytic enzymes. The bacterial community was dominated by Bacteroidetes and Firmicutes, followed by Proteobacteria. As observed for other ruminants, Prevotella was the dominant genus in the microbiome, comprising more than 30 % of the total bacterial community. Multivariate analysis of the phylogenetic profiling data and chemical parameters showed a positive correlation between the abundance of Prevotellaceae (Bacteroidetes phylum) and organic matter degradability. A negative correlation was observed between Succinivibrionaceae (Proteobacteria phylum) and methane production. An average of 2 % of the shotgun metagenomic reads was assigned to putative CAE when considering nine protein databases. In addition, assembled contigs allowed recognition of 67 putative partial CAE (NCBI-Refseq) representing 12 glycosyl hydrolase families (Pfam database). Overall, we identified a total of 28 lignocellulases, 22 amylases and 9 other putative CAE, showing the sheep rumen microbiome as a promising source of new fibrolytic enzymes. PMID:25900454

  14. Rumen microbiome from steers differing in feed efficiency.

    PubMed

    Myer, Phillip R; Smith, Timothy P L; Wells, James E; Kuehn, Larry A; Freetly, Harvey C

    2015-01-01

    The cattle rumen has a diverse microbial ecosystem that is essential for the host to digest plant material. Extremes in body weight (BW) gain in mice and humans have been associated with different intestinal microbial populations. The objective of this study was to characterize the microbiome of the cattle rumen among steers differing in feed efficiency. Two contemporary groups of steers (n=148 and n=197) were fed a ration (dry matter basis) of 57.35% dry-rolled corn, 30% wet distillers grain with solubles, 8% alfalfa hay, 4.25% supplement, and 0.4% urea for 63 days. Individual feed intake (FI) and BW gain were determined. Within contemporary group, the four steers within each Cartesian quadrant were sampled (n=16/group) from the bivariate distribution of average daily BW gain and average daily FI. Bacterial 16S rRNA gene amplicons were sequenced from the harvested bovine rumen fluid samples using next-generation sequencing technology. No significant changes in diversity or richness were indicated, and UniFrac principal coordinate analysis did not show any separation of microbial communities within the rumen. However, the abundances of relative microbial populations and operational taxonomic units did reveal significant differences with reference to feed efficiency groups. Bacteroidetes and Firmicutes were the dominant phyla in all ruminal groups, with significant population shifts in relevant ruminal taxa, including phyla Firmicutes and Lentisphaerae, as well as genera Succiniclasticum, Lactobacillus, Ruminococcus, and Prevotella. This study suggests the involvement of the rumen microbiome as a component influencing the efficiency of weight gain at the 16S level, which can be utilized to better understand variations in microbial ecology as well as host factors that will improve feed efficiency. PMID:26030887

  15. Rumen Microbiome from Steers Differing in Feed Efficiency

    PubMed Central

    2015-01-01

    The cattle rumen has a diverse microbial ecosystem that is essential for the host to digest plant material. Extremes in body weight (BW) gain in mice and humans have been associated with different intestinal microbial populations. The objective of this study was to characterize the microbiome of the cattle rumen among steers differing in feed efficiency. Two contemporary groups of steers (n=148 and n=197) were fed a ration (dry matter basis) of 57.35% dry-rolled corn, 30% wet distillers grain with solubles, 8% alfalfa hay, 4.25% supplement, and 0.4% urea for 63 days. Individual feed intake (FI) and BW gain were determined. Within contemporary group, the four steers within each Cartesian quadrant were sampled (n=16/group) from the bivariate distribution of average daily BW gain and average daily FI. Bacterial 16S rRNA gene amplicons were sequenced from the harvested bovine rumen fluid samples using next-generation sequencing technology. No significant changes in diversity or richness were indicated, and UniFrac principal coordinate analysis did not show any separation of microbial communities within the rumen. However, the abundances of relative microbial populations and operational taxonomic units did reveal significant differences with reference to feed efficiency groups. Bacteroidetes and Firmicutes were the dominant phyla in all ruminal groups, with significant population shifts in relevant ruminal taxa, including phyla Firmicutes and Lentisphaerae, as well as genera Succiniclasticum, Lactobacillus, Ruminococcus, and Prevotella. This study suggests the involvement of the rumen microbiome as a component influencing the efficiency of weight gain at the 16S level, which can be utilized to better understand variations in microbial ecology as well as host factors that will improve feed efficiency. PMID:26030887

  16. The passage of protozoa from the reticulo-rumen through the omasum of sheep.

    PubMed

    Michalowski, T; Harmeyer, J; Breves, G

    1986-11-01

    1. Protozoa in rumen contents and omasal effluent of growing wethers were counted. The wethers were equipped with rumen and abomasal cannulas, and omasal sleeves attached to the omasal-abomasal orifice. Rumen fluid dilution rates were elevated by continuous infusions of hypertonic mineral solutions (3-4 litres/d) for 24 d. Rumen contents and omasal effluent were sampled between 9 and 21 h during the last 10 d of each experiment. 2. Protozoal concentrations in omasal effluent were only 0.2-0.3 those found in the rumen under normal conditions. The ratio of protozoal concentrations in rumen: those in omasal effluent was for small Diplodinium spp. 4.6 (SD 0.9), for Ophryoscolex spp. 4.3 (SD 1.0), for Dasytricha ruminantium 4.0 (SD 0.5), for Isotricha spp. 3.8 (SD 0.8), for Entodinium spp. 3.6 (SD 0.9) and for Polyplastron multivesiculatum 2.6 (SD 0.5). 3. Elevation of rumen fluid dilution rate by 20 and 55% respectively, increased protozoal concentrations in omasal effluents from 22 to 33% and from 31 to 47% those in rumen contents. The apparent residence times of protozoa in the rumen were decreased 50% by the infusion of a mineral-salt solution. The increase in rumen fluid dilution rate had no significant effect on concentrations of protozoa in the rumen or on the differences of the apparent residence times between different species. The apparent residence time of holotrichs remained the same before and after infusion of the mineral-salt solution. 4. Apparent residence times of individual species of protozoa in the rumen were, under normal feeding conditions, 2.55 d, and were four to six times longer than the mean residence time of CrEDTA in the rumen.

  17. Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

    PubMed Central

    Veneman, Jolien B.; Muetzel, Stefan; Hart, Kenton J.; Faulkner, Catherine L.; Moorby, Jon M.; Perdok, Hink B.; Newbold, Charles J.

    2015-01-01

    It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/ g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations. PMID:26509835

  18. Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

    PubMed

    Veneman, Jolien B; Muetzel, Stefan; Hart, Kenton J; Faulkner, Catherine L; Moorby, Jon M; Perdok, Hink B; Newbold, Charles J

    2015-01-01

    It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations. PMID:26509835

  19. Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

    PubMed

    Veneman, Jolien B; Muetzel, Stefan; Hart, Kenton J; Faulkner, Catherine L; Moorby, Jon M; Perdok, Hink B; Newbold, Charles J

    2015-01-01

    It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations.

  20. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens

    SciTech Connect

    Bauchop, T.; Mountfort, D.O.

    1981-12-01

    The fermentation of cellulose by an ovine rumen anaerobic fungus in the absence and presence of rumen methanogens is described. In the monoculture, moles of product as a percentage of the moles of hexose fermented were: acetate, 72.7; carbon dioxide, 37.6; formate, 83.1; ethanol, 37.4; lactate, 67.0; and hydrogen 35.3. In the coculture, acetate was the major product (134.7%), and carbon dioxide increased (88.7%). Lactate and ethanol production decreased to 2.9 and 19% respectively, little formate was detected (1%), and hydrogen did not accumulate. Substantial amounts of methane were produced in the coculture (58.7%). Studies with (2-14C) acetate indicated that acetate was not a precursor of methane. The demonstration of cellulose fermentation by a fungus extends the range of known rumen organisms capable of participating in cellulose digestion and provides further support for a role of anaerobic fungi in rumen fiber digestion. The effect of the methanogens on the pattern of fermentation is interpreted as a shift in flow of electrons away from electron sink products to methane via hydrogen. The study provides a new example of intermicrobial hydrogen transfer and the first demonstration of hydrogen formation by a fungus. (Refs. 27).

  1. Role and function of short chain fatty acids in rumen epithelial metabolism, development and importance of the rumen epithelium in understanding control of transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The epithelial lining of the rumen is uniquely placed to have impact on the nutrient metabolism of the animal. The symbiotic relationship with the microbial populations that inhabit the rumen, serves to provide a constant supply of nutrients from roughage that would otherwise be unusable. Metaboli...

  2. Effects of Bacillus subtilis natto and Different Components in Culture on Rumen Fermentation and Rumen Functional Bacteria In Vitro.

    PubMed

    Sun, Peng; Li, Jinan; Bu, Dengpan; Nan, Xuemei; Du, Hong

    2016-05-01

    This study was to investigate the effects of live or autoclaved Bacillus subtilis natto, their fermented products and media on rumen fermentation and rumen functional bacteria in vitro. Rumen fluid from three multiparous lactating Holstein cows was combined and transferred into serum bottles after diluted. Fifteen serum bottles were divided into five treatments, which were designed as following: CTR (the fermentation of 0.5 g TMR and ruminal fluids from dairy cows), LBS (CTR plus a minimum of 10(11) cfu live Bacillus subtilis natto), ABS (CTR plus a minimum of 10(11) cfu autoclaved Bacillus subtilis natto), BSC (CTR plus 1 ml Bacillus subtilis natto fermentation products without bacteria), and BSM (CTR plus 1 ml liquid fermentation medium). When separated from the culture, live Bacillus subtilis natto individually increased the concentrations of ammonia-N (P < 0.01), MCP production (P < 0.01), and tended to elevate total VFA (P = 0.07), but decreased the ratio of acetate and propionate (P < 0.01). Autoclaved Bacillus subtilis natto has the similar function with the live bacteria except for the ratio of acetate and propionate. Except B. fibrisolvens, live or autoclaved Bacillus subtilis natto did not influence or decreased the 16S rRNA gene quantification of the detected bacteria. BSC and BSM altered the relative expression of certain functional bacteria in the rumen. These results indicated that it was Bacillus subtilis natto thalli that played the important role in promoting rumen fermentation when applied as a probiotic in dairy ration. PMID:26821238

  3. Effects of Bacillus subtilis natto and Different Components in Culture on Rumen Fermentation and Rumen Functional Bacteria In Vitro.

    PubMed

    Sun, Peng; Li, Jinan; Bu, Dengpan; Nan, Xuemei; Du, Hong

    2016-05-01

    This study was to investigate the effects of live or autoclaved Bacillus subtilis natto, their fermented products and media on rumen fermentation and rumen functional bacteria in vitro. Rumen fluid from three multiparous lactating Holstein cows was combined and transferred into serum bottles after diluted. Fifteen serum bottles were divided into five treatments, which were designed as following: CTR (the fermentation of 0.5 g TMR and ruminal fluids from dairy cows), LBS (CTR plus a minimum of 10(11) cfu live Bacillus subtilis natto), ABS (CTR plus a minimum of 10(11) cfu autoclaved Bacillus subtilis natto), BSC (CTR plus 1 ml Bacillus subtilis natto fermentation products without bacteria), and BSM (CTR plus 1 ml liquid fermentation medium). When separated from the culture, live Bacillus subtilis natto individually increased the concentrations of ammonia-N (P < 0.01), MCP production (P < 0.01), and tended to elevate total VFA (P = 0.07), but decreased the ratio of acetate and propionate (P < 0.01). Autoclaved Bacillus subtilis natto has the similar function with the live bacteria except for the ratio of acetate and propionate. Except B. fibrisolvens, live or autoclaved Bacillus subtilis natto did not influence or decreased the 16S rRNA gene quantification of the detected bacteria. BSC and BSM altered the relative expression of certain functional bacteria in the rumen. These results indicated that it was Bacillus subtilis natto thalli that played the important role in promoting rumen fermentation when applied as a probiotic in dairy ration.

  4. Effects of Three Feeding Systems on Production Performance, Rumen Fermentation and Rumen Digesta Particle Structure of Beef Cattle

    PubMed Central

    Liu, Y. F.; Sun, F. F.; Wan, F. C.; Zhao, H. B.; Liu, X. M.; You, W.; Cheng, H. J.; Liu, G. F.; Tan, X. W.; Song, E. L.

    2016-01-01

    The effects of three different feeding systems on beef cattle production performance, rumen fermentation, and rumen digesta particle structure were investigated by using 18 Limousin (steers) with a similar body weight (575±10 kg) in a 80-d experiment. The animals were equally and randomly divided into three treatment groups, namely, total mixed ration group (cattle fed TMR), SI1 group (cattle fed concentrate firstly then roughage), and SI2 group (cattle fed roughage firstly then concentrate). The results showed that the average daily gain was significantly higher in cattle receiving TMR than in those receiving SI1 and SI2 (p<0.05). Consumption per kg weight gain of concentrate, silage, and combined net energy (NEmf) were significantly decreased when cattle received TMR, unlike when they received SI1 and SI2 (p<0.05), indicating that the feed efficiency of TMR was the highest. Blood urea nitrogen (BUN) was significantly decreased when cattle received TMR compared with that in cattle receiving SI1 (p<0.05), whereas there was no difference compared with that in cattle receiving SI2. Ammonia nitrogen concentration was significantly lower in cattle receiving TMR than in those receiving SI1 and SI2 (p<0.05). The rumen area of cattle that received TMR was significantly larger than that of cattle receiving SI1 (p<0.05), but there was no difference compared with that of cattle receiving SI2. Although there was no significant difference among the three feeding systems in rumen digesta particle distribution, the TMR group trended to have fewer large- and medium-sized particles and more small-sized particles than those in the SI1 and SI2 groups. In conclusion, cattle with dietary TMR showed increased weight gain and ruminal development and decreased BUN. This indicated that TMR feeding was more conducive toward improving the production performance and rumen fermentation of beef cattle. PMID:26954181

  5. Artificial rearing.

    PubMed

    Dominguez, Hector D; Thomas, Jennifer D

    2008-01-01

    Prenatal alcohol exposure disrupts development, leading to a range of effects referred to as fetal alcohol spectrum disorders (FASD). FASDs include physical, central nervous system, and behavioral alterations. Animal model systems are used to study the relationship between alcohol-related central nervous system damage and behavioral alterations, risk factors for FASD, mechanisms of alcohol-induced damage, as well as treatments and interventions. When using a rodent model, it is important to recognize that the timing of brain development relative to birth differs between humans and rodents. Thus, to model alcohol exposure during the third trimester equivalent, rats must be exposed during early postnatal development (postnatal days 4-9). Artificial rearing is one experimental paradigm that is used to expose neonatal rats to alcohol during this period of brain development. Neonatal rat pups are housed in an artificial rearing environment and automatically fed a milk diet substitute via an intragastric cannula to ensure adequate growth during the treatment period. Alcohol is delivered in the milk diet. This chapter provides a description of the methods needed for this administrative technique, including preparation of the artificial rearing environment, gastrostomy surgery, and care of artificially reared rat pups.

  6. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Wash, Darrel Patrick

    1989-01-01

    Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)

  7. Invited review: Essential oils as modifiers of rumen microbial fermentation.

    PubMed

    Calsamiglia, S; Busquet, M; Cardozo, P W; Castillejos, L; Ferret, A

    2007-06-01

    Microorganisms in the rumen degrade nutrients to produce volatile fatty acids and synthesize microbial protein as an energy and protein supply for the ruminant, respectively. However, this fermentation process has energy (losses of methane) and protein (losses of ammonia N) inefficiencies that may limit production performance and contribute to the release of pollutants to the environment. Antibiotic ionophores have been very successful in reducing these energy and protein losses in the rumen, but the use of antibiotics in animal feeds is facing reduced social acceptance, and their use has been banned in the European Union since January 2006. For this reason, scientists have become interested in evaluating other alternatives to control specific microbial populations to modulate rumen fermentation. Essential oils can interact with microbial cell membranes and inhibit the growth of some gram-positive and gram-negative bacteria. As a result of such inhibition, the addition of some plant extracts to the rumen results in an inhibition of deamination and methanogenesis, resulting in lower ammonia N, methane, and acetate, and in higher propionate and butyrate concentrations. Results have indicated that garlic oil, cinnamaldehyde (the main active component of cinnamon oil), eugenol (the main active component of the clove bud), capsaicin (the active component of hot peppers), and anise oil, among others, may increase propionate production, reduce acetate or methane production, and modify proteolysis, peptidolysis, or deamination in the rumen. However, the effects of some of these essential oils are pH and diet dependent, and their use may be beneficial only under specific conditions and production systems. For example, capsaicin appears to have small effects in high-forage diets, whereas the changes observed in high-concentrate diets (increases in dry matter intake and total VFA, and reduction in the acetateto-propionate ratio and ammonia N concentration) may be beneficial

  8. Invited review: Essential oils as modifiers of rumen microbial fermentation.

    PubMed

    Calsamiglia, S; Busquet, M; Cardozo, P W; Castillejos, L; Ferret, A

    2007-06-01

    Microorganisms in the rumen degrade nutrients to produce volatile fatty acids and synthesize microbial protein as an energy and protein supply for the ruminant, respectively. However, this fermentation process has energy (losses of methane) and protein (losses of ammonia N) inefficiencies that may limit production performance and contribute to the release of pollutants to the environment. Antibiotic ionophores have been very successful in reducing these energy and protein losses in the rumen, but the use of antibiotics in animal feeds is facing reduced social acceptance, and their use has been banned in the European Union since January 2006. For this reason, scientists have become interested in evaluating other alternatives to control specific microbial populations to modulate rumen fermentation. Essential oils can interact with microbial cell membranes and inhibit the growth of some gram-positive and gram-negative bacteria. As a result of such inhibition, the addition of some plant extracts to the rumen results in an inhibition of deamination and methanogenesis, resulting in lower ammonia N, methane, and acetate, and in higher propionate and butyrate concentrations. Results have indicated that garlic oil, cinnamaldehyde (the main active component of cinnamon oil), eugenol (the main active component of the clove bud), capsaicin (the active component of hot peppers), and anise oil, among others, may increase propionate production, reduce acetate or methane production, and modify proteolysis, peptidolysis, or deamination in the rumen. However, the effects of some of these essential oils are pH and diet dependent, and their use may be beneficial only under specific conditions and production systems. For example, capsaicin appears to have small effects in high-forage diets, whereas the changes observed in high-concentrate diets (increases in dry matter intake and total VFA, and reduction in the acetateto-propionate ratio and ammonia N concentration) may be beneficial

  9. Effects of plants containing secondary compounds and plant oils on rumen fermentation and ecology.

    PubMed

    Wanapat, Metha; Kongmun, Pongthon; Poungchompu, Onanong; Cherdthong, Anusorn; Khejornsart, Pichad; Pilajun, Ruangyote; Kaenpakdee, Sujittra

    2012-03-01

    A number of experiments have been conducted to investigate effects of tropical plants containing condensed tannins and/or saponins present in tropical plants and some plant oils on rumen fermentation and ecology in ruminants. Based on both in vitro and in vivo trials, the results revealed important effects on rumen microorganisms and fermentation including methane production. Incorporation and/or supplementation of these plants containing secondary metabolites have potential for improving rumen ecology and subsequently productivity in ruminants.

  10. Effects of early feeding on the host rumen transcriptome and bacterial diversity in lambs

    PubMed Central

    Wang, Weimin; Li, Chong; Li, Fadi; Wang, Xiaojuan; Zhang, Xiaoxue; Liu, Ting; Nian, Fang; Yue, Xiangpeng; Li, Fei; Pan, Xiangyu; La, Yongfu; Mo, Futao; Wang, Fangbin; Li, Baosheng

    2016-01-01

    Early consumption of starter feed promotes rumen development in lambs. We examined rumen development in lambs fed starter feed for 5 weeks using histological and biochemical analyses and by performing high-throughput sequencing in rumen tissues. Additionally, rumen contents of starter feed-fed lambs were compared to those of breast milk-fed controls. Our physiological and biochemical findings revealed that early starter consumption facilitated rumen development, changed the pattern of ruminal fermentation, and increased the amylase and carboxymethylcellulase activities of rumen micro-organisms. RNA-seq analysis revealed 225 differentially expressed genes between the rumens of breast milk- and starter feed-fed lambs. These DEGs were involved in many metabolic pathways, particularly lipid and carbohydrate metabolism, and included HMGCL and HMGCS2. Sequencing analysis of 16S rRNA genes revealed that ruminal bacterial communities were more diverse in breast milk-than in starter feed-fed lambs, and each group had a distinct microbiota. We conclude that early starter feeding is beneficial to rumen development and physiological function in lambs. The underlying mechanism may involve the stimulation of ruminal ketogenesis and butanoate metabolism via HMGCL and HMGCS2 combined with changes in the fermentation type induced by ruminal microbiota. Overall, this study provides insights into the molecular mechanisms of rumen development in sheep. PMID:27576848

  11. Body weight and rumen-reticulum capacity in tule elk and mule deer

    USGS Publications Warehouse

    Weckerly, F.W.; Bleich, V.C.; Chetkiewicz, C.-L.B.; Ricca, M.A.

    2003-01-01

    The relationship between body size and rumen-reticulum capacity among conspecific individuals is predicted to be isometric. We examined whether the relationship between body weight and rumen-reticulum capacity was isometric in adult male and female rule elk (Cervus elaphus nannodes) and in adult female mule deer (Odocoileus hemionus). We detected no effect of sex on this relationship in elk, and the slope of the regression was 1.0 for one measure of rumen-reticulum capacity and <1.0 for another. Among deer, the slope of the relationship was <1.0 in one measure of rumen-reticulum capacity, and we detected no relationship with the other.

  12. Effects of early feeding on the host rumen transcriptome and bacterial diversity in lambs.

    PubMed

    Wang, Weimin; Li, Chong; Li, Fadi; Wang, Xiaojuan; Zhang, Xiaoxue; Liu, Ting; Nian, Fang; Yue, Xiangpeng; Li, Fei; Pan, Xiangyu; La, Yongfu; Mo, Futao; Wang, Fangbin; Li, Baosheng

    2016-01-01

    Early consumption of starter feed promotes rumen development in lambs. We examined rumen development in lambs fed starter feed for 5 weeks using histological and biochemical analyses and by performing high-throughput sequencing in rumen tissues. Additionally, rumen contents of starter feed-fed lambs were compared to those of breast milk-fed controls. Our physiological and biochemical findings revealed that early starter consumption facilitated rumen development, changed the pattern of ruminal fermentation, and increased the amylase and carboxymethylcellulase activities of rumen micro-organisms. RNA-seq analysis revealed 225 differentially expressed genes between the rumens of breast milk- and starter feed-fed lambs. These DEGs were involved in many metabolic pathways, particularly lipid and carbohydrate metabolism, and included HMGCL and HMGCS2. Sequencing analysis of 16S rRNA genes revealed that ruminal bacterial communities were more diverse in breast milk-than in starter feed-fed lambs, and each group had a distinct microbiota. We conclude that early starter feeding is beneficial to rumen development and physiological function in lambs. The underlying mechanism may involve the stimulation of ruminal ketogenesis and butanoate metabolism via HMGCL and HMGCS2 combined with changes in the fermentation type induced by ruminal microbiota. Overall, this study provides insights into the molecular mechanisms of rumen development in sheep. PMID:27576848

  13. Effects of early feeding on the host rumen transcriptome and bacterial diversity in lambs.

    PubMed

    Wang, Weimin; Li, Chong; Li, Fadi; Wang, Xiaojuan; Zhang, Xiaoxue; Liu, Ting; Nian, Fang; Yue, Xiangpeng; Li, Fei; Pan, Xiangyu; La, Yongfu; Mo, Futao; Wang, Fangbin; Li, Baosheng

    2016-01-01

    Early consumption of starter feed promotes rumen development in lambs. We examined rumen development in lambs fed starter feed for 5 weeks using histological and biochemical analyses and by performing high-throughput sequencing in rumen tissues. Additionally, rumen contents of starter feed-fed lambs were compared to those of breast milk-fed controls. Our physiological and biochemical findings revealed that early starter consumption facilitated rumen development, changed the pattern of ruminal fermentation, and increased the amylase and carboxymethylcellulase activities of rumen micro-organisms. RNA-seq analysis revealed 225 differentially expressed genes between the rumens of breast milk- and starter feed-fed lambs. These DEGs were involved in many metabolic pathways, particularly lipid and carbohydrate metabolism, and included HMGCL and HMGCS2. Sequencing analysis of 16S rRNA genes revealed that ruminal bacterial communities were more diverse in breast milk-than in starter feed-fed lambs, and each group had a distinct microbiota. We conclude that early starter feeding is beneficial to rumen development and physiological function in lambs. The underlying mechanism may involve the stimulation of ruminal ketogenesis and butanoate metabolism via HMGCL and HMGCS2 combined with changes in the fermentation type induced by ruminal microbiota. Overall, this study provides insights into the molecular mechanisms of rumen development in sheep.

  14. Characterization of rumen bacterial strains isolated from enrichments of rumen content in the presence of propolis.

    PubMed

    de Aguiar, Sílvia Cristina; Zeoula, Lucia Maria; do Prado, Odimari Pricila Pires; Arcuri, Pedro Braga; Forano, Evelyne

    2014-11-01

    Propolis presents many biological properties, including antibacterial activities, and has been proposed as an additive in ruminant nutrition. Twenty bacterial strains, previously isolated from enrichments of Brazilian cow rumen contents in the presence of different propolis extracts (LLOS), were characterized using phenotyping and 16S rRNA identification. Seven strains were assigned to Streptococcus sp., most likely S. bovis, and were all degrading starch. One amylolytic lactate-utilizing strain of Selenomonas ruminantium was also found. Two strains of Clostridium bifermentans were identified and showed proteolytic activity. Two strains were assigned to Mitsuokella jalaludinii and were saccharolytic. One strain belonged to a Bacillus species and seven strains were affiliated with Escherichia coli. All of the 20 strains were able to use many sugars, but none of them were able to degrade the polysaccharides carboxymethylcellulose and xylans. The effect of three propolis extracts (LLOS B1, C1 and C3) was tested on the in vitro growth of four representative isolates of S. bovis, E. coli, M. jalaludinii and C. bifermentans. The growth of S. bovis, E. coli and M. jalaludinii was not affected by the three propolis extracts at 1 mg ml(-1). C. bifermentans growth was completely inhibited at this LLOS concentration, but this bacterium was partially resistant at lower concentrations. LLOS C3, with the lower concentration of phenolic compounds, was a little less inhibitory than B1 and C1 on this strain.

  15. Artificial Intelligence.

    PubMed

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve.

  16. Artificial Intelligence.

    PubMed

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve. PMID:26957450

  17. [Features of glutamate dehydrogenase in fetal and adult rumen tissue].

    PubMed

    Kalachniuk, H I; Fomenko, I S; Kalachniuk, L H; Kavai, Sh; Marounek, M; Savka, O H

    2001-01-01

    Glutamate dehydrogenase (GDH) from rumen mucosa of cow fetus, liver and two forms from mucosa (bacterial and tissue) of the adult animal were partly purified and characterized. The activity of the bacterial glutamate dehydrogenase was shown to depend on qualities of a biomass of microbes, adhered on surface of rumen mucosa. All enzymes from tissues (GDHTRF, TRC, TLC), revealed the hypersensibility to increase in the concentration medium of Zn2+, guanosine triphosphate (GTP), acting here in a role of negative modulators, and also adenosine monophosphate (AMP) and leucine, which acted as activators. However, in the same concentrations these effectors do not influence the activity of the bacterial glutamate dehydrogenase. And if all tissues enzymes are highly specific to coenzyme NADH, the bacterial ones almost in 3 times is more active at NADPH use. PMID:11642036

  18. Evaluation of DNA extraction methods of rumen microbial populations.

    PubMed

    Villegas-Rivera, Gabriela; Vargas-Cabrera, Yevani; González-Silva, Napoleón; Aguilera-García, Florentino; Gutiérrez-Vázquez, Ernestina; Bravo-Patiño, Alejandro; Cajero-Juárez, Marcos; Baizabal-Aguirre, Víctor Manuel; Valdez-Alarcón, Juan José

    2013-02-01

    The dynamism of microbial populations in the rumen has been studied with molecular methods that analyze single nucleotide polymorphisms of ribosomal RNA gene fragments (rDNA). Therefore DNA of good quality is needed for this kind of analysis. In this work we report the evaluation of four DNA extraction protocols (mechanical lysis or chemical lysis with CTAB, ethylxanthogenate or DNAzol(®)) from ruminal fluid. The suitability of two of these protocols (mechanical lysis and DNAzol(®)) was tested on single-strand conformation polymorphism (SSCP) of rDNA of rumen microbial populations. DNAzol(®) was a simple method that rendered good integrity, yield and purity. With this method, subtle changes in protozoan populations were detected in young bulls fed with slightly different formulations of a supplement of multinutritional blocks of molasses and urea. Sequences related to Eudiplodinium maggi and a non-cultured Entodiniomorphid similar to Entodinium caudatum, were related to major fluctuating populations in an SSCP assay.

  19. Artificial vision.

    PubMed

    Zarbin, M; Montemagno, C; Leary, J; Ritch, R

    2011-09-01

    A number treatment options are emerging for patients with retinal degenerative disease, including gene therapy, trophic factor therapy, visual cycle inhibitors (e.g., for patients with Stargardt disease and allied conditions), and cell transplantation. A radically different approach, which will augment but not replace these options, is termed neural prosthetics ("artificial vision"). Although rewiring of inner retinal circuits and inner retinal neuronal degeneration occur in association with photoreceptor degeneration in retinitis pigmentosa (RP), it is possible to create visually useful percepts by stimulating retinal ganglion cells electrically. This fact has lead to the development of techniques to induce photosensitivity in cells that are not light sensitive normally as well as to the development of the bionic retina. Advances in artificial vision continue at a robust pace. These advances are based on the use of molecular engineering and nanotechnology to render cells light-sensitive, to target ion channels to the appropriate cell type (e.g., bipolar cell) and/or cell region (e.g., dendritic tree vs. soma), and on sophisticated image processing algorithms that take advantage of our knowledge of signal processing in the retina. Combined with advances in gene therapy, pathway-based therapy, and cell-based therapy, "artificial vision" technologies create a powerful armamentarium with which ophthalmologists will be able to treat blindness in patients who have a variety of degenerative retinal diseases.

  20. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation.

    PubMed

    Belanche, Alejandro; Doreau, Michel; Edwards, Joan E; Moorby, Jon M; Pinloche, Eric; Newbold, Charles J

    2012-09-01

    Balancing energy and nitrogen in the rumen is a key to both profitability and environmental sustainability. Four dairy cows were used in a Latin square experimental design to investigate the effect of severe nitrogen underfeeding (110 vs. 80% of requirements) and the type of carbohydrate consumed [neutral detergent fiber rich (FIB) vs. starch rich (STA)] on the rumen ecosystem. These dietary treatments modified both rumen fermentation and microbial populations. Compared with STA diets, consumption of FIB diets increased bacterial and fungal diversity in the rumen and also increased the concentrations of cellulolytic microorganisms, including protozoa (+38%), anaerobic fungi (+59%), and methanogens (+27%). This microbial adaptation to fiber utilization led to similar digestibility values for the 2 carbohydrate sources and was accompanied by a shift in the rumen fermentation patterns; when the FIB diets were consumed, the cows had greater ruminal pH, ammonia concentrations, and molar proportions of acetate and propionate compared with when they consumed the STA diets. Certain rumen microorganisms were sensitive to a shortage of nitrogen; rumen concentrations of ammonia were 49% lower when the low-protein (LP) diets were consumed as were total bacteria (-13%), anaerobic fungi (-28%), methanogens (-27%), protozoa (-19%), cellulolytic bacteria, and microbial diversity compared with when the high-protein (HP) diets were consumed. As a result, the digestibility of the LP diets was less than that of the HP diets. These findings demonstrated that the rumen microbial ecosystem is directly linked to the rumen fermentation pattern and, to some extent, to the efficiency of diet utilization by dairy cattle.

  1. The effect of rumen ciliates on chitinolytic activity, chitin content and the number of fungal zoospores in the rumen fluid of sheep.

    PubMed

    Miltko, Renata; Bełżecki, Grzegorz; Herman, Andrzej; Kowalik, Barbara; Skomiał, Jacek

    2016-12-01

    The objective of this study was to investigate the effect of selected protozoa on the degradation and concentration of chitin and the numbers of fungal zoospores in the rumen fluid of sheep. Three adult ewes were fed a hay-concentrate diet, defaunated, then monofaunated with Entodinium caudatum or Diploplastron affine alone and refaunated with natural rumen fauna. The average density of the protozoa population varied from 6.1 · 10(4) (D. affine) to 42.2 · 10(4) cells/ml rumen fluid (natural rumen fauna). The inoculation of protozoa in the rumen of defaunated sheep increased the total activity of chitinolytic enzymes from 2.9 to 3.6 μmol N-acetylglucosamine/g dry matter (DM) of rumen fluid per min, the chitin concentration from 6.3 to 7.2 mg/g DM of rumen fluid and the number of fungal zoospores from 8.1 to 10.9 · 10(5) cells/ml rumen fluid. All examined indices showed diurnal variations. Ciliate population density was highest immediately prior to feeding and lowest at 4 h thereafter. The opposite effects were observed for the numbers of fungal zoospores, the chitin concentration and chitinolytic activity. Furthermore, it was found that chitin from zoospores may account for up to 95% of total microbial chitin in the rumen fluid of sheep. In summary, the examined ciliate species showed the ability of chitin degradation as well as a positive influence on the development of the ruminal fungal population. PMID:27501267

  2. Ovine rumen papillae biopsy via oral endoscopy; a rapid and repeatable method for serial sampling

    PubMed Central

    McRae, KM; Schultz, M; Mackintosh, CG; Shackell, GH; Martinez, MF; Knowler, KJ; Williams, M; Ho, C; Elmes, SN; McEwan, JC

    2016-01-01

    Abstract AIMS: To explore and validate the utility of rumen endoscopy for collection of rumen papillae for gene expression measurement. METHODS: Four adult Coopworth ewes were fasted for either 4 or 24 hours. Animals were sedated, placed in a dorsally recumbent position at 45 degrees with the head upright, and an endoscope inserted via a tube inserted into the mouth. Biopsies of rumen papillae were taken from the ventral surface of the rumen atrium under visual guidance. Two biopsies were collected from one of the animals that had been fasted for 4 hours, and three from one of the animals that had been fasted for 24 hours. Video of the rumen atrium and reticulum was also collected. The animals recovered uneventfully. Biopsies were subsequently used for extraction and sequencing of mRNA. RESULTS: The ventral surface of the rumen atrium was accessible after 4 hours off pasture, but a larger region was accessible after 24 hours of fasting. Sedation allowed access for endoscope use for around 5 to 10 minutes after which increased saliva flow was noted. Rumen papillae biopsies were easily collected, with samples from a variety of sites collected in the ∼10 minute time window. High quality RNA was obtained for stranded mRNA sequencing. Of the resulting reads, 69–70% mapped uniquely to version 3.1 of the ovine genome, and 48–49% to a known gene. The rumen mRNA profiles were consistent with a previously reported study. CONCLUSIONS: This method for obtaining rumenal tissue was found to be rapid and resulted in no apparent short or long term effects on the animal. High quality RNA was successfully extracted and amplified from the rumen papillae biopsies, indicating that this technique could be used for future gene expression studies. The use of rumen endoscopy could be extended to collection of a variety of rumen and reticulum anatomical measurements and deposition and retrieval of small sensors from the rumen. Rumen endoscopy offers an attractive and cost effective

  3. Effects of Rumen-Mate on lactational performance of Holsteins fed a high grain diet.

    PubMed

    Solorzano, L C; Armentano, L E; Emery, R S; Schricker, B R

    1989-07-01

    Three Latin-square trials were conducted to determine the effects of supplementing Rumen-Mate, a commercial buffer containing KCl, NaCl, and Mg and Na carbonates, on lactation performance of Holsteins. Cows were fed a basal ration of 40% corn silage and 60% concentrate in Trials 1 and 2, and 40% corn silage, 55% concentrate, and 5% alfalfa hay in Trial 3 (DM basis). In Trial 1, treatments were: basal diet, or basal diet supplemented with either 1% NaHCO3, or 1, 3, or 4.4% Rumen-Mate. Increasing dietary Rumen-Mate resulted in a linear increase in milk fat production and concentration with no difference between 1% Rumen-Mate and 1% bicarbonate. There was a significant linear decrease in milk protein concentration, but not production, with increasing concentrations of Rumen-Mate. In Trial 2 treatments were: basal diet, or basal diet supplemented with either .8% NaHCO3, 2.6% Rumen-Mate, .5% MgO, .8% NaHCO3 plus .5% MgO, or 1.8% Rumen-Mate plus .8% NaHCO3. Organic matter and CP intakes and milk protein yield and concentration were decreased by Rumen-Mate with a nonsignificant increase in milk fat concentration. Data from Trials 1 and 2 were combined with data from Trial 3, which compared basal diet, 1% bicarbonate, and 3% Rumen-Mate. The combined data showed a larger increase over basal diet in milk fat yield and concentration for 2.6 to 3% Rumen-Mate vs. .8 to 1% bicarbonate. Rumen-Mate did not decrease DM intake or protein yield relative to basal diet but did decrease protein yield 34 g/d compared with that of bicarbonate.

  4. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools.

    PubMed

    Li, Robert W; Connor, Erin E; Li, Congjun; Baldwin Vi, Ransom L; Sparks, Michael E

    2012-01-01

    The temporal sequence of microbial establishment in the rumen of the neonatal ruminant has important ecological and pathophysiological implications. In this study, we characterized the rumen microbiota of pre-ruminant calves fed milk replacer using two approaches, pyrosequencing of hypervariable V3-V5 regions of the 16S rRNA gene and whole-genome shotgun approach. Fifteen bacterial phyla were identified in the microbiota of pre-ruminant calves. Bacteroidetes was the predominant phylum in the rumen microbiota of 42-day-old calves, representing 74.8% of the 16S sequences, followed by Firmicutes (12.0%), Proteobacteria (10.4%), Verrucomicrobia (1.2%) and Synergistetes (1.1%). However, the phylum-level composition of 14-day-old calves was distinctly different. A total of 170 bacterial genera were identified while the core microbiome of pre-ruminant calves included 45 genera. Rumen development seemingly had a significant impact on microbial diversity. The dazzling functional diversity of the rumen microbiota was reflected by identification of 8298 Pfam and 3670 COG protein families. The rumen microbiota of pre-ruminant calves displayed a considerable compositional heterogeneity during early development. This is evidenced by a profound difference in rumen microbial composition between the two age groups. However, all functional classes between the two age groups had a remarkably similar assignment, suggesting that rumen microbial communities of pre-ruminant calves maintained a stable function and metabolic potentials while their phylogenetic composition fluctuated greatly. The presence of all major types of rumen microorganisms suggests that the rumen of pre-ruminant calves may not be rudimentary. Our results provide insight into rumen microbiota dynamics and will facilitate efforts in formulating optimal early-weaning strategies.

  5. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools.

    PubMed

    Li, Robert W; Connor, Erin E; Li, Congjun; Baldwin Vi, Ransom L; Sparks, Michael E

    2012-01-01

    The temporal sequence of microbial establishment in the rumen of the neonatal ruminant has important ecological and pathophysiological implications. In this study, we characterized the rumen microbiota of pre-ruminant calves fed milk replacer using two approaches, pyrosequencing of hypervariable V3-V5 regions of the 16S rRNA gene and whole-genome shotgun approach. Fifteen bacterial phyla were identified in the microbiota of pre-ruminant calves. Bacteroidetes was the predominant phylum in the rumen microbiota of 42-day-old calves, representing 74.8% of the 16S sequences, followed by Firmicutes (12.0%), Proteobacteria (10.4%), Verrucomicrobia (1.2%) and Synergistetes (1.1%). However, the phylum-level composition of 14-day-old calves was distinctly different. A total of 170 bacterial genera were identified while the core microbiome of pre-ruminant calves included 45 genera. Rumen development seemingly had a significant impact on microbial diversity. The dazzling functional diversity of the rumen microbiota was reflected by identification of 8298 Pfam and 3670 COG protein families. The rumen microbiota of pre-ruminant calves displayed a considerable compositional heterogeneity during early development. This is evidenced by a profound difference in rumen microbial composition between the two age groups. However, all functional classes between the two age groups had a remarkably similar assignment, suggesting that rumen microbial communities of pre-ruminant calves maintained a stable function and metabolic potentials while their phylogenetic composition fluctuated greatly. The presence of all major types of rumen microorganisms suggests that the rumen of pre-ruminant calves may not be rudimentary. Our results provide insight into rumen microbiota dynamics and will facilitate efforts in formulating optimal early-weaning strategies. PMID:21906219

  6. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis.

    PubMed

    Patra, Amlan K; Yu, Zhongtang

    2015-01-01

    In a previous study origanum oil (ORO), garlic oil (GAO), and peppermint oil (PEO) were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L) on the rumen bacterial community composition and population was further examined using the recently developed RumenBactArray. Species richness (expressed as number of operational taxonomic units, OTUs) in the phylum Firmicutes, especially those in the class Clostridia, was decreased by ORO and GAO, but increased by PEO, while that in the phylum Bacteroidetes was increased by ORO and PEO. Species richness in the genus Butyrivibrio was lowered by all the EOs. Increases of Bacteroidetes OTUs mainly resulted from increases of Prevotella OTUs. Overall, 67 individual OTUs showed significant differences (P ≤ 0.05) in relative abundance across the EO treatments. The predominant OTUs affected by EOs were diverse, including those related to Syntrophococcus sucromutans, Succiniclasticum ruminis, and Lachnobacterium bovis, and those classified to Prevotella, Clostridium, Roseburia, Pseudobutyrivibrio, Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Bacteroidales, and Clostridiales. In total, 60 OTUs were found significantly (P ≤ 0.05) correlated with feed degradability, ammonia concentration, and molar percentage of volatile fatty acids. Taken together, this study demonstrated extensive impact of EOs on rumen bacterial communities in an EO type-dependent manner, especially those in the predominant families Prevotellaceae, Lachnospiraceae, and Ruminococcaceae. The information from this study may aid in understanding the effect of EOs on feed digestion and fermentation by rumen bacteria. PMID:25914694

  7. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis

    PubMed Central

    Patra, Amlan K.; Yu, Zhongtang

    2015-01-01

    In a previous study origanum oil (ORO), garlic oil (GAO), and peppermint oil (PEO) were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L) on the rumen bacterial community composition and population was further examined using the recently developed RumenBactArray. Species richness (expressed as number of operational taxonomic units, OTUs) in the phylum Firmicutes, especially those in the class Clostridia, was decreased by ORO and GAO, but increased by PEO, while that in the phylum Bacteroidetes was increased by ORO and PEO. Species richness in the genus Butyrivibrio was lowered by all the EOs. Increases of Bacteroidetes OTUs mainly resulted from increases of Prevotella OTUs. Overall, 67 individual OTUs showed significant differences (P ≤ 0.05) in relative abundance across the EO treatments. The predominant OTUs affected by EOs were diverse, including those related to Syntrophococcus sucromutans, Succiniclasticum ruminis, and Lachnobacterium bovis, and those classified to Prevotella, Clostridium, Roseburia, Pseudobutyrivibrio, Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Bacteroidales, and Clostridiales. In total, 60 OTUs were found significantly (P ≤ 0.05) correlated with feed degradability, ammonia concentration, and molar percentage of volatile fatty acids. Taken together, this study demonstrated extensive impact of EOs on rumen bacterial communities in an EO type-dependent manner, especially those in the predominant families Prevotellaceae, Lachnospiraceae, and Ruminococcaceae. The information from this study may aid in understanding the effect of EOs on feed digestion and fermentation by rumen bacteria. PMID:25914694

  8. Effects of tea saponins on rumen microbiota, rumen fermentation, methane production and growth performance--a review.

    PubMed

    Wang, Jia-Kun; Ye, Jun-An; Liu, Jian-Xin

    2012-04-01

    Reducing methane emission from ruminant animals has implications not only for global environmental protection but also for efficient animal production. Tea saponins (TS) extracted from seeds, leaves or roots of tea plant are pentacyclic triterpenes. They have a lasting antiprotozoal effect, but little effect on the methanogen population in sheep. There was no significant correlation between the protozoa counts and methanogens. The TS decreased methanogen activity. It seems that TS influenced the activity of the methanogens indirectly via the depressed ciliate protozoal population. The TS addition decreased fungal population in the medium containing rumen liquor in in vitro fermentation, but no such effect was observed in the rumen liquor of sheep fed TS. Tea saponins had a minor effect on the pattern of rumen fermentation and hence on nutrient digestion. When added at 3 g/day in diets, TS could improve daily weight gain and feed efficiency in goats. No positive associative effect existed between TS and disodium fumarate or soybean oil on methane suppression. Inclusion of TS in diets may be an effective way for improving feed efficiency in ruminants.

  9. Artificial Intelligence

    SciTech Connect

    Shirai, Y.; Tsujii, Jun-ichi

    1985-01-01

    Based on the Japanese 5th Generation Computer Program, this volume provides coverage of the fundamental concepts and various techniques in the different applications of Artificial Intelligence. Also presented are the methods which can be used to put these concepts and techniques into practice. Explanations are presented of all the basic topics in the field, including the representation of problems; searching techniques; the control of problem solving; programming languages for Al, such as LISP, PLANNER, CONNIVER, and PROLOG; the representation and utilization of knowledge; and the approach to human intelligence.

  10. Proteomic analysis of Escherichia coli O157 cultured in bovine rumen fluid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To obtain insights into Escherichia coli O157 (O157) adaptation and survival in the bovine rumen, the first anatomical compartment encountered by this pathogen during transit through the bovine gastrointestinal tract to sites of colonization, we defined the proteome of O157 cultured in rumen fluid (...

  11. Perturbation dynamics of the rumen microbiota in response to exogenous butyrate.

    PubMed

    Li, Robert W; Wu, Sitao; Baldwin, Ransom L; Li, Weizhong; Li, Congjun

    2012-01-01

    The capacity of the rumen microbiota to produce volatile fatty acids (VFAs) has important implications in animal well-being and production. We investigated temporal changes of the rumen microbiota in response to butyrate infusion using pyrosequencing of the 16S rRNA gene. Twenty one phyla were identified in the rumen microbiota of dairy cows. The rumen microbiota harbored 54.5±6.1 genera (mean ± SD) and 127.3±4.4 operational taxonomic units (OTUs), respectively. However, the core microbiome comprised of 26 genera and 82 OTUs. Butyrate infusion altered molar percentages of 3 major VFAs. Butyrate perturbation had a profound impact on the rumen microbial composition. A 72 h-infusion led to a significant change in the numbers of sequence reads derived from 4 phyla, including 2 most abundant phyla, Bacteroidetes and Firmicutes. As many as 19 genera and 43 OTUs were significantly impacted by butyrate infusion. Elevated butyrate levels in the rumen seemingly had a stimulating effect on butyrate-producing bacteria populations. The resilience of the rumen microbial ecosystem was evident as the abundance of the microorganisms returned to their pre-disturbed status after infusion withdrawal. Our findings provide insight into perturbation dynamics of the rumen microbial ecosystem and should guide efforts in formulating optimal uses of probiotic bacteria treating human diseases.

  12. Community Structure Analysis of Methanogens Associated with Rumen Protozoa Reveals Bias in Universal Archaeal Primers

    PubMed Central

    McAllister, Tim A.

    2012-01-01

    The diversity of protozoan-associated methanogens in cattle was investigated using five universal archaeal small-subunit (SSU) rRNA gene primer sets. Methanobrevibacter spp. and rumen cluster C (distantly related to Thermoplasma spp.) were predominant. Significant differences in species composition among libraries indicate that some primers used previously to characterize rumen methanogens exhibit biased amplification. PMID:22447586

  13. Effects of hops (Humulus lupulus L.) extract on volatile fatty acid production by rumen bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To determine the effects of hops extract, on in vitro volatile fatty acid (VFA) production by bovine rumen microorganisms. Methods and Results: When mixed rumen microbes were suspended in media containing carbohydrates, the initial rates of VFA production were suppressed by beta-acid rich hops...

  14. Metagenomic insights into RDX-degrading potential of the ovine rumen microbiome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ovine rumen is capable of rapid degradation of nitroaromatic compounds, such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). While ruminal RDX-degrading bacteria have been identified, genes and biological pathways responsible for the biochemical processes in the rumen have yet to be character...

  15. Perturbation dynamics of the rumen microbiota in response to exogenous butyrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The capacity of the rumen microbiota to produce volatile fatty acids (VFA) has important implications in animal well-being and production. We investigated temporal changes of the rumen microbiota in response to butyrate infusion using pyrosequencing of the 16S rRNA gene. Phyla were identified in ...

  16. Effects of variation of dietary sulfur on movement of sulfur in sheep rumen

    SciTech Connect

    Kandylis, K.; Bray, A.C.

    1987-01-01

    Effects of variations in dietary sulfur on rumen sulfur dynamics were studied under steady state conditions. In the first experimental period, three sheep were given 33.3 g of a pelleted diet hourly containing 1.59 g sulfur/kg (low) and in the second period the sulfur content was increased to 3.21 g/kg (high) by the addition of sodium sulfate. The daily sulfur intake was 1.158 g on the low sulfur diet and .545 g of this passed from the rumen in protein, .614 g was calculated to be absorbed from the rumen as sulfide, and .052 g was estimated to be recycled to the rumen. For sheep with daily intakes of 2.317 g sulfur, 1.212 g passed from the rumen in protein, 1.078 g was absorbed from the rumen, and .093 g was estimated to be recycled. It was estimated that 127 and 165 g microbial protein were synthesized/kg organic matter truly digested in the rumen for low and high sulfur diets, respectively. A simple model using simultaneous equations was proposed to describe rumen sulfur metabolism.

  17. Effect of feeding duration and rumen fill on behaviour in dairy cows.

    PubMed

    Lindström; Redbo

    2000-12-01

    The aim of the present experiment was to test the hypothesis that oral manipulation of feed is a behavioural need in cattle, irrespective of actual rumen load. Twelve rumen fistulated cows were used and subjected to four different treatments: low rumen content+long duration of eating (A), high rumen content+short duration of eating (B), high rumen content+long duration of eating (=positive control) (C) and low rumen content+short duration of eating (=negative control) (D). To obtain treatment A and B, rumen content was transferred by hand from cow A to B through the rumen fistulaes. Each treatment lasted for 3 days with 2 weeks of recovery between each new treatment. The experiment was repeated twice during two consecutive years. All cows were fed the same mixture of silage, concentrate and hay. The cows were videotaped under normal conditions (24h), and on the third day of the experiment. From these videotapes, the behaviours (frequency and duration per 24h) have been analysed.Time spent eating differed between the four treatments (P<0.001), with shortest eating-times in B and D. The cows with low rumen content (A and D) spent shorter time ruminating (P<0.001) than the cows with filled rumen (B and C). The B and D cows (short duration of eating) spent longer time (P<0.001) with behaviours related to feed-searching than the cows with long duration of eating (A and C). The C cows had fewer (P<0.001) bouts of behaviours related to feed-searching than the A, B and D cows. Time spent with stereotypies (tongue-rolling) was longer (P<0.01) in D than in the other treatments. There was a difference (P<0.001) between treatments in eating bouts. The A cows had more (P<0.05) eating bouts than the cows in B, C and D. The cows with low rumen content (A and D) had fewer ruminating bouts (P<0.001) than the cows with filled rumens (B and C). The number of bouts with stereotypies differed (P<0.01), the cows in D having the highest figures compared with all the other treatments

  18. Ionic milieu of bovine and ovine rumen as affected by diet.

    PubMed

    Bennink, M R; Tyler, T R; Ward, G M; Johnson, D E

    1978-03-01

    Postprandial changes in osmolality, mineral, and volatile fatty acid concentrations in rumen fluid were examined in three cattle fed six widely differing diets. Mineral concentrations varied with diet and postprandial time. However, net changes in postprandial mineral concentrations did not contribute significantly to changes in osmotic pressure. There was an effect of diet and time after feeding on concentrations of volatile fatty acids. Postprandial changes in osmotic pressure were primarily due to changes in concentrations of volatile fatty acids. Magnesium oxide and sodium bicarbonate were fed to sheep to increase the osmotic pressure in rumen fluid. The salt supplement decreased acetate, propionate, heat, and methane production. However, rumen water flux was unaffected by the salt supplementation. Diets which produce hypertonic rumen fluid due to high mineral and/or concentrations of volatile fatty acids may reduce fermentation in rumen.

  19. Effect of sugar supplementation on rumen protozoa profile and papillae development in retarded growth calves.

    PubMed

    Sato, Tomohiro; Hidaka, Kyosuke; Mishima, Takakibi; Nibe, Kazumi; Kitahara, Go; Hidaka, Yuichi; Katamoto, Hiromu; Kamimura, Shunichi

    2010-11-01

    The effect of sugar supplementation with 1 g/kg BW twice a week for eight weeks on rumen protozoa was determined in ten retarded growth calves. Rumen juice was sampled by abdominal paracentesis during the experiment. Papillae development of rumens excised by experimental laparotomy was macro- and micromorphologically determined before and after sugar supplementation in a selected calf. The numbers of Entodinium, Isotricha, Dasytricha and Epidinium protozoa increased by 3 to 12 folds after 1-3 wk of supplementation and subsequently decreased. The heights of the rumen papillae after sugar supplementation showed marked development compared with before supplementation (Post vs. Pre: 4.44 ± 0.43 vs. 1.36 ± 0.24 mm). Sugar supplementation accommodates the rumen protozoa profile and stimulates papillae development in retarded growth calves.

  20. Effect of niacin supplementation on rumen fermentation characteristics and nutrient flow at the duodenum in lactating dairy cows fed a diet with a negative rumen nitrogen balance.

    PubMed

    Aschemann, Martina; Lebzien, Peter; Hüther, Liane; Südekum, Karl-Heinz; Dänicke, Sven

    2012-08-01

    The aim of the present experiment was to ascertain if a daily niacin supplementation of 6 g/cow to lactating dairy cow diets can compensate for the decrease in rumen microbial fermentation due to a negative rumen nitrogen balance (RNB). A total of nine ruminally and duodenally fistulated lactating multiparous German Holstein cows was used. The diets consisted of 10 kg dry matter (DM) maize silage and 7 kg DM concentrate and differed as follows: (i) Diet RNB- (n = 6) with energy and utilisable crude protein (CP) at the duodenum (uCP) according to the average requirement of the animals, but with a negative RNB (-0.41 g N/MJ metabolisable energy [ME]); (ii) Diet RNB0 (n = 7) with energy, uCP, and RNB (0.08 g N/MJ ME) according to the average requirement of the animals; and (iii) Diet NA (nicotinic acid; n = 5), which was the same diet as RNB-, but supplemented with 6 g niacin/d. The negative RNB affected the rumen fermentation pattern and reduced ammonia content in rumen fluid and the daily duodenal flows of microbial CP (MP) and uCP. Niacin supplementation increased the apparent ruminal digestibility of neutral detergent fibre. The efficiency of microbial protein synthesis per unit of rumen degradable CP was higher, whereby the amount of MP reaching the duodenum was unaffected by niacin supplementation. The number of protozoa in rumen fluid was higher in NA treatment. The results indicated a more efficient use of rumen degradable N due to changes in the microbial population in the rumen when niacin was supplemented to diets deficient in RNB for lactating dairy cows. PMID:22924176

  1. Effect of niacin supplementation on rumen fermentation characteristics and nutrient flow at the duodenum in lactating dairy cows fed a diet with a negative rumen nitrogen balance.

    PubMed

    Aschemann, Martina; Lebzien, Peter; Hüther, Liane; Südekum, Karl-Heinz; Dänicke, Sven

    2012-08-01

    The aim of the present experiment was to ascertain if a daily niacin supplementation of 6 g/cow to lactating dairy cow diets can compensate for the decrease in rumen microbial fermentation due to a negative rumen nitrogen balance (RNB). A total of nine ruminally and duodenally fistulated lactating multiparous German Holstein cows was used. The diets consisted of 10 kg dry matter (DM) maize silage and 7 kg DM concentrate and differed as follows: (i) Diet RNB- (n = 6) with energy and utilisable crude protein (CP) at the duodenum (uCP) according to the average requirement of the animals, but with a negative RNB (-0.41 g N/MJ metabolisable energy [ME]); (ii) Diet RNB0 (n = 7) with energy, uCP, and RNB (0.08 g N/MJ ME) according to the average requirement of the animals; and (iii) Diet NA (nicotinic acid; n = 5), which was the same diet as RNB-, but supplemented with 6 g niacin/d. The negative RNB affected the rumen fermentation pattern and reduced ammonia content in rumen fluid and the daily duodenal flows of microbial CP (MP) and uCP. Niacin supplementation increased the apparent ruminal digestibility of neutral detergent fibre. The efficiency of microbial protein synthesis per unit of rumen degradable CP was higher, whereby the amount of MP reaching the duodenum was unaffected by niacin supplementation. The number of protozoa in rumen fluid was higher in NA treatment. The results indicated a more efficient use of rumen degradable N due to changes in the microbial population in the rumen when niacin was supplemented to diets deficient in RNB for lactating dairy cows.

  2. Displacement of Escherichia coli O157:H7 from rumen medium containing prebiotic sugars.

    PubMed

    de Vaux, Albane; Morrison, Mark; Hutkins, Robert W

    2002-02-01

    A fed-batch, anaerobic culture system was developed to assess the behavior of Escherichia coli O157:H7 in a rumen-like environment. Fermentation medium consisted of either 50% (vol/vol) raw or sterile rumen fluid and 50% phosphate buffer. Additional rumen fluid was added twice per day, and samples were removed three times per day to simulate the exiting of digesta and microbes from the rumen environment under typical feeding regimens. With both types of medium, anaerobic and enteric bacteria reached 10(10) and 10(4) cells/ml, respectively, and were maintained at these levels for at least 5 days. When a rifampin-resistant strain of E. coli O157:H7 was inoculated into medium containing raw rumen fluid, growth did not occur. In contrast, when this strain was added to sterile rumen fluid medium, cell densities increased from 10(6) to 10(9) CFU/ml within 24 h. Most strains of E. coli O157:H7 are unable to ferment sorbitol; therefore, we assessed whether the addition of sorbitol as the only added carbohydrate could be used to competitively exclude E. coli O157:H7 from the culture system. When inoculated into raw rumen broth containing 3 g of sorbitol per liter, E. coli O157:H7 was displaced within 72 h. The addition of other competitive sugars, such as L-arabinose, trehalose, and rhamnose, to rumen medium gave similar results. However, whenever E. coli O157:H7 was grown in sterile rumen broth containing sorbitol, sorbitol-positive mutants appeared. These results suggest that a robust population of commensal ruminal microflora is required to invoke competitive exclusion of E. coli O157:H7 by the addition of "nonfermentable" sugars and that this approach may be effective as a preharvest strategy for reducing carriage of E. coli O157:H7 in the rumen.

  3. Artificial gravity.

    PubMed

    Scott, William B

    2005-04-25

    NASA's Artificial Gravity program consists of a team of researchers from Wyle Laboratories, NASA Johnson Space Center, and the University of Texas Medical Branch (UTMB). The short-radius centrifuge (SRC), built by Wyle Laboratories, will be integrated with UTMB's conducted bedrest studies, which mimic the detrimental effects of weightlessness (or microgravity). Bedrest subjects will be spun on the SRC at various accelerations and for various time periods, while being monitored medically. Parameters such as bone loss, muscle atrophy, balance control, and oxygen consumption will then be compared in order to research ways of mitigating the impact on astronauts' physiology. Other potential benefits from these studies extend to population groups on Earth, such as bedridden patients. PMID:15852559

  4. Artificial rheotaxis

    PubMed Central

    Palacci, Jérémie; Sacanna, Stefano; Abramian, Anaïs; Barral, Jérémie; Hanson, Kasey; Grosberg, Alexander Y.; Pine, David J.; Chaikin, Paul M.

    2015-01-01

    Motility is a basic feature of living microorganisms, and how it works is often determined by environmental cues. Recent efforts have focused on developing artificial systems that can mimic microorganisms, in particular their self-propulsion. We report on the design and characterization of synthetic self-propelled particles that migrate upstream, known as positive rheotaxis. This phenomenon results from a purely physical mechanism involving the interplay between the polarity of the particles and their alignment by a viscous torque. We show quantitative agreement between experimental data and a simple model of an overdamped Brownian pendulum. The model notably predicts the existence of a stagnation point in a diverging flow. We take advantage of this property to demonstrate that our active particles can sense and predictably organize in an imposed flow. Our colloidal system represents an important step toward the realization of biomimetic microsystems with the ability to sense and respond to environmental changes. PMID:26601175

  5. Rumen bacterial communities shift across a lactation in Holstein, Jersey and Holstein × Jersey dairy cows and correlate to rumen function, bacterial fatty acid composition and production parameters.

    PubMed

    Bainbridge, Melissa L; Cersosimo, Laura M; Wright, André-Denis G; Kraft, Jana

    2016-05-01

    Rumen bacteria form a dynamic, complex, symbiotic relationship with their host, degrading forages to provide volatile fatty acids (VFA) and other substrates as energy to the animal. The objectives were to characterize rumen bacteria in three genetic lines of primiparous dairy cattle, Holstein (HO, n = 7), Jersey (JE, n = 8), and HO × JE crossbreeds (CB, n = 7) across a lactation [3, 93, 183 and 273 days in milk (DIM)] and correlate these factors with VFA, bacterial cell membrane fatty acids (FA), and animal production (i.e. milk yield). This study employed Illumina MiSeq (v. 3) to investigate rumen bacterial communities and gas-liquid chromatography/mass spectroscopy to identify bacterial membrane FA. Lactation stage had a prominent effect on rumen bacterial communities, whereas genetics had a lesser effect on rumen bacteria. The FA composition of bacterial cell membranes was affected by both lactation stage and genetics. Few correlations existed between VFA and bacterial communities; however, moderate correlations occurred between milk yield, protein percentage, fat yield and rumen bacterial communities. Positive correlations were found between branched-chain FA (BCFA) in bacterial cell membranes and bacterial genera. In conclusion, bacterial communities and their FA compositions are more affected by stage of lactation than by genetics of dairy cow. PMID:26985012

  6. Dietary nitrogen reduction enhances urea transport across goat rumen epithelium.

    PubMed

    Muscher, A S; Schröder, B; Breves, G; Huber, K

    2010-10-01

    Ruminants are very capable of adapting their N homeostasis to a reduced dietary N intake. However, the limits of this physiological adaptation are still unknown. The aim of the present study was to determine the quantity of dietary N intake at which the needs of the animal are still satisfied. A study was performed in young White Saanen goats under conditions of dietary N reduction. Different semisynthetic diets with 19 to 7% CP were fed. Urea transport rates across the rumen epithelium from the blood into the ruminal fluid were quantified by Ussing chamber experiments. Reduced N intake increased urea transport rates across the mucosa, which could be inhibited by phloretin. The role of parietal urease in driving urea transfer across the epithelium was negligible because its activity was inhibited by antibiotics during in vitro incubations of the epithelium. Concentrations of ammonia in the ruminal fluid were decreased by reducing dietary N intake, accompanied by diminished urease activity at the smallest dietary N intake. Over the range of plasma urea concentrations observed in the different feeding groups, salivary urea concentrations were 73% of plasma urea concentrations. By plotting plasma urea concentrations against serosal to mucosal urea flux rates, a threshold at 1.75 mmol of urea/L of plasma could be assessed, below which urea flux was strongly increased. This indicates that rumen urea transfer could be stimulated by decreased plasma urea concentrations via unknown mechanisms. The physiological relevance of this adaptation of the rumen epithelium is that it is considered a central mechanism in the N homeostasis of growing goats under reduced N intake.

  7. Sampling procedure for the measurement of dissolved hydrogen and volatile fatty acids in the rumen of dairy cows.

    PubMed

    Wang, M; Wang, R; Janssen, P H; Zhang, X M; Sun, X Z; Pacheco, D; Tan, Z L

    2016-03-01

    Dissolved hydrogen (dH) influences the pathways of VFA production and is a precursor of methane formation in the rumen. Measurements of dH in rumen fluid taken at the same time as measuring other rumen fermentation end products would improve our quantitative understanding of the role of dH as a controller of rumen fermentation. Sample collections though a rumen cannula and using oral stomach tubing were compared for measurements of dissolved gases and fermentation end products in the rumen fluid of 4 ruminally cannulated dairy cows fed a total mixed ration of corn silage and concentrate. Rumen fluid was collected at 0, 2.5, and 6 h after morning feeding through the cannula from cranial dorsal rumen, cranial ventral rumen, central rumen, caudal dorsal rumen, and caudal ventral rumen and in parallel by oral stomach tubing at 2 insertion depths of 180 cm (sampling the central rumen) and 200 cm (sampling the caudal dorsal rumen). The cranial dorsal rumen had the greatest pH and smallest VFA concentration among 5 sites sampled. Samples collected by oral stomach tubing had greater ( < 0.001) rumen pH and less ( < 0.001) dissolved methane (dCH) and lower VFA concentration than that collected through rumen cannula. The dH concentrations were positively correlated ( > 0.8) in rumen samples collected by the 2 sampling techniques, with a concordance correlation coefficient larger than 0.8 and scale shift being about 0.1 away from unity. The variations in the measurement of dH, dCH, pH, and VFA in samples collected by oral stomach tubing are most likely the result of saliva contamination. The time of sampling relative to feeding had significant influence ( < 0.01) on dissolved gases and fermentation end products, with the greatest concentrations of dH, dCH, and VFA measured 2.5 h after morning feeding. The dH was correlated positively ( > 0.58) with dCH and negatively ( < -0.65) with the estimated net H production relative to the amount of VFA produced. This indicated that

  8. Sampling procedure for the measurement of dissolved hydrogen and volatile fatty acids in the rumen of dairy cows.

    PubMed

    Wang, M; Wang, R; Janssen, P H; Zhang, X M; Sun, X Z; Pacheco, D; Tan, Z L

    2016-03-01

    Dissolved hydrogen (dH) influences the pathways of VFA production and is a precursor of methane formation in the rumen. Measurements of dH in rumen fluid taken at the same time as measuring other rumen fermentation end products would improve our quantitative understanding of the role of dH as a controller of rumen fermentation. Sample collections though a rumen cannula and using oral stomach tubing were compared for measurements of dissolved gases and fermentation end products in the rumen fluid of 4 ruminally cannulated dairy cows fed a total mixed ration of corn silage and concentrate. Rumen fluid was collected at 0, 2.5, and 6 h after morning feeding through the cannula from cranial dorsal rumen, cranial ventral rumen, central rumen, caudal dorsal rumen, and caudal ventral rumen and in parallel by oral stomach tubing at 2 insertion depths of 180 cm (sampling the central rumen) and 200 cm (sampling the caudal dorsal rumen). The cranial dorsal rumen had the greatest pH and smallest VFA concentration among 5 sites sampled. Samples collected by oral stomach tubing had greater ( < 0.001) rumen pH and less ( < 0.001) dissolved methane (dCH) and lower VFA concentration than that collected through rumen cannula. The dH concentrations were positively correlated ( > 0.8) in rumen samples collected by the 2 sampling techniques, with a concordance correlation coefficient larger than 0.8 and scale shift being about 0.1 away from unity. The variations in the measurement of dH, dCH, pH, and VFA in samples collected by oral stomach tubing are most likely the result of saliva contamination. The time of sampling relative to feeding had significant influence ( < 0.01) on dissolved gases and fermentation end products, with the greatest concentrations of dH, dCH, and VFA measured 2.5 h after morning feeding. The dH was correlated positively ( > 0.58) with dCH and negatively ( < -0.65) with the estimated net H production relative to the amount of VFA produced. This indicated that

  9. Effect of different levels of phosphorus on rumen microbial fermentation and synthesis determined using a continuous culture technique.

    PubMed

    Komisarczuk, S; Merry, R J; McAllan, A B

    1987-03-01

    A continuous culture technique was used to study the phosphorus requirements of rumen micro-organisms. Solutions of artificial saliva containing 120, 80, 40 and 0 mg inorganic phosphorus (Pi)/l were infused into the reaction vessels previously inoculated with rumen contents, resulting in Pi concentrations in the vessel contents of 48, 28, 4 and less than 1 mg/l respectively. Various fermentative and synthetic characteristics were examined. In the vessel contents, concentrations of protozoa (about 0.9 X 10(5)/ml) were not significantly affected by Pi concentration. Total volatile fatty acids (VFA) produced averaged about 6.83 mmol/h with Pi levels of 48 and 28 mg/l. Reduction in Pi concentrations to 4 and less than 1 mg/l resulted in significant reductions in total VFA to approximately 6.25 and 3.75 mmol/h respectively, accompanied by a rise in pH from 6.5 to 7.3. Ammonia-nitrogen values, which averaged about 131 mg/l at the higher Pi concentrations, also increased with the lowest level of Pi to about 240 mg/l. ATP concentrations averaged about 14 mumol/l at the highest Pi concentration and fell progressively with each reduction in Pi concentration to a final value of 2.5 mumol/l with the Pi level less than 1 mg/l. At Pi concentrations of 48 and 28 mg/l, the digestibilities of xylose, arabinose and cellulose-glucose were maintained at about 0.90, 0.62 and 0.70 g/g input respectively. At lower Pi concentrations these digestibilities fell significantly and corresponding values at Pi less than 1 mg/l were 0.73, 0.41 and 0.31 respectively. Starch digestion was unaffected by Pi concentration and remained at about 0.90 g/g input. The amount of microbial-N synthesized averaged 0.48 g/d and was maintained with Pi concentrations down to 4 mg/l. There was, however, a significant reduction to 0.26 g/d with Pi concentrations of less than 1 mg/l. The efficiency of microbial protein synthesis was variable but averaged approximately 25 g N/kg total carbohydrate fermented. It was

  10. Utilization of digital differential display to identify differentially expressed genes related to rumen development.

    PubMed

    Kato, Daichi; Suzuki, Yutaka; Haga, Satoshi; So, KyoungHa; Yamauchi, Eri; Nakano, Miwa; Ishizaki, Hiroshi; Choi, Kichoon; Katoh, Kazuo; Roh, Sang-Gun

    2016-04-01

    This study aimed to identify the genes associated with the development of the rumen epithelium by screening for candidate genes by digital differential display (DDD) in silico. Using DDD in NCBI's UniGene database, expressed sequence tag (EST)-based gene expression profiles were analyzed in rumen, reticulum, omasum, abomasum and other tissues in cattle. One hundred and ten candidate genes with high expression in the rumen were derived from a library of all tissues. The expression levels of 11 genes in all candidate genes were analyzed in the rumen, reticulum, omasum and abomasum of nine Japanese Black male calves (5-week-old pre-weaning: n = 3; 15-week-old weaned calves: n = 6). Among the 11 genes, only 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), aldo-keto reductase family 1, member C1-like (AKR1C1), and fatty acid binding protein 3 (FABP3) showed significant changes in the levels of gene expression in the rumen between the pre- and post-weaning of calves. These results indicate that DDD analysis in silico can be useful for screening candidate genes related to rumen development, and that the changes in expression levels of three genes in the rumen may have been caused by weaning, aging or both.

  11. Production of tyrosine and other aromatic compounds from phenylalanine by rumen microorganisms.

    PubMed

    Khan, R I; Onodera, R; Amin, M R; Mohammed, N

    1999-01-01

    Rumen contents from three fistulated Japanese native goats fed Lucerne hay cubes (Medicago sativa) and concentrate mixture were collected to prepare the suspensions of mixed rumen bacteria (B), mixed protozoa (P) and a combination of the two (BP). Microbial suspensions were anaerobically incubated at 39 degrees C for 12 h with or without 1 mM of L-phenylalanine (Phe). Phe, tyrosine (Tyr) and other related compounds in both supernatant and microbial hydrolysates of the incubations were analyzed by HPLC. Tyr can be produced from Phe not only by rumen bacteria but also by rumen protozoa. The production of Tyr during 12 h incubation in B (183.6 mumol/g MN) was 4.3 times higher than that in P. One of the intermediate products between Phe and Tyr seems to be p-hydroxyphenylacetic acid. The rate of the net degradation of Phe incubation in B (76.0 mumol/g MN/h) was 2.4 times higher than in P. In the case of all rumen microorganisms, degraded Phe was mainly (> 53%) converted into phenylacetic acid. The production of benzoic acid was higher in P than in B suspensions. Small amount of phenylpyruvic acid was produced from Phe by both rumen bacteria and protozoa, but phenylpropionic acid and phenyllactic acid were produced only by rumen bacteria.

  12. FERMENTATION CAPACITY AS A MEASURE OF NET GROWTH OF RUMEN MICROORGANISMS.

    PubMed

    EL-SHAZLY, K; HUNGATE, R E

    1965-01-01

    A simple technique for measuring the rate of fermentation of rumen microorganisms is described. It allows quick preparation and handling of the rumen sample immediately after collection. The average rate of fermentation of rumen samples collected from a lactating cow fed on alfalfa hay and concentrate in the ratio of 2:1 was very similar to the rate obtained by other methods. On the assumption that when substrate is in excess, the fermentation rate is proportional to the total microbial cells, the method was used to estimate the net growth of rumen microorganisms. The maximal fermentation rate of subsamples, taken at the beginning and after 1 hr of incubation of a sample, was measured. The results indicate a net average growth of 8% per hr, or 192% per day, in approximate agreement with rumen turnover time. The highest net growth does not necessarily coincide with the highest gas-production rate in the rumen, in part because the bicarbonate concentration in the rumen contents varies. In a cow fed on hay and concentrate, the net growth was lowest before feeding and immediately after feeding.

  13. Role of predominant rumen bacteria in the cause of polioencephalomalacia (cerebrocortical necrosis) in cattle.

    PubMed

    Haven, T R; Caldwell, D R; Jensen, R

    1983-08-01

    Rumen contents of 2 heifers with acute polioencephalomalacia (cerebrocortical necrosis) were compared with rumen contents from a healthy steer fed a fibrous diet. Also examined were (i) the quantitative nature of the predominant rumen microflora, (ii) the distribution of morphologic types of bacteria in the rumen contents, (iii) the extent that morphologic groups produced or degraded thiamine, and (iv) the cumulative effects of metabolic activities of the predominant rumen bacteria concerning the net production or degradation of thiamine. The differences in the frequency of occurrence of particular bacterial morphologic groups, the extent of growth, and the amount of thiamine metabolism in relationship to growth were also evaluated. The cumulative thiamine metabolism of the predominant bacteria associated with the rumen of polioencephalomalacia-affected heifers led to substantial net thiamine destruction, whereas metabolism associated with the rumen of a normal steer led to thiamine production. Polioencephalomalacia may occur as a consequence of alteration of the metabolic activities of the predominant resident ruminal bacteria associated with diseased cattle.

  14. Metagenomic insights into the RDX-degrading potential of the ovine rumen microbiome.

    PubMed

    Li, Robert W; Giarrizzo, Juan Gabriel; Wu, Sitao; Li, Weizhong; Duringer, Jennifer M; Craig, A Morrie

    2014-01-01

    The manufacturing processes of royal demolition explosive (RDX), or hexahydro-1,3,5-trinitro-1,3,5-triazine, have resulted in serious water contamination. As a potential carcinogen, RDX can cause a broad range of harmful effects to humans and animals. The ovine rumen is capable of rapid degradation of nitroaromatic compounds, including RDX. While ruminal RDX-degrading bacteria have been identified, the genes and pathways responsible for RDX degradation in the rumen have yet to be characterized. In this study, we characterized the metabolic potential of the ovine rumen using metagenomic approaches. Sequences homologous to at least five RDX-degrading genes cloned from environmental samples (diaA, xenA, xenB, xplA, and xplB) were present in the ovine rumen microbiome. Among them, diaA was the most abundant, likely reflective of the predominance of the genus Clostridium in the ovine rumen. At least ten genera known to harbor RDX-degrading microorganisms were detectable. Metagenomic sequences were also annotated using public databases, such as Pfam, COG, and KEGG. Five of the six Pfam protein families known to be responsible for RDX degradation in environmental samples were identified in the ovine rumen. However, increased substrate availability did not appear to enhance the proliferation of RDX-degrading bacteria and alter the microbial composition of the ovine rumen. This implies that the RDX-degrading capacity of the ovine rumen microbiome is likely regulated at the transcription level. Our results provide metagenomic insights into the RDX-degrading potential of the ovine rumen, and they will facilitate the development of novel and economic bioremediation strategies.

  15. Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics.

    PubMed

    Krause, Denis O; Denman, Stuart E; Mackie, Roderick I; Morrison, Mark; Rae, Ann L; Attwood, Graeme T; McSweeney, Christopher S

    2003-12-01

    The degradation of plant cell walls by ruminants is of major economic importance in the developed as well as developing world. Rumen fermentation is unique in that efficient plant cell wall degradation relies on the cooperation between microorganisms that produce fibrolytic enzymes and the host animal that provides an anaerobic fermentation chamber. Increasing the efficiency with which the rumen microbiota degrades fiber has been the subject of extensive research for at least the last 100 years. Fiber digestion in the rumen is not optimal, as is supported by the fact that fiber recovered from feces is fermentable. This view is confirmed by the knowledge that mechanical and chemical pretreatments improve fiber degradation, as well as more recent research, which has demonstrated increased fiber digestion by rumen microorganisms when plant lignin composition is modified by genetic manipulation. Rumen microbiologists have sought to improve fiber digestion by genetic and ecological manipulation of rumen fermentation. This has been difficult and a number of constraints have limited progress, including: (a) a lack of reliable transformation systems for major fibrolytic rumen bacteria, (b) a poor understanding of ecological factors that govern persistence of fibrolytic bacteria and fungi in the rumen, (c) a poor understanding of which glycolyl hydrolases need to be manipulated, and (d) a lack of knowledge of the functional genomic framework within which fiber degradation operates. In this review the major fibrolytic organisms are briefly discussed. A more extensive discussion of the enzymes involved in fiber degradation is included. We also discuss the use of plant genetic manipulation, application of free-living lignolytic fungi and the use of exogenous enzymes. Lastly, we will discuss how newer technologies such as genomic and metagenomic approaches can be used to improve our knowledge of the functional genomic framework of plant cell wall degradation in the rumen. PMID

  16. Metagenomic insights into the RDX-degrading potential of the ovine rumen microbiome.

    PubMed

    Li, Robert W; Giarrizzo, Juan Gabriel; Wu, Sitao; Li, Weizhong; Duringer, Jennifer M; Craig, A Morrie

    2014-01-01

    The manufacturing processes of royal demolition explosive (RDX), or hexahydro-1,3,5-trinitro-1,3,5-triazine, have resulted in serious water contamination. As a potential carcinogen, RDX can cause a broad range of harmful effects to humans and animals. The ovine rumen is capable of rapid degradation of nitroaromatic compounds, including RDX. While ruminal RDX-degrading bacteria have been identified, the genes and pathways responsible for RDX degradation in the rumen have yet to be characterized. In this study, we characterized the metabolic potential of the ovine rumen using metagenomic approaches. Sequences homologous to at least five RDX-degrading genes cloned from environmental samples (diaA, xenA, xenB, xplA, and xplB) were present in the ovine rumen microbiome. Among them, diaA was the most abundant, likely reflective of the predominance of the genus Clostridium in the ovine rumen. At least ten genera known to harbor RDX-degrading microorganisms were detectable. Metagenomic sequences were also annotated using public databases, such as Pfam, COG, and KEGG. Five of the six Pfam protein families known to be responsible for RDX degradation in environmental samples were identified in the ovine rumen. However, increased substrate availability did not appear to enhance the proliferation of RDX-degrading bacteria and alter the microbial composition of the ovine rumen. This implies that the RDX-degrading capacity of the ovine rumen microbiome is likely regulated at the transcription level. Our results provide metagenomic insights into the RDX-degrading potential of the ovine rumen, and they will facilitate the development of novel and economic bioremediation strategies. PMID:25383623

  17. Metagenomic Insights into the RDX-Degrading Potential of the Ovine Rumen Microbiome

    PubMed Central

    Li, Robert W.; Giarrizzo, Juan Gabriel; Wu, Sitao; Li, Weizhong; Duringer, Jennifer M.; Craig, A. Morrie

    2014-01-01

    The manufacturing processes of royal demolition explosive (RDX), or hexahydro-1,3,5-trinitro-1,3,5-triazine, have resulted in serious water contamination. As a potential carcinogen, RDX can cause a broad range of harmful effects to humans and animals. The ovine rumen is capable of rapid degradation of nitroaromatic compounds, including RDX. While ruminal RDX-degrading bacteria have been identified, the genes and pathways responsible for RDX degradation in the rumen have yet to be characterized. In this study, we characterized the metabolic potential of the ovine rumen using metagenomic approaches. Sequences homologous to at least five RDX-degrading genes cloned from environmental samples (diaA, xenA, xenB, xplA, and xplB) were present in the ovine rumen microbiome. Among them, diaA was the most abundant, likely reflective of the predominance of the genus Clostridium in the ovine rumen. At least ten genera known to harbor RDX-degrading microorganisms were detectable. Metagenomic sequences were also annotated using public databases, such as Pfam, COG, and KEGG. Five of the six Pfam protein families known to be responsible for RDX degradation in environmental samples were identified in the ovine rumen. However, increased substrate availability did not appear to enhance the proliferation of RDX-degrading bacteria and alter the microbial composition of the ovine rumen. This implies that the RDX-degrading capacity of the ovine rumen microbiome is likely regulated at the transcription level. Our results provide metagenomic insights into the RDX-degrading potential of the ovine rumen, and they will facilitate the development of novel and economic bioremediation strategies. PMID:25383623

  18. Quantifying the Responses of Mixed Rumen Microbes to Excess Carbohydrate

    PubMed Central

    Hackmann, Timothy J.; Diese, Leanne E.

    2013-01-01

    The aim of this study was to determine if a mixed microbial community from the bovine rumen would respond to excess carbohydrate by accumulating reserve carbohydrate, energy spilling (dissipating excess ATP energy as heat), or both. Mixed microbes from the rumen were washed with N-free buffer and dosed with glucose. Total heat production was measured by calorimetry. Energy spilling was calculated as heat production not accounted by (i) endogenous metabolism (heat production before dosing glucose) and (ii) synthesis of reserve carbohydrate (heat from synthesis itself and reactions yielding ATP for it). For cells dosed with 5 mM glucose, synthesis of reserve carbohydrate and endogenous metabolism accounted for nearly all heat production (93.7%); no spilling was detected (P = 0.226). For cells dosed with 20 mM glucose, energy spilling was not detected immediately after dosing, but it became significant (P < 0.05) by approximately 30 min after dosing with glucose. Energy spilling accounted for as much as 38.7% of heat production in one incubation. Nearly all energy (97.9%) and carbon (99.9%) in glucose were recovered in reserve carbohydrate, fermentation acids, CO2, CH4, and heat. This full recovery indicates that products were measured completely and that spilling was not a methodological artifact. These results should aid future research aiming to mechanistically account for variation in energetic efficiency of mixed microbial communities. PMID:23584777

  19. Convergent Evolution of Rumen Microbiomes in High-Altitude Mammals.

    PubMed

    Zhang, Zhigang; Xu, Dongming; Wang, Li; Hao, Junjun; Wang, Jinfeng; Zhou, Xin; Wang, Weiwei; Qiu, Qiang; Huang, Xiaodan; Zhou, Jianwei; Long, Ruijun; Zhao, Fangqing; Shi, Peng

    2016-07-25

    Studies of genetic adaptation, a central focus of evolutionary biology, most often focus on the host's genome and only rarely on its co-evolved microbiome. The Qinghai-Tibetan Plateau (QTP) offers one of the most extreme environments for the survival of human and other mammalian species. Yaks (Bos grunniens) and Tibetan sheep (T-sheep) (Ovis aries) have adaptations for living in this harsh high-altitude environment, where nomadic Tibetan people keep them primarily for food and livelihood [1]. Adaptive evolution affects energy-metabolism-related genes in a way that helps these ruminants live at high altitude [2, 3]. Herein, we report convergent evolution of rumen microbiomes for energy harvesting persistence in two typical high-altitude ruminants, yaks and T-sheep. Both ruminants yield significantly lower levels of methane and higher yields of volatile fatty acids (VFAs) than their low-altitude relatives, cattle (Bos taurus) and ordinary sheep (Ovis aries). Ultra-deep metagenomic sequencing reveals significant enrichment in VFA-yielding pathways of rumen microbial genes in high-altitude ruminants, whereas methanogenesis pathways show enrichment in the cattle metagenome. Analyses of RNA transcriptomes reveal significant upregulation in 36 genes associated with VFA transport and absorption in the ruminal epithelium of high-altitude ruminants. Our study provides novel insights into the contributions of microbiomes to adaptive evolution in mammals and sheds light on the biological control of greenhouse gas emissions from livestock enteric fermentation. PMID:27321997

  20. Development of rumen metabolism and ruminal epithelium in lambs.

    PubMed

    Zitnan, R; Bomba, A; Sommer, A; Kolodzieyski, L

    1993-01-01

    The concentrations of volatile fatty acids and the development of rumen epithelium and microflora adhered to rumen wall in suckling lambs were observed. Total VFA concentration increased with age. The differences between the 1st (28.5 mmol.l-1) and 4th week of age (78.7 mmol.l-1) and between 6th (82.1 mmol.l-1 and 10th week of age (117.4 mmol.l-1) were significant (p < 0.01). The highest molar proportion of acetic acid (71.2 mol%) was observed in 1 week-old lambs and the highest molar proportion of propionic acid in 6 week-old lambs (20.8 mol%). Length and surface characteristics of papillae changed dramatically over the 10-week period. In samples from 1-week and 4-week-old lambs, the papilla surface was relatively smooth and epithelial cells were relatively thin and flat. In samples from 6-week and 10-week-old lambs the tissue topography was typically rough. In the 1-week-old lambs the cocci, single rods and short rods in pairs were present at very low population levels. At 4 weeks the epimural community became notably more complex and bacteria were present at a higher population level. The dominant morphotype at 6 weeks was a rod-shaped end-on attached bacterium. The epimural microflora became the most complex at 10 weeks.

  1. Microbial degradation of usnic acid in the reindeer rumen.

    PubMed

    Sundset, Monica A; Barboza, Perry S; Green, Thomas K; Folkow, Lars P; Blix, Arnoldus Schytte; Mathiesen, Svein D

    2010-03-01

    Reindeer (Rangifer tarandus) eat and utilize lichens as an important source of energy and nutrients in winter. Lichens synthesize and accumulate a wide variety of phenolic secondary compounds, such as usnic acid, as a defense against herbivores and to protect against damage by UV-light in solar radiation. We have examined where and to what extent these phenolic compounds are degraded in the digestive tract of the reindeer, with particular focus on usnic acid. Three male reindeer were given ad libitum access to a control diet containing no usnic acid for three weeks and then fed lichens ad libitum (primarily Cladonia stellaris) containing 9.1 mg/g DM usnic acid for 4 weeks. Usnic acid intake in reindeer on the lichen diet was 91-117 mg/kg BM/day. In spite of this, no trace of usnic acid or conjugates of usnic acid was found either in fresh rumen fluid, urine, or feces. This suggests that usnic acid is rapidly degraded by rumen microbes, and that it consequently is not absorbed by the animal. This apparent ability to detoxify lichen phenolic compounds may gain increased importance with future enhanced UV-B radiation expected to cause increased protective usnic acid/phenol production in lichens.

  2. NMR studies of copper speciation in the bovine rumen environment.

    PubMed

    Reid, R S; Attaelmannan, M A

    1998-02-01

    Dietary copper supplements containing complexed copper have been asserted to be more bioavailable than 'inorganic' supplements. Since bioavailability is intimately related to the particular metal ion species that exist in any given environment, studies of solution speciation can be used to examine this assertion. In a previous study, our computer modeling of copper speciation in bovine saliva indicated that when a lysine-complexed copper supplement is used, the complex will not persist. In the present study, these conclusions are supplemented and extended using 1H NMR experiments. Lysine and the copper(II)-lysine system are characterized, and chemical shifts of the individual species obtained. Chemical shift values for the copper(II)-lysine-bovine saliva system can then be predicted. Results show good agreement with experimental values. The scope of the computer modeling is then expanded to include the major low molar mass ligands present in the rumen. Implications of the results are discussed. The validity of this rumen model is further evaluated by NMR investigations on biological samples. The study provides further evidence that complexes such as copper(II)-lysine would disintegrate in the gastrointestinal tract, and are unlikely to be absorbed intact.

  3. Microbial degradation of usnic acid in the reindeer rumen

    NASA Astrophysics Data System (ADS)

    Sundset, Monica A.; Barboza, Perry S.; Green, Thomas K.; Folkow, Lars P.; Blix, Arnoldus Schytte; Mathiesen, Svein D.

    2010-03-01

    Reindeer ( Rangifer tarandus) eat and utilize lichens as an important source of energy and nutrients in winter. Lichens synthesize and accumulate a wide variety of phenolic secondary compounds, such as usnic acid, as a defense against herbivores and to protect against damage by UV-light in solar radiation. We have examined where and to what extent these phenolic compounds are degraded in the digestive tract of the reindeer, with particular focus on usnic acid. Three male reindeer were given ad libitum access to a control diet containing no usnic acid for three weeks and then fed lichens ad libitum (primarily Cladonia stellaris) containing 9.1 mg/g DM usnic acid for 4 weeks. Usnic acid intake in reindeer on the lichen diet was 91-117 mg/kg BM/day. In spite of this, no trace of usnic acid or conjugates of usnic acid was found either in fresh rumen fluid, urine, or feces. This suggests that usnic acid is rapidly degraded by rumen microbes, and that it consequently is not absorbed by the animal. This apparent ability to detoxify lichen phenolic compounds may gain increased importance with future enhanced UV-B radiation expected to cause increased protective usnic acid/phenol production in lichens.

  4. An investigation of the effects of ketoprofen following rumen fistulation surgery in lactating dairy cows

    PubMed Central

    Newby, Nathalie C.; Tucker, Cassandra B.; Pearl, David L.; LeBlanc, Stephen J.; Leslie, Ken E.; von Keyserlingk, Marina A.G.; Duffield, Todd F.

    2014-01-01

    Post-operative pain management following rumen surgery is not common practice. We examined the effect of providing the pain medication ketoprofen to dairy cattle following the first stage of a rumen cannulation surgery, which involves an incision in the body wall and exteriorizing and clamping the rumen. The results of this study provide clear evidence that the first stage of the surgery was painful and ketoprofen at the time of and 24 h following surgery, alleviated some, but not all, of the post-surgical pain. Pain mitigation should be included when performing flank surgery in cattle. PMID:24790229

  5. Rumen-protected choline: A significance effect on dairy cattle nutrition

    PubMed Central

    Jayaprakash, G.; Sathiyabarathi, M.; Robert, M. Arokia; Tamilmani, T.

    2016-01-01

    Choline is a vitamin-like substance it has multi-function in animal production, reproduction, and health. The transition period is most crucial stage in lactation cycle of dairy cows due to its association with negative hormonal and energy balances. Unfortunately, unprotected choline easily degrades in the rumen; therefore, choline added to the diet in a rumen-protected form. The use of rumen-protected choline (RPC) is a preventive measurement for the fatty liver syndrome and ketosis; may improve milk production as well as milk composition and reproduction parameters. This review summarizes the effectiveness of RPC on animal production, health, and reproduction.

  6. An investigation of the effects of ketoprofen following rumen fistulation surgery in lactating dairy cows.

    PubMed

    Newby, Nathalie C; Tucker, Cassandra B; Pearl, David L; LeBlanc, Stephen J; Leslie, Ken E; von Keyserlingk, Marina A G; Duffield, Todd F

    2014-05-01

    Post-operative pain management following rumen surgery is not common practice. We examined the effect of providing the pain medication ketoprofen to dairy cattle following the first stage of a rumen cannulation surgery, which involves an incision in the body wall and exteriorizing and clamping the rumen. The results of this study provide clear evidence that the first stage of the surgery was painful and ketoprofen at the time of and 24 h following surgery, alleviated some, but not all, of the post-surgical pain. Pain mitigation should be included when performing flank surgery in cattle.

  7. Rumen-protected choline: A significance effect on dairy cattle nutrition

    PubMed Central

    Jayaprakash, G.; Sathiyabarathi, M.; Robert, M. Arokia; Tamilmani, T.

    2016-01-01

    Choline is a vitamin-like substance it has multi-function in animal production, reproduction, and health. The transition period is most crucial stage in lactation cycle of dairy cows due to its association with negative hormonal and energy balances. Unfortunately, unprotected choline easily degrades in the rumen; therefore, choline added to the diet in a rumen-protected form. The use of rumen-protected choline (RPC) is a preventive measurement for the fatty liver syndrome and ketosis; may improve milk production as well as milk composition and reproduction parameters. This review summarizes the effectiveness of RPC on animal production, health, and reproduction. PMID:27651671

  8. Rumen-protected choline: A significance effect on dairy cattle nutrition.

    PubMed

    Jayaprakash, G; Sathiyabarathi, M; Robert, M Arokia; Tamilmani, T

    2016-08-01

    Choline is a vitamin-like substance it has multi-function in animal production, reproduction, and health. The transition period is most crucial stage in lactation cycle of dairy cows due to its association with negative hormonal and energy balances. Unfortunately, unprotected choline easily degrades in the rumen; therefore, choline added to the diet in a rumen-protected form. The use of rumen-protected choline (RPC) is a preventive measurement for the fatty liver syndrome and ketosis; may improve milk production as well as milk composition and reproduction parameters. This review summarizes the effectiveness of RPC on animal production, health, and reproduction. PMID:27651671

  9. Comparison of utilization of pectins from various sources by pure cultures of pectinolytic rumen bacteria and mixed cultures of rumen microorganisms.

    PubMed

    Kasperowicz, A

    1994-01-01

    Utilization of citrus, lucerne, apple and sugar beet pulp pectins by pure strains of rumen bacteria, Prevotella ruminicola, Lachnospira multiparus and Butyrivibrio fibrisolvens was compared. Additionally, the utilization of pectins by mixed rumen microorganisms was evaluated. The comparison was based on the depletion of galacturonic acid from medium, content of cellular protein in the cultures and the amount of end products of pectin fermentation in cell-free culture fluids. It was found that citrus pectin was utilized best; utilization of lucerne, apple and sugar beet pectins was dependent on the species of bacteria. P. ruminicola and B. fibrisolvens utilized polygalacturonic acid from sugar beet pectins better than that from apple or lucerne pectin, while L. multiparus was capable of significantly better utilization of lucerne pectin than pectin from sugar beet or apple. The source of pectin was less important for mixed cultures of rumen microorganisms than for pure cultures of rumen bacteria. The amount of fermentation products in the culture fluids supported the conclusion that citrus pectin was utilized better than others. Microbial protein content in the cultures was found to be a less sensitive indicator of pectin utilization than the remaining examined parameters. P. ruminicola strains and mixed cultures of rumen microorganisms were shown to have the highest ability to utilize pectins, L. multiparus-moderate, while the B. fibrisolvens strains utilized pectin the least.

  10. Persistence and functional impact of a microbial inoculant on native microbial community structure, nutrient digestion and fermentation characteristics in a rumen model.

    PubMed

    Ziemer, C J; Sharp, R; Stern, M D; Cotta, M A; Whitehead, T R; Stahl, D A

    2002-10-01

    Small sub-unit (SSU) rRNA-targeted oligonucleotide probes were used to monitor the persistence of a genetically engineered bacterium inoculated in model rumens. Eight dual flow continuous culture fermenters were operated with either standard artificial saliva buffer or buffer with chondroitin sulfate (0.5 g/l) added. After 168 h of operation, fermenters were inoculated with Bacteroides thetaiotaomicron BTX (BTX), at approximately 1% of total bacteria. B. thetaiotaomicron was quantified using a species-specific probe and shown to persist in fermenters 144 h after inoculation (relative abundance 0.48% and 1.42% of total SSU rRNA with standard and chondroitin sulfate buffers, respectively). No B. thetaiotaomicron SSU rRNA was detected in fermenter samples prior to inoculation with strain BTX. Relative abundances of Bacteria, Eucarya and Archaea were not affected by either inoculation or buffer type. Fiber digestion, in particular the hemicellulose fraction, increased after strain BTX addition. Chondroitin sulfate addition to the buffer increased bacterial nitrogen flow in fermenters, but did not alter fiber digestion. Neither inoculum nor buffer type altered total short chain fatty acid (VFA) concentrations but proportions of individual VFA differed. In model rumens, B. thetaiotaomicron BTX increased fiber digestion when added to mixed ruminal microbes, independent of chondroitin sulfate addition; but further study is needed to determine effects on other fiber-digesting bacteria.

  11. An analysis of the buffer system in the rumen of dairy cattle.

    PubMed

    Counotte, G H; van't Klooster, A T; van der Kuilen, J; Prins, R A

    1979-12-01

    A method is presented for the analysis of buffer systems in the rumen using the first derivation of titration curves. Bicarbonate and volatile fatty acids (VFA) are the main components of the buffering system in the rumen fluid of dairy cattle under widely different feeding conditions. Phosphate from saliva is of little importance as a buffer, but neutralizes acids produced in the rumen. After studying five cows during the peripartal period a spontaneous and transient increase in the concentrations of VFA and a soluble marker (PEG) as well as a drop in pH and in the bicarbonate concentrations not related to feeding was observed in two animals that were sampled several hours before parturition. The potential risk of provoking rumen disturbances upon feeding animals close to the time of parturition, when buffering capacity may be minimal, is stressed.

  12. Osmotic pressure, water kinetics and volatile fatty acid absorption in the rumen of sheep sustained by intragastric infusions.

    PubMed

    López, S; Hovell, F D; MacLeod, N A

    1994-02-01

    The effects of changing rumen osmotic pressure (OP) upon water kinetics and volatile fatty acid (VFA) absorption in the rumen of sheep were studied in two 4 x 4 Latin square experiments, each using four lambs with a rumen cannula and an abomasal catheter. In both experiments the lambs were sustained by the intragastric infusion of all nutrients (VFA, Ca, P, Mg and a buffer solution into the rumen, and casein, vitamins and trace elements into the abomasum). On experimental days, which were at least 1 week apart, drinking water and the casein infusion were withdrawn, and the ruminal OP was changed and held constant for 9.5 h, by incorporating NaCl at different concentrations in the buffer solution being infused. In Expt 1 the target OP values were 300, 340, 380 and 420 mosmol/kg, and in Expt 2 were 261 (no saline addition), 350, 420 and 490 mosmol/kg. Using soluble non-absorbable markers (PEG in continuous infusion and Cr-EDTA injected in pulse doses) rumen volume, liquid outflow rates, apparent water absorption through the rumen wall and VFA absorption rates were estimated at six sampling times corresponding to the 1.5 h intervals during the last 7.5 h following the change in rumen OP. Liquid outflow rate (F; ml/h) showed a significant and positive linear relationship with the rumen OP (mosmol/kg), resulting in the equation F = 1.24 OP (SE 0.096)-36.5 (SE 36.6) (r2 0.96). Similarly, water absorption rate (W; ml/h) was significantly affected by rumen OP, and this relationship was given by W = 395 (SE 39.9)-1.16 OP (SE 0.105) (r2 0.95), which means that for an OP of 341 mosmol/kg the net movement of water across the rumen wall would be zero, and either a net efflux or a net influx of water would be observed with lower or higher OP respectively. In Expt 2 there was a significant linear effect of OP on rumen volume (P < 0.01), with higher OP being associated with increases in rumen liquid contents of about 10-20%. As rumen OP was increased there was also a decline in

  13. Rumen microbial (meta)genomics and its application to ruminant production.

    PubMed

    Morgavi, D P; Kelly, W J; Janssen, P H; Attwood, G T

    2013-03-01

    Meat and milk produced by ruminants are important agricultural products and are major sources of protein for humans. Ruminant production is of considerable economic value and underpins food security in many regions of the world. However, the sector faces major challenges because of diminishing natural resources and ensuing increases in production costs, and also because of the increased awareness of the environmental impact of farming ruminants. The digestion of feed and the production of enteric methane are key functions that could be manipulated by having a thorough understanding of the rumen microbiome. Advances in DNA sequencing technologies and bioinformatics are transforming our understanding of complex microbial ecosystems, including the gastrointestinal tract of mammals. The application of these techniques to the rumen ecosystem has allowed the study of the microbial diversity under different dietary and production conditions. Furthermore, the sequencing of genomes from several cultured rumen bacterial and archaeal species is providing detailed information about their physiology. More recently, metagenomics, mainly aimed at understanding the enzymatic machinery involved in the degradation of plant structural polysaccharides, is starting to produce new insights by allowing access to the total community and sidestepping the limitations imposed by cultivation. These advances highlight the promise of these approaches for characterising the rumen microbial community structure and linking this with the functions of the rumen microbiota. Initial results using high-throughput culture-independent technologies have also shown that the rumen microbiome is far more complex and diverse than the human caecum. Therefore, cataloguing its genes will require a considerable sequencing and bioinformatic effort. Nevertheless, the construction of a rumen microbial gene catalogue through metagenomics and genomic sequencing of key populations is an attainable goal. A rumen

  14. Rumen microbial (meta)genomics and its application to ruminant production.

    PubMed

    Morgavi, D P; Kelly, W J; Janssen, P H; Attwood, G T

    2013-03-01

    Meat and milk produced by ruminants are important agricultural products and are major sources of protein for humans. Ruminant production is of considerable economic value and underpins food security in many regions of the world. However, the sector faces major challenges because of diminishing natural resources and ensuing increases in production costs, and also because of the increased awareness of the environmental impact of farming ruminants. The digestion of feed and the production of enteric methane are key functions that could be manipulated by having a thorough understanding of the rumen microbiome. Advances in DNA sequencing technologies and bioinformatics are transforming our understanding of complex microbial ecosystems, including the gastrointestinal tract of mammals. The application of these techniques to the rumen ecosystem has allowed the study of the microbial diversity under different dietary and production conditions. Furthermore, the sequencing of genomes from several cultured rumen bacterial and archaeal species is providing detailed information about their physiology. More recently, metagenomics, mainly aimed at understanding the enzymatic machinery involved in the degradation of plant structural polysaccharides, is starting to produce new insights by allowing access to the total community and sidestepping the limitations imposed by cultivation. These advances highlight the promise of these approaches for characterising the rumen microbial community structure and linking this with the functions of the rumen microbiota. Initial results using high-throughput culture-independent technologies have also shown that the rumen microbiome is far more complex and diverse than the human caecum. Therefore, cataloguing its genes will require a considerable sequencing and bioinformatic effort. Nevertheless, the construction of a rumen microbial gene catalogue through metagenomics and genomic sequencing of key populations is an attainable goal. A rumen

  15. Rumen conditions that predispose cattle to pasture bloat.

    PubMed

    Majak, W; Howarth, R E; Cheng, K J; Hall, J W

    1983-08-01

    Rumen contents from the dorsal sac were examined before alfalfa ingestion to determine factors that predispose cattle to pasture bloat. Chlorophyll concentration, buoyancy of particulate matter, and rates of gas production were significantly higher in cattle that subsequently bloated than in those that did not. Higher chlorophyll in bloat cases indicated accumulation of suspended chloroplast particles in the dorsal sac, perhaps due to increased buoyancy of the particulate matter. The higher fermentation rates (in the presence of glucose) suggested that the latent capacity for gas production was due to microbial colonization of suspended feed particles. Chlorophyll 4 h after feeding was also higher in bloated as compared to unbloated animals. In short, the microbial colonization and retention of particulate matter provided active inocula for promoting rapid legume digestion. Consequently, gas production was enhanced when feeding commenced, but the fermentation gases were trapped by the buoyant, frothy ingesta, resulting in the condition of pasture bloat. PMID:6619348

  16. Effect of bromochloromethane and fumarate on phylogenetic diversity of the formyltetrahydrofolate synthetase gene in bovine rumen.

    PubMed

    Mitsumori, Makoto; Matsui, Hiroki; Tajima, Kiyoshi; Shinkai, Takumi; Takenaka, Akio; Denman, Stuart E; McSweeney, Christopher S

    2014-01-01

    Effect of the methane inhibitor, bromochloromethane (BCM) and dietary substrate, fumarate, on microbial community structure of acetogen bacteria in the bovine rumen was investigated through analysis of the formyltetrahydrofolate synthetase gene (fhs). The fhs sequences obtained from BCM-untreated, BCM-treated, fumarate-untreated and fumarate-treated bovine rumen were categorized into homoacetogens and nonhomoacetogenic bacteria by homoacetogen similarity scores. Phylogenetic tree analysis indicated that most of the fhs sequences categorized into homoacetogens were divided into nine clusters, which were in close agreement with a result shown in a self-organizing map. The diversity of the fhs sequences from the BCM-treated rumen was significantly different from those from BCM-non-treated rumen. Principal component analysis also showed that addition of BCM to the rumen altered the population structure of acetogenic bacteria significantly but the effect of fumarate was comparatively minor. These results indicate that BCM affects diversity of actogens in the bovine rumen, and changes in acetogenic community structure in response to methane inhibitors may be caused by different mechanisms.

  17. Manipulation of soluble and rumen-undegradable protein in diets fed to postpubertal dairy heifers.

    PubMed

    Zanton, G I; Gabler, M T; Heinrichs, A J

    2007-02-01

    Eight postpubertal Holstein heifers (455 +/- 4.0), fit with rumen cannulas, were used in 2 experiments to investigate the effects of altering dietary protein type on nutrient digestibility, rumen fermentation, and nitrogen utilization. Heifers were fed diets containing low or high levels of soluble (SP) and low or high levels of rumen-undegradable protein (RUP) in a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments. The treatment rations in experiment 1 were formulated with corn silage composing the majority of the forage fraction, whereas in experiment 2, grass hay composed the highest proportion of ration DM. Blood and rumen samples were collected over 2 d and total fecal and urine collections were conducted for 4 d. Dry matter, organic matter, and neutral detergent fiber digestibility were not different in either experiment 1 or 2. Increasing the proportion of dietary crude protein that was SP increased mean daily rumen ammonia concentrations in each experiment, although no other rumen parameter differed. Excretion of urinary nitrogen in experiment 1 was highest for diets with low SP and low RUP and with high SP and high RUP, which resulted in these rations being the least efficient in retention of apparently digested nitrogen. The proportion of consumed or absorbed nitrogen retained in experiment 2 was not significantly different between treatments. Responses to alterations in crude protein degradability are observable in postpubertal heifers; however, the level of response may depend on the diet in which protein degradability is altered. PMID:17235175

  18. Mining of luxS genes from rumen microbial consortia by metagenomic and metatranscriptomic approaches.

    PubMed

    Ghali, Ines; Shinkai, Takumi; Mitsumori, Makoto

    2016-05-01

    Although rumen bacterial communities vary depending on many factors such as diet, age and physiological conditions, a core microbiota exists within the rumen. In many natural environments, some bacteria use a quorum-sensing (QS) system to regulate their physiological activities. However, very limited information is available about QS systems in rumen. To investigate the autoinducer 2 (AI-2)-mediated QS system in rumen, we detected genes (luxS) encoding the AI-2 synthase (LuxS), from three datasets embedded in metagenomics RAST server (MG-RAST) and from a metatranscriptome dataset. We collected 135 luxS genes from the metagenomic datasets, which were presumed to originate from Bacteroidetes, Firmicutes, Fusobacteria and Actinobacteria, and 34 luxS genes from the metatranscriptome dataset, which probably originated from Bacteroidetes, Firmicutes and Spirochaetes. Because the essential amino acids for LuxS activity were conserved in the LuxS homologues predicted from luxS gene sequences from both datasets, the LuxS homologues probably function in the rumen. Since the largest number of sequences of luxS genes were collected from the genera Prevotella, Ruminococcus and Eubacterium, which include many fibrolytic bacteria and constituent members of biofilm on feed particles, an AI-2-mediated QS system is likely involved in biofilm formation and fibrolytic activity in the rumen. PMID:26277986

  19. Insights into resistome and stress responses genes in Bubalus bubalis rumen through metagenomic analysis.

    PubMed

    Reddy, Bhaskar; Singh, Krishna M; Patel, Amrutlal K; Antony, Ancy; Panchasara, Harshad J; Joshi, Chaitanya G

    2014-10-01

    Buffalo rumen microbiota experience variety of diets and represents a huge reservoir of mobilome, resistome and stress responses. However, knowledge of metagenomic responses to such conditions is still rudimentary. We analyzed the metagenomes of buffalo rumen in the liquid and solid phase of the rumen biomaterial from river buffalo adapted to varying proportion of concentrate to green or dry roughages, using high-throughput sequencing to know the occurrence of antibiotics resistance genes, genetic exchange between bacterial population and environmental reservoirs. A total of 3914.94 MB data were generated from all three treatments group. The data were analysed with Metagenome rapid annotation system tools. At phyla level, Bacteroidetes were dominant in all the treatments followed by Firmicutes. Genes coding for functional responses to stress (oxidative stress and heat shock proteins) and resistome genes (resistance to antibiotics and toxic compounds, phages, transposable elements and pathogenicity islands) were prevalent in similar proportion in liquid and solid fraction of rumen metagenomes. The fluoroquinolone resistance, MDR efflux pumps and Methicillin resistance genes were broadly distributed across 11, 9, and 14 bacterial classes, respectively. Bacteria responsible for phages replication and prophages and phage packaging and rlt-like streptococcal phage genes were mostly assigned to phyla Bacteroides, Firmicutes and proteaobacteria. Also, more reads matching the sigma B genes were identified in the buffalo rumen. This study underscores the presence of diverse mechanisms of adaptation to different diet, antibiotics and other stresses in buffalo rumen, reflecting the proportional representation of major bacterial groups. PMID:24985977

  20. High-throughput Methods Redefine the Rumen Microbiome and Its Relationship with Nutrition and Metabolism.

    PubMed

    McCann, Joshua C; Wickersham, Tryon A; Loor, Juan J

    2014-01-01

    Diversity in the forestomach microbiome is one of the key features of ruminant animals. The diverse microbial community adapts to a wide array of dietary feedstuffs and management strategies. Understanding rumen microbiome composition, adaptation, and function has global implications ranging from climatology to applied animal production. Classical knowledge of rumen microbiology was based on anaerobic, culture-dependent methods. Next-generation sequencing and other molecular techniques have uncovered novel features of the rumen microbiome. For instance, pyrosequencing of the 16S ribosomal RNA gene has revealed the taxonomic identity of bacteria and archaea to the genus level, and when complemented with barcoding adds multiple samples to a single run. Whole genome shotgun sequencing generates true metagenomic sequences to predict the functional capability of a microbiome, and can also be used to construct genomes of isolated organisms. Integration of high-throughput data describing the rumen microbiome with classic fermentation and animal performance parameters has produced meaningful advances and opened additional areas for study. In this review, we highlight recent studies of the rumen microbiome in the context of cattle production focusing on nutrition, rumen development, animal efficiency, and microbial function. PMID:24940050

  1. High-throughput Methods Redefine the Rumen Microbiome and Its Relationship with Nutrition and Metabolism

    PubMed Central

    McCann, Joshua C.; Wickersham, Tryon A.; Loor, Juan J.

    2014-01-01

    Diversity in the forestomach microbiome is one of the key features of ruminant animals. The diverse microbial community adapts to a wide array of dietary feedstuffs and management strategies. Understanding rumen microbiome composition, adaptation, and function has global implications ranging from climatology to applied animal production. Classical knowledge of rumen microbiology was based on anaerobic, culture-dependent methods. Next-generation sequencing and other molecular techniques have uncovered novel features of the rumen microbiome. For instance, pyrosequencing of the 16S ribosomal RNA gene has revealed the taxonomic identity of bacteria and archaea to the genus level, and when complemented with barcoding adds multiple samples to a single run. Whole genome shotgun sequencing generates true metagenomic sequences to predict the functional capability of a microbiome, and can also be used to construct genomes of isolated organisms. Integration of high-throughput data describing the rumen microbiome with classic fermentation and animal performance parameters has produced meaningful advances and opened additional areas for study. In this review, we highlight recent studies of the rumen microbiome in the context of cattle production focusing on nutrition, rumen development, animal efficiency, and microbial function. PMID:24940050

  2. Immunization against Rumen Methanogenesis by Vaccination with a New Recombinant Protein.

    PubMed

    Zhang, Litai; Huang, Xiaofeng; Xue, Bai; Peng, Quanhui; Wang, Zhisheng; Yan, Tianhai; Wang, Lizhi

    2015-01-01

    Vaccination through recombinant proteins against rumen methanogenesis provides a mitigation approach to reduce enteric methane (CH4) emissions in ruminants. The objective of present study was to evaluate the in vivo efficacy of a new vaccine candidate protein (EhaF) on methanogenesis and microbial population in the rumen of goats. We amplified the gene mru 1407 encoding protein EhaF using fresh rumen fluid samples of mature goats and successfully expressed recombinant protein (EhaF) in Escherichia coli Rosetta. This product was evaluated using 12 mature goats with half for control and other half injected with 400ug/goat the purified recombinant protein in day 1 and two subsequent booster immunizations in day 35 and 49. All measurements were undertaken from 63 to 68 days after the initial vaccination, with CH4 emissions determined using respiration calorimeter chambers. The results showed that the vaccination caused intensive immune responses in serum and saliva, although it had no significant effect on total enteric CH4 emissions and methanogen population in the rumen, when compared with the control goats. However, the vaccination altered the composition of rumen bacteria, especially the abundance of main phylum Firmicutes and genus Prevotella. The results indicate that protein EhaF might not be an effective vaccine to reduce enteric CH4 emissions but our vaccine have potential to influence the rumen ecosystem of goats. PMID:26445479

  3. Fate of genetically modified maize DNA in the oral cavity and rumen of sheep.

    PubMed

    Duggan, Paula S; Chambers, Philip A; Heritage, John; Michael Forbes, J

    2003-02-01

    The polymerase chain reaction (PCR) technique was used to investigate the fate of a transgene in the rumen of sheep fed silage and maize grains from an insect-resistant maize line. A 1914-bp DNA fragment containing the entire coding region of the synthetic cryIA(b) gene was still amplifiable from rumen fluid sampled 5 h after feeding maize grains. The same target sequence, however, could not be amplified from rumen fluid sampled from sheep fed silage prepared from the genetically modified maize line. PCR amplification of a shorter (211-bp), yet still highly specific, target sequence was possible with rumen fluid sampled up to 3 and 24 h after feeding silage and maize grains, respectively. These findings indicate that intact transgenes from silage are unlikely to survive significantly in the rumen since a DNA sequence 211-bp long is very unlikely to transmit genetic information. By contrast, DNA in maize grains persists for a significant time and may, therefore, provide a source of transforming DNA in the rumen. In addition, we have examined the biological activity of plasmid DNA that had previously been exposed to the ovine oral cavity. Plasmid extracted from saliva sampled after incubation for 8 min was still capable of transforming competent Escherichia coli to kanamycin resistance, implying that DNA released from the diet within the mouth may retain sufficient biological activity for the transformation of competent oral bacteria.

  4. Immunization against Rumen Methanogenesis by Vaccination with a New Recombinant Protein

    PubMed Central

    Zhang, Litai; Huang, Xiaofeng; Xue, Bai; Peng, Quanhui; Wang, Zhisheng; Yan, Tianhai; Wang, Lizhi

    2015-01-01

    Vaccination through recombinant proteins against rumen methanogenesis provides a mitigation approach to reduce enteric methane (CH4) emissions in ruminants. The objective of present study was to evaluate the in vivo efficacy of a new vaccine candidate protein (EhaF) on methanogenesis and microbial population in the rumen of goats. We amplified the gene mru 1407 encoding protein EhaF using fresh rumen fluid samples of mature goats and successfully expressed recombinant protein (EhaF) in Escherichia coli Rosetta. This product was evaluated using 12 mature goats with half for control and other half injected with 400ug/goat the purified recombinant protein in day 1 and two subsequent booster immunizations in day 35 and 49. All measurements were undertaken from 63 to 68 days after the initial vaccination, with CH4 emissions determined using respiration calorimeter chambers. The results showed that the vaccination caused intensive immune responses in serum and saliva, although it had no significant effect on total enteric CH4 emissions and methanogen population in the rumen, when compared with the control goats. However, the vaccination altered the composition of rumen bacteria, especially the abundance of main phylum Firmicutes and genus Prevotella. The results indicate that protein EhaF might not be an effective vaccine to reduce enteric CH4 emissions but our vaccine have potential to influence the rumen ecosystem of goats. PMID:26445479

  5. Immunization against Rumen Methanogenesis by Vaccination with a New Recombinant Protein.

    PubMed

    Zhang, Litai; Huang, Xiaofeng; Xue, Bai; Peng, Quanhui; Wang, Zhisheng; Yan, Tianhai; Wang, Lizhi

    2015-01-01

    Vaccination through recombinant proteins against rumen methanogenesis provides a mitigation approach to reduce enteric methane (CH4) emissions in ruminants. The objective of present study was to evaluate the in vivo efficacy of a new vaccine candidate protein (EhaF) on methanogenesis and microbial population in the rumen of goats. We amplified the gene mru 1407 encoding protein EhaF using fresh rumen fluid samples of mature goats and successfully expressed recombinant protein (EhaF) in Escherichia coli Rosetta. This product was evaluated using 12 mature goats with half for control and other half injected with 400ug/goat the purified recombinant protein in day 1 and two subsequent booster immunizations in day 35 and 49. All measurements were undertaken from 63 to 68 days after the initial vaccination, with CH4 emissions determined using respiration calorimeter chambers. The results showed that the vaccination caused intensive immune responses in serum and saliva, although it had no significant effect on total enteric CH4 emissions and methanogen population in the rumen, when compared with the control goats. However, the vaccination altered the composition of rumen bacteria, especially the abundance of main phylum Firmicutes and genus Prevotella. The results indicate that protein EhaF might not be an effective vaccine to reduce enteric CH4 emissions but our vaccine have potential to influence the rumen ecosystem of goats.

  6. Rumen Microorganisms Decrease Bioavailability of Inorganic Selenium Supplements.

    PubMed

    Galbraith, M L; Vorachek, W R; Estill, C T; Whanger, P D; Bobe, G; Davis, T Z; Hall, J A

    2016-06-01

    Despite the availability of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study was to determine whether rumen microorganisms (RMO) alter the bioavailability of Se sources commonly used in Se supplements. Rumen microorganisms were isolated from ewes (n = 4) and incubated ex vivo with no Se (control), with inorganic Na selenite or Na selenate, or with organic selenomethionine (SeMet). Total Se incorporated into RMO and the amount of elemental Se formed were determined under equivalent conditions. Incorporation of Se from Na selenite, Na selenate, or SeMet into RMO was measured as fold change compared with control (no added Se). Incorporation of Se into microbial mass was greater for SeMet (13.2-fold greater than no-Se control) compared with inorganic Se supplements (P = 0.02); no differences were observed between inorganic Na selenate (3.3-fold greater than no-Se control) and Na selenite (3.5-fold greater than no-Se control; P = 0.97). Formation of non-bioavailable, elemental Se was less for RMO incubated with SeMet compared with inorganic Se sources (P = 0.01); no differences were observed between Na selenate and Na selenite (P = 0.09). The clinical importance of these results is that the oral bioavailability of organic SeMet should be greater compared with inorganic Se sources because of greater RMO incorporation of Se and decreased formation of elemental Se by RMO.

  7. Rumen Microorganisms Decrease Bioavailability of Inorganic Selenium Supplements.

    PubMed

    Galbraith, M L; Vorachek, W R; Estill, C T; Whanger, P D; Bobe, G; Davis, T Z; Hall, J A

    2016-06-01

    Despite the availability of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study was to determine whether rumen microorganisms (RMO) alter the bioavailability of Se sources commonly used in Se supplements. Rumen microorganisms were isolated from ewes (n = 4) and incubated ex vivo with no Se (control), with inorganic Na selenite or Na selenate, or with organic selenomethionine (SeMet). Total Se incorporated into RMO and the amount of elemental Se formed were determined under equivalent conditions. Incorporation of Se from Na selenite, Na selenate, or SeMet into RMO was measured as fold change compared with control (no added Se). Incorporation of Se into microbial mass was greater for SeMet (13.2-fold greater than no-Se control) compared with inorganic Se supplements (P = 0.02); no differences were observed between inorganic Na selenate (3.3-fold greater than no-Se control) and Na selenite (3.5-fold greater than no-Se control; P = 0.97). Formation of non-bioavailable, elemental Se was less for RMO incubated with SeMet compared with inorganic Se sources (P = 0.01); no differences were observed between Na selenate and Na selenite (P = 0.09). The clinical importance of these results is that the oral bioavailability of organic SeMet should be greater compared with inorganic Se sources because of greater RMO incorporation of Se and decreased formation of elemental Se by RMO. PMID:26537117

  8. Effect of Various Essential Oils Isolated from Douglas Fir Needles upon Sheep and Deer Rumen Microbial Activity

    PubMed Central

    Oh, Hi Kon; Sakai, T.; Jones, M. B.; Longhurst, W. M.

    1967-01-01

    The effects of essential oils isolated from Douglas fir needles on sheep and deer rumen microbial activity were tested by use of an anaerobic manometric technique. Rumen microorganisms were obtained from a sheep which had been fed mainly on alfalfa hay and dried range grass. One deer used in this study had access to Douglas fir trees the year around, whereas the other deer had no access to Douglas fir. All of the monoterpene hydrocarbons isolated from Douglas fir needles—α-pinene, β-pinene, limonene, myrcene, camphene, Δ3-carene, and terpinolene—promoted only slightly or had no effect on deer rumen microbial activity, whereas all of them promoted activity in sheep rumen microbes, except Δ3-carene and terpinolene, which inhibited activity. Of the oxygenated monoterpenes, all monoterpene alcohols—α-terpineol, terpinen-4-ol, linalool, citronellol, and fenchyl alcohol—strongly inhibited the rumen microbial activity of both sheep and deer. Monoterpene esters (bornyl acetate) produced mild inhibition for both sheep and deer microbes, and citronellyl acetate inhibited rumen microbial activity in sheep, whereas it promoted activity in both deer. Monoterpene aldehyde (citronellal) inhibited the activity of rumen microbes from both sheep and deer having no access to Douglas fir from the Hopland Field Station, whereas they produced no effect upon the deer having access to Douglas fir from the Masonite forest. Rumen microbial activity for sheep and deer was promoted slightly with aliphatic ester (ethyl-n-caproate). There was a marked difference between sheep and deer rumen microbes as affected by addition of the various essential oils. The monoterpene hydrocarbons promoted activity more on sheep rumen microbes than on deer, and the monoterpene alcohols inhibited sheep rumen microbial activity more than that of deer. Furthermore, the deer rumen microbes from Hopland Field Station were affected more than the deer from Masonite forest. Images Fig. 1 PMID:6049303

  9. Short communication: Initial evidence supporting existence of potential rumen epidermal stem and progenitor cells.

    PubMed

    Yohe, T T; Tucker, H L M; Parsons, C L M; Geiger, A J; Akers, R M; Daniels, K M

    2016-09-01

    The bovine rumen epidermis is a keratinized multilayered tissue that experiences persistent cell turnover. Because of this constant cell turnover, epidermal stem cells and their slightly more differentiated daughter cells, epidermal progenitor cells, must exist in the stratum basale of rumen epidermis. To date, these 2 epidermal cell populations and any unique cellular markers they may possess remain completely uncharacterized in the bovine rumen. An important first step in this new research area is the demonstration of the relative abundance and existence of markers for these cells in rumen tissue. A related second step is to document rumen epidermal proliferative responses to an extrinsic signal such as nutrient concentration within the rumen. The objectives of this experiment were to evaluate the extrinsic effect of diet on (1) gene expression of 6 potential rumen epidermal stem or progenitor cell markers and (2) rumen epidermal cell proliferation within the stratum basale. Twelve preweaned Holstein heifers were fed either a restricted diet (R) or an enhanced diet (EH). Animals on R received a milk replacer (MR) diet fed at 0.44kg of powder dry matter (DM)/d (20.9% crude protein, 29.8% fat, DM basis) and EH received MR at 1.08kg of powder dry matter/d (28.9% crude protein, 26.2% fat, DM basis). All calves had access to a 20% crude protein starter and were weaned during wk 7 of the experiment. Lifetime DM intake was 0.73kg of DM/calf per day for R (5.88 Mcal of net energy/calf per day) and 1.26kg of DM/calf per day for EH (10.68 Mcal of net energy/calf per day). Twenty-four hours before slaughter heifers received an intravenous dose of 5-bromo-2'-deoxyuridine to label proliferating cells. Heifers were slaughtered at 8 wk of age, and rumen samples from the ventral sac region were obtained and stored in RNA preservative and processed for routine histology. Quantitative real-time reverse transcriptase PCR was used to analyze relative abundance of genes. Candidate

  10. Methane Inhibition Alters the Microbial Community, Hydrogen Flow, and Fermentation Response in the Rumen of Cattle.

    PubMed

    Martinez-Fernandez, Gonzalo; Denman, Stuart E; Yang, Chunlei; Cheung, Jane; Mitsumori, Makoto; McSweeney, Christopher S

    2016-01-01

    Management of metabolic hydrogen ([H]) in the rumen has been identified as an important consideration when reducing ruminant CH4 emissions. However, little is known about hydrogen flux and microbial rumen population responses to CH4 inhibition when animals are fed with slowly degradable diets. The effects of the anti-methanogenic compound, chloroform, on rumen fermentation, microbial ecology, and H2/CH4 production were investigated in vivo. Eight rumen fistulated Brahman steers were fed a roughage hay diet (Rhode grass hay) or roughage hay:concentrate diet (60:40) with increasing levels (low, mid, and high) of chloroform in a cyclodextrin matrix. The increasing levels of chloroform resulted in an increase in H2 expelled as CH4 production decreased with no effect on dry matter intakes. The amount of expelled H2 per mole of decreased methane, was lower for the hay diet suggesting a more efficient redirection of hydrogen into other microbial products compared with hay:concentrate diet. A shift in rumen fermentation toward propionate and branched-chain fatty acids was observed for both diets. Animals fed with the hay:concentrate diet had both higher formate concentration and H2 expelled than those fed only roughage hay. Metabolomic analyses revealed an increase in the concentration of amino acids, organic, and nucleic acids in the fluid phase for both diets when methanogenesis was inhibited. These changes in the rumen metabolism were accompanied by a shift in the microbiota with an increase in Bacteroidetes:Firmicutes ratio and a decrease in Archaea and Synergistetes for both diets. Within the Bacteroidetes family, some OTUs assigned to Prevotella were promoted under chloroform treatment. These bacteria may be partly responsible for the increase in amino acids and propionate in the rumen. No significant changes were observed for abundance of fibrolytic bacteria, protozoa, and fungi, which suggests that fiber degradation was not impaired. The observed 30% decrease in

  11. Methane Inhibition Alters the Microbial Community, Hydrogen Flow, and Fermentation Response in the Rumen of Cattle.

    PubMed

    Martinez-Fernandez, Gonzalo; Denman, Stuart E; Yang, Chunlei; Cheung, Jane; Mitsumori, Makoto; McSweeney, Christopher S

    2016-01-01

    Management of metabolic hydrogen ([H]) in the rumen has been identified as an important consideration when reducing ruminant CH4 emissions. However, little is known about hydrogen flux and microbial rumen population responses to CH4 inhibition when animals are fed with slowly degradable diets. The effects of the anti-methanogenic compound, chloroform, on rumen fermentation, microbial ecology, and H2/CH4 production were investigated in vivo. Eight rumen fistulated Brahman steers were fed a roughage hay diet (Rhode grass hay) or roughage hay:concentrate diet (60:40) with increasing levels (low, mid, and high) of chloroform in a cyclodextrin matrix. The increasing levels of chloroform resulted in an increase in H2 expelled as CH4 production decreased with no effect on dry matter intakes. The amount of expelled H2 per mole of decreased methane, was lower for the hay diet suggesting a more efficient redirection of hydrogen into other microbial products compared with hay:concentrate diet. A shift in rumen fermentation toward propionate and branched-chain fatty acids was observed for both diets. Animals fed with the hay:concentrate diet had both higher formate concentration and H2 expelled than those fed only roughage hay. Metabolomic analyses revealed an increase in the concentration of amino acids, organic, and nucleic acids in the fluid phase for both diets when methanogenesis was inhibited. These changes in the rumen metabolism were accompanied by a shift in the microbiota with an increase in Bacteroidetes:Firmicutes ratio and a decrease in Archaea and Synergistetes for both diets. Within the Bacteroidetes family, some OTUs assigned to Prevotella were promoted under chloroform treatment. These bacteria may be partly responsible for the increase in amino acids and propionate in the rumen. No significant changes were observed for abundance of fibrolytic bacteria, protozoa, and fungi, which suggests that fiber degradation was not impaired. The observed 30% decrease in

  12. Methane Inhibition Alters the Microbial Community, Hydrogen Flow, and Fermentation Response in the Rumen of Cattle

    PubMed Central

    Martinez-Fernandez, Gonzalo; Denman, Stuart E.; Yang, Chunlei; Cheung, Jane; Mitsumori, Makoto; McSweeney, Christopher S.

    2016-01-01

    Management of metabolic hydrogen ([H]) in the rumen has been identified as an important consideration when reducing ruminant CH4 emissions. However, little is known about hydrogen flux and microbial rumen population responses to CH4 inhibition when animals are fed with slowly degradable diets. The effects of the anti-methanogenic compound, chloroform, on rumen fermentation, microbial ecology, and H2/CH4 production were investigated in vivo. Eight rumen fistulated Brahman steers were fed a roughage hay diet (Rhode grass hay) or roughage hay:concentrate diet (60:40) with increasing levels (low, mid, and high) of chloroform in a cyclodextrin matrix. The increasing levels of chloroform resulted in an increase in H2 expelled as CH4 production decreased with no effect on dry matter intakes. The amount of expelled H2 per mole of decreased methane, was lower for the hay diet suggesting a more efficient redirection of hydrogen into other microbial products compared with hay:concentrate diet. A shift in rumen fermentation toward propionate and branched-chain fatty acids was observed for both diets. Animals fed with the hay:concentrate diet had both higher formate concentration and H2 expelled than those fed only roughage hay. Metabolomic analyses revealed an increase in the concentration of amino acids, organic, and nucleic acids in the fluid phase for both diets when methanogenesis was inhibited. These changes in the rumen metabolism were accompanied by a shift in the microbiota with an increase in Bacteroidetes:Firmicutes ratio and a decrease in Archaea and Synergistetes for both diets. Within the Bacteroidetes family, some OTUs assigned to Prevotella were promoted under chloroform treatment. These bacteria may be partly responsible for the increase in amino acids and propionate in the rumen. No significant changes were observed for abundance of fibrolytic bacteria, protozoa, and fungi, which suggests that fiber degradation was not impaired. The observed 30% decrease in

  13. Trends in Artificial Intelligence.

    ERIC Educational Resources Information Center

    Hayes, Patrick

    1978-01-01

    Discusses the foundations of artificial intelligence as a science and the types of answers that may be given to the question, "What is intelligence?" The paradigms of artificial intelligence and general systems theory are compared. (Author/VT)

  14. Artificial life and Piaget.

    PubMed

    Mueller, Ulrich; Grobman, K H.

    2003-04-01

    Artificial life provides important theoretical and methodological tools for the investigation of Piaget's developmental theory. This new method uses artificial neural networks to simulate living phenomena in a computer. A recent study by Parisi and Schlesinger suggests that artificial life might reinvigorate the Piagetian framework. We contrast artificial life with traditional cognitivist approaches, discuss the role of innateness in development, and examine the relation between physiological and psychological explanations of intelligent behaviour.

  15. Comparative evaluation of rumen metagenome community using qPCR and MG-RAST.

    PubMed

    Nathani, Neelam M; Patel, Amrutlal K; Dhamannapatil, Prakash S; Kothari, Ramesh K; Singh, Krishna M; Joshi, Chaitanya G

    2013-01-01

    Microbial profiling of metagenome communities have been studied extensively using MG-RAST and other related metagenome annotation databases. Although, database based taxonomic profiling provides snapshots of the metagenome architecture, their reliability needs to be validated through more accurate methods. Here, we performed qPCR based absolute quantitation of selected rumen microbes in the liquid and solid fraction of the rumen fluid of river buffalo adapted to varying proportion of concentrate to green or dry roughages and compared with the MG-RAST based annotation of the metagenomes sequences of 16S r-DNA amplicons and high throughput shotgun sequencing. Animals were adapted to roughage-to-concentrate ratio in the proportion of 50:50, 75:25 and 100:00, respectively for six weeks. At the end of each treatment, rumen fluid was collected at 3 h post feeding. qPCR revealed that the relative abundance of Prevotella bryantii was higher, followed by the two cellulolytic bacteria Fibrobacter succinogens and Ruminococcus flavefaciens that accounted up to 1.33% and 0.78% of the total rumen bacteria, respectively. While, Selenomonas ruminantium and archaea Methanomicrobiales were lower in microbial population in the rumen of buffalo. There was no statistically significant difference between the enumerations shown by qPCR and analysis of the shotgun sequencing data by MG-RAST except for Prevotella. These results indicate the variations in abundance of different microbial species in buffalo rumen under varied feeding regimes as well as in different fractions of rumen liquor, i.e. solid and the liquid. The results also present the reliability of shotgun sequencing to describe metagenome and analysis/annotation by MG-RAST. PMID:24025701

  16. Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation

    PubMed Central

    van Lingen, Henk J.; Plugge, Caroline M.; Fadel, James G.; Kebreab, Ermias; Bannink, André; Dijkstra, Jan

    2016-01-01

    Hydrogen is a key product of rumen fermentation and has been suggested to thermodynamically control the production of the various volatile fatty acids (VFA). Previous studies, however, have not accounted for the fact that only thermodynamic near-equilibrium conditions control the magnitude of reaction rate. Furthermore, the role of NAD, which is affected by hydrogen partial pressure (PH2), has often not been considered. The aim of this study was to quantify the control of PH2 on reaction rates of specific fermentation pathways, methanogenesis and NADH oxidation in rumen microbes. The control of PH2 was quantified using the thermodynamic potential factor (FT), which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. Unity FT was calculated for all glucose fermentation pathways considered, indicating no inhibition of PH2 on the production of a specific type of VFA (e.g., acetate, propionate and butyrate) in the rumen. For NADH oxidation without ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity to zero for different NAD+ to NADH ratios and pH of 6.2 and 7.0, which indicates thermodynamic control of PH2. For NADH oxidation with ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity at pH of 7.0 only. For the acetate to propionate conversion, FT increased from 0.65 to unity with increasing PH2, which indicates thermodynamic control. For propionate to acetate and butyrate to acetate conversions, FT decreased to zero below the rumen range of PH2, indicating full thermodynamic suppression. For methanogenesis by archaea without cytochromes, FT differed from unity only below the rumen range of PH2, indicating no thermodynamic control. This theoretical investigation shows that thermodynamic control of PH2 on individual VFA produced and associated yield of hydrogen and methane cannot be explained without considering NADH

  17. Characterization of the rumen microbiome of Indian Kankrej cattle (Bos indicus) adapted to different forage diet.

    PubMed

    Patel, Vilas; Patel, Amrutlal K; Parmar, Nidhi R; Patel, Anand B; Reddy, Bhaskar; Joshi, Chaitanya G

    2014-12-01

    Present study described rumen microbiome of Indian cattle (Kankrej breed) to better understand the microbial diversity and largely unknown functional capacity of the rumen microbiome under different dietary treatments. Kankrej cattle were gradually adapted to a high-forage diet (four animals with dry forage and four with green forage) containing 50 % (K1), 75 % (K2) to 100 % (K3) forage, and remaining concentrate diet, each for 6 weeks followed by analysis of rumen fiber adherent and fiber-free metagenomic community by shotgun sequencing using ion torrent PGM platform and EBI-metagenomics annotation pipeline. Taxonomic analysis indicated that rumen microbiome was dominated by Bacteroidetes followed by Firmicutes, Fibrobacter, Proteobacteria, and Tenericutes. Functional analysis based on gene ontology classified all reads in total 157 categories based on their functional role in biological, molecular, and cellular component with abundance of genes associated with hydrolase activity, membrane, transport, transferase, and different metabolism (such as carbohydrate and protein). Statistical analysis using STAMP revealed significant differences (P < 0.05) between solid and liquid fraction of rumen (in 65 categories), between all three treatments (in 56 categories), and between green and dry roughage (17 categories). Diet treatment also exerted significant difference in environmental gene tags (EGTs) involved in metabolic pathways for production of volatile fatty acids. EGTs for butyrate production were abundant in K2, whereas EGTs for propionate production was abundant during K1. Principal component analysis also demonstrated that diet proportion, fraction of rumen, and type of forage affected rumen microbiome at taxonomic as well as functional level. PMID:25359471

  18. Downregulation of Cellular Protective Factors of Rumen Epithelium in Goats Fed High Energy Diet

    PubMed Central

    Hollmann, Manfred; Miller, Ingrid; Hummel, Karin; Sabitzer, Sonja; Metzler-Zebeli, Barbara U.; Razzazi-Fazeli, Ebrahim; Zebeli, Qendrim

    2013-01-01

    Energy-rich diets can challenge metabolic and protective functions of the rumen epithelial cells, but the underlying factors are unclear. This study sought to evaluate proteomic changes of the rumen epithelium in goats fed a low, medium, or high energy diet. Expression of protein changes were compared by two-dimensional differential gel electrophoresis followed by protein identification with matrix assisted laser desorption ionisation tandem time-of-flight mass spectrometry. Of about 2,000 spots commonly detected in all gels, 64 spots were significantly regulated, which were traced back to 24 unique proteins. Interestingly, the expression profiles of several chaperone proteins with important cellular protective functions such as heat shock cognate 71 kDa protein, peroxiredoxin-6, serpin H1, protein disulfide-isomerase, and selenium-binding protein were collectively downregulated in response to high dietary energy supply. Similar regulation patterns were obtained for some other proteins involved in transport or metabolic functions. In contrast, metabolic enzymes like retinal dehydrogenase 1 and ATP synthase subunit beta, mitochondrial precursor were upregulated in response to high energy diet. Lower expressions of chaperone proteins in the rumen epithelial cells in response to high energy supply may suggest that these cells were less protected against the potentially harmful rumen toxic compounds, which might have consequences for rumen and systemic health. Our findings also suggest that energy-rich diets and the resulting acidotic insult may render rumen epithelial cells more vulnerable to cellular damage by attenuating their cell defense system, hence facilitating the impairment of rumen barrier function, typically observed in energy-rich fed ruminants. PMID:24349094

  19. Manipulating rumen microbiome and fermentation through interventions during early life: a review.

    PubMed

    Yáñez-Ruiz, David R; Abecia, Leticia; Newbold, Charles J

    2015-01-01

    The nutritional manipulations of the rumen microbiome to enhance productivity and health are rather limited by the resilience of the ecosystem once established in the mature rumen. Based on recent studies, it has been suggested that the microbial colonization that occurs soon after birth opens a possibility of manipulation with potential to produce lasting effects into adult life. This paper presents the state-of-the-art in relation to early life nutritional interventions by addressing three areas: the development of the rumen as an organ in regards to the nutrition of the new-born, the main factors that determine the microbial population that first colonizes and establishes in the rumen, and the key immunity players that contribute to shaping the commensal microbiota in the early stage of life to understand host-microbiome specificity. The development of the rumen epithelium and muscularization are differently affected by the nature of the diet and special care should be taken with regards to transition from liquid (milk) to solid feed. The rumen is quickly colonized by all type of microorganisms straight after birth and the colonization pattern may be influenced by several factors such as presence/absence of adult animals, the first solid diet provided, and the inclusion of compounds that prevent/facilitate the establishment of some microorganisms or the direct inoculation of specific strains. The results presented show how early life events may be related to the microbial community structure and/or the rumen activity in the animals post-weaning. This would create differences in adaptive capacity due to different early life experiences and leads to the idea of microbial programming. However, many elements need to be further studied such as: the most sensitive window of time for interventions, the best means to test long term effectiveness, the role of key microbial groups and host-immune regulations.

  20. Manipulation of rumen ecology by dietary lemongrass (Cymbopogon citratus Stapf.) powder supplementation.

    PubMed

    Wanapat, M; Cherdthong, A; Pakdee, P; Wanapat, S

    2008-12-01

    This experiment was conducted to investigate the effect of lemongrass [Cymbopogon citratus (DC.) Stapf.] powder (LGP) on rumen ecology, rumen microorganisms, and digestibility of nutrients. Four ruminally fistulated crossbred (Brahman native) beef cattle were randomly assigned according to a 4 x 4 Latin square design. The dietary treatments were LGP supplementation at 0, 100, 200, and 300 g/d with urea-treated rice straw (5%) fed to allow ad libitum intake. Digestibilities of DM, ether extract, and NDF were significantly different among treatments and were greatest at 100 g/d of supplementation. However, digestibility of CP was decreased with LGP supplementation (P < 0.05), whereas ruminal NH(3)-N and plasma urea N were decreased with incremental additions of LGP (P < 0.05). Ruminal VFA concentrations were similar among supplementation concentrations (P > 0.05). Total viable bacteria, amylolytic bacteria, and cellulolytic bacteria were significantly different among treatments and were greatest at 100 g/d of supplementation (4.7 x 10(9), 1.7 x 10(7), and 2.0 x 10(9) cfu/mL, respectively). Protozoal populations were significantly decreased by LGP supplementation. In addition, efficiency of rumen microbial N synthesis based on OM truly digested in the rumen was enriched by LGP supplementation, especially at 100 g/d (34.2 g of N/kg of OM truly digested in the rumen). Based on this study, it could be concluded that supplementation of LGP at 100 g/d improved digestibilities of nutrients, rumen microbial population, and microbial protein synthesis efficiency, thus improving rumen ecology in beef cattle.

  1. Board-invited review: Rumen microbiology: leading the way in microbial ecology.

    PubMed

    Krause, D O; Nagaraja, T G; Wright, A D G; Callaway, T R

    2013-01-01

    Robert Hungate, considered the father of rumen microbiology, was the first to initiate a systematic exploration of the microbial ecosystem of the rumen, but he was not alone. The techniques he developed to isolate and identify cellulose-digesting bacteria from the rumen have had a major impact not only in delineating the complex ecosystem of the rumen but also in clinical microbiology and in the exploration of a number of other anaerobic ecosystems, including the human hindgut. Rumen microbiology has pioneered our understanding of much of microbial ecology and has broadened our knowledge of ecology in general, as well as improved the ability to feed ruminants more efficiently. The discovery of anaerobic fungi as a component of the ruminal flora disproved the central dogma in microbiology that all fungi are aerobic organisms. Further novel interactions between bacterial species such as nutrient cross feeding and interspecies H2 transfer were first described in ruminal microorganisms. The complexity and diversity present in the rumen make it an ideal testing ground for microbial theories (e.g., the effects of nutrient limitation and excess) and techniques (such as 16S rRNA), which have rewarded the investigators that have used this easily accessed ecosystem to understand larger truths. Our understanding of characteristics of the ruminal microbial population has opened new avenues of microbial ecology, such as the existence of hyperammonia-producing bacteria and how they can be used to improve N efficiency in ruminants. In this review, we examine some of the contributions to science that were first made in the rumen, which have not been recognized in a broader sense.

  2. Manipulating rumen microbiome and fermentation through interventions during early life: a review.

    PubMed

    Yáñez-Ruiz, David R; Abecia, Leticia; Newbold, Charles J

    2015-01-01

    The nutritional manipulations of the rumen microbiome to enhance productivity and health are rather limited by the resilience of the ecosystem once established in the mature rumen. Based on recent studies, it has been suggested that the microbial colonization that occurs soon after birth opens a possibility of manipulation with potential to produce lasting effects into adult life. This paper presents the state-of-the-art in relation to early life nutritional interventions by addressing three areas: the development of the rumen as an organ in regards to the nutrition of the new-born, the main factors that determine the microbial population that first colonizes and establishes in the rumen, and the key immunity players that contribute to shaping the commensal microbiota in the early stage of life to understand host-microbiome specificity. The development of the rumen epithelium and muscularization are differently affected by the nature of the diet and special care should be taken with regards to transition from liquid (milk) to solid feed. The rumen is quickly colonized by all type of microorganisms straight after birth and the colonization pattern may be influenced by several factors such as presence/absence of adult animals, the first solid diet provided, and the inclusion of compounds that prevent/facilitate the establishment of some microorganisms or the direct inoculation of specific strains. The results presented show how early life events may be related to the microbial community structure and/or the rumen activity in the animals post-weaning. This would create differences in adaptive capacity due to different early life experiences and leads to the idea of microbial programming. However, many elements need to be further studied such as: the most sensitive window of time for interventions, the best means to test long term effectiveness, the role of key microbial groups and host-immune regulations. PMID:26528276

  3. Manipulating rumen microbiome and fermentation through interventions during early life: a review

    PubMed Central

    Yáñez-Ruiz, David R.; Abecia, Leticia; Newbold, Charles J.

    2015-01-01

    The nutritional manipulations of the rumen microbiome to enhance productivity and health are rather limited by the resilience of the ecosystem once established in the mature rumen. Based on recent studies, it has been suggested that the microbial colonization that occurs soon after birth opens a possibility of manipulation with potential to produce lasting effects into adult life. This paper presents the state-of-the-art in relation to early life nutritional interventions by addressing three areas: the development of the rumen as an organ in regards to the nutrition of the new-born, the main factors that determine the microbial population that first colonizes and establishes in the rumen, and the key immunity players that contribute to shaping the commensal microbiota in the early stage of life to understand host-microbiome specificity. The development of the rumen epithelium and muscularization are differently affected by the nature of the diet and special care should be taken with regards to transition from liquid (milk) to solid feed. The rumen is quickly colonized by all type of microorganisms straight after birth and the colonization pattern may be influenced by several factors such as presence/absence of adult animals, the first solid diet provided, and the inclusion of compounds that prevent/facilitate the establishment of some microorganisms or the direct inoculation of specific strains. The results presented show how early life events may be related to the microbial community structure and/or the rumen activity in the animals post-weaning. This would create differences in adaptive capacity due to different early life experiences and leads to the idea of microbial programming. However, many elements need to be further studied such as: the most sensitive window of time for interventions, the best means to test long term effectiveness, the role of key microbial groups and host-immune regulations. PMID:26528276

  4. Characterization of the rumen microbiome of Indian Kankrej cattle (Bos indicus) adapted to different forage diet.

    PubMed

    Patel, Vilas; Patel, Amrutlal K; Parmar, Nidhi R; Patel, Anand B; Reddy, Bhaskar; Joshi, Chaitanya G

    2014-12-01

    Present study described rumen microbiome of Indian cattle (Kankrej breed) to better understand the microbial diversity and largely unknown functional capacity of the rumen microbiome under different dietary treatments. Kankrej cattle were gradually adapted to a high-forage diet (four animals with dry forage and four with green forage) containing 50 % (K1), 75 % (K2) to 100 % (K3) forage, and remaining concentrate diet, each for 6 weeks followed by analysis of rumen fiber adherent and fiber-free metagenomic community by shotgun sequencing using ion torrent PGM platform and EBI-metagenomics annotation pipeline. Taxonomic analysis indicated that rumen microbiome was dominated by Bacteroidetes followed by Firmicutes, Fibrobacter, Proteobacteria, and Tenericutes. Functional analysis based on gene ontology classified all reads in total 157 categories based on their functional role in biological, molecular, and cellular component with abundance of genes associated with hydrolase activity, membrane, transport, transferase, and different metabolism (such as carbohydrate and protein). Statistical analysis using STAMP revealed significant differences (P < 0.05) between solid and liquid fraction of rumen (in 65 categories), between all three treatments (in 56 categories), and between green and dry roughage (17 categories). Diet treatment also exerted significant difference in environmental gene tags (EGTs) involved in metabolic pathways for production of volatile fatty acids. EGTs for butyrate production were abundant in K2, whereas EGTs for propionate production was abundant during K1. Principal component analysis also demonstrated that diet proportion, fraction of rumen, and type of forage affected rumen microbiome at taxonomic as well as functional level.

  5. Observations on the biology, epidemiology and economic relevance of rumen flukes (Paramphistomidae) in cattle kept in a temperate environment.

    PubMed

    Sargison, Neil; Francis, Emily; Davison, Chloe; Bronsvoort, Barend M deC; Handel, Ian; Mazeri, Stella

    2016-03-30

    There is concern about the probable recent introduction, increased prevalence and potential economic impact of rumen fluke infection of United Kingdom cattle. A study of 339 cattle slaughtered in a Scottish red meat abattoir was undertaken with the aims of describing the prevalence and geographical distribution of rumen fluke infection, estimating its effect on production, and evaluating faecal egg counts (FECs) as a tool to diagnose infection in live animals and study the epidemiology of the disease. The overall proportion of cattle consigned to the abattoir from northern United Kingdom with rumen fluke infection in the forestomachs was 0.29. Rumen flukes were distributed predominantly in the cranial sac of the rumen and adjacent to the reticular groove. Overall, a mean of 213 and median of 44 rumen flukes was identified in the forestomachs of rumen fluke-positive cattle. The mean and median FECs of animals were 26.01 and 5.20 eggs per gram (epg), respectively. There was a significant difference between the mean FECs per rumen fluke of 0.08 and 0.13 epg during summer/autumn and winter sampling periods, respectively. The overall correlation between rumen fluke FECs and the number of flukes in the forestomach was high, albeit lower in the summer/autumn than in the winter period. The sensitivities of rumen fluke FECs for the identification of flukes in the forestomach during the summer/autumn and winter sampling periods were 0.65 and 0.85, respectively. These results will aid in the interpretation of rumen fluke FECs when monitoring cattle health and production and studying the parasite's epidemiology in a temperate environment, thereby informing rational, precise and sustainable disease control.

  6. Effects of minerals on feed degradation and protein synthesis by rumen micro-organisms in a dual effluent fermenter.

    PubMed

    Broudiscou, L P; Papon, Y; Broudiscou, A F

    1999-01-01

    In dual outflow continuous fermenters on a 75:25 hay/barley diet, feed degradation and protein synthesis by mixed rumen microbes were tested in relation to the concentrations of HPO4(2-), HCO3- and Cl- and Na+/K+ ratio in artificial saliva, by applying a 16-run Franquart design, and by fitting second-order polynomial models. The HPO4(2-), HCO3-, Cl- concentrations and Na+/K+ ratio ranged from 0.1 to 4 g.L-1, from 0.5 to 7 g.L-1, from 0.1 to 0.5 g.L-1 and from 0.5 to 15 g.g-1, respectively. Buffer salts, particularly HPO4(2-), were the major factors while Cl- concentration had negligible effects on microbial metabolism. Maximal neutral detergent fibre, acid detergent fibre and organic matter degradabilities occurred at intermediate values of HPO4(2-) and HCO3- concentrations. The outflow of microbial protein and the efficiency of microbial protein synthesis, which varied from 26.2 to 37.1 g.N.kg-1 of organic matter truly degraded, reached minima at the centre of the experimental domain. PMID:10327453

  7. Changes in oxidation reduction potentials and volatile fatty acid production by rumen bacteria when methane synthesis is inhibited.

    PubMed

    Sauer, F D; Teather, R M

    1987-09-01

    Rumen inoculum was cultured in specially designed fermenters that allowed simultaneous measurement of pH, oxidation-reduction potentials, and gas production. The cultures were maintained at pH 6.8 by addition of 1 M NaHCO3 and continuous infusion of artificial saliva. Gas flow was maintained at 20.0 ml/min with a stream of O2-free N2. Monensin at 7.0 micrograms/ml inhibited CH4 production 49% below control concentrations. The sodium salt of 2-bromoethanesulfonic acid added at an initial concentration of 5 x 10(-5) M inhibited CH4 production by 86% and increased H2 production from less than .5 mumol/min in the control to 24.5 mumol/min in the inhibited fermenter. The redox potentials in the control fermenter remained above -.20 V and did not change with the addition of monensin. Bromoethanesulfonic acid rapidly decreased the redox potential in the fermenter to -.33 V. Volatile fatty acid production was not significantly altered by the addition of 2-bromoethanesulfonic acid. The addition of monensin gave the expected decrease in acetate:propionate ratios, decreased acetate and butyrate production, and increased valerate (but not propionate) production.

  8. Effects of minerals on feed degradation and protein synthesis by rumen micro-organisms in a dual effluent fermenter.

    PubMed

    Broudiscou, L P; Papon, Y; Broudiscou, A F

    1999-01-01

    In dual outflow continuous fermenters on a 75:25 hay/barley diet, feed degradation and protein synthesis by mixed rumen microbes were tested in relation to the concentrations of HPO4(2-), HCO3- and Cl- and Na+/K+ ratio in artificial saliva, by applying a 16-run Franquart design, and by fitting second-order polynomial models. The HPO4(2-), HCO3-, Cl- concentrations and Na+/K+ ratio ranged from 0.1 to 4 g.L-1, from 0.5 to 7 g.L-1, from 0.1 to 0.5 g.L-1 and from 0.5 to 15 g.g-1, respectively. Buffer salts, particularly HPO4(2-), were the major factors while Cl- concentration had negligible effects on microbial metabolism. Maximal neutral detergent fibre, acid detergent fibre and organic matter degradabilities occurred at intermediate values of HPO4(2-) and HCO3- concentrations. The outflow of microbial protein and the efficiency of microbial protein synthesis, which varied from 26.2 to 37.1 g.N.kg-1 of organic matter truly degraded, reached minima at the centre of the experimental domain.

  9. Straw particle size in calf starters: Effects on digestive system development and rumen fermentation.

    PubMed

    Suarez-Mena, F X; Heinrichs, A J; Jones, C M; Hill, T M; Quigley, J D

    2016-01-01

    Two trials were conducted to determine effects of straw particle size in calf starter on rumen fermentation and development in calves. Holstein calves (n=17 in trial 1; n=25 in trial 2) were housed in individual pens; bedding (wood shavings) was covered with landscape fabric to completely avoid consumption of bedding. Milk replacer was fed at 12% of birth body weight per day and water offered free choice. Calves were randomly assigned to 4 treatments differing in geometric mean particle length (Xgm) of straw comprising 5% of starter dry matter. Straw was provided within the pellet at manufacture (PS; 0.82 mm Xgm) or mixed with the pellet at time of feeding at Xgm of 3.04 (SS), 7.10 (MS), or 12.7 (LS) mm. Calves (n=12; 3/treatment) in trial 1 were fitted with a rumen cannula by wk 2 of age. A fixed amount of starter that was adjusted with age and orts were fed through the cannula in cannulated calves. Calves were euthanized 6 wk after starter was offered (9 and 7 wk of age for trials 1 and 2, respectively). Rumen digesta pH linearly decreased with age, whereas volatile fatty acid concentration increased with age. Overall pH had a cubic trend with SS lower than that of PS and MS. Molar proportion of acetate decreased with age whereas propionate proportion increased. Overall molar proportions of volatile fatty acids were not affected by diet. Fecal Xgm was not different in spite of changes in diet particle size and rumen digesta of PS being greater than SS, MS, and LS at slaughter. Fecal pH and starch concentration were not affected by diet; however, pH decreased whereas starch content increased with age. Weight of stomach compartments, rumen papillae length and width, and rumen wall thickness did not differ between diets. Omasum weight as a percentage of body weight at harvest linearly decreased as straw particle size increased. Under the conditions of this study, modifying straw particle length in starter grain resulted in minimal rumen fermentation parameter

  10. Effects of pistachio by-products in replacement of alfalfa hay on populations of rumen bacteria involved in biohydrogenation and fermentative parameters in the rumen of sheep.

    PubMed

    Ghaffari, M H; Tahmasbi, A-M; Khorvash, M; Naserian, A-A; Ghaffari, A H; Valizadeh, H

    2014-06-01

    The objective of this study was to investigate the effect of sundried pistachio by-products (PBP) as a replacement of alfalfa hay (AH) on blood metabolites, rumen fermentation and populations of rumen bacteria involved in biohydrogenation (BH) in Baluchi sheep. Four adult male Baluchi sheep (41 ± 1.3 kg, BW) fitted with ruminal cannulae were randomly assigned to four experimental diets in a 4 × 4 Latin square design. The dietary treatments were as follows: (i) control, (ii) 12% PBP (0.33 of AH in basal diet replaced by PBP), (iii) 24% PBP (0.66 of AH in basal diet replaced by PBP) and (iv) 36% PBP (all of AH in basal diet replaced by PBP). The basal diet was 360 g/kg dry matter (DM) alfalfa hay, 160 g/kg DM wheat straw and 480 g/kg DM concentrate. The trial consisted of four periods, each composed of 16 days adaptation and 4 days data collection including measurement of blood metabolites, rumen fermentation and population of bacteria. No differences were observed in rumen pH among the treatments, while rumen ammonia-N concentrations were decreased (p< 0.05) with increasing PBP by up to 36% DM of the diets. Using of 36% PBP in the diet reduced (p < 0.05) total volatile fatty acids (VFA) concentrations and the molar proportion of acetate, while the concentration of propionate, butyrate and acetate to propionate ratio were similar to all other treatments. The concentration of blood urea nitrogen (BUN) decreased (p < 0.01) with increasing PBP by up to 36% DM in the diets of sheep. However, other blood metabolites were not affected by the experimental diets. It was concluded that PBP in replacement of AH had no effects on the relative abundance of Butyrivibrio fibrisolvens and Butyrivibrio proteoclasticus in relation to the control diet.

  11. A comparison of coulometric titration and potentiometric determination of chloride concentration in rumen fluid.

    PubMed

    Cebra, Christopher K.; Tornquist, Susan J.; Vap, Lomda M.; Dodson, Linda A.

    2001-01-01

    The concentration of chloride ions in rumen fluid is a useful measure of obstructive gastrointestinal disease in ruminants and camelids. However, rumen fluid is very different from other biological fluids in its bacterial populations, consistency, and concentrations of various anions. Two methods of determining the chloride concentration in biological fluids were compared using centrifuged and filtered rumen fluid containing different amounts of sodium chloride. Although coulometric titration and potentiometric electrode analysis yielded results that had a strong linear relationship, the results of potentiometry were consistently and significantly higher, by about 20 mEq/L. This difference was investigated further by analyzing a series of fluids containing different concentrations of sodium acetate. Acetate was detected as chloride (0.21 chloride molecules per acetate molecule) by potentiometry but not by coulometric titration. Therefore, the acetate concentration of rumen fluid was the most likely cause of the discrepancy between tests in the original trial. In conclusion, the coulometric procedure may be more accurate than the potentiometric procedure for measuring rumen chloride when the concentrations of possible confounding ions are unknown.

  12. Metagenomic assessment of the functional potential of the rumen microbiome in Holstein dairy cows.

    PubMed

    Pitta, Dipti W; Indugu, Nagaraju; Kumar, Sanjay; Vecchiarelli, Bonnie; Sinha, Rohini; Baker, Linda D; Bhukya, Bhima; Ferguson, James D

    2016-04-01

    The microbial ecology of the rumen microbiome is influenced by the diet and the physiological status of the dairy cow and can have tremendous influence on the yield and components of milk. There are significant differences in milk yields between first and subsequent lactations of dairy cows, but information on how the rumen microbiome changes as the dairy cow gets older has received little attention. We characterized the rumen microbiome of the dairy cow for phylogeny and functional pathways by lactation group and stage of lactation using a metagenomics approach. Our findings revealed that the rumen microbiome was dominated by Bacteroidetes (70%), Firmicutes (15-20%) and Proteobacteria (7%). The abundance of Firmicutes and Proteobacteria were independently influenced by diet and lactation. Bacteroidetes contributed to a majority of the metabolic functions in first lactation dairy cows while the contribution from Firmicutes and Proteobacteria increased incrementally in second and third lactation dairy cows. We found that nearly 70% of the CAZymes were oligosaccharide breaking enzymes which reflect the higher starch and fermentable sugars in the diet. The results of this study suggest that the rumen microbiome continues to evolve as the dairy cow advances in lactations and these changes may have a significant role in milk production.

  13. A multiresidue screen for the analysis of toxicants in bovine rumen contents.

    PubMed

    Vudathala, Daljit K; Cummings, Margaret R; Murphy, Lisa A

    2014-07-15

    Analysis of rumen contents is helpful in solving poisoning cases when ingestion of a toxic substance by cattle or other ruminant animals is suspected. The most common technique employs extraction of the sample with organic solvent followed by clean-up method(s) before analysis with gas chromatography-mass spectrometry equipped with a library of mass spectra to help identify unknowns. A rapid method using magnesium sulfate, primary secondary amine, and C18 sorbents following principles of QuEChERS to clean up rumen contents samples is reported herein. The method was validated to analyze fortified bovine rumen contents to detect commonly found organophosphorus pesticides, carbamates, and several other compounds such as atropine, 4-aminopyridine, caffeine, scopolamine, 3-chloro-4-methylaniline, strychnine, metaldehyde, and metronidazole. For each compound, the ratio of 2 ions from the mass spectrum was monitored in fortified rumen contents. The ion ratio of fortified sample was compared with the ion ratio of standard sample spectrum and was found to be within 20%, with the exception of aldicarb and 4-aminopyridine with ion ratio of 26% and 29%, respectively. Usefulness of the method was demonstrated by not only analyzing bovine rumen contents but also canine and avian gastrointestinal contents submitted for organic chemical screening. PMID:25027495

  14. Temporal dynamics of the metabolically active rumen bacteria colonizing fresh perennial ryegrass.

    PubMed

    Huws, Sharon A; Edwards, Joan E; Creevey, Christopher J; Rees Stevens, Pauline; Lin, Wanchang; Girdwood, Susan E; Pachebat, Justin A; Kingston-Smith, Alison H

    2016-01-01

    This study investigated successional colonization of fresh perennial ryegrass (PRG) by the rumen microbiota over time. Fresh PRG was incubated in sacco in the rumens of three Holstein × Friesian cows over a period of 8 h, with samples recovered at various times. The diversity of attached bacteria was assessed using 454 pyrosequencing of 16S rRNA (cDNA). Results showed that plant epiphytic communities either decreased to low relative abundances or disappeared following rumen incubation, and that temporal colonization of the PRG by the rumen bacteria was biphasic with primary (1 and 2 h) and secondary (4-8 h) events evident with the transition period being with 2-4 h. A decrease in sequence reads pertaining to Succinivibrio spp. and increases in Pseudobutyrivibrio, Roseburia and Ruminococcus spp. (the latter all order Clostridiales) were evident during secondary colonization. Irrespective of temporal changes, the continually high abundances of Butyrivibrio, Fibrobacter, Olsenella and Prevotella suggest that they play a major role in the degradation of the plant. It is clear that a temporal understanding of the functional roles of these microbiota within the rumen is now required to unravel the role of these bacteria in the ruminal degradation of fresh PRG.

  15. Metagenomic assessment of the functional potential of the rumen microbiome in Holstein dairy cows.

    PubMed

    Pitta, Dipti W; Indugu, Nagaraju; Kumar, Sanjay; Vecchiarelli, Bonnie; Sinha, Rohini; Baker, Linda D; Bhukya, Bhima; Ferguson, James D

    2016-04-01

    The microbial ecology of the rumen microbiome is influenced by the diet and the physiological status of the dairy cow and can have tremendous influence on the yield and components of milk. There are significant differences in milk yields between first and subsequent lactations of dairy cows, but information on how the rumen microbiome changes as the dairy cow gets older has received little attention. We characterized the rumen microbiome of the dairy cow for phylogeny and functional pathways by lactation group and stage of lactation using a metagenomics approach. Our findings revealed that the rumen microbiome was dominated by Bacteroidetes (70%), Firmicutes (15-20%) and Proteobacteria (7%). The abundance of Firmicutes and Proteobacteria were independently influenced by diet and lactation. Bacteroidetes contributed to a majority of the metabolic functions in first lactation dairy cows while the contribution from Firmicutes and Proteobacteria increased incrementally in second and third lactation dairy cows. We found that nearly 70% of the CAZymes were oligosaccharide breaking enzymes which reflect the higher starch and fermentable sugars in the diet. The results of this study suggest that the rumen microbiome continues to evolve as the dairy cow advances in lactations and these changes may have a significant role in milk production. PMID:26700882

  16. Temporal dynamics of the metabolically active rumen bacteria colonizing fresh perennial ryegrass.

    PubMed

    Huws, Sharon A; Edwards, Joan E; Creevey, Christopher J; Rees Stevens, Pauline; Lin, Wanchang; Girdwood, Susan E; Pachebat, Justin A; Kingston-Smith, Alison H

    2016-01-01

    This study investigated successional colonization of fresh perennial ryegrass (PRG) by the rumen microbiota over time. Fresh PRG was incubated in sacco in the rumens of three Holstein × Friesian cows over a period of 8 h, with samples recovered at various times. The diversity of attached bacteria was assessed using 454 pyrosequencing of 16S rRNA (cDNA). Results showed that plant epiphytic communities either decreased to low relative abundances or disappeared following rumen incubation, and that temporal colonization of the PRG by the rumen bacteria was biphasic with primary (1 and 2 h) and secondary (4-8 h) events evident with the transition period being with 2-4 h. A decrease in sequence reads pertaining to Succinivibrio spp. and increases in Pseudobutyrivibrio, Roseburia and Ruminococcus spp. (the latter all order Clostridiales) were evident during secondary colonization. Irrespective of temporal changes, the continually high abundances of Butyrivibrio, Fibrobacter, Olsenella and Prevotella suggest that they play a major role in the degradation of the plant. It is clear that a temporal understanding of the functional roles of these microbiota within the rumen is now required to unravel the role of these bacteria in the ruminal degradation of fresh PRG. PMID:26542074

  17. Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: a preliminary study.

    PubMed

    Singh, Krishna M; Ahir, Viral B; Tripathi, Ajai K; Ramani, Umed V; Sajnani, Manisha; Koringa, Prakash G; Jakhesara, Subhash; Pandya, Paresh R; Rank, Dharamsi N; Murty, Duggirala S; Kothari, Ramesh K; Joshi, Chaitanya G

    2012-04-01

    The complex microbiome of the rumen functions as an effective system for the conversion of plant cell wall biomass to microbial proteins, short chain fatty acids and gases. In this study, metagenomic approaches were used to study the microbial populations and metabolic potential of the microbial community. DNA was extracted from Surti Buffalo rumen samples (four treatments diet) and sequenced separately using a 454 GS FLX Titanium system. We used comparative metagenomics to examine metabolic potential and phylogenetic composition from pyrosequence data generated in four samples, considering phylogenetic composition and metabolic potentials in the rumen may remarkably be different with respect to nutrient utilization. Assignment of metagenomic sequences to SEED categories of the Metagenome Rapid Annotation using Subsystem Technology (MG-RAST) server revealed a genetic profile characteristic of fermentation of carbohydrates in a high roughage diet. The distribution of phylotypes and environmental gene tags (EGTs) detected within each rumen sample were dominated by Bacteroidetes/Chlorobi, Firmicutes and Proteobacteria in all the samples. The results of this study could help to determine the role of rumen microbes and their enzymes in plant polysaccharide breakdown is fundamental to understanding digestion and maximising productivity in ruminant animals. PMID:21947953

  18. Isolation and Identification of Sodium Fluoroacetate Degrading Bacteria from Caprine Rumen in Brazil

    PubMed Central

    Camboim, Expedito K. A.; Almeida, Arthur P.; Tadra-Sfeir, Michelle Z.; Junior, Felício G.; Andrade, Paulo P.; McSweeney, Chris S.; Melo, Marcia A.; Riet-Correa, Franklin

    2012-01-01

    The objective of this paper was to report the isolation of two fluoroacetate degrading bacteria from the rumen of goats. The animals were adult goats, males, crossbred, with rumen fistula, fed with hay, and native pasture. The rumen fluid was obtained through the rumen fistula and immediately was inoculated 100 μL in mineral medium added with 20 mmol L−1 sodium fluoroacetate (SF), incubated at 39°C in an orbital shaker. Pseudomonas fluorescens (strain DSM 8341) was used as positive control for fluoroacetate dehalogenase activity. Two isolates were identified by 16S rRNA gene sequencing as Pigmentiphaga kullae (ECPB08) and Ancylobacter dichloromethanicus (ECPB09). These bacteria degraded sodium fluoroacetate, releasing 20 mmol L−1 of fluoride ion after 32 hours of incubation in Brunner medium containing 20 mmol L−1 of SF. There are no previous reports of fluoroacetate dehalogenase activity for P. kullae and A. dichloromethanicus. Control measures to prevent plant intoxication, including use of fences, herbicides, or other methods of eliminating poisonous plants, have been unsuccessful to avoid poisoning by fluoroacetate containing plants in Brazil. In this way, P. kullae and A. dichloromethanicus may be used to colonize the rumen of susceptible animals to avoid intoxication by fluoroacetate containing plants. PMID:22919294

  19. Microbial numbers, rumen fermentation, and nitrogen utilization of steers fed wet or dried brewers' grains.

    PubMed

    Rogers, J A; Conrad, H R; Dehority, B A; Grubb, J A

    1986-03-01

    Holstein steers were fed corn silage supplemented with either wet or dried brewers' grains to determine effects of heat drying commercial brewers' grains. Four rumen-fistulated steers were fed a 12.5% crude protein diet in a single reversal design experiment. Brewers' grains supplied 45% of the protein of the diet. Bacterial numbers, concentration of ciliated protozoa, and ammonia concentration in the rumen were higher, and rumen pH was lower, for steers fed wet brewers' grains. Concentrations of rumen volatile fatty acids were similar for both diets. Ruminal digestibility of dry matter decreased when wet versus dried brewers' grains were fed (56.9 versus 39.3%). The rate of dry matter passage from the rumen was faster with wet brewers' grains. In Experiment 2, 12 steers were in a 2 X 2 factorial design. Diets contained wet or dried brewers' grains supplemented at 22 or 40% of the diet dry matter (12.5 and 14.5% crude protein). Nitrogen retention was increased in steers fed the higher crude protein diet. Apparent digestible nitrogen, acid detergent fiber nitrogen, and nitrogen retention were higher with wet versus dried brewers' grains. Plasma essential and nonessential amino acids were also higher in steers fed wet brewers' grains. Alteration in microbial numbers, fermentation measurements, and nitrogen utilization were associated with more soluble nitrogen with wet (13.4%) versus dried (3.3%) brewers' grains.

  20. Evaluation of a rapid determination of heat production and respiratory quotient in Holstein steers using the washing rumen technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to validate use of the washed The objective of this study was to validate use of the washed rumen technique for rapid measurement of fasting HP and RQ. The plateau of RQ values was 0.87 ± 0.01 and 0.72 ± 0.01 for unwashed and washed rumen, respectively. The RQ decreas...

  1. The bacterial community composition of the bovine rumen detected using pyrosequencing of 16S rRNA genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rumen as a complex microbial ecosystem plays a critical role in sustainable agriculture. Rumen microorganisms perform important biochemical conversions, including the fermentation of plant fiber to small molecules such as short-chain fatty acids for meat and dairy production. In this study, we s...

  2. Efficiency and rumen responses in younger and older Holstein heifers limit-fed diets of differing energy density

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the effects of limit-feeding diets of different predicted energy density on the efficiency of utilization of feed and nitrogen and rumen responses in younger and older Holstein heifers. Eight rumen-cannulated Holstein heifers (4 heifers beginning at 257 ± ...

  3. Plant extracts affect in vitro rumen microbial fermentation.

    PubMed

    Busquet, M; Calsamiglia, S; Ferret, A; Kamel, C

    2006-02-01

    Different doses of 12 plant extracts and 6 secondary plant metabolites were incubated for 24 h in diluted ruminal fluid with a 50:50 forage:concentrate diet. Treatments were: control (no additive), plant extracts (anise oil, cade oil, capsicum oil, cinnamon oil, clove bud oil, dill oil, fenugreek, garlic oil, ginger oil, oregano oil, tea tree oil, and yucca), and secondary plant metabolites (anethol, benzyl salicylate, carvacrol, carvone, cinnamaldehyde, and eugenol). Each treatment was supplied at 3, 30, 300, and 3,000 mg/L of culture fluid. At 3,000 mg/L, most treatments decreased total volatile fatty acid concentration, but cade oil, capsicum oil, dill oil, fenugreek, ginger oil, and yucca had no effect. Different doses of anethol, anise oil, carvone, and tea tree oil decreased the proportion of acetate and propionate, which suggests that these compounds may not be nutritionally beneficial to dairy cattle. Garlic oil (300 and 3,000 mg/L) and benzyl salicylate (300 and 3,000 mg/L) reduced acetate and increased propionate and butyrate proportions, suggesting that methane production was inhibited. At 3,000 mg/L, capsicum oil, carvacrol, carvone, cinnamaldehyde, cinnamon oil, clove bud oil, eugenol, fenugreek, and oregano oil resulted in a 30 to 50% reduction in ammonia N concentration. Careful selection and combination of these extracts may allow the manipulation of rumen microbial fermentation.

  4. The effect of cation source and dietary cation-anion difference on rumen ion concentrations in lactating dairy cows.

    PubMed

    Catterton, T L; Erdman, R A

    2016-08-01

    Many studies have focused on the influence of dietary cation-anion difference (DCAD) on animal performance but few have examined the effect of DCAD on the rumen ionic environment. The objective of this study was to examine the effects of DCAD, cation source (Na vs. K), and anion source (Cl vs. bicarbonate or carbonate) on rumen environment and fermentation. The study used 5 rumen-fistulated dairy cows and 5 dietary treatments that were applied using a 5×5 Latin square design with 2-wk experimental periods. Treatments consisted of (1) the basal total mixed ration (TMR); (2) the basal TMR plus 340mEq/kg of Na (dry matter basis) using NaCl; (3) the basal TMR plus 340mEq/kg of K using KCl; (4) the basal TMR plus 340mEq/kg of Na using NaHCO3; and (5) the basal TMR plus 340mEq/kg of K using K2CO3. On the last day of each experimental period, rumen samples were collected and pooled from 5 different locations at 0, 1.5, 3, 4.5, 6, 9, and 12h postfeeding for measurement of rumen pH and concentrations of strong ions and volatile fatty acids (VFA). Dietary supplementation of individual strong ions increased the corresponding rumen ion concentration. Rumen Na was decreased by 24mEq/L when K was substituted for Na in the diet, but added dietary Na had no effect on rumen K. Rumen Cl was increased by 10mEq/L in diets supplemented with Cl. Cation source had no effect on rumen pH or total VFA concentration. Increased DCAD increased rumen pH by 0.10 pH units and increased rumen acetate by 4mEq/L but did not increase total VFA. This study demonstrated that rumen ion concentrations can be manipulated by dietary ion concentrations. If production and feed efficiency responses to DCAD and ionophores in the diet are affected by rumen Na and K concentrations, then manipulating dietary Na and K could be used either to enhance or diminish those responses. PMID:27289159

  5. Investigation of effect of particle size and rumen fluid addition on specific methane yields of high lignocellulose grass silage.

    PubMed

    Wall, D M; Straccialini, B; Allen, E; Nolan, P; Herrmann, C; O'Kiely, P; Murphy, J D

    2015-09-01

    This work examines the digestion of advanced growth stage grass silage. Two variables were investigated: particle size (greater than 3 cm and less than 1cm) and rumen fluid addition. Batch studies indicated particle size and rumen fluid addition had little effect on specific methane yields (SMYs). In continuous digestion of 3 cm silage the SMY was 342 and 343 L CH4 kg(-1)VS, respectively, with and without rumen fluid addition. However, digester operation was significantly affected through silage floating on the liquor surface and its entanglement in the mixing system. Digestion of 1cm silage with no rumen fluid addition struggled; volatile fatty acid concentrations rose and SMYs dropped. The best case was 1cm silage with rumen fluid addition, offering higher SMYs of 371 L CH4 kg(-1)VS and stable operation throughout. Thus, physical and biological treatments benefited continuous digestion of high fibre grass silage.

  6. Inhibitory effects of titanium(III) citrate on enumeration of bacteria from rumen contents

    SciTech Connect

    Wachenheim, D.E.; Hespell, R.B.

    1984-08-01

    Titanium citrate (TC) or L-cysteine-sodium sulfide was added as a reducing agent to buffers and agar media used for enumeration of bacteria from rumen contents of high-forage-fed steers. Approximately equal colony counts were found on TC and L-cysteine-sodium sulfide-reduced media with rumen contents taken 8 h postfeeding, when active bacterial growth was occurring. The colony counts on TC medium were only 56% of those with L-cysteine-sodium sulfide medium with rumen contents taken 1 h prefeeding when bacterial growth was minimal. When colonies from L-cysteine-sodium sulfide medium were transferred to TC medium and vice versa, almost all colonies grew. The data indicate that TC can be inhibitory to bacteria upon their initial isolation from natural habitats, particularly when growth rates are low in these habitats.

  7. Rumen ciliate protozoa of domestic sheep (Ovis aries) and goat (Capra aegagrus hircus) in Kyrgyzstan.

    PubMed

    Gürelli, Gözde; Canbulat, Savaş; Aldayarov, Nurbek; Dehority, Burk A

    2016-03-01

    Species composition and concentration of rumen ciliate protozoa were investigated in the rumen contents of 14 domestic sheep and 1 goat living in Bishkek, Kyrgyzstan. This is the first report on rumen ciliates from ruminants living in Kyrgyzstan. In sheep 12 genera, 28 species and 12 morphotypes were detected, whereas in goat 8 genera, 12 species and 4 morphotypes were detected. The density of ciliates in sheep was (28.1 ± 20.0) × 10(4) cells mL(-1) and in goat was 37.0 × 10(4) cells mL(-1). Dasytricha ruminantium, Isotricha prostoma, Entodinium simulans and Ophryoscolex caudatus were major species (100%) in sheep, and for the first time, Diplodinium rangiferi was detected in a domestic goat.

  8. Role of rumen butyrate in regulation of nitrogen utilization and urea nitrogen kinetics in growing sheep.

    PubMed

    Agarwal, U; Hu, Q; Baldwin, R L; Bequette, B J

    2015-05-01

    Butyrate, a major rumen VFA, has been indirectly linked to enhancement of urea recycling on the basis of increased expression of urea transporter in the rumen epithelia of steers fed a rumen butyrate-enhancing diet. Two studies were conducted to quantify the effect of elevated rumen butyrate concentrations on N balance, urea kinetics and rumen epithelial proliferation. Wether sheep (n= 4), fitted with a rumen cannula, were fed a pelleted ration (∼165 g CP/kg DM, 10.3 MJ ME/kg DM) at 1.8 × ME requirement. In Exp. 1, sheep were infused intraruminally with either an electrolyte buffer solution (Con-Buf) or butyrate dissolved in the buffer solution (But-Buf) during 8-d periods in a balanced crossover design. In Exp. 2, sheep were infused intraruminally with either sodium acetate (Na-Ac) or sodium butyrate (Na-But) for 9 d. All solutions were adjusted to pH 6.8 and 8.0 in Exp. 1 and 2, respectively, and VFA were infused at 10% of ME intake. [15N2] urea was continuously infused intravenously for the last 5 d of each period, and total urine and feces were collected. In Exp. 1, 2H5-phenylalanine was continuously infused intravenously over the last 12 h, after which a biopsy from the rumen papillae was taken for measurement of fractional protein synthesis rate (FSR). Butyrate infusion treatments increased (P = 0.1 in Exp. 1; P < 0.05 in Exp. 2) the proportion of rumen butyrate, and acetate infusion increased (P < 0.05) rumen acetate. All animals were in positive N balance (4.2 g N/d in Exp. 1; 7.0 g N/d in Exp. 2), but no difference in N retention was observed between treatments. In Exp. 2, urea entry (synthesis) rate was reduced ( < 0.05) by Na-But compared with the Na-Ac control. In Exp. 1, although But-Buf infusion increased the FSR of rumen papillae (35.3% ± 1.08%/d vs. 28.7% ± 1.08%/d; P < 0.05), urea kinetics were not altered by But-Buf compared with Con-Buf. These studies are the first to directly assess the role of butyrate in urea recycling and its effects on

  9. Natural genetic transformation in the rumen bacterium Streptococcus bovis JB1.

    PubMed

    Mercer, D K; Melville, C M; Scott, K P; Flint, H J

    1999-10-15

    Natural transformation of Streptococcus bovis JB1 was demonstrated after development of competence in normal culture medium. Transformation efficiencies were not significantly increased when heat-inactivated horse serum was added to the medium before growth. This is the first time that a resident rumen bacterial species has been shown to be naturally transformable. Transformation allowed the acquisition of plasmids or integration of sequences into the chromosome. No transformation was observed in the presence of undiluted autoclaved or filter-sterilised ovine rumen fluid or filter-sterilised ovine saliva, suggesting that transformation in the ruminant digestive tract is a rare event, although transformation was observed in the presence of 1% and 0.5% filter-sterilised rumen fluid. The use of natural transformation of S. bovis should facilitate further molecular biological studies on this species.

  10. Influence of several feeds on bacteria in sheep and goat rumen liquor in vitro.

    PubMed

    Gonzalez-Lopez, J; Salmeron, V; Ramos-Cormenzana, A; Silva-Colomer, J; Boza, J

    1990-01-01

    Bacteriological studies were made with in vitro sheep and goat ruminal fluids supplemented with several feeds (alfalfa hay, wheat straw, Agave americana, Opuntia ficus indica and Atriplex nummularia) during anaerobic incubation at 38-39 degrees C. Drastic changes in the bacterial population of sheep ruminal fluids occurred in the presence of different feeds, particularly with addition of feeds of low nutritional quality (wheat straw, A. americana and O. ficus indica). However, the bacterial population in goat rumen liquor was little affected by the addition of the same feeds. These results, which suggest that the rumen bacteria in goats are less affected by different nutritional conditions than the rumen bacteria in sheep, are discussed.

  11. Taxonomic Identification of Ruminal Epithelial Bacterial Diversity during Rumen Development in Goats.

    PubMed

    Jiao, Jinzhen; Huang, Jinyu; Zhou, Chuanshe; Tan, Zhiliang

    2015-05-15

    Understanding of the colonization process of epithelial bacteria attached to the rumen tissue during rumen development is very limited. Ruminal epithelial bacterial colonization is of great significance for the relationship between the microbiota and the host and can influence the early development and health of the host. MiSeq sequencing of 16S rRNA genes and quantitative real-time PCR (qPCR) were applied to characterize ruminal epithelial bacterial diversity during rumen development in this study. Seventeen goat kids were selected to reflect the no-rumination (0 and 7 days), transition (28 and 42 days), and rumination (70 days) phases of animal development. Alpha diversity indices (operational taxonomic unit [OTU] numbers, Chao estimate, and Shannon index) increased (P < 0.01) with age, and principal coordinate analysis (PCoA) revealed that the samples clustered together according to age group. Phylogenetic analysis revealed that Proteobacteria, Firmicutes, and Bacteroidetes were detected as the dominant phyla regardless of the age group, and the abundance of Proteobacteria declined quadratically with age (P < 0.001), while the abundances of Bacteroidetes (P = 0.088) and Firmicutes (P = 0.009) increased with age. At the genus level, Escherichia (80.79%) dominated at day zero, while Prevotella, Butyrivibrio, and Campylobacter surged (linearly; P < 0.01) in abundance at 42 and 70 days. qPCR showed that the total copy number of epithelial bacteria increased linearly (P = 0.013) with age. In addition, the abundances of the genera Butyrivibrio, Campylobacter, and Desulfobulbus were positively correlated with rumen weight, rumen papilla length, ruminal ammonia and total volatile fatty acid concentrations, and activities of carboxymethylcellulase (CMCase) and xylanase. Taking the data together, colonization by ruminal epithelial bacteria is age related (achieved at 2 months) and might participate in the anatomic and functional development of the rumen. PMID:25769827

  12. Increase of forage dryness induces differentiated anatomical response in the sheep rumen compartments.

    PubMed

    Scocco, Paola; Mercati, Francesca; Tardella, Federico Maria; Catorci, Andrea

    2016-08-01

    The aim of this study was to investigate how the Surface Enlargement Factor (SEF) and the epithelial keratinization degree of sheep rumen change in response to phytomass production, and to forage fiber and water content during the pasture vegetative cycle. The study used eighteen sheep nourished with dry hay and cereals during the winter season and with fresh hay during the pasture vegetative cycle. We collected samples from rumen indicative regions for two consecutive years characterized by different rainfall and pasture productivity values. We evaluated the densities (D) of rumen papillae to estimate the rumen SEF, and the keratinization percentage of the epithelial lining; these parameters showed differentiated modifications in the four ruminal analyzed compartments in response to pasture seasonal conditions. In addition, we performed Canonical Redundancy Analysis (RDA) on the "keratinization and SEF" matrix constrained by phytomass, water, and crude fiber contents of pasture at different time in the two considered years to highlight how rumen features answer to pasture conditions. Atrium (A) and ventral sac (VS) keratinization showed a strict positive correlation to crude fiber, while SEF of VS was positively related to phytomass and forage water content. The degree of keratinization of the rumen VS epithelium proved to be a useful parameter for evaluating anatomical variations in the short term period related to pasture features; in addition, its monitoring could be carried out through biopsy, thus avoiding the killing of animals. The study also leads to the application of the 3Rs (Replacement; Reduction; and Refinement). Microsc. Res. Tech. 79:738-743, 2016. © 2016 Wiley Periodicals, Inc. PMID:27271434

  13. Taxonomic Identification of Ruminal Epithelial Bacterial Diversity during Rumen Development in Goats.

    PubMed

    Jiao, Jinzhen; Huang, Jinyu; Zhou, Chuanshe; Tan, Zhiliang

    2015-05-15

    Understanding of the colonization process of epithelial bacteria attached to the rumen tissue during rumen development is very limited. Ruminal epithelial bacterial colonization is of great significance for the relationship between the microbiota and the host and can influence the early development and health of the host. MiSeq sequencing of 16S rRNA genes and quantitative real-time PCR (qPCR) were applied to characterize ruminal epithelial bacterial diversity during rumen development in this study. Seventeen goat kids were selected to reflect the no-rumination (0 and 7 days), transition (28 and 42 days), and rumination (70 days) phases of animal development. Alpha diversity indices (operational taxonomic unit [OTU] numbers, Chao estimate, and Shannon index) increased (P < 0.01) with age, and principal coordinate analysis (PCoA) revealed that the samples clustered together according to age group. Phylogenetic analysis revealed that Proteobacteria, Firmicutes, and Bacteroidetes were detected as the dominant phyla regardless of the age group, and the abundance of Proteobacteria declined quadratically with age (P < 0.001), while the abundances of Bacteroidetes (P = 0.088) and Firmicutes (P = 0.009) increased with age. At the genus level, Escherichia (80.79%) dominated at day zero, while Prevotella, Butyrivibrio, and Campylobacter surged (linearly; P < 0.01) in abundance at 42 and 70 days. qPCR showed that the total copy number of epithelial bacteria increased linearly (P = 0.013) with age. In addition, the abundances of the genera Butyrivibrio, Campylobacter, and Desulfobulbus were positively correlated with rumen weight, rumen papilla length, ruminal ammonia and total volatile fatty acid concentrations, and activities of carboxymethylcellulase (CMCase) and xylanase. Taking the data together, colonization by ruminal epithelial bacteria is age related (achieved at 2 months) and might participate in the anatomic and functional development of the rumen.

  14. Microbial and chemical composition of liquid-associated bacteria in goats' rumen and fermenters.

    PubMed

    Abecia, L; Soto, E C; Ramos-Morales, E; Molina-Alcaide, E

    2014-10-01

    This study was undertaken to investigate the relationship between chemical composition and microbial profile of rumen liquid-associated bacteria (LAB) in vivo (Murciano-Granadina goats) and in a rumen simulation system (single-flow continuous-culture fermenters). To achieve this aim, analyses of purine bases along with some molecular techniques (quantitative PCR to assess abundance and DGGE to identify biodiversity and bacterial profile) were carried out. A control diet (AHC) based on alfalfa hay (AH) and concentrate (C) in a 1:1 ratio and two experimental diets (AHCBI and AHCBII), in which concentrate was partially replaced with multinutrient blocks, were used. Diets AHCBI and AHCBII included multinutrient blocks differing in the relative amount of two-stage olive cake and the source of protein (sunflower meal vs. fava beans). We aimed to investigate the effect of these blocks on rumen microbiota to evaluate their potential as safe substitutes of cereal-based concentrates. Similar patterns of response to diet were found for chemical composition, microbial abundances and diversity in LAB isolated from goat's rumen and fermenters. Whereas bacterial density (log10 gene copies/g FM: 11.6 and 9.4 for bacteria and methanogens, respectively, in rumen) and diversity indexes (Shannon index: 3.6) were not affected by diet, DGGE analyses showed that bacterial community profile was affected. The cluster analysis suggested differences in bacterial profile between LAB pellets isolated from the rumen of goat and fermenters. A relationship between chemical composition and bacterial community composition in LAB pellets seems to exist. Changes in the former were reflected in the bacterial community profile. Further research is needed to clarify the relationship between chemical and microbial composition of ruminal bacterial pellets with diets of different quality.

  15. In-depth diversity analysis of the bacterial community resident in the camel rumen.

    PubMed

    Gharechahi, Javad; Zahiri, Hossein Shahbani; Noghabi, Kambiz Akbari; Salekdeh, Ghasem Hosseini

    2015-02-01

    The rumen compartment of the ruminant digestive tract is an enlarged fermentation chamber which houses a diverse collection of symbiotic microorganisms that provide the host animal with a remarkable ability to digest plant lignocellulosic materials. Characterization of the ruminal microbial community provides opportunities to improve animal food digestion efficiency, mitigate methane emission, and develop efficient fermentation systems to convert plant biomasses into biofuels. In this study, 16S rRNA gene amplicon pyrosequencing was applied in order to explore the structure of the bacterial community inhabiting the camel rumen. Using 76,333 quality-checked, chimera- and singleton-filtered reads, 4954 operational taxonomic units (OTUs) were identified at a 97% species level sequence identity. At the phylum level, more than 96% of the reads were affiliated to OTUs belonging to Bacteroidetes (51%), Firmicutes (31%), Proteobacteria (4.8%), Spirochaetes (3.5%), Fibrobacteres (3.1%), Verrucomicrobia (2.7%), and Tenericutes (0.95%). A total of 15% of the OTUs (746) that contained representative sequences from all major taxa were shared by all animals and they were considered as candidate members of the core camel rumen microbiome. Analysis of microbial composition through the solid and liquid fractions of rumen digesta revealed differential enrichment of members of Fibrobacter, Clostridium, Ruminococcus, and Treponema in the solid fraction, as well as members of Prevotella, Verrucomicrobia, Cyanobacteria, and Succinivibrio in the liquid fraction. The results clearly showed that the camel rumen microbiome was structurally similar but compositionally distinct from that of other ruminants, such as the cow. The unique characteristic of the camel rumen microbiome that differentiated it from those of other ruminants was the significant enrichment for cellulolytic bacteria.

  16. Microbial and chemical composition of liquid-associated bacteria in goats' rumen and fermenters.

    PubMed

    Abecia, L; Soto, E C; Ramos-Morales, E; Molina-Alcaide, E

    2014-10-01

    This study was undertaken to investigate the relationship between chemical composition and microbial profile of rumen liquid-associated bacteria (LAB) in vivo (Murciano-Granadina goats) and in a rumen simulation system (single-flow continuous-culture fermenters). To achieve this aim, analyses of purine bases along with some molecular techniques (quantitative PCR to assess abundance and DGGE to identify biodiversity and bacterial profile) were carried out. A control diet (AHC) based on alfalfa hay (AH) and concentrate (C) in a 1:1 ratio and two experimental diets (AHCBI and AHCBII), in which concentrate was partially replaced with multinutrient blocks, were used. Diets AHCBI and AHCBII included multinutrient blocks differing in the relative amount of two-stage olive cake and the source of protein (sunflower meal vs. fava beans). We aimed to investigate the effect of these blocks on rumen microbiota to evaluate their potential as safe substitutes of cereal-based concentrates. Similar patterns of response to diet were found for chemical composition, microbial abundances and diversity in LAB isolated from goat's rumen and fermenters. Whereas bacterial density (log10 gene copies/g FM: 11.6 and 9.4 for bacteria and methanogens, respectively, in rumen) and diversity indexes (Shannon index: 3.6) were not affected by diet, DGGE analyses showed that bacterial community profile was affected. The cluster analysis suggested differences in bacterial profile between LAB pellets isolated from the rumen of goat and fermenters. A relationship between chemical composition and bacterial community composition in LAB pellets seems to exist. Changes in the former were reflected in the bacterial community profile. Further research is needed to clarify the relationship between chemical and microbial composition of ruminal bacterial pellets with diets of different quality. PMID:24460876

  17. The Escherichia coli O157:H7 bovine rumen fluid proteome reflects adaptive bacterial responses

    PubMed Central

    2014-01-01

    Background To obtain insights into Escherichia coli O157:H7 (O157) survival mechanisms in the bovine rumen, we defined the growth characteristics and proteome of O157 cultured in rumen fluid (RF; pH 6.0-7.2 and low volatile fatty acid content) obtained from rumen-fistulated cattle fed low protein content “maintenance diet” under diverse in vitro conditions. Results Bottom-up proteomics (LC-MS/MS) of whole cell-lysates of O157 cultured under anaerobic conditions in filter-sterilized RF (fRF; devoid of normal ruminal microbiota) and nutrient-depleted and filtered RF (dRF) resulted in an anaerobic O157 fRF-and dRF-proteome comprising 35 proteins functionally associated with cell structure, motility, transport, metabolism and regulation, but interestingly, not with O157 virulence. Shotgun proteomics-based analysis using isobaric tags for relative and absolute quantitation used to further study differential protein expression in unfiltered RF (uRF; RF containing normal rumen microbial flora) complemented these results. Conclusions Our results indicate that in the rumen, the first anatomical compartment encountered by this human pathogen within the cattle gastrointestinal tract (GIT), O157 initiates a program of specific gene expression that enables it to adapt to the in vivo environment, and successfully transit to its colonization sites in the bovine GIT. Further experiments in vitro using uRF from animals fed different diets and with additional O157 strains, and in vivo using rumen-fistulated cattle will provide a comprehensive understanding of the adaptive mechanisms involved, and help direct evolution of novel modalities for blocking O157 infection of cattle. PMID:24559513

  18. Rumen degradation and availability of various amounts of liquid methionine hydroxy analog in lactating dairy cows.

    PubMed

    Koenig, K M; Rode, L M; Knight, C D; Vázquez-Añón, M

    2002-04-01

    Ruminal escape of various amounts of methionine hydroxy analog [D,L-2-hydroxy-4-(methylthio)-butanoic acid (HMB)] was measured in an experiment designed as a 4 x 4 Latin square using four lactating dairy cows with cannula in the rumen and duodenum. The cows were fed a diet composed of corn silage, alfalfa haylage, rolled barley grain, canola meal, and blood meal, three times per day. The cows were fed the liquid analog each day for 1 wk before the experiment was started. On the day of the experiment, each cow received an intraruminal bolus dose of 0, 25, or 50 g of the liquid analog (Alimet feed supplement, 88% HMB) or 51.2 g of a dry calcium salt of the analog (86% HMB; MHA) mixed with 0.5 kg of ground barley grain. A liquid phase marker (Co-EDTA) was administered as a bolus dose into the rumen at the time of administration of the methionine hydroxy analogs. Rumen and duodenal contents, and blood serum were collected at 0, 1, 3, 6, 9, 12, and 24 h relative to the time of dosing. Rumen and duodenal samples were analyzed for Co and HMB, and serum was analyzed for free methionine. Fractional rate constants for the passage of the liquid marker (k(p)) and the decline of HMB concentration in the rumen (k(rHMB)) were determined by nonlinear regression. Liquid passage from the rumen was similar among the four analog treatments (0.136 +/- 0.012/h; mean +/- SEM). Ruminal escape of HMB as a percentage of the dose (100% x k(p)/k(rHMB)) did not differ between cows receiving 25, 50, and 51.2 g of the methionine analogs (42.5, 41.0, and 34.9 +/- 9.0%, respectively) and averaged 39.5%. Duodenal appearance of HMB as a percentage also did not differ between cows receiving 25, 50, and 51.2 g of the methionine analogs (16.2, 26.8, and 22.7%, respectively) and averaged 22%. Omasal absorption of HMB was variable ranging from 12.3 to 26.3% and averaged 17.6%. Serum methionine concentration peaked at 3 and 6 h after dosing and increased in proportion to the amount of the analog

  19. Rumen function in vivo and in vitro in sheep fed Leucaena leucocephala.

    PubMed

    Barros-Rodríguez, Marcos Antonio; Solorio-Sánchez, Francisco Javier; Sandoval-Castro, Carlos Alfredo; Klieve, Athol; Rojas-Herrera, Rafael Antonio; Briceño-Poot, Eduardo Gaspar; Ku-Vera, Juan Carlos

    2015-04-01

    The effect of Leucaena leucocephala inclusion in sheep diets upon rumen function was evaluated. Nine Pelibuey sheep, 32.6 ± 5.33 kg live weight (LW), fitted with rumen cannula were used. A complete randomized block design was employed. Two experimental periods of 60 days each, with 60-day intervals between them, were used. Experimental treatments were as follows (n = 6): T1 (control), 100 % Pennisetum purpureum grass; T2, 20 % L. leucocephala + 80 % P. purpureum; T3, 40 % L. leucocephala + 60 % P. purpureum. In situ rumen neutral detergent fiber (aNDF) and crude protein (CP) degradation, dry matter intake (DMI), volatile fatty acids (VFA) production, estimated methane (CH4) yield, rumen pH, ammonia nitrogen (N-NH3), and protozoa counts were measured. The aNDF in situ rumen degradation of P. purpureum and leucaena was higher (P < 0.05) in T2 and T3. Leucaena CP degradation was higher in T2 and T3 but for P. purpureum it was only significantly higher in T3. Leucaena aNDF and CP degradation rate (c) was 50 % higher (P < 0.05) in T2 and T3, but only higher in T3 for P. purpureum. Voluntary intake and rumen (N-NH3) was higher in T2 and T3 (P = 0.0001, P = 0.005, respectively). Molar VFA proportions were similar for all treatments (P > 0.05). Protozoa counts and in vitro gas production (48 h) were lower in T2 and T3 (P < 0.05, P < 0.0001). Estimated methane yield (mol CH4/day) was higher in sheep fed leucaena (P < 0.0001). However, CH4 yield relative to animal performance (mol CH4/g LW gain) was lower in T2 and T3 (P < 0.0001). In summary, these results indicate that including L. leucocephala in sheep diets did not modify rumen fermentation pattern (same VFA ratios) nor reduce the amount of CH4 per unit of DMI (mol CH4/g DMI). However, leucaena inclusion does increase rumen N-NH3, aNDF and CP digestibility, and voluntary intake. PMID:25764346

  20. An artificial muscle computer

    NASA Astrophysics Data System (ADS)

    Marc O'Brien, Benjamin; Alexander Anderson, Iain

    2013-03-01

    We have built an artificial muscle computer based on Wolfram's "2, 3" Turing machine architecture, the simplest known universal Turing machine. Our computer uses artificial muscles for its instruction set, output buffers, and memory write and addressing mechanisms. The computer is very slow and large (0.15 Hz, ˜1 m3); however by using only 13 artificial muscle relays, it is capable of solving any computable problem given sufficient memory, time, and reliability. The development of this computer shows that artificial muscles can think—paving the way for soft robots with reflexes like those seen in nature.

  1. Artificial insemination in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Artificial insemination is a relative simple yet powerful tool geneticists can employ for the propagation of economically important traits in livestock and poultry. In this chapter, we address the fundamental methods of the artificial insemination of poultry, including semen collection, semen evalu...

  2. Artificial intelligence: Recent developments

    SciTech Connect

    Not Available

    1987-01-01

    This book presents the papers given at a conference on artificial intelligence. Topics considered at the conference included knowledge representation for expert systems, the use of robots in underwater vehicles for resource management, precision logic, an expert system for arc welding, data base management, a knowledge based approach to fault trees, and computer-aided manufacturing using simulation combined with artificial intelligence.

  3. Composition, spatial distribution, and diversity of the bacterial communities in the rumen of cows fed different forages.

    PubMed

    Kong, Yunhong; Teather, Ronald; Forster, Robert

    2010-12-01

    The species composition, distribution, and biodiversity of the bacterial communities in the rumen of cows fed alfalfa or triticale were investigated using 16S rRNA gene clone library analyses. The rumen bacterial community was fractionated and analyzed as three separate fractions: populations in the planktonic, loosely attached to rumen digesta particles, and tightly attached to rumen digesta particles. Six hundred and thirteen operational taxonomic units (OTUs) belonging to 32 genera, 19 families, and nine phyla of the domain Bacteria were identified from 1014 sequenced clones. Four hundred and fifty one of the 613 OTUs were identified as new species. These bacterial sequences were distributed differently among the three fractions in the rumen digesta of cows fed alfalfa or triticale. Chao 1 estimation revealed that, in both communities, the populations tightly attached to particulates were more diverse than the planktonic and those loosely attached to particulates. S-Libshuff detected significant differences in the composition between any two fractions in the rumen of cows with the same diet and between the communities fed alfalfa and triticale diets. The species richness estimated for the communities fed alfalfa and triticale is 1027 and 662, respectively. The diversity of the rumen bacterial community examined in this study is greater than previous studies have demonstrated and the differences in the community composition between two high-fiber diets have implications for sample selection for downstream metagenomics applications.

  4. Randomised prospective study compares efficacy of five different stomach tubes for rumen fluid sampling in dairy cows.

    PubMed

    Steiner, S; Neidl, A; Linhart, N; Tichy, A; Gasteiner, J; Gallob, K; Baumgartner, W; Wittek, T

    2015-01-10

    The objective of the study was to compare the performance of five types of stomach tubes for rumen fluid sampling. Rumen fluid was sampled in rumen fistulated cows assigned to a 5×5 Latin square study design. The pH values of samples taken by stomach tubes and via fistulas were measured; the results were compared with indwelling sensor measurements. The practicability of the stomach tubes for regular use was tested in the field. Rumen fluid samples were obtained rapidly. Volumes for transfaunation could be obtained. The pH-values of samples taken with the four out of the five tubes (Dirksen, Geishauser, tube 4 and a simple water hose used with a gag) did not show significant differences to samples taken via rumen fistulas. Mean differences ranged between -0.02 and +0.09. Samples taken with tube 4 and the water hose showed also no significant differences to pH-sensor measurements. This study demonstrates that stomach tubes are suitable for rumen fluid sampling. Tube 4 seems to be the best probe for work in the field. It was well tolerated by the animals, saliva contamination is negligible. We, therefore, conclude that the evaluation of rumen acid base status in the field is possible.

  5. Onion artificial muscles

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Chun; Shih, Wen-Pin; Chang, Pei-Zen; Lai, Hsi-Mei; Chang, Shing-Yun; Huang, Pin-Chun; Jeng, Huai-An

    2015-05-01

    Artificial muscles are soft actuators with the capability of either bending or contraction/elongation subjected to external stimulation. However, there are currently no artificial muscles that can accomplish these actions simultaneously. We found that the single layered, latticed microstructure of onion epidermal cells after acid treatment became elastic and could simultaneously stretch and bend when an electric field was applied. By modulating the magnitude of the voltage, the artificial muscle made of onion epidermal cells would deflect in opposing directions while either contracting or elongating. At voltages of 0-50 V, the artificial muscle elongated and had a maximum deflection of -30 μm; at voltages of 50-1000 V, the artificial muscle contracted and deflected 1.0 mm. The maximum force response is 20 μN at 1000 V.

  6. Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities.

    PubMed

    Henderson, Gemma; Cox, Faith; Kittelmann, Sandra; Miri, Vahideh Heidarian; Zethof, Michael; Noel, Samantha J; Waghorn, Garry C; Janssen, Peter H

    2013-01-01

    Molecular microbial ecology techniques are widely used to study the composition of the rumen microbiota and to increase understanding of the roles they play. Therefore, sampling and DNA extraction methods that result in adequate yields of microbial DNA that also accurately represents the microbial community are crucial. Fifteen different methods were used to extract DNA from cow and sheep rumen samples. The DNA yield and quality, and its suitability for downstream PCR amplifications varied considerably, depending on the DNA extraction method used. DNA extracts from nine extraction methods that passed these first quality criteria were evaluated further by quantitative PCR enumeration of microbial marker loci. Absolute microbial numbers, determined on the same rumen samples, differed by more than 100-fold, depending on the DNA extraction method used. The apparent compositions of the archaeal, bacterial, ciliate protozoal, and fungal communities in identical rumen samples were assessed using 454 Titanium pyrosequencing. Significant differences in microbial community composition were observed between extraction methods, for example in the relative abundances of members of the phyla Bacteroidetes and Firmicutes. Microbial communities in parallel samples collected from cows by oral stomach-tubing or through a rumen fistula, and in liquid and solid rumen digesta fractions, were compared using one of the DNA extraction methods. Community representations were generally similar, regardless of the rumen sampling technique used, but significant differences in the abundances of some microbial taxa such as the Clostridiales and the Methanobrevibacter ruminantium clade were observed. The apparent microbial community composition differed between rumen sample fractions, and Prevotellaceae were most abundant in the liquid fraction. DNA extraction methods that involved phenol-chloroform extraction and mechanical lysis steps tended to be more comparable. However, comparison of data

  7. Effect of DNA Extraction Methods and Sampling Techniques on the Apparent Structure of Cow and Sheep Rumen Microbial Communities

    PubMed Central

    Henderson, Gemma; Cox, Faith; Kittelmann, Sandra; Miri, Vahideh Heidarian; Zethof, Michael; Noel, Samantha J.; Waghorn, Garry C.; Janssen, Peter H.

    2013-01-01

    Molecular microbial ecology techniques are widely used to study the composition of the rumen microbiota and to increase understanding of the roles they play. Therefore, sampling and DNA extraction methods that result in adequate yields of microbial DNA that also accurately represents the microbial community are crucial. Fifteen different methods were used to extract DNA from cow and sheep rumen samples. The DNA yield and quality, and its suitability for downstream PCR amplifications varied considerably, depending on the DNA extraction method used. DNA extracts from nine extraction methods that passed these first quality criteria were evaluated further by quantitative PCR enumeration of microbial marker loci. Absolute microbial numbers, determined on the same rumen samples, differed by more than 100-fold, depending on the DNA extraction method used. The apparent compositions of the archaeal, bacterial, ciliate protozoal, and fungal communities in identical rumen samples were assessed using 454 Titanium pyrosequencing. Significant differences in microbial community composition were observed between extraction methods, for example in the relative abundances of members of the phyla Bacteroidetes and Firmicutes. Microbial communities in parallel samples collected from cows by oral stomach-tubing or through a rumen fistula, and in liquid and solid rumen digesta fractions, were compared using one of the DNA extraction methods. Community representations were generally similar, regardless of the rumen sampling technique used, but significant differences in the abundances of some microbial taxa such as the Clostridiales and the Methanobrevibacter ruminantium clade were observed. The apparent microbial community composition differed between rumen sample fractions, and Prevotellaceae were most abundant in the liquid fraction. DNA extraction methods that involved phenol-chloroform extraction and mechanical lysis steps tended to be more comparable. However, comparison of data

  8. Buccal swabbing as a noninvasive method to determine bacterial, archaeal, and eukaryotic microbial community structures in the rumen.

    PubMed

    Kittelmann, Sandra; Kirk, Michelle R; Jonker, Arjan; McCulloch, Alan; Janssen, Peter H

    2015-11-01

    Analysis of rumen microbial community structure based on small-subunit rRNA marker genes in metagenomic DNA samples provides important insights into the dominant taxa present in the rumen and allows assessment of community differences between individuals or in response to treatments applied to ruminants. However, natural animal-to-animal variation in rumen microbial community composition can limit the power of a study considerably, especially when only subtle differences are expected between treatment groups. Thus, trials with large numbers of animals may be necessary to overcome this variation. Because ruminants pass large amounts of rumen material to their oral cavities when they chew their cud, oral samples may contain good representations of the rumen microbiota and be useful in lieu of rumen samples to study rumen microbial communities. We compared bacterial, archaeal, and eukaryotic community structures in DNAs extracted from buccal swabs to those in DNAs from samples collected directly from the rumen by use of a stomach tube for sheep on four different diets. After bioinformatic depletion of potential oral taxa from libraries of samples collected via buccal swabs, bacterial communities showed significant clustering by diet (R = 0.37; analysis of similarity [ANOSIM]) rather than by sampling method (R = 0.07). Archaeal, ciliate protozoal, and anaerobic fungal communities also showed significant clustering by diet rather than by sampling method, even without adjustment for potentially orally associated microorganisms. These findings indicate that buccal swabs may in future allow quick and noninvasive sampling for analysis of rumen microbial communities in large numbers of ruminants.

  9. Buccal swabbing as a noninvasive method to determine bacterial, archaeal, and eukaryotic microbial community structures in the rumen.

    PubMed

    Kittelmann, Sandra; Kirk, Michelle R; Jonker, Arjan; McCulloch, Alan; Janssen, Peter H

    2015-11-01

    Analysis of rumen microbial community structure based on small-subunit rRNA marker genes in metagenomic DNA samples provides important insights into the dominant taxa present in the rumen and allows assessment of community differences between individuals or in response to treatments applied to ruminants. However, natural animal-to-animal variation in rumen microbial community composition can limit the power of a study considerably, especially when only subtle differences are expected between treatment groups. Thus, trials with large numbers of animals may be necessary to overcome this variation. Because ruminants pass large amounts of rumen material to their oral cavities when they chew their cud, oral samples may contain good representations of the rumen microbiota and be useful in lieu of rumen samples to study rumen microbial communities. We compared bacterial, archaeal, and eukaryotic community structures in DNAs extracted from buccal swabs to those in DNAs from samples collected directly from the rumen by use of a stomach tube for sheep on four different diets. After bioinformatic depletion of potential oral taxa from libraries of samples collected via buccal swabs, bacterial communities showed significant clustering by diet (R = 0.37; analysis of similarity [ANOSIM]) rather than by sampling method (R = 0.07). Archaeal, ciliate protozoal, and anaerobic fungal communities also showed significant clustering by diet rather than by sampling method, even without adjustment for potentially orally associated microorganisms. These findings indicate that buccal swabs may in future allow quick and noninvasive sampling for analysis of rumen microbial communities in large numbers of ruminants. PMID:26276109

  10. Buccal Swabbing as a Noninvasive Method To Determine Bacterial, Archaeal, and Eukaryotic Microbial Community Structures in the Rumen

    PubMed Central

    Kirk, Michelle R.; Jonker, Arjan; McCulloch, Alan

    2015-01-01

    Analysis of rumen microbial community structure based on small-subunit rRNA marker genes in metagenomic DNA samples provides important insights into the dominant taxa present in the rumen and allows assessment of community differences between individuals or in response to treatments applied to ruminants. However, natural animal-to-animal variation in rumen microbial community composition can limit the power of a study considerably, especially when only subtle differences are expected between treatment groups. Thus, trials with large numbers of animals may be necessary to overcome this variation. Because ruminants pass large amounts of rumen material to their oral cavities when they chew their cud, oral samples may contain good representations of the rumen microbiota and be useful in lieu of rumen samples to study rumen microbial communities. We compared bacterial, archaeal, and eukaryotic community structures in DNAs extracted from buccal swabs to those in DNAs from samples collected directly from the rumen by use of a stomach tube for sheep on four different diets. After bioinformatic depletion of potential oral taxa from libraries of samples collected via buccal swabs, bacterial communities showed significant clustering by diet (R = 0.37; analysis of similarity [ANOSIM]) rather than by sampling method (R = 0.07). Archaeal, ciliate protozoal, and anaerobic fungal communities also showed significant clustering by diet rather than by sampling method, even without adjustment for potentially orally associated microorganisms. These findings indicate that buccal swabs may in future allow quick and noninvasive sampling for analysis of rumen microbial communities in large numbers of ruminants. PMID:26276109

  11. Influence of Albizia lebbeck Saponin and Its Fractions on In Vitro Gas Production Kinetics, Rumen Methanogenesis, and Rumen Fermentation Characteristics.

    PubMed

    Sirohi, Sunil Kumar; Goel, Navneet; Singh, Nasib

    2014-01-01

    The present study was undertaken to investigate the effect of crude seed powder (CSP) and gross saponins extract (GSE) of seeds of Albizia lebbeck on antimicrobial activity by taking two Gram-positive (Staphylococcus aureus and Bacillus cereus), two Gram-negative (Escherichia coli and Salmonella Typhi) bacteria, and two fungi species (Aspergillus niger and Candida butyric) were taken at 25, 50, 100, 250, and 500 µg levels using agar well diffusion method. Zone of inhibition was increased with increasing of concentration of CSP and saponins which indicates that Gram-negative bacteria (E. coli), Gram-positive bacteria (B. cereus), and A. niger were significantly susceptible to inhibition. Another experiment was conducted to study the effect of GSE and saponins fraction A and B of A. lebbeck supplementation at 6% on DM basis on methane production and other rumen fermentation parameters using in vitro gas production test, by taking three different type diets, that is, high fiber diet (D1, 60R : 40C), medium fiber diet (D2, 50R : 50C), and low fiber diet (D3, 40R : 60C). Significant (P ≤ 0.05) increase was seen in IVDMD, methane production; however ammonia nitrogen concentration decreased as compared to control. The methane production was reduced in a range between 12 and 49% by saponin supplemented diets except in case of GSE in D2. Sap A showed the highest methane reduction per 200 mg of truly digested substrate (TDS) than other treatment groups. Results in relation with quantification of methanogens and protozoa by qPCR indicated the decreasing trend with saponins of A. lebbek in comparison with control except total methanogen quantified using mcr-A based primer.

  12. The effect of sulphate on thiamine-destroying activity in rumen content cultures in-vitro.

    PubMed

    Olkowski, A A; Laarveld, B; Patience, J F; Francis, S I; Christensen, D A

    1993-01-01

    The effect of sulphur on thiamine-destroying activity was studied in native or thiamine-spiked rumen content cultures. The treatments consisted of water [control (Ctrl)], sodium chloride (NaCl) and sodium sulphate (Na2SO4). A net gain (relative to 0 h) of thiamine in native cultures was observed for at least 48 h at levels of S ranging from 0.25 to 8 mg S added per ml of the culture and also in the Ctrl and respective NaCl cultures. However, after 48 h of incubation thiamine concentration was lower (p < 0.05) in native cultures treated with Na2SO4 relative to Ctrl and NaCl treatments. There was a linear (p < 0.03) time trend indicating an effect of Na2SO4 over time on changes in thiamine concentration in native rumen cultures. In thiamine-spiked rumen content cultures, the cultures treated with Na2SO4 produced higher (p < 0.05) thiamine-destroying activity. There was no effect of cation (Na) on thiamine-destroying activity. Initial heat treatment of thiamine-spiked cultures inactivated part of the thiamine-destroying activity. There were no differences among treatments in heat treated cultures. It is concluded that sulphate increases thiamine-destroying activity in the rumen content and the destructive mechanism involves thermolabile factor(s), however, the ruminal synthesis of thiamine is not affected by sulphate.

  13. Dependence of Cr-EDTA absorption from the rumen on luminal osmotic pressure.

    PubMed

    Dobson, A; Sellers, A F; Gatewood, V H

    1976-11-01

    A method for the measurement of [51Cr]EDTA absorption from the ventral sac of the rumen with an error of the order of +/-10% is described. When a solution present in the rumen was hypotonic or isotonic, the absorption rate of [51Cr]EDTA expressed as a clearance was about 0.2 ml/min. This gave rise to negligible errors when [51Cr]EDTA was used as an unabsorbed marker to calculate net water movements. When the osmotic pressure in the rumen exceeded that of plasma by 30-40 mos-mol/kg, the absorption rate of [51Cr]EDTA appeared to be related to the degree of hypertonicity. Absorption rates as high as 8 ml/min were observed within a range of osmotic pressures normally encountered postprandially in the rumen. Under hypertonic conditions, a correction for the absorption of this large anion was necessary if passage of water into the lumen were not to be systematically overestimated.

  14. Analysis of rumen motility patterns using a wireless telemetry system to characterize bovine reticuloruminal contractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to characterize rumen motility patterns of cattle fed once daily. Eight ruminally-cannulated Holstein steers (BW = 321 ± 11 kg) were fed alfalfa cubes once daily at 1.5 × NEm top-dressed with a TM-salt pre-mix. Three 24-h collection periods were conducted and each com...

  15. Transcriptome differences in the rumen of beef steers with variation in feed intake and gain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feed efficiency is an economically important trait in beef production. The rumen wall interacts with feed, microbial populations and volatile fatty acids important to ruminant nutrition indicating it may play a critical role in the beef steer’s ability to utilize feedstuffs efficiently. To identif...

  16. Insights on alterations to the rumen ecosystem by nitrate and nitrocompounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate and certain short chain nitrocompounds are being investigated as dietary supplements to reduce economic and environmental costs associated with ruminal methane emissions. Thermodynamically, nitrate is a preferred electron acceptor in the rumen that consumes electrons at the expense of metha...

  17. Degradation of spent craft brewer’s yeast by caprine rumen hyper ammonia-producing bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spent brewer’s yeast has long been included in ruminant diets as a protein supplement. However, modern craft beers often include more hops (Humulus lupulus L.) compounds than traditional recipes. These compounds include alpha and beta-acids, which are antimicrobial to the rumen hyper ammonia-produci...

  18. The sheep genome illuminates biology of the rumen and lipid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheep (Ovis aries) are a major source of meat, milk, and fiber in the form of wool and represent a distinct class of animals that have a specialized digestive organ, the rumen, that carries out the initial digestion of plant material. We have developed and analyzed a high-quality reference sheep gen...

  19. The complete genome sequence of the rumen methanogen Methanobrevibacter millerae SM9.

    PubMed

    Kelly, William J; Pacheco, Diana M; Li, Dong; Attwood, Graeme T; Altermann, Eric; Leahy, Sinead C

    2016-01-01

    Methanobrevibacter millerae SM9 was isolated from the rumen of a sheep maintained on a fresh forage diet, and its genome has been sequenced to provide information on the phylogenetic diversity of rumen methanogens with a view to developing technologies for methane mitigation. It is the first rumen isolate from the Methanobrevibacter gottschalkii clade to have its genome sequence completed. The 2.54 Mb SM9 chromosome has an average G + C content of 31.8 %, encodes 2269 protein-coding genes, and harbors a single prophage. The overall gene content is comparable to that of Methanobrevibacter ruminantium M1 and the type strain of M. millerae (ZA-10(T)) suggesting that the basic metabolism of these two hydrogenotrophic rumen methanogen species is similar. However, M. millerae has a larger complement of genes involved in methanogenesis including genes for methyl coenzyme M reductase II (mrtAGDB) which are not found in M1. Unusual features of the M. millerae genomes include the presence of a tannase gene which shows high sequence similarity with the tannase from Lactobacillus plantarum, and large non-ribosomal peptide synthase genes. The M. millerae sequences indicate that methane mitigation strategies based on the M. ruminantium M1 genome sequence are also likely to be applicable to members of the M. gottschalkii clade. PMID:27536339

  20. Prevalence and Sequence-Based Identity of Rumen Fluke in Cattle and Deer in New Caledonia.

    PubMed

    Cauquil, Laura; Hüe, Thomas; Hurlin, Jean-Claude; Mitchell, Gillian; Searle, Kate; Skuce, Philip; Zadoks, Ruth

    2016-01-01

    An abattoir survey was performed in the French Melanesian archipelago of New Caledonia to determine the prevalence of paramphistomes in cattle and deer and to generate material for molecular typing at species and subspecies level. Prevalence in adult cattle was high at animal level (70% of 387 adult cattle) and batch level (81%). Prevalence was lower in calves at both levels (33% of 484 calves, 51% at batch level). Animals from 2 of 7 deer farms were positive for rumen fluke, with animal-level prevalence of 41.4% (29/70) and 47.1% (33/70), respectively. Using ITS-2 sequencing, 3 species of paramphistomes were identified, i.e. Calicophoron calicophorum, Fischoederius elongatus and Orthocoelium streptocoelium. All three species were detected in cattle as well as deer, suggesting the possibility of rumen fluke transmission between the two host species. Based on heterogeneity in ITS-2 sequences, the C. calicophorum population comprises two clades, both of which occur in cattle as well as deer. The results suggest two distinct routes of rumen fluke introduction into this area. This approach has wider applicability for investigations of the origin of rumen fluke infections and for the possibility of parasite transmission at the livestock-wildlife interface. PMID:27043709

  1. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency.

    PubMed

    Jami, Elie; White, Bryan A; Mizrahi, Itzhak

    2014-01-01

    Ruminants are completely dependent on their microbiota for feed digestion and consequently, their viability. It is therefore tempting to hypothesize a connection between the composition and abundance of resident rumen bacterial taxa and the physiological parameters of the host. Using a pyrosequencing approach, we characterized the rumen bacterial community composition in 15 dairy cows and their physiological parameters. We analyzed the degree of divergence between the different animals and found that some physiological parameters, such as milk yield and composition, are highly correlated with the abundance of various bacterial members of the rumen microbiome. One apparent finding was a strong correlation between the ratio of the phyla Firmicutes to Bacteroidetes and milk-fat yield. These findings paralleled human studies showing similar trends of increased adiposity with an increase in Bacteroidetes. This correlation remained evident at the genus level, where several genera showed correlations with the animals' physiological parameters. This suggests that the bacterial community has a role in shaping host physiological parameters. A deeper understanding of this process may allow us to modulate the rumen microbiome for better agricultural yield through bacterial community design. PMID:24465556

  2. Potential Role of the Bovine Rumen Microbiome in Modulating Milk Composition and Feed Efficiency

    PubMed Central

    Jami, Elie; White, Bryan A.; Mizrahi, Itzhak

    2014-01-01

    Ruminants are completely dependent on their microbiota for feed digestion and consequently, their viability. It is therefore tempting to hypothesize a connection between the composition and abundance of resident rumen bacterial taxa and the physiological parameters of the host. Using a pyrosequencing approach, we characterized the rumen bacterial community composition in 15 dairy cows and their physiological parameters. We analyzed the degree of divergence between the different animals and found that some physiological parameters, such as milk yield and composition, are highly correlated with the abundance of various bacterial members of the rumen microbiome. One apparent finding was a strong correlation between the ratio of the phyla Firmicutes to Bacteroidetes and milk-fat yield. These findings paralleled human studies showing similar trends of increased adiposity with an increase in Bacteroidetes. This correlation remained evident at the genus level, where several genera showed correlations with the animals' physiological parameters. This suggests that the bacterial community has a role in shaping host physiological parameters. A deeper understanding of this process may allow us to modulate the rumen microbiome for better agricultural yield through bacterial community design. PMID:24465556

  3. Changes in the rumen microbiome from steers differing in feed efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cattle rumen has a diverse microbial ecosystem that is essential to allow the host to digest plant material. Changes in the composition and diversity of the ruminal microbiota have been associated with diet and age. Extremes in body weight (BW) gain in mice and humans have been associated with...

  4. Quantification of transcriptome responses of the rumen epithelium to butyrate infusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Short-chain fatty acids (SCFAs), such as butyrate, produced by gut microorganisms play an important role in energy metabolism and physiology in ruminants as well as in human health. Butyrate is a preferred substrate in the rumen epithelium where approximately 90% of butyrate is metabolized. Additi...

  5. Prevalence and Sequence-Based Identity of Rumen Fluke in Cattle and Deer in New Caledonia.

    PubMed

    Cauquil, Laura; Hüe, Thomas; Hurlin, Jean-Claude; Mitchell, Gillian; Searle, Kate; Skuce, Philip; Zadoks, Ruth

    2016-01-01

    An abattoir survey was performed in the French Melanesian archipelago of New Caledonia to determine the prevalence of paramphistomes in cattle and deer and to generate material for molecular typing at species and subspecies level. Prevalence in adult cattle was high at animal level (70% of 387 adult cattle) and batch level (81%). Prevalence was lower in calves at both levels (33% of 484 calves, 51% at batch level). Animals from 2 of 7 deer farms were positive for rumen fluke, with animal-level prevalence of 41.4% (29/70) and 47.1% (33/70), respectively. Using ITS-2 sequencing, 3 species of paramphistomes were identified, i.e. Calicophoron calicophorum, Fischoederius elongatus and Orthocoelium streptocoelium. All three species were detected in cattle as well as deer, suggesting the possibility of rumen fluke transmission between the two host species. Based on heterogeneity in ITS-2 sequences, the C. calicophorum population comprises two clades, both of which occur in cattle as well as deer. The results suggest two distinct routes of rumen fluke introduction into this area. This approach has wider applicability for investigations of the origin of rumen fluke infections and for the possibility of parasite transmission at the livestock-wildlife interface.

  6. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing.

    PubMed

    Mao, S Y; Zhang, R Y; Wang, D S; Zhu, W Y

    2013-12-01

    The objective of this study was to evaluate the changes in bacterial populations in the rumen of dairy cattle following adaptation to subacute ruminal acidosis (SARA) using 16S rRNA gene pyrosequencing. Rumen contents were collected from four cattle adapted to either a 40% (control diet, COD) or 70% (SARA induction diet, SAID) concentrate feeds. DNA was extracted from each of the samples. Bacterial 16S rRNA genes of ruminal DNA extracts were PCR amplified with 2 bar coded primer sets and sequenced by 454 pyrosequencing. At a high taxonomic level, the percentage of Proteobacteria and Bacteroidetes were reduced by SAID feeding, whereas Firmicutes and Actinobacteria were more abundant in the SAID than in the COD group. At the genus level, as compared with the COD group, the abundances of Prevotella, Treponema, Anaeroplasma, Papillibacter, Acinetobacter and unclassified populations including unclassified Lentisphaerae, and unclassified bacteria were lower (P < 0.05), while the percentages of Ruminococcus, Atopobium, unclassified Clostridiales and Bifidobacterium were increased (P < 0.05) in the SAID group. Feeding of SAID reduced (P < 0.001) the diversity of the rumen microbial community. Taken together, our findings provide a comprehensive picture of current knowledge of the community structure of the rumen bacterial ecosystem during SARA, and enhance our understanding about the ruminal microbial ecology that may be useful in the prevention of ruminal acidosis.

  7. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.

    PubMed

    Privé, Florence; Newbold, C Jamie; Kaderbhai, Naheed N; Girdwood, Susan G; Golyshina, Olga V; Golyshin, Peter N; Scollan, Nigel D; Huws, Sharon A

    2015-07-01

    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses. PMID:25575887

  8. Phage-bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome.

    PubMed

    Berg Miller, Margret E; Yeoman, Carl J; Chia, Nicholas; Tringe, Susannah G; Angly, Florent E; Edwards, Robert A; Flint, Harry J; Lamed, Raphael; Bayer, Edward A; White, Bryan A

    2012-01-01

    Viruses are the most abundant biological entities on the planet and play an important role in balancing microbes within an ecosystem and facilitating horizontal gene transfer. Although bacteriophages are abundant in rumen environments, little is known about the types of viruses present or their interaction with the rumen microbiome. We undertook random pyrosequencing of virus-enriched metagenomes (viromes) isolated from bovine rumen fluid and analysed the resulting data using comparative metagenomics. A high level of diversity was observed with up to 28,000 different viral genotypes obtained from each environment. The majority (~78%) of sequences did not match any previously described virus. Prophages outnumbered lytic phages approximately 2:1 with the most abundant bacteriophage and prophage types being associated with members of the dominant rumen phyla (Firmicutes and Proteobacteria). Metabolic profiling based on SEED subsystems revealed an enrichment of sequences with putative functional roles in DNA and protein metabolism, but a surprisingly low proportion of sequences assigned to carbohydrate and amino acid metabolism. We expanded our analysis to include previously described metagenomic data and 14 reference genomes. Clustered regularly interspaced short palindromic repeats (CRISPR) were detected in most of the microbial genomes, suggesting previous interactions between viral and microbial communities.

  9. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A combination of Sanger and 454 sequences of small subunit rRNA loci were used to interrogate the microbial diversity in the bovine rumen of 14 pasture-fed animals. The observed bacterial species richness, based on the V1-V3 region of the 15S rRNA gene, was between 1902 to 2596 species-level operati...

  10. Phage-bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome.

    PubMed

    Berg Miller, Margret E; Yeoman, Carl J; Chia, Nicholas; Tringe, Susannah G; Angly, Florent E; Edwards, Robert A; Flint, Harry J; Lamed, Raphael; Bayer, Edward A; White, Bryan A

    2012-01-01

    Viruses are the most abundant biological entities on the planet and play an important role in balancing microbes within an ecosystem and facilitating horizontal gene transfer. Although bacteriophages are abundant in rumen environments, little is known about the types of viruses present or their interaction with the rumen microbiome. We undertook random pyrosequencing of virus-enriched metagenomes (viromes) isolated from bovine rumen fluid and analysed the resulting data using comparative metagenomics. A high level of diversity was observed with up to 28,000 different viral genotypes obtained from each environment. The majority (~78%) of sequences did not match any previously described virus. Prophages outnumbered lytic phages approximately 2:1 with the most abundant bacteriophage and prophage types being associated with members of the dominant rumen phyla (Firmicutes and Proteobacteria). Metabolic profiling based on SEED subsystems revealed an enrichment of sequences with putative functional roles in DNA and protein metabolism, but a surprisingly low proportion of sequences assigned to carbohydrate and amino acid metabolism. We expanded our analysis to include previously described metagenomic data and 14 reference genomes. Clustered regularly interspaced short palindromic repeats (CRISPR) were detected in most of the microbial genomes, suggesting previous interactions between viral and microbial communities. PMID:22004549

  11. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.

    PubMed

    Privé, Florence; Newbold, C Jamie; Kaderbhai, Naheed N; Girdwood, Susan G; Golyshina, Olga V; Golyshin, Peter N; Scollan, Nigel D; Huws, Sharon A

    2015-07-01

    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses.

  12. Effects of Nitrate Addition on Rumen Fermentation, Bacterial Biodiversity and Abundance.

    PubMed

    Zhao, Liping; Meng, Qingxiang; Ren, Liping; Liu, Wei; Zhang, Xinzhuang; Huo, Yunlong; Zhou, Zhenming

    2015-10-01

    This study examined changes of rumen fermentation, ruminal bacteria biodiversity and abundance caused by nitrate addition with Ion Torrent sequencing and real-time polymerase chain reaction. Three rumen-fistulated steers were fed diets supplemented with 0%, 1%, and 2% nitrate (dry matter %) in succession. Nitrate supplementation linearly increased total volatile fatty acids and acetate concentration obviously (p = 0.02; p = 0.02; p<0.01), butyrate and isovalerate concentration numerically (p = 0.07). The alpha (p>0.05) and beta biodiversity of ruminal bacteria were not affected by nitrate. Nitrate increased typical efficient cellulolytic bacteria species (Ruminococcus flavefaciens, Ruminococcus ablus, and Fibrobacter succinogenes) (p<0.01; p = 0.06; p = 0.02). Ruminobactr, Sphaerochaeta, CF231, and BF311 genus were increased by 1% nitrate. Campylobacter fetus, Selenomonas ruminantium, and Mannheimia succiniciproducens were core nitrate reducing bacteria in steers and their abundance increased linearly along with nitrate addition level (p<0.01; p = 0.02; p = 0.04). Potential nitrate reducers in the rumen, Campylobacter genus and Cyanobacteria phyla were significantly increased by nitrate (p<0.01; p = 0.01). To the best of our knowledge, this was the first detailed view of changes in ruminal microbiota by nitrate. This finding would provide useful information on nitrate utilization and nitrate reducer exploration in the rumen. PMID:26194220

  13. Functional phylotyping approach for assessing intraspecific diversity of Ruminococcus albus within the rumen microbiome.

    PubMed

    Rozman Grinberg, Inna; Yin, Guohua; Borovok, Ilya; Berg Miller, Margret E; Yeoman, Carl J; Dassa, Bareket; Yu, Zhongtang; Mizrahi, Itzhak; Flint, Harry J; Bayer, Edward A; White, Bryan A; Lamed, Raphael

    2015-01-01

    Ruminococcus albus, a cellulolytic bacterium, is a critical member of the rumen community. Ruminococcus albus lacks a classical cellulosome complex, but it possesses a unique family 37 carbohydrate-binding module (CBM37), which is integrated into a variety of carbohydrate-active enzymes. We developed a potential molecular tool for functional phylotyping of the R. albus population in the rumen, based on a variable region in the cel48A gene. cel48A encodes a single copy of the CBM37-associated family 48 glycoside hydrolase in all known strains of this bacterium. A segment of the cel48A gene was amplified from rumen metagenomic samples of four bovines, and its abundance and diversity were evaluated. Analysis of the obtained sequences revealed the co-existence of multiple functional phylotypes of cel48A in all four animals. These included sequences identical or similar to those of R. albus isolates (reference strains), as well as several novel sequences. The dominant cel48A type varied among animals. This method can be used for detection of intraspecific diversity of R. albus in metagenomic samples. Together with scaC, a previously reported gene marker for R. flavefaciens, we present a set of two species-specific markers for phylotyping of Ruminococci in the herbivore rumen. PMID:25673657

  14. Prevalence and Sequence-Based Identity of Rumen Fluke in Cattle and Deer in New Caledonia

    PubMed Central

    Cauquil, Laura; Hüe, Thomas; Hurlin, Jean-Claude; Mitchell, Gillian; Searle, Kate; Skuce, Philip; Zadoks, Ruth

    2016-01-01

    An abattoir survey was performed in the French Melanesian archipelago of New Caledonia to determine the prevalence of paramphistomes in cattle and deer and to generate material for molecular typing at species and subspecies level. Prevalence in adult cattle was high at animal level (70% of 387 adult cattle) and batch level (81%). Prevalence was lower in calves at both levels (33% of 484 calves, 51% at batch level). Animals from 2 of 7 deer farms were positive for rumen fluke, with animal-level prevalence of 41.4% (29/70) and 47.1% (33/70), respectively. Using ITS-2 sequencing, 3 species of paramphistomes were identified, i.e. Calicophoron calicophorum, Fischoederius elongatus and Orthocoelium streptocoelium. All three species were detected in cattle as well as deer, suggesting the possibility of rumen fluke transmission between the two host species. Based on heterogeneity in ITS-2 sequences, the C. calicophorum population comprises two clades, both of which occur in cattle as well as deer. The results suggest two distinct routes of rumen fluke introduction into this area. This approach has wider applicability for investigations of the origin of rumen fluke infections and for the possibility of parasite transmission at the livestock-wildlife interface. PMID:27043709

  15. Evaluation of bacterial diversity in the rumen and feces of cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rumen is a pre-gastric, anaerobic fermentation chamber populated by a consortium of bacteria, archaea, protozoa, and fungi, which break down feedstuffs in a truly symbiotic relationship within the host animal. The bacterial population is the best known component and is made up of more than 2000...

  16. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ruminant animals digest cellulose via a symbiotic relationship with ruminal microorganisms. Because feedstuffs only remain in the rumen for a short time, the rate of cellulose digestion must be very rapid. This speed is facilitated by rumination, a process that returns food to the mouth to be re-...

  17. Lactobacillus plantarum MTD/1, Its Impact on Silage and In vitro Rumen Fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to quantify the impact of Lactobacillus plantarum MTD/1 on silage and in vitro rumen fermentation on alfalfa and corn silage. Four trials were conducted in alfalfa in second (35 and 32% DM) and third harvest (38 and 31% DM), and two in forage corn, hybrids Mycogen 797...

  18. Diversity and fluctuation in ciliate protozoan population in the rumen of cattle.

    PubMed

    Abrar, Arfan; Watanabe, Haruki; Kitamura, Tasuku; Kondo, Makoto; Ban-Tokuda, Tomomi; Matsui, Hiroki

    2016-09-01

    The purpose of this study was to investigate the diversity and fluctuation in the ciliate protozoan population in the rumen of cattle. DNA was extracted from the rumen of three ruminally cannulated, crossbred cattle and a polymerase chain reaction (PCR)-derived clone library was constructed, using a specific primer set targeting 18S ribosomal RNA genes of ciliate protozoa. DNA fragments of seven selected clones were validated for standard DNA of the protozoa-specific real-time PCR assay. Furthermore, population fluctuation of ciliate protozoa and methanogens in the cattle rumen was determined by real-time PCR. A total of 60 clones were sequenced, phylogenetically analyzed, and classified into 24 operational taxonomic units (OTUs) based on a 99% similarity criterion. More than 80% sequences were phylogenetically placed in the genus Entodinium. The rest of the sequences were placed in the genus Diploplastron (5%), Dasytricha (8.3%) and Isotricha (3.3%). The results suggest that Entodinium was the dominant group in the rumen of cattle used in this study. The ciliate protozoan population showed no significant change in numbers during the monitoring period and reached a peak at 3 h after feeding. Changes in the protozoa population were lower than those of the methanogens.

  19. Effects of Nitrate Addition on Rumen Fermentation, Bacterial Biodiversity and Abundance

    PubMed Central

    Zhao, Liping; Meng, Qingxiang; Ren, Liping; Liu, Wei; Zhang, Xinzhuang; Huo, Yunlong; Zhou, Zhenming

    2015-01-01

    This study examined changes of rumen fermentation, ruminal bacteria biodiversity and abundance caused by nitrate addition with Ion Torrent sequencing and real-time polymerase chain reaction. Three rumen-fistulated steers were fed diets supplemented with 0%, 1%, and 2% nitrate (dry matter %) in succession. Nitrate supplementation linearly increased total volatile fatty acids and acetate concentration obviously (p = 0.02; p = 0.02; p<0.01), butyrate and isovalerate concentration numerically (p = 0.07). The alpha (p>0.05) and beta biodiversity of ruminal bacteria were not affected by nitrate. Nitrate increased typical efficient cellulolytic bacteria species (Ruminococcus flavefaciens, Ruminococcus ablus, and Fibrobacter succinogenes) (p<0.01; p = 0.06; p = 0.02). Ruminobactr, Sphaerochaeta, CF231, and BF311 genus were increased by 1% nitrate. Campylobacter fetus, Selenomonas ruminantium, and Mannheimia succiniciproducens were core nitrate reducing bacteria in steers and their abundance increased linearly along with nitrate addition level (p<0.01; p = 0.02; p = 0.04). Potential nitrate reducers in the rumen, Campylobacter genus and Cyanobacteria phyla were significantly increased by nitrate (p<0.01; p = 0.01). To the best of our knowledge, this was the first detailed view of changes in ruminal microbiota by nitrate. This finding would provide useful information on nitrate utilization and nitrate reducer exploration in the rumen. PMID:26194220

  20. The biohydrogenation of α-linoleic acid and oleic acid by rumen micro-organisms

    PubMed Central

    Wilde, P. F.; Dawson, R. M. C.

    1966-01-01

    1. α-[U-14C]Linolenic acid was incubated with the rumen contents of sheep and the metabolic products were characterized by thin-layer chromatography, gas–liquid chromatography and absorption spectroscopy in the ultraviolet and infrared. 2. A tentative scheme for the biohydrogenation route to stearic acid is presented. The main pathway is through diconjugated cis–cis–cis-octadecatrienoic acid, non-conjugated trans–cis (cis–trans)-octadecadienoic acid and trans-octadecenoic acid, but other pathways are apparent. 3. Washed rumen micro-organisms possessed only a limited capacity to hydrogenate α-linolenic acid and oleic acid but the rate was greatly stimulated by a factor(s) present in the supernatant rumen liquor. 4. Pure cultures of Clostridium perfringens, Streptococcus faecalis, Escherichia coli and a coliform organism isolated from sheep faeces possessed negligible ability to hydrogenate unsaturated fatty acids compared with a mixed population of rumen micro-organisms. Butyrivibrio fibrisolvens slowly converted linoleic acid into octadecenoic acid. ImagesFig. 1.Fig. 2.Fig. 3. PMID:4287407

  1. Isolation and characterization of novel multifunctional recombinant family 26 glycoside hydrolase from Mehsani buffalo rumen metagenome.

    PubMed

    Patel, Avani B; Patel, Amrutlal K; Shah, Mihir P; Parikh, Ishan K; Joshi, Chaitanya G

    2016-01-01

    Rumen microbiota harbor a diverse set of carbohydrate-active enzymes (CAZymes), which play a crucial role in the degradation of a complex plant polysaccharide thereby providing metabolic energy to the host animals. Earlier, we reported CAZYme analysis from the buffalo rumen metagenome by high throughput shotgun sequencing. Among the various CAZymes, glycoside hydrolase family 26 (GH26) enzymes have a number of industrial applications including in paper, oil, biofuel, food, feed, pharmaceutical, coffee, and detergent industries. Here, we report isolation and characterization of GH26 enzyme from the buffalo rumen metagenome. A novel GH26 gene composed of 1,119 base pairs was successfully amplified using the gene-specific primers inferred based on the contig generated from metagenome sequence assembly and cloned in a pET32a (+) expression vector as an N-terminal histidine tag fusion protein. A novel GH26 protein from an unknown rumen microorganism shared a maximum of 68% identity with the Prevotella ruminicola 23 encoded carbohydrate esterase family 7 and 46% with Bacteroides sp. 2_1_33B encoded mannan endo-1, 4-β-mannosidase. The recombinant GH26-histidine tag fusion protein was expressed in Escherichia coli and purified using Ni-NTA affinity chromatography. The purified enzyme displayed multifunctional activities against various carbohydrate substrates including locust bean gum, beechwood xylan, pectin, and carboxymethyl cellulose suggesting mannanase, xylanase, pectin esterase, and endoglucanase activities, respectively. PMID:25644118

  2. Role of rumen and saliva in the homeostatic response to rehydration in cattle.

    PubMed

    Silanikove, N

    1989-04-01

    It has been shown recently that the circulation created by the continuous secretion of voluminous amounts of saliva rich in Na+ to the large store of fluid sequestered in the rumen and its reabsorption from the gut is an integral part of water and Na+ homeostasis in cattle. The role of this system in water and Na+ restitution following acute dehydration and rapid rehydration was studied. Cattle were able to withstand dehydration of 18% of their initial mass and to replenish their water losses in one drinking. The water imbibed was first retained in the rumen and slowly released. Rapid expansion (or dilution) of their blood as a result of large influxes of hypotonic water from the rumen was prevented by a parallel increase in the secretion of hypotonic saliva. The accelerated saliva secretion refluxed back to the rumen almost half of the water absorbed. Saliva electrolyte concentration varied simultaneously with an increase or decrease in saliva flow. Na+, HCO3-, HPO3-, and pH were inversely related to saliva flow rate while Cl and K+ were positively related. It seems that visceral afferent response was involved in activation of salivary flow rate.

  3. Effects of intraruminal sodium chloride infusion on rumen and renal nitrogen and electrolyte dynamics in sheep.

    PubMed

    Godwin, I R; Williams, V J

    1986-09-01

    1. Sheep were given 800 g low-protein roughage/d at 2 h intervals and infused intraruminally with 0,500, 750, 1000, 1250, 1500 or 2000 mmol sodium chloride/d in 436 ml water. The digestibility of various food fractions and rumen ammonia, volatile fatty acids (VFA) and liquid turnover rate were measured, along with renal haemodynamics and the renal excretory patterns of nitrogen and electrolytes. Ad lib. food intake was determined during the infusion of 0 and 2000 mmol NaCl/d. 2. Infusion of NaCl up to 750 mmol/d had virtually no effect on the indices measured, except water intake and water excretion. Infusion of greater amounts caused a step-wise decrease in the digestibility of organic matter (OM) and N. Rumen liquid turnover rate was increased substantially and rumen NH3 and VFA concentrations were decreased. Ad lib. food intake was not different when either 0 or 2000 mmol NaCl/d were infused into the rumen. 3. The glomerular filtration rate and effective renal plasma flow (ERPF) were substantially increased after the infusion of 1250 mmol or more NaCl/d. Extracellular fluid volume was also increased. The renal excretion of urea and uric acid + allantoin (URAL) were decreased at the higher infusion rates but the fractional excretions of both these substances were enhanced. The excretion of sodium, chloride, calcium and magnesium were markedly increased with increasing salt infusion. 4. The results suggest that high NaCl inputs into the rumen increase the rumen turnover rate, which in turn decreases the digestibility of OM, particularly N. This causes lower rumen NH3 and VFA concentrations. Plasma urea and URAL concentrations are also decreased and this causes lower renal excretion of these substances despite a much higher fractional excretion resulting from the greatly enhanced urine flow rate. 5. When roughages low in N are given, NaCl intake should be kept below 20 mmol/kg body-weight per d to prevent a decline in the digestibility of the food and any

  4. Supersaturation of Dissolved Hydrogen and Methane in Rumen of Tibetan Sheep.

    PubMed

    Wang, Min; Ungerfeld, Emilio M; Wang, Rong; Zhou, Chuan She; Basang, Zhu Zha; Ao, Si Man; Tan, Zhi Liang

    2016-01-01

    Hydrogen (H2) is an essential substrate for methanogens to produce methane (CH4), and also influences pathways of volatile fatty acids (VFA) production in the rumen. Dissolved H2 (H2 (aq)) is the form of H2 available to microbes, and dissolved CH4 (CH4 (aq)) is important for indicating methanogens activity. Rumen H2 (aq) concentration has been estimated by assuming equilibrium with headspace gaseous H2 (H2 (g)) concentration using Henry's law, and has also been directly measured in the liquid phase in some in vitro and in vivo experiments. In this in vivo study, H2 (aq) and CH4 (aq) concentration measured directly in rumen fluid and their corresponding concentrations estimated from their gaseous phase concentrations, were compared to investigate the existence of equilibrium between the gas and liquid phases. Twenty-four Tibetan sheep were randomly assigned to two mixed diets containing the same concentrate mixed with oat grass (OG diet) or barley straw (BS diet). Rumen gaseous phase and contents were sampled using rumenocentesis and oral stomach tubing, respectively. Rumen H2 (aq) and CH4 (aq) concentration and VFA profile differed between sheep fed OG and BS diets. Measured H2 (aq) and CH4 (aq) concentration were greater than H2 (aq) and CH4 (aq) concentrations estimated using gas concentrations, indicating lack of equilibrium between gas and liquid phase and supersaturation of H2 and CH4 in rumen fluid. As a consequence, Gibbs energy changes (ΔG) estimated for various metabolic pathways were different when calculated using dissolved gases concentrations directly measured and when using dissolved gases concentrations assuming equilibrium with the gaseous phase. Dissolved CH4, but not CH4 (g), was positively correlated with H2 (aq). Both H2 (aq) and H2 (g) concentrations were positively correlated with the molar percentage of butyrate and negatively correlated with the molar percentage of acetate. In summary, rumen fluid was supersaturated with both H2 and CH4

  5. Molecular diversity of the rumen microbiome of Norwegian reindeer on natural summer pasture.

    PubMed

    Sundset, Monica A; Edwards, Joan E; Cheng, Yan Fen; Senosiain, Roberto S; Fraile, Maria N; Northwood, Korinne S; Praesteng, Kirsti E; Glad, Trine; Mathiesen, Svein D; Wright, André-Denis G

    2009-02-01

    The molecular diversity of the rumen microbiome was investigated in five semi-domesticated adult female Norwegian reindeer (Rangifer tarandus tarandus) grazing on natural summer pastures on the coast of northern Norway (71.00 degrees N, 25.30 degrees E). Mean population densities (numbers per gram wet weight) of methanogenic archaea, rumen bacteria and ciliate protozoa, estimated using quantitative real-time polymerase chain reaction (PCR), were 3.17x10(9), 5.17x10(11) and 4.02x10(7), respectively. Molecular diversity of rumen methanogens was revealed using a 16S rRNA gene library (54 clones) constructed using pooled PCR products from the whole rumen contents of the five individual reindeer. Based upon a similarity criterion of <97%, a total of 19 distinct operational taxonomic units (OTUs) were identified, nine of which are potential new species. The 16S rRNA sequences generated from the reindeer rumen exhibited a high degree of sequence similarity to methanogens affiliated with the families Methanobacteriaceae (14 OTUs) and Methanosarcinaceae (one OTU). Four of the OTUs detected belonged to a group of uncultivated archaea previously found in domestic ruminants and thought to be dominant in the rumen together with Methanobrevibacter spp. Denaturing gradient gel electrophoresis profiling of the rumen bacterial 16S rRNA gene and the protozoal 18S rRNA gene indicated a high degree of animal variation, although some bands were common to all individuals. Automated ribosomal intergenic spacer analysis (ARISA) profiling of the ruminal Neocallimastigales population indicated that the reindeer are likely to contain more than one type of anaerobic fungus. The ARISA profile from one animal was distinct from the other four. This is the first molecular investigation of the ruminal methanogenic archaea in reindeer, revealing higher numbers than expected based on methane emission data available. Also, many of the reindeer archaeal 16S rRNA gene sequences were similar to those

  6. Supersaturation of Dissolved Hydrogen and Methane in Rumen of Tibetan Sheep

    PubMed Central

    Wang, Min; Ungerfeld, Emilio M.; Wang, Rong; Zhou, Chuan She; Basang, Zhu Zha; Ao, Si Man; Tan, Zhi Liang

    2016-01-01

    Hydrogen (H2) is an essential substrate for methanogens to produce methane (CH4), and also influences pathways of volatile fatty acids (VFA) production in the rumen. Dissolved H2 (H2 (aq)) is the form of H2 available to microbes, and dissolved CH4 (CH4 (aq)) is important for indicating methanogens activity. Rumen H2 (aq) concentration has been estimated by assuming equilibrium with headspace gaseous H2 (H2 (g)) concentration using Henry's law, and has also been directly measured in the liquid phase in some in vitro and in vivo experiments. In this in vivo study, H2 (aq) and CH4 (aq) concentration measured directly in rumen fluid and their corresponding concentrations estimated from their gaseous phase concentrations, were compared to investigate the existence of equilibrium between the gas and liquid phases. Twenty-four Tibetan sheep were randomly assigned to two mixed diets containing the same concentrate mixed with oat grass (OG diet) or barley straw (BS diet). Rumen gaseous phase and contents were sampled using rumenocentesis and oral stomach tubing, respectively. Rumen H2 (aq) and CH4 (aq) concentration and VFA profile differed between sheep fed OG and BS diets. Measured H2 (aq) and CH4 (aq) concentration were greater than H2 (aq) and CH4 (aq) concentrations estimated using gas concentrations, indicating lack of equilibrium between gas and liquid phase and supersaturation of H2 and CH4 in rumen fluid. As a consequence, Gibbs energy changes (ΔG) estimated for various metabolic pathways were different when calculated using dissolved gases concentrations directly measured and when using dissolved gases concentrations assuming equilibrium with the gaseous phase. Dissolved CH4, but not CH4 (g), was positively correlated with H2 (aq). Both H2 (aq) and H2 (g) concentrations were positively correlated with the molar percentage of butyrate and negatively correlated with the molar percentage of acetate. In summary, rumen fluid was supersaturated with both H2 and CH4

  7. Artificial intelligence in medicine.

    PubMed Central

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167

  8. In vitro Screening of Essential Oil Active Compounds for Manipulation of Rumen Fermentation and Methane Mitigation.

    PubMed

    Joch, M; Cermak, L; Hakl, J; Hucko, B; Duskova, D; Marounek, M

    2016-07-01

    The objective of this study was to investigate the effects of 11 active compounds of essential oils (ACEO) on rumen fermentation characteristics and methane production. Two trials were conducted. In trial 1, ACEO (eugenol, carvacrol, citral, limonene, 1,4-cineole, p-cymene, linalool, bornyl acetate, α-pinene, and β-pinene) at a dose of 1,000 μL/L were incubated for 24 h in diluted rumen fluid with a 70:30 forage:concentrate substrate (16.2% crude protein; 36.6% neutral detergent fiber). Three fistulated Holstein cows were used as donors of rumen fluid. The reduction in methane production was observed with nine ACEO (up to 86% reduction) compared with the control (p<0.05). Among these, only limonene, 1,4-cineole, bornyl acetate, and α-pinene did not inhibit volatile fatty acid (VFA) production, and only bornyl acetate produced less methane per mol of VFA compared with the control (p<0.05). In a subsequent trial, the effects on rumen fermentation and methane production of two concentrations (500 and 2,000 μL/L) of bornyl acetate, the most promising ACEO from the first trial, were evaluated using the same in vitro incubation method that was used in the first trial. In trial 2, monensin was used as a positive control. Both doses of bornyl acetate decreased (p<0.05) methane production and did not inhibit VFA production. Positive effects of bornyl acetate on methane and VFA production were more pronounced than the effects of monensin. These results confirm the ability of bornyl acetate to decrease methane production, which may help to improve the efficiency of energy use in the rumen. PMID:26954157

  9. Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach.

    PubMed

    Gagen, Emma J; Denman, Stuart E; Padmanabha, Jagadish; Zadbuke, Someshwar; Al Jassim, Rafat; Morrison, Mark; McSweeney, Christopher S

    2010-12-01

    Reductive acetogenesis via the acetyl coenzyme A (acetyl-CoA) pathway is an alternative hydrogen sink to methanogenesis in the rumen. Functional gene-based analysis is the ideal approach for investigating organisms capable of this metabolism (acetogens). However, existing tools targeting the formyltetrahydrofolate synthetase gene (fhs) are compromised by lack of specificity due to the involvement of formyltetrahydrofolate synthetase (FTHFS) in other pathways. Acetyl-CoA synthase (ACS) is unique to the acetyl-CoA pathway and, in the present study, acetyl-CoA synthase genes (acsB) were recovered from a range of acetogens to facilitate the design of acsB-specific PCR primers. fhs and acsB libraries were used to examine acetogen diversity in the bovine rumen and forestomach of the tammar wallaby (Macropus eugenii), a native Australian marsupial demonstrating foregut fermentation analogous to rumen fermentation but resulting in lower methane emissions. Novel, deduced amino acid sequences of acsB and fhs affiliated with the Lachnospiraceae in both ecosystems and the Ruminococcaeae/Blautia group in the rumen. FTHFS sequences that probably originated from nonacetogens were identified by low "homoacetogen similarity" scores based on analysis of FTHFS residues, and comprised a large proportion of FTHFS sequences from the tammar wallaby forestomach. A diversity of FTHFS and ACS sequences in both ecosystems clustered between the Lachnospiraceae and Clostridiaceae acetogens but without close sequences from cultured isolates. These sequences probably originated from novel acetogens. The community structures of the acsB and fhs libraries from the rumen and the tammar wallaby forestomach were different (LIBSHUFF, P < 0.001), and these differences may have significance for overall hydrogenotrophy in both ecosystems.

  10. Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and In vitro Methane Production

    PubMed Central

    Nguyen, S. H.; Li, L.; Hegarty, R. S.

    2016-01-01

    Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing 4.5% coconut oil distillate for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation, and the experiment commenced (d 0). On d 0, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 0, 7, 14, and 21 were incubated for in vitro methane production. On d 35, 2% nitrate (as NaNO3) was included in in vitro incubations to test for additivity of nitrate and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production in refaunated heifers 7, 14, and 21 d after refaunation. Methane production rate was significantly higher from refaunated heifers than from defaunated heifers 35 d after refaunation. Concentration and proportions of major volatile fatty acids, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary

  11. Rumen Microbiome Composition Determined Using Two Nutritional Models of Subacute Ruminal Acidosis▿

    PubMed Central

    Khafipour, Ehsan; Li, Shucong; Plaizier, Jan C.; Krause, Denis O.

    2009-01-01

    Subacute ruminal acidosis (SARA) is a metabolic disease in dairy cattle that occurs during early and mid-lactation and has traditionally been characterized by low rumen pH, but lactic acid does not accumulate as in acute lactic acid acidosis. It is hypothesized that factors such as increased gut permeability, bacterial lipopolysaccharides, and inflammatory responses may have a role in the etiology of SARA. However, little is known about the nature of the rumen microbiome during SARA. In this study, we analyzed the microbiome of 64 rumen samples taken from eight lactating Holstein dairy cattle using terminal restriction fragment length polymorphisms (TRFLP) of 16S rRNA genes and real-time PCR. We used rumen samples from two published experiments in which SARA had been induced with either grain or alfalfa pellets. The results of TRFLP analysis indicated that the most predominant shift during SARA was a decline in gram-negative Bacteroidetes organisms. However, the proportion of Bacteroidetes organisms was greater in alfalfa pellet-induced SARA than in mild or severe grain-induced SARA (35.4% versus 26.0% and 16.6%, respectively). This shift was also evident from the real-time PCR data for Prevotella albensis, Prevotella brevis, and Prevotella ruminicola, which are members of the Bacteroidetes. The real-time PCR data also indicated that severe grain-induced SARA was dominated by Streptococcus bovis and Escherichia coli, whereas mild grain-induced SARA was dominated by Megasphaera elsdenii and alfalfa pellet-induced SARA was dominated by P. albensis. Using discriminant analysis, the severity of SARA and degree of inflammation were highly correlated with the abundance of E. coli and not with lipopolysaccharide in the rumen. We thus suspect that E. coli may be a contributing factor in disease onset. PMID:19783747

  12. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis.

    PubMed

    Khafipour, Ehsan; Li, Shucong; Plaizier, Jan C; Krause, Denis O

    2009-11-01

    Subacute ruminal acidosis (SARA) is a metabolic disease in dairy cattle that occurs during early and mid-lactation and has traditionally been characterized by low rumen pH, but lactic acid does not accumulate as in acute lactic acid acidosis. It is hypothesized that factors such as increased gut permeability, bacterial lipopolysaccharides, and inflammatory responses may have a role in the etiology of SARA. However, little is known about the nature of the rumen microbiome during SARA. In this study, we analyzed the microbiome of 64 rumen samples taken from eight lactating Holstein dairy cattle using terminal restriction fragment length polymorphisms (TRFLP) of 16S rRNA genes and real-time PCR. We used rumen samples from two published experiments in which SARA had been induced with either grain or alfalfa pellets. The results of TRFLP analysis indicated that the most predominant shift during SARA was a decline in gram-negative Bacteroidetes organisms. However, the proportion of Bacteroidetes organisms was greater in alfalfa pellet-induced SARA than in mild or severe grain-induced SARA (35.4% versus 26.0% and 16.6%, respectively). This shift was also evident from the real-time PCR data for Prevotella albensis, Prevotella brevis, and Prevotella ruminicola, which are members of the Bacteroidetes. The real-time PCR data also indicated that severe grain-induced SARA was dominated by Streptococcus bovis and Escherichia coli, whereas mild grain-induced SARA was dominated by Megasphaera elsdenii and alfalfa pellet-induced SARA was dominated by P. albensis. Using discriminant analysis, the severity of SARA and degree of inflammation were highly correlated with the abundance of E. coli and not with lipopolysaccharide in the rumen. We thus suspect that E. coli may be a contributing factor in disease onset. PMID:19783747

  13. Methaphylactic effect of tulathromycin treatment on rumen fluid parameters in feedlot beef cattle.

    PubMed

    Fiore, Enrico; Armato, Leonardo; Morgante, Massimo; Muraro, Michele; Boso, Matteo; Gianesella, Matteo

    2016-01-01

    The aim of this study was to evaluate the effect of tulathromycin as a bovine respiratory disease (BRD) metaphylactic treatment on rumen fluid parameters in feedlot cattle in an intensive livestock production farm. One hundred beef cattle, immediately after housing, were divided in 2 equal groups: 50 animals with metaphylactic treatment against BRD (treated group; tulathromycin at 2.5 mg/kg BW) and 50 animals with placebo treatment (control group). Rumen fluid samples were collected from each animal by rumenocentesis in 3 periods: 1 d (T1), 8 d (T8), and 15 d (T15) after treatment. Rumen pH was determined by ruminal fluid using portable pH meter. Total volatile fatty acids (total VFA) were evaluated by high performance liquid chromatography (HPLC). All animals were singularly weighed at T1 and T15. Two-way analysis of variance (ANOVA) was applied to determine significant effects of treatment (treated group versus control group) and period (T1, T8, and T15) on rumen fluid parameters and body weight. No clinical signs of BRD or other related diseases were recorded during the periods of study from any animal. Statistically significant differences (P < 0.05) were found between treated group and control group for mean values of ruminal pH (6.02 versus 5.89) and total VFA (5.84 versus 5.13) at 8 d after treatment. The weight gain (Δ) showed an average increase of 8.6 kg in treated group (P < 0.05). The trends of ruminal pH and VFA values suggest an effect of tulathromycin as BRD metaphylactic treatment on the modulation of rumen fermentation, particularly 8 d after administration.

  14. In vitro Screening of Essential Oil Active Compounds for Manipulation of Rumen Fermentation and Methane Mitigation

    PubMed Central

    Joch, M.; Cermak, L.; Hakl, J.; Hucko, B.; Duskova, D.; Marounek, M.

    2016-01-01

    The objective of this study was to investigate the effects of 11 active compounds of essential oils (ACEO) on rumen fermentation characteristics and methane production. Two trials were conducted. In trial 1, ACEO (eugenol, carvacrol, citral, limonene, 1,4-cineole, p-cymene, linalool, bornyl acetate, α-pinene, and β-pinene) at a dose of 1,000 μL/L were incubated for 24 h in diluted rumen fluid with a 70:30 forage:concentrate substrate (16.2% crude protein; 36.6% neutral detergent fiber). Three fistulated Holstein cows were used as donors of rumen fluid. The reduction in methane production was observed with nine ACEO (up to 86% reduction) compared with the control (p<0.05). Among these, only limonene, 1,4-cineole, bornyl acetate, and α-pinene did not inhibit volatile fatty acid (VFA) production, and only bornyl acetate produced less methane per mol of VFA compared with the control (p<0.05). In a subsequent trial, the effects on rumen fermentation and methane production of two concentrations (500 and 2,000 μL/L) of bornyl acetate, the most promising ACEO from the first trial, were evaluated using the same in vitro incubation method that was used in the first trial. In trial 2, monensin was used as a positive control. Both doses of bornyl acetate decreased (p<0.05) methane production and did not inhibit VFA production. Positive effects of bornyl acetate on methane and VFA production were more pronounced than the effects of monensin. These results confirm the ability of bornyl acetate to decrease methane production, which may help to improve the efficiency of energy use in the rumen. PMID:26954157

  15. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis.

    PubMed

    Khafipour, Ehsan; Li, Shucong; Plaizier, Jan C; Krause, Denis O

    2009-11-01

    Subacute ruminal acidosis (SARA) is a metabolic disease in dairy cattle that occurs during early and mid-lactation and has traditionally been characterized by low rumen pH, but lactic acid does not accumulate as in acute lactic acid acidosis. It is hypothesized that factors such as increased gut permeability, bacterial lipopolysaccharides, and inflammatory responses may have a role in the etiology of SARA. However, little is known about the nature of the rumen microbiome during SARA. In this study, we analyzed the microbiome of 64 rumen samples taken from eight lactating Holstein dairy cattle using terminal restriction fragment length polymorphisms (TRFLP) of 16S rRNA genes and real-time PCR. We used rumen samples from two published experiments in which SARA had been induced with either grain or alfalfa pellets. The results of TRFLP analysis indicated that the most predominant shift during SARA was a decline in gram-negative Bacteroidetes organisms. However, the proportion of Bacteroidetes organisms was greater in alfalfa pellet-induced SARA than in mild or severe grain-induced SARA (35.4% versus 26.0% and 16.6%, respectively). This shift was also evident from the real-time PCR data for Prevotella albensis, Prevotella brevis, and Prevotella ruminicola, which are members of the Bacteroidetes. The real-time PCR data also indicated that severe grain-induced SARA was dominated by Streptococcus bovis and Escherichia coli, whereas mild grain-induced SARA was dominated by Megasphaera elsdenii and alfalfa pellet-induced SARA was dominated by P. albensis. Using discriminant analysis, the severity of SARA and degree of inflammation were highly correlated with the abundance of E. coli and not with lipopolysaccharide in the rumen. We thus suspect that E. coli may be a contributing factor in disease onset.

  16. Effect of sodium butyrate supplementation in milk replacer and starter diet on rumen development in calves.

    PubMed

    Gorka, P; Kowalski, Z M; Pietrzak, P; Kotunia, A; Kiljanczyk, R; Flaga, J; Holst, J J; Guilloteau, P; Zabielski, R

    2009-10-01

    Rumen development is an important factor determining early solid feed intake and performance in cattle. A popular trend towards early weaning of newborn dairy calves necessitated looking for ways of accelerating the gastrointestinal tract (GIT) development. The present study aimed to determine the effect of sodium butyrate (NaB) supplementation in milk replacer and starter diet on rumen development in rearing calves. Fourteen bull calves (5-day-old) were randomly allocated to two groups: Control (C) and NaB. The later received 0.3 % NaB in milk replacer and starter diet. Animals were in experiment up to age of 26 days. Addition of NaB to milk replacer and starter diet had no effect on daily growth rate, but reduced the weight loss observed in C calves in first 11 days of age. Additionally, the NaB calves weighed more at the end of the study and tended to have higher growth rate in the whole trial period (P<0.15). The NaB calves showed a tendency toward higher reticulorumen weight (P=0.13) and higher reticulorumen weight expressed as a percent of whole stomach weight (P=0.02) as compared to control. Histometry analysis indicated larger rumen papillae length and width (P<0.01) in NaB group, and no change in muscle layer thickness, as compared to control. Plasma glucagon-like peptide-2 relative increase was higher in NaB group than in C group, and may be involved in rumen development. In conclusion, supplementation of the diet (milk replacer and starter diet) with NaB may enhance rumen development in neonatal calves.

  17. Prepartum and Postpartum Rumen Fluid Microbiomes: Characterization and Correlation with Production Traits in Dairy Cows

    PubMed Central

    Lima, Fabio S.; Oikonomou, Georgios; Lima, Svetlana F.; Bicalho, Marcela L. S.; Ganda, Erika K.; de Oliveira Filho, Jose C.; Lorenzo, Gustavo; Trojacanec, Plamen

    2014-01-01

    Microbes present in the rumen of dairy cows are essential for degradation of cellulosic and nonstructural carbohydrates of plant origin. The prepartum and postpartum diets of high-producing dairy cows are substantially different, but in what ways the rumen microbiome changes in response and how those changes may influence production traits are not well elucidated. Here, we sequenced the 16S and 18S rRNA genes using the MiSeq platform to characterize the prepartum and postpartum rumen fluid microbiomes in 115 high-producing dairy cows, including both primiparous and multiparous animals. Discriminant analysis identified differences between the microbiomes of prepartum and postpartum samples and between primiparous and multiparous cows. 18S rRNA sequencing revealed an overwhelming dominance of the protozoan class Litostomatea, with over 90% of the eukaryotic microbial population belonging to that group. Additionally, fungi were relatively more prevalent and Litostomatea relatively less prevalent in prepartum samples than in postpartum ones. The core rumen microbiome (common to all samples) consisted of 64 bacterial taxa, of which members of the genus Prevotella were the most prevalent. The Chao1 richness index was greater for prepartum multiparous cows than for postpartum multiparous cows. Multivariable models identified bacterial taxa associated with increased or reduced milk production, and general linear models revealed that a metagenomically based prediction of productivity is highly associated with production of actual milk and milk components. In conclusion, the structure of the rumen fluid microbiome shifts between the prepartum and first-week postpartum periods, and its profile within the context of this study could be used to accurately predict production traits. PMID:25501481

  18. Methaphylactic effect of tulathromycin treatment on rumen fluid parameters in feedlot beef cattle

    PubMed Central

    Fiore, Enrico; Armato, Leonardo; Morgante, Massimo; Muraro, Michele; Boso, Matteo; Gianesella, Matteo

    2016-01-01

    The aim of this study was to evaluate the effect of tulathromycin as a bovine respiratory disease (BRD) metaphylactic treatment on rumen fluid parameters in feedlot cattle in an intensive livestock production farm. One hundred beef cattle, immediately after housing, were divided in 2 equal groups: 50 animals with metaphylactic treatment against BRD (treated group; tulathromycin at 2.5 mg/kg BW) and 50 animals with placebo treatment (control group). Rumen fluid samples were collected from each animal by rumenocentesis in 3 periods: 1 d (T1), 8 d (T8), and 15 d (T15) after treatment. Rumen pH was determined by ruminal fluid using portable pH meter. Total volatile fatty acids (total VFA) were evaluated by high performance liquid chromatography (HPLC). All animals were singularly weighed at T1 and T15. Two-way analysis of variance (ANOVA) was applied to determine significant effects of treatment (treated group versus control group) and period (T1, T8, and T15) on rumen fluid parameters and body weight. No clinical signs of BRD or other related diseases were recorded during the periods of study from any animal. Statistically significant differences (P < 0.05) were found between treated group and control group for mean values of ruminal pH (6.02 versus 5.89) and total VFA (5.84 versus 5.13) at 8 d after treatment. The weight gain (Δ) showed an average increase of 8.6 kg in treated group (P < 0.05). The trends of ruminal pH and VFA values suggest an effect of tulathromycin as BRD metaphylactic treatment on the modulation of rumen fermentation, particularly 8 d after administration. PMID:26733733

  19. Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and In vitro Methane Production.

    PubMed

    Nguyen, S H; Li, L; Hegarty, R S

    2016-06-01

    Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing 4.5% coconut oil distillate for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation, and the experiment commenced (d 0). On d 0, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 0, 7, 14, and 21 were incubated for in vitro methane production. On d 35, 2% nitrate (as NaNO3) was included in in vitro incubations to test for additivity of nitrate and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production in refaunated heifers 7, 14, and 21 d after refaunation. Methane production rate was significantly higher from refaunated heifers than from defaunated heifers 35 d after refaunation. Concentration and proportions of major volatile fatty acids, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary

  20. Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and In vitro Methane Production.

    PubMed

    Nguyen, S H; Li, L; Hegarty, R S

    2016-06-01

    Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing 4.5% coconut oil distillate for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation, and the experiment commenced (d 0). On d 0, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 0, 7, 14, and 21 were incubated for in vitro methane production. On d 35, 2% nitrate (as NaNO3) was included in in vitro incubations to test for additivity of nitrate and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production in refaunated heifers 7, 14, and 21 d after refaunation. Methane production rate was significantly higher from refaunated heifers than from defaunated heifers 35 d after refaunation. Concentration and proportions of major volatile fatty acids, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary

  1. An evaluation of parameters for the detection of subclinical rumen acidosis in dairy herds.

    PubMed

    Enemark, J M D; Jørgensen, R J; Kristensen, N B

    2004-11-01

    An observational study was conducted in six Danish dairy herds. A specially designed stomach tube was compared to the rumenocentesis technique as part of the monitoring of rumen pH. In contrast to a previous study, the use of the stomach tube appeared to reduce saliva contamination. However, correlation with the rumenocentesis technique was poor ( r = 0.33; p = 0.019) and a linear model could only partly explain variations between either results. The presence of subclinical rumen acidosis (SRA) was evidenced in one herd only, as judged by results obtained by the rumenocentesis technique. The present study revealed some limitations of the rumenocentesis technique in small or medium-sized herds due to difficulties in selecting sufficient numbers of cows in the respective groups at risk. The finding of two apparently clinical normal cows with rumen pH values below 5.0 leads to the consideration that such fluctuations may be temporary and at least does not give rise to clinical symptoms. However, the long-term effect of such fluctuations is not known. In general, primiparous cows seemed more prone to low ruminal pH values (< 6.0), higher ruminal concentrations of short-chain fatty acids, and possibly to metabolic acidosis, than were multiparous cows. Ruminal propionate was the most precise predictor of rumen pH, whereas milk fat percentage varied greatly between lactational groups. Blood lactate dehydrogenase (LDH), beta-hydroxybutyrate (BHB) and fructosamine as well as urine phosphorus excretion and renal net acid-base excretion (NABE) were related to ruminal acid load, but were not predictive of rumen pH. Monitoring of dairy herds for SRA should be performed routinely and employ several diagnostic tools (rumenocentesis, renal NABE determination) as well as specific knowledge of herd management and feeding routines.

  2. Artificial Sweeteners and Cancer

    MedlinePlus

    ... artificial sweeteners and cancer? Saccharin Studies in laboratory rats during the early 1970s linked saccharin with the ... cause cancer in laboratory animals .” Subsequent studies in rats showed an increased incidence of urinary bladder cancer ...

  3. Intelligence: Real or artificial?

    PubMed Central

    Schlinger, Henry D.

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally referred to behavior-environment relations and not to inferred internal structures and processes. It is concluded that if workers in artificial intelligence are to succeed in their general goal, then they must design machines that are adaptive, that is, that can learn. Thus, artificial intelligence researchers must discard their essentialist model of natural intelligence and adopt a selectionist model instead. Such a strategic change should lead them to the science of behavior analysis. PMID:22477051

  4. Introduction to artificial intelligence

    SciTech Connect

    Charniak, E.; McDermott, D.

    1985-01-01

    This book is an introduction on artificial intelligence. Topics include reasoning under uncertainty, robot plans, language understanding, and learning. The history of the field as well as intellectual ties to related disciplines are presented.

  5. Beef quality of young Angus×Nellore cattle supplemented with rumen-protected lipids during rearing and fatting periods.

    PubMed

    Andrade, E N; Polizel Neto, A; Roça, R O; Faria, M H; Resende, F D; Siqueira, G R; Pinheiro, R S B

    2014-12-01

    This work evaluated the beef quality parameters of 108 bulls randomly administered to three treatments during rearing in pastures and two treatments during fatting in feedlots, including mineral and rumen-protected lipids. Meat and fat color, cooking yield, shear force, sensorial traits and chemical and fatty acid compositions were evaluated. Generally, the beef quality parameters were not affected by the rumen protected lipids; however, supplementation with rumen-protected lipids during the rearing period yielded darker beef and brighter fat and increased beef tenderness in meat aged for 28days compared to the meat from animals that received only mineral supplementation. In addition, the percent of meat polyunsaturated fatty acids was negatively affected by the inclusion of protected lipids, yielding 5.58 and 3.72% in animals fed with and without rumen-protected lipids, respectively, during the fatting period.

  6. 30526 artificial lift

    SciTech Connect

    Not Available

    1989-01-01

    This book focuses on the four major methods of artificial lift: sucker-rod pumping, gas lift, electrical submersible pumping (ESP) and hydraulic pumping. Though more than 80% of artificially lifted wells worldwide are rod-pumped, the large majority of these wells are low-volume, stripper-type producers. For this reason, sucker-rod pumping papers comprise less than 40% of the 26 SPE papers selected.

  7. Physics of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Bukley, Angie; Paloski, William; Clement, Gilles

    2006-01-01

    This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.

  8. Heidegger and artificial intelligence

    SciTech Connect

    Diaz, G.

    1987-01-01

    The discipline of Artificial Intelligence, in its quest for machine intelligence, showed great promise as long as its areas of application were limited to problems of a scientific and situation neutral nature. The attempts to move beyond these problems to a full simulation of man's intelligence has faltered and slowed it progress, largely because of the inability of Artificial Intelligence to deal with human characteristic, such as feelings, goals, and desires. This dissertation takes the position that an impasse has resulted because Artificial Intelligence has never been properly defined as a science: its objects and methods have never been identified. The following study undertakes to provide such a definition, i.e., the required ground for Artificial Intelligence. The procedure and methods employed in this study are based on Heidegger's philosophy and techniques of analysis as developed in Being and Time. Results of this study show that both the discipline of Artificial Intelligence and the concerns of Heidegger in Being and Time have the same object; fundamental ontology. The application of Heidegger's conclusions concerning fundamental ontology unites the various aspects of Artificial Intelligence and provides the articulation which shows the parts of this discipline and how they are related.

  9. Use of Adenosine 5′-Triphosphate as an Indicator of the Microbiota Biomass in Rumen Contents

    PubMed Central

    Forsberg, C. W.; Lam, K.

    1977-01-01

    A number of techniques were tested for their efficiency in extracting adenosine 5′-triphosphate (ATP) from strained rumen fluid (SRF). Extraction with 0.6 N H2SO4, using a modification of the procedure described by Lee et al. (1971), was the most efficient and was better suited for extracting particulate samples. Neutralized extracts could not be stored frozen before assaying for ATP because large losses were incurred. The inclusion of internal standards was necessary to correct for incomplete recovery of ATP. The ATP concentration in rumen contents from a cow receiving a ration of dried roughage (mainly alfalfa hay) ranged from 31 to 56 μg of ATP per g of contents. Approximately 75% of the ATP was associated with the particulate material. The ATP was primarily of microbial origin, since only traces of ATP were present in the feed and none was found in “cell-free” rumen fluid. Fractionation of the bacterial and protozoal populations in SRF resulted in the isolation of an enriched protozoal fraction with a 10-fold higher ATP concentration than that of the separated rumen bacteria. The ATP pool sizes of nine functionally important rumen bacteria during the exponential phase of growth ranged from 1.1 to 17.6 μg of ATP per mg of dry weight. This information indicates that using ATP as a measure of microbial biomass in rumen contents must be done with caution because of possible variations in the efficiency of extraction of ATP from rumen contents and differences in the concentration of ATP in rumen microbes. PMID:16345203

  10. Influence of dietary docosahexaenoic acid supplementation on the overall rumen microbiota of dairy cows and linkages with production parameters.

    PubMed

    Torok, Valeria A; Percy, Nigel J; Moate, Peter J; Ophel-Keller, Kathy

    2014-05-01

    The rumen microbiota contributes to greenhouse gas emissions and has an impact on feed efficiency and ruminant product fatty acid composition. Dietary fat supplements have shown promise in reducing enteric methane production and in altering the fatty acid profiles of ruminant-derived products, yet in vivo studies on how these impact the rumen microbiota are limited. In this study, we investigated the rumen bacterial, archaeal, fungal, and ciliate protozoan communities of dairy cows fed diets supplemented with 4 levels of docosahexaenoic acid (DHA) (0, 25, 50, and 75 g·cow(-1)·day(-1)) and established linkages between microbial communities and production parameters. Supplementation with DHA significantly (P < 0.05) altered rumen bacterial and archaeal, including methanogenic archaeal, communities but had no significant (P > 0.05) effects on rumen fungal or ciliate protozoan communities. Rumen bacterial communities of cows receiving no DHA were correlated with increased saturated fatty acids (C18:0 and C11:0) in their milk. Furthermore, rumen bacterial communities of cows receiving a diet supplemented with 50 g DHA·cow(-1)·day(-1) were correlated with increases in monounsaturated fatty acids (C20:1n-9) and polyunsaturated fatty acids (C22:5n-3; C22:6n-3; C18:2 cis-9, trans-11; C22:3n-6; and C18:2n-6 trans) in their milk. The significant diet-associated changes in rumen archaeal communities observed did not result in altered enteric methane outputs in these cows.

  11. Technical note: Protozoa-specific antibodies raised in sheep plasma bind to their target protozoa in the rumen.

    PubMed

    Williams, Y J; Rea, S M; Popovski, S; Skillman, L C; Wright, A-D G

    2014-12-01

    Binding of IgG antibodies to Entodinium spp. in the rumen of sheep (Ovis aries) was investigated by adding IgG, purified from plasma, directly into the rumen. Plasma IgG was sourced from sheep that had or had not been immunized with a vaccine containing whole fixed Entodinium spp. cells. Ruminal fluid was sampled approximately 2 h after each antibody dosing. Binding of protozoa by a specific antibody was detected using an indirect fluorescent antibody test. An antibody titer in the ruminal fluid was determined by ELISA, and the concentration of ruminal fluid ammonia-N and ruminal pH were also determined. Entodinium spp. and total protozoa from IgG-infused sheep were enumerated by microscopic counts. Two-hourly additions of IgG maintained a low antibody titer in the rumen for 12 h and the binding of the antibody to the rumen protozoa was demonstrated. Increased ammonia-N concentrations and altered ruminal fluid pH patterns indicated that additional fermentation of protein was occurring in the rumen after addition of IgG. No reduction in numbers of Entodinium spp. was observed (P>0.05). Although binding of antibodies to protozoa has been demonstrated in the rumen, it is unclear how much cell death occurred. On the balance of probability, it would appear that the antibody was degraded or partially degraded, and the impact of this on protozoal populations and the measurement of a specific titer is also unclear.

  12. Rumen bacterial diversity of 80 to 110-day-old goats using 16S rRNA sequencing.

    PubMed

    Han, Xufeng; Yang, Yuxin; Yan, Hailong; Wang, Xiaolong; Qu, Lei; Chen, Yulin

    2015-01-01

    The ability of rumen microorganisms to use fibrous plant matter plays an important role in ruminant animals; however, little information about rumen colonization by microbial populations after weaning has been reported. In this study, high-throughput sequencing was used to investigate the establishment of this microbial population in 80 to 110-day-old goats. Illumina sequencing of goat rumen samples yielded 101,356,610 nucleotides that were assembled into 256,868 reads with an average read length of 394 nucleotides. Taxonomic analysis of metagenomic reads indicated that the predominant phyla were distinct at different growth stages. The phyla Firmicutes and Synergistetes were predominant in samples taken from 80 to 100-day-old goats, but Bacteroidetes and Firmicutes became the most abundant phyla in samples from 110-day-old animals. There was a remarkable variation in the microbial populations with age; Firmicutes and Synergistetes decreased after weaning, but Bacteroidetes and Proteobacteria increased from 80 to 110 day of age. These findings suggested that colonization of the rumen by microorganisms is related to their function in the rumen digestive system. These results give a better understanding of the role of rumen microbes and the establishment of the microbial population, which help to maintain the host's health and improve animal performance.

  13. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases

    PubMed Central

    Brulc, Jennifer M.; Antonopoulos, Dionysios A.; Berg Miller, Margret E.; Wilson, Melissa K.; Yannarell, Anthony C.; Dinsdale, Elizabeth A.; Edwards, Robert E.; Frank, Edward D.; Emerson, Joanne B.; Wacklin, Pirjo; Coutinho, Pedro M.; Henrissat, Bernard; Nelson, Karen E.; White, Bryan A.

    2009-01-01

    The complex microbiome of the rumen functions as an effective system for the conversion of plant cell wall biomass to microbial protein, short chain fatty acids, and gases. As such, it provides a unique genetic resource for plant cell wall degrading microbial enzymes that could be used in the production of biofuels. The rumen and gastrointestinal tract harbor a dense and complex microbiome. To gain a greater understanding of the ecology and metabolic potential of this microbiome, we used comparative metagenomics (phylotype analysis and SEED subsystems-based annotations) to examine randomly sampled pyrosequence data from 3 fiber-adherent microbiomes and 1 pooled liquid sample (a mixture of the liquid microbiome fractions from the same bovine rumens). Even though the 3 animals were fed the same diet, the community structure, predicted phylotype, and metabolic potentials in the rumen were markedly different with respect to nutrient utilization. A comparison of the glycoside hydrolase and cellulosome functional genes revealed that in the rumen microbiome, initial colonization of fiber appears to be by organisms possessing enzymes that attack the easily available side chains of complex plant polysaccharides and not the more recalcitrant main chains, especially cellulose. Furthermore, when compared with the termite hindgut microbiome, there are fundamental differences in the glycoside hydrolase content that appear to be diet driven for either the bovine rumen (forages and legumes) or the termite hindgut (wood). PMID:19181843

  14. Rumen bacterial diversity of 80 to 110-day-old goats using 16S rRNA sequencing.

    PubMed

    Han, Xufeng; Yang, Yuxin; Yan, Hailong; Wang, Xiaolong; Qu, Lei; Chen, Yulin

    2015-01-01

    The ability of rumen microorganisms to use fibrous plant matter plays an important role in ruminant animals; however, little information about rumen colonization by microbial populations after weaning has been reported. In this study, high-throughput sequencing was used to investigate the establishment of this microbial population in 80 to 110-day-old goats. Illumina sequencing of goat rumen samples yielded 101,356,610 nucleotides that were assembled into 256,868 reads with an average read length of 394 nucleotides. Taxonomic analysis of metagenomic reads indicated that the predominant phyla were distinct at different growth stages. The phyla Firmicutes and Synergistetes were predominant in samples taken from 80 to 100-day-old goats, but Bacteroidetes and Firmicutes became the most abundant phyla in samples from 110-day-old animals. There was a remarkable variation in the microbial populations with age; Firmicutes and Synergistetes decreased after weaning, but Bacteroidetes and Proteobacteria increased from 80 to 110 day of age. These findings suggested that colonization of the rumen by microorganisms is related to their function in the rumen digestive system. These results give a better understanding of the role of rumen microbes and the establishment of the microbial population, which help to maintain the host's health and improve animal performance. PMID:25700157

  15. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases.

    PubMed

    Brulc, Jennifer M; Antonopoulos, Dionysios A; Miller, Margret E Berg; Wilson, Melissa K; Yannarell, Anthony C; Dinsdale, Elizabeth A; Edwards, Robert E; Frank, Edward D; Emerson, Joanne B; Wacklin, Pirjo; Coutinho, Pedro M; Henrissat, Bernard; Nelson, Karen E; White, Bryan A

    2009-02-10

    The complex microbiome of the rumen functions as an effective system for the conversion of plant cell wall biomass to microbial protein, short chain fatty acids, and gases. As such, it provides a unique genetic resource for plant cell wall degrading microbial enzymes that could be used in the production of biofuels. The rumen and gastrointestinal tract harbor a dense and complex microbiome. To gain a greater understanding of the ecology and metabolic potential of this microbiome, we used comparative metagenomics (phylotype analysis and SEED subsystems-based annotations) to examine randomly sampled pyrosequence data from 3 fiber-adherent microbiomes and 1 pooled liquid sample (a mixture of the liquid microbiome fractions from the same bovine rumens). Even though the 3 animals were fed the same diet, the community structure, predicted phylotype, and metabolic potentials in the rumen were markedly different with respect to nutrient utilization. A comparison of the glycoside hydrolase and cellulosome functional genes revealed that in the rumen microbiome, initial colonization of fiber appears to be by organisms possessing enzymes that attack the easily available side chains of complex plant polysaccharides and not the more recalcitrant main chains, especially cellulose. Furthermore, when compared with the termite hindgut microbiome, there are fundamental differences in the glycoside hydrolase content that appear to be diet driven for either the bovine rumen (forages and legumes) or the termite hindgut (wood). PMID:19181843

  16. Microbial and Carbohydrate Active Enzyme profile of buffalo rumen metagenome and their alteration in response to variation in the diet.

    PubMed

    Patel, Dishita D; Patel, Amrutlal K; Parmar, Nidhi R; Shah, Tejas M; Patel, Jethabhai B; Pandya, Paresh R; Joshi, Chaitanya G

    2014-07-15

    Rumen microbiome represents rich source of enzymes degrading complex plant polysaccharides. We describe here analysis of Carbohydrate Active Enzymes (CAZymes) from 3.5 gigabase sequences of metagenomic data from rumen samples of Mehsani buffaloes fed on different proportions of green or dry roughages to concentrate ration. A total of 2597 contigs encoding putative CAZymes were identified by CAZyme Analysis Toolkit (CAT). The phylogenetic analysis of these contigs by MG-RAST revealed predominance of Bacteroidetes, followed by Firmicutes, Proteobacteria, and Actinobacteria phyla. Moreover, a higher abundance of oligosaccharide degrading and debranching enzymes in buffalo rumen metagenome and that of cellulases and hemicellulases in termite hindgut was observed when we compared glycoside hydrolase (GH) profile of buffalo rumen metagenome with cow rumen, termite hindgut and chicken caecum metagenome. Further, comparison of microbial profile of green or dry roughage fed animals showed significantly higher abundance (p-value<0.05) of various polysaccharide degrading bacterial genera like Fibrobacter, Prevotella, Bacteroides, Clostridium and Ruminococcus in green roughage fed animals. In addition, we found a significantly higher abundance (p-value<0.05) of enzymes associated with pectin digestion such as pectin lyase (PL) 1, PL10 and GH28 in green roughage fed animals. Our study outlines CAZyme profile of buffalo rumen metagenome and provides a scope to study the role of abundant enzyme families (oligosaccharide degrading and debranching enzymes) in digestion of coarse feed. PMID:24797613

  17. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases.

    PubMed

    Brulc, Jennifer M; Antonopoulos, Dionysios A; Miller, Margret E Berg; Wilson, Melissa K; Yannarell, Anthony C; Dinsdale, Elizabeth A; Edwards, Robert E; Frank, Edward D; Emerson, Joanne B; Wacklin, Pirjo; Coutinho, Pedro M; Henrissat, Bernard; Nelson, Karen E; White, Bryan A

    2009-02-10

    The complex microbiome of the rumen functions as an effective system for the conversion of plant cell wall biomass to microbial protein, short chain fatty acids, and gases. As such, it provides a unique genetic resource for plant cell wall degrading microbial enzymes that could be used in the production of biofuels. The rumen and gastrointestinal tract harbor a dense and complex microbiome. To gain a greater understanding of the ecology and metabolic potential of this microbiome, we used comparative metagenomics (phylotype analysis and SEED subsystems-based annotations) to examine randomly sampled pyrosequence data from 3 fiber-adherent microbiomes and 1 pooled liquid sample (a mixture of the liquid microbiome fractions from the same bovine rumens). Even though the 3 animals were fed the same diet, the community structure, predicted phylotype, and metabolic potentials in the rumen were markedly different with respect to nutrient utilization. A comparison of the glycoside hydrolase and cellulosome functional genes revealed that in the rumen microbiome, initial colonization of fiber appears to be by organisms possessing enzymes that attack the easily available side chains of complex plant polysaccharides and not the more recalcitrant main chains, especially cellulose. Furthermore, when compared with the termite hindgut microbiome, there are fundamental differences in the glycoside hydrolase content that appear to be diet driven for either the bovine rumen (forages and legumes) or the termite hindgut (wood).

  18. Excretion of purine derivatives by ruminants: recycling of allantoin into the rumen via saliva and its fate in the gut.

    PubMed

    Chen, X B; Hovell, F D; Orskov, E R

    1990-03-01

    The saliva of sheep was shown to contain significant concentrations of uric acid (16(SD 4.5) mumol/l) and allantoin (120(SD 16.4) mumol/l), sufficient to recycle purine derivatives equivalent to about 0.10 of the normal urinary excretion. When allantoin was incubated in vitro in rumen fluid, it was degraded at a rate sufficient to ensure complete destruction of recycled allantoin. In a series of experiments in which allantoin was infused into the rumen of sheep fed normally, or into the rumen or abomasum of sheep and the rumen of cattle completely nourished by intragastric infusion of volatile fatty acids and casein, no additional allantoin was recovered in the urine. These losses were probably due to the degradation of allantoin by micro-organisms associated with the digestive tract. It is concluded that all allantion and uric acid recycled to the rumen via saliva will be similarly degraded. Therefore, the use of urinary excretion of purine derivatives as an estimator of the rumen microbial biomass available to ruminants will need to be corrected for such losses.

  19. Interactions of alfalfa hay and sodium propionate on dairy calf performance and rumen development.

    PubMed

    Beiranvand, H; Ghorbani, G R; Khorvash, M; Nabipour, A; Dehghan-Banadaky, M; Homayouni, A; Kargar, S

    2014-01-01

    The objective of this experiment was to investigate the effects of different levels of alfalfa hay (AH) and sodium propionate (Pro) added to starter diets of Holstein calves on growth performance, rumen fermentation characteristics, and rumen development. Forty-two male Holstein calves (40±2kg of birth weight) were used in a complete randomized design with a 3×2 factorial arrangement of treatments. Dietary treatments were as follows: (1) control = concentrate only; (2) Pro = concentrate with 5% sodium propionate [dry matter (DM) basis]; (3) 5% AH = concentrate + 5% alfalfa hay (DM basis); (4) 5% AH + Pro = concentrate + 5% alfalfa hay + 5% sodium propionate (DM basis); (5) 10% AH = concentrate + 10% alfalfa hay (DM basis); and (6) 10% AH + Pro = concentrate + 10% alfalfa hay + 5% sodium propionate (DM basis). All calves were housed in individual pens bedded with sawdust until 10wk of age. They were given ad libitum access to water and starter throughout the experiment and were fed 2L of milk twice daily. Dry matter intake was recorded daily and body weight weekly. Calves from the control, 10% AH, and 10% AH + Pro treatments were euthanized after wk 10, and rumen wall samples were collected. Feeding of forage was found to increase overall dry matter intake, average daily gain, and final weight; supplementing sodium propionate had no effect on these parameters. Calves consuming forage had lower feed efficiency than those on the Pro diet. Rumen fluid in calves consuming forage had higher pH and greater concentrations of total volatile fatty acids and molar acetate. Morphometric parameters of the rumen wall substantiated the effect of AH supplementation, as plaque formation decreased macroscopically. Overall, the interaction between forage and sodium propionate did not affect calf performance parameters measured at the end of the experiment. Furthermore, inclusion of AH in starter diets positively enhanced the growth performance of male Holstein calves and influenced

  20. Effect of trace minerals and starch on digestibility and rumen fermentation in diets for dairy heifers.

    PubMed

    Pino, F; Heinrichs, A J

    2016-04-01

    The objective of this study was to evaluate the effect of different forms of trace minerals (TM) and the use of different starch levels in dairy heifer diets on rumen fermentation and digestibility. Eight rumen cannulated dairy heifers (15.4 ± 0.8 mo of age and 438.31 ± 18.08 kg of body weight) were subjected to a split-plot, 4 × 4 Latin square design with 19-d periods: 15d of adaptation and 4d of sampling. The whole-plot factor was type of TM; organic as proteinates (OTM) or inorganic sulfates (ITM), and the subplot was starch level (3.54, 12.95, 22.25, and 31.73%). Total collection of feces and urine was completed on d 15 to 19 to determine digestibility and TM excretion. Rumen contents were sampled on d 18 to 19 at 0, 1, 2, 4, 8, 12, 16, 20, and 22 h after feeding to measure pH and volatile fatty acid (VFA) concentrations. Plasma samples were collected to evaluate TM concentrations and enzymatic activity for ceruloplasmin, glutathione peroxidase, and superoxide dismutase. Starch level affected pH, individual VFA concentrations, and nutrient excretion. Trace mineral intake was lower for OTM compared with ITM. No effect of TM form on dry matter digestibility was detected, but as level of starch increased, diet dry matter digestibility increased. Rumen pH was lower for diets with OTM, which is consistent with higher total VFA production and butyrate proportion observed for heifers fed OTM diets. These variables may be explained by the higher bioavailability of OTM and faster utilization and fermentation by rumen microorganisms. Heifers that consumed ITM had higher moisture in feces and higher urine excretion, which increased total manure production. Total excretion of TM was not different by treatment. Blood plasma mineral concentration was not different between treatments except for Mn, which was higher for OTM. Enzymatic activity was not affected by treatments. Mineral intake was reduced and blood mineral levels were not different, suggesting enhanced

  1. Influence of dietary concentrate to forage ratio on the development of rumen mucosa in calves.

    PubMed

    Zitnan, R; Voigt, J; Schönhusen, U; Wegner, J; Kokardová, M; Hagemeister, H; Levkut, M; Kuhla, S; Sommer, A

    1998-01-01

    Effects of structural and non-structural carbohydrates on the development of rumen fermentation and ruminal mucosa in calves were examined during the weaning period. Barley/soybean meal (SBM) group was fed a concentrate starting from 2 weeks of age, whereas alfalfa group received a mixture of concentrate and alfalfa hay in which the proportion of the latter was gradually increased from 20% to 70% between weeks 2 and 9 of age. The total volatile fatty acid concentration in rumen fluid of calves increased with age, but at 9 weeks there were no significant differences between the two diets (barley/SBM group 153 mmol/l, alfalfa group 150 mmol/l). Rumen papillae at 9 weeks of age, as compared to 6 weeks of age, were longer and fewer in number per square centimetre mucosa, with larger cut surface. This resulted in a higher surface of papillae per square centimetre mucosa at 9 weeks (barley/SBM group 286 mm2/cm2, alfalfa group 245 mm2/cm2) than at 6 weeks of age (barley/SBM group 217 mm2/cm2, alfalfa group 198 mm2/cm2). At 9 weeks of age, the pH (barley/SBM 5.0, alfalfa 5.7), the acetate to propionate ratio (barley/SBM 2.2, alfalfa 3.2) as well as the length of the papillae in the ventral ruminal sac (barley/SBM 1.96 mm, alfalfa 2.37 mm) were increased in the alfalfa group when compared to the barley/SBM group (P < 0.1). In the former group, the proportion of butyrate revealed significantly increased values at 4 and 6 weeks of age. In animals of the barley/SBM group at 9 weeks of age, characteristic protrusions with proliferated thick epithelium occurred on the papillae and increased the surface for absorption. On the epithelium (Stratum corneum) desquamating cells with parakeratosis could be observed. In the alfalfa group the papillae of the ventral ruminal sac were longer, without protrusions. The morphotypes of the adhering rumen microflora differed between the groups. It can be concluded that feeding greater amounts of non-structural carbohydrates increases the

  2. Prediction of rumen fiber pool in cattle from dietary, fecal, and animal variables.

    PubMed

    Huhtanen, P; Detmann, E; Krizsan, S J

    2016-07-01

    Feed intake control in ruminants is based on the integration of physical constraints and metabolic feedbacks. Physical constraints are related to the fill caused by the weight or volume of digesta in the reticulo-rumen. The amount of neutral detergent fiber (NDF) in the rumen (RNDF) may be used as an indicator of rumen fill. The objective of this study was to develop equations predicting RNDF from diet and animal characteristics using a meta-analysis technique. A treatment mean data set (n=314) was obtained from 84 studies, in which rumen pool size and diet digestibility were determined in lactating cows (n=231) or growing cattle (n=83). The data were analyzed using linear and nonlinear mixed models. Intake, rumen pool size, and fecal output of NDF were scaled to body weight (BW)(1.0). Due to the heterogeneous nature of dietary NDF, predictions of RNDF based on NDF intake were not precise. Predictions were markedly improved by dividing NDF into potentially digestible and indigestible fractions, because rumen turnover time of indigestible NDF was 2.7 times longer than that of potentially digestible NDF. At equal NDF intake, RNDF was negatively associated with dietary crude protein concentration and positively with the proportion of concentrate in the diet. Models based on fecal NDF output generally performed better than those based on NDF intake, probably because the effects of intrinsic characteristics of dietary cell walls and associative effects of dietary components collectively influence fecal NDF output. The model based on fecal NDF output was improved by including dietary concentration of forage NDF in the model, reflecting slower turnover of forage NDF compared with concentrate NDF. The curvilinear relationship between fecal NDF output and RNDF could be described by a quadratic, Mitscherlich, or power function equation, which performed better than the quadratic or Mitscherlich equation. In addition to fecal NDF output and dietary concentration of forage NDF

  3. Effect of trace minerals and starch on digestibility and rumen fermentation in diets for dairy heifers.

    PubMed

    Pino, F; Heinrichs, A J

    2016-04-01

    The objective of this study was to evaluate the effect of different forms of trace minerals (TM) and the use of different starch levels in dairy heifer diets on rumen fermentation and digestibility. Eight rumen cannulated dairy heifers (15.4 ± 0.8 mo of age and 438.31 ± 18.08 kg of body weight) were subjected to a split-plot, 4 × 4 Latin square design with 19-d periods: 15d of adaptation and 4d of sampling. The whole-plot factor was type of TM; organic as proteinates (OTM) or inorganic sulfates (ITM), and the subplot was starch level (3.54, 12.95, 22.25, and 31.73%). Total collection of feces and urine was completed on d 15 to 19 to determine digestibility and TM excretion. Rumen contents were sampled on d 18 to 19 at 0, 1, 2, 4, 8, 12, 16, 20, and 22 h after feeding to measure pH and volatile fatty acid (VFA) concentrations. Plasma samples were collected to evaluate TM concentrations and enzymatic activity for ceruloplasmin, glutathione peroxidase, and superoxide dismutase. Starch level affected pH, individual VFA concentrations, and nutrient excretion. Trace mineral intake was lower for OTM compared with ITM. No effect of TM form on dry matter digestibility was detected, but as level of starch increased, diet dry matter digestibility increased. Rumen pH was lower for diets with OTM, which is consistent with higher total VFA production and butyrate proportion observed for heifers fed OTM diets. These variables may be explained by the higher bioavailability of OTM and faster utilization and fermentation by rumen microorganisms. Heifers that consumed ITM had higher moisture in feces and higher urine excretion, which increased total manure production. Total excretion of TM was not different by treatment. Blood plasma mineral concentration was not different between treatments except for Mn, which was higher for OTM. Enzymatic activity was not affected by treatments. Mineral intake was reduced and blood mineral levels were not different, suggesting enhanced

  4. Rumen Bacterial Community Composition in Holstein and Jersey Cows Is Different under Same Dietary Condition and Is Not Affected by Sampling Method

    PubMed Central

    Paz, Henry A.; Anderson, Christopher L.; Muller, Makala J.; Kononoff, Paul J.; Fernando, Samodha C.

    2016-01-01

    The rumen microbial community in dairy cows plays a critical role in efficient milk production. However, there is a lack of data comparing the composition of the rumen bacterial community of the main dairy breeds. This study utilizes 16S rRNA gene sequencing to describe the rumen bacterial community composition in Holstein and Jersey cows fed the same diet by sampling the rumen microbiota via the rumen cannula (Holstein cows) or esophageal tubing (both Holstein and Jersey cows). After collection of the rumen sample via esophageal tubing, particles attached to the strainer were added to the sample to ensure representative sampling of both the liquid and solid fraction of the rumen contents. Alpha diversity metrics, Chao1 and observed OTUs estimates, displayed higher (P = 0.02) bacterial richness in Holstein compared to Jersey cows and no difference (P > 0.70) in bacterial community richness due to sampling method. The principal coordinate analysis displayed distinct clustering of bacterial communities by breed suggesting that Holstein and Jersey cows harbor different rumen bacterial communities. Family level classification of most abundant (>1%) differential OTUs displayed that OTUs from the bacterial families Lachnospiraceae and p-2534-18B5 to be predominant in Holstein cows compared to Jersey cows. Additionally, OTUs belonging to family Prevotellaceae were differentially abundant in the two breeds. Overall, the results from this study suggest that the bacterial community between Holstein and Jersey cows differ and that esophageal tubing with collection of feed particles associated with the strainer provides a representative rumen sample similar to a sample collected via the rumen cannula. Thus, in future studies esophageal tubing with addition of retained particles can be used to collect rumen samples reducing the cost of cannulation and increasing the number of animals used in microbiome investigations, thus increasing the statistical power of rumen microbial

  5. Rumen Bacterial Community Composition in Holstein and Jersey Cows Is Different under Same Dietary Condition and Is Not Affected by Sampling Method.

    PubMed

    Paz, Henry A; Anderson, Christopher L; Muller, Makala J; Kononoff, Paul J; Fernando, Samodha C

    2016-01-01

    The rumen microbial community in dairy cows plays a critical role in efficient milk production. However, there is a lack of data comparing the composition of the rumen bacterial community of the main dairy breeds. This study utilizes 16S rRNA gene sequencing to describe the rumen bacterial community composition in Holstein and Jersey cows fed the same diet by sampling the rumen microbiota via the rumen cannula (Holstein cows) or esophageal tubing (both Holstein and Jersey cows). After collection of the rumen sample via esophageal tubing, particles attached to the strainer were added to the sample to ensure representative sampling of both the liquid and solid fraction of the rumen contents. Alpha diversity metrics, Chao1 and observed OTUs estimates, displayed higher (P = 0.02) bacterial richness in Holstein compared to Jersey cows and no difference (P > 0.70) in bacterial community richness due to sampling method. The principal coordinate analysis displayed distinct clustering of bacterial communities by breed suggesting that Holstein and Jersey cows harbor different rumen bacterial communities. Family level classification of most abundant (>1%) differential OTUs displayed that OTUs from the bacterial families Lachnospiraceae and p-2534-18B5 to be predominant in Holstein cows compared to Jersey cows. Additionally, OTUs belonging to family Prevotellaceae were differentially abundant in the two breeds. Overall, the results from this study suggest that the bacterial community between Holstein and Jersey cows differ and that esophageal tubing with collection of feed particles associated with the strainer provides a representative rumen sample similar to a sample collected via the rumen cannula. Thus, in future studies esophageal tubing with addition of retained particles can be used to collect rumen samples reducing the cost of cannulation and increasing the number of animals used in microbiome investigations, thus increasing the statistical power of rumen microbial

  6. Rumen Bacterial Community Composition in Holstein and Jersey Cows Is Different under Same Dietary Condition and Is Not Affected by Sampling Method.

    PubMed

    Paz, Henry A; Anderson, Christopher L; Muller, Makala J; Kononoff, Paul J; Fernando, Samodha C

    2016-01-01

    The rumen microbial community in dairy cows plays a critical role in efficient milk production. However, there is a lack of data comparing the composition of the rumen bacterial community of the main dairy breeds. This study utilizes 16S rRNA gene sequencing to describe the rumen bacterial community composition in Holstein and Jersey cows fed the same diet by sampling the rumen microbiota via the rumen cannula (Holstein cows) or esophageal tubing (both Holstein and Jersey cows). After collection of the rumen sample via esophageal tubing, particles attached to the strainer were added to the sample to ensure representative sampling of both the liquid and solid fraction of the rumen contents. Alpha diversity metrics, Chao1 and observed OTUs estimates, displayed higher (P = 0.02) bacterial richness in Holstein compared to Jersey cows and no difference (P > 0.70) in bacterial community richness due to sampling method. The principal coordinate analysis displayed distinct clustering of bacterial communities by breed suggesting that Holstein and Jersey cows harbor different rumen bacterial communities. Family level classification of most abundant (>1%) differential OTUs displayed that OTUs from the bacterial families Lachnospiraceae and p-2534-18B5 to be predominant in Holstein cows compared to Jersey cows. Additionally, OTUs belonging to family Prevotellaceae were differentially abundant in the two breeds. Overall, the results from this study suggest that the bacterial community between Holstein and Jersey cows differ and that esophageal tubing with collection of feed particles associated with the strainer provides a representative rumen sample similar to a sample collected via the rumen cannula. Thus, in future studies esophageal tubing with addition of retained particles can be used to collect rumen samples reducing the cost of cannulation and increasing the number of animals used in microbiome investigations, thus increasing the statistical power of rumen microbial

  7. Efficiency and rumen responses in younger and older Holstein heifers limit-fed diets of differing energy density.

    PubMed

    Zanton, G I; Heinrichs, A J

    2016-04-01

    The objective of this study was to evaluate the effects of limit feeding diets of different predicted energy density on the efficiency of utilization of feed and nitrogen and rumen responses in younger and older Holstein heifers. Eight rumen-cannulated Holstein heifers (4 heifers beginning at 257 ± 7 d, hereafter "young," and 4 heifers beginning at 610 ± 16 d, hereafter "old") were limit-fed high [HED; 2.64 Mcal/kg of dry matter (DM), 15.31% crude protein (CP)] or low (LED; 2.42 Mcal/kg of DM, 14.15% CP) energy density diets according to a 4-period, split-plot Latin square design with 28-d periods. Diets were limit-fed to provide isonitrogenous and isoenergetic intake on a rumen empty body weight (BW) basis at a level predicted to support approximately 800 g/d of average daily gain. During the last 7d of each period, rumen contents were subsampled over a 24-h period, rumen contents were completely evacuated, and total collection of feces and urine was made over 4d. Intakes of DM and water were greater for heifers fed LED, although, by design, calculated intake of metabolizable energy did not differ between age groups or diets when expressed relative to rumen empty BW. Rumen pH was lower, ammonia (NH3-N) concentration tended to be higher, and volatile fatty acids (VFA) concentration was not different for HED compared with LED and was unaffected by age group. Rumen content mass was greater for heifers fed LED and for old heifers, so when expressing rumen fermentation responses corrected for this difference in pool size, NH3-N pool size was not different between diets and total moles of VFA in the rumen were greater for heifers fed LED, whereas these pool sizes were greater for old heifers. Total-tract digestibility of potentially digestible neutral detergent fiber (NDF) was greater in heifers fed LED and for young heifers, whereas the fractional rate of ruminal passage and digestion of NDF were both greater in heifers fed LED. Digestibility of N was greater for

  8. Efficiency and rumen responses in younger and older Holstein heifers limit-fed diets of differing energy density.

    PubMed

    Zanton, G I; Heinrichs, A J

    2016-04-01

    The objective of this study was to evaluate the effects of limit feeding diets of different predicted energy density on the efficiency of utilization of feed and nitrogen and rumen responses in younger and older Holstein heifers. Eight rumen-cannulated Holstein heifers (4 heifers beginning at 257 ± 7 d, hereafter "young," and 4 heifers beginning at 610 ± 16 d, hereafter "old") were limit-fed high [HED; 2.64 Mcal/kg of dry matter (DM), 15.31% crude protein (CP)] or low (LED; 2.42 Mcal/kg of DM, 14.15% CP) energy density diets according to a 4-period, split-plot Latin square design with 28-d periods. Diets were limit-fed to provide isonitrogenous and isoenergetic intake on a rumen empty body weight (BW) basis at a level predicted to support approximately 800 g/d of average daily gain. During the last 7d of each period, rumen contents were subsampled over a 24-h period, rumen contents were completely evacuated, and total collection of feces and urine was made over 4d. Intakes of DM and water were greater for heifers fed LED, although, by design, calculated intake of metabolizable energy did not differ between age groups or diets when expressed relative to rumen empty BW. Rumen pH was lower, ammonia (NH3-N) concentration tended to be higher, and volatile fatty acids (VFA) concentration was not different for HED compared with LED and was unaffected by age group. Rumen content mass was greater for heifers fed LED and for old heifers, so when expressing rumen fermentation responses corrected for this difference in pool size, NH3-N pool size was not different between diets and total moles of VFA in the rumen were greater for heifers fed LED, whereas these pool sizes were greater for old heifers. Total-tract digestibility of potentially digestible neutral detergent fiber (NDF) was greater in heifers fed LED and for young heifers, whereas the fractional rate of ruminal passage and digestion of NDF were both greater in heifers fed LED. Digestibility of N was greater for

  9. The Sheep Genome Illuminates Biology of the Rumen and Lipid Metabolism

    PubMed Central

    Talbot, Richard; Maddox, Jillian F.; Faraut, Thomas; Wu, Chunhua; Muzny, Donna M.; Li, Yuxiang; Zhang, Wenguang; Stanton, Jo-Ann; Brauning, Rudiger; Barris, Wesley C.; Hourlier, Thibaut; Aken, Bronwen L.; Searle, Stephen M.J.; Adelson, David L.; Bian, Chao; Cam, Graham R.; Chen, Yulin; Cheng, Shifeng; DeSilva, Udaya; Dixen, Karen; Dong, Yang; Fan, Guangyi; Franklin, Ian R.; Fu, Shaoyin; Guan, Rui; Highland, Margaret A.; Holder, Michael E.; Huang, Guodong; Ingham, Aaron B.; Jhangiani, Shalini N.; Kalra, Divya; Kovar, Christie L.; Lee, Sandra L.; Liu, Weiqing; Liu, Xin; Lu, Changxin; Lv, Tian; Mathew, Tittu; McWilliam, Sean; Menzies, Moira; Pan, Shengkai; Robelin, David; Servin, Bertrand; Townley, David; Wang, Wenliang; Wei, Bin; White, Stephen N.; Yang, Xinhua; Ye, Chen; Yue, Yaojing; Zeng, Peng; Zhou, Qing; Hansen, Jacob B.; Kristensen, Karsten; Gibbs, Richard A.; Flicek, Paul; Warkup, Christopher C.; Jones, Huw E.; Oddy, V. Hutton; Nicholas, Frank W.; McEwan, John C.; Kijas, James; Wang, Jun; Worley, Kim C.; Archibald, Alan L.; Cockett, Noelle; Xu, Xun; Wang, Wen; Dalrymple, Brian P.

    2014-01-01

    Sheep (Ovis aries) are a major source of meat, milk and fiber in the form of wool, and represent a distinct class of animals that have a specialized digestive organ, the rumen, which carries out the initial digestion of plant material. We have developed and analyzed a high quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants, compared to non-ruminant animals. PMID:24904168

  10. Anaerobic degradation of veratrylglycerol-beta-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria.

    PubMed Central

    Chen, W; Supanwong, K; Ohmiya, K; Shimizu, S; Kawakami, H

    1985-01-01

    Veratrylglycerol-beta-guaiacyl ether (0.2 g/liter), a lignin model compound, was found to be degraded by mixed rumen bacteria in a yeast extract medium under strictly anaerobic conditions to the extent of 19% within 24 h. Guaiacoxyacetic acid, 2-(o-methoxyphenoxy)ethanol, vanillic acid, and vanillin were detected as degradation products of veratrylglycerol-beta-guaiacyl ether by thin-layer chromatography, gas chromatography, and gas chromatography-mass spectrometry. Guaiacoxyacetic acid (0.25 g/liter), when added into the medium as a substrate, was entirely degraded within 36 h, resulting in the formation of phenoxyacetic acid, guaiacol, and phenol. These results suggest that the beta-arylether bond, an important intermonomer linkage in lignin, can be cleaved completely by these rumen anaerobes. PMID:3841472

  11. The sheep genome illuminates biology of the rumen and lipid metabolism.

    PubMed

    Jiang, Yu; Xie, Min; Chen, Wenbin; Talbot, Richard; Maddox, Jillian F; Faraut, Thomas; Wu, Chunhua; Muzny, Donna M; Li, Yuxiang; Zhang, Wenguang; Stanton, Jo-Ann; Brauning, Rudiger; Barris, Wesley C; Hourlier, Thibaut; Aken, Bronwen L; Searle, Stephen M J; Adelson, David L; Bian, Chao; Cam, Graham R; Chen, Yulin; Cheng, Shifeng; DeSilva, Udaya; Dixen, Karen; Dong, Yang; Fan, Guangyi; Franklin, Ian R; Fu, Shaoyin; Fuentes-Utrilla, Pablo; Guan, Rui; Highland, Margaret A; Holder, Michael E; Huang, Guodong; Ingham, Aaron B; Jhangiani, Shalini N; Kalra, Divya; Kovar, Christie L; Lee, Sandra L; Liu, Weiqing; Liu, Xin; Lu, Changxin; Lv, Tian; Mathew, Tittu; McWilliam, Sean; Menzies, Moira; Pan, Shengkai; Robelin, David; Servin, Bertrand; Townley, David; Wang, Wenliang; Wei, Bin; White, Stephen N; Yang, Xinhua; Ye, Chen; Yue, Yaojing; Zeng, Peng; Zhou, Qing; Hansen, Jacob B; Kristiansen, Karsten; Gibbs, Richard A; Flicek, Paul; Warkup, Christopher C; Jones, Huw E; Oddy, V Hutton; Nicholas, Frank W; McEwan, John C; Kijas, James W; Wang, Jun; Worley, Kim C; Archibald, Alan L; Cockett, Noelle; Xu, Xun; Wang, Wen; Dalrymple, Brian P

    2014-06-01

    Sheep (Ovis aries) are a major source of meat, milk, and fiber in the form of wool and represent a distinct class of animals that have a specialized digestive organ, the rumen, that carries out the initial digestion of plant material. We have developed and analyzed a high-quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants compared with nonruminant animals.

  12. Morphological and histological identification of Paramphistomum cervi (Trematoda: Paramiphistoma) in the rumen of infected sheep

    PubMed Central

    Chaoudhary, Vijayata; Hasnani, J. J.; Khyalia, Mukesh K.; Pandey, Sunanda; Chauhan, Vandip D.; Pandya, Suchit S.; Patel, P. V.

    2015-01-01

    Aim: This study was undertaken to identify Paramphistomum cervi on the basis of its morphology and histology to be the common cause of paramphistomosis in infected sheep and its differentiation from other similar Paramphistomes in Gujarat. Materials and Methods: Adult rumen flukes were recovered from the rumen of naturally infected sheep slaughtered in various abattoirs in Gujarat. Some adult flukes were flattened and stained in Borax carmine, and some were sectioned in the median sagittal plane and histological slides of the flukes were prepared for detailed morphological and histological studies. Result: Microscopic pictures of the parasite used in identification define the similarity in the morphology and histology of the anterior sucker, pharynx, esophagus, genital atrium, posterior sucker (acetabulum) and testes to the P. cervi. Conclusion: It can be concluded that the most common species found in sheep infected with Paramphistomosis is P. cervi on the basis of its histo-morphological appearance in Gujarat. PMID:27047009

  13. Effect of fumarate reducing bacteria on in vitro rumen fermentation, methane mitigation and microbial diversity.

    PubMed

    Mamuad, Lovelia; Kim, Seon Ho; Jeong, Chang Dae; Choi, Yeon Jae; Jeon, Che Ok; Lee, Sang-Suk

    2014-02-01

    The metabolic pathways involved in hydrogen (H(2)) production, utilization and the activity of methanogens are the important factors that should be considered in controlling methane (CH(4)) emissions by ruminants. H(2) as one of the major substrate for CH(4) production is therefore should be controlled. One of the strategies on reducing CH(4) is through the use of hydrogenotrophic microorganisms such as fumarate reducing bacteria. This study determined the effect of fumarate reducing bacteria, Mitsuokella jalaludinii, supplementation on in vitro rumen fermentation, CH(4) production, diversity and quantity. M. jalaludinii significantly reduced CH(4) at 48 and 72 h of incubation and significantly increased succinate at 24 h. Although not significantly different, propionate was found to be highest in treatment containing M. jalaludinii at 12 and 48 h of incubation. These results suggest that supplementation of fumarate reducing bacteria to ruminal fermentation reduces CH(4) production and quantity, increases succinate and changes the rumen microbial diversity.

  14. Comparative study of rumen ciliates in buffalo, cattle and sheep in Egypt.

    PubMed

    Selim, H M; Imai, S; Yamato, O; el Kabbany, A; Kiroloss, F; Maede, Y

    1996-08-01

    Rumen ciliates species and composition of the sheep, Friesian-cattle and water buffaloes in Egypt were surveyed. As a result, 7 genera with 18 species and 6 formae in sheep, 10 genera with 28 species and 11 formae in cattle and 12 genera with 29 species and 7 formae in water buffaloes were detected. Twenty-two species were common in both cattle and buffaloes, while 12 species in sheep were common with the other ruminants. Entodinium spp., such as E. simplex, E. nanellum and E. exigum, appeared most frequently in every host. In general, Egyptian domestic ruminants had the rumen ciliate composition similar to that of domestic ruminants in temperate zone, though the water buffaloes had several tropical species such as Entodinium longinucleatum forma spinonucleatum. The ciliate density was estimated as 10(5)/ml in every host species.

  15. Rumen volume, saliva flow rate, and systemic fluid homeostasis in dehydrated cattle.

    PubMed

    Silanikove, N; Tadmor, A

    1989-04-01

    This work was carried out to test the hypothesis that the high level of salivary secretion containing much Na+ and the volume of fluid sequestered in the foregut of ruminants play an important part in water and Na+ homeostasis. Saliva flow and composition and water and Na+ balance in the rumen have been measured in hydrated and dehydrated cows with esophageal fistulas. Reduction of voluntary feed intake in beef cattle during water deprivation was related to the stage of dehydration. Salivary secretion rate was linearly related to voluntary feed intake (r = 0.96) and inversely and linearly related to plasma osmolality (r = 0.88). The reduction in the volume of water stored in the rumen contributed to the major portion (55%) of the total water loss. Utilization of gut water attenuated the rise in blood plasma osmolality, and this may be connected with an animal's ability to continue eating despite dehydration.

  16. Artificial muscles on heat

    NASA Astrophysics Data System (ADS)

    McKay, Thomas G.; Shin, Dong Ki; Percy, Steven; Knight, Chris; McGarry, Scott; Anderson, Iain A.

    2014-03-01

    Many devices and processes produce low grade waste heat. Some of these include combustion engines, electrical circuits, biological processes and industrial processes. To harvest this heat energy thermoelectric devices, using the Seebeck effect, are commonly used. However, these devices have limitations in efficiency, and usable voltage. This paper investigates the viability of a Stirling engine coupled to an artificial muscle energy harvester to efficiently convert heat energy into electrical energy. The results present the testing of the prototype generator which produced 200 μW when operating at 75°C. Pathways for improved performance are discussed which include optimising the electronic control of the artificial muscle, adjusting the mechanical properties of the artificial muscle to work optimally with the remainder of the system, good sealing, and tuning the resonance of the displacer to minimise the power required to drive it.

  17. Artificial intelligence in nanotechnology.

    PubMed

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  18. Artificial gravity experiment satellites

    NASA Astrophysics Data System (ADS)

    Harada, Tadashi

    1992-07-01

    An overview of the conceptual study of an artificial gravity experiment satellite based on the assumption of a launch by the H-2 launch vehicle with a target launch date in the Year 2000 is presented. While many satellites provided with artificial gravity have been reported in relation to a manned Mars exploration spacecraft mission, the review has been conducted on missions and test subjects only for experimental purposes. Mission requirements were determined based on the results of reviews on the mission, test subjects, and model missions. The system baseline and development plan were based on the results of a study on conceptual structure and scale of the system, including measures to generate artificial gravity. Approximate scale of the system and arm length, mission orbit, visibility of the operation orbit from ground stations in Japan, and satellite attitude on the mission orbit are outlined.

  19. Artificial vision workbench.

    PubMed

    Frenger, P

    1997-01-01

    Machine vision is an important component of medical systems engineering. Inexpensive miniature solid state cameras are now available. This paper describes how these devices can be used as artificial retinas, to take snapshots and moving pictures in monochrome or color. Used in pairs, they produce a stereoscopic field of vision and enable depth perception. Macular and peripheral vision can be simulated electronically. This paper also presents the author's design of an artificial orbit for this synthetic eye. The orbit supports the eye, protects it, and provides attachment points for the ocular motion control system. Convergence and image fusion can be produced, and saccades simulated, along with the other ocular motions. The use of lenses, filters, irises and focusing mechanisms are also discussed. Typical camera-computer interfaces are described, including the use of "frame grabbers" and analog-to-digital image conversion. Software programs for eye positioning, image manipulation, feature extraction and object recognition are discussed, including the application of artificial neural networks.

  20. Artificial intelligence in nanotechnology

    NASA Astrophysics Data System (ADS)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  1. Alteration of rumen fermentation, milk fat synthesis, and nutrient utilization with mineral salts in dairy cows.

    PubMed

    Rogers, J A; Davis, C L; Clark, J H

    1982-04-01

    The ability of mineral salts to alter rumen fermentation, rumen fluid dilution rate, milk fat synthesis, and nutrient utilization was investigated in dairy cows fed a high-concentrate, milk-fat depressing diet. Four rumen-fistulated Holstein cows were in a 4 X 4 Latin square design. Treatments consisted of: 1) basal (25% corn silage: 75% concentrate on a dry matter basis), 2) basal + 2.0% sodium chloride, 3) basal + 2.0% sodium bicarbonate, and 4) basal + 2.4% limestone. Addition of limestone to the basal diet reduced dry matter intake but increased efficiency of dietary nutrient utilization for milk synthesis. Sodium bicarbonate increased synthesis of milk fat. Sodium chloride also tended to increase milk fat synthesis whereas limestone had no effect. Milk yields (kg/day) and milk fat (%) for the four treatments were 1) 29.5, 2.40; 2) 29.3, 2.66; 3) 28.9, 3.26; and 4) 29.2, 2.32. Rumen fluid pH, dilution rate (%/hour), and molar percentage of acetate and propionate were: 1) 5.98, 10.3, 49 and 39; 2) 6.02, 12.4, 55 and 32; 3) 6.16, 12.2, 58 and 25; and 4) 5.92, 10.7, 51 and 38. Limestone was totally ineffective in altering ruminal pH, fluid dilution rate, molar percentages of acetate and propionate, and synthesis of milk fat. Improved feed efficiency for milk production after addition of limestone was related to an increase in starch digestion compared to the basal ration (95 versus 88%).

  2. Atypical rumen acidosis in a dairy herd from whiskey distillery by-products.

    PubMed

    Davenport, D F; Kerr, L A

    2001-06-01

    Decreased milk and reproductive performance, high incidence of gastrointestinal surgeries, and acute deaths were investigated in a herd of Holstein cows. The health problems were due to abnormally low rumen pH's from ingestion of 30 gal/hd/d of a 3.4 pH liquid feed ingredient. A combination of acid neutralizing agents (calcium hydroxide plus sodium carbonate) alleviated the toxic effects of the feed ingredient.

  3. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen.

    PubMed

    Dai, Xin; Tian, Yan; Li, Jinting; Luo, Yingfeng; Liu, Di; Zheng, Huajun; Wang, Jiaqi; Dong, Zhiyang; Hu, Songnian; Huang, Li

    2015-02-01

    The bovine rumen represents a highly specialized bioreactor where plant cell wall polysaccharides (PCWPs) are efficiently deconstructed via numerous enzymes produced by resident microorganisms. Although a large number of fibrolytic genes from rumen microorganisms have been identified, it remains unclear how they are expressed in a coordinated manner to efficiently degrade PCWPs. In this study, we performed a metatranscriptomic analysis of the rumen microbiomes of adult Holstein cows fed a fiber diet and obtained a total of 1,107,083 high-quality non-rRNA reads with an average length of 483 nucleotides. Transcripts encoding glycoside hydrolases (GHs) and carbohydrate binding modules (CBMs) accounted for 1% and 0.1% of the total non-rRNAs, respectively. The majority (98%) of the putative cellulases belonged to four GH families (i.e., GH5, GH9, GH45, and GH48) and were primarily synthesized by Ruminococcus and Fibrobacter. Notably, transcripts for GH48 cellobiohydrolases were relatively abundant compared to the abundance of transcripts for other cellulases. Two-thirds of the putative hemicellulases were of the GH10, GH11, and GH26 types and were produced by members of the genera Ruminococcus, Prevotella, and Fibrobacter. Most (82%) predicted oligosaccharide-degrading enzymes were GH1, GH2, GH3, and GH43 proteins and were from a diverse group of microorganisms. Transcripts for CBM10 and dockerin, key components of the cellulosome, were also relatively abundant. Our results provide metatranscriptomic evidence in support of the notion that members of the genera Ruminococcus, Fibrobacter, and Prevotella are predominant PCWP degraders and point to the significant contribution of GH48 cellobiohydrolases and cellulosome-like structures to efficient PCWP degradation in the cow rumen.

  4. Metatranscriptomic Analyses of Plant Cell Wall Polysaccharide Degradation by Microorganisms in the Cow Rumen

    PubMed Central

    Dai, Xin; Tian, Yan; Li, Jinting; Su, Xiaoyun; Wang, Xuewei; Zhao, Shengguo; Liu, Li; Luo, Yingfeng; Liu, Di; Zheng, Huajun; Wang, Jiaqi; Dong, Zhiyang

    2014-01-01

    The bovine rumen represents a highly specialized bioreactor where plant cell wall polysaccharides (PCWPs) are efficiently deconstructed via numerous enzymes produced by resident microorganisms. Although a large number of fibrolytic genes from rumen microorganisms have been identified, it remains unclear how they are expressed in a coordinated manner to efficiently degrade PCWPs. In this study, we performed a metatranscriptomic analysis of the rumen microbiomes of adult Holstein cows fed a fiber diet and obtained a total of 1,107,083 high-quality non-rRNA reads with an average length of 483 nucleotides. Transcripts encoding glycoside hydrolases (GHs) and carbohydrate binding modules (CBMs) accounted for ∼1% and ∼0.1% of the total non-rRNAs, respectively. The majority (∼98%) of the putative cellulases belonged to four GH families (i.e., GH5, GH9, GH45, and GH48) and were primarily synthesized by Ruminococcus and Fibrobacter. Notably, transcripts for GH48 cellobiohydrolases were relatively abundant compared to the abundance of transcripts for other cellulases. Two-thirds of the putative hemicellulases were of the GH10, GH11, and GH26 types and were produced by members of the genera Ruminococcus, Prevotella, and Fibrobacter. Most (∼82%) predicted oligosaccharide-degrading enzymes were GH1, GH2, GH3, and GH43 proteins and were from a diverse group of microorganisms. Transcripts for CBM10 and dockerin, key components of the cellulosome, were also relatively abundant. Our results provide metatranscriptomic evidence in support of the notion that members of the genera Ruminococcus, Fibrobacter, and Prevotella are predominant PCWP degraders and point to the significant contribution of GH48 cellobiohydrolases and cellulosome-like structures to efficient PCWP degradation in the cow rumen. PMID:25501482

  5. Evaluating the in vitro metabolism of docosahexaenoic acid in sheep rumen fluid.

    PubMed

    Aldai, Noelia; Hervás, Gonzalo; Belenguer, Alvaro; Frutos, Pilar; Mantecón, Angel R; Kramer, John K G

    2012-08-01

    Rumen metabolism (e.g., biohydrogenation) of dietary unsaturated fatty acids (FA) is one of the main reasons why ruminant fats tend to be highly saturated and contain many isomerized FA intermediates. The process by which long-chain (20- to 24-carbon FA) polyunsaturated FA (LC-PUFA) are metabolized by rumen bacteria is not as well understood as that of linoleic or linolenic acids. In order to better understand the fate of LC-PUFA in the rumen several concentrations of docosahexaenoic acid (DHA) were evaluated in in vitro batch incubations ranging from 100 to 1,500 μg per 6 mL of incubation volume using rumen fluid from sheep and incubated for 0, 1, 2, 3, and 6 h. From the results, it was shown that DHA was extensively metabolized at low (100 to 300 μg/6 mL incubation volume), but not at high level of inclusion (800 μg). At 300 μg of DHA most of the depleted DHA was recovered as LC-DHA metabolites within the first 6 h of incubation, and at the lowest levels (100 μg of incubation volume) further metabolism is apparent at 6 h. Using SP-2560 GC columns several LC-DHA metabolites were shown to elute after 24:0 and just past DHA, a region generally free of interfering FA. The present in vitro study would appear to be a useful method to evaluate the production of DHA metabolites in combination with its depletion.

  6. Atypical rumen acidosis in a dairy herd from whiskey distillery by-products.

    PubMed

    Davenport, D F; Kerr, L A

    2001-06-01

    Decreased milk and reproductive performance, high incidence of gastrointestinal surgeries, and acute deaths were investigated in a herd of Holstein cows. The health problems were due to abnormally low rumen pH's from ingestion of 30 gal/hd/d of a 3.4 pH liquid feed ingredient. A combination of acid neutralizing agents (calcium hydroxide plus sodium carbonate) alleviated the toxic effects of the feed ingredient. PMID:11383660

  7. Effect of milk replacer and rumen inert fat on growth and reproduction of Malpura ram lambs.

    PubMed

    Kumar, D; Bhatt, R S; Karim, S A; Naqvi, S M K

    2014-04-01

    The objective of this study was to assess the effects of milk replacer and rumen inert fat on growth, testicular development, puberty, semen production and sperm motion characteristics of ram lambs reared under intensive management in semi-arid climatic conditions. Seven-day-old male lambs of Malpura breed (n=20) were divided equally into two groups. Up to weaning, the lambs in G1 group (control) were fed concentrate, green khejri (Prosopis cineraria) leaves and cowpea (Vigna unguiculata) hay along with suckling of dams, whereas lambs in G2 group were fed reconstituted milk at 17 g/lamb per day for the 1st week and at 34 g/lamb per day from 2nd week in addition to the feed inputs given in G1. During post weaning, lambs in the G1 group were given control concentrate, whereas in G2 the control concentrate supplemented with 40 g rumen inert fat per kg of feed was offered along with dry pala (Zizyphus nummularia) and ardu (Ailanthus excelsa) leaves. BWs of lambs were recorded weekly up to 6 months of age. Ram lambs of both the groups were trained for semen collection at a weekly interval from the age of 5 months and simultaneously testicular measurements were recorded fortnightly. The feeding of milk replacer and rumen inert fat had positive (P<0.05) effects on BW, testicular length, testicular volume, semen volume, sperm concentration, mass motility, % motility, % rapid, medium or slow motile spermatozoa. However, no significant effect was observed on testicular breadth, scrotal circumference, age of puberty, sperm velocities and other CASA-derived parameters. The results of this study indicate that higher plane of nutrition in the form of milk-replacer feeding during preweaning and rumen inert fat-supplemented feed during the postweaning period to growing ram lambs enhances their growth, testicular development and semen quality.

  8. Regulation of heart rate and rumen temperature in red deer: effects of season and food intake

    PubMed Central

    Turbill, Christopher; Ruf, Thomas; Mang, Thomas; Arnold, Walter

    2012-01-01

    SUMMARY Red deer, Cervus elaphus, like other temperate-zone animals, show a large seasonal fluctuation in energy intake and expenditure. Many seasonal phenotypic adjustments are coordinated by endogenous signals entrained to the photoperiod. The cues determining variation in the resting metabolism of ungulates remain equivocal, however, largely because of the confounding effects of food intake and thus the heat increment of feeding. To distinguish endogenous seasonal and environmental effects on metabolism, we subjected 15 female red deer to two feeding treatments, 80% food restriction and low/high protein content, over two winter seasons in a cross-over design experiment. We used rumen-located transmitters to measure heart rate and rumen temperature, which provided indices of metabolism and core body temperature, respectively. Our mixed model (R2=0.85) indicated a residual seasonal effect on mean daily heart rate that was unexplained by the pellet food treatments, activity, body mass or air temperature. In addition to an apparently endogenous down-regulation of heart rate in winter, the deer further reduced heart rate over about 8 days in response to food restriction. We found a strong correlation between rumen temperature and seasonal or periodic variation in heart rate. An effect of lowered rumen (and hence core body) temperature was enhanced during winter, perhaps owing to peripheral cooling, which is known to accompany bouts of hypometabolism. Our experimental results therefore support the hypothesis that a reduction in body temperature is a physiological mechanism employed even by large mammals, like red deer, to reduce their energy expenditure during periods of negative energy balance. PMID:21346124

  9. Occurrence of the Rumen Ciliate Oligoisotricha bubali in Domestic Cattle (Bos taurus).

    PubMed

    Dehority, B A; Damron, W S; McLaren, J B

    1983-04-01

    Oligoisotricha bubali, previously observed twice in water buffalo, was detected in rumen contents of domestic cattle (Bos taurus) in two different areas of Tennessee. Concentrations ranged from <1 to 35% of the total protozoa in unweaned calves and up to 72% in older animals in feedlot. In contrast to the other genera of holotrichs, both total numbers and percent composition of O. bubali increased when animals were fed a corn silage-concentrate diet.

  10. Removal of digesta components from the rumen of steers determined by sieving techniques and fluid, particulate and microbial markers.

    PubMed

    Dixon, R M; Milligan, L P

    1985-03-01

    When 103Ru-labelled Tris (1,10-phenanthroline) ruthenium II chloride (103Ru-P) particulate marker in aqueous solution was added to the rumen of four steers given 5.5 kg grass hay/d at two-hourly intervals, the distribution of 103Ru-P marker among rumen particles of various sizes was the same at 4 h, 3 d and 7 d after administration, the concentration of 103Ru-P/g dry matter (DM) was inversely related to particle size and 0.30 of the 103Ru-P was associated with the DM of particles too large to be moved from the rumen at a meaningful rate. Thus, fractional outflow rate (FOR) of 103Ru-P would reflect, but was not a direct measure of, the FOR of the small particle pool in the rumen. When rumen digesta were labelled with 103Ru-P, placed in nylon cloth bags and incubated in vitro with unlabelled digesta, 59% of the 103Ru-P disappeared from the nylon bag in 24 h, and 74% in 48 h. Similar results were obtained when large particles (retained by a 3.2 mm mesh screen during wet sieving) from rumen digesta were subjected to this procedure. In a further experiment, the steers were given the hay in either the long or ground form and drinking water to which 10 g sodium chloride/l were, or were not, added. The FOR of 51CrEDTA in centrifuged rumen fluid was increased (P less than 0.05) from 1.78 to 2.10/d by grinding of the hay diet, but was not influenced by the intake of an additional 257 g NaCl/d. The FOR values of 103Ru-P in mixed rumen digesta and organic 35S in micro-organisms were linearly correlated (P less than 0.05) and were not affected (P greater than 0.05) by grinding and salt treatments. On average, the FOR of organic 35S in micro-organisms was 0.41 of that of 51CrEDTA in centrifuged rumen fluid and 0.85 of that of 103Ru-P in rumen digesta respectively. Grinding of the hay did not (P greater than 0.05) change the proportion of rumen DM (0.476-0.515) or faecal DM (0.107-0.153) retained by the 3.2 mm mesh and larger screens. FOR from the rumen of a given size group of

  11. Artificial human vision.

    PubMed

    Dowling, Jason

    2005-01-01

    Can vision be restored to the blind? As early as 1929 it was discovered that stimulating the visual cortex of an individual led to the perception of spots of light, known as phosphenes [1] . The aim of artificial human vision systems is to attempt to utilize the perception of phosphenes to provide a useful substitute for normal vision. Currently, four locations for electrical stimulation are being investigated; behind the retina (subretinal), in front of the retina (epiretinal), the optic nerve and the visual cortex (using intra- and surface electrodes). This review discusses artificial human vision technology and requirements, and reviews the current development projects.

  12. Effect of source of carbohydrate and frequency of feeding on rumen parameters in dairy steers.

    PubMed

    Bragg, D S; Murphy, M R; Davis, C L

    1986-02-01

    Four rumen-fistulated, Holstein steers (358 kg) were fed two diets at two frequencies (2 and 8 times/d) in a 4 X 4 Latin square design with 28-d periods. The two diets consisted of corn silage and a concentrate mixture in a ratio of 40:60 on a dry matter basis. The two concentrate mixtures (control and dried whole whey) contained, as a percentage: ground shelled corn, 87.85, 19.05; soybean meal, 9.4, 5.9; dicalcium phosphate, 1.7, 0; trace mineralized salt, 1.0, 1.0; vitamin A and D premix, .05, .05; and dried whole whey, 0, 74.0, respectively. Rumen fluid samples were taken at hourly intervals for 24 h and analyzed for pH, volatile fatty acids, lactate, ammonia nitrogen, and protozoal numbers. Total concentration of volatile fatty acids in the rumen were not affected by treatments. Feeding the control diet resulted in significantly higher ruminal acetate and isovalerate but lower butyrate and valerate expressed as a molar percentage. Increasing the feeding frequency from 2 to 8 times/d resulted in an increase in the molar percentage of acetate and a decrease in the concentration of lactate in ruminal fluid. Numbers of protozoa varied considerably with time after feeding and tended to be higher on the whey diet.

  13. Studies on some characteristics of hydrogen production by cell-free extracts of rumen anaerobic bacteria.

    PubMed

    Joyner, A E; Winter, W T; Godbout, D M

    1977-03-01

    Hydrogen production was studied in the following rumen anaerobes: Bacteroides clostridiiformis, Butyrivibrio fibrisolvens, Enbacterium limosum, Fusobacterium necrophorum, Megasphaera elsdenii, Ruminococcus albus, and Ruminococcus flavefaciens. Clostridium pasteurianum and Escherichia coli were included for comparative purposes. Hydrogen production from dithionite, dithionite-reduced methyl viologen, pyruvate, and formate was determined. All species tested produced hydrogen from dithionite-reduce methyl viologen, but only C. pasteurianum, B. clostridiiformis, E. limosum, and M. elsdenii produced hydrogen from dithionite. All species except E. coli produced hydrogen from pyruvate, but activity was low or absent in extracts of E. limosum, F. necrophorum, R. albus, and R. flavefaciens unless methyl viologen was added. Hydrogen was produced from formate only by E. coli, B. clostridiiformis, E. limosum, F. necrophorum, and R. flavefaciens. Extracts were subjected to ultracentrifugation in an effort to determine the solubility of hydrogenase. The hydrogenase of all species except E. coli appeared to be soluble, although variable amounts of hydrogenase activity were detected in the pellet. Treatment of extracts of the rumen microbial species with DEAE-cellulose resulted in loss ofhydrogen production from pyruvate. Activity was restored by the addition of methyl viologen. It is concluded that hydrogen production in these rumen microorganisms is similar to that in the saccharolytic clostridia.

  14. Application of rumen microbes to enhance food waste hydrolysis in acidogenic leach-bed reactors.

    PubMed

    Yan, Bing Hua; Selvam, Ammaiyappan; Wong, Jonathan W C

    2014-09-01

    Effect of rumen microorganisms on hydrolysis of food waste in leach bed reactor (LBR) was investigated. LBRs were inoculated (20%, w/w) with cow manure and anaerobically digested sludge at different ratios, 0:1 (LBR-A), 1:3 (LBR-B), 1:1 (LBR-C), 3:1 (LBR-D) and 1:0 (LBR-E). High volatile solids (VS) conversion efficiency of 68% was achieved in LBR-E. Compared with LBR-A, chemical oxygen demand, total soluble products and total Kjeldahl nitrogen leaching of LBR-E were increased by 16%, 14.3% and 27%, respectively. Recovery of the highest amounts of ethanol and butyrate in LBR-E indicated that the metabolic pathway mediated by rumen microorganisms was favorable for subsequent methanogenesis. Phylogenetic analysis confirmed that the enhanced hydrolysis in LBR-E was mainly due to strong degraders, e.g. Enterobacter, Bifidobacterium thermacidophilum and Caloramator sourced from cow manure. Results demonstrate that rumen microorganisms rapidly degrade the VS and produce useful VFAs with high methane yields in subsequent methanogenesis.

  15. Identification and characterization of a cellulase-encoding gene from the buffalo rumen metagenomic library.

    PubMed

    Nguyen, Nhung Hong; Maruset, Lalita; Uengwetwanit, Tanaporn; Mhuantong, Wuttichai; Harnpicharnchai, Piyanun; Champreda, Verawat; Tanapongpipat, Sutipa; Jirajaroenrat, Kanya; Rakshit, Sudip K; Eurwilaichitr, Lily; Pongpattanakitshote, Somchai

    2012-01-01

    Microorganisms residing in the rumens of cattle represent a rich source of lignocellulose-degrading enzymes, since their diet consists of plant-based materials that are high in cellulose and hemicellulose. In this study, a metagenomic library was constructed from buffalo rumen contents using pCC1FOS fosmid vector. Ninety-three clones from the pooled library of approximately 10,000 clones showed degrading activity against AZCL-HE-Cellulose, whereas four other clones showed activity against AZCL-Xylan. Contig analysis of pyrosequencing data derived from the selected strongly positive clones revealed 15 ORFs that were closely related to lignocellulose-degrading enzymes belonging to several glycosyl hydrolase families. Glycosyl hydrolase family 5 (GHF5) was the most abundant glycosyl hydrolase found, and a majority of the GHF5s in our metagenomes were closely related to several ruminal bacteria, especially ones from other buffalo rumen metagenomes. Characterization of BT-01, a selected clone with highest cellulase activity from the primary plate screening assay, revealed a cellulase encoding gene with optimal working conditions at pH 5.5 at 50 °C. Along with its stability over acidic pH, the capability efficiently to hydrolyze cellulose in feed for broiler chickens, as exhibited in an in vitro digestibility test, suggests that BT-01 has potential application as a feed supplement.

  16. Metagenomic analysis of buffalo rumen microbiome: Effect of roughage diet on Dormancy and Sporulation genes

    PubMed Central

    Singh, K.M.; Reddy, B.; Patel, A.K.; Panchasara, H.; Parmar, N.; Patel, A.B.; Shah, T.M.; Bhatt, V.D.; Joshi, C.G.

    2014-01-01

    Buffalo rumen microbiome experiences a variety of diet stress and represents reservoir of Dormancy and Sporulation genes. However, the information on genomic responses to such conditions is very limited. The Ion Torrent PGM next generation sequencing technology was used to characterize general microbial diversity and the repertoire of microbial genes present, including genes associated with Dormancy and Sporulation in Mehsani buffalo rumen metagenome. The research findings revealed the abundance of bacteria at the domain level and presence of Dormancy and Sporulation genes which were predominantly associated with the Clostridia and Bacilli taxa belonging to the phyla Firmicutes. Genes associated with Sporulation cluster and Sporulation orphans were increased from 50% to 100% roughage treatment, thereby promoting sporulation all along the treatments. The spore germination is observed to be the highest in the 75% roughage treatment both in the liquid and solid rumen fraction samples with respect to the decrease in the values of the genes associated with spore core dehydration, thereby facilitating spore core hydration which is necessary for spore germination. PMID:25606408

  17. Bacterial community dynamics in a rumen fluid bioreactor during in-vitro cultivation.

    PubMed

    Zapletalová, Martina; Kašparovská, Jitka; Křížová, Ludmila; Kašparovský, Tomáš; Šerý, Omar; Lochman, Jan

    2016-09-20

    To study the various processes in the rumen the in vitro techniques are widely used to realize more controlled and reproducible conditions compared to in vivo experiments. Mostly, only the parameters like pH changes, volatile fatty acids content or metabolite production are monitored. In this study we examine the bacterial community dynamics of rumen fluid in course of ten day cultivation realize under standard conditions described in the literature. Whereas the pH values, total VFA content and A/P ratio in bioreactor were consistent with natural conditions in the rumen, the mean redox-potential values of -251 and -243mV were much more negative. For culture-independent assessment of bacterial community composition, the Illumina MiSeq results indicated that the community contained 292 bacterial genera. In course of ten days cultivation a significant changes in the microbial community were measured when Bacteroidetes to Firmicutes ratio changed from 3.2 to 1.2 and phyla Proteobacteria and Actinobacteria represented by genus Bifidobacterium and Olsenella significantly increased. The main responsible factor of these changes seems to be very low redox potential in bioreactor together with accumulation of simple carbohydrates in milieu as a result of limited excretion of fermented feed and absence of nutrient absorbing mechanisms. PMID:27444706

  18. Metagenomic analysis of buffalo rumen microbiome: Effect of roughage diet on Dormancy and Sporulation genes.

    PubMed

    Singh, K M; Reddy, B; Patel, A K; Panchasara, H; Parmar, N; Patel, A B; Shah, T M; Bhatt, V D; Joshi, C G

    2014-12-01

    Buffalo rumen microbiome experiences a variety of diet stress and represents reservoir of Dormancy and Sporulation genes. However, the information on genomic responses to such conditions is very limited. The Ion Torrent PGM next generation sequencing technology was used to characterize general microbial diversity and the repertoire of microbial genes present, including genes associated with Dormancy and Sporulation in Mehsani buffalo rumen metagenome. The research findings revealed the abundance of bacteria at the domain level and presence of Dormancy and Sporulation genes which were predominantly associated with the Clostridia and Bacilli taxa belonging to the phyla Firmicutes. Genes associated with Sporulation cluster and Sporulation orphans were increased from 50% to 100% roughage treatment, thereby promoting sporulation all along the treatments. The spore germination is observed to be the highest in the 75% roughage treatment both in the liquid and solid rumen fraction samples with respect to the decrease in the values of the genes associated with spore core dehydration, thereby facilitating spore core hydration which is necessary for spore germination. PMID:25606408

  19. Identification and characterization of a cellulase-encoding gene from the buffalo rumen metagenomic library.

    PubMed

    Nguyen, Nhung Hong; Maruset, Lalita; Uengwetwanit, Tanaporn; Mhuantong, Wuttichai; Harnpicharnchai, Piyanun; Champreda, Verawat; Tanapongpipat, Sutipa; Jirajaroenrat, Kanya; Rakshit, Sudip K; Eurwilaichitr, Lily; Pongpattanakitshote, Somchai

    2012-01-01

    Microorganisms residing in the rumens of cattle represent a rich source of lignocellulose-degrading enzymes, since their diet consists of plant-based materials that are high in cellulose and hemicellulose. In this study, a metagenomic library was constructed from buffalo rumen contents using pCC1FOS fosmid vector. Ninety-three clones from the pooled library of approximately 10,000 clones showed degrading activity against AZCL-HE-Cellulose, whereas four other clones showed activity against AZCL-Xylan. Contig analysis of pyrosequencing data derived from the selected strongly positive clones revealed 15 ORFs that were closely related to lignocellulose-degrading enzymes belonging to several glycosyl hydrolase families. Glycosyl hydrolase family 5 (GHF5) was the most abundant glycosyl hydrolase found, and a majority of the GHF5s in our metagenomes were closely related to several ruminal bacteria, especially ones from other buffalo rumen metagenomes. Characterization of BT-01, a selected clone with highest cellulase activity from the primary plate screening assay, revealed a cellulase encoding gene with optimal working conditions at pH 5.5 at 50 °C. Along with its stability over acidic pH, the capability efficiently to hydrolyze cellulose in feed for broiler chickens, as exhibited in an in vitro digestibility test, suggests that BT-01 has potential application as a feed supplement. PMID:22790926

  20. Microbial biodiversity of the liquid fraction of rumen content from lactating cows.

    PubMed

    Sandri, M; Manfrin, C; Pallavicini, A; Stefanon, B

    2014-04-01

    Host and dietary interactions with the rumen microbiome can affect the efficacy of supplements, and their effect on the composition of the bacterial population is still unknown. A 16S rRNA metagenomic approach and Next-Generation Sequencing (NGS) technology were used to investigate the bacterial microbiome composition in the liquid fraction of the rumen content collected via stomach tubing. To investigate biodiversity, samples were taken from three groups of four lactating dairy cows given a supplement of either 50 g of potato protein (Ctrl group), or 50 g of lyophilized Saccharomyces cerevisiae (LY group) or 50 g of dried S. cerevisiae (DY group) in a potato protein support. Rumen samples were collected after 15 days of dietary treatments and milk production was similar between the three groups. Taxonomic distribution analysis revealed a prevalence of the Firmicutes phylum in all cows (79.76%) and a significantly (P<0.05) higher presence of the genus Bacillus in the DY group. Volatile fatty-acid concentration was not significantly different between groups, possibly because of relatively high inter-animal variability or limited effect of the treatments or both, and the correlation analysis with bacterial taxa showed significant associations, in particular between many Firmicutes genera and butyrate. Limited differences were observed between dietary treatments, but the lack of microbiome data before yeast administration does not allow to draw firm conclusions on the effect of dietary treatments. PMID:24524278

  1. Comparison of rumen microbial inhibition resulting from various essential oils isolated from relatively unpalatable plant species.

    PubMed

    Oh, H K; Jones, M B; Longhurst, W M

    1968-01-01

    Essential oils were isolated from eight plant species which were relatively unpalatable to sheep and deer. The inhibitory potency of these essential oils upon sheep and deer rumen microorganisms was compared, in terms of total gas and volatile fatty acid (VFA) production, by use of an anaerobic manometric technique. Inhibitory effects of oils from the eight plant species may be placed in four groups: (i) essential oils from vinegar weed (Trichostema lanceoletum) and California bay (Umbellularia californica) inhibited rumen microbial activity most; (ii) lesser inhibition was exhibited by rosemary (Rosmarinus officinalis) and California mugwort (Artemisia douglasiana) oils, followed by (iii) blue-gum eucalyptus (Eucalyptus globulus) and sagebrush (Artemisia tridentata) oils; and (iv) oils from Douglas fir (Psuedotsuga menziesii) and Jerusalem oak (chenopodium botrys) resulted in the least inhibition, when 0.3 ml of each oil was used. A highly significant correlation coefficient (r = 0.98(**)) between total gas and VFA production indicated the validity of either method to measure the activity of rumen microorganisms. Our results are discussed in relation to the hypothesis that the selectivity and voluntary consumption of ruminants are related to the characteristic odor and antibacterial action of essential oils isolated from relatively unpalatable plant species. PMID:5636470

  2. Exploring the Goat Rumen Microbiome from Seven Days to Two Years

    PubMed Central

    Wang, Lizhi; Xu, Qin; Kong, Fanli; Yang, Yindong; Wu, De; Mishra, Sudhanshu; Li, Ying

    2016-01-01

    Rumen microbial communities play important roles in feed conversion and the physiological development of the ruminants. Despite its significance, little is known about the rumen microbial communities at different life stages after birth. In this study, we characterized the rumen bacterial and the archaeal communities in 11 different age groups (7, 15, 30, 60, 90, 120, 150, 180, 360, 540 and 720 days old) of a crossbred F1 goats (n = 5 for each group) by using an Illumina MiSeq platform targeting the V3-V4 region of the 16S rRNA gene. We found that the bacterial communities were mainly composed of Bacteroidetes, Firmicutes, and Proteobacteria across all age groups. The relative abundance of Firmicutes was stable across all age groups. While changes in relative abundance were observed in Bacteroidetes and Proteobacteria, these two phyla reached a stable stage after weaning (day 90). Euryarchaeota (82%) and Thaumarchaeota (15%) were the dominant phyla of Archaea. Crenarchaeota was also observed, although at a very low relative abundance (0.68% at most). A clear age-related pattern was observed in the diversity of bacterial community with 59 OTUs associated with age. In contrast, no age-related OTU was observed in archaea. In conclusion, our results suggested that from 7 days to 2 years, the ruminal microbial community of our experimental goats underwent significant changes in response to the shift in age and diet. PMID:27135948

  3. Relationship between liver and low rumen pH in goat.

    PubMed

    Xie, Z; Jiang, X; Ye, P; Zhang, Y; Ni, Y; Zhuang, S; Shen, X

    2015-01-01

    The aim of this study was to analyze the response of dry goat liver to sub-acute ruminal acidosis induced by a highly concentrated diet. Non-pregnant, non-lactating female Poll-goats (N = 12) were randomly assigned to either a high-concentrate (HG) or a low-concentrate (LG) diet. Low rumen pH was successfully induced with HG (more than 3 h with rumen pH < 5.8). The plasma lipopolysaccharide concentration was significantly decreased in the HG compared with LG group (P < 0.05). Proteomic analysis showed that aldehyde dehydrogenases and microsomal glutathione S-transferase was downregulated in the HG group, whereas aldo-keto reductase was upregulated compared in the LG group. The abundance of mRNA for these proteins were also correspondingly increased (aldehyde dehydrogenases and microsomal glutathione-S-transferase) or decreased (aldo-keto reductase) in the HG group. Malondialdehyde content in the liver was decreased in the HG group compared to the LG group. These data indicate that the expression of hepatic proteins alters the regulation of endogenous lipopolysaccharide during low rumen pH in dry dairy goats. In particular, the protective effect of the liver may occur through inhibition of aldehyde and/or peroxide formation.

  4. Influence of temperature and humidity on rumen pH and fatty acids in dairy cows.

    PubMed

    Gianesella, M; Piccione, G; Cannizzo, C; Casella, S; Morgante, M

    2012-11-01

    The aim of this study was to investigate the variations of rumen pH and fatty acids (acetic acid, propionic acid, iso-butyric acid, n-butyric acid, iso-valerianic acid, n-valerianic, caproic acid and total fatty acids) in 245 early lactating dairy cows under different temperature and humidity conditions. The animals were divided into six groups and rumen fluid was collected by rumenocentesis on 22 dairy cows in April (Group A), 33 in May (Group B), 43 in June (Group C), 48 in July (Group D), 36 in September (Group E) and 60 in October (Group F). One-way analysis of variance (ANOVA), followed by the Bonferroni's test, showed a significant effect of environmental variations on all studied parameters (P < 0.0001). Changes in studied parameters can be explained in relation to the microbial population and shift in the optima for rumen conditions associated with variations of environmental conditions. We can affirm that the microbial assemblages that underlie energy and protein supply to wild ruminant are evident especially in relation to temperature and humidity conditions.

  5. Exploring the Goat Rumen Microbiome from Seven Days to Two Years.

    PubMed

    Wang, Lizhi; Xu, Qin; Kong, Fanli; Yang, Yindong; Wu, De; Mishra, Sudhanshu; Li, Ying

    2016-01-01

    Rumen microbial communities play important roles in feed conversion and the physiological development of the ruminants. Despite its significance, little is known about the rumen microbial communities at different life stages after birth. In this study, we characterized the rumen bacterial and the archaeal communities in 11 different age groups (7, 15, 30, 60, 90, 120, 150, 180, 360, 540 and 720 days old) of a crossbred F1 goats (n = 5 for each group) by using an Illumina MiSeq platform targeting the V3-V4 region of the 16S rRNA gene. We found that the bacterial communities were mainly composed of Bacteroidetes, Firmicutes, and Proteobacteria across all age groups. The relative abundance of Firmicutes was stable across all age groups. While changes in relative abundance were observed in Bacteroidetes and Proteobacteria, these two phyla reached a stable stage after weaning (day 90). Euryarchaeota (82%) and Thaumarchaeota (15%) were the dominant phyla of Archaea. Crenarchaeota was also observed, although at a very low relative abundance (0.68% at most). A clear age-related pattern was observed in the diversity of bacterial community with 59 OTUs associated with age. In contrast, no age-related OTU was observed in archaea. In conclusion, our results suggested that from 7 days to 2 years, the ruminal microbial community of our experimental goats underwent significant changes in response to the shift in age and diet. PMID:27135948

  6. Vaccination of cattle with a methanogen protein produces specific antibodies in the saliva which are stable in the rumen.

    PubMed

    Subharat, Supatsak; Shu, Dairu; Zheng, Tao; Buddle, Bryce M; Janssen, Peter H; Luo, Dongwen; Wedlock, D Neil

    2015-04-15

    Methane is produced in the rumen of cattle by a group of archaea (single-celled organisms forming a domain distinct from bacteria and eucarya) called methanogens. Vaccination against methanogens has the potential to reduce methane emissions by inducing antibodies in saliva which are transferred to the rumen and diminish the ability of methanogens to produce methane. Since it is likely that an effective vaccination strategy will need to produce high levels of methanogen-specific antibody in the saliva; the choice of adjuvant, route of vaccination and stability of saliva-derived antibody in the rumen all need to be considered. In this study, stability of IgA and IgG in rumen fluid was determined using an in vitro assay. IgA levels in cattle saliva were reduced by only 40% after 8h exposure to rumen contents while IgG levels were reduced by 80%. These results indicated that antibody is relatively stable in the bovine rumen. A trial was conducted in cattle to investigate induction of immune responses to a methanogen protein, recombinant glycosyl transferase protein (rGT2) from Methanobrevibacter ruminantium M1. Groups of cattle (n=6) were vaccinated subcutaneously with rGT2, formulated with Montanide ISA61 with or without the TLR4 agonist, monophosphoryl lipid A (MPL). A control group (n=6) was not vaccinated. Strong antigen-specific IgG and moderate IgA responses were measured in the serum and saliva of the vaccinated animals and antibody was also detected in the rumen.

  7. Investigating the effect of two methane-mitigating diets on the rumen microbiome using massively parallel sequencing.

    PubMed

    Ross, E M; Moate, P J; Marett, L; Cocks, B G; Hayes, B J

    2013-09-01

    Variation in the composition of microorganisms in the rumen (the rumen microbiome) of dairy cattle (Bos taurus) is of great interest because of possible links to methane emission levels. Feed additives are one method being investigated to reduce enteric methane production by dairy cattle. Here we report the effect of 2 methane-mitigating feed additives (grapemarc and a combination of lipids and tannin) on rumen microbiome profiles of Holstein dairy cattle. We used untargeted (shotgun) massively parallel sequencing of microbes present in rumen fluid to generate quantitative rumen microbiome profiles. We observed large effects of the feed additives on the rumen microbiome profiles using multiple approaches, including linear mixed modeling, hierarchical clustering, and metagenomic predictions. The effect on the fecal microbiome profiles was not detectable using hierarchical clustering, but was significant in the linear mixed model and when metagenomic predictions were used, suggesting a more subtle effect of the diets on the lower gastrointestinal microbiome. A differential representation analysis (analogous to differential expression in RNA sequencing) showed significant overlap in the contigs (which are genome fragments representing different microorganism species) that were differentially represented between experiments. These similarities suggest that, despite the different additives used, the 2 diets assessed in this investigation altered the microbiomes of the samples in similar ways. Contigs that were differentially represented in both experiments were tested for associations with methane production in an independent set of animals. These animals were not treated with a methane-mitigating diet, but did show substantial natural variation in methane emission levels. The contigs that were significantly differentially represented in response to both dietary additives showed a significant enrichment for associations with methane production. This suggests that these

  8. Dietary supplementation of usnic acid, an antimicrobial compound in lichens, does not affect rumen bacterial diversity or density in reindeer.

    PubMed

    Glad, Trine; Barboza, Perry; Mackie, Roderick I; Wright, André-Denis G; Brusetti, Lorenzo; Mathiesen, Svein D; Sundset, Monica A

    2014-06-01

    Reindeer (Rangifer tarandus tarandus) may include large proportions of lichens in their winter diet. These dietary lichens are rich in phenolic secondary compounds, the most well-known being the antimicrobial usnic acid. Previous studies have shown that reindeer host rumen bacteria resistant to usnic acid and that usnic acid is quickly detoxified in their rumen. In the present study, reindeer (n = 3) were sampled before, during, and after usnic acid supplementation to determine the effect on their rumen microbial ecology. Ad libitum intake of usnic acid averaged up to 278 mg/kg body mass. Population densities of rumen bacteria and methanogenic archaea determined by real-time PCR, ranged from 1.36 × 10(9) to 11.8 × 10(9) and 9.0 × 10(5) to 1.35 × 10(8) cells/g wet weight, respectively, and the two populations did not change significantly during usnic acid supplementation (repeated measures ANOVA) or vary significantly between the rumen liquid and particle fraction (paired t test). Rumen bacterial community structure determined by denaturing gradient gel electrophoresis did not change in response to intake of usnic acid. Firmicutes (38.7 %) and Bacteriodetes (27.4 %) were prevalent among the 16S rRNA gene sequences (n = 62) from the DGGE gels, but representatives of the phyla Verrucomicrobia (14.5 %) and Proteobacteria (1.6 %) were also detected. Rapid detoxification of the usnic acid or resistance to usnic acid may explain why the diversity of the dominant bacterial populations and the bacterial density in the reindeer rumen does not change during usnic acid supplementation.

  9. Investigating the effect of two methane-mitigating diets on the rumen microbiome using massively parallel sequencing.

    PubMed

    Ross, E M; Moate, P J; Marett, L; Cocks, B G; Hayes, B J

    2013-09-01

    Variation in the composition of microorganisms in the rumen (the rumen microbiome) of dairy cattle (Bos taurus) is of great interest because of possible links to methane emission levels. Feed additives are one method being investigated to reduce enteric methane production by dairy cattle. Here we report the effect of 2 methane-mitigating feed additives (grapemarc and a combination of lipids and tannin) on rumen microbiome profiles of Holstein dairy cattle. We used untargeted (shotgun) massively parallel sequencing of microbes present in rumen fluid to generate quantitative rumen microbiome profiles. We observed large effects of the feed additives on the rumen microbiome profiles using multiple approaches, including linear mixed modeling, hierarchical clustering, and metagenomic predictions. The effect on the fecal microbiome profiles was not detectable using hierarchical clustering, but was significant in the linear mixed model and when metagenomic predictions were used, suggesting a more subtle effect of the diets on the lower gastrointestinal microbiome. A differential representation analysis (analogous to differential expression in RNA sequencing) showed significant overlap in the contigs (which are genome fragments representing different microorganism species) that were differentially represented between experiments. These similarities suggest that, despite the different additives used, the 2 diets assessed in this investigation altered the microbiomes of the samples in similar ways. Contigs that were differentially represented in both experiments were tested for associations with methane production in an independent set of animals. These animals were not treated with a methane-mitigating diet, but did show substantial natural variation in methane emission levels. The contigs that were significantly differentially represented in response to both dietary additives showed a significant enrichment for associations with methane production. This suggests that these

  10. Simultaneous estimation of the pH of rumen and reticulum fluids of cows using a radio-transmission pH-measurement system.

    PubMed

    Kimura, Atsushi; Sato, Shigeru; Goto, Hiroko; Yamagishi, Norio; Okada, Keiji; Mizuguchi, Hitoshi; Ito, Kazunori

    2012-04-01

    Circadian pH changes in the fluid of the rumen (bottom and middle) and reticulum were assessed simultaneously using wireless and wired radio-transmission pH-measurement systems in cows fed a control diet (C diet) or rumen-acidosis-inducing diet (RAI diet). The pH in the three sites decreased following the morning and evening feedings. In cows fed the C diet, the bottom-rumen and reticular pH reverted to the basal level by the next morning, while the middle-rumen pH did not recover completely, suggesting that active fermentation occurred in the middle of the rumen. The mean pH at 1 hr intervals was higher in the reticulum than at the bottom and in the middle of the rumen. The relatively stable reticular pH may result from dilution due to salivation. In cows fed the RAI diet, the bottom-rumen pH fell to approximately 5.2 after the evening feeding, but returned to the basal level by the next morning. In contrast, the middle-rumen pH did not return to the basal level (6.5) within 24 hr, presumably owing to continuous, vigorous fermentation. There were positive correlations between the pH at the bottom and in the middle of the rumen and at the bottom of the rumen and in the reticulum. These findings indicate that our radio-transmission pH-measurement system may be suitable tool for simultaneous measurement of pH in the rumen and reticulum fluid.

  11. The effects of dietary sucrose and the concentration of plasma urea and rumen ammonia on the degradation of urea in the gastrointestinal tract of cattle.

    PubMed

    Kennedy, P M

    1980-01-01

    1. The rates of entry of urea into plasma, of urea degradation in the gastrointestinal tract, and the partition of that degradation between the rumen and post-ruminal tract were determined by use of [14C]urea and NaH14CO3 in Hereford steers receiving hay diets with or without sucrose. The concentrations of plasma urea and rumen ammonia were varied by infusions of urea into the rumen or abomasum. 2. For all diets, plasma urea concentration was related to urea entry rate, to degradation of urea in the whole gastrointestinal tract, and to its degradation in the post-ruminal tract, but the relationship with its degradation in the rumen was poor. 3. Degradation of urea in the rumen was related in a multiple regression in a curvilinear manner in three groups of diets (pasture-hay alone, pasture-hay--lucerne (Medicago sativa) mixtures, diets with sucrose), and negatively to rumen ammonia concentration for pasture-hay diets, and diets with sucrose. 4. Ruminal clearance of urea (rate of urea degradation per plasma urea concentration) was negatively related to the rumen ammonia concentration for steers given diets with sucrose, of pasture-hay with or without urea infusions. Provision of sucrose in the diet significantly increased clearance. 5. Enhanced urea degradation in the rumen associated with dietary sucrose supplements accounted for 0.4 of additional microbial N synthesis in the rumen. 6. The partition of transfer of urea to the rumen via saliva and through the rumen wall is discussed.

  12. Database in Artificial Intelligence.

    ERIC Educational Resources Information Center

    Wilkinson, Julia

    1986-01-01

    Describes a specialist bibliographic database of literature in the field of artificial intelligence created by the Turing Institute (Glasgow, Scotland) using the BRS/Search information retrieval software. The subscription method for end-users--i.e., annual fee entitles user to unlimited access to database, document provision, and printed awareness…

  13. Micromachined Artificial Haircell

    NASA Technical Reports Server (NTRS)

    Liu, Chang (Inventor); Engel, Jonathan (Inventor); Chen, Nannan (Inventor); Chen, Jack (Inventor)

    2010-01-01

    A micromachined artificial sensor comprises a support coupled to and movable with respect to a substrate. A polymer, high-aspect ratio cilia-like structure is disposed on and extends out-of-plane from the support. A strain detector is disposed with respect to the support to detect movement of the support.

  14. Artificial limb connection

    NASA Technical Reports Server (NTRS)

    Owens, L. J.

    1974-01-01

    Connection simplifies and eases donning and removing artificial limb; eliminates harnesses and clamps; and reduces skin pressures by allowing bone to carry all tensile and part of compressive loads between prosthesis and stump. Because connection is modular, it is easily modified to suit individual needs.

  15. Terahertz Artificial Dielectric Lens

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  16. Artificial Gravity Research Plan

    NASA Technical Reports Server (NTRS)

    Gilbert, Charlene

    2014-01-01

    This document describes the forward working plan to identify what countermeasure resources are needed for a vehicle with an artificial gravity module (intermittent centrifugation) and what Countermeasure Resources are needed for a rotating transit vehicle (continuous centrifugation) to minimize the effects of microgravity to Mars Exploration crewmembers.

  17. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  18. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-03-14

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  19. Artificial intelligence within AFSC

    NASA Technical Reports Server (NTRS)

    Gersh, Mark A.

    1990-01-01

    Information on artificial intelligence research in the Air Force Systems Command is given in viewgraph form. Specific research that is being conducted at the Rome Air Development Center, the Space Technology Center, the Human Resources Laboratory, the Armstrong Aerospace Medical Research Laboratory, the Armamant Laboratory, and the Wright Research and Development Center is noted.

  20. Artificial Intelligence and CALL.

    ERIC Educational Resources Information Center

    Underwood, John H.

    The potential application of artificial intelligence (AI) to computer-assisted language learning (CALL) is explored. Two areas of AI that hold particular interest to those who deal with language meaning--knowledge representation and expert systems, and natural-language processing--are described and examples of each are presented. AI contribution…

  1. The Artificial Planet

    NASA Astrophysics Data System (ADS)

    Glover, D. R.

    An interim milestone for interstellar space travel is proposed: the artificial planet. Interstellar travel will require breakthroughs in the areas of propulsion systems, energy systems, construction of large space structures, protection from space & radiation effects, space agriculture, closed environmental & life support systems, and many other areas. Many difficult problems can be attacked independently of the propulsion and energy challenges through a project to establish an artificial planet in our solar system. Goals of the project would include construction of a large space structure, development of space agriculture, demonstration of closed environmental & life support systems over long time periods, selection of gravity level for long-term spacecraft, demonstration of a self-sufficient colony, and optimization of space colony habitat. The artificial planet would use solar energy as a power source. The orbital location will be selected to minimize effects of the Earth, yet be close enough for construction, supply, and rescue operations. The artificial planet would start out as a construction station and evolve over time to address progressive goals culminating in a self-sufficient space colony.

  2. Artificial intelligence. Second edition

    SciTech Connect

    Winston, P.H.

    1984-01-01

    This book introduces the basic concepts of the field of artificial intelligence. It contains material covering the latest advances in control, representation, language, vision, and problem solving. Problem solving in design and analysis systems is addressed. Mitcell's version-space learning procedure, Morevec's reduced-images stereo procedure, and the Strips problem solver are covered.

  3. Terahertz Artificial Dielectric Lens

    PubMed Central

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  4. Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment.

    PubMed

    Robinson, J A; Tiedje, J M

    1982-12-01

    Michaelis-Menten kinetic parameters for H(2) consumption by three methanogenic habitats were determined from progress curve and initial velocity experiments. The influences of mass transfer resistance, endogenous H(2) production, and growth on apparent parameter estimates were also investigated. Kinetic parameters could not be determined for undiluted rumen fluid and some digestor sludge from gas-phase measurements of H(2), since mass transfer of H(2) across the gas-liquid interface was rate limiting. However, accurate values were obtained once the samples were diluted. H(2) consumption by digestor sludge with a long retention time and by hypereutrophic lake sediment was not phase transfer limited. The K(m) values for H(2) uptake by these habitats were similar, with means of 5.8, 6.0, and 7.1 muM for rumen fluid, digestor sludge, and sediment, respectively. V(max) estimates suggested a ratio of activity of approximately 100 (rumen fluid):10 (sludge):1 (sediment); their ranges were as follows: rumen fluid, 14 to 28 mM h; Holt sludge, 0.7 to 4.3 mM h; and Wintergreen sediment, 0.13 to 0.49 mM h. The principles of phase transfer limitation, studied here for H(2), are the same for all gaseous substrates and products. The limitations and errors associated with gas phase determination of kinetic parameters were evaluated with a mathematical model that combined mass transport and Michaelis-Menten kinetics. Three criteria are described which can be used to evaluate the possibility that a phase transfer limitation exists. If it does not exist, (i) substrate consumption curves are Michaelis-Menten and not first order, (ii) the K(m) is independent of initial substrate concentration, and (iii) the K(m) is independent of biomass (V(max)) and remains constant with dilution of sample. Errors in the Michaelis-Menten kinetic parameters are caused by endogenously produced H(2), but they were <15% for rumen fluid and 10% for lake sediment and digestor sludge. Increases in V

  5. Rumen degradable protein supply affects microbial efficiency in continuous culture and growth in steers.

    PubMed

    Brooks, M A; Harvey, R M; Johnson, N F; Kerley, M S

    2012-12-01

    We hypothesized that microbial efficiency and output from fermentation in the rumen would be optimized when peptide supply was balanced with peptide requirement of ruminal microflora. This study was conducted to measure response of varying rumen degradable peptide (RDPep) supply on ruminal fermentation characteristics and steer growth. A continuous culture experiment was conducted with diets formulated to achieve a predicted RDPep balance (RDPep supplied above RDPep required) of -0.30 to 1.45% CP with rumen degradable N (RDN) balance (RDN supplied above RDN required) above dietary ammonia-N requirement of microbes. Two additional treatments had RDPep balances of -0.30 and 0.78% CP with insufficient ammonia-N supply to meet microbial requirements. Single-flow fermenters (N = 24; n = 6) were inoculated with rumen fluid and maintained anaerobically at 39°C with a 0.06 h(-1) dilution rate. Inadequate RDN decreased OM digestion and microbial N flow, and increased rumen undegradable N (P < 0.01). Microbial efficiency decreased in RDN-deficient diets and was greatest when RDPep balance did not excessively exceed microbial requirement of RDPep predicted (P < 0.01). A growth study was conducted with 49 yearling, crossbred, Angus steers (initial BW 370 ± 34 kg). Animals were assigned to 1 of 4 treatment groups by BW and further divided into 3 pens with 4 steers per pen to achieve similar initial pen weights. Treatments consisted of 4 isonitrogenous diets balanced for RDN but varying in predicted RDPep balance (0.55%, -0.02%, -0.25%, and -0.65% CP). Animals were maintained on treatment for 70 d with individual BW taken on d 0, 1, 21, 42, 70, and 71. Final BW decreased linearly with decreasing RDPep (P = 0.05). Average daily gain and G:F displayed a quadratic effect with greater ADG and G:F at greater and lesser RDPep levels (P = 0.02). We concluded that balancing RDPep supply to predicted requirement improved fermentation efficiency and microbial output, which in turn

  6. Inactivation of enterohemorrhagic Escherichia coli in rumen content- or feces-contaminated drinking water for cattle.

    PubMed

    Zhao, Tong; Zhao, Ping; West, Joe W; Bernard, John K; Cross, Heath G; Doyle, Michael P

    2006-05-01

    Cattle drinking water is a source of on-farm Escherichia coli O157:H7 transmission. The antimicrobial activities of disinfectants to control E. coli O157:H7 in on-farm drinking water are frequently neutralized by the presence of rumen content and manure that generally contaminate the drinking water. Different chemical treatments, including lactic acid, acidic calcium sulfate, chlorine, chlorine dioxide, hydrogen peroxide, caprylic acid, ozone, butyric acid, sodium benzoate, and competing E. coli, were tested individually or in combination for inactivation of E. coli O157:H7 in the presence of rumen content. Chlorine (5 ppm), ozone (22 to 24 ppm at 5 degrees C), and competing E. coli treatment of water had minimal effects (<1 log CFU/ml reduction) on killing E. coli O157:H7 in the presence of rumen content at water-to-rumen content ratios of 50:1 (vol/wt) and lower. Four chemical-treatment combinations, including (i) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.05% caprylic acid (treatment A); (ii) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.1% sodium benzoate (treatment B); (iii) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.5% butyric acid (treatment C); and (iv) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 100 ppm chlorine dioxide (treatment D); were highly effective (>3 log CFU/ml reduction) at 21 degrees C in killing E. coli O157:H7, O26:H11, and O111:NM in water heavily contaminated with rumen content (10:1 water/rumen content ratio [vol/wt]) or feces (20:1 water/feces ratio [vol/wt]). Among them, treatments A, B, and C killed >5 log CFU E. coli O157:H7, O26:H11, and O111:NM/ml within 30 min in water containing rumen content or feces, whereas treatment D inactivated approximately 3 to 4 log CFU/ml under the same conditions. Cattle given water containing treatment A or C or untreated water (control) ad libitum for two 7-day periods drank 15.2, 13.8, and 30.3 liters/day, respectively, and cattle given water containing 0.1% lactic

  7. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption.

    PubMed

    Melo, L Q; Costa, S F; Lopes, F; Guerreiro, M C; Armentano, L E; Pereira, M N

    2013-04-01

    The effects of rumen digesta volume and pH on VFA absorption and its relation to rumen wall morphology were evaluated. Nine rumen cannulated cows formed 3 groups based on desired variation in rumen morphology: The High group was formed by Holsteins yielding 25.9 kg milk/d and fed on a high-grain total mixed ration (TMR); the Medium group by Holstein-Zebu crossbreds yielding 12.3 kg milk/d and fed on corn silage, tropical pasture, and a commercial concentrate; and the Dry group by nonlactating grazing Jerseys fed exclusively on tropical pasture. Within each group, a sequence of 3 ruminal conditions was induced on each cow in 3 × 3 Latin Squares, with 7-d periods: high digesta volume and high pH (HVHP), low volume and high pH (LVHP), and low volume and low pH (LVLP). Rumen mucosa was biopsied on the first day of Period 1. Ruminal morphometric variables evaluated were mitotic index, absorptive surface and papillae number per square centimeter of wall, area per papillae, papillae area as a percentage of absorptive surface, and epithelium, keratinized layer, and nonkeratinized layer thickness. There was marked variation in rumen morphology among the groups of cows. Grazing Jerseys had decreased rumen wall absorptive surface area and basal cells mitotic index, and increased thickness of the epithelium and of the keratin layer compared with cows receiving concentrates. Mean rumen pH throughout the 4 h sampling period was: 6.78 for HVHP, 7.08 for LVHP, and 5.90 for LVLP (P < 0.01). The capacity of the rumen wall to absorb VFA was estimated by the Valerate/CrEDTA technique. The fractional exponential decay rate for the ratio of valeric acid to Cr (k Val/Cr) was determined by rumen digesta sampling at 20-min intervals during 4 h, after the mixing of markers and the return of the evacuated ruminal content. The k Val/Cr values for treatments HVHP, LVHP, and LVLP were, respectively: 19.6, 23.9, and 35.0 %/h (SEM = 2.01; P = 0.21 for contrast HVHP vs. LVHP and P < 0.01 for

  8. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption.

    PubMed

    Melo, L Q; Costa, S F; Lopes, F; Guerreiro, M C; Armentano, L E; Pereira, M N

    2013-04-01

    The effects of rumen digesta volume and pH on VFA absorption and its relation to rumen wall morphology were evaluated. Nine rumen cannulated cows formed 3 groups based on desired variation in rumen morphology: The High group was formed by Holsteins yielding 25.9 kg milk/d and fed on a high-grain total mixed ration (TMR); the Medium group by Holstein-Zebu crossbreds yielding 12.3 kg milk/d and fed on corn silage, tropical pasture, and a commercial concentrate; and the Dry group by nonlactating grazing Jerseys fed exclusively on tropical pasture. Within each group, a sequence of 3 ruminal conditions was induced on each cow in 3 × 3 Latin Squares, with 7-d periods: high digesta volume and high pH (HVHP), low volume and high pH (LVHP), and low volume and low pH (LVLP). Rumen mucosa was biopsied on the first day of Period 1. Ruminal morphometric variables evaluated were mitotic index, absorptive surface and papillae number per square centimeter of wall, area per papillae, papillae area as a percentage of absorptive surface, and epithelium, keratinized layer, and nonkeratinized layer thickness. There was marked variation in rumen morphology among the groups of cows. Grazing Jerseys had decreased rumen wall absorptive surface area and basal cells mitotic index, and increased thickness of the epithelium and of the keratin layer compared with cows receiving concentrates. Mean rumen pH throughout the 4 h sampling period was: 6.78 for HVHP, 7.08 for LVHP, and 5.90 for LVLP (P < 0.01). The capacity of the rumen wall to absorb VFA was estimated by the Valerate/CrEDTA technique. The fractional exponential decay rate for the ratio of valeric acid to Cr (k Val/Cr) was determined by rumen digesta sampling at 20-min intervals during 4 h, after the mixing of markers and the return of the evacuated ruminal content. The k Val/Cr values for treatments HVHP, LVHP, and LVLP were, respectively: 19.6, 23.9, and 35.0 %/h (SEM = 2.01; P = 0.21 for contrast HVHP vs. LVHP and P < 0.01 for

  9. Bacteria and Archaea community structure in the rumen microbiome of goats (Capra hircus) from the semiarid region of Brazil.

    PubMed

    Cunha, Isabel S; Barreto, Cristine C; Costa, Ohana Y A; Bomfim, Marco A; Castro, Alinne P; Kruger, Ricardo H; Quirino, Betania F

    2011-06-01

    Most studies present in the literature about the rumen microbiome have focused on cattle and sheep. This is the first report of the characterization of the bacterial and archaeal communities present in the liquid and solid-associated fractions of the rumen from free ranging Moxotó breed goats using 16S rRNA gene libraries. PCR was used to amplify the 16S rRNA gene with bacterial and archaeal universal primers and sequences from each library constructed were obtained. Sequences of Bacteria from the phyla Bacteroidetes and Firmicutes were predominant. The overall dominant classes in the rumen were Clostridia and Bacteroidia, which are known to play a role in plant fiber degradation in other ruminants. Unclassified Bacteria accounted for 4.7% of the liquid fraction sequences and 16.4% of the solid fraction sequences. From the archaeal libraries only sequences from the phylum Euryarcheota were identified and were assigned to the class Methanobacteria of the genera Methanobrevibacter and Methanosphaera. A group of Archaea not previously known to be associated with the rumen was identified: uncultured methanogens belonging to the "uncultured marine bacteria" groups II and III. The local water contained high salt concentrations and this may explain the presence of these groups in the Moxotó goat rumen.

  10. Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment

    PubMed Central

    Ricard, Guénola; McEwan, Neil R; Dutilh, Bas E; Jouany, Jean-Pierre; Macheboeuf, Didier; Mitsumori, Makoto; McIntosh, Freda M; Michalowski, Tadeusz; Nagamine, Takafumi; Nelson, Nancy; Newbold, Charles J; Nsabimana, Eli; Takenaka, Akio; Thomas, Nadine A; Ushida, Kazunari; Hackstein, Johannes HP; Huynen, Martijn A

    2006-01-01

    Background The horizontal transfer of expressed genes from Bacteria into Ciliates which live in close contact with each other in the rumen (the foregut of ruminants) was studied using ciliate Expressed Sequence Tags (ESTs). More than 4000 ESTs were sequenced from representatives of the two major groups of rumen Cilates: the order Entodiniomorphida (Entodinium simplex, Entodinium caudatum, Eudiplodinium maggii, Metadinium medium, Diploplastron affine, Polyplastron multivesiculatum and Epidinium ecaudatum) and the order Vestibuliferida, previously called Holotricha (Isotricha prostoma, Isotricha intestinalis and Dasytricha ruminantium). Results A comparison of the sequences with the completely sequenced genomes of Eukaryotes and Prokaryotes, followed by large-scale construction and analysis of phylogenies, identified 148 ciliate genes that specifically cluster with genes from the Bacteria and Archaea. The phylogenetic clustering with bacterial genes, coupled with the absence of close relatives of these genes in the Ciliate Tetrahymena thermophila, indicates that they have been acquired via Horizontal Gene Transfer (HGT) after the colonization of the gut by the rumen Ciliates. Conclusion Among the HGT candidates, we found an over-representation (>75%) of genes involved in metabolism, specifically in the catabolism of complex carbohydrates, a rich food source in the rumen. We propose that the acquisition of these genes has greatly facilitated the Ciliates' colonization of the rumen providing evidence for the role of HGT in the adaptation to new niches. PMID:16472398

  11. Response of the Rumen Microbiota of Sika Deer (Cervus nippon) Fed Different Concentrations of Tannin Rich Plants

    PubMed Central

    Li, Zhipeng; Wright, André-Denis G.; Liu, Hanlu; Fan, Zhongyuan; Yang, Fuhe; Zhang, Zhigang; Li, Guangyu

    2015-01-01

    High throughput sequencing was used to examine the rumen microbiota of sika deer fed high (OLH) and low concentration (OLL) of tannin rich oak leaves. The results showed that Prevotella spp. were the most dominant bacteria. The most predominant methanogens were the members of the order Methanoplasmatales. The dominant rumen protozoa were Entodinium longinucleatum, Eudiplodinium maggii, and Epidinium caudatum, and the fungal communities were mostly represented by Piromyces spp. Moreover, the relative abundance of Pseudobutyrivibrio spp. (P=0.026), unidentified bacteria (P=0.028), and Prevotella spp. (P=0.022) was lower in the OLH group than in the OLL group. The concentration of propionate in the OLH group was greater than in the OLL group (P=0.006). Patterns of relationships showed that methanogens belonging to the order Methanoplasmatales were negatively correlated with Treponema spp., Ent. Longinucleatum, and acetate. Methanosphaera stadtmanae was positively correlated to propionate, while Methanobrevibacter ruminantium was negatively associated with Methanobrevibacter thaueri and Methanobrevibacter millerae. Tannins altered the rumen microbes and fermentation patterns. However, the response of the entire rumen microbiota and the relationship between rumen microorganisms and the fermentation parameters were not fully understood. PMID:25955033

  12. Response of the Rumen Microbiota of Sika Deer (Cervus nippon) Fed Different Concentrations of Tannin Rich Plants.

    PubMed

    Li, Zhipeng; Wright, André-Denis G; Liu, Hanlu; Fan, Zhongyuan; Yang, Fuhe; Zhang, Zhigang; Li, Guangyu

    2015-01-01

    High throughput sequencing was used to examine the rumen microbiota of sika deer fed high (OLH) and low concentration (OLL) of tannin rich oak leaves. The results showed that Prevotella spp. were the most dominant bacteria. The most predominant methanogens were the members of the order Methanoplasmatales. The dominant rumen protozoa were Entodinium longinucleatum, Eudiplodinium maggii, and Epidinium caudatum, and the fungal communities were mostly represented by Piromyces spp. Moreover, the relative abundance of Pseudobutyrivibrio spp. (P=0.026), unidentified bacteria (P=0.028), and Prevotella spp. (P=0.022) was lower in the OLH group than in the OLL group. The concentration of propionate in the OLH group was greater than in the OLL group (P=0.006). Patterns of relationships showed that methanogens belonging to the order Methanoplasmatales were negatively correlated with Treponema spp., Ent. Longinucleatum, and acetate. Methanosphaera stadtmanae was positively correlated to propionate, while Methanobrevibacter ruminantium was negatively associated with Methanobrevibacter thaueri and Methanobrevibacter millerae. Tannins altered the rumen microbes and fermentation patterns. However, the response of the entire rumen microbiota and the relationship between rumen microorganisms and the fermentation parameters were not fully understood.

  13. Bacteria and Archaea community structure in the rumen microbiome of goats (Capra hircus) from the semiarid region of Brazil.

    PubMed

    Cunha, Isabel S; Barreto, Cristine C; Costa, Ohana Y A; Bomfim, Marco A; Castro, Alinne P; Kruger, Ricardo H; Quirino, Betania F

    2011-06-01

    Most studies present in the literature about the rumen microbiome have focused on cattle and sheep. This is the first report of the characterization of the bacterial and archaeal communities present in the liquid and solid-associated fractions of the rumen from free ranging Moxotó breed goats using 16S rRNA gene libraries. PCR was used to amplify the 16S rRNA gene with bacterial and archaeal universal primers and sequences from each library constructed were obtained. Sequences of Bacteria from the phyla Bacteroidetes and Firmicutes were predominant. The overall dominant classes in the rumen were Clostridia and Bacteroidia, which are known to play a role in plant fiber degradation in other ruminants. Unclassified Bacteria accounted for 4.7% of the liquid fraction sequences and 16.4% of the solid fraction sequences. From the archaeal libraries only sequences from the phylum Euryarcheota were identified and were assigned to the class Methanobacteria of the genera Methanobrevibacter and Methanosphaera. A group of Archaea not previously known to be associated with the rumen was identified: uncultured methanogens belonging to the "uncultured marine bacteria" groups II and III. The local water contained high salt concentrations and this may explain the presence of these groups in the Moxotó goat rumen. PMID:21575735

  14. Effects of feeding Mediterranean buffalo sorghum silage versus maize silage on the rumen microbiota and milk fatty acid content.

    PubMed

    Ann Huws, Sharon; Chiariotti, Antonella; Sarubbi, Fiorella; Carfì, Francesca; Pace, Vilma

    2012-01-01

    Sorghum presents a sustainable feedstock for Mediterranean buffaloes due to its reduced water and nitrogen requirements compared with maize, which is currently fed primarily. We investigated the effects of feeding sorghum as opposed to maize on Mediterranean buffalo rumen microbial diversity and milk fatty acid content. Four cannulated lactating Mediterranean buffalo cows were fed a basal diet for one month before switching either to maize or sorghum-silage based diets for a 3-month period. Buffaloes were then changed over to the contrasting diet for a further one month. Rumen and milk samples were collected at the end of each month. DGGE- and T-RFLP-based dendrograms generated from rumen samples did not show an effect of diet on rumen bacterial diversity. Milk samples also did not differ in terms of their fatty acid content post sorghum feeding as compared with maize feeding. Thus, sorghum provides an environmentally beneficial alternative to maize for feeding Mediterranean buffalo with little effect on rumen microbial diversity or milk fatty acid composition compared with maize feeding.

  15. Response of the Rumen Microbiota of Sika Deer (Cervus nippon) Fed Different Concentrations of Tannin Rich Plants.

    PubMed

    Li, Zhipeng; Wright, André-Denis G; Liu, Hanlu; Fan, Zhongyuan; Yang, Fuhe; Zhang, Zhigang; Li, Guangyu

    2015-01-01

    High throughput sequencing was used to examine the rumen microbiota of sika deer fed high (OLH) and low concentration (OLL) of tannin rich oak leaves. The results showed that Prevotella spp. were the most dominant bacteria. The most predominant methanogens were the members of the order Methanoplasmatales. The dominant rumen protozoa were Entodinium longinucleatum, Eudiplodinium maggii, and Epidinium caudatum, and the fungal communities were mostly represented by Piromyces spp. Moreover, the relative abundance of Pseudobutyrivibrio spp. (P=0.026), unidentified bacteria (P=0.028), and Prevotella spp. (P=0.022) was lower in the OLH group than in the OLL group. The concentration of propionate in the OLH group was greater than in the OLL group (P=0.006). Patterns of relationships showed that methanogens belonging to the order Methanoplasmatales were negatively correlated with Treponema spp., Ent. Longinucleatum, and acetate. Methanosphaera stadtmanae was positively correlated to propionate, while Methanobrevibacter ruminantium was negatively associated with Methanobrevibacter thaueri and Methanobrevibacter millerae. Tannins altered the rumen microbes and fermentation patterns. However, the response of the entire rumen microbiota and the relationship between rumen microorganisms and the fermentation parameters were not fully understood. PMID:25955033

  16. Potential functional gene diversity involved in methanogenesis and methanogenic community structure in Indian buffalo (Bubalus bubalis) rumen.

    PubMed

    Singh, Krishna M; Patel, Amrutlal K; Shah, Ravi K; Reddy, Bhaskar; Joshi, Chaitanya G

    2015-08-01

    Understanding the methanogen community structure and methanogenesis from Bubalus bubalis in India may be beneficial to methane mitigation. Our current understanding of the microbial processes leading to methane production is incomplete, and further advancement in the knowledge of methanogenesis pathways would provide means to manipulate its emission in the future. In the present study, we evaluated the methanogenic community structure in the rumen as well as their potential genes involved in methanogenesis. The taxonomic and metabolic profiles of methanogens were assessed by shotgun sequencing of rumen metagenome by Ion Torrent semiconductor sequencing. The buffalo rumen contained representative genera of all the families of methanogens. Members of Methanobacteriaceae were found to be dominant, followed by Methanosarcinaceae, Methanococcaceae, Methanocorpusculaceae, and Thermococcaceae. A total of 60 methanogenic genera were detected in buffalo rumen. Methanogens related to the genera Methanobrevibacter, Methanosarcina, Methanococcus, Methanocorpusculum, Methanothermobacter, and Methanosphaera were predominant, representing >70 % of total archaeal sequences. The metagenomic dataset indicated the presence of genes involved in the methanogenesis and acetogenesis pathways, and the main functional genes were those of key enzymes in the methanogenesis. Sequences related to CoB--CoM heterodisulfide reductase, methyl coenzyme M reductase, f420-dependent methylenetetrahydromethanopterin reductase, and formylmethanofuran dehydrogenase were predominant in rumen. In addition, methenyltetrahydrofolate cyclohydrolase, methylenetetrahydrofolate dehydrogenase, 5,10-methylenetetrahydrofolate reductase, and acetyl-coenzyme A synthetase were also recovered. PMID:25663664

  17. Comparative Metabolite Fingerprinting of the Rumen System during Colonisation of Three Forage Grass (Lolium perenne L.) Varieties

    PubMed Central

    Kingston-Smith, Alison H.; Davies, Teri E.; Rees Stevens, Pauline; Mur, Luis A. J.

    2013-01-01

    The rumen microbiota enable ruminants to degrade complex ligno-cellulosic compounds to produce high quality protein for human consumption. However, enteric fermentation by domestic ruminants generates negative by-products: greenhouse gases (methane) and environmental nitrogen pollution. The current lack of cultured isolates representative of the totality of rumen microbial species creates an information gap about the in vivo function of the rumen microbiota and limits our ability to apply predictive biology for improvement of feed for ruminants. In this work we took a whole ecosystem approach to understanding how the metabolism of the microbial population responds to introduction of its substrate. Fourier Transform Infra Red (FTIR) spectroscopy-based metabolite fingerprinting was used to discriminate differences in the plant-microbial interactome of the rumen when using three forage grass varieties (Lolium perenne L. cv AberDart, AberMagic and Premium) as substrates for microbial colonisation and fermentation. Specific examination of spectral regions associated with fatty acids, amides, sugars and alkanes indicated that although the three forages were apparently similar by traditional nutritional analysis, patterns of metabolite flux within the plant-microbial interactome were distinct and plant genotype dependent. Thus, the utilisation pattern of forage nutrients by the rumen microbiota can be influenced by subtleties determined by forage genotypes. These data suggest that our interactomic approach represents an important means to improve forages and ultimately the livestock environment. PMID:24312434

  18. Effects of feeding Mediterranean buffalo sorghum silage versus maize silage on the rumen microbiota and milk fatty acid content.

    PubMed

    Ann Huws, Sharon; Chiariotti, Antonella; Sarubbi, Fiorella; Carfì, Francesca; Pace, Vilma

    2012-01-01

    Sorghum presents a sustainable feedstock for Mediterranean buffaloes due to its reduced water and nitrogen requirements compared with maize, which is currently fed primarily. We investigated the effects of feeding sorghum as opposed to maize on Mediterranean buffalo rumen microbial diversity and milk fatty acid content. Four cannulated lactating Mediterranean buffalo cows were fed a basal diet for one month before switching either to maize or sorghum-silage based diets for a 3-month period. Buffaloes were then changed over to the contrasting diet for a further one month. Rumen and milk samples were collected at the end of each month. DGGE- and T-RFLP-based dendrograms generated from rumen samples did not show an effect of diet on rumen bacterial diversity. Milk samples also did not differ in terms of their fatty acid content post sorghum feeding as compared with maize feeding. Thus, sorghum provides an environmentally beneficial alternative to maize for feeding Mediterranean buffalo with little effect on rumen microbial diversity or milk fatty acid composition compared with maize feeding. PMID:22688241

  19. Bacterial diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16S rDNA analysis.

    PubMed

    Pandya, P R; Singh, K M; Parnerkar, S; Tripathi, A K; Mehta, H H; Rank, D N; Kothari, R K; Joshi, C G

    2010-01-01

    Bacterial communities in buffalo rumen were characterized using a culture-independent approach for a pooled sample of rumen fluid from 3 adult Surti buffaloes. Buffalo rumen is likely to include species of various bacterial phyla, so 16S rDNA sequences were amplified and cloned from the sample. A total of 191 clones were sequenced and similarities to known 16S rDNA sequences were examined. About 62.82% sequences (120 clones) had >90% similarity to the 16S rDNA database sequences. Furthermore, about 34.03% of the sequences (65 clones) were 85-89% similar to 16S rDNA database sequences. For the remaining 3.14%; the similarity was lower than 85% Phylogenetic analyses were also used to infer the makeup of bacterial communities in the rumen of Surti buffalo. As a result, we distinguished 42 operational taxonomic units (OTUs) based on unique 16S r DNA sequences: 19 OTUs affiliated to an unidentified group (45.23% of total OTUs), 11 OTUs of the phylum Firmicutes, also known as the low G+C group (26.19%), 7 OTUs of the Cytophaga-Flexibacter-Bacteroides phylum (16.66%), 4 OTUs of Spirochaetes (9.52%), and 1 OTU of Actinobacteria (2.38%). These include 10 single-clone OTUs, so Good's coverage (94.76%) of 16S rRNA libraries indicated that sequences identified in the libraries represent the majority of bacterial diversity present in rumen. PMID:20720314

  20. Methanogen diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16S rDNA analysis.

    PubMed

    Singh, K M; Tripathi, A K; Pandya, P R; Parnerkar, S; Rank, D N; Kothari, R K; Joshi, C G

    2012-06-01

    The methanogenic communities in buffalo rumen were characterized using a culture-independent approach of a pooled sample of rumen fluid from three adult Surti buffaloes. Buffalo rumen is likely to include species of various methanogens, so 16S rDNA sequences were amplified and cloned from the sample. A total of 171 clones were sequenced to examine 16S rDNA sequence similarity. About 52.63% sequences (90 clones) had ≥ 90% similarity, whereas, 46.78% of the sequences (81 clones) were 75-89% similar to 16S rDNA database sequences, respectively. Phylogenetic analyses were also used to infer the makeup of methanogenic communities in the rumen of Surti buffalo. As a result, we distinguished 23 operational taxonomic units (OTUs) based on unique 16S rDNA sequences: 12 OTUs (52.17%) affiliated to Methanomicrobiales order, 10 OTUs (43.47%) of the order Methanobacteriales and one OTU (4.34%) of Methanosarcina barkeri like clone, respectively. In addition, the population of Methanomicrobiales and Methabacteriales orders were also observed, accounting 4% and 2.17% of total archea. This study has revealed the largest assortment of hydrogenotrophic methanogens phylotypes ever identified from rumen of Surti buffaloes. PMID:21507441

  1. Diurnal changes in concentration of rumen ciliates and in occurrence of dividing forms in water buffalo (Bubalus bubalus) fed once daily.

    PubMed

    Michalowski, T

    1977-04-01

    When buffalo were fed once daily, significant diurnal variations in concentration of rumen ciliates and occurrence of dividing protozoa were found. Differences in proportions of dividing Entodinium- and Diplodinium-type ciliates were also observed. Results obtained suggest that the range of diurnal fluctuations in rumen protozoa concentration may be related to the percentage of dividing cells in populaitons of these organisms.

  2. High-rate artificial lift

    SciTech Connect

    Clegg, J.D.

    1988-03-01

    This paper summarizes the major considerations in the selection, design, installation, operation, or repair of high-rate artificial-lift systems. The major types of artificial lift - sucker-rod pumps, gas-lift systems, electrical submersible pumps, hydraulic pumps and jets, and hydraulic turbine-driven pumps - will be discussed. An extensive bibliography of artificial-lift papers is included.

  3. Artificial Intelligence and Information Retrieval.

    ERIC Educational Resources Information Center

    Teodorescu, Ioana

    1987-01-01

    Compares artificial intelligence and information retrieval paradigms for natural language understanding, reviews progress to date, and outlines the applicability of artificial intelligence to question answering systems. A list of principal artificial intelligence software for database front end systems is appended. (CLB)

  4. Artificial intelligence at CSM

    SciTech Connect

    Braun, G.; Jones, J.E.

    1985-08-01

    The recent developments in artificial intelligence have been cited as being the most significant technological advancement in computer science in the twentieth century. Machines that can mimic human reasoning will have a great impact upon our civilization. The way we think, learn, and work will be changed in a profound way. It is for these reasons that the Colorado School of Mines, in order to maintain its reputation of quality engineering education, has entered the AI field. CSM presently is evaluating artificial intelligence for applications in the mineral industries; decision support systems, process control, machine vision, data acquisition and analysis, etc. Future plans are to move AI out of the research laboratories and into the curriculum. An understanding of the concepts and unlimited power of the application of AI will enhance the engineering methods of Mines graduates. 6 references.

  5. Natural and artificial tanning.

    PubMed

    Clore, E R

    1995-01-01

    Although sunlight is beneficial to provide light and warmth and aids the body in the formation of vitamin D, tanning is potentially damaging to an individual's health. The incidence of skin cancer and retinal damage from both natural and artificial light is on the rise. This article explores the concept of tanning, types of ultraviolet rays and related health hazards. Health care provider interventions for prevention and client education are also emphasized.

  6. Whither Artificial Reproduction?

    PubMed Central

    Percival-Smith, Robin

    1985-01-01

    Artificial reproduction now offers sub fertile couples a number of options which raise scientific and ethical questions. This article discusses the Canadian and British experiences in formulating regulations and legislation in this important field. Current work on mammalian embryo research foretells the direction which human research will take. This article stresses the need for family physicians' participation in the ethical decisions that accompany these new developments. PMID:21274181

  7. Artificial intelligence in parallel

    SciTech Connect

    Waldrop, M.M.

    1984-08-10

    The current rage in the Artificial Intelligence (AI) community is parallelism: the idea is to build machines with many independent processors doing many things at once. The upshot is that about a dozen parallel machines are now under development for AI alone. As might be expected, the approaches are diverse yet there are a number of fundamental issues in common: granularity, topology, control, and algorithms.

  8. Introducing artificial intelligence

    SciTech Connect

    Simons, G.L.

    1985-01-01

    This book is an introduction to the field of artificial intelligence. The volume sets Al in a broad context of historical attitudes, imaginative insights, and ideas about intelligence in general. The author offers a wide-ranging survey of Al concerns, including cognition, knowledge engineering, problem inference, speech understanding, and perception. He also discusses expert systems, LISP, smart robots, and other Al products, and provides a listing of all major Al systems.

  9. Metagenomic analysis of the rumen microbial community following inhibition of methane formation by a halogenated methane analog.

    PubMed

    Denman, Stuart E; Martinez Fernandez, Gonzalo; Shinkai, Takumi; Mitsumori, Makoto; McSweeney, Christopher S

    2015-01-01

    Japanese goats fed a diet of 50% Timothy grass and 50% concentrate with increasing levels of the anti-methanogenic compound, bromochloromethane (BCM) were investigated with respect to the microbial population and functional shifts in the rumen. Microbial ecology methods identified species that exhibited positive and negative responses to the increasing levels of BCM. The methane-inhibited rumen appeared to adapt to the higher H2 levels by shifting fermentation to propionate which was mediated by an increase in the population of H2-consuming Prevotella and Selenomonas spp. Metagenomic analysis of propionate production pathways was dominated by genomic content from these species. Reductive acetogenic marker gene libraries and metagenomics analysis indicate that reductive acetogenic species do not play a major role in the BCM treated rumen.

  10. Metagenomic analysis of the rumen microbial community following inhibition of methane formation by a halogenated methane analog

    PubMed Central

    Denman, Stuart E.; Martinez Fernandez, Gonzalo; Shinkai, Takumi; Mitsumori, Makoto; McSweeney, Christopher S.

    2015-01-01

    Japanese goats fed a diet of 50% Timothy grass and 50% concentrate with increasing levels of the anti-methanogenic compound, bromochloromethane (BCM) were investigated with respect to the microbial population and functional shifts in the rumen. Microbial ecology methods identified species that exhibited positive and negative responses to the increasing levels of BCM. The methane-inhibited rumen appeared to adapt to the higher H2 levels by shifting fermentation to propionate which was mediated by an increase in the population of H2-consuming Prevotella and Selenomonas spp. Metagenomic analysis of propionate production pathways was dominated by genomic content from these species. Reductive acetogenic marker gene libraries and metagenomics analysis indicate that reductive acetogenic species do not play a major role in the BCM treated rumen. PMID:26528253

  11. High Potential Source for Biomass Degradation Enzyme Discovery and Environmental Aspects Revealed through Metagenomics of Indian Buffalo Rumen

    PubMed Central

    Singh, K. M.; Reddy, Bhaskar; Patel, Dishita; Patel, A. K.; Patel, J. B.; Joshi, C. G.

    2014-01-01

    The complex microbiomes of the rumen functions as an effective system for plant cell wall degradation, and biomass utilization provide genetic resource for degrading microbial enzymes that could be used in the production of biofuel. Therefore the buffalo rumen microbiota was surveyed using shot gun sequencing. This metagenomic sequencing generated 3.9 GB of sequences and data were assembled into 137270 contiguous sequences (contigs). We identified potential 2614 contigs encoding biomass degrading enzymes including glycoside hydrolases (GH: 1943 contigs), carbohydrate binding module (CBM: 23 contigs), glycosyl transferase (GT: 373 contigs), carbohydrate esterases (CE: 259 contigs), and polysaccharide lyases (PE: 16 contigs). The hierarchical clustering of buffalo metagenomes demonstrated the similarities and dissimilarity in microbial community structures and functional capacity. This demonstrates that buffalo rumen microbiome was considerably enriched in functional genes involved in polysaccharide degradation with great prospects to obtain new molecules that may be applied in the biofuel industry. PMID:25136572

  12. High potential source for biomass degradation enzyme discovery and environmental aspects revealed through metagenomics of Indian buffalo rumen.

    PubMed

    Singh, K M; Reddy, Bhaskar; Patel, Dishita; Patel, A K; Parmar, Nidhi; Patel, Anand; Patel, J B; Joshi, C G

    2014-01-01

    The complex microbiomes of the rumen functions as an effective system for plant cell wall degradation, and biomass utilization provide genetic resource for degrading microbial enzymes that could be used in the production of biofuel. Therefore the buffalo rumen microbiota was surveyed using shot gun sequencing. This metagenomic sequencing generated 3.9 GB of sequences and data were assembled into 137270 contiguous sequences (contigs). We identified potential 2614 contigs encoding biomass degrading enzymes including glycoside hydrolases (GH: 1943 contigs), carbohydrate binding module (CBM: 23 contigs), glycosyl transferase (GT: 373 contigs), carbohydrate esterases (CE: 259 contigs), and polysaccharide lyases (PE: 16 contigs). The hierarchical clustering of buffalo metagenomes demonstrated the similarities and dissimilarity in microbial community structures and functional capacity. This demonstrates that buffalo rumen microbiome was considerably enriched in functional genes involved in polysaccharide degradation with great prospects to obtain new molecules that may be applied in the biofuel industry. PMID:25136572

  13. High potential source for biomass degradation enzyme discovery and environmental aspects revealed through metagenomics of Indian buffalo rumen.

    PubMed

    Singh, K M; Reddy, Bhaskar; Patel, Dishita; Patel, A K; Parmar, Nidhi; Patel, Anand; Patel, J B; Joshi, C G

    2014-01-01

    The complex microbiomes of the rumen functions as an effective system for plant cell wall degradation, and biomass utilization provide genetic resource for degrading microbial enzymes that could be used in the production of biofuel. Therefore the buffalo rumen microbiota was surveyed using shot gun sequencing. This metagenomic sequencing generated 3.9 GB of sequences and data were assembled into 137270 contiguous sequences (contigs). We identified potential 2614 contigs encoding biomass degrading enzymes including glycoside hydrolases (GH: 1943 contigs), carbohydrate binding module (CBM: 23 contigs), glycosyl transferase (GT: 373 contigs), carbohydrate esterases (CE: 259 contigs), and polysaccharide lyases (PE: 16 contigs). The hierarchical clustering of buffalo metagenomes demonstrated the similarities and dissimilarity in microbial community structures and functional capacity. This demonstrates that buffalo rumen microbiome was considerably enriched in functional genes involved in polysaccharide degradation with great prospects to obtain new molecules that may be applied in the biofuel industry.

  14. Artificial vision workbench.

    PubMed

    Frenger, P

    1997-01-01

    Machine vision is an important component of medical systems engineering. Inexpensive miniature solid state cameras are now available. This paper describes how these devices can be used as artificial retinas, to take snapshots and moving pictures in monochrome or color. Used in pairs, they produce a stereoscopic field of vision and enable depth perception. Macular and peripheral vision can be simulated electronically. This paper also presents the author's design of an artificial orbit for this synthetic eye. The orbit supports the eye, protects it, and provides attachment points for the ocular motion control system. Convergence and image fusion can be produced, and saccades simulated, along with the other ocular motions. The use of lenses, filters, irises and focusing mechanisms are also discussed. Typical camera-computer interfaces are described, including the use of "frame grabbers" and analog-to-digital image conversion. Software programs for eye positioning, image manipulation, feature extraction and object recognition are discussed, including the application of artificial neural networks. PMID:9731383

  15. [Liver and artificial liver].

    PubMed

    Chamuleau, R A

    1998-06-01

    Despite good results of orthotopic liver transplantation in patients with fulminant hepatic failure the need still exists for an effective and safe artificial liver, able to temporarily take over the complex liver function so as to bridge the gap with transplantation or regeneration. Attempts to develop non-biological artificial livers have failed, mostly when controlled clinical trials were performed. In the last decade several different types of bioartificial livers have been devised, in which the biocomponent consists of freshly isolated porcine hepatocytes or a human hepatoblastoma cell line. The majority use semipermeable hollow fibers known from artificial kidney devices. The liver cells may lie either inside or outside the lumen of these fibers. In vitro analysis of liver function and animal experimental work showing that the bioartificial liver increases survival justify clinical application. Bioartificial livers are connected to patients extracorporeally by means of plasmapheresis circuit for periods of about 6 hours. In different trials about 40 patients with severe liver failure have been treated. No important adverse effects have not been reported in these phase I trials. Results of controlled studies are urgently needed. As long as no satisfactory immortalised human liver cell line with good function is available, porcine hepatocytes will remain the first choice, provided transmission of porcine pathogens to man is prevented. PMID:9752034

  16. Effect of diet and absence of protozoa on the rumen microbial community and on the representativeness of bacterial fractions used in the determination of microbial protein synthesis.

    PubMed

    Belanche, A; de la Fuente, G; Pinloche, E; Newbold, C J; Balcells, J

    2012-11-01

    Accurate estimates of microbial synthesis in the rumen are vital to optimize ruminant nutrition. Liquid- (LAB) and solid-associated bacterial fractions (SAB) harvested from the rumen are generally considered as microbial references when microbial yield is calculated; however, factors that determine their composition are not completely understood. The aim of this study was to evaluate the effect of diet and absence or presence of rumen protozoa on the rumen microbial community. It was hypothesized that these treatments could modify the composition and representativeness of LAB and SAB. Twenty twin lambs (Ovis aries) were used; one-half of the twins were kept protozoa-free, and each respective twin sibling was faunated. At 6 mo of age, 5 animals from each group were randomly allocated to the experimental diets consisting of either alfalfa hay as the sole diet, or 50:50 mixed with ground barley grain. After 15 d of adaptation to the diet, animals were euthanized, rumen and abomasum contents were sampled, and LAB and SAB isolated. The presence of protozoa buffered the effect of diet on the rumen bacterial population. Faunated animals fed alfalfa hay had a greater abundance of F. succinogenes, anaerobic fungi and methanogens, as well as an enhanced rumen bacterial diversity. Cellulolytic bacteria were more abundant in SAB, whereas the abomasal abundance of most of the microorganisms studied was closer to those values observed in LAB. Rumen and abomasal samples showed similar bacterial DNA concentrations, but the fungal and protozoal DNA concentration in the abomasum was only 69% and 13% of that observed in the rumen, respectively, suggesting fungal and protozoal sequestration in the rumen or possible preferential degradation of fungal and protozoal DNA in the abomasum, or both. In conclusion, absence of protozoa and type of diet extensively modified the chemical composition of LAB and SAB as a consequence of changes in the microbial composition of these fractions.

  17. Metagenomic analysis of virulence-associated and antibiotic resistance genes of microbes in rumen of Indian buffalo (Bubalus bubalis).

    PubMed

    Singh, K M; Jakhesara, S J; Koringa, P G; Rank, D N; Joshi, C G

    2012-10-10

    A major research goal in rumen microbial ecology is to understand the relationship between community composition and its function, particularly involved in fermentation process is of a potential interest. The buffalo rumen microbiota impacts human food safety as well as animal health. Although the bacteria of bovine rumen have been well characterized, techniques have been lacking to correlate total community structure with gene function. We applied 454 next generations sequencing technology to characterize general microbial diversity present in buffalo rumen metagenome and also identified the repertoire of microbial genes present, including genes associated with antibiotic resistance and bacterial virulence. Results suggest that over six percent (6.44%) of the sequences from our buffalo rumen pool sample could be categorized as virulence genes and genes associated with resistance to antibiotic and toxic compounds (RATC), which is a higher proportion of virulence genes reported from metagenome samples of chicken cecum (5.39%), cow rumen (4.43%) and Sargasso sea (2.95%). However, it was lower than the proportion found in cow milk (11.33%) cattle faeces (8.4%), Antarctic marine derived lake (8.45%), human fecal (7.7%) and farm soil (7.79%). The dynamic nature of metagenomic data, together with the large number of RATC classes observed in samples from widely different ecologies indicates that metagenomic data can be used to track potential targets and relative amounts of antibiotic resistance genes in individual animals. In addition, these data can be also used to generate antibiotic resistance gene profiles to facilitate an understanding of the ecology of the microbial communities in each habitat as well as the epidemiology of antibiotic resistant gene transport between and among habitats.

  18. Effect of chloride on pH microclimate and electrogenic Na+ absorption across the rumen epithelium of goat and sheep.

    PubMed

    Leonhard-Marek, S; Breves, G; Busche, R

    2006-08-01

    Active Na+ absorption across rumen epithelium comprises Na+/H+ exchange and a nonselective cation conductance (NSCC). Luminal chloride is able to stimulate Na+ absorption, which has been attributed to an interaction between Cl-/HCO3- and Na+/H+ exchangers. However, isolated rumen epithelial cells also express a Cl- conductance. We investigated whether Cl- has an additional effect on electrogenic Na+ absorption via NSCC. NSCC was estimated from short-circuit current (Isc) across epithelia of goat and sheep rumen in Ussing chambers. Epithelial surface pH (pHs) was measured with 5-N-hexadecanoyl-aminofluorescence. Membrane potentials were measured with microelelectrodes. Luminal, but not serosal, Cl- stimulated the Ca2+ and Mg2+ sensitive Isc. This effect was independent of the replacing anion (gluconate or acetate) and of the presence of bicarbonate. The mean pHs of rumen epithelium amounted to 7.47 +/- 0.03 in a low-Cl- solution. It was increased by 0.21 pH units when luminal Cl- was increased from 10 to 68 mM. Increasing mucosal pH from 7.5 to 8.0 also increased the Ca2+ and Mg2+ sensitive Isc and transepithelial conductance and reduced the fractional resistance of the apical membrane. Luminal Cl- depolarized the apical membrane of rumen epithelium. 5-Nitro-2-(3-phenylpropylamino)-benzoate reduced the divalent cation sensitive Isc, but only in low-Cl- solutions. The results show that luminal Cl- can increase the microclimate pH via apical Cl-/HCO3- or Cl-/OH- exchangers. Electrogenic Na+ absorption via NSCC increases with pH, explaining part of the Cl- effects on Na+ absorption. The data further show that the Cl- conductance of rumen epithelium must be located at the basolateral membrane.

  19. The Genome Sequence of the Rumen Methanogen Methanobrevibacter ruminantium Reveals New Possibilities for Controlling Ruminant Methane Emissions

    PubMed Central

    Leahy, Sinead C.; Kelly, William J.; Altermann, Eric; Ronimus, Ron S.; Yeoman, Carl J.; Pacheco, Diana M.; Li, Dong; Kong, Zhanhao; McTavish, Sharla; Sang, Carrie; Lambie, Suzanne C.; Janssen, Peter H.; Dey, Debjit; Attwood, Graeme T.

    2010-01-01

    Background Methane (CH4) is a potent greenhouse gas (GHG), having a global warming potential 21 times that of carbon dioxide (CO2). Methane emissions from agriculture represent around 40% of the emissions produced by human-related activities, the single largest source being enteric fermentation, mainly in ruminant livestock. Technologies to reduce these emissions are lacking. Ruminant methane is formed by the action of methanogenic archaea typified by Methanobrevibacter ruminantium, which is present in ruminants fed a wide variety of diets worldwide. To gain more insight into the lifestyle of a rumen methanogen, and to identify genes and proteins that can be targeted to reduce methane production, we have sequenced the 2.93 Mb genome of M. ruminantium M1, the first rumen methanogen genome to be completed. Methodology/Principal Findings The M1 genome was sequenced, annotated and subjected to comparative genomic and metabolic pathway analyses. Conserved and methanogen-specific gene sets suitable as targets for vaccine development or chemogenomic-based inhibition of rumen methanogens were identified. The feasibility of using a synthetic peptide-directed vaccinology approach to target epitopes of methanogen surface proteins was demonstrated. A prophage genome was described and its lytic enzyme, endoisopeptidase PeiR, was shown to lyse M1 cells in pure culture. A predicted stimulation of M1 growth by alcohols was demonstrated and microarray analyses indicated up-regulation of methanogenesis genes during co-culture with a hydrogen (H2) producing rumen bacterium. We also report the discovery of non-ribosomal peptide synthetases in M. ruminantium M1, the first reported in archaeal species. Conclusions/Significance The M1 genome sequence provides new insights into the lifestyle and cellular processes of this important rumen methanogen. It also defines vaccine and chemogenomic targets for broad inhibition of rumen methanogens and represents a significant contribution to

  20. Examination of the rumen bacteria and methanogenic archaea of wild impalas (Aepyceros melampus melampus) from Pongola, South Africa.

    PubMed

    Cersosimo, Laura M; Lachance, Hannah; St-Pierre, Benoit; van Hoven, Wouter; Wright, André-Denis G

    2015-04-01

    Although the rumen microbiome of domesticated ruminants has been evaluated, few studies have explored the rumen microbiome of wild ruminants, and no studies have identified the rumen microbiome in the impala (Aepyceros melampus melampus). In the present study, next-generation sequencing and real-time polymerase chain reaction were used to investigate the diversity and density of the bacteria and methanogenic archaea residing in the rumen of five adult male impalas, culled during the winter dry season in Pongola, South Africa. A total of 15,323 bacterial 16S rRNA gene sequences (from five impala), representing 3,892 different phylotypes, were assigned to 1,902 operational taxonomic units (OTUs). A total of 20,124 methanogen 16S rRNA gene sequence reads (from four impala), of which 5,028 were unique, were assigned to 344 OTUs. From the total sequence reads, Bacteroidetes, Proteobacteria, and Firmicutes were the most abundant bacterial phyla. While the majority of the bacterial genera found were unclassified, Prevotella and Cupriavidus were the most abundant classified genera. For methanogens, the genera Methanobrevibacter and Methanosphaera represented 94.3% and 4.0% of the classified sequences, respectively. Most notable was the identification of Methanobrevibacter thaueri-like 16S rRNA gene sequence reads in all four impala samples, representing greater than 30% of each individual's total sequences. Both data sets are accessible through NCBI's Sequence Read Archive (SRA), under study accession number SRP [048619]. The densities of bacteria (1.26 × 10(10)-3.82 × 10(10) cells/ml whole rumen contents) and methanogens (4.48 × 10(8)-7.2 × 10(9) cells/ml of whole rumen contents) from five individual impala were similar to those typically observed in domesticated ruminants. PMID:25351144

  1. Effects of Supplementation of Eucalyptus (E. Camaldulensis) Leaf Meal on Feed Intake and Rumen Fermentation Efficiency in Swamp Buffaloes

    PubMed Central

    Thao, N. T.; Wanapat, M.; Kang, S.; Cherdthong, A.

    2015-01-01

    Four rumen fistulated swamp buffaloes were randomly assigned according to a 4×4 Latin square design to investigate the effects of Eucalyptus (E. Camaldulensis) leaf meal (ELM) supplementation as a rumen enhancer on feed intake and rumen fermentation characteristics. The dietary treatments were as follows: T1 = 0 g ELM/hd/d; T2 = 40 g ELM/hd/d; T3 = 80 g ELM/hd/d; T4 = 120 g ELM/hd/d, respectively. Experimental animals were kept in individual pens and concentrate was offered at 0.3% BW while rice straw was fed ad libitum. The results revealed that voluntary feed intake and digestion coefficients of nutrients were similar among treatments. Ruminal pH, temperature and blood urea nitrogen concentrations were not affected by ELM supplementation; however, ELM supplementation resulted in lower concentration of ruminal ammonia nitrogen. Total volatile fatty acids, propionate concentration increased with the increasing level of EML (p<0.05) while the proportion of acetate was decreased (p<0.05). Methane production was linearly decreased (p<0.05) with the increasing level of ELM supplementation. Protozoa count and proteolytic bacteria population were reduced (p<0.05) while fungal zoospores and total viable bacteria, amylolytic, cellulolytic bacteria were unchanged. In addition, nitrogen utilization and microbial protein synthesis tended to increase by the dietary treatments. Based on the present findings, it is suggested that ELM could modify the rumen fermentation and is potentially used as a rumen enhancer in methane mitigation and rumen fermentation efficiency. PMID:26104399

  2. Characterization of the rumen lipidome and microbiome of steers fed a diet supplemented with flax and echium oil

    PubMed Central

    Huws, Sharon Ann; Kim, Eun Jun; Cameron, Simon J S; Girdwood, Susan E; Davies, Lynfa; Tweed, John; Vallin, Hannah; Scollan, Nigel David

    2015-01-01

    Developing novel strategies for improving the fatty acid composition of ruminant products relies upon increasing our understanding of rumen bacterial lipid metabolism. This study investigated whether flax or echium oil supplementation of steer diets could alter the rumen fatty acids and change the microbiome. Six Hereford × Friesian steers were offered grass silage/sugar beet pulp only (GS), or GS supplemented either with flax oil (GSF) or echium oil (GSE) at 3% kg−1 silage dry matter in a 3 × 3 replicated Latin square design with 21-day periods with rumen samples taken on day 21 for the analyses of the fatty acids and microbiome. Flax oil supplementation of steer diets increased the intake of polyunsaturated fatty acids, but a substantial degree of rumen biohydrogenation was seen. Likewise, echium oil supplementation of steer diets resulted in increased intake of 18:4n-3, but this was substantially biohydrogenated within the rumen. Microbiome pyrosequences showed that 50% of the bacterial genera were core to all diets (found at least once under each dietary intervention), with 19.10%, 5.460% and 12.02% being unique to the rumen microbiota of steers fed GS, GSF and GSE respectively. Higher 16S rDNA sequence abundance of the genera Butyrivibrio, Howardella, Oribacterium, Pseudobutyrivibrio and Roseburia was seen post flax feeding. Higher 16S rDNA abundance of the genus Succinovibrio and Roseburia was seen post echium feeding. The role of these bacteria in biohydrogenation now requires further study. PMID:25223749

  3. Bacterial community composition and fermentation patterns in the rumen of sika deer (Cervus nippon) fed three different diets.

    PubMed

    Li, Zhipeng; Wright, André-Denis G; Liu, Hanlu; Bao, Kun; Zhang, Tietao; Wang, Kaiying; Cui, Xuezhe; Yang, Fuhe; Zhang, Zhigang; Li, Guangyu

    2015-02-01

    Sika deer (Cervus nippon) rely on microorganisms living in the rumen to convert plant materials into chemical compounds, such as volatile fatty acids (VFAs), but how the rumen bacterial community is affected by different forages and adapt to altered diets remains poorly understood. The present study used 454-pyrosequencing of bacterial 16S ribosomal RNA (rRNA) genes to examine the relationship between rumen bacterial diversity and metabolic phenotypes using three sika deer in a 3 × 3 latin square design. Three sika deer were fed oak leaves (OL), corn stover (CS), or corn silage (CI), respectively. After a 7-day feeding period, when compared to the CS and CI groups, the OL group had a lower proportion of Prevotella spp. and a higher proportion of unclassified bacteria belonging to the families Succinivibrionaceae and Paraprevotellaceae (P<0.05). Meanwhile, the concentration of isobutyrate was significantly lower (P<0.05) in the OL group than in the CS and CI groups. There was no significant change of dominant bacterial genera in the OL group after 28 days of feeding. Conversely, total volatile fatty acids (TVFAs) showed an increase after 28 days of feeding, mainly due to the increasing of acetate, propionate, and valerate (P<0.05). The interplay between bacteria and metabolism in the OL group differed from that in the CS and CI groups, especially for the interaction of TVFAs and acetate/propionate. Overall, the current study suggested that Prevotella spp. played critical roles in the fermentation of feed in the rumen of sika deer. However, the differences in interplay patterns between rumen bacterial community composition and metabolic phenotypes were altered in the native and domesticated diets indicating the changed fermentation patterns in the rumen of sika deer.

  4. Characterization of the rumen lipidome and microbiome of steers fed a diet supplemented with flax and echium oil.

    PubMed

    Huws, Sharon Ann; Kim, Eun Jun; Cameron, Simon J S; Girdwood, Susan E; Davies, Lynfa; Tweed, John; Vallin, Hannah; Scollan, Nigel David

    2015-03-01

    Developing novel strategies for improving the fatty acid composition of ruminant products relies upon increasing our understanding of rumen bacterial lipid metabolism. This study investigated whether flax or echium oil supplementation of steer diets could alter the rumen fatty acids and change the microbiome. Six Hereford × Friesian steers were offered grass silage/sugar beet pulp only (GS), or GS supplemented either with flax oil (GSF) or echium oil (GSE) at 3% kg(-1) silage dry matter in a 3 × 3 replicated Latin square design with 21-day periods with rumen samples taken on day 21 for the analyses of the fatty acids and microbiome. Flax oil supplementation of steer diets increased the intake of polyunsaturated fatty acids, but a substantial degree of rumen biohydrogenation was seen. Likewise, echium oil supplementation of steer diets resulted in increased intake of 18:4n-3, but this was substantially biohydrogenated within the rumen. Microbiome pyrosequences showed that 50% of the bacterial genera were core to all diets (found at least once under each dietary intervention), with 19.10%, 5.460% and 12.02% being unique to the rumen microbiota of steers fed GS, GSF and GSE respectively. Higher 16S rDNA sequence abundance of the genera Butyrivibrio, Howardella, Oribacterium, Pseudobutyrivibrio and Roseburia was seen post flax feeding. Higher 16S rDNA abundance of the genus Succinovibrio and Roseburia was seen post echium feeding. The role of these bacteria in biohydrogenation now requires further study. PMID:25223749

  5. Effect of feeding pasture-finished cattle different conserved forages on Escherichia coli in the rumen and faeces.

    PubMed

    Jacobson, Laura H; Nagle, Tanya A; Gregory, Neville G; Graham Bell, R; Le Roux, Guillaume; Haines, Joanne M

    2002-09-01

    The effects of eight different pre-slaughter diets on gut microflora, pH and dry matter were evaluated in 112 slaughter-weight, pasture-finished heifers. Hide dirtiness at slaughter, plasma cortisol, meat pH and stickiness, and liveweight loss, were also examined. The pre-slaughter diets were: 48 h of 100% meadow hay, lucerne hay, red clover hay, perennial ryegrass hay, haylage, haylage supplemented with maize silage, pasture, or 24 h fasting before transport. Fasted animals had the highest counts of rumen Escherichia coli and Enterobacteria compared to other treatments (P<0.001), while red clover hay and haylage had the lowest (P<0.05). Faecal E. coli counts were also highest for fasted animals (P<0.05). Rumen E. coli and Enterobacteria counts were positively correlated with rumen pH (P<0.001), and negatively correlated with fibre intake (P<0.001). Diet significantly affected the pH of both the rumen and faeces (P<0.001), with fasted animals having the highest rumen pH and haylage and red-clover hay-fed animals the lowest. Dry matter (%) of the rumen contents was also significantly affected by diet (P<0.001). The mean carcass weight of fed heifers was 5 kg heavier than that of the fasted heifers (P<0.05). A pH/volatile fatty acid (VFA) dependent mechanism is suggested as the major mode for E. coli suppression by feeds used in the study. Coumarins may have contributed to lower ruminal and faecal E. coli counts with E. coli counts negatively correlated with expected coumarin ingestion (P<0.01). Feeding pasture-fed cattle conserved herbaceous forages, in preference to fasting, before transport for slaughter may prove beneficial in reducing the risk of carcass contamination with E. coli and other bacteria of digesta and/or faecal origin, and in protecting carcass weight.

  6. Examination of the rumen bacteria and methanogenic archaea of wild impalas (Aepyceros melampus melampus) from Pongola, South Africa.

    PubMed

    Cersosimo, Laura M; Lachance, Hannah; St-Pierre, Benoit; van Hoven, Wouter; Wright, André-Denis G

    2015-04-01

    Although the rumen microbiome of domesticated ruminants has been evaluated, few studies have explored the rumen microbiome of wild ruminants, and no studies have identified the rumen microbiome in the impala (Aepyceros melampus melampus). In the present study, next-generation sequencing and real-time polymerase chain reaction were used to investigate the diversity and density of the bacteria and methanogenic archaea residing in the rumen of five adult male impalas, culled during the winter dry season in Pongola, South Africa. A total of 15,323 bacterial 16S rRNA gene sequences (from five impala), representing 3,892 different phylotypes, were assigned to 1,902 operational taxonomic units (OTUs). A total of 20,124 methanogen 16S rRNA gene sequence reads (from four impala), of which 5,028 were unique, were assigned to 344 OTUs. From the total sequence reads, Bacteroidetes, Proteobacteria, and Firmicutes were the most abundant bacterial phyla. While the majority of the bacterial genera found were unclassified, Prevotella and Cupriavidus were the most abundant classified genera. For methanogens, the genera Methanobrevibacter and Methanosphaera represented 94.3% and 4.0% of the classified sequences, respectively. Most notable was the identification of Methanobrevibacter thaueri-like 16S rRNA gene sequence reads in all four impala samples, representing greater than 30% of each individual's total sequences. Both data sets are accessible through NCBI's Sequence Read Archive (SRA), under study accession number SRP [048619]. The densities of bacteria (1.26 × 10(10)-3.82 × 10(10) cells/ml whole rumen contents) and methanogens (4.48 × 10(8)-7.2 × 10(9) cells/ml of whole rumen contents) from five individual impala were similar to those typically observed in domesticated ruminants.

  7. Metagenomic analysis of virulence-associated and antibiotic resistance genes of microbes in rumen of Indian buffalo (Bubalus bubalis).

    PubMed

    Singh, K M; Jakhesara, S J; Koringa, P G; Rank, D N; Joshi, C G

    2012-10-10

    A major research goal in rumen microbial ecology is to understand the relationship between community composition and its function, particularly involved in fermentation process is of a potential interest. The buffalo rumen microbiota impacts human food safety as well as animal health. Although the bacteria of bovine rumen have been well characterized, techniques have been lacking to correlate total community structure with gene function. We applied 454 next generations sequencing technology to characterize general microbial diversity present in buffalo rumen metagenome and also identified the repertoire of microbial genes present, including genes associated with antibiotic resistance and bacterial virulence. Results suggest that over six percent (6.44%) of the sequences from our buffalo rumen pool sample could be categorized as virulence genes and genes associated with resistance to antibiotic and toxic compounds (RATC), which is a higher proportion of virulence genes reported from metagenome samples of chicken cecum (5.39%), cow rumen (4.43%) and Sargasso sea (2.95%). However, it was lower than the proportion found in cow milk (11.33%) cattle faeces (8.4%), Antarctic marine derived lake (8.45%), human fecal (7.7%) and farm soil (7.79%). The dynamic nature of metagenomic data, together with the large number of RATC classes observed in samples from widely different ecologies indicates that metagenomic data can be used to track potential targets and relative amounts of antibiotic resistance genes in individual animals. In addition, these data can be also used to generate antibiotic resistance gene profiles to facilitate an understanding of the ecology of the microbial communities in each habitat as well as the epidemiology of antibiotic resistant gene transport between and among habitats. PMID:22850272

  8. Bacterial community composition and fermentation patterns in the rumen of sika deer (Cervus nippon) fed three different diets.

    PubMed

    Li, Zhipeng; Wright, André-Denis G; Liu, Hanlu; Bao, Kun; Zhang, Tietao; Wang, Kaiying; Cui, Xuezhe; Yang, Fuhe; Zhang, Zhigang; Li, Guangyu

    2015-02-01

    Sika deer (Cervus nippon) rely on microorganisms living in the rumen to convert plant materials into chemical compounds, such as volatile fatty acids (VFAs), but how the rumen bacterial community is affected by different forages and adapt to altered diets remains poorly understood. The present study used 454-pyrosequencing of bacterial 16S ribosomal RNA (rRNA) genes to examine the relationship between rumen bacterial diversity and metabolic phenotypes using three sika deer in a 3 × 3 latin square design. Three sika deer were fed oak leaves (OL), corn stover (CS), or corn silage (CI), respectively. After a 7-day feeding period, when compared to the CS and CI groups, the OL group had a lower proportion of Prevotella spp. and a higher proportion of unclassified bacteria belonging to the families Succinivibrionaceae and Paraprevotellaceae (P<0.05). Meanwhile, the concentration of isobutyrate was significantly lower (P<0.05) in the OL group than in the CS and CI groups. There was no significant change of dominant bacterial genera in the OL group after 28 days of feeding. Conversely, total volatile fatty acids (TVFAs) showed an increase after 28 days of feeding, mainly due to the increasing of acetate, propionate, and valerate (P<0.05). The interplay between bacteria and metabolism in the OL group differed from that in the CS and CI groups, especially for the interaction of TVFAs and acetate/propionate. Overall, the current study suggested that Prevotella spp. played critical roles in the fermentation of feed in the rumen of sika deer. However, the differences in interplay patterns between rumen bacterial community composition and metabolic phenotypes were altered in the native and domesticated diets indicating the changed fermentation patterns in the rumen of sika deer. PMID:25252928

  9. Characterization of the rumen lipidome and microbiome of steers fed a diet supplemented with flax and echium oil.

    PubMed

    Huws, Sharon Ann; Kim, Eun Jun; Cameron, Simon J S; Girdwood, Susan E; Davies, Lynfa; Tweed, John; Vallin, Hannah; Scollan, Nigel David

    2015-03-01

    Developing novel strategies for improving the fatty acid composition of ruminant products relies upon increasing our understanding of rumen bacterial lipid metabolism. This study investigated whether flax or echium oil supplementation of steer diets could alter the rumen fatty acids and change the microbiome. Six Hereford × Friesian steers were offered grass silage/sugar beet pulp only (GS), or GS supplemented either with flax oil (GSF) or echium oil (GSE) at 3% kg(-1) silage dry matter in a 3 × 3 replicated Latin square design with 21-day periods with rumen samples taken on day 21 for the analyses of the fatty acids and microbiome. Flax oil supplementation of steer diets increased the intake of polyunsaturated fatty acids, but a substantial degree of rumen biohydrogenation was seen. Likewise, echium oil supplementation of steer diets resulted in increased intake of 18:4n-3, but this was substantially biohydrogenated within the rumen. Microbiome pyrosequences showed that 50% of the bacterial genera were core to all diets (found at least once under each dietary intervention), with 19.10%, 5.460% and 12.02% being unique to the rumen microbiota of steers fed GS, GSF and GSE respectively. Higher 16S rDNA sequence abundance of the genera Butyrivibrio, Howardella, Oribacterium, Pseudobutyrivibrio and Roseburia was seen post flax feeding. Higher 16S rDNA abundance of the genus Succinovibrio and Roseburia was seen post echium feeding. The role of these bacteria in biohydrogenation now requires further study.

  10. Effect of chloride on pH microclimate and electrogenic Na+ absorption across the rumen epithelium of goat and sheep.

    PubMed

    Leonhard-Marek, S; Breves, G; Busche, R

    2006-08-01

    Active Na+ absorption across rumen epithelium comprises Na+/H+ exchange and a nonselective cation conductance (NSCC). Luminal chloride is able to stimulate Na+ absorption, which has been attributed to an interaction between Cl-/HCO3- and Na+/H+ exchangers. However, isolated rumen epithelial cells also express a Cl- conductance. We investigated whether Cl- has an additional effect on electrogenic Na+ absorption via NSCC. NSCC was estimated from short-circuit current (Isc) across epithelia of goat and sheep rumen in Ussing chambers. Epithelial surface pH (pHs) was measured with 5-N-hexadecanoyl-aminofluorescence. Membrane potentials were measured with microelelectrodes. Luminal, but not serosal, Cl- stimulated the Ca2+ and Mg2+ sensitive Isc. This effect was independent of the replacing anion (gluconate or acetate) and of the presence of bicarbonate. The mean pHs of rumen epithelium amounted to 7.47 +/- 0.03 in a low-Cl- solution. It was increased by 0.21 pH units when luminal Cl- was increased from 10 to 68 mM. Increasing mucosal pH from 7.5 to 8.0 also increased the Ca2+ and Mg2+ sensitive Isc and transepithelial conductance and reduced the fractional resistance of the apical membrane. Luminal Cl- depolarized the apical membrane of rumen epithelium. 5-Nitro-2-(3-phenylpropylamino)-benzoate reduced the divalent cation sensitive Isc, but only in low-Cl- solutions. The results show that luminal Cl- can increase the microclimate pH via apical Cl-/HCO3- or Cl-/OH- exchangers. Electrogenic Na+ absorption via NSCC increases with pH, explaining part of the Cl- effects on Na+ absorption. The data further show that the Cl- conductance of rumen epithelium must be located at the basolateral membrane. PMID:16484679

  11. Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows.

    PubMed

    Sun, P; Wang, J Q; Deng, L F

    2013-02-01

    Two experiments were conducted to evaluate the effects of Bacillus subtilis natto, which was initially isolated from fermented soybeans on milk production, rumen fermentation and ruminal microbiome in dairy cows. In Experiment 1, 36 early lactation Chinese Holstein dairy cows (56 ± 23 days in milk) were randomly assigned to three groups: Control, cows were fed total mixed ration (TMR); BSNLOW, TMR plus 0.5 × 1011 colony-forming units (cfu) of B. subtilis natto/cow per day; and BSNHIGH, TMR plus 1.0 × 1011 cfu of B. subtilis natto/cow per day. During the 70-day treatment period, daily milk production and daily milk composition were determined in individual cows. The results showed that supplementing dairy cows with 0.5 × 1011 and 1.0 × 1011 cfu of B. subtilis natto linearly increased (P < 0.01) milk production (25.2 and 26.4 kg/day v. 23.0 kg/day), 4% fat-corrected milk (27.3 and 28.1 kg/day v. 24.2 kg/day), energy-corrected milk (27.3 and 28.2 kg/day v. 24.2 kg/day), as well as milk fat (1.01 and 1.03 kg/day v. 0.88 kg/day), protein (0.77 and 0.82 kg/day v. 0.69 kg/day) and lactose yield (1.16 and 1.22 kg/day v. 1.06 kg/day) but decreased milk somatic cell counts (SCC) by 3.4% to 5.5% (P < 0.01) in BSNLOW and BSNHIGH treatments compared with Control. In Experiment 2, four rumen-cannulated dairy cows were fed the basal diet from 1 to 7 days (pre-trial period) and rumen samples were collected on days 6 and 7; the same cows then were fed 1.0 × 1011 cfu/day B. subtilis natto from days 8 to 21 (trial period) and rumen samples were collected on days 20 and 21. B. subtilis natto was discontinued from days 22 to 28 (post-trial period) and rumen samples were collected on days 27 and 28. Compared with the pre- and post-periods, ruminal pH decreased by 2.7% to 3.0% during the trial period (P < 0.01), whereas ammonia nitrogen (NH3-N), total volatile fatty acids and molar proportion of propionate (P < 0.01) and valerate (P < 0.05) increased. Molar proportion of acetate

  12. Effects of dietary supplementation of rumen-protected folic acid on rumen fermentation, degradability and excretion of urinary purine derivatives in growing steers.

    PubMed

    Wang, Cong; Liu, Qiang; Guo, Gang; Huo, WenJie; Ma, Le; Zhang, YanLi; Pei, CaiXia; Zhang, ShuanLin; Wang, Hao

    2016-12-01

    The present experiment was undertaken to determine the effects of dietary addition of rumen-protected folic acid (RPFA) on ruminal fermentation, nutrient degradability, enzyme activity and the relative quantity of ruminal cellulolytic bacteria in growing beef steers. Eight rumen-cannulated Jinnan beef steers averaging 2.5 years of age and 419 ± 1.9 kg body weight were used in a replicated 4 × 4 Latin square design. The four treatments comprised supplementation levels of 0 (Control), 70, 140 and 210 mg RPFA/kg dietary dry matter (DM). On DM basis, the ration consisted of 50% corn silage, 47% concentrate and 3% soybean oil. The DM intake (averaged 8.5 kg/d) was restricted to 95% of ad libitum intake. The intake of DM, crude protein (CP) and net energy for growth was not affected by treatments. In contrast, increasing RPFA supplementation increased average daily gain and the concentration of total volatile fatty acid and reduced ruminal pH linearly. Furthermore, increasing RPFA supplementation enhanced the acetate to propionate ratio and reduced the ruminal ammonia N content linearly. The ruminal effective degradability of neutral detergent fibre from corn silage and CP from concentrate improved linearly and was highest for the highest supplementation levels. The activities of cellobiase, xylanase, pectinase and α-amylase linearly increased, but carboxymethyl-cellulase and protease were not affected by the addition of RPFA. The relative quantities of Butyrivibrio fibrisolvens, Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes increased linearly. With increasing RPFA supplementation levels, the excretion of urinary purine derivatives was also increased linearly. The present results indicated that the supplementation of RPFA improved ruminal fermentation, nutrient degradability, activities of microbial enzymes and the relative quantity of the ruminal cellulolytic bacteria in a dose-dependent manner. According to the conditions of this

  13. Research note: Postnatal development of electrolyte transport in calf rumen as affected by weaning time.

    PubMed

    Breves, G; Zitnan, R; Schröder, B; Winckler, C; Hagemeister, H; Failing, K; Voigt, J

    2002-10-01

    In a previous study we found a positive correlation between early weaning in calves and morphological parameters which were indicative of ruminal development, i.e. the length and width of the papillae. The objective of the present study was to determine to what extent this observation could be reflected by modulations of absorptive and secretory functions of the rumen mucosa. For this purpose the short-circuit currents (Isc) as a measure of electrogenic net ion fluxes and the transepithelial conductances (G(T)) as a measure of the overall tissue permeability were measured in vitro applying the Ussing-chamber technique. Simultaneously, the unidirectional flux rates of sodium and chloride across rumen wall epithelia were determined in the absence of electrochemical gradients. Under these conditions, significant positive net flux rates (Jnet) clearly indicate active mechanisms for electrolyte absorption. For the experiments 12 male Holstein calves 7 d of age were assigned to three groups of 4 animals each: milk group (I, slaughtered after 6 weeks of age), late weaning group (II, slaughtered after 9 weeks of age) and early weaning group (II, weaned after 6 weeks of age and slaughtered after 9 weeks of age). Whereas G(T) values remained unaffected by different age and feeding, Isc values were significantly affected by early weaning but were not influenced by age. Irrespective of weaning time active absorption of Na+ tended to be higher by about 60% in 9 weeks old animals. Active absorption of chloride was significantly increased in milk fed 9 weeke old calves and this effect was further stimulated by early weaning. In conclusion, the data show an increasing active Na+ absorption with age in calf rumen that could not be influenced by early weaning. Similarly, active Cl- absorption was initially increased during postnatal development and this effect could be stimulated further by early weaning.

  14. Taxonomic Assessment of Rumen Microbiota Using Total RNA and Targeted Amplicon Sequencing Approaches

    PubMed Central

    Li, Fuyong; Henderson, Gemma; Sun, Xu; Cox, Faith; Janssen, Peter H.; Guan, Le Luo

    2016-01-01

    Taxonomic characterization of active gastrointestinal microbiota is essential to detect shifts in microbial communities and functions under various conditions. This study aimed to identify and quantify potentially active rumen microbiota using total RNA sequencing and to compare the outcomes of this approach with the widely used targeted RNA/DNA amplicon sequencing technique. Total RNA isolated from rumen digesta samples from five beef steers was subjected to Illumina paired-end sequencing (RNA-seq), and bacterial and archaeal amplicons of partial 16S rRNA/rDNA were subjected to 454 pyrosequencing (RNA/DNA Amplicon-seq). Taxonomic assessments of the RNA-seq, RNA Amplicon-seq, and DNA Amplicon-seq datasets were performed using a pipeline developed in house. The detected major microbial phylotypes were common among the three datasets, with seven bacterial phyla, fifteen bacterial families, and five archaeal taxa commonly identified across all datasets. There were also unique microbial taxa detected in each dataset. Elusimicrobia and Verrucomicrobia phyla; Desulfovibrionaceae, Elusimicrobiaceae, and Sphaerochaetaceae families; and Methanobrevibacter woesei were only detected in the RNA-Seq and RNA Amplicon-seq datasets, whereas Streptococcaceae was only detected in the DNA Amplicon-seq dataset. In addition, the relative abundances of four bacterial phyla, eight bacterial families and one archaeal taxon were different among the three datasets. This is the first study to compare the outcomes of rumen microbiota profiling between RNA-seq and RNA/DNA Amplicon-seq datasets. Our results illustrate the differences between these methods in characterizing microbiota both qualitatively and quantitatively for the same sample, and so caution must be exercised when comparing data. PMID:27446027

  15. Level of Leucaena leucocephala silage feeding on intake, rumen fermentation, and nutrient digestibility in dairy steers.

    PubMed

    Giang, Nguyen Thien Truong; Wanapat, Metha; Phesatcha, Kampanat; Kang, Sungchhang

    2016-06-01

    The objective of this experiment was to determine effects of Leucaena silage (LS) feeding on feed intake, nutrient digestibility, and rumen fermentation in dairy steers. Four rumen fistulated dairy steers, 167 ± 12 kg body weight (BW), were randomly assigned to receive dietary treatments according to a 4 × 4 Latin square design. Treatments were as follows: T1 = 100 % untreated rice straw (RS), T2 = 70 % RS + 30 % LS, T3 = 40 % RS + 60 % LS, and T4 = 100 % LS, respectively. All animals were fed rice straw and LS ad libitum with concentrate mixture supplemented at 0.2 % BW. The results found that dry matter intake and nutrient digestibility were the highest in dairy steers fed 60 % LS (P < 0.05). Ruminal temperature and pH were not affected by LS feeding (P > 0.05) while ruminal ammonia nitrogen and blood urea nitrogen concentration were linearly increased with increasing levels of LS feeding (P < 0.01). On the other hand, total volatile fatty acids and propionate (C3) were improved by LS feeding especially in steers fed 60 % LS (P < 0.05) whereas acetate (C2) production and C2/C3 ratio were decreased. Moreover, methane production was reduced together with increasing LS feeding level (P < 0.05). Based on this study, it could be concluded that 60 % LS feeding could enhance feed intake, digestibility, and rumen fermentation end-product while reducing methane production in dairy steers. This study suggested that LS could be used as high-quality roughage for ruminant feeding in the tropical region.

  16. Accumulation of reserve carbohydrate by rumen protozoa and bacteria in competition for glucose.

    PubMed

    Denton, Bethany L; Diese, Leanne E; Firkins, Jeffrey L; Hackmann, Timothy J

    2015-03-01

    The aim of this study was to determine if rumen protozoa could form large amounts of reserve carbohydrate compared to the amounts formed by bacteria when competing for glucose in batch cultures. We separated large protozoa and small bacteria from rumen fluid by filtration and centrifugation, recombined equal protein masses of each group into one mixture, and subsequently harvested (reseparated) these groups at intervals after glucose dosing. This method allowed us to monitor reserve carbohydrate accumulation of protozoa and bacteria individually. When mixtures were dosed with a moderate concentration of glucose (4.62 or 5 mM) (n = 2 each), protozoa accumulated large amounts of reserve carbohydrate; 58.7% (standard error of the mean [SEM], 2.2%) glucose carbon was recovered from protozoal reserve carbohydrate at time of peak reserve carbohydrate concentrations. Only 1.7% (SEM, 2.2%) was recovered in bacterial reserve carbohydrate, which was less than that for protozoa (P < 0.001). When provided a high concentration of glucose (20 mM) (n = 4 each), 24.1% (SEM, 2.2%) of glucose carbon was recovered from protozoal reserve carbohydrate, which was still higher (P = 0.001) than the 5.0% (SEM, 2.2%) glucose carbon recovered from bacterial reserve carbohydrate. Our novel competition experiments directly demonstrate that mixed protozoa can sequester sugar away from bacteria by accumulating reserve carbohydrate, giving protozoa a competitive advantage and stabilizing fermentation in the rumen. Similar experiments could be used to investigate the importance of starch sequestration.

  17. Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen

    NASA Astrophysics Data System (ADS)

    Sundset, Monica A.; Kohn, Alexandra; Mathiesen, Svein D.; Præsteng, Kirsti E.

    2008-08-01

    Reindeer are able to eat and utilize lichens as an important source of energy and nutrients. In the current study, the activities of antibiotic secondary metabolites including usnic, antranoric, fumarprotocetraric, and lobaric acid commonly found in lichens were tested against a collection of 26 anaerobic rumen bacterial isolates from reindeer ( Rangifer tarandus tarandus) using the agar diffusion method. The isolates were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequences. Usnic acid had a potent antimicrobial effect against 25 of the isolates, belonging to Clostridiales, Enterococci, and Streptococci. Isolates of Clostridia and Streptococci were also susceptible to atranoric and lobaric acid. However, one isolate (R3_91_1) was found to be resistant to usnic, antranoric, fumarprotocetraric, and lobaric acid. R3_91_1 was also seen invading and adhering to lichen particles when grown in a liquid anaerobic culture as demonstrated by transmission electron microscopy. This was a Gram-negative, nonmotile rod (0.2-0.7 × 2.0-3.5 μm) with a deoxyribonucleic acid G + C content of 47.0 mol% and main cellular fatty acids including 15:0 anteiso-dimethyl acetal (DMA), 16:0 iso-fatty acid methyl ester (FAME), 13:0 iso-3OH FAME, and 17:0 anteiso-FAME, not matching any of the presently known profiles in the MIDI database. Combined, the phenotypic and genotypic traits including the 16S rRNA gene sequence show that R3_91_1 is a novel species inside the order Clostridiales within the family Lachnospiraceae, for which we propose the name Eubacterium rangiferina. This is the first record of a rumen bacterium able to tolerate and grow in the presence of usnic acid, indicating that the rumen microorganisms in these animals have adapted mechanisms to deal with lichen secondary metabolites, well known for their antimicrobial and toxic effects.

  18. Level of Leucaena leucocephala silage feeding on intake, rumen fermentation, and nutrient digestibility in dairy steers.

    PubMed

    Giang, Nguyen Thien Truong; Wanapat, Metha; Phesatcha, Kampanat; Kang, Sungchhang

    2016-06-01

    The objective of this experiment was to determine effects of Leucaena silage (LS) feeding on feed intake, nutrient digestibility, and rumen fermentation in dairy steers. Four rumen fistulated dairy steers, 167 ± 12 kg body weight (BW), were randomly assigned to receive dietary treatments according to a 4 × 4 Latin square design. Treatments were as follows: T1 = 100 % untreated rice straw (RS), T2 = 70 % RS + 30 % LS, T3 = 40 % RS + 60 % LS, and T4 = 100 % LS, respectively. All animals were fed rice straw and LS ad libitum with concentrate mixture supplemented at 0.2 % BW. The results found that dry matter intake and nutrient digestibility were the highest in dairy steers fed 60 % LS (P < 0.05). Ruminal temperature and pH were not affected by LS feeding (P > 0.05) while ruminal ammonia nitrogen and blood urea nitrogen concentration were linearly increased with increasing levels of LS feeding (P < 0.01). On the other hand, total volatile fatty acids and propionate (C3) were improved by LS feeding especially in steers fed 60 % LS (P < 0.05) whereas acetate (C2) production and C2/C3 ratio were decreased. Moreover, methane production was reduced together with increasing LS feeding level (P < 0.05). Based on this study, it could be concluded that 60 % LS feeding could enhance feed intake, digestibility, and rumen fermentation end-product while reducing methane production in dairy steers. This study suggested that LS could be used as high-quality roughage for ruminant feeding in the tropical region. PMID:27113453

  19. Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach.

    PubMed

    Guyader, J; Eugène, M; Nozière, P; Morgavi, D P; Doreau, M; Martin, C

    2014-11-01

    A meta-analysis was conducted to evaluate the effects of protozoa concentration on methane emission from ruminants. A database was built from 59 publications reporting data from 76 in vivo experiments. The experiments included in the database recorded methane production and rumen protozoa concentration measured on the same groups of animals. Quantitative data such as diet chemical composition, rumen fermentation and microbial parameters, and qualitative information such as methane mitigation strategies were also collected. In the database, 31% of the experiments reported a concomitant reduction of both protozoa concentration and methane emission (g/kg dry matter intake). Nearly all of these experiments tested lipids as methane mitigation strategies. By contrast, 21% of the experiments reported a variation in methane emission without changes in protozoa numbers, indicating that methanogenesis is also regulated by other mechanisms not involving protozoa. Experiments that used chemical compounds as an antimethanogenic treatment belonged to this group. The relationship between methane emission and protozoa concentration was studied with a variance-covariance model, with experiment as a fixed effect. The experiments included in the analysis had a within-experiment variation of protozoa concentration higher than 5.3 log10 cells/ml corresponding to the average s.e.m. of the database for this variable. To detect potential interfering factors for the relationship, the influence of several qualitative and quantitative secondary factors was tested. This meta-analysis showed a significant linear relationship between methane emission and protozoa concentration: methane (g/kg dry matter intake)=-30.7+8.14×protozoa (log10 cells/ml) with 28 experiments (91 treatments), residual mean square error=1.94 and adjusted R 2=0.90. The proportion of butyrate in the rumen positively influenced the least square means of this relationship.

  20. Taxonomic Assessment of Rumen Microbiota Using Total RNA and Targeted Amplicon Sequencing Approaches.

    PubMed

    Li, Fuyong; Henderson, Gemma; Sun, Xu; Cox, Faith; Janssen, Peter H; Guan, Le Luo

    2016-01-01

    Taxonomic characterization of active gastrointestinal microbiota is essential to detect shifts in microbial communities and functions under various conditions. This study aimed to identify and quantify potentially active rumen microbiota using total RNA sequencing and to compare the outcomes of this approach with the widely used targeted RNA/DNA amplicon sequencing technique. Total RNA isolated from rumen digesta samples from five beef steers was subjected to Illumina paired-end sequencing (RNA-seq), and bacterial and archaeal amplicons of partial 16S rRNA/rDNA were subjected to 454 pyrosequencing (RNA/DNA Amplicon-seq). Taxonomic assessments of the RNA-seq, RNA Amplicon-seq, and DNA Amplicon-seq datasets were performed using a pipeline developed in house. The detected major microbial phylotypes were common among the three datasets, with seven bacterial phyla, fifteen bacterial families, and five archaeal taxa commonly identified across all datasets. There were also unique microbial taxa detected in each dataset. Elusimicrobia and Verrucomicrobia phyla; Desulfovibrionaceae, Elusimicrobiaceae, and Sphaerochaetaceae families; and Methanobrevibacter woesei were only detected in the RNA-Seq and RNA Amplicon-seq datasets, whereas Streptococcaceae was only detected in the DNA Amplicon-seq dataset. In addition, the relative abundances of four bacterial phyla, eight bacterial families and one archaeal taxon were different among the three datasets. This is the first study to compare the outcomes of rumen microbiota profiling between RNA-seq and RNA/DNA Amplicon-seq datasets. Our results illustrate the differences between these methods in characterizing microbiota both qualitatively and quantitatively for the same sample, and so caution must be exercised when comparing data. PMID:27446027

  1. Accumulation of Reserve Carbohydrate by Rumen Protozoa and Bacteria in Competition for Glucose

    PubMed Central

    Denton, Bethany L.; Diese, Leanne E.; Firkins, Jeffrey L.

    2014-01-01

    The aim of this study was to determine if rumen protozoa could form large amounts of reserve carbohydrate compared to the amounts formed by bacteria when competing for glucose in batch cultures. We separated large protozoa and small bacteria from rumen fluid by filtration and centrifugation, recombined equal protein masses of each group into one mixture, and subsequently harvested (reseparated) these groups at intervals after glucose dosing. This method allowed us to monitor reserve carbohydrate accumulation of protozoa and bacteria individually. When mixtures were dosed with a moderate concentration of glucose (4.62 or 5 mM) (n = 2 each), protozoa accumulated large amounts of reserve carbohydrate; 58.7% (standard error of the mean [SEM], 2.2%) glucose carbon was recovered from protozoal reserve carbohydrate at time of peak reserve carbohydrate concentrations. Only 1.7% (SEM, 2.2%) was recovered in bacterial reserve carbohydrate, which was less than that for protozoa (P < 0.001). When provided a high concentration of glucose (20 mM) (n = 4 each), 24.1% (SEM, 2.2%) of glucose carbon was recovered from protozoal reserve carbohydrate, which was still higher (P = 0.001) than the 5.0% (SEM, 2.2%) glucose carbon recovered from bacterial reserve carbohydrate. Our novel competition experiments directly demonstrate that mixed protozoa can sequester sugar away from bacteria by accumulating reserve carbohydrate, giving protozoa a competitive advantage and stabilizing fermentation in the rumen. Similar experiments could be used to investigate the importance of starch sequestration. PMID:25548053

  2. Rumen metabolism of swamp buffaloes fed rice straw supplemented with cassava hay and urea.

    PubMed

    Ampapon, Thiwakorn; Wanapat, Metha; Kang, Sungchhang

    2016-04-01

    The objectives of this experiment were to investigate effects of cassava hay (CH) and urea (U) supplementation on feed intake, digestibility, rumen fermentation, and microbial protein synthesis of swamp buffaloes fed on rice straw. Four rumen-fistulated swamp buffaloes, 365 ± 15.0 kg, were randomly assigned according to a 4 × 4 Latin square design to receive four dietary treatments: T1 = CH 400 g/head/day + U 0 g/head/day, T2 = CH + U 30 g/head/day, T3 = CH + U 60 g/head/day, and T4 = CH + U 90 g/head/day, respectively. Results revealed that feed intake was not affected while nutrient digestibilities were increased (P < 0.05) with increasing U level supplementation especially at 90 g/head/day. Ruminal pH and temperature were not altered by urea supplementation, whereas ammonia nitrogen (NH3-N) and blood urea nitrogen were increased with urea supplement (P < 0.05). In addition, total volatile fatty acid and butyric acid were similar among treatments, while propionic acid (C3) was increased by level of urea supplement (P < 0.05), but acetic acid (C2) and C2/C3 ratio were significantly decreased (P < 0.05). On the other hand, protozoal population and methane production were decreased by CH and urea supplement, while bacterial population particularly those of proteolytic, cellulolytic, and amylolytic bacteria and efficiency of microbial nitrogen synthesis were linearly increased (P < 0.05). Based on this experiment, it suggested that supplementation of urea and cassava hay for buffaloes fed rice straw improved rumen ecology and increased fermentation end products and microbial protein synthesis while reducing protozoal populations and methane production. Urea supplements of 60-90 g/head/day when fed with cassava hay are recommended for swamp buffaloes consuming rice straw.

  3. Calcium transport in bovine rumen epithelium as affected by luminal Ca concentrations and Ca sources

    PubMed Central

    Schröder, Bernd; Wilkens, Mirja R; Ricken, Gundula E; Leonhard-Marek, Sabine; Fraser, David R; Breves, Gerhard

    2015-01-01

    The quantitative role of different segments of the gastrointestinal tract for Ca absorption, the respective mechanisms, and their regulation are not fully identified for ruminants, that is, cattle. In different in vitro experiments the forestomach wall has been demonstrated to be a major site for active Ca absorption in sheep and goats. In order to further clarify the role of the bovine rumen for Ca transport with special attention to luminal Ca concentrations, its ionic form, and pH, electrophysiological and unidirectional flux rate measurements were performed with isolated bovine rumen epithelial tissues. For Ca flux studies (Jms, Jsm) in vitro Ussing chamber technique was applied. Standard RT-PCR method was used to characterize TRPV6 and PMCA1 as potential contributors to transepithelial active Ca transport. At Ca concentrations of 1.2 mmol L−1 on both sides of the tissues, Jms were higher than Jsm resulting under some conditions in significant Ca net flux rates (Jnet), indicating the presence of active Ca transport. In the absence of an electrical gradient, Jnet could significantly be stimulated in the presence of luminal short-chain fatty acids (SCFAs). Increasing the luminal Ca concentrations up to 11.2 mmol L−1 resulted in significant increases in Jms without influencing Jsm. Providing Ca in its form as respective chloride, formate, or propionate salts there was no significant effect on Jms. No transcripts specific for Ca channel TRPV6 could be demonstrated. Our results indicate different mechanisms for Ca absorption in bovine rumen as compared with those usually described for the small intestines. PMID:26564067

  4. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber.

    PubMed

    Allen, M S

    1997-07-01

    The content of ruminally fermented OM in the diet affects the fiber requirement of dairy cattle. Physically effective fiber is the fraction of feed that stimulates chewing activity. Chewing, in turn, stimulates saliva secretion. Bicarbonate and phosphate buffers in saliva neutralize acids produced by fermentation of OM in the rumen. The balance between the production of fermentation acid and buffer secretion is a major determinant of ruminal pH. Low ruminal pH may decrease DMI, fiber digestibility, and microbial yield and thus decrease milk production and increase feed costs. Diets should be formulated to maintain adequate mean ruminal pH, and variation in ruminal pH should be minimized by feeding management. The fraction of OM that is fermented in the rumen varies greatly among diets. This variation affects the amount of fermentation acids produced and directly affects the amount of physically effective fiber that is required to maintain adequate ruminal pH. Acid production in the rumen is due primarily to fermentation of carbohydrates, which represent over 65% of the DM in diets of dairy cows and have the most variable ruminal degradation across diets. The non-fiber carbohydrate content of the diet is often used as a proxy for ruminal fermentability, but this measure is inadequate. Ruminal fermentation of both nonfiber carbohydrate and fiber is extremely variable, and this variability is not related to the nonfiber carbohydrate content of the diet. The interaction of ruminally fermented carbohydrate and physically effective fiber must be considered when diets for dairy cattle are evaluated and formulated.

  5. Improvement of whole crop rice silage nutritive value and rumen degradability by molasses and urea supplementation.

    PubMed

    Wanapat, Metha; Kang, Sungchhang; Khejornsart, Pichad; Pilajun, Ruangyote

    2013-11-01

    Whole crop rice was harvested 120 days after planting and chopped to 2-3-cm length for silage making. The whole crop rice silage (WCRS) was supplemented with different levels of molasses and urea to study nutritive value and in situ rumen degradability. The ensiling study was randomly assigned according to a 6 × 5 factorial arrangement, in which the first factor was molasses (M) supplementation at M0, M1, M2, M3, M4, and M5 %, and the second was urea (U) supplementation at U0, U0.5, U1.0, U1.5, and U2.0 % of the crop dry mater (DM), respectively. After 45 days of ensiling, temperature, pH, chemical composition, and fermentation end products of the silages were measured. Ten U and M treatment combinations of WCRS were subsequently selected to study rumen degradability by nylon bag technique. The results showed that temperature and pH of the silages linearly increased with U supplementation level, while total volatile fatty acid (TVFA), acetic acid (C2) and propionic acid (C3) decreased. In contrast, increasing level of M supplementation decreased WCRS temperature and pH, whereas TVFA, C2, and C3 concentrations increased dramatically. Both M and U supplementation increased concentration of butyric acid (C4). Dry matter, organic matter (OM), and acid detergent fiber (ADF) contents of the silages were not influenced by either M or U supplementation. Increasing U supplementation increased crude protein (CP) content, while M level did not show any effect. Furthermore, neutral detergent fiber (NDF) content in silage was decreased by both M and U supplementation. The results of the in situ study showed that M and U supplementation increased both ruminal DM and OM degradation. The water-soluble fraction (a) was the highest in WCRS U1.5M3 and lowest in U0M0. Increasing M and U supplementation levels increased the potentially degradable fraction (b) of both DM and OM. Total rumen degradable fraction (a + b) was highest in WCRS U1.5M3, whereas OM degradability was

  6. The effect of acetzolamide on Ion transport across isolated sheep rumen epithelium.

    PubMed

    Emanović, D; Harrison, F A; Keynes, R D; Rankin, J C

    1976-01-01

    1. The net fluxes of sodium and chloride from the lumen to the blood side of isolated sheep rumen epithelium were reduced by treatment of both sides of the epithelium with acetazolamide. 2. The changes in the net fluxes of sodium and chloride were significantly correlated and showed recovery after removal of acetazolamide. 3. The net flux of potassium from blood to lumen side of the epithelim was not affected by treatment with acetazolamide. 4. It is suggested that acetazolamide blocks coupled sodium and chloride transport which may be mediated through 'low-activity' carbonic anhydrase enzymes.

  7. Effects of Eucalyptus Crude Oils Supplementation on Rumen Fermentation, Microorganism and Nutrient Digestibility in Swamp Buffaloes

    PubMed Central

    Thao, N. T.; Wanapat, M.; Cherdthong, A.; Kang, S.

    2014-01-01

    This study was conducted to investigate the effects of eucalyptus (E. Camaldulensis) crude oils (EuO) supplementation on voluntary feed intake and rumen fermentation characteristics in swamp buffaloes. Four rumen fistulated swamp buffaloes, body weight (BW) of 420±15.0 kg, were randomly assigned according to a 2×2 factorial arrangement in a 4×4 Latin square design. The dietary treatments were untreated rice straw (RS) without EuO (T1) and with EuO (T2) supplementation, and 3% urea-treated rice straw (UTRS) without EuO (T3) and with EuO (T4) supplementation. The EuO was supplemented at 2 mL/h/d in respective treatment. Experimental animals were kept in individual pens and concentrate mixture was offered at 3 g/kg BW while roughage was fed ad libitum. Total dry matter and roughage intake, and apparent digestibilites of organic matter and neutral detergent fiber were improved (p<0.01) by UTRS. There was no effect of EuO supplementation on feed intake and nutrient digestibility. Ruminal pH and temperature were not (p>0.05) affected by either roughage sources or EuO supplementation. However, buffaloes fed UTRS had higher ruminal ammonia nitrogen and blood urea nitrogen as compared with RS. Total volatile fatty acid and butyrate proportion were similar among treatments, whereas acetate was decreased and propionate molar proportion was increased by EuO supplementation. Feeding UTRS resulted in lower acetate and higher propionate concentration compared to RS. Moreover, supplementation of EuO reduced methane production especially in UTRS treatment. Protozoa populations were reduced by EuO supplementation while fungi zoospores remained the same. Total, amylolytic and cellulolytic bacterial populations were increased (p<0.01) by UTRS; However, EuO supplementation did not affect viable bacteria. Nitrogen intake and in feces were found higher in buffaloes fed UTRS. A positive nitrogen balance (absorption and retention) was in buffaloes fed UTRS. Supplementation of EuO did

  8. Rumen protozoa in South African sheep with a summary of the worldwide distribution of sheep protozoa.

    PubMed

    Booyse, Dirk; Dehority, Burk A

    2011-07-15

    Protozoa species were identified in rumen contents of four domestic sheep (Ovis aries) from South Africa. All animals were fed a forage diet which consisted of 50% lucerne and 50% teff hay. Ten new host records were identified, bringing the total number of species and forms observed in sheep in South Africa to 30. The occurrence and geographic distribution of ciliate protozoa in both domestic and wild sheep from around the world are summarised. It was found that 15 genera and 131 species occur in domestic sheep globally.

  9. Improvement of whole crop rice silage nutritive value and rumen degradability by molasses and urea supplementation.

    PubMed

    Wanapat, Metha; Kang, Sungchhang; Khejornsart, Pichad; Pilajun, Ruangyote

    2013-11-01

    Whole crop rice was harvested 120 days after planting and chopped to 2-3-cm length for silage making. The whole crop rice silage (WCRS) was supplemented with different levels of molasses and urea to study nutritive value and in situ rumen degradability. The ensiling study was randomly assigned according to a 6 × 5 factorial arrangement, in which the first factor was molasses (M) supplementation at M0, M1, M2, M3, M4, and M5 %, and the second was urea (U) supplementation at U0, U0.5, U1.0, U1.5, and U2.0 % of the crop dry mater (DM), respectively. After 45 days of ensiling, temperature, pH, chemical composition, and fermentation end products of the silages were measured. Ten U and M treatment combinations of WCRS were subsequently selected to study rumen degradability by nylon bag technique. The results showed that temperature and pH of the silages linearly increased with U supplementation level, while total volatile fatty acid (TVFA), acetic acid (C2) and propionic acid (C3) decreased. In contrast, increasing level of M supplementation decreased WCRS temperature and pH, whereas TVFA, C2, and C3 concentrations increased dramatically. Both M and U supplementation increased concentration of butyric acid (C4). Dry matter, organic matter (OM), and acid detergent fiber (ADF) contents of the silages were not influenced by either M or U supplementation. Increasing U supplementation increased crude protein (CP) content, while M level did not show any effect. Furthermore, neutral detergent fiber (NDF) content in silage was decreased by both M and U supplementation. The results of the in situ study showed that M and U supplementation increased both ruminal DM and OM degradation. The water-soluble fraction (a) was the highest in WCRS U1.5M3 and lowest in U0M0. Increasing M and U supplementation levels increased the potentially degradable fraction (b) of both DM and OM. Total rumen degradable fraction (a + b) was highest in WCRS U1.5M3, whereas OM degradability was

  10. Rumen ciliate faunae of water buffalo (Bubalus bubalis) and goat (Capra hircus) in Nepal.

    PubMed

    Gurung, Yam Bahadur; Parajuli, Nirmal; Miyazaki, Yutaka; Imai, Soichi; Kobayashi, Kosaku

    2002-03-01

    Rumen ciliate composition of river-type water buffalo and goat in Nepal was surveyed. As the result of survey, 13 genera representing 52 species and 20 formae of the ciliates were identified. Of them 13 genera with 44 species and 9 formae were found from the water buffalo and 8 genera with 21 species and 12 formae from the goat. The present paper shows the first report of Hsiungella triciliata, Entodinium brevispinum, E. convexum, E. javanicum, E. rectangulatum f. rectangulatum, E. rectangulatum f. lobosospinosum, Diplodinium nanum, D. psittaceum, D. sinhalicum and Ostracodinium quadrivesiculatum from water buffalo and Epidinium ecaudatum f. parvicaudatum from goat.

  11. Ruminal and salivary concentration of some sulphonamides in cows and their effect on rumen flora.

    PubMed

    Atef, M; Salem, A A; Al-Samarrae, S A; Zafer, S A

    1979-07-01

    Sulphadiazine, sulphatiazole and sulphamerazine were shown to be excreted through the ruminal wall and salivary glands of cows. These sulphonamides had a slight inhibitory effect on cellulose digestion and on the activity of rumen infusoria. Acetylation of the sulphonamides occurred to a slight extent. Sulphatiazole was more acetylated (16.2 per cent) than sulphadiazine (7.0 per cent) or sulphamerazine (8.4 per cent). The rate of elimination of the three compounds, as indicated by their half lives, showed that sulphathiazole was the most rapidly excreted (2 h), whereas sulphadiazine and sulphamerazine were more slowly excreted, 5.4 and 7.1 h respectively.

  12. Plasmonic nanostructures: artificial molecules.

    PubMed

    Wang, Hui; Brandl, Daniel W; Nordlander, Peter; Halas, Naomi J

    2007-01-01

    This Account describes a new paradigm for the relationship between the geometry of metallic nanostructures and their optical properties. While the interaction of light with metallic nanoparticles is determined by their collective electronic or plasmon response, a compelling analogy exists between plasmon resonances of metallic nanoparticles and wave functions of simple atoms and molecules. Based on this insight, an entire family of plasmonic nanostructures, artificial molecules, has been developed whose optical properties can be understood within this picture: nanoparticles (nanoshells, nanoeggs, nanomatryushkas, nanorice), multi-nanoparticle assemblies (dimers, trimers, quadrumers), and a nanoparticle-over-metallic film, an electromagnetic analog of the spinless Anderson model. PMID:17226945

  13. Artificial mismatch hybridization

    DOEpatents

    Guo, Zhen; Smith, Lloyd M.

    1998-01-01

    An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.

  14. Molecular comparative assessment of the microbial ecosystem in rumen and faeces of goats fed alfalfa hay alone or combined with oats.

    PubMed

    Mohammadzadeh, Hamid; Yáñez-Ruiz, David R; Martínez-Fernandez, Gonzalo; Abecia, Leticia

    2014-10-01

    The objective of this work was to compare the biomass and community structure of bacteria, protozoa and archaea communities in samples of rumen and faeces of goats and to what extent the diet (alfalfa hay with or without supplemented oats) offered to them exert an influence. Four cannulated adult goats fistulated in the rumen were used in a cross over design experiment in two experimental periods of 26 days, consisting in 14 days of adaptation, 7 days of sampling rumen contents and 5 days of digestibility measurement. Bacterial, protozoa and archaeal biomass and the communities' structure was assessed by real time PCR (qPCR) and denaturing gradient gel electrophoresis (DGGE), respectively. The numbers of archaea and bacteria in both rumen and faeces were higher and lower, respectively, in animals fed AH diet (P < 0.005). Contrary, protozoal numbers were not affected by the diet but were lower (P < 0.001) in faeces than in rumen. The analysis of the community structure revealed a consistently different population in structure in rumen and faeces for the three studied microbial groups and that supplementing alfalfa hay with oats led to a decrease in the similarity between sites in the rumen and faeces: similarity indexes for bacteria (57 and 27%), archaea (26 and 9%) and protozoa (62 and 22%) in animals fed AH and AHO diets, respectively.

  15. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions.

    PubMed

    Belanche, Alejandro; de la Fuente, Gabriel; Newbold, Charles J

    2015-03-01

    Rumen methanogenesis represents an energy waste for the ruminant and an important source of greenhouse gas; thus, integrated studies are needed to fully understand this process. Eight fauna-free sheep were used to investigate the effect of successive inoculation with holotrich protozoa then with total fauna on rumen methanogenesis. Holotrichs inoculation neither altered rumen fermentation rate nor diet digestibility, but increased concentrations of acetate (+15%), butyrate (+57%), anaerobic fungi (+0.82 log), methanogens (+0.41 log) and methanogenesis (+54%). Further inoculation with total fauna increased rumen concentrations of protozoa (+1.0 log), bacteria (+0.29 log), anaerobic fungi (+0.78 log), VFA (+8%), ammonia and fibre digestibility (+17%) without affecting levels of methanogens or methanogenesis. Rumen methanogens population was fairly stable in terms of structure and diversity, while the bacterial community was highly affected by the treatments. Inoculation with holotrich protozoa increased bacterial diversity. Further inoculation with total fauna lowered bacterial diversity but increased concentrations of certain propionate and lactate-producing bacteria, suggesting that alternative H2 sinks could be relevant. This experiment suggests that holotrich protozoa have a greater impact on rumen methanogenesis than entodiniomorphids. Thus, further research is warranted to understand the effect of holotrich protozoa on methane formation and evaluate their elimination from the rumen as a potential methane mitigation strategy.

  16. Molecular comparative assessment of the microbial ecosystem in rumen and faeces of goats fed alfalfa hay alone or combined with oats.

    PubMed

    Mohammadzadeh, Hamid; Yáñez-Ruiz, David R; Martínez-Fernandez, Gonzalo; Abecia, Leticia

    2014-10-01

    The objective of this work was to compare the biomass and community structure of bacteria, protozoa and archaea communities in samples of rumen and faeces of goats and to what extent the diet (alfalfa hay with or without supplemented oats) offered to them exert an influence. Four cannulated adult goats fistulated in the rumen were used in a cross over design experiment in two experimental periods of 26 days, consisting in 14 days of adaptation, 7 days of sampling rumen contents and 5 days of digestibility measurement. Bacterial, protozoa and archaeal biomass and the communities' structure was assessed by real time PCR (qPCR) and denaturing gradient gel electrophoresis (DGGE), respectively. The numbers of archaea and bacteria in both rumen and faeces were higher and lower, respectively, in animals fed AH diet (P < 0.005). Contrary, protozoal numbers were not affected by the diet but were lower (P < 0.001) in faeces than in rumen. The analysis of the community structure revealed a consistently different population in structure in rumen and faeces for the three studied microbial groups and that supplementing alfalfa hay with oats led to a decrease in the similarity between sites in the rumen and faeces: similarity indexes for bacteria (57 and 27%), archaea (26 and 9%) and protozoa (62 and 22%) in animals fed AH and AHO diets, respectively. PMID:24333680

  17. How to teach artificial organs.

    PubMed

    Zapanta, Conrad M; Borovetz, Harvey S; Lysaght, Michael J; Manning, Keefe B

    2011-01-01

    Artificial organs education is often an overlooked field for many bioengineering and biomedical engineering students. The purpose of this article is to describe three different approaches to teaching artificial organs. This article can serve as a reference for those who wish to offer a similar course at their own institutions or incorporate these ideas into existing courses. Artificial organ classes typically fulfill several ABET (Accreditation Board for Engineering and Technology) criteria, including those specific to bioengineering and biomedical engineering programs.

  18. Microscopic artificial swimmers.

    PubMed

    Dreyfus, Rémi; Baudry, Jean; Roper, Marcus L; Fermigier, Marc; Stone, Howard A; Bibette, Jérôme

    2005-10-01

    Microorganisms such as bacteria and many eukaryotic cells propel themselves with hair-like structures known as flagella, which can exhibit a variety of structures and movement patterns. For example, bacterial flagella are helically shaped and driven at their bases by a reversible rotary engine, which rotates the attached flagellum to give a motion similar to that of a corkscrew. In contrast, eukaryotic cells use flagella that resemble elastic rods and exhibit a beating motion: internally generated stresses give rise to a series of bends that propagate towards the tip. In contrast to this variety of swimming strategies encountered in nature, a controlled swimming motion of artificial micrometre-sized structures has not yet been realized. Here we show that a linear chain of colloidal magnetic particles linked by DNA and attached to a red blood cell can act as a flexible artificial flagellum. The filament aligns with an external uniform magnetic field and is readily actuated by oscillating a transverse field. We find that the actuation induces a beating pattern that propels the structure, and that the external fields can be adjusted to control the velocity and the direction of motion. PMID:16208366

  19. Microscopic artificial swimmers.

    PubMed

    Dreyfus, Rémi; Baudry, Jean; Roper, Marcus L; Fermigier, Marc; Stone, Howard A; Bibette, Jérôme

    2005-10-01

    Microorganisms such as bacteria and many eukaryotic cells propel themselves with hair-like structures known as flagella, which can exhibit a variety of structures and movement patterns. For example, bacterial flagella are helically shaped and driven at their bases by a reversible rotary engine, which rotates the attached flagellum to give a motion similar to that of a corkscrew. In contrast, eukaryotic cells use flagella that resemble elastic rods and exhibit a beating motion: internally generated stresses give rise to a series of bends that propagate towards the tip. In contrast to this variety of swimming strategies encountered in nature, a controlled swimming motion of artificial micrometre-sized structures has not yet been realized. Here we show that a linear chain of colloidal magnetic particles linked by DNA and attached to a red blood cell can act as a flexible artificial flagellum. The filament aligns with an external uniform magnetic field and is readily actuated by oscillating a transverse field. We find that the actuation induces a beating pattern that propels the structure, and that the external fields can be adjusted to control the velocity and the direction of motion.

  20. The total artificial heart

    PubMed Central

    Cook, Jason A.; Shah, Keyur B.; Quader, Mohammed A.; Cooke, Richard H.; Kasirajan, Vigneshwar; Rao, Kris K.; Smallfield, Melissa C.; Tchoukina, Inna

    2015-01-01

    The total artificial heart (TAH) is a form of mechanical circulatory support in which the patient’s native ventricles and valves are explanted and replaced by a pneumatically powered artificial heart. Currently, the TAH is approved for use in end-stage biventricular heart failure as a bridge to heart transplantation. However, with an increasing global burden of cardiovascular disease and congestive heart failure, the number of patients with end-stage heart failure awaiting heart transplantation now far exceeds the number of available hearts. As a result, the use of mechanical circulatory support, including the TAH and left ventricular assist device (LVAD), is growing exponentially. The LVAD is already widely used as destination therapy, and destination therapy for the TAH is under investigation. While most patients requiring mechanical circulatory support are effectively treated with LVADs, there is a subset of patients with concurrent right ventricular failure or major structural barriers to LVAD placement in whom TAH may be more appropriate. The history, indications, surgical implantation, post device management, outcomes, complications, and future direction of the TAH are discussed in this review. PMID:26793338

  1. Microscopic artificial swimmers

    NASA Astrophysics Data System (ADS)

    Dreyfus, Rémi; Baudry, Jean; Roper, Marcus L.; Fermigier, Marc; Stone, Howard A.; Bibette, Jérôme

    2005-10-01

    Microorganisms such as bacteria and many eukaryotic cells propel themselves with hair-like structures known as flagella, which can exhibit a variety of structures and movement patterns. For example, bacterial flagella are helically shaped and driven at their bases by a reversible rotary engine, which rotates the attached flagellum to give a motion similar to that of a corkscrew. In contrast, eukaryotic cells use flagella that resemble elastic rods and exhibit a beating motion: internally generated stresses give rise to a series of bends that propagate towards the tip. In contrast to this variety of swimming strategies encountered in nature, a controlled swimming motion of artificial micrometre-sized structures has not yet been realized. Here we show that a linear chain of colloidal magnetic particles linked by DNA and attached to a red blood cell can act as a flexible artificial flagellum. The filament aligns with an external uniform magnetic field and is readily actuated by oscillating a transverse field. We find that the actuation induces a beating pattern that propels the structure, and that the external fields can be adjusted to control the velocity and the direction of motion.

  2. Development of artificial empathy.

    PubMed

    Asada, Minoru

    2015-01-01

    We have been advocating cognitive developmental robotics to obtain new insight into the development of human cognitive functions by utilizing synthetic and constructive approaches. Among the different emotional functions, empathy is difficult to model, but essential for robots to be social agents in our society. In my previous review on artificial empathy (Asada, 2014b), I proposed a conceptual model for empathy development beginning with emotional contagion to envy/schadenfreude along with self/other differentiation. In this article, the focus is on two aspects of this developmental process, emotional contagion in relation to motor mimicry, and cognitive/affective aspects of the empathy. It begins with a summary of the previous review (Asada, 2014b) and an introduction to affective developmental robotics as a part of cognitive developmental robotics focusing on the affective aspects. This is followed by a review and discussion on several approaches for two focused aspects of affective developmental robotics. Finally, future issues involved in the development of a more authentic form of artificial empathy are discussed. PMID:25498950

  3. Development of artificial empathy.

    PubMed

    Asada, Minoru

    2015-01-01

    We have been advocating cognitive developmental robotics to obtain new insight into the development of human cognitive functions by utilizing synthetic and constructive approaches. Among the different emotional functions, empathy is difficult to model, but essential for robots to be social agents in our society. In my previous review on artificial empathy (Asada, 2014b), I proposed a conceptual model for empathy development beginning with emotional contagion to envy/schadenfreude along with self/other differentiation. In this article, the focus is on two aspects of this developmental process, emotional contagion in relation to motor mimicry, and cognitive/affective aspects of the empathy. It begins with a summary of the previous review (Asada, 2014b) and an introduction to affective developmental robotics as a part of cognitive developmental robotics focusing on the affective aspects. This is followed by a review and discussion on several approaches for two focused aspects of affective developmental robotics. Finally, future issues involved in the development of a more authentic form of artificial empathy are discussed.

  4. [Artificial neural networks in Neurosciences].

    PubMed

    Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María

    2011-11-01

    This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.

  5. Typogenetics: an artificial genetic system.

    PubMed

    Varetto, L

    1993-01-21

    Cellular automata are now used to model various natural phenomena. In particular, they provide a logical universe in which artificial cells can be embedded in the form of propagating virtual automata. In this paper, we propose a molecular automaton which is an attempt to implement the "molecular logic of the living state" in an artificial biochemistry. This automaton is an artificial genetic system composed of two classes of interacting artificial molecules. It was shown to be self-replicating and to possess features that are analogous to those of the postulated prebiotic molecular systems. PMID:8474250

  6. Water salinity effects on performance and rumen parameters of lactating grazing Holstein cows.

    PubMed

    Valtorta, Silvia E; Gallardo, Miriam R; Sbodio, Oscar A; Revelli, Germán R; Arakaki, Cristina; Leva, Perla E; Gaggiotti, Mónica; Tercero, Esteban J

    2008-01-01

    Eighteen multiparous lactating grazing Holstein cows, 9 ruminally cannulated, average 136.1 +/- 14.6 days in milk, were randomly assigned to three treatments consisting of water containing different levels of total dissolved solids (TDS; mg/l): Treatment 1 = 1,000; Treatment 2 = 5,000 and Treatment 3 = 10,000, at the Experimental Dairy Unit at Rafaela Experimental Station (31 degrees 11'S latitude) during summer 2005. Animals were arranged in a randomized complete block design with three 28-day experimental periods, with 3 weeks for water adaptation and 1 week for measurements. Feed and water intake, milk production and composition, body weight and condition score and rumen parameters were evaluated. No treatment effects were observed in any of the variables evaluated, with the exception of water intake, which was higher for animals receiving 10,000 mg/l TDS in the drinking water (189 l/day vs. 106 and 122 l/day for cows receiving water with 1,000 and 5,000 mg/l TDS, respectively). Water intake was significantly higher for animals in treatment 10,000 (P < 0.05). It was concluded that the rumen presents a surprising buffer capacity and that consideration of TDS alone is insufficient to characterize drinking water quality.

  7. Oral Samples as Non-Invasive Proxies for Assessing the Composition of the Rumen Microbial Community

    PubMed Central

    Tapio, Ilma; Shingfield, Kevin J.; McKain, Nest; Bonin, Aurélie; Fischer, Daniel; Bayat, Ali R.; Vilkki, Johanna; Taberlet, Pierre; Snelling, Timothy J.; Wallace, R. John

    2016-01-01

    Microbial community analysis was carried out on ruminal digesta obtained directly via rumen fistula and buccal fluid, regurgitated digesta (bolus) and faeces of dairy cattle to assess if non-invasive samples could be used as proxies for ruminal digesta. Samples were collected from five cows receiving grass silage based diets containing no additional lipid or four different lipid supplements in a 5 x 5 Latin square design. Extracted DNA was analysed by qPCR and by sequencing 16S and 18S rRNA genes or the fungal ITS1 amplicons. Faeces contained few protozoa, and bacterial, fungal and archaeal communities were substantially different to ruminal digesta. Buccal and bolus samples gave much more similar profiles to ruminal digesta, although fewer archaea were detected in buccal and bolus samples. Bolus samples overall were most similar to ruminal samples. The differences between both buccal and bolus samples and ruminal digesta were consistent across all treatments. It can be concluded that either proxy sample type could be used as a predictor of the rumen microbial community, thereby enabling more convenient large-scale animal sampling for phenotyping and possible use in future animal breeding programs aimed at selecting cattle with a lower environmental footprint. PMID:26986467

  8. Characterization of a novel xylanase gene from rumen content of Hu sheep.

    PubMed

    Wang, Qian; Luo, Yang; He, Bo; Jiang, Lin-Shu; Liu, Jian-Xin; Wang, Jia-Kun

    2015-12-01

    A novel xylanase gene, xyn-lxy, was cloned from a metagenomic fosmid library, which was previously constructed from the rumen contents of Hu sheep and was functionally characterized in Escherichia coli. The open reading frame was composed of 1923 bp and encoded for 640 amino acids, including a catalytic domain of glycosyl hydrolase family 10 and carbohydrate-binding module 9. The gene showed 97 % identity with uncultured bacterium Contig1552 but low similarity with xylanases from known cellulolytic-degrading microorganisms in the rumen. The recombinant XYN-LXY showed a specific activity of 664.7 U mg(-1). The optimal temperature and pH of the enzyme were 50 °C and 6.0, respectively. Specifically, XYN-LXY was exclusively activated by Mn(2+) among all of the cations and reducing agents tested in this study. An enzymatic hydrolysis assay revealed that XYN-LXY degraded birchwood xylan into xylooligosaccharide with a low degree of polymerization. After incubation for 4 h, the concentration of the dominant product, xylobiose, was 2.297 ± 0.175 mg ml(-1) (74.07 % of total product) followed by xylose with a concentration of 0.656 ± 0.010 mg ml(-1) (21.14 % of total product). The XYN-LXY exhibited deep degradation effects on the xylan substrate, which were rarely observed with endo-xylanase, making it a promising candidate for industrial application, especially in biofuel production. PMID:26358761

  9. Effect of cashew nut shell liquid on metabolic hydrogen flow on bovine rumen fermentation.

    PubMed

    Mitsumori, Makoto; Enishi, Osamu; Shinkai, Takumi; Higuchi, Koji; Kobayashi, Yosuke; Takenaka, Akio; Nagashima, Kyo; Mochizuki, Masami; Kobayashi, Yasuo

    2014-03-01

    Effect of cashew nut shell liquid (CNSL), a methane inhibitor, on bovine rumen fermentation was investigated through analysis of the metabolic hydrogen flow estimated from concentrations of short-chain fatty acids (SCFA) and methane. Three cows were fed a concentrate and hay diet without or with a CNSL-containing pellet. Two trials were conducted using CNSL pellets blended with only silica (trial 1) or with several other ingredients (trial 2). Methane production was measured in a respiration chamber system, and energy balance and nutrient digestibility were monitored. The estimated flow of metabolic hydrogen demonstrated that a part of metabolic hydrogen was used for hydrogen gas production, and a large amount of it flowed into production of methane and SCFA in both trial 1 and 2, when CNSL was administered to the bovine rumen. The results obtained by regression analyses showed that the effect of CNSL supply on methane reduction was coupled with a significant (P < 0.01) decrease of acetate and a significant (P < 0.01) increase of propionate and hydrogen gas. These findings reveal that CNSL is able to reduce methane and acetate production, and to increase hydrogen gas and propionate production in vivo. PMID:24128067

  10. Monensin and Dichloroacetamide Influences on Methane and Volatile Fatty Acid Production by Rumen Bacteria In Vitro

    PubMed Central

    Slyter, L. L.

    1979-01-01

    The effect of monensin (0 or 33 μg/g of diet) upon rumen fermentation in the presence and absence of methanogenesis was determined in vitro by using mixed rumen organisms continuously cultured for 17 days. Methane was inhibited by dichloroacetamide (DCA; 32 mg/day) or by a pH of 5.1. Monensin effected a significant decrease in the ratio of acetic to propionic acid in the presence or absence of methanogenesis. In the absence of methanogenesis, the decrease in the ratio of acetic to propionic acid was entirely the result of increased propionic acid, whereas in the presence of methanogenesis the decrease in the ratio was the result of a combination of decreased acetic acid and increased propionic acid. There was a complementary interaction between monensin and DCA on volatile fatty acid production (expressed as millimoles of carbon per day). Addition of monensin to DCA-treated cultures resulted in the production of more acid; however, monensin and DCA had no beneficial effect on total carbon formed as acid and gases as compared with nonsupplemented control cultures. The monensin and DCA also resulted in greater digestion of neutral detergent fiber and less accumulation of formic acid and hydrogen as end products than did DCA alone. l-Lactic acid was produced in small but significantly greater amounts by the low-pH cultures, which also had less volatile fatty acid carbon formed from the fiber fraction of the forage supplied. PMID:16345344

  11. Use of Lysozyme as a Feed Additive on In vitro Rumen Fermentation and Methane Emission

    PubMed Central

    Biswas, Ashraf A.; Lee, Sung Sill; Mamuad, Lovelia L.; Kim, Seon-Ho; Choi, Yeon-Jae; Bae, Gui-Seck; Lee, Kichoon; Sung, Ha-Guyn; Lee, Sang-Suk

    2016-01-01

    This study was conducted to determine the effect of lysozyme addition on in vitro rumen fermentation and to identify the lysozyme inclusion rate for abating methane (CH4) production. An in vitro ruminal fermentation technique was done using a commercial concentrate to rice straw ratio of 8:2 as substrate. The following treatments were applied wherein lysozyme was added into 1 mg dry matter substrate at different levels of inclusion: Without lyso