Science.gov

Sample records for artificial sweetener aspartame

  1. Comparison of thermochemistry of aspartame (artificial sweetener) and glucose.

    PubMed

    Rashidian, Mohammad; Fattahi, Alireza

    2009-01-01

    We have compared the gas phase thermochemical properties of aspartame (artificial sweetener) and alpha- and beta-glucose. These parameters include metal ion affinities with Li(+)-, Na(+)-, K(+)-, Mg(+2)-, Ca(+2)-, Fe(+2)-, Zn(+2)-ions, and chloride ion affinity by using DFT calculations. For example, for aspartame, the affinity values for the above described metal ions are, respectively, 86.5, 63.2, 44.2, 255.4, 178.4, 235.4, and 300.4, and for beta-glucose are 65.2, 47.3 32.9, 212.9, 140.2, 190.1, and 250.0 kcal mol(-1), respectively. The study shows differences between the intrinsic chemistry of aspartame and glucose.

  2. In vitro DNA binding studies of Aspartame, an artificial sweetener.

    PubMed

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Kheirdoosh, Fahimeh

    2013-03-01

    A number of small molecules bind directly and selectively to DNA, by inhibiting replication, transcription or topoisomerase activity. In this work the interaction of native calf thymus DNA (CT-DNA) with Aspartame (APM), an artificial sweeteners was studied at physiological pH. DNA binding study of APM is useful to understand APM-DNA interaction mechanism and to provide guidance for the application and design of new and safer artificial sweeteners. The interaction was investigated using spectrophotometric, spectrofluorometric competition experiment and circular dichroism (CD). Hypochromism and red shift are shown in UV absorption band of APM. A strong fluorescence quenching reaction of DNA to APM was observed and the binding constants (Kf) of DNA with APM and corresponding number of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy changes (ΔH) and entropy changes (ΔS) were calculated to be +181kJmol(-1) and +681Jmol(-1)K(-1) according to Van't Hoff equation, which indicated that reaction is predominantly entropically driven. Moreover, spectrofluorometric competition experiment and circular dichroism (CD) results are indicative of non-intercalative DNA binding nature of APM. We suggest that APM interacts with calf thymus DNA via groove binding mode with an intrinsic binding constant of 5×10(+4)M(-1). PMID:23375483

  3. In vitro DNA binding studies of Aspartame, an artificial sweetener.

    PubMed

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Kheirdoosh, Fahimeh

    2013-03-01

    A number of small molecules bind directly and selectively to DNA, by inhibiting replication, transcription or topoisomerase activity. In this work the interaction of native calf thymus DNA (CT-DNA) with Aspartame (APM), an artificial sweeteners was studied at physiological pH. DNA binding study of APM is useful to understand APM-DNA interaction mechanism and to provide guidance for the application and design of new and safer artificial sweeteners. The interaction was investigated using spectrophotometric, spectrofluorometric competition experiment and circular dichroism (CD). Hypochromism and red shift are shown in UV absorption band of APM. A strong fluorescence quenching reaction of DNA to APM was observed and the binding constants (Kf) of DNA with APM and corresponding number of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy changes (ΔH) and entropy changes (ΔS) were calculated to be +181kJmol(-1) and +681Jmol(-1)K(-1) according to Van't Hoff equation, which indicated that reaction is predominantly entropically driven. Moreover, spectrofluorometric competition experiment and circular dichroism (CD) results are indicative of non-intercalative DNA binding nature of APM. We suggest that APM interacts with calf thymus DNA via groove binding mode with an intrinsic binding constant of 5×10(+4)M(-1).

  4. Mutagenic activity of peptides and the artificial sweetener aspartame after nitrosation.

    PubMed

    Shephard, S E; Wakabayashi, K; Nagao, M

    1993-05-01

    Naturally occurring dipeptides, cholecystokinine (CCK, a tetrapeptide hormone) and the artificial sweetener aspartame were nitrosated for 10-30 min with 40 mM-nitrite (pH 3.5, 37 degrees C), and the resultant products examined for mutagenicity in Salmonella typhimurium TA100. Specific mutagenicities (net revertants per mumol precursor) spanned four orders of magnitude, with CCK being the most potent precursor (4700 revertants/mumol) followed by tryptophyl-tryptophan (Trp-Trp; 1000 revertants/mumol). Aspartame and glycyl-Trp (Gly-Trp) had intermediate activity (300 revertants/mumol), while Gly-Gly and methionyl-methionine were only weakly mutagenic (20 and 12 revertants/mumol, respectively). The dipeptides of aspartic acid, phenylalanine and tyrosine had no detectable mutagenicity (limits of detection 0.5, 40 and 5 revertants/mumol, respectively). Kinetic studies with aspartame and Gly-Trp suggested that the mutagenic products arose primarily from nitrosation of the primary amine rather than the amide or indole group. The mutagenicities of nitrosated aspartame and Gly-Trp were higher in TA100 than in TA98, and higher without than with enzymatic activation (S-9 mix) in both strains. The time-course study of Trp-Trp nitrosation showed the production of at least two mutagens: a potent but unstable mutagenicity was seen at very short nitrosation times and a more stable but weaker effect was obtained after more than 60 min of nitrosation. Not only the absolute specific mutagenicity but also the nitrite dependence of the nitrosation reaction and the stability of the nitroso product must be taken into account in determining the risk posed by endogenous nitrosation of foods in the human stomach. Under stomach conditions, nitrosation of the side-chains of certain Trp peptides would be expected to contribute more to the endogenous burden of nitrosated products than nitrosation of aspartame or Gly peptides.

  5. Neurobiochemical alterations induced by the artificial sweetener aspartame (NutraSweet).

    PubMed

    Coulombe, R A; Sharma, R P

    1986-03-30

    The dipeptide aspartame (NutraSweet) is a newly approved and widely used artificial sweetener in foods and beverages. Consumption of aspartame (ASM) has been reported to be responsible for neurologic and behavioral disturbances in sensitive individuals. Unfasted male CD-1 mice were dosed orally with 13, 130, or 650 mg/kg ASM in corn oil, while control animals received corn oil alone. Three hours after dosing, the animals were killed, and the concentrations of the catecholamines norepinephrine (NE) and dopamine (DA), catecholamine metabolites 3-methoxy-4-hydroxymandelic acid (VMA), homovanillic acid (HVA), and dihydroxyphenylacetic acid (DOPAC), the indoleamine serotonin (5-HT), and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were determined by electrochemical high-performance liquid chromatography in six brain regions. ASM exerted its primary effect on adrenergic neurotransmitters in various brain regions. In the hypothalamus, the region richest in NE, increases in NE concentrations of 12, 49, and 47% were found in the low, medium, and high dose groups, respectively, relative to control. Significant increases of NE in the medulla oblongata and corpus striatum were also observed. Increases of the catecholamine DA and catecholamine metabolites VMA, HVA, and DOPAC were seen in various regions. The indoleamine serotonin and its metabolite 5-HIAA were unaffected by ASM treatment. These findings are consistent with ASM-induced increases in the brain catecholamine precursor amino acids phenylalanine and tyrosine, as reported earlier. Such observed alterations in brain neurotransmitter concentrations may be responsible for the reported clinical and behavioral effects associated with ASM ingestion.

  6. Estimated intake of the artificial sweeteners acesulfame-K, aspartame, cyclamate and saccharin in a group of Swedish diabetics.

    PubMed

    Ilbäck, N-G; Alzin, M; Jahrl, S; Enghardt-Barbieri, H; Busk, L

    2003-02-01

    Few sweetener intake studies have been performed on the general population and only one study has been specifically designed to investigate diabetics and children. This report describes a Swedish study on the estimated intake of the artificial sweeteners acesulfame-K, aspartame, cyclamate and saccharin by children (0-15 years) and adult male and female diabetics (types I and II) of various ages (16-90 years). Altogether, 1120 participants were asked to complete a questionnaire about their sweetener intake. The response rate (71%, range 59-78%) was comparable across age and gender groups. The most consumed 'light' foodstuffs were diet soda, cider, fruit syrup, table powder, table tablets, table drops, ice cream, chewing gum, throat lozenges, sweets, yoghurt and vitamin C. The major sources of sweetener intake were beverages and table powder. About 70% of the participants, equally distributed across all age groups, read the manufacturer's specifications of the food products' content. The estimated intakes showed that neither men nor women exceeded the ADI for acesulfame-K; however, using worst-case calculations, high intakes were found in young children (169% of ADI). In general, the aspartame intake was low. Children had the highest estimated (worst case) intake of cyclamate (317% of ADI). Children's estimated intake of saccharin only slightly exceeded the ADI at the 5% level for fruit syrup. Children had an unexpected high intake of tabletop sweeteners, which, in Sweden, is normally based on cyclamate. The study was performed during two winter months when it can be assumed that the intake of sweeteners was lower as compared with during warm, summer months. Thus, the present study probably underestimates the average intake on a yearly basis. However, our worst-case calculations based on maximum permitted levels were performed on each individual sweetener, although exposure is probably relatively evenly distributed among all sweeteners, except for cyclamate

  7. Study on the interaction of a copper(II) complex containing the artificial sweetener aspartame with human serum albumin.

    PubMed

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh; Filli, Soraya Moradi

    2014-05-01

    A copper(II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2·2H2O, was synthesized and characterized. In vitro binding interaction of this complex with human serum albumin (HSA) was studied at physiological pH. Binding studies of this complex with HSA are useful for understanding the Cu(APM)2Cl2·2H2O-HSA interaction mechanism and providing guidance for the application and design of new and more efficient artificial sweeteners drive. The interaction was investigated by spectrophotometric, spectrofluorometric, competition experiment and circular dichroism. Hyperchromicity observed in UV absorption band of Cu(APM)2Cl2·2H2O. A strong fluorescence quenching reaction of HSA to Cu(APM)2Cl2·2H2O was observed and the binding constant (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (∆H) and entropy change (∆S) were calculated to be -458.67 kJ mol(-1) and -1,339 J mol(-1 )K(-1) respectively. According to the van't Hoff equation, the reaction is predominantly enthalpically driven. In conformity with experimental results, we suggest that Cu(APM)2Cl2·2H2O interacts with HSA. In comparison with previous study, it is found that the Cu(II) complex binds stronger than aspartame. PMID:24481880

  8. Study on the interaction of a copper(II) complex containing the artificial sweetener aspartame with human serum albumin.

    PubMed

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh; Filli, Soraya Moradi

    2014-05-01

    A copper(II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2·2H2O, was synthesized and characterized. In vitro binding interaction of this complex with human serum albumin (HSA) was studied at physiological pH. Binding studies of this complex with HSA are useful for understanding the Cu(APM)2Cl2·2H2O-HSA interaction mechanism and providing guidance for the application and design of new and more efficient artificial sweeteners drive. The interaction was investigated by spectrophotometric, spectrofluorometric, competition experiment and circular dichroism. Hyperchromicity observed in UV absorption band of Cu(APM)2Cl2·2H2O. A strong fluorescence quenching reaction of HSA to Cu(APM)2Cl2·2H2O was observed and the binding constant (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (∆H) and entropy change (∆S) were calculated to be -458.67 kJ mol(-1) and -1,339 J mol(-1 )K(-1) respectively. According to the van't Hoff equation, the reaction is predominantly enthalpically driven. In conformity with experimental results, we suggest that Cu(APM)2Cl2·2H2O interacts with HSA. In comparison with previous study, it is found that the Cu(II) complex binds stronger than aspartame.

  9. Rats show only a weak preference for the artificial sweetener aspartame.

    PubMed

    Sclafani, A; Abrams, M

    1986-01-01

    The preference of adult female rats for aspartame (L-asparty L-phenylalamine methyl ester) was measured using 24 hr/day and 30 min/day two bottle preference tests. At aspartame concentrations that humans find sweet (0.0125% to 0.05%) the rats failed to prefer aspartame to water. At higher concentrations (0.1% to 1.0%) half (n = 11) of the rats tested displayed mild (64%) to moderate (83%) aspartame preferences. The other half of the rats were indifferent or avoided the aspartame. Even at the most preferred concentration (1.0%) the rats' aspartame preference was much less than their preference for saccharin or sucrose, and they showed little increase in total fluid intake when given the aspartame solution. The results indicate that aspartame is not very palatable to rats, and suggest that it has little or no sweet, i.e., sucrose-like, taste to rats as it does to humans.

  10. Artificial sweeteners: safe or unsafe?

    PubMed

    Qurrat-ul-Ain; Khan, Sohaib Ahmed

    2015-02-01

    Artificial sweeteners or intense sweeteners are sugar substitutes that are used as an alternative to table sugar. They are many times sweeter than natural sugar and as they contain no calories, they may be used to control weight and obesity. Extensive scientific research has demonstrated the safety of the six low-calorie sweeteners currently approved for use in foods in the U.S. and Europe (stevia, acesulfame-K, aspartame, neotame, saccharin and sucralose), if taken in acceptable quantities daily. There is some ongoing debate over whether artificial sweetener usage poses a health threat .This review article aims to cover thehealth benefits, and risks, of consuming artificial sweeteners, and discusses natural sweeteners which can be used as alternatives.

  11. Artificial sweeteners: safe or unsafe?

    PubMed

    Qurrat-ul-Ain; Khan, Sohaib Ahmed

    2015-02-01

    Artificial sweeteners or intense sweeteners are sugar substitutes that are used as an alternative to table sugar. They are many times sweeter than natural sugar and as they contain no calories, they may be used to control weight and obesity. Extensive scientific research has demonstrated the safety of the six low-calorie sweeteners currently approved for use in foods in the U.S. and Europe (stevia, acesulfame-K, aspartame, neotame, saccharin and sucralose), if taken in acceptable quantities daily. There is some ongoing debate over whether artificial sweetener usage poses a health threat .This review article aims to cover thehealth benefits, and risks, of consuming artificial sweeteners, and discusses natural sweeteners which can be used as alternatives. PMID:25842566

  12. Are Artificial Sweeteners OK to Consume during Pregnancy?

    MedlinePlus

    ... debate about the safety of artificial sweeteners, especially aspartame and saccharin, but most health care professionals believe ... that is clear is that you should avoid aspartame if you have the hereditary disease phenylketonuria, or ...

  13. Interaction of a copper (II) complex containing an artificial sweetener (aspartame) with calf thymus DNA.

    PubMed

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh

    2014-01-01

    A copper (II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2⋅2H2O, was synthesized and characterized. In vitro binding interaction of this complex with native calf thymus DNA (CT-DNA) was studied at physiological pH. The interaction was studied using different methods: spectrophotometric, spectrofluorometric, competition experiment, circular dichroism (CD) and viscosimetric techniques. Hyperchromicity was observed in UV absorption band of Cu(APM)2Cl2⋅2H2O. A strong fluorescence quenching reaction of DNA to Cu(APM)2Cl2⋅2H2O was observed and the binding constants (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were calculated to be+89.3 kJ mol(-1) and+379.3 J mol(-1) K(-1) according to Van't Hoff equation which indicated that reaction is predominantly entropically driven. Experimental results from spectroscopic methods were comparable and further supported by viscosity measurements. We suggest that Cu(APM)2Cl2⋅2H2O interacts with calf thymus DNA via a groove interaction mode with an intrinsic binding constant of 8×10+4 M(-1). Binding of this copper complex to DNA was found to be stronger compared to aspartame which was studied recently.

  14. Artificial sweeteners - a review.

    PubMed

    Chattopadhyay, Sanchari; Raychaudhuri, Utpal; Chakraborty, Runu

    2014-04-01

    Now a days sugar free food are very much popular because of their less calorie content. So food industry uses various artificial sweeteners which are low in calorie content instead of high calorie sugar. U.S. Food and Drug Administration has approved aspartame, acesulfame-k, neotame, cyclamate and alitame for use as per acceptable daily intake (ADI) value. But till date, breakdown products of these sweeteners have controversial health and metabolic effects. On the other hand, rare sugars are monosaccharides and have no known health effects because it does not metabolize in our body, but shows same sweet taste and bulk property as sugar. Rare sugars have no such ADI value and are mainly produced by using bioreactor and so inspite of high demand, rare sugars cannot be produced in the desired quantities. PMID:24741154

  15. Artificial sweeteners - a review.

    PubMed

    Chattopadhyay, Sanchari; Raychaudhuri, Utpal; Chakraborty, Runu

    2014-04-01

    Now a days sugar free food are very much popular because of their less calorie content. So food industry uses various artificial sweeteners which are low in calorie content instead of high calorie sugar. U.S. Food and Drug Administration has approved aspartame, acesulfame-k, neotame, cyclamate and alitame for use as per acceptable daily intake (ADI) value. But till date, breakdown products of these sweeteners have controversial health and metabolic effects. On the other hand, rare sugars are monosaccharides and have no known health effects because it does not metabolize in our body, but shows same sweet taste and bulk property as sugar. Rare sugars have no such ADI value and are mainly produced by using bioreactor and so inspite of high demand, rare sugars cannot be produced in the desired quantities.

  16. Modified high-density lipoproteins by artificial sweetener, aspartame, and saccharin, showed loss of anti-atherosclerotic activity and toxicity in zebrafish.

    PubMed

    Kim, Jae-Yong; Park, Ki-Hoon; Kim, Jihoe; Choi, Inho; Cho, Kyung-Hyun

    2015-01-01

    Safety concerns have been raised regarding the association of chronic consumption of artificial sweeteners (ASs) with metabolic disorders, especially in the heart and brain. There has been no information on the in vivo physiological effects of AS consumption in lipoprotein metabolism. High-dosage treatment (final 25, 50, and 100 mM) with AS (aspartame, acesulfame K, and saccharin) to human high-density lipoprotein (HDL) induced loss of antioxidant ability along with elevated atherogenic effects. Aspartame-treated HDL3 (final 100 mM) almost all disappeared due to putative proteolytic degradation. Aspartame- and saccharin-treated HDL3 showed more enhanced cholesteryl ester transfer activity, while their antioxidant ability was disappeared. Microinjection of the modified HDL3 exacerbated the inflammatory death in zebrafish embryos in the presence of oxLDL. These results show that AS treatment impaired the beneficial functions of HDL, resulting in loss of antioxidant and anti-atherogenic activities. These results suggest that aspartame and saccharin could be toxic to the human circulation system as well as embryonic development via impairment of lipoprotein function. PMID:25142179

  17. Modified high-density lipoproteins by artificial sweetener, aspartame, and saccharin, showed loss of anti-atherosclerotic activity and toxicity in zebrafish.

    PubMed

    Kim, Jae-Yong; Park, Ki-Hoon; Kim, Jihoe; Choi, Inho; Cho, Kyung-Hyun

    2015-01-01

    Safety concerns have been raised regarding the association of chronic consumption of artificial sweeteners (ASs) with metabolic disorders, especially in the heart and brain. There has been no information on the in vivo physiological effects of AS consumption in lipoprotein metabolism. High-dosage treatment (final 25, 50, and 100 mM) with AS (aspartame, acesulfame K, and saccharin) to human high-density lipoprotein (HDL) induced loss of antioxidant ability along with elevated atherogenic effects. Aspartame-treated HDL3 (final 100 mM) almost all disappeared due to putative proteolytic degradation. Aspartame- and saccharin-treated HDL3 showed more enhanced cholesteryl ester transfer activity, while their antioxidant ability was disappeared. Microinjection of the modified HDL3 exacerbated the inflammatory death in zebrafish embryos in the presence of oxLDL. These results show that AS treatment impaired the beneficial functions of HDL, resulting in loss of antioxidant and anti-atherogenic activities. These results suggest that aspartame and saccharin could be toxic to the human circulation system as well as embryonic development via impairment of lipoprotein function.

  18. Sweetening ruthenium and osmium: organometallic arene complexes containing aspartame.

    PubMed

    Gray, Jennifer C; Habtemariam, Abraha; Winnig, Marcel; Meyerhof, Wolfgang; Sadler, Peter J

    2008-09-01

    The novel organometallic sandwich complexes [(eta(6)-p-cymene)Ru(eta(6)-aspartame)](OTf)(2) (1) (OTf = trifluoromethanesulfonate) and [(eta(6)-p-cymene)Os(eta(6)-aspartame)](OTf)(2) (2) incorporating the artificial sweetener aspartame have been synthesised and characterised. A number of properties of aspartame were found to be altered on binding to either metal. The pK(a) values of both the carboxyl and the amino groups of aspartame are lowered by between 0.35 and 0.57 pH units, causing partial deprotonation of the amino group at pH 7.4 (physiological pH). The rate of degradation of aspartame to 3,6-dioxo-5-phenylmethylpiperazine acetic acid (diketopiperazine) increased over threefold from 0.12 to 0.36 h(-1) for 1, and to 0.43 h(-1) for 2. Furthermore, the reduction potential of the ligand shifted from -1.133 to -0.619 V for 2. For the ruthenium complex 1 the process occurred in two steps, the first (at -0.38 V) within a biologically accessible range. This facilitates reactions with biological reductants such as ascorbate. Binding to and activation of the sweet taste receptor was not observed for these metal complexes up to concentrations of 1 mM. The factors which affect the ability of metal-bound aspartame to interact with the receptor site are discussed.

  19. Stability considerations of aspartame in the direct analysis of artificial sweeteners in water samples using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS).

    PubMed

    Berset, Jean-Daniel; Ochsenbein, Nicole

    2012-07-01

    A HPLC-MS/MS method is presented for the simultaneous determination of frequently used artificial sweeteners (ASs) and the main metabolite of aspartame (ASP), diketopiperazine (DKP), in environmental water samples using the direct-injection (DI) technique, thereby achieving limits of quantification (LOQ) of 10 ng L(-1). For a reliable quantification of ASP pH should be adjusted to 4.3 to prevent formation of the metabolite. Acesulfame (ACE), saccharin (SAC), cyclamate (CYC) and sucralose (SUC) were ubiquitously found in water samples. Highest concentrations up to 61 μg L(-1) of ACE were found in wastewater effluents, followed by surface water with concentrations up to 7 μg L(-1), lakes up to 600 ng L(-1) and groundwater and tap water up to 70 ng L(-1). The metabolite DKP was only detected in wastewater up to 200 ng L(-1) and at low detection frequencies.

  20. Title: Elucidation of Environmental Fate of Artificial Sweeteners (Aspartame, Acesulfame K and Saccharin) by Determining Bimolecular Rate Constants with Hydroxyl Radical at Various pH and Temperature Conditions and Possible Reaction By-Products

    NASA Astrophysics Data System (ADS)

    Teraji, T.; Arakaki, T.; Suzuka, T.

    2012-12-01

    Use of artificial sweeteners in beverages and food has been rapidly increasing because of their non-calorie nature. In Japan, aspartame, acesulfame K and sucralose are among the most widely used artificial sweeteners. Because the artificial sweeteners are not metabolized in human bodies, they are directly excreted into the environment without chemical transformations. We initiated a study to better understand the fate of artificial sweeteners in the marine environment. The hydroxyl radical (OH), the most potent reactive oxygen species, reacts with various compounds and determines the environmental oxidation capacity and the life-time of many compounds. The steady-state OH concentration and the reaction rate constants between the compound and OH are used to estimate the life-time of the compound. In this study, we determine the bimolecular rate constants between aspartame, acefulfame K and saccharin and OH at various pH and temperature conditions using a competition kinetics technique. We use hydrogen peroxide as a photochemical source of OH. Bimolecular rate constant we obtained so far for aspartame was (2.6±1.2)×109 M-1 s-1 at pH = 3.0 and (4.9±2.3)×109 M-1 s-1 at pH = 5.5. Little effect was seen by changing the temperatures between 15 and 40 oC. Activation energy (Ea) was calculated to be -1.0 kJ mol-1 at pH = 3.0, +8.5 kJ mol-1 at pH = 5.5, which could be regarded as zero. We will report bimolecular rate constants at different pHs and temperatures for acesulfame K and saccharin, as well. Possible reaction by-products for aspartame will be also reported. We will further discuss the fate of aspartame in the coastal environment.

  1. Artificial Sweeteners and Cancer

    MedlinePlus

    ... artificial sweeteners and cancer? Saccharin Studies in laboratory rats during the early 1970s linked saccharin with the ... cause cancer in laboratory animals .” Subsequent studies in rats showed an increased incidence of urinary bladder cancer ...

  2. Assessment of stability of binary sweetener blend (aspartame x acesulfame-K) during storage in whey lemon beverage.

    PubMed

    Arora, Sumit; Shendurse, Ashish M; Sharma, Vivek; Wadhwa, Balbir K; Singh, Ashish K

    2013-08-01

    In the present study, artificial sweeteners-aspartame, acesulfame-K and binary sweetener blend of aspartame x acesulfame-K were assessed for stability during storage in whey lemon beverage. A solid phase extraction method using C18 cartridges was standardized for the isolation of aspartame, acesulfame-K and their degradation products in whey lemon beverage. HPLC analytical conditions were standardized over C18 column for simultaneous separation of multiple sweeteners and their degradation products in sample isolates. Storage studies revealed that increase in acidity and viscosity and decrease in pH and ascorbic acid content of artificially sweetened whey lemon beverage samples were similar to the changes occurring in control samples during storage. Analysis using HPLC showed that aspartame (added either singly or in a blend) and acesulfame-K (added in a blend) were stable in whey lemon beverage under refrigerated condition for 15 days.

  3. Artificial sweeteners--do they bear a carcinogenic risk?

    PubMed

    Weihrauch, M R; Diehl, V

    2004-10-01

    Artificial sweeteners are added to a wide variety of food, drinks, drugs and hygiene products. Since their introduction, the mass media have reported about potential cancer risks, which has contributed to undermine the public's sense of security. It can be assumed that every citizen of Western countries uses artificial sweeteners, knowingly or not. A cancer-inducing activity of one of these substances would mean a health risk to an entire population. We performed several PubMed searches of the National Library of Medicine for articles in English about artificial sweeteners. These articles included 'first generation' sweeteners such as saccharin, cyclamate and aspartame, as well as 'new generation' sweeteners such as acesulfame-K, sucralose, alitame and neotame. Epidemiological studies in humans did not find the bladder cancer-inducing effects of saccharin and cyclamate that had been reported from animal studies in rats. Despite some rather unscientific assumptions, there is no evidence that aspartame is carcinogenic. Case-control studies showed an elevated relative risk of 1.3 for heavy artificial sweetener use (no specific substances specified) of >1.7 g/day. For new generation sweeteners, it is too early to establish any epidemiological evidence about possible carcinogenic risks. As many artificial sweeteners are combined in today's products, the carcinogenic risk of a single substance is difficult to assess. However, according to the current literature, the possible risk of artificial sweeteners to induce cancer seems to be negligible.

  4. Influence of artificial sweeteners on the kinetic and metabolic behavior of Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Manca de Nadra, M C; Anduni, G J; Farías, M E

    2007-10-01

    The addition of artificial sweeteners to a LAPT (yeast extract, peptone, and tryptone) medium without supplemented sugar increased the growth rate and final biomass of Lactobacillus delbrueckii subsp. bulgaricus YOP 12 isolated from commercial yogurt. Saccharin and cyclamate were consumed during microorganism growth, while the uptake of aspartame began once the medium was glucose depleted. The pH of the media increased as a consequence of the ammonia released into the media supplemented with the sweeteners. The L. delbrueckii subsp. bulgaricus strain was able to grow in the presence of saccharin, cyclamate, or aspartame, and at low sweetener concentrations, the microorganism could utilize cyclamate and aspartame as an energy and carbon source.

  5. Use of artificial sweeteners to promote alcohol consumption by rats.

    PubMed

    Plummer, J L; Hall, P M; Cmielewski, P L; Ilsley, A H; Ahern, M J

    1997-02-01

    Cirrhosis may be reliably produced in rats by exposing them intermittently to low levels of carbon tetrachloride vapour while feeding alcohol in the Lieber-DeCarli liquid diet. Providing the alcohol in drinking water that has been sweetened with sucrose is a cheaper and more convenient method but it does not yield reliable results. This study aimed to determine whether alcohol in drinking water sweetened with artificial sweeteners would give adequate alcohol intake to achieve the desired hepatic effects. Rats were fed alcohol (8% v/v) in drinking water sweetened with sucrose (5% w/v) (n = 12), or with one of the artificial sweeteners aspartame (0.025%), saccharin (0.025%) or cyclamate (0.05%) (n = 8 per agent). During the alcohol treatment the animals were exposed to carbon tetrachloride vapour, 40 ppm, six hours per night for five nights per week, over a period of 14 weeks. All groups achieved good alcohol intakes of 5-6 g/kg/day. Only one rat, in the aspartame group, became cirrhotic; all the others had varying degrees of fibrosis which did not differ significantly among the treatments. Although it was not effective in reliably achieving cirrhosis, sweetening the alcohol solution with artificial sweeteners led to reasonable alcohol intakes with resultant hepatic fibrosis, and without the high carbohydrate intake which occurs when sucrose is used.

  6. Adherence of Streptococcus mutans to smooth surfaces in the presence of artificial sweeteners.

    PubMed

    Linke, H A

    1983-01-01

    The adherence of Streptococcus mutans to smooth glass surfaces was studied in the presence of the artificial sweeteners, saccharin, acesulfame K and aspartame. The cells were grown aerobically in 2% yeast extract, 1% sucrose medium with artificial sweetener added in concentrations from 0.02 to 20.00 mg/ml. The artificial sweeteners tested reduced overall growth (adherent plus suspended cells), but observed growth was in favour of the adherent cells. As compared to the control optimum adherence was obtained using 2 mg/ml sodium saccharin, 2 to 20 mg/ml acesulfame K and 4 mg/ml aspartame.

  7. Effect of drinking soda sweetened with aspartame or high-fructose corn syrup on food intake and body weight.

    PubMed

    Tordoff, M G; Alleva, A M

    1990-06-01

    To examine whether artificial sweeteners aid in the control of long-term food intake and body weight, we gave free-living, normal-weight subjects 1150 g soda sweetened with aspartame (APM) or high-fructose corn syrup (HFCS) per day. Relative to when no soda was given, drinking APM-sweetened soda for 3 wk significantly reduced calorie intake of both females (n = 9) and males (n = 21) and decreased the body weight of males but not of females. However, drinking HFCS-sweetened soda for 3 wk significantly increased the calorie intake and body weight of both sexes. Ingesting either type of soda reduced intake of sugar from the diet without affecting intake of other nutrients. Drinking large volumes of APM-sweetened soda, in contrast to drinking HFCS-sweetened soda, reduces sugar intake and thus may facilitate the control of calorie intake and body weight.

  8. Dietary intake of artificial sweeteners by the Belgian population.

    PubMed

    Huvaere, Kevin; Vandevijvere, Stefanie; Hasni, Moez; Vinkx, Christine; Van Loco, Joris

    2012-01-01

    This study investigated whether the Belgian population older than 15 years is at risk of exceeding ADI levels for acesulfame-K, saccharin, cyclamate, aspartame and sucralose through an assessment of usual dietary intake of artificial sweeteners and specific consumption of table-top sweeteners. A conservative Tier 2 approach, for which an extensive label survey was performed, showed that mean usual intake was significantly lower than the respective ADIs for all sweeteners. Even consumers with high intakes were not exposed to excessive levels, as relative intakes at the 95th percentile (p95) were 31% for acesulfame-K, 13% for aspartame, 30% for cyclamate, 17% for saccharin, and 16% for sucralose of the respective ADIs. Assessment of intake using a Tier 3 approach was preceded by optimisation and validation of an analytical method based on liquid chromatography with mass spectrometric detection. Concentrations of sweeteners in various food matrices and table-top sweeteners were determined and mean positive concentration values were included in the Tier 3 approach, leading to relative intakes at p95 of 17% for acesulfame-K, 5% for aspartame, 25% for cyclamate, 11% for saccharin, and 7% for sucralose of the corresponding ADIs. The contribution of table-top sweeteners to the total usual intake (<1% of ADI) was negligible. A comparison of observed intake for the total population with intake for diabetics (acesulfame-K: 3.55 versus 3.75; aspartame: 6.77 versus 6.53; cyclamate: 1.97 versus 2.06; saccharine: 1.14 versus 0.97; sucralose: 3.08 versus 3.03, expressed as mg kg(-1) bodyweight day(-1) at p95) showed that the latter group was not exposed to higher levels. It was concluded that the Belgian population is not at risk of exceeding the established ADIs for sweeteners.

  9. Aspartame- or sugar-sweetened beverages: effects on mood in young women.

    PubMed

    Pivonka, E E; Grunewald, K K

    1990-02-01

    Young college women (no. = 120) received, on three different occasions, 12 oz water, aspartame-sweetened beverage, and sugar-sweetened beverage, separated by weekly intervals. Changes in mood were assessed by administering test questionnaires before and 1 hour after the beverages were drunk. Mood tests employed were the Stanford Sleepiness Scale (SSS), the Visual Analogue Mood Scale (VAMS), and the Profile of Mood States (POMS). Changes in mood were similar following consumption of water or the aspartame-sweetened beverage. However, the ingestion of the sugar-sweetened beverage was followed by increased sleepiness during the last half of the one-hour observation period (p less than .002).

  10. Effects of artificial sweeteners on body weight, food and drink intake.

    PubMed

    Polyák, Eva; Gombos, K; Hajnal, B; Bonyár-Müller, K; Szabó, Sz; Gubicskó-Kisbenedek, A; Marton, K; Ember, I

    2010-12-01

    Artificial sweeteners are widely used all over the world. They may assist in weight management, prevention of dental caries, control of blood glucose of diabetics, and also can be used to replace sugar in foods. In the animal experimentation mice were given oral doses of water solutions of table top artificial sweeteners (saccharin, cyclamate based, acesulfame-K based, and aspartame) the amount of maximum Acceptable Daily Intake (ADI) ad libitum. The controls received only tap water with the same drinking conditions as the treated groups. The mice were fed chow ad libitum.We measured food intake and body weight once a week, water and solutions of artificial sweeteners intake twice a week. The data were analysed by statistical methods (T-probe, regression analysis).Consumption of sweeteners resulted in significantly increased body weight; however, the food intake did not change.These results question the effect of non-caloric artificial sweeteners on weight-maintenance or body weight decrease.

  11. The capsaicin receptor participates in artificial sweetener aversion.

    PubMed

    Riera, Céline E; Vogel, Horst; Simon, Sidney A; Damak, Sami; le Coutre, Johannes

    2008-11-28

    Artificial sweeteners such as saccharin, aspartame, acesulfame-K, and cyclamate produce at high concentrations an unpleasant after-taste that is generally attributed to bitter and metallic taste sensations. To identify receptors involved with the complex perception of the above compounds, preference tests were performed in wild-type mice and mice lacking the TRPV1 channel or the T1R3 receptor, the latter being necessary for the perception of sweet taste. The sweeteners, including cyclamate, displayed a biphasic response profile, with the T1R3 mediated component implicated in preference. At high concentrations imparting off-taste, omission of TRPV1 reduced aversion. In a heterologous expression system the Y511A point mutation in the vanilloid pocket of TRPV1 did not affect saccharin and aspartame responses but abolished cyclamate and acesulfame-K activities. The results rationalize artificial sweetener tastes and off-tastes by showing that at low concentrations, these molecules stimulate the gustatory system through the hedonically positive T1R3 pathway, and at higher concentrations, their aversion is partly mediated by TRPV1.

  12. Molecular mechanism of species-dependent sweet taste toward artificial sweeteners.

    PubMed

    Liu, Bo; Ha, Matthew; Meng, Xuan-Yu; Kaur, Tanno; Khaleduzzaman, Mohammed; Zhang, Zhe; Jiang, Peihua; Li, Xia; Cui, Meng

    2011-07-27

    The heterodimer of Tas1R2 and Tas1R3 is a broadly acting sweet taste receptor, which mediates mammalian sweet taste toward natural and artificial sweeteners and sweet-tasting proteins. Perception of sweet taste is a species-selective physiological process. For instance, artificial sweeteners aspartame and neotame taste sweet to humans, apes, and Old World monkeys but not to New World monkeys and rodents. Although specific regions determining the activation of the receptors by these sweeteners have been identified, the molecular mechanism of species-dependent sweet taste remains elusive. Using human/squirrel monkey chimeras, mutagenesis, and molecular modeling, we reveal that the different responses of mammalian species toward the artificial sweeteners aspartame and neotame are determined by the steric effect of a combination of a few residues in the ligand binding pocket. Residues S40 and D142 in the human Tas1R2, which correspond to residues T40 and E142 in the squirrel monkey Tas1R2, were found to be the critical residues for the species-dependent difference in sweet taste. In addition, human Tas1R2 residue I67, which corresponds to S67 in squirrel monkey receptor, modulates the higher affinity of neotame than of aspartame. Our studies not only shed light on the molecular mechanism of species-dependent sweet taste toward artificial sweeteners, but also provide guidance for designing novel effective artificial sweet compounds. PMID:21795555

  13. Molecular mechanism of species-dependent sweet taste toward artificial sweeteners.

    PubMed

    Liu, Bo; Ha, Matthew; Meng, Xuan-Yu; Kaur, Tanno; Khaleduzzaman, Mohammed; Zhang, Zhe; Jiang, Peihua; Li, Xia; Cui, Meng

    2011-07-27

    The heterodimer of Tas1R2 and Tas1R3 is a broadly acting sweet taste receptor, which mediates mammalian sweet taste toward natural and artificial sweeteners and sweet-tasting proteins. Perception of sweet taste is a species-selective physiological process. For instance, artificial sweeteners aspartame and neotame taste sweet to humans, apes, and Old World monkeys but not to New World monkeys and rodents. Although specific regions determining the activation of the receptors by these sweeteners have been identified, the molecular mechanism of species-dependent sweet taste remains elusive. Using human/squirrel monkey chimeras, mutagenesis, and molecular modeling, we reveal that the different responses of mammalian species toward the artificial sweeteners aspartame and neotame are determined by the steric effect of a combination of a few residues in the ligand binding pocket. Residues S40 and D142 in the human Tas1R2, which correspond to residues T40 and E142 in the squirrel monkey Tas1R2, were found to be the critical residues for the species-dependent difference in sweet taste. In addition, human Tas1R2 residue I67, which corresponds to S67 in squirrel monkey receptor, modulates the higher affinity of neotame than of aspartame. Our studies not only shed light on the molecular mechanism of species-dependent sweet taste toward artificial sweeteners, but also provide guidance for designing novel effective artificial sweet compounds.

  14. Racemization of aspartic acid and phenylalanine in the sweetener aspartame at 100 degrees C.

    PubMed Central

    Boehm, M F; Bada, J L

    1984-01-01

    The racemization half-lives (i.e., the time required to reach a D/L = 0.33) at pH 6.8 for aspartic acid and phenylalanine in the sweetener aspartame (L-aspartyl-L-phenylalanine methyl ester) were determined to be 13 and 23 hours, respectively, at 100 degrees C. Racemization at this pH does not occur in aspartame but rather in its diketopiperazine decomposition product. Our results indicate that the use of aspartame to sweeten neutral pH foods and beverages that are then heated at elevated temperature could generate D-aspartic acid and D-phenylalanine. The nutritive consequences of these D-amino acids in the human diet are not well established, and thus aspartame should probably not be used as a sweetener when the exposure of neutral pH foods and beverages to elevated temperatures is required. At pH 4, a typical pH of most foods and beverages that might be sweetened with aspartame, the half-lives are 47 hours for aspartic acid and 1200 hours for phenylalanine at 100 degrees C. Racemization at pH 4 takes place in aspartame itself. Although the racemization rates at pH 4 are slow and no appreciable racemization of aspartic acid and phenylalanine should occur during the normal use of aspartame, some food and beverage components could conceivably act as catalysts. Additional studies are required to evaluate whether the use of aspartame as a sugar substitute might not in turn result in an increased human consumption of D-aspartic acid and D-phenylalanine. PMID:6591191

  15. Racemization of aspartic acid and phenylalanine in the sweetener aspartame at 100 degrees C.

    PubMed

    Boehm, M F; Bada, J L

    1984-08-01

    The racemization half-lives (i.e., the time required to reach a D/L = 0.33) at pH 6.8 for aspartic acid and phenylalanine in the sweetener aspartame (L-aspartyl-L-phenylalanine methyl ester) were determined to be 13 and 23 hours, respectively, at 100 degrees C. Racemization at this pH does not occur in aspartame but rather in its diketopiperazine decomposition product. Our results indicate that the use of aspartame to sweeten neutral pH foods and beverages that are then heated at elevated temperature could generate D-aspartic acid and D-phenylalanine. The nutritive consequences of these D-amino acids in the human diet are not well established, and thus aspartame should probably not be used as a sweetener when the exposure of neutral pH foods and beverages to elevated temperatures is required. At pH 4, a typical pH of most foods and beverages that might be sweetened with aspartame, the half-lives are 47 hours for aspartic acid and 1200 hours for phenylalanine at 100 degrees C. Racemization at pH 4 takes place in aspartame itself. Although the racemization rates at pH 4 are slow and no appreciable racemization of aspartic acid and phenylalanine should occur during the normal use of aspartame, some food and beverage components could conceivably act as catalysts. Additional studies are required to evaluate whether the use of aspartame as a sugar substitute might not in turn result in an increased human consumption of D-aspartic acid and D-phenylalanine.

  16. Comparison of aspartame- and fructose-sweetened layer cakes: importance of panels of users for evaluation of alternative sweeteners.

    PubMed

    Hess, D A; Setser, C S

    1986-07-01

    Panelists with and without known carbohydrate metabolic diseases evaluated layer cakes sweetened with aspartame, alone or in combination with low levels of fructose, for texture and flavor. Panelists used a 5-point, descriptive rating scale to evaluate flavor and texture of lemon, orange, spice, and chocolate layer cakes baked in conventional and microwave ovens. Panelists judged that aspartame alone was not suitable in layer cakes. In general, healthy panelists evaluated the cakes as sweeter, crust bitterness as greater, and overall eating quality as higher than the panel members with carbohydrate metabolic disorders. Panelists did not differ in their evaluation of textural qualities.

  17. The potential toxicity of artificial sweeteners.

    PubMed

    Whitehouse, Christina R; Boullata, Joseph; McCauley, Linda A

    2008-06-01

    Since their discovery, the safety of artificial sweeteners has been controversial. Artificial sweeteners provide the sweetness of sugar without the calories. As public health attention has turned to reversing the obesity epidemic in the United States, more individuals of all ages are choosing to use these products. These choices may be beneficial for those who cannot tolerate sugar in their diets (e.g., diabetics). However, scientists disagree about the relationships between sweeteners and lymphomas, leukemias, cancers of the bladder and brain, chronic fatigue syndrome, Parkinson's disease, Alzheimer's disease, multiple sclerosis, autism, and systemic lupus. Recently these substances have received increased attention due to their effects on glucose regulation. Occupational health nurses need accurate and timely information to counsel individuals regarding the use of these substances. This article provides an overview of types of artificial sweeteners, sweetener history, chemical structure, biological fate, physiological effects, published animal and human studies, and current standards and regulations. PMID:18604921

  18. The potential toxicity of artificial sweeteners.

    PubMed

    Whitehouse, Christina R; Boullata, Joseph; McCauley, Linda A

    2008-06-01

    Since their discovery, the safety of artificial sweeteners has been controversial. Artificial sweeteners provide the sweetness of sugar without the calories. As public health attention has turned to reversing the obesity epidemic in the United States, more individuals of all ages are choosing to use these products. These choices may be beneficial for those who cannot tolerate sugar in their diets (e.g., diabetics). However, scientists disagree about the relationships between sweeteners and lymphomas, leukemias, cancers of the bladder and brain, chronic fatigue syndrome, Parkinson's disease, Alzheimer's disease, multiple sclerosis, autism, and systemic lupus. Recently these substances have received increased attention due to their effects on glucose regulation. Occupational health nurses need accurate and timely information to counsel individuals regarding the use of these substances. This article provides an overview of types of artificial sweeteners, sweetener history, chemical structure, biological fate, physiological effects, published animal and human studies, and current standards and regulations.

  19. Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener

    PubMed Central

    Yasuura, Masato; Tahara, Yusuke; Ikezaki, Hidekazu; Toko, Kiyoshi

    2014-01-01

    Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame. PMID:24763213

  20. Development of a sweetness sensor for aspartame, a positively charged high-potency sweetener.

    PubMed

    Yasuura, Masato; Tahara, Yusuke; Ikezaki, Hidekazu; Toko, Kiyoshi

    2014-04-23

    Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  1. Aspartame: clinical update.

    PubMed

    Potenza, D P; el-Mallakh, R S

    1989-07-01

    Since the introduction of aspartame into the American food supply in 1981, it has grown to become the most widely used and accepted artificial sweetener. However, recent published and unpublished reports of headaches, seizures, blindness, and cognitive and behavioral changes with long-term, high-dose aspartame may be cause for concern. Physician awareness of the present clinical and research status of aspartame is important.

  2. Effects of drinks sweetened with sucrose or aspartame on hunger, thirst and food intake in men.

    PubMed

    Rolls, B J; Kim, S; Fedoroff, I C

    1990-07-01

    Forty-two nondieting adult males were given 8 or 16 oz of lemonade, sweetened to equal intensity with either aspartame or sucrose, or the same volumes of water, or no drink. Subjects were separated into three groups receiving the drinks at different times: with a self-selection lunch, or 30, or 60 min before lunch. Food intakes did not differ when subjects received the drinks with lunch; however, when the calories from the drinks were included, intake was significantly greater with the sucrose-sweetened lemonades than in the other conditions. When subjects received the drinks 30 or 60 min before lunch, food intakes were not significantly different. Appetite ratings were not different among the conditions. When the drinks were consumed with the meal, the 8-oz sucrose-sweetened lemonade differed from the other drinks in that it did not significantly reduce thirst. The results indicate that in nondieting males, aspartame in concentrations similar to those in commercially available drinks did not increase hunger ratings or food intake. However, caloric drinks taken with lunch increased total energy intake in that meal. Also, sucrose-sweetened drinks may decrease thirst less than water or aspartame-sweetened drinks when taken with a meal.

  3. Formaldehyde, aspartame, and migraines: a possible connection.

    PubMed

    Jacob, Sharon E; Stechschulte, Sarah

    2008-01-01

    Aspartame is a widely used artificial sweetener that has been linked to pediatric and adolescent migraines. Upon ingestion, aspartame is broken, converted, and oxidized into formaldehyde in various tissues. We present the first case series of aspartame-associated migraines related to clinically relevant positive reactions to formaldehyde on patch testing.

  4. Liquid chromatographic determination of aspartame in dry beverage bases and sweetener tablets with confirmation by thin layer chromatography.

    PubMed

    Daniels, D H; Joe, F L; Warner, C R; Fazio, T

    1984-01-01

    A liquid chromatographic method is described for the determination of aspartame in dry beverage bases and sweetener tablets. The sample was mixed with the mobile phase, the pH was adjusted to within +/- 0.1 pH unit of the mobile phase, and the sample was diluted to volume with the mobile phase. The solution was filtered and a 10 microL aliquot was injected onto a C18 reverse phase column. Aspartame was quantitated with an ultraviolet detector. Recoveries of aspartame ranged from 94 to 111%. The dry beverage bases contained 5-13% aspartame and the sweetener tablets contained 19% aspartame. The presence of aspartame was confirmed by using thin layer chromatography.

  5. Use of aspartame-based sweetener tablets in emergency dosimetry using EPR.

    PubMed

    Maghraby, A; Salama, E

    2010-06-01

    Accident dosimetry aims to evaluate the unplanned radiation doses delivered to individuals through one of the objects exist in the area of the accident. The gamma dose response of free radicals generated in irradiated aspartame tablets and its usability for emergency dosimetry was studied. EPR spectra of unirradiated and irradiated aspartame-based sweetener were recorded. Two signals arise after irradiating, S(1) at g (S(1)) = 2.00229 +/- 0.00097 and S(2) at g (S(2)) = 2.00262 +/- 0.00088. Some EPR parameters were studied for radiation-induced radicals in aspartame sweeteners tablets, such as the microwave saturation behaviour, the effect of magnetic field modulation amplitude on the peak-to-peak height and peak-to-peak line width for both of S(1) and S(2). Responses of S(1) and S(2) to different radiation doses were studied and resulted in linear relationships, radicals persistence curves were plotted over a 49-d storage period. It was found that Aspartame sweeteners tablets are useful in the range from 0.96 to 39.96 Gy. Radiation-induced radicals possess reasonable stability.

  6. FTIR determination of Aspartame and Acesulfame-K in tabletop sweeteners.

    PubMed

    Armenta, Sergio; Garrigues, Salvador; de la Guardia, Miguel

    2004-12-29

    Two different strategies for sweeteners determination in tabletop samples by Fourier transform middle-infrared (FTIR) spectrometry, an off-line and a fully mechanized extraction of Aspartame and Acesulfame-K with different mixtures of chloroform and methanol, have been developed. The off-line method involves the extraction of both active principles by sonication of samples with 25:75 v/v CHCl3/CH3OH and direct measurement of the peak height values at 1751 cm(-1), corrected using a baseline defined at 1850 cm(-1) for Aspartame, and measurement of the peak height at 1170 cm(-1) in the first-order derivative spectra, corrected by using a horizontal baseline established at 1850 cm(-1), for Acesulfame-K. Limit of detection values of 0.10 and 0.9% w/w and relative standard deviations of 0.17 and 0.5% were found for Aspartame and Acesulfame-K, respectively. The time needed for the sweeteners determination is reduced from 35 min for the HPLC method to 7 min by FTIR. On the other hand, the fully mechanized on-line extraction avoids the contact of the operator with toxic solvents and differentiates between samples that contain Aspartame and Acesulfame-K and those that include only Aspartame, reducing the time needed for the analysis of the last kind of samples to 5 min.

  7. Comments on the purported generation of formaldehyde and adduct formation from the sweetener aspartame.

    PubMed

    Tephly, T R

    1999-01-01

    A recent paper by Trocho et al. (1) describes experiments meant to show that formaldehyde adducts are formed when rats are administered the sweetener aspartame. These authors assume that the methanol carbon of aspartame generates formaldehyde which then forms adducts with protein, DNA, and RNA. Doses employed range widely. In this letter, studies which have been published previously and which were not cited by these authors are reviewed in order to put into perspective the disposition of methanol and formaldehyde in monkeys and humans, species relevant to the toxicity of methanol and its toxic metabolite, formic acid.

  8. Aspartame use in Parkinson's disease.

    PubMed

    Karstaedt, P J; Pincus, J H

    1993-03-01

    The artificial sweetener aspartame (NutraSweet) is hydrolyzed in the gut as phenylalanine (PA), a large neutral amino acid (LNAA). LNAAs compete with levodopa for uptake into the brain. To determine the effect of aspartame on levodopa-treated Parkinson's disease (PD) patients, we studied 18 PD patients with protein-sensitive motor fluctuations by administering in a double-blind and single-crossover design, on alternate days, aspartame (600 or 1,200 mg) and placebo. Every hour, we performed a motor examination and drew blood to estimate plasma LNAA, PA, and levodopa levels. Six-hundred mg of aspartame had no effect on plasma PA or motor status. Although 1,200 mg of aspartame significantly increased plasma PA, motor performance did not deteriorate. Aspartame consumption in amounts well in excess of what would be consumed by heavy users of aspartame-sweetened products has no adverse effect on PD patients.

  9. Children's food intake following drinks sweetened with sucrose or aspartame: time course effects.

    PubMed

    Birch, L L; McPhee, L; Sullivan, S

    1989-02-01

    In two experiments, 2-5-year-old children's responsiveness to caloric density cues was examined. In a preloading protocol, consumption of fixed volumes of drinks (205 ml in Experiment 1; 150 ml in Experiment 2), sweetened with sucrose, aspartame, aspartame plus low glucose maltodextrin, or a water control, was followed by ad lib consumption from among a variety of foods. Caloric drinks had about 90 kcal in Experiment 1, 65 kcal in Experiment 2. The delay interval between the preload and the ad lib consumption was 0, 30 or 60 minutes. In Experiment 1, 24 4- and 5-year-old children participated in only one delay interval, while in Experiment 2, all 20 2- and 3-year-old children were seen in all conditions. Results revealed evidence of caloric compensation, but no evidence of preload x time delay interaction. In both experiments, aspartame also produced a significant suppression of intake relative to water, primarily due to the pattern at 30 min following the preload. Across conditions, the suppression following aspartame was usually significantly less than that produced by the caloric sweet drinks, providing evidence for postingestive effects. In Experiment 1, suppression of intake was related to the children's preferences for the foods, not to macronutrient content; consumption of nonpreferred foods was most suppressed. Consumption of sweetened drinks as long as 1 hour prior to eating suppressed food intake, and this common feeding practice may also reduce dietary variety.

  10. Aspartame, low-calorie sweeteners and disease: regulatory safety and epidemiological issues.

    PubMed

    Marinovich, Marina; Galli, Corrado L; Bosetti, Cristina; Gallus, Silvano; La Vecchia, Carlo

    2013-10-01

    Aspartame is a synthetic sweetener that has been used safely in food for more than 30 years. Its safety has been evaluated by various regulatory agencies in accordance with procedures internationally recognized, and decisions have been revised and updated regularly. The present review summarizes the most relevant conclusions of epidemiological studies concerning the use of low-calorie sweeteners (mainly aspartame), published between January 1990 and November 2012. In the Nurses' Health study and the Health Professionals Followup study some excess risk of Hodgkin lymphoma and multiple myeloma was found in men but not in women; no association was found with leukemia. In the NIH-AARP Diet and Health Study, there was no association between aspartame and haematopoietic neoplasms. US case-control studies of brain and haematopoietic neoplasms also showed no association. The NIH-AARP Diet and Health Study and case-control studies from California showed no association with pancreatic cancer, and a case-control study from Denmark found no relation with breast cancer risk. Italian case-control studies conducted in 1991-2008 reported no consistent association for cancers of the upper aerodigestive tract, digestive tract, breast, endometrium, ovary, prostate, and kidney. Low calorie sweeteners were not consistently related to vascular events and preterm deliveries.

  11. Gain weight by "going diet?" Artificial sweeteners and the neurobiology of sugar cravings: Neuroscience 2010.

    PubMed

    Yang, Qing

    2010-06-01

    America's obesity epidemic has gathered much media attention recently. A rise in the percent of the population who are obese coincides with an increase in the widespread use of non-caloric artificial sweeteners, such as aspartame (e.g., Diet Coke) and sucralose (e.g., Pepsi One), in food products (Figure 1). Both forward and reverse causalities have been proposed. While people often choose "diet" or "light" products to lose weight, research studies suggest that artificial sweeteners may contribute to weight gain. In this mini-review, inspired by a discussion with Dr. Dana Small at Yale's Neuroscience 2010 conference in April, I first examine the development of artificial sweeteners in a historic context. I then summarize the epidemiological and experimental evidence concerning their effects on weight. Finally, I attempt to explain those effects in light of the neurobiology of food reward.

  12. Gain weight by "going diet?" Artificial sweeteners and the neurobiology of sugar cravings: Neuroscience 2010.

    PubMed

    Yang, Qing

    2010-06-01

    America's obesity epidemic has gathered much media attention recently. A rise in the percent of the population who are obese coincides with an increase in the widespread use of non-caloric artificial sweeteners, such as aspartame (e.g., Diet Coke) and sucralose (e.g., Pepsi One), in food products (Figure 1). Both forward and reverse causalities have been proposed. While people often choose "diet" or "light" products to lose weight, research studies suggest that artificial sweeteners may contribute to weight gain. In this mini-review, inspired by a discussion with Dr. Dana Small at Yale's Neuroscience 2010 conference in April, I first examine the development of artificial sweeteners in a historic context. I then summarize the epidemiological and experimental evidence concerning their effects on weight. Finally, I attempt to explain those effects in light of the neurobiology of food reward. PMID:20589192

  13. Repeated ingestion of aspartame-sweetened beverages: further observations in individuals heterozygous for phenylketonuria.

    PubMed

    Stegink, L D; Filer, L J; Bell, E F; Ziegler, E E; Tephly, T R; Krause, W L

    1990-10-01

    Six adults heterozygous for phenylketonuria (PKU) ingested eight successive servings of unsweetened and aspartame (APM)-sweetened beverage at 1-hour intervals in a randomized, balanced, crossover design. In one part, the eight beverage servings were not sweetened. In the other, each of the eight beverage servings provided 600 mg of APM, a dose equivalent to the amount provided by 36 oz of an APM-sweetened diet beverage. Plasma aspartate concentration was not significantly increased after ingestion of unsweetened or APM-sweetened beverage. Similarly, ingestion of the unsweetened beverage had no significant effect on plasma phenylalanine concentration. However, ingestion of APM-sweetened beverage significantly increased plasma phenylalanine concentrations 2.35 to 4.03 mumol/dL above baseline 30 minutes after ingestion. Plasma phenylalanine values reached a steady-state after administration of five servings of APM-sweetened beverage and were slightly, but significantly higher than usual postprandial values for adults heterozygous for PKU. Similarly, the ratio of the plasma phenylalanine concentration to the sum of the concentration of the large neutral amino acids was significantly higher than usual postprandial values. Blood methanol and formate concentrations remained within normal limits. These data indicate that a fasting adult heterozygous for PKU could consume the equivalent of 24 12-oz servings of APM-sweetened beverage over an 8-hour period and only increase plasma phenylalanine concentration to a modest degree.

  14. Elucidation of Environmental Fate of Artificial Sweetener, Aspartame by Determining Bimolecular Rate Constants with Hydroxyl Radical at Various pH and Temperature Conditions and Reaction By-Products Presentation type:Poster Section:Ocean Sciences Session:General Contribution Authors:Takashi Teraji (1) Takemitsu Arakaki (2) AGU# 10173629 (1) Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru Nishihara-cho, Okinawa, 903-0123, Japan (a4269bj@yahoo.co.jp), (2) Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru Nishihara-cho, Okinawa, 903-0123, Japan (arakakit@sci.u-ryukyu.ac.jp)

    NASA Astrophysics Data System (ADS)

    Teraji, T.; Arakaki, T.

    2011-12-01

    Use of artificial sweeteners in drinks and food has been rapidly increasing because of their non-calorie nature. In Japan, aspartame, acesulfame K and sucralose are among the most widely used artificial sweeteners. Because the artificial sweeteners are not metabolized in human bodies, they are directly excreted into the environment without chemical transformations. We initiated a study to better understand the fate of artificial sweeteners in the marine environment. In particular, we focused on the fate of aspartame by determining its bimolecular rate constants with hydroxyl radicals at various pH and temperature conditions and reaction by-products. The hydroxyl radical (OH), the most potent reactive oxygen species, reacts with various compounds and determines the environmental oxidation capacity and the life-time of many compounds. The steady-state OH concentration and the reaction rate constants between the compound and OH are used to estimate the life-time of the compound. In this study, we determine the bimolecular rate constants between aspartame and OH at various pH and temperature conditions using a competition kinetics technique. We use hydrogen peroxide as a photochemical source of OH. Bimolecular rate constant we obtained so far was (2.6±1.2)×109 M-1 s-1 at pH = 3.0. Little effect was seen by changing the temperatures between 15 and 40 °C. Activation energy (Ea) was calculated to be -1.0 kJ mol-1 at pH = 3.0, which could be regarded as zero. We will report reaction rate constants at different pHs and reaction by-products which will be analyzed by GC-MS. We will further discuss the fate of aspartame in the coastal environment.

  15. 21 CFR 145.181 - Artificially sweetened canned pineapple.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Artificially sweetened canned pineapple. 145.181 Section 145.181 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 145.181 Artificially sweetened canned pineapple. (a) Artificially sweetened canned pineapple is...

  16. 21 CFR 145.181 - Artificially sweetened canned pineapple.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Artificially sweetened canned pineapple. 145.181 Section 145.181 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 145.181 Artificially sweetened canned pineapple. (a) Artificially sweetened canned pineapple is...

  17. 21 CFR 145.181 - Artificially sweetened canned pineapple.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Artificially sweetened canned pineapple. 145.181 Section 145.181 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 145.181 Artificially sweetened canned pineapple. (a) Artificially sweetened canned pineapple is...

  18. 21 CFR 145.181 - Artificially sweetened canned pineapple.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Artificially sweetened canned pineapple. 145.181 Section 145.181 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 145.181 Artificially sweetened canned pineapple. (a) Artificially sweetened canned pineapple is...

  19. 21 CFR 145.181 - Artificially sweetened canned pineapple.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Artificially sweetened canned pineapple. 145.181 Section 145.181 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 145.181 Artificially sweetened canned pineapple. (a) Artificially sweetened canned pineapple is...

  20. Dietary intake of four artificial sweeteners by Irish pre-school children.

    PubMed

    Martyn, Danika M; Nugent, Anne P; McNulty, Breige A; O'Reilly, Emer; Tlustos, Christina; Walton, Janette; Flynn, Albert; Gibney, Michael J

    2016-01-01

    In spite of rigorous pre- and post-market reviews of safety, there remains a high level of debate regarding the use of artificial sweeteners in foods. Young children are of particular interest when assessing food chemical exposure as a result of their unique food consumption patterns and comparatively higher exposure to food chemicals on a body weight basis when compared with the general population. The present study examined the intakes of four intense sweeteners (acesulfame K, aspartame, saccharin, sucralose) in the diets of children aged 1-4 years using food consumption and sweetener presence data from the Irish National Pre-school Nutrition Survey (2010-11) and analytical data for sweetener concentration in foods obtained from a national testing programme. Four exposure assessment scenarios were conducted using the available data on sweetener occurrence and concentration. The results demonstrated that the mean daily intakes for all four sweeteners were below the acceptable daily intake (ADI) (17-31%), even considering the most conservative assumptions regarding sweetener presence and concentration. High consumer intakes (P95) were also below the ADI for the four sweeteners when more realistic estimates of exposure were considered. Both sweetener occurrence and concentration data had a considerable effect on reducing the estimated intake values, with a combined reduction in intakes of 95% when expressed as a proportion of the ADI. Flavoured drinks were deemed to be a key contributor to artificial sweetener intakes in this population cohort. It was concluded that there is no health risk to Irish pre-school children at current dietary intake levels of the sweeteners studied. PMID:26939625

  1. Dietary intake of four artificial sweeteners by Irish pre-school children.

    PubMed

    Martyn, Danika M; Nugent, Anne P; McNulty, Breige A; O'Reilly, Emer; Tlustos, Christina; Walton, Janette; Flynn, Albert; Gibney, Michael J

    2016-01-01

    In spite of rigorous pre- and post-market reviews of safety, there remains a high level of debate regarding the use of artificial sweeteners in foods. Young children are of particular interest when assessing food chemical exposure as a result of their unique food consumption patterns and comparatively higher exposure to food chemicals on a body weight basis when compared with the general population. The present study examined the intakes of four intense sweeteners (acesulfame K, aspartame, saccharin, sucralose) in the diets of children aged 1-4 years using food consumption and sweetener presence data from the Irish National Pre-school Nutrition Survey (2010-11) and analytical data for sweetener concentration in foods obtained from a national testing programme. Four exposure assessment scenarios were conducted using the available data on sweetener occurrence and concentration. The results demonstrated that the mean daily intakes for all four sweeteners were below the acceptable daily intake (ADI) (17-31%), even considering the most conservative assumptions regarding sweetener presence and concentration. High consumer intakes (P95) were also below the ADI for the four sweeteners when more realistic estimates of exposure were considered. Both sweetener occurrence and concentration data had a considerable effect on reducing the estimated intake values, with a combined reduction in intakes of 95% when expressed as a proportion of the ADI. Flavoured drinks were deemed to be a key contributor to artificial sweetener intakes in this population cohort. It was concluded that there is no health risk to Irish pre-school children at current dietary intake levels of the sweeteners studied.

  2. [Rapid determination of aspartame in compound sweetening by reversed-phase high performance liquid chromatography].

    PubMed

    Zhang, R; Jiang, M

    1997-11-01

    A method for rapid determination of Aspartame in compound sweetening by reversed-phase high performance liquid chromatography is presented. Aspartame in compound sweetening was separated in a short column (Ultrasphere XL-ODS, 3 microm, 4.6 mm x 70 mm) by using CH3OH-0.02 mol/L NH4Ac as mobile phase. The flow rate was 0.8 mL/min. Detection was performed with UV detector at 220 nm. The injection volume was 20 microL. It was qualitatively analysed by UV scanning at a wavelength range of 200-350 nm under no-stop flow according to their retention time. Quantitative analysis was carried out by measuring peak height and comparing it with external standard. The minimum detectable amount was 5 microg/L. The linear range of the calibration curve was 40-200 mg/L. The average recovery of Aspartame was 92%. The relative standard deviation was 2.9%. This method is simple, rapid and sensitive.

  3. Crystal structure of the low-humidity form of aspartame sweetener.

    PubMed

    Meguro, T; Kashiwagi, T; Satow, Y

    2000-08-01

    The low-humidity IB crystal form of aspartame (L-alphaaspartyl-L-phenylalanine methyl ester) is prepared via humidity-induced transition from the highly hydrated IA crystal form and is used widely as a sweetener. The crystal structure of the low-humidity IB form is determined at 1.05 A resolution (0.476 A(-1) in maximum sintheta/lambda) from an extremely fine fibrous crystal using synchrotron radiation. There are three aspartame molecules and two water molecules in the asymmetric unit of the monoclinic space group P2(1). Each aspartame molecule adopts an almost identical extended conformation which is commonly observed in other crystal forms of aspartame. Three aspartame molecules are assembled into a triangular trimer, and trimer units are stacked along the b-axis via hydrogen-bonding and electrostatic interactions in the main chains and also via hydrophobic contacts in the phenyl side-chains. Six trimer units are related by pseudo 6(1)-screw axis symmetry and form a hydrophilic channel at their center. The hydrophilic channel in the IB form contains only four water molecules in the unit cell, compared with 16 in the IA form. Although the IB form exhibits a trimer structure similar to that of the IA form, one aspartame molecule is rotated by approximately equals 20 degrees from the orientation in the IA form. This arrangement of the molecule implies that the humidity-induced transition is accompanied by a flapping motion of its methyl ester group. These structural differences may imply the stepwise transition from the IA to the IB forms. PMID:10961544

  4. Crystal structure of the low-humidity form of aspartame sweetener.

    PubMed

    Meguro, T; Kashiwagi, T; Satow, Y

    2000-08-01

    The low-humidity IB crystal form of aspartame (L-alphaaspartyl-L-phenylalanine methyl ester) is prepared via humidity-induced transition from the highly hydrated IA crystal form and is used widely as a sweetener. The crystal structure of the low-humidity IB form is determined at 1.05 A resolution (0.476 A(-1) in maximum sintheta/lambda) from an extremely fine fibrous crystal using synchrotron radiation. There are three aspartame molecules and two water molecules in the asymmetric unit of the monoclinic space group P2(1). Each aspartame molecule adopts an almost identical extended conformation which is commonly observed in other crystal forms of aspartame. Three aspartame molecules are assembled into a triangular trimer, and trimer units are stacked along the b-axis via hydrogen-bonding and electrostatic interactions in the main chains and also via hydrophobic contacts in the phenyl side-chains. Six trimer units are related by pseudo 6(1)-screw axis symmetry and form a hydrophilic channel at their center. The hydrophilic channel in the IB form contains only four water molecules in the unit cell, compared with 16 in the IA form. Although the IB form exhibits a trimer structure similar to that of the IA form, one aspartame molecule is rotated by approximately equals 20 degrees from the orientation in the IA form. This arrangement of the molecule implies that the humidity-induced transition is accompanied by a flapping motion of its methyl ester group. These structural differences may imply the stepwise transition from the IA to the IB forms.

  5. Flow injection determinations of artificial sweeteners: a review.

    PubMed

    Yebra-Biurrun, M C

    2000-09-01

    A review is presented to show the advantages involved in the use of Flow Injection Analysis (FIA) for the determination of artificial sweeteners. The FI methods proposed for the determination of artificial sweeteners are described and compared on the basis of the detection technique used. Analytical data of interest and interferences are discussed for each sweetener.

  6. Separation and simultaneous determination of four artificial sweeteners in food and beverages by ion chromatography.

    PubMed

    Zhu, Yan; Guo, Yingying; Ye, Mingli; James, Frits S

    2005-08-26

    In this paper, the separation and determination of four artificial sweeteners (aspartame, sodium cyclamate, acesulfame-K and sodium saccharin) by ion chromatography coupled with suppressed conductivity detector is reported. The four artificial sweeteners were separated using KOH eluent generator. Due to the use of eluent generator, very low conductance background conductivity can be obtained and sensitivity of sweeteners has been greatly improved. Under the experimental condition, several inorganic anions, such as F-, Cl-, NO3-, NO2-, Br-, SO4(2)-, PO4(3)- and some organic acid such as formate, acetate, benzoate, and citrate did not interfere with the determination. With this method, good linear relationship, sensitivity and reproducibility were obtained. Detection limits of aspartame, sodium cyclamate, acesulfame-K, sodium saccharin were 0.87, 0.032, 0.019, 0.045 mg/L, respectively. Rate of recovery were between 98.23 and 105.42%, 99.48 and 103.57%, 97.96 and 103.23%, 98.46 and 102.40%, respectively. The method has successfully applied to the determination of the four sweeteners in drinks and preserved fruits.

  7. Neuropsychological and biochemical investigations in heterozygotes for phenylketonuria during ingestion of high dose aspartame (a sweetener containing phenylalanine).

    PubMed

    Trefz, F; de Sonneville, L; Matthis, P; Benninger, C; Lanz-Englert, B; Bickel, H

    1994-04-01

    Aspartame, a high intensity sweetener, is used extensively worldwide in over 5,000 products. Upon ingestion, aspartame is completely metabolized to two amino acids and methanol (approximately 50% phenylalanine, 40% aspartic acid, and 10% methanol). The effects of aspartame on cognitive function, electroencephalograms (EEGs) and biochemical parameters were evaluated in 48 adult (21 men, 27 women) heterozygotes for phenylketonuria (PKUH), PKUH subjects whose carrier status had been proven by DNA analysis ingested aspartame (either 15 or 45 mg/kg/day) and placebo for 12 weeks on each treatment using a randomized, double-blind, placebo-controlled, crossover study. A computerized battery of neuropsychological tests was administered at baseline weeks -2 and -1, and during treatment at weeks 6, 12, 18, and 24. Samples for plasma amino acids and urinary organic acids were also collected during these visits. EEGs were evaluated by conventional and spectral analysis at baseline week -1 and treatment weeks 12 and 24. The results of the neuropsychological tests demonstrated that aspartame had no effect on cognitive function. Plasma phenylalanine significantly increased, within the normal range for PKUH, at 1 and 3 h following the morning dose of aspartame in the group receiving the 45 mg/kg per day dose only. There were no significant differences in the conventional or spectral EEG analyses, urinary organic acid concentrations, and adverse experiences when aspartame was compared with placebo. This study reaffirms the safety of aspartame in PKUH and refutes the speculation that aspartame affects cognitive performance, EEGs, and urinary organic acids.

  8. [Simultaneous determination of artificial sweeteners in beverage by ultra performance liquid chromatography].

    PubMed

    Ji, Chao; Sun, Yanyan; Li, Xiuqin; Chu, Xiaogang; Chen, Zhengxing

    2009-01-01

    An ultra performance liquid chromatographic (UPLC) method for the simultaneous separation and determination of four artificial sweeteners (sodium saccharin, aspartame, acesulfame and neotame) in a single injection was developed. The separation was performed on an ACQUITY UPLC BEH C18 column with gradient program and detection at 220 nm. The good linearities between the concentrations of all analytes and peak area responses were achieved over the range from 0.5 to 20.0 mg/L. The average recoveries in samples were 80.5% - 95.2% with the relative standard deviations of 0.50% - 8.7%. The method has been successfully applied to the determination of the four sweeteners in drinks and powdered tabletop sweeteners.

  9. Artificial sweeteners are not the answer to childhood obesity.

    PubMed

    Swithers, Susan E

    2015-10-01

    While no single factor is responsible for the recent, dramatic increases in overweight and obesity, a scientific consensus has emerged suggesting that consumption of sugar-sweetened products, especially beverages, is casually linked to increases in risk of chronic, debilitating diseases including type 2 diabetes, cardiovascular disease, hypertension and stroke. One approach that might be beneficial would be to replace sugar-sweetened items with products manufactured with artificial sweeteners that provide sweet tastes but with fewer calories. Unfortunately, evidence now indicates that artificial sweeteners are also associated with increased risk of the same chronic diseases linked to sugar consumption. Several biologically plausible mechanisms may explain these counterintuitive negative associations. For example, artificial sweeteners can interfere with basic learning processes that serve to anticipate the normal consequences of consuming sugars, leading to overeating, diminished release of hormones such as GLP-1, and impaired blood glucose regulation. In addition, artificial sweeteners can alter gut microbiota in rodent models and humans, which can also contribute to impaired glucose regulation. Use of artificial sweeteners may also be particularly problematic in children since exposure to hyper-sweetened foods and beverages at young ages may have effects on sweet preferences that persist into adulthood. Taken as a whole, current evidence suggests that a focus on reducing sweetener intake, whether the sweeteners are caloric or non-caloric, remains a better strategy for combating overweight and obesity than use of artificial sweeteners. PMID:25828597

  10. Genotoxicity testing of low-calorie sweeteners: aspartame, acesulfame-K, and saccharin.

    PubMed

    Bandyopadhyay, Atrayee; Ghoshal, Sarbani; Mukherjee, Anita

    2008-01-01

    Low-calorie sweeteners are chemicals that offer the sweetness of sugar without the calories. Consumers are increasingly concerned about the quality and safety of many products present in the diet, in particular, the use of low-calorie sweeteners, flavorings, colorings, preservatives, and dietary supplements. In the present study, we evaluated the mutagenicity of the three low-calorie sweeteners in the Ames/Salmonella/microsome test and their genotoxic potential by comet assay in the bone marrow cells of mice. Swiss albino mice, Mus musculus, were orally administered with different concentrations of aspartame (ASP; 7, 14, 28, and 35 mg/kg body weight), acesulfame-K (ASK; 150, 300, and 600 mg/kg body weight), and saccharin (50, 100, and 200 mg/kg body weight) individually. Concurrently negative and positive control sets were maintained. The animals were sacrificed and the bone marrow cells were processed for comet assay. The standard plate-incorporation assay was carried with the three sweeteners in Salmonella typhimurium TA 97a and TA 100 strains both in the absence and presence of the S9 mix. The comet parameters of DNA were increased in the bone marrow cells due to the sweetener-induced DNA strand breaks, as revealed by increased comet-tail extent and percent DNA in the tail. ASK and saccharin were found to induce greater DNA damage than ASP. However, none could act as a potential mutagen in the Ames/Salmonella /microsome test. These findings are important, since they represent a potential health risk associated with the exposure to these agents.

  11. Role of nitrification in the biodegradation of selected artificial sweetening agents in biological wastewater treatment process.

    PubMed

    Tran, N H; Nguyen, V T; Urase, T; Ngo, H H

    2014-06-01

    The biodegradation of the six artificial sweetening agents including acesulfame (ACE), aspartame (ASP), cyclamate (CYC), neohesperidindihydrochalcone (NHDC), saccharin (SAC), and sucralose (SUC) by nitrifying activated sludge was first examined. Experimental results showed that ASP and NHDC were the most easily degradable compounds even in the control tests. CYC and SAC were efficiently biodegraded by the nitrifying activated sludge, whereas ACE and SUC were poorly removed. However, the biodegradation efficiencies of the ASs were increased with the increase in initial ammonium concentrations in the bioreactors. The association between nitrification and co-metabolic degradation was investigated and a linear relationship between nitrification rate and co-metabolic biodegradation rate was observed for the target artificial sweeteners (ASs). The contribution of heterotrophic microorganisms and autotrophic ammonia oxidizers in biodegradation of the ASs was elucidated, of which autotrophic ammonia oxidizers played an important role in the biodegradation of the ASs, particularly with regards to ACE and SUC.

  12. 77 FR 71746 - Artificially Sweetened Fruit Jelly and Artificially Sweetened Fruit Preserves and Jams; Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... fruit preserves and jams (artificially sweetened preserves and jams) (21 CFR 150.161) (24 FR 8896... for their use in food labeling (58 FR 2302; January 6, 1993). FDA also prescribed at the same time in... a traditional standardized food term (58 FR 2431; January 6, 1993). A nutrient content claim...

  13. Repeated ingestion of aspartame-sweetened beverage: effect on plasma amino acid concentrations in normal adults.

    PubMed

    Stegink, L D; Filer, L J; Baker, G L

    1988-03-01

    Aspartame (APM) is a dipeptide sweetener (L-aspartyl-L-phenylalanine methyl ester). It has been suggested that excessive use of the product might elevate plasma aspartate and phenylalanine concentrations. Eight normal adults (four male, four female) ingested three successive 12-oz servings of APM-sweetened beverage at two-hour intervals. The study was carried out in two parts in a randomized cross-over design. In one study the beverage was not sweetened. In the other, the beverage provided 10 mg APM/kg body weight per serving. Plasma amino acid concentrations were measured throughout the six-hour study period. The addition of APM to the beverage had no significant effect on plasma aspartate concentration. APM addition did increase plasma phenylalanine levels 1.64 to 2.05 mumol/dL above baseline values (5.09 +/- 0.82 mumol/dL) 30 to 45 minutes after each dose. However, plasma phenylalanine levels did not exceed normal postprandial values at any time. The data indicate ready metabolism of APM's amino acid content when administered at levels likely to be ingested by individuals who are heavy users of such beverages.

  14. Artificial sweeteners as potential tracers of municipal landfill leachate.

    PubMed

    Roy, James W; Van Stempvoort, Dale R; Bickerton, Greg

    2014-01-01

    Artificial sweeteners are gaining acceptance as tracers of human wastewater in the environment. The 3 artificial sweeteners analyzed in this study were detected in leachate or leachate-impacted groundwater at levels comparable to those of untreated wastewater at 14 of 15 municipal landfill sites tested, including several closed for >50 years. Saccharin was the dominant sweetener in old (pre-1990) landfills, while newer landfills were dominated by saccharin and acesulfame (introduced 2 decades ago; dominant in wastewater). Cyclamate was also detected, but less frequently. A case study at one site illustrates the use of artificial sweeteners to identify a landfill-impacted groundwater plume discharging to a stream. The study results suggest that artificial sweeteners can be useful tracers for current and legacy landfill contamination, with relative abundances of the sweeteners potentially providing diagnostic ability to distinguish different landfills or landfill cells, including crude age-dating, and to distinguish landfill and wastewater sources.

  15. [Artificial sweeteners and diabetes: friends or foes?].

    PubMed

    Tran, Christel; Jornayvaz, François R

    2015-06-01

    Sugary drinks consumption is associated with increased risk of obesity and type 2 diabetes. Thereby, artificial sweeteners (AS) consumption became increasingly popular and were introduced largely in our diet in order to reduce calorie intake and normalise blood glucose levels without altering our taste for "sweetness". However, the results of published studies on health outcomes secondary to AS intake, including type 2 diabetes risk, are inconsistent. The aim of this article is to focus on the role of AS in glucose homeostasis and diabetes onset. PMID:26211286

  16. Determination of artificial sweeteners in beverages and special nutritional products using high performance liquid chromatography.

    PubMed

    Serdar, Maja; Knežević, Zorka

    2011-06-01

    This paper presents two high performance liquid chromatographic (HPLC) methods used for the separation and determination of artificial sweeteners aspartame, acesulphame K, sodium saccharin, and sodium cyclamate in beverages and special nutritional products (special food intended for specific population groups). All four compounds are soluble in aqueous solutions and can easily be separated and determined by HPLC with a diode array detector (DAD). The first method involved separation of aspartame, acesulphame K, and sodium saccharin on a C18 column with an isocratic elution of phosphate buffer and acetonitrile as mobile phase. The second method was used to separate sodium cyclamate on a C18 column with methanol and water as mobile phase. Under optimum conditions, both methods showed good analytical performance, such as linearity, precision, and recovery. The methods were successfully applied for the analysis of real samples of soft drinks and special nutritional products.

  17. Gain weight by “going diet?” Artificial sweeteners and the neurobiology of sugar cravings

    PubMed Central

    Yang, Qing

    2010-01-01

    America’s obesity epidemic has gathered much media attention recently. A rise in the percent of the population who are obese coincides with an increase in the widespread use of non-caloric artificial sweeteners, such as aspartame (e.g., Diet Coke) and sucralose (e.g., Pepsi One), in food products (Figure 1). Both forward and reverse causalities have been proposed [1,2]. While people often choose “diet” or “light” products to lose weight, research studies suggest that artificial sweeteners may contribute to weight gain. In this mini-review, inspired by a discussion with Dr. Dana Small at Yale’s Neuroscience 2010 conference in April, I first examine the development of artificial sweeteners in a historic context. I then summarize the epidemiological and experimental evidence concerning their effects on weight. Finally, I attempt to explain those effects in light of the neurobiology of food reward. PMID:20589192

  18. Aspartame and dental caries in the rat.

    PubMed

    Das, S; Das, A K; Murphy, R A; Worawongvasu, R

    1991-01-01

    Aspartame (NutraSweet--The NutraSweet Co., Deerfield, IL) an artificial intense sweetener, was tested for its cariogenicity alone and in the presence of sucrose. Sprague-Dawley rat pups (Charles River Laboratories, Bloomington, MA) inoculated with Streptococcus mutans were fed basal diet 2000 with one of the following added: 50% sucrose; 30% sucrose; 30% sucrose + 0.15% aspartame; 0.30% aspartame; 0.15% aspartame and no addition. The animals were sacrificed after eight weeks. Caries was evaluated using Keyes' technique. It was found that the addition of 0.15% aspartame to 30% sucrose diet significantly reduced caries in comparison to rats fed only 30% sucrose diet. In animals fed aspartame only, there was no caries. The S. mutans counts were high in the animals receiving sucrose diets with and without aspartame. The animals receiving only aspartame had very low S. mutans counts.

  19. Migraine MLT-down: an unusual presentation of migraine in patients with aspartame-triggered headaches.

    PubMed

    Newman, L C; Lipton, R B

    2001-10-01

    Aspartame, an artificial sweetener added to many foods and beverages, may trigger headaches in susceptible individuals. We report two patients with aspartame-triggered attacks in whom the use of an aspartame-containing acute medication (Maxalt-MLT) worsened an ongoing attack of migraine.

  20. Saccharin and aspartame. Are they safe to consume during pregnancy?

    PubMed

    London, R S

    1988-01-01

    Saccharin and aspartame are commonly used artificial sweeteners. Some of the currently available information on their safety in pregnancy was reviewed, with recommendations formulated on their use in the periconceptional period and pregnancy.

  1. Determination of seven artificial sweeteners in diet food preparations by reverse-phase liquid chromatography with absorbance detection.

    PubMed

    Lawrence, J F; Charbonneau, C F

    1988-01-01

    The artificial sweeteners aspartame, saccharin, cyclamate, alitame, acesulfam-K, sucralose, and dulcin are determined in diet soft drinks and tabletop sweetener preparations. Samples are diluted, filtered, and analyzed directly by liquid chromatography on a C-18 reverse-phase column with a mobile phase gradient ranging from 3% acetonitrile in 0.02M KH2PO4 (pH 5) to 20% acetonitrile in 0.02M KH2PO4 (pH 3.5). Diet puddings and dessert toppings are extracted with ethanol, filtered, and diluted with mobile phase for analysis. The sweeteners, except sucralose and cyclamate, were detected by UV absorbance at either 200 or 210 nm. Sucralose was determined at 200 nm or by refractive index. Cyclamate was determined after post-column ion-pair extraction. The sweeteners stevioside and talin were not detected. Additives such as caffeine, sorbic acid, and benzoic acid did not interfere.

  2. In vivo cytogenetic studies on aspartame.

    PubMed

    Alsuhaibani, Entissar S

    2010-01-01

    Aspartame (a-Laspartyl-L-phenylalanine 1-methylester) is a dipeptide low-calorie artificial sweetener that is widely used as a nonnutritive sweetener in foods and drinks. The safety of aspartame and its metabolic breakdown products (phenylalanine, aspartic acid and methanol) was investigated in vivo using chromosomal aberration (CA) test and sister chromatid exchange (SCE) test in the bone marrow cells of mice. Swiss Albino male mice were exposed to aspartame (3.5, 35, 350 mg/kg body weight). Bone marrow cells isolated from femora were analyzed for chromosome aberrations and sister chromatid exchanges. Treatment with aspartame induced dose dependently chromosome aberrations at all concentrations while it did not induce sister chromatid exchanges. On the other hand, aspartame did not decrease the mitotic index (MI). However, statistical analysis of the results show that aspartame is not significantly genotoxic at low concentration.

  3. Fate of artificial sweeteners in wastewater treatment plants in New York State, U.S.A.

    PubMed

    Subedi, Bikram; Kannan, Kurunthachalam

    2014-12-01

    Very few studies describe the fate of artificial sweeteners (ASWs) in wastewater treatment plants (WWTPs). In this study, mass loadings, removal efficiencies, and environmental emission of sucralose, saccharin, aspartame, and acesulfame were determined based on the concentrations measured in wastewater influent, primary effluent, effluent, suspended particulate matter (SPM), and sludge collected from two WWTPs in the Albany area of New York State, U.S.A. All ASWs were detected at a mean concentration that ranged from 0.13 (aspartame) to 29.4 μg/L (sucralose) in wastewater influent, 0.49 (aspartame) to 27.7 μg/L (sucralose) in primary influent, 0.11 (aspartame) to 29.6 μg/L (sucralose) in effluent, and from 0.08 (aspartame) to 0.65 μg/g dw (sucralose) in sludge. Aspartame was found in 92% of influent SPM samples at a mean concentration of 444 ng/g dw, followed by acesulfame (92 ng/g) and saccharin (49 ng/g). The fraction of the total mass of ASWs sorbed to SPM was in the rank order: aspartame (50.4%) > acesulfame (10.9%) > saccharin and sucralose (0.8%). The sorption coefficients of ASWs ranged from 4.10 (saccharin) to 4540 L/kg (aspartame). Significant removal of aspartame (68.2%) and saccharin (90.3%) was found in WWTPs; however, sucralose and acesulfame were less efficiently removed (<2.0%). The total mass loading of sucralose, saccharin, and acesulfame in the WWTP that served a smaller population (∼15,000) was 1.3-1.5 times lower than that in another WWTP that served a larger population (∼100,000). The average daily loading of sucralose in both WWTPs (18.5 g/d/1000 people) was ∼2 times higher than the average loading of saccharin. The daily discharge of sucralose from the WWTPs was the highest (17.6 g/d/1000 people), followed by acesulfame (1.22 g/d/1000 people), and saccharin (1.07 g/d/1000 people). Approximately, 1180 g of saccharin and 291 g of acesulfame were transformed in or removed daily from the two WWTPs. This is the first study to describe

  4. Fate of artificial sweeteners in wastewater treatment plants in New York State, U.S.A.

    PubMed

    Subedi, Bikram; Kannan, Kurunthachalam

    2014-12-01

    Very few studies describe the fate of artificial sweeteners (ASWs) in wastewater treatment plants (WWTPs). In this study, mass loadings, removal efficiencies, and environmental emission of sucralose, saccharin, aspartame, and acesulfame were determined based on the concentrations measured in wastewater influent, primary effluent, effluent, suspended particulate matter (SPM), and sludge collected from two WWTPs in the Albany area of New York State, U.S.A. All ASWs were detected at a mean concentration that ranged from 0.13 (aspartame) to 29.4 μg/L (sucralose) in wastewater influent, 0.49 (aspartame) to 27.7 μg/L (sucralose) in primary influent, 0.11 (aspartame) to 29.6 μg/L (sucralose) in effluent, and from 0.08 (aspartame) to 0.65 μg/g dw (sucralose) in sludge. Aspartame was found in 92% of influent SPM samples at a mean concentration of 444 ng/g dw, followed by acesulfame (92 ng/g) and saccharin (49 ng/g). The fraction of the total mass of ASWs sorbed to SPM was in the rank order: aspartame (50.4%) > acesulfame (10.9%) > saccharin and sucralose (0.8%). The sorption coefficients of ASWs ranged from 4.10 (saccharin) to 4540 L/kg (aspartame). Significant removal of aspartame (68.2%) and saccharin (90.3%) was found in WWTPs; however, sucralose and acesulfame were less efficiently removed (<2.0%). The total mass loading of sucralose, saccharin, and acesulfame in the WWTP that served a smaller population (∼15,000) was 1.3-1.5 times lower than that in another WWTP that served a larger population (∼100,000). The average daily loading of sucralose in both WWTPs (18.5 g/d/1000 people) was ∼2 times higher than the average loading of saccharin. The daily discharge of sucralose from the WWTPs was the highest (17.6 g/d/1000 people), followed by acesulfame (1.22 g/d/1000 people), and saccharin (1.07 g/d/1000 people). Approximately, 1180 g of saccharin and 291 g of acesulfame were transformed in or removed daily from the two WWTPs. This is the first study to describe

  5. Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT).

    PubMed

    Scheurer, Marco; Brauch, Heinz-J; Lange, Frank T

    2009-07-01

    A method for the simultaneous determination of seven commonly used artificial sweeteners in water is presented. The analytes were extracted by solid phase extraction using Bakerbond SDB 1 cartridges at pH 3 and analyzed by liquid chromatography electrospray ionization tandem mass spectrometry in negative ionization mode. Ionization was enhanced by post-column addition of the alkaline modifier Tris(hydroxymethyl)amino methane. Except for aspartame and neohesperidin dihydrochalcone, recoveries were higher than 75% in potable water with comparable results for surface water. Matrix effects due to reduced extraction yields in undiluted waste water were negligible for aspartame and neotame but considerable for the other compounds. The widespread distribution of acesulfame, saccharin, cyclamate, and sucralose in the aquatic environment could be proven. Concentrations in two influents of German sewage treatment plants (STPs) were up to 190 microg/L for cyclamate, about 40 microg/L for acesulfame and saccharin, and less than 1 microg/L for sucralose. Removal in the STPs was limited for acesulfame and sucralose and >94% for saccharin and cyclamate. The persistence of some artificial sweeteners during soil aquifer treatment was demonstrated and confirmed their environmental relevance. The use of sucralose and acesulfame as tracers for anthropogenic contamination is conceivable. In German surface waters, acesulfame was the predominant artificial sweetener with concentrations exceeding 2 microg/L. Other sweeteners were detected up to several hundred nanograms per liter in the order saccharin approximately cyclamate > sucralose. PMID:19533103

  6. Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT).

    PubMed

    Scheurer, Marco; Brauch, Heinz-J; Lange, Frank T

    2009-07-01

    A method for the simultaneous determination of seven commonly used artificial sweeteners in water is presented. The analytes were extracted by solid phase extraction using Bakerbond SDB 1 cartridges at pH 3 and analyzed by liquid chromatography electrospray ionization tandem mass spectrometry in negative ionization mode. Ionization was enhanced by post-column addition of the alkaline modifier Tris(hydroxymethyl)amino methane. Except for aspartame and neohesperidin dihydrochalcone, recoveries were higher than 75% in potable water with comparable results for surface water. Matrix effects due to reduced extraction yields in undiluted waste water were negligible for aspartame and neotame but considerable for the other compounds. The widespread distribution of acesulfame, saccharin, cyclamate, and sucralose in the aquatic environment could be proven. Concentrations in two influents of German sewage treatment plants (STPs) were up to 190 microg/L for cyclamate, about 40 microg/L for acesulfame and saccharin, and less than 1 microg/L for sucralose. Removal in the STPs was limited for acesulfame and sucralose and >94% for saccharin and cyclamate. The persistence of some artificial sweeteners during soil aquifer treatment was demonstrated and confirmed their environmental relevance. The use of sucralose and acesulfame as tracers for anthropogenic contamination is conceivable. In German surface waters, acesulfame was the predominant artificial sweetener with concentrations exceeding 2 microg/L. Other sweeteners were detected up to several hundred nanograms per liter in the order saccharin approximately cyclamate > sucralose.

  7. The effect of age on the recognition thresholds of three sweeteners: sucrose, saccharin and aspartame.

    PubMed

    Easterby-Smith, V; Besford, J; Heath, M R

    1994-07-01

    It is believed that people's sensitivity to taste declines with age but the evidence is inconclusive. This study was designed to test the hypothesis that taste recognition thresholds (TRTs) for sweetness are higher in older than in younger individuals, using groups of 16 younger subjects (18-30) and 16 older subjects (60-85). Three test substances were used: sucrose, aspartame and saccharin. A questionnaire recorded variables which might have affected TRTs, but data failed to show any trend that might have biased the principle variate-age. There was a significant alteration with age of recognition thresholds, at least for sucrose and saccharin. The differences between the groups for the three sweeteners were due to the fact that all the very sensitive subjects were young. None of the older subjects had particularly poor discrimination: all but one had TRTs within the range of younger subjects. Although there are age-related taste changes, they are much less dramatic than commonly occurs with other senses, such as sight and hearing. The findings of this study have implications for institutional catering and the dietary management of older people using non-sugar sweeteners.

  8. The in vitro effects of artificial and natural sweeteners on the immune system using whole blood culture assays.

    PubMed

    Rahiman, F; Pool, E J

    2014-01-01

    This article investigates the effects of commercially available artificial (aspartame, saccharin, sucralose) and natural sweeteners (brown sugar, white sugar, molasses) on the immune system. Human whole blood cultures were incubated with various sweeteners and stimulated in vitro with either phytohemagglutinin or endotoxin. Harvested supernatants were screened for cytotoxicity and cytokine release. Results showed that none of the artificial or natural sweeteners proved to be cytotoxic, indicating that no cell death was induced in vitro. The natural sweetener, sugar cane molasses (10 ug/mL), enhanced levels of the inflammatory biomarker IL-6 while all artificial sweeteners (10 ug/mL) revealed a suppressive effect on IL-6 secretion (P < 0.001). Exposure of blood cells to sucralose-containing sweeteners under stimulatory conditions reduced levels of the biomarker of humoral immunity, Interleukin-10 (P < 0.001). The cumulative suppression of Interleukin-6 and Interleukin-10 levels induced by sucralose may contribute to the inability in mounting an effective humoral response when posed with an exogenous threat. PMID:24063614

  9. The in vitro effects of artificial and natural sweeteners on the immune system using whole blood culture assays.

    PubMed

    Rahiman, F; Pool, E J

    2014-01-01

    This article investigates the effects of commercially available artificial (aspartame, saccharin, sucralose) and natural sweeteners (brown sugar, white sugar, molasses) on the immune system. Human whole blood cultures were incubated with various sweeteners and stimulated in vitro with either phytohemagglutinin or endotoxin. Harvested supernatants were screened for cytotoxicity and cytokine release. Results showed that none of the artificial or natural sweeteners proved to be cytotoxic, indicating that no cell death was induced in vitro. The natural sweetener, sugar cane molasses (10 ug/mL), enhanced levels of the inflammatory biomarker IL-6 while all artificial sweeteners (10 ug/mL) revealed a suppressive effect on IL-6 secretion (P < 0.001). Exposure of blood cells to sucralose-containing sweeteners under stimulatory conditions reduced levels of the biomarker of humoral immunity, Interleukin-10 (P < 0.001). The cumulative suppression of Interleukin-6 and Interleukin-10 levels induced by sucralose may contribute to the inability in mounting an effective humoral response when posed with an exogenous threat.

  10. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements

    PubMed Central

    Swithers, Susan E.

    2013-01-01

    The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. This paper discusses these findings and considers the hypothesis that consuming sweet-tasting but noncaloric or reduced-calorie food and beverages interferes with learned responses that normally contribute to glucose and energy homeostasis. Because of this interference, frequent consumption of high-intensity sweeteners may have the counterintuitive effect of inducing metabolic derangements. PMID:23850261

  11. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements.

    PubMed

    Swithers, Susan E

    2013-09-01

    The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. This paper discusses these findings and considers the hypothesis that consuming sweet-tasting but noncaloric or reduced-calorie food and beverages interferes with learned responses that normally contribute to glucose and energy homeostasis. Because of this interference, frequent consumption of high-intensity sweeteners may have the counterintuitive effect of inducing metabolic derangements.

  12. Simultaneous determination of some artificial sweeteners in ternary formulations by FT-IR and EI-MS

    NASA Astrophysics Data System (ADS)

    Tosa, Nicoleta; Moldovan, Zaharie; Bratu, Ioan

    2012-02-01

    Artificial sweeteners are widely used in food, beverage and pharmaceutical industries all over the world. In this study some non-nutritive sweeteners such as aspartame, acesulfame-K, sodium cyclamate and sodium saccharin were simultaneously determined in ternary mixtures using FT-IR and EI-MS measurements. FT-IR method is based on direct measurements of the peak height values and area centered on 1736 cm-1, 836 cm-1, 2854 cm-1 and 1050 cm-1 for aspartame, acesulfame-K, sodium cyclamate and sodium saccharin, respectively. Mass spectrometry determinations show the characteristic peaks at m/z 91 and 262 for aspartame,m/z 43 and 163 acesulfame-K,m/z 83 and 97 for sodium cyclamate andm/z 104 and 183 for sodium saccharin. The results obtained by EI-MS in different formulations are in agreement with the FT-IR ones and provide also essential data concerning the purity grade of the components. It is concluded that FT-IR and EI-MS procedures developed in this work represent a fast, sensitive and low cost alternative in the quality control of such sweeteners in different ternary formulations.

  13. The effects of aspartame on mast cells and basophils.

    PubMed

    Szucs, E F; Barrett, K E; Metcalfe, D D

    1986-02-01

    The artificial sweetener aspartame was studied to determine whether it had any direct effects on mast cells and basophils. Aspartame was not shown to be a direct mast cell or basophil secretagogue in vitro, or in vivo as assessed by skin testing. During an acute incubation, aspartame did not affect IgE-mediated histamine release from mast cells. However, mast cells cultured in aspartame for periods of up to 9 days showed enhanced rates of proliferation and decreased responsiveness to releasing stimuli. The effect of aspartame on proliferation of cells in culture could be ascribed to a non-specific enhancing effect of its constituent amino acids.

  14. Degradation of artificial sweeteners via direct and indirect photochemical reactions.

    PubMed

    Perkola, Noora; Vaalgamaa, Sanna; Jernberg, Joonas; Vähätalo, Anssi V

    2016-07-01

    We studied the direct and indirect photochemical reactivity of artificial sweeteners acesulfame, saccharin, cyclamic acid and sucralose in environm entally relevant dilute aqueous solutions. Aqueous solutions of sweeteners were irradiated with simulated solar radiation (>290 nm; 96 and 168 h) or ultraviolet radiation (UVR; up to 24 h) for assessing photochemical reactions in surface waters or in water treatment, respectively. The sweeteners were dissolved in deionised water for examination of direct photochemical reactions. Direct photochemical reactions degraded all sweeteners under UVR but only acesulfame under simulated solar radiation. Acesulfame was degraded over three orders of magnitude faster than the other sweeteners. For examining indirect photochemical reactions, the sweeteners were dissolved in surface waters with indigenous dissolved organic matter or irradiated with aqueous solutions of nitrate (1 mg N/L) and ferric iron (2.8 mg Fe/L) introduced as sensitizers. Iron enhanced the photodegradation rates but nitrate and dissolved organic matter did not. UVR transformed acesulfame into at least three products: iso-acesulfame, hydroxylated acesulfame and hydroxypropanyl sulfate. Photolytic half-life was one year for acesulfame and more than several years for the other sweeteners in surface waters under solar radiation. Our study shows that the photochemical reactivity of commonly used artificial sweeteners is variable: acesulfame may be sensitive to photodegradation in surface waters, while saccharin, cyclamic acid and sucralose degrade very slowly even under the energetic UVR commonly used in water treatment. PMID:27023816

  15. Sweet proteins--potential replacement for artificial low calorie sweeteners.

    PubMed

    Kant, Ravi

    2005-01-01

    Exponential growth in the number of patients suffering from diseases caused by the consumption of sugar has become a threat to mankind's health. Artificial low calorie sweeteners available in the market may have severe side effects. It takes time to figure out the long term side effects and by the time these are established, they are replaced by a new low calorie sweetener. Saccharine has been used for centuries to sweeten foods and beverages without calories or carbohydrate. It was also used on a large scale during the sugar shortage of the two world wars but was abandoned as soon as it was linked with development of bladder cancer. Naturally occurring sweet and taste modifying proteins are being seen as potential replacements for the currently available artificial low calorie sweeteners. Interaction aspects of sweet proteins and the human sweet taste receptor are being investigated. PMID:15703077

  16. Enhancement of rat bladder contraction by artificial sweeteners via increased extracellular Ca{sup 2+} influx

    SciTech Connect

    Dasgupta, Jaydip; Elliott, Ruth A. . E-mail: rae5@leicester.ac.uk; Doshani, Angie; Tincello, Douglas G.

    2006-12-01

    Introduction: Consumption of carbonated soft drinks has been shown to be independently associated with the development of overactive bladder symptoms (OR 1.62, 95% CI 1.18, 2.22) [Dallosso, H.M., McGrother, C.W., Matthews, R.J., Donaldson, M.M.K., 2003. The association of diet and other lifestyle factors with overactive bladder and stress incontinence: a longitudinal study in women. BJU Int. 92, 69-77]. We evaluated the effects of three artificial sweeteners, acesulfame K, aspartame and sodium saccharin, on the contractile response of isolated rat detrusor muscle strips. Methods: Strips of detrusor muscle were placed in an organ bath and stimulated with electrical field stimulation (EFS) in the absence and presence of atropine, and with {alpha},{beta} methylene ATP, potassium, calcium and carbachol. Results: Sweeteners 10{sup -7} M to 10{sup -2} M enhanced the contractile response to 10 Hz EFS compared to control (p < 0.01). The atropine-resistant response to EFS was marginally increased by acesulfame K 10{sup -6} M, aspartame 10{sup -7} M and sodium saccharin 10{sup -7} M. Acesulfame K 10{sup -6} M increased the maximum contractile response to {alpha},{beta} methylene ATP by 35% ({+-} 9.6%) (p < 0.05) and to KCl by 12% ({+-} 3.1%) (p < 0.01). Sodium saccharin also increased the response to KCl by 37% ({+-} 15.2%) (p < 0.05). These sweeteners shifted the calcium concentration-response curves to the left. Acesulfame K 10{sup -6} M increased the log EC{sub 5} from -2.79 ({+-} 0.037) to -3.03 ({+-} 0.048, p < 0.01) and sodium saccharin 10{sup -7} M from -2.74 ({+-} 0.03) to 2.86 ({+-} 0.031, p < 0.05). The sweeteners had no significant effect on the contractile response to carbachol but they did increase the amplitude of spontaneous bladder contractions. Discussion: These results suggest that low concentrations of artificial sweeteners enhanced detrusor muscle contraction via modulation of L-type Ca{sup +2} channels.

  17. The paradox of artificial sweeteners in managing obesity.

    PubMed

    Roberts, Jason R

    2015-01-01

    The role of artificial sweeteners in the management of obesity is controversial. Observational data have suggested that nonnutritive sweeteners (NNSs) may promote weight gain through poorly understood mechanisms of cravings, reward phenomenon, and addictive behavior via opioid receptors. Interventional studies suggest the opposite that substitution of NNS for sugar-sweetened beverages (SSBs) results in reduced caloric intake and modest degrees of weight loss. Whether the use of NNS provides benefit toward weight reduction in the individual patient may depend on the characteristics of their baseline diet, associated changes, or dietary compensation involved with ingestion of NNS, and the degree of compliance with a more complete weight loss program. PMID:25609450

  18. Does Consuming Sugar and Artificial Sweeteners Change Taste Preferences?

    PubMed

    Bartolotto, Carole

    2015-01-01

    Americans consume 22.3 teaspoons of added caloric sweeteners a day. Sweeteners range from 180 to 13,000 times sweeter than sugar. In summer 2014, 20 people from Kaiser Permanente California facilities cut out all added sugars and artificial sweeteners for 2 weeks: 95% of participants found that sweet foods and drinks tasted sweeter or too sweet, 75% found that other foods tasted sweeter, and 95% said moving forward they would use less or even no sugar. Additionally, 86.6% of participants stopped craving sugar after 6 days. PMID:26176574

  19. Consumption of caffeinated and artificially sweetened soft drinks is associated with risk of early menarche12

    PubMed Central

    Mueller, Noel T; Jacobs, David R; MacLehose, Richard F; Demerath, Ellen W; Kelly, Scott P; Dreyfus, Jill G; Pereira, Mark A

    2015-01-01

    Background: Early menarche has been linked to risk of several chronic diseases. Prospective research on whether the intake of soft drinks containing caffeine, a modulator of the female reproductive axis, is associated with risk of early menarche is sparse. Objective: We examined the hypothesis that consumption of caffeinated soft drinks in childhood is associated with higher risk of early menarche. Design: The National Heart, Lung, and Blood Institute Growth and Health Study recruited and enrolled 2379 (1213 African American, 1166 Caucasian) girls aged 9–10 y (from Richmond, CA; Cincinnati, OH; and Washington, DC) and followed them for 10 y. After exclusions were made, there were 1988 girls in whom we examined prospective associations between consumption of caffeinated and noncaffeinated sugar- and artificially sweetened soft drinks and early menarche (defined as menarche age <11 y). We also examined associations between intakes of caffeine, sucrose, fructose, and aspartame and early menarche. Results: Incident early menarche occurred in 165 (8.3%) of the girls. After adjustment for confounders and premenarcheal percentage body fat, greater consumption of caffeinated soft drinks was associated with a higher risk of early menarche (RR for 1 serving/d increment: 1.47; 95% CI: 1.22, 1.79). Consumption of artificially sweetened soft drinks was also positively associated with risk of early menarche (RR for 1 serving/d increment: 1.43; 95% CI: 1.08, 1.88). Consumption of noncaffeinated soft drinks was not significantly associated with early menarche (RR for 1 serving/d increment: 0.88; 95% CI: 0.62, 1.25); nor was consumption of sugar-sweetened soft drinks (RR for 1 serving/d increment: 1.15; 95% CI: 0.95, 1.39). Consistent with the beverage findings, intakes of caffeine (RR for 1-SD increment: 1.22; 95% CI: 1.08, 1.37) and aspartame (RR for 1-SD increment: 1.20; 95% CI: 1.10, 1.31) were positively associated with risk of early menarche. Conclusion: Consumption of

  20. Artificial sweeteners as potential tracers in groundwater in urban environments

    NASA Astrophysics Data System (ADS)

    Van Stempvoort, Dale R.; Roy, James W.; Brown, Susan J.; Bickerton, Greg

    2011-04-01

    SummaryThere is little information available on the prevalence of artificial sweeteners in groundwater, though these compounds may prove to be useful tracers of human wastewater, especially in urban settings with complex hydrology. In this study, the artificial sweetener acesulfame was detected in groundwater at all eight urban sites investigated (from five different urban areas in Canada), often at high concentrations (i.e., μg/L-scale). In a municipal wastewater plume at Jasper, Alberta, acesulfame was strongly correlated with chloride and was positively correlated with other wastewater-related contaminants indicating that this sweetener has potential to be a good tracer of young wastewater (<20 years residence time) in Canada. Three other artificial sweeteners were detected in urban groundwater: saccharin at six of the sites, sucralose at three sites, and cyclamate at five of seven sites where it was analyzed. The occurrence of sucralose may have been affected by its detection limit, which was much higher than for the other sweeteners. These results, and those of a parallel study, are the first reported detections of saccharin and cyclamate in groundwater, and suggest that these sweeteners may be more common than previously anticipated. In general, fewer samples from each site contained these other three sweeteners compared to acesulfame. At Barrie, Ontario, adjacent to an old landfill, the concentration of saccharin was higher than acesulfame in many samples. These results suggest that analyses of multiple sweeteners, rather than just acesulfame, may provide useful information on contaminant sources and groundwater conditions in urban settings. Further work is needed to address this potential use.

  1. Does Consuming Sugar and Artificial Sweeteners Change Taste Preferences?

    PubMed Central

    Bartolotto, Carole

    2015-01-01

    Americans consume a lot of sugar, primarily from sweeteners that are added to processed foods and beverages. Data from the US Department of Agriculture reveals that in 2013, Americans consumed 22.3 teaspoons of added caloric sweeteners a day, which is significantly more than the American Heart Association’s recommendation. Artificial and alternative sweeteners have also been added to a plethora of foods. These sweeteners range from about 180 times sweeter to as much as 13,000 times sweeter than sugar. Consumption of both sugar and artificial sweeteners may be changing our palates or taste preferences over time, increasing our desire for sweet foods. Unfortunately, the data on this are lacking. In the summer of 2014, a group of 20 people from Kaiser Permanente facilities throughout California agreed to cut out all added sugars and artificial sweeteners for 2 weeks and then complete a survey to determine whether their taste preferences had changed. After the 2-week challenge, 95% of participants (18 out of 19 respondents) found that sweet foods and drinks tasted sweeter or too sweet, 75% (15 out of 20 respondents) found that other foods tasted sweeter, and 95% (19 out of 20 respondents) said moving forward they would use less or even no sugar. Additionally, 86.6% of participants (13 out of 15 respondents) stopped craving sugar after 6 days. Although this was a small survey, the results suggest that using a 2-week sugar challenge can help to reset taste preferences and make consuming less or no sugar easier. Physicians should consider recommending a sugar and artificial sweetener challenge to all their patients, especially those with obesity, diabetes, or cardiovascular disease. PMID:26176574

  2. Effects of artificial sweeteners on the AhR- and GR-dependent CYP1A1 expression in primary human hepatocytes and human cancer cells.

    PubMed

    Kamenickova, Alzbeta; Pecova, Michaela; Bachleda, Petr; Dvorak, Zdenek

    2013-12-01

    Food constituents may cause a phenomenon of food-drug interactions. In the current study, we examined the effects of artificial sweeteners (aspartame, acesulfame, cyclamate, saccharin) on the aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR)-dependent expression of CYP1A1 in human hepatocytes, hepatic HepG2 and intestinal LS174T cancer cell lines. Sweeteners were tested in concentrations up to those occurring in non-alcoholic beverages. Basal and ligand-inducible AhR- and GR-dependent reporter gene activation in stably transfected HepG2 and HeLa cells, respectively, were not affected by either of the sweeteners tested after 24h of incubation. The expression of CYP1A1 mRNA and protein in primary cultures of human hepatocytes and in LS174T and HepG2 cells was not induced by any of the tested sweeteners. Overall, aspartame, acesulfame, saccharin and cyclamate had no effects on CYP1A1 expression and transcriptional activities of AhR and GR. These data imply the safety of artificial sweeteners in terms of interference with AhR, GR and CYP1A1.

  3. Effects of artificial sweeteners on insulin release and cationic fluxes in rat pancreatic islets.

    PubMed

    Malaisse, W J; Vanonderbergen, A; Louchami, K; Jijakli, H; Malaisse-Lagae, F

    1998-11-01

    Beta-L-glucose pentaacetate, but not alpha-D-galactose pentaacetate, was recently reported to taste bitter and to stimulate insulin release. This finding led, in the present study, to the investigation of the effects of both bitter and non-bitter artificial sweeteners on insulin release and cationic fluxes in isolated rat pancreatic islets. Sodium saccharin (1.0-10.0 mM), sodium cyclamate (5.0-10.0 mM), stevioside (1.0 mM) and acesulfame-K (1.0-15.0 mM), all of which display a bitter taste, augmented insulin release from islets incubated in the presence of 7.0 mM D-glucose. In contrast, aspartame (1.0-10.0 mM), which is devoid of bitter taste, failed to affect insulin secretion. A positive secretory response to acesulfame-K was still observed when the extracellular K+ concentration was adjusted to the same value as that in control media. No major changes in 86Rb and 45Ca outflow from pre-labelled perifused islets could be attributed to the saccharin, cyclamic or acesulfame anions. It is proposed that the insulinotropic action of some artificial sweeteners and, possibly, that of selected hexose pentaacetate esters may require G-protein-coupled receptors similar to those operative in the recognition of bitter compounds by taste buds.

  4. [A rapid dialysis method for analysis of artificial sweeteners in food].

    PubMed

    Tahara, Shoichi; Fujiwara, Takushi; Yasui, Akiko; Hayafuji, Chieko; Kobayashi, Chigusa; Uematsu, Yoko

    2014-01-01

    A simple and rapid dialysis method was developed for the extraction and purification of four artificial sweeteners, namely, sodium saccharin (Sa), acesulfame potassium (AK), aspartame (APM), and dulcin (Du), which are present in various foods. Conventional dialysis uses a membrane dialysis tube approximately 15 cm in length and is carried out over many hours owing to the small membrane area and owing to inefficient mixing. In particular, processed cereal products such as cookies required treatment for 48 hours to obtain satisfactory recovery of the compounds. By increasing the tube length to 55 cm and introducing efficient mixing by inversion at half-hour intervals, the dialysis times of the four artificial sweeteners, spiked at 0.1 g/kg in the cookie, were shortened to 4 hours. Recovery yields of 88.9-103.2% were obtained by using the improved method, whereas recovery yields were low (65.5-82.0%) by the conventional method. Recovery yields (%) of Sa, AK, APM, and Du, spiked at 0.1 g/kg in various foods, were 91.6-100.1, 93.9-100.1, 86.7-100.0 and 88.7-104.7 using the improved method.

  5. One Step Synthesis of Inverted Aspartame Type Sweetener, Ac-Phe-Lys, Using Chemically Modified Chymotrypsin.

    PubMed

    Oaki, J; Nakahara, K; Tamura, M; Okai, H

    1999-01-01

    To search for techniques of simplified peptide synthesis, benzyloxycarbonyl chymotrypsin was prepared by a water-soluble acylating reagent and used to make Ac-Phe-Lys, an artificial peptide sweetener, which was selected as a target compound. As a result of using chemically modified chymotrypsin, Lys can be coupled directly with Ac-Phe and Ac-Phe-Lys made virtually in one step. Moreover, the total yield from preparation and purification steps for Ac-Phe-Lys was 13%. The value corresponds to that of the chemical synthesis method. On the contrary, enzymatic synthesis using native chymotrypsin cannot reach the level of the new method. It is expected that the method is more effective for simplified peptide synthesis as compared with other methods, especially on a large scale.

  6. Conformational flexibility of aspartame.

    PubMed

    Toniolo, Claudio; Temussi, Pierandrea

    2016-05-01

    L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016. PMID:27038223

  7. Conformational flexibility of aspartame.

    PubMed

    Toniolo, Claudio; Temussi, Pierandrea

    2016-05-01

    L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016.

  8. Robust scientific evidence demonstrates benefits of artificial sweeteners

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Artificial sweeteners (AS) have not been found to have a negative impact on health in humans. They have been recommended as a safe alternative for individuals who are seeking to lose or maintain weight. However, unnecessary alarm has been raised regarding the potential health risks of AS. This is of...

  9. 21 CFR 145.136 - Artificially sweetened canned fruit cocktail.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... medium used is water artificially sweetened with saccharin, sodium saccharin, or a combination of both. Such packing medium may be thickened with pectin and may contain any mixture of any edible organic salt or salts and any edible organic acid or acids as a flavor-enhancing agent, in a quantity not...

  10. 21 CFR 150.141 - Artificially sweetened fruit jelly.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... containers and so processed by heat, either before or after sealing, as to prevent spoilage. Such food may... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Artificially sweetened fruit jelly. 150.141 Section 150.141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  11. 21 CFR 150.141 - Artificially sweetened fruit jelly.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... containers and so processed by heat, either before or after sealing, as to prevent spoilage. Such food may... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Artificially sweetened fruit jelly. 150.141 Section 150.141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  12. 21 CFR 150.141 - Artificially sweetened fruit jelly.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... containers and so processed by heat, either before or after sealing, as to prevent spoilage. Such food may... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Artificially sweetened fruit jelly. 150.141 Section 150.141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  13. 21 CFR 150.141 - Artificially sweetened fruit jelly.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... containers and so processed by heat, either before or after sealing, as to prevent spoilage. Such food may... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Artificially sweetened fruit jelly. 150.141 Section 150.141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  14. 21 CFR 150.141 - Artificially sweetened fruit jelly.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... containers and so processed by heat, either before or after sealing, as to prevent spoilage. Such food may... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Artificially sweetened fruit jelly. 150.141 Section 150.141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  15. Ion-pair high-performance liquid chromatographic analysis of aspartame and related products.

    PubMed

    Verzella, G; Bagnasco, G; Mangia, A

    1985-12-01

    A simple and accurate quantitative determination of aspartame (L-alpha-aspartyl-L-phenylalanine methyl ester), a new artificial sweetener, is described. The method, which is based on ion-pair high-performance liquid chromatography, allows the determination of aspartame in finished bulk and dosage forms, and the detection of a few related products at levels down to 0.1%.

  16. Simultaneous determination of saccharin and aspartame in commercial noncaloric sweeteners using the PLS-2 multivariate calibration method and validation by capillary electrophoresis.

    PubMed

    Cantarelli, Miguel A; Pellerano, Roberto G; Marchevsky, Eduardo J; Camiña, José M

    2008-10-22

    A new method to determine a mixture for sweetener sodium saccharin and aspartame in commercial noncaloric sweeteners is proposed. A classical full factorial design for standards was used in the calibration step to build the partial least-squares (PLS-2) model. Instrumental data were obtained by means of UV-visible spectrophotometry. Salicylic acid was used as an internal standard to evaluate the adjustment of the real samples to the PLS model. The concentration of analytes in the commercial samples was evaluated using the obtained model by UV spectral data. The PLS-2 method was validated by capillary zone electrophoresis (CZE), finding in all cases a relative error of less than 11% between the PLS-2 and the CZE methods. The proposed procedure was applied successfully to the determination of saccharin and aspartame in noncaloric commercial sweeteners.

  17. A review of the genotoxic and carcinogenic effects of aspartame: does it safe or not?

    PubMed

    Yılmaz, Serkan; Uçar, Aslı

    2014-12-01

    The objective of this article is to review genotoxicologic and carcinogenic profile of the artificial sweetener aspartame. Aspartame is a synthetic dipeptide, nearly 180-200 times sweeter than sucrose. It is the most widely used artificial sweetener especially in carbonated and powdered soft drinks, beverages, drugs and hygiene products. There is a discussion ongoing for many years whether aspartame posses genotoxic and carcinogenic risk for humans. This question led to many studies to specify the adverse effects of aspartame. Therefore, we aimed to review the oldest to latest works published in major indices to gather information within this article. With respect to published data, genotoxicity and carcinogenicity of aspartame is still confusing. So, consumers should be aware of the potential side effects of aspartame before they consume it.

  18. Artificial sweeteners--a recently recognized class of emerging environmental contaminants: a review.

    PubMed

    Lange, Frank T; Scheurer, Marco; Brauch, Heinz-J

    2012-07-01

    An overview is given of existing trace analytical methods for the determination of seven popular artificial sweeteners [acesulfame (ACE), aspartame, cyclamate (CYC), neotame, neohesperidine dihydrochalcone, saccharin (SAC), and sucralose (SUC)] from aqueous environmental samples. Liquid chromatography-electrospray ionization tandem mass spectrometry and liquid chromatography-electrospray ionization high-resolution mass spectrometry are the methods most widely applied, either directly or after solid-phase extraction. Limits of detection and limits of quantification down to the low nanogram per liter range can be achieved. ACE, CYC, SAC, and SUC were detected in wastewater treatment plants in high microgram per liter concentrations. Per capita loads of individual sweeteners can vary within a wide range depending on their use in different countries. Whereas CYC and SAC are usually degraded by more than 90% during wastewater treatment, ACE and SUC pass through wastewater treatment plants mainly unchanged. This suggests their use as virtually perfect markers for the study of the impact of wastewater on source waters and drinking waters. In finished water of drinking water treatment plants using surface-water-influenced source water, ACE and SUC were detected in concentrations up to 7 and 2.4 μg/L, respectively. ACE was identified as a precursor of oxidation byproducts during ozonation, resulting in an aldehyde intermediate and acetic acid. Although the concentrations of ACE and SUC are among the highest measured for anthropogenic trace pollutants found in surface water, groundwater, and drinking water, the levels are at least three orders of magnitude lower than organoleptic threshold values. However, ecotoxicology studies are scarce and have focused on SUC. Thus, further research is needed both on identification of transformation products and on the ecotoxicological impact of artificial sweeteners and their transformation products.

  19. Colorimetric Detection and Identification of Natural and Artificial Sweeteners

    PubMed Central

    Musto, Christopher J.; Lim, Sung H.; Suslick, Kenneth S.

    2009-01-01

    A disposable, low-cost colorimetric sensor array has been created by pin-printing onto a hydrophilic membrane 16 chemically responsive nanoporous pigments made from indicators immobilized in an organically modified silane (ormosil). The array has been used to detect and identify 14 different natural and artificial sweeteners at millimolar concentrations as well as commonly used individual serving sweetener packets. The array has shown excellent reproducibility and long shelf-life and has been optimized to work in the biological pH regime. PMID:20337402

  20. Micellar electrokinetic capillary chromatographic determination of artificial sweeteners in low-Joule soft drinks and other foods.

    PubMed

    Thompson, C O; Trenerry, V C; Kemmery, B

    1995-03-10

    A rapid method for the determination of artificial sweeteners in low-Joule soft drinks and other foods by micellar electrokinetic capillary chromatography (MEKC) is described. Caffeine, benzoic acid and sorbic acid, which are often added to soft drinks, can also be determined with this procedure. The artificial sweeteners, aspartame, saccharin, acesulfame-K, alitame and dulcin, and the other food additives are well separated in less than 12 min using an uncoated fused-silica capillary column with a buffer consisting of 0.05 M sodium deoxycholate, 0.01 M potassium dihydrogenorthophosphate, 0.01 M sodium borate operating at 20 kV. Dehydroacetic acid was used as the internal standard for the determinations. The levels of artificial sweeteners, preservatives and caffeine were in good agreement with those determined by the high-performance liquid chromatographic (HPLC) procedure currently used in our Laboratory. The MEKC procedure has the same order of repeatability, is faster and less costly to operate than the HPLC method.

  1. Reverse phase liquid chromatographic determination of aspartame in beverages and beverage mixes.

    PubMed

    Webb, N G; Beckman, D D

    1984-01-01

    A method is described for determining the artificial sweetener aspartame in beverages and beverage mixes by liquid chromatography. Aspartame is separated on a microC18 column, using a mobile phase of acetic acid, water, and isopropyl alcohol at pH 3.0 and UV detection at 254 nm. Beverages are filtered through 0.45 micron filters and injected directly into the chromatograph. Aspartame is eluted in approximately 7 min. Detection of aspartame is confirmed by a UV scan of the trapped peak. Aspartame is quantitated in the presence of other beverage additives such as saccharin, caffeine, sodium benzoate, artificial colors, and artificial flavors. Results are presented for spiked soda beverages, beverages from fruit-flavored mixes, instant tea, reconstituted presweetened drink mixes, and a powdered tabletop sweetener.

  2. Clinical safety of aspartame.

    PubMed

    Yost, D A

    1989-02-01

    Aspartame is a synthetic sweetener commonly used in soft drinks and many foods. Even with high doses, the metabolites of this sweetener do not accumulate in toxic amounts. To date, no definite symptom complex has been connected with aspartame, and it is considered safe for use in all populations, including diabetics, phenylketonuric heterozygotes and pregnant women.

  3. Selective continuous monitoring and analysis of mixtures of acesulfame-K, cyclamate, and saccharin in artificial sweetener tablets, diet soft drinks, yogurts, and wines using filter-supported bilayer lipid membranes.

    PubMed

    Nikolelis, D P; Pantoulias, S

    2001-12-15

    This work describes a technique for the rapid and sensitive electrochemical flow injection monitoring and analysis of mixtures of the artificial sweeteners acesulfame-K, cyclamate, and saccharin using stabilized systems of filter-supported bilayer lipid membranes (BLMs). Injections of artificial sweeteners were made into flowing streams of a carrier electrolyte solution, and a transient current signal with duration of seconds reproducibly appeared in less than < 1 min after exposure of the lipid membranes to the artificial sweeteners. The magnitude of this signal was linearly related to the concentration of artificial sweeteners, which could be determined at micromolar levels. Repetitive cycles of injection of artificial sweeteners have shown no signal degradation during each cycle (30 sequential injections). The time of appearance of the transient response was different for each artificial sweetener and increased in the order of cyclamic acid, acesulfame-K, and saccharin. The difference in time of response has allowed selective detection and analysis of these artificial sweeteners in mixtures. The effect of potent interferences, including a wide range of compounds usually found in foods, proteins, and lipids was investigated. The results showed no interferences from these constituents of real food samples. The major interference from proteins (most common in lipid-film-based biosensors) can be eliminated by modulation of the carrier solution that does not allow adsorption of these compounds in BLMs. The technique was applied in real food samples, that is, in artificial sweetener tablets, diet soft drinks, wines, and yogurts that contain mixtures of these artificial sweeteners with aspartame and other compounds. A comparison of results using the present method and that of an Official Method of Analysis showed good agreement between the two methods.

  4. 21 CFR 146.121 - Frozen concentrate for artificially sweetened lemonade.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CANNED FRUIT JUICES Requirements for Specific Standardized Canned Fruit Juices and Beverages § 146.121 Frozen concentrate for artificially sweetened...

  5. [Organoleptic properties of a new sweetening agent formulation based on aspartame and xylitol].

    PubMed

    Dumas, P; Sauvageot, F

    1980-01-01

    In orderto find a new sweetner, different products such as xylitol, aspartame, saccharin, lactose and sucrose are tested by a panel of trained subjects. To determine sweetness intensity, we use the multiple paired comparison technique: each judge tested 9 pairs of samples, in each pair one sample is a sucrose solution at a fixed concentration (20 g/l or 60 g/l) and the other solution is made with a sweetner at a variable concentration, but near the reference. The results are in accordance with the data in the literature. The taste quality is determined with solutions or powders. Experiments are performed with either 10 solutions to identify or 2 unknown powders at the same granulometry. In each case sucrose is compared to a sweetner. The statistical analysis shows that xylitol, levulose and the aspartame-xylitol mixture (25.10(-3) g; 1 g) is tasted identical with sucrose. Studies about stability of the mixture are carried out in sealed ampoules with products at pH between 3 and 7 and temperatures between +4 and +120 degrees C. The results show that the aspartame-xylitol mixture with sweetness intensity equal to 5.0 is a good synthetic sweetner to substitute sucrose.

  6. Artificial sweeteners as a sugar substitute: Are they really safe?

    PubMed Central

    Sharma, Arun; Amarnath, S.; Thulasimani, M.; Ramaswamy, S.

    2016-01-01

    Nonnutritive sweeteners (NNS) have become an important part of everyday life and are increasingly used nowadays in a variety of dietary and medicinal products. They provide fewer calories and far more intense sweetness than sugar-containing products and are used by a plethora of population subsets for varying objectives. Six of these agents (aspartame, saccharine, sucralose, neotame, acesulfame-K, and stevia) have previously received a generally recognized as safe status from the United States Food and Drug Administration, and two more (Swingle fruit extract and advantame) have been added in the recent years to this ever growing list. They are claimed to promote weight loss and deemed safe for consumption by diabetics; however, there is inconclusive evidence to support most of their uses and some recent studies even hint that these earlier established benefits regarding NNS use might not be true. There is a lack of properly designed randomized controlled studies to assess their efficacy in different populations, whereas observational studies often remain confounded due to reverse causality and often yield opposite findings. Pregnant and lactating women, children, diabetics, migraine, and epilepsy patients represent the susceptible population to the adverse effects of NNS-containing products and should use these products with utmost caution. The overall use of NNS remains controversial, and consumers should be amply informed about the potential risks of using them, based on current evidence-based dietary guidelines. PMID:27298490

  7. Artificial sweeteners as a sugar substitute: Are they really safe?

    PubMed

    Sharma, Arun; Amarnath, S; Thulasimani, M; Ramaswamy, S

    2016-01-01

    Nonnutritive sweeteners (NNS) have become an important part of everyday life and are increasingly used nowadays in a variety of dietary and medicinal products. They provide fewer calories and far more intense sweetness than sugar-containing products and are used by a plethora of population subsets for varying objectives. Six of these agents (aspartame, saccharine, sucralose, neotame, acesulfame-K, and stevia) have previously received a generally recognized as safe status from the United States Food and Drug Administration, and two more (Swingle fruit extract and advantame) have been added in the recent years to this ever growing list. They are claimed to promote weight loss and deemed safe for consumption by diabetics; however, there is inconclusive evidence to support most of their uses and some recent studies even hint that these earlier established benefits regarding NNS use might not be true. There is a lack of properly designed randomized controlled studies to assess their efficacy in different populations, whereas observational studies often remain confounded due to reverse causality and often yield opposite findings. Pregnant and lactating women, children, diabetics, migraine, and epilepsy patients represent the susceptible population to the adverse effects of NNS-containing products and should use these products with utmost caution. The overall use of NNS remains controversial, and consumers should be amply informed about the potential risks of using them, based on current evidence-based dietary guidelines.

  8. Estimated intake of the sweeteners, acesulfame-K and aspartame, from soft drinks, soft drinks based on mineral waters and nectars for a group of Portuguese teenage students.

    PubMed

    Lino, C M; Costa, I M; Pena, A; Ferreira, R; Cardoso, S M

    2008-11-01

    In a survey of levels of acesulfame-K and aspartame in soft drinks and in light nectars, the intake of these intense sweeteners was estimated for a group of teenage students. Acesulfame-K was detected in 72% of the soft drinks, with a mean concentration of 72 mg l(-1) and aspartame was found in 92% of the samples with a mean concentration of 89 mg l(-1). When data on the content of these sweeteners in soft drinks were analysed according to flavour, cola drinks had the highest mean levels for both sweeteners with 98 and 103 mg l(-1) for acesulfame-K and aspartame, respectively. For soft drinks based on mineral water, aspartame was found in 62% of the samples, with a mean concentration of 82 mg l(-1) and acesulfame-K was found in 77%, with a mean level of 48 mg l(-1). All samples of nectars contained acesulfame-K, with a mean concentration of 128 mg l(-1) and aspartame was detected in 80% of the samples with a mean concentration of 73 mg l(-1). A frequency questionnaire, designed to identify adolescents having high consumption of these drinks, was completed by a randomly selected sample of teenagers (n = 65) living in the city of Coimbra, in 2007. The estimated daily intakes (EDI) of acesulfame-K and aspartame for the average consumer were below the acceptable daily intakes (ADIs). For acesulfame-K, the EDI was 0.7 mg kg(-1) bw day(-1) for soft drinks, 0.2 mg kg(-1) bw day(-1) for soft drinks based on mineral waters, and 0.5 mg kg(-1) bw day(-1) for nectars, representing 8.0%, 2.2%, and 5.8% of the ADI, respectively. A similar situation was observed for aspartame. In this way, the EDI for soft drinks was 1.1 mg kg(-1) day(-1), representing only 2.9% of the ADI. In respect of nectars, the EDI was 0.2 mg kg(-1) bw day(-1), representing 0.5% of the ADI. Soft drinks based on mineral waters showed the lowest EDI values of 0.3 mg kg(-1) bw day(-1), accounting for 0.7% of the ADI.

  9. Neurobehavioral effects of aspartame consumption.

    PubMed

    Lindseth, Glenda N; Coolahan, Sonya E; Petros, Thomas V; Lindseth, Paul D

    2014-06-01

    Despite its widespread use, the artificial sweetener aspartame remains one of the most controversial food additives, due to mixed evidence on its neurobehavioral effects. Healthy adults who consumed a study-prepared high-aspartame diet (25 mg/kg body weight/day) for 8 days and a low-aspartame diet (10 mg/kg body weight/day) for 8 days, with a 2-week washout between the diets, were examined for within-subject differences in cognition, depression, mood, and headache. Measures included weight of foods consumed containing aspartame, mood and depression scales, and cognitive tests for working memory and spatial orientation. When consuming high-aspartame diets, participants had more irritable mood, exhibited more depression, and performed worse on spatial orientation tests. Aspartame consumption did not influence working memory. Given that the higher intake level tested here was well below the maximum acceptable daily intake level of 40-50 mg/kg body weight/day, careful consideration is warranted when consuming food products that may affect neurobehavioral health.

  10. Chronic Effect of Aspartame on Ionic Homeostasis and Monoamine Neurotransmitters in the Rat Brain.

    PubMed

    Abhilash, M; Alex, Manju; Mathews, Varghese V; Nair, R Harikumaran

    2014-05-28

    Aspartame is one of the most widely used artificial sweeteners globally. Data concerning acute neurotoxicity of aspartame is controversial, and knowledge on its chronic effect is limited. In the current study, we investigated the chronic effects of aspartame on ionic homeostasis and regional monoamine neurotransmitter concentrations in the brain. Our results showed that aspartame at high dose caused a disturbance in ionic homeostasis and induced apoptosis in the brain. We also investigated the effects of aspartame on brain regional monoamine synthesis, and the results revealed that there was a significant decrease of dopamine in corpus striatum and cerebral cortex and of serotonin in corpus striatum. Moreover, aspartame treatment significantly alters the tyrosine hydroxylase activity and amino acids levels in the brain. Our data suggest that chronic use of aspartame may affect electrolyte homeostasis and monoamine neurotransmitter synthesis dose dependently, and this might have a possible effect on cognitive functions.

  11. Noncariogenic intense natural sweeteners.

    PubMed

    Kinghorn, A D; Kaneda, N; Baek, N I; Kennelly, E J; Soejarto, D D

    1998-09-01

    There is a definite relationship between the dietary consumption of sucrose and the incidence of dental caries. Noncaloric sucrose substitutes for use in the sweetening of foods, beverages, and medicines may be either synthetic compounds or natural products. In the United States, four potently sweet artificial sweeteners are approved, namely, saccharin, aspartame, acesulfame potassium, and sucralose. Highly sweet plant constituents are used in Japan and some other countries, including the diterpene glycoside stevioside and the protein thaumatin. Recent progress in a research project oriented towards the discovery and evaluation of novel potentially noncariogenic sweeteners from plants has focused on substances in the sesquiterpenoid, diterpenoid, triterpenoid, steroidal saponin, and proanthocyanidin structural classes. The feasibility of using Mongolian gerbil electrophysiological and behavioral assays to monitor the sweetness of plant extracts, chromatographic fractions, and pure isolates has been investigated. An in vivo cariogenicity study on the commercially available natural sweeteners stevioside and rebaudioside A has been carried out. PMID:9735874

  12. Noncariogenic intense natural sweeteners.

    PubMed

    Kinghorn, A D; Kaneda, N; Baek, N I; Kennelly, E J; Soejarto, D D

    1998-09-01

    There is a definite relationship between the dietary consumption of sucrose and the incidence of dental caries. Noncaloric sucrose substitutes for use in the sweetening of foods, beverages, and medicines may be either synthetic compounds or natural products. In the United States, four potently sweet artificial sweeteners are approved, namely, saccharin, aspartame, acesulfame potassium, and sucralose. Highly sweet plant constituents are used in Japan and some other countries, including the diterpene glycoside stevioside and the protein thaumatin. Recent progress in a research project oriented towards the discovery and evaluation of novel potentially noncariogenic sweeteners from plants has focused on substances in the sesquiterpenoid, diterpenoid, triterpenoid, steroidal saponin, and proanthocyanidin structural classes. The feasibility of using Mongolian gerbil electrophysiological and behavioral assays to monitor the sweetness of plant extracts, chromatographic fractions, and pure isolates has been investigated. An in vivo cariogenicity study on the commercially available natural sweeteners stevioside and rebaudioside A has been carried out.

  13. Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors.

    PubMed

    Riera, Céline E; Vogel, Horst; Simon, Sidney A; le Coutre, Johannes

    2007-08-01

    Throughout the world many people use artificial sweeteners (AS) for the purpose of reducing caloric intake. The most prominently used of these molecules include saccharin, aspartame (Nutrasweet), acesulfame-K, and cyclamate. Despite the caloric advantage they provide, one key concern in their use is their aversive aftertaste that has been characterized on a sensory level as bitter and/or metallic. Recently, it has been shown that the activation of particular T2R bitter taste receptors is partially involved with the bitter aftertaste sensation of saccharin and acesulfame-K. To more fully understand the biology behind these phenomena we have addressed the question of whether AS could stimulate transient receptor potential vanilloid-1 (TRPV1) receptors, as these receptors are activated by a large range of structurally different chemicals. Moreover, TRPV1 receptors and/or their variants are found in taste receptor cells and in nerve terminals throughout the oral cavity. Hence, TRPV1 activation could be involved in the AS aftertaste or even contribute to the poorly understood metallic taste sensation. Using Ca(2+) imaging on TRPV1 receptors heterologously expressed in the human embryonic kidney (HEK) 293 cells and on dissociated primary sensory neurons, we find that in both systems, AS activate TRPV1 receptors, and, moreover, they sensitize these channels to acid and heat. We also found that TRPV1 receptors are activated by CuSO(4), ZnSO(4), and FeSO(4), three salts known to produce a metallic taste sensation. In summary, our results identify a novel group of compounds that activate TRPV1 and, consequently, provide a molecular mechanism that may account for off tastes of sweeteners and metallic tasting salts.

  14. Effect of repeated ingestion of aspartame-sweetened beverage on plasma amino acid, blood methanol, and blood formate concentrations in normal adults.

    PubMed

    Stegink, L D; Filer, L J; Bell, E F; Ziegler, E E; Tephly, T R

    1989-04-01

    Aspartame (APM) is a widely used dipeptide sweetener (L-aspartyl-L-phenylalanine methyl ester). It has been suggested that excessive use of APM might elevate plasma aspartate, phenylalanine, and/or methanol concentrations to levels that are potentially harmful. Six normal young adults ingested eight successive servings of unsweetened and APM-sweetened beverage at one-hour intervals in a balanced crossover design. In one part, the beverage was not sweetened. In the other, each serving of beverage provided 600 mg APM, a dose equivalent to the amount provided by 36 oz of APM-sweetened diet beverage. Plasma aspartate concentration was not significantly increased after ingestion of unsweetened or APM-sweetened beverage. Similarly, ingestion of the unsweetened beverage had no significant effect on plasma phenylalanine concentration. However, ingestion of APM-sweetened beverage significantly increased plasma phenylalanine levels 1.41 to 2.35 mumol/dL above baseline 30 minutes after ingestion. Plasma phenylalanine values reached a steady state after administration of four to five servings and did not exceed normal postprandial values at any time. Blood methanol and formate concentrations remained within normal limits. The data indicate ready metabolism of APM when administered at levels that may be ingested by normal individuals who are heavy users of diet beverages.

  15. Daily intake assessment of saccharin, stevioside, D-sorbitol and aspartame from various processed foods in Korea.

    PubMed

    Chung, M-S; Suh, H-J; Yoo, W; Choi, S-H; Cho, Y-J; Cho, Y-H; Kim, C-J

    2005-11-01

    This study was carried out to estimate the daily intakes (EDIs) of artificial sweeteners such as saccharin, stevioside, D-sorbitol and aspartame in order to evaluate the safety of the artificial sweeteners in Korea. A total of 274 food samples were selected from the foods considered to be representative sources of artificial sweeteners in the Korean diet and analysed by using HPLC with evaporative light scattering and ultraviolet detectors. In case of aspartame, the reference values were used without instrumental analysis. The EDIs of saccharin, stevioside, D-sorbitol and aspartame for average consumers were 0.028, 0.008, 4.9 and 0.14 mg kg-1 body weight day-1, respectively, and as a proportion of the acceptable daily intake (ADI) were not higher than 1% of ADI of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). For 90th percentile consumers, the EDIs of saccharin, stevioside, D-sorbitol and aspartame were 2.0, 0.20, 141 and 4.6 mg kg-1 body weight day-1, respectively, and as a proportion of the ADI, the EDIs of saccharin and aspartame were 40.7% and 11.4% of the ADI set by the JECFA, respectively. Because JECFA did not assign ADIs for stevioside and D-sorbitol, the values for these sweeteners were not compared. According to these results, the EDIs of artificial sweeteners such as saccharin and aspartame in Korea are significantly lower than ADI set by the JECFA.

  16. Artificial sweeteners and metabolic dysregulation: Lessons learned from agriculture and the laboratory.

    PubMed

    Shearer, Jane; Swithers, Susan E

    2016-06-01

    Escalating rates of obesity and public health messages to reduce excessive sugar intake have fuelled the consumption of artificial sweeteners in a wide range of products from breakfast cereals to snack foods and beverages. Artificial sweeteners impart a sweet taste without the associated energy and have been widely recommended by medical professionals since they are considered safe. However, associations observed in long-term prospective studies raise the concern that regular consumption of artificial sweeteners might actually contribute to development of metabolic derangements that lead to obesity, type 2 diabetes and cardiovascular disease. Obtaining mechanistic data on artificial sweetener use in humans in relation to metabolic dysfunction is difficult due to the long time frames over which dietary factors might exert their effects on health and the large number of confounding variables that need to be considered. Thus, mechanistic data from animal models can be highly useful because they permit greater experimental control. Results from animal studies in both the agricultural sector and the laboratory indicate that artificial sweeteners may not only promote food intake and weight gain but can also induce metabolic alterations in a wide range of animal species. As a result, simple substitution of artificial sweeteners for sugars in humans may not produce the intended consequences. Instead consumption of artificial sweeteners might contribute to increases in risks for obesity or its attendant negative health outcomes. As a result, it is critical that the impacts of artificial sweeteners on health and disease continue to be more thoroughly evaluated in humans. PMID:27387506

  17. Artificial sweeteners and metabolic dysregulation: Lessons learned from agriculture and the laboratory.

    PubMed

    Shearer, Jane; Swithers, Susan E

    2016-06-01

    Escalating rates of obesity and public health messages to reduce excessive sugar intake have fuelled the consumption of artificial sweeteners in a wide range of products from breakfast cereals to snack foods and beverages. Artificial sweeteners impart a sweet taste without the associated energy and have been widely recommended by medical professionals since they are considered safe. However, associations observed in long-term prospective studies raise the concern that regular consumption of artificial sweeteners might actually contribute to development of metabolic derangements that lead to obesity, type 2 diabetes and cardiovascular disease. Obtaining mechanistic data on artificial sweetener use in humans in relation to metabolic dysfunction is difficult due to the long time frames over which dietary factors might exert their effects on health and the large number of confounding variables that need to be considered. Thus, mechanistic data from animal models can be highly useful because they permit greater experimental control. Results from animal studies in both the agricultural sector and the laboratory indicate that artificial sweeteners may not only promote food intake and weight gain but can also induce metabolic alterations in a wide range of animal species. As a result, simple substitution of artificial sweeteners for sugars in humans may not produce the intended consequences. Instead consumption of artificial sweeteners might contribute to increases in risks for obesity or its attendant negative health outcomes. As a result, it is critical that the impacts of artificial sweeteners on health and disease continue to be more thoroughly evaluated in humans.

  18. Aspartame downregulates 3T3-L1 differentiation.

    PubMed

    Pandurangan, Muthuraman; Park, Jeongeun; Kim, Eunjung

    2014-10-01

    Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. Since aspartame is 200 times sweeter than traditional sugar, it can give the same level of sweetness with less substance, which leads to lower-calorie food intake. There are reports that consumption of aspartame-containing products can help obese people lose weight. However, the potential role of aspartame in obesity is not clear. The present study investigated whether aspartame suppresses 3T3-L1 differentiation, by downregulating phosphorylated peroxisome proliferator-activated receptor γ (p-PPARγ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (FABP4), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1), which are critical for adipogenesis. The 3T3-L1 adipocytes were cultured and differentiated for 6 d in the absence and presence of 10 μg/ml of aspartame. Aspartame reduced lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. qRT-PCR analysis showed that the PPARγ, FABP4, and C/EBPα mRNA expression was significantly reduced in the aspartame-treated adipocytes. Western blot analysis showed that the induction of p-PPARγ, PPARγ, SREBP1, and adipsin was markedly reduced in the aspartame-treated adipocytes. Taken together, these data suggest that aspartame may be a potent substance to alter adipocyte differentiation and control obesity. PMID:24961835

  19. Aspartame downregulates 3T3-L1 differentiation.

    PubMed

    Pandurangan, Muthuraman; Park, Jeongeun; Kim, Eunjung

    2014-10-01

    Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. Since aspartame is 200 times sweeter than traditional sugar, it can give the same level of sweetness with less substance, which leads to lower-calorie food intake. There are reports that consumption of aspartame-containing products can help obese people lose weight. However, the potential role of aspartame in obesity is not clear. The present study investigated whether aspartame suppresses 3T3-L1 differentiation, by downregulating phosphorylated peroxisome proliferator-activated receptor γ (p-PPARγ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (FABP4), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1), which are critical for adipogenesis. The 3T3-L1 adipocytes were cultured and differentiated for 6 d in the absence and presence of 10 μg/ml of aspartame. Aspartame reduced lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. qRT-PCR analysis showed that the PPARγ, FABP4, and C/EBPα mRNA expression was significantly reduced in the aspartame-treated adipocytes. Western blot analysis showed that the induction of p-PPARγ, PPARγ, SREBP1, and adipsin was markedly reduced in the aspartame-treated adipocytes. Taken together, these data suggest that aspartame may be a potent substance to alter adipocyte differentiation and control obesity.

  20. Aspartame-sweetened beverage: effect on plasma amino acid concentrations in normal adults and adults heterozygous for phenylketonuria.

    PubMed

    Stegink, L D; Wolf-Novak, L C; Filer, L J; Bell, E F; Ziegler, E E; Krause, W L; Brummel, M C

    1987-11-01

    Twelve normal subjects ingested either unsweetened beverage (n = 6) or beverage providing 4 mg/kg body weight as aspartame (APM) (n = 6). Neither beverage had any significant effect on plasma aspartate or phenylalanine concentrations. After this study, eight normal and six obligate phenylketonuric (PKU) heterozygous adults each ingested a 354-mL (12-oz) beverage serving on two occasions in a randomized cross-over design. On one occasion the beverage was not sweetened; on the other occasion, the beverage provided 10 mg APM/kg body weight. Plasma amino acid concentrations were measured throughout the 2-h study period. The addition of 10 mg APM/kg body weight to the beverage had no significant effect on plasma aspartate concentration. APM ingestion increased plasma phenylalanine levels of normal subjects from a mean +/- SD baseline value of 5.09 +/- 0.82 mumol/dL to a high mean value of 6.73 +/- 0.75 mumol/dL. In PKU heterozygous subjects the plasma phenylalanine level increased from a mean +/- SD of 9.04 +/- 1.71 to a high mean value of 12.1 +/- 2.08 mumol/dL. The data indicate ready metabolism of the aspartate and phenylalanine portion of APM when administered at levels likely to be ingested by individuals who drink diet beverages.

  1. Repeated ingestion of aspartame-sweetened beverage: effect on plasma amino acid concentrations in individuals heterozygous for phenylketonuria.

    PubMed

    Stegink, L D; Filer, L J; Baker, G L; Bell, E F; Ziegler, E E; Brummel, M C; Krause, W L

    1989-01-01

    It has been suggested that excessive use of aspartame (APM) (N-L-alpha-aspartyl-L-phenylalanine methyl ester) might grossly elevate plasma aspartate and phenylalanine concentrations in individuals heterozygous for phenylketonuria (PKUH). In study 1 six adult PKUH (three males; three females) ingested three successive 12-oz servings of beverage at 2-h intervals. The study was carried out in two parts in a randomized crossover design. In one arm the beverage was not sweetened. In the other the beverage provided 10 mg APM/kg body weight per serving. The addition of APM to the beverage did not significantly increase plasma aspartate concentration but did increase plasma phenylalanine levels 2.3 to 4.1 mumol/dL above baseline values 30 to 45 min after each dose. The high mean plasma phenylalanine level after repeated APM dosing (13.9 +/- 2.15 mumol/dL) was slightly, but not significantly, above the normal postprandial range for PKUH (12.6 +/- 2.11 mumol/dL). In study 2 six different adult PKUH ingested beverage providing 30 mg APM/kg body weight as a single bolus. The high mean plasma phenylalanine concentration and the phenylalanine to large neutral amino acid ratio were significantly higher when APM was ingested as a single bolus than when ingested as a divided dose.

  2. A New Colorimetric Assay of Tabletop Sweeteners Using a Modified Biuret Reagent: An Analytical Chemistry Experiment for the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Fenk, Christopher J.; Kaufman, Nathan; Gerbig, Donald G., Jr.

    2007-01-01

    A new, fast and effective colorimetric analysis of the artificial sweetener aspartame is presented for application in undergraduate laboratory courses. This new method incorporates the use of a modified biuret reagent for selective detection and analysis of aspartame in aqueous solutions. The modified reagent is less caustic than the traditional…

  3. Palatability of colonic lavage solution is improved by the addition of artificially sweetened flavored drink mixes.

    PubMed

    Gruber, M; Fay, D; Pudhorodsky, T; Lance, P

    1991-12-01

    A frequent complaint of patients asked to drink polyethylene glycol (PEG) colonic lavage solution is the salty flavor. This often results in failure to ingest the entire 4 liters of the solution and compromises bowel cleansing. The purpose of this study was to determine systematically whether the addition of a flavored drink mix sweetened with aspartame to the PEG lavage solution would improve palatability without significantly altering the osmolality of the solution. Eighty-seven (87) staff volunteers participated in a taste test of PEG lavage solutions containing varying amounts of commercially available drink mixes. The solution containing two packages of lemon-flavored KoolAid drink mix sweetened with aspartame was significantly more palatable than the others (p less than 0.005), while osmolality remained within the range specified by the manufacturer of Colyte.

  4. Aspartame as a dietary trigger of headache.

    PubMed

    Lipton, R B; Newman, L C; Cohen, J S; Solomon, S

    1989-02-01

    Many dietary factors have been implicated as possible precipitants of headache. There have been recent differences of opinion with regard to the effect of the artificial sweetener aspartame as a precipitant of headache. To assess the importance of aspartame as a dietary factor in headache, 190 consecutive patients of the Montefiore Medical Center Headache Unit were questioned about the effect of alcohol, carbohydrates and aspartame in triggering their headaches. Of the 171 patients who fully completed the survey, 49.7 percent reported alcohol as a precipitating factor, compared to 8.2 percent reporting aspartame and 2.3 percent reporting carbohydrates. Patients with migraine were significantly more likely to report alcohol as a triggering factor and also reported aspartame as a precipitant three times more often than those having other types of headache. The conflicting results of two recent placebo-control studies of aspartame and headache are discussed. We conclude that aspartame may be an important dietary trigger of headache in some people.

  5. Artificial sweeteners induce glucose intolerance by altering the gut microbiota.

    PubMed

    Suez, Jotham; Korem, Tal; Zeevi, David; Zilberman-Schapira, Gili; Thaiss, Christoph A; Maza, Ori; Israeli, David; Zmora, Niv; Gilad, Shlomit; Weinberger, Adina; Kuperman, Yael; Harmelin, Alon; Kolodkin-Gal, Ilana; Shapiro, Hagit; Halpern, Zamir; Segal, Eran; Elinav, Eran

    2014-10-01

    Non-caloric artificial sweeteners (NAS) are among the most widely used food additives worldwide, regularly consumed by lean and obese individuals alike. NAS consumption is considered safe and beneficial owing to their low caloric content, yet supporting scientific data remain sparse and controversial. Here we demonstrate that consumption of commonly used NAS formulations drives the development of glucose intolerance through induction of compositional and functional alterations to the intestinal microbiota. These NAS-mediated deleterious metabolic effects are abrogated by antibiotic treatment, and are fully transferrable to germ-free mice upon faecal transplantation of microbiota configurations from NAS-consuming mice, or of microbiota anaerobically incubated in the presence of NAS. We identify NAS-altered microbial metabolic pathways that are linked to host susceptibility to metabolic disease, and demonstrate similar NAS-induced dysbiosis and glucose intolerance in healthy human subjects. Collectively, our results link NAS consumption, dysbiosis and metabolic abnormalities, thereby calling for a reassessment of massive NAS usage.

  6. Reaction kinetics and efficiencies for the hydroxyl and sulfate radical based oxidation of artificial sweeteners in water.

    PubMed

    Toth, Janie E; Rickman, Kimberly A; Venter, Andre R; Kiddle, James J; Mezyk, Stephen P

    2012-10-11

    Over the past several decades, the increased use of artificial sweeteners as dietary supplements has resulted in rising concentrations of these contaminants being detected in influent waters entering treatment facilities. As conventional treatments may not quantitatively remove these sweeteners, radical-based advanced oxidation and reduction (AO/RP) treatments could be a viable alternative. In this study, we have established the reaction kinetics for both hydroxyl ((•)OH) and sulfate (SO(4)(•-)) radical reaction with five common artificial sweeteners, as well as their associated reaction efficiencies. Rate constants for acesulfame K, aspartame, rebaudioside A, saccharin, and sucralose were <2 × 10(7), (2.28 ± 0.02) × 10(9), (2.1 ± 0.1) × 10(8), <2 × 10(7), and (1.7 ± 0.1) × 10(8) M(-1) s(-1) for the sulfate radical, and (3.80 ± 0.27) × 10(9), (6.06 ± 0.05) × 10(9), (9.97 ± 0.12) × 10(9), (1.85 ± 0.01) × 10(9), and (1.50 ± 0.01) × 10(9) M(-1) s(-1) for the hydroxyl radical, respectively. These latter values have to be combined with their corresponding reaction efficiencies of 67.9 ± 0.9, 52.2 ± 0.7, 43.0 ± 2.5, 52.7 ± 2.9, and 98.3 ± 3.5% to give effective rate constants for the hydroxyl radical reaction that can be used in the modeling of the AOP based removal of these contaminants.

  7. Isothermal Fourier transform infrared microspectrosopic studies on the stability kinetics of solid-state intramolecular cyclization of aspartame sweetener.

    PubMed

    Cheng, Y D; Lin, S Y

    2000-03-01

    A novel Fourier transform infrared (FT-IR) microspectrophotometer equipped with differential scanning calorimetry (DSC) was used to investigate the kinetics of intramolecular cyclization of aspartame (APM) sweetener in the solid state under isothermal conditions. The thermal-dependent changes in the peak intensity of IR spectra at 1543, 1283, and 1259 cm(-1) were examined to explore the reaction. The results support that the intramolecular cyclization process in APM proceeded in three steps: the methoxyl group of ester was first thermolyzed to release methanol, then an acyl cation was attacked by the lone pair of electrons available on nitrogen by an S(N)1 pathway, and finally ring-closure occurred. The intramolecular cyclization of APM determined by this microscopic FT-IR/DSC system was found to follow zero-order kinetics after a brief induction period. The bond cleavage energy (259.38 kJ/mol) of thermolysis for the leaving group of -OCH(3), the bond conversion energy (328.88 kJ/mol) for the amide II NH band to DKP NH band, and the CN bond formation energy (326.93 kJ/mol) of cyclization for the DKP in the APM molecule were also calculated from the Arrhenius equation. The total activation energy of the DKP formation via intramolecular cyclization was 261.33 kJ/mol, calculated by the above summation of the bond energy of cleavage, conversion, and formation, which was near to the value determined by the DSC or TGA method. This indicates that the microscopic FT-IR/DSC system is useful as a potential tool not only to investigate the degradation mechanism of drugs in the solid state but also to directly predict the bond energy of the reaction.

  8. Biosensor analysis of natural and artificial sweeteners in intact taste epithelium.

    PubMed

    Zhang, Fenni; Zhang, Qian; Zhang, Diming; Lu, Yanli; Liu, Qingjun; Wang, Ping

    2014-04-15

    Sweeteners are commonly used as food additives in our daily life, which, however, have been causing a number of undesirable diseases since the last century. Therefore, the detection and quantification of sweeteners are of great value for food safety. In this study, we used a taste biosensor to measure and analyze different sweeteners, both natural and artificial sweeteners included. Electrophysiological activities from taste epithelium were detected by the multi-channel biosensors and analyzed with spatiotemporal methods. The longtime signal result showed different temporal-frequency properties with stimulations of individual sweeteners such as glucose, sucrose, saccharin, and cyclamate, while the multi-channel results in our study revealed the spatial expression of taste epithelium to sweet stimuli. Furthermore, in the analysis of sweetener with different concentrations, the result showed obvious dose-dependent increases in signal responses of the taste epithelium, which indicated promising applications in sweetness evaluation. Besides, the mixture experiment of two natural sweeteners with a similar functional unit (glucose and sucrose) presented two signal patterns, which turned out to be similar with responses of each individual stimulus involved. The biosensor analysis of common sweeteners provided new approaches for both natural and artificial sweeteners evaluation. PMID:24292144

  9. Biosensor analysis of natural and artificial sweeteners in intact taste epithelium.

    PubMed

    Zhang, Fenni; Zhang, Qian; Zhang, Diming; Lu, Yanli; Liu, Qingjun; Wang, Ping

    2014-04-15

    Sweeteners are commonly used as food additives in our daily life, which, however, have been causing a number of undesirable diseases since the last century. Therefore, the detection and quantification of sweeteners are of great value for food safety. In this study, we used a taste biosensor to measure and analyze different sweeteners, both natural and artificial sweeteners included. Electrophysiological activities from taste epithelium were detected by the multi-channel biosensors and analyzed with spatiotemporal methods. The longtime signal result showed different temporal-frequency properties with stimulations of individual sweeteners such as glucose, sucrose, saccharin, and cyclamate, while the multi-channel results in our study revealed the spatial expression of taste epithelium to sweet stimuli. Furthermore, in the analysis of sweetener with different concentrations, the result showed obvious dose-dependent increases in signal responses of the taste epithelium, which indicated promising applications in sweetness evaluation. Besides, the mixture experiment of two natural sweeteners with a similar functional unit (glucose and sucrose) presented two signal patterns, which turned out to be similar with responses of each individual stimulus involved. The biosensor analysis of common sweeteners provided new approaches for both natural and artificial sweeteners evaluation.

  10. Aspartame and phenylalanine do not enhance theophylline-induced seizures in rats.

    PubMed

    Zhi, J Q; Levy, G

    1989-10-01

    Oral administration of the artificial sweetener aspartame, 1 g/kg, or of an equimolar dose of its metabolite phenylalanine, to fasted rats 1 hour before slow i.v. infusion of theophylline until the onset of maximal seizures had no significant effect on the total dose and the serum and cerebrospinal fluid concentrations of theophylline at the pharmacologic endpoint. These findings indicate that consumption of aspartame is not a potential risk factor for theophylline-induced neurotoxicity.

  11. Qualitative differences among sweeteners.

    PubMed

    Schiffman, S S; Reilly, D A; Clark, T B

    1979-07-01

    Seventeen sweeteners varying widely in chemical structure were arranged in a three-dimensional space by two multidimensional scaling procedures, INDSCAL and ALSCAL. Fructose, glucose, sorbose, xylitol and xylose tended to fall near one another. Two sweeteners with a syrupy component, maltose and sorbitol, fell further away. Ca cyclamate and the dipeptide aspartame were the two artificial sweeteners which fell closest to and thus tasted most like the sugars. The proteins monellin and thaumatin, as well as the chalcone glycoside, neohesperidin dihydrochalcone, all have long aftertastes and thus tended to fall proximate to one another. Stimuli with the highest metallic and bitter ratings (acetosulfan, sodium saccharin, rebaudioside and stevioside) tended to fall near one another with the amino acid d-tryptophan located a little farther away. Adjective scales were related to the spatial arrangement. Wide variability in the patterns of intensity ratings over subjects suggests that the sweet taste may be mediated by several peripheral receptor mechanisms.

  12. Administration of aspartame potentiates pentylenetetrazole- and fluorothyl-induced seizures in mice.

    PubMed

    Pinto, J M; Maher, T J

    1988-01-01

    An association has recently been proposed between the incidence of seizures and prolonged consumption of the phenylalanine-containing artificial sweetener, aspartame. Since consumption of aspartame, unlike dietary protein, can elevate phenylalanine in brain, and thereby inhibit the synthesis and release of neurotransmitters known to protect against seizure activity, the effect of oral doses of aspartame on the sensitivity of mice to the proconvulsant agents, pentylenetetrazole and fluorothyl was studied. Doses of aspartame were used which increased phenylalanine more than tyrosine in brain, as occurs in humans after the consumption of any dose of aspartame. Pretreatment with aspartame significantly increased the percentage of animals convulsing after administration of pentylenetetrazole and significantly lowered the CD50 for this convulsant. The average time to onset of seizures induced by fluorothyl in control mice was 510 sec; pretreatment with oral doses of 1000, 1500 and 2000 mg/kg of aspartame 1 hr earlier significantly reduced the time required to elicit seizures (394, 381 and 339 sec, respectively). The seizure-promoting effect of aspartame could be demonstrated 30, 60 or 120 min after the 1000 mg/kg dose. The seizures induced by either convulsant were potentiated by equimolar amounts of phenylalanine, a major endogenous metabolite of aspartame, while the other metabolites, aspartic acid and methanol, were without effect. Administration together with aspartame of the large neutral amino acid valine, which competes with phenylalanine for entry into the brain, completely abolished the seizure-promoting effect of aspartame.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. 21 CFR 146.121 - Frozen concentrate for artificially sweetened lemonade.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... appear on the label, the acidity of the artificially sweetened lemonade, calculated as anhydrous citric acid, shall be not less than 0.70 gram per 100 milliliters. It may contain one or more safe...

  14. Headspace solid-phase micro-extraction gas chromatography method for the determination of methanol in aspartame sweeteners.

    PubMed

    Sales, J A; de Lourdes Cardeal, Z

    2003-06-01

    A headspace solid-phase micro-extraction (HS-SPME) method for the extraction and determination of residual methanol in artificial sweeteners by capillary gas chromatography with flame ionization detection (GC-FID) is described. A manual SPME holder with an 85- microm polyacrylate fibre was used. The optimized conditions for methanol extraction by SPME were: sample agitation, absorption temperature of 30 degrees C, absorption time of 10 min, desorption time of 2 min and sample volume in the vial of 400.0 micro l. Under these conditions the calibration graphs were linear in the range 2.50-31.60 mg x l(-1), and the precision was good (relative standard deviation 4.9%). The detection limit was 0.40 mg x l(-1); the quantification limit was 2.06 mg x l(-1).

  15. Occurrence of seven artificial sweeteners in the aquatic environment and precipitation of Tianjin, China.

    PubMed

    Gan, Zhiwei; Sun, Hongwen; Feng, Biting; Wang, Ruonan; Zhang, Yanwei

    2013-09-15

    Seventy water samples, including wastewaters, tap waters, fresh surface waters, coastal waters, groundwaters, and precipitation samples, from Tianjin, China, were analyzed for seven commonly used artificial sweeteners (ASs). The concentrations of the investigated ASs were generally in the order of wastewater treatment plant (WWTP) influent > WWTP effluent > surface water > tap water > groundwater ≈ precipitation, while the composition profiles of ASs varied in different waters. Acesulfame, sucralose, cyclamate, and saccharin were consistently detected in surface waters and ranged from 50 ng/L to 0.12 mg/L, while acesulfame was the dominant AS in surface and tap waters. Aspartame was found in all of the surface waters at a concentration up to 0.21 μg/L, but was not found in groundwaters and tap waters. Neotame and neohesperidin dihydrochalcone were less frequently detected and the concentrations were low. The concentrations of the ASs in some of the surface waters were of the same order with those in the WWTP influents, but not with the effluents, indicating there are probably untreated discharges into the surface waters. The ASs were detected in precipitation samples with high frequency, and acesulfame, saccharin, and cyclamate were the predominant ASs, with concentrations ranging from 3.5 ng/L to 1.3 μg/L. A gross estimation revealed that precipitation may act as a source for saccharin and cyclamate in the surface environment of Tianjin city. Moreover, the presence of ASs in the atmosphere was primarily assessed by taking 4 air samples to evaluate their potential source in precipitation.

  16. Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides.

    PubMed

    Steinert, Robert E; Frey, Florian; Töpfer, Antonia; Drewe, Jürgen; Beglinger, Christoph

    2011-05-01

    In vitro, both carbohydrate sugars and artificial sweeteners (AS) stimulate the secretion of glucagon-like peptide-1 (GLP-1). It has been suggested that the gut tastes sugars and AS through the same mechanisms as the tongue, with potential effects on gut hormone release. We investigated whether the human gut responds in the same way to AS and carbohydrate sugars, which are perceived by lingual taste as equisweet. We focused on the secretion of gastrointestinal (GI) satiety peptides in relation to appetite perception. We performed a placebo-controlled, double-blind, six-way, cross-over trial including twelve healthy subjects. On separate days, each subject received an intragastric infusion of glucose, fructose or an AS (aspartame, acesulfame K and sucralose) dissolved in 250 ml of water or water only (control). In a second part, four subjects received an intragastric infusion of the non-sweet, non-metabolisable sugar analogue 2-deoxy-d-glucose. Glucose stimulated GLP-1 (P = 0·002) and peptide tyrosine tyrosine (PYY; P = 0·046) secretion and reduced fasting plasma ghrelin (P = 0·046), whereas fructose was less effective. Both carbohydrate sugars increased satiety and fullness (albeit not significantly) compared with water. In contrast, equisweet loads of AS did not affect gastrointestinal peptide secretion with minimal effects on appetite. 2-Deoxy-d-glucose increased hunger ratings, however, with no effects on GLP-1, PYY or ghrelin. Our data demonstrate that the secretion of GLP-1, PYY and ghrelin depends on more than the detection of (1) sweetness or (2) the structural analogy to glucose.

  17. Conformation analysis of aspartame-based sweeteners by NMR spectroscopy, molecular dynamics simulations, and X-ray diffraction studies.

    PubMed

    De Capua, Antonia; Goodman, Murray; Amino, Yusuke; Saviano, Michele; Benedetti, Ettore

    2006-02-01

    We report here the synthesis and the conformation analysis by 1H NMR spectroscopy and computer simulations of six potent sweet molecules, N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-S-tert-butyl-L-cysteine 1-methylester (1; 70 000 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-beta-cyclohexyl-L-alanine 1-methylester (2; 50 000 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-4-cyan-L-phenylalanine 1-methylester (3; 2 000 times more potent than sucrose), N-[3,3-dimethylbutyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (4; 5500 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)propyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (5; 15 000 times more potent than sucrose), and N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (6; 15 000 times more potent than sucrose). The "L-shaped" structure, which we believe to be responsible for sweet taste, is accessible to all six molecules in solution. This structure is characterized by a zwitterionic ring formed by the AH- and B-containing moieties located along the +y axis and by the hydrophobic group X pointing into the +x axis. Extended conformations with the AH- and B-containing moieties along the +y axis and the hydrophobic group X pointing into the -y axis were observed for all six sweeteners. For compound 5, the crystal-state conformation was also determined by an X-ray diffraction study. The result indicates that compound 5 adopts an L-shaped structure even in the crystalline state. The extraordinary potency of the N-arylalkylated or N-alkylated compounds 1-6, as compared with that of the unsubstituted aspartame-based sweet taste ligands, can be explained by the effect of a second hydrophobic binding domain in addition to interactions arising from the L-shaped structure. In our

  18. Conformation analysis of aspartame-based sweeteners by NMR spectroscopy, molecular dynamics simulations, and X-ray diffraction studies.

    PubMed

    De Capua, Antonia; Goodman, Murray; Amino, Yusuke; Saviano, Michele; Benedetti, Ettore

    2006-02-01

    We report here the synthesis and the conformation analysis by 1H NMR spectroscopy and computer simulations of six potent sweet molecules, N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-S-tert-butyl-L-cysteine 1-methylester (1; 70 000 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-beta-cyclohexyl-L-alanine 1-methylester (2; 50 000 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-4-cyan-L-phenylalanine 1-methylester (3; 2 000 times more potent than sucrose), N-[3,3-dimethylbutyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (4; 5500 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)propyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (5; 15 000 times more potent than sucrose), and N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (6; 15 000 times more potent than sucrose). The "L-shaped" structure, which we believe to be responsible for sweet taste, is accessible to all six molecules in solution. This structure is characterized by a zwitterionic ring formed by the AH- and B-containing moieties located along the +y axis and by the hydrophobic group X pointing into the +x axis. Extended conformations with the AH- and B-containing moieties along the +y axis and the hydrophobic group X pointing into the -y axis were observed for all six sweeteners. For compound 5, the crystal-state conformation was also determined by an X-ray diffraction study. The result indicates that compound 5 adopts an L-shaped structure even in the crystalline state. The extraordinary potency of the N-arylalkylated or N-alkylated compounds 1-6, as compared with that of the unsubstituted aspartame-based sweet taste ligands, can be explained by the effect of a second hydrophobic binding domain in addition to interactions arising from the L-shaped structure. In our

  19. Artificial sweeteners induce glucose intolerance by altering the gut microbiota.

    PubMed

    Suez, Jotham; Korem, Tal; Zeevi, David; Zilberman-Schapira, Gili; Thaiss, Christoph A; Maza, Ori; Israeli, David; Zmora, Niv; Gilad, Shlomit; Weinberger, Adina; Kuperman, Yael; Harmelin, Alon; Kolodkin-Gal, Ilana; Shapiro, Hagit; Halpern, Zamir; Segal, Eran; Elinav, Eran

    2014-10-01

    Non-caloric artificial sweeteners (NAS) are among the most widely used food additives worldwide, regularly consumed by lean and obese individuals alike. NAS consumption is considered safe and beneficial owing to their low caloric content, yet supporting scientific data remain sparse and controversial. Here we demonstrate that consumption of commonly used NAS formulations drives the development of glucose intolerance through induction of compositional and functional alterations to the intestinal microbiota. These NAS-mediated deleterious metabolic effects are abrogated by antibiotic treatment, and are fully transferrable to germ-free mice upon faecal transplantation of microbiota configurations from NAS-consuming mice, or of microbiota anaerobically incubated in the presence of NAS. We identify NAS-altered microbial metabolic pathways that are linked to host susceptibility to metabolic disease, and demonstrate similar NAS-induced dysbiosis and glucose intolerance in healthy human subjects. Collectively, our results link NAS consumption, dysbiosis and metabolic abnormalities, thereby calling for a reassessment of massive NAS usage. PMID:25231862

  20. Artificial Sweeteners: A Systematic Review and Primer for Gastroenterologists.

    PubMed

    Spencer, Marisa; Gupta, Amit; Dam, Lauren Van; Shannon, Carol; Menees, Stacy; Chey, William D

    2016-04-30

    Artificial sweeteners (AS) are ubiquitous in food and beverage products, yet little is known about their effects on the gastrointestinal (GI) tract, and whether they play a role in the development of GI symptoms, especially in patients with irritable bowel syndrome. Utilizing the PubMed and Embase databases, we conducted a search for articles on individual AS and each of these terms: fermentation, absorption, and GI tract. Standard protocols for a systematic review were followed. At the end of our search, we found a total of 617 eligible papers, 26 of which were included. Overall, there is limited medical literature available on this topic. The 2 main areas on which there is data to suggest that AS affect the GI tract include motility and the gut microbiome, though human data is lacking, and most of the currently available data is derived from in vivo studies. The effect on motility is mainly indirect via increased incretin secretion, though the clinical relevance of this finding is unknown as the downstream effect on motility was not studied. The specific effects of AS on the microbiome have been conflicting and the available studies have been heterogeneous in terms of the population studied and both the AS and doses evaluated. Further research is needed to assess whether AS could be a potential cause of GI symptoms. This is especially pertinent in patients with irritable bowel syndrome, a population in whom dietary interventions are routinely utilized as a management strategy. PMID:26932837

  1. Sorption and biodegradation of artificial sweeteners in activated sludge processes.

    PubMed

    Tran, Ngoc Han; Gan, Jie; Nguyen, Viet Tung; Chen, Huiting; You, Luhua; Duarah, Ankur; Zhang, Lifeng; Gin, Karina Yew-Hoong

    2015-12-01

    There is limited information on the occurrence and removal of artificial sweeteners (ASs) in biological wastewater treatment plants, and in particular, the contribution of sorption and biodegradation to their removal. This study investigated the fate of ASs in both the aqueous and solid phases in a water reclamation plant (WRP). All the four targeted ASs, i.e. acesulfame (ACE), sucralose (SUC), cyclamate (CYC) and saccharine (SAC), were detected in both the aqueous and solid phases of raw influent and primary effluent samples. The concentrations of CYC and SAC in secondary effluent or MBR permeate were below their method detection limits. ACE and SUC were persistent throughout the WRP, whereas CYC and SAC were completely removed in biological treatment (>99%). Experimental results showed that sorption played a minor role in the elimination of the ASs due to the relatively low sorption coefficients (Kd), where Kd<500L/kg. In particular, the poor removal of ACE and SUC in the WRP may be attributed to their physiochemical properties (i.e. logKow<0 or logD<3.2) and chemical structures containing strong withdrawing electron functional groups in heterocyclic rings (i.e. chloride and sulfonate). PMID:26342347

  2. Artificial Sweeteners: A Systematic Review and Primer for Gastroenterologists

    PubMed Central

    Spencer, Marisa; Gupta, Amit; Van Dam, Lauren; Shannon, Carol; Menees, Stacy; Chey, William D

    2016-01-01

    Artificial sweeteners (AS) are ubiquitous in food and beverage products, yet little is known about their effects on the gastrointestinal (GI) tract, and whether they play a role in the development of GI symptoms, especially in patients with irritable bowel syndrome. Utilizing the PubMed and Embase databases, we conducted a search for articles on individual AS and each of these terms: fermentation, absorption, and GI tract. Standard protocols for a systematic review were followed. At the end of our search, we found a total of 617 eligible papers, 26 of which were included. Overall, there is limited medical literature available on this topic. The 2 main areas on which there is data to suggest that AS affect the GI tract include motility and the gut microbiome, though human data is lacking, and most of the currently available data is derived from in vivo studies. The effect on motility is mainly indirect via increased incretin secretion, though the clinical relevance of this finding is unknown as the downstream effect on motility was not studied. The specific effects of AS on the microbiome have been conflicting and the available studies have been heterogeneous in terms of the population studied and both the AS and doses evaluated. Further research is needed to assess whether AS could be a potential cause of GI symptoms. This is especially pertinent in patients with irritable bowel syndrome, a population in whom dietary interventions are routinely utilized as a management strategy. PMID:26932837

  3. Sorption and biodegradation of artificial sweeteners in activated sludge processes.

    PubMed

    Tran, Ngoc Han; Gan, Jie; Nguyen, Viet Tung; Chen, Huiting; You, Luhua; Duarah, Ankur; Zhang, Lifeng; Gin, Karina Yew-Hoong

    2015-12-01

    There is limited information on the occurrence and removal of artificial sweeteners (ASs) in biological wastewater treatment plants, and in particular, the contribution of sorption and biodegradation to their removal. This study investigated the fate of ASs in both the aqueous and solid phases in a water reclamation plant (WRP). All the four targeted ASs, i.e. acesulfame (ACE), sucralose (SUC), cyclamate (CYC) and saccharine (SAC), were detected in both the aqueous and solid phases of raw influent and primary effluent samples. The concentrations of CYC and SAC in secondary effluent or MBR permeate were below their method detection limits. ACE and SUC were persistent throughout the WRP, whereas CYC and SAC were completely removed in biological treatment (>99%). Experimental results showed that sorption played a minor role in the elimination of the ASs due to the relatively low sorption coefficients (Kd), where Kd<500L/kg. In particular, the poor removal of ACE and SUC in the WRP may be attributed to their physiochemical properties (i.e. logKow<0 or logD<3.2) and chemical structures containing strong withdrawing electron functional groups in heterocyclic rings (i.e. chloride and sulfonate).

  4. [Safety of intensive sweeteners].

    PubMed

    Lugasi, Andrea

    2016-04-01

    Nowadays low calorie or intesive sweeteners are getting more and more popular. These sweeteners can be placed to the market and used as food additives according to the recent EU legislation. In the meantime news are coming out one after the other stating that many of these artificial intensive sweeteners can cause cancer - the highest risk has been attributed to aspartam. Low calorie sweeteners, just like all the other additives can be authorized after strickt risk assessment procedure according to the recent food law. Only after the additive has gone through these procedure can be placed to the list of food additives, which contains not only the range of food these additives can be used, but also the recommended highest amount of daily consumption. European Food Safety Authority considering the latest scientific examination results, evaluates regularly the safety of sweeteners authorized earlier. Until now there is no evidence found to question the safety of the authorized intensive sweeteners. Orv. Hetil., 2016, 157(Suppl. 1), 14-28. PMID:27088715

  5. A metabolite of aspartame inhibits angiotensin converting enzyme.

    PubMed

    Grobelny, D; Galardy, R E

    1985-04-30

    Aspartame (L-aspartyl-L-phenylalanine methyl ester, is a widely used artificIal sweetener. In humans and other animals aspartame is initially hydrolyzed to L-aspartyl-L-phenylalanine by intestinal esterases. L-Aspartyl-L-phenylalanine inhibits angiotensin converting enzyme purified from rabbit lungs with a Ki of 11 +/- 2 microM, equipotent to the IC50 of 12 microM for 2-D-methyl-succinyl-L-proline which has been reported to be an orally active antihypertensive agent in rats. Thus the possibility exists that L-aspartyl-L-phenylalanine inhibits angiotensin converting enzyme in humans consuming large quantities of aspartame. Both aspartame itself and the diketopiperazine formed from it, 3-carboxymethyl-6-benzyl-2,5-diketopiperazine, are weak inhibitors with Ki's greater than 1 mM.

  6. Emission of artificial sweeteners, select pharmaceuticals, and personal care products through sewage sludge from wastewater treatment plants in Korea.

    PubMed

    Subedi, Bikram; Lee, Sunggyu; Moon, Hyo-Bang; Kannan, Kurunthachalam

    2014-07-01

    Concern over the occurrence of artificial sweeteners (ASWs) as well as pharmaceuticals and personal care products (PPCPs) in the environment is growing, due to their high use and potential adverse effects on non-target organisms. The data for this study are drawn from a nationwide survey of ASWs in sewage sludge from 40 representative wastewater treatment plants (WWTPs) that receive domestic (WWTPD), industrial (WWTPI), or mixed (domestic plus industrial; WWTPM) wastewaters in Korea. Five ASWs (concentrations ranged from 7.08 to 5220 ng/g dry weight [dw]) and ten PPCPs (4.95-6930 ng/g dw) were determined in sludge. Aspartame (concentrations ranged from 28.4 to 5220 ng/g dw) was determined for the first time in sewage sludge. The median concentrations of ASWs and PPCPs in sludge from domestic WWTPs were 0.8-2.5 and 1.0-3.4 times, respectively, the concentrations found in WWTPs that receive combined domestic and industrial wastewaters. Among the five ASWs analyzed, the median environmental emission rates of aspartame through domestic WWTPs (both sludge and effluent discharges combined) were calculated to be 417 μg/capita/day, followed by sucralose (117 μg/capita/day), acesulfame (90 μg/capita/day), and saccharin (66μg/capita/day). The per-capita emission rates of select PPCPs, such as antimicrobials (triclocarban: 158 μg/capita/day) and analgesics (acetaminophen: 59 μg/capita/day), were an order of magnitude higher than those calculated for antimycotic (miconazole) and anthelmintic (thiabendazole) drugs analyzed in this study. Multiple linear regression analysis of measured concentrations of ASWs and PPCPs in sludge revealed that several WWTP parameters, such as treatment capacity, population-served, sludge production rate, and hydraulic retention time could influence the concentrations found in sludge.

  7. Aspartame: safety and stability in kalakand.

    PubMed

    Gawande, H M; Arora, Sumit; Sharma, Vivek; Wadhwa, B K

    2015-04-01

    Aspartame was used in the manufacture of kalakand instead of sucrose. Sensory evaluation revealed that aspartame when used in the preparation of kalakand at a level of 0.065 % scored the highest in terms of sweetness perception and resembled control. Aspartame sweetened kalakand possessed the same desirable sweetness, colour, body and texture/consistency and mouthfeel even after 7 days of storage at 6-8 °C. Significant increase in titratable acidity of control as well as aspartame sweetened kalakand was observed during storage. However, only a slight drop in pH was observed in all samples on storage. The titratable acidity was higher in aspartame sweetened products than the corresponding control samples. Lightness (L*) was less in control samples with sucrose than the aspartame sweetened kalakand during storage. Total plate counts were higher in aspartame sweetened kalakand than its corresponding control throughout the storage period. Total plate counts increased linearly for both aspartame sweetened kalakand and control. A solid phase extraction method was standardized for the isolation of aspartame in kalakand. HPLC analytical conditions were standardized for separation of aspartame and its degradation products diketopiperazine and L-phenylalanine. HPLC analysis revealed that aspartame did not degrade in kalakand during storage establishing its stability in these products. PMID:25829622

  8. Aspartame: safety and stability in kalakand.

    PubMed

    Gawande, H M; Arora, Sumit; Sharma, Vivek; Wadhwa, B K

    2015-04-01

    Aspartame was used in the manufacture of kalakand instead of sucrose. Sensory evaluation revealed that aspartame when used in the preparation of kalakand at a level of 0.065 % scored the highest in terms of sweetness perception and resembled control. Aspartame sweetened kalakand possessed the same desirable sweetness, colour, body and texture/consistency and mouthfeel even after 7 days of storage at 6-8 °C. Significant increase in titratable acidity of control as well as aspartame sweetened kalakand was observed during storage. However, only a slight drop in pH was observed in all samples on storage. The titratable acidity was higher in aspartame sweetened products than the corresponding control samples. Lightness (L*) was less in control samples with sucrose than the aspartame sweetened kalakand during storage. Total plate counts were higher in aspartame sweetened kalakand than its corresponding control throughout the storage period. Total plate counts increased linearly for both aspartame sweetened kalakand and control. A solid phase extraction method was standardized for the isolation of aspartame in kalakand. HPLC analytical conditions were standardized for separation of aspartame and its degradation products diketopiperazine and L-phenylalanine. HPLC analysis revealed that aspartame did not degrade in kalakand during storage establishing its stability in these products.

  9. Can aspartame meet our expectations?

    PubMed

    Horwitz, D L; Bauer-Nehrling, J K

    1983-08-01

    Aspartame is a dipeptide containing aspartic acid and phenylalanine methyl ester. It is a nutritive sweetener with a caloric value equivalent to that of other proteins and with sweetness approximately 180 times that of sucrose. Thus, for equivalent sweetening power, it contributes only 0.5% of the kilocalories of sugar. Numerous studies have shown no potential toxicity of amounts of aspartame likely to be ingested, or even of abuse doses. Although aspartame cannot fully replace sugar, it appears to be a safe and acceptable sweetener for those who must, or desire to, reduce their intake of sucrose.

  10. A Laboratory Preparation of Aspartame Analogs Using Simultaneous Multiple Parallel Synthesis Methodology

    ERIC Educational Resources Information Center

    Qvit, Nir; Barda, Yaniv; Gilon, Chaim; Shalev, Deborah E.

    2007-01-01

    This laboratory experiment provides a unique opportunity for students to synthesize three analogues of aspartame, a commonly used artificial sweetener. The students are introduced to the powerful and useful method of parallel synthesis while synthesizing three dipeptides in parallel using solid-phase peptide synthesis (SPPS) and simultaneous…

  11. Artificial sweetener sucralose in U.S. drinking water systems.

    PubMed

    Mawhinney, Douglas B; Young, Robert B; Vanderford, Brett J; Borch, Thomas; Snyder, Shane A

    2011-10-15

    The artificial sweetener sucralose has recently been shown to be a widespread of contaminant of wastewater, surface water, and groundwater. In order to understand its occurrence in drinking water systems, water samples from 19 United States (U.S.) drinking water treatment plants (DWTPs) serving more than 28 million people were analyzed for sucralose using liquid chromatography tandem mass spectrometry (LC-MS/MS). Sucralose was found to be present in source water of 15 out of 19 DWTPs (47-2900 ng/L), finished water of 13 out of 17 DWTPs (49-2400 ng/L) and distribution system water of 8 out of the 12 DWTPs (48-2400 ng/L) tested. Sucralose was only found to be present in source waters with known wastewater influence and/or recreational usage, and displayed low removal (12% average) in the DWTPs where finished water was sampled. Further, in the subset of DWTPs with distribution system water sampled, the compound was found to persist regardless of the presence of residual chlorine or chloramines. In order to understand intra-DWTP consistency, sucralose was monitored at one drinking water treatment plant over an 11 month period from March 2010 through January 2011, and averaged 440 ng/L in the source water and 350 ng/L in the finished water. The results of this study confirm that sucralose will function well as an indicator compound for anthropogenic influence on source, finished drinking and distribution system (i.e., tap) water, as well as an indicator compound for the presence of other recalcitrant compounds in finished drinking water in the U.S.

  12. Simultaneous formation and detection of the reaction product of solid-state aspartame sweetener by FT-IR/DSC microscopic system.

    PubMed

    Lin, S Y; Cheng, Y D

    2000-10-01

    The solid-state stability of aspartame hemihydrate (APM) sweetener during thermal treatment is important information for the food industry. The present study uses the novel technique of Fourier transform infrared microspectroscopy equipped with differential scanning calorimetry (FT-IR/DSC microscopic system) to accelerate and determine simultaneously the thermal-dependent impurity formation of solid-state APM. The results indicate a dramatic change in IR spectra from 50, 110 or 153 degrees C, which was respectively attributed to the onset temperature of water evaporation, dehydration and cyclization processes. It is suggested that the processes of dehydration and intramolecular cyclization occurred in the solid-state APM during the heating process. As an impurity, 3-carboxymethyl-6-benzyl-2,5-diketopiperazine (DKP) degraded from solid state APM via intramolecular cyclization and liberation of methanol. This was evidenced by this novel FT-IR/DSC microscopic system in a one-step procedure.

  13. Simultaneous determination of artificial sweeteners, preservatives, caffeine, theobromine and theophylline in food and pharmaceutical preparations by ion chromatography.

    PubMed

    Chen, Q C; Wang, J

    2001-12-01

    A novel ion chromatographic method was proposed for the simultaneous determination of artificial sweeteners (sodium saccharin, aspartame, acesulfame-K), preservatives (benzoic acid, sorbic acid), caffeine, theobromine and theophylline. The separation was performed on an anion-exchange analytical column operated at 40 degrees C within 45 min by an isocratic elution with 5 mM aqueous NaH2PO4 (pH 8.20) solution containing 4% (v/v) acetonitrile as eluent, and the determination by wavelength-switching ultraviolet absorbance detection. The detection limits (signal-to-noise ratio 3:1) for all analytes were below the sub-microg/ml level. Under the experimental conditions, several organic acids, including citric acid, malic acid, tartaric acid and ascorbic acid, did not interfere with the determination. The method has been successfully applied to the analysis of various food and pharmaceutical preparations, and the average recoveries for real samples ranged from 85 to 104%. The levels of all analytes determined by this method were in good agreement with those obtained by the high-performance liquid chromatographic procedure. The results also indicated that ion chromatography would be possibly a beneficial alternative to conventional high-performance liquid chromatography for the separation and determination of these compounds.

  14. Bitterness prediction of H1-antihistamines and prediction of masking effects of artificial sweeteners using an electronic tongue.

    PubMed

    Ito, Masanori; Ikehama, Kiyoharu; Yoshida, Koichi; Haraguchi, Tamami; Yoshida, Miyako; Wada, Koichi; Uchida, Takahiro

    2013-01-30

    The study objective was to quantitatively predict a drug's bitterness and estimate bitterness masking efficiency using an electronic tongue (e-Tongue). To verify the predicted bitterness by e-Tongue, actual bitterness scores were determined by human sensory testing. In the first study, bitterness intensities of eight H(1)-antihistamines were assessed by comparing the Euclidean distances between the drug and water. The distances seemed not to represent the drug's bitterness, but to be greatly affected by acidic taste. Two sensors were ultimately selected as best suited to bitterness evaluation, and the data obtained from the two sensors depicted the actual taste map of the eight drugs. A bitterness prediction model was established with actual bitterness scores from human sensory testing. Concerning basic bitter substances, such as H(1)-antihistamines, the predictability of bitterness intensity using e-Tongue was considered to be sufficiently promising. In another study, the bitterness masking efficiency when adding an artificial sweetener was estimated using e-Tongue. Epinastine hydrochloride aqueous solutions containing different levels of acesulfame potassium and aspartame were well discriminated by e-Tongue. The bitterness masking efficiency of epinastine hydrochloride with acesulfame potassium was successfully predicted using e-Tongue by several prediction models employed in the study.

  15. SuperSweet—a resource on natural and artificial sweetening agents

    PubMed Central

    Ahmed, Jessica; Preissner, Saskia; Dunkel, Mathias; Worth, Catherine L.; Eckert, Andreas; Preissner, Robert

    2011-01-01

    A vast number of sweet tasting molecules are known, encompassing small compounds, carbohydrates, d-amino acids and large proteins. Carbohydrates play a particularly big role in human diet. The replacement of sugars in food with artificial sweeteners is common and is a general approach to prevent cavities, obesity and associated diseases such as diabetes and hyperlipidemia. Knowledge about the molecular basis of taste may reveal new strategies to overcome diet-induced diseases. In this context, the design of safe, low-calorie sweeteners is particularly important. Here, we provide a comprehensive collection of carbohydrates, artificial sweeteners and other sweet tasting agents like proteins and peptides. Additionally, structural information and properties such as number of calories, therapeutic annotations and a sweetness-index are stored in SuperSweet. Currently, the database consists of more than 8000 sweet molecules. Moreover, the database provides a modeled 3D structure of the sweet taste receptor and binding poses of the small sweet molecules. These binding poses provide hints for the design of new sweeteners. A user-friendly graphical interface allows similarity searching, visualization of docked sweeteners into the receptor etc. A sweetener classification tree and browsing features allow quick requests to be made to the database. The database is freely available at: http://bioinformatics.charite.de/sweet/. PMID:20952410

  16. Sweetened beverages

    MedlinePlus

    ... made with artificial (man-made) or non-nutritive sweeteners. You can also add flavor to plain water ... AMA Adopts Policy Addressing Obesity, Beverages with Added Sweeteners. www.ama-assn.org/ama/pub/news/news/ ...

  17. Suitability of artificial sweeteners as indicators of raw wastewater contamination in surface water and groundwater.

    PubMed

    Tran, Ngoc Han; Hu, Jiangyong; Li, Jinhua; Ong, Say Leong

    2014-01-01

    There is no quantitative data on the occurrence of artificial sweeteners in the aquatic environment in Southeast Asian countries, particularly no information on their suitability as indicators of raw wastewater contamination on surface water and groundwater. This study provided the first quantitative information on the occurrence of artificial sweeteners in raw wastewater, surface water and groundwater in the urban catchment area in Singapore. Acesulfame, cyclamate, saccharin, and sucralose were ubiquitous in raw wastewater samples at concentrations in the range of ng/L-μg/L, while other sweeteners were not found or found only in a few of the raw wastewater samples. Residential and commercial effluents were demonstrated to be the two main sources of artificial sweeteners entering the municipal sewer systems. Relatively higher concentrations of the detected sweeteners were frequently found in surface waters at the sampling sites located in the residential/commercial areas. No significant difference in the concentrations of the detected sweeteners in surface water or groundwater was noted between wet and dry weather conditions (unpaired T-test, p> 0.05). Relatively higher concentrations and detection frequencies of acesulfame, cyclamate and saccharin in surface water samples were observed at the potentially impacted sampling sites, while these sweeteners were absent in most of the background surface water samples. Similarly, acesulfame, cyclamate, and saccharin were found in most groundwater samples at the monitoring well (GW6), which is located close to known leaking sewer segment; whereas these were absent in the background monitoring well, which is located in the catchment with no known wastewater sources. Taken together, the results suggest that acesulfame, cyclamate, and saccharin can be used as potential indicators of raw wastewater contamination in surface water and groundwater.

  18. A bitter aftertaste: unintended effects of artificial sweeteners on the gut microbiome.

    PubMed

    Bokulich, Nicholas A; Blaser, Martin J

    2014-11-01

    Intestinal microbial communities regulate a range of host physiological functions, from energy harvest and glucose homeostasis to immune development and regulation. Suez et al. (2014) recently demonstrated that artificial sweeteners alter gut microbial communities, leading to glucose intolerance in both mice and humans. PMID:25440050

  19. 21 CFR 150.161 - Artificially sweetened fruit preserves and jams.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Artificially sweetened fruit preserves and jams. 150.161 Section 150.161 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FRUIT BUTTERS, JELLIES, PRESERVES, AND RELATED...

  20. 21 CFR 150.161 - Artificially sweetened fruit preserves and jams.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Artificially sweetened fruit preserves and jams. 150.161 Section 150.161 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FRUIT BUTTERS, JELLIES, PRESERVES, AND RELATED...

  1. 21 CFR 150.161 - Artificially sweetened fruit preserves and jams.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Artificially sweetened fruit preserves and jams. 150.161 Section 150.161 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FRUIT BUTTERS, JELLIES, PRESERVES, AND RELATED...

  2. 21 CFR 150.161 - Artificially sweetened fruit preserves and jams.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Artificially sweetened fruit preserves and jams. 150.161 Section 150.161 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FRUIT BUTTERS, JELLIES, PRESERVES, AND RELATED...

  3. 21 CFR 150.161 - Artificially sweetened fruit preserves and jams.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Artificially sweetened fruit preserves and jams. 150.161 Section 150.161 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FRUIT BUTTERS, JELLIES, PRESERVES, AND RELATED...

  4. 21 CFR 146.121 - Frozen concentrate for artificially sweetened lemonade.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CANNED FRUIT JUICES Requirements for Specific Standardized Canned Fruit Juices and Beverages § 146.121 Frozen concentrate for artificially sweetened lemonade... suitable dispersing ingredients serving the function of distributing the lemon oil throughout the food....

  5. 21 CFR 146.121 - Frozen concentrate for artificially sweetened lemonade.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CANNED FRUIT JUICES Requirements for Specific Standardized Canned Fruit Juices and Beverages § 146.121 Frozen concentrate for artificially sweetened lemonade... suitable dispersing ingredients serving the function of distributing the lemon oil throughout the food....

  6. 21 CFR 146.121 - Frozen concentrate for artificially sweetened lemonade.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CANNED FRUIT JUICES Requirements for Specific Standardized Canned Fruit Juices and Beverages § 146.121 Frozen concentrate for artificially sweetened lemonade... suitable dispersing ingredients serving the function of distributing the lemon oil throughout the food....

  7. Tracking artificial sweeteners and pharmaceuticals introduced into urban groundwater by leaking sewer networks.

    PubMed

    Wolf, Leif; Zwiener, Christian; Zemann, Moritz

    2012-07-15

    There is little quantitative information on the temporal trends of pharmaceuticals and other emerging compounds, including artificial sweeteners, in urban groundwater and their suitability as tracers to inform urban water management. In this study, pharmaceuticals and artificial sweeteners were monitored over 6 years in a shallow urban groundwater body along with a range of conventional sewage tracers in a network of observation wells that were specifically constructed to assess sewer leakage. Out of the 71 substances screened, 24 were detected at above the analytical detection limit. The most frequent compounds were the iodinated X-ray contrast medium amidotrizoic acid (35.3%), the anticonvulsant carbamazepine (33.3%) and the artificial sweetener acesulfame (27.5%), while all other substances occurred in less than 10% of the screened wells. The results from the group of specifically constructed focus wells within 10 m of defective sewers confirmed sewer leaks as being a major entrance pathway into the groundwater. The spatial distribution of pharmaceuticals and artificial sweeteners corresponds well with predictions by pipeline leakage models, which operate on optical sewer condition monitoring data and hydraulic information. Correlations between the concentrations of carbamazepine, iodinated X-ray contrast media and artificial sweeteners were weak to non-existent. Peak concentrations of up to 4130 ng/l of amidotrizoic acid were found in the groundwater downstream of the local hospital. The analysis of 168 samples for amidotrizoic acid, taken at 5 different occasions, did not show significant temporal trends for the years 2002-2008, despite changed recommendations in the medical usage of amidotrizoic acid. The detailed results show that the current mass balance approaches for urban groundwater bodies must be adapted to reflect the spatially distributed leaks and the variable wastewater composition in addition to the lateral and horizontal groundwater fluxes.

  8. Determination of artificial sweeteners by capillary electrophoresis with contactless conductivity detection optimized by hydrodynamic pumping.

    PubMed

    Stojkovic, Marko; Mai, Thanh Duc; Hauser, Peter C

    2013-07-17

    The common sweeteners aspartame, cyclamate, saccharin and acesulfame K were determined by capillary electrophoresis with contactless conductivity detection. In order to obtain the best compromise between separation efficiency and analysis time hydrodynamic pumping was imposed during the electrophoresis run employing a sequential injection manifold based on a syringe pump. Band broadening was avoided by using capillaries of a narrow 10 μm internal diameter. The analyses were carried out in an aqueous running buffer consisting of 150 mM 2-(cyclohexylamino)ethanesulfonic acid and 400 mM tris(hydroxymethyl)aminomethane at pH 9.1 in order to render all analytes in the fully deprotonated anionic form. The use of surface modification to eliminate or reverse the electroosmotic flow was not necessary due to the superimposed bulk flow. The use of hydrodynamic pumping allowed easy optimization, either for fast separations (80s) or low detection limits (6.5 μmol L(-1), 5.0 μmol L(-1), 4.0 μmol L(-1) and 3.8 μmol L(-1) for aspartame, cyclamate, saccharin and acesulfame K respectively, at a separation time of 190 s). The conditions for fast separations not only led to higher limits of detection but also to a narrower dynamic range. However, the settings can be changed readily between separations if needed. The four compounds were determined successfully in food samples.

  9. Sweeteners: consumer acceptance in tea.

    PubMed

    Sprowl, D J; Ehrcke, L A

    1984-09-01

    Sucrose, fructose, aspartame, and saccharin were compared for consumer preference, aftertaste, and cost to determine acceptability of the sweeteners. A 23-member taste panel evaluated tea samples for preference and aftertaste. Mean retail cost of the sweeteners were calculated and adjusted to take sweetening power into consideration. Sucrose was the least expensive and most preferred sweetener. No significant difference in preference for fructose and aspartame was found, but both sweeteners were rated significantly lower than sucrose. Saccharin was the most disliked sweetener. Fructose was the most expensive sweetener and aspartame the next most expensive. Scores for aftertaste followed the same pattern as those for preference. Thus, a strong, unpleasant aftertaste seems to be associated with a dislike for a sweetener. From the results of this study, it seems that there is no completely acceptable low-calorie substitute for sucrose available to consumers.

  10. Effects of aspartame metabolites on astrocytes and neurons.

    PubMed

    Rycerz, Karol; Jaworska-Adamu, Jadwiga Elżbieta

    2013-01-01

    Aspartame, a widespread sweetener used in many food products, is considered as a highly hazardous compound. Aspartame was discovered in 1965 and raises a lot of controversy up to date. Astrocytes are glial cells, the presence and functions of which are closely connected with the central nervous system (CNS). The aim of this article is to demonstrate the direct and indirect role of astrocytes participating in the harmful effects of aspartame metabolites on neurons. The artificial sweetener is broken down into phenylalanine (50%), aspartic acid (40%) and methanol (10%) during metabolism in the body. The excess of phenylalanine blocks the transport of important amino acids to the brain contributing to reduced levels of dopamine and serotonin. Astrocytes directly affect the transport of this amino acid and also indirectly by modulation of carriers in the endothelium. Aspartic acid at high concentrations is a toxin that causes hyperexcitability of neurons and is also a precursor of other excitatory amino acid - glutamates. Their excess in quantity and lack of astrocytic uptake induces excitotoxicity and leads to the degeneration of astrocytes and neurons. The methanol metabolites cause CNS depression, vision disorders and other symptoms leading ultimately to metabolic acidosis and coma. Astrocytes do not play a significant role in methanol poisoning due to a permanent consumption of large amounts of aspartame. Despite intense speculations about the carcinogenicity of aspartame, the latest studies show that its metabolite - diketopiperazine - is cancirogenic in the CNS. It contributes to the formation of tumors in the CNS such as gliomas, medulloblastomas and meningiomas. Glial cells are the main source of tumors, which can be caused inter alia by the sweetener in the brain. On the one hand the action of astrocytes during aspartame poisoning may be advantageous for neuro-protection while on the other it may intensify the destruction of neurons. The role of the glia in

  11. Water-compatible 'aspartame'-imprinted polymer grafted on silica surface for selective recognition in aqueous solution.

    PubMed

    Singh, Meenakshi; Kumar, Abhishek; Tarannum, Nazia

    2013-05-01

    Molecularly imprinted polymers selective for aspartame have been prepared using N-[2-ammonium-ethyl-piperazinium) maleimidopropane sulfonate copolymer bearing zwitterionic centres along the backbone via a surface-confined grafting procedure. Aspartame, a dipeptide, is commonly used as an artificial sweetener. Polymerisation on the surface was propagated by means of Michael addition reaction on amino-grafted silica surface. Electrostatic interactions along with complementary H-bonding and other hydrophobic interactions inducing additional synergetic effect between the template (aspartame) and the imprinted surface led to the formation of imprinted sites. The MIP was able to selectively and specifically take up aspartame from aqueous solution and certain pharmaceutical samples quantitatively. Hence, a facile, specific and selective technique using surface-grafted specific molecular contours developed for specific and selective uptake of aspartame in the presence of various interferrants, in different kinds of matrices is presented.

  12. Increasing brain tumor rates: is there a link to aspartame?

    PubMed

    Olney, J W; Farber, N B; Spitznagel, E; Robins, L N

    1996-11-01

    In the past two decades brain tumor rates have risen in several industrialized countries, including the United States. During this time, brain tumor data have been gathered by the National Cancer Institute from catchment areas representing 10% of the United States population. In the present study, we analyzed these data from 1975 to 1992 and found that the brain tumor increases in the United States occurred in two distinct phases, an early modest increase that may primarily reflect improved diagnostic technology, and a more recent sustained increase in the incidence and shift toward greater malignancy that must be explained by some other factor(s). Compared to other environmental factors putatively linked to brain tumors, the artificial sweetener aspartame is a promising candidate to explain the recent increase in incidence and degree of malignancy of brain tumors. Evidence potentially implicating aspartame includes an early animal study revealing an exceedingly high incidence of brain tumors in aspartame-fed rats compared to no brain tumors in concurrent controls, the recent finding that the aspartame molecule has mutagenic potential, and the close temporal association (aspartame was introduced into US food and beverage markets several years prior to the sharp increase in brain tumor incidence and malignancy). We conclude that there is need for reassessing the carcinogenic potential of aspartame.

  13. Possible neurologic effects of aspartame, a widely used food additive.

    PubMed

    Maher, T J; Wurtman, R J

    1987-11-01

    The artificial sweetener aspartame (L-aspartyl-L-phenylalanyl-methyl ester), is consumed, primarily in beverages, by a very large number of Americans, causing significant elevations in plasma and, probably, brain phenylalanine levels. Anecdotal reports suggest that some people suffer neurologic or behavioral reactions in association with aspartame consumption. Since phenylalanine can be neurotoxic and can affect the synthesis of inhibitory monoamine neurotransmitters, the phenylalanine in aspartame could conceiveably mediate neurologic effects. If mice are given aspartame in doses that elevate plasma phenylalanine levels more than those of tyrosine (which probably occurs after any aspartame dose in humans), the frequency of seizures following the administration of an epileptogenic drug, pentylenetetrazole, is enhanced. This effect is simulated by equimolar phenylalanine and blocked by concurrent administration of valine, which blocks phenylalanine's entry into the brain. Aspartame also potentiates the induction of seizures by inhaled fluorothyl or by electroconvulsive shock. Perhaps regulations concerning the sale of food additives should be modified to require the reporting of adverse reactions and the continuing conduct of mandated safety research.

  14. Evaluating the environmental impact of artificial sweeteners: a study of their distributions, photodegradation and toxicities.

    PubMed

    Sang, Ziye; Jiang, Yanan; Tsoi, Yeuk-Ki; Leung, Kelvin Sze-Yin

    2014-04-01

    While having a long tradition as safe food additives, artificial sweeteners are a newly recognized class of environmental contaminants due to their extreme persistence and ubiquitous occurrence in various aquatic ecosystems. Resistant to wastewater treatment processes, they are continuously introduced into the water environments. To date however, their environmental behavior, fate as well as long term ecotoxicological contributions in our water resources still remain largely unknown. As a first step in the comprehensive study of artificial sweeteners, this work elucidates the geographical/seasonal/hydrological interactions of acesulfame, cyclamate, saccharin and sucralose in an open coast system at an estuarine/marine junction. Higher occurrence of acesulfame (seasonal average: 0.22 μg L(-1)) and sucralose (0.05 μg L(-1)) was found in summer while saccharin (0.11  μg L(-1)) and cyclamate (0.10 μg L(-1)) were predominantly detected in winter. Seasonal observations of the four sweeteners suggest strong connections with the variable chemical resistance among different sweeteners. Our photodegradation investigation further projected the potential impact of persistent acesulfame and sucralose compounds under prolonged exposure to intensive solar irradiation. Real-time observation by UPLC-ESI/MS of the degradation profile in both sweeteners illustrated that formation of new photo by-products under prolonged UV irradiation is highly viable. Interestingly, two groups of kinetically behaved photodegradates were identified for acesulfame, one of which was at least six times more persistent than the parent compound. For the first time, acute toxicity for the degradates of both sweeteners were arbitrarily measured, revealing photo-enhancement factors of 575 and 17.1 for acesulfame and sucralose, respectively. Direct comparison of photodegradation results suggests that the phototoxicity of acesulfame degradation products may impact aquatic ecosystems. In an attempt

  15. Evaluating the environmental impact of artificial sweeteners: a study of their distributions, photodegradation and toxicities.

    PubMed

    Sang, Ziye; Jiang, Yanan; Tsoi, Yeuk-Ki; Leung, Kelvin Sze-Yin

    2014-04-01

    While having a long tradition as safe food additives, artificial sweeteners are a newly recognized class of environmental contaminants due to their extreme persistence and ubiquitous occurrence in various aquatic ecosystems. Resistant to wastewater treatment processes, they are continuously introduced into the water environments. To date however, their environmental behavior, fate as well as long term ecotoxicological contributions in our water resources still remain largely unknown. As a first step in the comprehensive study of artificial sweeteners, this work elucidates the geographical/seasonal/hydrological interactions of acesulfame, cyclamate, saccharin and sucralose in an open coast system at an estuarine/marine junction. Higher occurrence of acesulfame (seasonal average: 0.22 μg L(-1)) and sucralose (0.05 μg L(-1)) was found in summer while saccharin (0.11  μg L(-1)) and cyclamate (0.10 μg L(-1)) were predominantly detected in winter. Seasonal observations of the four sweeteners suggest strong connections with the variable chemical resistance among different sweeteners. Our photodegradation investigation further projected the potential impact of persistent acesulfame and sucralose compounds under prolonged exposure to intensive solar irradiation. Real-time observation by UPLC-ESI/MS of the degradation profile in both sweeteners illustrated that formation of new photo by-products under prolonged UV irradiation is highly viable. Interestingly, two groups of kinetically behaved photodegradates were identified for acesulfame, one of which was at least six times more persistent than the parent compound. For the first time, acute toxicity for the degradates of both sweeteners were arbitrarily measured, revealing photo-enhancement factors of 575 and 17.1 for acesulfame and sucralose, respectively. Direct comparison of photodegradation results suggests that the phototoxicity of acesulfame degradation products may impact aquatic ecosystems. In an attempt

  16. Investigation of role of aspartame on apoptosis process in HeLa cells -->.

    PubMed

    Pandurangan, Muthuraman; Enkhtaivan, Gansukh; Mistry, Bhupendra; Chandrasekaran, Murugesan; Noorzai, Rafi; Kim, Doo Hwan

    2016-07-01

    Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. The study reports that consumption of aspartame containing product could lead to cancer. However, the effect of aspartame on apoptosis process in cancer is not yet understood clearly. HeLa cells were exposed to different concentrations (0.01-0.05 mg/ml) of aspartame for 48 h. Cytotoxicity of aspartame on cancer cells was determined by SRB assay. The result indicates no significant changes on cell viability. Aspartame suppresses apoptosis process in cancer cells by down-regulation of mRNA expression of tumor suppressor gene p53, and pro-apoptotic gene bax. It up-regulates anti-apoptotic gene bcl-2 mRNA expression. In addition, Ki 67 and PCNA mRNA, and protein expressions were determined. Taking all these together, we conclude that aspartame may be a potent substance to slow-down the apoptosis process in HeLa cells. Further works are ongoing to understand the biochemical and molecular mechanism of aspartame in cancer cells. PMID:27298583

  17. Investigation of role of aspartame on apoptosis process in HeLa cells -->.

    PubMed

    Pandurangan, Muthuraman; Enkhtaivan, Gansukh; Mistry, Bhupendra; Chandrasekaran, Murugesan; Noorzai, Rafi; Kim, Doo Hwan

    2016-07-01

    Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. The study reports that consumption of aspartame containing product could lead to cancer. However, the effect of aspartame on apoptosis process in cancer is not yet understood clearly. HeLa cells were exposed to different concentrations (0.01-0.05 mg/ml) of aspartame for 48 h. Cytotoxicity of aspartame on cancer cells was determined by SRB assay. The result indicates no significant changes on cell viability. Aspartame suppresses apoptosis process in cancer cells by down-regulation of mRNA expression of tumor suppressor gene p53, and pro-apoptotic gene bax. It up-regulates anti-apoptotic gene bcl-2 mRNA expression. In addition, Ki 67 and PCNA mRNA, and protein expressions were determined. Taking all these together, we conclude that aspartame may be a potent substance to slow-down the apoptosis process in HeLa cells. Further works are ongoing to understand the biochemical and molecular mechanism of aspartame in cancer cells.

  18. Acute effects of aspartame on systolic blood pressure in spontaneously hypertensive rats.

    PubMed

    Kiritsy, P J; Maher, T J

    1986-01-01

    Exogenous tyrosine lowers blood pressure in spontaneously hypertensive rats (SHR). The artificial sweetener aspartame also elevates blood and brain tyrosine levels in rats by being hydrolyzed to phenylalanine, which is then rapidly hydroxylated to tyrosine in the liver. Hence we tested the ability of aspartame; its hydrolytic products phenylalanine, aspartic acid and methanol; and of tyrosine itself to lower blood pressure in SHR. For one week prior to experimentation rats were acclimated to the indirect blood pressure measurement technique; on the day of an experiment they received I.P. injections (mg/kg) of aspartame (12.5-200), tyrosine (25-200) or phenylalanine (100-200), or of aspartic acid or methanol in the doses theoretically contained within 200 mg/kg aspartame. Animals receiving 50, 100 or 200 mg/kg of aspartame exhibited maximum falls in blood pressure of 17.3, 24.2 and 19.3 mmHg, respectively. All changes were significant, as determined by ANOVA and the Newman-Keuls test (p less than 0.05). Tyrosine or phenylalanine also lowered blood pressure, but aspartic acid or methanol produced no significant effects. Co-administration of aspartame with valine, a large neutral amino acid that competes with phenylalanine or tyrosine for brain uptake, attenuated aspartame's hypotensive effect. These observations suggest that the neurochemical changes produced by aspartame lead to predicted tyrosine-induced changes in blood pressure.

  19. Construction of hybrid peptide synthetases for the production of alpha-l-aspartyl-l-phenylalanine, a precursor for the high-intensity sweetener aspartame.

    PubMed

    Duerfahrt, Thomas; Doekel, Sascha; Sonke, Theo; Quaedflieg, Peter J L M; Marahiel, Mohamed A

    2003-11-01

    Microorganisms produce a large number of pharmacologically and biotechnologically important peptides by using nonribosomal peptide synthetases (NRPSs). Due to their modular arrangement and their domain organization NRPSs are particularly suitable for engineering recombinant proteins for the production of novel peptides with interesting properties. In order to compare different strategies of domain assembling and module fusions we focused on the selective construction of a set of peptide synthetases that catalyze the formation of the dipeptide alpha-l-aspartyl-l-phenylalanine (Asp-Phe), the precursor of the high-intensity sweetener alpha-l-aspartyl-l-phenylalanine methyl ester (aspartame). The de novo design of six different Asp-Phe synthetases was achieved by fusion of Asp and Phe activating modules comprising adenylation, peptidyl carrier protein and condensation domains. Product release was ensured by a C-terminally fused thioesterase domains and quantified by HPLC/MS analysis. Significant differences of enzyme activity caused by the fusion strategies were observed. Two forms of the Asp-Phe dipeptide were detected, the expected alpha-Asp-Phe and the by-product beta-Asp-Phe. Dependent on the turnover rates ranging from 0.01-0.7 min-1, the amount of alpha-Asp-Phe was between 75 and 100% of overall product, indicating a direct correlation between the turnover numbers and the ratios of alpha-Asp-Phe to beta-Asp-Phe. Taken together these results provide useful guidelines for the rational construction of hybrid peptide synthetases.

  20. The effect of non-nutritive sweeteners on body weight in rats.

    PubMed

    Porikos, K P; Koopmans, H S

    1988-01-01

    Artificial sweeteners are used to provide a sweet taste to a food while removing the calories associated with sugar. The importance of non-nutritive sweeteners (NNS) for the control of body weight has never been proved. In this long-term study, 81 rats fed ad libitum on chow and water were given either an 11% sucrose solution, a solution artificially sweetened with saccharin and aspartame or served as controls. Over an 8-week period, the sucrose rats gained considerable weight while the NNS rats showed the same weight gain as controls. When the sweetened solutions were switched, obese sucrose rats lost weight during the next 8 weeks while rats previously on NNS gained weight rapidly. The results show that substitution of artificial sweeteners for sugars prevents weight gain and promotes weight loss in rats.

  1. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction

    PubMed Central

    Imamura, Fumiaki; O'Connor, Laura; Ye, Zheng; Mursu, Jaakko; Hayashino, Yasuaki; Bhupathiraju, Shilpa N; Forouhi, Nita G

    2016-01-01

    Objectives To examine the prospective associations between consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice with type 2 diabetes before and after adjustment for adiposity, and to estimate the population attributable fraction for type 2 diabetes from consumption of sugar sweetened beverages in the United States and United Kingdom. Design Systematic review and meta-analysis. Data sources and eligibility PubMed, Embase, Ovid, and Web of Knowledge for prospective studies of adults without diabetes, published until February 2014. The population attributable fraction was estimated in national surveys in the USA, 2009–10 (n=4729 representing 189.1 million adults without diabetes) and the UK, 2008–12 (n=1932 representing 44.7 million). Synthesis methods Random effects meta-analysis and survey analysis for population attributable fraction associated with consumption of sugar sweetened beverages. Results Prespecified information was extracted from 17 cohorts (38 253 cases/10 126 754 person years). Higher consumption of sugar sweetened beverages was associated with a greater incidence of type 2 diabetes, by 18% per one serving/day (95% confidence interval 9% to 28%, I2 for heterogeneity=89%) and 13% (6% to 21%, I2=79%) before and after adjustment for adiposity; for artificially sweetened beverages, 25% (18% to 33%, I2=70%) and 8% (2% to 15%, I2=64%); and for fruit juice, 5% (−1% to 11%, I2=58%) and 7% (1% to 14%, I2=51%). Potential sources of heterogeneity or bias were not evident for sugar sweetened beverages. For artificially sweetened beverages, publication bias and residual confounding were indicated. For fruit juice the finding was non-significant in studies ascertaining type 2 diabetes objectively (P for heterogeneity=0.008). Under specified assumptions for population attributable fraction, of 20.9 million events of type 2 diabetes predicted to occur over 10 years in the USA (absolute event rate 11.0%), 1.8 million

  2. Subchronic effects of ochratoxin A on young adult rat brain and partial prevention by aspartame, a sweetener.

    PubMed

    Belmadani, A; Tramu, G; Betbeder, A M; Creppy, E E

    1998-07-01

    1. Ochratoxin A (OTA) is a mycotoxin produced by several fungi, especially Aspergillus and Penicillium species. Many food and foodstuffs can be contaminated by ochratoxin A, which is consequently found in blood of animals and humans. 2. The distribution into the brain of young adult rats fed OTA for 1 to 6 weeks and some consequences have been investigated in the present study. 3. Our results on rats given OTA (289 microg/kg/48 h) indicated that OTA accumulated in the whole brain as function of time according to a regression curve, Y=-8.723 a+16.72 with a correlation coefficient of r=0.989, where Y-axis is the OTA concentration in ng/g of brain and X-axis is the duration of the treatment in weeks. The brain OTA contents was 11.95 +/- 2.2, 23.89 +/- 4.4, 39.9 +/- 4.5, 50.3 +/- 7.3, 78.8 +/- 6.3, 94 +/- 16 ng/g of brain in the mycotoxin-treated animals for respectively 1, 2, 3, 4, 5 and 6-weeks treatment. OTA induced modifications of free amino-acid concentrations in the brain, mainly, Tyrosine (Tyr) and phenylalanine (Phe). Tyr decreased significantly as compared to control (p < 0.05). Phe increased significantly as compared to control (p < 0.05). 4. Aspartame, (25 mg/kg/48 h) a structural analogue of OTA largely modified the distribution and prevented the accumulation of OTA in the brain since the respective brain OTA contents decreased respectively to 9.6 +/- 7.9, 19.2 +/- 3.0, 26.8 +/- 4.2, 19.7 +/- 1.9, 13.7 /- 5.6 and 11.0 +/- 6.0 ng/g of tissue, for the same duration of treatment. It also prevented the modifications of Tyr and Phe levels. 5. The histological investigations showed several necrotic cells with pyknotic nucleus, detected in OTA treated animals with higher frequency as compared to the controls and Aspartame treated ones. Aspartame appeared to significantly prevent this nuclear effect as well, the meaning of which is discussed.

  3. Modified apolipoprotein (apo) A-I by artificial sweetener causes severe premature cellular senescence and atherosclerosis with impairment of functional and structural properties of apoA-I in lipid-free and lipid-bound state.

    PubMed

    Jang, Wookju; Jeoung, Nam Ho; Cho, Kyung-Hyun

    2011-05-01

    Long-term consumption of artificial sweeteners (AS) has been the recent focus of safety concerns. However, the potential risk of the AS in cardiovascular disease and lipoprotein metabolism has not been investigated sufficiently. We compared the influence of AS (aspartame, acesulfame K, and saccharin) and fructose in terms of functional and structural correlations of apolipoprotein (apo) A-I and high-density lipoproteins (HDL), which have atheroprotective effects. Long-term treatment of apoA-I with the sweetener at physiological concentration (3 mM for 168 h) resulted in loss of antioxidant and phospholipid binding activities with modification of secondary structure. The AS treated apoA-I exhibited proteolytic cleavage to produce 26 kDa-fragment. They showed pro-atherogenic properties in acetylated LDL phagocytosis of macrophages. Each sweetener alone or sweetener-treated apoA-I caused accelerated senescence in human dermal fibroblasts. These results suggest that long-term consumption of AS might accelerate atherosclerosis and senescence via impairment of function and structure of apoA-I and HDL.

  4. Determination of aspartame in beverages using an alcohol oxidase enzyme electrode.

    PubMed

    Smith, V J; Green, R A; Hopkins, T R

    1989-01-01

    A new method for the determination of the artificial sweetener aspartame is described. alpha-Chymotrypsin is used to cleave the methyl ester group of aspartame, producing methanol hydrolytically. The methanol is detected using an electrode which is constructed by physically trapping yeast alcohol oxidase enzyme at the tip of a dissolved oxygen electrode. The decrease in oxygen concentration, which occurs as methanol is enzymatically oxidized to formaldehyde, is measured amperometrically. Aspartame levels in diet soft drinks as determined by the proposed method and by liquid chromatography are in excellent agreement. The relative standard deviation of the measurements is 0.83%. The methanol present in diet cola as a result of aspartame degradation can also be measured by using the electrode without alpha-chymotrypsin.

  5. Artificial sweeteners as waste water markers in a shallow unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo

    2013-04-01

    One key factor in groundwater quality management is the knowledge of flow paths and recharge. In coupled ground- and surface water systems the understanding of infiltration processes is therefore of paramount importance. Recent studies show that artificial sweeteners - which are used as sugar substitutes in food and beverages - are suitable tracers for domestic wastewater in the aquatic environment. As most rivers receive sewage discharges, artificial sweeteners might be used for tracking surface waters in groundwater. In this study artificial sweeteners are used in combination with conventional tracers (inert anions Cl-, SO42-, stable water isotopes δ18O, δ2H) to identify river water infiltration and the influence of waste water on a shallow unconfined aquifer used for drinking water production. The investigation area is situated in a mesoscale alpine head water catchment. The alluvial aquifer consists of quaternary gravel deposits and is characterized by high hydraulic permeability (kfmax 5 x 10-2 ms-1), high flow velocities (vmax 250 md-1) and a considerable productivity (2,5 m3s-1). A losing stream follows the aquifer in close proximity and is susceptible to infiltrate substantial volumes of water into the alluvial sediments. Water sampling campaigns in March and July 2012 confirmed the occurrence of artificial sweeteners (Acesulfam ACE, Sucralose SUC, Saccharin SAC and Cyclamat CYC) at the investigated site. The local sewage treatment plant was identified as point source of artificial sweeteners in the river water, with ACE concentrations up to 0,6 μgL-1. ACE concentrations in groundwater where approximately of one order of magnitude lower: ACE was present in 33 out of 40 sampled groundwater wells with concentrations up to 0,07 μgL-1, thus indicating considerable influence of sewage water loaded surface water throughout the aquifer. Elevated concentrations of ACE and SAC in single observation wells denote other sources of locally limited contamination

  6. Comparison of hydrophilic interaction and reversed phase liquid chromatography coupled with tandem mass spectrometry for the determination of eight artificial sweeteners and common steviol glycosides in popular beverages.

    PubMed

    Kubica, Paweł; Namieśnik, Jacek; Wasik, Andrzej

    2016-08-01

    Hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass spectrometry (MS/MS) was used to separate artificial and natural sweeteners approved for use in European Union (EU). Among three tested HILIC columns (BlueOrchid PAL-HILIC, Ascentis Express Si and Acclaim™ Trinity™ P2) the last one was selected for the development of HILIC method due to the best results obtained with it. Early eluting and coeluting compounds in HILIC (acesulfame-K, saccharin, cyclamate, sucralose and aspartame) were successfully separated by the HILIC-based approach for the first time. The developed HILIC method allows for determination of all high potency sweeteners in one analytical run. The calibration curves for all analytes had good linearity within the tested ranges. The limits of detection and quantitation were in the range 0.81-3.30ng/mL and 2.32-9.89ng/mL, respectively. The obtained recoveries used for trueness and precision estimation were from 98.6% to 106.2% with standard deviation less than 4.1%. Sample preparation was reduced to a necessary minimum and contained only proper dilution and centrifugation. More than twenty samples of beverages were analyzed with the developed HILIC method. Finally, the chromatographic parameters of peaks (reduced retention time, width at baseline, width at 50% of peak height, tailing factor and efficiency) obtained in HILIC mode and in RPLC mode were compared. Developed HILIC method along with RPLC method can be applied for rapid evaluation of sweeteners' content, quality and safety control. PMID:26782293

  7. Comparison of hydrophilic interaction and reversed phase liquid chromatography coupled with tandem mass spectrometry for the determination of eight artificial sweeteners and common steviol glycosides in popular beverages.

    PubMed

    Kubica, Paweł; Namieśnik, Jacek; Wasik, Andrzej

    2016-08-01

    Hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass spectrometry (MS/MS) was used to separate artificial and natural sweeteners approved for use in European Union (EU). Among three tested HILIC columns (BlueOrchid PAL-HILIC, Ascentis Express Si and Acclaim™ Trinity™ P2) the last one was selected for the development of HILIC method due to the best results obtained with it. Early eluting and coeluting compounds in HILIC (acesulfame-K, saccharin, cyclamate, sucralose and aspartame) were successfully separated by the HILIC-based approach for the first time. The developed HILIC method allows for determination of all high potency sweeteners in one analytical run. The calibration curves for all analytes had good linearity within the tested ranges. The limits of detection and quantitation were in the range 0.81-3.30ng/mL and 2.32-9.89ng/mL, respectively. The obtained recoveries used for trueness and precision estimation were from 98.6% to 106.2% with standard deviation less than 4.1%. Sample preparation was reduced to a necessary minimum and contained only proper dilution and centrifugation. More than twenty samples of beverages were analyzed with the developed HILIC method. Finally, the chromatographic parameters of peaks (reduced retention time, width at baseline, width at 50% of peak height, tailing factor and efficiency) obtained in HILIC mode and in RPLC mode were compared. Developed HILIC method along with RPLC method can be applied for rapid evaluation of sweeteners' content, quality and safety control.

  8. Aspartame ingestion increases urinary calcium, but not oxalate excretion, in healthy subjects.

    PubMed

    Nguyen, U N; Dumoulin, G; Henriet, M T; Regnard, J

    1998-01-01

    Aspartame is the artificial sweetener most extensively used as a substitute for glucose or sucrose in the food industry, particularly in soft drinks. As glucose ingestion increases calciuria and oxaluria, the two main determinants of urinary calcium-oxalate saturation, we considered it worthwhile to determine whether aspartame ingestion also affects calcium-oxalate metabolism. Our study compares the effects of the ingestion of similarly sweet doses of aspartame (250 mg) and glucose (75 g) on calcium and oxalate metabolisms of seven healthy subjects. Urinary calcium excretion increased after the intake of both aspartame (+86%; P < 0.01) and glucose (+124%; P < 0.01). This may be due to the rise in calcemia observed after both aspartame (+2.2%; P < 0.05) and glucose ingestion (+1.8%; P < 0.05). The increased calcemia may be linked to the decrease in phosphatemia that occurred after both aspartame (P < 0.01) and glucose (P < 0.01) load. Aspartame did not alter glycemia or insulinemia, whereas glucose intake caused striking increases in both glycemia (+59%; P < 0.001) and insulinemia (+869%; P < 0.01). Although insulin was considered the main calciuria-induced factor after glucose load, it is unlikely that this mechanism played a role with aspartame. Urinary oxalate excretion did not change after aspartame, whereas it increased (+27%; P < 0.05) after glucose load. Thus, as aspartame induced a similar increase in calciuria as did glucose but, conversely, no change in oxaluria, substituting glucose by aspartame in soft drinks may appear to be of some potential benefit.

  9. What every dentist should know about artificial sweeteners and their effects.

    PubMed

    Starr, Zachary Aaron; Porter, Judith A; Bashirelahi, Nasir

    2015-01-01

    Artificial sweeteners are a ubiquitous commodity on the market. The idea that people can consume a sweet food or beverage with "zero" calories seems too good to be true, and perhaps it is. The longevity and abundance of these products on the market necessitate the study of their mechanisms and their relationships to health and disease, including possible links to obesity, cardiovascular disease, and diabetes. PMID:25945759

  10. Artificial Sweeteners in a Large Canadian River Reflect Human Consumption in the Watershed

    PubMed Central

    Spoelstra, John; Schiff, Sherry L.; Brown, Susan J.

    2013-01-01

    Artificial sweeteners have been widely incorporated in human food products for aid in weight loss regimes, dental health protection and dietary control of diabetes. Some of these widely used compounds can pass non-degraded through wastewater treatment systems and are subsequently discharged to groundwater and surface waters. Measurements of artificial sweeteners in rivers used for drinking water production are scarce. In order to determine the riverine concentrations of artificial sweeteners and their usefulness as a tracer of wastewater at the scale of an entire watershed, we analyzed samples from 23 sites along the entire length of the Grand River, a large river in Southern Ontario, Canada, that is impacted by agricultural activities and urban centres. Municipal water from household taps was also sampled from several cities within the Grand River Watershed. Cyclamate, saccharin, sucralose, and acesulfame were found in elevated concentrations despite high rates of biological activity, large daily cycles in dissolved oxygen and shallow river depth. The maximum concentrations that we measured for sucralose (21 µg/L), cyclamate (0.88 µg/L), and saccharin (7.2 µg/L) are the highest reported concentrations of these compounds in surface waters to date anywhere in the world. Acesulfame persists at concentrations that are up to several orders of magnitude above the detection limit over a distance of 300 km and it behaves conservatively in the river, recording the wastewater contribution from the cumulative population in the basin. Acesulfame is a reliable wastewater effluent tracer in rivers. Furthermore, it can be used to assess rates of nutrient assimilation, track wastewater plume dilution, separate human and animal waste contributions and determine the relative persistence of emerging contaminants in impacted watersheds where multiple sources confound the usefulness of other tracers. The effects of artificial sweeteners on aquatic biota in rivers and in the

  11. Artificial Sweeteners Stimulate Adipogenesis and Suppress Lipolysis Independently of Sweet Taste Receptors*

    PubMed Central

    Simon, Becky R.; Parlee, Sebastian D.; Learman, Brian S.; Mori, Hiroyuki; Scheller, Erica L.; Cawthorn, William P.; Ning, Xiaomin; Gallagher, Katherine; Tyrberg, Björn; Assadi-Porter, Fariba M.; Evans, Charles R.; MacDougald, Ormond A.

    2013-01-01

    G protein-coupled receptors mediate responses to a myriad of ligands, some of which regulate adipocyte differentiation and metabolism. The sweet taste receptors T1R2 and T1R3 are G protein-coupled receptors that function as carbohydrate sensors in taste buds, gut, and pancreas. Here we report that sweet taste receptors T1R2 and T1R3 are expressed throughout adipogenesis and in adipose tissues. Treatment of mouse and human precursor cells with artificial sweeteners, saccharin and acesulfame potassium, enhanced adipogenesis. Saccharin treatment of 3T3-L1 cells and primary mesenchymal stem cells rapidly stimulated phosphorylation of Akt and downstream targets with functions in adipogenesis such as cAMP-response element-binding protein and FOXO1; however, increased expression of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α was not observed until relatively late in differentiation. Saccharin-stimulated Akt phosphorylation at Thr-308 occurred within 5 min, was phosphatidylinositol 3-kinase-dependent, and occurred in the presence of high concentrations of insulin and dexamethasone; phosphorylation of Ser-473 occurred more gradually. Surprisingly, neither saccharin-stimulated adipogenesis nor Thr-308 phosphorylation was dependent on expression of T1R2 and/or T1R3, although Ser-473 phosphorylation was impaired in T1R2/T1R3 double knock-out precursors. In mature adipocytes, artificial sweetener treatment suppressed lipolysis even in the presence of forskolin, and lipolytic responses were correlated with phosphorylation of hormone-sensitive lipase. Suppression of lipolysis by saccharin in adipocytes was also independent of T1R2 and T1R3. These results suggest that some artificial sweeteners have previously uncharacterized metabolic effects on adipocyte differentiation and metabolism and that effects of artificial sweeteners on adipose tissue biology may be largely independent of the classical sweet taste receptors, T1R2 and T1R3. PMID

  12. Aspartame: review of safety.

    PubMed

    Butchko, Harriett H; Stargel, W Wayne; Comer, C Phil; Mayhew, Dale A; Benninger, Christian; Blackburn, George L; de Sonneville, Leo M J; Geha, Raif S; Hertelendy, Zsolt; Koestner, Adalbert; Leon, Arthur S; Liepa, George U; McMartin, Kenneth E; Mendenhall, Charles L; Munro, Ian C; Novotny, Edward J; Renwick, Andrew G; Schiffman, Susan S; Schomer, Donald L; Shaywitz, Bennett A; Spiers, Paul A; Tephly, Thomas R; Thomas, John A; Trefz, Friedrich K

    2002-04-01

    Over 20 years have elapsed since aspartame was approved by regulatory agencies as a sweetener and flavor enhancer. The safety of aspartame and its metabolic constituents was established through extensive toxicology studies in laboratory animals, using much greater doses than people could possibly consume. Its safety was further confirmed through studies in several human subpopulations, including healthy infants, children, adolescents, and adults; obese individuals; diabetics; lactating women; and individuals heterozygous (PKUH) for the genetic disease phenylketonuria (PKU) who have a decreased ability to metabolize the essential amino acid, phenylalanine. Several scientific issues continued to be raised after approval, largely as a concern for theoretical toxicity from its metabolic components--the amino acids, aspartate and phenylalanine, and methanol--even though dietary exposure to these components is much greater than from aspartame. Nonetheless, additional research, including evaluations of possible associations between aspartame and headaches, seizures, behavior, cognition, and mood as well as allergic-type reactions and use by potentially sensitive subpopulations, has continued after approval. These findings are reviewed here. The safety testing of aspartame has gone well beyond that required to evaluate the safety of a food additive. When all the research on aspartame, including evaluations in both the premarketing and postmarketing periods, is examined as a whole, it is clear that aspartame is safe, and there are no unresolved questions regarding its safety under conditions of intended use.

  13. 21 CFR 145.131 - Artificially sweetened canned figs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... lieu of a packing medium specified in § 145.130(c), the packing medium used is water artificially... with pectin and may contain any mixture of any edible organic salt or salts and any edible organic acid... the statement “thickened with pectin”. When any organic salt or acid or any mixture of two or more...

  14. Associations of Sugar and Artificially Sweetened Soda with Albuminuria and Kidney Function Decline in Women

    PubMed Central

    Curhan, Gary C.

    2011-01-01

    Summary Background and objectives Sugar-sweetened soda is reported to be associated with increased risk for diabetes and albuminuria, but there are currently limited data on how sugar or artificially sweetened soda may be related to kidney function decline. Design, setting, participants, & measurements This study identified 3318 women participating in the Nurses' Health Study with data on soda intake and albuminuria; of these, 3256 also had data on estimated GFR (eGFR) change between 1989 and 2000. Cumulative average beverage intake was derived from the 1984, 1986, 1990, 1994, and 1998 food frequency questionnaires. Serving categories included <1/mo (referent), 1 to 4/mo, 2 to 6/wk, 1 to 1.9/d, and ≥2/d. Microalbuminuria (MA) was considered a urinary albumin-to-creatinine ratio of 25 to 355 μg/mg. For kidney function change, the primary outcome was a ≥30% decline in eGFR over 11 years; rapid eGFR decline defined as ≥3 ml/min per 1.73 m2 per year was also examined. Results Consumption of ≥2 servings per day of artificially sweetened (diet) soda was independently associated with eGFR decline ≥30% (OR 2.02, 95% CI 1.36 to 3.01) and ≥3 ml/min per 1.73 m2 per year (OR 2.20, 95% CI 1.36 to 3.55). No increased risk for eGFR decline was observed for <2 servings per day of diet soda. No associations were noted between diet soda and MA or sugar soda and MA or eGFR decline. Conclusions Consumption of ≥2 servings per day of artificially sweetened soda is associated with a 2-fold increased odds for kidney function decline in women. PMID:20884773

  15. Effect of aspartame on N-methyl-D-aspartate-sensitive L-[3H]glutamate binding sites in rat brain synaptic membranes.

    PubMed

    Pan-Hou, H; Suda, Y; Ohe, Y; Sumi, M; Yoshioka, M

    1990-06-18

    Aspartame (L-aspartyl-L-phenylalanine methyl ester), an artificial low-calorie sweetener, was shown to dose-dependently inhibit L-[3H]glutamate binding to its N-methyl-D-aspartate-specific receptors. L-Aspartic acid, a major endogenous metabolite of aspartame, inhibited the binding more stronger than aspartame, while the other metabolites, L-phenylalanine and methanol, had no effect at the same concentration. Aspartame caused a significant change in the affinities of L-[3H]glutamate binding without altering the Vmax values of the binding, suggesting the inhibition is competitive. These in vitro findings suggested that aspartame may act directly on the N-methyl-D-aspartate-sensitive glutamate recognition sites in the brain synaptic membranes.

  16. Long-term consumption of aspartame and brain antioxidant defense status.

    PubMed

    Abhilash, M; Sauganth Paul, M V; Varghese, Mathews V; Nair, R Harikumaran

    2013-04-01

    The present study investigated the effect of long-term intake of aspartame, a widely used artificial sweetener, on antioxidant defense status in the rat brain. Male Wistar rats weighing 150-175 g were randomly divided into three groups as follows: The first group was given aspartame at a dose of 500 mg/kg body weight (b.w.); the second group was given aspartame at dose of 1,000 mg/kg b.w., respectively, in a total volume of 3 mL of water; and the control rats received 3 mL of distilled water. Oral intubations were done in the morning, daily for 180 days. The concentration of reduced glutathione (GSH) and the activity of glutathione reductase (GR) were significantly reduced in the brain of rats that had received the dose of 1,000 mg/kg b.w. of aspartame, whereas only a significant reduction in GSH concentration was observed in the 500-mg/kg b.w. aspartame-treated group. Histopathological examination revealed mild vascular congestion in the 1,000 mg/kg b.w. group of aspartame-treated rats. The results of this experiment indicate that long-term consumption of aspartame leads to an imbalance in the antioxidant/pro-oxidant status in the brain, mainly through the mechanism involving the glutathione-dependent system.

  17. Effect of sucrose and sweeteners on appetite and energy intake.

    PubMed

    Blundell, J E; Green, S M

    1996-03-01

    The effect of sweetness on appetite control has become important for two reasons. First, the problem of unwanted overconsumption associated with the tendency to gain weight. Second, the desire to lose weight by dieting. Two questions arise: does sweetness (with or without energy) contribute to over-consumption?, and does the replacement of a high energy sweetener (such as sucrose) with an artificial sweetener (such as saccharine or aspartame) lead to weight loss? How do these issues relate to processes involved in weight maintenance?

  18. Direct and indirect cellular effects of aspartame on the brain.

    PubMed

    Humphries, P; Pretorius, E; Naudé, H

    2008-04-01

    The use of the artificial sweetener, aspartame, has long been contemplated and studied by various researchers, and people are concerned about its negative effects. Aspartame is composed of phenylalanine (50%), aspartic acid (40%) and methanol (10%). Phenylalanine plays an important role in neurotransmitter regulation, whereas aspartic acid is also thought to play a role as an excitatory neurotransmitter in the central nervous system. Glutamate, asparagines and glutamine are formed from their precursor, aspartic acid. Methanol, which forms 10% of the broken down product, is converted in the body to formate, which can either be excreted or can give rise to formaldehyde, diketopiperazine (a carcinogen) and a number of other highly toxic derivatives. Previously, it has been reported that consumption of aspartame could cause neurological and behavioural disturbances in sensitive individuals. Headaches, insomnia and seizures are also some of the neurological effects that have been encountered, and these may be accredited to changes in regional brain concentrations of catecholamines, which include norepinephrine, epinephrine and dopamine. The aim of this study was to discuss the direct and indirect cellular effects of aspartame on the brain, and we propose that excessive aspartame ingestion might be involved in the pathogenesis of certain mental disorders (DSM-IV-TR 2000) and also in compromised learning and emotional functioning.

  19. Conventional drinking water treatment and direct biofiltration for the removal of pharmaceuticals and artificial sweeteners: A pilot-scale approach.

    PubMed

    McKie, Michael J; Andrews, Susan A; Andrews, Robert C

    2016-02-15

    The presence of endocrine disrupting compounds (EDCs), pharmaceutically active compounds (PhACs) and artificial sweeteners are of concern to water providers because they may be incompletely removed by wastewater treatment processes and they pose an unknown risk to consumers due to long-term consumption of low concentrations of these compounds. This study utilized pilot-scale conventional and biological drinking water treatment processes to assess the removal of nine PhACs and EDCs, and two artificial sweeteners. Conventional treatment (coagulation, flocculation, settling, non-biological dual-media filtration) was compared to biofilters with or without the addition of in-line coagulant (0.2-0.8 mg Al(3+)/L; alum or PACl). A combination of biofiltration, with or without in-line alum, and conventional filtration was able to reduce 7 of the 9 PhACs and EDCs by more than 50% from river water while artificial sweeteners were inconsistently removed by conventional treatment or biofiltration. Increasing doses of PACl from 0 to 0.8 mg/L resulted in average removals of PhACs, EDCs increasing from 39 to 70% and artificial sweeteners removal increasing from ~15% to ~35% in lake water. These results suggest that a combination of biological, chemical and physical treatment can be applied to effectively reduce the concentration of EDCs, PhACs, and artificial sweeteners. PMID:26657244

  20. Conventional drinking water treatment and direct biofiltration for the removal of pharmaceuticals and artificial sweeteners: A pilot-scale approach.

    PubMed

    McKie, Michael J; Andrews, Susan A; Andrews, Robert C

    2016-02-15

    The presence of endocrine disrupting compounds (EDCs), pharmaceutically active compounds (PhACs) and artificial sweeteners are of concern to water providers because they may be incompletely removed by wastewater treatment processes and they pose an unknown risk to consumers due to long-term consumption of low concentrations of these compounds. This study utilized pilot-scale conventional and biological drinking water treatment processes to assess the removal of nine PhACs and EDCs, and two artificial sweeteners. Conventional treatment (coagulation, flocculation, settling, non-biological dual-media filtration) was compared to biofilters with or without the addition of in-line coagulant (0.2-0.8 mg Al(3+)/L; alum or PACl). A combination of biofiltration, with or without in-line alum, and conventional filtration was able to reduce 7 of the 9 PhACs and EDCs by more than 50% from river water while artificial sweeteners were inconsistently removed by conventional treatment or biofiltration. Increasing doses of PACl from 0 to 0.8 mg/L resulted in average removals of PhACs, EDCs increasing from 39 to 70% and artificial sweeteners removal increasing from ~15% to ~35% in lake water. These results suggest that a combination of biological, chemical and physical treatment can be applied to effectively reduce the concentration of EDCs, PhACs, and artificial sweeteners.

  1. Aspartame and seizures.

    PubMed

    Jobe, P C; Dailey, J W

    1993-10-01

    It has been hypothesized that the dietary sweetener aspartame (L-aspartyl-L-phenylalanine methyl ester) might promote seizures and this hypothesis has been argued in the published literature. The current manuscript reviews the biochemical, neurochemical and behavioral experiments that have been carried out in order to assess the hypothesis linking aspartame with seizure promotion. We conclude that convulsive seizures are not caused by orally administered aspartame in rodents or in primates, including humans. Early reports of seizure facilitation by aspartame in several rodent models were not confirmed by later and more careful experimentation. Proconvulsive effects were absent in humans and other mammals with epilepsy and those without epilepsy. Lack of convulsive liability was evident, even when doses many fold higher than those consumed in the human diet, were used in experimental paradigms. Studies of aspartame in absence seizures are not as complete as those in convulsive seizures, but available evidence in humans does not document an association between absence seizure incidence and aspartame usage.

  2. Dietary sugar and artificial sweetener intake and chronic kidney disease: a review.

    PubMed

    Karalius, Vytas P; Shoham, David A

    2013-03-01

    Sugar consumption, especially in the form of fructose, has been hypothesized to cause kidney disease. This review provides an overview of the epidemiologic evidence that sugar consumption increases CKD risk. Research supports a causal role of sugar in several kidney disease risk factors, including increasing serum uric acid levels, diabetes, and obesity. Sugar may also harm the kidney via other mechanisms. There is no evidence that sucrose is any safer for the kidney than high fructose corn syrup (HFCS) because both are similar in composition. To date, 5 epidemiologic studies have directly evaluated the relationship between sugar consumption (in the form of sugar-sweetened beverages) and CKD. Although most studies suggest that the risk of CKD is elevated among consumers of sugar-sweetened beverages, only 2 studies report statistically significant associations. Three studies have also examined diet soda consumption, with two reporting positive and significant associations. Confounding by unmeasured lifestyle factors may play a role in the positive results whereas poor measurement of sugar and artificial sweetener intake could explain null results. Nevertheless, the hypothesis that sugar causes kidney disease remains plausible, and alternative research designs may be needed. PMID:23439375

  3. Cytotoxic effects of methanol, formaldehyde, and formate on dissociated rat thymocytes: a possibility of aspartame toxicity.

    PubMed

    Oyama, Y; Sakai, H; Arata, T; Okano, Y; Akaike, N; Sakai, K; Noda, K

    2002-01-01

    Aspartame is a widely used artificial sweetener added to many soft beverages and its usage is increasing in health-conscious societies. Upon ingestion, this artificial sweetener produces methanol as a metabolite. In order to examine the possibility of aspartame toxicity, the effects of methanol and its metabolites (formaldehyde and formate) on dissociated rat thymocytes were studied by flow cytometry. While methanol and formate did not affect cell viability in the physiological pH range, formaldehyde at 1-3 mmol/L started to induce cell death. Further increase in formaldehyde concentration produced a dose-dependent decrease in cell viability. Formaldehyde at 1 mmol/L or more greatly reduced cellular content of glutathione, possibly increasing cell vulnerability to oxidative stress. Furthermore, formaldehyde at 3 mmol/L or more significantly increased intracellular concentration of Ca2+ ([Ca2+]i) in a dose-dependent manner. Threshold concentrations of formaldehyde, a metabolite of methanol, that affected the [Ca2+]i and cellular glutathione content were slightly higher than the blood concentrations of methanol previously reported in subjects administered abuse doses of aspartame. It is suggested that aspartame at abuse doses is harmless to humans.

  4. Aspartame and Risk of Cancer: A Meta-analytic Review.

    PubMed

    Mallikarjun, Sreekanth; Sieburth, Rebecca McNeill

    2015-01-01

    Aspartame (APM) is the most commonly used artificial sweetener and flavor enhancer in the world. There is a rise in concern that APM is carcinogenic due to a variation in the findings of the previous APM carcinogenic bioassays. This article conducts a meta-analytic review of all previous APM carcinogenic bioassays on rodents that were conducted before 31 December 2012. The search yielded 10 original APM carcinogenic bioassays on rodents. The aggregate effect sizes suggest that APM consumption has no significant carcinogenic effect in rodents.

  5. Effect of long term intake of aspartame on antioxidant defense status in liver.

    PubMed

    Abhilash, M; Paul, M V Sauganth; Varghese, Mathews V; Nair, R Harikumaran

    2011-06-01

    The present study evaluates the effect of long term intake of aspartame, the artificial sweetener, on liver antioxidant system and hepatocellular injury in animal model. Eighteen adult male Wistar rats, weighing 150-175 g, were randomly divided into three groups as follows: first group was given aspartame dissolved in water in a dose of 500 mg/kg b.wt.; the second group was given a dose of 1000 mg/kg b.wt.; and controls were given water freely. Rats that had received aspartame (1000 mg/kg b.wt.) in the drinking water for 180 days showed a significant increase in activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and γ-glutamyl transferase (GGT). The concentration of reduced glutathione (GSH) and the activity of glutathione peroxidase (GPx), and glutathione reductase (GR) were significantly reduced in the liver of rats that had received aspartame (1000 mg/kg b.wt.). Glutathione was significantly decreased in both the experimental groups. Histopathological examination revealed leukocyte infiltration in aspartame-treated rats (1000 mg/kg b.wt.). It can be concluded from these observations that long term consumption of aspartame leads to hepatocellular injury and alterations in liver antioxidant status mainly through glutathione dependent system.

  6. Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats.

    PubMed

    Iyyaswamy, Ashok; Rathinasamy, Sheeladevi

    2012-09-01

    This study was aimed at investigating the chronic effect of the artificial sweetener aspartame on oxidative stress in brain regions of Wistar strain albino rats. Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposed to investigate whether chronic aspartame (75 mg/kg) administration could release methanol and induce oxidative stress in the rat brain. To mimic the human methanol metabolism, methotrexate (MTX)-treated rats were included to study the aspartame effects. Wistar strain male albino rats were administered with aspartame orally and studied along with controls and MTX-treated controls. The blood methanol level was estimated, the animal was sacrificed and the free radical changes were observed in brain discrete regions by assessing the scavenging enzymes, reduced glutathione, lipid peroxidation (LPO) and protein thiol levels. It was observed that there was a significant increase in LPO levels, superoxide dismutase (SOD) activity, GPx levels and CAT activity with a significant decrease in GSH and protein thiol. Moreover, the increases in some of these enzymes were region specific. Chronic exposure of aspartame resulted in detectable methanol in blood. Methanol per se and its metabolites may be responsible for the generation of oxidative stress in brain regions.

  7. Aspartame as a source of essential phenylalanine for the growth of oral anaerobes.

    PubMed

    Wyss, C

    1993-04-15

    Phenylalanine and aspartic acid requirements were determined for 13 species of oral bacteria using the chemically defined medium OMIZ-W1. None of Actinobacillus actinomycetemcomitans, Bacteroides forsythus, Eikenella corrodens, Selenomonas sputigena, Treponema pectinovorum, T. socranskii, or Wolinella recta required either of these amino acid constituents of aspartame (L-aspartyl-L-phenylalanine methylester). Phenylalanine was essential for the growth of Capnocytophaga gingivalis, Eubacterium timidum, Fusobacterium nucleatum, Porphyromonas gingivalis, T. denticola, and T. vincentii, while aspartic acid was not required. With the exception of E. timidum, all phenylalanine-dependent strains could grow when the free amino acid was replaced by aspartame at concentrations at least 10-fold lower than those used for aspartame as an artificial sweetener.

  8. Adverse reactions to aspartame: double-blind challenge in patients from a vulnerable population.

    PubMed

    Walton, R G; Hudak, R; Green-Waite, R J

    This study was designed to ascertain whether individuals with mood disorders are particularly vulnerable to adverse effects of aspartame. Although the protocol required the recruitment of 40 patients with unipolar depression and a similar number of individuals without a psychiatric history, the project was halted by the Institutional Review Board after a total of 13 individuals had completed the study because of the severity of reactions within the group of patients with a history of depression. In a crossover design, subjects received aspartame 30 mg/kg/day or placebo for 7 days. Despite the small n, there was a significant difference between aspartame and placebo in number and severity of symptoms for patients with a history of depression, whereas for individuals without such a history there was not. We conclude that individuals with mood disorders are particularly sensitive to this artificial sweetener and its use in this population should be discouraged.

  9. Comparing the Effects of Alcohol Mixed with Artificially-Sweetened and Carbohydrate Containing Beverages on Breath Alcohol Concentration

    ERIC Educational Resources Information Center

    Irwin, Christopher; Shum, David; Desbrow, Ben; Leveritt, Michael

    2014-01-01

    This study investigated the impact of alcohol mixed with artificially sweetened or carbohydrate containing beverages on breath alcohol concentration s (BrAC) under various levels of hydration status. Two groups of males participated in 3 experimental trials where alcohol was consumed under three different levels of hydration status. One group…

  10. Behavioral assessment of the toxicity of aspartame.

    PubMed

    Holder, M D; Yirmiya, R

    1989-01-01

    Six experiments with rats assessed the toxicity of aspartame with behavioral measures. The first three experiments used a conditioned taste aversion procedure since taste aversions are typically observed after a taste is followed by a toxin. Thirty min after thirsty rats drank a sweet solution they were intraperitoneally injected (Experiment 1) or intragastrically intubated (Experiment 2) with saline or 176, 352, or 704 mg/kg of aspartame. Relative to rats given saline, rats injected with 704 and 352 mg/kg aspartame showed strong and mild aversions, respectively. Rats injected with 176 mg/kg of aspartame or intubated with any dose of aspartame did not show taste aversions. In Experiment 3, rats voluntarily consumed an aspartame solution sweetened with saccharin for 7 hr each day. Consumption of the taste paired with aspartame was not reduced. When 352 mg/kg aspartame was injected (Experiment 4), but not when intubated (Experiment 5), 5 min prior to access to a running wheel, running was reduced. Wheel running was not affected by the voluntary consumption of aspartame (Experiment 6). The route of administration effect (intraperitoneal vs. intragastric) on behavior corresponded with the amino acid levels in blood plasma (Experiment 7). Aspartate, phenylalanine, tyrosine and glutamate levels increased more after the injection, than the intubation, of aspartame (176 mg/kg). Overall, the results suggest that aspartame may have adverse effects when intraperitoneally injected but not when the route of administration is oral.

  11. Non-caloric artificial sweeteners and the microbiome: findings and challenges.

    PubMed

    Suez, Jotham; Korem, Tal; Zilberman-Schapira, Gili; Segal, Eran; Elinav, Eran

    2015-01-01

    Non-caloric artificial sweeteners (NAS) are common food supplements consumed by millions worldwide as means of combating weight gain and diabetes, by retaining sweet taste without increasing caloric intake. While they are considered safe, there is increasing controversy regarding their potential ability to promote metabolic derangements in some humans. We recently demonstrated that NAS consumption could induce glucose intolerance in mice and distinct human subsets, by functionally altering the gut microbiome. In this commentary, we discuss these findings in the context of previous and recent works demonstrating the effects of NAS on host health and the microbiome, and the challenges and open questions that need to be addressed in understanding the effects of NAS consumption on human health. PMID:25831243

  12. Oxidation of artificial sweetener sucralose by advanced oxidation processes: a review.

    PubMed

    Sharma, Virender K; Oturan, Mehmet; Kim, Hyunook

    2014-01-01

    Sucralose, a chlorinated carbohydrate, has shown its increased use as an artificial sweetener and persistently exists in wastewater treatment plant effluents and aquatic environment. This paper aims to review possible degradation of sucralose and related carbohydrates by biological, electrochemical, chemical, and advanced oxidation processes. Biodegradation of sucralose in waterworks did not occur significantly. Electrochemical oxidation of carbohydrates may be applied to seek degradation of sucralose. The kinetics of the oxidation of sucralose and the related carbohydrates by different oxidative species is compared. Free chlorine, ozone, and ferrate did not show any potential to degrade sucralose in water. Advanced oxidation processes, generating highly strong oxidizing agent hydroxyl radicals ((•)OH), have demonstrated effectiveness in transforming sucralose in water. The mechanism of oxidation of sucralose by (•)OH is briefly discussed. PMID:24687789

  13. Non-caloric artificial sweeteners and the microbiome: findings and challenges

    PubMed Central

    Suez, Jotham; Korem, Tal; Zilberman-Schapira, Gili; Segal, Eran; Elinav, Eran

    2015-01-01

    Non-caloric artificial sweeteners (NAS) are common food supplements consumed by millions worldwide as means of combating weight gain and diabetes, by retaining sweet taste without increasing caloric intake. While they are considered safe, there is increasing controversy regarding their potential ability to promote metabolic derangements in some humans. We recently demonstrated that NAS consumption could induce glucose intolerance in mice and distinct human subsets, by functionally altering the gut microbiome. In this commentary, we discuss these findings in the context of previous and recent works demonstrating the effects of NAS on host health and the microbiome, and the challenges and open questions that need to be addressed in understanding the effects of NAS consumption on human health. PMID:25831243

  14. Oxidation of artificial sweetener sucralose by advanced oxidation processes: a review.

    PubMed

    Sharma, Virender K; Oturan, Mehmet; Kim, Hyunook

    2014-01-01

    Sucralose, a chlorinated carbohydrate, has shown its increased use as an artificial sweetener and persistently exists in wastewater treatment plant effluents and aquatic environment. This paper aims to review possible degradation of sucralose and related carbohydrates by biological, electrochemical, chemical, and advanced oxidation processes. Biodegradation of sucralose in waterworks did not occur significantly. Electrochemical oxidation of carbohydrates may be applied to seek degradation of sucralose. The kinetics of the oxidation of sucralose and the related carbohydrates by different oxidative species is compared. Free chlorine, ozone, and ferrate did not show any potential to degrade sucralose in water. Advanced oxidation processes, generating highly strong oxidizing agent hydroxyl radicals ((•)OH), have demonstrated effectiveness in transforming sucralose in water. The mechanism of oxidation of sucralose by (•)OH is briefly discussed.

  15. Implicit media frames: automated analysis of public debate on artificial sweeteners.

    PubMed

    Hellsten, Iina; Dawson, James; Leydesdorff, Loet

    2010-09-01

    The framing of issues in the mass media plays a crucial role in the public understanding of science and technology. This article contributes to research concerned with the analysis of media frames over time by making an analytical distinction between implicit and explicit media frames, and by introducing an automated method for the analysis of implicit frames. In particular, we apply a semantic maps method to a case study on the newspaper debate about artificial sweeteners, published in the New York Times between 1980 and 2006. Our results show that the analysis of semantic changes enables us to filter out the dynamics of implicit frames, and to detect emerging metaphors in public debates. Theoretically, we discuss the relation between implicit frames in public debates and the codification of meaning and information in scientific discourses, and suggest further avenues for research interested in the automated analysis of frame changes and trends in public debates.

  16. Aspartame use by persons with diabetes.

    PubMed

    Nehrling, J K; Kobe, P; McLane, M P; Olson, R E; Kamath, S; Horwitz, D L

    1985-01-01

    Sixty-two subjects having either insulin-dependent or non-insulin-dependent diabetes completed a randomized, double-blind study comparing effects of aspartame or a placebo on blood glucose control. Twenty-nine subjects consumed 2.7 g aspartame per day for 18 wk, given as aspartame-containing capsules with meals, while 33 subjects took identical appearing placebo capsules. After 18 wk, no changes were seen in fasting or 2-h postprandial blood glucose levels or glycohemoglobin levels in either the aspartame- or placebo-treated groups. Adverse reactions were no more common in the group taking aspartame. We conclude that use of aspartame as a low-calorie sweetener does not adversely affect glycemic control of persons with diabetes.

  17. Effects of aspartame and glucose administration on brain and plasma levels of large neutral amino acids and brain 5-hydroxyindoles.

    PubMed

    Yokogoshi, H; Roberts, C H; Caballero, B; Wurtman, R J

    1984-07-01

    Administration of the artificial sweetener aspartame (L-aspartylphenylalanylmethyl ester; 200 mg/kg) by gavage to rats caused large increments in brain and plasma levels of phenylalanine and its product tyrosine. Glucose administration (3 g/kg, by gavage, a dose sufficient to cause insulin-mediated reductions in plasma levels of the large neutral amino acids leucine, isoleucine, and valine) also elevated brain phenylalanine and tyrosine, and enhanced the increments caused by the aspartame, nearly doubling the rise in brain phenylalanine. Each animal's brain phenylalanine or tyrosine levels were highly correlated (r = 0.97 and 0.99, respectively) with its plasma phenylalanine or tyrosine ratios, affirming that aspartame's effects on the brain amino acids result from the changes it produces in plasma composition. As described previously, glucose consumption increased brain tryptophan levels, and consequently, brain levels of the 5-hydroxyindoles serotonin and 5-hydroxyindoleacetic acid. Aspartame alone had no effect on these compounds but completely blocked the changes in 5-hydroxyindoles caused by glucose. Each animal's brain level of tryptophan (r = 0.89) and 5-hydroxyindoles (r = 0.74) was also significantly correlated with its plasma tryptophan ratio, affirming that the effects of glucose or aspartame on these brain constituents also result from the changes they produce in plasma composition. The aspartame-glucose combination also reduced brain levels of leucine, isoleucine, and valine to a significantly greater extent than aspartame or glucose alone. These observations indicate that high aspartame doses can generate major neurochemical changes in rats, especially when consumed along with carbohydrate-containing foods. However, they should not in any way be interpreted as demonstrating that aspartame significantly affects the human brain.

  18. Aspartame. Review of safety issues. Council on Scientific Affairs.

    PubMed

    1985-07-19

    This report examines the safety issues related to the nutritive sweetener aspartame, including possible toxic effects of aspartame's component amino acids, aspartic acid and phenylalanine, and its major decomposition products, methanol and diketopiperazine, and the potential synergistic effect of aspartame and dietary carbohydrate on brain neurochemicals. Available evidence suggests that consumption of aspartame by normal humans is safe and is not associated with serious adverse health effects. Individuals who need to control their phenylalanine intake should handle aspartame like any other source of phenylalanine.

  19. Ubiquitous Detection of Artificial Sweeteners and Iodinated X-ray Contrast Media in Aquatic Environmental and Wastewater Treatment Plant Samples from Vietnam, The Philippines, and Myanmar.

    PubMed

    Watanabe, Yuta; Bach, Leu Tho; Van Dinh, Pham; Prudente, Maricar; Aguja, Socorro; Phay, Nyunt; Nakata, Haruhiko

    2016-05-01

    Water samples from Vietnam, The Philippines, and Myanmar were analyzed for artificial sweeteners (ASs) and iodinated X-ray contrast media (ICMs). High concentrations (low micrograms per liter) of ASs, including aspartame, saccharin, and sucralose, were found in wastewater treatment plant (WWTP) influents from Vietnam. Three ICMs, iohexol, iopamidol, and iopromide were detected in Vietnamese WWTP influents and effluents, suggesting that these ICMs are frequently used in Vietnam. ASs and ICMs were found in river water from downtown Hanoi at concentrations comparable to or lower than the concentrations in WWTP influents. The ASs and ICMs concentrations in WWTP influents and adjacent surface water significantly correlated (r (2) = 0.99, p < 0.001), suggesting that household wastewater is discharged directly into rivers in Vietnam. Acesulfame was frequently detected in northern Vietnamese groundwater, but the concentrations varied spatially by one order of magnitude even though the sampling points were very close together. This implies that poorly performing domestic septic tanks sporadically leak household wastewater into groundwater. High acesulfame, cyclamate, saccharin, and sucralose concentrations were found in surface water from Manila, The Philippines. The sucralose concentrations were one order of magnitude higher in the Manila samples than in the Vietnamese samples, indicating that more sucralose is used in The Philippines than in Vietnam. Acesulfame and cyclamate were found in surface water from Pathein (rural) and Yangon (urban) in Myanmar, but no ICMs were found in the samples. The ASs concentrations were two-three orders of magnitude lower in the samples from Myanmar than in the samples from Vietnam and The Philippines, suggesting that different amounts of ASs are used in these countries. We believe this is the first report of persistent ASs and ICMs having ubiquitous distributions in economically emerging South Asian countries. PMID:26304512

  20. Ubiquitous Detection of Artificial Sweeteners and Iodinated X-ray Contrast Media in Aquatic Environmental and Wastewater Treatment Plant Samples from Vietnam, The Philippines, and Myanmar.

    PubMed

    Watanabe, Yuta; Bach, Leu Tho; Van Dinh, Pham; Prudente, Maricar; Aguja, Socorro; Phay, Nyunt; Nakata, Haruhiko

    2016-05-01

    Water samples from Vietnam, The Philippines, and Myanmar were analyzed for artificial sweeteners (ASs) and iodinated X-ray contrast media (ICMs). High concentrations (low micrograms per liter) of ASs, including aspartame, saccharin, and sucralose, were found in wastewater treatment plant (WWTP) influents from Vietnam. Three ICMs, iohexol, iopamidol, and iopromide were detected in Vietnamese WWTP influents and effluents, suggesting that these ICMs are frequently used in Vietnam. ASs and ICMs were found in river water from downtown Hanoi at concentrations comparable to or lower than the concentrations in WWTP influents. The ASs and ICMs concentrations in WWTP influents and adjacent surface water significantly correlated (r (2) = 0.99, p < 0.001), suggesting that household wastewater is discharged directly into rivers in Vietnam. Acesulfame was frequently detected in northern Vietnamese groundwater, but the concentrations varied spatially by one order of magnitude even though the sampling points were very close together. This implies that poorly performing domestic septic tanks sporadically leak household wastewater into groundwater. High acesulfame, cyclamate, saccharin, and sucralose concentrations were found in surface water from Manila, The Philippines. The sucralose concentrations were one order of magnitude higher in the Manila samples than in the Vietnamese samples, indicating that more sucralose is used in The Philippines than in Vietnam. Acesulfame and cyclamate were found in surface water from Pathein (rural) and Yangon (urban) in Myanmar, but no ICMs were found in the samples. The ASs concentrations were two-three orders of magnitude lower in the samples from Myanmar than in the samples from Vietnam and The Philippines, suggesting that different amounts of ASs are used in these countries. We believe this is the first report of persistent ASs and ICMs having ubiquitous distributions in economically emerging South Asian countries.

  1. Aspartame Attenuates 2, 4-Dinitrofluorobenzene-Induced Atopic Dermatitis-Like Clinical Symptoms in NC/Nga Mice.

    PubMed

    Kim, Gun-Dong; Park, Yong Seek; Ahn, Hyun-Jong; Cho, Jeong-Je; Park, Cheung-Seog

    2015-11-01

    Atopic dermatitis (AD) is a common multifactorial chronic skin disease that has a multiple and complex pathogenesis. AD is gradually increasing in prevalence globally. In NC/Nga mice, repetitive applications of 2, 4-dinitrofluorobenzene (DNFB) evoke AD-like clinical symptoms similar to human AD. Aspartame (N-L-α-aspartyl-L-phenylalanine 1-methyl ester) is a methyl ester of a dipeptide, which is used as an artificial non-nutritive sweetener. Aspartame has analgesic and anti-inflammatory functions that are similar to the function of nonsteroidal anti-inflammatory drugs such as aspirin. We investigated whether aspartame can relieve AD-like clinical symptoms induced by DNFB treatment in NC/Nga mice. Sucrose did not relieve AD-like symptoms, whereas aspartame at doses of 0.5 μg kg(-1) and 0.5 mg kg(-1) inhibited ear swelling and relieved AD-like clinical symptoms. Aspartame inhibited infiltration of inflammatory cells including eosinophils, mast cells, and CD4(+) T cells, and suppressed the expression of cytokines including IL-4 and IFN-γ, and total serum IgE levels. Aspartame may have therapeutic value in the treatment of AD. PMID:26099025

  2. Aspartame Attenuates 2, 4-Dinitrofluorobenzene-Induced Atopic Dermatitis-Like Clinical Symptoms in NC/Nga Mice.

    PubMed

    Kim, Gun-Dong; Park, Yong Seek; Ahn, Hyun-Jong; Cho, Jeong-Je; Park, Cheung-Seog

    2015-11-01

    Atopic dermatitis (AD) is a common multifactorial chronic skin disease that has a multiple and complex pathogenesis. AD is gradually increasing in prevalence globally. In NC/Nga mice, repetitive applications of 2, 4-dinitrofluorobenzene (DNFB) evoke AD-like clinical symptoms similar to human AD. Aspartame (N-L-α-aspartyl-L-phenylalanine 1-methyl ester) is a methyl ester of a dipeptide, which is used as an artificial non-nutritive sweetener. Aspartame has analgesic and anti-inflammatory functions that are similar to the function of nonsteroidal anti-inflammatory drugs such as aspirin. We investigated whether aspartame can relieve AD-like clinical symptoms induced by DNFB treatment in NC/Nga mice. Sucrose did not relieve AD-like symptoms, whereas aspartame at doses of 0.5 μg kg(-1) and 0.5 mg kg(-1) inhibited ear swelling and relieved AD-like clinical symptoms. Aspartame inhibited infiltration of inflammatory cells including eosinophils, mast cells, and CD4(+) T cells, and suppressed the expression of cytokines including IL-4 and IFN-γ, and total serum IgE levels. Aspartame may have therapeutic value in the treatment of AD.

  3. Chronic aspartame affects T-maze performance, brain cholinergic receptors and Na+,K+-ATPase in rats.

    PubMed

    Christian, Brandon; McConnaughey, Kenneth; Bethea, Elena; Brantley, Scott; Coffey, Amy; Hammond, Leigha; Harrell, Shelly; Metcalf, Kasee; Muehlenbein, Danielle; Spruill, Willie; Brinson, Leslie; McConnaughey, Mona

    2004-05-01

    This study demonstrated that chronic aspartame consumption in rats can lead to altered T-maze performance and increased muscarinic cholinergic receptor densities in certain brain regions. Control and treated rats were trained in a T-maze to a particular side and then periodically tested to see how well they retained the learned response. Rats that had received aspartame (250 mg/kg/day) in the drinking water for 3 or 4 months showed a significant increase in time to reach the reward in the T-maze, suggesting a possible effect on memory due to the artificial sweetener. Using [(3)H]quinuclidinyl benzilate (QNB) (1 nM) to label muscarinic cholinergic receptors and atropine (10(-6) M) to determine nonspecific binding in whole-brain preparations, aspartame-treated rats showed a 31% increase in receptor numbers when compared to controls. In aspartame-treated rats, there was a significant increase in muscarinic receptor densities in the frontal cortex, midcortex, posterior cortex, hippocampus, hypothalamus and cerebellum of 80%, 60%, 61%, 65%, 66% and 60%, respectively. The midbrain was the only area where preparations from aspartame-treated rats showed a significant increase in Na(+),K(+)-ATPase activity. It can be concluded from these data that long-term consumption of aspartame can affect T-maze performance in rats and alter receptor densities or enzymes in brain.

  4. Ethanol, nicotine, amphetamine, and aspartame consumption and preferences in C57BL/6 and DBA/2 mice.

    PubMed

    Meliska, C J; Bartke, A; McGlacken, G; Jensen, R A

    1995-04-01

    Using a two-bottle choice paradigm, adult C57BL/6 and DBA/2 mice (11 males an 10 females per strain) were given access to tapwater and an ascending series of concentrations of ethanol, nicotine, amphetamine, and th artificial sweetener, aspartame. The C57 mice consumed more ethanol, nicotine, and amphetamine, and showed greater preferences for these substances, than did the DBA/2 mice. In contrast, DBAs consumed more and showed greater preference for aspartame than C57s. However, measures of drug and aspartame consumption and preference were moderately intercorrelated when the effects of gender and strain were controlled for. This pattern of results suggests that factors modulating differences between C57BL/6 and DBA/2 mice in ethanol consumption and preference also modulate differences in consumption of nicotine and amphetamine.

  5. Oral stimulation with aspartame increases hunger.

    PubMed

    Tordoff, M G; Alleva, A M

    1990-03-01

    We evaluated whether "sweetness" increases hunger. Groups of 10 male and 10 female subjects chewed a gum base containing one of four concentrations of aspartame (0.05%, 0.3%, 0.5%, or 1.0%) for 15 min. Relative to groups given nothing or unsweetened gum base to chew, groups given the sweetened gum bases increased hunger ratings, but not in a manner monotonically related to aspartame concentration. The most effective aspartame concentration to increase hunger was 0.3% for females and 0.5% for males. The highest aspartame concentrations had a time-dependent, biphasic effect on appetite, producing a transient decrease followed by a sustained increase in hunger ratings. Thus, the concentration of the sweetener, the sex of the subject and the time after chewing, were all important determinants of whether "sweetness" increased hunger.

  6. Effects of acute aspartame and acute alcohol ingestion upon the cognitive performance of pilots.

    PubMed

    Stokes, A F; Belger, A; Banich, M T; Taylor, H

    1991-07-01

    Anecdotal evidence has associated the artificial sweetener aspartame with a number of symptoms of central nervous system (CNS) dysfunction. There are, however, little scientific data concerning the effect of aspartame upon complex mental operations such as those necessary for flying an aircraft. Thirteen pilots were tested in a double-blind study using the SPARTANS cognitive test battery of aviation-relevant information-processing tasks. These tasks relate to perceptual-motor abilities, spatial abilities, working memory, attentional performance, risk taking, processing flexibility, planning and sequencing ability. Subjects were tested over five sessions consisting of pretest and posttest controls and three randomly ordered treatment sessions. The treatment conditions involved an aspartame dose of 50 mg/kg body weight, a placebo condition, and an ethyl alcohol (0.1% BAL) condition as the positive control. No detectable performance decrements were associated with the aspartame condition, although decrements in psychomotor and spatial abilities were detected in the ethanol condition. Results were found to be consistent with prior flight-simulator studies of alcohol, but do not appear to support the concerns expressed in anecdotal testimony regarding the deleterious effects of aspartame upon cognitive performance.

  7. Biochemical and clinical effects of aspartame in patients with chronic, stable alcoholic liver disease.

    PubMed

    Hertelendy, Z I; Mendenhall, C L; Rouster, S D; Marshall, L; Weesner, R

    1993-05-01

    Aspartame is an artificial sweetener completely metabolized in the gut and absorbed as aspartate, phenylalanine, and methanol. Phenylalanine is thought to mediate or exacerbate hepatic encephalopathy, and an impaired liver may not be able to cope with the ammoniagenic properties of the amino acid constituents, or adequately metabolize methanol. Thus, we compared the clinical and biochemical effects of a single ingestion of aspartame (15 mg/kg) to skim milk (phenylalanine content equimolar to aspartame) and placebo in patients with chronic, alcoholic liver disease in a randomized, crossover study. Aspartame produced an elevation of plasma phenylalanine significantly greater than milk and placebo (Cmax 14.55 +/- 7.38, 10.95 +/- 4.95, 8.84 +/- 4.55 mumol/dl, respectively; p < 0.01). However, quantified encephalopathic changes were observed only with milk (p < 0.05). Plasma aspartate, methanol, formate, and ammonia levels remained unchanged after all treatments. The lack of clinical derangements in encephalopathic indices, methanol accumulation, or biochemical changes in liver status suggests that a single large dose of aspartame (representing 5 times the average daily intake of adults) may be used safely by patients with chronic, stable liver disease.

  8. Crystallization from microemulsions ? a novel method for the preparation of new crystal forms of aspartame

    NASA Astrophysics Data System (ADS)

    Füredi-Milhofer, Helga; Garti, N.; Kamyshny, A.

    1999-03-01

    Solubilization and crystallization of the artificial sweetener aspartame (APM), in water/isooctane microemulsions stabilized with sodium diisooctyl sulfosuccinate (AOT) has been investigated. The amount of aspartame that could be solubilized depended primarily on the amount of surfactant and on the temperature. The maximum AOT/aspartame molar ratio at the w/o interface is shown to be 6.2 at 25°C. It was concluded that the dipeptide is located at the w/o interface interspersed between surfactant molecules and that it acts as a cosurfactant. A new crystal form, APM III, was obtained by cooling of hot w/isooctane/AOT microemulsions containing solubilized aspartame. The new crystal form exhibits a distinct X-ray diffraction powder pattern, as well as changes in the FTIR spectra, thermogravimetric and DSC patterns. H-NMR spectra of APM III dissolved in D 2O were identical to the spectrum of commercial aspartame recorded under the same conditions. The new crystal form has greatly improved dissolution kinetics.

  9. Use of two artificial sweeteners, cyclamate and acesulfame, to identify and quantify wastewater contributions in a karst spring.

    PubMed

    Zirlewagen, Johannes; Licha, Tobias; Schiperski, Ferry; Nödler, Karsten; Scheytt, Traugott

    2016-03-15

    The identification and differentiation of different sources of contamination are crucial aspects of risk assessment in water resource protection. This is especially challenging in karst environments due to their highly heterogeneous flow fields. We have investigated the use of two artificial sweeteners, cyclamate and acesulfame, as an indicator set for contamination by wastewater within the rural catchment of a karst spring. The catchment was investigated in detail to identify the sources of artificial sweeteners and quantify their impact. Spring water was analysed following two different but typical recharge events: (1) a rain-on-snow event in winter, when no wastewater overflow from the sewer system was observed, and (2) an intense rainfall event in summer triggering an overflow from a stormwater detention basin. Acesulfame, which is known to be persistent, was quantified in all spring water samples. Its concentrations decreased after the winter event with no associated wastewater spillage but increased during the summer event following a recent input of untreated wastewater. Cyclamate, which is known to be degradable, was only detected following the wastewater inflow incident. The cyclamate signal matched very well the breakthrough of faecal indicator bacteria, indicating a common origin. Knowing the input function, cyclamate was used quantitatively as a tracer in transport modelling and the impact of 'combined sewer overflow' on spring water quality was quantified. Signals from artificial sweeteners were compared to those from bulk parameters (discharge, electrical conductivity and turbidity) and also to those from the herbicides atrazine and isoproturon, which indicate 'old' and 'fresh' flow components, respectively, both originating from croplands. High concentration levels of the artificial sweeteners in untreated wastewater (cyclamate and acesulfame) and in treated wastewater (acesulfame only) make them powerful indicators, especially in rural settings

  10. Use of two artificial sweeteners, cyclamate and acesulfame, to identify and quantify wastewater contributions in a karst spring.

    PubMed

    Zirlewagen, Johannes; Licha, Tobias; Schiperski, Ferry; Nödler, Karsten; Scheytt, Traugott

    2016-03-15

    The identification and differentiation of different sources of contamination are crucial aspects of risk assessment in water resource protection. This is especially challenging in karst environments due to their highly heterogeneous flow fields. We have investigated the use of two artificial sweeteners, cyclamate and acesulfame, as an indicator set for contamination by wastewater within the rural catchment of a karst spring. The catchment was investigated in detail to identify the sources of artificial sweeteners and quantify their impact. Spring water was analysed following two different but typical recharge events: (1) a rain-on-snow event in winter, when no wastewater overflow from the sewer system was observed, and (2) an intense rainfall event in summer triggering an overflow from a stormwater detention basin. Acesulfame, which is known to be persistent, was quantified in all spring water samples. Its concentrations decreased after the winter event with no associated wastewater spillage but increased during the summer event following a recent input of untreated wastewater. Cyclamate, which is known to be degradable, was only detected following the wastewater inflow incident. The cyclamate signal matched very well the breakthrough of faecal indicator bacteria, indicating a common origin. Knowing the input function, cyclamate was used quantitatively as a tracer in transport modelling and the impact of 'combined sewer overflow' on spring water quality was quantified. Signals from artificial sweeteners were compared to those from bulk parameters (discharge, electrical conductivity and turbidity) and also to those from the herbicides atrazine and isoproturon, which indicate 'old' and 'fresh' flow components, respectively, both originating from croplands. High concentration levels of the artificial sweeteners in untreated wastewater (cyclamate and acesulfame) and in treated wastewater (acesulfame only) make them powerful indicators, especially in rural settings

  11. Persistence of artificial sweeteners in a 15-year-old septic system plume

    NASA Astrophysics Data System (ADS)

    Robertson, W. D.; Van Stempvoort, D. R.; Solomon, D. K.; Homewood, J.; Brown, S. J.; Spoelstra, J.; Schiff, S. L.

    2013-01-01

    SummaryGroundwater contamination from constituents such as NO3-, often occurs where multiple sources are present making source identification difficult. This study examines a suite of major ions and trace organic constituents within a well defined septic system plume in southern Ontario, Canada (Long Point site) for their potential use as wastewater tracers. The septic system has been operating for 20 years servicing a large, seasonal-use campground and tritium/helium age dating indicates that the 200 m long monitored section of the plume is about 15 years old. Four parameters are elevated along the entire length of the plume as follows; the mean electrical conductivity value (EC) in the distal plume zone is 926 μS/cm which is 74% of the mean value below the tile bed, Na+ (14.7 mg/L) is 43%, an artificial sweetener, acesulfame (12.1 μg/L) is 23% and Cl- (71.5 mg/L) is 137%. EC and Cl- appear to be affected by dispersive dilution with overlying background groundwater that has lower EC but has locally higher Cl- as result of the use of a dust suppressant (CaCl2) in the campground. Na+, in addition to advective dilution, could be depleted by weak adsorption. Acesulfame, in addition to the above processes could be influenced by increasing consumer use in recent years. Nonetheless, both Na+ and acesulfame remain elevated throughout the plume by factors of more than 100 and 1000 respectively compared to background levels, and are strong indicators of wastewater impact at this site. EC and Cl- are less useful because their contrast with background values is much less (EC) or because other sources are present (Cl-). Nutrients (NO3-, NH4+, PO43-, K+) and pathogens (Escherichia coli) do not persist in the distal plume zone and are less useful as wastewater indicators here. The artificial sweetener, acesulfame, has persisted at high concentrations in the Long Point plume for at least 15 years (and this timing agrees with tritium/helium-3 dating) and this compound likely

  12. Long-Term Artificial Sweetener Acesulfame Potassium Treatment Alters Neurometabolic Functions in C57BL/6J Mice

    PubMed Central

    Cong, Wei-na; Wang, Rui; Cai, Huan; Daimon, Caitlin M.; Scheibye-Knudsen, Morten; Bohr, Vilhelm A.; Turkin, Rebecca; Wood, William H.; Becker, Kevin G.; Moaddel, Ruin

    2013-01-01

    With the prevalence of obesity, artificial, non-nutritive sweeteners have been widely used as dietary supplements that provide sweet taste without excessive caloric load. In order to better understand the overall actions of artificial sweeteners, especially when they are chronically used, we investigated the peripheral and central nervous system effects of protracted exposure to a widely used artificial sweetener, acesulfame K (ACK). We found that extended ACK exposure (40 weeks) in normal C57BL/6J mice demonstrated a moderate and limited influence on metabolic homeostasis, including altering fasting insulin and leptin levels, pancreatic islet size and lipid levels, without affecting insulin sensitivity and bodyweight. Interestingly, impaired cognitive memory functions (evaluated by Morris Water Maze and Novel Objective Preference tests) were found in ACK-treated C57BL/6J mice, while no differences in motor function and anxiety levels were detected. The generation of an ACK-induced neurological phenotype was associated with metabolic dysregulation (glycolysis inhibition and functional ATP depletion) and neurosynaptic abnormalities (dysregulation of TrkB-mediated BDNF and Akt/Erk-mediated cell growth/survival pathway) in hippocampal neurons. Our data suggest that chronic use of ACK could affect cognitive functions, potentially via altering neuro-metabolic functions in male C57BL/6J mice. PMID:23950916

  13. Long-term artificial sweetener acesulfame potassium treatment alters neurometabolic functions in C57BL/6J mice.

    PubMed

    Cong, Wei-na; Wang, Rui; Cai, Huan; Daimon, Caitlin M; Scheibye-Knudsen, Morten; Bohr, Vilhelm A; Turkin, Rebecca; Wood, William H; Becker, Kevin G; Moaddel, Ruin; Maudsley, Stuart; Martin, Bronwen

    2013-01-01

    With the prevalence of obesity, artificial, non-nutritive sweeteners have been widely used as dietary supplements that provide sweet taste without excessive caloric load. In order to better understand the overall actions of artificial sweeteners, especially when they are chronically used, we investigated the peripheral and central nervous system effects of protracted exposure to a widely used artificial sweetener, acesulfame K (ACK). We found that extended ACK exposure (40 weeks) in normal C57BL/6J mice demonstrated a moderate and limited influence on metabolic homeostasis, including altering fasting insulin and leptin levels, pancreatic islet size and lipid levels, without affecting insulin sensitivity and bodyweight. Interestingly, impaired cognitive memory functions (evaluated by Morris Water Maze and Novel Objective Preference tests) were found in ACK-treated C57BL/6J mice, while no differences in motor function and anxiety levels were detected. The generation of an ACK-induced neurological phenotype was associated with metabolic dysregulation (glycolysis inhibition and functional ATP depletion) and neurosynaptic abnormalities (dysregulation of TrkB-mediated BDNF and Akt/Erk-mediated cell growth/survival pathway) in hippocampal neurons. Our data suggest that chronic use of ACK could affect cognitive functions, potentially via altering neuro-metabolic functions in male C57BL/6J mice. PMID:23950916

  14. Metabolic and feeding behavior alterations provoked by prenatal exposure to aspartame.

    PubMed

    von Poser Toigo, E; Huffell, A P; Mota, C S; Bertolini, D; Pettenuzzo, L F; Dalmaz, C

    2015-04-01

    The use of artificial sweeteners has increased together with the epidemic growth of obesity. In addition to their widespread use in sodas, artificial sweeteners are added to nearly 6000 other products sold in the US, including baby foods, frozen dinners and even yogurts. It has been suggested that the use of nonnutritive sweeteners can lead to body weight gain and an altered metabolic profile. However, very few studies have evaluated the effects of maternal consumption of artificial non-caloric sweeteners on body weight, feeding behavior or the metabolism of offspring in adult life. In this study, we found that animals exposed to aspartame during the prenatal period presented a higher consumption of sweet foods during adulthood and a greater susceptibility to alterations in metabolic parameters, such as increased glucose, LDL and triglycerides. These effects were observed in both males and females, although they were more pronounced in males. Despite the preliminary nature of this study, and the need for further confirmation of these effects, our data suggest that the consumption of sweeteners during gestation may have deleterious long-term effects and should be used with caution. PMID:25543075

  15. Metabolic and feeding behavior alterations provoked by prenatal exposure to aspartame.

    PubMed

    von Poser Toigo, E; Huffell, A P; Mota, C S; Bertolini, D; Pettenuzzo, L F; Dalmaz, C

    2015-04-01

    The use of artificial sweeteners has increased together with the epidemic growth of obesity. In addition to their widespread use in sodas, artificial sweeteners are added to nearly 6000 other products sold in the US, including baby foods, frozen dinners and even yogurts. It has been suggested that the use of nonnutritive sweeteners can lead to body weight gain and an altered metabolic profile. However, very few studies have evaluated the effects of maternal consumption of artificial non-caloric sweeteners on body weight, feeding behavior or the metabolism of offspring in adult life. In this study, we found that animals exposed to aspartame during the prenatal period presented a higher consumption of sweet foods during adulthood and a greater susceptibility to alterations in metabolic parameters, such as increased glucose, LDL and triglycerides. These effects were observed in both males and females, although they were more pronounced in males. Despite the preliminary nature of this study, and the need for further confirmation of these effects, our data suggest that the consumption of sweeteners during gestation may have deleterious long-term effects and should be used with caution.

  16. Low-calorie sweeteners in food and food supplements on the Italian market.

    PubMed

    Janvier, Steven; Goscinny, Séverine; Le Donne, Cinzia; Van Loco, Joris

    2015-01-01

    This study determines the occurrence and concentration levels of artificial low-calorie sweeteners (LCSs) in food and food supplements on the Italian market. The analysed sample set (290 samples) was representative of the Italian market and comprised of beverages, jams, ketchups, confectionery, dairy products, table-top sweeteners and food supplements. All samples were analysed via UPLC-MS/MS. The method was in-house validated for the analysis of seven LCSs (aspartame, acesulfame-K, saccharin, sucralose, cyclamate, neotame and neohesperidin dihydrochalcone) in food and for five LCSs (aspartame, acesulfame-K, saccharin, cyclamate and sucralose) in food supplements. Except for cyclamate in one beverage which exceeded the maximum level (ML) with 13%, all concentrations measured in food were around or below the ML. In food supplements, 40 of the 52 samples (77%) were found to be above the ML, with exceedances of up to 200% of the ML. PMID:26406785

  17. Low-calorie sweeteners in food and food supplements on the Italian market.

    PubMed

    Janvier, Steven; Goscinny, Séverine; Le Donne, Cinzia; Van Loco, Joris

    2015-01-01

    This study determines the occurrence and concentration levels of artificial low-calorie sweeteners (LCSs) in food and food supplements on the Italian market. The analysed sample set (290 samples) was representative of the Italian market and comprised of beverages, jams, ketchups, confectionery, dairy products, table-top sweeteners and food supplements. All samples were analysed via UPLC-MS/MS. The method was in-house validated for the analysis of seven LCSs (aspartame, acesulfame-K, saccharin, sucralose, cyclamate, neotame and neohesperidin dihydrochalcone) in food and for five LCSs (aspartame, acesulfame-K, saccharin, cyclamate and sucralose) in food supplements. Except for cyclamate in one beverage which exceeded the maximum level (ML) with 13%, all concentrations measured in food were around or below the ML. In food supplements, 40 of the 52 samples (77%) were found to be above the ML, with exceedances of up to 200% of the ML.

  18. Evolution of the sweetness receptor in primates. I. Why does alitame taste sweet in all prosimians and simians, and aspartame only in Old World simians?

    PubMed

    Glaser, D; Tinti, J M; Nofre, C

    1995-10-01

    In the order Primates the responses to sucrose, alitame and aspartame were ascertained. All primates tested to date like sucrose and prefer this sweet substance to tap water. The artificial dipeptide aspartame was found to be not sweet in Prosimii and Platyrrhini (New World monkeys). Only the Cercopithecoidea (Old World monkeys) and Hominoidea (apes and humans) show the same response to aspartame and to sucrose. In contrast, all primates tested so far prefer alitame, another artificial dipeptide sweetener, which is structurally closely related to aspartame. This phylogenetic difference is consistent with the existence in catarrhine primates of a sweetness receptor containing two differently located hydrophobic recognition sites, one for the hydrophobic binding site of alitame, the other for the hydrophobic binding site of aspartame. On the basis of these results, it is suggested that the alitame-related hydrophobic recognition site, which is found in the sweetness receptor of all primates, could be a requisite for the interaction of the receptor with sucrose, while the aspartame-related hydrophobic recognition site, which is found exclusively in the sweetness receptor of Old World simians, could have been a crucial factor in the improvement in detection or selection of sucrose in foods, so favouring the mental development of these simians and maybe the emergence of humans.

  19. Use of an Artificial Sweetener to Identify Sources of Groundwater Nitrate Contamination.

    PubMed

    Robertson, W D; Van Stempvoort, D R; Roy, J W; Brown, S J; Spoelstra, J; Schiff, S L; Rudolph, D R; Danielescu, S; Graham, G

    2016-07-01

    The artificial sweetener acesulfame (ACE) is a potentially useful tracer of waste water contamination in groundwater. In this study, ACE concentrations were measured in waste water and impacted groundwater at 12 septic system sites in Ontario, Canada. All samples of septic tank effluent (n = 37) had ACE >6 µg/L, all samples of groundwater from the proximal plume zones (n = 93) had ACE >1 µg/L and, almost all samples from the distal plume zones had ACE >2 µg/L. Mean mass ratios of total inorganic nitrogen/ACE at the 12 sites ranged from 680 to 3500 for the tank and proximal plume samples. At five sites, decreasing ratio values in the distal zones indicated nitrogen attenuation. These ratios were applied to three aquifers in Canada that are nitrate-stressed and an urban stream where septic systems are present nearby to estimate the amount of waste water nitrate contamination. At the three aquifer locations that are agricultural, low ACE values (<0.02-0.15 µg/L) indicated that waste water contributed <15% of the nitrate in most samples. In groundwater discharging to the urban stream, much higher ACE values (0.2-11 µg/L) indicated that waste water was the likely source of >50% of the nitrate in most samples. This study confirms that ACE is a powerful tracer and demonstrates its use as a diagnostic tool for establishing whether waste water is a significant contributor to groundwater contamination or not. PMID:26729010

  20. An artificial sweetener and pharmaceutical compounds as co-tracers of urban wastewater in groundwater.

    PubMed

    Van Stempvoort, D R; Roy, J W; Grabuski, J; Brown, S J; Bickerton, G; Sverko, E

    2013-09-01

    Groundwater in urban areas can be affected by numerous wastewater sources. Distinguishing these sources can facilitate better management of urban water resources and wastewater, and protection of urban aquatic environments. A single wastewater tracer, even if ideal (i.e. low background levels, non-reactive, low detection limits, etc.), would be unable to accomplish this task. Here, we investigated the potential advantages of using a suite of anthropogenic chemicals as co-tracers to distinguish wastewater sources that contribute to groundwater contamination at two urban sites. We considered both relatively ubiquitous and non-ubiquitous tracers in wastewater. At the Jasper (Alberta, Canada) site, concentrations of an artificial sweetener, two pharmaceutical compounds, and a degradate of nicotine in groundwater were strongly correlated as co-tracers. This evidence, along with the similar spatial distributions of these co-tracers could be used to delineate and distinguish a single municipal wastewater plume. At the Barrie (Ontario, Canada) site, there was moderate to strong correlation of the wastewater co-tracers, but local differences in their distributions and in the ratios of their concentrations could be used to infer that mixtures of two or more domestic septic plumes were present in the groundwater at this site. This study demonstrates the benefit of applying a suite of tracers to urban groundwater affected by wastewater contamination. This approach should be applicable at other urban sites.

  1. Use of an Artificial Sweetener to Identify Sources of Groundwater Nitrate Contamination.

    PubMed

    Robertson, W D; Van Stempvoort, D R; Roy, J W; Brown, S J; Spoelstra, J; Schiff, S L; Rudolph, D R; Danielescu, S; Graham, G

    2016-07-01

    The artificial sweetener acesulfame (ACE) is a potentially useful tracer of waste water contamination in groundwater. In this study, ACE concentrations were measured in waste water and impacted groundwater at 12 septic system sites in Ontario, Canada. All samples of septic tank effluent (n = 37) had ACE >6 µg/L, all samples of groundwater from the proximal plume zones (n = 93) had ACE >1 µg/L and, almost all samples from the distal plume zones had ACE >2 µg/L. Mean mass ratios of total inorganic nitrogen/ACE at the 12 sites ranged from 680 to 3500 for the tank and proximal plume samples. At five sites, decreasing ratio values in the distal zones indicated nitrogen attenuation. These ratios were applied to three aquifers in Canada that are nitrate-stressed and an urban stream where septic systems are present nearby to estimate the amount of waste water nitrate contamination. At the three aquifer locations that are agricultural, low ACE values (<0.02-0.15 µg/L) indicated that waste water contributed <15% of the nitrate in most samples. In groundwater discharging to the urban stream, much higher ACE values (0.2-11 µg/L) indicated that waste water was the likely source of >50% of the nitrate in most samples. This study confirms that ACE is a powerful tracer and demonstrates its use as a diagnostic tool for establishing whether waste water is a significant contributor to groundwater contamination or not.

  2. Degradation of artificial sweetener saccharin in aqueous medium by electrochemically generated hydroxyl radicals.

    PubMed

    Lin, Heng; Wu, Jie; Oturan, Nihal; Zhang, Hui; Oturan, Mehmet A

    2016-03-01

    The removal of artificial sweetener saccharin (SAC) in aqueous solution by electrochemical advanced oxidation using electro-Fenton process was performed. Experiments were carried out in an undivided cylindrical glass cell with a carbon-felt cathode and a Pt or boron-doped diamond (BDD) anode. The removal of SAC by electrochemically generated hydroxyl radicals followed pseudo-first-order kinetics with both Pt and BDD anode. The absolute rate constant of the SAC hydroxylation reaction was determined for the first time using the competition kinetic method and found to be (1.85 ± 0.01) × 10(9) M(-1) s(-1). The comparative study of TOC removal efficiency during electro-Fenton treatment indicated a higher mineralization rate with BDD than Pt anode. The identification and evolution of short-chain carboxylic acids and inorganic ions formed during oxidation process were monitored by ion-exchange chromatography and ion chromatography, respectively. The assessment of toxicity of SAC and/or its reaction by-products during treatment was performed using Microtox® method based on the Vibrio fischeri bacteria luminescence inhibition. Results showed that the process was able to efficiently detoxify the treated solution.

  3. Using artificial sweeteners to identify contamination sources and infiltration zones in a coupled river-aquifer system

    NASA Astrophysics Data System (ADS)

    Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo

    2014-05-01

    In shallow or unconfined aquifers the infiltration of contaminated river water might be a major threat to groundwater quality. Thus, the identification of possible contamination sources in coupled surface- and groundwater systems is of paramount importance to ensure water quality. Micropollutants like artificial sweeteners are promising markers for domestic waste water in natural water bodies. Compounds, such as artificial sweeteners, might enter the aquatic environment via discharge of waste water treatment plants, leaky sewer systems or septic tanks and are ubiquitously found in waste water receiving waters. The hereby presented field study aims at the (1) identification of contamination sources and (2) delineation of infiltration zones in a connected river-aquifer system. River bank filtrate in the groundwater body was assessed qualitatively and quantitatively using a combined approach of hydrochemical analysis and artificial sweeteners (acesulfame ACE) as waste water markers. The investigated aquifer lies within a mesoscale alpine head water catchment and is used for drinking water production. It is hypothesized that a large proportion of the groundwater flux originates from bank filtrate of a nearby losing stream. Water sampling campaigns in March and July 2012 confirmed the occurrence of artificial sweeteners at the investigated site. The municipal waste water treatment plant was identified as point-source for ACE in the river network. In the aquifer ACE was present in more than 80% of the monitoring wells. In addition, water samples were classified according to their hydrochemical composition, identifying two predominant types of water in the aquifer: (1) groundwater influenced by bank filtrate and (2) groundwater originating from local recharge. In combination with ACE concentrations a third type of water could be discriminated: (3) groundwater influence by bank filtrate but infiltrated prior to the waste water treatment plant. Moreover, the presence of ACE

  4. Sweet taste receptor expression in ruminant intestine and its activation by artificial sweeteners to regulate glucose absorption.

    PubMed

    Moran, A W; Al-Rammahi, M; Zhang, C; Bravo, D; Calsamiglia, S; Shirazi-Beechey, S P

    2014-01-01

    Absorption of glucose from the lumen of the intestine into enterocytes is accomplished by sodium-glucose co-transporter 1 (SGLT1). In the majority of mammalian species, expression (this includes activity) of SGLT1 is upregulated in response to increased dietary monosaccharides. This regulatory pathway is initiated by sensing of luminal sugar by the gut-expressed sweet taste receptor. The objectives of our studies were to determine (1) if the ruminant intestine expresses the sweet taste receptor, which consists of two subunits [taste 1 receptor 2 (T1R2) and 3 (T1R3)], and other key signaling molecules required for SGLT1 upregulation in nonruminant intestines, and (2) whether T1R2-T1R3 sensing of artificial sweeteners induces release of glucagon-like peptide-2 (GLP-2) and enhances SGLT1 expression. We found that the small intestine of sheep and cattle express T1R2, T1R3, G-protein gustducin, and GLP-2 in enteroendocrine L-cells. Maintaining 110-d-old ruminating calves for 60d on a diet containing a starter concentrate and the artificial sweetener Sucram (consisting of saccharin and neohesperidin dihydrochalcone; Pancosma SA, Geneva, Switzerland) enhances (1) Na(+)-dependent d-glucose uptake by over 3-fold, (2) villus height and crypt depth by 1.4- and 1.2-fold, and (3) maltase- and alkaline phosphatase-specific activity by 1.5-fold compared to calves maintained on the same diet without Sucram. No statistically significant differences were observed for rates of intestinal glucose uptake, villus height, crypt depth, or enzyme activities between 50-d-old milk-fed calves and calves maintained on the same diet containing Sucram. When adult cows were kept on a diet containing 80:20 ryegrass hay-to-concentrate supplemented with Sucram, more than a 7-fold increase in SGLT1 protein abundance was noted. Collectively, the data indicate that inclusion of this artificial sweetener enhances SGLT1 expression and mucosal growth in ruminant animals. Exposure of ruminant sheep

  5. Sweet taste receptor expression in ruminant intestine and its activation by artificial sweeteners to regulate glucose absorption.

    PubMed

    Moran, A W; Al-Rammahi, M; Zhang, C; Bravo, D; Calsamiglia, S; Shirazi-Beechey, S P

    2014-01-01

    Absorption of glucose from the lumen of the intestine into enterocytes is accomplished by sodium-glucose co-transporter 1 (SGLT1). In the majority of mammalian species, expression (this includes activity) of SGLT1 is upregulated in response to increased dietary monosaccharides. This regulatory pathway is initiated by sensing of luminal sugar by the gut-expressed sweet taste receptor. The objectives of our studies were to determine (1) if the ruminant intestine expresses the sweet taste receptor, which consists of two subunits [taste 1 receptor 2 (T1R2) and 3 (T1R3)], and other key signaling molecules required for SGLT1 upregulation in nonruminant intestines, and (2) whether T1R2-T1R3 sensing of artificial sweeteners induces release of glucagon-like peptide-2 (GLP-2) and enhances SGLT1 expression. We found that the small intestine of sheep and cattle express T1R2, T1R3, G-protein gustducin, and GLP-2 in enteroendocrine L-cells. Maintaining 110-d-old ruminating calves for 60d on a diet containing a starter concentrate and the artificial sweetener Sucram (consisting of saccharin and neohesperidin dihydrochalcone; Pancosma SA, Geneva, Switzerland) enhances (1) Na(+)-dependent d-glucose uptake by over 3-fold, (2) villus height and crypt depth by 1.4- and 1.2-fold, and (3) maltase- and alkaline phosphatase-specific activity by 1.5-fold compared to calves maintained on the same diet without Sucram. No statistically significant differences were observed for rates of intestinal glucose uptake, villus height, crypt depth, or enzyme activities between 50-d-old milk-fed calves and calves maintained on the same diet containing Sucram. When adult cows were kept on a diet containing 80:20 ryegrass hay-to-concentrate supplemented with Sucram, more than a 7-fold increase in SGLT1 protein abundance was noted. Collectively, the data indicate that inclusion of this artificial sweetener enhances SGLT1 expression and mucosal growth in ruminant animals. Exposure of ruminant sheep

  6. Aspartame ingested without tasting inhibits hunger and food intake.

    PubMed

    Rogers, P J; Pleming, H C; Blundell, J E

    1990-06-01

    The effects on motivation to eat and food intake of administering small amounts of aspartame (234 to 470 mg: lower dose equivalent to the amount of aspartame contained in 1-2 cans of some soft drinks) in capsules to human volunteers were examined in two separate experiments (the second was a replication of the first). The results provided clear evidence of a prominent postingestive inhibitory action of aspartame on appetite: consumed in capsules, aspartame reduced subsequent food intake and, to a lesser extent, motivation to eat. The mechanism underlying this effect has yet to be elucidated. A possibility is that the release of cholecystokinin by phenylalanine, a constituent of aspartame, is involved. A further result was that drinking aspartame-sweetened water did not reliably reduce motivational ratings or food intake (in the first experiment aspartame ingested in capsules significantly reduced food intake compared with the same amount ingested as a sweet drink). One interpretation of these together with previous findings is that the response to consuming aspartame is determined by at least two interacting influences: an inhibitory postingestive effect and a stimulatory effect of its sweet taste. In turn, the relative potency of these influences may be modified by certain other features of the aspartame-sweetened food or drink (e.g., its nutrient content). Another implication of these results is that it cannot be assumed that intense sweeteners will all have equivalent effects on appetite.

  7. Aspartame intolerance.

    PubMed

    Garriga, M M; Metcalfe, D D

    1988-12-01

    Aspartame is a food additive marketed under the brand name Nutrasweet. Aspartame is a white, odorless, crystalline powder and consists of two amino acids, L-aspartic acid and L-phenylalanine. It is 180 times as sweet as sugar. The Food and Drug Administration (FDA) first allowed its use in dry foods in July 1981 and then approved its use in carbonated beverages in July 1983. It has subsequently been approved for use in a number of materials including multivitamins, fruit juices, stick-type confections, breath mints, and iced tea. The FDA requires the statement "phenylketonurics: contains phenylalanine" on labels of food products containing aspartame because individuals with phenylketonuria (PKU) must restrict their intake of phenylalanine. Aspartame is judged to be free of long-term cancer risks. Aspartame is not stable under certain conditions including baking and cooking, and prolonged exposure to acid conditions. In such situations it loses its sweetness. Products formed from aspartame include its component amino acids (phenylalanine and aspartic acid), methanol, and diketopiperazine (DKP). Animal studies show DKP to be nontoxic. Methanol occurs in small amounts and does not exceed that formed during consumption of many foods including fresh fruits and vegetables. FDA's Center for Food Safety and Applied Nutrition (CFSAN) monitors aspartame's safety in part through reports of adverse reactions. After aspartame was approved for use in carbonated beverages, the FDA received an increased number of reports concerning adverse reactions related to aspartame. The Centers for Disease Control (CDC) reviewed these reports, which included complaints of neurologic, gastrointestinal, andallergic reactions.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Metabolism of aspartame by human and pig intestinal microvillar peptidases.

    PubMed

    Hooper, N M; Hesp, R J; Tieku, S

    1994-03-15

    The artificial sweetener aspartame (N-L-alpha-aspartyl-L-phenyl-alanine-1-methyl ester; Nutrasweet), its decomposition product alpha Asp-Phe and the related peptide alpha Asp-PheNH2 were rapidly hydrolysed by microvillar membranes prepared from human duodenum, jejunum and ileum, and from pig duodenum and kidney. The metabolism of aspartame by the human and pig intestinal microvillar membrane preparations was inhibited significantly (> 78%) by amastatin or 1,10-phenanthroline, and partially (> 38%) by actinonin or bestatin, and was activated 2.9-4.5-fold by CaCl2. The inhibition by amastatin and 1,10-phenanthroline, and the activation by CaCl2 are characteristic of the cell-surface ectoenzyme aminopeptidase A (EC 3.4.11.7) and a purified preparation of this enzyme hydrolysed aspartame with a Km of 0.25 mM and a Vmax of 126 mumol/min per mg. A purified preparation of aminopeptidase W (EC 3.4.11.16) also hydrolysed aspartame but with a Km of 4.96 mM and a Vmax of 110 mumol/min per mg. However, rentiapril, an inhibitor of aminopeptidase W, caused only slight inhibition (maximally 19%) of the hydrolysis of aspartame by the microvillar membrane preparations. Similar patterns of inhibition and kinetic parameters were observed for alpha Asp-Phe and alpha Asp-PheNH2. Two other decomposition products of aspartame, beta Asp-PheMe and cyclo-Asp-Phe, were essentially resistant to hydrolysis by both the human and pig intestinal microvillar membrane preparations and the purified preparations of aminopeptidases A and W. Although the relatively selective inhibitor of aminopeptidase N (EC 3.4.11.2), actinonin, partially inhibited the metabolism of aspartame, alpha Asp-Phe and alpha Asp-PheNH2 by the human and pig intestinal microvillar membrane preparations, these peptides were not hydrolysed by a purified preparation of aminopeptidase N. Membrane dipeptidase (EC 3.4.13.19) only hydrolysed the unblocked dipeptide, alpha Asp-Phe, but the selective inhibitor of this enzyme, cilastatin

  9. Removal of selected pharmaceuticals, personal care products and artificial sweetener in an aerated sewage lagoon.

    PubMed

    Hoque, M Ehsanul; Cloutier, Frédéric; Arcieri, Carlo; McInnes, Mark; Sultana, Tamanna; Murray, Craig; Vanrolleghem, Peter A; Metcalfe, Chris D

    2014-07-15

    A sewage lagoon serving the small municipality of Lakefield in Ontario, Canada was monitored in the summer, fall and winter to determine removals of carbamazepine, trimethoprim, sulfamethoxazole, ibuprofen, gemfibrozil, triclosan, sucralose, HHCB and AHTN. Concentrations of these compounds in untreated and treated wastewater were estimated by deploying POCIS and SPMD passive samplers in the sewage lagoon. Passive samplers were also deployed at several points upstream and downstream of the point of discharge from the lagoon into the Otonabee River. LC-MS/MS and GC-MS were utilized to determine the concentrations of pharmaceuticals and personal care products (PPCPs) and sucralose, an artificial sweetener. Among PPCPs sampled by POCIS, the highest estimated concentration in untreated wastewater was ibuprofen sampled during the fall, at an estimated concentration of 60.3 ng/L. The estimated average concentration of sucralose was 13.6 ng/L in the untreated wastewaters. Triclosan, HHCB and AHTN in SPMDs were highest during fall season, at 30, 1677 and 109 ng/L, respectively. For all compounds except gemfibrozil, carbamazepine and sucralose, removals were highest in the summer (83.0 to 98.8%) relative to removals in the fall (48.4 to 91.4%) and winter (14.0 to 78.3%). Finally, the estimated concentrations of carbamazepine, sulfamethoxazole, triclosan and HHCB were compared with predicted values obtained through application of the WEST® modeling tool, with a new model based on the River Water Quality Model No. 1 and extended with dynamic mass balances describing the fate of chemicals of emerging concern subject to a variety of removal pathways. The model was able to adequately predict the fate of these four compounds in the lagoon in summer and winter, but the model overestimated removals of three of the four test compounds in the fall sampling period. This lagoon was as effective at removing PPCPs as many conventional WWTPs, but removals were better during the summer

  10. Re-engineering an artificial sweetener: transforming sucralose residuals in water via advanced oxidation.

    PubMed

    Keen, Olya S; Linden, Karl G

    2013-07-01

    Sucralose is an artificial sweetener persistently present in wastewater treatment plant effluents and aquatic environments impacted by human activity. It has a potential to accumulate in the water cycle due to its resistance to common water and wastewater treatment processes. This study examined UV/H2O2 advanced oxidation and found that hydroxyl substitution of the chlorine atoms on the sucralose molecule can form a carbohydrate consisting of fructose and sugar alcohol, very similar to environmentally benign sucrose. The second-order reaction rate constant for loss of parent molecule via reaction with hydroxyl radical was determined to be (1.56 ± 0.03)·10(9) M(-1)s(-1). The degradation pathway involves substitution of a single chlorine by a hydroxyl group, with cyclic moiety being a preferential site for initial dechlorination. Further reaction leads to full dechlorination of the molecule, presumably via hydroxyl group substitution as well. No direct photolysis by UV wavelengths above 200 nm was observed. Because of its photostability when exposed to UV wavelengths ≥200 nm, known stability with ozone, limits of quantification by mass spectrometry close to or below environmental concentrations (<5 μg/L) without preconcentration, and otherwise stable nature, sucralose can be used as an in situ hydroxyl radical probe for UV-based and ozone-based AOP processes. As a compound safe for human consumption, sucralose makes a suitable full scale hydroxyl radical probe fit even for drinking water treatment plant applications. Its main drawback as a probe is lack of UV detection and as a result a need for mass spectrometry analysis. PMID:23410009

  11. Effects of artificial sweeteners on metal bioconcentration and toxicity on a green algae Scenedesmus obliquus.

    PubMed

    Hu, Hongwei; Deng, Yuanyuan; Fan, Yunfei; Zhang, Pengfei; Sun, Hongwen; Gan, Zhiwei; Zhu, Hongkai; Yao, Yiming

    2016-05-01

    The ecotoxicity of heavy metals depends much on their speciation, which is influenced by other co-existing substances having chelating capacity. In the present study, the toxic effects of Cd(2+) and Cu(2+) on a green algae Scenedesmus obliquus were examined in the presence of two artificial sweeteners (ASs), acesulfame (ACE) and sucralose (SUC) by comparing the cell specific growth rate μ and pulse-amplitude-modulated (PAM) parameters (maximal photosystem II photochemical efficiency Fv/Fm, actual photochemical efficiency Yield, and non-photochemical quenching NPQ) of the algae over a 96-h period. Simultaneously, the bioconcentration of the metals by the algal cells in the presence of the ASs was measured. The presence of ACE enhanced the growth of S. obliquus and promoted the bioconcentration of Cd(2+) in S. obliquus, while the impacts of SUC were not significant. Meanwhile, EC50 values of Cd(2+) on the growth of S. obliquus increased from 0.42 mg/L to 0.54 mg/L and 0.48 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. As for Cu(2+), EC50 values increased from 0.13 mg/L to 0.17 mg/L and 0.15 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. In summary, the two ASs reduced the toxicity of the metals on the algae, with ACE showing greater effect than SUC. Although not as sensitive as the cell specific growth rate, PAM parameters could disclose the mechanisms involved in metal toxicity at subcellular levels. This study provides the first evidence for the possible impact of ASs on the ecotoxicity of heavy metals. PMID:26915590

  12. Effects of artificial sweeteners on metal bioconcentration and toxicity on a green algae Scenedesmus obliquus.

    PubMed

    Hu, Hongwei; Deng, Yuanyuan; Fan, Yunfei; Zhang, Pengfei; Sun, Hongwen; Gan, Zhiwei; Zhu, Hongkai; Yao, Yiming

    2016-05-01

    The ecotoxicity of heavy metals depends much on their speciation, which is influenced by other co-existing substances having chelating capacity. In the present study, the toxic effects of Cd(2+) and Cu(2+) on a green algae Scenedesmus obliquus were examined in the presence of two artificial sweeteners (ASs), acesulfame (ACE) and sucralose (SUC) by comparing the cell specific growth rate μ and pulse-amplitude-modulated (PAM) parameters (maximal photosystem II photochemical efficiency Fv/Fm, actual photochemical efficiency Yield, and non-photochemical quenching NPQ) of the algae over a 96-h period. Simultaneously, the bioconcentration of the metals by the algal cells in the presence of the ASs was measured. The presence of ACE enhanced the growth of S. obliquus and promoted the bioconcentration of Cd(2+) in S. obliquus, while the impacts of SUC were not significant. Meanwhile, EC50 values of Cd(2+) on the growth of S. obliquus increased from 0.42 mg/L to 0.54 mg/L and 0.48 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. As for Cu(2+), EC50 values increased from 0.13 mg/L to 0.17 mg/L and 0.15 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. In summary, the two ASs reduced the toxicity of the metals on the algae, with ACE showing greater effect than SUC. Although not as sensitive as the cell specific growth rate, PAM parameters could disclose the mechanisms involved in metal toxicity at subcellular levels. This study provides the first evidence for the possible impact of ASs on the ecotoxicity of heavy metals.

  13. Potential intake of intense sweeteners in Brazil.

    PubMed

    Toledo, M C; Ioshi, S H

    1995-01-01

    A survey of intense sweetener intakes was carried out in the winter of 1990 and summer of 1991 in Brazil. Data on the potential intake of the intense sweeteners aspartame, cyclamate and saccharin were generated, based on a representative sample of 673 individuals who completed a questionnaire designed to collect information on demographic details and habitual usage of sweetener-containing food and drinks. The respondents were randomly chosen among intense sweetener consumers living the cities of Campinas, São Paulo and Curitiba, Paraná. Potential daily intakes by individuals were calculated for each sweetener by combining each person's consumption of sweetener-containing food and beverages with information generated by the determination of the concentrations of the sweeteners used in these products. The data showed that 72% of the studied population consumed saccharin, 67% cyclamate and 40% aspartame. The main reasons alleged for the use of intense sweeteners were weight-control diet (36%), diabetes (35%) and weight loss (23%). Table-top sweeteners were the major source of sweeteners, followed by soft drinks. The median daily intake of aspartame, cyclamate and saccharin represented approximately 2.9, 15.5, and 16-4% of the corresponding ADI, respectively. Diabetics in general had a much higher intake within the studied population.

  14. Use of aspartame in phenylketonuric heteroxygous adults.

    PubMed

    Koch, R; Shaw, K N; Williamson, M; Haber, M

    1976-11-01

    Asparatame, a new artificial sweetener, was administered to 45 obligate phenylketonuric adults for 28 wk. This new sweetening agent was well tolerated, and no untoward medical or biochemical changes were noted.

  15. Aspartame-fed zebrafish exhibit acute deaths with swimming defects and saccharin-fed zebrafish have elevation of cholesteryl ester transfer protein activity in hypercholesterolemia.

    PubMed

    Kim, Jae-Yong; Seo, Juyi; Cho, Kyung-Hyun

    2011-11-01

    Although many artificial sweeteners (AS) have safety issues, the AS have been widely used in industry. To determine the physiologic effect of AS in the presence of hyperlipidemia, zebrafish were fed aspartame or saccharin with a high-cholesterol diet (HCD). After 12 days, 30% of zebrafish, which consumed aspartame and HCD, died with exhibiting swimming defects. The aspartame group had 65% survivability, while the control and saccharin groups had 100% survivability. Under HCD, the saccharin-fed groups had the highest increase in the serum cholesterol level (599 mg/dL). Aspartame-fed group showed a remarkable increase in serum glucose (up to 125 mg/dL), which was 58% greater than the increase in the HCD alone group. The saccharin and HCD groups had the highest cholesteryl ester transfer protein (CETP) activity (52% CE-transfer), while the HCD alone group had 42% CE-transfer. Histologic analysis revealed that the aspartame and HCD groups showed more infiltration of inflammatory cells in the brain and liver sections. Conclusively, under presence of hyperlipidemia, aspartame-fed zebrafish exhibited acute swimming defects with an increase in brain inflammation. Saccharin-fed zebrafish had an increased atherogenic serum lipid profile with elevation of CETP activity.

  16. Saccharin and other artificial sweeteners in soils: estimated inputs from agriculture and households, degradation, and leaching to groundwater.

    PubMed

    Buerge, Ignaz J; Keller, Martina; Buser, Hans-Rudolf; Müller, Markus D; Poiger, Thomas

    2011-01-15

    Artificial sweeteners are consumed in substantial quantities as sugar substitutes and were previously shown to be ubiquitously present in the aquatic environment. The sweetener saccharin is also registered as additive in piglet feed. Saccharin fed to piglets was largely excreted and, consequently, found in liquid manure at concentrations up to 12 mg/L, where it was stable during 2 months of storage. Saccharin may thus end up in soils in considerable quantities with manure. Furthermore, other studies showed that saccharin is a soil metabolite of certain sulfonylurea herbicides. Sweeteners may also get into soils via irrigation with wastewater-polluted surface water, fertilization with sewage sludge (1-43 μg/L), or through leaky sewers. In soil incubation experiments, cyclamate, saccharin, acesulfame, and sucralose were degraded with half-lives of 0.4-6 d, 3-12 d, 3-49 d, and 8-124 d, respectively. The relative importance of entry pathways to soils was compared and degradation and leaching to groundwater were evaluated with computer simulations. The data suggest that detection of saccharin in groundwater (observed concentrations, up to 0.26 μg/L) is most likely due to application of manure. However, elevated concentrations of acesulfame in groundwater (up to 5 μg/L) may result primarily from infiltration of wastewater-polluted surface water through stream beds.

  17. Influence of carboxymethyl cellulose and sodium alginate on sweetness intensity of Aspartame.

    PubMed

    Han, Xue; Xu, Shu-Zhen; Dong, Wen-Rui; Wu, Zhai; Wang, Ren-Hai; Chen, Zhong-Xiu

    2014-12-01

    Sensory evaluation of Aspartame in the presence of sodium carboxymethyl cellulose (CMC-L) and sodium alginate (SA) revealed that only CMC-L showed a suppression effect, while SA did not. By using an artificial taste receptor model, we found that the presence of SA or CMC-L resulted in a decrease in association constants. Further investigation of CMC-L solution revealed that the decrease in water mobility and diffusion also contribute to the suppression effect. In the case of SA, the decreased viscosity and comparatively higher amount of free water facilitated the diffusion of sweetener, which might compensate for the decreased binding constant between Aspartame and receptor. This may suppress the impact of SA on sweetness intensity. The results suggest that exploring the binding affinity of taste molecules with the receptor, along with water mobility and diffusion in hydrocolloidal structures, provide sufficient information for understanding the mechanism behind the effect of macromolecular hydrocolloids on taste. PMID:24996335

  18. Influence of carboxymethyl cellulose and sodium alginate on sweetness intensity of Aspartame.

    PubMed

    Han, Xue; Xu, Shu-Zhen; Dong, Wen-Rui; Wu, Zhai; Wang, Ren-Hai; Chen, Zhong-Xiu

    2014-12-01

    Sensory evaluation of Aspartame in the presence of sodium carboxymethyl cellulose (CMC-L) and sodium alginate (SA) revealed that only CMC-L showed a suppression effect, while SA did not. By using an artificial taste receptor model, we found that the presence of SA or CMC-L resulted in a decrease in association constants. Further investigation of CMC-L solution revealed that the decrease in water mobility and diffusion also contribute to the suppression effect. In the case of SA, the decreased viscosity and comparatively higher amount of free water facilitated the diffusion of sweetener, which might compensate for the decreased binding constant between Aspartame and receptor. This may suppress the impact of SA on sweetness intensity. The results suggest that exploring the binding affinity of taste molecules with the receptor, along with water mobility and diffusion in hydrocolloidal structures, provide sufficient information for understanding the mechanism behind the effect of macromolecular hydrocolloids on taste.

  19. Synthesis of Aspartame by Thermolysin: An X-ray Structural Study

    PubMed Central

    2014-01-01

    Protease mediated peptide synthesis (PMPS) was first described in the 1930s but remains underexploited today. In most PMPS, the reaction equilibrium is shifted toward synthesis by the aqueous insolubility of product generated. Substrates and proteases are selected by trial and error, yields are modest, and reaction times are slow. Once implemented, however, PMPS reactions can be simple, environmentally benign, and readily scalable to a commercial level. We examined the PMPS of a precursor of the artificial sweetener aspartame, a multiton peptide synthesis catalyzed by the enzyme thermolysin. X-ray structures of thermolysin in complex with aspartame substrates separately, and after PMPS in a crystal, rationalize the reaction’s substrate preferences and reveal an unexpected form of substrate inhibition that explains its sluggishness. Structure guided optimization of this and other PMPS reactions could expand the economic viability of commercial peptides beyond current high-potency, low-volume therapeutics, with substantial green chemistry advantages. PMID:24944748

  20. Synthesis of Aspartame by Thermolysin: An X-ray Structural Study.

    PubMed

    Birrane, Gabriel; Bhyravbhatla, Balaji; Navia, Manuel A

    2014-06-12

    Protease mediated peptide synthesis (PMPS) was first described in the 1930s but remains underexploited today. In most PMPS, the reaction equilibrium is shifted toward synthesis by the aqueous insolubility of product generated. Substrates and proteases are selected by trial and error, yields are modest, and reaction times are slow. Once implemented, however, PMPS reactions can be simple, environmentally benign, and readily scalable to a commercial level. We examined the PMPS of a precursor of the artificial sweetener aspartame, a multiton peptide synthesis catalyzed by the enzyme thermolysin. X-ray structures of thermolysin in complex with aspartame substrates separately, and after PMPS in a crystal, rationalize the reaction's substrate preferences and reveal an unexpected form of substrate inhibition that explains its sluggishness. Structure guided optimization of this and other PMPS reactions could expand the economic viability of commercial peptides beyond current high-potency, low-volume therapeutics, with substantial green chemistry advantages.

  1. The effect of sweeteners on perceived viscosity.

    PubMed

    Theunissen, M J; Kroeze, J H

    1995-08-01

    Two different sweeteners, sucrose and aspartame, were matched in perceived sweetness intensity. These solutions were thickened with carboxymethylcellulose to six different viscosity levels. Sucrose and aspartame appeared to decrease perceived viscosity of the solutions at a specific sweetener concentration, at all viscosity levels. However, in a second similar experiment with three viscosity levels and seven sucrose concentrations no effect of sucrose concentration on perceived viscosity was found. Reasons for these conflicting results are discussed. No definite conclusions about the effect of sweeteners on perceived viscosity can as yet be drawn.

  2. Aspartame: scientific evaluation in the postmarketing period.

    PubMed

    Butchko, H H; Stargel, W W

    2001-12-01

    Prior to marketing, the safety of the high-intensity sweetener aspartame for its intended uses as a sweetener and flavor enhancer was demonstrated by the results of over 100 scientific studies in animals and humans. In the postmarketing period, the safety of aspartame was further evaluated through extensive monitoring of intake, postmarketing surveillance of anecdotal reports of alleged health effects, and additional research to evaluate these anecdotal reports and other scientific issues. The results of the extensive intake evaluation in the United States, which was done over an 8-year period, and the results of studies done in other countries demonstrated intakes which were well below the acceptable daily intakes set by the FDA and regulatory bodies in other countries, as well as the Joint FAO/WHO Expert Committee on Food Additives. Evaluation of the anecdotal reports of adverse health effects, the first such system for a food additive, revealed that the reported effects were generally mild and also common in the general population and that there was no consistent or unique pattern of symptoms that could be causally linked to consumption of aspartame. Finally, the results of the extensive scientific research done to evaluate these allegations did not show a causal relationship between aspartame and adverse effects. Thus, the weight of scientific evidence confirms that, even in amounts many times what people typically consume, aspartame is safe for its intended uses as a sweetener and flavor enhancer.

  3. An improved FIA biosensor for the determination of aspartame in dietary food products.

    PubMed

    Male, K B; Luong, J H; Gibbs, B; Konishi, Y

    1993-03-01

    A flow injection analysis (FIA) biosensor system was developed for the determination of the artificial sweetener aspartame (L-aspartyl-L-phenylalanine methyl ester). The system consisted of an enzyme column of pronase immobilized on activated arylamine glass beads and a L-amino acid oxidase electrode connected in series. The dipeptide bond of aspartame was cleaved by immobilized pronase to release phenylalanine, which was in turn monitored by the enzyme electrode that used L-amino acid oxidase immobilized on a preactivated nylon membrane in combination with an amperometric electrode (platinum vs silver/silver chloride, 700 mV). The response of the FIA biosensor was linear up to 1 mM aspartame with a lower detection limit of 25 microM and had good reproducibility (rsd 0.3%). The FIA biosensor was stable for at least 30 h of continuous use at Tr. Each assay takes 4 min giving a sample throughput of 15 h-1. When applied to aspartame in dietary food products the results obtained agreed well with those reported by the product manufacturers.

  4. Biochemical responses and mitochondrial mediated activation of apoptosis on long-term effect of aspartame in rat brain.

    PubMed

    Ashok, Iyaswamy; Sheeladevi, Rathinasamy

    2014-01-01

    Aspartame, an artificial sweetener, is very widely used in many foods and beverages. But there are controversies about its metabolite which is marked for its toxicity. Hence it is believed to be unsafe for human use. Previous studies have reported on methanol exposure with involvements of free radicals on excitotoxicity of neuronal apoptosis. Hence, this present study is proposed to investigate whether or not chronic aspartame (FDA approved Daily Acceptable Intake (ADI),40 mg/kg bwt) administration could release methanol, and whether or not it can induce changes in brain oxidative stress status and gene and protein expression of anti-apoptotic Bcl-2 and pro-apoptotic Bax and caspase-3 in the rat brain region. To mimic the human methanol metabolism, Methotrexate (MTX)-treated Wistar strain male albino rats were used and after the oral administration of aspartame, the effects were studied along with controls and MTX-treated controls. Aspartame exposure resulted with a significant increase in the enzymatic activity in protein carbonyl, lipid peroxidation levels, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase and catalase activity in (aspartame MTX)-treated animals and with a significant decrease in reduced glutathione, glutathione reductase and protein thiol, pointing out the generation of free radicals. The gene and protein expression of pro apoptotic marker Bax showed a marked increase whereas the anti-apoptotic marker Bcl-2 decreased markedly indicating the aspartame is harmful at cellular level. It is clear that long term aspartame exposure could alter the brain antioxidant status, and can induce apoptotic changes in brain.

  5. Aspartame stability in commercially sterilized flavored dairy beverages.

    PubMed

    Bell, L N; Labuza, T P

    1994-01-01

    The objective of this research was to evaluate the stability of aspartame in commercially sterilized skim milk beverages that contained different buffer salts, buffer concentrations, and flavor. The effects of pH and temperature on aspartame stability in these dairy beverages were also studied. The pH and storage temperature appeared to be the two most important factors for a successful dairy beverage sweetened with aspartame. The half-lives were 1 to 4 d at 30 degrees C and 24 to 58 d at 4 degrees C. Decreasing the pH from 6.7 to 6.4 doubled the stability of aspartame. The type and concentration of buffer had only a minor influence on the aspartame stability. The addition of vanilla did not enhance the degradation of aspartame in dairy beverages.

  6. In vivo cytogenetic studies on blends of aspartame and acesulfame-K.

    PubMed

    Mukhopadhyay, M; Mukherjee, A; Chakrabarti, J

    2000-01-01

    Aspartame and acesulfame-K, non-nutritive sweeteners, are permitted individually in diets and beverages. These sweeteners of different classes, used in combination, have been found to possess a synergistic sweetening effect. Whether they also have a synergistic genotoxic effect is unknown. Swiss Albino male mice were exposed to blends of aspartame (3.5, 35, 350mg/kg body weight) and acesulfame-K (1.5, 15 and 150mg/kg body weight) by gavage. Bone marrow cells isolated from femora were analysed for chromosome aberrations. Statistical analysis of the results show that aspartame in combination with acesulfame-K is not significantly genotoxic.

  7. Genotoxicity of aspartame.

    PubMed

    Rencüzoğullari, Eyyüp; Tüylü, Berrin Ayaz; Topaktaş, Mehmet; Ila, Hasan Basri; Kayraldiz, Ahmet; Arslan, Mehmet; Diler, Songül Budak

    2004-08-01

    In the present study, the genotoxic effects of the low-calorie sweetener aspartame (ASP), which is a dipeptide derivative, was investigated using chromosome aberration (CA) test, sister chromatid exchange (SCE) test, micronucleus test in human lymphocytes and also Ames/Salmonella/ microsome test. ASP induced CAs at all concentrations (500, 1000 and 2000 microg/ml) and treatment periods (24 and 48 h) dose-dependently, while it did not induce SCEs. On the other hand, ASP decreased the replication index (RI) only at the highest concentration for 48 h treatment period. However, ASP decreased the mitotic index (MI) at all concentrations and treatment periods dose-dependently. In addition, ASP induced micronuclei at the highest concentrations only. This induction was also dose-dependent for 48 hours treatment period. ASP was not mutagenic for Salmonella typhimurium TA98 and TA100 strains in the absence and presence of S9 mix.

  8. Use of aspartame in pregnancy.

    PubMed

    Sturtevant, F M

    1985-01-01

    The low-calorie sweetening agent, aspartame, is broken down in the small intestine into three moieties: aspartic acid, methanol and phenylalanine. Acute loading studies have been performed in human beings who received up to six times the 99th percentile of the projected daily intake (6 X 34 = 200 mg/kg). No evidence of risk to the fetus was developed. Aspartate does not readily cross the placenta. Small elevations of blood methanol following such abuse doses of aspartame did not lead to measurable increases of blood formic acid, which is the product responsible for the acidosis and ocular toxicity in methanol poisoning. Phenylalanine is concentrated on the fetal side of the placenta. Aspartame in abuse doses up to 200 mg/kg in normal subjects, or to 100 mg/kg in PKU heterozygotes, did not raise blood phenylalanine levels to the range generally accepted to be associated with mental retardation in the offspring. It is concluded that, under foreseeable conditions of use, aspartame poses no risk for use in pregnancy.

  9. Impact of aspartame and saccharin on the rat liver: Biochemical, molecular, and histological approach.

    PubMed

    Alkafafy, Mohamed El-Sayed; Ibrahim, Zein Shaban; Ahmed, Mohamed Mohamed; El-Shazly, Samir Ahmed

    2015-06-01

    The current work was undertaken to settle the debate about the toxicity of artificial sweeteners (AS), particularly aspartame and saccharin. Twenty-five, 7-week-old male Wistar albino rats with an average body weight of 101 ± 4.8 g were divided into a control group and four experimental groups (n = 5 rats). The first and second experimental groups received daily doses equivalent to the acceptable daily intake (ADI) of aspartame (250 mg/Kg BW) and four-fold ADI of aspartame (1000 mg/Kg BW). The third and fourth experimental groups received daily doses equivalent to ADI of saccharin (25 mg/Kg BW) and four-fold ADI of saccharin (100 mg/Kg BW). The experimental groups received the corresponding sweetener dissolved in water by oral route for 8 weeks. The activities of enzymes relevant to liver functions and antioxidants were measured in the blood plasma. Histological studies were used for the evaluation of the changes in the hepatic tissues. The gene expression levels of the key oncogene (h-Ras) and the tumor suppressor gene (P27) were also evaluated. In addition to a significant reduction in the body weight, the AS-treated groups displayed elevated enzymes activities, lowered antioxidants values, and histological changes reflecting the hepatotoxic effect of aspartame and saccharin. Moreover, the overexpression of the key oncogene (h-Ras) and the downregulation of the tumor suppressor gene (P27) in all treated rat groups may indicate a potential risk of liver carcinogenesis, particularly on long-term exposure. PMID:26015492

  10. Impact of aspartame and saccharin on the rat liver: Biochemical, molecular, and histological approach.

    PubMed

    Alkafafy, Mohamed El-Sayed; Ibrahim, Zein Shaban; Ahmed, Mohamed Mohamed; El-Shazly, Samir Ahmed

    2015-06-01

    The current work was undertaken to settle the debate about the toxicity of artificial sweeteners (AS), particularly aspartame and saccharin. Twenty-five, 7-week-old male Wistar albino rats with an average body weight of 101 ± 4.8 g were divided into a control group and four experimental groups (n = 5 rats). The first and second experimental groups received daily doses equivalent to the acceptable daily intake (ADI) of aspartame (250 mg/Kg BW) and four-fold ADI of aspartame (1000 mg/Kg BW). The third and fourth experimental groups received daily doses equivalent to ADI of saccharin (25 mg/Kg BW) and four-fold ADI of saccharin (100 mg/Kg BW). The experimental groups received the corresponding sweetener dissolved in water by oral route for 8 weeks. The activities of enzymes relevant to liver functions and antioxidants were measured in the blood plasma. Histological studies were used for the evaluation of the changes in the hepatic tissues. The gene expression levels of the key oncogene (h-Ras) and the tumor suppressor gene (P27) were also evaluated. In addition to a significant reduction in the body weight, the AS-treated groups displayed elevated enzymes activities, lowered antioxidants values, and histological changes reflecting the hepatotoxic effect of aspartame and saccharin. Moreover, the overexpression of the key oncogene (h-Ras) and the downregulation of the tumor suppressor gene (P27) in all treated rat groups may indicate a potential risk of liver carcinogenesis, particularly on long-term exposure.

  11. Sweetener/sweetness-induced changes in flavor perception and flavor release of fruity and green character in beverages.

    PubMed

    King, Bonnie M; Arents, Paul; Bouter, N; Duineveld, C A A; Meyners, M; Schroff, S I; Soekhai, S T

    2006-04-01

    Green leaf volatile (GLV) mixtures, commercial orange flavors, and commercial strawberry flavors were applied to beverage bases in which concentrations of citric acid as well as a sweetener (sucrose or aspartame/acesulfame-K) were varied. Sensory profiling showed that flavor-specific fruity character increased as perceptible sweetness increased, independent of whether the sweetness resulted from sucrose (a change from 9 to 12 Brix) or aspartame/acesulfame-K (a change from 0.2 to 0.4 Brix). Sweetness was affected only by the tastants in the base and not by the flavors, although flavor-specific interactions between sweetener type and sweetener level occurred. Flavor release from the sucrose bases was compared to flavor release from bases containing aspartame/acesulfame-K by static headspace measurements and by MS-Nose measurements using an artificial throat. These measurements showed greater flavor volatility from bases having low Brix (fewer soluble solids). This negative Brix effect was also evident in the sensory data for perception of some GLV green notes. The headspace data could not support a positive Brix effect, the typical salting out, which would correspond to the observed perceptual enhancement of fruity notes.

  12. Solution properties and sweetness response of selected bulk and intense sweeteners.

    PubMed

    Parke, S A; Birch, G G

    1999-04-01

    Two bulk sweeteners (sucrose and maltitol) and four intense sweeteners (acesulfame K, aspartame, sodium cyclamate, and sodium saccharin) are used in this study. Densities and sound velocity values of the sweeteners in solution are measured at 20 degrees C, and their apparent molar and specific volumes, their isentropic apparent molar and specific compressibilities, as well as their compressibility hydration numbers are calculated and reported. The introduction of solute molecules in water results in a volume change of the solvent as a result of attractive forces exerted by the solute molecules; such forces are in the form of electrostrictive or hydrogen-bonding forces, or charge-dipole attraction. Changes of molar volumes with increasing concentration give an indication of the extent of solute-solute interaction, whereas isentropic compressibilities give a direct measurement of the state of hydration of the solute molecules. The compressibility hydration numbers reported give an indication of the number of water molecules disturbed by the presence of each solute molecule in solution. Isentropic compressibilities seem to be a more sensitive parameter for distinguishing the bulk sweeteners from the artificial sweeteners. The sweetness response of the sweeteners is then explained in terms of their solution behaviors.

  13. Aspartame-induced apoptosis in PC12 cells.

    PubMed

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity.

  14. Calculation of the intake of three intense sweeteners in young insulin-dependent diabetics.

    PubMed

    Garnier-Sagne, I; Leblanc, J C; Verger, P

    2001-07-01

    In 1994, European Directive 94/35/CE authorised the use as food additives of five intense sweeteners for which Acceptable Daily Intakes (ADI) were established. The same directive stipulated that member states should organise a monitoring system to determine the consumption of these substances. Diabetic children are normally considered to constitute a group with a high consumption of sweeteners (European Commission, 1998. Report on Methodology for the Monitoring of Food Additives Intake across the European Union. Report of the Scientific Cooperation, Task 4.2 SCOOP/INT/REPORT/2. European Commission Directorate General III, Brussels.). A stepwise approach to the food additive intake in the general population had shown that three of the five authorised intense sweeteners (aspartame, saccharin and acesulfame K) are used at particularly high levels in sugar-free foods and are also very commonly utilised as table-top sweeteners. This paper presents the results of a food intake survey conducted in a group of French, insulin-dependent children in 1997, aimed at estimating the Theoretical Maximum Daily Intake (TMDI) for these three sweeteners and comparing this with the relevant ADI values. A 5-day diary questionnaire was used to estimate the intake of sugar-free, artificially sweetened foods and table-top sweeteners. When assessing the intake of each additive, all sugar-free products were assumed to be sweetened using a single sweetener at its maximum authorised level. This study was performed in five age groups, and based on the mean and 97.5th percentile of the distribution of consumption, demonstrated that it was unlikely that total exposure could rise above the ADI.

  15. Hydrophilic interaction liquid chromatography coupled to high-resolution mass spectrometry to determine artificial sweeteners in environmental waters.

    PubMed

    Salas, Daniela; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa Maria

    2015-06-01

    Artificial sweeteners are food additives employed as sugar substitutes which are now considered to be emerging organic contaminants. In the present study, a method is developed for the determination of a group of artificial sweeteners in environmental waters. Considering the polar and hydrophilic character of these compounds, hydrophilic interaction liquid chromatography is proposed for their separation as an alternative to traditional reversed-phase liquid chromatography. Two stationary phases with different chemistry were compared for this purpose. For the detection of the analytes, high-resolution mass spectrometry (Orbitrap) was employed to take advantage of its benefits in terms of reliable quantification and confirmation for the measurement of accurate masses. Solid-phase extraction was chosen as the sample treatment, in which the extract in a mixture of NH4OH:MeOH:ACN (1:4:15) was directly injected into the chromatographic system, simplifying the analytical procedure. The optimized method was validated on river and waste water samples. For example, in the case of effluent water samples, limits of detection ranged from 0.002 to 0.7 μg/L and limits of quantification ranged from 0.004 to 1.5 μg/L. Apparent (whole method) recoveries ranged from 57 to 74% with intra-day precision (%RSD, n = 5) ranging from 6 to 25%. The method was successfully applied to water samples from different rivers in Catalonia and different waste water treatment plants in Tarragona. Acesulfame, cyclamate, saccharine and sucralose were found in several samples. PMID:25428455

  16. Assessment of Korean consumer exposure to sodium saccharin, aspartame and stevioside.

    PubMed

    Ha, Mi-Sun; Ha, Sang-Do; Choi, Sung-Hee; Bae, Dong-Ho

    2013-01-01

    The dietary intakes of sodium saccharin, aspartame and stevioside were estimated on the basis of food consumption data of the Korean consumer and the concentration of sweeteners in processed foods. Results were compared with the acceptable daily intake (ADI) of sweeteners. Among the 28 food categories for which the application of sodium saccharin, aspartame and stevioside is permitted in Korea, they were detected in 5, 12 and 13 categories, respectively. The estimated daily intake (EDI) of sodium saccharin and aspartame were high in infants and children, whereas the EDI of stevioside was high in adolescents and adults. The most highly consumed sweetener was aspartame, and the highest EDI/ADI ratio was found for sodium saccharin. The main food categories contributing to sweetener consumption were beverages, including alcoholic beverages. For most Korean consumers, the EDIs were no greater than 20% of their corresponding ADI; however, the EDI of sodium saccharin for conservative consumers aged 1-2 years reached 60% of their ADI.

  17. Intake of intense sweeteners in Germany.

    PubMed

    Bär, A; Biermann, C

    1992-03-01

    The dietary intake of aspartame, cyclamate, and saccharin was evaluated in Germany (FRG) in 1988/89. In the first part of the study the sweetener intake was evaluated in a representative sample of the population. Complete 24-h records of the amount and type of all foods and drinks consumed were obtained from 2,291 individuals. The total daily intake was calculated for each person from the sweetener content of each product and was expressed in mg/kg body weight (bw). 35.9% of the participants ingested one or more sweeteners on the examination day. Cyclamate and saccharin were the prominent sweeteners because aspartame was at that time permitted only under special regulatory exemption, and products containing acesulfame were not yet available. For users of intense sweeteners the mean intakes of aspartame, cyclamate, and saccharin were 0.15, 2.62, and 0.250 mg/kg bw/day, respectively. At the 90th percentile of intake, i.e., for the heavy consumer, the ingestion of cyclamate and saccharin was about 2.5 times higher. Persons who adhered to a diet (diabetes, weight control) did not ingest sweeteners in substantially higher amounts. Tabletop sweeteners and beverages were the most important sources of sweeteners, and they contributed more than 80% of the total intake. Consumption of sweeteners in excess of the Acceptable Daily Intake (ADI) was rarely observed (saccharin: one person, cyclamate: 16 persons). In the second part of the study, the sweetener intake was further evaluated during a 7-day period in those subjects who in the 1-day study ingested any of the sweeteners in excess of 75% of the ADI. Complete 7-day food records were available from 40 out of the 41 subjects who fulfilled this criterium. In this selected subgroup in which 19 subjects were less than 19 years old, the mean daily intakes of aspartame, cyclamate, and saccharin were 0.13, 4.53, and 0.42 mg/kg body weight (bw), respectively. These levels correspond to 0.33, 41 and 17% of the corresponding ADI

  18. Effects of aspartame and phenylalanine on meal-time food intake of humans.

    PubMed

    Anderson, G H; Leiter, L A

    1988-01-01

    This article reviews data relevant to the hypothesis that aspartame may have a unique effect on meal-time food intake regulation due to its amino acid composition and in addition to its effects as a high intensity sweetener. It is concluded that future studies involving aspartame should be directed towards developing a fundamental understanding of the effects of high intensity sweeteners on food intake, and not give undue attention to putative actions based on its amino acid constituents.

  19. Determination of eight artificial sweeteners and common Stevia rebaudiana glycosides in non-alcoholic and alcoholic beverages by reversed-phase liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Kubica, Paweł; Namieśnik, Jacek; Wasik, Andrzej

    2015-02-01

    The method for the determination of acesulfame-K, saccharine, cyclamate, aspartame, sucralose, alitame, neohesperidin dihydrochalcone, neotame and five common steviol glycosides (rebaudioside A, rebaudioside C, steviol, steviolbioside and stevioside) in soft and alcoholic beverages was developed using high-performance liquid chromatography and tandem mass spectrometry with electrospray ionisation (HPLC-ESI-MS/MS). To the best of our knowledge, this is the first work that presents an HPLC-ESI-MS/MS method which allows for the simultaneous determination of all EU-authorised high-potency sweeteners (thaumatin being the only exception) in one analytical run. The minimalistic sample preparation procedure consisted of only two operations; dilution and centrifugation. Linearity, limits of detection and quantitation, repeatability, and trueness of the method were evaluated. The obtained recoveries at three tested concentration levels varied from 97.0 to 105.7%, with relative standard deviations lower than 4.1%. The proposed method was successfully applied for the determination of sweeteners in 24 samples of different soft and alcoholic drinks. PMID:25471292

  20. Determination of eight artificial sweeteners and common Stevia rebaudiana glycosides in non-alcoholic and alcoholic beverages by reversed-phase liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Kubica, Paweł; Namieśnik, Jacek; Wasik, Andrzej

    2015-02-01

    The method for the determination of acesulfame-K, saccharine, cyclamate, aspartame, sucralose, alitame, neohesperidin dihydrochalcone, neotame and five common steviol glycosides (rebaudioside A, rebaudioside C, steviol, steviolbioside and stevioside) in soft and alcoholic beverages was developed using high-performance liquid chromatography and tandem mass spectrometry with electrospray ionisation (HPLC-ESI-MS/MS). To the best of our knowledge, this is the first work that presents an HPLC-ESI-MS/MS method which allows for the simultaneous determination of all EU-authorised high-potency sweeteners (thaumatin being the only exception) in one analytical run. The minimalistic sample preparation procedure consisted of only two operations; dilution and centrifugation. Linearity, limits of detection and quantitation, repeatability, and trueness of the method were evaluated. The obtained recoveries at three tested concentration levels varied from 97.0 to 105.7%, with relative standard deviations lower than 4.1%. The proposed method was successfully applied for the determination of sweeteners in 24 samples of different soft and alcoholic drinks.

  1. Results of loading doses of aspartame by two phenylketonuric (PKU) children compared with two normal children.

    PubMed

    Koch, R; Schaeffler, G; Shaw, N F

    1976-11-01

    Separate tolerance tests with aspartame at 34 mg/kg-day and phenylalanine at 19 mg/kg-day were compared. The results reveal that slight serum elevation of phenylalanine and tyrosine occurred in the two PKU and the normal healthy adolescents. It would appear that the phenylalanine in the sweetener aspartame is small enough to be of little clinical significance.

  2. [Simultaneous determination of neotame, alitame and aspartame in foods by HPLC].

    PubMed

    Matsumoto, Hiroko; Hirata, Keiko; Sakamaki, Narue; Hagino, Kayo; Ushiyama, Hirofumi

    2008-02-01

    Simultaneous determination of three artificial sweeteners, neotame (NE), alitame (AL) and aspartame (APM) in various foods by high-performance liquid chromatography (HPLC) was developed. Chopped or homogenized samples were packed into cellulose tubing with 0.01 mol/L hydrochloric acid containing 10% sodium chloride, and dialyzed against 0.01 mol/L hydrochloric acid for 24-48 hours. The dialyzate was passed through an Oasis MCX cartridge, and the cartridge was washed with water and methanol. Then the three sweeteners were eluted from the cartridge with a mixture of 0.5 mol/L ammonium chloride-acetonitrile (3 : 2). The sweeteners were separated on a Cosmosil 5C18-AR column using a gradient mode with a mobile phase of 0.01 mol/L phosphate buffer (pH 4.0)-acetonitrile and were detected at 210 nm. The recoveries of NE, AL and APM from 8 kinds of foods spiked with 10 and 100 microg/g were 86-100% and 89-104%, respectively. The detection limits of NE, AL and APM were 1 microg/g in samples. Furthermore, the three sweeteners were successfully identified by using liquid chromatography with tandem mass spectrometry.

  3. Acute effects of aspartame on aggression and neurochemistry of rats.

    PubMed

    Goerss, A L; Wagner, G C; Hill, W L

    2000-08-01

    The inverse relationship between serotonin and aggression was investigated in rats treated with aspartame, a sweetener thought to interfere with the synthesis of this neurotransmitter. Eleven adult, male Long-Evans rats received either aspartame (200-800 mg/kg, IP) or the vehicle prior to testing in a standard resident-intruder paradigm. Contrary to our hypothesis, aspartame significantly decreased aggression as shown by increased latencies to the first attack and decreased number of bites per session. Corresponding with the effects on aggression, aspartame significantly increased striatal levels of serotonin. It was concluded that high doses of aspartame reduced aggressive attack via a serotonergic mechanism while the lower dose was without effect on either variable.

  4. Aspartame metabolism in normal adults, phenylketonuric heterozygotes, and diabetic subjects.

    PubMed

    Filer, L J; Stegink, L D

    1989-01-01

    This study reviews clinical studies testing the effects of various doses of aspartame on blood levels of phenylalanine, aspartate, and methanol in normal subjects and known phenylketonuric heterozygotes. The effect of aspartame on the phenylalanine-to-large neutral amino acid ratio under various feeding situations is shown. The clinical studies of aspartame in diabetic subjects are limited to observations of its effects on blood levels of glucose, lipids, insulin, and glucagon. These studies clearly demonstrate the safety of this high-intensity sweetener for use by humans.

  5. Aspartame: a safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies.

    PubMed

    Magnuson, B A; Burdock, G A; Doull, J; Kroes, R M; Marsh, G M; Pariza, M W; Spencer, P S; Waddell, W J; Walker, R; Williams, G M

    2007-01-01

    Aspartame is a methyl ester of a dipeptide used as a synthetic nonnutritive sweetener in over 90 countries worldwide in over 6000 products. The purpose of this investigation was to review the scientific literature on the absorption and metabolism, the current consumption levels worldwide, the toxicology, and recent epidemiological studies on aspartame. Current use levels of aspartame, even by high users in special subgroups, remains well below the U.S. Food and Drug Administration and European Food Safety Authority established acceptable daily intake levels of 50 and 40 mg/kg bw/day, respectively. Consumption of large doses of aspartame in a single bolus dose will have an effect on some biochemical parameters, including plasma amino acid levels and brain neurotransmitter levels. The rise in plasma levels of phenylalanine and aspartic acid following administration of aspartame at doses less than or equal to 50 mg/kg bw do not exceed those observed postprandially. Acute, subacute and chronic toxicity studies with aspartame, and its decomposition products, conducted in mice, rats, hamsters and dogs have consistently found no adverse effect of aspartame with doses up to at least 4000 mg/kg bw/day. Critical review of all carcinogenicity studies conducted on aspartame found no credible evidence that aspartame is carcinogenic. The data from the extensive investigations into the possibility of neurotoxic effects of aspartame, in general, do not support the hypothesis that aspartame in the human diet will affect nervous system function, learning or behavior. Epidemiological studies on aspartame include several case-control studies and one well-conducted prospective epidemiological study with a large cohort, in which the consumption of aspartame was measured. The studies provide no evidence to support an association between aspartame and cancer in any tissue. The weight of existing evidence is that aspartame is safe at current levels of consumption as a nonnutritive

  6. Modified DNA aptamers against sweet agent aspartame.

    PubMed

    Saitoh, Hiroshi; Nakamura, Akiko; Kuwahara, Masayasu; Ozaki, Hiroaki; Sawai, Hiroaki

    2002-01-01

    We obtained a modified DNA aptamer against sweetener, aspartame, by in vitro selection method. The modified DNA was prepared from dATP, dGTP, dCTP and a modified dTTP bearing a terminal amino group at C-5 position in place of thymidine by PCR using a hyper thermophilic DNA polymerase, KOD Dash DNA polymerase. The synthetic 102-mer DNA with a 60-mer random region was used as an initial template for the PCR. The PCR-amplified modified DNA library was applied to an aspartame-agarose column, and then the bound modified DNA was eluted from the column for the affinity chromatography selection. Repeating the procedure, we selected the modified DNA aptamer against aspartame.

  7. Review of present and future use of nonnutritive sweeteners.

    PubMed

    Bertorelli, A M; Czarnowski-Hill, J V

    1990-01-01

    In response to growing consumer demand for better tasting, low-calorie, sugar-free food products, the number of food items containing nonnutritive sweeteners has grown markedly in recent years. In this paper, present sweetener consumption is reviewed; the history, properties, uses, advantages, and safety of approved sweeteners such as saccharin, aspartame, and acesulfame-K are presented, as well as those of sweeteners such as cyclamate, sucralose, and alitame that are awaiting FDA approval; the role of sweeteners in the dietary management of persons with diabetes is discussed; and counseling guidelines for safe consumption are given.

  8. Male rats show an indifference-avoidance response for increasing concentrations of the artificial sweetener sucralose.

    PubMed Central

    Bello, Nicholas T.; Hajnal, Andras

    2006-01-01

    Sucralose is a non-nutritive halogenated sucrose derivative that has been described by humans as tasting predominately sweet with little or no aftertaste. In this study we examined the preference for sucralose in adult male Sprague Dawley rats. A standard 24 hr two-bottle test was used to compare a wide range of sucralose concentrations (0.0003–10g/L; 0.8 μM–25 mM) with water. The rats did not prefer sucralose to water at low concentrations (0.0003–0.3 g/L) and avoided sucralose at high concentrations (1–10g/L). Although there are many similarities in the taste preference of humans, mice, and rats, these results suggest that male rats do not prefer sucralose and avoid it at high concentrations. An awareness of the potential species differences in preference testing for novel sweeteners is critical for the taste and nutritional research communities. PMID:16810335

  9. Distribution of artificial sweeteners in dust and soil in China and their seasonal variations in the environment of Tianjin.

    PubMed

    Gan, Zhiwei; Sun, Hongwen; Yao, Yiming; Zhao, Yangyang; Li, Yan; Zhang, Yanwei; Hu, Hongwei; Wang, Ruonan

    2014-08-01

    A nationwide investigation on the occurrence of artificial sweeteners (ASs) was conducted by collecting 98 paired outdoor dust and soil samples from mainland China. The ASs were widely detected in Chinese atmospheric dry deposition and soil samples, at concentrations up to 6450 and 1280 ng/g, respectively. To give a picture on AS distribution and source in the whole environment, the concentrations and seasonal variations of ASs in Tianjin were studied, including atmosphere, soil, and water samples. The AS levels were significantly higher in Haihe river at TJW (a sampling site in central city) in winter, while no obviously seasonal trends were obtained at BYL (close to a AS factory) and the site at a wastewater treatment plant. Saccharin, cyclamate, and acesulfame were the dominant ASs in both gas and particulate phase, with concentrations varying from 0.02 to 1940 pg/m(3). Generally, gas phase concentrations of the ASs were relatively higher in summer, while opposite results were acquired for particulate phase. Wet and dry deposition fluxes were calculated based on the measured AS levels. The results indicated that both wet and dry deposition could efficiently remove ASs in the atmosphere and act as important pollutant sources for the ASs in surface environment. PMID:24830929

  10. Distribution of artificial sweeteners in dust and soil in China and their seasonal variations in the environment of Tianjin.

    PubMed

    Gan, Zhiwei; Sun, Hongwen; Yao, Yiming; Zhao, Yangyang; Li, Yan; Zhang, Yanwei; Hu, Hongwei; Wang, Ruonan

    2014-08-01

    A nationwide investigation on the occurrence of artificial sweeteners (ASs) was conducted by collecting 98 paired outdoor dust and soil samples from mainland China. The ASs were widely detected in Chinese atmospheric dry deposition and soil samples, at concentrations up to 6450 and 1280 ng/g, respectively. To give a picture on AS distribution and source in the whole environment, the concentrations and seasonal variations of ASs in Tianjin were studied, including atmosphere, soil, and water samples. The AS levels were significantly higher in Haihe river at TJW (a sampling site in central city) in winter, while no obviously seasonal trends were obtained at BYL (close to a AS factory) and the site at a wastewater treatment plant. Saccharin, cyclamate, and acesulfame were the dominant ASs in both gas and particulate phase, with concentrations varying from 0.02 to 1940 pg/m(3). Generally, gas phase concentrations of the ASs were relatively higher in summer, while opposite results were acquired for particulate phase. Wet and dry deposition fluxes were calculated based on the measured AS levels. The results indicated that both wet and dry deposition could efficiently remove ASs in the atmosphere and act as important pollutant sources for the ASs in surface environment.

  11. Administration of aspartame in non-insulin-dependent diabetics.

    PubMed

    Stern, S B; Bleicher, S J; Flores, A; Gombos, G; Recitas, D; Shu, J

    1976-11-01

    A study was designed to determine the effect of the consumption of the nutritive sweetener aspartame on non-insulin-dependent diabetics. Forty-three adult diabetics between the ages of 21 and 70 completed a 90-day study; all were diabetics whose conditions were managed by diet and/or hypoglycemic agents. Participants in the blind study were instructed to continue their usual diet and to take two capsules of an assigned preparation three times daily with meals, either the aspartame or the placebo. The 1.8 g of aspartame administered is approximately three times the expected daily consumption of aspartame if used as a sweetener to replace sugar. Throughout the study subjects were examined for (1) symptoms of intolerance, (2) fasting plasma phenylalanine levels exceeding 4 mg/100 ml, and (3) deterioration of diabetic control. At the conclusion of the study subjects exhibited no symptoms that could be traced to the administration of aspartame or the placebo, and diabetic control was unaffected by the chronic administration of these substances. Aspartame seems to be well tolerated by non-insulin-dependent diabetics.

  12. Simultaneous determination of nonnutritive sweeteners in foods by HPLC/ESI-MS.

    PubMed

    Yang, Da-jin; Chen, Bo

    2009-04-22

    Nonnutritive sweeteners are the low calorie substances used to replace sugar and other caloric ones. Determination of these sweeteners in foods is important to ensure consistency in product quality. In this study, seven artificial (aspartame, saccharin, acesulfame-K, neotame, sucralose, cyclamate, and alitame) and one natural sweetener (stevioside) were simultaneously determined in different foods using high performance liquid chromatography (HPLC) coupled with electrospray ionization mass spectrometric detection (ESI-MS). The target compounds were quantified using a selective ionization recording (SIR) at m/z 178, 397, 377, 293, 641, 312, 162, and 182 to cyclamate, sucralose, neotame, aspartame, stevioside, alitame, acesulfame-K, and saccharin, respectively, with warfarin sodium (SIR m/z 307) being used as an internal standard. The correlation coefficient of the calibration curve was better than 0.998 (n = 6), in the range of 0.05 to 5.00 microg/mL for cyclamate, 0.30 to 30.0 microg/mL for sucralose, 0.10 to 10.0 microg/mL for neotame, 0.20 to 20.0 microg/mL for aspartame, 0.50 to 15.0 microg/mL for stevioside, 0.08 to 8.00 microg/mL for alitame, 0.10 to 15.0 microg/mL for acesulfame-K, and 0.05 to 5.00 microg/mL for saccharin. The limits of detection (LODs) were below 0.10 microg/mL, whereas the limits of quantification (LOQs) were below 0.30 microg/mL. It is concluded that the method has merits such as high sensitivity, specificity, and simplicity versus the those of the other methods reported in the literature.

  13. Effects of aspartame and sucrose on hunger and energy intake in humans.

    PubMed

    Mattes, R

    1990-06-01

    Physiological and behavioral responses to high intensity sweeteners have been poorly characterized, leading to questions regarding their utility in weight management regimens. To address this issue, studies must independently control attributes such as the taste properties, chemical composition and energy contribution of a given sweetener, as well as subject expectations of its effects. In the present study, 24 adults of normal weight consumed breakfasts including unsweetened or sweetened (sucrose or aspartame) cereal for 5 days, during which hunger and energy intake were monitored. The cereals were rated as equally sweet and pleasant and were equicaloric. Half of the subjects were aware of the cereal composition. Neither sweet taste nor aspartame alone significantly affected reported hunger, daily energy intake or subsequent selection of foods with varying taste qualities. Energy intake tended to be more strongly influenced by perceptions of the energy value of the experimental breakfast. Thus, this study failed to find an appetite stimulating effect of either sweetness or sweetener (aspartame or sucrose).

  14. Development of low calorie snack food based on intense sweeteners.

    PubMed

    Patil, Swapna; Ravi, R; Saraswathi, G; Prakash, Maya

    2014-12-01

    Intense sweeteners namely Aspartame, Acesulfame K and Sucralose were used in the preparation of sugar substitute sprinklers and these were used in snack food, replacing sugar. Study was conducted with an objective to develop low calorie snack food. The psychometric study showed that the threshold values for Acesulfame K, Aspartame and Sucralose were 0.012, 0.030 and 0.005 g respectively. The time intensity study revealed that among three sweeteners Aspartame had more lingering sweetness (at 60 s). The sensory evaluation of Shankarpoli prepared using refined wheat flour revealed that there was no significant difference in typical attributes of the snack; Aspartame and Acesulfame K had same sweetness intensity where as Sucralose had higher intensity of sweetness. Consumer acceptance study revealed that 53 % of the consumers liked the snack with Sucralose, which is highest compared to other two sweeteners namely Aspartame and Acesulfame K (47 %). Thus sweeteners can be used as sweetening agents in traditional food preparations. PMID:25477687

  15. Development of low calorie snack food based on intense sweeteners.

    PubMed

    Patil, Swapna; Ravi, R; Saraswathi, G; Prakash, Maya

    2014-12-01

    Intense sweeteners namely Aspartame, Acesulfame K and Sucralose were used in the preparation of sugar substitute sprinklers and these were used in snack food, replacing sugar. Study was conducted with an objective to develop low calorie snack food. The psychometric study showed that the threshold values for Acesulfame K, Aspartame and Sucralose were 0.012, 0.030 and 0.005 g respectively. The time intensity study revealed that among three sweeteners Aspartame had more lingering sweetness (at 60 s). The sensory evaluation of Shankarpoli prepared using refined wheat flour revealed that there was no significant difference in typical attributes of the snack; Aspartame and Acesulfame K had same sweetness intensity where as Sucralose had higher intensity of sweetness. Consumer acceptance study revealed that 53 % of the consumers liked the snack with Sucralose, which is highest compared to other two sweeteners namely Aspartame and Acesulfame K (47 %). Thus sweeteners can be used as sweetening agents in traditional food preparations.

  16. Determination of aspartame and its major decomposition products in foods.

    PubMed

    Prodolliet, J; Bruelhart, M

    1993-01-01

    A liquid chromatographic procedure already evaluated in a preceding study for the analysis of acesulfam-K is also suitable for the determination of the intense sweetener aspartame in tabletop sweetener, candy, fruit beverage, fruit pulp, soft drink, yogurt, cream, cheese, and chocolate preparations. The method also allows the determination of aspartame's major decomposition products: diketopiperazine, aspartyl-phenylalanine, and phenylalanine. Samples are extracted or diluted with water and filtered. Complex matrixes are centrifuged or clarified with Carrez solutions. An aliquot of the extract is analyzed on a reversed-phase muBondapak C18 column using 0.0125M KH2PO4 (pH 3.5)-acetonitrile ([85 + 15] or [98 + 2]) as mobile phase. Detection is performed by UV absorbance at 214 nm. Recoveries ranged from 96.1 to 105.0%. Decomposition of the sweetener was observed in most food samples. However, the total aspartame values (measured aspartame + breakdown products) were within -10% and +5% of the declared levels. The repeatabilities and the repeatability coefficients of variation were, respectively, 1.00 mg/100 g and 1.34% for products containing less than 45 mg/100 g aspartame and 4.11 mg/100 g and 0.91% for other products. The technique is precise and sensitive. It enables the detection of many food additives or natural constituents, such as other intense sweeteners, organic acids, and alkaloids, in the same run without interfering with aspartame or its decomposition products. The method is consequently suitable for quality control or monitoring.

  17. [The use of low-calorie sweeteners].

    PubMed

    Jeznach-Steinhagen, Anna; Kurzawa, Joanna; Czerwonogrodzka-Senczyna, Aneta

    2013-05-01

    The aim of this study was to determine the type of sweeteners and their impact on the human body. There have been described in details the sweeteners such as aspartame, acesulfame K, sugar alcohols, fructose, D-tagatose, steviol glycosides and maple syrup which are present in currently available food products. According to The European Food Safety Authority (EFSA), aspartame and steviol glycosides were found to be safe for consumption. Whereas fructose, a component representing a large number of component products, according to the Polish Diabetes Association from 2012, should not be consumed by diabetics. The increase of popularity of products containing sweeteners causes that the search for new resources is constantly current and is the subject of research.

  18. Effects of intense sweeteners on hunger, food intake, and body weight: a review.

    PubMed

    Rolls, B J

    1991-04-01

    The sweet taste of aspartame, saccharin, and acesulfame-K has been reported to increase ratings of hunger and, after saccharin consumption, to increase food intake. However, most investigators have found that aspartame consumption is associated with decreased or unchanged ratings of hunger. Even if aspartame consumption increases ratings of hunger in some situations, it apparently has little impact on the controls of food intake and body weight. Aspartame has not been found to increase food intake; indeed, both short-term and long-term studies have shown that consumption of aspartame-sweetened foods or drinks is associated with either no change or a reduction in food intake. Preliminary clinical trials suggest that aspartame may be useful aid in a complete diet-and-exercise program or in weight maintenance. Intense sweeteners have never been found to cause weight gain in humans.

  19. Effects of three intense sweeteners on fat storage in the C. elegans model.

    PubMed

    Zheng, Jolene; Greenway, Frank L; Heymsfield, Steven B; Johnson, William D; King, Jason F; King, Michael J; Gao, Chenfei; Chu, Yi-Fang; Finley, John W

    2014-05-25

    Beverages sweetened with caloric sweeteners (CS), glucose, sucrose or high-fructose corn syrup, are associated with weight gain. Beverages sweetened with intense sweeteners (IS) are marketed as low-calorie substitutes to prevent beverages-associated weight gain. Using Caenorhabditis elegans, the effects on intestinal fat deposition (IFD) and pharyngeal pumping rate (PPR) of cola beverages sweetened with glucose, aspartame, or aspartame plus acesulfame-potassium (AceK) were compared. Control groups received Escherichia coli (OP50) only. Study I: the nematodes received additional glucose- or IS-sweetened beverages. Study II: the nematodes received additional glucose, aspartame, or aspartame plus AceK (AAK). Beverages containing CS or IS (aspartame or AAK) did not alter IFD in wild type (N2) or in daf-16 deficiency. The CS cola increased IFD in sir-2.1 deficiency (P<0.05). The AAK-cola increased IFD in daf-16/daf-2 deficiency and sir-2.1 deficiency (P<0.05). Glucose increased IFD in N2 and daf-16 deficiency (P<0.05). Aspartame showed a tendency towards reduced IFD in N2 and decreased IFD in daf-16/daf-2 deficiency (P<0.05). AAK increased IFD in daf-16 deficiency and sir-2.1 deficiency (P<0.05), and reversed the aspartame-induced reduction in IFD. The aspartame-sweetened cola increased the PPR in daf-16/daf-2 deficiency and daf-16 deficiency (P<0.05); similar results were obtained in N2 with both IS (P<0.05). AAK increased the PPR in daf-16/daf-2, daf-16, and sir-2.1 deficiencies (P<0.05). Thus, IS increased the PPR, a surrogate marker of lifespan. Aspartame may have an independent effect in reducing IFD to assist humans desiring weight loss. AceK may increase IFD in presence of insulin resistance. PMID:24632416

  20. Effects of three intense sweeteners on fat storage in the C. elegans model.

    PubMed

    Zheng, Jolene; Greenway, Frank L; Heymsfield, Steven B; Johnson, William D; King, Jason F; King, Michael J; Gao, Chenfei; Chu, Yi-Fang; Finley, John W

    2014-05-25

    Beverages sweetened with caloric sweeteners (CS), glucose, sucrose or high-fructose corn syrup, are associated with weight gain. Beverages sweetened with intense sweeteners (IS) are marketed as low-calorie substitutes to prevent beverages-associated weight gain. Using Caenorhabditis elegans, the effects on intestinal fat deposition (IFD) and pharyngeal pumping rate (PPR) of cola beverages sweetened with glucose, aspartame, or aspartame plus acesulfame-potassium (AceK) were compared. Control groups received Escherichia coli (OP50) only. Study I: the nematodes received additional glucose- or IS-sweetened beverages. Study II: the nematodes received additional glucose, aspartame, or aspartame plus AceK (AAK). Beverages containing CS or IS (aspartame or AAK) did not alter IFD in wild type (N2) or in daf-16 deficiency. The CS cola increased IFD in sir-2.1 deficiency (P<0.05). The AAK-cola increased IFD in daf-16/daf-2 deficiency and sir-2.1 deficiency (P<0.05). Glucose increased IFD in N2 and daf-16 deficiency (P<0.05). Aspartame showed a tendency towards reduced IFD in N2 and decreased IFD in daf-16/daf-2 deficiency (P<0.05). AAK increased IFD in daf-16 deficiency and sir-2.1 deficiency (P<0.05), and reversed the aspartame-induced reduction in IFD. The aspartame-sweetened cola increased the PPR in daf-16/daf-2 deficiency and daf-16 deficiency (P<0.05); similar results were obtained in N2 with both IS (P<0.05). AAK increased the PPR in daf-16/daf-2, daf-16, and sir-2.1 deficiencies (P<0.05). Thus, IS increased the PPR, a surrogate marker of lifespan. Aspartame may have an independent effect in reducing IFD to assist humans desiring weight loss. AceK may increase IFD in presence of insulin resistance.

  1. Aspartame and sucrose produce a similar increase in the plasma phenylalanine to large neutral amino acid ratio in healthy subjects.

    PubMed

    Burns, T S; Stargel, W W; Tschanz, C; Kotsonis, F N; Hurwitz, A

    1991-01-01

    Aspartame (L-aspartyl-L-phenylalanine methyl ester) consumption has been postulated to increase brain phenylalanine levels by increasing the molar ratio of the plasma phenylalanine concentration to the sum of the plasma concentrations of the other large neutral amino acids (Phe/LNAA). Dietary manipulations with carbohydrate or protein can also produce changes in the Phe/LNAA value. To compare the effects of aspartame and carbohydrate on Phe/LNAA, beverages sweetened with aspartame, sucrose, and aspartame plus sucrose, and unsweetened beverage were ingested by 8 healthy, fasted subjects in a randomized, four-way crossover design. The beverages were sweetened with an amount of aspartame (500 mg) and/or sucrose (100 g) approximately equivalent to that used to sweeten 1 liter of soft drink. The baseline-corrected plasma Phe/LNAA values did not differ significantly following ingestion of aspartame or sucrose. Following aspartame alone, the high mean ratio increased 26% over baseline 1 h after ingestion. Following sucrose alone, the high mean ratio increased 19% at 2.5 h. Sucrose increased the Phe/LNAA value due to an insulin-mediated decrease in the plasma LNAA, while aspartame increased the ratio by increasing the plasma Phe concentration. These findings indicate that similar increases in plasma Phe/LNAA occur when healthy, fasting subjects ingest amounts of equivalent sweetness of sucrose or aspartame.

  2. The metabolism of intense sweeteners.

    PubMed

    Renwick, A G

    1986-01-01

    Three organic acids (saccharin, acesulfame-K and cyclamate) are used or have been used extensively as intense sweeteners. Once absorbed from the gut they are eliminated, largely in the urine, without undergoing metabolism. Early studies using radiolabelled saccharin indicated the existence of limited metabolism, but this was not confirmed by later more extensive studies using highly purified compound. Metabolism could not be induced by a variety of pretreatments. Following an initial report of the presence of traces of cyclohexylamine in the urines of subjects given cyclamate, it was shown that chronic administration of the sweetener caused the induction of extensive metabolism. The metabolism, which showed wide inter- and intra-individual variability was performed the gut microflora. The peptide sweeteners (aspartame and thaumatin) are metabolized to their constituent amino acids in the gastro intestinal tract, prior to absorption. As such they are incorporated into normal intermediary metabolism and their low-calorie applications derive from their intense sweetness.

  3. Similarity assessment and attribute scaling of sucrose and aspartame in grape drink.

    PubMed

    Christensen, L; Archer, S

    1990-02-01

    The present study investigated the perception of sweetness of aspartame in comparison to various concentrations of sucrose. Twenty-seven subjects were randomly assigned to taste a chilled or room temperature Kool-Aid beverage sweetened with either aspartame or five different concentrations of sucrose. Subjects assessed the perceived similarity in sweetness of an aspartame-aspartame pair and five different aspartame-sucrose pairings and rated each beverage on five bipolar adjectives. Analysis of the similarity ratings revealed that subjects did not perceive the pairs of beverages to differ in perceived sweetness. Analysis of the adjective ratings revealed that aspartame and the lower sucrose concentrations were perceived as being less sweet and more sour than the higher sucrose concentrations.

  4. Aspartame and dizziness: preliminary results of a prospective, nonblinded, prevalence and attempted cross-over study.

    PubMed

    Gulya, A J; Sessions, R B; Troost, T R

    1992-09-01

    Aspartame is a low-calorie food sweetener recently approved by the FDA for general human consumption. One of us (AJG) treated a patient whose symptoms of episodic vertigo and continuous unsteadiness resolved upon ceasing aspartame intake. A literature review revealed that although dizziness has been associated with aspartame intake, no systematic study of the problem exists. As an initial attempt to ascertain the prevalence of aspartame-related dizziness in an otolaryngologic clinic, we elected to study prospectively all patients entering with the complaint of vertigo by means of a standardized questionnaire. Those patients determined to consume aspartame were further studied in a nonblinded manner to see if aspartame intake could be correlated to symptomatology. A cross-over limb was also attempted, but no patient would participate. This presentation details the case history of the propositus patient and the preliminary results of the currently ongoing prospective study.

  5. Sensory evaluation of soft drinks with various sweeteners.

    PubMed

    Schiffman, S S; Crofton, V A; Beeker, T G

    1985-03-01

    Forty subjects participated in each of two experiments in which both lemon-line and cola-flavored beverages containing one of six sweeteners--sucrose, sodium saccharin, aspartame, acesulfam-K, and two calcium cyclamate/sodium saccharin blends (10:1 and 3.5:1)--were evaluated on similarity and adjective scales. The similarity data suggest that drinks containing sucrose and aspartame cannot be discriminated from one another in either a lemon-line or cola medium in this experimental design. Sucrose and aspartame were also statistically equivalent on every adjective scale for both lemon-line and cola drinks. On both similarity judgments and adjective scales, acesulfam-K and sodium saccharin were most different from sucrose. The calcium cyclamate/sodium saccharin blends tended to be less similar than aspartame but not as different from sucrose as the acesulfam-K or sodium saccharin sweetened beverages.

  6. Relationship between artificially sweetened and sugar-sweetened cola beverage consumption during pregnancy and preterm delivery in a multi-ethnic cohort: analysis of the Born in Bradford cohort study.

    PubMed

    Petherick, E S; Goran, M I; Wright, J

    2014-03-01

    The aim of this study was to investigate the relationship between the intake of sugar-sweetened (SS) and artificially sweetened (AS) cola beverages during pregnancy and the risk of preterm delivery (PTD). At baseline (2007-2010), 8914 pregnant women were recruited to the Born in Bradford birth cohort study at 24-28 weeks of pregnancy. Women completed a questionnaire describing their health and lifestyle behaviours, including their consumption of AS and SS cola beverages reported as cups per day, which were then linked to maternity records. The relationship between SS and AS cola beverage consumption was examined using logistic regression analyses. No relationship was observed between daily AS cola beverage consumption and PTD. Women who drank four cups per day of SS cola beverages had higher odds of a PTD when compared with women who did not consume these beverages daily. We conclude that high daily consumption of SS cola beverages during pregnancy is associated with increases in the rate of PTD.

  7. Spherulitic crystallization of aspartame from aqueous solution in a two-dimensional cell

    NASA Astrophysics Data System (ADS)

    Mori, Tetsushi; Kubota, Noriaki; Abe, Sou; Kishimoto, Shin'ichi; Kumon, Satoshi; Naruse, Masayoshi

    1993-10-01

    An artificial sweetener, aspartame (α-L-aspartyl-L-phenylalanine methyl aster) was crystallized as spherulites in the order of magnitude of centimeters in radius. With increasing relative supersaturation σ, the number of nucleation sites increased, but the radius of the largest spherulite in the cell decreased. The growth rate G of the spherulite was 1-2 mm/min and is given as a function of σ by the experimental equation: G= 8.45 x 10 -2 σ 1.95. Individual fiber crystals of the spherulite grew slowly in the diameter direction until a critical diameter (10 μm or so) was attained. Longitudinally, however, they grew fast. They repeatedly split and branched during growth, spreading radially to form spherulites.

  8. [Optimization of sample pretreatment method for the determination of typical artificial sweeteners in soil by high performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Feng, Biting; Gan, Zhiwei; Hu, Hongwei; Sun, Hongwen

    2014-09-01

    The sample pretreatment method for the determination of four typical artificial sweeteners (ASs) including sucralose, saccharin, cyclamate, and acesulfame in soil by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was optimized. Different conditions of extraction, including four extractants (methanol, acetonitrile, acetone, deionized water), three kinds of ionic strength of sodium acetate solution (0.001, 0.01, 0.1 mol/L), four pH values (3, 4, 5 and 6) of 0.01 mol/L acetate-sodium acetate solution, four set durations of extraction (20, 40, 60, 120 min) and number of extraction times (1, 2, 3, 4 times) were compared. The optimal sample pretreatment method was finally set up. The sam- ples were extracted twice with 25 mL 0.01 mol/L sodium acetate solution (pH 4) for 20 min per cycle. The extracts were combined and then purified and concentrated by CNW Poly-Sery PWAX cartridges with methanol containing 1 mmol/L tris (hydroxymethyl) amino methane (Tris) and 5% (v/v) ammonia hydroxide as eluent. The analytes were determined by HPLC-MS/MS. The recoveries were obtained by spiked soil with the four artificial sweeteners at 1, 10, 100 μg/kg (dry weight), separately. The average recoveries of the analytes ranged from 86.5% to 105%. The intra-day and inter-day precisions expressed as relative standard deviations (RSDs) were in the range of 2.56%-5.94% and 3.99%-6.53%, respectively. Good linearities (r2 > 0.995) were observed between 1-100 μg/kg (dry weight) for all the compounds. The limits of detection were 0.01-0.21 kg/kg and the limits of quantification were 0.03-0.70 μg/kg for the analytes. The four artificial sweeteners were determined in soil samples from farmland contaminated by wastewater in Tianjin. This method is rapid, reliable, and suitable for the investigation of artificial sweeteners in soil. PMID:25752083

  9. Aspartame pharmacokinetics - the effect of ageing.

    PubMed

    Puthrasingam, S; Heybroek, W M; Johnston, A; Maskrey, V; Swift, C G; Turner, P; Abrams, S M; Jackson, S H

    1996-05-01

    Aspartame is an intense sweetener which is increasingly used in the UK. It is registered at an acceptable daily intake (ADI) of 40 mg/kg, although there are no previous data relating to the metabolism of aspartame in older people. Twelve young and 12 elderly volunteers each received a single dose of approximately 40 mg/kg of aspartame. Baseline concentrations of phenylalanine (the main metabolite of aspartame) rose after ingestion with a significantly higher maximum concentration (Cmax) (81.3 vs. 63.3 micromol/1, p<0.01) and area under the plasma concentration-time curve extrapolated to infinity AUC 9(0-infinity)(518.7 vs. 353.5 micromol . h/l, p<0.01) in the elderly group. The higher concentrations reflected a significant fall in volume of distribution (V) from 2.03 to 1.59 1/kg (p <0.05) and clearance (CL) from 7.3 to 4.9 ml/min/kg (p <0.005) in the elderly group. The greater effect on CL than on V resulted in a small but non-significant rise in elimination half life (3.5 to 3.9 hours). The sizes of the differences were modest implying that there is no need on pharmacokinetic grounds for a change in the ADI for older people.

  10. Sweet taste receptor gene variation and aspartame taste in primates and other species.

    PubMed

    Li, Xia; Bachmanov, Alexander A; Maehashi, Kenji; Li, Weihua; Lim, Raymond; Brand, Joseph G; Beauchamp, Gary K; Reed, Danielle R; Thai, Chloe; Floriano, Wely B

    2011-06-01

    Aspartame is a sweetener added to foods and beverages as a low-calorie sugar replacement. Unlike sugars, which are apparently perceived as sweet and desirable by a range of mammals, the ability to taste aspartame varies, with humans, apes, and Old World monkeys perceiving aspartame as sweet but not other primate species. To investigate whether the ability to perceive the sweetness of aspartame correlates with variations in the DNA sequence of the genes encoding sweet taste receptor proteins, T1R2 and T1R3, we sequenced these genes in 9 aspartame taster and nontaster primate species. We then compared these sequences with sequences of their orthologs in 4 other nontasters species. We identified 9 variant sites in the gene encoding T1R2 and 32 variant sites in the gene encoding T1R3 that distinguish aspartame tasters and nontasters. Molecular docking of aspartame to computer-generated models of the T1R2 + T1R3 receptor dimer suggests that species variation at a secondary, allosteric binding site in the T1R2 protein is the most likely origin of differences in perception of the sweetness of aspartame. These results identified a previously unknown site of aspartame interaction with the sweet receptor and suggest that the ability to taste aspartame might have developed during evolution to exploit a specialized food niche.

  11. Sweet Taste Receptor Gene Variation and Aspartame Taste in Primates and Other Species

    PubMed Central

    Li, Xia; Bachmanov, Alexander A.; Maehashi, Kenji; Li, Weihua; Lim, Raymond; Brand, Joseph G.; Beauchamp, Gary K.; Reed, Danielle R.; Thai, Chloe

    2011-01-01

    Aspartame is a sweetener added to foods and beverages as a low-calorie sugar replacement. Unlike sugars, which are apparently perceived as sweet and desirable by a range of mammals, the ability to taste aspartame varies, with humans, apes, and Old World monkeys perceiving aspartame as sweet but not other primate species. To investigate whether the ability to perceive the sweetness of aspartame correlates with variations in the DNA sequence of the genes encoding sweet taste receptor proteins, T1R2 and T1R3, we sequenced these genes in 9 aspartame taster and nontaster primate species. We then compared these sequences with sequences of their orthologs in 4 other nontasters species. We identified 9 variant sites in the gene encoding T1R2 and 32 variant sites in the gene encoding T1R3 that distinguish aspartame tasters and nontasters. Molecular docking of aspartame to computer-generated models of the T1R2 + T1R3 receptor dimer suggests that species variation at a secondary, allosteric binding site in the T1R2 protein is the most likely origin of differences in perception of the sweetness of aspartame. These results identified a previously unknown site of aspartame interaction with the sweet receptor and suggest that the ability to taste aspartame might have developed during evolution to exploit a specialized food niche. PMID:21414996

  12. Relationship between Research Outcomes and Risk of Bias, Study Sponsorship, and Author Financial Conflicts of Interest in Reviews of the Effects of Artificially Sweetened Beverages on Weight Outcomes: A Systematic Review of Reviews

    PubMed Central

    Kearns, Cristin E; Bero, Lisa A.

    2016-01-01

    Background Artificially sweetened beverage consumption has steadily increased in the last 40 years. Several reviews examining the effects of artificially sweetened beverages on weight outcomes have discrepancies in their results and conclusions. Objectives To determine whether risk of bias, results, and conclusions of reviews of effects of artificially sweetened beverage consumption on weight outcomes differ depending on review sponsorship and authors’ financial conflicts of interest. Methods We performed a systematic review of reviews of the effects of artificially sweetened beverages on weight. Two assessors independently screened articles for inclusion, extracted data, and assessed risks of bias. We compared risk of bias, results and conclusions of reviews by different industry sponsors, authors’ financial conflict of interest and journal sponsor. We also report the concordance between review results and conclusions. Results Artificial sweetener industry sponsored reviews were more likely to have favorable results (3/4) than non-industry sponsored reviews (1/23), RR: 17.25 (95% CI: 2.34 to 127.29), as well as favorable conclusions (4/4 vs. 15/23), RR: 1.52 (95% CI: 1.14 to 2.06). All reviews funded by competitor industries reported unfavorable conclusions (4/4). In 42% of the reviews (13/31), authors’ financial conflicts of interest were not disclosed. Reviews performed by authors that had a financial conflict of interest with the food industry (disclosed in the article or not) were more likely to have favorable conclusions (18/22) than reviews performed by authors without conflicts of interest (4/9), RR: 7.36 (95% CI: 1.15 to 47.22). Risk of bias was similar and high in most of the reviews. Conclusions Review sponsorship and authors’ financial conflicts of interest introduced bias affecting the outcomes of reviews of artificially sweetened beverage effects on weight that could not be explained by other sources of bias. PMID:27606602

  13. Determination of aspartame by ion chromatography with electrochemical integrated amperometric detection.

    PubMed

    Qu, F; Qi, Z H; Liu, K N; Mou, S F

    1999-07-30

    In this paper, the separation and determination of the sweetener aspartame by ion chromatography coupled with electrochemical amperometric detection is reported. Sodium saccharin, acesulfame-K and aspartame were separated using 27.5 mmol/l NaOH isocratic elution on a Dionex IonPac AS4A-SC separation column. Aspartame can be determined by integrated amperometric detection without interference from the other two sweeteners. The method can be applied to the determination of aspartame in powered tabletop, fruit juice and carbonated beverage samples, and the results obtained by integrated amperometry were in agreement with those obtained using a UV detection method. A method for determining analytes with an NH2 group by ion chromatography with integrated amperometry was developed.

  14. Nonnutritive Sweeteners in Breast Milk.

    PubMed

    Sylvetsky, Allison C; Gardner, Alexandra L; Bauman, Viviana; Blau, Jenny E; Garraffo, H Martin; Walter, Peter J; Rother, Kristina I

    2015-01-01

    Nonnutritive sweeteners (NNS), including saccharin, sucralose, aspartame, and acesulfame-potassium, are commonly consumed in the general population, and all except for saccharin are considered safe for use during pregnancy and lactation. Sucralose (Splenda) currently holds the majority of the NNS market share and is often combined with acesulfame-potassium in a wide variety of foods and beverages. To date, saccharin is the only NNS reported to be found in human breast milk after maternal consumption, while there is no apparent information on the other NNS. Breast milk samples were collected from 20 lactating volunteers, irrespective of their habitual NNS intake. Saccharin, sucralose, and acesulfame-potassium were present in 65% of participants' milk samples, whereas aspartame was not detected. These data indicate that NNS are frequently ingested by nursing infants, and thus prospective clinical studies are necessary to determine whether early NNS exposure via breast milk may have clinical implications. PMID:26267522

  15. Nonnutritive Sweeteners in Breast Milk.

    PubMed

    Sylvetsky, Allison C; Gardner, Alexandra L; Bauman, Viviana; Blau, Jenny E; Garraffo, H Martin; Walter, Peter J; Rother, Kristina I

    2015-01-01

    Nonnutritive sweeteners (NNS), including saccharin, sucralose, aspartame, and acesulfame-potassium, are commonly consumed in the general population, and all except for saccharin are considered safe for use during pregnancy and lactation. Sucralose (Splenda) currently holds the majority of the NNS market share and is often combined with acesulfame-potassium in a wide variety of foods and beverages. To date, saccharin is the only NNS reported to be found in human breast milk after maternal consumption, while there is no apparent information on the other NNS. Breast milk samples were collected from 20 lactating volunteers, irrespective of their habitual NNS intake. Saccharin, sucralose, and acesulfame-potassium were present in 65% of participants' milk samples, whereas aspartame was not detected. These data indicate that NNS are frequently ingested by nursing infants, and thus prospective clinical studies are necessary to determine whether early NNS exposure via breast milk may have clinical implications.

  16. Effects of aspartame in young persons during weight reduction.

    PubMed

    Knopp, R H; Brandt, K; Arky, R A

    1976-11-01

    Given the potential use of a low-calorie sweetener during weight reduction, a toxicity study of chronic aspartame ingestion was conducted. Particular attention was given to possible long-term effects of aspartame on the fuel hormonal alterations characteristically caused by weight reduction. As a group mean age was 19.3 yr, body weight was 164.6 lb, and mean height was 65.4 in. Subjects were an average of 33% in excess of ideal body weight. The aspartame dose was 2.7 g/day and was compared on a double-blind randomized basis with a lactose placebo. Both materials were given in gelatin capsules. An average of 6.9 +/- 1.5 lb was lost by the aspartame group during the 13-wk study on a calculated 1,000-calorie diet. The placebo group lost 4.5 +/- 1.2 lb (no significant difference between the two groups). After an overnight fast, reductions in glucose and immunoreactive insulin were seen in both groups, while rising trends in immunoreactive glucagon were observed. These changes are all characteristic of calorie restriction. In no instance was there a detectable effect of the ingested aspartame. No meaningful effect of weight reduction or aspartame was seen on plasma triglyceride and cholesterol, nor on any other parameter of hematologic, hepatic, or renal function that was measured. Similarly, side effects were equally distributed between asparatame and placebo.

  17. Caffeine intensifies taste of certain sweeteners: role of adenosine receptor.

    PubMed

    Schiffman, S S; Diaz, C; Beeker, T G

    1986-03-01

    Caffeine, a potent antagonist of adenosine receptors, potentiates the taste of some but not all sweeteners. It significantly enhances the taste of acesulfam-K, neohesperidin dihydrochalcone, d-tryptophan, thaumatin, stevioside, and sodium saccharin. Adenosine reverses the enhancement. Caffeine has no effect on aspartame, sucrose, fructose, and calcium cyclamate. These results suggest that the inhibitory A1 adenosine receptor plays an important local role in modulating the taste intensity of certain sweeteners and that several transduction mechanisms mediate sweet taste.

  18. In vitro effect of aspartame in angiogenesis induction.

    PubMed

    Alleva, Renata; Borghi, Battista; Santarelli, Lory; Strafella, Elisabetta; Carbonari, Damiano; Bracci, Massimo; Tomasetti, Marco

    2011-02-01

    Aspartame (APM) is the most widely used artificial sweetener and is added to a wide variety of foods, beverages, drugs, and hygiene products. In vitro and in vivo tests have reported contradictory data about APM genotoxicity. We evaluated the angiogenic effect of APM in an in vitro model using blood vessel development assay (Angio-Kit), cultured endothelial cells and fibroblasts. The release of IL-6, VEGF-A, and their soluble receptors sIL-R6 and sVEGFR-2 were determined over time in the conditioned medium of the Angio-Kit system, endothelial cells and cell lines with fibroblast properties after APM treatment. Reactive oxygen species (ROS) formation, cell viability, and stimulation of the extracellular signal-regulated kinases (erk1/2) and protein p38 were also evaluated. Exposure to APM induced blood vessel formation. ROS production was observed in endothelial cells after APM treatment, which was associated with a slight cell cytotoxicity. Neither intracellular ROS formation nor cell death was observed in fibroblasts. APM increases the levels of inflammatory mediator IL-6, VEGF and their soluble receptors released from endothelial cells into the medium. APM treatment induces VEGF-pathway activation by erk1/2 and p38 phosphorylation. APM at low doses is an angiogenic agent that induces regenerative cytokine production leading to the activation of MAPKs and resulting in the formation of new blood vessels.

  19. Immunoreactive beta-endorphin increases after an aspartame chocolate drink in healthy human subjects.

    PubMed

    Melchior, J C; Rigaud, D; Colas-Linhart, N; Petiet, A; Girard, A; Apfelbaum, M

    1991-11-01

    It has been claimed that sucrose intake induces a rise in beta-endorphins. In an attempt to discriminate between the sensorial and metabolic effects of sucrose intake in this process, the effects of two chocolate drinks were compared: one sweetened with 50 g of sucrose, the other with 80 mg of aspartame. Plasma beta-endorphin concentrations were more elevated after the aspartame drink than after sucrose or fasting, while insulin increased after drinking as much with aspartame as with sucrose. We suggest that the increase in beta-endorphin after aspartame edulcorated chocolate is related with insulin secretion in the absence of marked changes in blood glucose or with a direct effect of aspartame itself on beta-endorphin liberation.

  20. Gustatory reaction time to various sweeteners in human adults.

    PubMed

    Yamamoto, T; Kato, T; Matsuo, R; Kawamura, Y; Yoshida, M

    1985-09-01

    Reaction times to recognize the sweet taste of 12 sweeteners at various concentrations were measured in 48 human adults. The reaction time (T) decreased with increasing concentration (C) of each sweetener applied to the anterior dorsal tongue. The relationships between T and C, and T and logC were well described by a rectangular hyperbola formula for each of the 12 sweeteners. Reaction times to discriminate sweet taste quality between pairs of sweeteners were measured, then a similarity index was calculated. Factor analysis based on correlation coefficients between pairs of sweeteners which were obtained by the similarity indices has indicated classification of the sweeteners. Sucrose, fructose, glucose, maltose, sorbitol and aspartame tend to group together. Na-cyclamate and Na-saccharin form another group. DL-alanine, stevioside and neohesperidin dihydrochalcone are rather independent and do not belong to any group.

  1. Response to single dose of aspartame or saccharin by NIDDM patients.

    PubMed

    Horwitz, D L; McLane, M; Kobe, P

    1988-03-01

    Twelve normal subjects and 10 subjects with non-insulin-dependent diabetes mellitus were given, in random order at intervals of greater than or equal to 1 wk, three drinks of the same beverage: one unsweetened, one sweetened with 400 mg aspartame, and one sweetened with 135 mg saccharin. The amount of sweetener approximated that in 1 L of sugar-free soft drink. Plasma glucose, insulin, and glucagon were measured for 3 h after ingestion of the test beverage. Plasma glucose declined slightly throughout the test period, probably due to fasting, with no differences between the three treatments. Neither sweetener affected peak insulin levels in subjects with or without diabetes. Analysis of area under the curve showed that mean insulin levels were statistically significantly higher after aspartame than after saccharin or unsweetened beverage in normal subjects only, but the magnitude of the difference was small and unlikely to be of physiological importance in the absence of differences in glucose levels. Furthermore, the differences could largely be accounted for by a decrease in insulin values after both unsweetened beverage and saccharin, with no change from baseline after aspartame. Glucagon levels showed time-to-time variation but no overall differences. We conclude that ingestion of aspartame- or saccharin-sweetened beverages by fasting subjects, with or without diabetes, did not affect blood glucose homeostasis.

  2. Flow injection spectrophotometric determination of aspartame in dietary products.

    PubMed

    Nóbrega, J de A; Fatibello-Filho, O; Vieira, I da C

    1994-09-01

    A flow injection spectrophotometric method has been developed for the determination of aspartame in dietary products using ninhydrin as a colorimetric reagent. The reaction was conducted in a 1 + 1 v/v methanol-isopropanol medium also containing potassium hydroxide. The absorbance measurements were made at 603 nm. The results obtained for the determination of aspartame in table sweetener, pudding, gelatin, and refreshment (i.e., a powder dissolved in water for drinking) are in good agreement with the results obtained using a conventional manual procedure (correlation coefficient, r = 0.9984). Thirty-six results were obtained per hour, and the relative standard deviation was less than 3.5% (n = 6) for all samples. The detection limit (three times the signal blank/slope) was 3.8 x 10(-5) mol l-1 of aspartame.

  3. Resolution of an intense sweetener mixture by use of a flow injection sensor with on-line solid-phase extraction. Application to saccharin and aspartame in sweets and drinks.

    PubMed

    Capitán-Vallvey, L F; Valencia, M C; Arana Nicolás, E; García-Jiménez, J F

    2006-05-01

    An integrated solid-phase spectrophotometry-FIA method is proposed for simultaneous determination of the mixture of saccharin (1,2-benzisothiazol-3(2H)-one-1,1-dioxide; E-954) (SA) and aspartame (N-L-alpha-aspartyl-L-phenylalanine-1-methyl ester; E-951) (AS). The procedure is based on on-line preconcentration of AS on a C18 silica gel minicolumn and separation from SA, followed by measurement, at lambda = 210 nm, of the absorbance of SA which is transiently retained on the adsorbent Sephadex G-25 placed in the flow-through cell of a monochannel FIA setup using pH 3.0 orthophosphoric acid-dihydrogen phosphate buffer, 3.75x10(-3) mol L(-1), as carrier. Subsequent desorption of AS with methanol enables its determination at lambda = 205 nm. With a sampling frequency of 10 h(-1), the applicable concentration range, the detection limit, and the relative standard deviation were from 1.0 to 200.0 microg mL(-1), 0.30 microg mL(-1), and 1.0% (80 microg mL(-1), n = 10), respectively, for SA and from 10.0 to 200.0 microg mL(-1), 1.4 microg mL(-1), and 1.6% (100 microg mL(-1), n = 10) for AS. The method was used to determine the amounts of aspartame and saccharin in sweets and drinks. Recovery was always between 99 and 101%. The method enabled satisfactory determination of blends of SA and AS in low-calorie and dietary products and the results were compared with those from an HPLC reference method.

  4. [Use of HPLC technique for determination of aspartame and acesulfam-K in processed fruit products].

    PubMed

    Szymczyk, K; Czerwiecki, L

    1995-01-01

    A liquid chromatographic method for the determination of the intense sweeteners--aspartame and acesulfam-K in fruit and vegetable nectars was described. Samples were extracted with water, then clarified with Carrez solutions. An aliquot of the extract was analyzed on C-18 reverse-phase column with UV detection. Mean recoveries ranged from 95.9 to 101.8%. The method is suitable for routine determinations of both sweeteners.

  5. Structure, dynamics, and stability of beta-cyclodextrin inclusion complexes of aspartame and neotame.

    PubMed

    Garbow, J R; Likos, J J; Schroeder, S A

    2001-04-01

    Studies of the high-intensity sweetener aspartame show that its stability is significantly enhanced in the presence of beta-cyclodextrin (beta-CyD). At a 5:1 beta-CyD/aspartame molar ratio, the stability of aspartame is 42% greater in 4 mM phosphate buffer (pH 3.1) compared to solutions prepared without beta-CyD. Solution-state (1)H NMR experiments demonstrate the formation of 1:1 beta-CyD/aspartame complexes, stabilized by the interaction of the phenyl-ring protons of aspartame with the H3 and H5 protons of beta-CyD. Inclusion complex formation clearly accounts for the observed stability enhancement of aspartame in solution. The formation of inclusion complexes in solution is also demonstrated for beta-CyD and neotame, a structural derivative of aspartame containing an N-substituted 3,3-dimethylbutyl group. These complexes are stabilized by the interaction of beta-CyD with both phenyl-ring and dimethylbutyl protons. Solid-state NMR experiments provide additional characterization, clearly demonstrating the formation of inclusion complexes in lyophilized solids prepared from solutions of beta-CyD and either aspartame or neotame.

  6. Absence of developmental effects in CF-1 mice exposed to aspartame in utero.

    PubMed

    McAnulty, P A; Collier, M J; Enticott, J; Tesh, J M; Mayhew, D A; Comer, C P; Hjelle, J J; Kotsonis, F N

    1989-08-01

    Aspartame (L-aspartyl-L-phenylalanine methyl ester) is a widely used high potency dipeptide sweetener. Developmental toxicology studies have been performed in several species documenting no effects of high doses of aspartame. Recently, a study by Mahalik and Gautieri [1984) Res. Commun. Psychol. Psychiatry Behav. 9, 385-403) reported a delay in the achievement age for the visual placing response in mice pups after maternal administration of high dosages of aspartame during late gestation. In the present study developmental parameters were determined in offspring of CF-1 mice after maternal administration of aspartame at 500, 1000, 2000, and 4000 mg/kg body wt by oral gavage. Aspartame was administered on Days 15 through 18 of gestation. Maternal body weight, food consumption, gestation length, reproductive indices, and litter size were not affected by aspartame treatment. In the pups, body weights, negative geotaxis, and surface and midair righting reflexes were not altered by treatment. There was no delay in the development of the visual placing response regardless of the method employed for assessment (grid or rope) or the manner by which the data were analyzed. There were also no changes in time of eye opening, reflex pupil closure, and ophthalmoscopic examination in the offspring. Thus, neither physical nor functional development was altered in mice after in utero exposure to extremely large dosages of aspartame. More specifically, in utero exposure to aspartame did not affect the development of the visual system in mice.

  7. The effectiveness of different sweeteners in suppressing citric acid sourness.

    PubMed

    Schifferstein, H N; Frijters, J E

    1991-01-01

    The exact mechanism that causes taste suppression in a perceptually heterogeneous mixture, and the locus of that mechanism, are as yet unknown. The present study was designed to explore the idea that mixture suppression is a perceptual phenomenon and not the result of physical, chemical, or receptor-substance interactions. An investigation was carried out as to whether perceptually similar taste stimuli give rise to the same sensory interactions when mixed with a substance of a different taste quality. In the first study, five different sweeteners (sucrose, fructose, aspartame, saccharin, and sorbitol) were matched in perceived sweetness intensity, in order to obtain five perceptually similar stimuli. Every equisweet sweetener concentration was mixed with each of four citric acid concentrations. In a second study, the sourness-suppressing effects of two sweeteners, sucrose and aspartame, were compared at four different concentration levels. Sourness scale values of unmixed citric acid, the unmixed sweeteners, and the citric acid/sweetener mixtures were assessed with a functional measurement approach in combination with a two-stimulus procedure. The equisweet sweeteners were equally effective in suppressing the perceived sourness intensity of citric acid over the concentration range used. The side tastes of the sweeteners, if present, did not have a substantial effect on the degree of sourness suppression.

  8. Overview of Sweeteners

    NASA Astrophysics Data System (ADS)

    Ellis, Jerry W.

    1995-08-01

    The techniques for assessing the relative sweetness of different compounds are discussed. The search for new, sweet compounds continues to be of interest to the food industry. In addition to sugars, sweet compounds with a variety of structures are surveyed and range from small inorganic molecules to large proteins. Emphasis is placed on artificial sweeteners and their current status in the marketplace. The recent theories of sweetness are briefly covered.

  9. Ultrastructural changes to rabbit fibrin and platelets due to aspartame.

    PubMed

    Pretorius, E; Humphries, P

    2007-01-01

    The coagulation process, including thrombin, fibrin, as well as platelets, plays an important role in hemostasis, contributing to the general well-being of humans. Fibrin formation and platelet activation are delicate processes that are under the control of many small physiological events. Any one of these many processes may be influenced or changed by external factors, including pharmaceutical or nutritional products, e.g., the sweetener aspartame (L-aspartyl-L-phenylalanine methyl ester). It is known that phenylalanine is present at position P(9) and aspartate at position P(10) of the alpha-chain of human fibrinogen, and plays an important role in the conversion of fibrinogen to fibrin by the catalyst alpha-thrombin. The authors investigate the effect of aspartame on platelet and fibrin ultrastructure, by using the rabbit animal model and the scanning electron microscope. Animals were exposed to 34 mg/kg of aspartame 26x during a 2-month period. Aspartame-exposed fibrin networks appeared denser, with a thick matted fine fiber network covering thick major fibers. Also, the platelet aggregates appeared more granular than the globular control platelet aggregates. The authors conclude by suggesting that aspartame usage may interfere with the coagulation process and might cause delayed fibrin breakup after clot formation. They suggest this, as the fibrin networks from aspartame-exposed rabbits are more complex and dense, due to the netlike appearance of the minor, thin fibers. Aspartame usage should possibly be limited by people on anti-clotting medicine or those with prone to clot formation.

  10. Metabolic effects of adding sucrose and aspartame to the diet of subjects with noninsulin-dependent diabetes mellitus.

    PubMed

    Colagiuri, S; Miller, J J; Edwards, R A

    1989-09-01

    This study compared the effects of adding sucrose and aspartame to the usual diet of individuals with well-controlled noninsulin-dependent diabetes mellitus (NIDDM). A double-blind, cross-over design was used with each 6-wk study period. During the sucrose period, 45 g sucrose (9% of total daily energy) was added, 10 g with each main meal and 5 g with each between-meal beverage. An equivalent sweetening quantity of aspartame (162 mg) was ingested during the aspartame period. The addition of sucrose did not have a deleterious effect on glycemic control, lipids, glucose tolerance, or insulin action. No differences were observed between sucrose and aspartame. Sucrose added as an integral part of the diabetic diet does not adversely affect metabolic control in well-controlled NIDDM subjects. Aspartame is an acceptable sugar substitute for diabetic individuals but no specific advantage over sucrose was demonstrated.

  11. Absence of an effect of aspartame on seizures induced by electroshock in epileptic and non-epileptic rats.

    PubMed

    Jobe, P C; Lasley, S M; Burger, R L; Bettendorf, A F; Mishra, P K; Dailey, J W

    1992-06-01

    Seizure facilitation has been proposed as a possible adverse effect of dietary consumption of aspartame. The conversion of this sweetener to phenylalanine and aspartate in the gastrointestinal tract, and subsequent absorption, elevates plasma levels of these two amino acids. Absorbed phenylalanine competes with other large neutral amino acids, including tyrosine and tryptophan, for transport into brain. Theoretically, this competition might reduce brain tyrosine and tryptophan which could decrease synthesis of norepinephrine, dopamine and serotonin. Diminished synaptic release of these monoaminergic neurotransmitters facilitates seizures in many seizure models. Our present study evaluates effects of oral aspartame on amino acids and electroshock seizures in normal and seizure predisposed rats. Heroic doses of aspartame produced predićtable changes in plasma amino acids. However, none of the aspartame doses altered seizure indices. We conclude that aspartame does not alter maximal electroshock seizures in normal rats or in rats predisposed to seizures.

  12. Microencapsulation of aspartame by double emulsion followed by complex coacervation to provide protection and prolong sweetness.

    PubMed

    Rocha-Selmi, Glaucia A; Bozza, Fernanda T; Thomazini, Marcelo; Bolini, Helena M A; Fávaro-Trindade, Carmen S

    2013-08-15

    The objective of this work was to microencapsulate aspartame by double emulsion followed by complex coacervation, aiming to protect it and control its release. Six treatments were prepared using sunflower oil to prepare the primary emulsion and gelatin and gum Arabic as the wall materials. The microcapsules were evaluated structurally with respect to their sorption isotherms and release into water (36°C and 80°C). The microcapsules were multinucleated, not very water-soluble or hygroscopic and showed reduced rates of equilibrium moisture content and release at both temperatures. FTIR confirmed complexation between the wall materials and the intact nature of aspartame. The results indicated it was possible to encapsulate aspartame with the techniques employed and that these protected the sweetener even at 80°C. The reduced solubility and low release rates indicated the enormous potential of the vehicle developed in controlling the release of the aspartame into the food, thus prolonging its sweetness.

  13. Assessing developmental toxicity of caffeine and sweeteners in medaka (Oryzias latipes).

    PubMed

    Lee, Wenjau; Wang, Yun-Chi

    2015-01-01

    The use of artificial sweeteners (ASWs) has increased and become more widespread, and consequently ASWs have appeared in aquatic environments around the world. However, their safety to the health of humans and wildlife remains inconclusive. In this study, using medaka embryos (Oryzias latipes), we investigated developmental toxicity of aspartame (ASP) and saccharin (SAC). Since ASWs are often consumed with caffeine (CAF) and CAF with sucrose (SUC), we tested biological activities of these four substances and the mixtures of CAF with each sweetener. The embryos were exposed to ASP at 0.2 and 1.0 mM, SAC at 0.005 and 0.050 mM, CAF at 0.05 and 0.5 mM, or SUC at 29 and 146 mM, starting from less than 5 h post fertilization until hatch. Control embryos were treated with embryo solution only. Several endpoints were used to evaluate embryonic development. Some of the hatchlings were also tested for anxiety-like behavior with the white preference test. The results showed that all four substances and the mixtures of CAF with the sweeteners affected development. The most sensitive endpoints were the heart rate, eye density, and hatchling body length. The hatchlings of several treatment groups also exhibited anxiety-like behavior. We then used the Integrated Biological Response (IBR) as an index to evaluate the overall developmental toxicity of the substances. We found that the ranking of developmental toxicity was SAC > CAF > ASP > SUC, and there was a cumulative effect when CAF was combined with the sweeteners. PMID:26380162

  14. Assessing developmental toxicity of caffeine and sweeteners in medaka (Oryzias latipes).

    PubMed

    Lee, Wenjau; Wang, Yun-Chi

    2015-01-01

    The use of artificial sweeteners (ASWs) has increased and become more widespread, and consequently ASWs have appeared in aquatic environments around the world. However, their safety to the health of humans and wildlife remains inconclusive. In this study, using medaka embryos (Oryzias latipes), we investigated developmental toxicity of aspartame (ASP) and saccharin (SAC). Since ASWs are often consumed with caffeine (CAF) and CAF with sucrose (SUC), we tested biological activities of these four substances and the mixtures of CAF with each sweetener. The embryos were exposed to ASP at 0.2 and 1.0 mM, SAC at 0.005 and 0.050 mM, CAF at 0.05 and 0.5 mM, or SUC at 29 and 146 mM, starting from less than 5 h post fertilization until hatch. Control embryos were treated with embryo solution only. Several endpoints were used to evaluate embryonic development. Some of the hatchlings were also tested for anxiety-like behavior with the white preference test. The results showed that all four substances and the mixtures of CAF with the sweeteners affected development. The most sensitive endpoints were the heart rate, eye density, and hatchling body length. The hatchlings of several treatment groups also exhibited anxiety-like behavior. We then used the Integrated Biological Response (IBR) as an index to evaluate the overall developmental toxicity of the substances. We found that the ranking of developmental toxicity was SAC > CAF > ASP > SUC, and there was a cumulative effect when CAF was combined with the sweeteners.

  15. Development of chocolate dairy dessert with addition of prebiotics and replacement of sucrose with different high-intensity sweeteners.

    PubMed

    Morais, E C; Morais, A R; Cruz, A G; Bolini, H M A

    2014-05-01

    The aims of this study were (1) to optimize the formulation of a prebiotic chocolate dairy dessert and assess the extent to which sensory properties were affected by adding different concentrations of prebiotics (inulin and fructooligosaccharides) combined with different levels of xanthan and guar gums, and (2) to analyze the ideal and relative sweetness of prebiotic chocolate milk dessert sweetened with different artificial and natural sweeteners. Acceptability was evaluated by 100 consumers using a 9-cm hedonic scale, and the level of sample creaminess was evaluated using a 9-point just-about-right (JAR) scale. Data were subjected to a multivariate regression analysis and fitted to a model provided by response surface methodology. The optimal concentrations were 7.5% (wt/wt) prebiotic and 0.20% (wt/wt) gum (guar and xanthan, in a 2:1 ratio). The ideal sweetness analysis revealed that the ideal concentration of sucrose was 8.13%. The relative sweetness analysis showed that Neotame (NutraSweet Corp., Chicago, IL) had the highest sweetening power compared with the prebiotic chocolate dairy dessert containing 8% sucrose, followed by sucralose, aspartame, and stevia. The study of sweetness in this product is important because consumers desire healthier functional products with no added sugar.

  16. Analysis of sucralose and other sweeteners in water and beverage samples by liquid chromatography/time-of-flight mass spectrometry.

    PubMed

    Ferrer, Imma; Thurman, E Michael

    2010-06-18

    A methodology for the chromatographic separation and analysis of three of the most popular artificial sweeteners (aspartame, saccharin, and sucralose) in water and beverage samples was developed using liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS). The sweeteners were extracted from water samples using solid-phase extraction (SPE) cartridges. Furthermore, several beverages were analyzed by a rapid and simple method without SPE, and the presence of the sweeteners was confirmed by accurate mass measurements below 2-ppm error. The unambiguous confirmation of the compounds was based on accurate mass measurements of the protonated molecules [M+H](+), their sodium adducts and their main fragment ions. Quantitation was carried out using matrix-matched standard calibration and linearity of response over 2 orders of magnitude was demonstrated (r>0.99). A detailed fragmentation study for sucralose was carried out by time-of-flight and a characteristic spectrum fingerprint pattern was obtained for the presence of this compound in water samples. Finally, the analysis of several wastewater, surface water and groundwater samples from the US showed that sucralose can be found in the aquatic environment at concentrations up to 2.4microg/L, thus providing a good indication of wastewater input from beverage sources.

  17. Aspartame and seizure susceptibility: results of a clinical study in reportedly sensitive individuals.

    PubMed

    Rowan, A J; Shaywitz, B A; Tuchman, L; French, J A; Luciano, D; Sullivan, C M

    1995-03-01

    The high intensity sweetener aspartame has been implicated anecdotally in seizure provocation. This possibility was investigated with a randomized, double-blind, placebo-controlled, cross-over study. After an extensive search, 18 individuals (16 adults and 2 children) who had seizures allegedly related to aspartame consumption were admitted to adult or pediatric epilepsy monitoring units where their EEG was monitored continuously for 5 days. Aspartame (50 mg/kg) or identically enpackaged placebo was administered in divided doses at 0800, 1000, and 1200 h on study days 2 and 4. All meals were uniformly standardized on treatment days. No clinical seizures or other adverse experiences were observed after aspartame ingestion. Mean plasma phenylalanine (Phe) concentrations increased significantly after aspartame ingestion (83.6 microM) as compared with placebo (52.3 microM). Results suggest that aspartame, in acute dosage of approximately 50 mg/kg, is no more likely than placebo to cause seizures in individuals who reported that their seizures were provoked by aspartame consumption.

  18. Artificial sweetener neohesperidin dihydrochalcone showed antioxidative, anti-inflammatory and anti-apoptosis effects against paraquat-induced liver injury in mice.

    PubMed

    Shi, Qiong; Song, Xiufang; Fu, Juanli; Su, Chuanyang; Xia, Xiaomin; Song, Erqun; Song, Yang

    2015-12-01

    The present study evaluated the protective effect of artificial sweetener neohesperidin dihydrochalcone (NHDC) against paraquat (PQ)-induced acute liver injury in mice. A single dose of PQ (75mg/kg body weight, i.p.) induced acute liver toxicity with the evidences of increased liver damage biomarkers, aspartate transaminase (AST) and alanine transaminase (ALT) activities in serum. Consistently, PQ decreased the antioxidant capacity by reducing glutathione peroxidase (GP-X), glutathione-S-transferase (GST) and catalase (CAT) activities, glutathione (GSH) level and total antioxidant capacity (T-AOC), as well as increasing reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) levels. Histopathological examination revealed that PQ induced numerous changes in the liver tissues. Immunochemical staining assay indicated the upregulation of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions. However, NHDC ameliorates PQ-induced hepatic toxicity in mice by reversing these parameters. Additionally, NHDC significantly inhibited PQ-induced nuclear factor-kappa B (NF-κB) expression and mitochondrial-driven apoptotic signaling. TUNEL assay confirmed that PQ-induced apoptosis was relieved by NHDC. In conclusion, these findings suggested that NHDC showed potent antioxidant, anti-inflammatory and anti-apoptotic effects against PQ-induced acute liver damage. PMID:26362205

  19. Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity.

    PubMed

    Payne, A N; Chassard, C; Lacroix, C

    2012-09-01

    The Western diet, comprised of highly refined carbohydrates and fat but reduced complex plant polysaccharides, has been attributed to the prevalence of obesity. A concomitant rise in the consumption of fructose and sugar substitutes such as sugar alcohols, artificial sweeteners, even rare sugars, has mirrored this trend, as both probable contributor and solution to the epidemic. Acknowledgement of the gut microbiota as a factor involved in obesity has sparked much controversy as to the cause and consequence of this relationship. Dietary intakes are a known modulator of gut microbial phylogeny and metabolic activity, frequently exploited to stimulate beneficial bacteria, promoting health benefits. Comparably little research exists on the impact of 'unconscious' dietary modulation on the resident commensal community mediated by increased fructose and sugar substitute consumption. This review highlights mechanisms of potential host and gut microbial fructose and sugar substitute metabolism. Evidence is presented suggesting these sugar compounds, particularly fructose, condition the microbiota, resulting in acquisition of a westernized microbiome with altered metabolic capacity. Disturbances in host-microbe interactions resulting from fructose consumption are also explored.

  20. An evaluation of the effect of aspartame on weight loss.

    PubMed

    Kanders, B S; Lavin, P T; Kowalchuk, M B; Greenberg, I; Blackburn, G L

    1988-01-01

    This study explores whether the addition of aspartame-sweetened foods and beverages to a low fat, hypocaloric diet enhances compliance and resulting weight loss. Fifty-nine obese (130-225% of ideal body weight), free living men and women were randomly assigned to either a Balanced Deficit Diet (BDD) or a BDD supplemented with aspartame. Over a 12-week weight loss period, volunteers attended weekly support group meetings including behavior modification training and exercise instruction. Males achieved a clinically significant weight loss (greater than 23 lb) in both study groups, while females lost an average of 12.8 lb in the control group vs. 16.5 lb in the experimental group. In both treatment groups, sleep, general energy level, level of physical activity, and feeling of well-being showed clinically meaningful improvement. This study suggests possible advantages to supplementing a BDD with aspartame-sweetened foods as part of a multidisciplinary weight loss program. The small sample size prohibits definitive conclusions but does provide the protocol for a larger, outpatient clinical trial.

  1. A facile HPLC method for optical purity and quantitative measurements of phenylalanine from the hydrolyzed aspartame under different pH and temperature after its derivatization with a fluorescent reagent.

    PubMed

    Hsien, T-J; Chen, S

    2007-07-01

    In this paper, the artificial sweetener aspartame is deliberately hydrolyzed under different pH and temperature in the matrix, and time period for the hydrolysis. The HPLC analysis is then performed to quantitatively measure the amount and the optical purity of phenylalanine produced as a result of hydrolysis in the matrix after its functionalization with a fluorescent reagent. The results show that the amount of phenylalanine in the matrix is affected by the pH variation during the hydrolysis and found increased in low pH conditions. High temperature or long time periods for the decomposition also increases the amount, which indicates that beverages and foods containing aspartame as a sweetener may not be safe for phenylketonuria patients to consume if they are stored under these conditions. Conversely, the optical purity of phenylalanine, expressed as the percentage of D: -enantiomer, is not affected by pH variations. However, it decreases as the length of time elapsed is increased or surrounding temperature is elevated during the decomposition.

  2. Further analysis of the short-term inhibition of food intake in humans by the dipeptide L-aspartyl-L-phenylalanine methyl ester (aspartame).

    PubMed

    Rogers, P J; Keedwell, P; Blundell, J E

    1991-04-01

    It was reported previously that the dipeptide sweetener aspartame suppresses food intake in humans by a postingestive action. The present study examined the hypothesis that this is due to an effect of phenylalanine, one of the primary breakdown products of aspartame (phenylalanine is a potent releaser of the so-called satiety hormone cholecystokinin, CCK). Capsulated aspartame (400 mg) administered to human volunteers reduced food intake by 15% (253 kcal) in a lunchtime test meal begun 1 hour later. However, neither phenylalanine (200 mg) nor the other constituent amino acid of aspartame, aspartic acid (200 mg), altered intake compared with placebo. Despite the large effect on food intake there were no treatment differences in pre- or postmeal ratings of motivation to eat. This suggests that aspartame may act to intensify the satiating effects of ingested food. Although high doses of phenylalanine reduce food intake, an individual action of phenylalanine cannot account for the potent anorexic effect of aspartame. In discussing alternative mechanisms it is noted that the amino acid sequence of aspartame (Asp-Phe) is the same as the C-terminal dipeptide of CCK. A direct action of aspartame at CCK receptors appears to be unlikely; however, aspartame might act as CCK releaser. Further studies are required to elucidate the mechanism of aspartame's anorexic action and perhaps to evaluate its therapeutic potential as an antiobesity agent.

  3. The safety and regulatory process for low calorie sweeteners in the United States.

    PubMed

    Roberts, Ashley

    2016-10-01

    Low calorie sweeteners are some of the most thoroughly tested and evaluated of all food additives. Products including aspartame and saccharin, have undergone several rounds of risk assessment by the United States Food and Drug Administration (FDA) and the European Food Safety Authority (EFSA), in relation to a number of potential safety concerns, including carcinogenicity and more recently, effects on body weight gain, glycemic control and effects on the gut microbiome. The majority of the modern day sweeteners; acesulfame K, advantame, aspartame, neotame and sucralose have been approved in the United States through the food additive process, whereas the most recent sweetener approvals for steviol glycosides and lo han guo have occurred through the Generally Recognized as Safe (GRAS) system, based on scientific procedures. While the regulatory process and review time of these two types of sweetener evaluations by the FDA differ, the same level of scientific evidence is required to support safety, so as to ensure a reasonable certainty of no harm.

  4. Acute effects of oral or parenteral aspartame on catecholamine metabolism in various regions of rat brain.

    PubMed

    Yokogoshi, H; Wurtman, R J

    1986-03-01

    Hypertensive (SHR) and nonhypertensive [Wistar-Kyoto (WKY); Sprague-Dawley (SD)] strains of rats received the dipeptide sweetener aspartame (200 mg/kg) or, as a positive control, tyrosine (200 mg/kg) by gavage or parenterally, after a brief (2-h) fast. Two hours later, compared with those of saline controls brain levels of the norepinephrine metabolite 3-methoxy-4-hydroxyphenylethylethyleneglycol (MHPG) sulfate were significantly higher in the hypothalamus (WKY), locus coeruleus (SD and SHR) and brain stem (SHR) in tyrosine-treated animals, and in the locus coeruleus (SD) of those given aspartame. Brain norepinephrine levels were also higher, compared with those of saline-treated control rats, in the cerebral cortex (SD and SHR), amygdala (SD) and locus coeruleus (WKY) after tyrosine administration, and in the amygdala (SD) and cerebral cortex (SHR) after aspartame administration. In another study, oral aspartame was found to be at least as effective as the parenterally administered sweetener in raising regional brain levels of tyrosine or MHPG sulfate (i.e., compared with corresponding levels in saline-treated rats). Animals receiving oral aspartame also exhibited higher plasma tyrosine and phenylalanine ratios (i.e., the ratios of their plasma concentrations to the summed concentrations of other large neutral amino acids that compete with them for uptake into the brain), than animals receiving saline.

  5. Use of aspartame by apparently healthy children and adolescents.

    PubMed

    Frey, G H

    1976-11-01

    This study was conducted to determine the effects and the differences, if any, resulting from the ingestion of aspartame (sweetener) versus sucrose. A 13-wk, double-blind study was conducted using 126 apparently healthy children and adolescents as panelists. Individuals were randomly assigned in a double-blind design to aspartame or sucrose in each of five age groups; dosage levels were assigned according to age and weight groups. Physical examinations and special eye examinations were performed at the beginning and end of the study. Other parameters determined including laboratory tests of liver and renal function, hematologic status, and plasma levels of phenylalanine and tyrosine. Clinically significant differences in laboratory parameters measured could not be demonstrated; all mean values were within normal limits. No unusual findings were observed in phenylalanine or tyrosine levels. All phenylpyruvic acid and methanol determinations were negative. No important physical changes occurred, and no product-related side effects were reported.

  6. Comparative metabolism of aspartame in experimental animals and humans.

    PubMed

    Ranney, R E; Oppermann, J A; Muldoon, E; McMahon, F G

    1976-11-01

    Aspartame [SC-18862; 3-amino-N-(alpha-carboxyphenethyl) succinamic acid, methyl ester, the methyl ester of aspartylphenylalanine] is a sweetening agent that organoleptically has about 180 times the sweetness of sugar. The metabolism of aspartame has been studied in mice, rats, rabbits, dogs, monkeys, and humans. The compound was digested in all species in the same way as are natural constituents of the diet. Hydrolysis of the methyl group by intestinal esterases yielded methanol, which was oxidized in the one-carbon metabolic pool to CO2. The resultant dipeptide was split at the mucosal surface by dipeptidases and the free amino acids were absorbed. The aspartic acid moiety was transformed in large part to CO2 through its entry into the tricarboxylic acid cycle. Phenylalanine was primarily incorporated into body protein either unchanged or as its major metabolite, tyrosine.

  7. The powder flow and compact mechanical properties of sucrose and three high-intensity sweeteners used in chewable tablets.

    PubMed

    Mullarney, Matthew P; Hancock, Bruno C; Carlson, Glenn T; Ladipo, Dauda D; Langdon, Beth A

    2003-05-12

    The physical, flow, and mechanical properties of four common pharmaceutical sweeteners were measured to assess their relative manufacturability in solid dosage formulations. Sucrose, acesulfame potassium (Sunett), saccharin sodium, and aspartame were evaluated to determine significant differences in particle shape, size distribution, and true density. Powder flow and cohesivity as well as compact mechanical properties such as ductility, elasticity, and tensile strength were measured and found to be noticeably different. Among these sweeteners, sucrose and acesulfame potassium demonstrated excellent flowability and marginal mechanical property performance relative to over 100 commonly used pharmaceutical excipients evaluated in the authors' laboratory. Saccharin sodium and aspartame demonstrated poor flowability and superior compact strength relative to sucrose and acesulfame, despite their noticeably higher brittleness. These data suggest that careful selection of an appropriate sweetener is warranted in obtaining desirable process and tableting robustness, particularly if sweetener loading is high. Detailed descriptions of each material property and recommendations for sweetener selection in formulation development are included.

  8. Intake of saccharin, aspartame, acesulfame K and cyclamate in Italian teenagers: present levels and projections.

    PubMed

    Leclercq, C; Berardi, D; Sorbillo, M R; Lambe, J

    1999-03-01

    The intake of saccharin, aspartame, acesulfame K and cyclamate was assessed in 212 Italian teenagers aged 13-19 in 1996. Total daily intake of intense sweeteners was assessed on the basis of dietary records (14 consecutive days). The sweetener content of sugar-free products (soft drinks, candies, chewing gums, yoghurts, jam and table-top sweeteners) was provided by manufacturers. Sugar-free products were consumed by 77% of the subjects. Mean daily intake among consumers was 0.24 mg/kg body weight (bw) for cyclamate (13 subjects), 0.21 mg/kg bw for saccharin (9 subjects), 0.03 mg/kg bw for aspartame (162 subjects), and 0.02 mg/kg bw for acesulfame K (56 subjects). No subject exceeded the ADI (Acceptable Daily Intake) of an intense sweetener. Projections based on the present levels of use of intense sweeteners in sugar-free products and on the dietary pattern observed in the sample suggest that approaching the ADI could be possible only if subjects with high intakes of both soft drinks and table-top sugar substituted these items with respectively sugar-free beverages and table-top sweeteners containing either saccharin or cyclamate.

  9. Acceptable daily intake and the regulation of intense sweeteners.

    PubMed

    Renwick, A G

    1990-01-01

    At the present time there are four intense sweeteners that are available in a number of countries: acesulfame-K, aspartame, cyclamate and saccharin. Extensive toxicity databases are available on each sweetener and these have been assessed by both national and international regulatory authorities. This review considers briefly the critical toxicity of each sweetener that is the basis for establishing the no adverse effect level in animal studies. The calculation of an acceptable daily intake (ADI) for human intake employs a large safety factor applied to the no-effect level. The magnitude of the safety factor for each sweetener is discussed in relation to the ADI values recommended by the Scientific Committee for Food in 1985.

  10. The intake of intense sweeteners - an update review.

    PubMed

    Renwick, Andrew G

    2006-04-01

    Studies on the intakes of intense sweeteners in different countries published since the author's previous review in 1999 indicate that the average and 95th percentile intakes of acesulfame-K, aspartame, cyclamate and saccharin by adults are below the relevant acceptable daily intake (ADI) values. Fewer data are available for the newer sweeteners, sucralose and alitame, and because they are recent introductions to the market very low intakes were reported in those countries where they were available at the time of the intake study. Overall there has not been a significant change in the intakes of sweeteners in recent years. The only data indicating that the intake of an intense sweetener could exceed its ADI value were the 95th percentile intakes of cyclamate in children, particularly those with diabetes. This sub-group was identified as having high intakes of cyclamate in 1999, and recent studies have not generated reliable intake data to address this possibility.

  11. Adaptation of sweeteners in water and in tannic acid solutions.

    PubMed

    Schiffman, S S; Pecore, S D; Booth, B J; Losee, M L; Carr, B T; Sattely-Miller, E; Graham, B G; Warwick, Z S

    1994-03-01

    Repeated exposure to a tastant often leads to a decrease in magnitude of the perceived intensity; this phenomenon is termed adaptation. The purpose of this study was to determine the degree of adaptation of the sweet response for a variety of sweeteners in water and in the presence of two levels of tannic acid. Sweetness intensity ratings were given by a trained panel for 14 sweeteners: three sugars (fructose, glucose, sucrose), two polyhydric alcohols (mannitol, sorbitol), two terpenoid glycosides (rebaudioside-A, stevioside), two dipeptide derivatives (alitame, aspartame), one sulfamate (sodium cyclamate), one protein (thaumatin), two N-sulfonyl amides (acesulfame-K, sodium saccharin), and one dihydrochalcone (neohesperidin dihydrochalcone). Panelists were given four isointense concentrations of each sweetener by itself and in the presence of two concentrations of tannic acid. Each sweetener concentration was tasted and rated four consecutive times with a 30 s interval between each taste and a 2 min interval between each concentration. Within a taste session, a series of concentrations of a given sweetener was presented in ascending order of magnitude. Adaptation was calculated as the decrease in intensity from the first to the fourth sample. The greatest adaptation in water solutions was found for acesulfame-K, Na saccharin, rebaudioside-A, and stevioside. This was followed by the dipeptide sweeteners, alitame and aspartame. The least adaptation occurred with the sugars, polyhydric alcohols, and neohesperidin dihydrochalcone. Adaptation was greater in tannic acid solutions than in water for six sweeteners. Adaptation of sweet taste may result from the desensitization of sweetener receptors analogous to the homologous desensitization found in the beta adrenergic system.

  12. Bitterness of sweeteners as a function of concentration.

    PubMed

    Schiffman, S S; Booth, B J; Losee, M L; Pecore, S D; Warwick, Z S

    1995-01-01

    Sixteen trained tasters provided sweetness and bitterness intensity ratings for 19 compounds including: acesulfame-K, alitame, aspartame, fructose, glucose, glycine, lactitol, maltitol, monoammonium glycyrrhizinate, neohesperidin dihydrochalcone, neosugar (fructo-oligosaccharide), palatinit (isomalt), rebaudioside-A, sodium cyclamate, sodium saccharin, stevioside, sucralose, sucrose, and thaumatin. With increasing concentration, high-potency sweeteners including acesulfame-K, neohesperidin dihydrochalcone, sodium saccharin, rebaudioside-A, and stevioside tended to become more bitter. Low-potency sweeteners including fructose, sucrose, and lactitol tended to become less bitter with increasing concentration.

  13. Development of rebiana, a natural, non-caloric sweetener.

    PubMed

    Prakash, I; Dubois, G E; Clos, J F; Wilkens, K L; Fosdick, L E

    2008-07-01

    Rebiana is the common name for high-purity rebaudioside A, a natural non-calorie sweetener 200-300 times more potent than sucrose. It provides zero calories and has a clean, sweet taste with no significant undesirable taste characteristics. It is functional in a wide array of beverages and foods and can be blended with other non-calorie or carbohydrate sweeteners. It is stable under dry conditions, and has much better stability than aspartame or neotame in aqueous food systems. Studies undertaken for the development of a purification process and for the full characterization of the properties of rebiana are reported here.

  14. [The antimutagenic activity of aspartame].

    PubMed

    Kulakova, A V; Belogolovskaia, E G; Oreshchenko, A V; Durnev, A D; Seredenin, S B

    1999-01-01

    The method of chromosome aberration count in the bone marrow cells of C57B1/6 mice was used to study the influence of aspartame on the cytogenetic effects of dioxydin and cyclophosphan. Aspartame (0.4-40 mg/kg) was found to possess antimutagenic properties in relation to the listed mutagens. The discovered antimutagenic activity of aspartame was manifested more when it was injected for 5 days before the administration of a mutagen, whereas in joint administration of aspartame with the mutagens, the substitute for sugar did not change the clastogenic effect of dioxydin and cyclophosphan.

  15. Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability.

    PubMed

    Fasciani, Chiara; Silvero, M Jazmin; Anghel, Maria Alexandra; Argüello, Gerardo A; Becerra, Maria Cecilia; Scaiano, Juan C

    2014-12-17

    Gold-silver core-shell nanoparticles stabilized with a common sweetener, aspartame (AuNP@Ag@Asm), combine the antimicrobial properties of silver with the photoinduced plasmon-mediated photothermal effects of gold. The particles were tested with several bacterial strains, while biocompatibility was verified with human dermal fibroblasts. PMID:25487127

  16. Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability.

    PubMed

    Fasciani, Chiara; Silvero, M Jazmin; Anghel, Maria Alexandra; Argüello, Gerardo A; Becerra, Maria Cecilia; Scaiano, Juan C

    2014-12-17

    Gold-silver core-shell nanoparticles stabilized with a common sweetener, aspartame (AuNP@Ag@Asm), combine the antimicrobial properties of silver with the photoinduced plasmon-mediated photothermal effects of gold. The particles were tested with several bacterial strains, while biocompatibility was verified with human dermal fibroblasts.

  17. Efficacy of sweeteners and sugar substitutes in caries prevention.

    PubMed

    Imfeld, T

    1993-01-01

    The caries-preventive efficacy of sweeteners and sugar substitutes is not clearly established on an epidemiological scale. A review of cariogenicity assessments in vitro and in vivo as well as of human clinical caries trials, however, clearly demonstrates that the replacement of sugar by such products has a caries-preventive effect. The clinical relevance of some bacteriostatic and/or cariostatic properties ascribed to saccharin, aspartame, and xylitol remains to be corroborated.

  18. Aspartame and Its Analogues

    NASA Astrophysics Data System (ADS)

    Pavlova, L. A.; Komarova, T. V.; Davidovich, Yurii A.; Rogozhin, S. V.

    1981-04-01

    The results of studies on the biochemistry of the sweet taste are briefly reviewed. The methods of synthesis of "aspartame" — a sweet dipeptide — are considered, its structural analogues are described, and quantitative estimates are made of the degree of sweetness relative to sucrose. Attention is concentrated mainly on problems of the relation between the structure of the substance and its taste in the series of aspartyl derivatives. The bibliography includes 118 references.

  19. Examination of the potential for adaptive chirality of the nitrogen chiral center in aza-aspartame.

    PubMed

    Bouayad-Gervais, Samir H; Lubell, William D

    2013-01-01

    The potential for dynamic chirality of an azapeptide nitrogen was examined by substitution of nitrogen for the α-carbon of the aspartate residue in the sweetener S,S-aspartame. Considering that S,S- and R,S-aspartame possess sweet and bitter tastes, respectively, a bitter-sweet taste of aza-aspartame 9 could be indicative of a low isomerization barrier for nitrogen chirality inter-conversion. Aza-aspartame 9 was synthesized by a combination of hydrazine and peptide chemistry. Crystallization of 9 indicated a R,S-configuration in the solid state; however, the aza-residue chiral center was considerably flattened relative to its natural amino acid counterpart. On tasting, the authors considered aza-aspartame 9 to be slightly bitter or tasteless. The lack of bitter sweet taste of aza-aspartame 9 may be due to flattening from sp2 hybridization in the urea as well as a high barrier for sp3 nitrogen inter-conversion, both of which may interfere with recognition by taste receptors. PMID:24288001

  20. Examination of the potential for adaptive chirality of the nitrogen chiral center in aza-aspartame.

    PubMed

    Bouayad-Gervais, Samir H; Lubell, William D

    2013-11-28

    The potential for dynamic chirality of an azapeptide nitrogen was examined by substitution of nitrogen for the α-carbon of the aspartate residue in the sweetener S,S-aspartame. Considering that S,S- and R,S-aspartame possess sweet and bitter tastes, respectively, a bitter-sweet taste of aza-aspartame 9 could be indicative of a low isomerization barrier for nitrogen chirality inter-conversion. Aza-aspartame 9 was synthesized by a combination of hydrazine and peptide chemistry. Crystallization of 9 indicated a R,S-configuration in the solid state; however, the aza-residue chiral center was considerably flattened relative to its natural amino acid counterpart. On tasting, the authors considered aza-aspartame 9 to be slightly bitter or tasteless. The lack of bitter sweet taste of aza-aspartame 9 may be due to flattening from sp2 hybridization in the urea as well as a high barrier for sp3 nitrogen inter-conversion, both of which may interfere with recognition by taste receptors.

  1. Aspartame fails to facilitate pentylenetetrazol-induced convulsions in CD-1 mice.

    PubMed

    Dailey, J W; Lasley, S M; Mishra, P K; Bettendorf, A F; Burger, R L; Jobe, P C

    1989-05-01

    Concentrations of plasma amino acids and brain monoamines as well as pentylenetetrazol-induced seizures were monitored in CD-1 mice treated with aspartame in acute oral doses from 0 to 2500 mg/kg. One hour after administration aspartame produced increases in plasma concentrations of phenylalanine and tyrosine and modest reductions in concentrations of brain serotonin and 5-hydroxyindole acetic acid. However, these effects of the sweetener had no influence on the convulsive dose fifty (CD50) of pentylenetetrazol. Moreover, aspartame failed to alter the percentage of mice exhibiting seizures when exposed to an approximate CD50 of pentylenetetrazol. Finally, aspartame had no effect on brain norepinephrine or dopamine concentrations. In sharp contrast to previously reported studies, these observations suggest that aspartame, given in heroic doses, does not alter the propensity to seizure activity in CD-1 mice. We conclude that changes in plasma amino acids and brain serotonin produced by large oral bolus doses of aspartame are insufficient to result in functional deficits which might have the capacity to facilitate pentylenetetrazol-induced seizures.

  2. The effect of sweeteners on bitter taste in young and elderly subjects.

    PubMed

    Schiffman, S S; Gatlin, L A; Sattely-Miller, E A; Graham, B G; Heiman, S A; Stagner, W C; Erickson, R P

    1994-01-01

    The purpose of this study was to quantify the degree of reduction in perceived bitterness by sweeteners at both threshold and suprathreshold concentrations of bitter compounds. Detection and recognition thresholds were determined for six bitter compounds (caffeine, denatonium benzoate, magnesium chloride, quinine hydrochloride, sucrose octaacetate, and urea) in the absence and presence of several suprathreshold concentrations of five sweeteners. The sweeteners were: sucrose, aspartame, sodium saccharin, mannitol, and sorbitol. Polycose was also tested along with the sweeteners. The degree to which bitter thresholds were affected by the addition of sweeteners was dependent on the chemical classification of the sweeteners and their concentrations. In general, the natural sweeteners, sucrose, mannitol, and sorbitol, were more effective than the noncaloric sweeteners, aspartame and sodium saccharin, in elevating the detection and recognition thresholds of the bitter compounds. A sweetness intensity approximating that of 6% sucrose (0.175 M sucrose) or greater was required to elevate thresholds. For elderly subjects, sweeteners did not significantly elevate thresholds for denatonium benzoate and sucrose octaacetate. The degree to which sorbitol and sucrose can decrease the perceived bitterness intensity of suprathreshold concentrations of the six bitter compounds was also determined. The concentrations of sweeteners and bitter compounds were selected to be of moderate to high subjective intensity. The levels of sweeteners used in the mixtures were: sucrose (none, 0.946 M, and 2.13 M) and sorbitol (none, 2.1 M, and 3.68 M). Both sweeteners significantly reduced the bitterness ratings of almost every concentration of the six bitter compounds. The greatest reductions in bitterness were 87.0% for 0.192 microM denatonium benzoate mixed with 2.13 M sucrose and 84.7% for 1.8 M urea mixed with 3.68 M sorbitol.

  3. Prooxidative effects of aspartame on antioxidant defense status in erythrocytes of rats.

    PubMed

    Prokic, Marko D; Paunovic, Milica G; Matic, Milos M; Djordjevic, Natasa Z; Ognjanovic, Branka I; Stajn, Andras S; Saicic, Zorica S

    2014-12-01

    Since aspartame (L-aspartyl-L-phenylalanine methyl ester, ASP) is one of the most widely used artificial sweeteners, the aim of the present study was to investigate its effects on serum glucose and lipid levels as well as its effects on oxidative/antioxidative status in erythrocytes of rats. The experiment included two groups of animals: the control group was administered with water only, while the experimental group was orally administered with ASP (40 mg/kg b.w.) daily, for a period of six weeks. When compared with the control group, the group administrated with ASP indicated higher values of serum glucose, cholesterol and triglycerides. Significantly increased concentrations of superoxide anion (O2 .-), hydrogen peroxide (H2O2), peroxynitrite (?N??-) and lipid peroxides (LPO) were recorded in the erythrocytes of ASP treated group in comparison to the control group. In the course of chronic ASP administration, the following was observed: the concentration of reduced glutathione (GSH) and the activity of catalase (CAT) increased. Thus, these findings suggest that long-term consumption of ASP leads to hyperglycemia and hyperlipidemia, as well as to oxidative stress in erythrocytes. PMID:25431414

  4. The carcinogenic effects of aspartame: The urgent need for regulatory re-evaluation.

    PubMed

    Soffritti, Morando; Padovani, Michela; Tibaldi, Eva; Falcioni, Laura; Manservisi, Fabiana; Belpoggi, Fiorella

    2014-04-01

    Aspartame (APM) is an artificial sweetener used since the 1980s, now present in >6,000 products, including over 500 pharmaceuticals. Since its discovery in 1965, and its first approval by the US Food and Drugs Administration (FDA) in 1981, the safety of APM, and in particular its carcinogenicity potential, has been controversial. The present commentary reviews the adequacy of the design and conduct of carcinogenicity bioassays on rodents submitted by G.D. Searle, in the 1970s, to the FDA for market approval. We also review how experimental and epidemiological data on the carcinogenic risks of APM, that became available in 2005 motivated the European Commission (EC) to call the European Food and Safety Authority (EFSA) for urgent re-examination of the available scientific documentation (including the Searle studies). The EC has further requested that, if the results of the evaluation should suggest carcinogenicity, major changes must be made to the current APM specific regulations. Taken together, the studies performed by G.D. Searle in the 1970s and other chronic bioassays do not provide adequate scientific support for APM safety. In contrast, recent results of life-span carcinogenicity bioassays on rats and mice published in peer-reviewed journals, and a prospective epidemiological study, provide consistent evidence of APM's carcinogenic potential. On the basis of the evidence of the potential carcinogenic effects of APM herein reported, a re-evaluation of the current position of international regulatory agencies must be considered an urgent matter of public health.

  5. Prooxidative effects of aspartame on antioxidant defense status in erythrocytes of rats.

    PubMed

    Prokic, Marko D; Paunovic, Milica G; Matic, Milos M; Djordjevic, Natasa Z; Ognjanovic, Branka I; Stajn, Andras S; Saicic, Zorica S

    2014-12-01

    Since aspartame (L-aspartyl-L-phenylalanine methyl ester, ASP) is one of the most widely used artificial sweeteners, the aim of the present study was to investigate its effects on serum glucose and lipid levels as well as its effects on oxidative/antioxidative status in erythrocytes of rats. The experiment included two groups of animals: the control group was administered with water only, while the experimental group was orally administered with ASP (40 mg/kg b.w.) daily, for a period of six weeks. When compared with the control group, the group administrated with ASP indicated higher values of serum glucose, cholesterol and triglycerides. Significantly increased concentrations of superoxide anion (O2 .-), hydrogen peroxide (H2O2), peroxynitrite (?N??-) and lipid peroxides (LPO) were recorded in the erythrocytes of ASP treated group in comparison to the control group. In the course of chronic ASP administration, the following was observed: the concentration of reduced glutathione (GSH) and the activity of catalase (CAT) increased. Thus, these findings suggest that long-term consumption of ASP leads to hyperglycemia and hyperlipidemia, as well as to oxidative stress in erythrocytes.

  6. Effects of aspartame on 45Ca influx and LDH leakage from nerve cells in culture.

    PubMed

    Sonnewald, U; Müller, T; Unsgård, G; Petersen, S B

    1995-01-26

    Aspartame (ASM), an artificial sweetener, was shown to dose dependently increase 45Ca-influx into and lactate dehydrogenase (LDH) leakage from murine brain cell cultures. Astrocytes were more resistant than neurones to the effects of ASM. In cerebellar granule neurones, a 20% increase in calcium was found after an incubation time of 22 h in the presence of 0.1 mM ASM; at 0.5 mM concentration, calcium influx increased 40% compared with control cultures. At a concentration of 10 mM, influx was increased 13-fold after 5 h. Morphological appearance as judged by phase contrast microscopy was first visibly affected after exposure to 1 mM ASM for 22 h. Citrate, another food additive, was included in the study to demonstrate that cerebellar granule neurones could tolerate 10 mM additions to the medium and citrate did not cause 45Ca influx or morphological changes in neurones after 22 h. LDH leakage, a sign of severe cell damage, was observed at 1 mM concentrations of ASM after 22 h. Cerebral astrocytes on the other hand were more resistant and showed morphological changes, increased calcium influx and LDH leakage first at 5 mM concentrations of ASM.

  7. Acute effects of aspartame on large neutral amino acids and monoamines in rat brain.

    PubMed

    Fernstrom, J D; Fernstrom, M H; Gillis, M A

    1983-04-01

    The dipeptide aspartame (APM; aspartylphenylalanine methylester), an artificial sweetener, was studied in vivo for its ability to influence brain levels of the large neutral amino acids and the rates of hydroxylation of the aromatic amino acids. The administration by gavage of APM (200 mg/kg) caused large increments in blood and brain levels of phenylalanine and tyrosine by 60 minutes. Brain tryptophan level was occasionally reduced significantly, but the brain levels of the branched-chain amino acids were always unaffected. Smaller doses (50, 100 mg/kg) also raised blood and brain tyrosine and phenylalanine, but did not reduce brain tryptophan levels. At the highest dose (200 mg/kg), APM gavage caused an insignificant increase in dopa accumulation (after NSD-1015), and a modest reduction in 5-hydroxytryptophan accumulation. No changes in the brain levels of serotonin, 5-hydroxyindoleacetic acid, dopamine, dihydroxyphenylacetic acid, homovanillic acid, or norepinephrine were produced by APM administration (200 mg/kg). These results thus indicate that APM, even when administered in amounts that cause large increments in brain tyrosine and phenylalanine, produce minimal effects on the rates of formation of monoamine transmitters.

  8. Exploring the biological consequences of conformational changes in aspartame models containing constrained analogues of phenylalanine.

    PubMed

    Mollica, Adriano; Mirzaie, Sako; Costante, Roberto; Carradori, Simone; Macedonio, Giorgia; Stefanucci, Azzurra; Dvoracsko, Szabolcs; Novellino, Ettore

    2016-12-01

    The dipeptide aspartame (Asp-Phe-OMe) is a sweetener widely used in replacement of sucrose by food industry. 2',6'-Dimethyltyrosine (DMT) and 2',6'-dimethylphenylalanine (DMP) are two synthetic phenylalanine-constrained analogues, with a limited freedom in χ-space due to the presence of methyl groups in position 2',6' of the aromatic ring. These residues have shown to increase the activity of opioid peptides, such as endomorphins improving the binding to the opioid receptors. In this work, DMT and DMP have been synthesized following a diketopiperazine-mediated route and the corresponding aspartame derivatives (Asp-DMT-OMe and Asp-DMP-OMe) have been evaluated in vivo and in silico for their activity as synthetic sweeteners. PMID:26308194

  9. Exploring the biological consequences of conformational changes in aspartame models containing constrained analogues of phenylalanine.

    PubMed

    Mollica, Adriano; Mirzaie, Sako; Costante, Roberto; Carradori, Simone; Macedonio, Giorgia; Stefanucci, Azzurra; Dvoracsko, Szabolcs; Novellino, Ettore

    2016-12-01

    The dipeptide aspartame (Asp-Phe-OMe) is a sweetener widely used in replacement of sucrose by food industry. 2',6'-Dimethyltyrosine (DMT) and 2',6'-dimethylphenylalanine (DMP) are two synthetic phenylalanine-constrained analogues, with a limited freedom in χ-space due to the presence of methyl groups in position 2',6' of the aromatic ring. These residues have shown to increase the activity of opioid peptides, such as endomorphins improving the binding to the opioid receptors. In this work, DMT and DMP have been synthesized following a diketopiperazine-mediated route and the corresponding aspartame derivatives (Asp-DMT-OMe and Asp-DMP-OMe) have been evaluated in vivo and in silico for their activity as synthetic sweeteners.

  10. Double P2X2/P2X3 Purinergic Receptor Knockout Mice Do Not Taste NaCl or the Artificial Sweetener SC45647

    PubMed Central

    Eddy, Meghan C.; Eschle, Benjamin K.; Barrows, Jennell; Hallock, Robert M.; Finger, Thomas E.

    2009-01-01

    The P2X ionotropic purinergic receptors, P2X2 and P2X3, are essential for transmission of taste information from taste buds to the gustatory nerves. Mice lacking both P2X2 and P2X3 purinergic receptors (P2X2/P2X3Dbl−/−) exhibit no taste-evoked activity in the chorda tympani and glossopharyngeal nerves when stimulated with taste stimuli from any of the 5 classical taste quality groups (salt, sweet, sour, bitter, and umami) nor do the mice show taste preferences for sweet or umami, or avoidance of bitter substances (Finger et al. 2005. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 310[5753]:1495–1499). Here, we compare the ability of P2X2/P2X3Dbl−/− mice and P2X2/P2X3Dbl+/+ wild-type (WT) mice to detect NaCl in brief-access tests and conditioned aversion paradigms. Brief-access testing with NaCl revealed that whereas WT mice decrease licking at 300 mM and above, the P2X2/P2X3Dbl−/− mice do not show any change in lick rates. In conditioned aversion tests, P2X2/P2X3Dbl−/− mice did not develop a learned aversion to NaCl or the artificial sweetener SC45647, both of which are easily avoided by conditioned WT mice. The inability of P2X2/P2X3Dbl−/− mice to show avoidance of these taste stimuli was not due to an inability to learn the task because both WT and P2X2/P2X3Dbl−/− mice learned to avoid a combination of SC45647 and amyl acetate (an odor cue). These data suggest that P2X2/P2X3Dbl−/− mice are unable to respond to NaCl or SC45647 as taste stimuli, mirroring the lack of gustatory nerve responses to these substances. PMID:19833661

  11. The biological properties of aspartame. III. Examination for endocrine-like activities.

    PubMed

    Saunders, F J; Pautsch, W F; Nutting, E F

    1980-01-01

    A series of studies with aspartame were run in mice, rats and rabbits using standard procedures to characterize possible estrogenic, androgenic, progestational and glucocorticoid activities. Aspartame was administered orally at levels (ca 300 mg/kg/day) substantially in excess of expected maximal human intake when used as a sweetening agent. No significant hormone-mimetic response was observed in the endocrine target organs evaluated. In similar studies, when administered simultaneously with the steroid hormones, it did not reduce the response expected with the steroid. Thus, it was concluded that ingestion of aspartame should not produce any estrogenic, androgenic, progestational or glucocorticoid-like effects. Further, it should not alter the actions of the endogeneous steroid hormones.

  12. Plasma amino acid concentrations in normal adults fed meals with added monosodium L-glutamate and aspartame.

    PubMed

    Stegink, L D; Filer, L J; Baker, G L

    1983-09-01

    Aspartame is a dipeptide sweetener containing aspartate. It has been suggested that aspartame addition to meals containing large amounts of monosodium L-glutamate (MSG) would result in a rapid rise in plasma glutamate and/or aspartate concentrations and increase the potential for dicarboxylic amino acid--induced toxicity. Sic normal adult subjects were fed three hamburger and milk shake meals providing protein at 1 g/kg body weight in a Latin square design. One meal had no additions, the second provided MSG at 150 mg/kg body weight, and the third provided MSG at 150 mg/kg body weight and aspartame at 23 mg/kg body weight. The addition of MSG alone significantly increased plasma glutamate + aspartate concentration above values noted after ingestion of the meal alone. Aspartame addition to meals already containing MSG did not further significantly increase plasma glutamate + aspartate concentration above values noted when only MSG was added. However, aspartame addition did significantly increase the mean plasma phenylalanine concentration above values noted after ingestion of the meal alone or the meal with added MSG, reflecting aspartame's phenylalanine content. The data do not support the suggestion that aspartame addition to high protein meals already containing large amounts of MSG, will promote a rapid and dangerous rise in plasma glutamate and aspartate concentrations.

  13. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels

    PubMed Central

    Anton, Stephen D.; Martin, Corby K.; Han, Hongmei; Coulon, Sandra; Cefalu, William T.; Geiselman, Paula; Williamson, Donald A.

    2010-01-01

    Consumption of sugar-sweetened beverages may be one of the dietary causes of metabolic disorders, such as obesity. Therefore, substituting sugar with low-calorie sweeteners may be an efficacious weight management strategy. We tested the effect of preloads containing stevia, aspartame, or sucrose on food intake, satiety, and postprandial glucose and insulin levels. Design: 19 healthy lean (BMI = 20.0 – 24.9) and 12 obese (BMI = 30.0 – 39.9) individuals 18 to 50 years old completed three separate food test days during which they received preloads containing stevia (290 kcal), aspartame (290 kcal), or sucrose (493 kcal) before the lunch and dinner meal. The preload order was balanced, and food intake (kcal) was directly calculated. Hunger and satiety levels were reported before and after meals, and every hour throughout the afternoon. Participants provided blood samples immediately before and 20 minutes after the lunch preload. Despite the caloric difference in preloads (290 vs. 493 kcals), participants did not compensate by eating more at their lunch and dinner meals when they consumed stevia and aspartame versus sucrose in preloads (mean differences in food intake over entire day between sucrose and stevia = 301 kcal, p < .01; aspartame = 330 kcal, p < .01). Self-reported hunger and satiety levels did not differ by condition. Stevia preloads significantly lowered postprandial glucose levels compared to sucrose preloads (p < .01), and postprandial insulin levels compared to both aspartame and sucrose preloads (p < .05). When consuming stevia and aspartame preloads, participants did not compensate by eating more at either their lunch or dinner meal and reported similar levels of satiety compared to when they consumed the higher calorie sucrose preload. PMID:20303371

  14. A common genetic influence on human intensity ratings of sugars and high-potency sweeteners.

    PubMed

    Hwang, Liang-Dar; Zhu, Gu; Breslin, Paul A S; Reed, Danielle R; Martin, Nicholas G; Wright, Margaret J

    2015-08-01

    The perception of sweetness varies among individuals but the sources of this variation are not fully understood. Here, in a sample of 1,901 adolescent and young adults (53.8% female; 243 MZ and 452 DZ twin pairs, 511 unpaired individuals; mean age 16.2±2.8, range 12–26 years), we studied the variation in the perception of sweetness intensity of two monosaccharides and two high-potency sweeteners: glucose, fructose, neohesperidine dihydrochalcone (NHDC), and aspartame. Perceived intensity for all sweeteners decreased with age (2–5% per year) and increased with the history of otitis media (6–9%). Males rated aspartame slightly stronger than females (7%). We found similar heritabilities for sugars (glucose: h2=0.31, fructose: h2=0.34) and high-potency sweeteners (NHDC: h2=0.31, aspartame: h2=0.30); all were in the modest range. Multivariate modeling showed that a common genetic factor accounted for >75% of the genetic variance in the four sweeteners, suggesting that individual differences in perceived sweet intensity, which are partly due to genetic factors, may be attributed to a single set of genes. This study provided evidence of the shared genetic pathways between the perception of sugars and high-potency sweeteners. PMID:26181574

  15. A common genetic influence on human intensity ratings of sugars and high-potency sweeteners.

    PubMed

    Hwang, Liang-Dar; Zhu, Gu; Breslin, Paul A S; Reed, Danielle R; Martin, Nicholas G; Wright, Margaret J

    2015-08-01

    The perception of sweetness varies among individuals but the sources of this variation are not fully understood. Here, in a sample of 1,901 adolescent and young adults (53.8% female; 243 MZ and 452 DZ twin pairs, 511 unpaired individuals; mean age 16.2±2.8, range 12–26 years), we studied the variation in the perception of sweetness intensity of two monosaccharides and two high-potency sweeteners: glucose, fructose, neohesperidine dihydrochalcone (NHDC), and aspartame. Perceived intensity for all sweeteners decreased with age (2–5% per year) and increased with the history of otitis media (6–9%). Males rated aspartame slightly stronger than females (7%). We found similar heritabilities for sugars (glucose: h2=0.31, fructose: h2=0.34) and high-potency sweeteners (NHDC: h2=0.31, aspartame: h2=0.30); all were in the modest range. Multivariate modeling showed that a common genetic factor accounted for >75% of the genetic variance in the four sweeteners, suggesting that individual differences in perceived sweet intensity, which are partly due to genetic factors, may be attributed to a single set of genes. This study provided evidence of the shared genetic pathways between the perception of sugars and high-potency sweeteners.

  16. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor.

    PubMed

    Maillet, Emeline L; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Margolskee, Robert F; Osman, Roman; Max, Marianna

    2015-10-01

    The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2's VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste. PMID:26377607

  17. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor.

    PubMed

    Maillet, Emeline L; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Margolskee, Robert F; Osman, Roman; Max, Marianna

    2015-10-01

    The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2's VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste.

  18. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor

    PubMed Central

    Maillet, Emeline L.; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Osman, Roman; Max, Marianna

    2015-01-01

    The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2’s VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste. PMID:26377607

  19. Non-nutritive sweeteners: no class effect on the glycaemic or appetite responses to ingested glucose.

    PubMed

    Bryant, C E; Wasse, L K; Astbury, N; Nandra, G; McLaughlin, J T

    2014-05-01

    There is considerable interest in whether non-nutritive sweeteners are sensed in the gastrointestinal tract to modulate appetitive or absorptive responses to ingested carbohydrate. We determined the effect of a panel of non-nutritive sweeteners, aspartame, saccharin and acesulfame-K, delivered in doses that would be consumed in normal usage. Each was given in combination with glucose, assessing their effect on glycemic responses and appetite in 10 healthy human subjects. There was no additional effect of aspartame or saccharin on the blood glucose response to oral glucose at any time point, although acesulfame-K exerted a small effect. However, none had an effect on perceptions of hunger or fullness. We conclude that there is no consistent evidence that non-nutrient sweeteners, when acutely consumed with glucose in dietetically relevant doses, have a class effect in modulating blood glucose in healthy human subjects. However, acesulfame-K may require further exploration.

  20. Saccharin and aspartame, compared with sucrose, induce greater weight gain in adult Wistar rats, at similar total caloric intake levels.

    PubMed

    Feijó, Fernanda de Matos; Ballard, Cíntia Reis; Foletto, Kelly Carraro; Batista, Bruna Aparecida Melo; Neves, Alice Magagnin; Ribeiro, Maria Flávia Marques; Bertoluci, Marcello Casaccia

    2013-01-01

    It has been suggested that the use of nonnutritive sweeteners (NNSs) can lead to weight gain, but evidence regarding their real effect in body weight and satiety is still inconclusive. Using a rat model, the present study compares the effect of saccharin and aspartame to sucrose in body weight gain and in caloric intake. Twenty-nine male Wistar rats received plain yogurt sweetened with 20% sucrose, 0.3% sodium saccharin or 0.4% aspartame, in addition to chow and water ad libitum, while physical activity was restrained. Measurements of cumulative body weight gain, total caloric intake, caloric intake of chow and caloric intake of sweetened yogurt were performed weekly for 12 weeks. Results showed that addition of either saccharin or aspartame to yogurt resulted in increased weight gain compared to addition of sucrose, however total caloric intake was similar among groups. In conclusion, greater weight gain was promoted by the use of saccharin or aspartame, compared with sucrose, and this weight gain was unrelated to caloric intake. We speculate that a decrease in energy expenditure or increase in fluid retention might be involved.

  1. Glucose tolerance, blood lipid, insulin and glucagon concentration after single or continuous administration of aspartame in diabetics.

    PubMed

    Okuno, G; Kawakami, F; Tako, H; Kashihara, T; Shibamoto, S; Yamazaki, T; Yamamoto, K; Saeki, M

    1986-04-01

    A nutritive sweetener, aspartame (L-aspartyl-L-phenylalanine methylester) was administered orally to normal controls and diabetic patients in order to evaluate effects on blood glucose, lipids and pancreatic hormone secretion. An oral glucose tolerance test was also performed in the same subjects as a control study of aspartame administration. In 7 normal controls and 22 untreated diabetics, a single dose of 500 mg aspartame, equivalent to 100 g glucose in sweetness, induced no increase in blood glucose concentration. Rather, a small but significant decrease in blood glucose was noticed 2 or 3 h after administration. The decrease in blood glucose was found to be smallest in the control and became greater as the diabetes increased in severity. No significant change in blood insulin or glucagon concentration during a 3-h period was observed in either the controls or the diabetics. The second study was designed to determine the effects of 2 weeks' continuous administration of 125 mg aspartame, equal in sweetness to the mean daily consumption of sugar (20-30 g) in Japan, to 9 hospitalized diabetics with steady-state glycemic control. The glucose tolerance showed no significant change after 2 weeks' administration. Fasting, 1 h and 2 h postprandial blood glucose, blood cholesterol, triglyceride and HDL-cholesterol were also unaffected. From these and other published results, aspartame would seem to be a useful alternative nutrient sweetener for patients with diabetes mellitus.

  2. Soft drinks with aspartame: effect on subjective hunger, food selection, and food intake of young adult males.

    PubMed

    Black, R M; Tanaka, P; Leiter, L A; Anderson, G H

    1991-04-01

    Ingestion of aspartame-sweetened beverages has been reported to increase subjective measures of appetite. This study examined the effects of familiar carbonated soft drinks sweetened with aspartame on subjective hunger, energy intake and macronutrient selection at a lunch-time meal. Subjects were 20 normal weight young adult males, classified as either restrained or nonrestrained eaters. Four treatments of carbonated beverages included 280 ml of mineral water, one can of a soft drink (280 ml) consumed in either 2 or 10 minutes, or two cans of a soft drink (560 ml) consumed in 10 minutes, administered at 11:00 a.m. Subjective hunger and food appeal were measured from 9:30 a.m. to 12:30 p.m., and food intake data were obtained from a buffet lunch given at 12:00 noon. There were no treatment effects on energy intake, macronutrient selection or food choice at the lunch-time meal, or food appeal, though restrained eaters consumed more than nonrestrained eaters in all four treatment conditions. Consumption of two soft drinks (560 ml, 320 mg aspartame) significantly reduced subjective hunger from 11:05 a.m. to 11:30 a.m. compared to one soft drink (280 ml, 160 mg aspartame) or 280 ml of mineral water. Thus ingestion of soft drinks containing aspartame did not increase short-term subjective hunger or food intake.

  3. A combined single-blind, double-blind, placebo-controlled study to determine the reproducibility of hypersensitivity reactions to aspartame.

    PubMed

    Garriga, M M; Berkebile, C; Metcalfe, D D

    1991-04-01

    Aspartame is an O-methyl ester composed of phenylalanine and aspartic acid. After its final approval as a sweetener in 1981, a number of reports of adverse reactions to aspartame appeared in the literature. To explore the pathogenesis of such reactions, we initiated a study in July 1986 to identify subjects with hypersensitivity reactions to aspartame with blinded challenge procedures. The study was closed after 32 months. During that time, we advertised in local newspapers and worked closely with the local community of allergists and dermatologists in an attempt to recruit subjects with hypersensitivity reactions to aspartame. A total of 61 self-referrals and physician referrals were screened, with 20 referrals evaluated in clinic. After this evaluation, 12 patients underwent single- and double-blind challenge with up to 2000 mg of aspartame. No subject with a clearly reproducible adverse reaction to aspartame was identified. In summary, we found that it is difficult to recruit study subjects with a history of hypersensitivity reactions to aspartame and that subjects who believed themselves allergic to aspartame did not have reproducible reactions.

  4. Aspartame demand in rhesus monkeys: effects of volume and concentration manipulations.

    PubMed

    Wade-Galuska, Tammy; Galuska, Chad M; Winger, Gail; Woods, James H

    2007-01-10

    Three rhesus monkeys' lever presses produced aspartame-sweetened water according to a fixed-ratio schedule. The response requirement was increased across sessions and a demand-function analysis was used to assess the reinforcing effectiveness of different magnitudes of aspartame by manipulating reinforcer duration (1 and 3s) in Phase 1 and concentration (0.3, 0.5, 0.7, and 1.0mg/ml) in Phase 2. When duration was manipulated, the number of aspartame deliveries was mainly a function of the response requirement rather than unit price (responses/duration), suggesting that changes in duration did not significantly affect the reinforcing effectiveness of aspartame. When concentration was manipulated and the lowest concentration excluded, consumption was best described by unit price (responses/concentration) in two monkeys and by the response requirement in the third. Although results from the concentration manipulation provide some evidence that consumption was modulated by unit price, the results overall suggest that scalar equivalence does not exist between the components of unit price; specifically, the response requirement exerted a larger influence than duration or concentration on total consumption. Finally, a normalized demand analysis revealed that aspartame is a more elastic commodity than food and drug reinforcers.

  5. First European conference on aspartame: putting safety and benefits into perspective. Synopsis of presentations and conclusions.

    PubMed

    Renwick, A G; Nordmann, H

    2007-07-01

    A Conference was held in Paris in 2006 to review the safety and benefits arising from the replacement of sucrose with the intense sweetener aspartame. The intakes of aspartame are only about 10% of the acceptable daily intake, even by high consumers, so that the safety margin is about 3 orders of magnitude. The safety of aspartame was confirmed in the EFSA Opinion of a recent controversial rodent cancer bioassay. There is increasing evidence that even modest reductions in the intake of calories can reduce the risk factors associated with a number of diseases, such as diabetes and cardiovascular disease. A key issue addressed at the conference was whether the replacement of sucrose with aspartame could result in a prolonged decrease in calorie intake that was of similar magnitude to that necessary to produce a health benefit. A recent meta-analysis of published data showed that an adequate, prolonged weight reduction could be achieved with aspartame. It was recognised that risk assessment alone gave an unbalanced impression to regulators and consumers, and that in the future quantitative risk-benefit analyses should be able to provide more comprehensive advice.

  6. Blood methanol concentrations in one-year-old infants administered graded doses of aspartame.

    PubMed

    Stegink, L D; Brummel, M C; Filer, L J; Baker, G L

    1983-08-01

    Blood methanol concentrations were measured in 24 1-year-old infants administered aspartame, a dipeptide methyl ester sweetener. The doses studied included a dose projected to be the 99th percentile of daily ingestion for adults (34 mg/kg body weight), a very high use dose (50 mg/kg body weight) and a dose considered to be in the abuse range (100 mg/kg body weight). Blood methanol values in infants were compared to values observed previously in adults administered equivalent doses of aspartame. Methanol concentrations were below the level of detection (0.35 mg/dl) in the blood of 10 infants administered aspartame at 34 mg/kg body weight, but were significantly elevated (P less than or equal to 0.05) after ingestion of aspartame at 50 and 100 mg/kg body weight. At the latter doses, mean peak blood methanol concentrations and the area under the blood methanol concentration-time curve increased in proportion to dose. Mean (+/- SEM) peak blood methanol concentration was 0.30 +/- 0.10 mg/100 ml at a 50 mg/kg body weight aspartame dose (n = 6) and 1.02 +/- 0.28 mg/ml at the 100 mg/kg body weight dose (n = 8). Blood methanol values in infants were similar to those observed in normal adults.

  7. The effect of aspartame as part of a multidisciplinary weight-control program on short- and long-term control of body weight.

    PubMed

    Blackburn, G L; Kanders, B S; Lavin, P T; Keller, S D; Whatley, J

    1997-02-01

    This study investigated whether the addition of the high-intensity sweetener aspartame to a multidisciplinary weight-control program would improve weight loss and long-term control of body weight. One hundred sixty-three obese women were randomly assigned to consume or to abstain from aspartame-sweetened foods and beverages during 16 wk of a 19-wk weight-reduction program (active weight loss), a 1-y maintenance program, and a 2-y follow-up period. Women in both treatment groups lost approximately 10% of initial body weight (10 kg) during active weight loss. Among women assigned to the aspartame-treatment group, aspartame intake was positively correlated with percentage weight loss during active weight loss (r = 0.32, P < 0.01). During maintenance and follow-up, participants in the aspartame group experienced a 2.6% (2.6 kg) and 4.6% (4.6 kg) regain of initial body weight after 71 and 175 wk, respectively, whereas those in the no-aspartame group gained an average of 5.4% (5.4 kg) and 9.4% (9.4 kg), respectively. The aspartame group lost significantly more weight overall (P = 0.028) and regained significantly less weight during maintenance and follow-up (P = 0.046) than did the no-aspartame group. Percentage weight losses at 71 and 175 wk were also positively correlated with exercise (r = 0.32, P < 0.001; and r = 0.34, P < 0.01, respectively) and self-reported eating control (r = 0.37, P < 0.001; and r = 0.33, P < 0.01, respectively). These data suggest that participation in a multidisciplinary weight-control program that includes aspartame may facilitate the long-term maintenance of reduced body weight.

  8. Passion fruit juice with different sweeteners: sensory profile by descriptive analysis and acceptance.

    PubMed

    Rocha, Izabela Furtado de Oliveira; Bolini, Helena Maria André

    2015-03-01

    This study evaluated the effect of different sweeteners on the sensory profile, acceptance, and drivers of preference of passion fruit juice samples sweetened with sucrose, aspartame, sucralose, stevia, cyclamate/saccharin blend 2:1, and neotame. Sensory profiling was performed by 12 trained assessors using quantitative descriptive analysis (QDA). Acceptance tests (appearance, aroma, flavor, texture and overall impression) were performed with 124 consumers of tropical fruit juice. Samples with sucrose, aspartame and sucralose showed similar sensory profile (P < 0.05), without bitter taste, bitter aftertaste, and metallic taste, and samples with sucrose and sucralose did not differ from each other for the attribute sweet aftertaste. Passion fruit flavor affected positively and sweet aftertaste affected negatively the acceptance of the samples. Samples sweetened with aspartame, sucralose, and sucrose presented higher acceptance scores for the attributes flavor, texture, and overall impression, with no significant (P < 0.05) differences between them. Aspartame and sucralose can be good substitutes for sucrose in passion fruit juice. PMID:25838891

  9. Passion fruit juice with different sweeteners: sensory profile by descriptive analysis and acceptance

    PubMed Central

    Rocha, Izabela Furtado de Oliveira; Bolini, Helena Maria André

    2015-01-01

    This study evaluated the effect of different sweeteners on the sensory profile, acceptance, and drivers of preference of passion fruit juice samples sweetened with sucrose, aspartame, sucralose, stevia, cyclamate/saccharin blend 2:1, and neotame. Sensory profiling was performed by 12 trained assessors using quantitative descriptive analysis (QDA). Acceptance tests (appearance, aroma, flavor, texture and overall impression) were performed with 124 consumers of tropical fruit juice. Samples with sucrose, aspartame and sucralose showed similar sensory profile (P < 0.05), without bitter taste, bitter aftertaste, and metallic taste, and samples with sucrose and sucralose did not differ from each other for the attribute sweet aftertaste. Passion fruit flavor affected positively and sweet aftertaste affected negatively the acceptance of the samples. Samples sweetened with aspartame, sucralose, and sucrose presented higher acceptance scores for the attributes flavor, texture, and overall impression, with no significant (P < 0.05) differences between them. Aspartame and sucralose can be good substitutes for sucrose in passion fruit juice. PMID:25838891

  10. Passion fruit juice with different sweeteners: sensory profile by descriptive analysis and acceptance.

    PubMed

    Rocha, Izabela Furtado de Oliveira; Bolini, Helena Maria André

    2015-03-01

    This study evaluated the effect of different sweeteners on the sensory profile, acceptance, and drivers of preference of passion fruit juice samples sweetened with sucrose, aspartame, sucralose, stevia, cyclamate/saccharin blend 2:1, and neotame. Sensory profiling was performed by 12 trained assessors using quantitative descriptive analysis (QDA). Acceptance tests (appearance, aroma, flavor, texture and overall impression) were performed with 124 consumers of tropical fruit juice. Samples with sucrose, aspartame and sucralose showed similar sensory profile (P < 0.05), without bitter taste, bitter aftertaste, and metallic taste, and samples with sucrose and sucralose did not differ from each other for the attribute sweet aftertaste. Passion fruit flavor affected positively and sweet aftertaste affected negatively the acceptance of the samples. Samples sweetened with aspartame, sucralose, and sucrose presented higher acceptance scores for the attributes flavor, texture, and overall impression, with no significant (P < 0.05) differences between them. Aspartame and sucralose can be good substitutes for sucrose in passion fruit juice.

  11. Position of the American Dietetic Association: use of nutritive and nonnutritive sweeteners.

    PubMed

    2004-02-01

    Sweeteners elicit pleasurable sensations with (nutritive) or without (nonnutritive) energy. Nutritive sweeteners (eg, sucrose, fructose) are generally recognized as safe (GRAS) by the Food and Drug Administration (FDA), yet concern exists about increasing sweetener intakes relative to optimal nutrition and health. Dietary quality suffers at intakes above 25% of total energy (the Institutes of Medicine's suggested maximal intake level). In the United States, estimated intakes of nutritive sweeteners fall below this, although one in four children (ages 9 to 18 years) can surpass this level. Polyols (sugar alcohols), GRAS-affirmed or petitions filed for GRAS, add sweetness with reduced energy and functional properties to foods/beverages and promote dental health. Five nonnutritive sweeteners with intense sweetening power have FDA approval (acesulfame-K, aspartame, neotame, saccharin, sucralose) and estimated intakes below the Acceptable Daily Intake (level that a person can safely consume everyday over a lifetime without risk). By increasing palatability of nutrient-dense foods/beverages, sweeteners can promote diet healthfulness. Scientific evidence supports neither that intakes of nutritive sweeteners by themselves increase the risk of obesity nor that nutritive or nonnutritive sweeteners cause behavioral disorders. However, nutritive sweeteners increase risk of dental caries. High fructose intakes may cause hypertriglyceridemia and gastrointestinal symptoms in susceptible individuals. Thus, it is the position of The American Dietetic Association that consumers can safely enjoy a range of nutritive and nonnutritive sweeteners when consumed in a diet that is guided by current federal nutrition recommendations, such as the Dietary Guidelines for Americans and the Dietary References Intakes, as well as individual health goals. Dietetics professionals should provide consumers with science-based information about sweeteners and support research on the use of sweeteners

  12. Lack of DNA-damaging activity of five non-nutritive sweeteners in the rat hepatocyte/DNA repair assay.

    PubMed

    Jeffrey, A M; Williams, G M

    2000-04-01

    The non-nutritive sweeteners acesulfame-K, aspartame, cyclamate, saccharin and sucralose were tested for DNA damaging activity in the rat hepatocyte/DNA repair assay. Using hepatocytes from F344 and Sprague-Dawley male rats, all were inactive despite strong responses for the positive control, 2-aminofluorene.

  13. Aspartame exacerbates EEG spike-wave discharge in children with generalized absence epilepsy: a double-blind controlled study.

    PubMed

    Camfield, P R; Camfield, C S; Dooley, J M; Gordon, K; Jollymore, S; Weaver, D F

    1992-05-01

    There are anecdotal reports of increased seizures in humans after ingestion of aspartame. We studied 10 children with newly diagnosed but untreated generalized absence seizures. Ambulatory cassette recording of EEG allowed quantification of numbers and length of spike-wave discharges in a double-blind study on two consecutive days. On one day the children received 40 mg/kg aspartame and on the other day, a sucrose-sweetened drink. Baseline EEG was the same before aspartame and sucrose. Following aspartame compared with sucrose, the number of spike-wave discharges per hour and mean length of spike-wave discharges increased but not to a statistically significant degree. However, the total duration of spike-wave discharge per hour was significantly increased after aspartame (p = 0.028), with a 40% +/- 17% (SEM) increase in the number of seconds per hour of EEG recording that the children spent in spike-wave discharge. Aspartame appears to exacerbate the amount of EEG spike wave in children with absence seizures. Further studies are needed to establish if this effect occurs at lower doses and in other seizure types.

  14. Application of multibounce attenuated total reflectance fourier transform infrared spectroscopy and chemometrics for determination of aspartame in soft drinks.

    PubMed

    Khurana, Harpreet Kaur; Cho, Il Kyu; Shim, Jae Yong; Li, Qing X; Jun, Soojin

    2008-02-13

    Aspartame is a low-calorie sweetener commonly used in soft drinks; however, the maximum usage dose is limited by the U.S. Food and Drug Administration. Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance sampling accessory and partial least-squares regression (PLS) was used for rapid determination of aspartame in soft drinks. On the basis of spectral characterization, the highest R2 value, and lowest PRESS value, the spectral region between 1600 and 1900 cm(-1) was selected for quantitative estimation of aspartame. The potential of FTIR spectroscopy for aspartame quantification was examined and validated by the conventional HPLC method. Using the FTIR method, aspartame contents in four selected carbonated diet soft drinks were found to average from 0.43 to 0.50 mg/mL with prediction errors ranging from 2.4 to 5.7% when compared with HPLC measurements. The developed method also showed a high degree of accuracy because real samples were used for calibration, thus minimizing potential interference errors. The FTIR method developed can be suitably used for routine quality control analysis of aspartame in the beverage-manufacturing sector.

  15. Potentiation by nitric oxide synthase inhibitor and calcium channel blocker of aspartame-induced antinociception in the mouse formalin test.

    PubMed

    Abdollahi, M; Nikfar, S; Abdoli, N

    2001-04-01

    By applying a 12 day regimen of the non-calorific sweetener, aspartame, in combination with representative compounds of the calcium channel blocker and nitric oxide synthase inhibitor, we tried to investigate using a formalin-test in mice the relative role of aspartame on pain and its mechanism of action. Verapamil (2, 3.5, 5, 7.5 mg/kg) induced significant (P < 0.01) antinociception in both phases of the formalin test. L-Nitro-arginine-methyl-ester (L-NAME) at the doses used, induced significant (P < 0.01) antinociception in early phase (1, 2, 5, 10 mg/kg) and late phase (5, 10 mg/kg). Twelve days of treatment in animals by aspartame (0.16% w/v) significantly induced antinociception in both phases of the formalin test. Both verapamil (5 mg/kg) and L-NAME (10 mg/kg) significantly (P < 0.01) potentiated aspartame-induced antinociception in both phases of formalin test. The present findings support the hypothesis that the activation of NMDA receptors by aspartame modulates pain-related behaviour via a nitric oxide/cGMP/glutamate release cascade. It is concluded that aspartame would be a good analgesic agent if it would be used in combination with a calcium channel blocker or NOS inhibitor.

  16. Advantame sweetener preference in C57BL/6J mice and Sprague-Dawley rats.

    PubMed

    Sclafani, Anthony; Ackroff, Karen

    2015-03-01

    Advantame is a new ultrahigh-intensity noncaloric sweetener derived from aspartame and approved for human use. Rats and mice are not attracted to the taste of aspartame and this study determined their preference for advantame. In 24-h choice tests with water, C57BL/6J mice and Sprague-Dawley rats were indifferent to advantame at concentrations of 0.01, 0.03, and 0.1mM but significantly preferred 0.3 and 1mM advantame to water. Both species also preferred 1mM advantame to 1mM saccharin in direct choice tests, but preferred 10mM saccharin to 1mM advantame, which is near the solubility limit for this sweetener. Mice also preferred 1mM advantame to 1mM sucralose or acesulfame K, but preferred both sweeteners at 10mM to 1mM advantame. In addition, mice preferred 1mM advantame to 1 and 10mM aspartame. Thus, advantame is a potent sweetener for rodents but, because of limited solubility, is not an effective alternative to saccharin, sucralose, or acesulfame K at higher concentrations. PMID:25560795

  17. Advantame sweetener preference in C57BL/6J mice and Sprague-Dawley rats.

    PubMed

    Sclafani, Anthony; Ackroff, Karen

    2015-03-01

    Advantame is a new ultrahigh-intensity noncaloric sweetener derived from aspartame and approved for human use. Rats and mice are not attracted to the taste of aspartame and this study determined their preference for advantame. In 24-h choice tests with water, C57BL/6J mice and Sprague-Dawley rats were indifferent to advantame at concentrations of 0.01, 0.03, and 0.1mM but significantly preferred 0.3 and 1mM advantame to water. Both species also preferred 1mM advantame to 1mM saccharin in direct choice tests, but preferred 10mM saccharin to 1mM advantame, which is near the solubility limit for this sweetener. Mice also preferred 1mM advantame to 1mM sucralose or acesulfame K, but preferred both sweeteners at 10mM to 1mM advantame. In addition, mice preferred 1mM advantame to 1 and 10mM aspartame. Thus, advantame is a potent sweetener for rodents but, because of limited solubility, is not an effective alternative to saccharin, sucralose, or acesulfame K at higher concentrations.

  18. High-Intensity Sweeteners in Alternative Tobacco Products

    PubMed Central

    Miao, Shida; Beach, Evan S.; Sommer, Toby J.; Zimmerman, Julie B.

    2016-01-01

    Introduction: Sweeteners in tobacco products may influence use initiation and reinforcement, with special appeal to adolescents. Recent analytical studies of smokeless tobacco products (snuff, snus, dissolvables) detected flavorants identical to those added to confectionary products such as hard candy and chewing gum. However, these studies did not determine the levels of sweeteners. The objective of the present study was to quantify added sweeteners in smokeless tobacco products, a dissolvable product, electronic cigarette liquids and to compare with sweetener levels in confectionary products. Methods: Sweetener content of US-sourced smokeless tobacco, electronic cigarette liquid, and confectionary product samples was analyzed by liquid chromatography-electrospray ionization–mass spectrometry (LC-ESI-MS). Results: All smokeless products contained synthetic high intensity sweeteners, with snus and dissolvables exceeding levels in confectionary products (as much as 25-fold). All snus samples contained sucralose and most also aspartame, but no saccharin. In contrast, all moist snuff samples contained saccharin. The dissolvable sample contained sucralose and sorbitol. Ethyl maltol was the most common sweet-associated component in electronic cigarette liquids. Discussion: Sweetener content was dependent on product category, with saccharin in moist snuff, an older category, sucralose added at high levels to more recently introduced products (snus, dissolvable) and ethyl maltol in electronic cigarette liquid. The very high sweetener concentrations may be necessary for the consumer to tolerate the otherwise aversive flavors of tobacco ingredients. Regulation of sweetener levels in smokeless tobacco products may be an effective measure to modify product attractiveness, initiation and use patterns. Implications: Dissolvables, snus and electronic cigarettes have been promoted as risk-mitigation products due to their relatively low content of nitrosamines and other tobacco

  19. Aspartame and susceptibility to headache.

    PubMed

    Schiffman, S S; Buckley, C E; Sampson, H A; Massey, E W; Baraniuk, J N; Follett, J V; Warwick, Z S

    1987-11-01

    We performed a double-blind crossover trial of challenges with 30 mg of aspartame per kilogram of body weight or placebo in 40 subjects who reported having headaches repeatedly after consuming products containing aspartame. The incidence rate of headache after aspartame (35 percent) was not significantly different from that after placebo (45 percent) (P less than 0.50). No serious reactions were observed, and the incidence of symptoms other than headache following aspartame was also equivalent to that after placebo. No treatment-related effects were detected in vital signs, blood pressure, or plasma concentrations of cortisol, insulin, glucagon, histamine, epinephrine, or norepinephrine. Most of the subjects were well educated and overweight and had a family or personal history of allergic reactions. The subjects who had headaches had lower plasma concentrations of norepinephrine (P less than 0.0002) and epinephrine (P less than 0.02) just before the development of headache. We conclude that in this population, aspartame is no more likely to produce headache than placebo.

  20. Non-nutritive sweeteners are not super-normal stimuli

    PubMed Central

    Antenucci, Rachel G.; Hayes, John E.

    2014-01-01

    Background It is often claimed that non-nutritive sweeteners (NNS) are ‘sweeter than sugar’, with the implicit implication high potency sweeteners are super-normal stimuli that encourage exaggerated responses. This study aimed to investigate the perceived sweetness intensity of a variety of nutritive (Sucrose, Maple Syrup, and Agave Nectar) and NNS (Acesulfame-K (AceK), Rebaudioside A (RebA), Aspartame, and Sucralose) in a large cohort of untrained participants using contemporary psychophysical methods. Methods Participants (n=401 total) rated the intensity of sweet, bitter, and metallic sensations for nutritive and NNS in water using the general labeled magnitude scale (gLMS). Results Sigmoidal Dose-Response functions were observed for all stimuli except AceK. That is, sucrose follows a sigmoidal function if the data are not artifactually linearized via prior training. More critically, there is no evidence that NNS have a maximal sweetness (intensity) greater than sucrose; indeed, the maximal sweetness for AceK, RebA and Sucralose were significantly lower than for concentrated sucrose. For these sweeteners, mixture suppression due to endogenous dose-dependent bitter or metallic sensations appears to limit maximal perceived sweetness. Conclusions In terms of perceived sweetness, non-nutritive sweeteners cannot be considered super-normal stimuli. These data do not support the view that non-nutritive sweeteners hijack or over-stimulate sweet receptors to product elevated sweet sensations. PMID:24942868

  1. Use of just-about-right scales and penalty analysis to determine appropriate concentrations of stevia sweeteners for vanilla yogurt.

    PubMed

    Narayanan, P; Chinnasamy, B; Jin, L; Clark, S

    2014-01-01

    With the mainstream emergence of natural sweeteners such as stevia, which is available in different commercial formulations, suitability for yogurt needs to be validated. The present study aimed to determine the appropriate concentration level of 3 processed stevia sweeteners/supplements in commercial plain low-fat yogurt flavored with natural vanilla. Three different levels of sucrose, aspartame, an erythritol and 95% rebaudiana A stevia sweetener, a 95% pure mix of maltodextrin and steviol glycosides, and a cold water stevia extract were used in the study. The just-about-right level for each sweetener and consumer acceptability of each naturally flavored low-fat vanilla yogurt were evaluated. Results from penalty analysis demonstrated that only 0.7% of stevia containing maltodextrin and 95% steviol glycoside was necessary, whereas higher levels (between 4.0 to 5.5%) were more appropriate for stevia containing erythritol and 95% rebaudiana A or cold water extract of stevia, respectively. The concentrations of stevia sweeteners used influenced the perceived sweetness and sourness. In general, consumers disliked the yogurt sweetened with stevia or aspartame, and neither disliked nor liked the yogurt sweetened with sucrose, which was largely driven by perceived sourness of the base yogurt. The findings underline the importance of careful selection of stevia type and concentration as well as optimizing yogurt cultures and fermentation conditions before product launch.

  2. Aspartame bioassay findings portend human cancer hazards.

    PubMed

    Huff, James; LaDou, Joseph

    2007-01-01

    The U.S. Food and Drug Administration (FDA) should reevaluate its position on aspartame as being safe under all conditions. Animal bioassay results predict human cancer risks, and a recent animal study confirms that there is a potential aspartame risk to humans. Aspartame is produced and packaged in China for domestic use and global distribution. Japan, France, and the United States are also major producers. No study of long-term adverse occupational health effects on aspartame workers have been conducted. The FDA should consider sponsoring a prospective epidemiologic study of aspartame workers.

  3. Possible analgesic and anti-inflammatory interactions of aspartame with opioids and NSAIDs.

    PubMed

    Sharma, Sameer; Jain, N K; Kulkarni, S K

    2005-06-01

    The purpose of the present study was to investigate analgesic and anti-inflammatory properties of aspartame, an artificial sweetner and its combination with various opioids and NSAIDs for a possible synergistic response. The oral administration of aspartame (2-16mg/kg, po) significantly increased the pain threshold against acetic acid-induced writhes in mice. Co-administration of aspartame (2mg/kg, po) with nimesulide (2 mg/kg, po) and naproxen (5 mg/kg, po) significantly reduced acetic acid-induced writhes as compared to effects per se of individual drugs. Similarly when morphine (1 mg/kg, po) or pentazocine (1 mg/kg, po) was co-administered with aspartame it reduced the number of writhes as compared to their effects per se. Aspartame (4,8,16 mg/kg, po) significantly decreased carrageenan-induced increase in paw volume and also reversed the hyperalgesic effects in rats in combination with nimesulide (2 mg/kg, po). The study indicated that aspartame exerted analgesic and anti-inflammatory effects on its own and have a synergistic analgesic response with conventional analgesics of opioid and non-opioid type, respectively.

  4. Flow-through spectrophotometric sensor for the determination of aspartame in low-calorie and dietary products.

    PubMed

    Capitán-Vallvey, L F; Valencia, M C; Nicolás, E Arana

    2004-10-01

    A very simple flow-through sensor is presented for the determination of the intense sweetener aspartame in low-calorie and dietary products. The sensor is implemented in a monochannel flow-injection system with UV spectrophotometric detection using a Sephadex CM-C25 cationic exchanger packed 20 mm high in a flow cell. This method is based on the transient retention of a cationic species of the sweetener on the solid phase when a pH 5.0 acetic acid sodium acetate buffer (0.01 M) is used as a carrier (2.6 mL(-1) min). The carrier itself elutes the analyte from the solid support, regenerating a sensing zone. Aspartame was determined by measuring its intrinsic absorbance at 219 nm at its residence time without any derivatization. Calibration graphs were linear over the range of 5.0 - 600.0 microg mL(-1) with an RSD of 0.55% (peak height). This sweetener was determined in several samples by measuring the height or peak area, obtaining recoveries ranging between 95 - 101% and 97.5 - 101%, respectively. The procedure was validated for its use in the determination of aspartame in low-calorie and dietary products, giving reproducible and accurate results.

  5. Analysis of multiple sweeteners and their degradation products in lassi by HPLC and HPTLC plates.

    PubMed

    George, V; Arora, S; Wadhwa, B K; Singh, A K

    2010-08-01

    A solid phase extraction method using C18 cartridges was standardized for the isolation of multiple sweeteners (aspartame, acesulfame-K and saccharin) and their degradation products (diketopiperazine, Lphenylalanine, acetoacetamide and 2-sulfobenzoic acid) from lassi. Analytical conditions for HPLC were standardized over C18 column using UV detector for the simultaneous separation and estimation of multiple sweeteners and their degradation products in lassi sample isolates. A simple cartridge free method was developed for the isolation of sucralose from lassi. Method was also standardized for qualitative detection and quantitative estimation of sucralose over amino and silica gel plates of HPTLC.

  6. Consuming aspartame with and without taste: differential effects on appetite and food intake of young adult males.

    PubMed

    Black, R M; Leiter, L A; Anderson, G H

    1993-03-01

    Despite some reports that aspartame (APM)-sweetened beverages may increase subjective appetite, previously we demonstrated that drinking 280 ml of an APM-sweetened soft drink (170 mg APM) had no effect on appetite, and 560 ml of the same soft drink (340 mg APM) reduced appetite. The present study examined this appetite reduction to determine its cause. Eighteen normal weight young adult males received five treatments (beverage preloads) at 1100 h in a randomized order, one per week: 280 ml of carbonated mineral water (CMW) (control), 560 ml of CMW, 280 ml of CMW with 340 mg of encapsulated APM, 280 ml of CMW sweetened with 340 mg APM, 560 ml of an APM-sweetened soft drink (340 mg APM). Subjective hunger and food appeal were measured from 0930 a.m. to 1230 h, and food intake from a buffet lunch offered at 1205 h was measured. Treatment had no effect on food intake or macronutrient selection. Both 560 ml of CMW or soft drink suppressed appetite, although 280 ml of APM-sweetened mineral water significantly increased subjective appetite relative to the control. Encapsulated APM had no effect on appetite. Therefore, appetite reduction following consumption of an APM-sweetened drink is likely due to drink volume and not the APM content. In addition, consuming APM-sweetened CMW produces a short-term increase in subjective appetite.

  7. Influence of sweetening agents in solution on dental caries in desalivated rats.

    PubMed

    Bowen, W H; Pearson, S K; Falany, J L

    1990-01-01

    Sucralose (trichlorogalactosucrose), sorbitol and aspartame in drinking water induced little or no caries in desalivated rats infected with Streptococcus sobrinus and Actinomyces viscosus and receiving their essential nutrition by gastric gavage. In contrast, sucrose and fructose induced extensive decay. Only sucrose could sustain implantation of Strep. sobrinus in these animals. The populations of A. viscosus were sparse (0.3-0.5%) in the animals given fructose and sucrose. Large populations of A. viscosus occurred in the controls and in those given sucralose, sorbitol and aspartame. In a second experiment, where animals were also desalivated and receive diet 2000 ad libitum, sucrose in solution promoted caries whereas sucralose, aspartame and saccharin were without effect. Addition of 10 parts/10(6) F overcame the caries-promoting effect of sucrose in solution. There was no interaction between fluoride and other sweetening agents that affected the incidence of caries.

  8. Serum methanol concentrations in rats and in men after a single dose of aspartame.

    PubMed

    Davoli, E; Cappellini, L; Airoldi, L; Fanelli, R

    1986-03-01

    Serum methanol concentrations were measured in rats and in humans given oral aspartame. The dose given to rats was the FDA's projected 99th percentile daily intake for humans, assuming aspartame were to replace all sucrose sweeteners in the diet (34 mg/kg). Four male adult volunteers each received 500 mg, equivalent to 6-8.7 mg/kg, which is approximately the FDA's estimate of mean daily human consumption. Both treatments caused a rise in serum methanol. In rats the mean peak value was 3.1 mg/litre 1 hr after administration; serum methanol returned to endogenous values 4 hr after treatment. In the men, the mean rise over endogenous values was 1.06 mg/litre after 45 min. Two hours after treatment, serum methanol had returned to basal levels. The temporary serum methanol increase showed peak values within the range of individual basal levels.

  9. Occurrence of artificial sweeteners in human liver and paired blood and urine samples from adults in Tianjin, China and their implications for human exposure.

    PubMed

    Zhang, Tao; Gan, Zhiwei; Gao, Chuanzi; Ma, Ling; Li, Yanxi; Li, Xiao; Sun, Hongwen

    2016-09-14

    In this study, acesulfame (ACE), saccharin (SAC) and cyclamate (CYC) were found in all paired urine and blood samples collected from healthy adults, with mean values of 4070, 918 and 628 ng mL(-1), respectively, in urine and 9.03, 20.4 and 0.72 ng mL(-1), respectively, in blood. SAC (mean: 84.4 ng g(-1)) and CYC (4.29 ng g(-1)) were detectable in all liver samples collected from liver cancer patients, while ACE was less frequently detected. Aspartame (ASP) was not found in any analyzed human sample, which can be explained by the fact that this chemical metabolized rapidly in the human body. Among all adults, significantly positive correlations between SAC and CYC levels were observed (p < 0.001), regardless of human matrices. Nevertheless, no significant correlations between concentrations of SAC (or CYC) and ACE were found in any of the human matrices. Our results suggest that human exposure to SAC and CYC is related, whereas ACE originates from a discrete source. Females (or young adults) were exposed to higher levels of SAC and CYC than males (or elderly). The mean renal clearance of SAC was 730 mL per day per kg in adults, which was significantly (p < 0.001) lower than those for CYC (10 800 mL per day per kg) and ACE (10 300 mL per day per kg). The average total daily intake of SAC and ACE was 9.27 and 33.8 μg per kg bw per day, respectively. PMID:27383923

  10. Occurrence of artificial sweeteners in human liver and paired blood and urine samples from adults in Tianjin, China and their implications for human exposure.

    PubMed

    Zhang, Tao; Gan, Zhiwei; Gao, Chuanzi; Ma, Ling; Li, Yanxi; Li, Xiao; Sun, Hongwen

    2016-09-14

    In this study, acesulfame (ACE), saccharin (SAC) and cyclamate (CYC) were found in all paired urine and blood samples collected from healthy adults, with mean values of 4070, 918 and 628 ng mL(-1), respectively, in urine and 9.03, 20.4 and 0.72 ng mL(-1), respectively, in blood. SAC (mean: 84.4 ng g(-1)) and CYC (4.29 ng g(-1)) were detectable in all liver samples collected from liver cancer patients, while ACE was less frequently detected. Aspartame (ASP) was not found in any analyzed human sample, which can be explained by the fact that this chemical metabolized rapidly in the human body. Among all adults, significantly positive correlations between SAC and CYC levels were observed (p < 0.001), regardless of human matrices. Nevertheless, no significant correlations between concentrations of SAC (or CYC) and ACE were found in any of the human matrices. Our results suggest that human exposure to SAC and CYC is related, whereas ACE originates from a discrete source. Females (or young adults) were exposed to higher levels of SAC and CYC than males (or elderly). The mean renal clearance of SAC was 730 mL per day per kg in adults, which was significantly (p < 0.001) lower than those for CYC (10 800 mL per day per kg) and ACE (10 300 mL per day per kg). The average total daily intake of SAC and ACE was 9.27 and 33.8 μg per kg bw per day, respectively.

  11. Intermediate state during the crystal transition in aspartame, studied with thermal analysis, solid-state NMR, and molecular dynamics simulation.

    PubMed

    Ebisawa, K; Nagashima, N; Fukuhara, K; Kumon, S; Kishimoto, S; Suzuki, E; Yoneda, S; Umeyama, H

    2000-05-01

    Aspartame (L-alpha-aspartyl-L-phenylalanine methyl ester) is a dipeptide sweetener about 200 times as sweet as sugar. It exists in crystal forms such as IA, IB, IIA, and IIB, which differ in crystal structure and in the degree of hydration. Among these, IIA is the most stable crystal form, and its crystal structure has been well determined (Hatada et al., J. Am. Chem. Soc., 107, 4279-4282 (1985)). To elucidate the structural factors of thermal stability in the IIA form of aspartame and to examine the physical process in the crystal transformation between the IIA and IIB forms, we performed a thermal analysis and solid-state NMR measurements. We found that a quasi-stable intermediate state exists in the transformation, and it has the same crystal lattice as the usual IIA form, despite the dehydration from 1/2 mol to 1/3 mol per 1 mol of aspartame. The results of the energy component analysis and the molecular dynamics simulation suggest that the entropic effect promotes the generation of the intermediate state, which is presumably caused by the evaporation of the water of crystallization and the increase of molecular motion in aspartame. Thus, the thermal stability of the IIA form is attributable to a structural property, i.e., the crystal lattice itself is retained during the above dehydration. Moreover, the molecular dynamics simulations suggest that the aspartame molecules have two kinds of conformational flexibility in the intermediate state. PMID:10823710

  12. Intermediate state during the crystal transition in aspartame, studied with thermal analysis, solid-state NMR, and molecular dynamics simulation.

    PubMed

    Ebisawa, K; Nagashima, N; Fukuhara, K; Kumon, S; Kishimoto, S; Suzuki, E; Yoneda, S; Umeyama, H

    2000-05-01

    Aspartame (L-alpha-aspartyl-L-phenylalanine methyl ester) is a dipeptide sweetener about 200 times as sweet as sugar. It exists in crystal forms such as IA, IB, IIA, and IIB, which differ in crystal structure and in the degree of hydration. Among these, IIA is the most stable crystal form, and its crystal structure has been well determined (Hatada et al., J. Am. Chem. Soc., 107, 4279-4282 (1985)). To elucidate the structural factors of thermal stability in the IIA form of aspartame and to examine the physical process in the crystal transformation between the IIA and IIB forms, we performed a thermal analysis and solid-state NMR measurements. We found that a quasi-stable intermediate state exists in the transformation, and it has the same crystal lattice as the usual IIA form, despite the dehydration from 1/2 mol to 1/3 mol per 1 mol of aspartame. The results of the energy component analysis and the molecular dynamics simulation suggest that the entropic effect promotes the generation of the intermediate state, which is presumably caused by the evaporation of the water of crystallization and the increase of molecular motion in aspartame. Thus, the thermal stability of the IIA form is attributable to a structural property, i.e., the crystal lattice itself is retained during the above dehydration. Moreover, the molecular dynamics simulations suggest that the aspartame molecules have two kinds of conformational flexibility in the intermediate state.

  13. Effect of aspartame on oxidative stress and monoamine neurotransmitter levels in lipopolysaccharide-treated mice.

    PubMed

    Abdel-Salam, Omar M E; Salem, Neveen A; Hussein, Jihan Seid

    2012-04-01

    This study aimed at investigating the effect of the sweetener aspartame on oxidative stress and brain monoamines in normal circumstances and after intraperitoneal (i.p.) administration of lipopolysaccharide (LPS; 100 μg/kg) in mice. Aspartame (0.625-45 mg/kg) was given via subcutaneous route at the time of endotoxin administration. Mice were euthanized 4 h later. Reduced glutathione (GSH), lipid peroxidation (thiobarbituric acid-reactive substances; TBARS), and nitrite concentrations were measured in brain and liver. Tumor necrosis factor-alpha (TNF-α) and glucose were determined in brain. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were measured in liver. The administration of only aspartame (22.5 and 45 mg/kg) increased brain TBARS by 17.7-32.8%, decreased GSH by 25.6-31.6%, and increased TNF-α by 16.7-44%. Aspartame caused dose-dependent inhibition of brain serotonin, noradrenaline, and dopamine. Aspartame did not alter liver TBARS, nitrite, GSH, AST, ALT, or ALP. The administration of LPS increased nitrite in brain and liver by 26.8 and 37.1%, respectively; decreased GSH in brain and liver by 21.6 and 31.1%, respectively; increased brain TNF-α by 340.4%, and glucose by 39.9%, and caused marked increase in brain monoamines. LPS increased AST, ALT, and ALP in liver tissue by 84.4, 173.7, and 258.9%, respectively. Aspartame given to LPS-treated mice at 11.25 and 22.5 mg/kg increased brain TBARS by 15.5-16.9%, nitrite by 12.6-20.1%, and mitigated the increase in monoamines. Aspartame did not alter liver TBARS, nitrite, GSH, ALT, AST, or ALP. Thus, the administration of aspartame alone or in the presence of mild systemic inflammatory response increases oxidative stress and inflammation in the brain, but not in the liver.

  14. Aspartame and aspartame derivatives effect human thrombin catalytic activity.

    PubMed

    Scheffler, Julie E; Berliner, Lawrence J

    2004-12-20

    The study of small Asp-Phe analogs was undertaken since this dipeptide sequence is critical in fibrinogen recognition and catalysis. The inhibition of clotting activity by Asp-Phe-methyl ester (aspartame), formyl-Asp-Phe-methyl ester and acetyl-Asp-Phe was biphasic in all cases, indicating the presence of at least two binding sites. The N-terminally blocked derivatives are stronger inhibitors than aspartame. In contrast, tosyl-Gly-Pro-Arg-p'-nitroanilide hydrolysis was inhibited minimally by Asp-Phe-methyl, ester [Ki(app)=98 mM]. Acetyl-Asp-Phe inhibition of thrombin amidase activity was biphasic, tenfold stronger and appeared to be strongly cooperative. These results are discussed with respect to the inhibition of alpha-thrombin by ATP.

  15. Intestinal absorption of aspartame decomposition products in adult rats.

    PubMed

    Lipton, W E; Li, Y N; Younoszai, M K; Stegink, L D

    1991-12-01

    The dipeptide sweetener aspartame (N-L-alpha-aspartyl-L-phenylalanine, 1-methyl ester; alpha-APM) is relatively stable in dry powder form. However, when exposed to elevated temperature, extremes of pH and/or moisture, alpha-APM is converted into a variety of products. In aqueous solution alpha-APM decomposes to yield methanol, two isomeric forms of L-aspartyl-L-phenylalanine (Asp-Phe) [alpha-Asp-Phe and beta-Asp-Phe], and APM's diketopiperazine cyclo-Asp-Phe. Depending on beverage storage conditions, individuals drinking alpha-APM-sweetened beverages may consume small quantities of these three compounds. Relatively little has been published about the metabolism of beta-Asp-Phe and cyclo-Asp-Phe. We compared the absorption and metabolism of alpha-Asp-Phe, beta-Asp-Phe, and cyclo-Asp-Phe with that of L-phenylalanine (Phe) in adult rats. Steady-state perfusion studies of rat jejunum indicated rapid carrier-assisted uptake of Phe and alpha-Asp-Phe, but only slow passive diffusion of beta-Asp-Phe and cyclo-Asp-Phe from the lumen. Homogenates of rat intestinal mucosa, liver, and cecal contents, as well as homogenates of pure cultures of Escherichia coli B, catalyzed the hydrolysis of alpha-Asp-Phe, but not cyclo-Asp-Phe. Homogenates of E coli and rat cecal contents, but not homogenates of rat liver or intestinal mucosa catalyzed the hydrolysis of beta-Asp-Phe.

  16. Experimental design-based development and single laboratory validation of a capillary zone electrophoresis method for the determination of the artificial sweetener sucralose in food matrices.

    PubMed

    McCourt, Josephine; Stroka, Joerg; Anklam, Elke

    2005-07-01

    A capillary zone electrophoresis (CZE) method, optimised chemometrically, underwent a complete in-house validation protocol for the qualification and quantification of sucralose in various foodstuffs. Separation from matrix components was obtained in a dinitrobenzoic acid (3 mM)/sodium hydroxide (20 mM) background electrolyte with a pH of 12.1, a potential of 0.11 kV cm(-1) and a temperature of 22 degrees C. Detection was achieved at 238 nm by indirect UV. Screening, optimisation and robustness testing were all carried out with the aid of experimental design. Using standard addition calibration, the CZE method has been applied to still, carbonated and alcoholic beverages, yoghurts and hard-boiled candy. The method allows the detection of sucralose at >30 mg kg(-1), with a linearity range of 50-500 mg kg(-1), making it suitable for implementation of the recently amended "Sweeteners for use in foodstuffs" Directive (European Parliament and Council (2003) Off J L237:3-12), which set maximum usable doses of sucralose for many foodstuffs, most ranging from 200 mg kg(-1) to 450 mg kg(-1).

  17. High level expression in Saccharomyces cerevisiae of an artificial gene encoding a repeated tripeptide aspartyl-phenylyalanyl-lysine.

    PubMed

    Choi, S Y; Lee, S Y; Bock, R M

    1993-08-01

    A chemically synthesized gene, which encodes a 64 or 128 times-repeated tripeptide, aspartyl-phenylalanyl-lysine, has been cloned onto the yeast expression vector pAM82 containing the PHO5 promoter. The artificial gene (LAP gene) contains the untranslated leader sequence of the E. coli lipoprotein gene (lpp) with its transcription terminator sequence. When yeast AH22 cells transformed by recombinant plasmid containing repeated tripeptide gene were derepressed in low phosphate medium, the artificial polypeptides were synthesized to the amounts of about 30% of the total cell protein. SDS-polyacrylamide gel electrophoresis and immunoblot analysis indicated that the artificial polypeptides synthesized in yeast have molecular weights ranging from about 30,000 and 60,000 and have immunoreactivity with the artificial polypeptides expressed in E. coli. The artificial popypeptides in whole cell extract were insoluble and seem to be synthesized as insoluble aggregates. Electron microscopy showed the presence of inclusion bodies in the cell. These polypeptides can be hydrolyzed to tripeptides with trypsin or chymotrypsin. These properties along with the high expression and easy separation may make the artificial polypeptides a potential raw material for the production of an artificial sweetener, Aspartame.

  18. Conformation and hydration of aspartame.

    PubMed

    Kang, Y K

    1991-07-01

    Conformational free energy calculations using an empirical potential (ECEPP/2) and the hydration shell model were carried out on the neutral, acidic, zwitterionic, and basic forms of aspartame in the hydrated state. The results indicate that as the molecule becomes more charged, the number of low energy conformations becomes smaller and the molecule becomes less flexible. The calculated free energies of hydration of charged aspartames show that hydration has a significant effect on the conformation in solution. Only two feasible conformations were found for the zwitterionic form, and these are consistent with the conformations deduced from NMR and X-ray diffraction experiments. The calculated free energy difference between these two conformations was 1.25 kcal/mol. The less favored of the two solvated conformations can be expected to be stabilized by hydrophobic interaction of the phenyl groups in the crystal.

  19. Increase of methanol in exhaled breath quantified by SIFT-MS following aspartame ingestion.

    PubMed

    Španěl, Patrik; Dryahina, Kseniya; Vicherková, Petra; Smith, David

    2015-12-01

    Aspartame, methyl-L-α-aspartyl-L-phenylalaninate, is used worldwide as a sweetener in foods and drinks and is considered to be safe at an acceptable daily intake (ADI) of 40 mg per kg of body weight. This compound is completely hydrolyzed in the gastrointestinal tract to aspartic acid, phenylalanine and methanol, each being toxic at high levels. The objective of the present study was to quantify the volatile methanol component in the exhaled breath of ten healthy volunteers following the ingestion of a single ADI dose of aspartame. Direct on-line measurements of methanol concentration were made in the mouth and nose breath exhalations using selected ion flow tube mass spectrometry, SIFT-MS, several times before aspartame ingestion in order to establish individual pre-dose (baseline) levels and then during two hours post-ingestion to track their initial increase and subsequent decrease. The results show that breath methanol concentrations increased in all volunteers by 1082   ±   205 parts-per-billion by volume (ppbv) from their pre-ingestion values, which ranged from 193 to 436 ppbv to peak values ranging from 981-1622 ppbv, from which they slowly decreased. These observations agree quantitatively with a predicted increase of 1030 ppbv estimated using a one-compartment model of uniform dilution of the methanol generated from a known amount of aspartame throughout the total body water (including blood). In summary, an ADI dose of aspartame leads to a 3-6 fold increase of blood methanol concentration above the individual baseline values. PMID:26582819

  20. Increase of methanol in exhaled breath quantified by SIFT-MS following aspartame ingestion.

    PubMed

    Španěl, Patrik; Dryahina, Kseniya; Vicherková, Petra; Smith, David

    2015-11-19

    Aspartame, methyl-L-α-aspartyl-L-phenylalaninate, is used worldwide as a sweetener in foods and drinks and is considered to be safe at an acceptable daily intake (ADI) of 40 mg per kg of body weight. This compound is completely hydrolyzed in the gastrointestinal tract to aspartic acid, phenylalanine and methanol, each being toxic at high levels. The objective of the present study was to quantify the volatile methanol component in the exhaled breath of ten healthy volunteers following the ingestion of a single ADI dose of aspartame. Direct on-line measurements of methanol concentration were made in the mouth and nose breath exhalations using selected ion flow tube mass spectrometry, SIFT-MS, several times before aspartame ingestion in order to establish individual pre-dose (baseline) levels and then during two hours post-ingestion to track their initial increase and subsequent decrease. The results show that breath methanol concentrations increased in all volunteers by 1082   ±   205 parts-per-billion by volume (ppbv) from their pre-ingestion values, which ranged from 193 to 436 ppbv to peak values ranging from 981-1622 ppbv, from which they slowly decreased. These observations agree quantitatively with a predicted increase of 1030 ppbv estimated using a one-compartment model of uniform dilution of the methanol generated from a known amount of aspartame throughout the total body water (including blood). In summary, an ADI dose of aspartame leads to a 3-6 fold increase of blood methanol concentration above the individual baseline values.

  1. Sweet taste in the calf: III. Behavioral responses to sweeteners.

    PubMed

    Hellekant, G; Hård af Segerstad, C; Roberts, T W

    1994-09-01

    The hedonic response to the sweeteners acesulfame-K, aspartame, fructose, galactose, glucose, glycine, lactose, maltose, Na-saccharine, sucrose, and xylitol was recorded in five groups of 4-16-week-old calves. The compounds were presented to the calves for 12 or 24 h in two-bottle preference tests with tap water as one choice. Glycine (10 mM and higher), sucrose (20 mM and higher), and fructose concentrations were most preferred. Sodium-saccharine was highly preferred at and above 4 mM concentration, fructose and lactose were preferred above 40 mM, galactose was preferred moderately, acesulfame-K and maltose were preferred inconsistently, and aspartame and xylitol were not preferred at any concentration. The change of preference during the tests was also studied. Three types of consumption changes were observed. 1) Increased preference of the tastant during consumption, seen during sucrose and, to lesser a extent, fructose consumption. 2) Initial high preference for the tastants, diminishing during the test period, observed with fructose, galactose, glucose, glycine, lactose, and maltose. 3) Initial large fluctuations in consumption from the two bottles, but no change in overall preference. This pattern was seen with xylitol and aspartame. This technique seems to offer a method to assess the long-term preference for a compound within one relatively short two-bottle preference session.

  2. Carbohydrate ingestion and brain serotonin synthesis: relevance to a putative control loop for regulating carbohydrate ingestion, and effects of aspartame consumption.

    PubMed

    Fernstrom, J D

    1988-01-01

    The ingestion of a meal of carbohydrates by fasting rats rapidly increases brain tryptophan level and serotonin (5-HT) synthesis. The rise in brain tryptophan level follows from an increase in tryptophan transport into brain, the consequence of an insulin-induced reduction in the blood levels of several amino acids that compete with tryptophan for brain uptake. In contrast, ingesting protein with carbohydrate does not stimulate brain tryptophan uptake or 5-HT synthesis, because the blood levels of tryptophan's transport competitors are increased, not reduced. These observations form the biochemical basis of a current proposal for a regulatory loop governing meal-to-meal appetite for carbohydrates. This review briefly analyzes the experimental basis for the carbohydrate appetite regulatory loop, and finds it wanting. It also considers the proposal that the ingestion of the artificial sweetener aspartame might disrupt the putative regulatory loop for carbohydrate intake regulation, and thus promote rather than help to limit carbohydrate appetite, and finds this hypothesis unrealistic as well. In general, the conclusion is that while single meals do readily influence brain tryptophan uptake and 5-HT synthesis, it is presently unclear what role such neurochemical effects of food ingestion have in the control of specific appetites.

  3. Time-intensity profile of pitanga nectar (Eugenia uniflora L.) with different sweeteners: Sweetness and bitterness.

    PubMed

    Freitas, Mírian Luisa Faria; de Lima Dutra, Mariana Borges; Bolini, Helena Maria André

    2016-01-01

    Pitanga has been used by the Brazilian food industry mainly for juice production. This fruit shows good economic potential due to its high concentration of vitamins and minerals. The aim of the present work was to characterize the time-intensity profile of pitanga nectar sweetened with different sweeteners to verify differences on the perception of sweet and bitter tastes. The sweeteners used to replace sucrose were sucralose, aspartame, stevia 40% rebaudioside A, stevia 95% rebaudioside A, neotame, and 2:1 cyclamate/saccharin blend. Fifteen assessors were selected according to their discriminating capability and trained to participate in the time-intensity analysis for sweetness and bitterness. The samples prepared with sucralose and 2:1 cyclamate/saccharin blend presented a similar sweetness profile to the sample prepared with sucrose, and the samples prepared with sucralose and aspartame presented a similar bitterness profile to the sample prepared with sucrose. Thus, sucralose would be the most suitable sweetener to replace sucrose in pitanga nectar. PMID:25627677

  4. The safety and regulatory process for low calorie sweeteners in the United States.

    PubMed

    Roberts, Ashley

    2016-10-01

    Low calorie sweeteners are some of the most thoroughly tested and evaluated of all food additives. Products including aspartame and saccharin, have undergone several rounds of risk assessment by the United States Food and Drug Administration (FDA) and the European Food Safety Authority (EFSA), in relation to a number of potential safety concerns, including carcinogenicity and more recently, effects on body weight gain, glycemic control and effects on the gut microbiome. The majority of the modern day sweeteners; acesulfame K, advantame, aspartame, neotame and sucralose have been approved in the United States through the food additive process, whereas the most recent sweetener approvals for steviol glycosides and lo han guo have occurred through the Generally Recognized as Safe (GRAS) system, based on scientific procedures. While the regulatory process and review time of these two types of sweetener evaluations by the FDA differ, the same level of scientific evidence is required to support safety, so as to ensure a reasonable certainty of no harm. PMID:26930537

  5. Time-intensity profile of pitanga nectar (Eugenia uniflora L.) with different sweeteners: Sweetness and bitterness.

    PubMed

    Freitas, Mírian Luisa Faria; de Lima Dutra, Mariana Borges; Bolini, Helena Maria André

    2016-01-01

    Pitanga has been used by the Brazilian food industry mainly for juice production. This fruit shows good economic potential due to its high concentration of vitamins and minerals. The aim of the present work was to characterize the time-intensity profile of pitanga nectar sweetened with different sweeteners to verify differences on the perception of sweet and bitter tastes. The sweeteners used to replace sucrose were sucralose, aspartame, stevia 40% rebaudioside A, stevia 95% rebaudioside A, neotame, and 2:1 cyclamate/saccharin blend. Fifteen assessors were selected according to their discriminating capability and trained to participate in the time-intensity analysis for sweetness and bitterness. The samples prepared with sucralose and 2:1 cyclamate/saccharin blend presented a similar sweetness profile to the sample prepared with sucrose, and the samples prepared with sucralose and aspartame presented a similar bitterness profile to the sample prepared with sucrose. Thus, sucralose would be the most suitable sweetener to replace sucrose in pitanga nectar.

  6. Simultaneous determination of sweeteners and preservatives in preserved fruits by micellar electrokinetic capillary chromatography.

    PubMed

    Lin, Y H; Chou, S S; Sheu, F; Shyu, Y T

    2000-08-01

    A micellar electrokinetic capillary method for the simultaneous determination of the sweeteners dulcin, aspartame, saccharin, and acesulfame-K and the preservatives sorbic acid; benzoic acid; sodium dehydroacetate; and methyl-, ethyl-, propyl-, isopropyl-, butyl-, and isobutyl-p-hydroxybenzoate in preserved fruits is developed. These additives are ion-paired and extracted using sonication followed by solid-phase extraction from the sample. Separation is achieved using a 57-cm fused-silica capillary with a buffer comprised of 0.05 M sodium deoxycholate, 0.02 M borate-phosphate buffer (pH 8.6), and 5% acetonitrile, and the wavelength for detection is 214 nm. The average recovery rate for all sweeteners and preservatives is approximately 90% with good reproducibility, and the detection limits range from 10 to 25 microg/g. Fifty preserved fruit samples are analyzed for the content of sweeteners and preservatives. The sweeteners found in 28 samples was aspartame (0.17-11.59 g/kg) or saccharin (0.09-5.64 g/kg). Benzoic acid (0.02-1.72 g/kg) and sorbic acid (0.27-1.15 g/kg) were found as preservatives in 29 samples.

  7. Uncoupling sweet taste and calories: comparison of the effects of glucose and three intense sweeteners on hunger and food intake.

    PubMed

    Rogers, P J; Carlyle, J A; Hill, A J; Blundell, J E

    1988-01-01

    This study was carried out to disclose effects generated by the uncoupling of the sensory and energetic components of sweet solutions. A comparison was made between equi-sweet preloads of three intense sweeteners (saccharin, aspartame and acesulfame-K), a bulk sweetener (glucose) and a nonsweet water control. Measures were made of subjective ratings of motivation to eat, food preferences and energy intake in a test meal. The glucose load produced a consistent pattern of changes on all measures. The intense sweeteners tended to facilitate motivational ratings and food preference checklist responses, but marginally lowered intake in the test meal. The facilitative action is probably due to the stimulation of sensory receptors for sweetness by the high-intensity agents, while the effects on intake are most likely due to a ceiling effect imposed by methodological limitations of this particular design. The results of this study must be interpreted with reference to the prevailing experimental conditions, but they suggest that intense sweeteners can produce significant changes in appetite. Of the intense sweeteners, aspartame gave rise to the most pronounced effects.

  8. Riboflavin-binding protein exhibits selective sweet suppression toward protein sweeteners.

    PubMed

    Maehashi, Kenji; Matano, Mami; Kondo, Azusa; Yamamoto, Yasushi; Udaka, Shigezo

    2007-02-01

    Riboflavin-binding protein (RBP) is well known as a riboflavin carrier protein in chicken egg and serum. A novel function of RBP was found as a sweet-suppressing protein. RBP, purified from hen egg white, suppressed the sweetness of protein sweeteners such as thaumatin, monellin, and lysozyme, whereas it did not suppress the sweetness of low molecular weight sweeteners such as sucrose, glycine, D-phenylalanine, saccharin, cyclamate, aspartame, and stevioside. Therefore, the sweet-suppressing activity of RBP was apparently selective to protein sweeteners. The sweet suppression by RBP was independent of binding of riboflavin with its molecule. Yolk RBP, with minor structural differences compared with egg white RBP, also elicited a weaker sweet suppression. However, other commercially available proteins including ovalbumin, ovomucoid, beta-lactogloblin, myoglobin, and albumin did not substantially alter the sweetness of protein sweeteners. Because a prerinse with RBP reduced the subsequent sweetness of protein sweeteners, whereas the enzymatic activity of lysozyme and the elution profile of lysozyme on gel permeation chromatography were not affected by RBP, it is suggested that the sweet suppression is caused by an interaction of RBP with a sweet taste receptor rather than with the protein sweeteners themselves. The selectivity in the sweet suppression by RBP is consistent with the existence of multiple interaction sites within a single sweet taste receptor.

  9. The content of high-intensity sweeteners in different categories of foods available on the Polish market.

    PubMed

    Zygler, Agata; Wasik, Andrzej; Kot-Wasik, Agata; Namieśnik, Jacek

    2012-01-01

    The objective of this study was to measure the concentrations of nine high-intensity sweeteners (acesulfame-K, aspartame, alitame, cyclamate, dulcin, neohesperidin DC, neotame, saccharin and sucralose) in different categories of food available on the Polish market. Over 170 samples of different brands of beverages, yoghurts, fruit preparations, vegetable preserves and fish products were analysed using an analytical procedure based on SPE and LC/MS. The results indicated that foodstuffs under the study generally comply with European Union legislation in terms of sweetener content. However, a few cases of food product mislabelling were detected, i.e. the use of cyclamate for non-approved applications.

  10. Effect of aspartame loading on plasma and erythrocyte free amino acid concentrations in one-year-old infants.

    PubMed

    Filer, L J; Baker, G L; Stegink, L D

    1983-08-01

    Aspartame is a new dipeptide sweetener. It has been suggested that infants metabolize its constituent amino acids (aspartate and phenylalanine) less well than adults. To test this hypothesis, 24 1-year-old infants were administered 34, 50 and 100 mg/kg body weight aspartame in cherry-flavored beverage mix. Plasma amino acid concentrations and the areas under the plasma concentration-time curves (AUC) were determined and were compared with values in adults administered equivalent doses. The doses studied include the 99th percentile of projected ingestion for adults (34 mg/kg), a very high use dose (50 mg/kg body weight), and a potentially abusive dose (100 mg/kg body weight). Plasma aspartate concentrations did not change significantly (P greater than 0.05) at aspartame doses of 34 and 50 mg/kg body weight, but did increase significantly at the 100 mg/kg body weight dose. The change over base line was similar in infants and adults. Aspartame dosing significantly increased both the mean peak plasma phenylalanine concentration and the plasma phenylalanine AUC value in proportion to dose. Mean (+/- SD) peak plasma phenylalanine concentrations in infants were 9.37 +/- 1.44, 11.6 +/- 4.44 and 22.3 +/- 11.5 mumol/100 ml at aspartame doses of 34, 50 and 100 mg/kg body weight, respectively. Values in infants were similar to those noted in adults. The data do not support the suggestion that infants metabolize the amino acids of aspartame less well than adults.

  11. Amperometric bienzymic sensor for aspartame.

    PubMed

    Compagnone, D; O'Sullivan, D; Guilbault, G G

    1997-05-01

    An amperometric enzyme electrode for the determination of aspartame was developed by covalent immobilization of alcohol oxidase and alpha-chymotrypsin. A platinum based hydrogen peroxide electrode was used as the detector. Excellent sensitivity was obtained using batch, flow-through and flow injection methods with detection limits of 2 x 10(-7), 4 x 10(-7) and 10(-6) mol l-1, respectively. Different strategies for eliminating interfering compounds, including the introduction of an additional alcohol oxidase-catalase membrane and signal subtraction using an alcohol electrode, were employed. A recovery study on seven food samples was carried out and the results were satisfactory.

  12. Crystal and molecular structure of aspartame X HCl X 2H2O.

    PubMed

    Görbitz, C H

    1987-02-01

    The crystal and molecular structure of the hydrochloride salt of the peptide sweetener aspartame (alpha-L-Asp-L-Phe methyl ester) has been determined at 120 K using 3877 reflections with I greater than 2.5 sigma I. Space group P2(1)2(1)2(1), cell dimensions a = 6.768(1), b = 9.796(1) and c = 26.520(3) A; final R factor 0.033. While the N-terminal L-Asp group in the structure of aspartame itself forms a six-membered ring with an intramolecular hydrogen bond between the carboxylate and the protonated amino terminus, the corresponding group in the hydrochloride adopts a completely different conformation with a weak intramolecular hydrogen bond between the carboxyl group and the N atom of the L-Phe residue. The L-Phe methyl ester moiety is rather similar in the two structures. Of the many possible conformations of aspartame, only one may be expected to function as a substrate at the receptor site for sweet taste, and a proposal is made for this active conformation. PMID:3604519

  13. Aspartame: effect on lunch-time food intake, appetite and hedonic response in children.

    PubMed

    Anderson, G H; Saravis, S; Schacher, R; Zlotkin, S; Leiter, L A

    1989-10-01

    Two experiments were conducted, each with 20 healthy 9-10-year-old children. After an overnight fast, subjects were given a standardized breakfast at 0830 hrs, the treatments at 1030 hrs, and a lunch containing an excess of foods at 1200 hrs. Visual analog scales of hunger, fullness, and desire to eat were administered 5 min before and 20 and 85 min after treatment. Lunch-time food intake was measured. In experiment 1, either aspartame (34 mg/kg), or the equivalent sweetness of sodium cyclamate, was given in an ice slurry (300 ml) of unsweetened strawberry Kool-Aid with carbohydrate (1.75 g/kg polycose). In experiment 2, drinks (300 ml) contained either sucrose (1.75 g/kg) or aspartame (9.7 mg/kg). In both experiments, significant meal- and time-dependent effects were observed for subjective feelings of hunger, fullness and desire to eat. Treatments, however, did not affect either subjective feelings of appetite or lunch-time food intake. Thus, aspartame consumed without or with carbohydrate, did not affect either hunger or food intake of children when compared with the sweeteners sodium cyclamate and sucrose, respectively.

  14. Crystal and molecular structure of aspartame X HCl X 2H2O.

    PubMed

    Görbitz, C H

    1987-02-01

    The crystal and molecular structure of the hydrochloride salt of the peptide sweetener aspartame (alpha-L-Asp-L-Phe methyl ester) has been determined at 120 K using 3877 reflections with I greater than 2.5 sigma I. Space group P2(1)2(1)2(1), cell dimensions a = 6.768(1), b = 9.796(1) and c = 26.520(3) A; final R factor 0.033. While the N-terminal L-Asp group in the structure of aspartame itself forms a six-membered ring with an intramolecular hydrogen bond between the carboxylate and the protonated amino terminus, the corresponding group in the hydrochloride adopts a completely different conformation with a weak intramolecular hydrogen bond between the carboxyl group and the N atom of the L-Phe residue. The L-Phe methyl ester moiety is rather similar in the two structures. Of the many possible conformations of aspartame, only one may be expected to function as a substrate at the receptor site for sweet taste, and a proposal is made for this active conformation.

  15. Development, validation, and application of a novel LC-MS/MS trace analysis method for the simultaneous quantification of seven iodinated X-ray contrast media and three artificial sweeteners in surface, ground, and drinking water.

    PubMed

    Ens, Waldemar; Senner, Frank; Gygax, Benjamin; Schlotterbeck, Götz

    2014-05-01

    A new method for the simultaneous determination of iodated X-ray contrast media (ICM) and artificial sweeteners (AS) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) operated in positive and negative ionization switching mode was developed. The method was validated for surface, ground, and drinking water samples. In order to gain higher sensitivities, a 10-fold sample enrichment step using a Genevac EZ-2 plus centrifugal vacuum evaporator that provided excellent recoveries (90 ± 6 %) was selected for sample preparation. Limits of quantification below 10 ng/L were obtained for all compounds. Furthermore, sample preparation recoveries and matrix effects were investigated thoroughly for all matrix types. Considerable matrix effects were observed in surface water and could be compensated by the use of four stable isotope-labeled internal standards. Due to their persistence, fractions of diatrizoic acid, iopamidol, and acesulfame could pass the whole drinking water production process and were observed also in drinking water. To monitor the fate and occurrence of these compounds, the validated method was applied to samples from different stages of the drinking water production process of the Industrial Works of Basel (IWB). Diatrizoic acid was found as the most persistent compound which was eliminated by just 40 % during the whole drinking water treatment process, followed by iopamidol (80 % elimination) and acesulfame (85 % elimination). All other compounds were completely restrained and/or degraded by the soil and thus were not detected in groundwater. Additionally, a direct injection method without sample preparation achieving 3-20 ng/L limits of quantification was compared to the developed method.

  16. Rationale for Further Medical and Health Research on High-Potency Sweeteners

    PubMed Central

    2012-01-01

    High-potency or artificial sweeteners have historically been considered inert compounds without physiological consequences other than taste sensations. However, recent data suggest that some of these sweeteners have biological effects that may impact human health. Furthermore, there are significant gaps in our current knowledge of the pharmacokinetics of these sweeteners, their potential for “sweetener–drug interactions” and their impact on appetite and body weight regulation. Nine research needs are described that address some of the major unknown issues associated with ingestion of high-potency sweeteners. PMID:22539626

  17. Influence of temperature and fat content on ideal sucrose concentration, sweetening power, and sweetness equivalence of different sweeteners in chocolate milk beverage.

    PubMed

    Paixão, J A; Rodrigues, J B; Esmerino, E A; Cruz, A G; Bolini, H M A

    2014-12-01

    The introduction of new products catering to specific dietary needs and the corresponding changes in the consumer profile reflect a growing demand for diet and “light” products. However, little information is available regarding the sensory effects of different sweeteners in products consumed at different temperatures and with varying fat contents. In this regard, this study aimed to determine the influence of temperature and fat content on the ideal sucrose concentration and the sweetness equivalence and sweetening power of different sweeteners: Neotame (NutraSweet Corp., Chicago, IL), aspartame, neosucralose, sucralose, and stevia (95% rebaudioside A), with sucrose as reference, in a chocolate milk beverage using a just-about-right (JAR) scale and magnitude estimation. Increasing temperature of consumption had an inverse effect on the ideal sucrose concentration in whole milk beverages, whereas no difference was noted in beverages made skim milk. In addition, a decrease in sweetening power was observed for all of the sweeteners analyzed considering the same conditions. The findings suggest that different optimal conditions exist for consumption of chocolate milk beverage related to sweetness perception, which depends on the fat level of milk used in the formulation. This information can be used by researchers and dairy processors when developing chocolate milk beverage formulations. PMID:25606602

  18. Influence of temperature and fat content on ideal sucrose concentration, sweetening power, and sweetness equivalence of different sweeteners in chocolate milk beverage.

    PubMed

    Paixão, J A; Rodrigues, J B; Esmerino, E A; Cruz, A G; Bolini, H M A

    2014-12-01

    The introduction of new products catering to specific dietary needs and the corresponding changes in the consumer profile reflect a growing demand for diet and “light” products. However, little information is available regarding the sensory effects of different sweeteners in products consumed at different temperatures and with varying fat contents. In this regard, this study aimed to determine the influence of temperature and fat content on the ideal sucrose concentration and the sweetness equivalence and sweetening power of different sweeteners: Neotame (NutraSweet Corp., Chicago, IL), aspartame, neosucralose, sucralose, and stevia (95% rebaudioside A), with sucrose as reference, in a chocolate milk beverage using a just-about-right (JAR) scale and magnitude estimation. Increasing temperature of consumption had an inverse effect on the ideal sucrose concentration in whole milk beverages, whereas no difference was noted in beverages made skim milk. In addition, a decrease in sweetening power was observed for all of the sweeteners analyzed considering the same conditions. The findings suggest that different optimal conditions exist for consumption of chocolate milk beverage related to sweetness perception, which depends on the fat level of milk used in the formulation. This information can be used by researchers and dairy processors when developing chocolate milk beverage formulations.

  19. Investigation of synergism in binary mixtures of sweeteners.

    PubMed

    Schiffman, S S; Booth, B J; Carr, B T; Losee, M L; Sattely-Miller, E A; Graham, B G

    1995-01-01

    The purpose of the present study was to determine the presence and degree of synergism among all binary mixtures of 14 sweeteners varying in chemical structure. A trained panel evaluated binary combinations of the following sweeteners: three sugars (fructose, glucose, sucrose), two polyhydric alcohols (mannitol, sorbitol), two diterpenoid glycosides (rebaudioside-A, stevioside), two dipeptide derivatives (alitame, aspartame), one sulfamate (sodium cyclamate), one protein (thaumatin), two N-sulfonyl amides (acesulfame-K, sodium saccharin), and one dihydrochalcone (neohesperidin dihydrochalcone). Each sweetener was tested at three concentrations that were isosweet with 3%, 5%, and 7% sucrose. Two methods of analysis were performed to determine synergistic effects. In Method I, an ANOVA was performed for each intensity level to determine if the mean sweetness intensity ratings of each binary mixture were equal to nominal sweetness (i.e., additivity) or not equal to nominal sweetness (i.e., synergism or suppression). In Method II, an additional ANOVA was performed to determine if the sweetness intensity ratings of any given mixture were equal to or greater than the average of the sweetness ratings of the two pure components in that blend.

  20. Effects of three sweeteners on rat urinary bladder carcinogenesis initiated by N-butyl-N-(4-hydroxybutyl)-nitrosamine.

    PubMed

    Hagiwara, A; Fukushima, S; Kitaori, M; Shibata, M; Ito, N

    1984-09-01

    The effects of three sweeteners, sodium saccharin, aspartame and stevioside, on urinary bladder carcinogenesis in rats initiated by N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) were evaluated. Male F344 rats were given 0.01% BBN in their drinking water for 4 weeks and then the test sweeteners in their diet for 32 weeks. All surviving rats were sacrificed after 36 weeks, and examined histologically. Treatment with sodium saccharin significantly increased the incidence and extent of preneoplastic lesions, papillary or nodular (PN) hyperplasia, in rats treated with BBN for 4 weeks. Administration of 5% aspartame or 5% stevioside in the diet did not, however, affect the incidence or extent of PN hyperplasia in BBN-treated rats. No preneoplastic or neoplastic lesions of the urinary bladder were observed in rats treated with the test sweeteners only. The results with sodium saccharin were consistent with those in our previous experiments. The data also suggest that aspartame and stevioside do not promote bladder carcinogenesis.

  1. Natural sweeteners in a human diet.

    PubMed

    Grembecka, Małgorzata

    2015-01-01

    Sweeteners, both natural and artificial, play an important role in a human diet as well as are of great importance to the food industry and dieticians. Many people associate sweet taste with sucrose, which is commonly known as table sugar. However, there are many sweet substances that food manufacturers add to food products because none of them is ideal for all applications. Besides sucrose there are also other sugars such as glucose and fructose that originate both from natural sources such as fruits and honey or from added sugars. Among sweeteners there are also compounds which have a sweet taste and contain no calories or those which sweetness is so intense so can be used at very low concentrations, thus, their impact on the total caloric value of the product is negligible. They can be classified due to their origin (natural or synthetic agents), the technological function (sweeteners and fillers), texture (powders and syrups), and nutritional value (caloric and non-caloric). Natural sweetening substances include carbohydrates, sugar alcohols, thaumatin and stevia. Besides providing well tasting foods, they might have an impact on products' texture, color, preservation and caloric value. Sugar alcohols, which belong to carbohydrates, are both natural sugar substitutes and food additives. They are becoming more and more popular among consumers mainly due to their lower caloric values and glycemic indexes as well as anticariogenic effects. Sugar alcohols are often combined with other sweeteners to enhance food products' sweetness. Stevia, which is 200 times sweeter than sucrose, is a non caloric substance whereas thaumatin, a sweet protein, provides 4 kcal/g but characterizes with sweetness about 2000 times higher than sucrose (on a weight basis). PMID:26400114

  2. Synthesis, characterization and antimycobacterial activity of Ag(I)-aspartame, Ag(I)-saccharin and Ag(I)-cyclamate complexes.

    PubMed

    Cavicchioli, Maurício; Leite, Clarice Q F; Sato, Daisy N; Massabni, Antonio C

    2007-10-01

    The present work describes the synthesis and antimycobacterial activity of three Ag(I)-complexes with the sweeteners aspartame, saccharin, and cyclamate as ligands, with the aim of finding new candidate substances for fighting tuberculosis and other mycobacterial infections. The minimal inhibitory concentration of these three complexes was investigated in order to determine their in-vitro antimycobacterial activity against Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium malmoense, and Mycobacterium kansasii. The MIC values were determined using the Microplate Alamar Blue Assay. The best MIC values found for the complexes were 9.75 microM for Ag(I)-aspartame against M. kansasii and 15.7 microM for Ag(I)-cyclamate against M. tuberculosis.

  3. Comparing the effects of aspartame and sucrose on motivational ratings, taste preferences, and energy intakes in humans.

    PubMed

    Drewnowski, A; Massien, C; Louis-Sylvestre, J; Fricker, J; Chapelot, D; Apfelbaum, M

    1994-02-01

    This study compared the effects of four breakfast preloads on motivational ratings, taste preferences, and energy intakes of 24 normal-weight nondieting young men and women. The preloads, composed of creamy white cheese (fromage blanc), were either plain or sweetened with aspartame or sucrose. Their energy value was either 1255 or 2929 kJ (300 or 700 kcal). Taste preferences were measured before and 150 min after breakfast. Motivational ratings were obtained at 30-min intervals. The subjects ate lunch, snack, and dinner meals in the laboratory. The consumption of low-energy as opposed to high-energy breakfasts, regardless of sweetness, led to elevated motivational ratings and increased energy intakes at lunch. However, intakes at subsequent meals were the same for all preloads, and no overall compensation in energy was observed. Aspartame did not promote hunger or lead to increased energy intakes in normal-weight subjects.

  4. Reversed-phase high-performance liquid chromatography of the stereoisomers of some sweetener peptides with a helical nickel(II) chelate in the mobile phase.

    PubMed

    Bazylak, G

    1994-05-13

    The use of a chiral mobile phase additive in the form of the helically distorted, square-planar, chiral nickel(II) chelate dl-[4,4'-(1-methyl-2-propylethane-1,2-diyldiimino)bis(pent-3 -en-2- onato)]nickel(II) was investigated for the resolution of optical isomers of dipeptide-type sweeteners, viz., aspartame, alitame and antiaspartame, and some of their decomposition products, e.g., diketopiperazines. The chiral discrimination mechanism for the solutes was elucidated. The proposed chiral RP-HPLC system was applied to the stereoselective determination of aspartame impurities in samples of its commercial dietetic and pharmaceutical formulations.

  5. Aspartame exposure and in vitro hippocampal slice excitability and plasticity.

    PubMed

    Fountain, S B; Hennes, S K; Teyler, T J

    1988-08-01

    Aspartame (APM) is a low-calorie sweetener recently approved and released for widespread use in the United States. However, concerns still exist that APM consumption may be responsible for adverse neurological and psychological effects in some people. In addition, recent reports indicate that APM exposure may alter regional brain neurotransmitter levels. The present study assessed the effects of APM and its amino acid moieties on rat hippocampal slice excitability and plasticity. Specifically, tests of excitatory systems, inhibitory systems, and synaptic plasticity (induction of long-term potentiation--LTP) were administered postexposure. Exposures of 0.01, 0.1, 1, and 10 mM APM potentiated the response of hippocampal CA1 pyramidal cells, but had no apparent effect on local inhibitory systems. APM exposure did not block the establishment of LTP at any dose despite the potentiation of pyramidal cell response observed postexposure. In addition, 0.1 mM phenylalanine (PHE) produced a greater increase in excitability than that produced by an equivalent dose of APM, 0.1 mM aspartic acid (ASP) and 0.1 mM phenylalanine methyl ester (PM) produced effects comparable to those produced a smaller, but reliable, change in hippocampal CA1 excitability relative to baseline. Like APM, none of the amino acids produced detectable changes in inhibitory systems or neuronal plasticity.

  6. Physiological mechanisms mediating aspartame-induced satiety.

    PubMed

    Hall, W L; Millward, D J; Rogers, P J; Morgan, L M

    2003-04-01

    Aspartame has been previously shown to increase satiety. This study aimed to investigate a possible role for the satiety hormones cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) in this effect. The effects of the constituents of aspartame, phenylalanine and aspartic acid, were also examined. Six subjects consumed an encapsulated preload consisting of either 400 mg aspartame, 176 mg aspartic acid+224 mg phenylalanine, or 400 mg corn flour (control), with 1.5 g paracetamol dissolved in 450 ml water to measure gastric emptying. A 1983-kJ liquid meal was consumed 60 min later. Plasma CCK, GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucose, and insulin were measured over 0-120 min. Gastric emptying was measured from 0 to 60 min. Plasma GLP-1 concentrations decreased following the liquid meal (60-120 min) after both the aspartame and amino acids preloads (control, 2096.9 pmol/l min; aspartame, 536.6 pmol/l min; amino acids, 861.8 pmol/l min; incremental area under the curve [AUC] 60-120 min, P<.05). Desire to eat was reduced from 60 to 120 min following the amino acids preload (control, -337.1 mm min; aspartame, -505.4 mm min; amino acids, -1497.1 mm min; incremental AUC 60-120 min, P<.05). However, gastric emptying rates, plasma CCK, GIP, insulin, and glucose concentrations were unaffected. There was a correlation between the increase in plasma phenylalanine and decrease in desire to eat after the liquid meal following the constituent amino acids (r=-.9774, P=.004). In conclusion, it is unlikely that aspartame increases satiety via CCK- or GLP-1-mediated mechanisms, but small changes in circulating phenylalanine concentrations may influence appetite.

  7. How aspartame prevents the toxicity of ochratoxin A.

    PubMed

    Creppy, E E; Baudrimont, I; Anne-Marie

    1998-07-01

    the toxin is ingested. For this purpose several compound have been studied including some therapeutic agents such as piroxicam which cannot be proposed for a large scale use in humans for preventive purpose. Among other compounds, Aspartame, already used as sweetener has shown a real effectiveness in vivo confirmed largely in vitro. When rats exposed to OTA (289 micrograms/kg) by oral route every two days are given 25 mg/kg similarly for several weeks, all the toxic effects including genotoxicity are very efficiently prevented as shown for example by the disappearance of DNA- adducts in tissues excised from treated animals. Aspartame is also effective in washing out the toxin when given afterwards to animals intoxicated by the same oTA doses for several weeks. In vitro, provided that it is added in cell culture medium before OTA it prevent significantly the inhibition of protein synthesis and lipid peroxidation induced by the toxin. Obviously the molecular mechanism mediating the preventive effect of Aspartame is the delivery of phenylalanine by cleavage of the peptide but also the direct effect of the peptide on the bending capacity and transport of the toxin in vivo and in vitro. As a matter of fact when Aspartame is given to animals or added in culture medium the amount of peptide found unchanged (10-15%) may account for a preventive effect as entire peptide.

  8. Retention behaviour of some high-intensity sweeteners on different SPE sorbents.

    PubMed

    Zygler, Agata; Wasik, Andrzej; Namieśnik, Jacek

    2010-10-15

    The objective of this paper is to provide information about application of solid-phase extraction (SPE) for isolation of nine high-intensity sweeteners (acesulfame-K, alitame, aspartame, cyclamate, dulcin, neotame, saccharin, sucralose and neohesperidin dihydrochalcone) from aqueous solutions. The influence of several types of LC-MS compatible buffers (different pH values and compositions) on their recovery has been studied and discussed. A number of commercially available SPE cartridges, such as Chromabond C18ec, Strata-X RP, Bakerbond Octadecyl, Bakerbond SDB-1, Bakerbond SPE Phenyl, Oasis HLB, LiChrolut RP-18, Supelclean LC-18, Discovery DSC-18 and Zorbax C18 were tested in order to evaluate their applicability for the isolation of analytes. Very high recoveries (better than 92%) of all studied compounds were obtained using formic acid-N,N-diisopropylethylamine buffer adjusted to pH 4.5 and C(18)-bonded silica sorbents. Behaviour of polymeric sorbents strongly depends on their structure. Strata-X RP behaves much like a C(18)-bonded silica sorbent. Recoveries obtained using Oasis HLB were comparable with those observed for silica-based sorbents. The only compound less efficiently (83%) retained by this sorbent was cyclamate. Bakerbond SDB-1 shows unusual selectivity towards aspartame and alitame. Recoveries of these two sweeteners were very low (26 and 42%, respectively). It was also found that aspartame and alitame can be selectively separated from the mixture of sweeteners using formic acid-triethylamine buffer at pH 3.5. PMID:20875571

  9. Retention behaviour of some high-intensity sweeteners on different SPE sorbents.

    PubMed

    Zygler, Agata; Wasik, Andrzej; Namieśnik, Jacek

    2010-10-15

    The objective of this paper is to provide information about application of solid-phase extraction (SPE) for isolation of nine high-intensity sweeteners (acesulfame-K, alitame, aspartame, cyclamate, dulcin, neotame, saccharin, sucralose and neohesperidin dihydrochalcone) from aqueous solutions. The influence of several types of LC-MS compatible buffers (different pH values and compositions) on their recovery has been studied and discussed. A number of commercially available SPE cartridges, such as Chromabond C18ec, Strata-X RP, Bakerbond Octadecyl, Bakerbond SDB-1, Bakerbond SPE Phenyl, Oasis HLB, LiChrolut RP-18, Supelclean LC-18, Discovery DSC-18 and Zorbax C18 were tested in order to evaluate their applicability for the isolation of analytes. Very high recoveries (better than 92%) of all studied compounds were obtained using formic acid-N,N-diisopropylethylamine buffer adjusted to pH 4.5 and C(18)-bonded silica sorbents. Behaviour of polymeric sorbents strongly depends on their structure. Strata-X RP behaves much like a C(18)-bonded silica sorbent. Recoveries obtained using Oasis HLB were comparable with those observed for silica-based sorbents. The only compound less efficiently (83%) retained by this sorbent was cyclamate. Bakerbond SDB-1 shows unusual selectivity towards aspartame and alitame. Recoveries of these two sweeteners were very low (26 and 42%, respectively). It was also found that aspartame and alitame can be selectively separated from the mixture of sweeteners using formic acid-triethylamine buffer at pH 3.5.

  10. [Simultaneous determination of six synthetic sweeteners in food by high performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Liu, Xiaoxi; Ding, Li; Liu, Jinxia; Zhang, Ying; Huang, Zhiqiang; Wang, Libing; Chen, Bo

    2010-11-01

    A simple and sensitive method for the determination of six synthetic sweeteners (sodium cyclamate, saccharin sodium, acesulfame-K, aspartame, alitame and neotame) in food was developed. The synthetic sweeteners were extracted by methanol-water (1 : 1, v/v). The extract was separated on a C18 column using 0.1% (v/v) formic acid-5 mmol/L ammonium formate/acetonitrile as mobile phase, and then detected by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) using multiple reaction monitoring (MRM) mode. The good linearities (r > 0.998) were achieved for all the analytes over the range of 20-500 microg/L. The recoveries obtained ranged from 81.3% to 106.0% at three spiked concentrations, with the relative standard deviations lower than 11%. The established method has been successfully applied to the determination of synthetic sweeteners in food.

  11. Postingestive inhibition of food intake by aspartame: importance of interval between aspartame administration and subsequent eating.

    PubMed

    Rogers, P J; Burley, V J; Alikhanizadeh, L A; Blundell, J E

    1995-03-01

    Aspartame administered in capsules (i.e., without tasting) 1 h before a meal significantly reduces the amount eaten in that meal. In the present study 36 young men and women were divided into 3 groups of 12 to receive aspartame (400 mg) or placebo (400 mg starch) on separate occasions either 5 min (Group A), 30 min (Group B) or 60 min (Group C) before beginning an ad lib test meal. Compared with placebo, aspartame reduced food intake in Group C (by 18.5%, p < 0.01), but did not reliably affect intake in Groups A or B. There were, in contrast, no significant effects of aspartame on premeal ratings of hunger, desire to eat or fullness for any of the groups. These results confirm a postingestive inhibitory action of aspartame on appetite, which may involve the amplification of the satiating effects of food. The lack of effect of aspartame administered at the shorter intervals before eating suggests a postgastric or even postabsorptive mechanism of action. This observation is also important in its implications for the possible therapeutic exploitation of the anorexic effect of capsulated aspartame.

  12. "Aspartame: A review of genotoxicity data".

    PubMed

    Kirkland, David; Gatehouse, David

    2015-10-01

    Aspartame is a methyl ester of a dipeptide of aspartic acid and phenylalanine. It is 200× sweeter than sucrose and is approved for use in food products in more than 90 countries around the world. Aspartame has been evaluated for genotoxic effects in microbial, cell culture and animal models, and has been subjected to a number of carcinogenicity studies. The in vitro and in vivo genotoxicity data available on aspartame are considered sufficient for a thorough evaluation. There is no evidence of induction of gene mutations in a series of bacterial mutation tests. There is some evidence of induction of chromosomal damage in vitro, but this may be an indirect consequence of cytotoxicity. The weight of evidence from in vivo bone marrow micronucleus, chromosomal aberration and Comet assays is that aspartame is not genotoxic in somatic cells in vivo. The results of germ cell assays are difficult to evaluate considering limited data available and deviations from standard protocols. The available data therefore support the conclusions of the European Food Safety Authority (EFSA) that aspartame is non-genotoxic. PMID:26321723

  13. "Aspartame: A review of genotoxicity data".

    PubMed

    Kirkland, David; Gatehouse, David

    2015-10-01

    Aspartame is a methyl ester of a dipeptide of aspartic acid and phenylalanine. It is 200× sweeter than sucrose and is approved for use in food products in more than 90 countries around the world. Aspartame has been evaluated for genotoxic effects in microbial, cell culture and animal models, and has been subjected to a number of carcinogenicity studies. The in vitro and in vivo genotoxicity data available on aspartame are considered sufficient for a thorough evaluation. There is no evidence of induction of gene mutations in a series of bacterial mutation tests. There is some evidence of induction of chromosomal damage in vitro, but this may be an indirect consequence of cytotoxicity. The weight of evidence from in vivo bone marrow micronucleus, chromosomal aberration and Comet assays is that aspartame is not genotoxic in somatic cells in vivo. The results of germ cell assays are difficult to evaluate considering limited data available and deviations from standard protocols. The available data therefore support the conclusions of the European Food Safety Authority (EFSA) that aspartame is non-genotoxic.

  14. Aspartame: effects on learning, behavior, and mood.

    PubMed

    Saravis, S; Schachar, R; Zlotkin, S; Leiter, L A; Anderson, G H

    1990-07-01

    The effect of aspartame on the learning, behavior, and mood of children was evaluated in two experiments. After an overnight fast and a standard breakfast, 20 healthy 9- to 10-year-old children were given the treatments in a double-blind crossover design at 10:30 AM. Lunch was served at 12:00 noon. In experiment 1, the treatment consisted of an ice slurry of strawberry Kool-Aid containing 1.75 g/kg of carbohydrate (polycose) plus either aspartame (34 mg/kg) or the equivalent sweetness as sodium cyclamate and amino acids as alanine. In experiment 2, the treatment consisted of a drink of cold unsweetened strawberry Kool-Aid, containing either 1.75 g/kg of sucrose or 9.7 mg/kg of aspartame. Measures of associative learning, arithmetic calculation, activity level, social interaction, and mood were unaffected by treatment in experiment 1. In experiment 2, the only significant treatment effect was that on the frequency of minor and gross motor behaviors, which were less frequent after the consumption of sucrose than after aspartame. Thus, the effect of aspartame on the short-term behavior of healthy 9- to 10-year-old children appears to be related to its absence of metabolic consequences rather than to its amino acid composition and putative neurochemical impact.

  15. Non-Nutritive Sweeters (Artificial Sweeteners)

    MedlinePlus

    ... a Healthy Heart Healthy Kids Our Kids Programs Childhood Obesity What is childhood obesity? Overweight in Children BMI in Children Is Childhood Obesity an Issue in Your Home? Addressing your Child's ...

  16. [Simultaneous determination of five synthetic sweeteners in food by solid phase extraction-high performance liquid chromatography-evaporative light scattering detection].

    PubMed

    Liu, Fang; Wang, Yan; Wang, Yuhong; Zhou, Junyi; Yan, Chao

    2012-03-01

    A high performance liquid chromatographic method with evaporative light scattering detection (HPLC-ELSD) was developed for the simultaneous determination of five synthetic sweeteners (acesulfame-K, saccharin sodium, sodium cyclamate, sucralose and aspartame) in food. The sweeteners were extracted by 0.1% (v/v) formic acid buffer solution. The extract of sample was cleaned up and concentrated with solid phase extraction (SPE) cartridge. Then the sweeteners were separated on a C18 column (3 microm) using 0.1% (v/v) formic acid buffer (adjusted to pH = 3.5 with aqueous ammonia solution)-methanol (61: 39, v/v) as mobile phase, and finally detected by ELSD. The results showed that the reasonable linearity was achieved for all the analytes over the range of 30 - 1000 mg/L with the correlation coefficients (r) greater than 0.997. The recoveries for the five sweeteners ranged from 85.6% to 109.0% at three spiked concentrations with the relative standard deviations (RSDs) lower than 4.0%. The limits of detection (LODs, S/N = 3) were 2.5 mg/L for both acesulfame-K and sucralose, 3 mg/L for saccharin sodium, 10 mg/L for sodium cyclamate, and 5 mg/L for aspartame. The method is simple, sensitive and low cost, and has been successfully applied to the simultaneous determination of the five synthetic sweeteners in food.

  17. Effect of sucrose on the metabolic disposition of aspartame.

    PubMed

    Stegink, L D; Brummel, M C; Persoon, T J; Filer, L J; Bell, E F; Ziegler, E E

    1990-08-01

    Twelve normal adult subjects ingested a beverage providing 0.136 mmol aspartame/kg body wt on 2 different days. On 1 study day the beverage provided only aspartame, on the other the beverage provided both aspartame and 3.51 mmol sucrose/kg body wt. The high mean plasma phenylalanine concentrations were similar after administration of aspartame alone (158 +/- 28.9 mumol/L, mean +/- SD) and administration of aspartame plus sucrose (134 +/- 44.1 mumol/L). Evaluation of the area under the plasma concentration-time curve (AUC) for phenylalanine also showed no significant difference between groups (197 +/- 49.1 vs 182 +/- 28.3 mumol.L-1.h for aspartame alone and aspartame plus sucrose, respectively). Similarly, the high mean ratio of phenylalanine to large neutral amino acids (Phe:LNAA) in plasma did not differ significantly (0.265 +/- 0.046 for aspartame alone, 0.275 +/- 0.107 for aspartame plus sucrose). However, there was a small but significant difference between groups for the 4-h AUC values for plasma Phe:LNAA. The simultaneous ingestion of sucrose with aspartame had only minor effects on aspartame's metabolic disposition.

  18. Long-term continuous synthesis of aspartame precursor in a column reactor with an immobilized thermolysin.

    PubMed

    Nakanishi, K; Takeuchi, A; Matsuno, R

    1990-03-01

    N-(Benzyloxycarbonyl)-L-asparty-L-phenylalanine methyl ester, the precursor of the synthetic sweetener aspartame, was continuously synthesized in an immobilized thermolysin plug-flow type reactor at 25 degrees C with the substrates (N-benzyloxycarbonyl-L-aspartic acid and L-phenylalanine methyl ester) dissolved in ethyl acetate. The immobilized enzyme was quite stable in ethyl acetate containing 2.5% 0.01 M 2-(N-morpholino)ethanesulphonic acid-NaOH buffer, pH 6.0, and 20 mM CaCl2 with or without the substrate at 25 degrees C. By periodically washing the column, we could conduct a continuous reaction for over 500 h with an average yield of 95% and a space velocity of 1.85 h-1.

  19. Synthesis of aspartame precursor with an immobilized thermolysin in mixed organic solvents.

    PubMed

    Miyanaga, M; Tanaka, T; Sakiyama, T; Nakanishi, K

    1995-06-20

    N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester, a precursor of the synthetic sweetener, aspartame, was synthesized from N-(benzyloxycarbonyl)-L-aspartic acid and L-phenylalanine methyl ester with an immobilized thermolysin (EC 3.4.24.4) in the mixed organic solvent system of tert-amyl alcohol and ethyl acetate. A mixed solvent consisting of tert-amyl alcohol and ethyl acetate at a ratio of 33:67 (v/v) was found to be the most suitable with respect to synthetic rate and stability of the immobilized enzyme. The reaction continued to proceed quite successfully in a column reactor at 40 degrees C and at a space velocity of 3.6 h(-1) with a yield of 99%, using 40 mM Z-Asp and 200 mM PheOMe dissolved in the mixed solvent as the substrate. (c) 1995 John Wiley & Sons, Inc.

  20. Comparison of the effects of aspartame and sucrose on appetite and food intake.

    PubMed

    Rolls, B J; Hetherington, M; Laster, L J

    1988-01-01

    We have studied the effects of consumption of foods sweetened with either sucrose or aspartame on appetite ratings and food intake. Normal weight, non-dieting subjects ate the same amount of high- and low-calorie versions of pudding or jello and despite the resulting difference in caloric intake, showed only a non-significant trend towards compensation in a lunch one or two hours later. There were no significant differences between rated hunger, fullness, desire to eat, the amount subjects wanted to eat, or sensory-specific satiety following the high- and low-calorie foods. Knowing the caloric values of the foods did not influence intake or appetite ratings in that both informed and uninformed subjects responded similarly. Thus in the short term subjects tended to eat a constant amount of a particular food and this volume had a greater effect on appetite ratings and subsequent intake than the calories consumed.

  1. Effect of aspartame-derived phenylalanine on neutral amino acid uptake in human brain: a positron emission tomography study.

    PubMed

    Koeppe, R A; Shulkin, B L; Rosenspire, K C; Shaw, L A; Betz, A L; Mangner, T; Price, J C; Agranoff, B W

    1991-05-01

    The possible effects of elevation of the plasma phenylalanine level secondary to the ingestion of aspartame on brain amino acid uptake in human subjects have been investigated by means of positron emission tomography (PET). 1-[11C]Aminocyclohexanecarboxylate [( 11C]ACHC) is a poorly metabolized synthetic amino acid that crosses the blood-brain barrier by the same carrier that transports naturally occurring large neutral amino acids. Quantitative test-retest PET studies were performed on 15 individuals. Seven received two identical baseline scans, whereas eight received a baseline scan followed by a scan performed approximately 40-45 min following ingestion of an orange-flavored beverage containing 34 mg/kg of body weight of the low-calorie sweetener aspartame, a dose equivalent to the amount in 5 L of diet soft drink consumed all at once by the study subjects, weighing an average of 76 kg. The 40-45-min interval was selected to maximize the detection of possible decreases in ACHC uptake resulting from increased competition for the carrier, because the plasma phenylalanine level is known to peak at this time. We observed an 11.5% decrease in the amino acid transport rate constant K1 and a smaller decrease in the tissue distribution volume of ACHC (6%). Under conditions of normal dietary use, aspartame is thus unlikely to cause changes in brain amino acid uptake that are measurable by PET.

  2. [Sweeteners: between myth and reality].

    PubMed

    Clarisse, Muriel; Di Vetta, Véronique; Giusti, Vittorio

    2009-03-25

    As the prevalence of obesity and diabetes are continually increasing, the use of "false sugars" otherwise known as sweeteners, and their associated health issues are being more and more discussed. A higher sugared power, less calories as well as a moderated or non-existent effect on blood sugar would lead to believe that sweeteners are helpful. However, we CANNOT say that they are THE solution as they can contain calories, may have some undesired effects, and moreover they ease the conscience without actually allowing a weight loss with their sole use. They are to be used with judgment, wittingly and especially when comparing sweetened products. The sweetener myth is often far from reality. It is therefore important to give our patients the means to analyze their dietary intake with regard to their sweeteners ingestion.

  3. Evaluation of an aspartame loading test for the detection of heterozygotes for classical phenylketonuria.

    PubMed

    Silva, L C; Pires, R F; Coelho, J C; Jardim, L B; Giugliani, R

    1997-04-01

    Classical phenylketonuria (PKU) is an inborn error of metabolism of autosomal recessive inheritance characterized by the accumulation of phenylalanine (Phe) in tissues due to Phe-4-hydroxylase deficiency. Several methods have been developed for the detection of PKU heterozygotes based on the determination of plasma Phe and tyrosine (Tyr) levels, on the analysis of the Phe/Tyr and Phe2/Tyr ratios and on the use of discriminant functions. The objective of the present study was to test the value of loading with aspartame (a sweetener consisting of Phe, aspartate and methanol) for the identification of PKU carriers. The study was conducted on 22 obligate heterozygotes and 27 controls. Two blood samples were collected (under fasting conditions and 30 min after the loading) for fluorometric determination of Phe and Tyr. Phe, Phe/Tyr and Phe2/Tyr values were higher in heterozygotes, whereas Tyr was higher in controls in both situations investigated. Linear discriminant function was considered to be the best parameter for differentiation of the individuals in the two groups. Under the conditions employed in the present study, aspartame loading did not show any advantages in discriminating between PKU carriers and normal individuals when compared to the same analysis performed under fasting conditions.

  4. Reshaping the gut microbiota: Impact of low calorie sweeteners and the link to insulin resistance?

    PubMed

    Nettleton, Jodi E; Reimer, Raylene A; Shearer, Jane

    2016-10-01

    Disruption in the gut microbiota is now recognized as an active contributor towards the development of obesity and insulin resistance. This review considers one class of dietary additives known to influence the gut microbiota that may predispose susceptible individuals to insulin resistance - the regular, long-term consumption of low-dose, low calorie sweeteners. While the data are controversial, mounting evidence suggests that low calorie sweeteners should not be dismissed as inert in the gut environment. Sucralose, aspartame and saccharin, all widely used to reduce energy content in foods and beverages to promote satiety and encourage weight loss, have been shown to disrupt the balance and diversity of gut microbiota. Fecal transplant experiments, wherein microbiota from low calorie sweetener consuming hosts are transferred into germ-free mice, show that this disruption is transferable and results in impaired glucose tolerance, a well-known risk factor towards the development of a number of metabolic disease states. As our understanding of the importance of the gut microbiota in metabolic health continues to grow, it will be increasingly important to consider the impact of all dietary components, including low calorie sweeteners, on gut microbiota and metabolic health. PMID:27090230

  5. Reshaping the gut microbiota: Impact of low calorie sweeteners and the link to insulin resistance?

    PubMed

    Nettleton, Jodi E; Reimer, Raylene A; Shearer, Jane

    2016-10-01

    Disruption in the gut microbiota is now recognized as an active contributor towards the development of obesity and insulin resistance. This review considers one class of dietary additives known to influence the gut microbiota that may predispose susceptible individuals to insulin resistance - the regular, long-term consumption of low-dose, low calorie sweeteners. While the data are controversial, mounting evidence suggests that low calorie sweeteners should not be dismissed as inert in the gut environment. Sucralose, aspartame and saccharin, all widely used to reduce energy content in foods and beverages to promote satiety and encourage weight loss, have been shown to disrupt the balance and diversity of gut microbiota. Fecal transplant experiments, wherein microbiota from low calorie sweetener consuming hosts are transferred into germ-free mice, show that this disruption is transferable and results in impaired glucose tolerance, a well-known risk factor towards the development of a number of metabolic disease states. As our understanding of the importance of the gut microbiota in metabolic health continues to grow, it will be increasingly important to consider the impact of all dietary components, including low calorie sweeteners, on gut microbiota and metabolic health.

  6. Sweetener preference of C57BL/6ByJ and 129P3/J mice.

    PubMed

    Bachmanov, A A; Tordoff, M G; Beauchamp, G K

    2001-09-01

    Previous studies have shown large differences in taste responses to several sweeteners between mice of the C57BL/6ByJ (B6) and 129P3/J (129) inbred strains. The goal of this study was to compare behavioral responses of B6 and 129 mice to a wider variety of sweeteners. Seventeen sweeteners were tested using two-bottle preference tests with water. Three main patterns of strain differences were evident. First, sucrose, maltose, saccharin, acesulfame-K, sucralose and SC-45647 were preferred by both strains, but the B6 mice had lower preference thresholds and higher solution intakes. Second, the amino acids D-phenylalanine, D-tryptophan, L-proline and glycine were highly preferred by B6 mice, but not by 129 mice. Third, glycyrrhizic acid, neohesperidin dihydrochalcone, thaumatin and cyclamate did not evoke strong preferences in either strain. Aspartame was neutral to all 129 and some B6 mice, but other B6 mice strongly preferred it. Thus, compared with the 129 mice the B6 mice had higher preferences for sugars, sweet tasting amino acids and several but not all non-caloric sweeteners. Glycyrrhizic acid, neohesperidin, thaumatin and cyclamate are not palatable to B6 or 129 mice.

  7. The effects of aspartame versus sucrose on motivational ratings, taste preferences, and energy intakes in obese and lean women.

    PubMed

    Drewnowski, A; Massien, C; Louis-Sylvestre, J; Fricker, J; Chapelot, D; Apfelbaum, M

    1994-08-01

    This study examined the effects of four breakfast preloads of different sweetness and energy content on motivational ratings, taste preferences, and energy intakes of 12 obese and 12 lean women. The preloads consisted of creamy white cheese (fromage blanc) and were either plain, sweetened with sucrose or aspartame, or sweetened with aspartame and supplemented with maltodextrin. Their energy content was either 300 kcal (1,255 kJ) or 700 kcal (2,929 kJ). Motivational ratings of hunger and the desire to eat were obtained prior to and at 30 min intervals after breakfast. Taste preferences were measured prior to and 150 min after breakfast. The subjects ate buffet-style lunch, snack, and dinner meals in the laboratory. Obese women consumed significantly more energy at meals (2,596 kcal or 10,862 kJ) than did lean women (1,484 kcal or 6,209 kJ); derived a greater proportion of energy from fat (39.9% vs. 35.5%), and had lower dietary carbohydrate-to-fat ratios. Consumption of low-energy as opposed to high-energy breakfast preloads was associated with elevated motivational ratings by noon. However, energy intakes at lunch, snack, or dinner did not vary as a function of preload type, and no compensation was observed for the energy consumed at breakfast. Taste preferences were not affected by preload ingestion or by preload type. The study provided no evidence that aspartame promotes hunger or results in increased energy intakes in obese or in lean women.

  8. Characterization of aspartame-cyclodextrin complexation.

    PubMed

    Sohajda, Tamás; Béni, Szabolcs; Varga, Erzsébet; Iványi, Róbert; Rácz, Akos; Szente, Lajos; Noszál, Béla

    2009-12-01

    The inclusion complex formation of aspartame (guest) and various cyclodextrins (host) were examined using 1H NMR titration and capillary electrophoresis. Initially the protonation constants of aspartame were determined by NMR-pH titration with in situ pH measurement to yield log K1=7.83 and log K2=2.96. Based on these values the stability of the complexes formed by aspartame and 21 different cyclodextrins (CDs) were studied at pH 2.5, pH 5.2 and pH 9.0 values where aspartame exists predominantly in monocationic, zwitterionic and monoanionic form, respectively. The host cyclodextrin derivatives differed in various sidechains, degree of substitution, charge and purity so that the effect of these properties could be examined systematically. Concerning size, the seven-membered beta-cyclodextrin and its derivatives have been found to be the most suitable host molecules for complexation. Highest stability was observed for the acetylated derivative with a degree of substitution of 7. The purity of the CD enhanced the complexation while the degree of substitution did not provide obvious consequences. Finally, geometric aspects of the inclusion complex were assessed by 2D ROESY NMR and molecular modelling which proved that the guest's aromatic ring enters the wider end of the host cavity. PMID:19586735

  9. Characterization of aspartame-cyclodextrin complexation.

    PubMed

    Sohajda, Tamás; Béni, Szabolcs; Varga, Erzsébet; Iványi, Róbert; Rácz, Akos; Szente, Lajos; Noszál, Béla

    2009-12-01

    The inclusion complex formation of aspartame (guest) and various cyclodextrins (host) were examined using 1H NMR titration and capillary electrophoresis. Initially the protonation constants of aspartame were determined by NMR-pH titration with in situ pH measurement to yield log K1=7.83 and log K2=2.96. Based on these values the stability of the complexes formed by aspartame and 21 different cyclodextrins (CDs) were studied at pH 2.5, pH 5.2 and pH 9.0 values where aspartame exists predominantly in monocationic, zwitterionic and monoanionic form, respectively. The host cyclodextrin derivatives differed in various sidechains, degree of substitution, charge and purity so that the effect of these properties could be examined systematically. Concerning size, the seven-membered beta-cyclodextrin and its derivatives have been found to be the most suitable host molecules for complexation. Highest stability was observed for the acetylated derivative with a degree of substitution of 7. The purity of the CD enhanced the complexation while the degree of substitution did not provide obvious consequences. Finally, geometric aspects of the inclusion complex were assessed by 2D ROESY NMR and molecular modelling which proved that the guest's aromatic ring enters the wider end of the host cavity.

  10. 21 CFR 172.804 - Aspartame.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... 552(a) and 1 CFR part 51. You may obtain copies from the United States Pharmacopeial Convention, 12601.../federal-register/cfr/ibr-locations.html. (c)(1) When aspartame is used as a sugar substitute tablet for..., see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed...

  11. 21 CFR 172.804 - Aspartame.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... this chapter. Editorial Note: For Federal Register citations affecting § 172.804, see the List of CFR... conditions: (a) Aspartame is the chemical 1-methyl N- l-α-aspartyl-l-phenylalanine (C14H18N2O5). (b) The... PHENYLALANINE The statement shall appear in the labeling prominently and conspicuously as compared to...

  12. 21 CFR 172.804 - Aspartame.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... this chapter. Editorial Note: For Federal Register citations affecting § 172.804, see the List of CFR... conditions: (a) Aspartame is the chemical 1-methyl N- l-α-aspartyl-l-phenylalanine (C14H18N2O5). (b) The... PHENYLALANINE The statement shall appear in the labeling prominently and conspicuously as compared to...

  13. 21 CFR 172.804 - Aspartame.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... this chapter. Editorial Note: For Federal Register citations affecting § 172.804, see the List of CFR... conditions: (a) Aspartame is the chemical 1-methyl N- l-α-aspartyl-l-phenylalanine (C14H18N2O5). (b) The... PHENYLALANINE The statement shall appear in the labeling prominently and conspicuously as compared to...

  14. 21 CFR 172.804 - Aspartame.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... this chapter. Editorial Note: For Federal Register citations affecting § 172.804, see the List of CFR... conditions: (a) Aspartame is the chemical 1-methyl N- l-α-aspartyl-l-phenylalanine (C14H18N2O5). (b) The... PHENYLALANINE The statement shall appear in the labeling prominently and conspicuously as compared to...

  15. [Carbohydrate sweeteners and obesity].

    PubMed

    Wystrychowski, Grzegorz; Zukowska-Szczechowska, Ewa; Obuchowicz, Ewa; Grzeszczak, Władysław; Wystrychowski, Antoni

    2012-01-01

    The U.S. prevalence of obesity increases since the mid-70s of the 20th century. Around that time high-fructose corn syrup (HFCS)--mixture of fructose and glucose was introduced as a sweetener replacing sucrose in the food production. HFCS containing 55% fructose and 42-45% glucose (HFCS55) has dominated the American soft drink industry and HFCS has recently become commonly used in Poland. The coincidence of HFCS introduction and obesity epidemic raised widely publicized suspicions of a causal relationship between the two. As a possible mechanism, a higher content of fructose in the HFCS55, as compared with sucrose was suggested -fructose is known to increase serum uric acid level, induce hepatic lipogenesis and not stimulate postprandial hyperinsulinemia, a main activator of leptin release. Few comparative studies of HFCS and sucrose have largely failed to reveal any different impacts on the metabolic parameters, yet they were mainly short-term. It has been recently shown that obesity is linked with changes in the intenstinal flora. Among the causes of allegedly different effects of sucrose and HFCS on metabolism, their influence on the gut microbiome has not been examined. Some bacterial types do not hydrolyze sucrose which may determine different compositions of gut flora with the use of both sweeteners. Studies involving quantitative analysis of bacterial DNA in the stool, both in animals and in humans, shall shed light on the issue that has recently so much absorbed the U.S. public opinion.

  16. [Carbohydrate sweeteners and obesity].

    PubMed

    Wystrychowski, Grzegorz; Zukowska-Szczechowska, Ewa; Obuchowicz, Ewa; Grzeszczak, Władysław; Wystrychowski, Antoni

    2012-01-01

    The U.S. prevalence of obesity increases since the mid-70s of the 20th century. Around that time high-fructose corn syrup (HFCS)--mixture of fructose and glucose was introduced as a sweetener replacing sucrose in the food production. HFCS containing 55% fructose and 42-45% glucose (HFCS55) has dominated the American soft drink industry and HFCS has recently become commonly used in Poland. The coincidence of HFCS introduction and obesity epidemic raised widely publicized suspicions of a causal relationship between the two. As a possible mechanism, a higher content of fructose in the HFCS55, as compared with sucrose was suggested -fructose is known to increase serum uric acid level, induce hepatic lipogenesis and not stimulate postprandial hyperinsulinemia, a main activator of leptin release. Few comparative studies of HFCS and sucrose have largely failed to reveal any different impacts on the metabolic parameters, yet they were mainly short-term. It has been recently shown that obesity is linked with changes in the intenstinal flora. Among the causes of allegedly different effects of sucrose and HFCS on metabolism, their influence on the gut microbiome has not been examined. Some bacterial types do not hydrolyze sucrose which may determine different compositions of gut flora with the use of both sweeteners. Studies involving quantitative analysis of bacterial DNA in the stool, both in animals and in humans, shall shed light on the issue that has recently so much absorbed the U.S. public opinion. PMID:23029710

  17. [Determination of five synthetic sweeteners in wines using high performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Ji, Chao; Feng, Feng; Chen, Zhengxing; Sun, Li; Chu, Xiaogang

    2010-08-01

    A high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI MS/MS) method for the determination of five synthetic sweeteners (acesulfame, sodium saccharin, sodium cyclamate, aspartame and neotame) in wines has been developed. The HPLC separation was carried out on an Ultimate C18 column (100 mm x 2.1 mm, 3 microm). Several parameters, including the composition and pH of the mobile phase, column temperature and the monitor ions, were optimized for improving the chromatographic performance and the sensitivity of determination. The results demonstrated that the separation can be completed in less than 5 min by gradient elution with 20 mmol/L ammonium formate and 0.1% (v/v) formic acid (pH 3.8) and methanol as the mobile phase. The column temperature was kept at 45 degrees C. When the analytes were detected by ESI -MS/MS under multiple reaction monitoring mode, the detection limits were 0.6, 5, 1, 0.8 and 0.2 microg/L for acesulfame, sodium saccharin, sodium cyclamate, aspartame and neotame, respectively. The average recoveries ranged from 87.2% to 103%. The relative standard deviations were not more than 1.2%. This method is rapid, accurate, highly sensitive and suitable for the quality control of low concentration of the synthetic sweeteners, which are illegally added to wines and other foods with complex matrices.

  18. The effect of cooling on the perception of carbohydrate and intensive sweeteners.

    PubMed

    Green, B G; Frankmann, S P

    1988-01-01

    The effect of cooling on the perceived intensity of sweetness was measured for four different compounds: glucose, fructose, aspartame and saccharin. Perceived sweetness was rated in a sip and spit paradigm when the taste solution, the tongue, or both were either held at 36 degrees C or cooled to 20 degrees C. It was discovered that for glucose and fructose perceived sweetness was significantly reduced by cooling, and that cooling the tongue reduced sweetness more than did cooling the solution. The perceived sweetness of aspartame was also lessened by cooling, but in that case the temperature of the tongue and the temperature of the solution had similar effects on sweetness. In contrast to the other compounds, the sweetness of saccharin was not affected by temperature. These results (when combined with data previously reported for sucrose) raise the possibility that as a group, carbohydrate sweeteners are affected similarly by temperature, whereas thermal effects on intensive sweeteners may be less predictable. The data thereby provide indirect support for the hypothesis that the sweet taste is mediated by more than one type of gustatory receptor.

  19. Interaction between calcium channel blockers and sweetening agents on morphine-induced analgesia in mice by formalin test.

    PubMed

    Nikfar, S; Abdollahi, M; Sarkarati, F; Etemad, F

    1998-09-01

    1. Calcium is known to be an important ion in the modulation of nociception and inflammation. Previous research has shown that mice drinking sweet-tasting solutions such as sucrose, saccharin and aspartame exhibit significant changes in morphine-induced analgesia in both phases of the formalin test. 2. In this study, the role of calcium channel blockers on the effectivity of a 12-day regimen of different sweetening agents (sucrose 32%, saccharin 0.08% and aspartame 0.16%) on the alteration of the morphine response has been investigated. 3. Male albino mice weighing 20-27 g were used for experiments. Animals were given 12 days to adapt to dietary conditions. Animals were given morphine (1.5, 3, 6, 9 mg/kg) subcutaneously 30 min before observation. Nifedipine (5 mg/kg), verapamil (5 mg/kg) and diltiazem (10 mg/kg) were administered intraperitoneally 20 min before morphine injection. 4. Recording of the early phase started immediately and lasted for 10 min after formalin injection. Recording of the late response started 20 min after formalin injection and lasted for 10 min. 5. Calcium channel blockers potentiated the antinociceptive effects of sweetening agents and diminished the antagonistic effects of these compounds on morphine-induced analgesia in the early and late phases of the formalin test. 6. It is proposed that calcium has a role for the interactive effects of sweetening agents and morphine on pain sensitivity.

  20. Not so Sweet Revenge: Unanticipated Consequences of High-Intensity Sweeteners.

    PubMed

    Swithers, Susan E

    2015-05-01

    While no single factor accounts for the significant increases in overweight and obesity that have emerged during the past several decades, evidence now suggests that sugars, in general, and sugar-sweetened beverages, in particular, may be especially problematic. One response to this concern has been an explosion in the availability and use of noncaloric sweeteners as replacements for sugar. While consumers have been led to believe that such substitutes are healthy, long-term epidemiological data in a number of cohorts have documented increased risk for negative outcomes like type 2 diabetes, heart disease, and stroke among users of artificial sweeteners. Experimental data from animals has provided several plausible mechanisms that could explain this counterintuitive relationship. In particular, my research has demonstrated that artificial sweeteners appear to interfere with basic learned, predictive relations between sweet tastes and post-ingestive consequences such as the delivery of energy. By interfering with these relations, artificial sweeteners inhibit anticipatory responses that normally serve to maintain physiological homeostasis, and over the long term, this interference could result in negative health effects like those seen in the human cohort studies. These data suggest that reducing the consumption of all sweeteners is advisable to promote better health. PMID:27606166